SYSTEM-LEVEL MODELING AND ANALYSIS OF
MULTIMEDIA-SOC PLATFORMS

YANHONG LIU

(M.Eng., Institute of Computing Technology,

Chinese Academy of Sciences)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

Acknowledgments

Numerous people have supported me during the development of this dissertation, and my
graduate experience more generally. Mentioning a few words here cannot adequately cap-
ture all my appreciation.

| would like to show my sincerest gratitude to my advisor Dr. Samatrjit Chakraborty. |
thank him for his devoted guidance and constant encouragement. | think | can never stop
learning from his insight into the research area, intellect and inspiration. | also benefit a lot
from the fact that Dr. Samarjit Chakraborty, as a generous and kind advisor, always helps
students not only on academic growth, but also on their lives.

| also thank my other advisor Dr. Wei Tsang Ooi. | thank him for his generous help
and guidance at the beginning of my life at the university. | am very impressed by his
academic strictness. | would like to thank him for the continuous advising, suggestions and
comments on the work related to this dissertation as well.

| have been lucky to have the opportunity of working with Dr. Radu Marculescu (from
CMU) and Dr. Tulika Mitra and learnt a lot from them. | want to give my special thanks to
Dr. Alexander Maxiaguine (from ETH). The cooperative work with him helps me to get a
quick start of the simulation platforms used.

| would also like to thank the members of my dissertation committee, Dr. Wong Weng
Fai and Dr. Ee-Chien Chang, for many useful interactions, and for contributing their broad
perspective in refining the ideas in this dissertation.

| would like to thank the National University of Singapore for the research scholarship
that makes this study possible and the administrative staff here for their support in the
various aspects of academy and life.

Of many other friends and colleagues, | want to thank Dr. Yongxin Zhu for the help on

some issues of simulations. Thanks also go to Lin Ma, Balaji Raman, Huaxin Xu, Qinghua

Shen, Zhiguo Ge, NGUYEN Dang Kathy, Yun Liang, Jimin Feng, Yu Pan etc. for the help
and fun.

As always, | thank my family for their love and continuous encouragement. My parents
always do whatever to avoid me to distract from the study. My brother helps to take care of
my parents and to manage the family matters, which I should have shared with. My sister
always devotes her help to me whenever need and often encourages me to do my best. |
also thank the extended family members for their support.

Last, my most tender and sincere thanks go to my wife, Lili Zhang. Thanks for her

self-giving help and support in innumerable ways.

List of Publications

. Alexander Maxiaguine, Yanhong Liu, Samarjit Chakraborty and Wei Tsang Ooi.
ldentifying “Representative” Workloads in Designing MpSoC Platforms for Media
Processing. I"2nd Workshop on Embedded Systems for Real-Time Multimedia (ES-
TIMedia), Stockholm, Sweden, September 2004.

. Yanhong Liu, Alexander Maxiaguine, Samarjit Chakraborty and Wei Tsang Ooi.
Processor Frequency Selection for SoC Platforms for Multimedia Applications. In
IEEE Real-Time Systems Symposium (RTESkhon, Portugal, December 2004.

(Rank 1 Conference)

. Yanhong Liu, Samarjit Chakraborty and Wei Tsang Ooi. Approximate VCCs: A
New Characterization of Multimedia Workloads for System-level MpSoC Design.
In Proceedings of the Design Automation Conference (DA@Gaheim, California,

June 2005. (Rank 1 Conference, Best Paper Award Nomination)

. Yanhong Liu, Samarjit Chakraborty, Wei Tsang Ooi, Ashish Gupta, and Subra-
manian Mohan. Workload Characterization and Cost-Quality Tradeoffs in MPEG-4
Decoding on Resource-Constrained Devices3rd Workshop on Embedded Sys-
tems for Real-Time Multimedia (ESTIMedi)ew York Metropolitan area, Septem-
ber 2005.

. Yanhong Liu, Samarjit Chakraborty, and Radu Marculescu. Generalized Rate Analy-
sis for Media-Processing Platforms. 18th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RT&&ey, Au-

gust 2006.

. Samarjit Chakraborty, Yanhong Liu, Nikolay Stoimenov, Lothar Thiele, and Ernesto

Wandeler. Interface-Based Rate Analysis of Embedded SystenisEEReal-Time
Systems Symposium (RTS8 de Janeiro, December 2006. (Rank 1 Conference)

Contents

List of Tables Vi
List of Figures Vil
Chapter 1 Introduction 1

1.1 Motivation
1.2 Thesis Contributions e

1.3 Organizationofthe Thesis

Chapter 2 Background and Related Work 5
21 MpSoCPlatforms e
2.2 Y-chart Scheme of Designing SoC Platforms

2.2.1 Models of Computation
2.2.2 Models of Architecture oo

2.2.3 Performance Analysis

2.3 SoC Design for Multimedia Applications 10

2.4 Characterization of MultimediaWorkloads

2.5 Network CalculusTheory 14
Chapter 3 Fundamental Models and Techniques 16
3.1 Models of Application and Architecture 16

3.2 Multimedia Workload Characterization.
3.3 Performance Analysis

3.4 Experimental Setup e

Chapter 4 Characterizing Multimedia Workloads: Obtaining VCCs 26

4.1 Measuring VCCsfor Single Stream 29
4.2 Classificationof Streams 30
4.2.1 Measuring Dissimilarity between Two Streams 31
4.2.2 Clustering of Similar Streams, 32
4.3 Empirical Validation 32
44 SUMMAIY o e e e e e e 39
Chapter 5 System Design Case I: Processor Frequency Selection 41
5.1 Our Results and Relation to Previous Work 43
5.2 Problem Formulation 45
5.3 Computing Bounds on Service Requirements 48
5.3.1 Computing Service Bounds foCéassof Streams 50
5.3.1.1 ComputingtheBoundgi 51
5.3.1.2 Computingthe Boundatt 52

5.3.2 Computing Service Bounds in Terms of Number of Processor Cycles 52

5.3.3 Bounding the Analysis Interval 54

5.3.4 Extending the AnalysistoOtherPEs 55
5.4 Computing Processor Frequency Range 56
55 CaseStudy e 59

5.5.1 Computing the Service Bounds and the Frequency RandgeHer. 61

5.5.2 \Validation of the AnalyticalBounds 65
5.5.3 Selection of the AnalysisInterval 66
5.6 Summary e e e 67
Chapter 6 System Design Case II: Generalized Rate Analysis 71
6.1 Problem Formulation 73
6.2 Rate Analysis 76
6.2.1 TheSingleStreamCase 76

6.2.2 The Case of Multiple Streams 79

6.2.2.1 Fixed-Priority Scheduling 80

6.2.2.2 Time Division Multiplexing 85
6.2.3 Multiple ProcessingElements 85
6.3 Experimental Evaluation 86
6.3.1 The Single StreamCase 89
6.3.2 The Case of Multiple Streams 91
6.4 Related Work 92
6.5 Summary 94

Chapter 7 Approximate VCCs: A New Characterization of Multimedia Work-

loads 101
7.1 Formulationof VCCs 105
7.2 Approximate VCCS e 106
7.3 ErrorAnalysis 108
7.3.1 On-ChipBufferSizing 108
7.3.2 Processor Frequency Selection 111
7.4 Empirical Validation 114
7.4.1 BufferSizing 114
7.4.2 Frequency Selectiono 118
7.5 SUMMANY e e e e e e 119
Chapter 8 Conclusion 120
8.1 Modeling of Multimedia Workloads 120
8.2 Designand Analysis 121
8.3 New Characterization of Multimedia Workloads 122
8.4 Future Work 123

Summary

Currently there is a considerable interest in designing general-purpose configurable System-
on-Chip (SoC) platforms specifically targeted towards implementing multimedia applica-
tions. Determining the optimal configuration for such platforms is especially difficult due

to the various kinds of variabilities arising out of multimedia processing, such as the high
variability in the execution requirements of multimedia streams and the burstiness in the
on-chip traffic. System-level design and analysis methods are then desired for such plat-
forms, which take into account such variabilities.

In this thesis we propose an analytical framework that can be used in the design space
exploration and performance analysis of multimedia SoC platforms. Our work includes the
following contributions.

Firstly, we adopt the concept ofriability characterization curvet characterize the
worst-case behaviours of multimedia workloads. An analytical scheme is also presented to
obtain such characterization curves for a large library of potential inputs to the system.

Secondly, to illustrate the utility of our framework, we present analytical approaches
for two typical system design cases. In the first case, we address the problem of identifying
the frequency ranges that should be supported by different processors of a platform in order
to run a target multimedia workload. In the other case, we determine tight bounds on the
arrival rates of different multimedia streams at a platform such that predefined quality-of-
service (Qo0S) constraints are met.

Finally, we propose the concept approximate variability characterization curveés
characterize the average-case behaviours of multimedia workloads. “Average-case” analy-
sis using this concept can be used to derive tradeoffs between resource savings and QoS
constraints. In this thesis we present error analysis algorithms to bound the extent to which

such QoS constraints can be satisfied.

Our proposed framework can be used to precisely model multimedia workloads and es-
timate various performance parameters for multimedia SoC platforms in a seamless man-
ner. Compared to purely simulation-oriented approaches, our framework provides provable

performance guarantees and involves analysis times which are significantly shorter.

4.1
4.2
4.3

5.1

6.1
6.2
6.3
6.4

7.1

List of Tables

MPEG-2 video clips used in our experiments. 34
Maximum dissimilarity between fragments of the same scene. 36
Measured maximum buffer backlogs. 40

The maximum buffer fill levels obtained by simulating a static frequency
schedule forP E, that was derived using the proposed framewarkleo,

(videos) andvideo, (videoy) are 4 Mbps and 8 Mbps MPEG-2 video streams

respectively. L 69
Summary of the input arrivalbounds. 84
Summary of the bounds on bufferoverflow. 85
Scenarios for the single streamcase. 89
Scenarios for the multiple streamscase. 89

Analytical bounds and simulation results on the percentage of macroblocks

that miss their deadlines, for different valuesof. 119

Vi

2.1

3.1

3.2

3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

5.1

5.2
5.3

List of Figures

Y-chartscheme. 7
lllustration of the mapping of a multimedia application modeled as a KPN

onto an MpSoC platform architecture modeled at abstract level. 17
An MpSoC platform onto which an MPEG-2 decoder application is parti-
tionedand mapped. 17
lllustration of workload curve. 20
lllustration of arrival curvev. 21
lllustration of servicecurve. 22
lllustration of consumptioncurve 23
(744, 71q) for different fragments of video 5 and video 10. 35
Classification based aif,, only for alltheclips. 37
Classification based oy}, only for the clips in Category A. 38
Classification based oy}, , only for the clips in Category A. 39
Clustertree. 39
System-level view of multimedia processing on a multiprocessor SoC plat-
form. . . . e 46
Algorithm of Computing Frequency Range. 60
Arrival curvesa!, o*) of the macroblock stream on the outputif; for

the video sequenceideo;. A fragment of the function:(¢) for video, is
shown in this figure. Note that it is bounded by the corresponding arrival

CUIVES. . . o o o e e e e e e e e e e e e e e s 62

Vil

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12

6.1

6.2
6.3

Service bound&!, o*) for video, for two different system configurations

C1 andC2, whereC1 = {B, = 4000, B, = 7000} andC2 = {By =

4500, B, = 6500}. . . . e 63
Service boundg’, %) computed using VCCs and service boufis o)
computed using a simple modeling schemeuiaieo, for system configu-
rationC' = {B, = 12000, B, = 16000}. 64
Dependency of frequency ranges on the playout buffer size for two different
classes of the MPEG-2 video streams with more motion: 4 Mbji&:¢;)

and 8 Mbps (ideo,). The size of buffer3, is fixed to3000 macroblocks. . 65
Dependency of frequency ranges on the playout buffer size for two different
classes of the MPEG-2 video streams with less motion: 4 Mbp&:¢s)

and 8 Mbps (ideo,). The size of buffer3, is fixed to3000 macroblocks. . 66
Dependency of frequency ranges on the internal buffer size for two dif-
ferent classes of the MPEG-2 video streams with more motion: 4 Mbps
(videoy) and 8 Mbps (ideos). The size of buffeB, is fixed to6000 mac-
roblocks. 67
Dependency of frequency ranges on the internal buffer size for two dif-
ferent classes of the MPEG-2 video streams with less motion: 4 Mbps

(videos) and 8 Mbps qideos). The size of buffer, is fixed to6000 mac-

roblocks. 68
Two randomly generated schedules obtained from the service beunds 69

An illustration of the service bounddor a longer time interval. 70

The frequency ranges computed for different values of the analysis interval. 70
An MpSoC platform processing two concurrent MPEG-2 streams for a PiP
application. 72
Processingasinglestream. 75
Processing multiple streams. oL 76

viii

6.4 A graphical illustration of the playout buffer underflow constraint in terms
of of, o} and the playbackdelay. 78
6.5 lllustration of deriving an upperbound eff,. 83
6.6 Scenario 1: (a) Computed and measured bounds on the arrival rate, (b)
Measured input buffer fill level, (c) Measured playout buffer fill level. . . . 95
6.7 Scenario 2: (a) Computed and measured bounds on the arrival rate, (b)
Measured input buffer fill level, (c) Measured playout buffer fill level. . . . 96
6.8 Scenario 4: (a) Computed and measured bounds on the arrival rate, (b)
Measured input buffer fill level, (c) Measured playout buffer fill level. . . . 97
6.9 Buffer fill levels in the single stream case: (a) Computed versus measured
maximum fill level of the input buffer, (b) Computed versus measured max-
imum fill level of the playout buffer, (c) Measured minimum playout buffer
filllevel. 98
6.10 Buffer fill levels in the multiple streams case: (a) Computed versus mea-
sured maximum fill level of the input buffer, (b) Computed versus measured
maximum fill level of the playout buffer, (c) Measured minimum playout
buffer filllevel. 98
6.11 Bounds on the arrival rate computed using VCCs and a simple modeling
schemefal, a¥) and(Sa, Sau). - o 99
6.12 o — o, for two scenarios, with different values /w, for a TDM scheduler. 99
6.13 Bounds on the arrival rate of a stre@m,;,,, Ta.) and(al, o) with play-

back delay valueof.3sec. o 100

7.1 Processor cycle requirements of a sequence of macroblocks for an MPEG-2
decoder application. 102

7.2 Histogram of the processor cycle demand per macroblock for an MPEG-2
video. The minimum and the maximum cycle demand2at& and92247
respectively. e 103

7.3 Approximate workload curves. Lo 107

7.4
7.5
7.6
7.7

7.8

lllustration of frequency analysis 113
Computed buffer sizes for different valuesof 115
Percentage of macroblocks dropped frBpfor different values ot. . . . 116
Probability of macroblocks dropped froBs for different values of buffer

SIZES. . . . e e 117
Frequency values @tFE, for differentvaluesot. 118

Chapter 1

Introduction

1.1 Motivation

Today multimedia applications run on a wide range of consumer electronic devices, ranging
from set-top boxes to PDAs and mobile phones. Because of flexibility, low design costs
and time-to-market advantages, very often such devices are now designed using general-
purpose configurable multiprocessor System-on-Chip (MpSoC) platforms. Examples of
such platforms are the Eclipse architecture template [77, 79] and the Viper SoC architecture
[31] from Philips that target advanced set-top box and DTV markets, OMAP from Texas
Instruments [67] and PrimeXsys from ARM [71]. Many of these platforms are typically
designed to process concurrent streams of audio and video data associated with broadband
multimedia services and, at the same time, perform network packet processing to support
high-speed Internet access.

One of the major problems that a designer has to address while using such platforms
is the issue of platform configuration. Such platforms are typically designeddiasaof
applications. Given a particular application belonging to this class, the platform is tuned
(or configured) to perform optimally when running this application. Configuring a platform
may involve determining the size of on-chip buffers, bus width, cache configurations, etc.
and also the parameters for different schedulers and bus arbitration policies.

Determining an optimal platform configuration is typically not easy and involves sev-
eral design tradeoffs and constraints imposed by the platform itself. It should be fully con-

sidered about the flexibility, cost, performance and power consumption characteristics of

the designed platform. For example, lowering the power consumption may imply degraded
performance, and increasing flexibility is usually associated with increased cost and low
performance. Additionally, a designer may face challenges due to rapidly changing pro-
tocols and time-to-market pressure. This problem becomes even more challenging in the
context ofdesigningSoC platforms for multimedia devices, because of the high compu-
tational demands, real-time constraints, and low power consumption requirements of such
devices and various kinds of variabilities associated with multimedia processing. Also,
the underlyingdesign spaceés quite large and purely simulation-based techniques involve
prohibitively high running time. Such considerations have led to an increasing demand for
analysis techniques and system-level design tools for MpSoC platforms.

Research efforts have been paid to design multimedia SoC platforms using analytical
techniques. Very little work, however, has fully taken into account the characterization
of multimedia workloads during the design of SoC platforms. As we have mentioned,
multimedia applications exhibit high computational requirements and various kinds of data-
dependent variability. For example, arrival patterns of multimedia streams at the input of
the system may have a bursty nature. The number of bits to encode a frame or macroblock is
highly variable. The execution demand of a task may vary a lot from activation to activation
due to data-dependent program flow. Such kinds of variabilities have a great impact on
the selection of configuration parameters of SoC platforms and should be fully explored.
Stochastic models (e.g. queuing models) fail to accurately model these variabilities and
can only provide stochastic performance guarantees. A powerful analytical framework is
desired for the design of multimedia SoC platforms that can fully capture the characteristics

of multimedia workloads.

1.2 Thesis Contributions

This thesis presents an analytical framework for the system-level design of SoC platform
architectures for multimedia applications. The proposed framework is based on the theory

of Network Calculug16], which was originally developed and is still largely used in the

context of analyzing communication networks. Recently, it was extended to the domain

of real-time systems. It was developed to analyze the SoC architectures in the context of
network processors [21, 85] and further extended to the domain of general SoC platform
architectures [20]. This research follows this line of development and extends the theory to
analyze the SoC platforms for multimedia applications.

Firstly, we borrow the concept ofariability characterization curvegVCCs) [63] to
characterize the worst-case characteristics of multimedia workloads, which are based on
the various concepts of “curves” introduced in the theory of network calculus. Using the
concept of VCCs, we propose a methodology of identifying "representative” workloads
from a large library of multimedia streams that can potentially run on the platform, the
amount of which may be too huge to analyze all these streams. The VCCs measured
for these set of selected streams are then used to represent the workloads imposed on the
platform.

Secondly, based on the accurate model of the multimedia workloads (i.e. VCCs), we
propose system-level analytical solutions for two typical cases of SoC platform design:
on-chip processor frequency selection and rate analysis. In the first case, our analytical
approaches can guide a system designer in identifying the frequency ranges that should
be supported by the different processors of a platform architecture. In the latter case, we
address the problem of determining tight bounds on the rates at which different multimedia
streams can be fed into a platform architecture. We believe that under our proposed frame-
work, effective analytical solutions can also be developed to determine other configuration
parameters for SoC platforms.

Finally, we propose a novel conceptagproximate variability characterization curves
(or approximate VCCs) to characterize the “average-case” behavior of multimedia work-
loads. The concept is defined in a parameterized fashion, which denotes the amount of the
worst-case scenarios that is discarded. Analysis algorithms are also developed to quantita-
tively account for the performance degradation and the associated resource savings corre-
sponding to different values of the parameter.

The proposed analytical framework provides powerful and effective analytical approaches

for the SoC platform design in the context of multimedia applications. It should be helpful
in the design space exploration of such platforms and to greatly reduce the design cycle.
It should help a system designer to achieve the various kinds of tradeoffs in the platform
design, by considering multimedia workload characterization and the platform design in
a uniform way. The proposed framework captures fully the characteristics of multime-
dia workloads imposed on the platforms, such as various kinds of variability arising from
multimedia processing. It should be able to analyze various performance metrics for the
targeted platforms and to determine various configuration parameters for a platform, given
the applications to be supported by the platform. On the other hand, it should be able to
determine the characteristics that the applications should satisfy given the platform whose
parameters are known. The proposed scheme of average-case characterization of multi-
media workloads may achieve great resource savings when applied in the design of SoC

platforms, due to the high variability presented in multimedia processing.

1.3 Organization of the Thesis

The organization of the thesis is as follows. In the next chapter, we introduce the back-
ground and review the related literature. In Chapter 3, we conduct the overview of fun-
damental models, the concept of VCCs, basic methodologies and experimental setup that
we have used. In Chapter 4, we present our methodology of identifying “representative”
workloads, from which VCCs are measured. It is followed by the analytical approaches
proposed for two typical system design problems: on-chip processor frequency selection
and rate analysis, which are presented in Chapters 5 and 6 respectively. The concept of ap-
proximate VCCs is then introduced in Chapter 7 and algorithms are presented to quantify
the performance degradation and resource savings for two system design cases. Finally, we

summarize the thesis and talk about the future work.

Chapter 2

Background and Related Work

2.1 MpSoC Platforms

The ever increasing complexity of SoCs and the pressures of short time-to-market and low
cost requirements for SoC designs, has led to new design paradigms such as platform-
based design [47]. This paradigm encourages the extensive reuse of common architectural
components that can be shared among a variety of applications as well as can support
the future evolutions of applications, in order to reduce the overwhelming cost of chip
design and manufacturing. Based on this idea, general-purpose configurable SoC platforms
use complex on-chip networks to integrate multiple intellectual property (IP) blocks or
cores from some libraries (such as the IBM Blue Logic Core Library [43]) (or a third-
party vendor) on a single chip. Example of the IP blocks or cores that might be included

in such a platform are configurable processors, parameterized caches, specialized memory
hierarchies, flexible bus architectures, programmable logic and parameterized coprocessors
etc. These IP blocks or cores are already predesigned and verified and hence the designer
need not take care of the specific implementation of these individual components, while
only concentrating on the overall system.

In a general-purpose configurable SoC platform, the interconnected components and/or
architecture parameters can be customized towards the requirements of the target applica-
tion (or applications) that might run on this platform. Examples of such generic platforms
are PrimeXsys from ARM [71] and AcurX from Plamchip [3]. These platforms are tar-

geted towards a wide range of applications starting from DVD players and set-top boxes,

to network routers and network security processors.

Although application-specific hardware (e.g., ASICs and custom SoCs) are customized
for a particular application domain and have the benefits of high performance capacity, low
power consumption, and small size, they are usually associated with heavy engineering
costs, slow time-to-market and inability to make provision for post-deployment upgrades
(hence reduced time-in-market). On the other end, solutions purely based on general-
purpose processors have the advantage of high degree of flexibility, enabling upgrades,
and shorter design cycles, but often fall short of performance and power requirements.
General-purpose configurable platforms, when used in a naive manner, still show a signifi-
cant difference in the performance and power utilization characteristics, compared to more
specialized solutions.

To bridge this gap, techniques are proposed to customize general-purpose configurable
platforms for specific applications. Such application-specific platforms are customized for
a particular application domain, but still support sufficient flexibility to allow them to be
configured for specific products belonging to that domain. An example of such a platform
is OMAP from Texas Instruments [67], which allow multimedia capabilities to be included
in 2.5G and 3G wireless handsets and PDAs. The Eclipse architecture template [77] and the
Viper SoC architecture [31], from Philips, are also examples of such application-specific

platforms which target advanced set-top box and DTV markets.

2.2 Y-chart Scheme of Designing SoC Platforms

To get the optimal configuration of a complex SoC platform for target applications, the
design space should be effectively explored, by taking fully into account both the applica-
tion and architecture aspects of the platform under study. A common approach to follow in
the design of SoC platforms is the Y-chart scheme [33, 48], as shown in Figure 2.1. This
scheme requires to make a clear distinction between application and architecture to allow
more effective exploration of alternative solutions, which is encouraged by the system de-

sign paradigm obrthogonalization of concerrigd7]. Firstly, the designer characterizes the

4 application architecture <
' modeling modeling

| performance
; analysis

Figure 2.1: Y-chart scheme.

target application (applications), makes some initial calculations and proposes a candidate
architecture. Then the application is partitioned and explicitly mapped onto the differ-
ent architectural components. Next, performance analysis is conducted to quantitatively
evaluate the application-architecture combination. According to the resulting performance
numbers, the designer may decide to go ahead with the chosen architecture, or try to get
better performance numbers by reconfiguring the architecture, restructuring the application
or modifying the mapping of the application. This process is reiterated until satisfactory
performance figures are achieved.

In Figure 2.1, both the application and the architecture are modeled separately. The
application model is used to represent the application’s functional behavior, which is often
calledmodel of computatiarModel of computation is a mathematical model that specifies
the semantics of computation and of concurrency for the application. The architecture
model captures performance constraints of architecture resources, by defining architectural
components that represent processors or coprocessors, memories, buffers, buses, and so
on. An application model is independent from the specific architectural characteristics and
hence a single application model can be used for evaluating different architecture models.

To explore the design space of complex SoC platforms, it is required that the perfor-
mance analysis of the platform architecture is done at multiple abstraction levels for target
applications. This makes it possible to control the speed, required modeling effort and at-

tainable accuracy of the performance evaluations. Higher-level abstraction models are used

to efficiently explore the large design space in the early design stages. More detailed mod-
els are applied at later stages to allow focused architectural exploration. Hence the models
of the application and architecture should also be made at various levels of abstraction re-
spectively to enable the stepwise refinement approach in the design space exploration. In
this thesis, we are concerned with the modeling and performance analysis of multimedia

SoC platforms at system-level.

2.2.1 Models of Computation

System-level models of computation typically describe the functional behaviors of an ap-
plication as a hierarchical collection of tasks that are communicating with each other by
means of events carried by channels. Based on the specification of the behaviors, the com-
munication method, the implementation and validation mechanisms, and how the intercon-
nected tasks are composed into a single one, the most important models of computation
that have been proposed to date can be classified into being based on three basic models
[56]: Discrete Event, Finite State Machines (FSMs) and Data Flow.

Discrete Event Model: In discrete event model, tasks communicate through multiple-
writer and single-reader channels that carry globally ordered and time-tagged events. Task
behavior is usually specified by a sequential language. As a task receives input events, it is
executed and produces output events with the same or a larger time tag.

Finite State Machines: In finite state machines, task behavior is specified by a finite la-
beled transition system which is composed of states, transitions and actions. A state stores
information that reflects the input changes from the system start to the present moment.
The state executes the action (description of an activity) that is incurred when the required
conditions (for example, entering/exiting the state, input conditions, certain transition) are
satisfied. A transition indicates a state change, which is enabled only when a condition is
fulfilled.

Data Flow Model: Data flow model is a special caseidhn Process Netwol(lKPN) com-

putational model [45]. In a data flow process model, tasks communicate through one-way

FIFO channels. Each channel has unbounded capacity and carries a sequence (a stream)
of data object. Each data object is written into the channel exactly once and read from
the channel exactly once. Writes to channels are non-blocking, but reads are blocking (the
read stalls when the input channel is empty). A task in data flow model is specified by a

mapping from one or more input streams to one or more output streams.

2.2.2 Models of Architecture

The architecture is modeled as a set of interconnected modules and components along with
their associated software to implement the functions imposed by applications. A module or
component in the architecture model is defined with specified interfaces and explicit context
dependency. The architecture is desired to be modeled in multiple abstraction levels. When
the level of abstraction is closer to the final implementation, it is more effective in reducing
cost and design cycles by reusing designs. Minimal variations in specification, however,
may result in very differentimplementations. The models with higher-level abstraction can
be more easily shared among different specifications and only a minimal amount of work
is needed to achieve final implementation. Having multiple levels of abstraction, however,
is important, since the lower levels may change due to the advances in technology, while

the higher levels stand stable across product versions.

2.2.3 Performance Analysis

The application model is mapped onto the architecture model after both of these models are
obtained, which is then followed by performance analysis of the application-architecture
combination. The most common techniques for performance evaluation applied in indus-
trial practice are simulation-based (e.g. VCC [88] and Seamless [80]). However, simulation
possesses several disadvantages: it involves extensive running time, which fall behind the
tight time-to-market demands today; it is also extremely difficult to find simulation patterns
that lead to worst-case situations; it is hard to identify corner cases by simulation.

A great amount of research efforts have been put on presenting analytical techniques

10

for performance analysis of SoC platforms as simulation-based methods fall short. Formal
analysis guarantees full performance corner-case coverage and bounds for critical perfor-
mance parameters, based on well-defined models.

Most of the formal analysis techniques are proposed for individual architectural compo-
nents and a general framework for analyzing system-level designs is not offered, especially
in the presence of heterogeneity. Few exceptions consider special cases of more complex
architectures, for example, analysis of response times for static-priority process scheduling
combined with a TDMA bus protocol [70]. Recently, an event stream interface model is
introduced [76, 73, 74] and functions are provided for event model transformations. Based
on identifying architectural components for which appropriate analysis methods already
exist in the literature, a unified framework is presented to couple different local analysis
techniques into a global compositional description of the complex system-level properties.
These works have been extended [44], where standard event models are extracted from real-
istic systems that exhibit complex task dependencies such as multi-rate data dependencies,
data rate intervals and multiple activating inputs. It is shown [58] that advanced perfor-
mance analysis techniques can take into acceystem contextse. correlations between
successive computation or communication requests as well as correlated load distribution,

to yield tighter analysis bounds.

2.3 SoC Design for Multimedia Applications

Various methods and tools have been developed for SoC design, examples of which are
Ptolemy [1], Milan [64], Metropolis [10], Mesh [13], Koski [46], etc. Due to the prolifer-
ation of consumer electronics products that support media processing, attentions have also
been paid to design SoC platforms for multimedia applications. In the following, we intro-
duce two directly related work. The first [68] is the projectAsthitectures and Methods

for Embedded Media Systerthrtemis). The other is from Philips during the design of

Eclipse architecture templates for media processing SoCs [78, 79, 86].

11

Application modeling: Artemis and Eclipse model multimedia applications using the
KPN computational model. KPNs fit nicely with multimedia processing application do-
main, where application is structured by a directed graph with each node representing a
task and each edge representing a data channel. Each data channel is a FIFO buffer, with
one producer and one or more consumers. Tasks are executed concurrently and exchange
information solely through the unidirectional data channels. The functional behavior of the
KPN model, which is observed as the sequence of data items that communicate through
channels, is independent of the order in which the tasks are executed. This deterministic
property means that the same input always results in the same application output and the
application behavior is independent of architecture models. Hence an application’s perfor-
mance metrics and resource constraints can be analyzed in isolation from the architecture.
Architecture modeling: Artemis aims to develop an architecture modeling and simulation
environment for the efficient design space exploration of heterogeneous embedded-systems
architectures at multiple abstraction levels.

In Artemis, the underlying architecture model does not model functional behavior,
which has been caught by the application model. The architecture model is constructed
from generic building blocks provided by a library, which contains performance models
for various platform components such as processing cores, communication buses and dif-
ferent memory types. At a high abstraction level, various processing cores such as a pro-
grammable processor, reconfigurable component or dedicated hardware unit are abstracted
as a processing-core model which functions &tagk-box To model the execution of an
application event on a processing core, the architecture simulator assigns parameterizable
latencies to the input events and thus simulates the timing behavior of the specific architec-
tural implementation. The communication component within the architecture model (e.qg.
buses, memories), which the communicating Kahn channel is mapped onto, will account
for the latencies associated with the data transfers.

Eclipse defines a heterogenous architecture template for designing high performance
streaming-processing SoCs. This heterogenous architecture consists of fully programmable

processor cores and various sophisticated hardwired function modules (coprocessors) opti-

12

mized for high performance with minimum power consumption and silicon area.

Eclipse aims to present an architecture template that is flexible, scalable and cost-
effective. The configuration flexibility of programmable cores is combined with high per-
formance of hardwired modules. It achieves scalability by avoiding centralized control in
the system. It allows hardwired modules to operate in parallel and independently, and can
also run multiple applications concurrently. By introducing such high levels of parallelism
and multi-tasking, cost-effectiveness is achieved.

Performance analysis.Artemis applies trace-driven cosimulation technique to achieve an
interface that includes the mapping specification between application models and architec-
ture models. Each executed task produces a trace of events that represents the application
workload that this task imposes on the architecture. The trace events correctly reflect data-
dependent functional behavior and refer to the computation and communication operations
an application task performs. Hence the architecture models, driven by the traces, can
simulate the performance consequences of the application events and then evaluate the ar-
chitecture’s performance.

Eclipse models the architecture as a flexible, cycle-accurate simulator. It obtains the
performance measurements such as buffer filling, coprocessor utilization and data access
latency at the application level (i.e. for each task and stream) through application simula-

tion and tuning for particular architectural instance.

Artemis and Eclipse rely on simulation to measure the performance metrics. Simulation-
based approaches, however, are known to suffer from the disadvantages of high running
time, incomplete coverage and failure to identify corner cases, which are even severe in the
context of designing multimedia systems.

Efforts have been put on presenting analytical solutions for performance analysis of
multimedia SoC platforms. Mathematical algorithms have been presented [69] to explore
the design space of system buses, the usage of which is believed to affect greatly perfor-
mances and power consumption of the system. These algorithms are used to optimize the

system bus usage by finding pareto-optimal solutions (supporting the target applications at

13

the minimum cost in the sense of die area and energy consumption).

A formal technique for system-level power/performance analysis is presented [66],
based on a proposed model cali&dchastic Automata NetworSANSs). A process graph
is used to model the application of interest and is translated to a network of automata,
which is then used to generate the underlying Markov chain. The steady-state behavior
of the SAN model is solved and performance measures are then derived. The technique,

however, is purely probability-based and does not give any type of performance guarantees.

2.4 Characterization of Multimedia Workloads

A large amount of work has been conducted to model the video traffic in the context of
network communications. A first model gariable bit ratevideo traffic models a video
source as a first-order autoregressive process with mangiobability distribution func-

tion and an exponential autocorrelation function [57]. Later, a new methodology called
transform-expand-sample proposed to generate the number of bits in a frame following

an arbitrary distribution and to model the frame correlation structure [55]. Lazar et al. [53]
models the distribution and autocorrelation of a source bit stream accurately at the scene,
the frame and the slice level.

The frame-size distribution for the three types of frames (i.e. |, P, and B) is also studied
[81, 37, 40]. For example, a comprehensive characterization of MPEG video streams that
captures the bit rate variations at multiple time scales is presented [50]. The sizes of differ-
ent types of frames are modeled and intermixed as a complete model according to a given
group of picturegattern. The impact of scene changes on the long-term bit rate variations
is also incorporated, in addition to modeling the marginal distribution and autocorrelation
structure.

The above work concentrates on modeling the video traffic (i.e. the bit rate variations),
but does not consider the variation in the execution time of multimedia streams.

Some previous work has been presented to predict the execution time of multimedia

processing applications in order to employ real-time scheduling for efficiently implement-

14

ing quality-of-service guarantees. Worst-case execution times (WCETSs) of the MPEG-2
video decoding process are estimated [17] by integrating the WCET analysis into the de-
coder and taking into account of the actual input data. By considering frame type and size,
a linear model of MPEG decoding is presented [11] to predict the actual decoding time for
a frame.

Research has also been done on modeling the traffic and analyzing the execution time
variability for multimedia applications in the context of computer systems design. The
variability in the frame-level execution time on general-purpose architectures is analyzed
for several multimedia applications [42]. It is concluded that execution time variability
is mostly resulted from the application algorithm and the media input, and architectural
features only contribute little to the variability in the execution time.

A recent work [87] addresses the modeling of on-chip traffic for the design of platforms
for embedded multimedia appliances. It introduces that a fundamental property of self-
similarity is exhibited by the bursty traffic between on-chip modules in typical MPEG-2
video applications. It quantifies the degree of self-similarity using the Hurst parameter and
finds the optimal buffer-length distribution. In this work, a technique is also proposed to
synthetically generating traces having statistical properties similar to real video clips and
to speed up buffer simulations.

The above studies have mainly focused on modeling the video traffic and/or the exe-
cution time. They have not studied the design issues of the computer systems comprehen-

sively and applied fully these modeling techniques to the design practice.

2.5 Network Calculus Theory

Network calculus is originally proposed as a theory of deterministic queuing systems for
analyzing delay and backlog in a communication network, where the traffic and the service
are characterized as envelope functions. This theory has been pioneered in the early 1990s
for providing worst-case performance bounds for packet networks [28]. Itis later developed

to be placed in thenin-plus algebrdormulation [22, 15, 4], where the concepts#rvice

15

curvesis used to express service guarantees to a flow. A comprehensive understanding of
this theory can be referred to referred to the following textbooks [23, 16].

Recently, network calculus has been extended to analyze SoC architectures in the con-
text of network processors [21, 85]. Analytical frameworks based on this theory are de-
veloped to explore the design space of network processor architectures in the early design
stages. After a relatively small set of potential architectures are identified through analyti-
cal approaches, simulation techniques are used to get more accurate performance measures
in the later design stages.

Network calculus theory is further extended [20] to the domain of general SoC platform
architectures. It extends and generalizes the standard event models used in previous work
[73, 76], as well as presents a framework for analyzing various system properties like tim-
ing analysis, on-chip memory demand and resource loads of heterogenous platform-based
architectures.

The concept ofvorkload curvess proposed [60] to characterize the variable execution
demands of tasks, which provides tighter best-/worst-case bounds on the execution times
of tasks than traditional WCET analysis mechanisms. This concept is generalized [63] to
characterize (give best-/worst-case bounds on) the various kinds of variability arising from
multimedia processing on an MpSoC platform, the result of which is a new abstraction
called VCCs. This concept of VCCs is used to identify how the buffer requirements change
with different scheduling mechanisms implemented on the processors, and to achieve the
tradeoffs between savings on on-chip buffer sizes and scheduling overheads through ana-
lytical methods.

Our work in this thesis follows this line of development and concentrates on propos-
ing a framework for system-level design and analysis of SoC platforms for multimedia
applications. We will study the modeling techniques and effective analytical solutions for
the design space exploration of such platforms. In the next chapter, we will introduce the

fundamental concepts, models and techniques that are used in this thesis.

16

Chapter 3

Fundamental Models and Techniques

3.1 Models of Application and Architecture

Our models of multimedia application and architecture follows the traditional modeling
techniques that have been extensively used in the literature [68, 78, 79, 86]. We model the
multimedia application using the KPN computational model. Since we concentrate on the
system-level study of the SoC platforms, we model the MpSoC platform architecture at
higher abstract level. The KPN model representing a multimedia application is partitioned
and mapped onto an abstract architecture model, as shown in Figure 3.1.

In this thesis, we consider the following system-level view of multimedia stream process-
ing on an MpSoC platform. Here we discuss the processing of one stream, which can be
easily extended to the case that multiple streams are processed. The platform architecture
consists of multiple processing elements (PEs) onto which different parts of an application
are mapped. An input multimedia stream enters a PE, gets processed by the task(s) im-
plemented on this PE, and the processed stream enters another PE for further processing.
At the input of each PE is a buffer (a FIFO channel of fixed capacity) used to store the
incoming stream to be processed. Finally, the fully processed stream is writternpilaty a
out bufferwhich is read by someeal-time client(RTC) such as an audio or a video output
device. For the sake of generality, we consider any multimedia stream to be made up of
a sequence aftream objects A stream object might be a bit belonging to a compressed
bitstream representing a coded video clip, or a macroblock, or a video frame, or an audio

sample—depending on where in the architecture the stream exists.

17

Data
stream

IIII ‘ —']]ID\

Application
””””””””””””””””” T Mapping
< R <« »
v
v h Architecture
—»:I:I:I:D—» Processor =:|:|:m » Processor —
FIFO

buffer

Figure 3.1: lllustration of the mapping of a multimedia application modeled as a KPN onto
an MpSoC platform architecture modeled at abstract level.

Video
Interface

Network
Interface

Output
Device

VLD: Variable Length Decoding 1Q: Inverse Quantization
IDCT: Inverse Discrete Cosine Transform MC: Motion Compensation

Figure 3.2: An MpSoC platform onto which an MPEG-2 decoder application is partitioned
and mapped.

As an example, Figure 3.2 shows an architecture with two PE§ @nd PE5), imple-
menting an MPEG-2 decoder application. Magiable length decodinf/LD) andinverse
guantization(IQ) tasks have been mapped oitd;, and theinverse discrete cosine trans-
form (IDCT) andmotion compensatio(MC) tasks ontaP E,. A video stream, after being
downloaded over a network, enters buffer. PE; reads fromB; and writes the resulting
partially decoded macroblocks into buff&,. PFE, reads fromB, and writes the fully
decoded macroblocks into the playout buffér. The video output device reads froi),

at a pre-specified rate.

18
3.2 Multimedia Workload Characterization

To design MpSoC platform architectures for multimedia processing, the first task is to char-
acterize the workloads imposed on the platforms by the target multimedia applications.
Clearly, workload characterization should be base#@npropertieghat are important in

a particular design context. Usually these are properties that have a strong impact on the
performance of the architecture being designed. For instance, in microarchitectural design
such properties would be instruction mix, branch prediction accuracy and cache miss rates
[32]. In this thesis, we hypothesize that the system levéhe performance of multimedia
MpSoC architectures is largely influenced by various kinddaifh-dependent variability
associated with the processing of multimedia data streams. This hypothesis rests on the
observation that such variability is the major source of the burstiness of on-chip traffic in
such multimedia MpSoC platforms [87]. The burstiness of the on-chip traffic necessitates
the insertion of additional buffers between architectural entities processing the multime-
dia streams, and the deployment of sophisticated scheduling policies across the platform.
Both of these inevitably translate into increased design costs and power consumption [42].
Therefore, it is certainly meaningful to characterize multimedia workloads with respect to
their variability properties.

What are the sources of variability that are usually associated with the processing of
multimedia streams on such MpSoC platforms? Firstly, arrival patterns of multimedia
streams at the input of the system may have a bursty nature, i.e. stream objects may arrive
on the system’s input in highly irregular intervals. A typical example of this is a multi-
media device receiving streams from a congested network. Secondly, each activation of a
task may consume and produce a variable number of stream objects from the associated
streams. For example, each activation of the VLD task in Figure 3.2 consumes a variable
number of bits from the network interface, although, it always produces one macroblock at
its output. Thirdly, the execution demand of a task may vary from activation to activation
due to data-dependent program flow. Both the tasks in our running example of the MPEG-2

decoder—VLD and IDCT—possesses this property. Finally, stream objects belonging to

19

the same stream may require different amounts of memory to store them in the communi-
cation channels. Again, in the example architecture shown in Figure 3.2, we note that the
partially decoded macroblocks stored in buffér, depending on their type, may or may
not include motion vectors.

All these types of variability must be carefully considered and characterized during the
workload design process. The concept of VCCs is a generic model that allows us to quan-
titatively capture the variability found in multimedia streams. In the following we describe

this concept and give several examples of VCCs.

Variability characterization curves: VCCs are used to quantify best-/worst-case charac-
teristics ofsequencesThese can be sequences of consecutive stream objects belonging to a
stream, sequences of consecutive executions of a task implemented on a PE while process-
ing a stream, or sequences of consecutive time intervals of some specified length. A VCC
V is composed of a tupl@’!(k), V*(k)). Both these functions take an integedis the input
parameter, which represents feagthof a sequence. Functio# (k) then returns dgower
boundon some property that holds fatl subsequences of lengthwithin some larger
sequence. Similarly* (k) returns the correspondingper boundhat holds forall subse-
guences of lengtlk within the larger sequence. Let the functi®rbe ameasureof some
property over a sequende2, If P(n) denotes the measure of this property for the first

n items of the sequence (i.6, . .., n), then we have)! (k) < P(i + k) — P(i) < V¥(k)

forall: > 0 andk > 1. By default,P(0) is assumed to be equal to 0. As examples, let us
now consider the following different realizations of a VCC.

Workload curve v = (v!,7*): The VCC+ is used to characterize the variability in the
execution requirements of a sequence of stream objects to be processed by a PE. In this
case, given a sequence of stream objgets,) denotes the total number of processor cycles
required to process the firststream objects. Hence!(k) andv“(k) denote the minimum

and the maximum number of processor cycles that might be requiradydyconsecutive

stream objects within the given sequence. Let us see an example as illustrated in Figure 3.3,

74(4) (y*(4)) denotes the minimum (maximum) number of processor cycles required by

20

workload

14f

12F

maximum/minimum 10f
processing requirements
in of length 4

fee)
T

processing requirements 4 |
in time interval [0,4] .

o
N
N
[e2]
o -
-
o
-
N
IS
-
(2]

Figure 3.3: lllustration of workload curve

any 4 consecutive stream objects within the given sequence, which records the minimum
(maximum) value of?(i+4) — P(¢) for all i > 0. Hence,P(4), which denotes the number

of cycles required by the first 4 stream objects, is lower and upper bounded4)yand

~“(4) respectively.

Let e, ande,,. be the minimum and the maximum number of processor cycles re-
quired by any single stream object belonging to a sequence. For any reasonably large value
of k, v!(k) is clearly greater thah x e.;,. Further, the difference between them increases
with increasing values of. Similarly, v“(k) is clearly smaller thart x e,... Hence,
the VCC~ is more expressive compared to simple best- or worst-case characterizations
commonly used in the real-time systems domain.

It is also meaningful to construct@seudo-inversef a VCC V, which we denote as
V-1, In the case of a workload curve! ' (¢) = miny=o{k | 7'(k) > ¢} andy*'(e) =
maxg>o{k | v (k) < e}. Hence,yl_l(e) denotes the maximum number of stream objects
that may be processed usiagrocessor cyclesy“ ' (e) denotes the minimum number of
stream objects that are guaranteed to be processedeaugingessor cycles.

Arrival curve o = (o, a*): This VCC is used to characterize the burstiness in the arrival
pattern of stream objects. Given a trace of the arrival times of a sequence of stream objects
at bufferb (e.g. the partially processed macroblocks being written into the bi#fen

Figure 3.2),0!(A) anda*(A) denote the minimum and the maximum number of stream

objects that arrive withirany time interval of lengthA. Given a PE that is processing

21

arrival
201

maximum/minimum
no. of stream objects in - 12f
of length 6

8
. 6F
no. of stream objects
in time interval [0,6] 4
2

0 2 4 6 8 10 12 14 16 18
t,A ——

Figure 3.4: lllustration of arrival curve.

a single stream(a/,, o) are used to represent the incoming stre&nj, o) represent
the processed stream afnd, o*) represent the bounds on the rate at which the stream
is consumed from the playout buffer. We will often refer(td,, o) as theconsumption
bounds As illustrated in Figure 3.4¢/(6) and «*(6) respectively record the minimum
and maximum number of stream objects that may arrive at bufbeer any time interval

of length 6. Thereforey!(6) anda*(6) show lower and upper bounds on the number of
stream objects over any time interval of length 6 (¢0g6]).

Let us see one more example, ¢é(10) = a%(10) = 5, which essentially means that
within any time interval of length0, at least and at mos$t stream objects can arrive at
bufferb. Hence, the average arrival rate is one stream object in every two time units. Now
suppose that we are also given thét2) = 4, which means that within a time interval of
length2 there might be a burst of at masstream objects. Following this specificationy if
stream objects arrive aduring the time interval0, 2], then over the time interva®, 10] at
most1 stream object can arrive. Hence, although the “long-term” arrival rate of the stream
is 0.5 stream objects per unit time, there might be occasional bursts. The arrival elirves
anda™ allow for the precise characterization of such bursts.

Service curves = (3!, 3*): Due to the variability in the execution requirements of stream
objects, the number of stream objects that can potentially be processed within any specified

time interval varies (even when the processor runs at a constant frequency). We will use

22

service
107

maximum/minimum
computing power in 61
of length 4

computing power
in time interval [0,4]

0 2 4 6 8 10 12
t,A ——

Figure 3.5: lllustration of service curve

BH(A) and3“(A) to denote the minimum and the maximum number of stream objects that
can be processed (or served) by a processor wahintime interval of lengthA. The
curves and5* may also be derived from a trace of execution requirements of stream
objects and the clock frequency with which the processor is being run. Figure 3.5 shows
an example for service curves. The number of stream objects that can be served within any
time interval of length 4 is lower and upper bounded®g#) and3*(4) respectively.

Note that this specification aferviceis stream dependent. It is also possible to specify
the service offered by a processor in a stream-independent manner. Towards #hig\ Jet
ando"(A) denote the minimum and the maximum number of processor cycles available
within any time interval of length\. It is then easy to see that(A) = v ~(o!(A)) where
~* is the workload curve associated with the stream (which was described above).
Consumption and production curvesk = (!, x*) and = = (7!, 7%): Let an input stream
be processed by a tagk Each activation ofl’ consumes a variable number of stream
objects belonging to the input stream, and results in the production of a variable number of
output stream objects, possibly of a different type. This variability in the consumption and
production rates df' can be quantified using two VCGsandr, which we refer to as the
consumption and the production curves respectively.

x!(k) takes an integek as an argument and returns the minimum number of activa-

tions of T that will be required to completely process angonsecutive stream objects.

23

consumption

maximum/minimum
no. of activations in 6F
of length 2

no. of activations
in time interval [0,2]

0 2 4 6 8 10 12 14 16

k—>

Figure 3.6: lllustration of consumption curye

Similarly, " (k) returns the maximum number of activationsTothat might be required

to process any: consecutive stream objects. Let us see an example. As shown in Fig-
ure 3.2, the bit stream at buffé#; is processed by’F;. Each activation of the VLD/IQ
task processes one macroblock from buffier As illustrated in Figure 3.65'(k) (x*(k))
returns the minimum (maximum) number of activations of the VLD/IQ task (i.e. number
of macroblocks) that is required to process &rgonsecutive bits from buffeB; .

On the other hand, we definé(k) to be the minimum number of stream objects guar-
anteed to be produced due to angonsecutive activations af. 7*(k) is the maximum
number of stream objects that can be produced due td amnsecutive activations df.
Therefore,k consecutive stream objects at the inpuffowill result in at leastr! (x'(k))
and at mostr*(x"(k)) stream objects at its output. As an example, the production curves
7! (k) andr®(k) for PE; shown in Figure 3.2, are straight lines with slopes that correspond

to the constant-rate production of one macroblock per task activation.

3.3 Performance Analysis

Given the MpSoC platform architecture that multimedia applications are mapped onto, the
workloads imposed on the architecture are firstly characterized and represented by VCCs.
We then evaluate the performance of this architecture and design/configure the architectural

parameters, by taking into account the cost, application and architectural constraints etc.

24

Typical design constraints for a multimedia MpSoC platform architecture that we have
modeled (e.g. the one shown in Figure 3.2) are (i) the playout buffers should not underflow,
and (ii) none of the buffers should overflow. The constraint on the playout buffer underflow

is to ascertain that stream objects can be read out by the audio/video output devices at the
specified playback rate, and hence the output quality is guaranteed. The constraints on
buffer overflow are motivated by the fact that typically on-chip PEs use static voltage and
task scheduling policies. This is because using blocking write/read mechanisms efficiently
to prevent buffer overflows/underflows either require a multithreaded processor architecture
or substantial run-time operating system support for context switching.

We present an analytical framework for the performance analysis and design space ex-
ploration of multimedia MpSoC platform architectures. In contrast to simulation-based
approaches, which usually follow a trial-and-error approach and is very time-consuming,
our proposed framework can help a system designer to explore the design space in a very
short time and to systematically tune a platform architecture. Our framework is based on
the network calculus theory and extends this theory by developing new algorithms and
models. In the following, we introduce some notation and a technical result that will be

used in later chapters.

Notation. Throughout this thesis, all functiorfsare assumed to be wide-sense increasing,
meaning thaif (z1) < f(x2) for x; < 25 andf(z) = 0 for = < 0. For any two functiong

andg, themin-plus convolutiomf f andg is denoted by

(f©g)(t) = inf {f(t—s)+g(s)}

0<s<t

and themin-plus deconvolutioof f andg is denoted by

(fogt) = iglg{f(t +u) —g(u)}

We will use f A g to denote the infimum or minimum (if it exists) gfandg, andf Vv g to

denote the supremum or maximum (if it exists)fofndg.

Lemma 1 For any functionsf, g andh, g ® h > fifand only ifh > f © g.

25

This lemma follows from the definitions of the min-plus convolution and deconvolution

operations and shows the relation between them.

3.4 Experimental Setup

We have conducted experiments to illustrate and validate our analytical framework. Since
MPEG-2 streams have a complex nature and a rich set of characteristics [50], they repre-
sented an interesting target for our experiments. We studied the MpSoC platform archi-
tectures with an MPEG-2 decoder application mapped onto, one of which is that shown in
Figure 3.2.

Our experimental setup consisted of the SimpleScalar instruction set simulator, a sys-
tem simulator and an MPEG-2 decoder program. The MPEG-2 decoder program was used
as an executable for the simulator and as a means to obtain traces of bit allocation to mac-
roblocks.

The instruction set simulator was used to obtain traces of execution times for the
VLD/IQ and IDCT/MC tasks of the MPEG-2 decoding algorithm. All the tasks processed
the data stream at the macroblock granularity. $ime-profileconfiguration of the Sim-
pleScalar simulator and the PISA instruction set were used to model on-chip processors
of the architecture. Although this configuration does not model advanced microarchitec-
tural features of the processor, it allows fast simulation and was therefore the most suitable
choice. This choice is also justified by the fact that advanced features in the microarchi-
tecture of a general-purpose processors do not have significant impact on the variability of
multimedia workloads [42].

The system simulator consisted of a SystemC transaction-level model of the architec-
ture. We used it to measure backlogs in the buffers resulting from the execution of the

MPEG-2 decoder application on the platform.

26

Chapter 4

Characterizing Multimedia Workloads:

Obtaining VCCs

To conduct performance analysis for given MpSoC platforms, we firstly have to charac-
terize the workloads for the application that can be run on the platforms. In this chapter,
we obtain the various kinds of characterization curves (VCCs) that represent the workloads
imposed on the architecture. Due to the large volume of potential inputs to the system, it
is impossible to cover every input stream and it is also time consuming. Hence good “rep-
resentative” multimedia inputs should be selected and VCCs are then measured for these
set of representative workloads. The measured VCCs are used to represent the workloads
imposed by the large library of potential inputs, in the sense of best-/worst-case bounds.

Selecting a good “representative” input set is of course not a new concern—benchmark
selection or workload design is a well recognized problem in the domain of microproces-
sor design. However, the main issues in that domain are microarchitecture-centric, where a
designer is mostly concerned with program characteristics like instruction mix, data and in-
struction cache miss rates and branch prediction accuracy. On the other hand, the concerns
in the case of system-level design of platform architectures are very different and these are
not suitably reflected in a benchmark suite designed for microarchitecture evaluation.

In this chapter we attempt to address this issue of workload design in the specific con-
text of system-level design of platform architectures for multimedia processing. Although
simulation-oriented design and evaluation are widespread in the domain of system-level de-

sign, to the best of our knowledge the issue of methodically selecting representative inputs

27

for architecture evaluation has not received any attention so far. Most of the work reported
in the Embedded Systems literature, on novel system models or simulation schemes, shirk
off this problem and leave the responsibility of choosing a representative input or stimuli
to the architecture on the system designer (see, for example, [52]).

There are many reasons why this problem is interesting in the specific case of multime-
dia processing on MpSoC platforms. Firstly, many multimedia applications exhibit a large
degree of data-dependent variability that complicates the problem of choosing a represen-
tative input set. Secondly, in contrast to general-purpose architectures, MpSoC platforms
that are optimized for stream processing have heterogeneous parallel architectures. This
fact further complicates the problem. Thirdly, multimedia processing is in general compu-
tationally intensive, which makes workload selection an important problem.

Arbitrarily selecting inputs to form the “representative” input set is certainly not a good
idea. The goal of “representative” workload design should be to select inputs that represent
corner casedor the target architecture, i.e. those inputs which impose worst- and best-
case loads on different parts of the architecture. However, determining what constitutes a
“corner case” is not a trivial undertaking due to the complex nature of most multimedia
workloads. Attempts towards using some qualitative technique to judge the properties of
multimedia streams based on their content (for example, by simply viewing video clips
to be processed by the architecture and classifying them based on experience or intuition)
might easily fail. Hence, a quantitative methodology is necessary, using which it should be
possible to objectively assess and compare the properties of different multimedia streams.
Based on such a comparison, a smgtiresentativsubset of a large library of samples can
then be chosen.

In this chapter we propose such a methodology to classify multimedia streams, which
can be used to identify a small representative set meant for architecture evaluation. To-
wards this, we first hypothesize that all the characteristics of multimedia streams that influ-
ence the performance of an MpSoC platform architecture, are related to their “variability”.
Later in this chapter, we will show our preliminary experimental results that validate this

hypothesis. Such variability manifests itself as data-dependent fluctuations of (i) execution

28

time requirements and (ii) input-output rates associated with multimedia processing tasks.
These fluctuations stem from the fact that execution time requirements of the tasks and the
amount of data consumed and produced by the tasks depend on the properties of particu-
lar audio/video samples being processed. Now, given a library of multimedia streams, we
classify two streams asmilar if both of them exhibit the same kind of variability with re-
spect to execution time requirements and input/output rates as mentioned above. Therefore,
given a set of video streams which aienilar, it would be sufficient to simulate an archi-
tecture with only one video stream from this set, as all the other streams would “stress”
the architecture in the same way. The variability associated with a stream, with respect
to an architecture, is quantitatively characterized with VCCs [63] which is summarized in
Section 3.2.

We would like to point out here that the kinds of variabilities that should be considered
in a multimedia stream for an effective classification would depend on the architecture and
the application at hand, and a detailed discussion of this is beyond the scope of this chapter.
Our work in this chapter also shows that the properties of multimedia streams, that should
be considered for representative workload identification in the context of performance eval-

uation of SoC platforms, can be expressed in the form of VCCs.

Related Work: The construction of representative workloads for performance evaluation

of computer systems has always been an area of active research since early 70s (see [83]
and references therein). Since then the teiorkloadhas been widely understood as a mix

of programs (or jobs, or applications) for which the performance of a computer system was
evaluated. Domain-specific collections of such programs, cakgthmarkshave been
designed and widely used as a standard means to evaluate and compare computer archi-
tectures. Examples of these are MediaBench [54] and the Berkeley multimedia workload
[82]. Design of such representative workloads was mainly concentrated on proper selec-
tion of theprogramsto be included in the workload. The selection of corresponding input
data sets was limited to the definition of their size (e.g. sampling rate, resolution etc.) The

dependency of program behavior on the values of the input data sets did not receive enough

29

consideration in the process of forming such representative workloads.

Recently Eeckhout et al. [32] have shown that therkload design spacenay be
very complex and therefore should be systematically explored during the construction of
representative workloads. Their workload design space consistsgrm-input pairghat
capture both, the variety of programs as well as various input data sets to those programs.
They use techniques such as principle component analysis and cluster analysis to efficiently
explore the space of possible workloads and select representative program-input pairs from
it.

The problem of reducing simulation time has been addressedtumaoegsampling tech-
niques(see [51] and references therein). The goal of such techniques is to identify repre-
sentative fragments in the program execution and simulate only those fragments, thereby
eliminating the need for simulating the entire program. Trace sampling techniques heavily
rely on the characterization and classification of the workload imposed on the architecture
by the different fragments in the program execution trace. However, it should be noted that
all the above mentioned research efforts were primarily targeted towards characterization

and composition of representative workloads in the domain of microprocessor design.

4.1 Measuring VCCs for Single Stream

In general, the construction of VCCs can be performed in many different ways. In some
cases itis possible to derive the curves analytically from a formal specification of the system
and its environment, whereas in other cases a simulation- and trace-based analysis approach
may be necessary and indeed sufficient for the problem at hand.

Let us consider the platform architecture shown in Figure 3.2 and illustrate our mea-
surement of VCCs. Here we will take the examples of the arrival curves at the Bffer
(), the workload curves o? F, () and the consumption boungs.., o).

Suppose that we adopt the simulation- and trace-based analysis method toya@stdin
a,. We collect execution traces from a simulation ofarstract modebf the platform

architecture and then analyze them to derive the required curves. To obtain the workload

30

curves(v!,7%), we first collect a trace of execution demands for the pair of tasks IDCT
and MC executing o F». Suppose that the sequence of macroblocks being processed by
PFE,ismq, ms, ..., and the trace records a sequence of the number of processor cycles to
process each macroblock. We then get the cumulative fungtién denoting the number
of processor cycles required to process the firstacroblocks. For a giveh, (k) and
~v*(k) record the minimum and the maximum values for the set of it¢ég: + k) —
W (i)|i > 0} respectively. Hence!(k) and~*(k) identify the minimum and the maximum
processing demand imposed by any sequencke adnsecutive macroblocks within the
video sequence.

A trace of the arrival times of a sequence of macroblocks being written into the buffer
Bs (i.e. at the output of°F;) can be obtained by measuring the execution demands of the
VLD and IQ tasks for each macroblock in the video sequence and by taking into account
(i) the constant arrival rate of the compressed bit stream at the inptpf and (ii) the
amount of bits allocated to encode each macroblock in the stream. We can then obtain
the cumulative functiorf'(i) denoting the total time length during which the fitghac-
roblocks arrive at the buffe, shown in Figure 3.2. Using a similar method to the one for
obtaining workload curves, we analyze the functibfi) to obtain the pseudo-inverse of
arrival curveq o, a%). Finally we derive the arrival curves.

In similar way, we can derive the consumption boutds, o). However, in this case
since we precisely know the characteristics of the real-time client we do not need to rely
on the simulation.al, and o, can be constructed analytically by using the fact that the

real-time client reads macroblocks from the playout buffer at a predefined constant rate.

4.2 Classification of Streams

We propose to classify streams based onghapesof the VCCs associated with them.
We hypothesize that if two streams are characterized by VCCs having similar shapes, then
their behaviors, in the worst/best-case, will also be similar. Each stream might be associated

with several types of VCCs, characterizing different aspects of variability within the stream.

31

Therefore, if two streams have similarly shaped VCCs of respective types, then they will
impose similar workload on the architecture (in the worst- and best-case). For example,
streams with similarly shaped workload curves will consume similar amounts of processing
resources on a PE. Streams with similarly shaped workload curves and consumption curves
will create similar maximum backlogs in the buffers of the architecture as a result of their

processing.

4.2.1 Measuring Dissimilarity between Two Streams

To identify if two streams impose similar workloads on a platform architecture, the VCCs
measured for them are used and the types of VCCs used are dependent on the problem
studied. Firstly, we discuss how to compare two streams based only on a single variability
type, i.e. the same type of VCCs. We define a measurgissimilarity between two
VCCs of the same type. Considering the general case of comparing two objects (VCCs
here), an object is represented by a set of variables. The dissimilarity between two objects
is found by computing sommnetric defined over these variables. In our case, a VCC,
which is defined for a set of points= 1, 2, .., n, can be seen as an object described: by
variables. Intuitively, to see how dissimilar the shapes of two VCCs (of the same type) are,
we need to compare their values for each of the pdints 1, 2, .., n. By noting that alln
variables represent a VCC along essentiabparabledimensions, we can quantitatively
measure the dissimilarity between two VCCs using the City Block metric [35]. This metric
is chosen, because in comparison to other known metrics (e.g. Euclidean Distance) it is
more “sensitive” to differences in each of the dimensions, i.e. in our case, the metric is
more “sensitive” to the differences in the shapes of two VCCs. Given below is a formal
definition of the dissimilarity between two VCCs, based on the City Block metric.

Letd,;(k) (k = 1,2,..,n) denote a VCC of type associated with théh stream. A
measure of the pairwise dissimilarity between two streaarsd j, with respect to a VCC

of typer, is then defined as

3

drij = |0ri (k) — 0,5 ()] (4.1)

i

32

wherek denotes the length of the analysis interval that is used to normalize the differences
60,:(k) — 6,;(k)|. The reason that we use this normalization is that the longer the analysis
interval, the lesgritical is the difference in the values of the two VCCs corresponding to
this interval. The absolute difference for a larger valug fdistributedover a larger num-

ber of stream objects than in the case of a smaller value anhd therefore this difference
becomes less critical.

In many cases it might be useful to characterize streams using more than one type of
VCCs. How should the dissimilarity between streams be quantified in such cases? We
believe that first, the measure of dissimilarity between VCCs having identical types should
be computed using Eqn. (4.1). These measures can then be combined in various possible
ways, one of them being simply computing the sum of all the dissimilarity measures for the
individual VCC types. The pairwise dissimilarity between two streaarsdj with respect

to VCCs of types = 1,2, .., pis then defined as
p
dij - Z drij (42)
r=1

4.2.2 Clustering of Similar Streams

Given a large library of streams, we needctassifythem into different clusters. Streams
within the same cluster impose similar workloads. To classify streams using the dissim-
ilarity measure described above, we use a conventional hierarchical clustering algorithm
based on theomplete linkagealgorithm [35] for computing distances between clusters.
The rationale behind the choice of the complete linkage algorithm is the need to keep the

clusters as dense as possible.

4.3 Empirical Validation

To see how the stream classification method described in the previous section performs on
real data samples, we conducted a number of experiments with MPEG-2 video streams.

We considered the following scenario. A generic MpSoC platform, such as the one

33

shown in Figure 3.2, has to be customized such that it supports real-time decoding of
MPEG-2 video streams. Hence, we need to study the impact of different MPEG-2 streams
on the platform and based on the results of our study, optimize the architecture accordingly.
For this purpose we collected a large library of video clips that we believe our architecture
should be able to support. However, due to time constraints we cannot afford to run sim-
ulations for all the clips in the library. Furthermore, simulation of an entire clip takes a
prohibitively long time. Therefore, we are constrained to simulate only a limited number
of short fragment&xtracted fronselectedsideo clips belonging to the library.
Data Selection: We assume that any video clip in the library contains only scene In
a visual sense, a scene & gortion of the movie without sudden changes in view, but with
some panning and zoomihfp0]. Distinguishing between different scenes is necessary,
because even within a single MPEG-2 stream different scenes might have substantially
different characteristics. For example, characteristics of MPEG-2 streams (such as bit rate)
maysignificantlyvary at a large time scale, i.e. across different scenes, while at a short time
scale (i.e. within a scene) the variations are more moderate [50, 53]. If different scenes are
not treated separately while deriving their VCCs, due to the nature of VCCs, important
information about some scenes may be overshadowed by other scenes. Finally, we note
that in practice it is always possible to split a long movie into a series of individual scenes
(see [50] for the relevant references).

For our experiments, we used a library of MPEG-2 video clips that is shown in Ta-
ble 4.1. The clips in this library contain two categories. Each clip in Category A is a
8 Mbps constant bit rate stream consisting of only one scene with a resolution 9576
pels and a frame rate of 25 fps, while clips in Category B are 4 Mbps constant bit rate
streams consisting of only one scene with a resolutiofDadfx 480 pels and a frame rate
of 30 fps. We believe that the variety of scenes represented by this library is sufficient for
a demonstration of our classification method.

To select representative streams for performance evaluation of our architecture, we clas-
sified the streams in the library based on (i) the variability in execution demand, and (ii)

the variability in the production and consumption rates of the tasks running on the PEs of

34

category| index | video clip index video clip
1 100h080.m2v 7 pulb_080.m2v
2 bbc3080.m2v 8 susi080.m2v
A 3 cact080.m2v 9 tens080.m2v
4 flwr_080.m2v 10 time_080.m2v
5 mobl.080.m2v 11 v700.080.m2v
6 mulb_080.m2v
12 | 100b.040.m2v 18 pulb_040.m2v
13 | bbc3040.m2v 19 susi040.m2v
B 14 cact040.m2v 20 tens040.m2v
15 flwr_040.m2v 21 time_040.m2v
16 | moblL040.m2v 22 v700.040.m2v
17 | mulb_040.m2v
Source ftp.tek.com/tv/test/streams/Element/MPEG-Video/

Table 4.1: MPEG-2 video clips used in our experiments.

the platform. The VLD (i.e. VLD/IQ) task has both these types of variabilities. For each
activation, it consumes a variable number of bits from the input buffer and its execution
demand also fluctuates. Hence, we characterized it using the workload ¢ifyes’,,)

and the consumption curvés?,;, . ;). The IDCT (i.e. IDCT/MC) task was characterized
using only the workload curves/,,, v.,.;), because its execution demand is variable but

consumption and production rates are constant.

Obtaining VCCs: Using the experimental setup described in Section 7.4, we simulated
with the platform architecture as shown in Figure 3.2. The VCCs were obtained from the
collected execution traces. To obtain an upper (lower) VCC we searched through the corre-
sponding trace with time windows of different lengths and identified the maximum (mini-
mum) execution requirements (or number of bits) occurring in the trace within each of these
time windows. The maximum window size was determined by the maximum time interval
over which the streams were compared. For each design scenario, this might be different.
In our experiments we had set the maximum window size to 12 frames. This corresponds to

the most frequently occurring length of group of pictures (GOP) in the MPEG-2 bitstreams.

35

16X 10 _
video 5~
14¢
12¢
10r ,51‘~
(%} S
N
3 8 Y
>
(&S]

video 10

8 0.5 1 1.54 2
number of macroblocks [x 107

Figure 4.1:(v%,,~.,4) for different fragments of video 5 and video 10.

Results and Discussion:Our first step was to compute the maximum dissimilarity be-
tween VCCs obtained from different fragments of the same scene. If this dissimilarity is
sufficiently low then we can randomly pick a short fragment from a long video clip and use

it as a representative of the whole video clip. If this dissimilarity is too high, then we may
need to adopt other approaches to select short fragments. For example, fragments of the
same scene can be classified first. Theweralfragments can be chosen to represent that
scene.

From each clip in our library, we extracted 10 unique fragments of the same length
(30 frames) and measured their VCCs. Figure 4.1 shows results of the measurements for
(05 7%,) for two video clips, i.e. clip numbers 5 and 10 from Table 4.1. Video 5 rep-
resents a natural full-motion scene, whereas video 10 is a video test pattern displaying a
small running timer on a still background. By inspecting the plots in Figure 4.1 we can see
that the dissimilarity between fragments of video 5 is larger than those between fragments
of video 10. This can be explained by the higher degree of motion present in the scene of
video 5. Nevertheless, we can see that the curves for different fragments of video 5 exhibit
a similar behavior. For other videos in the library, we observed very similar trends.

Using Eqgn. (4.1) for each VCC type we computed pairwise dissimilarities between

36

VCC | max.dissim| video || VCC | max.dissim| video
Vb 57151356 4 Vet 37220944 3
Vg 23548299 4 Ky 2146073| 4
Yok 22903156 9 K 752238, 4

Table 4.2: Maximum dissimilarity between fragments of the same scene.

fragments of the same scene and selected their maximum value. Table 4.2 shows the ob-
tained maximum values takaver all the video clips in Category A. From this table we

can observe that video 4 probably contains a very complex and changing scene, because
almost all the VCC types of its fragments exhibit a higher dissimilarity compared to those
for the other clips.

For the classification of the (full length) video clips we decided to randomly pick one
fragment from each clip and then perform the classification based only on the selected frag-
ments. Actually, the classification of the video clips can follow a hierarchical way. Firstly,
in certain cases we can classify all the video clips in a large library into several coarse-
grained groups, based on the different property values that each clip have (e.g. different
resolutions, bit rates, contents etc.). We can then classify the clips in each group using the
methods presented in this chapter. Further classification can be operated for any interested
group that is already a classified result of previous steps.

In our example, we first classified all the video clips in the library into two groups:
Category A and Category B, based on their different bit rate and resolution values. In Figure
4.2, we show that this coarse-grain division is meaningful in some cases, for example, when
we perform the classification based on oaheVCC type,x?,,. Figure 4.2 (a) shows that
based on the VCC shapes, all the video clips in the library are classified into two groups
that just belong to Category A and Category B respectively. The further classification of
Category A is shown in Figure 4.2 (b) and that of Category B is shown in Figure 4.2 (c).

In the remainder of this chapter, we only show our classification for Category A. For the
purpose of illustration, we first performed the classification based onamdy CC type.

The results of the classification into four groups, based on the shayjg, odre presented

37

x 10

bits

1 15 2

0O 0:5
number of macroblocks [x 104]
(a) Category A and Category B
6 6
4% 10 ,x10
35
3r 1.5¢ e i / S
2.5 — group 1 ! — group 1
2 group2 | @ | /T group 2
3 -~ group 3 a I --- group 3
-~ group 4 ’c” -~ group 4
J
0.5t/
/
[
O0 0.5 1 1.54 2 0O 0.5 1 1.54 2
number of macroblocks [x 107] number of macroblocks [x 107
(c) Category B

(b) Category A
Figure 4.2: Classification based sfj, only for all the clips.

in Figure 4.3. As we can see in the figure, our method could correctly identify groups of
curves having similar shapes. This indicates that the measure of dissimilarity defined by
Egn. (4.1) leads to a meaningful classification. The same observation can be obtained in
Figure 4.4 as the classification is based on the shapg of
Figure 4.5 shows dendrogramof the hierarchical cluster tree obtained as a result of
the classification based @il VCC types, i.e. by using Eqn. (4.2). In this dendrogram
we can clearly distinguish between two major groups of clips: still and motion Videos
This kind of a coarse-grained division into two groups would have been possible to obtain
just by viewing the videos on the screen. However, a more refined classification would be

difficult to achieve using such a subjective technique. For example, before performing the

1Since video 10 is mostly still, it was assigned to the group of still videos by our method.

38

16X 10
— group 1
14r group 2
--- group 3
12f| -- group 4
10r
n
)
©° 8r .
>
o

0 0.5 1 1.54 2
number of macroblocks [x 107]

Figure 4.3: Classification based g}y, only for the clips in Category A.

experiments, by simply viewing the clips we could not predict that video 4 would have such
different properties in comparison to the other motion videos. However, we can easily see
this in the dendrogram: all other motion videos except video 4, form a tight cluster with the
maximum linkage distance almost three times smaller than the maximum linkage distance
when video 4 is included into the cluster.

Finally, to see how the results of the stream classification correlate with the actual
impact of the streams on the architecture, we performed simulations of the system shown
in Figure 3.2. We simulated the decoding of sevartdlengthvideo clips from our library.

As a measure of tharchitectural impactwe decided to use maximum backlogs occurring
as a result of the MPEG-2 processing in the buff@ssand By,. The backlog in the buffer
in front of PE; was not taken into account due to its relatively small size.

Table 4.3 summarizes the simulation results. Our measurements show that, for example,
videos 1 and 7 produce very similar maximum backlogs in the both buffers. The maximum
backlogs produced by videos 9 and 2 l%s similarthan the backlogs produced by videos
1 and 7. For videos 9 and 2, the differences in the backlods,iand By, are 2110 and
245 macroblocks respectively. We can also see that videon®ime similarto video 2

than to video 3. The maximum backlogs for video 3 and video 9 differ by 4935 and 405

39

x 10
6,
5¢
//// ‘,4‘"
47 ,’// ‘,/"x
0 // y"
2 // r".’
(&) 37 /// ’/’
2— ‘ i /;//'
— group 1
1 group 2
i --- group 3
- - group 4
0 I I I |
0 0.5 1 1.5 2

number of macroblocks [x 104]

Figure 4.4: Classification based ¢fj, only for the clips in Category A.

4
8 motion videos
s
5
s T
s 2
.'g
11]
10 |
6 still videos
m
14
0 0.5 1 1.5 2 2.5 3

linkage distance X 109

Figure 4.5: Cluster tree.

macroblocks inB; and By, respectively. Hence, we can see that the simulation results

exhibit the same tendency as that shown by the classification in Figure 4.5.

4.4 Summary

In this chapter we presented a promising approach for workload design for the specific con-
text of system-level design of MpSoC platforms. “Representative” VCCs were identified

that can be used in the performance analysis of MpSoC platforms, which is described in

40

video| B, By || video| B, By
1 8282 | 9433 6 5366 | 9190
2 5128| 9027 7 8390 | 9593
3 7953 | 8867 9 3018| 9272

Table 4.3: Measured maximum buffer backlogs.

detail later in this thesis. Our two main contributions in this chapter were: (i) identifying
VCCs as a means for representing properties of multimedia workloads for system-level
design of media processing platforms, and (ii) a classification method based on VCCs to
cluster multimedia streams which exert similar influences on a platform architecture. We
presented preliminary results that show the usefulness of this approach. However, there is
considerable scope for further research in this direction. For example, to clearly identify
the influence of multimedia workloads on buffer backlogs is not trivial, for which we need

to study further what more types of VCCs should be considered. Hence, a more systematic
study needs to be done to identify “variability types” beyond the ones considered in this
chapter. We are not aware of any previous work in this direction and hope that our work
in this chapter will encourage a systematic study of this problem, especially since simu-
lation time is a widely recognized deterrent in the case of simulation-based performance

evaluation of embedded systems.

41

Chapter 5

System Design Case |: Processor

Frequency Selection

In this chapter, we apply our proposed analytical framework to study the issue of select-
ing frequency values for on-chip processors, which is one typical case in the design of
energy-aware MpSoC platform architectures specifically targeted towards media process-
ing in portable devices. Under the framework, we develop analytical approaches for solving
this challenging problem.

General-purpose configurable SoC platforms generally provide embedded processor
cores that offer a high degree of customization potential, such as instruction set tailoring
and register file sizing. In recent years, dynamic voltage scaled (DVS) processors have
appeared, and thus the operating voltage (and proportionally the operating frequency) can
be customized. Choosing the numbebppérating pointsand the values for these operating
points is becoming a part of this customization procedure. More levels imply more com-
plicated design and more cost, but may result in more energy savings. Trade-offs between
the cost and energy savings should be fully considered in the customization. Choosing
the efficient operating points is especially critical in the context of multimedia applications
because of the complex and bursty nature of on-chip traffic and the high variability in the
execution times of multimedia processing tasks—both of these resulting in a highly vari-
able demand on the computational resources available on the chip [87]. Hence, being able
to control the processor frequency accurately to counter this variability is important.

The problems we are interested in addressing are of the following form. Suppose that

42

we are given a multiprocessor SoC platform architecture “template” and a number of mul-
timedia applications, all of which are required to be supported by this platform. Our job
is to derive a (concrete) platform architecture from this template, by choosing appropri-
ate processors, sizes of on-chip buffers and possibly other parameters such as bus widths
and cache configurations. The processors to be chosen for this platform support software-
controlled voltage and frequency scaling to allow different degrees of power consumption
at run time. Therefore, we are also required to choose the frequency/voltage ranges that
each processor should support. In this chapter we specifically focus on this last issue and
identify how this range depends on the other parameters of the platform architecture, such
as on-chip buffer sizes.

The results presented in this chapter also provide insights into questions such as: if
a processor supports only a fixed number of operating points, where each such point is
characterized by a voltage and a frequency value, then how many such operating points
should a processor ideally support and how should these values be chosen? A processor
which allows the voltage and frequency values to be changed continuously would typically
be more expensive than one which allows these values to be changed in discrete steps and
supports only a fixed number of these values or operating points. Today, processors of both
these types are available—Intel's XScale processor is of the former type and Transmeta’s
Crusoe processor is of the latter type. Therefore, it is pertinent to ask questions like what
kind of performance impacts choosing a processor of the latter type would have, over a
more expensive processor which supports a continuous range of frequency values? Further,
a platform designer would also be interested in identifying how the frequency range, that
needs to be supported by a processor, varies with the available on-chip buffer size. Since
on-chip buffers are available only at a premium because of their high area requirements

[87], such information would help in choosing an appropriate tradeoff.

43
5.1 Our Results and Relation to Previous Work

The main contribution of this chapter is analytical approach which can guide a system de-
signer in identifying the operating frequency range that different processors on a SoC plat-
form architecture should support in order to run a given multimedia application or a class of
applications. ldentifying such a range accurately is not straightforward because of the rea-
sons mentioned above, i.e. the complex nature of on-chip traffic arising out of multimedia
processing and the variability in the execution times of tasks. Moreover, since different ap-
plications and input classes might have very different computational demands choosing an
appropriate processor frequency range involves several tradeoffs between processor cost,
flexibility and on-chip buffer requirements. Our approach can help a system designer in
identifying these tradeoffs.

To save energy consumption, there has been a significant amount of work in develop-
ing voltage and frequency scheduling algorithms in the context of multimedia applications
(see, for example, [2, 19, 26, 41, 65, 89], and also [6] and the references therein). Dynamic
voltage and frequency scheduling (DVFS) methods are trying to run the processor in as
low a frequency value as possible, while satisfying the quality-of-service requirements of
the applications. The core of these methods is to predict the execution time of the future
frames based on the history execution and thus to dynamically determine the lowest possi-
ble frequency value that can be run when an instance or instances of multimedia streams are
actually running on the system. DVFS schemes are to select the optimal frequency values
for given instances of multimedia streams on a given multimedia system where the voltage
and frequency levels of the processors are already fixed. In other words, DVFS schemes do
not involve in any issue of selecting voltage/frequency values that should be supported by
a processor that is concerned during the design phase.

The problem of processor design and processor frequency selection from an energy-
aware perspective has received considerably little attention so far. One representative work
in this direction is [38], which addresses the selection of the processor core and instruction

and data cache configuration in the design of variable voltage processors. Some other work

44

has been done to select the multiple voltage levels at gate level [25][72][30]. However,
at gate level it is not easy to capture the workloads imposed by the applications, which is
especially important in the context of multimedia applications due to the high variability
exhibited from multimedia workloads.

Little work has studied the problem of voltage selection at the application level, which
is more related to what we do in this chapter. Quan and Hu [5] presented a technique to
determine voltage settings for a variable voltage processor, where the processor is limited to
utilizing a fixed-priority assignment to schedule jobs. The voltages of the processor are also
assumed to be able to change continuously. Hua and Qu [39] studied the voltage selection
problem in the case of only discrete voltage values being allowed. Analytical solution was
derived for dual-voltage system, but for the multiple-voltage systems, numerical methods
were used to approximate the solutions. Buss et al. [18] presented another work for the
case of the discrete variable voltage processors. The task to be executed on a processor is
firstly specified as a task graph whose vertices are annotated with execution requirements
and deadlines. A linear programming based technique is then proposed to optimally select
the number of operating voltage/frequency points and their specific distribution for optimal
power savings.

Our work in this chapter follows the line of development in network calculus theory, but
extends the underlying theory. None of the previous results provided means for computing
the range of processor frequencies from an input specification. This extension is presented
in Section 5.4. Our work presented here can be used to anatyassaf input streams and
provide theoretical guarantees on the performance of an architecture for a class of inputs,
for which a more elaborate theory is necessary—this is explained in detail in Sections 5.3.1
-5.3.3.

The rest of the chapter is organized as follows. The next section formally states our
problem. Given a specification of the application to be implemented on this architecture
and the class of input streams to be processed, in Section 5.3 we compute bounds on the
servicethat needs to be provided by each processor of this architecture. In Section 5.4

we show how such service bounds can be used to derive the operating frequency range

45

of each processor. Finally, in Section 5.5 we present a case study involving an MPEG-2
decoder application to illustrate an application of the proposed approach, and also validate

the results obtained using detailed simulations.

5.2 Problem Formulation

In this chapter, we consider the system-level view of multimedia stream processing on
a SoC platform shown in Figure 3.2. A model of this platform architecture is shown in
Figure 5.1.

In Figure 5.1, letx;(¢) denote the number of stream objects that arrive at aPPE
during the time intervalo, ¢]. Lety;(t) (equal tox;,(t)) denote the number of processed
stream objects at the output 6fF; (or the input of PE; ;) during the time intervalo, ¢].
The real-time clienf7'C' consumes stream objects from the playout buffer at adéte,
which again denotes the number of stream objects consumed within the time iffietjal

The servicereceived by the stream entering the processing elerRéntis denoted
by a service curves;, which is specified by a tuplgs, 3¢). Within anytime interval of
length A, it is guaranteed thaP E; will processat leasts!(A) number of stream objects
and it will be able to procesat mosts*(A) number of stream objects. The functiofis
and3* therefore represent lower and upper bouhds the service provided bi E; and
is determined by the time required to process each stream object, the scheduling policy
implemented on this PE (in case multiple streams are being processed by it), and also
by the voltage/frequency scheduling policy implemented on it. Lastly, eacl¥ BEs
also associated with a workload curye = (+},~%), where~!(k) and~*(k) denote the
minimum and the maximum number pfocessor cyclegespectively, that may be required
to processny k consecutive stream objects belonging to the input streans. therefore
used to capture the variability in the execution requirements of the different stream objects.

Now recall from above that for each PE belonging to the platform, we would like to

1in this chapter, unless specially noted as general bound, any reference to upper bound or lower bound
means the tightest bound, i.e. an upper bound (lower bound) means also the maximum (minimum) value
under certain constraints.

46

Bi
Xl(t) —1 }—>(1 X1 (1)
b, Yi
. \ J
input Y
stream e
— PE > PE >
x,(t) N () (S x3(t):|:|:m C(t)

Figure 5.1: System-level view of multimedia processing on a multiprocessor SoC platform.

determine the operating frequency range that should be supported by it. If the processor
supports only a fixed number of discrete frequency levels, then we would like to determine
how should these frequencies be chosen and what kind of performance impacts will this
decision have. Note that the platform should be designed to supmbass(or several
classes) of multimedia streams. For example, a portable multimedia device might have
a wireless interface through which MPEG-2 coded video streams of two different classes
come in—high-quality video clips with 8 Mbps input bit rate and low-quality clips with 4
Mbps input bit rate. The computational demands associated with these two input classes
might vary widely, which translates to different operating frequency requirements for any
PE on the platform. The input to a PE, when specified using the funetioin however,
represents a concrete instance of a stream rather tloéasgof streams. Therefore, to
specify the arrival pattern of a class or family of streams, we use one of the VCCs called
arrival curve which is similar to the concept fervice curves; described above. The
arrival curvea,, representing the class of streams that might arrive at the inpbitpfis
also specified by a tuplgy, (A), a (A)), where the first and the second terms represent
the minimum and the maximum number of stream objects that might arrive within any time
interval of lengthA. In other wordspr, (A) < z;(t + A) — z(t) < a¥ (A), VE,A > 0.
Therefore, any concrete arrival patterit) is lower and upper bounded by the functions
aé,i anday respectively. Similarly, we uselyi anda;, to denote lower and upper bounds
on the arrival pattern of the processed stream at the outpREpf

Now, let us consider the last PE in the path of a stream, i.e. the PE whose output is

written into the playout buffer (see Figure 5.1). Henceforth, for simplifying the notation,

a7

we drop the subscriptrepresenting the PE identifier. Therefore, as described above, any
input instance to this PE is specified by the functigt) and the class of all input instances

is bounded by the arrival curve,. Any output arrival pattern from this PE is represented
by the functiony(¢) and the sizes of the internal and the playout buffers ared B respec-
tively. The consumption pattern of stream objects from the playout buffer is specified by
the functionC'(¢) as described above. Now, given(A), v(k), C(t) and the buffer sizes

b and B, the problem is to compute the set of all possible processor frequencies at which
this PE might be run, such that the following constraints are satisfied: (i) the playout buffer
never overflows, (ii) it never underflows, and (iii) the internal buffer never overflows.

Our solution to the above problem consists of two parts. In Section 5.3 we compute
lower and upper bounds on the servicé 4nd3*) that needs to be provided by the PE in
order to satisfy the above mentioned buffer constraints. In Section 5.4, we then show how
to compute the frequency range that needs to be supported by the PE in order to realize
these service bounds. The extension of these results to any other PE in the path of a stream
(i.e. one whose output is not written into the playout buffer, but instead into another PE) is
fairly simple, and is also explained in Section 5.3.4.

Throughout this chapter we assume the following processor model: a PE can either
support a continuous range of clock frequencies, or a fixed number of discrete frequencies,
where this number can also be equal to one—i.e. the PE runs at a fixed frequency and
does not support dynamic frequency scaling. Any clock frequency is associated with a
minimum operating voltage that needs to be supplied to run the processor at this frequency.
We assume that this is the voltage at which the processor is run for any frequency—i.e.
voltage and frequency are tightly coupled and determining the frequency results in the
voltage also being determined. Hence, we will only be concerned with determining the

frequency range or the discrete frequency values for any given PE.

48
5.3 Computing Bounds on Service Requirements

Givena, (A), C(t) and the buffer sizelsand B for the last PE in the path of a stream, in this
section we compute the lower and the upper bou#(a) and3%(A) on the service that
needs to be provided to this stream to satisfy the buffer overflow and underflow constraints
described in Section 5.2. Within any interval of lengthif the service provided is less than
our computeds’(A), then either the internal buffer might overflow or the playout buffer
might underflow. Similarly, if the service provided is greater than the compitéd),
then the playout buffer might overflow.

Following the notation introduced in Section 5.2, we u$€ to denote any arrival pat-
tern of stream objects at the input of the PE afit) to denote the arrival pattern at the
output of the PE. Recall that the functiomsy and C' always denoteumulative values
over the time interval0, t|, whereas the functions, andj taketime interval lengthss

the input parameter.

We assume that the first stream object arrives at the internal budtermet = 0. The
playback delay associated with the output device be equg| tee. the first stream object
is read out from the playout buff@s at timet = ¢,. Then the constraint on the playout

buffer underflow can be stated as (see Figure 5.1):
y(t) = C(t), vt=0 (5.1)
Similarly, the constraint on the playout buffer overflow can be stated as:
y(t) <Ct)+ B, Vt>0 (5.2)
Finally, the constraint that the internal buffer in the PE should not overflow, is given by:
y(t) > x(t) —b, Vt>0 (5.3)
The constraints (5.1) and (5.3) can be combined and stated as:

y(t) > C(t)V (z(t) —b), Vt>0

49

Now, if S'(¢) denotes the minimum number of stream objects that is guaranteed to be
processed by this PE during time inter{@lt], then it can be shown thatt) > (z®S')(¢),
vt > 0 [16]. Hence,(x @ S')(¢) is the minimum value ofj(¢) for anyt, and therefore the

above constraint on(t) can be reformulated as:
(@ SH(t) > C@t)V (x(t) —b), Vt>0 (5.4)

From Lemma 1 we know that for any functiorfs g andh, g ® h > f if and only if

h > f @ g. Using this result, Ineq. (5.4) can be reformulated as:
SHt) > (C{) V (x(t) = b)) @ x(t), Vt>0 (5.5)

Since!(A) is the minimum number of stream objects that is guaranteed to be processed

by this PE within any time interval of length, we have
B(t) > S'(t) (5.6)

Ineg. (5.5) therefore gives a general lower bound on the sefVitet needs to be provided
by the PE in order to satisfy the playout buffer underflow and the internal buffer overflow
constraints.

If S“(¢) denotes the maximum number of stream objects that could be processed by this

PE during time interval0, ¢, then it can be shown that [16]
y(t) < (z @ 5%)(t), vt =0

Hence, following the same reasoning as abdwep S*)(t) is the maximum value of

y(t) for anyt, and by using this, the constraint (5.2) can be reformulated as:
(z@S“)t)<C{Ht)+ B, Vt>0 (5.7)

To determine the maximum service that the PE should provide to satisfy the playout
buffer overflow constraint, we are always concerned the case that enough data arrives at the
input buffer, i.e.x(¢) is greater thaiw'(¢) + B. Note that in the case aof(t) < C(t) + B for

t > 0, S* can be infinitely large, since no matter how much service is provided by the PE,

50

the playout buffer can never overflow (this also follows directly from the definition of the
min-plus convolution operator). However, it is not meaningful to compute such a bound
that is infinite.

It can be shown [16] that for any functiorfsg andh, g ® h < f satisfyingg(t) > f(t)

forallt > 0,ifand only ifh < f @ g. Ineq. (5.7) can then be reformulated as:
SUt) < (Ct)+B)ox(t), Vt>0 (5.8)

Since¥(A) is the maximum number of stream objects that can be processed by the PE

within any time interval of lengti\, we have
pU(t) < S“(t) (5.9)

Ineq. (5.8) therefore gives a general upper bound on the setviteat can be provided by

the PE, in order to satisfy the playout buffer overflow constraint.

5.3.1 Computing Service Bounds for &lassof Streams

The above bounds of! and 3* are based on a specific instance of the arrival pattern
of a stream, i.e.z(t). Hence, these bounds can only guarantee the buffer overflow and
underflow constraints for this specific arrival pattern. However, we would like to derive the
service bounds for a class of arrival patterns—i.e. all arrival patterns which are bounded by

the arrival curvey,,.

51

5.3.1.1 Computing the Bound on3'

For a concrete arrival pattern of stream objects given [y, the bound org' is given by

(from Inegs. (5.5) and (5.6)):

At) > (C(t) V (x(t) — b)) @ 2(1)
=sup{(C(t+u)V (z(t +u) — b)) — z(u)}

u>0

=sup{(C(t+u) — z(u)) V (x(t + u) — z(u) — b)} (5.10)

u>0

= max{sup{C(t + u) — z(u)}, ig}g{x(t +u) —x(u)} — b}

u>0
= max{(C @ z)(t), a(t) — b}, Vt>0
Sincez(t) > o' (t) for all t > 0, for any functionf, (f @ z)(t) < (f @ al)(t) for all

t > 0. Hence, the constraint specified by Ineq. (5.10) can be reformulated as:
B(t) > (Coay)(t)V (ag(t) =b), Yt>0

Further, let us assume that the consumption pattern of stream objects from the playout
buffer, as specified by the functiari(t — t,) is lower and upper bounded by the arrival

curveag, i.e.
AL (A) SOt —tg+A) = Ct —tg) < a4(A), VE>t& A >0

We assume that the bounfs,, o) hold over the time intervdk,, co) in order to obtain
tighter bounds. We then havg(t) < o%(t — t4) and the above constraint gi can be

stated as:

BYA) > (a%(A —td) @ o (A)) V (a“(A) —=b), VA >0 (5.11)

T

Ineq. (5.11) therefore provides a general lower bound on the minimum service that needs
to be provided by the PE, in order to satisfy the playout buffer underflow and the internal
buffer overflow constraints, where all arrival patterns at the PE are bounded bynd

all consumption patterns from the playout buffer are boundeddyOnce again, recall
thata, andac represent &lassor afamily of arrival and consumption patterns of stream

objects, and not any specific instance of an arrival or a consumption pattern.

52

5.3.1.2 Computing the Bound on3*

From Inegs. (5.7) and (5.9), the bound @his obtained as:
pUt) < (C(t)+B)ox(t), Vt>0 (5.12)

We know that any instance of an arrival pattefn) at the input of the PE is upper bounded
by o, and the lower bound on the consumption pattern of stream objects from the playout
buffer is given byal,, i.e. C(t) > oL (t — t4). Hence, the above constraint 6t can be

reformulated as:
BUA) < ab(A —ty) @ (A)+ B, YA >0 (5.13)

The above general upper bound@ntherefore guarantees that the playout buffer never
overflows when the arrival pattern of stream objects at the PE is boundagd agd the

consumption pattern of stream objects from the playout buffer is bounded by

5.3.2 Computing Service Bounds in Terms of Number of Processor

Cycles

The lower and the upper bounds on the service that needs to be guaranteed by a PE, i.e.
B and g¥, are specified in terms of the minimum and the maximum number of stream
objects that need to be processed within any given time interval. However, due to the data-
dependent variability in the execution times of multimedia tasks, the number of processor
cycles required to completely process any stream object might be highly variable. As ex-
plained in Section 5.2, this variability can be captured by the functionwhich we refer

to as theworkload curve~!(k) denotes the minimum number of processor cycles required
to process any: consecutive stream objects afntl k) denotes the maximum number of
processor cycles that may be required to process:aipnsecutive stream objects. There-
fore, it follows from the last subsection thgt(3'(A)) is the minimum number of processor
cycles that must be provided to a stream within any time interval of leAgit guarantee

that the playout buffer never underflows and the internal buffer at the PE never overflows.

53

Similarly, '(3%(A)) is the maximum number of processor cycles that may be provided to
a stream within any time interval of length to guarantee that the playout buffer never
overflows.

Here we would like to point out that from our definition of the functignit follows

that
B(A) > B(s) + B'(A = s)

forall A > 0and0 < s < A. Similarly,

pU(A) < B%(s) + B (A = s)

forall A > 0 and0 < s < A. However, the bounds given by Inegs. (5.11) and (5.13) need
not satisfy these properties. Let us assume that Ineq. (5.11) is of the3form > f(A),

VA > 0 and Ineq. (5.13) is of the form*(A) < g(A), VA > 0, i.e. f(A) is the right
hand side term of Ineq. (5.11) ag¢t) is the right hand side term of Ineq. (5.13). Now let

us define two functions’ ands* as follows:

p

0 if A =0
a'(A) = 4(F(A)) ifA=1 (5.14)

max{y"(f(4)), ('@ o)(A)} if A>1

\
0 if A=0

c“(A) = { ~(g(A)) ifA=1 (5.15)

min{y'(g(A)), (0" @ o*)(A)} if A>1

\

where®' and®’ are redefined from the standard operationsaik-plus convolutiofil 6]
and min-plus convolution in network calculus theory. Given any two functjpasd g,

they are defined as follows:

(f@'g)(t) = sup {f(t —s)+g(s)}

0<s<t

and

(f&'g)(t) = inf {£(t ~5) +g(s)}

54

The functionss!(A) ando®(A) are therefore defined ovex = 0, 1,2, ..., and denote the
minimum and the maximum number of processor cycles that should be provided to a stream
within anytime interval of lengthA for all the buffer overflow and underflow constraints

to be satisfied. Moreover, it can be shown that these two functions satisfy the properties

that any function which bounds the service provided by a PE should satisfy, i.e.
o'(A)>o'(s)+0'(A—s), VA>0and0<s<A

and
d"(A) <o"(s)+ o (A—s), YA>0and0<s<A

5.3.3 Bounding the Analysis Interval

So far, our computation of the service boundsands* were based on the fact that the
arrival curvesy, andac and the workload curve are known for all possible time interval
lengthsA > 0. These curves would usually be derived by simulating the processing or
execution of several representative audio/video samples on a template platform architec-
ture. The traces collected from such a simulation—from the different parts of the platform
architecture, such as the arrival pattern of stream objects in frdAtbfin Figure 3.2—are
then analyzed to derive the different arrival and workload curves. However, since these
representative audio/video samples would always be of finite length, the curves or bounds
derived from the resulting traces would also be of finite length. But the platform designed
on the basis of these finite length traces might later be used to process larger audio/video
samples. Hence, we would like to guarantee the buffer overflow and underflow constraints
on input streams of any length (provided they satisfy the bounds dictated by the arrival and
the workload curves), although the analysis and the design of the platform is based on only
finite length representative inputs.

We would however like to point out here that in practice the above issue will not be of
major concern to any system designer. He would use sufficiently long (but finite length)

representative audio/video samples in the initial simulation phase to derive the bounds (i.e.

55

arrival and workload curves) that any input belonging to the class represented by these au-
dio/video samples is expected to satisfy. Based on these bounds, the platform architecture
in question would be designed. When such an architecture processes input streams which
are longer in duration than the samples used for designing the architecture, it is assumed
that the variability of the entire stream is bounded by the variability existing in the sample

inputs. Such assumptions are not specific to our approach and are common whenever a

system is designed based @presentative inputor example, see [52]).

5.3.4 Extending the Analysis to Other PEs

The scheme presented so far is based on the assumption that the PE being analyzed is the
last one in the path of a stream i.e. its output is directly written into the playout buffer. Now
let us consider a PE, whose output is fed into another PE i.e. the next PE in the path of
the stream. An example of such a PEH#; in Figures 3.2 and 5.1. To derive the service
bounds for this PE, let us denote the arrival curve corresponding to the arrival pattern of
stream objects at the internal buffer BiF, as«,,. Similarly, let the arrival pattern of
stream objects at the internal buffer B, be bounded byy,,, and let the size of this
internal buffer beb,. Then bounds o' and3* (such as those given by Inegs. (5.11) and
(5.13)) for PE; can be calculated from,,, «,, andb;. The processed stream coming out

of PE; must satisfy the bounds,,. The only buffer constraint that needs to be satisfied

in this case is that the internal buffer 6fF; should not overflow. The resulting bounds

on the service are therefore much simpler than the ones derived above, and hence we omit
them here. This same scheme can be applied to other PEs in the path of the stream which
are away from the playout buffer. If all of the PEs provide a service in accordance with
the bounds computed for them, then it is guaranteed that none of the internal buffers in the

architecture will overflow, and the playout buffer will neither overflow and nor underflow.

56
5.4 Computing Processor Frequency Range

Given the service boundg andc* for a PE, in this section we compute the discrete fre-
guency levels or the frequency range that must be supported by the PE in order to realize
these service bounds. For any given multimedia application and a class of input streams to
be processed, accurately determining the appropriate processor frequency range is a non-
trivial problem. The situation is much more complicated when the PE in question has to
process multiple classes of input streams or multiple applications. In such cases, the differ-
ent input classes might have different computational demands and hence require different
processor frequencies. Here is it important to determine the range of processor frequen-
cies that must be supported for each class. If these ranges overlap, then the processor
might support some frequency belonging to this overlapping range. But if these ranges do
not overlap, then multiple frequency levels need to be supported. Further, the processor
frequency range to be supported by a PE is heavily dependent on the size of the on-chip
buffers. A platform designer would therefore be interested in obtaining insights into this
dependency. Our results presented below would help in obtaining such insights. These

results can be summarized as follows:

1. For any application and a class of input streams, we can statically generate frequency
schedules for a PE which satisfy all the buffer constraints. Such schedules specify

the frequency with which the PE should be run at any time.

2. We derive a frequency randé..in, fmax) Such thatall feasible frequency schedul-
ing algorithms will only use frequencies within this range. Therefore, it would be

sufficient if the PE supports frequencies belonging to this range only.

3. Finally, our schemes can also be used to identify how the boufagls fmax) Cchange

by changing the on-chip buffer sizes (both the playout and the internal buffers).

For simplicity, we assume that the processor frequency can be changed at each time
unit. Then during any run of the processor over a time interval of lendiiheren may

be equal toA,,,., defined in Section 5.3.3), let its frequency valuesfbe. ., f,, i.e. f;

57

is the frequency at which the processor is run during the time interval(i — 1,4]. If

the service being offered to a stream as a result of this schedule has to be bounded by the

service curveg! ando, thenf,, ..., f, is required to satisfy the following inequalities:
al(1) < fi <o (1)Vi=1,2,..,n
o'(2) < fi+ fin <o“(2)Vi=1,2,..,n—1
a'(3) < fit fir + fire <o"(3)Vi=1,2,..,n —2

Ol(n) < fz + fi+1 + f¢+2 + ...+ fi+n_1 < 0'”(71) Vi=1

The above constraints may be summarized as follows. Faha# 1,2,....n andi =

1,2,...n—A+1,
(D)<Y fiy < 0"(A) (5.16)

From the constraints given by Ineq. (5.16), it may be seen that any frequencyfyalue
is dependent on all the previously assigned frequencies. To be more clear about how this
dependency is, from Ineq. (5.16) we identify all those inequalities that only ingluaied

the values infi, ..., fi_1, which is shown in the following,

o'(1) < fi < o"(1)
d'(2) < fici+ fi < o"(2)
o'(3) < ficao+ fisi + fi < o"%(3) (5.17)

d@)< fit+ fot ...+ fisi+ i <o"(i)

The above inequality shows thtis dependent on the sum of all the previduassigned

frequencies proximate to it, for arky=0,...,7 — 1.

Randomly Generated Frequency SchedulesSuppose that all the previous frequencies

fi, ..., fi_1 have been assigned, by solving Ineq. (5.17), the lower and upper bounds on any

58

fi is given as follows:

f» = max{o'(1),0'(2) - fi}
f3 = min{o"(1),0"(2) - f}
fs = max{o'(1),0'(2) = fo,0'(3) = (fi + f2)}
f = min{e"(1),0%(2) = f2,0"(3) = (/i + f2)}

Hence,
l al(1) if i =1

fi =
maXlngi_l{O'l(l), O'I(T: -] + 1) - Z;;lj fp} ifi>1
’ (5.18)
ot (1) ifi=1

= |
miny<jci 1 {0"(1),0"(i —j+1) = >, fp} ifi>1

f} and f* therefore give lower and upper bounds on the frequency that can be assigned
during the time intervali — 1, i], provided the frequencies at all the previous time intervals
are known. To generate a static frequency schedule, we can chooggany!,], and

the chosery; will determine the ranggf.. , /i ,].

Frequency Range:To compute the frequency range, that was mentioned above, we first
compute the lower and upper bounds fonby solving Ineq. (5.16). From equality (5.18),
we know that the bounds ofj is dependent on all values 3f, " f,. Like f;, .~ f,

is also dependent on all the previous frequengies., f;_, the constraints for which can

be derived in a similar way to that fgf (refer to Ineq. (5.17). We define two functions

(X5 f,)! and (32, f,)". The first provides a lower bound, and the second an upper

59

bound on the sunf; + ... + fi_;.

- . ol(i— 1) if j =1
(S g =

\maxlgqgjfl{Ul(i —4),0l(i—q) — (0 f)mery > 1
| (i — 1) it =1
(s f)m =

| mini<ggj-1{0"(i = 7),0"(0 — q) — (Xizy foyminy if i >1

Using the above two functions, we can derive the bounds as

(
. al(1) if i =1
i = ‘
>maX1<j<i1{Ul(1)a oli—j+1)— (3,2, fp)me} ifi>1 (5.19)
a¥(1) ifi=1
i = '
| minigy<i-110(1), 0" —j +1) - (X, fo)mmy ifi>1

fmin is the smallest possible processor frequency that can be assigned during the time in-

terval (i — 1, 1], and f** is the largest possible processor frequency that can be assigned

.....

pute the frequency range, as shown in Figure 5.2.

5.5 Case Study

In this section we present a case study to illustrate an application of the approach presented
in the last two sections. Towards this, we study a platform architecture consisting of two
PEs, as shown in Figure 3.2, onto which an MPEG-2 decoder application is mapped. The
goal is to compute the processor frequency range that needs to be supported by one of the
PEs and also identify how this range changes by changing the on-chip buffer size.

As shown in Figure 3.2, the MPEG-2 decoder application is partitioned into a set of
tasks executing in parallel on two PEs of the system architecflfg. executes the VLD

and the IQ tasks, whil& F;, executes the IDCT and the MC tasks. A compressed video bit

60

Input: service curves!(A), o%(A) and time interval length ;
Definition: arraysF'[n,n] and F“[n,n];
Initialization: F'(i, k) < o'(k), F*(i, k) < o“(k) forall 1 < i,k < n;
for i < 2ton do
for j «—ito2do
F'(jyi—j+1) « maxicu;{o'(i—j+1), o'(i+1—q) — F'(q,j —q)}
I*F'(j,i—j+ 1) stores(>_ . f,)"™"*
FU(j,i— 3+ 1) « minjcgej 1 {o"(i —j + 1), 0"(i +1—q) - FY(q,7—q)}
P*F(j,i—j+ 1) stores(y . fp)m**
endfor
endfor
for i — 1ton do
frin e FU(i 1), fror — FU(i, 1);
endfor

fmax — max;—i,.., n{fimax};
Figure 5.2: Algorithm of Computing Frequency Range.

stream arrives from the network interface into the input buffe? &f . After processing on
PF;, the partially decoded stream consisting of stream objects calledoblocksenters
the bufferB, in front of PE,. PE, reads the buffer one macroblock at a time and computes
for each macroblock the IDCT and MC functions. After that the video stream emerges out
of PE, as a fully decoded stream of macroblocks. This stream is written into the playout
buffer B, which is read at a constant rate by the video output pgit The video output
port represents the real-time client (RTC) in this setup. The rate with which it reads the
playout bufferB, is determined by the resolution and the frame rate of the decoded MPEG-
2 video sequence. As we mentioned above, the service provided to the video stream on the
PEs of such an architecture is dependent on the buffer constraints. In the above setup, at
any point in time none of the buffe¥s,, B, andB, are allowed to overflow, and the playout
buffer B, should not underflow.

Determining the service that must be offered by the PEs to the stream, and thereby
identifying their feasible clock frequency ranges under the given buffer constraints is not
an easy task. The main complexity of the problem stems from the highly variable load

imposed on the PEs of the architecture by the video stream. For example, let us consider

61

the load imposed by the stream &1F,. Firstly, the execution demand of IDCT and MC
tasks performed by’ F, varies for different types of macroblocks (e.g. because of the
various kinds of motion compensation methods that have to be applied to the compressed
macroblocks). Secondly, the arrival pattern of macroblocks into the bBfféras a high
degree of burstiness, which is caused by the variability in the execution demand of the
tasks executing o E;. The overall result is a very complex and variable nature of the
processing load imposed dnk,. This further increases the burstiness of the macroblock
stream emerging at its output and entering the playout bifer

Now, using the above example BfF; we will demonstrate how the proposed method-
ology can be applied to compute the required service bouradsl the associated feasible

clock frequency range aP E, for the given MPEG-2 decoder application.

5.5.1 Computing the Service Bounds and the Frequency Range for

PE,

Before we can compute the service boundand the corresponding frequency range for
PFE,, we need to obtain the arrival curves anda¢ and the workload curvesg character-
izing the stream processed By, and the real-time clienit,,;.

Following the methods presented in Chapter 4, we obtain the arrival c(njes),

(aL, %) and the workload curveg/’, v*). Note that here we use a customized version of
the SimpleScalar instruction set simulator for collecting the traces of execution demands of
the MPEG-2 decoder tasks. Figure 5.3 shows the arrival cyn/gsr*), which we have
obtained for a representative 4 Mbps video sequente; .

Now we apply the results presented in Section 5.3 to compute the cycle-based service
bounds(c!, o*) corresponding to the service that must be offered™i, to any video
stream belonging to the class of streams bounded by the cugyeg: and~. The bounds
(0!, 0%) corresponding to the example video sequengto,, for two differentsystem
configurationsare shown in Figure 5.4. The two system configurations differ only in the

sizes of the buffer#3, and B,. By examining the plots on Figure 5.4 we can see that even

62

3 X 10
0 2.5 s
o R
9 R
8 2r ’I”
£ S 4
8 /“"—"
= 157 ‘\,_,'
kS el
8 I /o
: “oo dle
0.5/ .- — a'(a) |
, ' . x(t0+A)
O ‘_f

0 01 02 03 04 05 06
time interval A [sec]

Figure 5.3: Arrival curvesa! , o) of the macroblock stream on the outputF, for the

video sequenceideo;. A fragment of the function:(¢) for video, is shown in this figure.

Note that it is bounded by the corresponding arrival curves.

a relatively small change in the available buffer space may have a considerable impact on
the service bounds. Furthermore, the distribution of the total on-chip buffer space among
the different buffers may also have an impact on the service bounds..

We also compare with the service bounds computed by modeling the execution require-
ments of a sequence of stream objects using a simple best-/worst-case characterizations
commonly used in the real-time systems domain. d.gt ande,,., denote the minimum
and the maximum number of processor cycles required by any single stream object belong-
ing to a sequence. The minimum and the maximum number of processor cycles that might
be required by any consecutive stream objects within the given sequence are modeled by
k X emim andk x eq... Figure 5.5 shows that the computed service bounds (denoted by
(ol,0%)) using this simple modeling scheme are very pessimistic, compared to our com-
puted service bounds (denoted {, 0)) using workload curves. The frequency range
resulted from this simple scheme is then computed to be (0, 1.107GHz), which is quite
pessimistic compared to the computed frequency range (0, 1.672GHz) for our scheme. Itis

thus shown that our scheme using VCCs performs better than the simple modeling scheme.

63

x 10
3
8 25l O'U(A) for C1 o
s o (A) for C1 ‘,\'
> K/
o 1 | O'I(A) for C2 P
5 2f u %
o | | o (A) for C2 e
n 7
8 . "',.
o 1.5¢ s
= e
o e
Y— -
(@] K7
5 1
g
5 peeeeEs '/\
< 0.5r //
»'\
\/
pd
O 4 I I

0 01 02 03 04 05 06
time interval A [sec]

Figure 5.4: Service bounds’, o*) for video, for two different system configuratiors1
andC2, whereC'1 = {B, = 4000, B, = 7000} andC2 = { B, = 4500, B, = 6500}.

Video sequences belonging to different classes of streams may have very different on-
chip buffer requirements. Therefore, the service bounds for these sequences, and hence
their feasible clock frequency ranges might also be very different. This information about
how different these ranges might be for different classes of video sequences can be effi-
ciently obtained from the service boundsas described in Section 5.4. In our example,
using the proposed approach we have computed the frequency ranges for two sets of video
streams. Each set has two classes of video sequences that are characterized by different
input bit stream rates, i.e. for 4 Mbps and 8 Mbps MPEG-2 streams. One set of streams
contains more motion and the other contains less motion. The computed frequency ranges
for the above two sets of video streams are shown in Figure 5.6 and Figure 5.7. In the left
of this subsection, we will discuss the results that can be concluded from Figure 5.6. The
same observations can also be obtained from Figure 5.7.

Figure 5.6 shows the dependency of the frequency range on the playout buffer size for a
4 Mbps and a 8 Mbps MPEG-2 video streams. In this figure it can be seen that the playout

buffer size has a considerable impact on the upper frequency bffiun®y increasing

64

3x 10
T o)
$ 2.5 | — o/(B)
©° --. 0_(8)
3 ol
5 2r " Ts
)]
0
(]
8 1.5f
o
©
5 1
Q
=
>
S 0.5/ k
% 1 2 3 4

time interval A [sec]

Figure 5.5: Service bound®’, o*) computed using VCCs and service bourd$, o“)
computed using a simple modeling schemedfiakeo, for system configuratio’ = { B, =

12000, B, = 16000}.

the buffer size, the maximum frequency with whiétf’; can run, also increases. This
corresponds to the intuitive understanding that the larger the playout buffer size, the more
bursty the incoming stream can be.

Figure 5.6 shows an overlap in the frequency ranges of the two classes of video streams.
This implies that for anyeasibleplayout buffer size and a fixed size &% (set to 3000
macroblocks), we can always find a clock frequency with whitdh, can be run for video
sequences belonging to both the input classes (i.e. 4 Mbps and 8 Mbps input rates). It may
be noted here playout buffers only beyond a certain size are feasible—meaning that, for
them feasible service boundsxists. It may also be noted that in general such a common
clock frequency for any two input classes might not exist for a single system configura-
tion. In such cases it will be necessary to support multiple frequency ranges/values, where
the frequency level at which the processor is run depends on the class to which the input
belongs. Alternatively, the configuration of the system can be changed (for example by
increasing buffer sizes), till the frequency ranges of two input classes overlap. When this

happens, once again it would be sufficient for the processor to support a single frequency

65

for video 1

5 500

- f . forvideo 1
““““ f forvideo 2 | 4
max

‘‘‘‘‘ f . forvideo 2
min

0

4000 5000 6000 7000 8000
playout buffer size

Figure 5.6: Dependency of frequency ranges on the playout buffer size for two different
classes of the MPEG-2 video streams with more motion: 4 Mbp#¢,) and 8 Mbps
(video,). The size of buffer, is fixed to3000 macroblocks.

level belonging to this overlapping range. Our methodology can be used to efficiently

identify such design tradeoffs in the case of configurable platform architectures.

5.5.2 Validation of the Analytical Bounds

To validate our approach for processor frequency selection we simulated the platform ar-
chitecture using static schedules generated using the approach. Towards this, we used a
detailed simulator of the system shown in Figure 3.2. The simulator consisted of a trans-
action level model of the system architecture written in SystemC, and the models of PEs
were based on a customized version of the SimpleScalar instruction set simulator. Using
this simulation setup, we measured the maximum backlogs and recorded any buffer under-
flows that occurred as a result of running the system with a static frequency schedule for
PFE5 (which was generated using our approach). Table 5.1 shows a representative set of the
simulation results.

We evaluated two frequency schedules Rit; that are bounded by the computed fre-
guency range obtained using the proposed approach. These ranges correspond to different

system configurations and classes of the video streams. In Table 5.1 these schedules are in-

66

. for video 3
\\\\\\\\ max

- f . forvideo 3
min

““““ f for video 4
max

f . forvideo 4
min

4000 5000 6000 7000 8000
playout buffer size

Figure 5.7: Dependency of frequency ranges on the playout buffer size for two different
classes of the MPEG-2 video streams with less motion: 4 Mbp#4¢3;) and 8 Mbps
(videoys). The size of buffer; is fixed to3000 macroblocks.

dicated as'andl andrand2, which indicate randomly generated static schedules from the
frequency boundsf, i, fimaz), @S explained in Section 5.4. Two such randomly generated
schedules are illustrated in Figure 5.10 for a class of video streams.

In all the simulations we performed, the maximum backlogs measured in the buffers
never exceeded the buffer sizes. Furthermore, our simulation results also showed that play-
out buffer underflows never occurred for any of the simulated frequency schedules. It
therefore validates the proposed framework and suggest its practicality. Finally, we would
once again like to point out that obtaining equivalent results using purely simulation based
approaches is extremely time consuming and such approaches usually fail to provide any

formal performance guarantees.

5.5.3 Selection of the Analysis Interval

We also did experiments to see how the selection of the analysis interval(j.g) affects
the frequency range computed. Given a sample class of video streams, Figure 5.11 shows
the service bounds in terms of number of processor cycles forA < 5.6 sec. We then

choseA, .. to be0.7,1.4,...,4.9,5.6 seconds respectively and computed the frequency

67

BOO 1 1
-§- 500~ 1
=
; 400’ — f for video 1 N
(&) .

c - fmin for video 1

$ 300¢ S

o | or video 2

g - f . for video 2

~ 200 min]

(&)

i) ==l

© 100+ -'"‘:‘:117:,- 7
07 T -,=’1“--__‘___ |

200 400 600 800 1000 1200 1400
internal buffer size

Figure 5.8: Dependency of frequency ranges on the internal buffer size for two different
classes of the MPEG-2 video streams with more motion: 4 Mbp#¢,) and 8 Mbps
(videos). The size of buffe3, is fixed to6000 macroblocks.

ranges, as shown in Figure 5.12. It is observed that 0.7 sec is long enoufyh fosuch

that the frequency range computed from it can bound (here, are equal to) those computed

from any longer analysis interval than 0.7 sec.

5.6 Summary

In this chapter we presented our analytical approach that can be used for the design space
exploration of parameters or configurations of SoC platform architectures for multimedia
processing, that contain processor cores which support dynamic voltage/frequency scaling.
Specifically, our approach studied how to choose the frequency range that should be sup-
ported by each processor under the architectural and application constraints. In contrast to
simulation based approaches, which usually follow a trial-and-error approach and involve
very high simulation times, the proposed approach can provide useful insights into the de-
sign space and can aid a system designer in systematically tuning a platform architecture
for a class of applications.

Throughout this chapter we have assumed that a PE processes a single input stream.

68

500r A
N
= 400¢ 1
— —_— f for video 3
a fmaxf)
- . i 3
% 300t min or video i
S0 | f for video 4
g fmax
=200 e min for video 4 J
X
[&]
i)
© 100 A
T = "H.v--n-- =
""~v_,..
=
or e £ S I R

200 400 600 800 1000 1200 1400
internal buffer size

Figure 5.9: Dependency of frequency ranges on the internal buffer size for two different
classes of the MPEG-2 video streams with less motion: 4 Mbp#4¢;) and 8 Mbps
(videoys). The size of buffe3, is fixed to6000 macroblocks.

However, in general a PE might process multiple input streams. For example, in the ar-
chitecture shown in Figure 3.2, assume thatri,, in addition to the IDCT and the MC

tasks, an MP3 decoder task is also implemented. In such a case, this PE processes an audio
stream in addition to the video stream shown in the figure. Further, a task scheduler based
on some scheduling policy chooses the stream to be processed at any time instant. Given
a specification of the audio stream, our approach can be extended to identify the frequency
range to be supported by the PE in this case. In addition to the theory presented in this
chapter, this requires a modeling of the task scheduling discipline and hdatéhservice

offered by the PE is divided among the two streams. Some of ideas pertaining to such a

scheme may be found in [20].

69

video sequence buffer sizes| schedulel measured backlogs

BQ ‘ Bv BQ ‘ Bv
4000| 7000| rand1 | 3234 4511
videoy rand 2 | 3259 4601

4500| 6500| rand1l | 3761 4350
rand 2 | 3334 4568

4500| 7000| rand 1 | 3639 4721
videoy rand 2 | 3518 4910
5000| 6500 rand 1 | 3858 4912
rand 2 | 3685 4941

4500| 6500| rand 1 | 3118 4542
videos rand 2 | 2966 4649
5000| 7000| rand1 | 2781 5010
rand 2 | 2668 5006

4000| 6000| rand 1 | 3764 3615
videoy rand 2 | 3878 3589
4500| 5500| rand 1 | 3994 3556
rand 2 | 4270 3482

Table 5.1: The maximum buffer fill levels obtained by simulating a static frequency sched-
ule for PFE, that was derived using the proposed framewarkieco; (videos) andwvideo,
(videoys) are 4 Mbps and 8 Mbps MPEG-2 video streams respectively.

700F =" .
Y I fmax

_600F 1 - 4hin 1
; -. |
= 500t . ~ schedule 1 | |
- -- -- schedule 2
S 400+ | 1
) ---
> -
@ 300f TS SIS ST 1 1
x
8 200f 1
(&)

100A/\ b

JVNGMNRPIVT gAY
0 0.1 0.2 0.3 0.4 0.5 0.6

time [sec]

Figure 5.10: Two randomly generated schedules obtained from the service lsounds

70

x 10

2.5

15 4 1

number of processor cycles

0O 1 2 3 4 5 6

time interval A [sec]

Figure 5.11: An illustration of the service bound$or a longer time interval.

1400

12007 W W m = = N = = = = = =M= == &

=
o
o
o
T
1

max

800 PO .

min

600 :]

400]

clock frequency [MHZz]

2001]

0 1 2 3 4 5 6
analysis interval A [sec]

Figure 5.12: The frequency ranges computed for different values of the analysis interval.

71

Chapter 6

System Design Case |l: Generalized

Rate Analysis

In this chapter, we apply our analytical framework to specifically address a problem which
we refer to as theate analysis problemGiven a multiprocessor architecture and a mul-
timedia application that has been partitioned and mapped onto it, the problem we aim at
is to determindight boundson the rates at which different multimedia streams can be fed
into this architecture. This is an important issue since when a stream arrives at a rate that
is higher than a certain upper bound, this may lead to buffer overflow in the architecture.
This problem is especially acute when dealing with architectures for portable devices (such
as PDAs and portable audio/video players) which have a very limited on-chip buffer mem-
ory. On the other hand, when the stream arrives at a lower rate compared to a specified
threshold, the quality of the output might suffer as well, i.e. the quality-of-service (QoS)
constraints associated with the application may be violated. The goal of our rate analysis
is precisely to compute these upper and lower bounds; this can help designing wireless
interfaces and suitable buffering and traffic shaping mechanisms for multimedia streams.

The main difficulties associated with the rate analysis problem stem from (i) the high
data-dependent variability in the execution time of multimedia tasks [79], (ii) the burstiness
of on-chip traffic arising from multimedia processing on multiprocessor architectures [87]
and (iii) the presence of on-chip buffers and different scheduling algorithms implemented
on the different architectural components. As a result, the rate analysis problem sbould

be restricted to computing a constant “long-term” arrival rate of a multimedia stream. It

72

Network PE, Video
Interface B, B, B, Interface

Output
e IDCTMC oo ~ Device

VLD: Variable Length Decoding IQ: Inverse Quantization
IDCT: Inverse Discrete Cosine Transform MC: Motion Compensation

Figure 6.1: An MpSoC platform processing two concurrent MPEG-2 streams for a PiP
application.

should be rather concerned with computing the allowable burstiness of a stream at differ-
ent time scales. The wireless interface design and buffering mechanism mentioned above
depend on these computed bounds on the burstiness.

Another use of rate analysis arises in the context of IP-based design of media processing
architectures. Consider an architecture made up of different IP processor cores, where each
such core runs some multimedia tasks. The stream to be processed gets processed at the first
core and then, the partially processed stream, enters the next core for further processing.
Two such processor cores might communicate via a bounded buffer (see Figure 6.1). Since
designers usually treat these IP cores as black boxes, two cores may be connected if the
rate which the partially processed stream comes out of the first core “matches” the rate at
which a stream can be fed into the second processor core. Stated differently, the upper and
lower bounds on the rate associated with the second core must “enclose” the output rates
associated with the first core. We will show a concrete example in Section 6.1.

In the context of SoC platform configuration, the bounds returned by rate analysis de-
pend on architectural parameters such as the amount of on-chip memory available, clock
frequencies of different processors and bus arbitration policies. Further, these bounds also
depend on application characteristics, including how the application is partitioned and
mapped onto the architecture. If the input stream rates are dictated by the environment,
a designer has to tune the platform configuration such that these rates can be supported by
the architecture. The rate analysis framework that we present in this chapter can help a
system designer precisely to solve this problem and also identify all the tradeoffs involved.

Although schedulingof multimedia streams has been extensively studied by both, the

73

multimedia and the real-time systems communities, the rate analysis problem has not been
addressed in sufficient detail, especially in the context of multimedia processing on multi-
processor architectures. Very restricted and simpler versions of this problem have however
been studied before in the general domain of embedded systems design (e.g. computing
maximum execution rates of concurrent processes interacting through synchronization).
We believe that our work can generalize some of these previous results on rate analy-
sis, studied in slightly different contexts. In addition, they can lead to new insights into
less-studied problems, like sensitivity of schedulability analysis on input parameters, and
eventually also inspire new techniques for solving them.

The rest of this chapter is organized as follows. In the next section we formally state
our problem and introduce the necessary mathematical tools. In Section 6.2 we present our
rate analysis approach. This is followed by our experimental results in Section 6.3. We

discuss some related work in Section 6.4 and finally summarize in Section 6.5.

6.1 Problem Formulation

In this chapter, we consider the following system-level view of an MpSoC platform, as
shown in Figure 6.1. This figure illustrates a picture-in-picture (PiP) application where two
concurrent video streams are being processed by the platform architecture. An MPEG-2
decoder application is partitioned and mapped onto three processing eldhignts F,

and PFE5;. The VLD and IQ tasks of the decoder application have been mappeddiito

and also replicated o F5;. Each of these two PEs process a different strednt.s,

on the other hand, implements the IDCT and MC tasks and processes both the streams.
A scheduler implemented oRE, schedules these streams, probably using different QoS
parameters for each stream. The stream corresponding to the main window in the PiP
application might be associated with a higher frame rate and resolution and will generate a
higher workload onP E,, compared to the stream associated with the secondary window.
When a user switches off the PiP mode, the stream associated with the secondary window

is switched off and all the processor cyclesRik, are used for the main stream. In this

74

platform architecture, the processing for each stream is same as that shown in Figure 3.2.

As have been discussed in previous chapters, typical design constraints that need to be
satisfied in a setup like this are (i) the playout buffers should not underflow (this would
result in the output device missing a frame to be displayed), and (ii) none of the buffers
should overflow. Note that because of factors like congestion in the network, the bitstream
arriving at the bufferB; might be bursty in nature. However, the amount of burstiness
would also depend on the kind of processing and buffering done at the network interface. In
addition to this, the number of bits consumed by the VLD/IQ task to produce one partially
decoded macroblock at the output BF; is also highly variable. Lastly, the number of
processor cycles required in this process (i.e. to generate one partially decoded macroblock)
is also variable. For many multimedia tasks, the ratio between the worst-case and the
average load on the processor can be as high as a factor of 10 [77]. As a result, the stream
of partially decoded macroblocks that get written idtpwill be highly bursty in nature.

Given a scheduling policy (and its associated parametersp oy, the sizes of the
buffers B, and B,,, and the rate at whiclB, is read out by the output device, we want to
compute tight bounds on the rate at which the stream objects can be allowed to arrive at
B,, such that the buffer overflow and underflow constraints are satisfied.

Recall from the above discussion that the rate at which stream objects are written out
by PE; into B, is highly bursty in nature. If this rate “matches” the bounds mentioned
above, then all buffer constraints will be satisfied for the system. However, if these rates do
not match, then certain parts of the architecture need to be tuned accordingly. This tuning
might include (i) changing buffer sizes, (ii) changing the scheduld? i, (iii) changing
the task mapping, or (iv) modifying the network interface. On the other hand, if the bounds
allowed by PFE, are much larger than those at whiéh; outputs stream objects, then
certain buffer sizes can be reduced to save cost.

Since we are concerned with the rates of bursty streams, it is not sufficient to specify
such rates solely using the “long-term” arrival rates of stream objects. We would rather
want to accurately specify the amount of burstiness in a stream. Towards this we shall use

the concept of VCCs. Here we will show how they can be used to represent bounds on the

75
O_l
v

(a)lc, a,) @(a; ’ 0{5) (aé Q)
b B

Figure 6.2: Processing a single stream.

burstiness of a stream. We will also use VCCs to capture the data-dependent variability in
the execution requirements of stream objects andsémeiceoffered by a processor to a

stream.

The Rate Analysis Problem:We are now ready to formally state the rate analysis problem.
Let us again consider Figure 6.2. Suppose that we are giyamda®, a lower bound or
guaranteed service offered by the PE (iz8, the workload curves’ and~* and the buffer
sizesb and B. The rate analysis problem consists of computing the functignand o
such that the buffeB does not underflow and neither of the buffers (b.and B) overflow.

It can then be guaranteed that any stream whose arrival process is boundedya®

will satisfy the buffer underflow and overflow constraints.

Note that the VCCs always captureckassof streams. For example, the workload
curvesy! and~* captureall possible execution traces for whiany k£ consecutive stream
objects require a minimum of'(k) and a maximum of/“(k) processor cycles. Hence,
the problem specification given above holds for not just one concrete stream, but a class of
streams.

When multiple streams are being processed by a PE, as shown in Figure 6.3, we are
also given a specification of the scheduler running on the PE. The problem in this case is to
compute the functiona’, anda® for each of the individual streams. Again, the computed
arrival curves are required to satisfy the buffer overflow and underflow constraints.

Lastly, in the case of architectures with multiple PEs connected in a pipelined fashion,
the problem is to propagate the results of the rate analysis from one PE to the next, starting

from the one closest to the output device (if&Z, in Figure 6.1). The final result of such

76

o
()
Lo P G R L
(&, Oy 1,/ 5 (&,)
' L O "
bl B1

1
u
(ac2 ’ acZ

[
u
(ax2’ axZ b
2

l

Figure 6.3: Processing multiple streams.

an analysis will then be precise bounds on the input rate at which a stream can be fed into

the platform architecture.

6.2 Rate Analysis

In this section, we first present our rate analysis framework for the case of a PE that is
closest to the output device. We will then show how to extend it to the case of other PEs in

the path of a stream.

6.2.1 The Single Stream Case

Let us again consider Figure 6.2. Using results from [63], it can be shown that the maxi-
mum backlog at the input bufféris bounded by

it;%{aéé(ﬁ) - B1(A)} (6.1)
where 3' can be obtained from* and ¢! as discussed in Section 3.2. For the sake of
notational simplicity, from hereon we will ugeand B to denote both, the buffers and their
respective sizes.

Using this result, the constraint that the bufferever overflows can be stated as:

a(A) < BHA)+b, VA>0 (6.2)

x

77

Similarly, the constraint that the playout buffer never overflows can be stated as:

a(A) < (A)+ B, YA>0 (6.3)

Y

Let the playback delay associated with the output device be equg| te. the first
stream object is read out from the plaout buffeat timet = ¢,. Thereafter3 is read out
at a rate specified by the consumption bouafianda®. The time intervat = [0, ,), is
often referred to as thieuffering time We assume that the bounfs,, o) hold over the
time interval|t;, o) i.e. the buffering time is ignored. This is needed in order to obtain
tighter bounds.

Ineq. (6.3) guarantees that the buffémever overflows subject to the condition that it
is empty at the time,; and starts filling up from thereon. In reality, this is of course not
true since stream objects are written iBaduring the buffering time. As a result, even if
Ineq. (6.3) is satisfied, certain stream objects might be dropped. However, the maximum
number of dropped stream objects can be bounded and we shall derive this bound towards
the end of this subsection.

It can also be shown that!/(A) = (a¥ @ 3')(A). Using this result, Ineq. (6.3) is
equivalent to

(@@ BY(A) < al(A)+ B, VA >0

Using Lemma 1, this inequality can now be reformulated as:
g (D) < (B'® ag)(A) + B, VA0 (6.4)
By combining the Inegs. (6.2) and (6.4), we obtain the following upper bound'on
g (A) < (B(A) + D) A ((B'® ag)(A) + B), VA >0 (6.5)

Next, we derive a lower bound et . It may be noted that this will depend on the upper
consumption bound?, the service curvg'’ and the playback delay. Let us fist consider
the case where the playback detay= 0. In this case, the output device has to wait for a
maximum ofozéfl(k) — a*~1(k) time units until thek-th stream object is written into the

c

playout bufferB. From this it is possible to bound the maximum time interval for which

78

no. of stream objects

t

0

Figure 6.4: A graphical illustration of the playout buffer underflow constraint in terms of
a, o} and the playback delay.
the output device might have to wait to read a stream object, as illustrated in Figure 6.4.
This bound is given by:
-1 w—
sup{ay, (k) — a7 (k)}

k>0

Using this result, we have the following theorem for non-zgro

Theorem 1 Given the upper consumption bouati, the lower output boundly, and the

playback delay,, the playout buffe3 will never underflow if

sup{al (k) — o (k)} < t4
k>0

Proof: Let C'(t) denote the number of stream objects consumed by the output device and
y(t) denote the number of stream objects processed by the PE during the iftetjal
When the inequalitwupkzo{aéfl(/ﬁ) — a"Y(k)} < t4 holds, it follows that (see also
Figure 6.4):

C(t) < al(t —ta) < af(t) < y(t)
is also true. The guarantee that the playout buffer never underflows followsfom<
y(t). O
From this theorem it follows that in order for the playout buffer not to underflow, the

following constraint needs to be satisfied:

79

ol (k) < al (k) +ta, VE >0 (6.6)

— c

For notational simplicity, we will use“(A) to denote the pseudo-inverse of the func-
tion o'~ (k) + tq4. Ineq. (6.6) can then be written as} (A) > A*(A), YA > 0. Further,
it can be shown that! (A) = (o), ® 3')(A). By combining this with the above inequality,
we obtain tha{a! @ 3')(A) > A\%(A). From Lemma 1 we can then obtain the following
lower bound orv’:

b (A) > (Mo p)A), YA>0 (6.7)

Inequalities (6.5) and (6.7) therefore give upper and lower bounds on the rate of the

input stream.

Bounding the buffer overflow: Ineq. (6.3) guarantees that the playout buffer never over-
flows during the time intervdt,, oo) subject to the condition that it is empty duriftgt,).

In reality the assumption tha&t is empty durind0, ¢,] does not hold. However, it is possible

to obtain an upper bound on the number of stream objects that can arrive within this time
interval. This upper bound is the maximum number of stream objects that can overflow
from the buffer as a result of the above assumption. We know that the maximum number
of stream objects that can be processed within,| is fyl_l(a’(td)), and the maximum
number of stream objects that can arriveé atithin [0, t4] is a(t;). Hence, the maximum
number of stream objects that can arriveBatiuring [0, ¢4 is min{y' "' (¢'(t4)), a"(t4)},

which is therefore equal to the maximum number of stream objects that can overflow from

B.

6.2.2 The Case of Multiple Streams

In this subsection we are concerned with the case where multiple streams are being processed
by a PE. We consider a PE processing two streams (see Figure 6.1) to illustrate our ap-
proach. The extension to more than two streams is straightforward. As in the single stream

case, we again assume that the PE of interest is the one next to the output device. Let

80

the playout and input buffers associated with each of the streams be aBgsiaadb,
respectively, withn = 1,2. Similarly, let the workload curves and consumption bounds
associated with each of the streams(bg, 7%) and (o!,,, a,) respectively. Finally, let

the service curve offered by the PE de The scheduler implemented on the PE divides
the servicer' among the two streams. Here we shall consider two scheduling disciplines—
fixed-priority and time division multiplexing, but our approach can be used to analyze other

schedulers as well. Figure 6.3 shows the problem setup that we discuss here.

6.2.2.1 Fixed-Priority Scheduling

Let the two streams being processedsh@nds,, wheres; is the higher priority stream.
Since it is required that the buffer constraints associatedlaththe streams be satisfied,
our derivation of the bounds on the input ratesspfand s, is based on the following
reasoning. We first need to ensure that sufficient service is available for the low-priority
stream for it to sustain its playout rate. The remaining service can then be offered to the
high-priority stream and any unused service can again be used by the low-priority stream.
Since at most*, (A) stream objects from, can be consumed by the output device
within any time interval of length)\, to satisfy the playout buffer underflow constraint a
minimum service of3}(A) = o (A) is required bys,. The remaining service can then be
potentially used by,;. Note that all of this service might not be useddyand whatever
is leftover will then be used by,. Expressed in terms of the number of processor cycles,
these service curves are:
ob(A) = ~¥(BL(A)) (service available te,) 6.8)
ol(A) = ol(A) —0oL(A) (service available te,)
where~} is the upper workload curve that bounds the processor cycle demand \bfe
assume that!(A) — o (A) is wide-sense increasing (see Section 6.2), otherwise it is trans-
formed into such a function.
When expressed in terms of the number of stream objects, the service curves given by
Eq. (6.8) are equal t6! (A) = 727 (ol(A)) and L. From these service curves it is pos-

sible to derive the bounds., anda®, on the input rates of the streams, using our results

81

in Section 6.2.1. It should be noted that the minimum service availaBlert@my be larger
thang, (whens; does not use all the service available to it). As a result, it might seem that
the playout bufferB, can possibly overflow even when the arrival ratespis bounded

by o, (i.e. o, is not a correct upper bound since it underestimates the minimum service
available tos;). However, it can be shown that, will not overflow even when the arrival

rate of s, is equal toay,. To see this, lety;, denote the upper bound on the output rate of
the processed stream. Singg = o, @ (3}, it follows thata, does not increase whei)
increases. Hence, Ineq. (6.3), which represents the playout buffer overflow constraint, con-
tinues to be satisfied with increasigl It is therefore safe to compute’, usings = a4,.
Exactly the same reasoning also holds for computing the upper b@yridr the higher

priority streams; (which is described below). Next, we derive the remaining two bounds

o', andal,.
Bounding o,: From Ineq. (6.5), we have

oy (A) < Y(D), VA0 (6.9)

wherey(A) = (B81(A)+b)A((Bi®al,)(A)+B;). Now, based on our previous assumption

that the stream; does not use more thati(A) amount of service, we obtain that
051 (D) < A(A), VAZ0

If the upper bound on the arrival rate af(i.e. o, (A)) is more thans! (A) then the stream
s (being the lower priority stream) might not receive enough service and its playout buffer
might underflow or its input buffer might overflow. Now, from the above two constraints,

we obtain the following bound oa®, (A):
ap (D) SPA)ABI(A), YA >0 (6.10)

However, in many cases this bound might be overly restrictive. For example, as illus-
trated in Figure 6.5, it might happen that for somye, (A) > 3'(A) whenA < A,

and for other values o\, /(A) < Bi(A). Note from Figure 6.5 that it would have been

82

possible to choosg(A) as an upper bound at, (A) had we not been concerned with the
service available to the lower-priority stream But sinces, requires a minimum of,(A)
amount of service within any time interval of length o, (A) now needs to be bounded
by 3! (A) instead ofy(A) for any A < A,

Note that the constraints imposed by the upper baufidA) for small values ofA
have a greater influence on the allowable burstiness, than those imposed by larger values of
A. As a result, the allowable burstinesssinmight be overly restrictive i3l (A) (instead
of 4»(A)) is an upper bound oa’, (A) whenA < A,. For many applications, the high-
priority stream might exhibit a higher degree of burstiness. It might also be the case that a
stream is assigned a higher priority because it is more bursty. The above constraint might
be especially restrictive in such cases, and therefore we would like to relax it. Towards this
end, we choose a value (wheret, < A,) and replace Ineq. (6.10) with the following.

BA)AB(E), YOS A<
ot (A) < (6.11)

V(A) ABHA), VA>T

The selection of, clearly involves a tradeoff between the allowable burstiness in
and the service available to the lower-priority stregnover intervals of lengti\ < ¢,. A
consequence of the reduced service available te that its input buffer mighoverflow
We address this issue later in this section. It might seem that the playout buffemafy
alsounderflow However, note that the service availablesiamver time intervals of length
A larger thant, continues to be lower bounded I%;(A). Hence, from our results in
Section 6.2.1, it is still possible to get a valid lower arrival bouid for s, such that its

playout buffer never underflows (given a sufficiently enough non-zero playback delay).

Bounding o,: Clearly, the higher-priority stream can consume at moat’, (A) amount
of service within any time interval of length. Now, recall from the above discussion that
s1 will not consume more thang!(A) amount of service over an > ¢, (follows from

Ineq. (6.11)). Hence, the service available to the lower-priority streaslower bounded

83

number of stream objects
€

> S
g
1

S S

Figure 6.5: lllustration of deriving an upper bound @) .

as follows.
C(A), VYO<A<Lt,
BLA), VA >t,
where¢(A) = max{0, 74 (o' (A) =¥ (¥, (A)))}. ¢(A) represents the minimum service
available fors, when the arrival rate of; is upper-bounded by, (see Ineq. (6.11)).
Using BQ(A) as the service available tg, we can now compute.,, following our results
described in Section 6.2.1. When the service availablg te greater tharmsl(A), clearly
the playout buffer underflow constraint would still be satisfied with as the lower bound
on the arrival ofs,. Hence, it is safe to compute, usingBé(A) (in terms of respecting
the playout buffer underflow constraint).

A summary of the bounds we obtained so far on the arrival rates of the highar(d
the low-priority (s;) streams is given in Table 6.1. In this tabM, and\¥, denote the term

A in Ineq. (6.7), in the context of the streamsands, respectively.

Bounding the buffer overflow: As mentioned above, the input bufferassociated with,
(see Figure 6.3) might overflow. However, we can bound the number of stream objects that
may be dropped dk. First, we prove thal, might only overflow during the time interval

[0, 2,].

84

input arrival bounds values
g (A) (A4 @ B)(A)
I R e et
1 ’ s
aly(A) (A @ B5)(A)
agy(A) (B2(A) +b2) A (83 ® agy)(A) + Bo)

Table 6.1: Summary of the input arrival bounds.

Proof: Let 25(¢t) denote the number of stream objects that arrivé,aduring the time
interval [0, t]. Whent > t,, the maximum backlog &t at timet is equal tar,(t) —BL(t) <
oy (t) — B(t) < by (follows from Ineq. (6.2)). Since the remaining service fpis at least
equal to@, it implies that the buffeb, never overflows during the time intervil, co].

Hence b, might only overflow during the time intervé, ¢]. O

As discussed in Section 6.2.1 (see Eqgn. (6.1)), the maximum backbegvéhin [0, ¢
is bounded by

sup {aly(A) - G5(A)}

0<A<ts

Hence, the maximum number of stream objects that can be dropped at the inpubbuffer
(over the time interva0, co)) is equal tosupg< p<; { o (A) — @(A)} — by.

Similar to the single stream case, the playout buffers,ofnd s; might also over-
flow. Suppose that the playback delay associated wyitis ¢;» and that associated with
s1 IS tg. It can be shown that the maximum number of processor cycles available to the
low-priority streams, (after processing;) within any time interval of length\ is equal
to 0% (A) = supy<,<a{0'(r) — 7i(cd,(7))}. Hence, the maximum number of stream ob-
jects that may be dropped from the playout buffer associated syifalso over the time
interval [0, 00)) is equal tomin{~. ' (6%(ts)), o, (ts2)}. For the high-priority streans,
the maximum service available to it during the time interfGat,,] is o'(t4). Hence, the
maximum number of stream objects that can be dropped from its playout buffer is bounded
by min{y{ (o' (tar)), ay (tar) }-

The bounds on the buffer overflow that we derived above are summarized in Table 6.2.

85

buffer | maximum number of dropped stream objects
by SUPogAgts{agz<A) - ﬁé(A)} —by
By min{y} " (03 (tan)), o (tar) }
By miﬂ{%_l (Ul(tdl))a g (ta)}

Table 6.2: Summary of the bounds on buffer overflow.

We would once again like to point out that all of these bounds correspond to the maximum
number of stream objects that may be dropped over the time intérval), i.e. these are
thetotal number of stream objects that can ever be dropped. This result is counter intuitive,

because these bounds do not depend on the length of the audio/video clip.

6.2.2.2 Time Division Multiplexing

Analyzing a time division multiplexing scheduler is similar to the technique used for the
single stream case. #'(A) is the guaranteed service offered by the PE within any time

interval of lengthA, then the service offered to the two streams are:

(A = 1 .gl(A
) = o) 61
oy(A) = 2.0l (A)

wherew; andw, are the weights associated with the two streams by the scheduler. When
expressed in terms of number of stream objects, these bounds trangldt& te= v~ (a}(A))
andj3i(A) = 44 1(c4(A)). Bounds on the arrival rates of these two streams can then be

computed by following the exactly same procedure as that described in Section 6.2.1.

6.2.3 Multiple Processing Elements

Our view of multimedia processing on a multiprocessor System-on-Chip platform, as out-
lined in Section 6.1, consists of multiple PEs processing any stream in a pipelined fashion.
Between any two PEs a FIFO buffer stores the partially processed stream. The last PE in
the path of a stream writes out the fully processed stream into the playout buffer, which is
read out by an output device. The derivation of the bounds on the arrival rate of a stream,

that we presented so far, was only concerned with this last PE, which feeds the playout

86

buffer. Recall that the computed bounds pertain to the maximum and minimum rates at
which a stream can arrive at the (input) buffer at the input to this PE. The constraints that
the computed bounds were required to follow were (i) the playout buffer should not under-
flow, and (ii) none of the buffers should overflow. Among the inputs to our rate analysis
problem were bounds on the consumption rate by the output device from the playout buffer,
specified as upper and lower arrival curves (the consumption bduhds)).

Let us now consider the PE (e.§.E; in Figure 6.1) adjacent to this last PE in the path
of the stream. To compute the bounds on the arrival rate of a stream at this PE, the input
bounds computed for the downstream PE (£, in Figure 6.1) serve as output bounds
for this PE (i.e. the processed stream coming out of this PE must satisfy these bounds). The
only buffer constraint that needs to be satisfied in this case is that the buffer at the input of
this PE (B, in Figure 6.1) should not overflow. Deriving the input bounds on the arrival
is therefore much more simpler than the case we considered above. This is because, only
the following two constraints need to be satisfied: (i) Ineq. (6.2), and (ii) the bounds on
the processed stream must be constrained by the input bounds computed for the adjacent
downstream PE.

This process of computing the bounds on the arrival rate of stream is cascaded to all
the upstream PEs, until the first PE in the path of a stream is encountered. The input
bounds computed for this PE therefore serve as bounds on the arrival rate of a stream to be

processed by the platform architecture.

6.3 Experimental Evaluation

We validated our analytical approach using a number of detailed simulations. Towards
this end, we implemented a transaction-level model of the platform architecture shown in
Figure 6.1 using SystemC [84]. The on-chip PEs were modeled using the SimpleScalar
instruction set simulator [7], in which we used thien-profileconfiguration and the PISA
instruction set.

We modeled each video stream at the macroblock granularity. For any given video clip,

87

we first simulated its execution (decoding) using SimpleScalar and obtained execution time
traces of the VLD, IQ, IDCT and MC tasks. These traces record the execution requirement
(in processor cycles) of each macroblock belonging to the video clip, for each of the above
tasks. Based on these traces and the constant bitrate at which the video clip (which is a
compressed bitstream) is fed inkF; or PFE;5 (in Figure 6.1), it is possible to determine

the arrival pattern of the stream at the inputfof, (i.e. at the bufferB;) and also at the
playout buffer (i.e. buffe3,). For this we used the SystemC-based transaction-level model
of the architecture, which was also used to model the scheduling polidy Bnwhen
multiple streams (two in this case) are processed by the architecture. From the SystemC
simulation, we measured the fill levels of the different buffers for any given video clip(s).

To validate our approach, we first compute bounds on the arrival rate of a stream at the
input of PE, (e.g. at the buffeB;). We then show using simulation that video clips which
respect these bounds satisfy the buffer overflow and underflow constraints. At the same
time, clips which do not respect the computed bounds, either result in buffer overflow or
underflow, thereby showing that the computed bounds are not overly pessimistic. Note that
these bounds are non-trivial, in the sense that they precisely capture the allowed burstiness
in a stream. Obtaining them using purely simulation-based techniques is certainly not
possible, due to the exhaustive simulation time involved. As discussed in the beginning
of this chapter, these bounds can provide useful insights helpful for tuning the platform
architecture (e.g. determining the optimal clock frequency &f and also designing the
input network interface).

Recall that one of the inputs to our analytical framework, is the workload cufie
specifying lower and upper bounds on the number of processor cycles required by any
consecutive stream objects. Clearly, for the bounds on the arrival rate of a stream—that are
computed by our approach—to be useful, they should hold good dtasaof streams or
video clips, not for just a single video clip. As an examplelassmight be all video clips
having the same bitrate and frame resolution. Therefore, the workload g(ity¢hat we
use as an input, should also specify the workload demand of the class of video clips we are

interested in.

88

For our PiP application (see Section 6.1) that we used in our experiments, we chose
two classes of video clips—those that have high motion content and second being made up
of still images. The former class of clips are to be displayed in the main window of the
PiP application; they are representative of usual video clips like movies. The latter class
is representative of text messages or similar information about the main window being
displayed in the secondary window of the PiP application. In what follows, for ease of
exposition, we drop the terolasswhen we talk about bounds on arrival rates; these bounds
are always expected to hold for a class of streams and not just a single stream.

To obtain the workload curves corresponding to the above two classes, we simulated
the execution of a set of MPEG-2 video clips using SimpleScalar, as mentioned above. We
then analyzed the resulting execution time traces for the IDCT and MC tasks (which are
mapped ontaP E,) and derived the boundg and~* (see Section 6.1). This procedure
follows a recently developed technique described in [62]; we refer the interested reader to
this paper for further details. The video clips for both these classes were encoded using a
constant bitrate af Mbps; they had a frame resolution@i4 x 576 pixels and a playback
rate of25 frames per second. Typically, the video clips displayed in the secondary window
of a PiP application would have a lower resolution and bitrate than those displayed in the
main window. However, for simplicity reasons, we decided to distinguish between the two
classes only on the basis of their content (i.e. motion versus still videos).

For reporting our experimental results, we denote the computed arrival rates of a stream
at the input of PE, using (al, o). To validate these bounds, we compare them with
similar bounds obtained from simulation—we denote these bounds (ging.“) (where
the subscriptn denotes “measured”). Towards this end, we first record the trace of arrival
times of partially decoded macroblocks at the inpufPd, and then analyze these traces
to obtain the bound&! , o) (exactly as the workload curve$and~* were derived). To
measure the fill levels of buffers, B, is the specified buffer size arfg}; is the computed
upper bound on the number of stream objects that might be dropped (see e.g. Table 6.2)
thenB, + B, is an upper bound on the maximum buffer fill level, which we want to validate

using simulations. Similarly, the fill level of a playout buffer should always be greater than

class | scenario| input buffer size| playout buffer sizg video | violation
(mb.) (mb.) clip ?
1 4000 5600 A no
motion 2 4000 5600 B yes
3 3500 8000 C no
4 5000 3000 D yes
still 5 4000 5600 E no
6 3000 3000 F no
Table 6.3: Scenarios for the single stream case.
sched.| scenario| input buffer size| playout buffer size video | violation
policy (mb.) (mb.) clip ?
FPS | FPS1 4000 5600 A no
FPS2 3000 3000 F no
TDM | TDM1 4000 5600 A no
TDM2 3000 3000 F no

89

Table 6.4: Scenarios for the multiple streams case.

0 in order to satisfy the underflow constraint.

For our experiments, we used a selectiorsoénariosshown in Tables 6.3 and 6.4.
Each scenario is specified by a class (of video clips), the input and playout buffer sizes
and a video clip belonging to the class. The bounds on the arrival rates are computed from
the class information and the buffer sizes. These are compared with the simulation results
based on the buffer sizes and a concrete clip belonging to the class. For all the experiments,
we run P E5 at a constant frequency. Hence, the service offered by it can be represented as

o'(A) = c- A, wherec is the frequency.

6.3.1 The Single Stream Case

In this case, the PiP mode is switched off. For clarity of presentation, instead of plotting

the functions:!, o, etc. directly, we plot the differenceg — o', o — ol anda! — o’

Clearly, the arrival process of a video clip, which is captureddfy, a%,), violates the

analytically computed bounds’,, o) whenevern®, — ol oral — ol crossesx* — ol or

x) x x

90

goes below).

These plots are shown in Figure 6.6, 6.7 and 6.8 for three different scenarios. The
same figures also show the fill levels of the input and the playout bufferB4.end B, in
Figure 6.1. Note that for Scenario 1, the measured arrival patterns satisfy the analytically
computed bounds (subfigure (a)). For this scenario, the measured fill levels of the input
buffer (subfigure (b)) and the playout buffer (subfigure (c)) are less than the computed upper
bounds. Also note that beyond the playback delay, the playout buffer does not underflow.

In Scenario 2, the measured upper arrival cur§eviolates the computed upper bound
a2, In this case, the measured buffer fill levels are greater than the sum of the specified
buffer sizes and the upper bounds on the number of macroblocks that might be dropped.
This is indicated abuffer overflowin Figure 6.7.

Finally, in Scenario 4, the measured lower arrival cutj/eviolates the computed lower
boundc,. In this case, the simulation results show that the playout buffer underflows. Note
that for all the scenarios, the input buffer sometimes underflows. However, this does not
affect the performance of the system and we also do not specify it as a constraint.

Figure 6.9 shows the computed bounds on the buffer fill levels and the measured fill
levels obtained using simulation, for all the six scenarios. From Table 6.3, note that apart
from Scenarios 2 and 4, the measured arrival bounds always satisfy the computed bounds.
Figure 6.9 confirms that it is only for these two scenarios that buffers either overflow or
underflow, thereby validating our proposed approach.

We also compare with the bounds on the arrival rate computed using a simple best-
/worst-case characterizations commonly used in the real-time systems domai,,;,Let
ande,, ., denote the minimum and the maximum number of processor cycles required by
any single stream object belonging to a sequence. The minimum and the maximum number
of processor cycles that might be required by amgonsecutive stream objects within the
given sequence are modeledby e,,.;, andk x e,,.... Figure 6.11 shows that the computed
bounds (denoted b§S,,: , S,)) using this simple modeling scheme are very pessimistic,
compared to our computed bounds (denoted(ddy, o*)) using workload curves. Our

scheme allows the bursts on the arrival rate to be as gre@at'as®), while following

91

the simple scheme the bursts can only be as gregtasS..). Itis thus shown that our

scheme using VCCs provides better bounds on the arrival rate.

6.3.2 The Case of Multiple Streams

As mentioned above, in this case the main window of the PiP application displays a regular
video clip and the secondary window displays a still video (e.g. text information, program
menu, etc.). We have experimented with two different scheduling policig3faa-fixed-

priority and time division multiplexing. In Table 6.4, for the fixed-priority scheduler (i.e.
FPS), the first class of streams is denoted as FPS1; this is the class of regular video clips.
From this class, video cligl was used for the simulation. FPS2 denotes the class of still
video clips, from which clipt” was used for simulations. For each of the two streams being
processed by’ E,, the corresponding buffer sizes are also specified in this table. The class
FPS1 was assigned higher priority.

For the time division multiplexing scheduler (i.e. TDM), again TDM1 denotes the
class of regular video clips and TDM2 denotes the class of still video clips. We associated
weights0.6 and0.4 with the classes TDM1 and TDM2 respectively.

The results obtained for both these schedulers are summarized in Figure 6.10. From
this figure, note that all the buffer overflow and underflow constraints are satisfied.

Our approach can also aid in selecting the TDM weights associated with the two streams
being processed by 5. For the two classes of streams TDM1 and TDM2, Figure 6.12
shows the plot ohv* — o!, for different values of TDM weights. In this figurey, /w,
denotes the weights; andw, associated with the streams TDM1 and TDM2 respectively.
From Figure 6.12(a), note that the allowed burstiness in the stream TDM1 increases as the
value ofw; is increasedw; + w, = 1). Similarly, Figure 6.12(b) plots how the allowed
burstiness in TDM2 increases as is increased. Note that as the service provided to a
stream increases beyond a certain point, the allowed burstiness does not increase any more.
For the stream TDM1, this happens when the ratigw, increases beyond.62/0.38.
Similarly, for TDM2 this happens whem; /w, is less thari).50/0.50.

92

6.4 Related Work

The rate analysis problem has been studied before in the embedded systems domain, albeit
in a different context. Broadly speaking, the setup considered before [59, 29] consists
of a collection of concurrently executing embedded systems components/processes that
interact through synchronization messages. The problem is to compute bounds on the
execution rates of these processes, given certain resource constraints. Alternatively, given
a number of rate constraints, the problem is to efficiently check if these constraints are
consistent. Often, it is required to check these constraints in an interactive fashion and
hence the emphasis in such cases has been on appropriate tool support.

In this chapter we were concerned with the rate analysis problem in the context of
processing multiple concurrent multimedia streams. Rather than computing bounds on the
execution rates of a process [59, 29], our aim has been to compute the allowable bursts in
a multimedia stream over different time scales. Such bursts are specifedvas curves
which bound the minimum and maximum number of data items or events that can arrive
at the system within any specified time interval length. We believe that our results can be
combined with the previous work [59, 29] to model and analyze reactive systems consisting
of a number of interacting processes that are triggered by bursty event streams. More
specifically, the previous work [59] is only concerned with a periodic model, where the
different interacting processes execute in a periodic fashion. As a first step, this restriction
can be removed using our event model which allows the specification of arbitrary, but
bounded bursts.

Within the real-time systems area, there has been a growing interest in the problem of
computing theparameter spacéor which a system becomes schedulable. A recent paper
[36] addressed the problem of computing the end-to-end feasibility regions of distributed
aperiodic task systems under fixed-priority scheduling. The goal here was to compute
the multidimensional space—with each dimension as the utilization of a resource—within
which the system meets certain end-to-end deadlines. Similarly, it was addressed in [12]

the problem of identifying task activation rates for fixed-priority scheduled systems that

93

meet certain deadline constraints. The work that we presented here is in the same general
direction as that of the above-mentioned two papers.

Our work has been inspired by a recent paper [61] which studied the rate analysis
problem for multimedia streams. However, in contrast to our work, this paper computes the
bounds on the arrival pattern of an input stream using two functigRs(t) andx,,..(t).

Any arrival patternz(t), which is bounded by these two functions, i=g,;,(t) < x(t) <

Tmaz (1), IS guaranteed to satisfy all buffer overflow and underflow constraints (exactly as
we specify here). The functian(t) denotes the number of stream objects that can arrive

at the system during the time interv&l ¢]. The use of such a concrete arrival trace—rather
than bounds on the burstiness, as we do here—considerably simplifies the formulation of the
buffer underflow and overflow constraints. The downside of such a formulation is that the
resulting boundsa(,,;,, andz,,.,) are considerably more pessimistic than the bounds we
have derived.

To see this, we have used Scenario 1 in Table 6.3 to analytically compute the bounds
Tmin @anNdz,,., based on the framework presented by Maxiaguine et al. [61]. These bounds
are compared with the bound$ anda® (that we obtained in this chapter) in Figure 6.13.
Note that all these bounds analyze the arrival rate over the time inféyvad) in order to
achieve a fair comparison. It follows from our approach that foratiye value of:(¢) can
be as small ag' (). On the other hand;(¢) can only be as small as,.;,,(t) if the bounds
derived by Maxiaguine et al. [61] are to be used. The reason behind the boyndsnd
Tmae DEING pessimistic is that these boundsxdbcapture the burstiness in a stream. Given
a concrete arrival pattern(t), which is bounded by,,.;, andz,,,.., leta!, anda® denote
the arrival curves which bound). Itis very likely thata! (¢) will be smaller thane,,;,, (¢),
especially for small values of Similarly, o(t) is likely to be greater tham,,,.(¢).

Apart from the fact that the formulation of the buffer overflow and underflow constraints
are more difficult in the case we consider in this paper, we also exploit the variability in the
execution requirements of a stream (captured using the workload curves). This variability
is not exploited by Maxiaguine et al. [61]. However, the bounds shown in Figure 6.13

do not make use of the workload curves when derivibgand o*. These bounds were

94

computed with the service cury#(A) set toC(A) (the constant consumption rate of the
stream from the playout buffer). The bounds;, andz,,., were also computed with the

same3'(A). This was done to achieve a fair comparison between the two schemes.

6.5 Summary

In this chapter we applied our proposed analytical framework and presented an approach
for rate analysis of multimedia applications running on MpSoC platform architectures. In
contrast to the recent paper by Maxiaguine et al. [61]-which inspired our work—the bounds
on the arrival rate of a stream, that we derive, precisely capture the allowed burstiness.
This is especially important in the context of (i) multimedia applications, since they exhibit

a high degree of variability in their execution requirements [87], and (ii) such applications
running on heterogeneous multiprocessor architectures, implementing different scheduling
and arbitration policies [74, 76, 75].

Note that the approach we presented so far is purely functional in nature, i.e. it can
not model the processing of streams where the arrival process or the service depends on
the state of the system. For example, a PE might implement a protocol or a scheduler
which adjusts the service provided based on the fill level of the buffer. An interesting
research direction would be to extend the proposed approach to model and analyze such
architectures.

On the other hand, as mentioned in Section 6.4, it would also be worthwhile to explore
possible combinations of the work by Mathur and Dasdan et al. [59, 29] with our approach.
More specifically, our application model can be extended to allow for arbitrary task graphs

along with deadline constraints, in addition to the buffer constraints that we addressed here.

95

= =
o)
‘ ‘
c
.
>

0]
‘

“z
5
[

[«2)
T

number of macroblocks [x 103]

0 0.5 1 15 2 25 3
time interval A [s]

(@)

(o]
1

al
T

w B

N
T

number of macroblocks [x 103]

'§

15 2 2.5 3

o
o
a1
[EY

time [s]
(b)
14¢
0 b e e e e e e e ——————
S 12
X,
© 107
[&]
e)
3 8
g
e o
o o4
(]
o)
£ 2
c
O 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3
time [s]
(c)

Figure 6.6: Scenario 1: (a) Computed and measured bounds on the arrival rate, (b) Mea-
sured input buffer fill level, (c) Measured playout buffer fill level.

96

N
o
]

[EY
a1
T

(I
o
T

al

number of macroblocks [x 103]

15 2 25 3
time interval A [s]

(@)

(@]

o
o
(&)
[EEY

(o]
1

. input buffer overflow

al
T

N w B

number of macroblocks [x 103]
'_\

O 1 1
0 0.5 1 15 2 25 3
time [s]
(b)
— 14 playout buffer overflow «_
g 12¢

[EnY
o o
T T

number of macroblocks [x
[*2)

4+
2,
O 1 1 1 1 1 1
0 0.5 1 15 2 25 3
time [s]
(©)

Figure 6.7: Scenario 2: (a) Computed and measured bounds on the arrival rate, (b) Mea-
sured input buffer fill level, (c) Measured playout buffer fill level.

97

15¢ u |
a —a . -« .
”» A 4 .
lm PR < Re ‘. e A .
10 ~r\ TN 0 /. \ ‘e o
p- N . et v, ' \, .
/ N 7 . 7 7 u |
i v a —a
5t/ X X
1
!

|
[$))
Q
|
Q

[
[EEN
o

T

number of macroblocks [x 103]

15 2 25 3
time interval A [s]

(@)

|
[EEY
a1

o
o
(&)
[EEY

(o]
1

al

N w B

number of macroblocks [x 103]
'_\

A‘A‘An/\é/\‘/\J\/\J

0.5 1 15 2 25 3
time [s]

(b)

OO

3
1
[EEY
>

1
[EEN
e

[EnY
o
T

oo
T

playout buffer underflow

4+
2,

0.5 1 15 2
time [s]

(€)

Figure 6.8: Scenario 4: (a) Computed and measured bounds on the arrival rate, (b) Mea-
sured input buffer fill level, (c) Measured playout buffer fill level.

number of macroblocks [x
[*2)

2.5 3

[o2)

& [_Jcomputed
S5l M _ [Imeasured| |
X

%]

S 4F
o
S

S 3

I

€

G 2r
z
3 H H 1
3
o
0 ‘ ‘ I
1 2 3 4 5 6
scenario
(a)

15 "
- — |[_Jcomputed
S o M [Imeasured
X
g _

o 10r
o
Qo
o
3]
I
S
S 5r
9]
Qo
: w
>
c

0

1 2 3 4 5 6
scenario

5

-
o
—
X, 4r _
2
8
53
(]
[}
I
€ 2r
G
5.l
: H
>
=
0 ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6
scenario
()

©

98

5 [_Jcomputed
S [Imeasured
X

g

Q

o

S

S 4r

I

€

S
o 2f
Qo
g
o
L 0w [
FPS1 FPS2 TDM1 TDM2
scenario
(a)

20 — :
& [Jcomputed
S [Imeasured
X
= 15}

@ _
Q
o
S
g 10t
I
S
©
& 5
Qo
L 10 1
p}
c
0 ‘ ‘ ‘ ‘
FPS1 FPS2 TDM1 TDM2
scenario

6
o

o .
— 57
X,

(%]

S 4f
o

S

5 3r
I

€

G 2r
9]

Q
£
e

o] []

FPS1 FPS2 TDM1 TDM2
scenario
(c)

Figure 6.9: Buffer fill levels in the single Figure 6.10: Buffer fill levels in the multi-
stream case: (a) Computed versus measurngle streams case: (a) Computed versus mea-
maximum fill level of the input buffer, (b) sured maximum fill level of the input buffer,
Computed versus measured maximum fi(b) Computed versus measured maximum
level of the playout buffer, (c) Measuredfill level of the playout buffer, (c) Measured
minimum playout buffer fill level.

minimum playout buffer fill level.

99

2007

150

100

a1
o

number of macroblocks [x 103]

0 0.5 1 15 2 2.5 3
time interval [A]

Figure 6.11: Bounds on the arrival rate computed using VCCs and a simple modeling
scheme{al, a¥) and(S,:, Saz).

[EEY
N
1

> 0.62/0.38

=
o
T

/~70.50/0.50

[og)
T

0.46/0.54

2k 0.44/0.56

number of macroblocks [x 103]

O0 0.5 1 15 2 2.5 3

time interval [A]

(a) TDM1

12r < 0.50/0.50

10r | 0.62/0.38

0.64/0.36

number of macroblocks [x 103]

00 0.5 1 15 2 2.5 3

time interval [A]
(b) TDM2
Figure 6.12:a — aﬁc for two scenarios, with different values, /w, for a TDM scheduler.

100

140

5 1201

1007

B (o2} (0]
o o o

number of macroblocks [x 103

N
o

0 0.5 1 15 2 25 3
time interval [A]

o

Figure 6.13: Bounds on the arrival rate of a stréam;,,, 7.,) and(a! , o*) with playback
delay value of).3 sec.

101

Chapter 7

Approximate VCCs: A New
Characterization of Multimedia

Workloads

To design a SoC platform architecture for a specific multimedia application, a common
practice is to use a set of representative audio/video clips that would be processed by the
application. The workload generated by such a representative set is then used to determine
parameters such as on-chip buffer sizes, clock speeds of the different processors, bus widths
and cache configurations. In the previous chapters, we have used the concept of VCCs to
characterize the workload imposed by the multimedia application and developed analytical
approaches for designing SoC platform architectures based on such characterization. We
have known that VCCs capture the best/worst-case behaviours of multimedia processing.
The designs based on VCCs (as have presented in Chapters 5 and 6) give worst-case so-
lutions that guarantee the architectural and application constraints are satisfied in any case
(even when the worst-case behaviours happen). In this chapter, we address the issue of
characterizing the average-case behaviours of multimedia processing, which may improve
or compensate the worst-case characterization schemes. At the same time, we conduct a
preliminary study of applying this new scheme in the design process, where numbers on
performance degradation can be bounded.

Multimedia workloads are known to exhibit a high variation in their resource demands.

For example, the ratio of the worst-case and the average load on a processor running a

102

10

number of processor cycles [><104]

0 05 1 415 2
macroblock index [x107]

Figure 7.1: Processor cycle requirements of a sequence of macroblocks for an MPEG-2
decoder application.
multimedia task can easily be as high as a factor of 10 [77]. On the other hand, multimedia
applications typically have soft real-time constraints. This allows certain tasks to miss their
deadlines or a few data items to be occasionally dropped from a buffer, without significantly
deteriorating the output quality. A consequence of the above two characteristics is that a
worst-case analysis of multimedia workloads often lead to overly pessimistic results. At
the same time, a straightforward average-case analysis does not suffice because of the high
variability in the workload. Hence, appropriately characterizing multimedia workloads for
system-level design is a tricky problem. Figure 7.1 shows the processor cycle requirements
of a sequence of macroblocks for an MPEG-2 decoder application. The large variation in
the processor cycle requirements for the different macroblocks is clearly noticeable.

To address the above problem, in this chapter we propose a new characterization of
multimedia workloads, calledpproximate variability characterization curvéapproxi-
mate VCCs) oe-VCCs, that can be used to characterize the “average-case” behavior of a
workload in a parameterized fashion. Towards this, we take into accouinetiiencywith
which the worst-case occurs and discard worst-case scenarios that do not occur frequently
enough. Therefore, what we refer to as “average-case” (for the sake of simplicity), actu-

ally denotes the worst-case that occurs often enough. We quantify “often enough” using a

103

0.35
0.3}
o 0.25(||
@
o 0.2
(8]
C
o
5 0.15f
[&]
3
0.1
0.05f HH
0 Hﬂﬂmﬁmﬂﬂﬂmmm _ .
0 2 4 6 8 ZiI.O

number of processor cycles per macroblock [x 107]

Figure 7.2: Histogram of the processor cycle demand per macroblock for an MPEG-2
video. The minimum and the maximum cycle demand=at& and92247 respectively.
parameter that is specified by the designer. By ignoring worst-case scenarios that do not
occur very frequently, significant amounts of resource savings are usually possible, with
negligible loss in the output audio/video quality. Our proposed characterization can also be
used to quickly identify the tradeoffs between the output quality and the potential resource
savings. Using purely simulation-oriented techniques to determine such tradeoffs is not
only expensive in terms of the simulation time involved, but is often also impractical.

As we have discussed, VCCs charactehest-andworst-casescenarios without con-
sidering the frequency with which such scenarios occur. Simulating the execution of an
MPEG-2 decoder with a randomly chosen video clip shows that the worst-case proces-
sor cycle demand to decode a macroblock occurs in abéat; of the total number of

macroblocks processed. For the execution trace in Figure 7.1, the histogram of the proces

sor cycle demand per macroblock is shown in Figure 7.2. From this figure, it may be

noted that the cycle demands of ab60%; of all the macroblocks are less than half of the

maximum/worst-case cycle demand of a macroblock. VCCs, as proposed in [63], would

record this maximum value without taking into account the frequency of its occurrence.
An approximate VCC og-VCC ignores at most percentage of the data from the right-

hand side of the histogram in Figure 7.2. The remaining data is then used to compute the

104

worst-case scenario. As a result, all worst-case scenarios, whose cumulative frequency of
occurrence is less thanpercent are ignored. Given a trace such as the one shown in Fig-
ure 7.1, we show how to bound the error corresponding to different valugdaftypical
system-level design problems. An example of this is to bound the maximum number of data
items that may be dropped from a buffer, when the buffer sizing is done basedGQC's.

It may be noted that when buffer sizing is based on VCCs, it can be guaranteed that no data
items will be dropped [63], albeit at the cost of much larger buffer sizes compared to when
¢-VCCs are used. Since worst-case scenarios occur very infrequently (as discussed above),
significant savingsre achieved by usingVCCs, at the cost ofiegligible lossn output

audio/video quality.

Related work: The concept of VCCs has its foundations in the theomeifvork calculus

[16, 28]. Whereas the originally proposed network calculus may be seen as a deterministic
gueuing theory for analyzing communication networks, recently a number of extensions
to this theory have been developed [14, 27]. These extensions are concerned with provid-
ing statistical service guarantees rather than deterministic guarantees, which often lead to
resource over-provisioning. Along similar lines, Ayyorgun and Cruz [8, 9] have recently
proposed a service model which allows a certain portion of network packets to be dropped
based on a loss parameter. In contrast to the work presented in this chapter, they, however,
concentrate on a multiplexing problem and study the necessary capacity of a multiplexer
to provide deterministic service guarantees to each flow passing through it. As we already
mentioned, all the above efforts focus only on the domain of communication networks, and
the results obtained can not be applied to our problem setup (multimedia processing on
MpSoC platforms) in any straightforward manner.

Within the embedded systems domain, the conce@to€hastic Automatic Networks
(SANSs) [66] has been proposed for average-case performance analysis of platform archi-
tectures. Whereas this is an automata-theoretic formalism, the workload characterization
that we present here is purely “functional”, where the “state” of the system is not modelled.

The focus is primarily on modelling the variability in the arrival process and the execution

105

demand of multimedia streams, rather thansta¢eof the system processing these streams.

We believe that there is a potential for integrating our work with the SAN formalism.

Organization of the chapter: To understand how-VCCs are defined, in Section 7.1 we
formulate the concept of VCCs. This is followed by our definitiore@f CCs in Section

7.2. In Section 7.3 we present an analytical method for bounding the error incurred while
designing a system based oi¥CCs. Experimental results which validate our method are

presented in Section 7.4.

7.1 Formulation of VCCs

As we have described in Chapter 3, VCCs are used to quantify best-case and worst-case
characteristics osequences Here we formulate the definition of VCCs. A VCR is

defined as a tuplel{ (k), V*(k)), wherek represents the length of the sequence. Let the
function P be a measure of some property over a sequencl(lj denotes the measure

of this property for the first items of the sequence, thet(k) andV*(k) for all k > 0 are

defined as follows.
Vik) = infiso{P(i+k)— P(i)}

Vi(k) = supis{P(i+k)— P(i)}

(7.1)

Vi(k) andV“(k) therefore provide lower and upper bounds on the meaBufer all
subsequences of length within a larger sequence. Let us now consider a few concrete
examples of VCCs that will be used in this chapter and see how they are formulated.
Workload Curve v = (v!,7%*): The VCC+ is used to characterize the variability in the
number of processor cycles required to process a sequence of stream objects by a PE. In this
case, given a sequence of stream objgets,) denotes the total number of processor cycles
required to process the firststream objects (here specifically we denote #¥&3:)). Then

7' (k) and~* (k) are defined by

YU(k) = supso{W(i+ k) —W(i)}

(7.2)

106

Hencey! (k) andy*(k) denote the minimum and the maximum number of processor cycles
that might be required bgny & consecutive stream objects within the given sequence.
Pseudo-inverse of Arrival Curve ¢ = (¢!, ¢%): For notational simplicity, henceforth we

will denote the pseudo-inverse of(i.e. o=') as¢. This VCC is used to characterize the
burstiness in the arrival pattern of stream objects. Given a trace of the arrival times of a
sequence of stream objects (e.g. the partially processed macroblocks being written into the
buffer B, in Figure 3.2),P(n) denotes the total time length during which the firstream

objects arrive (here specifically we denote iid®)). Thené!(k) and¢é(k) are defined by
(k) = SUPz‘zo{T(i +k)—T(i)}

Hence ! (k) and¢“(k) denote the minimum and the maximum time length for the arrival

(7.3)

of any k consecutive stream objects.

7.2 Approximate VCCs

VCCs have been used to analyze and tune platform architectures for multimedia processing
(see Chapters 5, 6 and reference [63]). However, in the above formulation, the best- and
worst-case characterization using VCCs do not take into account the frequency with which
the best- or the worst-case occurs. Approximate VCCs generalize the concept of VCCs and
take into account the frequency with which the best-/worst-case occurs.

Recall our definition of VCCs, as given by Eqn. (7.1). Now, for any gikenet a
set.S be defined as followsS = {P(i + k) — P(i) | « > 0}. Instead of computing
the minimum and maximum value in the multisgtto compute=-VCCs, we first remove
certain extreme observations frafhand then compute the minimum and the maximum
value from the remaining elements.

Let S! denote the set resulting from removing the smallegercent of items from
the setS. Similarly, S* denotes the set resulting from removing the largesercent of

items fromS. An e-VCC V. can now be defined as follows?' (k) = inf;>¢{S’} and

Vi (k) = sup;»o{S:'}-

107

= = = = =
o © o) N o 0

number of processor cycles
D

0 0.5 1 15 2
number of macroblocks [><1O4]

Figure 7.3: Approximate workload curves.

The above definition of-VCC implies that percent of items it are less thaw! and
¢ percent of items irb are larger than/?. Since the set can contain a potentially large
number of elements, a computationally efficient algorithm is necessary to comparel
V*. We adopt a histogram-based algorithm [89] which is simple and efficient. Although the
results obtained are not as accurate as percentile-based methods [24], they are sufficiently
precise for the problem setups that we are interested in.

The histogram-based algorithm works as follows. Dgt;,, andD,,,,.. be the minimum
and the maximum values of the elementsirSuppose that the ran@®, ..., Dina| IS Split
into n equal-sized bins with the bin boundaries beigg:, - - - , ¢,. First, we construct a
histogram for all the elements 5. We then compute; (for all 1 < ¢ < n), which is the
ratio of the number of elements in th¢h bin (¢;_1, ¢;] to the total number of elements in
S. Clearly, the s,urﬁZj.:1 r; represents the fraction of items which are not larger than
We then define a functiof, whereF(¢;) = Z;Zl rj for 0 < ¢ < n (note thatF is defined

only for these values). Finally;! andV* are defined as follows.

Vé(k) = maxo<i<n{C | F(¢;) < ﬁ} (7.4)

Vi(k) = ming<i<n{c; | Fe;) > 1 — 155}

It follows from the above definition that VCCs are a special case-\WCCs, withe

108

set to zero. Figure 7.3 shows an approximate workload curve (for the VLD/IQ task in
Figure 3.2) withe = 10. The same figure also shows the corresponding workload curve
(i.e. the case whereis set to0). It can clearly be seen that the approximate workload
curves represent more conservative bounds on the execution requirements of sequences of
stream objects, compared to the lower and upper bounds obtained from the (exact) work-

load curves.

7.3 Error Analysis

In a typical system design process, a designer would analyze a set of representative au-
dio/video clips to obtain different-VCCs. These-VCCs would represent the workload

that the system will be required to support. In the context of platform-based design, these
e-VCCs would determine different platform configuration parameters such as sizes of on-
chip buffers, bus widths and clock frequencies of the different on-chip processorssSince
VCCs represent more conservative bounds and ignore infrequent best- and worst-cases, the
resulting systems can also be more conservatively designed (and hence would be less ex-
pensive), albeit at the cost of small errors. For example, the minimum on-chip buffer sizes
determined using-VCCs would be smaller compared to those determined using VCCs.
The difference in size would depend on the value ohosen. However, the savings would
come at the cost of occasionally some stream objects being dropped from the buffer. In
this section we present an analytical method that can be used to bound the error incurred
for anye. We present this method in the context of two system design problems: optimal
on-chip buffer sizing and processor frequency selection. By illustration, we still choose the

target platform architecture to be that shown in Figure 3.2.

7.3.1 On-Chip Buffer Sizing

Consider a PE (such @3F;, in Figure 3.2) processing a stream whose arrival process is

bounded by the arrival curve. Let 3 be the service curve offered by the PE. It can then be

109

shown that the minimum size of the buffer (or the maximum backlog) at the input of this

PE (i.e. B in this case), denoted hy,.,, is equal to

bnax = sup{a”(A) — B'(A)}

A>0

To see how3' is obtained, let us assume that the PE runs at a clock frequengy of
clock cycles/second. Given a trace of processor cycle requirements per stream object (such
as the one shown in Figure 7.1) it is possible to compute the workload gtirdeis then
easy to see that*~!(f - A) is the minimum number of stream objects that are guaranteed
to be processed within any time interval of length Hence, we sef'(A) to be equal to
VS A,

For the buffer sizing to be done usingVCCs, we proceed as follows. Instead of
using the arrival curver directly, we use its pseudo-inver§eFrom a representative trace
of arrival times of a sequence of stream objects, we comgife. From the trace of
execution time requirements of the stream objects we compuges described above. The

estimated maximum backlog is then given by:

be = sup{k — 5'(€.(k))}

k>0

It may be shown from the proof below that

sup{k — 5'(&(k))} = supfoci(A) — B'(A)}

k>0

where the right hand side is similar in form to the computatioh,Qf shown above. Here,
o (A) is obtained by inverting’ (k). It may be noted that by inverting (k) we obtain an
approximate arrival curve whosg@proximation ratics’ is different from the approximation
ratioe of £ (k).
Proof: Firstly we havea? (¢L(k)) = k, sincea® (A) is the pseudo-inverse @f (k). Let
A = ¢L(k), then we have’,(A) = o (EL(k)) = kandB'(A) = Bl (k)), forall A >0
andk > 0. By combining the above two equations, it is easy to seesthat. ,{af (A) —
BY(A)} = supgoih — B'(EL(K))} 0

Clearly, if the buffer size is set t@ then stream objects might occasionally be dropped.

Given a trace of arrival times of stream objects at the buffer, we can bound the maximum

110

number of stream objects that might be dropped. We assumg‘thahich was obtained
from a set of representative multimedia streams, also holds for this tracg!(i2e) is the
minimum number of stream objects that are guaranteed to be processed within any time
interval of lengthA, for this stream as well).

Let 7°(i) denote the arrival time of theth stream object at the buffer. Lét:, k) =
T(i) — T'(i — k) denote the length of the time interval during which the previbasnsec-
utive stream objects adjacent to thth stream object arrive)(< k < 7). Then3' (£(i, k))
represents the minimum number of stream objects that the PE can process during this time

interval. We can have the following theorem.

Theorem 2 The maximum backlog when théh stream object arrives at the buffer is equal

to

sup {k — 3'(£(4, %))}

0<k<s
Proof: Let z(¢) denote the number of stream objects that have arrived at the buffer within
[0,¢], andy(t) denote the number of stream objects that have been processed [@ithin

From [16], the backlog at timeis

(1)~ y(®) < a(t) = int {x(t =)+ 5(5))

Thus
2(t) —y(t) < sup {x(t) —x(t —s) — 5'(s)}

0<s<t
Leti = z(t) andk = z(t) — z(t — s), then we have = T'(:) ands = T'(i) — T(i — k) =
(i, k). It follows that when the-th stream object arrives at the buffer, the backlog is
2(T(i) — y(T(0) < sup {k — B'(€30, k))}
0<k<i

It is equivalent to saying that the maximum backlog when:tttestream object arrives at

the buffer is equal teupy <, {k — 3'(£(¢, k)). O

Hence, the-th stream object might be dropped if

sup {k — 5'(£(i, k))} > b

0<k<i

111

In the above inequality, the value 8f(¢(i, k)) is estimated to be*~*(f - £(4, k)). This
assumes that the (¢£(i, k)) consecutive stream objects processed within the time interval of
length¢ (i, k) require the maximum possible number of processor cycles. If we instead use
the approximate upper workload cury, then the above inequality may be reformulated

as:

sup {k — B2(£(i, k))} > b

0<k<s

However, unlike the previous case, in this case we can not provide deterministic guarantees

on the maximum number of dropped stream objects.

7.3.2 Processor Frequency Selection

In addition to on-chip buffer size configuration, we illustrate our analytical method with the
case of processor frequency configuration in this subsection. Let us consider the platform
architecture shown in Figure 3.2. The fully processed stream objects are finally written out
into the playout buffe3,. This buffer is read by the real-time video output device at a pre-
specified rate. One of the design constraints while configuring this platform architecture is
to ensure thaB3, never underflows. Clearly, the clock frequency of an on-chip PE should
at least be equal to sustain the rate at which stream objects are being consumed by the
output device. However, because of the variability in the execution time requirements
of stream objects, computing this minimum clock frequency is not trivial. The problem
becomes more complicated because of the buffering at the playout buffer. The problem of
computing this frequency has become especially interesting with the advent of processor
soft cores, which allow a high degree of customization. This problem has been addressed
in Chapter 5 using VCCs as a means of workload characterization.

Clearly, usings-VCCs, the computed frequency will be substantially lower compared
to that obtained using VCCs. For the sake of simplicity, here we have only considered the
problem of computing the minimum constant frequency at which the PE needs to be run.
However, the method presented in Chapter 5 can be used in the case of frequency-scalable

processors as well (to compute the different frequency levels and the frequency range that

112

the PE should support).

From the long-term playback rate of the input streams, a designer can derive the low-
est number of stream objects that a PE must process within any time interval of fength
i.e., the lower service curvg'(A), for all A > 0. To guarantee that a PE can process at
least3'(A) number of stream objects within any time interval of lengthin the worst
case the PE need to providé(3'(A)) number of processor cycles within this time in-
terval. Then the minimum frequency to guarantee lower service ciifnie computed
as f = maxaso{7*(8'(A))/A}, assuming that these number of stream objects require
the maximum possible number of processor cycles, whefk) represents the maximum
possible number of processor cycles required by /aopnsecutive stream objects for all
k > 0.

However, we know that if one stream object cannot use up the cycles allocated to
it, the redundant cycles will be used by its following stream objects. Hence, we ex-
pect that the approximate upper workload cufeachieves better estimation of the ex-
ecution demands. Thus, in the average-case analysis the minimum frequency becomes
fe = maxazo{72(8'(A))/A}.

Unlike the analysis of buffer size, where errors will cause objects to be dropped, error
in the frequency configuration will cause stream objects to miss their deadlines. In the rest
of this subsection, we present how to determine if a stream object will miss its deadline. If
a stream object is not available in the input buffer of a PE (or the output device) when it is
time to process it, we say that this stream object has missed its deadline. Given a stream,
we would like to analyze at most how many percent of stream objects miss their deadlines
when the frequency. is used.

When a stream object arrives at the input buffer of a PE, it gets processed immediately
or waits for some time based on whether the PE is busy or not. If the PE is still processing
some stream object when a new stream object arrives, the new objeetaitill In the
following, we will start from a stream object that gets processed immediately upon entering
into the buffer, to analyze whether the subsequent stream objects will wait or not. In our

analysis, we need to refer to the definitions¢of, k) and 7'(:) in last subsection. For

113

T(3) T(i 4 3)
§i+1) | EGi+2) | &i+3) #}

O q g CF C)CF N

< .
f«ﬁun

g
ta+

¥(0)/f: 2(i+2)/f:]

Figure 7.4: lllustration of frequency analysis

"r'(i + 1)/f€

simplicity, we uset (i) to denotet (i, 1), representing the arrival interval betweeth and
(i—1)-th stream objects. Suppose thEtdenote the total cycles required by all the previous

i stream objects, we usgi) = W(i) — W(i — 1) to represent the cycle requirement of
the i-th stream object. As shown in Figure 7.4, let thih stream object be one of the
stream objects that need not wait. The idle time for the PE;is= £(i + 1) — v(i)/ f-

after thei-th stream object is finished and before the next one arrives into the input buffer.
If L; < 0, it means that the next stream object has to wait a time interval of lefgth
before it is processed. Suppose that the restream objects numberéd+ 1,...,: + k

need to wait, then the idle time before tfie+ £ + 1)-th stream object is processed is
L0+ k) = icicin Ly WWL3E T+ k) <0, itimplies that the(i + k + 1)-th stream
object need to wait a time interval of length(i, i + k)| before it is processed. Similarly,

we can continue to identify whether the following stream objects need to wait or not. When
we meet the next stream object that need not wait, the influence of the wait from the stream
objects following thei-th stream object is stopped. In the same way, we can analyze the
subsequent stream objects after the mext-waitingstream object.

To identify if a stream object misses its deadline, we first assume that its next stream
object is a virtual one that arrives just right at the time of its deadline and check whether
its next virtual stream object needs to wait or not. As an example, we consider the last PE
in the path of the stream and analyze the number of stream objects that miss the playback
deadlines. Assuming that the real-time client starts to playback after a delay of time
the i-th stream object will miss its deadline if it does not enter the playout buffer before
ta+ %. Thus, if a virtual stream object arriving at the input buffer of the last F%Ewat%

next to thei-th one needs to wait, then thié¢h stream object will miss its deadline.

114
7.4 Empirical Validation

To validate our scheme for workload characterization, we experimented with the platform
architecture shown in Figure 3.2 using the setup described in Section 7.4.

We experimented with multiple representative video clips chosen from a set of clips,
all of which have the same long-term playback rate, i.e. the same number of macroblocks
are consumed per second by the video output device. For each video clip, we first used the
SimpleScalar instruction set simulator to obtain traces of execution times for the VLD/IQ
and IDCT/MC tasks of the MPEG-2 decoder application. We then simulated the platform
architecture shown in Figure 3.2 using a transaction-level model of the architecture written
in SystemC. Traces containing the arrival times of the macroblocks at each on-chip buffer
and the buffer backlogs were obtained. The VCCs and-¥€Cs were measured from the
collected execution traces. In the following, we assume that the traces of execution times

have already been obtained.

7.4.1 Buffer Sizing

The results reported below only concern the buffer at the input 8§ (i.e. B,). Both
PFE, and PE, were configured to run with their long-term average frequencies. These
frequencies were computed by taking into account the long-term playback rate of the output
device and the average cycle demands per macroblock for the tasks implemented on them.
The system was initially simulated for all the (representative) video clips, from which we
obtained the approximate lower pseudo-inverse cgfye) corresponding to the arrival
process of stream objects at the buffex. From the simulation results we also obtained
the approximate upper workload curyg(k) for PE,. We then computed the buffer size
b.. As shown in Figure 7.5, the computed buffer size decreasessaacreased frono to
20. We observed more tha% reduction in the buffer size whenwas set to bé.

For each video clip, we analytically estimated the upper bound on the percentage of
dropped macroblocks when the size®f was set td.. At the same time, we simulated

the execution of this clip with the size &f, set to bé.. The simulation results showed that

115

3000 T T : 40

—e— buffer size
‘A psnr

2000

psnr [dB]

buffer size [macroblocks]

1000 : : : 20
0 5 10 15 20

€

Figure 7.5: Computed buffer sizes for different values.of

our analytical method gives an upper bound on the percentage of dropped macroblocks for
any of the clips used. Figure 7.6 shows the analytical bounds and simulation results for a
representative video clip. We can observe that the drop ratio is upper bounded at%bout
with ¢ equal to5. However, there is more th&0% reduction in the buffer size compared to
whene is equal to0. As shown in Figure 7.5, we also measured Pleak Signal-to-Noise

Ratio (PSNR) for this video clip corresponding to each buffer size. PSNR is commonly
used to measure the quality of a reconstructed frame with macroblock loss, compared to
the decoded frame without any loss. We defined the PSNR of a video clip as the average
value of PSNRs over all those frames which suffered loss of macroblocks. Although we
applied only a simple error concealment mechanism (a dropped macroblock just takes the
value of the corresponding macroblock from the previous frame), Figure 7.5 shows that at
¢ = 5, the PSNR remains &80.2 dB. PSNR values abow8 dB are generally accepted as
good video quality [34].

Comparison with queuing theory analysis: Queuing theory [49] models the queueing
systems using stochastic processes and can only provide stochastic performance guaran-
tees. Our framework presented in this thesis, based on network calculus, can offer de-
terministic performance guarantees. We illustrate the difference between our work and

gueuing theory analysis, using the example of on-chip buffer sizing problem and studying

116

I
o

w
a1
T

30[

20p

151

drop ratio of macroblocks [%]

—e— analytical result |
~a- simulated result

0 5 10 15 20

Figure 7.6: Percentage of macroblocks dropped figfor different values ot.

the buffer By. Firstly we show the results for queuing theory analysis. For the purpose
of illustration, we choose to model the buff8s as an M/M/1 queue. For a given video
clip and its simulation traces, we measured the mean arrivalréite. the mean number

of macroblocks that can arrive at the buffer per second) and the mean processingfrate
PF, (i.e. the mean number of macroblocks that can be processdbyer second). Itis
known from the queuing theory that when a macroblock arrives at the buffer, the probability

that the buffer fill level is equal te macroblocks can be expressed as:

P, =(1-p)p"

wherep is equal to) /i, representing the intensity of the traffic. Hence, supposing that the
buffer size is configured to ¥, we obtain the probability that the buffer fill level is greater
thanN when a macroblock arrives at the buffer (i.e. the probability that a macroblock might

be dropped from the buffer):

P=1-> P,

n<N

Using the same video clip as that in Figure 7.6, Figure 7.7 shows the probability that the
backlog atB; is greater than 200 macroblocks is less than 1%. It is equivalent to saying
that in probability-based sense, less than 1% of macroblocks might be dropped when the

size of B, is configured to be 200 macroblocks.

117

2}
o

a1
o
Il

D
o
I

N
o
Il

=
o
|

drop probability of macroblocks [%]
w
o

0 200 400 600 800
buffer size [macroblocks]

Figure 7.7: Probability of macroblocks dropped frémfor different values of buffer sizes.

Our framework models the multimedia workloads using the concepMZCs, which
is a general model and no assumption on the probability distribution of the workloads is
needed. For the on-chip buffer sizing problem, our framework offers the upper bound on
the percentage of macroblocks that might be dropped from the buffer under certain buffer
size value. For example, our framework gives the deterministic guarantee that at most
around 35% of macroblocks might be dropped when the sizB,af configured to be
about 1400 macroblocks andis set to 20, as shown in Figures 7.6 and 7.5. It is also
observed that nearly 35% of macroblocks are actually dropped when the size of Buffer
is configured to be 1400 macroblocks, while queueing theory can only tell that less than 1%
of macroblocks might be dropped. It thus shows that it is not enough to just use queueing
theory to quantitatively measure the buffer overflow errors in our context of multimedia
platforms. Also, our work guarantees that the maximum possible backlBg\aill never
exceed 2822, while queuing theory analysis allows the possibility that the maximum buffer
backlog can be infinite. Hence, our work has the advantage over queueing theory analysis

on buffer dimensioning.

118

frequency value [GHz]

1.15
0

10 20 30 40 50 60 70 80
Figure 7.8: Frequency values BfF, for different values ot.

7.4.2 Frequency Selection

We will use PE, to illustrate how the processor’s clock frequency may be lowered if
VCCs are used. Based on the approximate upper workload gfiree PE, and the long-

term playback rate, we computed the clock frequefidpr PFE,. As shown in Figure 7.8,
considerable reduction in the frequency values were achieved when the approximate curves
were used. For example, there was neai9% reduction in the frequency whenwas set

to be60.

PFE, was configured to its long-term average frequency. An initial simulation of the
system was conducted for all the representative video clips, after which we had the nec-
essary traces for the error analysis. For each video stream, we computed an upper bound
on the percentage of macroblocks that can potentially miss their deadlinesivhers
run at different clock frequencies. When compared with simulation results, it may be seen
that our analytical method gives an upper bound on the percentage of macroblocks that
missed their deadlines. Table 7.1 shows the analytical bounds and the results obtained us-
ing simulation for a representative video clip with two different playback delay settings
It may be noted that when the delay was séi.89)s, none of the macroblocks missed their

deadlines, even with set to60, while the required frequency was reduced by ne2l.

119

% of macroblocks missing deadlines
€ tqg = 0.28s tq = 0.30s
analysis| simulation| analysis| simulation
0 3.84 3.80 0.00 0.00
20| 9.73 9.63 0.00 0.00
40| 16.7 16.5 0.00 0.00
60| 44.0 43.7 0.00 0.00
80| 97.0 97.0 80.4 69.5

Table 7.1: Analytical bounds and simulation results on the percentage of macroblocks that
miss their deadlines, for different values=of

7.5 Summary

In this chapter we proposed a parameterized scheme for characterizing multimedia work-
loads, based on the novel conceptapiproximate variability characterization curves
e-VCCs. Since most multimedia applications only require soft real-time guarantees, we
demonstrated that by usingVCCs to design and configure platform architectures, signif-
icant resource savings may be achieved with only a negligible loss in output quality.

In our scheme, we also propose error analysis algorithms for two typical system design
cases (on-chip buffer sizing and processor frequency selection), which give the bound on
the error incurred by usingVCCs. Our scheme can be used to achieve the tradeoff be-
tween the output quality and the resource savings through an analytical way. Currently our
scheme can only give the error bounds for a single stream, where the traces for this stream
is needed. In the future, we would want to extend this scheme to provide guarantees for a

classof streams. Details of this will be discussed in Chapter 8.

120

Chapter 8

Conclusion

In this thesis we proposed an analytical framework that can be used for the system-level
design of MpSoC platform architectures for multimedia applications. According to the
Y-chart scheme for the design of SoC platforms, we modeled multimedia applications us-
ing the KPN and used an system-level abstracted model of the SoC platform architectures.
Based on network calculus theory, we then presented a unified framework for modeling of
multimedia workloads and performance analysis of such modeled MpSoC platform archi-

tectures, which multimedia applications are partitioned and mapped onto.

8.1 Modeling of Multimedia Workloads

In our framework, we first need to model the multimedia workloads imposed on the plat-
form architecture. Given a large library of multimedia streams that might be run on the
platform, we proposed an approach that can be used for workload design in the context of
MpSoC platform design, i.e. obtaining the VCCs for this library of streams. Firstly the
pairwise dissimilarity between any two streams is measured, which is based on the shapes
of VCCs associated with each stream. We then used a hierarchical clustering algorithm to
classify the streams into different clusters. The “representative” streams can be identified
from each cluster (i.e. class) to represent the workloads imposed by this cluster. The VCCs
for these streams characterize the class of streams it belongs to. The VCCs associated with
the set of “representative” streams resulted from all the clusters then give an accurate model

of the original library.

121

In our approach, the VCCs are obtained only from the instruction set simulation and
a simple trace-analysis algorithm. Therefore, our scheme for workload design is order of
magnitude faster than using full system simulation, achieving considerable savings in the

design time.

8.2 Design and Analysis

Using the obtained VCCs, which represent the workloads imposed by a class of multimedia
streams, we can develop analytical approaches that can be used for system-level design
and analysis of MpSoC platforms for multimedia applications, based on network calculus
theory. As illustrations of our framework, this thesis proposed analytical approaches for

two typical system design cases: processor frequency selection and rate analysis.

Processor Frequency Selection:We proposed an analytical approach that can help a
system designer to identify the operating frequency ranges that should be supported by
the different processors of a platform architecture, in order to run the target multimedia
streams (that may include multiple classes). Our approach also identifies how such fre-
guency ranges depend on the different parameters of the architecture such as on-chip buffer
sizes. The service bounds on a processor for a class of streams were firstly derived, given
the bounds on the arrival patterns of input streams and the playback rate. Based on the
definition of service curves, we formulated the constraints that should be satisfied by the
frequency values at which a processor runs. The frequency range was then identified. These
theoretical results were validated by experimenting with sample MPEG-2 streams, where
the on-chip processors run at the frequency schedules bounded by the computed frequency

ranges.

Rate Analysis: We proposed an analytical approach to determine tight bounds on the rates
at which different multimedia streams can be fed into a platform architecture. We also
studied this problem of rate analysis when a scheduler (such FPS and TDM) is implemented

on a processor. Our approach can aid in selecting the parameters for a scheduler, e.g. the

122

weights associated with each stream for a TDM scheduler. Experimental results show that

our approach can give valid tight bounds on the arrival rates of multimedia streams.

The design of SoC platforms for multimedia applications is especially difficult due
to the various kinds of variabilities arising from multimedia processing, such as the high
variability in the execution requirements and great burstiness in the on-chip traffic etc.
Our framework accurately models the burstiness in these kinds of variabilities using the
concept of VCCs. At the same time, the analytical approaches developed for the design
space exploration and performance analysis of MpSoC platforms take fully into account the
various burstiness, which we think has critical influence on platform architecture design.
What is particular to our analysis is that all the operations are donediaisaof streams.

A major contribution of our analytical approaches is that it can help to greatly reduce the

design time and costs and avoid the time-consuming simulation.

8.3 New Characterization of Multimedia Workloads

In the above analytical approaches, we used VCCs to capture the worst-case characteristics
of multimedia workloads. In this thesis, we also proposed a new conceupobximate
variability characterization curvesr e-VCCs to characterize the average-case characteris-
tics of multimedia workloads. By taking into account the frequency of the occurrences of
certain patterns, this new concept works in a parameterized fashion, winelieates how

many percent of worst-case occurrences are omitted.

We then applied the concept ofVCCs to determine the platform parameters config-
ured for a SoC platform, e.g. the sizes of on-chip buffer and the long-term frequency value
configured for an on-chip processor. For the design case of on-chip buffer sizing, the exper-
imental results showed that the value of buffer size computed usW@Cs reduces as the
value ofe increases. This is due to the reason that some worst-case occurrences of certain
patterns are ignored. It also showed that the value of computed buffer size decreases faster

when the value of is smaller, while this becomes slower as the value isfgreater. This

123

may be explained since worst cases in the workloads happen less frequently relative to the
average cases. Similar observations was also obtained for the case of configuring long-term
frequency value.

We also presented analytical algorithms that provide an upper bound on the errors asso-
ciated with different values of whene-VCCs are applied in the design of SoC platforms.

The simulation results showed that the proposed algorithms analytically give a valid upper
bound on how many percent of stream objects might be dropped from the buffer when its
size is set to be the values computed usifMCCs. These algorithms also give an upper
bound on how many percent of stream objects might miss deadlines when the processor
frequency is configured with the values computed usivfCs.

It is known that multimedia applications exhibit various kinds of high variability and
are characterized by soft real-time constraints, i.e. a small degree of degradation in the
output quality is acceptable. Hence, it is desirable to design the SoC platforms for multi-
media applications based on average-case characteristics of multimedia workloads, which
would achieve great resource savings and thus reduce the cost. Our proposed parame-
terized framework provides an efficient scheme of characterizing the average-case behav-
iors of multimedia workloads. Through error analysis algorithms, our framework can help
a designer to identify the tradeoffs between the output quality and the resource require-
ments (i.e. the selection of suitable valuespfin an analytical way, which avoids the
time-consuming simulation. Some related work on statistical network calculus presents
probabilistic bounds on the errors. Our error analysis algorithms give deterministic bounds
instead, which provides an effective way of measuring the output quality for multimedia

applications and is complementary to the probability-based methods.

8.4 Future Work

We have presented the conceptefCCs as a new characterization of multimedia work-
loads. Due to the importance of “average-case” analysis in the context of multimedia

SoC platform design, in the future we would want to extend our analytical approaches

124

for system-level design and analysis, usingCCs as models of multimedia workloads.
We hope that our framework will contain both “worst-case” and “average-case” analysis
mechanisms, which provides a full support for SoC platform design for multimedia appli-
cations.

The extended framework will work in a parameterized fashion. Different values of
e correspond to different degree of resource savings and quality degradation. The ma-
jor challenge to develop analytical approaches usiMCCs is how to bound the quality
degradation associated with the different values. of

Same as VCCs, our concept ofVCCs is defined for a class of streams, and hence
the platform parameters (such as the buffer sizes or processor frequency values) analyzed
usinge-VCCs are valid for a class of streams. Note that the class is defined in the sense of
burstinesghat is shown in the behaviours of multimedia processing. Therefore, it is also
expected that we can bound the quality degradation for a class of streams.

Now, we have only conducted a preliminary study of the error analysis algorithms that
can bound the errors for a single stream belonging to the class. In practice, the system
designer may need to analyze multiple representative streams from a class of streams in
order to get an estimation of the errors associated with this class, which involves more
design efforts. In the future, we would extend the existing error analysis algorithms to
provide the error bounds for a class of streams. Such an extension would help to further
reduce the design costs.

In the future, we would also want to study more complex architectures and applications.
However, itis not trivial to develop the “average-case” analysis approaches for complicated
design cases and to provide the error bounds at the same time. To bound the errors, we may
need to identify the worst-case patterns in the sense of incurred errors after applying
VCCs (VCCs are not enough to identify such patterns). The analytical approaches may
need to be developed with the error analysis algorithms in mind. We believe that there are

many issues to be explored along this direction.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

125

Bibliography

Ptolemy project.

http://ptolemy.eecs.berkeley.edu.

A. Acquaviva, L. Benini, and B. Rigz An adaptive algorithm for low-power stream-
ing multimedia processing. I@onference on Design, Automation and Test in Europe

(DATE), Munich, GERMANY, March 2001.

PALM-DP-2000 AcurX configurable SoC platform.

http://www.palmchip.com/

Rajeev Agrawal, R. L. Cruz, Clayton Okino, and Rajendran Rajan. Performance
bounds for flow control protocol$EEE/ACM Transactions on Networking(3):310—
323, June 1999.

Gang Quan an Xiaobo Hu. Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processorsDAC, Las Vegas, Nevada, United States,

2001.

H. V. Antwerpen, N. Dutt, R. Gupta, S. Mohapatra, C. Pereira, N. Venkatasubra-
manian, and R. von Vignau. Energy-aware system design for wireless multimedia.
In IEEE Design, Automation and Test in Europe (DATEAris, FRANCE, February
2004.

T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer

system modelinglEEE Computer35(2):59-67, 2002.

S. Ayyorgun and R. L. Cruz. A composable service model with loss and a scheduling

algorithm. ININFOCOM, Hong Kong, China, March 2004.

126

[9] S. Ayyorgun and R. L. Cruz. A service-curve model with loss and a multiplexing

problem. INICDCS Tokyo, Japan, March 2004.

[10] F. Balarin, Y.Watanabe, H. Hsieh, L. Lavagno, and C. Passerone. Metropolis: an in-

tegrated electronic system design environm&EE Computer36(4):45-52, 2003.

[11] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting mpeg execution times. In

ACM SIGMETRICSMadison, Wisconsin, USA, 1998.

[12] E. Bini and M. D. Natale. Optimal task rate selection in fixed priority systems. In

RTSSMiami, Florida, USA, 2005.

[13] A. Bobrek, J. Pieper, J. Nelson, J. Paul, and D. Thomas. Modeling shared resource
contention using a hybrid simulation/analytical approactDésign, Automation and

Test in EuropgFebruary 2004.

[14] R. Boorstyn, A. Burchard, J. Leibeherr, and C. Oottamakorn. Statistical service as-
surances for traffic scheduling algorithm&EE Journal on Selected Areas in Com-

munications18(13):2651-2664, 2000.

[15] J.-Y. Le Boudec. Application of network calculus to guaranteed service networks.

IEEE Transactions on Information Theo#4(3):1087-1096, May 1998.

[16] J.-Y.Le Boudec and P. Thirahletwork Calculus - A Theory of Deterministic Queuing
Systems for the Internet NCS 2050, 2001.

[17] L.-O. Burchard and P. Altenbernd. Estimating decoding times of mpeg-2 video
streams. Irinternational Conference on Image Processikgncouver, BC, Canada,

2000.

[18] M. Buss, T. Givargis, and N. Dutt. Exploring efficient operating points for volt-
age scaled embedded processor core4th IEEE Real-Time Systems Symposium

(RTSS)Cancun, Mexico, December 2003.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

127

H. Kim C. Im and S. Ha. Dynamic voltage scheduling technique for low-power mul-
timedia applications using buffers. International Symposium on Low Power Elec-

tronics and Design (ISLPEDX alifornia, USA, August 2001.

S. Chakraborty, S. #nzli, and L. Thiele. A general framework for analysing system
properties in platform-based embedded system designéthlDesign, Automation

and Test in Europe (DATEMunich, Germany, February 2003.

S. Chakraborty, S. #nzli, L. Thiele, A. Herkersdorf, and P. Sagmeister. Performance
evaluation of network processor architectures: Combining simulation with analytical

estimation.Computer Networkst1(5):641-665, 2003.

C.S. Chang. On deterministic traffic regulation and service guarantee: a systematic
approach by filteringIEEE Transactions on Information Theo®4(3):1097-1110,
May 1998.

C.S. Chang.Performance guarantees in communication netwoikgringer-Verlag,

New York, 2000.
W. Chase and F. BowrGeneral StatisticsJohn Wiley & Sons, 1997.

C. Chen and M. Sarrafzadeh. Provably good algorithm for low power consumption

with dual supply voltages. ICCAD, San Jose, CA, United States, 1999.

K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage and
frequency scaling for a MPEG decoder. IRCAD, San Jose, CA, USA, November
2002.

F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve approach for the

stochastic analysis of networks. ACM Sigmetrics2005.

R. Cruz. A calculus for network delay, Parts 1 &EEE Transactions on Information

Theory 37(1), 1991.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

128

A. Dasdan, D. Ramanathan, and R. K. Gupta. A time-driven design and validation
methodology for embedded real-time systeASM Transactions on Design Automa-

tion of Electronic Systems (TODAESJ4):533-553, 1998.

Sandeep Dhar and Dragan Maksimovic. Low-power digital filtering using multiple
voltage distribution and adaptive voltage scaling. IS.PED, Rapallo, Italy, July
2000.

S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SOC for advanced
set-top box and digital TV systemHE=EE Design & Test of Computer$8(5):21-31,
September-October 2001.

L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload design: Selecting

representative program-input pairs.IEEE PACT pages 83-94, 2002.

F. Balarin et al. Hardware-Software Co-design of Embedded Systems — The POLIS

approach Kluwer Academic Publishers, 1997.

C. A. Gonzales, H. Yeo, and C. J. Kuo. Requirements for motion-estimation search
range in MPEG-2 coded videdBM Journal of Research and Developme#3(4),
1999.

A. D. Gordon.Classification Chapman & Hall/CRC, 1999.

W. Hawkins and T. Abdelzaher. Towards feasible region calculus: An end-to-end
schedulability analysis of real-time multistage execution RTFSS Miami, Florida,

USA, 2005.

D. P. Heyman, A. Tabatabai, and T. Lakshman. Statistical analysis and simulation
study of video teleconference traffic in atm networkSEE Transactions on Circuits

and Systems for Video Technolpgyl):49-59, 1992.

I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava. Power optimization
of variable-voltage core-based systeniSEE Trans. on Computer Aided-Design of

Integrated Circuits and Systents3(12), 1999.

129

[39] Shaoxiong Hua and Gang Qu. Approaching the maximum energy saving on em-
bedded systems with multiple voltages. IRBCAD, San Jose, CA, United States,
November 2003.

[40] C. Huang, M. Devetsikiotis, . Lambadaris, and A. Kaye. Modeling and simulation
of self-similar variable bit rate compressed video: a unified approacACM SIG-

COMM, 1995.

[41] C.J. Huges, J. Srinivasan, and S.V. Adve. Saving energy with architectural and fre-
guency adaptations for multimedia applications.3#th Annual International Sym-

posium on Microarchitecture (MICRQ2001.

[42] C.J. Hughes, P. Kaul, S.V. Adve, R. Jain, C. Park, and J. Srinivasan. Variability in
the execution of multimedia applications and implications for architecturéSQ#

pages 254-265, 2001.

[43] Blue Logic technology, IBM.

http://www.chips.ibm.com/bluelogic/

[44] M. Jersak and R. Ernst. Enabling scheduling analysis of heterogeneous systems with
multi-rate data dependencies and rate intervals.Prioc. 40th Design Automation

Conference (DAG)2003.

[45] G. Kahn. The semantics of a simple language for parallel programmingtdma-
tional Federation for Information Processing CongreBierth-Holland, Amsterdam,

August 1974.

[46] Tero Kangas, Petri Kukkala, Heikki Orsila, and Erno Salminen et al. Uml-based
multiprocessor soc design frameworRCM Transactions on Embedded Computing

Systems (TECS)(2):281-320, 2006.

[47] K. Keutzer, S. Malik, R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. Sys-
tem level design: Orthogonolization of concerns and platform-based deHidiE

Transactions on Computer-Aided Desjd®(12), 2000.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

130

Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. An approach
for quantitative analysis of application-specific dataflow architecturedcBE Inter-
national Conference on Application-Specific Systems, Architectures and Processors

(ASAP) LA, CA, USA, 1997.
Leonard KleinrockQueuing Systems, Volume 1: Thealghn Wiley and Sons, 1975.

Marwan Krunz and Satish K. Tripathi. On the characterization of VBR MPEG
streams. IPACM SIGMETRICSCambridge, MA, June 1997.

T. Lafage and A. Seznec. Choosing representative slices of program execution for
microarchitecture simulations: a preliminary application to the data streawoik-
load characterization of emerging computer applicatiopages 145-163. Kluwer

Academic Publishers, 2001.

K. Lahiri, A. Raghunathan, and S. Dey. System level performance analysis for design-
ing on-chip communication architecturéBEE Trans. on Computer Aided-Design of

Integrated Circuits and Systen20(6):768—783, 2001.

A. A. Lazar, G. Pacifici, and D. E. Pendarakis. Modeling video sources for real-time

schedulingMultimedia Syst.1(6):253—266, 1994.

C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: a tool for evaluating
and synthesizing multimedia and communicatons system#CM/IEEE MICRQ

pages 330-335, 1997.

D.S. Lee, B. Melamed, A. Reibman, and B. Sengupta. Analysis of a video multi-
plexer using TES as a modeling methodology.lBEE Global Telecommunications

Conference (GLOBECOMIPhoenix, USA, December 1991.

E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systemd4.7(12):1217-1229, 1998.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

131

B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J.D. Robbins. Performance
models of statistical multiplexing in packet video communicatiolsEE Transac-

tions on Communication86(7):834-844, 1988.

Rolf Ernst Marek Jersak, Rafik Henia. Context-aware performance analysis for effi-

cient embedded system design.Aroc. DATE Paris, France.

A. Mathur, A. Dasdan, and R. K. Gupta. Rate analysis for embedded systeEts.
Transactions on VLSB(3):408-436, 1998.

A. Maxiaguine, S. Knzli, and L. Thiele. Workload characterization model for tasks

with variable execution demand. DATE, Paris, France, February 2004.

A. Maxiaguine, S. Kinzli, S. Chakraborty, and L. Thiele. Rate analysis for streaming
applications with on-chip buffer constraints. ASP-DAC Yokohama, Japan, January

2004.

A. Maxiaguine, Y. Liu, S. Chakraborty, and W. T. Ooi. Identifying “representa-
tive” workloads in designing MpSoC platforms for media processind=3i IMedia

Stockholm, Sweden, September 2004.

A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning SoC platforms for
multimedia processing: ldentifying limits and tradeoffs. CODES+ISSSStock-
holm, Sweden, September 2004.

S. Mohanty and V. Prasanna. Rapid system-level performance evaluation and op-
timization for application mapping onto SoC architectures.|HEE International

ASIC/SOC Conferenc&eptember 2002.

S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Inte-
grated power management for video streaming to mobile handheld devicA&Mn

Multimedia (MM) Berkeley, CA, USA, November 2003.

A. Nandi and R. Marculescu. System-level power/performance analysis for embedded

systems design. IBAC, Las Vegas, Nevada, USA, June 2001.

132

[67] OMAP for 2.5G and 3G: Overview, Texas Instruments.

http://www.ti.com/sc/omap/

[68] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van der Wolf, and
Ed F. Deprettere. Exploring embedded-systems architectures with artéBiE
Computer34(11):57-63, 2001.

[69] Flavio Polloni, Luca Mazzoni, and Serge Di Matteo. Fast system-level design space
exploration for low power configurable multimedia systems-on-chipASHC/SOC

ConferenceRochester, New York, September 2002.

[70] P. Pop, P. Eles, and Z. Peng. Bus access optimization for distributed embedded sys-
tems based on schedulability analysis.Pioc. Design, Automation and Test in Eu-

rope (DATE) 2000.

[71] PrimeXsys Platforms Overview, ARM.

http://www.arm.com/products/solutions/PrimeXsysPlatforms.html

[72] Gang Qu and Miodrag Potkonjak. Techniques for energy minimization of communi-

cation pipelines. INCCAD, San Jose, CA, United States, 1998.

[73] K. Richter and R. Ernst. Model interfaces for heterogeneous system analyRiecln

6th Design, Automation and Test in Europe (DATEunich, Germany, March 2002.

[74] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance
verification. IEEE Computer36(4):60-67, 2003.

[75] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Bottom-up performance analysis
of Hw/Sw platforms. InProc. Distributed and Parallel Embedded Systems Confer-

ence (DIPES)Montreal, Canada, 2002.

[76] K.Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling
analysis in platform design. Iroc. 39th Design Automation Conference (DASgw

Orleans, LA, June 2002. ACM Press.

133

[77] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der Wolf, O.P. Gangwal, and
A. Timmer. A heterogeneous multiprocessor architecture for flexible media process-

ing. IEEE Design & Test of Computer$9(4):39-50, July-August 2002.

[78] M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol. Design of multi-tasking co-
processor control for eclipse. IOth International Workshop on Hardware/Software

Codesign (CODESXolorado, USA, May 2002.

[79] M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol. Robust media processing in a
flexible and cost-effective network of multi-tasking coprocessord.4iih Euromicro

Conference on Real-Time Systems (ECRVi®hna, Austria, June 2002.

[80] Seamless Hardware/Software Co-Verification, Mentor Graphics.

http://www.mento.com/seamless/

[81] P. Skelly, S. Dixit, and M. Schwartz. A histogram-based model for video behavior in
an atm network. IREEE INFOCOM Florence, Italy, 1992.

[82] N.T. Slingerland and A.J. Smith. Design and characterization of the Berkeley multi-
media workload Multimedia Syst.8(4):315-327, 2002.

[83] K. Sreenivasan and A. J. Kleinman. On the construction of a representative synthetic

workload. Commun. ACM17(3):127-133, 1974.

[84] Open SystemC Initiative.

http://www.systemc.org

[85] L. Thiele, S. Chakraborty, M. Gries, and Siizli. A framework for evaluating
design tradeoffs in packet processing architectureBAG, New Orleans, LA, USA,

June 2002.

[86] P. van der Wolf, W.M. Kruijtzer, and J.T.J. van Eijndhoven. System-level design of

embedded media systems. Tatorial at the 15th International Conference on VLSI

134

Design (VLSI) and Asia and South Pacific Design Automation Conference (ASP-DAC)

(joint conference)Bangalore, India, January 2002.

[87] G. Varatkar and R. Marculescu. On-chip traffic modeling and synthesis for MPEG-2
video applicationsIEEE Transactions on VLS12(1), 2004.

[88] The Cadence virtual component co-design.

http://www.cadence.com/products/vce.html.

[89] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU scheduling for mobile
multimedia systems. IBOSPNY, USA, October 2003.

