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Summary 

Amino-terminal signal peptides (SPs) mediate the targeting of precursor secretory and 

membrane proteins to the correct subcellular compartments. Despite the availability 

of massive sequencing data in the past two decades, disproportionately little is known 

about their mechanism, targeting, excision and post-excision events. 

To capture these sequences for creating a specialized and standardized 

resource for SP, we have developed a semi-automatic pipeline to extract SP-specific 

information from public sequence databases. 27,708 of the 356,194 sequences 

extracted from Swiss-Prot which purportedly contain SPs, were discovered to lack 

experimental support upon inspection. Consequently, “SP filtering rules” were 

formulated to systematically eliminate spurious and experimentally unsupported 

entries.  Of the resulting 2,352 verified SPs, we were able to cluster and classify them 

into five major groups, including eukaryotes, Gram-positive and Gram-negative 

bacteria, archaea and viruses. 

In analyzing the cleansed datasets, certain types of amino acid residues were 

observed to occur more frequently at specific positions in the vicinity of the SP 

cleavage site, as was previously suspected. However, the canonical “(-3,-1) rule” of 

(von Heijne, 1986a) which is based on the classical SP processing pathway, was 

found to account for only 61.6-77.5% of the total dataset. Non-canonical SPs appear 

to be devoid of standard sequence patterns. Yet, in the absence of a clear universal 

sequence motif, the entire process of protein targeting and excision occurs with 

remarkable precision, suggesting multiple mechanisms for SP recognition, as has now 

been verified experimentally by other groups. Most studies have hitherto focused on 
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the primary structure of SPs, ignoring the possibility of structural features that may lie 

within this short peptide segment. 

Therefore, to derive structural patterns in SPs, we developed a working 

structural model of the SP complex with its endogenous receptor through homology 

modeling, protein threading and structure compositing. Separate domains from crystal 

structures of E. coli receptor complexes were amalgamated to form a theoretical 3D 

computational model. 

The model revealed various grooves that can only accommodate certain 

structural types of amino acid residues. The positions that these residues can occur, 

coincide with those observed at the sequence level. These findings inspired the 

development of a novel machine learning based prediction method. 

Support Vector Machines were used to model both the structural spatial 

constraints and the linear sequence information. This approach, incorporating both 

canonical and non-canonical SP cleavage sites, has successfully predicted 80-97% of 

verified bacterial datasets in the benchmark against existing methods. Significative 

feature vectors were analysed and found to correlate with sequence positions, thereby 

providing structural support for the early use of the classical SP predictive rules. 

Structural grooves appear to be able to accommodate a variety of peptide structural 

motifs, including those that do not exhibit sequential patterns. 

The successful use of structural features in this approach provides an 

explanation of the seemingly contradictory findings of site-directed mutagenesis 

studies such as Thornton et al., 2006 and others, whereby sequence-based mutations 

gave rise to unpredictable SP processing outcomes. Hence, if structural data becomes 

available for eukaryotic SP, this approach may be useful for formulating more 

accurate methods and may be extendable to the prediction of other signal sequences. 
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Chapter 1: Introduction  

1.1 Overview 

The Human Genome Project (HGP) was initiated in 1990 with the primary aim of 

understanding the human genetic makeup. The project which spanned 13 years, 

identified over 20,000 genes with an estimated cost of USD300 million to sequence a 

human genome (the cost is estimated based on the parallel quest by Celera Genomics 

Inc.(http://www.genome.gov/11006943;http://ww.ornl.gov/sci/techresources/Human_

Genome/home.shtml). Vast improvements in sequencing and high-throughput 

technologies since then, have made it possible to sequence a human genome under 

USD60,000 in less than a month (Applied Biosystems, 2008). Start-ups such as 

23andMe or deCODEme Genetics are already capitalizing on the breakthrough to 

offer ‘personalized genomics’ services.  They perform marker genotyping for 

individuals to learn about their own genetic profile and disease risk (Kaye, 2008). In 

January 2008, the “1000 Genomes Project” was launched to map the genomes of 

more than 1,000 individuals in an attempt to produce a detailed catalog of the genetic 

variations (http://www.1000genomes.org). These developments guarantee that the 

pace at which the sequence data are churned out will only accelerate.  

The unprecedented availability of such voluminous data has literally 

transformed the study of biological and biomedical research. Now, it is a routine for 

experimental studies to involve informatic tools and computational techniques to 

collect, store, organize, retrieve, search, and to integrate the massive volume of 

sequence, structure, literature and other biological data from disparate data sources 

into a cohesive and coherent view for interpretation and analysis (Mount, 2001). 
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As the annotation of the immense data accruing from genome-scale projects 

continues to be an on-going ‘grand challenge’ for Bioinformatics and Computational 

Biology, assigning function accurately and effectively to the protein products encoded 

by the genes encapsulated in the genome sequences remains a significant barrier to 

our understanding of the functional molecules in cells (Louie et al., 2008; Reed et al., 

2006). The role and function of a single protein depends on the partner proteins that it 

interacts with, which are in turn influenced by subcellular localization. Molecules 

secreted by a cell or an organism, often referred to as secretory proteins, play pivotal 

biological roles in the health and well being of an organism. 

Secretory proteins reportedly represent 30% of the proteome of an organism 

(Skach, 2007) with functionally diverse classes of molecules such as cytokines, 

chemokines, hormones, digestive enzymes, antibodies, extracellular proteinases, 

morphogens, toxins and antimicrobial peptides. Some of these proteins are involved 

in a host of diverse and vital biological processes, including cell adhesion, cell 

migration, cell-cell communication, differentiation, proliferation, morphogenesis, 

survival and defense, virulence factors in bacteria and immune responses (Bonin-

Debs et al., 2004). Excretory-secretory proteins circulating throughout the body of an 

organism (e.g. in the extracellular space) are localized to or released from the cell 

surface, making them readily accessible to drugs and/or the immune system. These 

characteristics make these molecules as extremely attractive targets for novel vaccines 

and therapeutics, which are currently the focus of major drug discovery research 

programs (Bonin-Debs et al., 2004; Serruto et al., 2004). Several efforts have been 

carried out to accelerate the discovery of these proteins including the large-scale 

Secreted Protein Discovery Initiative (SPDI) which sought to discover novel secretory 

and transmembrane proteins in human (Clark et al., 2003); identification of secreted 
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proteins in 225 bacterial proteomes (Bendtsen et al., 2005a) and the Human Proteome 

Folding Phase II (http://www.worldcommunitygrid.org/projects_showcase/viewHpf 2About.do). 

Such initiatives will likely increase with the completion of the numerous genome 

projects. These projects generate large number of novel sequences that require further 

annotations such as the identification of cleavable signal peptides (SPs) located at the 

amino-terminus of the secreted proteins as well as a subset of membrane proteins. 

These SPs play critical roles in the secretory pathway where not only are they 

involved in targeting; they actually carry out additional functions post-cleavage 

processing. Surprisingly, we are only beginning to realize their tremendously diverse 

responsibilities as more studies continue to illuminate their functions (Hegde and 

Bernstein, 2006). This development has been somewhat disappointing especially 

when they have been discovered for more than three decades ago (von Heijne, 1998). 

One reason for this lack of interest is attributed to our unwarranted presumption that 

these peptides could not possibly possess much sophisticated functions beyond their 

short/small physique. Also, identification of SPs is often considered a secondary or 

lesser task of an experimental study. This is exacerbated by the relatively tedious 

effort required by experimental methods to identify the SPs, making them further 

unable to cope with the large influx of new sequencing data. Thus, in silico paradigm 

has emerged as a viable approach to complement traditional wet-lab experiments. 

 It enables specific studies to be carried out at a fraction of cost and time 

through simulation, prediction and others. Moreover, large-scale studies involving 

thousands of sequences concurrently are feasible and can be conducted relatively 

easier. Importantly, it allows for formulation of questions and testable hypotheses that 

are fundamentally different from traditional experiments, that otherwise could not 

have been developed with experimental approaches alone (Brusic, 2007). 
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1.2 Aims of Thesis 

The goal of this thesis is to contribute to the understanding of the factors that govern 

the substrate specificity of SPs by means of bioinformatic and molecular modeling 

techniques. To attain this goal, the following objectives are established to: 

I. Develop a robust and scalable pipeline for the generation and update of a 

high quality repository of SPs which shall form the foundation for 

subsequent undertakings of this work 

II. Analyze the SPs sequences based on the dataset from (I)  

III. Study the structure complexes of SPs to identify specific grooves that 

possibly could contribute the substrate specificity 

IV. Develop a method for the accurate identification of the SPs cleavage site 

based on the insights obtained from (II) and (III) 

V. Conduct a benchmark study using standardized dataset from (I) on the 

existing SP prediction tools and evaluate our newly developed method (IV)  

While there is no lack of domain databases for the various types of sequence 

or structure data (http://www3.oup.co.uk/nar/database/c/), our survey showed that 

there was no specialized resource that catered to SPs when this work was initiated. 

Thus, the initial aim is to develop a customized pipeline to retrieve sequence entries 

from Swiss-Prot and extract selected information into a SP-centric repository. 

Maximal automation, ease of maintenance and scalability are set as important design 

criteria to cope with the continual deposition of new sequences. 

Previous studies (Menne, et al., 2000; Nielsen et al., 1997) have highlighted 

the presence of erroneous annotations in the Swiss-Prot protein sequence database 
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(Bairoch et al., 2004), but there was limited indication of the exact nature of the 

errors. It was also unclear the extent of the errors that was present. Hence, it will be 

useful to categorically classify these errors for formulating detection rules and 

techniques that could standardize the removal of affected entries. While identifying 

the errors, we want to explore the possibility of integrating information from 

nucleotide database - EMBL (Kulikova et al., 2007) not only to augment the current 

repository, but also as an auxiliary method for error detection (Bork, 2000). 

Ultimately, these steps are to ensure that we can commence this work with a 

rigorously cleansed repository. 

Next, we want to re-analyze the SP sequences including their amino acid 

composition, physico-chemical properties, which were investigated in previous 

studies (von Heijne, 1985; von Heijne, 1986a; von Heijne, 1986b von Heijne and 

Abrahmsen, 1989; Nielsen et al., 1997), using our cleansed and enlarged dataset. In 

addition, we want to explore other properties such as isoelectric point, net charge, and 

to extend this exploration to the mature peptide (MP), which has received limited 

attention. The exploration of the MPs could help us to understand its influence and 

role in the cleavage event, in light of the report on its influence (Kajava et al., 2000). 

Additionally, earlier studies have reported distinctive features that were exhibited by 

eukaryote, Gram-positive (Gram+) and Gram-negative (Gram-) bacteria groups 

(Nielsen et al., 1997). It would be worthwhile to examine the basis for such 

distinction. 

In these three groups of organism, their SPs were found often to be punctuated 

with an Ala-X-Ala sequence motif. The observation of the occurrences of this motif 

led to the formation of the ‘(-3, -1) rule’ (von Heijne, 1986a) which states that small 

and aliphatic residues are preferred at the -3 and -1 positions preceding the SP 
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cleavage site. Some SP prediction tools have even incorporated this canonical motif 

as part of their rules in predicting the cleavage site (Gomi et al., 2004). Since the 

proposal of this rule, more sequences have become available. Hence, the aim is to 

examine the validity of this rule and also to investigate possibly other non-canonical 

patterns that can be observable in the new sequences. 

Most studies have largely focused on the primary structure of SPs. However, it 

has been reported that single residue substitution to the SP sequence is sufficient to 

cause a drastic effect (e.g. total abolishment in function or re-direction of targeting 

and so on) (Pidasheva et al., 2005; Ronald et al., 2008). While at other times, multiple 

substitutions or even deletion of a portion of the SP do not trigger any observable 

effect (Rusch et al., 1994; Rusch et al., 2002; Olczak and Olczak, 2006). We 

hypothesized that there may be structural features that lie within this short peptides. 

We want to study the structure of SP and its endogenous type I signal peptidase 

(SPase I) — the receptor enzyme that is responsible for the cleavage of SP from the 

mature peptide — for possible explanations to these observations.  

However, there are currently four SPase I-substrate complexes that have been 

deposited into the Protein Data Bank (PDB) but they are of different substrates. If we 

extract selected domains from each of these structures as templates, the domains can 

be combined through computational techniques to develop a working model of the 

SP-SPase I complex. The knowledge gained from studying the SP-SPase I complex 

could cast a light on the propensity of certain residues to occur at specific positions as 

observed at the sequence level. 

The combined insights from the analyses of SPs can be applied to develop 

new SP prediction method. There are two aspects involved in SP prediction: (i) 

detection of the presence of SP or in other words, to distinguish between secretory 
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and non-secretory sequences; (ii) identification of the correct cleavage site. The aim is 

to develop a method that is able to tackle these two aspects by exploiting both the 

sequence and structural features. This could allow us to tackle non-canonical motifs 

as well. Following the development of our method, the next task is to benchmark the 

new method against other existing prediction methods using our standardized 

datasets. This will provide a fair comparison between the different prediction 

methods. The benchmark could help to establish if all the tools are able to perform 

equally well in both or just single aspect of SP prediction. 

 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 provides a treatment on the 

background of SPs relating to their recognition and translocation machinery, 

interaction with the various partners in the early phase of the secretion pathway. To 

avoid any confusion, the usage of the terminology is standardized throughout this 

thesis. The unique characteristics and features of SPs are reviewed together with the 

cleavage processing mechanism. The post-targeting fate of the SPs is also described, 

followed by the presentation of the roles and functions of SPs. The chapter is 

concluded with a showcase of the applications of SPs in different domains.  

Chapter 3 addresses the need for a high quality and centralized repository of 

SPs as an important prerequisite for sound analysis studies. The chapter details the 

methodology to develop a scalable bioinformatic pipeline capable of coping with new 

updates. The errors discovered in the collected public domain data are highlighted and 

solutions are proposed to tackle such issues. A short account of the developed system 

explains the system functions and features that are available for use.  
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Chapter 4 discusses the results from the large-scale computational analysis 

performed on SP-containing datasets. Various bioinformatic tools and techniques 

were applied to examine the different aspects of SPs including their primary sequence 

structure, sequence length and composition, physico-chemical properties and possible 

distinctive features around the cleavage-processing site. The MPs were also 

scrutinized in the study. 

Chapter 5 describes the effort in generating the SP-SPase I-complex using 3D 

model constructed from the existing 3D structure data as a working model to 

understand the functional residues and the subsites involved in the substrate binding 

and specificity. 

Chapter 6 presents the development of two SP prediction methods where the 

first is a matrix-based approach and the second describes a novel approach that differs 

from existing approaches by exploiting sequence and structural information. A brief 

review of the current state of prediction methods/tools is included, followed by a 

benchmark study of the existing SP prediction tools and the two newly developed 

methods. 

The final chapter states the conclusion drawn from this work and summarizes 

the key contributions of this thesis to the advancement of understanding of SPs. 

Potential directions for future researches are suggested. The list of publications and 

presentations generated throughout the course of this work is included. 
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Chapter 2: Background on Signal Peptides (SPs)  

Günter Blobel was awarded the 1999 Nobel Prize in Physiology or Medicine for his 

seminal work that “proteins have intrinsic signals that govern their transport and 

localization in the cell” (Blobel, 2000). This work was, in fact, initiated almost three 

decades ago. It was in 1971 when Blobel and Sabatini formulated the first version of 

“signal hypothesis” where they postulated the existence of a shared N-terminus 

sequence element among nascent polypeptide chain of secretory proteins (Blobel and 

Sabatini, 1971). The first experimental evidence in support of this N-terminus 

extension surfaced a year later when messenger RNA (mRNA) for the light chain of 

immunoglobulin G (IgG) was translated in a membrane-free translation system 

(Milstein et al., 1972). Following this, an elegant in vitro coupled translation-

translocation apparatus was developed to ascertain the function of this transient 

extension (Blobel and Dobberstein, 1975a; Blobel and Dobberstein, 1975b). The SP 

overall architecture was eventually elucidated with the availability of complementary 

DNA (cDNA) sequencing technology (von Heijne, 1983). 

These landmark experiments formed the cornerstone for the discovery of other 

localization signals and paved the way for the design of various experiments in other 

biological systems. Genetic and biochemical studies followed to validate the “signal 

hypothesis” and confirmed the existence of such signal extensions in other preproteins 

including membrane proteins. A surge of interest in this emerging field ensued and 

these cumulative efforts have helped to advance our understanding of the individual 

components and pathways as well as the molecular mechanisms in cell, thus making a 

huge impact on modern cell biology. 
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Cells transport proteins to various intra- or extra-cellular locations such as 

endoplasmic reticulum (ER), nucleus and mitochondrial matrix, for insertion into a 

membrane or secretion out of the cell. This is achieved through a fundamental and 

important mechanism known as “protein targeting” or “protein sorting” (Pugsley, 

1989). A myriad of proteins synthesized in the cell have to be transported into or 

across a membrane during their life cycle. This mission critical process requires 

timely and accurate export of proteins to their destinations by relying on the delivery 

information encapsulated in the short sequence segments known as “signal peptides” 

or “targeting signals” and the superb coordination of the translocation apparatuses 

(Dalbey and von Heijne, 2002). There are different classes of targeting signals that are 

involved in this active process of protein targeting, with each signal exerting their 

function in different cellular location (Figure 1). 

2.1 Nomenclature of Targeting Signals 

An impressive assortment of targeting signals exists in nature (see 

http://www.uniprot.org/docs/subcell for the list of controlled vocabulary of 

subcellular locations and membrane topologies and orientations). These targeting 

signals rely on specialized delivery mechanisms to be targeted the various organelles 

or cellular locations. These “address labels” or “zip codes” ensure that the passenger 

protein addressed to a specific destination is accurately delivered. There are also 

retention signals that anchor or confine the proteins to certain locations. 

In general, these targeting or retention signals are located either at the ends 

(amino- or carboxyl-terminal) or they are embedded within the protein (internal). 

Different organelles are equipped with receptors that recognize and bind to specific 

type of signal sequence. The properties of the amino acids found in the signal region 
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are likely to be important determinant in the interaction with the translocation 

machinery and the eventual destination of the protein. This was demonstrated in a 

proteomics and multivariate sequence analysis study, in which many of the 

experimentally identified proteins of Synechocystis with different physico-chemical 

properties in their SP and MP were routed to different extracytosolic compartments 

(Rajalahti et al., 2007). Nevertheless, not all proteins possess a signal region; such 

proteins are usually retained in the cytoplasm. There is also a class of proteins that has 

a signal region but these proteins do not necessarily undergo cleavage processing.  

A brief treatment of each type of signal here (Table 1) gives an overview to 

the multitude of targeting signals that has been discovered. The different targeted 

(sub)cellular locations are depicted in Figure 1. Two books have provided excellent 

reviews of these signals (Dalbey and von Heijne, 2002; Pugsley, 1989).  

 

Table 1: Major classes of targeting signals are listed here with their targeted location. Each 
signal possesses its own unique characteristics and it is usually located at the N- or C-
terminus of the preproteins. Motif patterns are represented using the PROSITE convention (de 
Castro et al., 2006).  

Signal name Location Features and description 

Secretory / 
secretion signal / 
Sec signal / N-
terminal SP 

Endoplasmic 
reticulum (ER) 

Located at the N-terminus of precursor 
secretory proteins. Possess the characteristic 
tri-partite structure where a hydrophobic core 
is conspicuous flanked by a positively charged 
n-region and a neutral, polar c-region. The 
cleavage site is located at the c-region. Uses 
the Sec translocation pathway to transport 
proteins in unfolded state (von Heijne, 1990). 
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Lipoprotein 
signal sequence Cell membrane 

Located at the N-terminus of bacterial 
lipoproteins and act as a retention signal. 
Similar tri-partite structure to secretion’s n- 
and h-region but end with a lipobox which has 
the motif sequence [LVI]-[ASTVI]-[GAS]-C 
where a glyceride-fatty acid lipid anchor is 
attached to the Cys residue and cleaved by 
type II SPase (Tjalsma et al., 1999) prior to 
the Cys residue. A PROSITE profile matrix is 
recorded for this signal (PROSITE Accession 
No.:PS51257). 

Twin-arginine 
translocation 
(Tat) signal 
sequence 

Membrane and 
periplasm 

Uses the Tat pathway to transport protein in 
folded state instead of the Sec pathway. 
Similar overall design albeit with much longer 
length when compared with Sec signal. 
Notable differences include a consensus motif 
of [ST]-R-R-X-F-L-K motif (Berks, 1996) at 
the n-region; h-region has lower average 
hydrophobicity; positively charged residue in 
c-region with a Sec-avoidance motif (Bogsch 
et al., 1997). Found in plants, bacteria and 
archaea. 

Nuclear 
localisation 
signal (NLS) 

Nucleus 

Located either at the N-terminus or C-
terminus. Nuclear proteins synthesized on free 
ribosomes in the cytoplasm are imported into 
the nucleus through a double lipid bilayer. 
Typically characterized by one or more 
clusters of basic amino acids (Hunter, 2007). 

Nuclear export 
signal (NES) Nucleus Contrast to NLS, this is a signal for rapid 

nuclear export (Hunter, 2007). 

Peroximal 
targeting signal 
1 (PTS1) 

Peroxisome 
A trimer encoded at the C-terminal with the 
motif [SAC]-[KRH]-[LA] (Sacksteder and 
Gould, 2000). 

Peroximal 
targeting signal 
2 (PTS2) 

Peroxisome 

An N-terminus nonamer peptide with a 
consensus sequence [RK]-[LVI]-X(5)-[HQ]-
[LAF] where X can be any amino acid residue. 
Less common as compared to PTS1 
(Sacksteder and Gould, 2000). 

Mitochondrial 
targeting signal / 
peptide (MTS / 
mTP) 

Mitochondria 
matrix 

Located at the N-terminus. Sequence is 
interspersed with alternating pattern of 
hydrophobic and positive-charge amino acid 
residues (Pfanner et al., 1988; Schatz, 1993). 
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Chloroplast 
transit peptide 
(cTP) 

Stroma 

Located at the N-terminus. The sequence is 
rich in hydroxylated residues (Ser and Thr) but 
low occurrence of acid residues. A tri-partite 
domain is observed. Cleavage site is non-
conserved although certain weak positional 
residues have been reported [IV]-X-[AC]%A 
where (Emanuelsson et al., 1999; Gavel and 
von Heijne, 1990). 

Signal anchor Transmembrane 

Located at the N-terminus and act as a 
retention signal by anchoring the protein to the 
cell membrane. Often confused with N-
terminus SP due to the presence of the 
hydrophobic domains (Martoglio and 
Dobberstein, 1998). 

ER retention 
signal Lumen 

Located at the C-terminal and act as a 
retention signal by retaining the proteins in the 
ER lumen (Pugsley, 1989). 

Signal patches Nucleus 

Uncleaved after sorting the protein from 
cytosol into the nucleus. Unlike other signals 
that are typically linear, locating these signals 
is non-trivial due to the non-contiguous 
manner in which they occur at the primary 
sequence but conjugated at the 3D 
dimensional space when the protein folds. 
NLS often exists in this form (Pugsley, 1989). 
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Figure 1: Schematic diagram of the various cell compartments in eukaryotic cell. The 
sequence in pink denotes the signal sequence whereas the blue sequence represents the mature 
protein sequence. This image is reproduced with permission courtesy of W.H. Freeman and 
Company Worth Publishers from the book Lodish H., Berk A., Matsudaira P., Kaiser C. A., 
Krieger M., Scott M. P., Zipursky L. and Darnell J. 2004. Molecular Cell Biology, 5th Edition. 

 

2.2 Definition of SPs 

One teething problem when a field such as this undergoes explosive growth is the 

uncontrolled use and introduction of vocabulary. Words or phrases are used 

interchangeably in a somewhat loose, ambiguous manner. Without a clear definition 

or agreement on a controlled set of vocabularies, confusion and miscommunication 

often follow. It is therefore crucial we provide a definition of the nomenclature used 

in this area of research to establish a common understanding. 
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Previous section introduces scores of targeting signals with each type of signal 

possessing its own unique characteristics. It is common to come across reference to 

these signals in the related literature as signal peptides, targeting signals, targeting 

sequences or signal sequences. Often, it is difficult to decipher the intended targeting 

signal without consulting the referred article. In particular, “signal peptides” is 

regularly used as a shorthand for the longer phrase “N-terminus signal peptides” — 

the most commonly studied type of signal — to refer to any of the targeting signal or 

simply as a generic term for all targeting signals. At times, it is used synonymously to 

describe “leader sequences” or “leader peptides” (Bowden et al., 1992; Lam, et al., 

2003), even though they are of different nature and function. The state of misuse 

escalated to the point where there was a deliberate attempt to clarify on the usage of 

these terms (Molhoj and Degan, 2004). 

In this thesis, we are particularly interested in the short N-terminus signal 

peptides of secretory proteins (comprise of mainly toxins, peptide hormones, digestive 

enzymes and antimicrobial peptides) as well as a subset of the single-pass type I 

membrane proteins where their N-terminal are exposed on the extracellular (or 

luminal) side of the membrane (Spiess, 1995). They mediate the targeting and 

translocation of the passenger protein domains across the ER membrane in eukaryotes 

or the inner and outer membranes in prokaryotes for insertion or secretion, upon 

which they are removed by the endoprotease SPase I (von Heijne, 1990; Spiess, 

1995). Collectively, they will be referred to as “signal peptide” (SP) in this thesis to 

avoid repetitive mention of “N-terminus SPs”. Our definition therefore omits signal 

sequences of lipoproteins, glycoproteins or other type I membrane proteins which are 

not cleaved by SPase I (Eichler et al., 2003), including membrane proteins such as the 

mouse mammary tumor virus envelope protein and its alternative splice variant Rem 
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which are also targeted to the ER but its signal sequence remains membrane-inserted 

(Dultz et al., 2008). In case there is a need to refer to a particular type of signal, we 

shall specify the exact term according to the nomenclature (Table 1). “Targeting 

signals” or “signal sequences” shall refer to the different types of signals in general. 

 

2.3 Characteristics of SPs 

2.3.1 Overview 

Secretory proteins are found in prokaryotic and eukaryotic cells where they are 

involved in a multitude of biological functions and processes. In human alone, 

approximately 30% of our proteins encoded by our genome are secreted or exported 

through the secretory pathway (Skach, 2007). Located at the N-terminus of these 

secretory proteins are short and transient polypeptides known as SPs which function 

as postal codes or address labels; they control the entry of virtually all proteins to the 

secretory pathway. Majority of these SPs are proteolytically cleaved during (co-) or 

after (post-) translation before eventually digested by peptidases (Figure 2). SPs are 

also found at the N-terminus of a subset of type I membrane proteins, particularly in 

eukaryotes though there were reports of their presence in other organisms as well, as 

we shall described in the later sections. 
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Figure 2: This simplified diagram shows a nascent polypeptide chain synthesized at the 
ribosome with a SP extension at the N-terminus. The SP directs the ribosome to the 
membrane channel of the rough endoplasmic reticulum and passes through the lumen and 
removed from the translating protein. The SP is absent from the mature protein. This image is 
reproduced with permission courtesy of the press release “The Nobel Prize in Physiology or 
Medicine 1999”. 

 
 Comparative analysis of large number of known SPs across multiple species 

revealed limited homology. Nevertheless, these short peptides do possess common 

features and physical properties as well as some uniqueness. For instance, it was 

observed that there is higher incidence of Leu as compared to Ile in human SPs even 

though both possess similar hydrophobicity, though the bias was not detected in 

prokaryotes (Palazzo et al., 2007). Interestingly, not all the features have to be present 

to qualify as a SP (Izard and Kendall, 1994). Functional SPs loosely conforming to 

these features have been reported and the variations purportedly augment the different 

modes in targeting and functions (Martoglio and Dobberstein, 1998). It is therefore 

not surprising when the SPase I has been suggested to recognize higher order 

structure rather than specific amino acids (pattern) at the cleavage site (Dalbey et al., 

1997). This could help explain the plasticity of eukaryotic and prokaryotic SPase I in 

recognizing each other’s SP cleavage sites (Allet et al., 1997; Osborne and Silhavy, 

1993; Watts et al., 1983). 
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 The physical properties of the amino acids and features of SPs are important 

determinant in the interaction of the SPs with the various partners and in the 

localization of the protein within the translocation process. The SP-binding site at the 

SRP contains a large hydrophobic groove lined with Met residues, which supposedly 

confer the versatility to accommodate SPs of variable sequences and shapes due to the 

flexible side chains devoid of any branches (Keenan et al., 1998). It was discovered in 

yeast cells that hydrophobicity ostensibly governed pathway selection; SPs of proteins 

that utilized SRP-independent pathway were found to be less hydrophobic than those 

that do not (Ng et al., 1996). Such properties including charge, hydrophobicity and 

length, ensure that the SPs are properly interpreted to safeguard the accurate delivery 

of proteins their targeted destinations. 

SPs generally have a short span of 13 to 36 amino acid residues (aa) though 

the average length varies with the organism groups (Molhoj and Degan, 2004). 

Prokaryotic SPs are generally longer than eukaryotic SPs (SPEuk), in particular those 

belonging to Gram+ bacteria (SPGram+), which are usually 30aa long due to the longer 

h-region while SPGram-, are on average 23aa. SPEuk are 22aa (Choo and 

Ranganathan, 2008). SPs with extended length have been reported, particularly those 

in bacteria or virus. Often, they are known to perform additional functions (Froeschke 

et al., 2003). The shortest SP is found to be 11aa and the longest at 59aa in the SPdb 

(Albers, et al., 1999; Choo and Ranganathan, 2005). A survey of literature reveals that 

the length of SPs can sometimes be extended without affecting its function albeit with 

lower efficiency. At other times, the extension may simply handicap the SPs (Pugsley, 

1989).  
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Figure 3: General architecture of a SP found in secretory proteins. (A) Cleavage site (blue 
dotted line) occurs at the interface of the signal and mature moieties. (B) An enlarged 
illustration of the SP that depicts the hallmark tri-partite structure. Cleavage occurs between 
the positions -1 (P1) and +1 (P1’).  

 

 Figure 3 shows the general structural architecture of a SP sequence. A SP 

typically can be divided into three regions: (i) h-region is the hydrophobic core; (ii) n-

region is located at the N-terminus and (iii) c-region is where the cleavage of the SP 

from the mature protein takes place. This “positive-hydrophobic-polar” architecture is 

thought to facilitate efficient binding to the lipid bilayers (von Heijne, 1990). 

 To standardize the conventions for addressing the different positions in the 

sequence, any position prior to the cleavage site shall be indicated as P1 (position -1), 

P2 (position -2) and so on hereinafter. For those positions after the cleavage site, they 

shall be indicated as P1’ (position +1), P2’ (position +2) and so on. 
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2.3.2 H-region – the central hydrophobic core 

The hallmark feature of SPs is often described as having a tri-partite structure 

endowed with a central hydrophobic core, termed the “h-region” (Gierasch, 1989). 

The length of this core varies with organisms and it is usually lined with stretches of 

between 7 and 15 hydrophobic residues. Nevertheless, there are reports of unusually 

long hydrophobic core (relative to their homologous counterparts). An example is the 

SPs of Xmrk from the Xipophorus fish genus, a receptor tyrosine kinase that closely 

relate to the human epidermal growth factor receptor (Schartl et al., 1998). 

An early study described a non-uniform hydrophobicity profile for this h-

region, with hydrophobicity peaking at the midpoint (von Heijne, 1982). Subsequent 

examination of E. coli preproteins suggested that the speed at which preproteins are 

processed correlates with the SP hydrophobicity. Lower limit of hydrophobicity saw 

preproteins being processed at a relatively slower pace, but it permitted membrane 

association and translocation whereas rapid processing of preproteins was observed in 

intermediate range of hydrophobicity. Beyond this level, insensitivity to transport 

inhibitors and substantial competition with the transport of other proteins happened. 

Thus, it was suggested that the increased hydrophobicity disrupted regulation and 

maintenance of the different secreted proteins. This theory possibly explains the ‘non-

optimal’ hydrophobicity prevalent in SPs when they could have evolved to attain 

maximum hydrophobicity (Rusch et al., 1994). 

Another feature of this apolar region is its propensity to adopt #-helical 

conformation, particularly in a lipid or hydrophobic environment. Hence, this includes 

the case when it is bound to the signal recognition particle (SRP) (Plath et al., 1998). 

Helix-breaking or turn-inducing residue such as Gly, Pro or Ser is commonly spotted 

at the downstream region (frequently at the P6 to P4) and they are often considered as 
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the residues that demarcate the h- and c-region (von Heijne, 1990). These residues 

supposedly ease the insertion of SP through the membrane or translocation channel 

through the formation of hairpin-like structure (Driessen and van der Does, 2002), 

where the !-turn was suggested to facilitate catalytic processing of the SPase I 

cleavage site (Karamyshev et al., 1998). Yamamoto et al. earlier investigated the 

significance of Pro residues at various positions (P10, P9, P7, P6, P5, P4 and P2) and 

found that secretion was impaired or lost when Pro was placed at different positions 

within the core (Yamamoto et al., 1989). There were also studies that claimed the !-

turn may not be a requirement; mutation or substitution of these residues that led to 

less efficient processing was attributed to reduction in overall hydrophobicity as 

opposed to conformational changes (Laforet and Kendall, 1991; Jain et al., 1994). 

The hydrophobic core is functionally crucial and it plays a critical role in 

allowing the SP to span across the bilayer membrane in eukaryotic or prokaryotic 

cells. It positions the SP strategically near to the lipid head group to facilitate 

cleavage, thus providing a plausible explanation to the failed cleavage when the 

hydrophobic core is extended beyond certain threshold (von Heijne, 1998). Also, 

hydrophobicity specifically the gradient within the core, as opposed to its overall 

hydrophobicity, is said to affect orientation (Goder and Spiess, 2003). Hydrophobicity 

supposedly influences the selection of the targeting route as well (Ng et al., 1996), in 

addition to conformation of SPs (Zhen and Gierasch, 1996). Further, a point mutation 

study showed that this domain could conceivably influence the timing and efficiency 

of N-linked glycosylation and SP cleavage. The authors explored parameters 

including hydropathy, #-helical tendency or the Leu/Ile/Val and deemed that they are 

not the sole determinants. They suggested that other parameters may partake in 

regulating glycosylation efficiency, without ruling out the possibility that the 
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information may be encoded in other manner as well (Rutkowski et al., 2003). It was 

proposed that a threshold SRP-binding affinity might be necessary to enable 

translocation in yeast cells, and this is supposedly influenced by the hydrophobicity of 

the h-region (Bird et al., 1987). Thus, mutations or deletion of even a single amino 

acid from this region has been shown to impair or abolish translocation activity, 

ostensibly disrupting the fine balance of hydrophobicity (Rusch et al., 1994). 

In essence, this region is sensitive to disruption, in particular with the 

introduction of charged or helix-breaking residue (Oliver, 1985). It has been reported 

that attaching a SP with sufficiently long stretches of hydrophobic residues can coerce 

a normally non-secreted protein to translocate to the ER lumen or inner membrane 

(Lodish et al., 2004). This hydrophobic domain thus forms an important binding site 

that is critical for the translocation and targeting interaction and activity. 

 

2.3.3 N-region – the positive-charged domain 

Preceding or upstream of the hydrophobic core h-region is the “n-region”, a net 

positive charge domain containing one or more Lys or Arg residues (von Heijne, 

1990). This domain reportedly binds to the negatively charged phosphate group on the 

SRP 4.5S RNA (Batey et al., 2000) and interacts with the ATPase SecA and negative-

charge phospolipids in bacterial cells (Van Voorst and De Kruijff, 2000). 

This domain typically contributes to the great variations in the overall length 

of SP (Martoglio and Dobberstein, 1998). The positively charged residues are evident 

in the bacterial SP, particularly in Gram-positive bacteria, but appear only 

sporadically in eukaryotic SPs. This apparent bias is possibly due to the formylated, 

uncharged N-terminal Met residue found in prokaryotic proteins as opposed to the 
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unformylated, positively charged counterpart in eukaryotic proteins, thus compelling 

the former for the uptake of Lys or Arg as compensation (von Heijne, 1984b). 

There have been indications that positive charge might influence (1) the 

efficiency of translocation where lesser net positive charge leads to slower rate in 

translocation (Izard and Kendall, 1994); (2) the orientation of the SP in the lipid 

bilayer (Spiess, 1995; Van Voorst and De Kruijff, 2000). Although there seem to be 

no explicit requirement on the positive charge in this domain, few studies have 

reported on the decrease in secretion efficiency may be due to influence of the 

positive charge in this domain (Gennity et al., 1990; Guo et al., 2008; von Heijne, 

1990). It was also revealed that Levansucrase in Bacillus absolutely require positive 

charge in their SPs to direct secretion even though the net charge was negative, hence 

leading to the proposal that the presence of charge residues overrule the net charge as 

a requisite for a functional SP (Lammertyn and Anne, 1997). 

In addition, the initial codons in the upstream of this region have been 

suggested to influence translational efficiency, particularly from the second codon to 

the fifth codon. Ahn et al. discovered that approximately 40% of E. coli SPs in their 

studies exhibit strong bias for the AAA triplet in their second codon. Similar high 

incidences of the triplet have been reported elsewhere. In their experiment, when the 

original codon was substituted with the triplet AAA, significant increase in expression 

level was observed whereas switching it to other triplets result in near complete 

abolishment (Ahn et al., 2007). 
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2.3.4 C-region – proteolytic cleavage site 

Located downstream of the hydrophobic core is the “c-region” which measures 

between 3 to 7aa in length and it is decorated with neutral, polar residues. In contrast 

to the h-region, this region adopts an extended $-conformation to facilitate easy 

recognition by SPase I (Karamyshev et al., 1998).  

This domain contains the proteolytic cleavage site recognized by the 

membrane-bound SPase I (Paetzel et al., 2000). Small and neutral residues inclusive 

of Gly, Ser and Cys but predominantly Ala residues are preferred at P3 and P1’; these 

residues are thought to be critical clues for the recognition by SPase I, which led von 

Heijne to postulate the “(-3,-1) rule” (von Heijne, 1986a). The rule accepts that the 

residue at P1 must be small residues (Ala, Ser, Gly, Cys, Thr or Gln) but prohibits 

aromatic (Phe, His, Tyr, Trp), charged (Asp, Glu, Lys, Arg) or large polar (Asn, Gln) 

at P3. Further, Pro must be absent from P3 to P1’. Several studies have demonstrated 

that introducing or replacing the original residues of P3 to P1 may result in alternative 

cleavage sites (Fikes, et al., 1990). It should also be noted that the region immediately 

after the c-region preferably should not contain charged residues such as Lys, Arg 

which might affect the secretion process (von Heijne, 1994). 

Experiment data from a study into the limits of length variations of this c-

region, with the introduction of minimal types of amino acids, indicated that the 

optimal length would be in the range of three to nine residues to promote efficient 

cleavage. Exceeding this range led to impaired processing or complete abolishment. 

The authors noted that exaggerated variation indeed occurred in this region, though 

these SPs are also unusual in other regards such as incredibly long n-region. 
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2.3.5 Mature peptide (MP) region 

The peptide immediately after the cleavage site constitutes the MP where the 

passenger protein is subjected to further modifications such as formation of disulfide-

bond, or addition of N-linked sugars and the likes before folding to a proper 

conformation to exert its function or targeted further elsewhere (Wollenberg and 

Simon, 2004). 

Reflecting somewhat similar constraints as the other regions mentioned 

earlier, positive charged residues are not welcome, particularly at the N-terminus of 

this region in bacterial proteins. Neutral or net negative charge is favored in this 

region (Gierasch, 1989). In vivo and in vitro studies have reported deleterious effects 

upon the region in the presence of positively charged residues such as Arg or Lys. 

Nonetheless, the same does not apply to eukaryotes. This is perhaps due to the 

electrochemical potential across the inner membrane in bacteria where statistical 

analysis of membrane proteins have suggested that in prokaryotes, the cytoplasmic 

domain has generally more positive charge than the exoplasmic domain, thus giving 

rise to the “positive-inside rule” (Spiess, 1995; von Heijne, 1990). 

 

2.4 Protein Synthesis and Cleavage Processing 

2.4.1 Translation, targeting and translocation 

Using the eukaryotic cell as an illustrative example, this section describes the protein 

synthesis and translocation processes and introduces the numerous main casts together 

with the ancillaries that interact with SPs along the pathway. The general concepts are 

somewhat related to other organism groups, though we shall describe some of the 
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differences as well. A good understanding of these superbly orchestrated biological 

processes and the different molecular machineries involved will lay the foundation to 

appreciate the certain unique characteristics of SPs found in secretory proteins. 

The synthesis process begins with the messenger ribonucleic acid (mRNA) 

carrying the genetic information from the DNA to the free ribosomes to be translated 

in the cytosol (Figure 4). The polypeptide chain can be translocated in two ways 

(Kalies and Hartmann, 1998): 

(i) co-translationally — for secretory proteins translocating across the ER 

membrane, particularly those with more than 100aa. This is the most 

common route for the majority of secretory proteins. SP is recognized 

twice, with the first being recognized by the SRP and subsequently at 

the membrane (Rapoport et al., 1996)                           

(ii) post-translationally — for smaller secretory proteins, certain yeast 

proteins, bacterial plasma membrane, mitochondrial, nucleus, 

chloroplasts and peroxisomes (Plath et al., 1998). In yeast, SRP is 

reportedly required for efficient translocation though it is not essential 

for cell growth. The reliance on SRP-facilitated targeting of proteins 

thus becomes non-obligatory (Zheng and Gierasch, 1996). 

 

In the impeccably-timed co-translational translocation (Figure 4), a cytosolic and rod-

shape ribonucleoprotein complex termed “SRP” (Walter and Blobel, 1981a; Walter 

and Blobel, 1981b; Walter and Blobel, 1981c), consisting of six protein subunits of 

different molecular masses (termed “SRP9”, “SRP14”, “SRP19”, “SRP54”, “SRP68” 

and “SRP72”) and a 300-nucleotide RNA molecule (termed “7SL RNA”) (Walter and 

Blobel, 1982) swiftly binds to nascent chain complex (reviewed by Pool, 2005). 

Specifically, the Met-rich and conformationally flexible M-domain (Clemons et al., 
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1999; Keenan et al., 1998) or the NG domain (Cleverley and Gierasch, 2002) of the 

SRP54 subunit binds to the SP at the N-terminus of the nascent protein (Bernstein, 

1998) as soon as the length of the nascent polypeptide reaches a certain threshold. The 

threshold is reported to be approximately 70aa out of which about 30aa are buried in 

the ribosome (Wiedmann et al., 1987; Wollenberg and Simon, 2004). The binding 

reportedly triggers conformational change that activates SRP RNA (Bradshaw et al., 

2009). 

 

Figure 4: This diagram depicts the sequence where a protein is synthesized involving the 
translation of the nascent polypeptide chain to the cleavage processing of the SP (or known as 
signal sequence in the diagram) by the membrane-bound SPase I. This image is reproduced 
with permission courtesy of W.H. Freeman and Company Worth Publishers from the book 
Lodish H., Berk A., Matsudaira P., Kaiser C. A., Krieger M., Scott M. P., Zipursky L. and 
Darnell J. 2004. Molecular Cell Biology, 5th Edition. 

 
 

The universally conserved SRP (Ffh or fifty-four-homolog is the bacterial 

homolog of SRP54) temporary arrests the translation of the polypeptide chain that is 

emerging from the ribosome. Although the elongation arrest is not compulsory, it is 

thought to promote efficient targeting by allowing sufficient time for proper 

placement of the ribosomes to the ER membrane (Walter and Johnson, 1994). 
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SRP then shuttles between the cytosol and the rough ER membrane to recruit 

the complex to a docking protein called “SRP receptor” (SR) that is situated at the 

rough ER membrane (Gilmore et al., 1982a; Gilmore et al., 1982b); this interaction 

cycle is mediated by the guanosine triphosphatase (GTPase) (Bradshaw et al., 2009). 

The SR which exists as a heterodimer in eukaryotes (consists of an alpha-subunit 

peripheral membrane (SR") and a beta-subunit transmembrane (SR!) GTPases) or a 

monodimer in bacteria (FtsY being the homologue of SR") (Gill and Salmond, 1990), 

then discharges SRP from the complex to permit the concomitant insertion of the 

SP+polypeptide chain through the dynamic protein conducting channel/pore known as 

translocon to resume (Walter and Lingappa, 1986). This disassociation is catalyzed 

by the SRP RNA where it accelerates GTP hydrolysis in the complex (Bradshaw et 

al., 2007). 

The translocon, termed “Sec61” in eukaryotes (Skach, 2007), is formed by 

three or four protein complexes of transmembrane proteins and estimated to be 40-

60Å in diameter, a larger than expected size to maintain a permeability barrier and 

one of the largest holes observed in a membrane (Hamman et al., 1997). It provides a 

sealed channel through the ER hydrophobic lipid bilayer and acts as a gatekeeper to 

control the passage into and out of the ER lumen (Crowley, et al. 1994; Romisch, 

1999). The aqueous pore is gated on the lumenal side of the membrane and it is 

presumably closed by a lumenal protein such as BiP (Haigh and Johnson, 2002) that 

binds and blocks the pore. The pore is opened to the ER lumen only after the nascent 

chain reaches approximately 70aa in length (varies for different proteins) where the 

binding of the SP to the lumenal protein is reportedly the trigger for the opening of the 

aqueous pore. The length requirement is apparently critical as different studies on 

preprolactin (prl) have demonstrated that the extension to the length actually render a 
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tightly sealed channel to attain translocation-competent state (Rutkowski et al., 2001). 

This safeguards the mature region from being exposed to the cytosol (Crowley et al., 

1994; Hanein et al., 1996). Other studies have similarly confirmed the interaction 

between SP and the translocon (Jungnickel and Rapoport, 1995; Mothes et al., 1998). 

It is noteworthy that there are indicative differences in the manner with which 

individual SPs of different substrates initiate translocation and in the optimization 

steps involved for each protein, however, the extent of variance is currently unclear.  

Different SPs reportedly mediate early closure of the ribosome-translocon junction 

disparately (Rutkowski et al., 2001). 

Upon passing through the membrane, SP is excised from the growing 

polypeptide chain by the membrane-bound SPase I located on the lumenal or trans 

side of the membrane (Dalbey and von Heijne, 1992), with the C-terminus of the SP 

facing the lumenal side and the N-terminus orienting towards the cytosol (Goder and 

Spiess, 2003). A loop is temporary formed while the synthesis proceeds (see Figure 4 

for illustration on the orientation and the reference Goder and Spiess, 2003 for the 

various models proposed on protein topogenesis). 

The elongation of the polypeptide continues until the protein is fully translated 

and the ribosome concomitantly dissociates from the ER. The polypeptide assisted by 

chaperones then folds into its proper 3D structure conformation to consummate the 

process before finally exerting their biological functions. Misfolded proteins are 

surrendered to degradation or ER-associated degradation (Crawshaw et al., 2004). 

This example illustrates the case for soluble protein equipped with a “start-transfer” 

SP where the protein is synthesized and translocated in an N-to-C-terminal direction 

(Dalbey et al., 1995) through the pore before settling into the ER lumen for further 

processing. In cases involving transmembrane protein, the protein similarly require a 
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“stop-transfer” signal sequence that is uncleaved and effectively embeds the protein 

across the membrane (von Heijne, 1990). A recent review summarized the general 

principles of protein sorting in the secretory pathway (van Vliet et al., 2003). 

In bacteria, targeting of the nascent proteins can be accomplished through two 

other post-translational routes in addition to the co-translational SRP-dependent 

pathway just described, which essentially recognizes SPs with strong hydrophobicity. 

Two routes are utilized in light of failed recognition by the SRP where the first route 

entails the targeting of the preproteins directly to the translocase while the second 

involves a chaperone SecB which binds to long unfolded preprotein before binding to 

a peripheral subunit of the translocase, SecA (Driessen and van der Does, 2002). 

Several reviews have described in detail the translocation process and the related 

mechanisms in bacteria (Fekkes and Driessen, 1999; Holland, 2004; Harwood and 

Cranenburgh, 2008). 

 

2.4.2 Cleavage processing by type I signal peptidase (SPase I) 

The membrane-bound SPase I is responsible for the excision of SP from the growing 

polypeptide chain (for reviews, see Dalbey et al., 1997; Ng et al., 2007; Paetzel et al., 

2000; Paetzel et al., 2002b; Tuteja et al., 2005). This important cleavage event 

enables the liberated SPs to exert further biological functions. Current knowledge of 

these proteases are derived from examination of their sequences since only four 

crystal structures of SPases I have been resolved and they are all from E. coli (Paetzel 

et al., 1998; Paetzel et al., 2002a; Paetzel et al., 2004; Luo et al., 2009). 

 SPases I belong to a class of the serine protease family (Carlos et al., 2000) 

and they are divided into 2 subfamilies (Tjalsma et al., 1998; Ng et al., 2007): 
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(i) prokaryotic(P)-type – bacteria, mitochondria and chloroplast; 

(ii) eukaryotic endoplasmic reticulum (ER)-type – eukaryotic, archaeal and 

limited bacterial species 

The P-type SPases reportedly exhibit substantial sequence similarity albeit differing in 

total length. Gram- SPases I (E. coli) are generally bigger in size than those of Gram+ 

(B. subtilis) though exceptions do occur where the latter is similar in size to the 

former (van Roosmalen et al., 2004). In general, there are five regions or known as 

‘boxes’ labeled from A to E (Dalbey et al., 1997) which are conserved from bacteria 

to human with Box A being part of the anchoring domain and the rest involved in the 

catalytic mechanism in substrate cleavage (Ng et al., 2007). 

Although the substrate specificities of the Gram+ and Gram- SPases are 

known to be different, it remains unclear if it is related to their different 

characteristics in the SPs (Chapter 4). Interestingly, the catalytic Ser/Lys dyad retains 

its invariability across different bacterial SPases I (SPase I of B. subtilis chromosomal 

SipW reportedly uses Ser/His dyad (Paetzel et al., 2000) and exhibit high degree of 

similarity to eukaryotic and archaeal SPases (van Roosmalen et al., 2004). ER-type 

SPases largely utilize a catalytic Ser/His dyad in place of the Lys as observed in P-

type SPases. The ER-type SPases are known to be much more complex (multimeric) 

than their bacterial counterparts. They are weakly homologous to the bacterial 

enzyme. In addition, unlike the active sites of bacteria that are easily accessible from 

the surface of the cytoplasmic membrane, the active sites of eukaryotes are buried 

within the ER lumen (Paetzel et al., 2002b). 
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2.4.3 Post-translocation function and degradation of cleaved SPs 

In spite of the improved understanding of the secretory machineries and mechanisms, 

our understanding of the fate of SPs upon its coup de grâce delivered by the SPase I 

remain limited. In eukaryotes, proteases involved in the further processing of SPs 

have yet to be characterized or discovered though the homologous counterparts are 

known in E. coli (Novak and Dev, 1988; Weihofen et al., 2000). It is known that the 

remnant SPs excised from the mature protein are subjected to rapid degradation by the 

presenilin-type intramembrane-cleaving aspartic protease known as “signal peptide 

peptidases” (SPP) (Lemberg and Martoglio, 2002), giving rise to fragments which are 

released from the lipid bilayer to the ER lumen or to the cytosol (Lyko et al., 1995; 

Martoglio et al., 1997). It is notable that only a subset of SP substrates is also the 

substrates for SPP (Robakis et al., 2008) even though SPP seem to be capable of 

catalyzing a wide variety of substrates including a viral protein in addition to the 

classical SPs (Martoglio and Golde, 2003b). The reason for this selective behavior is 

unknown. Other roles for SPP have been described including activation of signaling 

or regulatory molecules (Martoglio and Golde, 2003b), thus the roles of SPP in cell 

function could plausibly expand beyond degradation of SPs per se as we await further 

clarification. 

Various studies have observed that the liberated SPs continue to serve 

important post-targeting biological roles (Jungnickel and Rapoport, 1995; Martoglio, 

2003a). Early studies that examined the fate of the SPs upon cleavage certainly 

entertain that possibility. It was shown that freed SPs have to be cleared which might 

otherwise impede protein folding (Li et al., 1996), and potentially having an impact 

on the subsequent functions in the secretion pathway (Koren et al., 1983). Data from 

Martoglio et al. suggested that the SP fragments (SPFs), specifically the N-terminus 
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moieties of the SPs from the hormone prl and the human immunodeficiency virus-1 

p-gp160, possess regulatory function. When their SPFs were released into the cytosol 

upon proteolytic processing, they bound efficiently to the highly abundant calcium-

binding protein calmodulin (CaM), which is known to regulate many protein targets 

in the Ca2+-dependent signaling pathway, to antagonize Ca2+-dependent 

phosphodiesterase in vivo, thus inhibiting CaM-dependent processes (Martoglio et al., 

1997; Martoglio and Dobberstein, 1998; Weihofen et al., 2000). 

Furthermore, subsequent evidence supported that hepatitis C virus was able to 

exploit the host’s SPP processing and the series of cleavage events to aid in its protein 

processing towards maturation (McLauchlan et al., 2002). Recent studies implicated 

the non-classical major histocompatibility complex (MHC) class I molecule human 

histocompatibility leukocyte antigen E (HLA-E) in the presentation of epitopes 

derived from the SPFs of MHC class I where the peptide-HLA-E complex interacts 

with the CD94/NKG2 receptors on the natural killer cells, thus wielding control over 

the functional activation and inhibition of the natural killer cells (Lemberg et al., 

2001). HLA-E surface expression is effectively influenced by the release of epitope-

containing SPFs (Bland et al., 2003; Braud et al., 1997; Braud et al., 1998; Lee et al., 

1998; Long, 1998). Similar studies had previously turned up with evidence that 

associated SPFs with antigen presentation (Henderson et al., 1992; Hombach et al., 

1995; Wei and Cresswell, 1992). 

These results implied that the SPs severed from the mature protein and the 

subsequent processing of them continue to wield material influence on the biological 

functions downstream of the secretory pathway or potentially other pathways 

including signal transduction pathways in the cell. 
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2.4.4 Non-classical signal sequences 

Proteolytic processing of the secretory proteins is often necessary once the targeted 

destination is reached, to trigger the activation of subsequent events. A recent study 

on an essential protein involved in flagellum assembly called FliP, reinforced the need 

for the cleavage event. The motility function of E. coli was severely impaired when 

FliP was not cleaved (Pradel et al., 2004). Nonetheless, not all secretory proteins 

possess signal sequences or are subjected to cleavage (Bowden et al., 1992; Flower et 

al., 1994), suggesting that other mechanisms or pathways for protein targeting exist. 

These proteins are termed “non-classical” secretory proteins. Some of these proteins 

are even known to have more than one function (Bendtsen et al., 2005b). 

Ovalbumin is a well-known example of a secretory protein that retains its 

signal sequence. The 100 residues N-terminus extension is found to be necessary for 

transport through the membrane to be effected (Tabe et al., 1984). Serum 

paraoxonase/arylesterase 1 (Swiss-Prot ID: PON1_HUMAN) as well as the 

immunoevasin from the human cytomegalovirus US2 (Froeschke et al., 2003) are 

some other examples. Another example is cyclophilin from the cattle parasite 

Theileria parva, which has a non-cleaved signal sequence that anchors the protein to 

the membrane upon targeted to the ER (Ebel et al., 2004). However, in another 

cyclophilin found in Drosophila rhodopsins called ninaA, which has a membrane-

spanning segment at the C-terminus, it was shown to possess a cleavable signal 

sequence (Stamnes et al., 1991). 

Ebel et al. had also earlier reported on p104 antigen also found in Theileria 

parva as being a non-cleaved protein (Ebel et al., 1999). Cleavage of SPs usually 

occurs co-translationally, but there are instances where delay of the event occurs, for 

example in human cytomegalovirus US11 and HIV-1 glycoprotein 160 (Froeschke et 
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al., 2003; Rehm et al., 2001). Another interesting find involved the G protein-coupled 

receptors (GPCRs) where one of the two groups requires the presence of cleavable 

SPs. The reason for the requirement is unclear though it was suggested that these SPs 

may aid in the translocation for those membrane proteins with impaired post-

translational translocation (Kochl et al., 2002). It was demonstrated that the presence 

of N-terminus cleavable SP is not essential in human hepatic membrane glycoprotein 

UDP-glucuronosyltransferase, which plays key role in drug metabolism since the 

protein was still targeted to the export apparatus (Ouzzine et al., 1999). Such 

phenomenon of non-requisite of SPs was similarly observed in exported cell envelope 

proteins including alkaline phosphatase, $-lactamase, MalE, LamB and MalS which 

bore prl mutations, though the same did not extend to their cytoplasmic homologs 

(Prinz et al., 1996). 

There have been reports of proteins that do not possess signal sequence such 

as fibroblast growth factor 1 (FGF1), FGF2, Engrailed homeoproteins and 

interleukin1 (Joliot et al., 1998; Bendtsen et al., 2005b). Precursors of IL16 are yet 

another example without SP even though they are processed and secreted outside of 

cell (Baier et al., 1997). These proteins do not utilize the classical secretory pathway 

and do not contain any characteristic motif; instead they are secreted through various 

non-classical pathways (Prudovsky et al., 2003). Nonetheless, through methods such 

as amino acid composition, secondary structure and disordered regions, these secreted 

proteins could be identified (Bendtsen et al., 2005b). Examples such as these will 

gradually surface as we hasten the pace of sequencing and discovery efforts. 
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2.5 Roles and Functions of SPs 

SPs function like a postal address label on an envelope by mediating the transport of 

prokaryotic and eukaryotic secretory proteins to the ER for further processing. They 

are removed and degraded upon reaching the targeted locations, leaving them absent 

from the mature protein (Tuteja, 2005). Deletion of the SP such as from the ammonia 

channel protein AmtB in E. coli has been shown to cause dramatic reduction in AmtB 

activity due to the inefficient in translocation of the protein (Thornton et al., 2006).  

 Long presumed as having the sole function of targeting the nascent chain to 

initiate interaction between the ribosome and the translocon, we have described in 

previous sections of the multiple roles that SPs carry to suggest otherwise. A growing 

body of evidences is affirming SPs deservingly possess far versatile functional 

repertoire (Hegde and Bernstein, 2006; Swanton and High, 2006). 

 It is known that SPs are involved in protein topogenesis (Spiess, 1995) and 

they reportedly stimulate the duration of translocation and regulate ribosome-

translocon association in their post-targeting capacity (Rutkowski et al., 2003). 

Further, SP serves as a ligand for the opening of translocation channel and 

additionally, manifests sequence-specific alteration on nascent polypeptide 

environment to attain favorable conformation (Rutkowski et al., 2001).  

In an early experiment involving designer-SPs, it was demonstrated that 

synthetic SPs which exhibit common structural features as original/authentic SPs, 

inhibited the processing of pre-prolactin, pre-forms of pancreatic digestive enzymes, 

and pre-placental lactogen. The SPs further prevented translocation of nascent chains 

when presented in high concentration (Austen et al., 1984). Similar in vitro works 

further substantiated that free SPs indeed inhibited protein translocation (Chen et al., 

1987; Simon et al., 1992) and modulated secretion (Koren et al., 1983). A number of 
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studies have found that SPs retarded folding of the mature part of the polypeptide (Li 

et al., 1996; Park et al., 1988; Weiss and Bassford, 1990) or affected polypeptide 

conformation (Oxender et al., 1980; Roggenkamp et al., 1985) as well as down-

regulated gene expression (Serruto and Galeotti, 2004). Thus, SPs possibly influence 

the regulation of proteins to their destination (Kurys et al., 2000; Li et al., 1994).  

In the experiment conducted by Briggs et al., it was demonstrated that 

accumulated SPs might potentially impose deleterious effects on lipid bilayers (Briggs 

et al., 1985). Additionally, several studies have separately established that yeast SPs 

demonstrate differential specificity in their pathway preferences as opposed to the 

mature proteins (Deshaies and Schekman, 1989; Feldheim and Schekman, 1994; Ng 

et al., 1996). In a study on GPCRs, approximately 5–10% was shown to contain 

SPase I-cleavable SPs (Alken et al., 2005). The SPs of this type of GPCRs were 

suggested to facilitate the expression of functional receptors and their presence was 

ostensibly dependent upon the features of their N-terminus (e.g. length, positive 

charges) (Kochl et al., 2002). The reason for the additional SP is unknown other than 

being essential. In another study, the data indicated that rat SP of corticotropin-

releasing factor receptor promoted an early step of receptor biogenesis (Alken et al., 

2005). In a study involving a T-cell receptor called cytotoxic T-lymphocyte antigen 4, 

a nonsynonymous polymorphism in the SP negatively regulates immune responses, 

and has been associated with risk for autoimmune disease. SP presumably determines 

the efficiency of post-translational modifications and the disease was attributed to 

inefficient processing of the autoimmunity (Anjos et al., 2002). 

Many other novel discoveries of SP functions have been documented of late. 

A foamy virus glycoprotein SP was shown to have a crucial role in viral assembly 

(Lindemann et al., 2001) while SP was considered as an important factor in 



 38 

influencing viral infectivity with its involvement in lectin engagement (Marzi et al., 

2006). Interestingly, a study further substantiated that SP is perhaps capable of 

inducing protective immunity against a microbial pathogen Coccidioides immitis 

when administered as a gene vaccine or synthetic peptide. Previous reports have 

claimed that DNA vaccines were lower in efficacy with the omission of SP in their 

constructs (Jiang et al., 2002). Hydrophobic fragments of SPs have been found bound 

to MHC complexes on the cell surface (O'Callaghan et al., 1998) and more polar N-

terminal fragments have been found bound to cytosolic calmodulin, implying possible 

signaling function (Martoglio et al., 1997). 

In Section 2.4.3, we described the fate of liberated SPs as a result of cleavage 

and subsequent processing events that involve the SPP (Martoglio and Dobberstein, 

1997; Weihofen et al., 2000). SPP was implicated in the generation of antigenic 

peptides from the SP of MHC class I molecules where the SPs of the corresponding 

proteins were suggested to exhibit regulatory function in immune surveillance of 

healthy cells (Lemberg et al., 2001). Similar mechanism was likewise reported in 

hepatitis C virus where the virus hijacked the host’s SPP processing and the series of 

cleavage events to marshal and prepare its proteins (McLauchlan et al., 2002). Other 

post-targeting function such viral assembly have been reported (York et al., 2004). 

In addition, numerous studies have highlighted the adverse effects caused by 

mutation to SPs. Minor alteration or mutations to these SPs, even as slight as a single 

amino acid substitution or the lack of SP have been implicated in the onset of a 

number of diseases and complications (Chou, 2001b; Nielsen et al., 1997). A 

missense mutation in the hydrophobic core of SP detected in half of the patients 

rendered a non-functional COL5A1 which encodes for a type V collagen culminated 

in the Classic Ehlers-Danlos syndrome, a heritable connective tissue disease 
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characterized by skin hyperextensibility, atrophic scarring, joint hypermobility and 

generalized tissue fragility (Symoens et al., 2008). Similarly, it was discovered that a 

single mutation of Cys to Arg in the hydrophobic core of its SP of human 

preproparathyroid hormone is enough to cause autosomal ominant familial isolated 

hypoparathyroidism where the mutation impairs secretion of the hormone (Datta et 

al., 2007). Scores of other human inherited disorders have been associated with SPs 

arising from mutation, including familial central diabetes insipidus (Ito et al., 1993), 

coagulation factor X deficiency (Racchi et al., 1993), Schmid metaphyseal 

chondrodysplasia (Chan et al., 2001), dentine dysplasia type II (Rajpar et al., 2002), 

neurohypophyseal diabetes insipidus (Rittig et al., 2002), thyroxine-binding globulin 

deficiency (Fingerhut et al., 2004), familial hypocalciuric hypercalcemia (Pidasheva 

et al., 2005), autosomal dominant hereditary pancreatitis (Kiraly et al., 2007) and 

Weill-Marchesani syndrome (Kutz et al., 2008). A recent study of type I diabetic 

patients revealed a novel mutation in the preproinsulin SP where it was linked to 

diabetes onset (Bonfanti et al., 2009). A more surprising discovery reported findings 

on a body-weight regulation protein called Neuropeptide Y (NPY), which controls 

food intake and energy balance. An SNP in the SP of that secretory protein 

potentiated NPY-induced food intake (Ding, et al., 2005). A list of SNPs-related 

disorders not described here can be found in (Jarjanazi et al., 2008). 

 The accumulating findings suggest that the SPs and their subsequently 

liberation from the MP (with the ensuing processing of them) may have substantially 

far-reaching implications. SPs surely warrant further investigation of their properties 

and their neighboring residues to advance our understanding of SPs for their crucial 

roles in the secretory pathways of both prokaryotes and eukaryotes. 
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2.6 Surprising Complexity of SPs 

SPs with their deceivingly short sequence and lifespan have led many to relegate them 

as simple and unsophisticated peptides. However, the notion of multi-faceted roles for 

SPs that outgrow their sole protein targeting function is fast retiring this false 

misconception with the growing body of evidence elucidating their true diversities 

and complexity (Hegde and Bernstein, 2006). 

It has long been observed of the mutual recognition of SPs in bacteria and 

eukaryotes by certain conserved translocation components (Osborne and Silhavy, 

1993). SPs supposedly can be swapped between different proteins without loss of 

their targeting functions (Izard and Kendall, 1994; Belin et al., 2004). Further, it was 

established that attaching a SP to a protein through recombinant DNA technique was 

sufficient to direct a chimeric protein to translocate to the ER to be secreted even 

though the protein was originally devoid of such a sequence (Burghaus and 

Lingelbach, 2001). In fact, an earlier study involving the combinatorial swaps of yeast 

invertase SPs with seemingly random peptides estimated that 20% of the ‘pseudo-

signals’ were functional, or at least partially functional (Kaiser et al., 1987). Even so, 

there is no lack of studies that refuted these claims (Al-Qahtani et al., 1998).  

These findings raise a series of questions. The heterogeneity of SPs of 

different secretory proteins is well documented and they are known to share few 

similarities in their primary structure. Yet, in regard to the ‘pseudo signals’ study, the 

seemingly random peptides that were generated to be functional press the question: 

what is the permissible extent of variability for a SP before it becomes dysfunctional? 

Are SPs really all that similar? Are SPs admittedly as flexible and tolerant as 

expected? If interchangeability is really viable, why is there a need to devise the huge 

diversity when much simpler variations of SPs could have ostensibly accomplished 
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the tasks? Wouldn’t such diversity have succumbed to evolution pressure? 

Additionally, has Occam's Razor been overruled in favor of plurality in the case of the 

notorious sequence diversity long observed in SPs? How do the components of the 

machinery in the secretion pathway cope with the degenerate feature of SPs while 

simultaneously maintaining the high specificity and high fidelity requirements in the 

targeting, recognition and cleavage of SPs? Also, if SPs were indeed as multi-faceted 

as suggested, how can all the necessary information for carrying out their function be 

practically encoded within the short peptide length without escalating complexity 

further? 

Growing body of evidence is challenging the dogma that SPs are functionally 

equivalent and mostly interchangeable (Bird et al., 1987; Jungnickel and Rapoport, 

1995; Kang et al., 2006; Rapoport et al., 1996). An early review aptly summarized 

previous findings in support of this (Zheng and Gierasch, 1996) where a quoted 

example described the failure of the SP of yeast carboxypeptidase Y to direct the 

export of its passenger protein in mammalian cells, incongruent to what has been 

reported for most precursors of yeast proteins. Translocation was only achievable 

when the SP of the yeast was modified or a mammalian SP was used (Bird et al., 

1987). Exchange of SPs has been shown to decimate virion infectivity (Pfeiffer et al., 

2006; Weltman et al., 2007). Site-directed mutagenesis studies on SPs or SPs fused 

with heterologous proteins (including reporter) have only continued to corroborate 

that SPs are not as amenable as assumed, albeit at times, conflicting reports from 

different studies of the same SP subject added further confusion (Belin et al., 2004; 

Blanco et al., 1999; Frate et al., 2000; Gennity et al., 1990; Izard et al., 1994; Kaiser 

et al., 1987; Thornton et al., 2006). It must be noted that often, a limited number of 

SPs were investigated in these studies and they may inadvertently over-generalize. 
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Additionally, site-directed mutagenesis experiments study mutations by replacing 

residues that are different in terms of properties from the originals, thus the 

substitution(s) may affect the overall protein configuration (Pugsley, 1989). This is 

congruent to the data which indicated that replacement of the residues might have 

altered the conformation/placement of the SP and the nascent chain critical for proper 

protein biogenesis (Rutkowski et al., 2001). 

An early study on B. subtilis described the different combinations of SP and 

MP that might have influenced protein secretion efficiency (Himeno et al., 1986). 

Similar sentiment was echoed in the study undertaken by Kim et al. to investigate a 

set of SPs from different substrates through the translocation process. They observed 

a broad range of SPs with varying efficiencies in initiating translocation and proposed 

that the link between the SP and the MP is possibly interlocked (Kim et al., 2002), 

which we termed herein as “SP-MP coupling” theory. A systematic screening of B. 

subtilis SPs further reinforced the claim of an optimal-fit between a given SP and its 

respective MP (Brockmeier et al., 2006). This relationship could ostensibly aid in 

explaining the conservation of SPs across species for a given substrate in contrast to 

the SPs sequence divergence observed for different substrates (von Heijne, 1985; 

Williams et al., 2000). Collectively, post-targeting functional differences between 

SPs, substrate-specific evolutionary conservation and the adverse effects on altering 

SPs have been suggested as plausible explanation for the sequence diversity observed 

in SPs (Kim et al., 2002). 

Substrate-selective modulation of protein translocation was also suggested as 

the rationale behind the sequence variability, thus reconciling the seemingly 

paradoxical existence of ‘imperfect’ SPs such as those from the Prolactin hormone 

which would be detrimental to the cell under certain cellular conditions when they 
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could have evolved to efficient ones (Kang et al., 2006). Similarly, an earlier study 

observed that many proteins did not use optimized SPs in their targeting process 

(Levine et al., 2005). Counter-intuitive as this may seem, such design certainly 

connote a functional intent rather than a random variation. This essentially equipped 

the cell to selectively modulate the release of certain proteins depending on particular 

conditions such as during ER stress where cargo proteins are barred from entering the 

ER while molecular chaperone BiP is permitted (Kang et al., 2006), we likened this to 

a ‘knob or tuner’ for the cell to regulate the release of proteins on a demand basis. 

Exceptions to the widespread view of SPs sequence diversity do occur. For 

instance, the SPs of conotoxin found in a small disulfide-rich peptide from the 

predatory cone snails that targets components of neuromuscular system, manifest 

hyper-conservation of SPs (Olivera et al., 1999; Wang and Chi, 2004). Another 

example is the translocation-efficient caseins, which accounts for 82% of proteins in 

bovine milk (Creuzenet et al., 1997; Watson, 1984). But such extreme examples are 

few. To cater to the large variety of secretory proteins with different functional and 

physiological requirements, we opined that this strategy is seemingly out of necessity 

and hinted at a far more sophisticated and complex mechanism at work. 

 

2.7 Relevance and Importance of SPs 

The pioneering works of Blobel's and other discoverers have revolutionized many 

aspects of modern cell biological research and set the tone for a blazing pace of 

research in this area. Research into the biology of prokaryotic and eukaryotic cells, 

advancement in molecular genetic techniques, improvements in large-scale cultivation 

and production of heterologous proteins have opened up new avenues and compelled 
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researchers to actively pursue development in the protein targeting domain. With the 

majority of the proteins synthesized in the cytoplasm, these proteins have to be 

exported to the correct targeted destination to carry out their functions under the 

directive of SPs. Commanding a good understanding of SPs and the related 

mechanisms will unleash and broaden commercial applications in the pharmaceutical, 

medicine, biology, food industry and other areas.  

 The huge demand from the growing worldwide population is straining the 

limited natural resources and urgently calls for the advancement in gene technology. 

Designing recombinant DNA sequences that are highly optimized and efficient in 

secretion of heterologous gene products is thus sought after as a lucrative and 

desirable solution. This can be achieved by fusing a SP to the desired protein, where 

the recombinant protein can be delivered to a desired location in heterologous 

production hosts such as E. coli or B. subtilis to be harvested or identified (Westers et 

al., 2004; Harwood and Cranenburgh, 2008). One such example involved the use of 

the cleverly crafted “phage display” method (Rosander et al., 2002) for the 

pathogenesis study in various bacteria such as Staphylococcus aureus (Rosander et 

al., 2002) and Streptococcus equi (Karlström et al., 2004). The fusion proteins 

attached with SPs are targeted to the cell membrane to facilitate easy isolation and 

characterization. Another technique called Signal-exon trap took advantage of the 

presence of SP in secretory or membrane proteins to devise a detection technique to 

identify such proteins on genomic scale. Such technique could be used for detecting 

chimeric proteins, growth factors, receptors, matrix-binding proteins and so on apart 

from natural proteins (Chen and Leder, 1999; Péterfy et al., 2000). Protein drugs such 

as growth hormone, insulin, interferon to name a few, have been engineered for 

extracellular secretion to facilitate easy purification. Such efforts could be further 
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elevated with programmable microprocessor implants for timed release of the 

substances (Langer, 1998; Santini et al., 1999). In other attempts, non-secretory 

proteins were attached with targeting signals and secreted to the extracellular, 

common in the biotech protein engineering application (von Heijne et al., 1994).  

Bacterial cells encoded with the recombinant genes are often employed as 

protein factories, due to the ease of handling and growing. Nonetheless, producing 

human proteins often require more complex cell systems such as yeast cells in order 

to be functional. Bacteria and eukaryotes may share similar or equivalent counterparts 

in their translocation and secretion machineries and components, however, SPs from 

one organism generally do not function efficiently or greatly diminished when placed 

in another host. In certain situation, the activity may be entirely lost or changed. 

Various efforts have identified suitable SPs, host proteins and expression systems 

(Brockmeier et al., 2006; Jacobs et al., 1997; Lal et al., 1999; Le Loir et al., 2005; 

Nene and Bishop, 2001; Nouaille et al., 2005; Olczak and Olczak, 2006; Schaaf et al., 

2005; Tan et al., 2002; Yamamoto et al., 1987). Another line of work involves 

tweaking secretory SPs to achieve higher efficiency in secretion (Barash 2002; Bardy 

et al., 2005) (review specifically related to Streptomyces (Lammertyn and Anne, 

1998) and Lactococcus lactis (Ravn et al., 2003)). There were also experimentations 

involving various SPs in search of efficient ones to assist in the development of 

bacteria as vaccine carrier (Wu and Chung, 2006). Such developments are particularly 

critical and useful as secretory proteins are heavily employed in protein therapeutics, 

for example, one could reprogram cells for gene therapy purpose (Grabley and 

Thiericke, 1999).  

In the attempt to raise crop yield, for instance, gene conferring herbicide-

resistance was introduced into a tumor-inducing bacterium Agrobacterium 
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tumefaciens where it is fused with a transit peptide and targeted to the chloroplast 

(Della-Cioppa et al., 1987), thereby producing plants which are resistant to herbicide. 

Such technique can be expanded to include other herbicides and making the plants 

unharmed by the toxic substance. Similarly, albeit to a different targeted destination, 

Asayama et al. designed a new class of antioxidant comprising manganese porphyrin 

and a mitochondrial targeting signal (Asayama et al., 2006).  

For the same reason that attaching a SP can direct the passenger protein to the 

desired location, a defective or mutant SP can lead protein astray, for which they have 

been implicated in the onset of scores of genetic diseases including cystic fibrosis, 

familial hypercholesterolemia (result in high low-density lipoprotein). Another 

example involves a rare metabolic disorder called “primary hyperoxaluria type I” 

where the development of kidney stones at an early stage is caused by a 

mislocalization of a peroxisomal glyoxylate aminotransferase to the mitochondrion, 

culminating in overproduction oxalate due to the enzymatic deficiency to prevent 

accumulation (Purdue et al., 1991) (refer to Section 2.5 for more examples). Thus, 

correcting such defects through gene therapy could present as another viable 

treatment regimen. Also, newer vaccine strategies increasingly seek to pinpoint 

constituents in microorganism that are recognizable by the cellular immune system 

and concentrate production of vaccine targeting such regions (Buus 1999; Corradin 

and Demotz, 1997). Efforts are also directed towards the interaction partners of SP 

such as SPases, which play essential roles in the viability of bacteria (Date 1983; Klug 

et al., 1997), making SPases attractive targets for the design of novel antibiotics 

(Black and Bruton, 1998).  
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Chapter 3: Construction of a High-quality SP Repository 

3.1 Introduction  

Commencing a study with high quality dataset is crucial and demands equal care and 

rigor as other activities, especially in a bioinformatic/computational study. Any data 

bias, errors or incompleteness that is present or inadvertently introduced will likely 

render subsequent analysis, inference or conclusion unreliable. The consequence is 

particularly acute in the development of SP prediction tools, in which the datasets are 

used to construct the guiding models. Noise and errors in the datasets can be 

detrimental to the construction of the predictive models (Nielsen and Krogh, 1998). 

The accuracy of a predictive model is therefore highly dependent on the quality of the 

datasets, and may affect the constructed model in generalizing to new dataset. 

As a result, researchers often devote considerable time sifting through primary 

databases such as Swiss-Prot (Bairoch et al., 2004), EMBL (Kulikova et al., 2006) 

and the likes to collate and construct specific subsets of these datasets. This repetitive 

process can and should be eliminated with the creation of a centralized repository. 

With a shared resource, benchmarking can be conducted in a standardized manner, 

unlike current situation where comparison between SP prediction tools is often 

difficult, or impossible due to the varied datasets used. 

The website of the Nucleic acids research journal maintains a catalog of some 

of the databases that have been published (http://www3.oup.co.uk/nar/database/subcat/3/7/). 

Several resources exist that capture specific information on protein subcellular 

localization (http://www.bioinfo.tsinghua.edu.cn/~guotao; http://npd.hgu.mrc.ac.uk/; 

http://www3.oup.co.uk/nar/database/subcat/3/7/),nuclear proteins (http://npd.hgu.mrc.ac.uk) 
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and secreted proteins (http://spd.cbi.pku.edu.cn/spd_index.php). These specialist 

databases do not provide SP-specific information except for secreted protein database 

(SPD) (Chen et al., 2005), which assembles human, mouse and rat protein sequences 

from databases such as Translated EMBL (TrEMBL) (Bairoch et al., 2005), Ensembl 

(Birney et al., 2004) and Refseq (Pruitt et al., 2005). Datasets from the SPDI (Clark et 

al., 2003), a large-scale effort to identify novel human secreted and transmembrane 

proteins; the Riken mouse secretome and seven other related datasets 

(http://spd.cbi.pku.edu.cn/help/spd_help.php) are found in SPD as well. SPD aims to be a 

comprehensive repository for secreted proteins, but it suffers from poor data quality 

due to the underlying data sources such as TrEMBL that it uses. TrEMBL, for 

instance, contains sequences generated from an automated protocol that have yet to be 

manually curated, and its SPs are predicted using computational methods. 

Furthermore, entries in SPD were not manually checked against publications. The 

lack of updates has made it obsolete. A closely related database is the Hera database 

that aggregates human ER proteins (include transmembrane proteins) from various 

protein sequence databases. In this database, the SPs of ER proteins are again 

predicted using computational tool (Scott et al., 2004).   

Besides specialist databases such as SPD that offers datasets for download, 

several websites offer SP datasets as well (Menne et al., 2000; Nielsen et al., 1997). 

One of the earliest efforts was the compilation of 277 targeting signals that included 

SPs (Watson, 1984). In recent times, there is the dataset of 270 secreted recombinant 

human proteins with experimentally determined cleavage sites (Zhang and Henzel, 

2004). However, these datasets are either limited in size or otherwise lacking in tools 

for querying the datasets. Some are outdated, as they do not keep updated with the 

publicly accessible primary sequence databases. 
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 Many researchers face similar obstacles in accessing up-to-date data, which 

are withheld from public access by method developers (Pennisi 1999; Wiley and 

Michaels, 2004). Hence, there is an urgent need to provide a publicly accessible, 

manually curated and regularly updated database specifically for SPs. 

 

3.2 Materials and Methods  

To address this critical need,  a pipeline (Figure 5) is devised to construct and update 

a relational database (built using MySQL (http://www.mysql.com/)) to store SP-

related information including their sequences. The repository is designed in 

accordance to the design considerations discussed in the assessment of the available 

servers and database systems (Tan et al., 2005). 

 Nielsen et al. introduced a methodology (Nielsen et al., 1996) to generate the 

training and testing datasets for developing the popular SP prediction tool, SignalP 

(Bendtsen et al., 2004b), which has since undergone two revisions. Some of the 

proposed criteria are adapted in this work while others are omitted. New criteria are 

introduced to meet our goal of constructing a high quality repository with accurately 

annotated SPs. 

 SPs and coding sequences are extracted from Swiss-Prot (TrEMBL entries are 

excluded) Entries tagged with the SIGNAL keyword in the feature table FT field 

(http://www.expasy.org/sprot/userman.html#FT_line) are assumed to contain 

information on SP. This simple selection process yielded 18,146 entries out of the 

total 170,140 Swiss-Prot entries (Release 46.1). Entries annotated with keywords such 

as PROBABLE, POTENTIAL, BY SIMILARITY, HYPOTHETICAL and entries 

with ambiguous positions (either cleavage sites or starting position) are designated as 
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unverified sequences. SPs with length less than 11aa are relegated to the unverified 

sequences set since SPs are generally considered to be of length 15 to 40. Typical SPs 

with less than 11aa are rarely found in the database. This initial step filtered off 

13,701 entries from the preliminary filtered set leaving behind 4,445 entries. 

 
Figure 5: Schematic diagram of the construction and update protocol of SPdb. The diagram is 

generated using OmniGraffle (http://www.omnigroup.com). 

 
These entries still include SPs, lipoproteins and Tat-containing signal sequences. 

Using the SIGNAL keyword, mTP and cTP are indirectly excluded from the 

preliminary filtered set since transit peptides are identified by the TRANSIT keyword 

in Swiss-Prot. 

The next step is to integrate complementary information from EMBL and use 

that information to check against Swiss-Prot to identify erroneous annotations. This 

practice of using complementary information from other data sources was found to be 
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useful in data evaluation (Bork, 2000). Here, the first cross-reference to EMBL 

database is used for each Swiss-Prot entry. Only selected data categories of EMBL are 

selected (Appendix B). Relevant annotations are extracted from EMBL including 

coding sequence, SP and its length, subcellular location, authors’ notes and so on. 

 The annotations, specifically the sig_region and misc fields from the EMBL 

entry are checked against the preliminary filtered entries. This step helps to identify 

many inconsistent entries where the positions have been wrongly quoted by either 

source, for instance, Swiss-Prot quoted cleavage position of 33 while EMBL provided 

32 for the entry (Swiss-Prot ID: CD166_CHICK). Accordingly, another 866 entries 

are eliminated to yield 3,579 entries in this newly filtered Swiss-Prot/EMBL set. 

 There are some Swiss-Prot entries in the Swiss-Prot/EMBL set that are without 

any EMBL reference e.g. (Swiss-Prot ID: APOE_CAVPO); or lack of annotations in 

the EMBL entries e.g. (Swiss-Prot ID: 17KD_RICAU); or indicated with annotation 

such as NOT_ANNOTATED_CDS e.g. (Swiss-Prot ID: 2B31_HUMAN), 

ALT_TERM e.g. (Swiss-Prot ID: CD1E_HUMAN), ALT_INIT e.g. (Swiss-Prot ID: 

1A03_PANTR) and ALT_SEQ e.g. (Swiss-Prot ID: 17KD_RICPR) in their EMBL 

cross-references. All these entries are earmarked for manual curation. These terms 

“NOT_ANNOTATED_CDS”, “ALT_TERM” and other are known as status 

identifiers and appear in the DR field in Swiss-Prot entries. Detailed explanation is 

found in the Swiss-Prot manual (http://www.expasy.org/sprot/userman.html#DR_line). 

The extraction and error detection rules described thus far are collectively known as 

the ‘SP Filtering Rules’ (version 1.0). 

Next, with the newly generated filtered set, all the entries in this Swiss-

Prot/EMBL set are manually checked against the referred publications. Numerous 

entries with discrepancies in cleavage site between the Swiss-Prot annotations and the 
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accompanying papers are identified e.g. (Swiss-Prot ID: CECC_DROME), the 

cleavage position was annotated to be 23 in Swiss-Prot while the referenced paper 

quoted 22. In another entry (Swiss-Prot ID: AMCY_PARVE), Swiss-Prot quoted 

position 26 while the referenced paper quoted 25 for the cleavage position. For entries 

which we do not have access to the accompanying papers e.g. (Swiss-Prot IDs: 

ZEAL_MAIZE, ZEA6_MAIZE) or entries that we are unable to locate their cleavage 

site information in the papers e.g. (Swiss-Prot ID: GUX1_TRIRE) or entries that are 

inadequately labeled or those that are specified with inconsistent positional 

information are all relegated to the unverified sequences set. 

A further 995 entries are eliminated from the Swiss-Prot/EMBL set containing 

3,579 entries during the manual curation phase where they are (a) both Swiss-Prot and 

the quoted papers provided the same putative position (b) different positions were 

stated by Swiss-Prot and the quoted papers (c) no access to the quoted subscription-

only papers or the papers referred to are old and in some cases there were no paper or 

no relevant paper quoted (d) no mention of cleavage site information (Table 2). 

 

Table 2: A list of the different types of errors that was identified and the problems 
encountered during the database manual curation step. 1 represents the number of entries or 
sequences identified with the problem described. 

Problem description No. of 
entries1 

Swiss-Prot and the accompanying papers quoted same putative position 311 

Swiss-Prot and the accompanying papers quoted different position; 
The position quoted maybe confirmed or putative 100 

No references or relevant references were provided; 
No access to some subscription-only papers;  

No access to some very old papers 
194 

Unable to locate or obtain the position information from papers 390 

TOTAL 995 
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3.3 Results and Discussion  

3.3.1 Content of SPdb  

SPdb (release 3.2; http://proline.bic.nus.edu.sg/spdb) was released for public access 

with a total of 18,146 SP entries in which 2,584 are verified sequences (Table 3). The 

verified set includes lipoproteins, Tat-containing signal sequences and SPs with their 

mature endogenous proteins that were sequenced on their N-terminal. These entries 

are manually checked against the accompanying reference paper and they are deemed 

to contain experimentally verified SPs. The remaining 15,562 unverified sequences 

contain putative or experimentally unverified SP cleavage sites. This unverified set 

potentially contains entries with erroneous annotations and there may be some 

experimentally verified SPs as well since there are some accompanying papers that 

we do not have access. 

 

Table 3: Distribution of the sequences organized according to four sub-groups in SPdb 3.2. 
The verified set in this release of SPdb include SPs, lipoproteins and Tat-containing signal 
sequences. This practice has been discontinued in subsequent releases of SPdb to include only 
SPs in the verified set. 

 Archaea Bacteria Eukaryotes Viruses Sub-total 

Verified Sequences 7 540 1,945 92 2,584 

Unverified Sequences 101 3,528 11,239 694 15,562 

TOTAL 108 4,068 13,184 786 18,146 
 

There are 4 data groups in SPdb namely archaea, bacteria, eukaryotes and 

viruses (Table 3). Information such as organism source, organelle, subcellular 

location and other accompanying important notes are supplied (Figure 6). Cross-

referenced links to the originating database are included as well. 
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By integrating information from Swiss-Prot and EMBL, SPdb provides a 

singular point for accessing SPs and the related annotations (Figure 6). An easy-to-

navigate web interface written in Perl (Wall, 2000) facilitates user to search through 

the database with returned results that can be viewed as HTML web page or 

downloaded in FASTA formated files. User is able to select an entry or a collective 

set of entries matching the user’s criteria such as name of organism, data group, 

length of signal sequences, keyword searches. Only relevant references that describe 

the SP are included to allow user to easily consult the corresponding article(s). 

 
Figure 6: SPdb entry information includes a short description of the protein, the hydropathy 
plots and amino acids properties and more. (A) Each entry is marked as verified or unverified; 
(B) An error-feedback link for users to inform us on any error or updated information 
pertaining to an entry for us to rectify/update; (C) Users can deposit their signal sequences 
with us and add on their own annotation. 

 
SPdb provides other information such as amino acid composition of the protein which 

have been suggested to correlate with the subcellular localization of the protein 

(Nakashima and Nishikawa, 1994); amino acid residues properties (aromatic, non-

polar, polar, charged and so on) are shown in graphical format to indicate which 
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residues possess the properties visibly; also accompanying each entry are various the 

hydropathy plots (Kyte and Doolittle, 1982; Sweet and Eisenberg, 1983; Eisenberg et 

al., 1982) of the SPs and the sequences downstream of the SP cleavage site. The plots 

are rendered using pepinfo found within the computational analysis package of 

EMBOSS (Rice et al., 2000), an open source software suite for sequence analysis. 

Each SP exhibits three distinct regions at the sequence level: the n-region (a positive 

charged region), the h-region (hydrophobic region) and the c-region (polar and 

neutral region) (von Heijne, 1990). The hydropathy plots thus help in visualizing 

these regions for easy identification purpose.  

 It was shown that SP processing by the SRP requires certain contextual cues in 

the sequence downstream. SRP binds to n-terminus signal or signal-anchor sequence 

when the nascent polypeptide chain is synthesized by the ribosome up to 

approximately 60aa. At this length, this segment is conveniently exposed and 

translation will resume upon dissociation of SRP from the nascent chain (de Gier et 

al., 1998). In the effort to capture this information for the co-translational 

translocation mechanism, SPdb includes both the SPs and 30aa after the cleavage site 

and they are colored using the RasMol amino acids color scheme 

(http://www.openrasmol.org/doc/rasmol.html#aminocolours) with explicit mark of the 

SP cleavage site. 

 

3.3.2 Experimental support in database entries  

Swiss-Prot, a venerable and often cited gold standard for manually curated database, 

has been the authoritative source for more reliable sequence entry annotation. Often, it 

is presumed that an entry should be relatively accurate particularly if there is no label 

that indicates it is lacking in experimental support. As a result, the data are usually 
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extracted without much further processing or examination. However, as we have 

shown in this study, multiple types of erroneous exist. For instance, conflicting 

annotations are reported on the positions or length of the signal sequences by Swiss-

Prot when compared against EMBL e.g. (Swiss-Prot IDs: A2AP_HUMAN, 

BTD_HUMAN). Inconsistencies such as this usually arise when there is more than 

one reference. The referred papers may quote different positions that may cause the 

confusion. By combining annotations from EMBL and using it to crosscheck against 

Swiss-Prot, we have managed to identify many such entries. The annotations on SP 

found in EMBL are relatively more accurate though there are incidents when the 

information is incorrect e.g. (EMBL ID: M19077 for the entry Swiss-Prot ID: 

CHR1_BOMMO). To tackle this, a link is provided in SPdb to allow the user to 

report any error or discrepancy that is encountered in SPdb. 

There is also the issue on experimental evidence support provided in the 

journal publication. Many of the entries with annotations found in the sequence 

databases on SP position are predicted or deemed putative or potential as reported by 

the researchers in the accompanied literature (Table 2). Unfortunately, these entries 

are not properly labeled with keywords like POTENTIAL, BY SIMILARITY and 

PROBABLE as previously assumed in Swiss-Prot. Many of the referred papers 

actually used prediction tools or sequence alignment software to identify the possible 

SP cleavage site. This has serious implication on many downstream works which rely 

on Swiss-Prot and other primary databases. Often, they assume that such entries are 

experimentally verified since there was no indication that suggested otherwise. 
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3.3.3 Text-mining as an extraction method   

Prior to our manual curation effort, we have explored text-mining approach as the 

technique has been applied in the extraction of protein-protein interactions (Thomas et 

al., 2000), protein structure and residues (Gaizauskas et al., 2003), full-text 

biomedical article (Corney et al., 2004), gene/protein biological function (Koike et 

al., 2005), albeit with moderate success. However, we soon discovered that many of 

abstracts do not contain cleavage site information. The information is often located in 

the body of the paper, usually appearing under the results or discussion section.  In 

some cases, the cleavage site is embedded within an image file either indicated with 

an arrow or asterisk. Further complicating the matter are the words or phrases that 

were used to express the positional information, for example, in the paper (Hinuma et 

al., 1998) quoted in entry (Swiss-Prot ID: PRRP_BOVIN), there is the sentence “… 

its N-terminal portion before Ser-23 showed the typical profile of a secretory signal 

peptide …”. Such sentences often vary and it is difficult to extract such information 

by using extraction rules. Additionally, many of the papers are view-by-subscription 

only, rendering the extraction program useless. Unless each of the paper submitted in 

future provides a short note on the features of the proteins described coupled with the 

improvement in text-mining accuracy, it will be extremely difficult and text-mining 

approach can only be applied sparingly. Manual curation will still be required for the 

time being although open-access journals are increasingly prevalent 

(http://www.doaj.org/). The availability of full-text articles may enable wider 

adoption of text-mining tools to extract information from the articles. 
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3.3.4 Uses of SPdb  

Although SPdb was mainly created to support the studies in this work, the curated 

SPdb can be a valuable and useful resource to support further scientific studies into 

multiple areas. It is also applicable to technological or industrial domains. Figure 7 

briefly describes some potential uses of SPdb. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Potential uses of SPdb in scientific researches and technological applications. 

 

For the purpose of this work, we shall exploit SPdb to analyze the SP 

sequences to understand the factors that contribute to their SP cleavage processing. It 

will also be used for structural study of SPs to further our understanding of how the 

structural conformations contribute to the substrate specificity. These works shall be 

discussed in the following chapters. 

Scientific Researches Industrial / Technological Applications 

SPdb 

• Structural investigation of SPs in 
complex with their interacting/binding 
partners. Such study could aid in the 
design of new class of antibiotics 

 
• Co-evolutionary study of SPs and their 

corresponding MPs 
 
• Study of mutations in SPs causing 

diseases in organisms 
 
• Comparative study of transmembrane 

and secreted proteins 
 
• Evolutionary studies of SPs of 

different proteins or organism groups 
 
• Study of viruses and their hijacking of 

host’s targeting machinery 

• Training and benchmarking datasets for 
prediction tools for signal anchor, SP 
prediction, subcelullar localizations 

 
• Identification and creation of a library 

of efficient-targeting SPs as a means to 
raise expression levels in proteins 

 
• Development of subcellular 

localizations prediction tools and 
databases (which involved multiple 
targeting signals) 

 
• Predict novel (secretory) proteins based 

on similarity with existing 
experimentally verified SPs 

 
• Identification of suitable SP candidates 

for transport of heterologous 
recombinant proteins 

• udy of viruses and their hijacking of 
host’s targeting machinery 
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3.4 Summary 

A semi-automated pipeline driven by our “SP Filtering Rules” (version 1.0) has been 

developed for the generation of SPdb, a repository that is dedicated for the study of 

SPs. The resulting entries are further curated manually to ensure that experimentally 

verified SPs are identified and sufficiently annotated. 

New error detection techniques were devised and the integration of 

information from different databases has helped to eliminate inconsistent and 

erroneous entries. The provision of this system drastically reduces the laborious effort 

required to assemble SP related data on a regular basis and at the same time, it ensures 

generation of consistent and standardized datasets. SPdb can be a useful resource for 

prediction and analysis works, and it provides the much-needed standardized dataset 

for benchmarking the SP prediction tools. SPdb can also serve as the foundation for 

exploration into other scientific studies as well as supporting the development of 

technological applications. 

For future releases, there are plans for further classifications, for instance, 

according to functions, conservations of SP sequences and so on. As differentially 

targeted organelles or locations are variations on the general theme of SP targeted 

proteins, it would be logical to include these different targeting signals for comparison 

and studies purpose. Further, information on secreted proteins that lack cleavable SP 

(Ye et al., 1988) e.g. ovalbumin, a secreted glycoprotein and the major protein of egg-

white which does not have a cleavable SP (Lingappa et al., 1979; Belin et al., 2004) 

could be included. This can allow us to compare the differences between cleavable 

and non-cleavable SPs. 
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Chapter 4: Sequence Analysis of SPs  

4.1 Introduction  

When the “signal hypothesis” (Blobel and Dobberstein, 1975a; Blobel and 

Dobberstein, 1975b) was first mooted in 1970s, investigation into SPs was still fairly 

limited. The pace has since hastened, with various studies scrutinizing different 

aspects of these transient polypeptides. Large-scale efforts such as the SPDI (Clark et 

al., 2003) were launched to identify novel secreted and transmembrane proteins in 

human while other project such as the Human Proteome Folding Phase II 

(http://www.worldcommunitygrid.org/projects_showcase/viewHpf2About.do) focuses 

on predictive, preventative and personalized medicine where human secreted proteins 

and pathogenic proteins are clearly form the key elements. Such initiatives and the on-

going sequencing work at the research labs and sequencing centers around the globe 

continue to generate large number of sequences and new insights.  

The deluge of protein sequences has spurred the active development of 

computational tools and techniques to automate the prediction of SPs (Chapter 6: 

Table 5). While the accuracies of these predictive tools vary depending on the datasets 

employed in their studies, they have generally achieved good accuracy (80-90%). 

Nonetheless, the precise mechanism governing the cleavage of the preprotein thus far 

remains a conundrum. The accuracy of even the best prediction methods for 

mutations/alterations to the SP region remains unpredictable. In order to understand 

the SP cleavage processing and targeting mechanism, it is necessary to first examine 

the SP and MP sequences.  

An early study involving 118 eukaryotic and 32 prokaryotic sequences 

provided an excellent insight into the nuances of eukaryotic and bacterial SPs (von 
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Heijne, 1985). This was later followed by a study of 900 eukaryotic and 200 

prokaryotic sequences with known cleavage sites (von Heijne and Abrahmsén, 1989). 

Subsequent studies (McKnight et al., 1991; Rajalahti et al., 2007; Thornton et al., 

2006) investigated SPs and MPs, either singularly or in combination, often through 

gene fusion and mutagenesis studies to observe their translocation and differential 

expression levels. Wide range of studies (Biro, 2006; Eusebio et al., 1998; Kajava et 

al., 2000; Kantardjieff and Rupp, 2004; Matoba and Ogrydziak, 1998; Tsuchiya et al., 

2003; von Heijne, 1986b) were conducted to inspect the charge bias and 

hydrophobicity of SPs. Austen et al. employed synthetic SPs to demonstrate that it is 

the common structural features incorporated that bestowed the SPs their translocation 

function, and not simply the primary sequence (Austen et al., 1984). Structural studies 

investigated SPase I-substrate complexes through 3D-structures and computational 

models (Ekici et al., 2007; Paetzel et al., 2000; Paetzel et al., 2002a) to study the 

substrate specificity and the characteristics of the amino acid residues around the 

cleavage site. With the massive increase in deposition of protein sequences into the 

public sequence databases since the last sequence study involving larger dataset with 

known cleavage sites (Nielsen et al., 1997), there is a tremendous opportunity to 

improve our understanding of SPs. 

In this study, 2,352 eukaryotic and bacterial SPs are extracted from SPdb 

(Choo et al., 2005) following an improved protocol from the original (Chapter 3). The 

aim is to examine the characteristics of the amino acid residues at the cleavage site. 

Furthermore, the residue composition in the vicinity of the cleavage site are 

investigated, as a multitude of site-directed mutagenesis studies have revealed that 

residues upstream and downstream of this site affect cleavage site recognition and 

processing (Kajava et al., 2000; Russel and Model, 1981). 
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4.2 Materials and Methods  

4.2.1 Data preparation using SPdb  

A preliminary dataset of 2,512 sequences is assembled from the manually curated 

SPdb 5.1. Only sequences reported with experimentally verified SP cleavage sites are 

used. CD-HIT (version 3.1.1) (Li and Godzik, 2006) is used to cluster and remove 

sequences with 100% sequence identity in their SP moiety as studies (Jarjanazi et al., 

2008; Rajpar et al., 2002; Tsujibo et al., 1994) have shown that even a single 

substitution of the amino acid in SP could result in a pronounced effect. 

Next, the dataset is split into two sub-datasets based on their (i) SP and (ii) MP 

before being clustered again using CD-HIT, with global sequence identity threshold 

set at 0.9 (90%); word size of 5 and other parameters set at the program’s default. The 

reduced dataset of 2,352 SP-containing sequences is further categorized into five 

groups: (i) Gram+ bacteria (Firmicutes, Actinobacteria, Deinococcus, Fibrobacteres, 

Thermotogae) Mollicutes which are lack of cell wall are excluded; (ii) Gram- 

(Proteobacteria, Spirochetes, Bacteroidetes, Cyanobacteria, Aquificae, Chlamydiae) 

and (iii) eukaryotes (iv) archaea (v) viruses. Viral and archaeal SPs are retained for 

analysis in subsequent study, as there are only a few sequences with experimental 

support. The bacteria dataset is classified into Gram+ and Gram- due to their 

distinctive features (von Heijne, 1990). The physico-chemical properties of the SP 

and MP for each sequence are computed using ExPASy ProtPram (Walker, 2005). 

Other calculations include molecular weight, theoretical isoelectric point (pI), 

aliphatic index, GRand AVerage of hydropathY (GRAVY) and absolute mean charge.  
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4.2.2 Calculations of the physico-chemical properties  

Size dimension is assumed to influence the bending of a peptide chain where the size 

of an amino acid is determined by the length and bulkiness of its side chain (Biro, 

2006). Since molecular weight of an amino acid is easier to measure and it is roughly 

proportional to its size, hence, we use it as an approximation. 

pI is defined as the pH value where a given protein has no net charge and it 

often has the lowest solubility. Different algorithms exist to calculate pI rendering 

different values due to the different set of pKa values used. The pKa values adopted in 

this study were described (Bjellqvist et al., 1993).  

Aliphatic index (Ikai, 1980) measures the relative volume occupied by 

aliphatic side chains (Ala, Val, Ile and Leu) of a protein according to the formula: 

)( LIVA XXbXaXndexAliphaticI +!+!+=  

where XA (Ala), XV (Val), XI (Ile) and XL (Leu) are mole percent (100 * mole 

fraction) of the respective amino acid residue. The coefficients a and b represent the 

relative volume of Val side chain (a = 2.9) and of Leu/Ile side chains (b = 3.9) 

compared to the side chain of Ala. 

GRAVY (Kyte and Doolittle, 1982) is an estimation of the overall 

hydrophobicity of a protein, but it does not consider interaction or positional effect of 

adjacent residues. Given a protein sequence S, its GRAVY score is computed as: 

ii
i

fSGRAVY !"
=

=
20

1
)(  

where i is one of the twenty standard amino acids; fi is the relative frequency of i in S; 

!i is the hydropathy value of i according to the scale propounded by (Kyte and 

Doolittle, 1982) and n is the total number of residues in the sequence. 
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Net charge is the algebraic sum of all the charged amino acid residues present 

in SPs and MPs calculated using the equation: 

ii
i

f!"
=

=
20

1
ChargeNet  

The twenty standard amino acids are represented by i and fi represents the relative 

frequencies of occurrences of the amino acid i. Positively-charged residues (Arg, His 

and Lys) are assigned !i = 1 whereas negatively-charged residues (Asp and Glu) are 

set as !i = -1. All other amino acid residues are assigned !i.= 0.  

 The iep program, from the EMBOSS bioinformatics package (version 2.9.0) 

(Rice et al., 2000) was used to calculate the mean charge at neutral pH. The absolute 

value of the mean charge is further divided by the length of the polypeptide.  

Mean hydrophobicity is defined as the arithmetic mean of the normalized 

hydrophobicity values of all the residues in the polypeptide (Kyte and Doolittle, 

1982). 

 

4.3 Results 

4.3.1 Datasets  

A curated set of 2,352 SP-containing sequences is assembled for this study using 

SPdb 5.1 (http://proline.bic.nus.edu.sg/spdb/analysis.html). 

 Scatter plots of the assembled SPs for the three groups are generated and $-

hexosaminidase A (Swiss-Prot ID: HEXA_PSEO7), an #$-subunit heterodimer 

lysosomal hydrolase was identified as an outlier. Tsujibo and co-workers indicated 

that the SP cleavage site is 11aa and added that the SP does not possess the typical 

tripartite features of an SP (Tsujibo et al., 1994). However, sequence comparison 
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against other species using Swiss-Prot database reveals lengths of approximately 18 to 

22aa. Due to this inconsistency, this entry was removed from the final dataset. 

 

4.3.2 Examining the eukaryotic and bacterial datasets  

The cleansed dataset is grouped into (i) eukaryotes (Euk) with 1,877 sequences (ii) 

Gram+ bacteria with 168 sequences and (iii) Gram- bacteria with 307 sequences. 

 

Figure 8: Boxplot illustrating the SPs distribution found in selected organisms and groups 
(eukaryotes, Gram+ and Gram- bacteria). Mean length (!) and median (—, gray bar) values 
are indicated. 

 

The boxplot (Figure 8) shows the length distribution of SPs for the different 

organism groups. Sub-groups from these organism groups are plotted as well. The 

distinctive long whiskers as seen in all the boxes affirm the previous studies that have 

reported SPs as having variable length. From the boxplot, SPs of Gram+ (SPsGram+) 

are clearly longer with median length of 30aa and display a bi-modal distribution with 

peaks at 29aa and 41aa (Figure 9), compared to SPs of eukaryotes (SPsEuk) and SPs of 

Gram- (SPsGram-) bacteria which carry median length of 22aa and 23aa respectively. 

Interestingly, SPsEuk and SPsGram- exhibit somewhat similar SP length distribution 
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although 4.5% or fourteen SPsGram- extends beyond 40aa. Despite the wide range of 

SP lengths permissible within many groups of organisms excluding SPs of plants 

(SPsPlant), majority lengths appear to fall in the 25th to 75th percentile.  

 

 
Figure 9: SPs from the three organism groups measured based on their length. The Y-axis 
shows the frequency of occurrences for a specific length of SP while the X-axis depicts the 
various lengths. 

 

Next, we examine the occurrences of amino acid residues at different 

positions. Figure 10 depicts the sequence logos (Crooks et al., 2004) for the three 

groups starting from position P35 to position P5’, spanning contiguous segments from 

the SP and MP. The cleavage site occurs between P1 and P1’. 

P1 and P3 favor small, aliphatic residues; in particular Ala and Val, with 

striking inclination that is apparent in bacterial SPs. Gly, Ser and Thr are also 

noticeable at these two positions in SPsEuk. P2 of SPsEuk exhibits preferences for Leu 

(15.2%) and Ser (12.0%) whereas different sets of amino acids: [Ser (12.5%), Gln 

(11.9%), Phe (11.9%), Ala (11.3%)] and [Leu (17.6%), Gln (14.3%), Phe (11.4%), 

His (11.4%)] are preferred by SPsGram+ and SPsGram- respectively (Table 4). From P1’ 

onwards, there is no obvious pattern of amino acid conservation in SPsEuk with the 

exception of slightly enhanced occurrences of Ala (13.5%) and Gln (11.0%) at P1’. 
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Figure 10: Sequence logos (Crooks et al., 2004) of eukaryotic and bacterial (Gram+ and 
Gram-) SPs and MPs starting from P35 to P5’. The interface between P1 and P1’ represents 
the SPase I cleavage site. The amino acid residues are grouped and colored based on the R 
group of their side chain. Red denotes polar acidic amino acid residues (D,E); Blue denotes 
polar basic amino acid residues (K, R, H); Green denotes polar uncharged amino acid  
residues (C, G, N, Q, S, T, Y); Black denotes non-polar hydrophobic amino acid residues (A, 
F, I, L, M, P, V, W). 

 
Compared to SPsEuk, the amino acid composition is different in bacterial SPs. 

In SPsGram+, P1’ is mostly occupied by Ala (36.3%), Asp (11.3%), Ser (10.7%) and 

Glu (9.5%). P2’ is populated by Thr (14.3%), Glu (13.7%), Pro (13.1%), Ser (10.7%) 

and Asp (10.7%). Lys (13.1%) is the dominant amino acid at P3’ while Pro (14.3%) 

and Thr (14.3%) are preferred at P4’. Beyond P4’, there is no clear pattern if the 

relative frequencies are compared between the adjacent positions for the same amino 

acid type. Similarly for SPsGram-, P1’ is populated by Ala (41.7%), Gln (12.1%), Asp 

(7.2%) and Glu (6.2%) whereas P2’ is largely distributed between Asp (17.3%), Glu 

(16.9%), Pro (10.8%) and Thr (10.8%). From P3’ onwards, when the relative 

frequencies of each amino acid are compared to its adjacent positions and also within 
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the column (Table 4 and Figure 10), there is no discernible pattern. His, Trp and Tyr 

are clearly under-represented in all three groups of SPs and for all the positions (P10 

to P10’) that are examined while Cys is almost nonexistent in bacterial SPs 

throughout the mentioned positions. Pro is visibly avoided in positions from P3 to P1’ 

but relatively prevalent at P4 and P2’. In contrast, Gly, Ile, Thr (except at P1 in 

bacterial SPs), Val (except at P1), Ser and particularly Ala (especially at P3, P1 and 

P1’) are ubiquitous in all the positions that we profiled. 

The occurrence of acidic residues (Asp and Glu) is pronounced from P1’ 

onwards in all three groups of SPs. Similar trends can be seen for basic or positively 

charged residues comprising Arg, Lys and His. In fact, when the basic and acidic 

residues are grouped (Table 4), there is a consistent and modest occurrence of these 

charged residues across all three groups of SPs from P1’ onwards, inclusive of P2 but 

conspicuously absent or appearing in minute amounts at P3 and P1, most prominently 

in the eukaryotic MPs. Basic residues, Arg and Lys are common at the n-region of 

bacterial SPs. 
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Table 4: Amino acid frequency matrix for the SPs and MPs of eukaryotes and bacteria. Percentage occupancy values from P10 to P10’ [+10, -10] are 
shown, with the cleavage site represented by dotted line at the -1/+1 junction.  Significant high and low values are highlighted: gray: >10%; black: most 
preferred residue(s); cyan: charged residue group and green: aliphatic group. 
 

Eukaryote -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 
Ala(A) 9.43 16.25 13.43 11.51 13.11 15.18 9.38 25.84 7.46 48.91 13.53 3.68 4.74 5.33 5.17 5.49 5.01 5.27 5.43 6.23 

Cys(C) 3.68 4.05 5.91 5.81 3.68 2.18 3.36 6.50 1.49 3.57 3.41 1.92 7.73 4.16 3.46 5.01 4.85 3.84 3.84 3.89 
Asp(D) 0.11 0.16 0.27 0.43 0.69 3.84 1.33 0.27 3.94 0.32 5.33 7.99 5.49 5.59 5.65 5.65 5.97 5.75 4.90 5.59 
Glu(E) 0.32 0.32 0.85 1.39 0.69 2.02 2.66 0.37 8.79 0.53 7.83 8.84 5.22 7.19 7.25 6.45 6.02 6.71 5.97 6.07 
Phe(F) 9.11 6.87 5.86 6.77 5.91 1.60 2.34 0.64 3.46 0.21 3.57 2.18 3.62 3.36 3.14 3.94 3.09 4.53 3.04 3.94 
Gly(G) 4.00 3.94 5.27 4.32 3.46 11.13 13.96 9.43 3.52 20.72 7.14 5.01 6.29 8.10 6.66 7.19 5.91 8.15 8.95 8.58 
His(H) 0.27 0.48 0.80 0.75 0.59 2.50 1.23 0.16 4.95 0.05 1.81 2.45 2.45 2.61 3.09 2.18 3.62 1.81 2.29 2.40 

Ile(I) 5.17 6.18 4.37 4.05 7.94 2.29 3.41 3.78 1.70 0.16 3.30 3.73 6.23 2.72 3.14 3.46 3.14 3.57 4.79 3.52 
Lys(K) 0.11 0.00 0.05 0.91 0.16 2.08 1.92 0.37 1.44 0.11 4.64 4.95 2.45 4.79 5.38 4.85 4.85 3.84 5.27 5.22 
Leu(L) 43.79 37.93 29.89 36.49 27.22 7.94 16.41 4.32 15.24 1.39 8.47 4.58 9.11 5.65 5.97 7.46 6.55 7.67 8.26 7.25 

Met(M) 2.40 1.97 3.30 2.50 1.81 1.17 1.70 0.27 1.76 0.21 1.12 0.69 1.70 1.28 1.70 1.17 1.33 2.13 1.44 1.70 
Asn(N) 0.69 0.48 0.59 1.23 0.75 2.02 0.91 0.69 4.21 0.37 2.50 4.32 3.73 3.94 4.32 3.25 5.43 4.37 4.26 4.95 
Pro(P) 1.01 1.17 0.96 2.34 6.29 9.38 9.11 0.21 0.69 2.02 0.27 15.82 7.46 10.66 8.79 8.58 8.68 9.86 6.93 6.55 
Gln(Q) 0.64 0.75 1.97 1.65 1.07 5.27 4.48 0.27 7.25 1.33 11.03 4.90 3.52 6.77 5.54 5.54 5.06 3.84 6.93 4.48 
Arg(R) 0.11 0.21 0.37 1.17 0.75 2.98 2.88 0.37 5.54 0.96 4.95 4.69 2.29 3.62 5.59 6.13 4.58 5.49 4.00 4.21 
Ser(S) 3.30 6.23 7.88 6.29 6.93 12.20 8.47 13.00 11.99 13.48 8.20 9.00 7.62 7.94 7.94 6.55 6.87 8.15 8.31 6.61 
Thr(T) 4.26 3.20 4.53 3.62 4.16 8.90 6.39 10.97 4.05 5.01 4.26 5.59 6.61 7.51 7.46 6.39 6.82 5.59 4.90 7.51 
Val(V) 10.28 8.74 10.87 5.81 12.36 5.17 7.46 22.32 3.57 0.37 4.48 6.34 8.74 5.11 5.70 7.62 6.39 5.65 6.55 6.39 

Trp(W) 0.91 0.64 1.76 2.13 1.65 1.17 1.23 0.05 4.21 0.16 1.01 0.85 1.86 0.80 0.69 0.75 1.07 1.65 1.01 1.76 
Tyr(Y) 0.43 0.43 1.07 0.85 0.80 0.96 1.39 0.16 4.74 0.11 3.14 2.45 3.14 2.88 3.36 2.34 4.74 2.13 2.93 3.14 

Charged 0.91 1.17 2.34 4.64 2.88 13.43 10.02 1.55 24.67 1.97 24.56 28.93 17.90 23.81 26.96 25.25 25.04 23.60 22.43 23.49 
Small 16.73 26.43 26.58 22.11 23.49 38.52 31.81 48.27 22.96 83.11 28.88 17.69 18.65 21.36 19.77 19.23 17.79 21.58 22.70 21.42 

Aliphatic 68.67 69.10 58.55 57.86 60.63 30.58 36.65 56.26 27.97 50.83 29.78 18.33 28.82 18.81 19.98 24.03 21.10 22.16 25.04 23.39 
Hydro-
phobic 38.41 41.82 40.60 36.01 49.23 38.04 36.55 53.49 24.29 52.16 31.91 38.25 36.81 34.04 33.72 35.86 33.56 36.49 34.47 35.32 

Polar 
uncharged 17.00 19.07 27.22 23.76 20.83 42.67 38.95 41.02 37.24 44.59 39.69 33.19 38.63 41.29 38.73 36.28 39.69 36.07 40.12 39.16 
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Gram +ve -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 

Ala(A) 25.60 16.67 14.88 11.90 19.05 7.14 10.12 51.79 11.31 83.93 36.31 9.52 7.14 6.55 11.90 7.74 10.71 10.71 10.12 5.95 
Cys(C) 0.60 1.19 0.60 0.60 0.00 0.00 0.00 0.00 0.60 0.00 0.60 0.00 0.60 1.19 0.60 0.60 0.00 0.60 0.60 0.00 
Asp(D) 0.00 0.60 0.60 1.19 2.38 2.98 4.17 0.00 2.38 0.00 11.31 10.71 7.14 6.55 9.52 7.14 8.33 7.14 8.33 7.14 
Glu(E) 1.79 0.00 0.60 1.79 1.19 3.57 4.76 1.79 5.36 0.00 9.52 13.69 5.36 4.17 8.33 5.95 5.95 6.55 5.95 8.33 
Phe(F) 7.74 9.52 4.76 7.74 1.79 1.19 0.60 1.19 11.90 0.00 2.38 1.19 3.57 2.38 3.57 4.17 1.79 0.00 1.79 2.98 
Gly(G) 6.55 5.95 11.90 7.14 7.14 8.33 6.55 1.79 4.17 4.76 1.19 7.74 8.93 8.33 5.36 6.55 4.17 4.76 6.55 7.14 
His(H) 0.00 0.00 0.60 1.19 1.79 0.60 1.19 0.00 6.55 0.00 1.19 1.79 0.60 1.19 1.19 0.60 1.19 1.19 1.79 1.19 

Ile(I) 5.36 6.55 5.36 5.36 4.76 1.79 3.57 2.98 1.19 0.00 1.79 1.19 3.57 3.57 2.38 4.17 7.14 2.98 2.98 2.98 
Lys(K) 0.00 0.00 0.60 0.60 2.38 4.17 5.36 0.60 8.93 2.38 5.36 1.19 13.10 6.55 5.95 5.36 7.14 7.14 8.93 7.14 
Leu(L) 19.64 20.83 15.48 11.90 5.36 3.57 4.76 1.19 5.36 1.19 1.19 1.19 5.36 2.98 5.36 4.17 4.76 6.55 8.33 4.76 

Met(M) 1.19 2.98 5.95 3.57 1.19 0.60 3.57 0.60 1.79 0.00 0.60 0.00 0.60 0.60 0.60 0.60 1.79 1.79 1.79 1.19 
Asn(N) 2.38 2.98 1.79 4.76 1.79 7.74 5.36 0.00 4.76 0.00 2.98 4.17 5.95 7.14 9.52 5.95 4.17 8.93 5.36 6.55 
Pro(P) 0.00 5.95 4.76 5.95 17.26 11.90 12.50 0.00 0.60 0.60 0.00 13.10 7.14 14.29 3.57 9.52 7.74 7.14 7.14 2.38 
Gln(Q) 0.60 0.60 1.19 5.36 5.36 5.95 3.57 0.60 11.90 0.00 5.36 1.79 4.17 4.17 4.17 7.74 3.57 2.98 3.57 5.95 
Arg(R) 1.19 0.00 0.00 0.00 0.60 1.19 1.19 1.79 2.38 1.19 1.79 0.60 2.38 1.19 1.19 1.19 2.38 1.79 1.19 4.17 
Ser(S) 6.55 10.71 10.12 7.14 7.74 16.07 6.55 9.52 12.50 3.57 10.71 10.71 8.33 5.36 7.74 4.17 8.93 8.93 8.93 8.33 
Thr(T) 7.74 4.76 10.71 10.71 13.10 16.07 16.67 2.38 1.79 1.19 2.38 14.29 7.74 14.29 8.93 10.12 11.31 8.93 7.74 9.52 
Val(V) 11.90 9.52 7.74 11.90 6.55 6.55 8.33 23.81 3.57 1.19 4.17 5.95 6.55 7.14 3.57 9.52 6.55 7.74 5.95 9.52 

Trp(W) 0.60 1.19 1.19 1.19 0.60 0.60 0.60 0.00 0.60 0.00 0.60 0.00 0.00 0.60 1.19 1.79 1.19 0.00 0.60 1.79 
Tyr(Y) 0.60 0.00 1.19 0.00 0.00 0.00 0.60 0.00 2.38 0.00 0.60 1.19 1.79 1.79 5.36 2.98 1.19 4.17 2.38 2.98 

Charged 2.98 0.60 2.38 4.76 8.33 12.50 16.67 4.17 25.60 3.57 29.17 27.98 28.57 19.64 26.19 20.24 25.00 23.81 26.19 27.98 
Small 38.69 33.33 36.90 26.19 33.93 31.55 23.21 63.10 27.98 92.26 48.21 27.98 24.40 20.24 25.00 18.45 23.81 24.40 25.60 21.43 

Aliphatic 62.50 53.57 43.45 41.07 35.71 19.05 26.79 79.76 21.43 86.31 43.45 17.86 22.62 20.24 23.21 25.60 29.17 27.98 27.38 23.21 
Hydro-
phobic 52.38 52.38 45.24 48.21 53.57 33.93 44.64 80.95 39.88 88.10 51.19 32.14 41.67 41.67 32.74 42.86 44.05 37.50 39.29 33.93 

Polar 
uncharged 25.00 26.19 37.50 35.71 35.12 54.17 39.29 14.29 38.10 9.52 23.81 39.88 37.50 42.26 41.67 38.10 33.33 39.29 35.12 40.48 
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Gram -ve -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 
Ala(A) 22.48 23.45 16.94 16.94 30.62 16.94 16.61 61.89 6.19 93.16 41.69 5.86 8.14 8.14 11.40 8.79 9.45 8.47 7.49 11.40 

Cys(C) 1.95 1.95 3.58 0.65 1.30 0.98 0.65 0.65 0.00 0.00 0.00 0.00 1.30 0.00 0.65 0.65 0.00 0.98 0.65 1.95 
Asp(D) 0.33 0.33 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00 7.17 17.26 3.58 9.45 5.21 6.19 6.51 5.21 4.56 6.84 
Glu(E) 0.65 0.00 0.65 0.00 0.65 0.65 0.33 0.00 0.65 0.00 6.19 16.94 4.56 5.86 8.14 8.14 6.51 5.54 6.19 5.54 
Phe(F) 4.56 7.49 7.17 14.33 1.95 7.17 2.93 0.98 11.40 0.00 0.98 0.98 3.58 1.30 1.95 1.95 4.89 3.26 1.95 2.61 
Gly(G) 6.51 3.91 14.98 6.84 4.23 17.26 5.21 0.98 0.98 2.93 6.19 6.51 7.49 6.51 5.54 8.14 6.51 12.38 10.42 6.84 
His(H) 0.00 0.00 0.33 0.65 0.00 1.63 0.65 0.33 11.40 0.33 0.98 0.33 0.98 0.98 1.63 2.61 1.95 0.98 1.30 0.65 

Ile(I) 4.89 4.89 2.28 7.17 2.61 0.33 1.95 1.30 1.95 0.00 0.33 2.93 4.56 5.21 6.51 4.56 6.51 6.19 6.19 5.21 
Lys(K) 0.00 0.33 0.00 0.33 0.00 0.33 0.65 0.00 0.98 0.00 2.93 1.63 6.19 3.58 2.93 8.14 4.23 7.17 6.51 10.75 
Leu(L) 26.71 30.29 28.01 19.54 2.93 9.45 3.58 5.86 17.59 0.33 3.26 1.63 8.14 7.82 6.84 5.21 4.89 7.17 5.54 4.89 

Met(M) 3.26 3.58 3.58 5.21 3.91 3.91 1.30 0.00 6.19 0.00 0.00 0.00 1.30 0.98 1.30 0.98 3.26 0.98 1.30 1.63 
Asn(N) 0.65 0.65 0.00 0.98 0.98 3.26 4.56 0.33 4.56 0.33 3.58 5.86 5.21 6.19 9.45 6.19 4.23 3.91 8.47 4.89 
Pro(P) 0.98 0.98 0.33 1.30 6.51 5.21 16.61 0.00 0.33 0.00 0.00 10.75 7.82 7.17 7.82 8.14 4.56 3.58 6.51 2.61 
Gln(Q) 0.98 1.30 0.33 0.33 0.33 3.91 5.54 0.65 14.33 1.30 12.05 4.89 7.49 3.58 4.56 3.26 6.19 7.82 5.21 4.23 
Arg(R) 0.00 0.65 0.65 0.33 0.00 0.98 0.65 0.98 0.98 0.00 0.65 0.33 0.98 2.28 0.65 2.93 3.58 1.95 0.98 1.95 
Ser(S) 11.73 7.82 7.49 12.05 33.22 14.33 24.10 9.12 5.54 1.30 4.23 5.54 5.21 5.86 5.86 4.23 4.56 5.21 7.82 8.79 
Thr(T) 4.89 4.23 5.86 4.89 5.86 8.47 6.84 4.56 3.91 0.33 3.91 10.75 11.07 13.03 6.19 9.77 6.84 7.49 7.49 6.84 
Val(V) 7.82 7.49 6.84 6.19 4.23 4.56 4.56 12.38 5.86 0.00 3.26 5.86 9.77 6.51 9.45 6.84 10.10 6.84 6.19 8.47 

Trp(W) 1.30 0.33 0.65 0.98 0.33 0.65 0.00 0.00 2.28 0.00 0.65 1.63 0.65 1.95 0.33 0.98 1.63 1.30 1.30 1.30 
Tyr(Y) 0.33 0.33 0.00 1.30 0.33 0.00 2.93 0.00 4.89 0.00 1.95 0.33 1.95 3.58 3.58 2.28 3.58 3.58 3.91 2.61 

Charged 0.98 1.30 1.95 1.30 0.65 3.58 2.61 1.30 14.01 0.33 17.92 36.48 16.29 22.15 18.57 28.01 22.80 20.85 19.54 25.73 
Small 40.72 35.18 39.41 35.83 68.08 48.53 45.93 71.99 12.70 97.39 52.12 17.92 20.85 20.52 22.80 21.17 20.52 26.06 25.73 27.04 

Aliphatic 61.89 66.12 54.07 49.84 40.39 31.27 26.71 81.43 31.60 93.49 48.53 16.29 30.62 27.69 34.20 25.41 30.94 28.66 25.41 29.97 
Hydro-
phobic 45.28 48.53 37.79 52.44 50.16 39.09 44.63 76.55 35.18 93.16 49.84 29.64 42.02 34.85 41.69 40.39 44.63 37.79 37.46 43.97 

Polar 
uncharged 27.04 20.20 32.25 27.04 46.25 48.21 49.84 16.29 34.20 6.19 31.92 33.88 39.74 38.76 35.83 34.53 31.92 41.37 43.97 36.16 
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When we measure the net charge of SPs and MPs individually (Figure 11), 

bacterial SPs are overwhelmingly positively charged (>0) while their MPs gravitate 

towards a net negative-charge bias. Median net charge for SPsGram+ and SPsGram- are 

+3 and +2 respectively. Eukaryotes share a somewhat similar net charge distribution 

in their MPs when compared to MPsBacteria, but their SP moieties support a more 

uniform net charge distribution (+ve: 57.3%; neutral: 32.9%; -ve: 9.8%) in 

comparison to the positive-charge preference in SPsBacteria. 

 

 

 
Figure 11: Net charge calculations of SPs and MPs for the three groups of organisms. The net 
charges are grouped into three classes: positive (>0), neutral (=0) and negative (<0) charge. 
The numbers represent the frequencies of which the charges are observed. The diagrams are 
generated using Microsoft Excel. 

 

To examine the extent of difference in amino acid composition between the SP 

and MP of eukaryotes and bacteria, scatter plots are constructed for pI, aliphaticity, 

GRAVY and mean charge calculations. These features are plotted against the length 

of SPs (!) and MPs (") (Figure 12). In all three groups of organisms, the overall 

computed values of MPs tend to cluster in a narrower range compared to SPs. For 

instance, based on the calculation using aliphatic index, MPsGram+ lie mostly between 

value of 50 to 100 whereas SPsGram+ occur anywhere between 75 to 200. A similar 

trend exists in the other calculations including GRAVY and pI except for the pI of 
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MPsEuk. SPsEuk form two clusters based on pI calculation whilst SPsGram+ and SPsGram- 

are predominantly represented within single clusters with median pI values of 10.3 

and 10.0, respectively. From hydropathicity calculations, the GRAVY score of SPs 

are largely positive (SPsEuk:99.7%; SPsGram+:93.5%; SPsGram-:97.7%) indicating a 

hydrophobic propensity while MPs show preference towards hydrophilic nature 

(MPsEuk:93.7%; MPsGram+:94.6%; MPsGram:95.1%). 

 

Figure 12: Comparison of the pI, aliphatic index, GRAVY value and mean charge among the 
three organism groups. Data are represented by squares (!) which denote SP while triangles 
(") denote MP. 
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4.4 Discussion 

In this study, we have inspected a curated dataset of SP sequences to examine their 

variability in length and composition. We also surveyed the residues around the 

cleavage-processing site to locate any possible pattern. Part of the MP region is also 

explored since the environs of the scissile bond may provide clues to the precision in 

cleavage of SPs. We did not proceed further downstream of the MP region since we 

hypothesize that the information for cleavage processing should not be contained too 

far from the cleavage site, although they were studies that have proposed that the 

region involved could be farther downstream (Kajava et al., 2000). One reason is the 

region is not even exposed to the cleavage machinery when it emerges from the 

translation process (Chapter 2). In addition, current prediction methods that mainly 

rely on SP region and possibly a few residues from the MP, are already able to predict 

with good accuracy of the SP (Chapter 6).  

 

4.4.1 Inter-group differences  

The result indicates that SPsGram+ and SPsGram- share more similarities, compared to 

SPsEuk. When the net charges of the SP of these three groups are measured (Figure 

11), it is observed that SPsEuk is distinctly different from the bacterial SPs in that 

bacterial SPs overwhelmingly favor a net positive charge bias whereas SPsEuk do not 

exhibit such inclination. Moreover, from the constructed frequency occurrence 

matrices (Table 4) as well as the sequence logos (Figure 10) of these three groups, it 

becomes clear that the bacterial datasets indeed bear much resemblance in their 

overall features and properties, such as the diverse variability in their SPs primary 

structure, the highly-visible P3-P1 sequence motif which exhibits high selectivity for 
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small, aliphatic residues and a detectable hydrophobic-region (h-region) at the core of 

SPs. Even so, underlying these commonalities are inter-group differences. For 

example, the mean length and h-region of SPsGram+ are considerably longer than those 

of SPsGram- and SPsEuk. In the case of the tripartite structure consisting of n-region 

(positively charged), h-region (hydrophobic) and c-region (neutral and polar) which 

are commonly reported in the literature, our findings show that this structure is 

unmistakable in the bacterial SPs but somewhat ambiguous in SPsEuk, specifically in 

the n-region where positively-charged residues are far less prominent. Likewise, the 

sequence motif located at P3 and P1 of bacterial SPs, is largely dominated by Ala and 

Val, while such exclusivity is not observed in SPsEuk where a number of other 

different amino acids are tolerated. These nuances are likely attributed to the 

differences in their cell-membrane structures, suggesting certain overall, minimal 

requirements at the sequence and possibly at structure level (Duffaud and Inouye, 

1988) as well that a SP must conform to, for recognition and processing in the 

secretion pathway. Perhaps this may account for the selectivity for certain types of 

amino acids at certain subsites while simultaneously maintaining a generous 

accommodation for amino acid degeneracy at other subsites in the SP. 

 

4.4.2 Influence of the mature moiety  

Since the “(-3, -1) rule” (von Heijne, 1986a) was proposed, where small, uncharged 

residues are favored at the P3 and P1 positions, the SP has drawn much attention. A 

fair number of ensuing reports also began to explore the influences of the MP besides 

the SP, for instance, Wickner suggested that part of the translocation information is 

encoded within the MP while SP contains the targeting information (Wickner, 1979; 

Wickner, 1980). Many subsequent studies continue to furnish additional support and 
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evidence to advance our comprehension of the less understood role of the amino acids 

at the MP. Numerous studies (Andrews et al., 1988; Bankaitis and Bassford, 1985; 

Chou, 2001a; Kajava et al., 2000; Le Loir et al., 2001) experimented with SPs by 

fusing them to an assortment of secretory and non-secretory proteins for homologous 

and heterologous secretion and demonstrated that the SP alone is not sufficient to 

ensure the processing of secretory proteins, implying that a section of the MP must 

contribute to the process. In fact, such studies have shown that a balance between the 

SP and portion of the MP affects export efficiency (Li et al., 1988; Summers et al., 

1989; Summers and Knowles, 1989). In an analysis of the interactions of SPs from 

different substrates with the translocation channel components, it was suggested that 

certain arrangement or pairing of the SP with their natural MP may confer 

translocation-competent conformation which may not be properly achievable in a 

heterologous context, thus arguing for the influence of the MP (Kim et al., 2002). 

Examination of the frequencies between the adjacent positions of 10aa from 

both sides of the cleavage site (Table 4) viz. SP (P10 to P1) and MP (P1’to P10’) for 

all three organism groups reveals that the frequencies of charged residues (counting 

both positively and negatively charged residues) are relatively stable. The transition 

value from one position to another does not fluctuate beyond 50% of the difference 

for the MP. For the SP moiety (P10-P1), the fluctuations are more dramatic at P5, P4 

and P2 (although less pronounced for Gram- bacteria) while virtually absent at other 

positions. When the charged residues are divided into positively and negatively 

charged subgroups, it is observable that a specific charged subgroup is preferred at 

certain positions. Moreover, when the mean charge is measured using a sliding 

window of variable size (3 to 11), the fluctuations between the positively and 
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negatively charged residues seem to converge and stabilize at around P8’ to P10’ 

whereas uncharged residues maintain a uniform trend throughout all the positions.  

 Approximately a quarter of the bacterial MPs and 35% of MPsEuk bear a net 

positive charge, 5-6% are neutral while the majority of MPs favor a net negative 

charge. This is in stark contrast to the SP moiety that is inclined towards a net positive 

charge, the trend being especially strong in bacteria. Probably, secretory proteins 

maintain their desired net charge levels within the SP and MP to enable their 

interaction with other players in the secretion pathway. This can be done by varying 

or accommodating diverse amino acids at selected positions while being rigid in the 

choice of amino acids at others. This selectivity is visible at some MP positions 

particularly those in the vicinity of the cleavage site but not further downstream.  

 It was proposed that a net charge with null or negative bias should be 

maintained for the first eighteen amino acid residues of the MP to promote successful 

expression of proteins in Gram- bacteria and any optimization performed on the SP 

should include the specified region (Kajava et al., 2000). In this study, no significant 

pattern is observable beyond P5’ at the MP based on the results (Table 4 and Figure 

10) to support this proposal, possibly because the first eighteen residues could include 

several combinations of SPs and MPs. Moreover, the relative frequencies of adjacent 

positions at the MP appear to be rather stable. The results here are generally in 

agreement with other studies that included the MP, but the extent of the region to be 

included remains debatable. The varying results from the different studies make it 

difficult to compare and obtain consensus. Furthermore, the paucity of crystal 

structures solved to date (only four SPase I-related entries are found in the PDB 

(Berman et al., 2000)) adds to the challenge of deciphering the extent of MP 

involvement in the secretory pathway. 
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4.4.3 Recognition of the cleavage site and its flanking region  

Based on the dataset used in this study (1,877 eukaryotic, 168 Gram+ and 307 Gram- 

sequences), the frequency of occurrence of the canonical sequence motif Ala-X-Ala 

(von Heijne, 1986a), which is in fact (small and aliphatic residue)-X-(small and 

aliphatic residue) (see Section 2.3.4 for the detailed description of residues that are 

represented by this motif), at P3 and P1, appear with frequencies of 61.6%, 61.9% and 

77.5% respectively. From these frequencies and Table 4, it is clear that there are 

sequence patterns (if any) that do not conform to this pattern, implying that the 

sampling space for cleavage site recognition is not limited to the canonical Ala-X-Ala 

motif. This is further supported by the observations of residues which were forbidden 

to occur at these positions according to the “(-3, -1) rule” (von Heijne, 1986a). 

We also observed several prominent patterns upon scrutinization of these 

flanking residues. Pro has been implicated as a structure disruptor due to its steric 

hindrance from its cyclic side chain and inability to form a hydrogen bond that 

stabilizes a helix (Martoglio and Dobberstein, 1998). Pro is often found at the end of 

#-helices, in turns or loops but produces a bend when it appears in the middle of an #-

helix. Pro is markedly disfavored from P3 to P1’ but it is comparatively prevalent at 

P4 and P2’ (Table 4). The turn-inducing Pro is supported by studies that have shown 

the presence of a $-turn at the P5 to P1 region of SPase-substrate complex 

(Karamyshev et al., 1998). On the other hand, the absence of Pro (particular in 

bacterial SPs) at P3 to P1’ is consistent with reports on impaired function or inhibition 

of SPase I with Pro appearing at these positions (Barkocy-Gallagher and Bassford, 

1992; Nilsson and von Heijne, 1992). Glycine, another helix-breaking residue, is also 

spotted in modest amount at P5 and P4. As we have seen earlier, the canonical Ala-X-

Ala sequence motif for the SP cleavage site accounts for only approximately half of 
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the recognition sites. By considering these flanking residues, many non-canonical 

cleavage sites can be considered. These features may possibly work in concert to 

provide the secretory machinery flexibility, versatility and perhaps accuracy to enact 

the SP recognition processes. 

 

4.5 Summary 

A total of 2,352 SP-containing sequences are assembled from a variety of organisms 

using an improved protocol (Appendix B). Sequences are analyzed on their physico-

chemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net 

charge and position-specific residue preferences. Findings from the analyses of these 

sequences show that the eukaryote, Gram+ and Gram- groups share several 

similarities in general but they display distinctive features as well, in terms of their 

amino acid compositions and frequencies, and physico-chemical properties. 

Additionally, the physico-chemical properties can be used to identify spurious 

sequence entries that purportedly contain SP, thus adding another method for error 

detection in our semi-automated pipeline. 

When we inspect the sequences, we observe certain incidences of residues 

such as turn-promoting residues at the flanking regions of the cleavage site. 

Furthermore, there are also slight patterns of residues that occur downstream of the 

cleavage site. These flanking residues may influence the cleavage processing and 

contribute to non-canonical cleavage sites.  

In spite of these patterns including the canonical motifs, these observations are 

unable to account for other SPs which do not bear such resemblance at their cleavage 

site. Furthermore, studies have shown that introducing or replacing the original 

residues at positions such as P3 to P1 may result in alternative cleavage sites (Fikes et 
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al., 1990). In this regard, how does the machinery recognize these non-canonical 

sequences? Moreover, the preference for certain residues or perhaps certain ‘types’ of 

residues at specific positions suggests that there may be other features that are 

involved which are not captured or manifested by the sequences. This notion has been 

suggested before whereby there may be certain minimal requirements at the sequence 

and possibly at structure level that a SP must conform to, for recognition and 

processing in the secretion pathway (Duffaud and Inouye, 1988). It was even 

suggested that a ‘precise or right’ alignment may be needed of the SP for the cleavage 

event to occur (Jain et al., 1994). Thus, it will be interesting to investigate these 

regions from the structural perspective. 
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Chapter 5: Structural Analysis of SPs  

5.1 Introduction 

Chapter 2 describes a host of proteins/RNAs molecules that interact with SPs in the 

secretion pathway. One interaction partner is the SPases I that play essential roles in 

the viability of bacteria (Date, 1983; Klug et al., 1997). These enzymes are 

responsible for the cleavage of SP from proteins that are translocated across biological 

membranes (Chapter 2). Until now, the crystal structure of SPase I in complex with 

SP has not been solved. The worldwide archive of biological macromolecules — 

PDB, contains only four structures related to SPases I, and they all belong to E. coli. 

Currently, E. coli is by far the most widely studied and used host organism for 

the bacterial expression of heterologous secreted proteins, especially for therapeutic 

purposes, with reported yields of 5–10 g/L (Georgiou and Segatori, 2005). Mutations 

in SP have been known to affect secretion either by enhancing the processing of the 

cleavage site or by inhibiting this proteolytic processing (Martoglio and Dobberstein, 

1998).  It is known that besides the SP, the N-terminus region of the MP is known to 

affect protein secretion (Andersson and von Heijne, 1991). 

The E. coli SPase I is of particular interest in the study of SPases I, as its 

active site is relatively accessible at the bacterial membrane surface (Paetzel et al., 

2000; Wolfe et al., 1983). Although many mutational and biochemical studies have 

been performed, basic questions such as SPase I fidelity and substrate specificity 

remain unanswered. SPs exhibit limited primary sequence homology, but they are 

well conserved at P3 to P1 relative to the cleavage site (Fikes et al., 1990). 

Comparative analysis of thirty-six prokaryotic signal peptides reveals that SPases I 

specifically recognizes substrates with small neutral residues at both the P3 and P1 
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positions (von Heijne, 1986a). P3 is dominated by the presence of Ala, Gly, Ser, Thr 

and Val; while P1 is characterized by Ala, Gly, Ser and Thr (Fikes et al., 1990; von 

Heijne, 1986a). Accordingly, the P3 and P1 positions have been proposed to 

constitute the SPase I cleavage site and have been actively applied by various groups 

for predicting SP cleavage sites (Fikes et al., 1990; Folz et al., 1988). These findings 

are cited as affirmation of the location of two key determinants within the SP cleavage 

site. Unfortunately, no solution structures exist that can illustrate precisely how the 

precursor protein is oriented within the SPase I substrate binding site prior to 

proteolysis, or the identity of other critical determinants that control substrate 

specificity (Karla et al., 2005). In Chapter 4, the SP sequences have been analyzed on 

a large-scale basis and some of these curated sequences can be used in this work. The 

aim is to understand the determinants that are involved in SP recognition, binding and 

cleavage, from a structural viewpoint. 

This chapter reports our findings from the modeling of an E. coli periplasmic 

disulfide-bond A oxidoreductase (DsbA) 13-25 in complex with its endogenous SPase 

I based on the crystal structures of E. coli SPase I in complex with $-lactam (Paetzel 

et al., 1998) and lipopeptide (Paetzel et al., 2004) inhibitors. The DsbA 13-25 

precursor protein was selected for this study for its efficient periplasmic secretion 

(Karla et al., 2005). By threading the P7 to P1’ positions against the solved structures 

of $-lactam (Paetzel et al., 1998) and lipopeptide (Paetzel et al., 2004) inhibitors, this 

newly generated model reveals that precursor protein is bound to E. coli SPase I with 

a pronounced twist between positions P3 and P1’. Thirteen subsites S7 to S6’ that 

might be critical to these and other aspects of catalysis are identified. This model is 

further corroborated by comparative analysis of one hundred and seven 

experimentally validated substrates taken from the set described in Chapter 4. 
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5.2 Materials and Methods 

5.2.1 Preprotein sequence data  

107 preprotein sequences are extracted from the SPdb database to be used as the 

substrates for E. coli SPase I (Choo et al., 2005). Redundancy reduction is performed 

on these sequences where sequences with 80% sequence identity are removed using 

the CD-HIT software (Li and Godzik, 2006).  

 

5.2.2 Crystallographic data  

The atomic coordinates of E. coli SPase I are extracted from the PDB entry 1B12 

(Paetzel et al., 1998) which has a 1.95 Å resolution structure.  Atomic coordinates for 

E. coli SPase I-bound !-lactam (Paetzel et al., 1998) and lipopeptide (Paetzel et al., 

2004) inhibitors are retrieved from PDB entries 1B12 and 1T7D respectively. The 

structures are relaxed by means of conjugate gradient minimization, using the Internal 

Coordinate Mechanics (ICM) software package (Abagyan et al., 2004). 

 

5.2.3 Substrate modeling  

Protein threading or fold recognition (Akutsu and Sim, 1999) computes an alignment 

between a target sequence and the template structure using a scoring function where 

the best-fit spatial positions of the template structure are used to construct the 

structural model for the target sequence. The coordinates for P7 to P1’ of DsbA 13-25 

are obtained by threading against the crystallographic structures of E. coli SPase I-

bound inhibitors (Paetzel et al., 1998; Paetzel et al., 2004). Coordinates for P7 to P3 
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were taken from the structure of E. coli SPase I-bound lipopeptide inhibitor (Paetzel 

et al., 2004) by substituting the locations of atoms N1, C2, C5, O6, N7, C8, C10, O11, 

N12, C13, C14, O15, N16, C18, C26, O27, N28, C29, C31, O32, and N33 with DsbA 

13-17 main-chain atoms; while coordinates for P2 to P1’ are guided by the solution 

structure of the E. coli type I SPase-bound $-lactam inhibitor based on the location of 

atoms N4, C5, C6, C3, C9, O10, C15, C16, O17, C18, O19, C20. A flexible docking 

using biased Monte-Carlo procedure (Abagyan and Totrov, 1999; Abagyan et al., 

2004; Paetzel et al., 1998) (Fernandez-Recio et al., 2002) that incorporates the “Rapid 

Exact-Boundary Electrostatics” algorithm for evaluation of the electrostatic solvation 

energy (Totrov and Abagyan, 2001) is subsequently performed to sample the different 

positions and orientations of P2’ to P6’ with respect to the receptor. In each iteration, 

a random move in the P2’ to P6’ of the ligand is performed and new conformations 

are selected based on the Metropolis criterion with a temperature of 5000K 

(Fernandez-Recio et al., 2002; Metropolis et al., 1953). The simulation is terminated 

after twenty thousand energy evaluations (Fernandez-Recio et al., 2002) and the 

results are analyzed for consistency. 

 

5.2.4 Intermolecular hydrogen bonds  

The number of intermolecular hydrogen bonds is calculated using HBPLUS 

(McDonald and Thornton, 1994) in which hydrogen bonds are computed according to 

the criteria if (i) it is between a listed donor and acceptor (ii) the angles and distances 

formed by the atoms surrounding the hydrogen bond lie within the set criteria. Further 

details of the calculation can be found within the user manual of HBPLUS 

(http://www.csb.yale.edu/userguides/datamanip/hbplus/). 
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5.3 Results and Discussion 

5.3.1 Substrate binding site   

The energetically favored and most frequently populated bound conformation of 

DsbA 13-25 H2N-LAFSASA%AQYEDG-COOH, where the cleavage site is indicated 

by % (Perna et al., 2001), to E. coli SPase I is obtained from the generated structural 

model. The complex defines thirteen enzyme subsites, S7 to S6’, within the SPase I 

substrate binding site, interacting with bound precursor SPases I. Among these, six 

smaller clefts or ‘pockets’ are identified at subsites S3, S2, S1, S1’, S3’ and S4’ 

respectively (Figure 13). The narrow clefts at S3, S2, S1 and S1’ play direct roles in 

the high specificity of the SP residues while the larger clefts at S3’ and S4’ may be 

responsible for the specificity of the mature moieties. 

The side chain of Ala19 (P1; Figure 13a) is buried within the S1 subsite, which 

is composed of primarily hydrophobic and non-polar enzyme residues including the 

previously identified Ile86, Pro87, Ser88, Ser90, Met91, Leu95, Tyr143, Ile144, and 

Lys145 (Paetzel et al., 2000; Paetzel et al., 2002a). The S2 subsite (Gln85, Ile86, 

Pro87, Ser88, Met91, and Ile144) constitutes the deepest cavity within the substrate-

binding site. This pocket can accommodate residues with large side chains and 

appears to play an important role in substrate specificity of E. coli SPase I, consistent 

with biochemical experiments (discussed in Substrate specificity). This subsite, 

formerly proposed as the S1 subsite by (Paetzel et al., 2000; Paetzel et al., 2002a), 

largely overlaps with the S1 subsite due to a pronounced twist in the P3 to P1’ binding 

conformation (Figure 14; detailed in Substrate binding conformation). This model 

reveals that Ser18 (P2) side chain is not solvent exposed but it is completely buried at 

this location due to a pronounced twist in the P3 to P1’ binding conformation 



 86 

 

Figure 13: The E. coli SPase I substrate binding site. Pockets defining the binding site of E. 
coli SPase I. A) Top view of the molecular surface of E. coli SPase binding site (colored blue) 
with C# trace of SPase (blue lines). Pockets that accommodate SP side chains are shown in 
detail in surrounding views and numbered in accordance to their position along the peptide 
from the S1 pocket that contains the active-site nucleophile, Ser90. B) Top view of the 
molecular surface of E. coli SPase binding site (colored blue) with the bound conformation of 
DsbA precursor peptide as a CPK model. C) Side view of structure in B, rotated by 90°. The 
structures are generated using the ICM modeling software by Abagyan et al., 2004. 
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Figure 14 A model of the DsbA 13-25 precursor protein (C# trace in black) bound to the 
active site of E. coli SPase I (schematic ribbon diagram in gray) illustrating a pronounced 
twist in the peptide backbone between P3 and P1’ at the catalytic site. 

 
(Figure 14; detailed in Substrate Binding Conformation). The S3 subsite, which is 

composed of non-polar atoms from residues Phe84, Gln85, Ile86, Pro87, Ile101, 

Val132, Asp142, and Ile144 (Paetzel et al., 2000; Paetzel et al., 2002a), is located 

diagonally across from the S1 subsite. This pocket constitutes the third deepest cavity 
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within the substrate-binding site and can accommodate a wide variety of side chains. 

The S4 subsite, consisting of Phe84, Gln85, Pro87, and Asp142, is in contact with 

Ser16 (P4). Further upstream, the S5 subsite is defined by Phe84, Gln85, and Asp142; 

S6 consists of Pro83 and Phe84; while the S7 subsite includes Glu82 and Pro83. 

At P1’ to P6’ of the mature moiety, this model indicates that the side chains of 

P1’ to P5’ residues are in position to make significant contact with the E. coli SPase I. 

The S1’ subsite shares similar residues with the S1 subsite and includes Ser88, Ser90, 

Tyr143, and Ala279. The S2’ subsite includes Ser88, Ser90, Phe208, Asn277, and 

Ala279. The S3’ and S4’ subsites constitute a broad pocket that can accommodate 

both positive and negative charged residues by re-arrangement of side chains (Figure 

15). The S3’ subsite is composed of Met249, Tyr50, Asp276, Asn277, Ala279, 

Arg282, and Tyr283, while the S4’ subsite includes Gln244, Asp245, Asp276, 

Asn277, and Arg282. Further downstream, the S5’ subsite consists of Phe196, 

Ser206, Ala243, Asp276, and Asn277, while the S6’ subsite includes Phe196, Ile242, 

and Ala243.  

In this model, the bound precursor protein makes significant contact with E. 

coli SPase I from S7 to S6’. Models described earlier focused solely on the P3-P1’ 

region and did not analyze in full the different substrate binding pockets on either side 

of the scissile bond. In particular, the S2 subsite is formerly proposed as the S1 

subsite (Paetzel et al., 2000; Paetzel et al., 2002a), as it largely overlaps with the 

latter. In contrast to the analysis by (Paetzel et al., 2002a), this model reveals that the 

Ser18 (P2) side chain is not solvent exposed but is completely buried at this location. 

The ability of S3’/S4’ to alter their electrostatic requirements by varying side chain 

conformations (Figure 15) may help explain the propensity to find substrates with 

charged amino acids at these positions (discussed in detail in Substrate Specificity).  
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5.3.2 Substrate binding conformation  

This newly generated model is constructed by using the coordinates of P7 to P1’ and 

threading the region against the solved structures of $-lactam (Paetzel et al., 1998) 

and lipopeptide (Paetzel et al., 2004) inhibitors in complex with E. coli SPase. This is 

followed by ab initio docking of P2’ to P6’ (details described in Methods). The 

precursor protein, DsbA 13-25 is bound to E. coli SPase I in an extended 

conformation with a pronounced backbone twist between Ala17 (P3) and Ala20 (P1’) 

(Figure 14). In the P3-P1’ segment, the first three side chains are oriented towards the 

binding groove while the P1’ side chain is oriented across the binding groove. As 

shown in Figure 16, similar interactions between the E. coli SPase with DsbA 13-25 

model, lipopeptide inhibitor (PDB ID: 1T7D) and $-lactam inhibitor (PDB ID: 1B12) 

are observed. The conformations of P3’ and P4’ allow their corresponding side chains 

to extend into a large cavity (S3’/S4’ subsite; Figure 13). As such, medium or large 

residues are preferred at these two positions for favorable interactions. Good 

agreement with the known experimental data (refer to Substrate Specificity) is 

obtained, supporting the validity of our model. 

Ten positions for hydrogen bonding were identified supporting high affinity 

binding between E. coli SPase I and DsbA 13-25. These include Ser18 (P2) O…Ser88 

NH, Ser18 (P2) O…Ser88 OG, Ala19 (P1) N…Ser88 OG, Gly89 N…Gln21 (P2’) 

OE1, Ala19 (P1) N…Ser90 OG, Ser90 OG…Ala20 (P1’) O, Lys145 N!…Ala19 (P1) 

O, Gln194 NE2…Asp24 (P5’) OD2, Ser206 OG…Asp24 (P5’) OD2, and Arg282 

NH1…Glu23 (P4’) OE1. Our model suggests that the enzyme-substrate contact points 

extend all the way from P7 to P6’ of the DsbA precursor protein. 
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The orientation of DsbA 13-25 side chains within the active site (P7-P6’) of E. 

coli SPase I adopts the pattern (Tong et al., 2004): !•••!!!••!!•• (where ! 

represents a side chain oriented towards the binding site and • represents a side chain 

oriented away or across the binding site). Specifically, the P3-P1’ portion adopts the 

pattern: !!!•, with the side chains of P3, P2 and P1 oriented towards the binding 

groove thereby supporting the stringent selectivity criteria in this region. The side 

chain of P1’ alone is oriented differently, in accord with the observed variability in 

this position. A similar conformation was obtained for the precursor sequence OmpA 

15-27 (Carlos et al., 2000; Ekici et al., 2007) H2N-FATVAQA%ATSTKK-COOH 

(P1-P1’ cleavage site indicated by %) in complex with E. coli SPase I (data not 

shown). Here again, the P3-P1’ side chains of OmpA adopt the orientation !!!•, 

while the model proposed by (Paetzel et al., 2002a) and (Ekici et al., 2007), adopts 

the pattern !•!•, with the side chain of P2 not pointing towards the binding groove. 

The disparity between this model and the model by (Paetzel et al., 2002a) may be 

attributable to the selection of different template structures where the structures of the 

covalently bound peptide inhibitor complex and the analogous enzyme LexA were 

used to guide the P1 and P3 to P6 positions of the later (Paetzel et al., 2002a), while 

the coordinates of P7 to P1’ for this model are guided by the solved structures of $-

lactam (Paetzel et al., 1998) and lipopeptide (Paetzel et al., 2004) inhibitors in 

complex with E. coli SPase. For this model, the P2 side chains in the bound DsbA and 

OmpA models are hydrogen-bonded to the catalytically important SPase I residue, 

Ser88 (Paetzel et al., 2004). The twist in the backbone conformation in the region P3-

P1’ is representative of the transition state, with three critical hydrogen bonds 

conserved between this model and the bound "-lactamase and lipoprotein inhibitors, 

with the atoms Ser88 O#, Ser90 $# and Lys145 N! important for catalytic activity. 
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5.3.3 Substrate specificity  

One interest of this study is to understand how the peptides modeled in this study 

reflect the E. coli repertoire of secreted signals. Comparative analysis of one hundred 

and seven experimentally determined E. coli SPase I substrates (Figure 17) revealed 

high conservation of amino acid residues at positions P3 and P1. In particular, P1 is 

dominated by small (99%), hydrophobic (98%), and neutral (100%) residues. Ala is 

the predominant residue (92% or 98/107) at this position, followed by Gly (9%). 

Position P2 shows a strong preference for bigger side chains with 87% (93/107) 

possessing medium- or large-size residues at this location. Position P3 also shows a 

preference for hydrophobic residues (83%). Although this position contains mainly 

small amino acid residues (61%), it can also accommodate both medium (25%) and 

large (14%) residues. Only 50% (54/107) of the sequences contain the consensus Ala-

X-Ala recognition motif, while even fewer sequences (18%; 19/107) contain a Val-X-

Ala recognition sequence. In this newly modeled structure for DsbA propeptide, the 

side chains from P7 to P4 are also in positions to make substantial contacts with 

SPase I (Figure 14), but are not confined to ‘pockets’. Nonetheless, these residues 

may also participate in binding by interacting with surface residues of SPase I. These 

observations are in accord with the lack of residue preference observed in these 

positions (Figure 17). Overall, in our dataset, neutral residues (& 98%) are preferred in 

positions P7 to P1, indicating that charged interactions between SPs and E. coli SPase 

I are disfavored in this stretch, consistent with earlier reports on the carboxy-terminus 

of the C-region (Paetzel et al., 2001). However, few SPs possess polar residues at the 

C-region (P7: 17%; P6: 48%; P5: 30%; P4: 52%; P3: 18%; P2: 41%; P1: 2%), in 

contrast with earlier studies (Paetzel and Strynadka, 2001; van Roosmalen et al., 

2004). Most residues are well tolerated at P1’, except for Pro, Arg and large 
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hydrophobes (Ile, Met, Trp). Here, Pro is disfavored as the rigid positioning of its 

backbone hinders docking interactions with SPase at P2’ to P6’. Majority of E. coli 

SPs contain medium or large residues at both P3’ (81%) and P4’ (90%). The 

propensity for negatively charged residues to occur at P3’ and P4’ are low, with 

observed values of 10% (or 11/107) and 19% (or 20/107) respectively, while 8% 

(9/107) and 13% (14/107) respectively of the sequences analyzed have positively 

charged residues at these positions. 

 

Figure 15: The S3’/S4’ subsites of E. coli SPase I. Rearrangements of side chain residues at 
S3’/S4’ subsites in the crystallographic structure of E. coli SPase I (PDB ID: 1B12). (A) The 
side chain of Asp276 is exposed to interact with amino acid residues at P3 and P4. (B) 
Rearrangements of Asp276 and Arg282 result in a positively charged pocket at S3’/S4’ 
subsites. 
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Figure 16: Superimposition of DsbA 13-25 precursor protein with lipopeptide and $-lactam 
inhibitors. A model of the DsbA 13-25 precursor protein (red) bound to the active site of E. 
coli SPase I (gray). Superimposition of the P7 to P1’ of DsbA precursor protein with the 
lipopeptide (blue; PDB ID: 1T7D) and $-lactam (yellow; PDB ID: 1B12) inhibitors from (A) 
top view and (B) side view respectively. Residues N-terminal to P7 and C-terminal to P2’ 
have been truncated for clarity. 

 

Bacterial SPase I uses a Serine/Lys catalytic dyad mechanism (Paetzel et al., 

2000). Ser-90 acts as the nucleophile while the proposed Lys-145 constitutes the 

general base, working together to form an acyl-enzyme complex intermediate. Three 

conserved waters were observed in the SPase I apo-enzyme crystal structure (Paetzel 

et al., 2002a) in which the 2nd water is coordinated to the Ile144 NH backbone while 

the 3rd water is coordinated to Lys145 N!.  The 3rd water is proposed as the 

deacylating water in the SPase I catalysis. In the $-lactam acyl-enzyme structure 

(Paetzel, et al., 1998), the 2nd and the 3rd waters are displaced by the $-lactam 
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inhibitor whereas a recent resolved structure reported the displacement of the 2nd 

water (Luo, et al., 2009). Thus, it is highly plausible that these displacements might 

play a critical role in the peptide-enzyme interaction. 

 

 

Figure 17: Analysis of E. coli SPs. Sequence logo illustrating the size (small: green; medium: 
blue; large: red) of amino acids at different positions along the precursor proteins of 107 
experimentally verified E. coli SPs from SPdb, showing (A) the end of the SP (P7 to P1) and 
(B) the start of the mature moiety (P1’ to P6’). Cleavage site is situated between -1 and +1. 

 

5.4 Summary 

A theoretical structural model of was created in this study by means of threading and 

homology modeling to model the E. coli periplasmic disulfide-bond A oxidoreductase 

(DsbA) 13-25 in complex with its endogenous SPase I based on the crystal structures 

of E. coli SPase I in complex with $-lactam (Paetzel et al., 1998) and lipopeptide 

(Paetzel et al., 2004) inhibitors for P7 to P1’. This was followed by ab initio docking 

to generate the conformations for P2’ to P6’. The resulting 3D model provides an 
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opportunity to examine the bound structure of E. coli SPase I complex that have been 

difficult to solve experimentally.  

From the model, the existing and newly identified substrate binding sites 

provide clues to the SPase I cleavage fidelity and substrate specificity. These sites are 

consistent with existing biochemical results and solution structures of inhibitors in 

complex with E. coli SPase I (Paetzel et al., 1998; Paetzel et al., 2004). The structural 

analysis results correlates well with the sequence analysis presented earlier (Chapter 

4). Several positions exhibit preference and aversion for certain types of residues at 

various positions. For instance, small-size residues are preferred at P3’ and P1’. This 

is consistent with the requirement imposed by the binding groove for the SP to fit in. 

There is also the existence of an extended conformation of the precursor protein with 

a pronounced backbone twist between P3 and P1’ adjacent to the cleavage site. The 

newly defined subsites, S1’ to S6’ play critical roles in the substrate specificities of E. 

coli SPase I (Karla et al., 2005).  

This work advances our understanding of the molecular mechanism governing 

SP specificities and SPase I fidelity, and can be useful in guiding the design of 

suitable SPs and MPs for enhancing heterologous protein expression using E. coli as 

the host organism. This knowledge will be immensely useful in aiding the 

development of prediction method for the SP cleavage site, which shall be explored in 

the next chapter. Investigation of the sequence and structures in this work support the 

suggestion of other experimental studies that the SP and MP play direct role in 

catalysis, thus they should be considered during the development of predictive tools. 
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Chapter 6: Computational Prediction of SPs 

6.1 Introduction  

Several lines of work have investigated different aspects of targeting signals, 

including the determination of the targeted cellular localization upon translocation and 

the identification of efficient signal sequences. One particular work that interests us is 

the identification of SP and its cleavage site. This work is fundamentally important as 

it impacts on other features such as transmembrane topology (Reynolds et al., 2008), 

subcellular localization (Emanuelsson et al., 2000; Bodén and Hawkins, 2005), 

structure modeling and prediction (Kanagasabai et al., 2007), assignment of putative 

functions to novel proteins and identification of putative cleavage sites in database 

annotation (Menne et al., 2000), to name a few examples. Importantly, the systematic 

functional annotation of biological sequences using Gene Ontology (GO) (Ashburner 

et al., 2000) requires a precise knowledge of the subcellular localization, where SP 

prediction has a fundamental input. 

Moreover, the vast numbers of unprocessed sequences that are deposited 

continually into the public databases require rapid functional annotation techniques, 

with subcellular localization being a key feature. Rising industrial demand further 

presses for more effective methods to raise expression levels in recombinant systems. 

Consequently, these factors have catalyzed the development of a myriad of 

computational methods to automate SP prediction (Table 5), ranging from simple 

weight matrices to sophisticated machine learning algorithms. Machine learning 

techniques are particularly popular, and they are especially useful in domain where 

sequence data abound but our working knowledge of the underlying mechanism is 

limited. Their robustness to ‘noise’ in data enables them to achieve better accuracy 
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Table 5: Software tools that are publicly available for the prediction of SPs (includes the detection of SP and its cleavage site). Tools/methods which 
have been discontinued from development or unavailable for use are omitted. A comprehensive and updated listing of databases and prediction tools 
related to protein targeting or sorting is available at (http://www.psort.org/). Abbreviations used in this table (HMM= Hidden Markov model; ANN= 
Artificial neural networks; OET-KNN: Optimized evidence-theoretic K-nearest neighbor; PWMs=Position weight matrices; SVM=Support vector 
machines). 

Name Method 
type 

Dataset 
division Description (website URL) 

Philius 
(Reynolds et al., 2008) 

Dynamic 
Bayesian 
Networks 

No division 

Inspired by Phobius, this tool is also designed for transmembrane protein topology 
prediction. It is capable of predicting SPs as well since it incorporates a SP submodel 
in addition to a transmembrane submodel. Training data from Phobius (Käll et al., 
2004) is used.  
(http://www.yeastrc.org/philius/pages/philius/runPhilius.jsp) 

Phobius 
(Käll et al., 2004) HMM No division 

A combined predictor for transmembrane protein topology and SP where the 
different regions of transmembrane and SP are modeled respectively. It is 
presumably better at distinguishing between the two. The tool is trained and tested 
with newly assembled and curated dataset. The authors claimed to have achieved 
drastic reduction in misclassification as compared to SignalP-HMM (lower false 
positive but higher false negative rates). 
(http://phobius.sbc.su.se/) 

PrediSi 
(Hiller et al., 2004) PWMs 

Gram+, 
Gram-, 

Euk 

This Java-based prediction tool uses three matrices (Euk: [-16, +4], Gram+:[-21, +1] 
and Gram-:[-16, +2]). Data is extracted from UniProtKB/Swiss-Prot Release 42.9 
with a total number of 2,783 eukaryotic, 236 Gram+ and 557 Gram- sequences. By 
using a normalized score of between [0, 1], it allows for comparison between the 
different matrices. It achieves notably better accuracy for the Gram- dataset as 
compared to the Gram+ and Euk data when it is benchmarked against SignalP 
(HMM and ANN versions).  
(http://www.predisi.de/) 
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RPSP 
(Plewczynski et al., 

2008) 
ANN 

Gram+, 
Gram-, 

Euk 

This method uses two ANN with feed-forward, multi-layer architecture and back-
propagation learning algorithm. The combined ANN is more accurate than either the 
ANN solely trained for eukaryotes or prokaryotes. It claims to be capable of rapidly 
distinguishing SP from non-SP with high accuracy. The accuracy of the 
identification of cleavage sites is around 73-78%. Dataset is extracted from Swiss-
Prot Release 49.4. Only sequences with amino acid at position -1 that appear in these 
sets: Euk (A,C,G,L,P,Q,S,T) and Bac (A,G,S,T) are included. 
(http://rpsp.bioinfo.pl/) 

SigCleave 
(Rice et al., 2000) PWMs 

Gram+, 
Gram-, 

Euk 

One of the simplest approaches used for the prediction of SP cleavage sites. It uses 
the modified method for the treatment of positions -3 and -1 in the matrix (von 
Heijne, 1986). Two weight matrices are constructed for the positions from -13 to +2: 
(a) prokaryotes (based on 36 aligned sequences) and (b) eukaryotes (based on 161 
aligned sequences). Originally developed by Peter Rice in 1989, it has since been 
modified by Alex Bleasby. It is available as part of the EMBOSS package. 
(http://emboss.sourceforge.net/apps/cvs/emboss/apps/sigcleave.html) 

SigHMM 
(Zhang and Wood, 

2003) 
HMM Human, 

Mouse 

This method uses the popular HMMER package version 2.2 (Eddy, 1998) to 
generate profile HMMs to model the tri-partite regions in SPs following a previous 
method (Nielsen and Krogh, 1998). Training data is from human while testing data 
is from mouse; both sets originate from Swiss-Prot Release 40. The method was 
later updated using HMMER version 2.3.2 and tested with experimentally verified 
SP datasets (Zhang and Henzel, 2004). 
(http://share.gene.com/zhang.wood.bioinformatics.2003/sighmm/index.html)  

SignalP 
(Nielsen et al., 1997; 
Nielsen and Krogh, 

1998; Bendtsen et al., 
2004b) 

ANN 
Gram+, 
Gram-, 

Euk 

The most popular tool for SP prediction. Version 1.0 and 3.0 are based on ANN. 
Version 3.0 uses the same architecture as Version 1.0 except that the model has been 
retrained. It uses two networks to recognize windows containing cleavage sites from 
non-cleavage sites (C-score) and another to distinguish windows with SP and non-
SP ones (S-score). The maximal combined score termed Y-score is used to identify 
the cleavage site. The S-score was subsequently replaced by D-score in Version 3.0, 
which is average of mean S-score and the maximal Y-score. Different window sizes 
are used in encoding the ANN. 



 99 

 

HMM 

 The accuracy of version 2.0 may not be as good as its ANN version, however, this 
version is better at detecting the presence of SPs and discriminating between SPs and 
uncleaved signal anchors. 
(http://www.cbs.dtu.dk/services/SignalP/) 

Signal-BLAST 
(Frank and Sippl, 2008) 

Pairwise 
alignment 

Gram+, 
Gram-, 

Euk 

The pairwise local alignment search tool, BLASTP (Altschul et al., 1997) lies at the 
heart of this approach. Input sequence is queried against two curated datasets 
simultaneously to determine to which it is likeliest to belong to. The datasets 
essentially consist of SPs- and non-SPs- containing sets and a “signal peptide bias” 
is used to calibrate the comparison. This tool should be easier to maintain compared 
to other approaches.  
(http://sigpep.services.came.sbg.ac.at/signalblast.html) 

Signal-CF 
(Chou and Shen, 2007) 

OET-
KNN 

+ 
Scaled 

Window/
Subsite 

coupling/
Fusing 

Gram+, 
Gram-, 

Euk 

This tool consists of a two-layer predictor where a query protein is first identified as 
secretory or non-secretory (OET-KNN as classifier) before determining its cleavage 
site if it is a secretory protein by capitalizing on the subsite coupling effects of {-3, -
1, +1} along a protein sequence and fuses the results derived from many width-
different scaled windows through a voting system to determine the cleavage site. 
This tool is better at identifying SP cleavage sites and non-secretory of bacterial 
sequences as evident from its benchmark against SignalP (HMM and ANN versions) 
and PrediSi using Swiss-Prot Release 50.7.  
(http://www.csbio.sjtu.edu.cn/bioinf/Signal-CF/) 

Signal-3L 
(Shen and Chou, 2007) 

Similar to 
Signal-

CF 

Gram+, 
Gram-, 
Human, 
Plant, 

Animal, 
Euk 

This tool expands from the original second layer of Signal-CF to two layers thus 
creating a three-layer predictor to achieve improvement in accuracy. Data used is 
from Swiss-Prot Release 50.7. 
(http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/) 
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SIG-Pred 
(Bradford, 2001) PWMs 

Gram+, 
Gram-, 

Euk 

Developed as part of a thesis work. The tools uses the approach from (von Heijne, 
1986a) but substituted the matrices with the updated ones derived from 1,011 
eukaryotic sequences, 266 Gram- and 141 Gram+ sequences which is obtained from 
Swiss-Prot Release 29 (Nielsen et al., 1997). Good accuracy achieved for Gram- 
data, moderate for Gram+ data but poor results for eukaryotic data. 
(http://bmbpcu36.leeds.ac.uk/prot_analysis/Signal.html)  

SOSUIsignal 
(Gomi et al., 2004) 

Indices 
(include 

hydropho
bicity 

Pro, Euk 

A tri-module system where the first module recognizes the hydrophobic segment in 
the 100 residues at the N-terminus. The second module determines if a sequence 
possess a SP or otherwise by using a SS-score. The final module discriminates SPs 
from signal anchors using a SP-score.  Datasets are extracted from Swiss-Prot 
Release 40. 

SPEPlip 
(Fariselli et al., 2003) 

ANN + 
PROSITE 

pattern 

Gram+, 
Gram-, 

Euk 

The training data from (Menne et al., 2000) is used to develop this predictor that 
uses two ANN: (i) netC for identifying the cleavage site; (ii) netS for the detection of 
SPs. PROSITE pattern PS00013 is used to discriminate between lipoproteins and 
SP-containing chains. 
(http://gpcr.biocomp.unibo.it/cgi/predictors/spep/pred_spepcgi.cgi) 

SPOCTOPUS 
(Viklund et al., 2008) 

ANN+ 
HMM No division 

An extension of the OCTOPUS tool (originally used for transmembrane protein 
topology prediction) to provide combined prediction of SPs and membrane protein 
topology. The training data is the compiled dataset from (Käll et al., 2004). 
(http://octopus.cbr.su.se/index.php) 
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than other approaches especially in light of new data. For earlier reviews on machine 

learning techniques, refer to (Ladunga, 2000) and (Schneider and Fechner, 2004). 

These prediction methods have been applied with varying degree of success in 

scores of studies, including the large-scale Secreted Protein Discovery Initiative 

(SPDI) which sought to discover novel human secretory and transmembrane proteins 

(Clark et al., 2003); the genomic analysis of SARS-associated Tor2 isolate 

coronavirus (Marra et al., 2003); identification of secreted proteins in bacterial 

proteomes (Bendtsen et al., 2005a) and parasitic nematodes (Elling et al., 2009; 

Nagaraj et al., 2008). Likewise, tools such as SignalP (Bendtsen et al., 2004b) have 

been used to annotate database sequence entries in which experimental evidence is 

lacking. These tools can be useful for locating homologous sequences or predicting 

the correct start codon as well, since SPs are situated at the N-terminus of proteins 

(Nielsen and Krogh, 1998). 

 

6.2 Motivations 

Several existing tools such as SigCleave (Rice, 2000) were built upon earlier matrices 

(von Heijne, 1986) which were in turn sampled from a much smaller aligned 

sequences. These matrices will need to be updated to reflect the correct observations 

of the relative frequencies of the residues as many sequences have since been 

generated. Thus, it follows that matrix-based tools recorded a drop in accuracy when 

they were tested with much larger and recent test sets. For instance, SigCleave 

registered an accuracy of 52% (Menne et al., 2000), lower than an earlier claim. 

When it was later updated with a modified weight matrix for the positions nearby the 

cleavage site, its accuracy remains around 54.7% (Zhang and Henzel, 2004). The need 

to update is similarly applicable to machine learning based methods (or “active 



 102 

learning”). Their system parameters will have to be re-optimized and the underlying 

predictive models will have to be rebuilt particularly if the new sequences introduce 

distribution that is largely different from the existing. In such situation, some models 

may fail since a key assumption is made that the underlying data distribution is 

supposed to be similar/same. 

In addition, the present matrix-based approaches almost entirely employ the 

window frame of [-13, +2] which was first established by (von Heijne, 1986). It was 

later affirmed that these positions were sufficient to achieve maximal accuracy for the 

prediction of SP cleavage sites (Chou et al., 2001). However, the results from this 

study seem to suggest that there may be room for improvement (Chapter 4). Then, 

there are several approaches that rely on fixed-size window that do not address short 

SPs whose lengths fall within the length; their datasets omit such sequences from 

consideration. 

Furthermore, there were two benchmark studies by (Menne et al., 2000) and 

(Zhang and Henzel, 2004), that specifically compared the SP prediction tools 

available at that time but a number of newer tools have since been introduced with 

supposedly faster or more accurate prediction (Table 5). Also, majority of the 

comparison studies were conducted during the development of their respective 

prediction tool (Table 5) with several studies that involved only a subset of sequences 

or tools (Klee and Ellis, 2005) or non-experimentally verified SPs (Bagos et al., 

2008). In some cases, the performance indicators reported actually differ in the 

aspects that were being investigated (e.g. discrimination of SP or non-SP proteins 

OR/AND identification of the clevage site) (Gomi et al., 2004). Thus, it will be useful 

to examine these tools simultaneously to allow proper comparison. 
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The majority of existing techniques exhibit high accuracy in distinguishing 

SP- from non-SP-containing sequences, but fare moderately in identifying SP 

cleavage site. It was even reported that a dismal one-third rate of inaccuracy was 

found in many of the putatively assigned cleavage sites (Zhang and Henzel, 2004). 

Hence, it is likely that existing tools have not been able to fully capture the essential 

information to develop a robust predictive method. 

 

6.3 Methodology 

In this work, two objectives are set:  

(i) To develop predictive method that is able to detect the presence of SP and identify 

its cleavage site. The following sections describe a novel approach that is 

developed based upon the consolidated insights obtained in the earlier studies on 

the sequence (Chapter 4) and structure related (Chapter 5) to SPs; 

(ii) To conduct a benchmark study on the existing prediction tools (Table 5) and the 

newly developed methods using cleansed datasets. 

 

6.3.1 Preliminary testing using position weight matrices (PWMs) 

The aim of this preliminary test is to evaluate the predictive results of using positions 

flanking the cleavage site compared to existing approaches (Table 5) that used mainly 

positions from the SP region. Some of the methods even incorporated positions well 

into the n-region of SPs.  

Here, the position weight matrices (PWMs) described in Table 4 form the 

basis of the approach for testing. As the simplest type of probabilistic pattern method, 
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PWM or also known as position-specific scoring matrix or sometimes known as 

profile (though profiles are technically different as they are more complicated and 

allows for gaps), is an ungapped table that records the relative frequency of amino 

acid residues at different positions that are observed within a fixed-size window 

frame. 

 Sequences are aligned with respect to the cleavage site and analyzed for their 

amino acid composition. Amino acid physico-chemical properties (Table 4) are 

excluded due to the poor accuracy upon our initial investigation. Multiple putative 

motifs are identified and the corresponding PWM is constructed to capture the 

patterns observed in the aligned motifs. The matrix score Si,c of an amino acid residue 

i at column c is calculated using the equation:.  
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 where n i,c and bi,c are the observed counts and pseudocounts (Henikoff and Henikoff, 

1996)  respectively; Nc is the total number of observed sequences and Bc is the total 

pseudocounts introduced to reduce the distortion due to the size of the training set and 

it is assigned the value of !N (Lawrence et al., 1993). bi,c is estimated by: 

icci fbBb =,                                                        (2) 

where the background frequency, fbi for each residue i is estimated from the 

frequency of occurrence of that residue in all the sequence positions outside of the 

calculated motif block. Thus, to obtain the score for a sequence fragment of length w, 

the score for each residue found in this sequence fragment is added.  

One challenge in developing PWM is to determine the boundary of the 

sequences block that will be used for constructing the matrix, or in other words, 

finding the optimal window size for each organism group. Different matrices are 
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therefore required as the distribution of amino acids differs among the organism 

groups (Euk, Gram+ and Gram-) (Table 4).  

In all three matrices (Table 4), the occurrence of the hydrophobic residues Leu 

dropped markedly between P7 and P5. These hydrophobic residues regularly serve as 

the demarcation between the h-region and c-region. In addition, helix-breaking 

residues such as Pro and Gly (commonly occurring at positions -6 to -4) are taken into 

consideration since the earlier modeled SPase I-substrate complex depicts (i) a 

pronounced backbone twist between P3 and P1’; (ii) a beta-conformation in the c-

region (Chapter 5).  

Hence, different window sizes around the positions just described, are tested 

([-6, +4], [-6, +3], [-6, +2], [-6, +1], [-5, +4], [-5, +3], [-5, +2] and [-5, +1]) using 

five-fold cross validation (see section 6.4.2 for description on cross-validation). The 

optimal PWM is selected based on the highest cross-validation rate for each organism 

group. The input sequences are subsequently scored using a sliding window scheme 

where the corresponding PWM for each organism is successively aligned to every 

position from the N- to C- terminal direction (Figure 18).  

 

 

Figure 18: Diagrammatic representation of a sliding window scheme. A window of fixed-size 
is matched to the sequence in succession. Each of the matched sequence fragment is scored 
based on the matrix scores tabulated in Table 4. 

 
The weight/score of each aligned residue in an aligned window is added to yield an 

alignment strength score (Sm) and the alignment/window with the highest Sm above a 

pre-determined threshold is considered as the likeliest to contain a cleavage site. The 
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results of using the PWMs in this test are shown in later sections for ease of 

comparison and illustration. 

 

6.3.2 Development of a sequence-structure SVM approach 

Drawing on the previous findings (Chapter 5), the aim is to exploit the spatial 

constraints and the structural conformations of the SP in binding with the SPase I. 

This approach borrows from the concept that highly conserved residues often imply 

functional importance and they commonly appear at important sites in the protein 3D 

structure. Furthermore, it is known that a 3D structure of a protein is much more 

stable relative to the sequence in terms of divergence where even distant relatives 

within a protein family exhibit same overall topology and architecture (Panchenko 

and Bryant, 2002). Therefore, it can be reasoned that this method possibly can 

identify and characterize the functional sites by aligning the motifs flanking the 

cleavage site even if sequence similarity appears to be low. This could be useful in 

tackling the sequence variability, a notoriety that is closely associated with SPs. 

Relating this concept to the bounding partner of SP — SPase I (Chapter 2), 

apart from the similarities and differences between the organism groups, in general, 

although there is limited sequence identity between the SPases I for all three organism 

groups, there are several critical regions (including the catalytic domain) which are 

homologous and they are located close to the SPase active site (Paetzel et al., 2000). 

Additionally, a recent study has shown that the structure of SPase I does not change 

substantially upon substrate binding, thus suggesting changes which is locally 

confined (Musial-Siwek et al., 2008). Also, examination of the structural pockets and 

grooves of SPase I-substrate complex (Chapter 5) reveals that these compartments 
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can only accommodate certain types of amino acid residues constrained by their size. 

This preference is observed in Table 4 that shows the occurrences of specific residue 

at certain position (Chapter 4). Thus, it will be interesting to capture limited region 

around the cleavage site for all three organism groups and model them to investigate 

their differences. 

In this approach, which we named as “SNIPn”, information from the 3D 

structure is represented as feature vectors to capture the spatial constraints into our 

models. To generate the feature vectors, the previous structural model of E. coli 

SPase-I-SP complex (Chapter 5) is used as a template, specifically only the SP ligand 

portion (“template”). The fragment sequence to be modeled (“target”) is aligned to the 

template and input to the homology modeling software called MODELLER (Sali and 

Blundell, 1993). Five models that mimic closely the structure of the template are 

generated. These models are optimized using the variable target function method with 

conjugate gradients and then refined using molecular dynamics with simulated 

annealing (Sali and Blundell, 1993). A statistical potential method called the 

“Discrete Optimized Protein Energy” (DOPE) (Shen and Sali, 2006) is used to guide 

the assessment of the modeled structures in which the one with the lowest DOPE 

score is considered as the likeliest model for the given alignment and template. The 

3D coordinates (X, Y and Z axes) of each amino acid residue (represented by the 

backbone atoms N, C!, C and O) of this optimal model are subsequently extracted. An 

additional feature called thermal factor or B-factor (Rhodes, 2006) that indicates the 

relative mobility of that particular atom extracted from the respective PDB file is also 

included. Together, these features are encoded thus resulting in a total of 13 features 

(3 x 4 + 1) per residue and 143 features per sequence for the window of 11 residues. 

However, due to the much expansive feature space compared to the data that is 
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currently available to train the model to an appropriate level, we have added an 

additional features by encoding the linear sequence located within the [-6, +5] frame 

using binary encoding (+1 for presence and -1 otherwise) where each amino acid 

residue is represented by a vector of 20 features e.g. Ala is represented by (1,-1,-1,-1,-

1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1), Cys (-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-

1,-1,-1,-1,-1,-1,-1) and so on thus resulting in another 200 features (20 x 10). To 

construct the models based on these descriptors, Support vector machines (SVM) is 

selected for its powerful classification abilities as evident from its successful 

applications in many biological problems (reviewed in Zheng, 2004).  

SVM is a statistical learning method based on the structural risk minimization 

principle that can handle linear as well as non-linear data (Burges, 1998). It is well 

suited to perform classification and complex pattern recognition tasks. In particular, it 

performs efficiently with high dimensional inputs. Additionally, SVM ability to 

outperform other machine learning techniques in the absence of large training dataset 

is attributed to its excellent generalization in dealing with unseen data (Zheng, 2004). 

Several groups have developed SVM-based approaches for SP prediction (Cai et al., 

2003; Mukherjee and Mukherjee, 2002; Sun and Wang, 2008; Vert, 2002; Wang et 

al., 2005), but none have approached the problem from the structural angle. 

An outline is given here since detailed explanation on the use of SVM for 

pattern recognition has been described in other literature (Burges, 1998; Joachims, 

2002; Vapnik, 1998). The gist of SVM is essentially to (i) map input feature vectors 

to a high dimensional feature space through a mapping function ! in conjunction with 

a kernel K which measures the similarity between different members of the dataset; 

(ii) construct an optimal hyperplane in the new feature space. Hyperplanes connect 

the bounds on the true error and separate the examples into positives and negatives. 
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The optimal separating hyperplane maximizes the margin of distance between the 

hyperplanes hence uniquely classifying the data into positive and negative examples.  

Given a sample set S of n examples,   

),(),...,,( 11 nn yxyx  where }1,1{,, 1 +!"" yRx n
i                               (3) 

There is at least one hyperplane that can separate the sample into positive examples at 

one side of the hyperplane and negative examples at the other side with a weight 

vector w and threshold b. This is given by the function 

                               bxwsignxh i +•= )  ()(  where                                                      (4)               

for each example ),( 11 yx . If there are more than one hyperplanes, SVM selects the 

one with the largest margin "d – the distance from the hyperplane to the closest 

training examples.  

 

 

Figure 19: (A) Raw datasets are transformed to feature vectors and mapped to a higher 
dimensional feature space. (B1) and (B2) depict the possible scenarios where the examples 
can be separated using different hyperplanes. 

 

+1, if 0)  ( >+• bxw i  
-1, else { 
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Figure 19 shows an example where there are two hyperplanes that can separate the 

training set as illustrated by the two scenarios B1 and B2. There is only one 

hyperplane with maximum margin for every separable training set. Hence, the task is 

to find this optimal hyperplane. In the context of this work, the learning task is to 

classify a given sequence fragment as containing a cleavage site or otherwise. A 

decision value is then assigned for each predicted sequence fragment. 

 

6.4 Training and Testing 

6.4.1 Preparation of training data 

The training and validation sets consist of 2,352 experimentally verified SPs taken 

from SPdb 5.1 (Chapter 4). The dataset is further divided into eukaryotes (1,877 

sequences), Gram+ (168) and Gram- (307) bacteria. Only the first 70aa residues are 

retained as the datasets (basis of using this length has been described in Chapter 2). 

The diverse number of sequences should provide a good statistical sampling of the 

sequences that are likely to be found with the given motif. 

Using matrix [-6, +4] (window size=10) as an illustration, six amino acid 

residues before the cleavage site and four residues after the cleavage site are used to 

generate the positive training dataset for the preliminary test using our PWMs. All the 

other windows that do not overlap exactly with these positions are used to generate 

the negative training set, including segments such as [-7, +3], [-8, +2] … [-5, +5], [-4, 

+6] and so on. 

For our new method — SNIPn, positions from -6 to +5 are used to generate 

the positive training set as these positions are found within the groove where the 

binding occurs. Any positions outside of this region constitute the negative training 
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data. Additionally, non-secretory sequences are also partitioned using the same 

window size of 11 to generate the negative instances. A summary of the training set is 

given in Table 6. All the attributes in the datasets are linearly scaled to the range [-1, 

1] prior to training and testing. Scaling helps to avoid attributes with greater numeric 

ranges from dominating those of smaller range. It also reduces numerical calculation 

difficulties (Hsu et al., 2008). The same method of scaling is applied to input data that 

require prediction. 

Table 6: Training datasets that are used for the PWM preliminary test and development of 
SNIPn. Non-secretory sequences are omitted due to the availability of large negative 
instances. * only the first 11 residues from the MP portion is used to achieve a trade-off 
between computation time and performance. 

Negatives 

 
Positives 

Outside of Window Non-secretory 
TOTAL 

Euk 1,877 42,313* - 44,190 

Gram+ 168 9,903 10,080 20,151 

Gram- 307 18,106 18,420 36,833 

TOTAL 2,352 70,322 28,500 101,174 

 

6.4.2 Parameter selections 

To minimize the probability of overfitting, cross-validation procedure is applied 

where the training data is divided into two, consisting of training and testing sets. This 

process of partitioning the dataset is repeated until the testing set (1/N of the size of 

the entire dataset) is cycled through the entire dataset, exactly N times for an N-fold 

cross-validation (Figure 20). This procedure ensures that each testing set is predicted 

exactly once. Further, to attain a balance representation of positive and negative 

instances in the partitioned dataset particularly in the presence of greater number of 

negative examples, we stratify the dataset such that roughly similar ratio of positive 
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and negative examples is maintained across the different partitioned sets. This 

procedure is applied to both our preliminary testing of using PWMs and to SNIPn. 

 

 

Figure 20: Schematic representation of cross-validation with positive (blue circle) and 
negative (red circle) instances scattered through the datasets. A non-overlapped testing set is 
sampled through each fold. 

 

The Gaussian radial basis function (RBF) (given by the equation 

)exp()()(),(
2

jij
T

iji xxxxxxK !!=" #$$  where 0>! ) is selected as the kernel 

function for SNIPn as RBF has been shown to (i) handle non-linear relation between 

class labels and attributes well; (ii) use less hyperparameters which ultimately affects 

the complexity of model selection (iii) has less numerical difficulties (Chang and Lin, 

2001; Hsu et al., 2008). To determine the optimal parameter pair (C, ") of the RBF 

kernel for the respective model of each organism group, the parameters are subjected 

to grid search using 5-fold cross-validation. C is the penalty cost for misclassification 

while " controls the degree of nonlinearity of the model. Once the optimal parameter 

pair (rendering highest cross-validation rate) is determined, the entire training set is 

retrained to generate the final model for classification. 
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6.4.3 Testing and evaluation 

Dataset preparation (filtering and redundancy reduction) 

The test sets used for the benchmarking are generated following the “SP Filtering 

Rules” (Appendix B) with some adaptations (Table 7): 

(i) The positive set consists of 270 secreted recombinant human proteins 

taken from (http://share.gene.com/cleavagesite/index.html) (Zhang and 

Henzel, 2004). As the original study did not create any negative dataset to 

test the specificity of the tools, we have to separately create a negative set 

using the 270 human non-secretory proteins from the dataset used for  the 

construction of SigHMM (Zhang and Wood, 2003); 

(ii) Using the dataset described in Chapter 4, there are 2,352 positive 

instances (Euk:1,877; Gram+:168; Gram-:307) and covers most of the 

data used to develop the majority of the prediction methods compared 

here. The positive set is matched by an equal number of negative 

instances for each organism group. The negative dataset is a mix of 

cytoplasmic and nuclear proteins (applicable to eukaryotes only). 

Proteins from other subcellular localizations are excluded since it is 

difficult to state unequivocally whether they are secreted (Bendtsen et al., 

2004b). Similarly, single-pass type II membrane proteins that contain 

signal anchor are not used as well since the majority of the entries are 

predicted (http://www.expasy.org/cgi-bin/lists?annbioch.txt) (labeled 

“Potential”). We use the “KW” field, instead of “SUBCELLULAR 

LOCATION” phrase under the “CC” field, to locate the cellular 

localization due to its more succinct description. Organellar proteins and 

proteins containing cTP or mTP are also removed. Additionally, entries 
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with the keyword “Secreted” appearing under the “KW” field are 

removed (e.g. F13A_HUMAN which is cytoplasmic in most tissues, but 

it is secreted in the blood plasma as well). Finally, visual inspection is 

conducted to remove atypical sequences e.g. ATX8_HUMAN which 

consists of only Ms and Qs in its sequence. In the positive set, unlike 

other studies, we do not exclude sequences with SPs that are 

shorter/longer than the average since such sequences do exist, and they 

have been annotated and verified. Omitting them is synonymous to fitting 

data to model instead of the reverse. 

(iii) A new dataset is extracted from Swiss-Prot Release 57.0 following the 

‘SP Filtering Rules’ (Appendix B). Sequences (both positive and 

negative) which are present in (ii) are deliberately omitted (based on their 

Swiss-Prot ID and accession number) from this dataset to create a new 

dataset that is novel for the majority of the tools (except those that have 

been recently updated such as Signal-BLAST). This would minimize any 

prior advantage enjoyed by the tools in predicting SPs from sequences 

similar to those “seen” before. Manual inspection of the filtered data 

reveals that many of the entries are putative. Only those cleavage sites 

that are highly probable based on the evidence from literature are retained 

otherwise more than 90% of the bacterial entries and more than 50% of 

the entries in eukaryotes would have been eliminated had the “SP 

Filtering Rules” being applied.  

 

The test sets are maintained in equal balance between the positive and negative 

instances to ensure there will be no bias in the assessment of the tools. Duplicates are 

removed from the positive datasets while negative datasets (non-secretory proteins) 
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are further reduced using CD-HIT (version 3.1.1) (Li and Godzik, 2006) to create a 

diverse set of sequences. Whenever possible (either bounded by the minimal number 

of sequences for testing or the lowest CD-HIT threshold that can be set), the lowest 

possible threshold is adopted. 

 

Exclusion of previous datasets 

The popular training/testing sets (Nielsen et al., 1997; Menne et al., 2000) are not 

adopted in this evaluation since they are derived from earlier Swiss-Prot releases 

(Release 27.0 and Release 38.0 respectively). The second dataset (SPdb 5.1 which is 

derived from Swiss-Prot Release 55.0) used in this study are inclusive of these 

sequences. 

 

Omission of prediction tools  

SPEPlip (Fariselli et al., 2003) is omitted due to the lack of facility for large-scale 

testing. A number of methods that are unavailable for testing are omitted as well. 

They include several neural network-based approaches (Jagla and Schuchhardt, 2000; 

Li et al., 2008; Reczko et al., 2002); SVM-based approaches (Cai et al., 2003; 

Mukherjee and Mukherjee, 2002; Sun and Wang, 2008; Vert, 2002; Wang et al., 

2005); a profile HMM-based method called CJ-SPHMM (Chen et al., 2003); matrix-

based approach that uses the concept of information theory (Liu et al., 2005); a 

BLOMAP-encoding scheme to transform input sequences (Maetschke et al., 2005); a 

hybrid approach that uses bio-basis function neural networks and decision trees 

(Sidhu and Yang, 2006); a global alignment approach based on the Needleman-

Wunsch algorithm (Liu et al., 2007; Needleman and Wunsch, 1970).  

Other tools such as iPSORT (Bannai et al., 2002), ProteinProwler (Hawkins 

and Bodén, 2006) that are mainly used in subcellular localizations and N-terminus 
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targeting signals (e.g. Predotar (Small et al., 2004)) prediction are omitted as well 

since they predict the presence of SPs but do not indicate the cleavage sites. We have 

also omitted specialized tools such as SecretomeP which predict non-classical SPs i.e. 

signal sequence remained uncleaved (Bendtsen et al., 2005b). 

 

Setup of prediction tools 

For PWMs testing, three PWMs with size of Wx20 each, are derived from the aligned 

motif block of width W for the different organism groups where Weuk= WGram+= WGram-

=10 based on the motif/matrix [-6, +4]. The thresholds or cut-offs that achieve the 

maximal accuracy are selected (Euk:5.65; Gram+:6.68; Gram-:5.10) (Figure 22). 

 On the other hand, SNIPn uses a window size of 11 for all three organism 

groups in its prediction. Figure 21 shows the system architecture for our SVM-based 

classifier where the LIBSVM package (version 2.8.8) (Chang and Lin, 2001) is used 

as the SVM implementation. Modifications are made to the program code to output 

the decision values instead of the label. The optimal parameter pairs (C, ") of the RBF 

kernels for the respective organisms are empirically determined based on 5-fold cross-

validation (Euk(1, 0.05); Gram+(2, 0.005); Gram-(1, 0.01)). The –w option is adjusted 

to account for the imbalanced dataset (more negative instances than positives at a 

ratio of 119:1 for bacteria and 22.5:1 for eukaryotes) to avoid model overfitting. 

For PrediSi, the web server is used instead of the standalone version due to the 

discrepancy in their results. The standalone version reported numerous inaccurate 

predictions even for the same input sequence. The prediction results are converted to 

0 if the result field “Signal Peptide ?” indicates an “N” otherwise the predicted 

cleavage site is recorded if a “Y” is shown.  
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For tools that employ different models/matrices for different organism group 

(e.g. SignalP, Signal-CF etc.), the corresponding matrix is selected accordingly. 

Signal-3L, in particular, allows for six selections: (i) human; (ii) plant; (iii) animal; 

(iv) Gram-positive; (v) Gram-negative; (vi) “other-eukaryotic”. The authors’ 

categorization method as shown in (Online Supporting Information B: 

http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/Data.htm) is used to classify and select 

accordingly the right matrix for a given input sequence. 

For SigCleave, the default threshold (-minweight) of 3.5 is used to filter the 

results as suggested in their documentation. For SigHMM, a returned score below -5 

(Zhang and Wood, 2003) is deemed to indicate a non-secretory protein, otherwise the 

cleavage site is reported since the sequence is considered as a secretory protein. 

 

 

Figure 21: The architecture of our SVM-based prediction system — SNIPn. Sequences (either 
from the user or the training/testing datasets) are first encoded to create the feature vector 
representing the sequence. The encoded feature vector is sent for classification task. The 
predictive model used in the classifier is the optimal model selected during the training and 
testing phases. 
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For Philius, all its predicted values were subtracted by one from its originally 

predicted values except when the value is already zero. It is highly possible that there 

is a bug in Philius since the returned value is always one extra position away, i.e. 

instead of 24aa, it predicts 25aa. This bug has been reported to the authors. 

For Signal-Blast, the detection mode is set to “SP4 - Only Detect Cleavage 

Site”. For all other tools not specifically mentioned, we have used their default system 

settings with no additional parameter changes made except selecting the 

corresponding organism matrices, when available. All parameters for each tool are 

maintained the same in all three experiments and the experiments are carried out on 

32-bit Intel-based desktop computers equipped with 2GB of memory. It should be 

noted that running on 64-bit machines generates different results during the structure 

modeling phase and machine learning phase due to the higher precision available for 

floating point numbers. 
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Figure 22: The charts in the first row plot the accuracy against the varying cut-offs for the three organism groups. The second row shows the 
corresponding ROC curves. The (blue) circle located in each chart denotes the selected threshold that yields the maximal accuracy. The charts are 
generated using the R statistical package (R Development Core Team, 2009) augmented with two additional modules: the ROCR (Sing et al., 2005) 
and Brendano’s dlanalysis (http://github.com/brendano/dlanalysis/tree/master).  
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Evaluation of prediction tools 

All results from the different tools are standardized to the following: 

 

 

To evaluate the predictive performance of all the prediction tools, we compute 

sensitivity (Sn), specificity (Spc), accuracy (Acc) and Matthews’ Correlation 

Coefficient (MCC) (Matthews, 1975). The equations are given by: 
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                                           (8) 

 

where Sn and Spc measure the fraction of positive instances and fraction of negative 

instances respectively which have been correctly predicted. Acc computes the fraction 

of positive and negatives instances predicted correctly. Mcc returns a value that is 

between 1 (perfect prediction) and -1 (inverse prediction); the value zero denotes a 

random prediction. Briefly, sequences that possess cleavable SPs that are 

subsequently predicted with the correct cleavage sites are designated as true positives 

(TP). Those that are predicted with the wrong cleavage sites are treated as false 

negatives (FN). Conversely, sequences without cleavable SPs that are predicted with 

one are classified as false positives (FP) whereas predictions specifying an absence of 

SP are considered as true negatives (TN).      

 

0, if predicted as non-secretory protein OR unable to predict the position 
position of cleavage site, if predicted as secretory protein 

{ Results = 
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6.5 Results 

The results from the three experiments are shown in Table 8 and Figure 24(A)-(H). 

Figure 24(A) depicts the overall accuracy values for each method across the three 

experiments. Experiment 2 and 3 provide values for three organism groups while 

Experiment 1 essentially measures the results for eukaryotes alone. Most tools attain 

accuracies that are well over 80%, consistent with what have been reported in many 

earlier studies, which were without complete details of specificity and sensitivity. A 

breakdown of the prediction results measured by sensitivity and specificity for each 

experiment, give us a better account of the strength and weakness of each tool. 

 

6.5.1 Results from Experiment 1 

The first experiment uses 270 eukaryotic (human) sequences with experimentally 

verified SPs, from the study by (Zhang and Henzel, 2000).  

Based on the results from this experiment (Figure 24(B) and Table 8), Signal-

BLAST predicts the highest number of correct positive instances (i.e. best sensitivity) 

(97.8%). This is dramatically reversed when it is scores 81.5% in specificity upon 

tested with negative instances in which it is tasked to distinguish between secretory 

and non-secretory proteins. This is attributed to the need for Signal-BLAST, which 

uses a pairwise alignment, to find a delicate balance between the two types of datasets 

in order to achieve a good discrimination. SignalP scores the second best accuracy 

with the ANN version (87.2%) marginally outperforming the HMM version (85.6%). 

 Signal-CF and Signal3L which adopt the “subsite-coupled model” achieve 

accuracies of 77.4% and 81.3% respectively. The results are lower than those reported 

in the authors’ publications using the same dataset. Manual inspection of Signal-3L 
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revealed that there was a mistake quoted in their publication (Shen and Chou, 2007). 

For the entry (Swiss-Prot ID:Q6UXL0), the cleavage site was reported as 28aa instead 

of the correct 29aa that the authors indicated in their supplied supplementary data 

(“Online Supporting Information B: Signal-CF dataset–supp-B.txt”). From our 

examination, Signal-CF and Signal-3L identify the cleavage site at 63aa and 28aa 

respectively based on the input sequence of length 70aa. When we reduced its 

evaluation length to match the length reported in their publication 

(MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLL

MWSPVIA), Signal-CF and Signal-3L reported SPs of 29aa and 28aa. Furthermore, 

we noted that selecting the correct species option in Signal-3L is critical; otherwise a 

markedly different length of SP is reported. Signal-CF, on the other hand, is 

extremely sensitive to the different lengths.  

Among the tools compared, SOSUIsignal, SPOCTOPUS and our PWMs 

method rank lowest in sensitivity (18.9%, 39.3% and 26.7% respectively). This is 

likely because the identification of cleavage site was not their priority. SOSUIsignal 

was developed to discriminate SPs from non-SPs sequences, while SPOCTOPUS was 

developed as a combined predictor for SPs and membrane protein topology. For our 

PWMs, it is likely that the necessary information may not be adequately found within 

the limited window size. On the other hand, SNIPn returns moderate results although 

the sensitivity may actually be lower had the model been adjusted to increase the 

specificity. 

Other methods generally return accuracies that are above 80%. However, 

closer inspection reveals that while the specificity values are impressive, their 

sensitivity values are largely in the moderate range of 70% to 79%. 
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Table 7: Description of the three datasets developed for benchmarking the thirteen SP prediction tools, including ours. Only the first 70aa of the 
sequence are retained as input. Negative dataset are subjected to redundancy reduction. T denotes sequence identity threshold set for redundancy 
reduction. 1 From a first-pass-filtered set of 9,851 reduced to 4,989 upon redundancy reduction (T=40%) and atypical/spurious sequences removal 
before arriving at this filtered set; 2 From a first-pass-filtered set of 427 reduced to 230 (T=40%); 3 From a first-pass-filtered set of 370 reduced to 307 
(T=65%); 4 From a first-pass-filtered set of 8,930 reduced to 4445 (T=40%); 5 From a first-pass-filtered set of 110 reduced to 61 (T=40%); 6 From a 
first-pass-filtered set of 290 reduced to 150 (T=40%). 

 1: Zhang and Henzel, 2004 
(Experimental data) 

2: Dataset used in this study 
(Extracted from SPdb 5.1 which is in turn derived 

from Swiss-Prot Release 55.0) 

3: UniProtKB/Swiss-Prot Release 57.0 
(excludes the dataset that we have used in this 

study) 

 2,352 secretory proteins consisting of: 228 secretory proteins consisting of: 
- Eukaryote: 1,877 - Eukaryote: 199 

- Gram+: 168 - Gram+: 17 

Positive 270 human secreted 
recombinant proteins 

- Gram-: 307 - Gram-: 12 

2352 non-secretory proteins 228 non-secretory proteins 

- Eukaryote: 1,877 
(Cytoplasmic: 939; Nuclear: 938) 1 

Eukaryote: 199 
(Cytoplasmic: 100; Nuclear: 99) 4 

- Gram+: 168 (all cytoplasmic) 2 - Gram+: 17 (all cytoplasmic) 5 

Negative 270 human non-secretory 
proteins extracted from 

SigHMM (Zhang and Wood, 
2003) dataset which is in turn 

derived from Swiss-Prot 
Release 40.0. - Gram-: 307 (all cytoplasmic) 3 - Gram-: 12 (all cytoplasmic) 6 
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Table 8: Benchmark results of the thirteen prediction tools (Table 5) including ours, based on our three standardized datasets. Equation (5-8) are used 
to measure the predictive performance of these tools. (Abbreviations used: Sn=Sensitivity; Spc=Specificity; Acc=Accuracy; MCC=Matthews’ 
Correlation Coefficient). 1 Used with HMMER 2.3.2 with cut-off score set at -5 (Zhang and Wood, 2003) and the updated model (Zhang and Henzel, 
2004); 2 Version 3.0; 3 Authors updated system with UniProt 14.6 (Swiss-Prot Release 57.0); 4 Version 1.0.1. * Our methods 

 1 : Zhang and Henzel, 2004 
(Experimental data) 

2 : Dataset used in this study 
(SPdb 5.1; derived from SwissProt Rel. 55.0) 

3: Swiss-Prot Release 57.0  
(excludes all dataset used #1 and #2) 

Methods  Sn Spc Acc MCC   Sn Spc Acc MCC   Sn Spc Acc MCC  
PWMs *  0.267 0.759 0.513 0.030   0.391 0.833 0.612 0.249   0.368 0.820 0.594 0.211  
SNIPn *  0.900 0.819 0.859 0.721   0.994 0.802 0.898 0.811   0.408 0.737 0.572 0.153  
Philius  0.704 0.952 0.828 0.677   0.742 0.968 0.855 0.729   0.728 0.961 0.844 0.708  
Phobius  0.637 0.978 0.807 0.654   0.750 0.982 0.866 0.752   0.711 0.987 0.849 0.726  
PrediSi  0.726 0.974 0.850 0.723   0.769 0.986 0.878 0.774   0.750 0.974 0.862 0.742  
RPSP  0.730 0.989 0.859 0.744   0.806 0.996 0.901 0.816   0.794 1.000 0.897 0.811  
SigCleave  0.541 0.878 0.709 0.445   0.612 0.824 0.718 0.446   0.618 0.860 0.739 0.493  
SigHMM1  0.707 0.937 0.822 0.662   0.561 0.963 0.762 0.572   0.596 0.952 0.774 0.587  
SignalP2 ANN  0.785 0.959 0.872 0.756   0.856 0.965 0.911 0.826   0.842 0.987 0.914 0.838  
SignalP2 HMM  0.759 0.952 0.856 0.725   0.832 0.974 0.903 0.814   0.833 0.969 0.901 0.810  
Signal-BLAST3  0.978 0.815 0.896 0.803   0.881 0.809 0.845 0.692   0.825 0.794 0.809 0.619  
Signal-CF  0.648 0.900 0.774 0.566   0.768 0.905 0.837 0.679   0.750 0.890 0.820 0.647  
Signal-3L  0.737 0.889 0.813 0.633   0.787 0.920 0.853 0.713   0.715 0.934 0.825 0.665  
SOSUIsignal  0.189 0.926 0.557 0.170   0.232 0.925 0.578 0.217   0.232 0.921 0.577 0.212  
SPOCTOCUS4  0.393 0.907 0.650 0.350   0.503 0.889 0.703 0.442   0.408 0.899 0.654 0.352  
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Figure 23: Aggregated results from all three experiments. Accuracy results from all three experiments are provided here. For each tool, there are 
three bars, representing each experiment (gray bar: Experiment 1; white bar: Experiment 2; black bar: Experiment 3). * denotes the methods that we 
have developed and tested in this study. 
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(A) Experiment 1: Eukaryotes (human) 
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(B) Experiment 2: Eukaryotes 
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(C) Experiment 2: Gram-negative bacteria 
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(D) Experiment 2: Gram-positive bacteria 
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(E)  Experiment 3: Eukaryotes 
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(F) Experiment 3: Gram-negative bacteria 
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(G) Experiment 3: Gram-positive bacteria 
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Figure 24: (A) Experiment 1 involves eukaryotic (human) sequences only; (B)-(D) Results 
from Experiment 2 separated into the three organism groups: eukaryotes, Gram+ and Gram- 
bacteria; (E)-(G) Results from Experiment 3 separated into the three organism groups. The 
bars colored in light gray represent the specificity while the darker bars represent the 
sensitivity of the predictive tools. 
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6.5.2 Results from Experiment 2 

This experiment recruits a much larger dataset consisting of 4,704 sequences that are 

spilt into positive and negative datasets of equal size. The negative set consists of a 

mix of cytoplasmic and nuclear sequences in eukaryotes. The dataset is further 

divided into three organism groups (details available in Table 7). 

Our PWMs achieves overall accuracy of 61.2%. Detailed inspection of the 

result breakdown (classified by organism groups) reveals that the PWMs obtain good 

results in the Gram- and Gram+ datasets but not in the eukaryote set. SNIPn achieves 

an overall accuracy of 89.8% where the breakdown of the accuracies is 88.4% (Euk), 

97.1% (Gram-) and 92.3% (Gram+) respectively. The result from the bacteria group is 

better than the leading tool – SignalP-ANN (Gram-:92%; Gram+:88.1%) and SignalP-

HMM (Gram-:93.8%; Gram+:89.0%) (refer to Figure 24 (D), (E), (G) and (H)). 

Interestingly, PWMs outperforms SigCleave in both sets. For the Gram- set, 

PWMs reaches accuracy of 82.6% against SigCleave (58.5%) while for the Gram+ 

set, PWMs achieves accuracy of 72.3% against SigCleave (49.4%). The results of 

SigCleave are marginally lower than that of SigHMM (71.8% against 76.2%). When 

we examine their results further by looking at the individual data groups (Figure 

24(C)-(E)), in particular within the bacterial datasets; SigHMM obtained sensitivity 

values of 42.0% (Gram-) and 28.6% (Gram+), respectively. A comparable drop in 

both measurements is observed in Experiment 3 (cf. next section). This is possibly 

attributed to the newer bacterial sequences that have become available since the 

model was constructed. SigCleave experiences a similar fall in performance for the 

Gram- (sensitivity:74.6%; specificity:42.3% and accuracy:58.5%) and Gram+ 

(sensitivity:48.8%; specificity:50.0% and accuracy:49.4%) datasets. Other prediction 

tools generally maintain similar trend as observed in the previous experiment, though 
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their sensitivity values are considerably lower in the Gram+ bacteria dataset compared 

to the Gram- bacteria and eukaryote datasets. 

Between Signal-CF and Signal-3L, it seems that the additional classification 

of sequences into specific groups (e.g. plant, human, animal etc.) used in the latter 

method do not seem to generate much advantage over the former approach, and may 

potentially lead to overfitting. 

 

6.5.3 Results from Experiment 3 

New datasets have been extracted from Swiss-Prot Release 57.0 (totaling 412,525 

entries) in this experiment (details available from Table 7). This dataset represents a 

fresh challenge for majority of the tools except for Signal-BLAST which has been 

recently updated with Swiss-Prot Release 56.6. The results are presented in Table 8 

and Figure 24 (F)-(H). 

Here, SignalP (both ANN and HMM versions; with HMM scoring higher than 

ANN) again presents consistently high results. The sensitivity values for other tools 

plummet particularly when tested with the Gram+ dataset. This drop is particularly 

acute for Signal-BLAST, despite its recent update. We checked the distribution of the 

data but do not note any significant differences compared to the previous two datasets. 

SNIPn experiences a considerable accuracy drop in the eukaryotic prediction 

(57.2%). It is probable that the model might have overfitted during the training which 

explains the good results observed in Experiment 2 since part of the data was used. 

However, there is also the possibility that the may not be adequate data to construct 

the model to a sufficient level. This is because the linear sequences have been mapped 

to a much bigger feature space using their 3D coordinates. When we tested the model 
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by adding some of the new sequences directly into the existing model without any 

further optimization, the model is able to predict correctly for the sequences. Thus, 

more sequences will be required to determine the reason. 

 

6.6 Discussion  

6.6.1 Simple model or sophisticated model  

It was previously suggested that non-linear feature may be involved in the recognition 

of cleavage site (Nielsen and Krogh, 1998), thus this perhaps helps to explain the 

better accuracy achieved by machine learning based techniques. However, in this 

study, it is observed that the performance gap between the more simplistic matrix-

based approaches (e.g. PrediSi, SigCleave and our PWMs) and the sophisticated 

machine learning-based approach is not significantly wide. Given the appropriate 

selection of the window size, matrix-based approach can achieve competitive results. 

 Alignment-based technique such as Signal-BLAST, SigHMM can be tuned to 

be more sensitive in identifying cleavage site, but at the expense of its specificity or 

vice versa. For instance, when we submit the sequence from human carboxylesterase 

2 isoform 1 (GenBank GI:37622885) to Signal-BLAST, a markedly different entry 

(Swiss-Prot ID:ICAM1_HUMAN; with reported cleavage site of 27aa) was returned 

as the top hit with an assigned cleavage site of 19aa. Such method generally may not 

be suitable for detecting sequences that share weak homology, since it is highly 

dependent on how the tool balances sensitivity with specificity. Thus, compared to 

matrix-based approach, these methods (in particular Signal-BLAST) will probably 

require more effort in updating it with new releases/updates from sequence databases 
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such as UniProtKB-Swiss-Prot to remain relevant as long as newer sequences are 

deposited. 

 

6.6.2 Larger dataset and window size  

The majority of the prediction tools achieve better results for the eukaryotic datasets 

compared to the bacterial datasets. This is likely attributed to the larger data size that 

is available to build models that adequately describe the underlying distribution. 

Conversely, the results from our methods are the opposite. This is probably due to 

selection of the window size ([-6, +4] and [-6, +5] for PWMs and SNIPn 

respectively), which may not have been sufficient to capture the necessary 

information for the eukaryotic group, thus explaining the uniformly mediocre 

accuracies observed in the eukaryotic sets in all three experiments.  

For the bacteria datasets, we have demonstrated that it is possible to achieve 

competitive results when compared against the counterparts even with the reduced 

number of positions. This stands in contrast to previous studies that have advocated 

for greater number of residues to be considered within the window frame to achieve 

maximal accuracy (Chou et al., 2001). The results from the predictive methods here 

lend support to the earlier notion that cleavage recognition possibly do not require 

residues located significantly further upstream of the SP, as well as residues in the MP 

portion located far away from the cleavage site, at least this appear to be case for the 

bacteria sequences that have been tested in these experiments. 

Interestingly, in an earlier separate experiment in which we constructed the 

SVM models for SNIPn using only the structural information as feature vectors (each 

residue represented by four atoms and the corresponding X, Y, Z coordinates), the top 
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thirty-five most predictive features are measured and extracted using the following 

method: 

! 

F " score =
2 # precision # recall
precision + recall

                                                        (9) 

! 

Precision =
TP

TP + FP
                                                                            (10) 

where recall is essentially the same as sensitivity (Equation 5). F-score (also F-

measure or F1 score) is yet another way to measure the accuracy of performance (1 

being the best and 0 at its worst). 

Remarkably, the result (Figure 25) manifests similar graph/pattern as what 

have observed in the earlier sequence analysis study (Chapter 4) even though only 

one structure is employed in the homology modeling to generate the 3D features. The 

conservation of the residues at specific positions (e.g. the motif at -3, -1) is clearly 

observable. Furthermore, it is also observed that the distribution of feature vectors of 

eukaryotes clearly differs from bacteria even at the 3D structure level. It may well 

require positional information beyond what have been explored here (i.e. -6 to +5 or 

+4) which explain for the poor results for our PWMs and SNIPn methods when tested 

on eukaryotic sequences. The availability of eukaryotic structure data will help greatly 

in explaining these differences, particularly for SNIPn, where we have used Gram- 3D 

structure as the template to model for all three organism groups. 
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Figure 25: Top thirty-five attributes/features that are the most predictive or significative as 
measured according to F-score values through a five-fold cross-validation. The data is 
represented in two format (A) line graph and (B) bar chart. X-axis shows the positions within 
our employed window of [-6, +5] for the SVM-based approach. The junction -1/+1 denotes 
the SP cleavage site. Y-axis tracks the number of features that represent a residue at a 
particular position within the window of [-6, +5]. 

 
Except for the leading tool SignalP which have been rather successful in their 

prediction for all three organism groups across the three experiments, majority of the 

tools will probably require active learning or regular update to the underlying model 

to remain relevant. The consistency observed in SignalP (both ANN and HMM 

versions) may be attributed to its more complex models and robustness of its method 

where various scoring schemes are devised to tackle different aspects (including SP-
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likeness, the probability of a segment containing the cleavage site and so on). Also, 

the window frame employed are also relatively wider (Euk:[-11,+2], Gram-:[-21,+2], 

Gram+:[-15,+2]). However, it should also be noted that many of the sequences, 

particularly in Experiment 3, have been assigned their cleavage sites using SignalP, 

thus the data may contain certain biasness. More new data that have not been 

putatively assigned by computational tools will be needed to ascertain the true 

veracity of these tools. 

 

6.6.3 Single-step or two-step prediction task 

In general, most tools encounter little difficulty in distinguishing between secretory 

and non-secretory proteins. This is evident from the high specificity achieved even 

when they are tested with new datasets. Other studies involving discrimination 

between signal anchors and SPs reach similar conclusion (Nielsen and Krogh, 1998). 

Identification of the corresponding cleavage site clearly remains the challenge. 

 In contrast to the majority of the prediction methods where they divide the 

prediction problem into separate two tasks, namely (i) discrimination between 

secretory and non-secretory proteins; (ii) prediction of the cleavage site, we tackle 

both simultaneously without distinguish the tasks. Here, we have demonstrated that it 

is possible to pinpoint the correct cleavage site (at least in the bacteria group) and 

discriminate between SP- and non-SP-containing sequences with reasonable accuracy. 

However, separating into two tasks will enable better results since it allows for further 

optimization. This is demonstrated by SignalP where they have designed multiple 

scoring schemes and models to capture and measure the different aspects. Our 

preliminary results of separating the tasks have demonstrated better sensitivity. 
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6.6.4 Assessment of our method 

Based on the preliminary test using our relatively smaller PWMs when compared to 

existing matrix-based methods including SigCleave, we have been able to achieve 

favorable results in predicting bacteria sequences even with reduced positions. 

However, the result is reversed in the case of eukaryotic sequences. Hence, it is likely 

that this group will require a much larger matrix size to achieve optimal prediction 

accuracy, at least for PWM-based method. The fact that using our smaller PWMs is 

able to deliver competitive results suggests that possible further exploration by 

focusing on flanking regions around the cleavage site.  

Our approach is therefore to use homology modeling (one E. coli SPase I as 

template) to generate the theoretical binding models of SP and its receptor. The 

resulting structural information is extracted and modeled as feature vectors in SVM. 

The results have been encouraging, at least for the bacteria group even though the 

same result is not observable for the eukaryotes, which is explainable. One reason is 

the window size that is used for the eukaryotic group which may be inadequate to 

capture the necessary details. More importantly, our structural template for aligning 

the sequences is currently based on E coli alone and it is known that the accessibility 

to the active site and cleavage processing machinery differ for bacteria and 

eukaryotes, thus, the 3D conformation of the eukaryotic and bacterial SPs may again 

be different. Thus, replacing the E. coli template with the appropriate structure from 

eukaryote may actually offer a different result. Furthermore, due to the mapping of 

the features from a linear sequence to a 3D space, the hypothesis space has essentially 

increased tremendously. The current size of data therefore may not be sufficient to 

train the model to an appropriate level compared to the number of features that we 

have employed. When we tested using some of the new (eukaryotic) test sets by 
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adding them to the SVM model (without any adjustment to the optimal parameters), 

the model is able to predict correctly for majority of the sequences. However, we are 

unable to ascertain this currently due to the unavailability of the eukaryotic structure. 

One drawback with SNIPn is the intensive computation that is required to 

generate the 3D coordinates to be encoded as feature vector for the SVM. A possible 

remedy is to record sequence fragments that have undergone homology-modeling 

computation in a lookup table. Only non-existing ones upon consulting the table are 

computed and they are recorded into table for future lookup. Another solution is to 

deploy the program within a computational grid. 

 

6.6.5 Testing of archaeal sequences  

There are seven archaeal sequences that contain experimentally determined SPs in 

SPdb 5.1. The result from testing with this set of sequences using the three organism 

models is shown in Table 9. For SNIPn, the result from using the predictive model of 

Gram+ is the best (3 out of 7) followed by eukaryotes and Gram-. Similarly, in 

SignalP, the Gram+ model returns the best predictive results (6 out of 7). The results 

observed here is in agreement with the study (Bardy et al., 2003) that archaeal SPs are 

more similar to the bacterial than the eukaryotic. Interestingly, the fact that the 

methods can predict the archaeal sequences using models from other organisms 

indicate their shared ancient origins, where they rely on these common SPs and 

translocation machinery to deliver their proteins. 

In this mini study, SignalP achieves better results than SNIPn. When the 

detailed prediction values are inspected, we noted that our approach did manage to 

predict the correct site albeit with a weak score. This affirms the earlier discussion in 
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the previous section (single-step or two-step identification) to split the prediction task 

into two sub-tasks to allow better optimization. 

 

Table 9: Prediction results from SNIPn and SignalP (both ANN and HMM versions). Each 
row represent one entry/sequence extracted from Swiss-Prot which has been manually curated 
to possess experimentally determined SP. The first column (AR) lists the actual/known 
cleavage site while other columns tabulate the predicted values from each  tool. GP, GN and 
EU represent the respective organism model that is used for the prediction (AR=Archaea; 
GP=Gram+; GN=Gram-; EU=Euk; HMM=Hidden Markov Model; ANN=Artificial neural 
networks). 

 SignalP 
 

SNIPn 
 ANN HMM ANN HMM ANN HMM  

AR  GP GN EU   GP GN EU  
34  0 0 0   29 28 20 28 22 20  
34  34 23 23   33 34 34 34 23 23  
34  0 37 0   34 34 37 37 23 23  
34  0 0 23   34 34 23 34 23 27  
22  22 22 22   22 22 22 22 22 22  
28  28 0 28   28 28 23 28 28 28  
46  0 37 0   37 37 37 37 0 37  
               

6.7 Summary 

We have presented a novel method called SNIPn, which uses SVM to model sequence 

and structure information to achieve competitive accuracy in SP prediction. It offers 

as alternative way for SP prediction in bacteria sequences. Further availability of new 

data will help to improve the predictive models of SNIPn. 

In this study, we have also evaluated thirteen of the most commonly used 

prediction tools that are available for testing. Majority of the tools are able to 

distinguish secretory and non-secretory proteins with little difficulty. The challenge 

clearly remains with pinpointing the correct SP cleavage site. 

Although we have shown that it is possible to achieve comparable results 

without splitting the SP prediction task into two sub-tasks, doing so will likely lead to 
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better results as the model for each task can be further optimized. The composite 

scoring schemes employed by SignalP essentially divide the prediction task into a 

number of separate steps, thus allowing each score to tackle a particular aspect of the 

prediction. Additionally, it can be observed that some methods are more susceptible to 

new changes to the datasets. These methods likely require regular updates to their 

underlying models to reflect the latest observations. Alignment-based and matrix-

based methods are such examples, where the updates will allow proper tuning of their 

model parameters. 
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Chapter 7: Conclusion 

7.1 Summary 

This work began as a fascination over these short peptides that are found at the N-

terminus of virtually every secreted and (some) membrane proteins. These peptides 

exist only transiently within the secretory pathway but they assume such diverse roles 

and exert multiple functions that have wide-ranging effects on all living organisms 

(Chapter 2). Recent findings are suggesting SPs of possessing a far more impressive 

functional repertoire than their sole targeting function. This has spurred renewed 

interest to elucidate their true functions. Already, several latest research works are 

revealing the prospect of more exciting discoveries that lie ahead, including the report 

of more effective inhibitor of bacterial SPase I (Buzder-Lantos et al., 2009), the 

binding of SRP and SP catalyzes the RNA component of SRP to accelerate the 

interaction between SRP and SR (Bradshaw et al., 2009) and the discussion of non-

conventional secretion transport pathways (Nickel and Rabouille, 2009). 

In an effort to contribute towards the understanding of SPs, in particular, the 

understanding of their substrate specificity and cleavage processing, in this work, we 

have developed a semi-automated pipeline through systematic approach (Chapter 3) 

to generate a SP-centric repository called SPdb (http://proline.bic.nus.edu.sg/spdb). 

SPdb has been carefully curated to remove inconsistencies and detectable errors. 

Entries with discrepancy between the literature and the database annotation were 

flagged. New error detection rules were devised and combined with existing best 

practices to form the “SP Filtering Rules” (Appendix B). This set of rules has greatly 

reduced the laborious effort to flag erroneous or inconsistent entries and standardized 
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their removal. Although the resulting datasets have served as the foundation for this 

work, SPdb can be a valuable and useful resource for benchmarking and developing 

new prediction tools. Moreover, it can support further research into different scientific 

studies. It is also applicable to technological/industrial applications. 

Since the publication of this work (Choo et al., 2005), the Swiss-Prot team has 

resolved numerous erroneous entries that were identified in this work. The labels have 

been re-assigned and some of the more confusing practices (e.g. the different labels 

such as POTENTIAL, PUTATIVE to describe evidence support) have been 

improved. It is also encouraging to learn that references are now inserted directly next 

to the relevant field (in the latest UniProtKB), to indicate only the associated 

publications for that feature. This is what we have demonstrated with SPdb. 

Nevertheless, similar problems that have been described in this work (Table 2) remain 

observable in the new entries of UniProtKB/Swiss-Prot. As a result, it will be 

extremely difficult to extract the data directly from sources such as Swiss-Prot and 

work on it immediately without proper treatment of the entries, as already explained 

in Chapter 3. A similar pipeline as what we have proposed here might be needed to 

tackle those issues (Table 2). 

 Next, based on the cleansed datasets, we conducted a large-scale analysis of 

2,352 experimentally verified SP-containing sequences involving prokaryotes and 

eukaryotes. When we measured the lengths of the different SPs for all the organisms, 

we observed large variations in the length distribution (Figure 8). This variance that 

resulted in largely different SPs, reportedly mediate/induce different rates of closure 

of the ribosome-translocon junction (Rutkowski et al., 2001). Further classification of 

the organisms into eukaryotes, Gram+ and Gram- bacteria groups for analysis 

revealed several similarities as well as distinctive features. 
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From the analysis of these three groups of organisms in terms of their physico-

chemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity and 

net charge, we observed markedly different property values, even for those SPs which 

possess almost similar lengths (Figure 11). These variations are possibly employed as 

a means for the machinery to vary translocation efficiencies (Kim et al., 2002) or as a 

“tuner” for modulation depending on conditions (Kang et al., 2006). This could help 

explain the hyper-conservation of SPs that was observed in conotoxins (Olivera et al., 

1999). The toxins have to be targeted and localized rapidly and accurately. Hence, it 

is logical to maintain the conservation of SP sequences. Given these observations, our 

next step was to apply the same analyses as what we have performed on SPs to the 

MPs. The fact that SPs can vary to such an extent, suggests that they will probably 

require the coupled coordination of the MP counterpart in order to achieve such a feat.  

Indeed, several studies have shown such “SP-MP coupling” between the two 

regions to produce an optimal pairing (Brockmeir et al., 2006; Kim et al., 2002). 

There were studies (Li et al., 1988; Summers et al., 1989; Summers and Knowles, 

1989) that have demonstrated how the balance between the two regions could 

influence export efficiency. When we measured the net charge between the two 

regions, the SP region is visibly predisposed to positive net charge, particularly for the 

bacterial SPs (Figure 11). This observation was further examined in detail with the 

tabulation of the occurrences of amino acid residues at various positions (from P10 to 

P10’, with P1/P1’ denoting the cleavage site) flanking the demarcation between the 

two regions (Table 4). Charged residues were observed to occur more frequently at 

the MP, almost immediately upon the cleavage site. 

We then examine the sequences for any observable sequence motif. Except for 

the higher incidence (or perhaps the lack) of certain types of residues at specific 
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positions (Table 4), for instance, higher incidences of Leu upstream of P6 or P7, the 

most significant pattern remains the Ala-X-Ala motif (von Heijne, 1986a) which was 

the essence for the postulation of the “(-3,-1) rule”. According to the rule, only small 

and aliphatic residues are allowed P3 and P1, and aromatic, charged, large polar 

residues including helix breaking residues such as Pro are prohibited. Nevertheless, 

there were small quantities of such prohibited residues occurring at those positions 

(Table 4). Moreover, this motif is observed to occur in only half of the total dataset 

for Gram+ (61.9%), Gram- (77.5%) and eukaryotes (61.6%). The lack of strong motif 

in eukaryotic sequences can possibly be attributed to the more complex mechanisms 

and structures required. Eukaryotic SPases I are known to be more complex than the 

prokaryotic counterpars (Paetzel et al., 2002b). Regardless of this difference between 

the organism groups, P3 and P1 have been known to be critical recognition sites for 

SPases I (Karla et al., 2005). This suggests that there is possibly non-canonical 

cleavage motif where other secretion pathway(s) is/are utilized to secrete these 

proteins.  

In earlier chapter, we posed several questions related to the substrate 

specificity. Specifically, what are the determinants that ensure the high fidelity of 

SPase I excision to occur exactly after the Ala-X-Ala motif and not elsewhere? For 

non-canonical cleavage sites (i.e. non Ala-X-Ala preceded cleavage sites) that do not 

bear any sequence pattern, what are the factors that govern their identification? SPs 

have been reported with numerous roles and functions apart from its usual targeting 

function (Chapter 2). What is the recipe for encoding such enormous amount of 

information within the short peptide length without escalating complexity further? 

Using information theory, our investigation on the sequences did not yield further 

signs that were not already observable from the patterns along the sequence (Table 4; 
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Figure 10). Furthermore, how do the components of the machinery in the secretion 

pathway cope with the degenerate feature of SPs while simultaneously maintaining 

the high specificity and high fidelity requirements in the targeting, recognition and 

cleavage of SPs? Also, why do certain alterations (substitutions, insertions or 

deletions) or mutations are tolerated with muted or no effects while others lead to 

drastic changes which can lead to dire consequences (Gierasch, 1989)? We 

hypothesize that the answer may perhaps lies beyond the linear sequence. 

It is known that a protein is relatively much more stable at the structural level 

during the process of evolution. It usually encounters little change to its shape/fold 

even though the sequence may undergo substantial changes (Eidhammer et al., 2004). 

This essentially means that there may be muted effect upon single/multiple 

substitutions of the amino acid residues, while concurrently susceptible to (drastic) 

rearrangement in conformational structure for a particular change in another residue 

(Pidasheva et al., 2005; Ronald et al., 2008). Extending this concept further, we asked 

if this could account for the recognition of cleavage sites that do not conform to the 

distinctive Ala-X-Ala motif, including the non-canonical ones? 

These questions led us to investigate the structure of SP in complex with its 

cleavage enzyme, SPase I. However, such a structure is not readily available. There 

are only four crystal structures (PDB IDs: 3IIQ, 1T7D, 1KN9 and 1B12) of E. coli 

SPase I in complex with other substrates such as inhibitor or lipopeptide that have 

been resolved through X-ray diffraction and archived in PDB as of this writing. 

Hence, through threading and homology modeling techniques, we have created a 

working model of E. coli periplasmic disulfide-bond A oxidoreductase (DsbA) 13-25 

in complex with its endogenous SPase I (Chapter 5). The resulting model was found 
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to be in good agreement with the known experimental data, thus supporting the 

validity of our model. 

Based on our model, we have identified thirteen subsites (S7 to S6’) within the 

SPase I substrate-binding site which were found to have significant interaction with 

the substrate. At these sites, ten positions for hydrogen bonding were identified to 

possess high affinity binding, thus suggesting that the contact points between the 

enzyme and substrate may extend throughout the P7 to P6’ of the substrate. This 

observation is also supported by our survey of the amino acid residues surrounding 

the cleavage-processing site. These flanking residues are very likely to influence the 

cleavage processing and contribute to non-canonical cleavage sites that were observed 

in our earlier analysis of their sequences (Chapter 4). 

In addition, we found that the subsites S3’/S4’ were able to alter their 

electrostatic requirements by varying their side chain conformations. This may help 

explain the propensity to interact with substrates with charged residues at these 

positions. Furthermore, the large cavity at S3’/S4’ subsites allows for the 

accommodation of medium and large residues. A pronounced twist was observed in 

the backbone between P3 and P1’ (Figure 14), which contain the cleavage site. 

By combining the insights that we have gained from the sequence and 

structural analyses, we were motivated to apply the concept of the structure 

conservation discussed earlier, by modeling the cleavage site recognition problem 

through machine learning technique. The idea is to exploit the spatial features and 

constraints present in the SP-SPase complex. These features were extracted and used 

to train an SVM model. The resulting model was tasked to distinguish between 

secretory and non-secretory sequences, and also to pinpoint the cleavage site if a 

protein is identified as being secretory using SVM. The results from our predictive 
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method called SNIPn, have been encouraging as demonstrated in our benchmark 

study (Chapter 6). It achieved accuracy that is competitive with existing state-of-the-

art prediction methods in the bacterial datasets. Interestingly, our statistical 

examination of some of the most predictive attributes (Figure 25) in the trained model 

revealed similar positional patterns as manifested in the sequence analysis earlier 

(Chapter 4). A recent study has also suggested that so long as certain conformation to 

certain physical properties (charge, hydrophobicity etc.) or structural properties is 

fulfilled (Guo et al., 2008), SPs will be functional as opposed to sole compliance to 

sequence conservation. An earlier study has also advocated for such overall and 

minimal requirements at the sequence and structural levels (Duffaud and Inouye, 

1988). The need for structural conformation may well explain for the disruptive 

effects that were observed when charged or helix-breaking residues are introduced 

into the SPs (Oliver, 1985; Yamamoto et al., 1989). It can also help explain the 

plasticity of eukaryotic and prokaryotic SPase I in mutual recognition of SP cleavage 

sites (Allet et al., 1997; Osborne and Silhavy, 1993; Watts et al., 1983) 

With this combined use of sequence and structural features, SNIPn have been 

able to predict to certain degree of success (without additional modifications to the 

default parameters) for archaeal and viruses sequences (data not shown) as well. 

These results provide support for the shared evolutionary origin of these different 

organism groups. The availability of more sequence and structure data from these 

respective organisms can help to improve SNIPn predictive models, and this aspect of 

evolution could be further explored. Additionally, our structure-based approach could 

be useful in predicting proteins that do not possess ‘classical’ SPs such as FGF1, 

Engrailed homeoproteins and interleukin1 (Joliot et al., 1998; Bendtsen et al., 2005b). 

These proteins do not possess any characteristic motif, and they are secreted through 
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various non-classical pathways (Prudovsky et al., 2003). A recent study has shown 

that methods using amino acid composition, secondary structure and disordered 

regions could identify such proteins (Bendtsen et al., 2005b). 

Our predictive model is among the few tools to involve considerable portion 

of the MP. As described earlier, there may be an optimal pairing between a SP and its 

respective MP (Brockmeier et al., 2006). Additionally, there has been an increasing 

body of evidence that suggests SPs are perhaps not as interchangeable as previously 

thought and they are likely not to be functionally equivalent (Kim et al., 2002). Thus, 

if there is indeed such a coupling between the two segments (part of MP), it is more 

so that this relationship be admitted into the predictive models.  

As to the extent of MP portion that is involved in the cleavage processing, this 

remains an on-going debate. Kajava et al. and several other research groups (Chapter 

2) have advocated MP moiety for consideration that are located much farther 

downstream of the cleavage junction than what we have considered here. We reason 

that involving residues further downstream unnecessarily complicates the recognition 

process particularly when this process is only one of the many critical events that 

occur in the secretory pathway. The biological knowledge that we have gathered thus 

far also do not seem to point to this direction of the extensive involvement of the MP 

moiety (Chapter 2). Furthermore, the support for our stand also draws from the 

statistical results of the top most predictive attributes (Chapter 6) as well as the 

sequence analysis (Chapter 4). These results do not indicate any significant patterns 

beyond P5’. More importantly, we have also demonstrated through the practical 

implementation of a tool that exhibits good accuracy in the recognition of cleavage 

site through a limited number of positions upstream and downstream of the cleavage 

site, in addition to the superb discrimination of secretory and non-secretory signal 
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sequences. Further availability of crystal structures and data relating to SPs shall 

provide clarification on this issue. 

As of this writing, the unanswered questions pertaining to SPs far outnumber 

the answered. Despite more than thirty years since its discovery and the wealth of 

sequence data that has become available, it is remarkable that such a short signal 

sequence remains an enigma to scientists. Fortunately, and with tremendous 

anticipation, the improvements in technology are bringing us closer to critical 

understanding of SP and its underlying mechanisms. New tools and new methods will 

need to be devised to attain the enlightenment. The hasten adoption of computational 

methods complementary to traditional experimental approach shall produce a new 

synergy for us to revisit some of the assumptions that we have made herein as well as 

those that have been reported in current literature. It is all these unknowns that will 

bring about new exciting discovery and elucidation on SPs to harness them for 

potential use in drug design and industrial applications. 

 

7.2 Key Contributions 

This thesis makes several important contributions to the field of SP and related areas. 

They are summarized as follows: 

• Creation of the largest and manually curated N-terminal SPs catalogue 

which is stored in SPdb relational database with integrated information 

derived from Swiss-Prot and EMBL sequence databases. The database is 

accessible from: (http://proline.bic.nus.edu.sg/spdb). Facilities to search 

and download are provided. The update process of SPdb is handled by a 

semi-automated pipeline. This ensures that the database can cope with the 
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growing sequences, thus addressing one of the issues facing many existing 

databases where the dataset becomes outdated as time passes (Choo et al., 

2005). More importantly, SPdb serves as a useful resource to support 

scientific studies and methods development. It is currently in use by the 

global scientific community and it has been listed as a reference database 

under the Wikipedia (http://en.wikipedia.org/wiki/Signal_peptide) 

• Formulation of new techniques and incorporation of several existing 

techniques for the detection of erroneous annotations and the removal of 

the affected sequence entries. This set of filtering rules is collectively 

known as “SP Filtering Rules” (Appendix B). Following the rules ensure a 

filtered set of SP sequences with vastly reduced errors 

 

• Conducted a large-scale analysis of N-terminal SPs involving 2352 

manually curated SP-containing sequences to study the physico-chemical 

properties and their composition. The result from the analysis are used in 

the development of our prediction method 

 

• Development of a 3D computational model of E. coli SP in complex with 

its endogenous type I SPase using existing X-ray crystallographic data of 

E. coli substrate-SPase complexes. This work represents the few reports on 

the modeling of a substrate into the entire SPase I binding site, previous 

studies (Ekici et al., 2007; Karla et al., 2005; Paetzel et al., 2000; Paetzel 

et al., 2002a; Paetzel et al., 2004). Romesberg lab of the Scripps Research 

Institute has requested the theoretical model for their design work in 

finding inhibitors of bacterial SPase I. Such theoretical model can serve as 

template for further investigation into antibiotic design 
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• Development of three PWMs, one for each organism group. These 

matrices require lesser number of positions than previously suggested 

positions to achieve favorable results in the identification of (bacterial) SP 

cleavage sites 

• Development of a novel technique using SVM for SP prediction (presence 

detection and cleavage site identification). The resulting system called 

SNIPn, achieved accuracy that is competitive with existing leading 

prediction tools (in bacterial datasets where structure data is available) 

when it was benchmarked using various test sets (including new sequence 

data). While existing approaches have mainly explored the linear sequence 

and a few approaches that exploit the secondary information using 

physico-chemical properties, the combination of structure and sequence 

information through the use of homology modeling represents a fresh 

approach in SP prediction  

 

• Conducted a comprehensive benchmark study involving all the leading SP 

prediction tools using standardized curated datasets to allow proper 

comparison between the different tools for the different organism groups. 

The last time such study was conducted by Menne et al. in 2000 but many 

prediction tools have since been introduced 

 

• Errors were discovered in some of the publicly available resources during 

the course of this study and they were reported to the respective sources: 

o Sequences – the annotation errors were reported to Swiss-Prot 

o Prediction tools – the errors discovered while testing with the 
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prediction tool Philius were highlighted to one of the authors (Sheila 

M. Reynolds, University of Washington) where they have responded 

with modification to their prediction application 

 

7.3 Future Direction  

This project has considerable scope for expansion. The work done in Chapter 3 paves 

the way for further development that will facilitate the extraction of other types of 

targeting signals and integrate them into SPdb to form a unified repository for all 

targeting signals. Facing the similar problem as SPs, these targeting signals currently 

do not have a dedicated repository that catalogue and curate them as what has been 

attempted in this study. Such central repository is crucial in providing a standardized 

resource for researchers and tool developers alike to benchmark their methods. 

Another line of work that is to explore the extraction of additional annotations such as 

mutation information on SP and other residue information related to SP through text-

mining approach. This work could potentially help to discover new knowledge 

embedded within the voluminous literature. Preliminary work on this line of work is 

currently underway and part of the work has been published (Kanagasabai, 2007). 

Further potential uses based on SPdb have been outlined earlier. 

 The work done in Chapter 4 has shown that the distribution and composition 

of amino acids and other their physico-chemical properties are markedly different in 

the different regions. In subcellular localizations, many works have exploited such 

features to develop localizations prediction tools. The analysis from Chapter 4 

similarly can be applied to other targeting signals to advance the prediction techniques 

in that area. Also, subcellular localizations information can be further integrated into 
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SPdb and to create a “Cell-wide Targeting Signals Map” of the different proteins that 

have been sequenced and annotated. Such work could help to provide yet another 

perspective to investigate SPs and to impact on other areas. 

 The work in Chapter 5 represents the author’s effort to generate a theoretical 

model of the SP-SPase-complex. The technique can be repeated to other known SPs 

to investigate how they come in contact with the receptor. Also, it would be 

interesting to investigate the conformation upon mutation residues in the structure just 

as what was being done by using site-directed mutagenesis (Karla et al., 2005). This 

can gives us a clue of how the different SPs can be bounded. This could contribute to 

the effort of providing a novel target for antibiotic design. Further, with the 

availability of more 3D structures, particularly if a SPase-SP-complex is available, it 

would be interesting to compare those structures with the current model. 

 In Chapter 6, we have developed SNIPn, a new prediction method for the 

prediction of SP that has achieved good accuracy, particularly in the bacterial 

datasets. Since the method exploited structural features of SPs, it can be applied to the 

so called “non-classical SPs”, which do not bear any sequence motifs. Furthermore, 

although we have conducted preliminary testing on eukaryotic, archaeal and viral 

(data not shown) sequences, the results are not comparable to the results in bacterial 

datasets. This is because SNIPn currently uses the Gram- bacteria (E. coli) structure 

template to model for all organisms. With the availability of more sequences and 3D 

structure data, it will be interesting to apply the same technique to re-model for each 

organism group and to examine the respective accuracy. The concept of exploiting 

sequence and structural information could also be extended as a possible means to 

study other targeting signals since such signal sequences do undergo the recognition 

and cleavage processes. 
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 For now, SNIPn can be useful in certain domains. One example is to use it for 

predicting the start of a protein sequence as it is often a challenging task since the 

beginning of the sequence depends on various elements such as promoters, splicing 

and so on. Another use is to identify potential (novel) secreted proteins in genomic 

studies, thus adding yet another tool for the discovery of novel secreted biomarkers 

(Diamandis, 2004; Xue et al., 2008). Also, many experimental SPs-related studies 

often alter amino acid at various positions along the SP or portion of the MP through 

site-directed mutagenesis to study the effect.  This is similarly conducted in works 

that seek to design efficient, or optimize existing SPs or sometimes simply to design 

synthetic functional SPs. These works are often complex and time-consuming where a 

multitude of parameters have to be varied while keeping the overall properties in 

balance (Jain et al., 1994). The prediction method developed in this work can aid in 

modeling virtual constructs or simply to serve as a preliminary tool for the 

verification of a potential SP. 

  

7.4 Publications and Presentations Summary  

The work described in this thesis has been published in several international peer-

reviewed journals and a book chapter as a co-author. Our paper titled “SPdb: A signal 

peptide database” was designated “Highly accessed” by BMC Bioinformatics. 

Various parts of this work were presented at several national and international 

conferences or symposiums. The paper titled “A comprehensive assessment of N-

terminal signal peptides prediction methods” was awarded Best Paper Award at the 

International Conference on Bioinformatics (InCoB) 2009. 

 



 154 

7.4.1 Journal papers  

1. Choo, K. H., Tan, T. W., Ranganathan, S., 2009. A comprehensive assessment 

of N-terminal signal peptides prediction methods. BMC Bioinformatics. 

10(15):S2. 

2. Choo, K. H., Ranganathan, S., 2008. Flanking signal and mature peptide 

residues influence signal peptide cleavage. BMC Bioinformatics. 9(12):S15. 

3. Choo, K. H., Tong, J. C., Ranganathan, S., 2008. Modeling Escherichia coli 

signal peptidase complex with bound substrate: determinants in the mature 

peptide influencing signal peptide cleavage. BMC Bioinformatics. 9(1):S15. 

4. Choo, K. H., Tan, T. W., Ranganathan, S., 2005. SPdb: A signal peptide 

database. BMC Bioinformatics, 6:249-257. 

5. Choo, K. H., Tong, J. C., Zhang, L. X., 2004. Recent applications of hidden 

Markov models in computational biology – A Review. Genomics, Proteomics 

& Bioinformatics, 2: 84-96. 

 

7.4.2 Book chapter  

1. Tan, T. W., Choo, K. H., Tong, J. C., Tammi, M. T., Bajic, V., 2004. Biological 

databases and web services: metrics for qualitative analysis. In: Information 

Processing and Living Systems. Edited by Tan, T. W. and Bajic, V. World 

Scientific Publishing Co., vol. 2. World Scientific Publishing Co., pp. 771-778. 

(The findings and insights obtained from this work were incorporated and 

applied to the development of the pipeline for generating SPdb) 
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7.4.3 Oral presentations  

1. 1st Biochemistry Student Symposium, Sep 2008, Singapore. Signal peptide and 

its adjacent residues. 

2. 1st Symposium on Computational Biology (SYMBIO 2008), Aug 2008, 

Singapore. Slicing and dicing bacterial and eukaryotic amino-terminal targeting 

signals through bioinformatics gadgetry. 

3. Pre-18th The Federation of Asian and Oceanian Biochemists and Molecular 

Biologists (FAOBMB) symposium satellite workshop on bioinformatics, Nov 

2005, Lahore, Pakistan. Automating biological database creation. 

4. 1st Association for Medical and Bio-Informatics, Singapore (AMBIS) 

bioinformatics symposium, Aug 2003, Singapore. Signal peptide 

bioinformatics. 

 

7.4.4 Poster presentations  

1. The 12th International Conference on Intelligent Systems Molecular Biology 

(ISMB), Aug 2004, Glasgow, Scotland, UK. SPD: a signal peptide database. 

2. The 8th Annual International Conference on Research in Computational 

Molecular Biology (RECOMB), Mar 2004, San Diego, USA. Protein family 

classification using Support Vector Machines. 
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Appendix A: Standard Amino Acid Abbreviations 

Name of Amino Acid 3-Letter Code 1-Letter Code 
Alanine Ala A 
Arginine Arg R 

Asparagine Asn N 
Aspartic acid Asp D 

Cysteine Cys C 
Glutamic acid Glu E 

Glutamine Gln Q 
Glycine Gly G 
Histidine His H 
Isoleucine Ile I 
Leucine Leu L 
Lysine Lys K 

Methionine Met M 
Phenylalanine Phe F 

Proline Pro P 
Serine Ser S 

Threonine Thr T 
Tryptophan Trp W 

Tyrosine Tyr Y 
Valine Val V 
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Appendix B: SP Filtering Rules (Version 2.0) 

The collection of rules listed here is a combination of several good practices proposed 

in previous works (Nielsen, et al., 1996; Nielsen and Krogh, 1998; Emanuelsson, et 

al., 2000; Menne, et al., 2000; Chou and Shen, 2007; Plewczynski, et al., 2008) and 

also newly formulated rules proposed along the course of this work. Applying this set 

of rules to the databases (see [A]) enables the generation of a preliminary filtered set 

of SPs with significantly reduced errors. The resulting filtered set will still require 

manual curation since there may be entries with inconsistency in annotation (e.g. an 

entry may not be tagged as containing putative results even if that is the case). 

 
[A] Databases required: 

(i) UniProt-KB/Swiss-Prot (exclude TrEMBL) 

Organisms with these keywords are classified as Gram-positive bacteria: 

Firmicutes, Actinobacteria, Deinococcus-Thermus, Fibrobacteres, 

Thermotogae, Chloroflexi, Dictyoglomi 
 

Organisms with these keywords are classified as Gram-negative bacteria: 

Proteobacteria, Planctomycetes, Fusobacteria, Acidobacteria, Chlorobi, 

Spirochaetes, Bacteroidetes, Cyanobacteria, Aquificae, Chlamydiae, 

Verrucomicrobia 

 

(ii) EMBL 

EMBL data categories: 
(http://www.ebi.ac.uk/embl/Documentation/Release_notes/current/relnotes.html) 

 
Entries belonging to these data groups are retained for integration: 
Fungi, human, invertebrate, mouse, organelle, plant, prokaryote, rodent, viral, 
mammals and vertebrate 

 
Entries belonging to the data groups are omitted: 
Expressed sequence tags, bacteriophage, genome survey sequences, high-
throughput genome sequences, unfinished DNA sequences generated by high-
throughput sequencing, patent sequences, synthetic sequences, contig 
sequences and unclassified. 
 

(iii) Protein Data Bank (PDB) 
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[B] Detailed procedures: 

1. Retain only entries tagged with the SIGNAL keyword in the feature table FT 

field (http://www.expasy.org/sprot/userman.html#FT_line). This essentially 

omits mTP and cTP since transit peptides are identified by the keyword 

TRANSIT 

 

2. Entries that are found  

WITHOUT 

• Accession number (AC) 

• date of creation or last annotation (DT) 

• taxonomic classification (OC) 

• SIGNAL keyword (FT) 

• sequence data (SQ) 

• Met as the starting residue (SQ) 

• Mature peptide portion (SQ) 

or 
 
WITH 

• fragment (DE) 

• organellar proteins (OG) 

• cell wall e.g. mollicutes (OC) 

• PROKAR_LIPOPROTEIN (DR) – they are cleaved by SPase II-

cleaved lipoprotein SPs (Taylor, et al., 2006) 

• Tat-type signal (FT) – rely on different mechanism for processing 

cleavage site (Blaudeck, et al., 2001) 

• not cleaved (FT) 

• non-standard amino acids as identified by the characters ‘X’, ‘Z’ or 

‘U’ found in sequence 

 
are all omitted from further parsing 

 
3. Entries annotated with keywords such as PROBABLE, POTENTIAL, BY 

SIMILARITY, HYPOTHETICAL, MISSING, INFERRED, PUTATIVE AND 

CONFLICT are tagged to be unverified 
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4. Entries with ambiguous positions (either at the cleavage site or at the starting 

position) are designated as unverified. Such entries may be due to its sequence 

being partially sequenced. It may also be the case where some of these positions 

were not determined in the experiment. Part of the MP region that is used in the 

entry is also checked for such ambiguity. 

 

5. SPs with length less than 11aa are tagged as unverified set since SPs are 

generally considered to be of length 15 to 40 with the shortest being 11aa 

 
6. Use the 1st cross-reference under EMBL field in Swiss-Prot entry to 

automatically integrate the information from EMBL database. Those entries 

without any EMBL reference are removed. 

Swiss-Prot entries with status identifiers that appear in the DR field are sent for 

manual curation (http://www.expasy.org/sprot/userman.html#DR_line): 

(i) lack of annotations in the EMBL entries; 

(ii) indicated with annotation such as NOT_ANNOTATED_CDS, 

ALT_INIT, ALT_SEQ in their EMBL cross-references 

 

7. The fields from EMBL: sig_region and misc are checked against the Swiss-Prot 

entries. This enables identification of inconsistency in positions quoted by 

either sources 

 


