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Summary

Currently there is a considerable interest in designing general-purpose configurable System-

on-Chip (SoC) platforms specifically targeted towards implementing multimedia applica-

tions. Determining the optimal configuration for such platforms is especially difficult due

to the various kinds of variabilities arising out of multimedia processing, such as the high

variability in the execution requirements of multimedia streams and the burstiness in the

on-chip traffic. System-level design and analysis methods are then desired for such plat-

forms, which take into account such variabilities.

In this thesis we propose an analytical framework that can be used in the design space

exploration and performance analysis of multimedia SoC platforms. Our work includes the

following contributions.

Firstly, we adopt the concept ofvariability characterization curvesto characterize the

worst-case behaviours of multimedia workloads. An analytical scheme is also presented to

obtain such characterization curves for a large library of potential inputs to the system.

Secondly, to illustrate the utility of our framework, we present analytical approaches

for two typical system design cases. In the first case, we address the problem of identifying

the frequency ranges that should be supported by different processors of a platform in order

to run a target multimedia workload. In the other case, we determine tight bounds on the

arrival rates of different multimedia streams at a platform such that predefined quality-of-

service (QoS) constraints are met.

Finally, we propose the concept ofapproximate variability characterization curvesto

characterize the average-case behaviours of multimedia workloads. “Average-case” analy-

sis using this concept can be used to derive tradeoffs between resource savings and QoS

constraints. In this thesis we present error analysis algorithms to bound the extent to which

such QoS constraints can be satisfied.



Our proposed framework can be used to precisely model multimedia workloads and es-

timate various performance parameters for multimedia SoC platforms in a seamless man-

ner. Compared to purely simulation-oriented approaches, our framework provides provable

performance guarantees and involves analysis times which are significantly shorter.

v



List of Tables

4.1 MPEG-2 video clips used in our experiments. . . . . . . . . . . . . . . . . 34

4.2 Maximum dissimilarity between fragments of the same scene. . . . . . . . 36

4.3 Measured maximum buffer backlogs. . . . . . . . . . . . . . . . . . . . . 40

5.1 The maximum buffer fill levels obtained by simulating a static frequency

schedule forPE2 that was derived using the proposed framework.video1

(video3) andvideo2 (video4) are 4 Mbps and 8 Mbps MPEG-2 video streams

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Summary of the input arrival bounds. . . . . . . . . . . . . . . . . . . . . . 84

6.2 Summary of the bounds on buffer overflow. . . . . . . . . . . . . . . . . . 85

6.3 Scenarios for the single stream case. . . . . . . . . . . . . . . . . . . . . . 89

6.4 Scenarios for the multiple streams case. . . . . . . . . . . . . . . . . . . . 89

7.1 Analytical bounds and simulation results on the percentage of macroblocks

that miss their deadlines, for different values ofε. . . . . . . . . . . . . . . 119

vi



List of Figures

2.1 Y-chart scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Illustration of the mapping of a multimedia application modeled as a KPN

onto an MpSoC platform architecture modeled at abstract level. . . . . . . . 17

3.2 An MpSoC platform onto which an MPEG-2 decoder application is parti-

tioned and mapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Illustration of workload curveγ. . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Illustration of arrival curveα. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Illustration of service curveβ. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Illustration of consumption curveκ. . . . . . . . . . . . . . . . . . . . . . 23

4.1 (γu
vld, γ

l
vld) for different fragments of video 5 and video 10. . . . . . . . . . 35

4.2 Classification based onκu
vld only for all the clips. . . . . . . . . . . . . . . 37

4.3 Classification based onγu
vld only for the clips in Category A. . . . . . . . . 38

4.4 Classification based onγu
idct only for the clips in Category A. . . . . . . . . 39

4.5 Cluster tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 System-level view of multimedia processing on a multiprocessor SoC plat-

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Algorithm of Computing Frequency Range. . . . . . . . . . . . . . . . . . 60

5.3 Arrival curves(αl
x, α

u
x) of the macroblock stream on the output ofPE1 for

the video sequencevideo1. A fragment of the functionx(t) for video1 is

shown in this figure. Note that it is bounded by the corresponding arrival

curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



5.4 Service bounds(σl, σu) for video1 for two different system configurations

C1 andC2, whereC1 = {B2 = 4000, Bv = 7000} andC2 = {B2 =

4500, Bv = 6500}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Service bounds(σl, σu) computed using VCCs and service bounds(σl
s, σ

u
s )

computed using a simple modeling scheme forvideo1 for system configu-

rationC = {B2 = 12000, Bv = 16000}. . . . . . . . . . . . . . . . . . . . 64

5.6 Dependency of frequency ranges on the playout buffer size for two different

classes of the MPEG-2 video streams with more motion: 4 Mbps (video1)

and 8 Mbps (video2). The size of bufferB2 is fixed to3000 macroblocks. . 65

5.7 Dependency of frequency ranges on the playout buffer size for two different

classes of the MPEG-2 video streams with less motion: 4 Mbps (video3)

and 8 Mbps (video4). The size of bufferB2 is fixed to3000 macroblocks. . 66

5.8 Dependency of frequency ranges on the internal buffer size for two dif-

ferent classes of the MPEG-2 video streams with more motion: 4 Mbps

(video1) and 8 Mbps (video2). The size of bufferBv is fixed to6000 mac-

roblocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.9 Dependency of frequency ranges on the internal buffer size for two dif-

ferent classes of the MPEG-2 video streams with less motion: 4 Mbps

(video3) and 8 Mbps (video4). The size of bufferBv is fixed to6000 mac-

roblocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.10 Two randomly generated schedules obtained from the service boundsσ. . . 69

5.11 An illustration of the service boundsσ for a longer time interval. . . . . . . 70

5.12 The frequency ranges computed for different values of the analysis interval. 70

6.1 An MpSoC platform processing two concurrent MPEG-2 streams for a PiP

application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Processing a single stream. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Processing multiple streams. . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



6.4 A graphical illustration of the playout buffer underflow constraint in terms

of αu
c , αl

y and the playback delaytd. . . . . . . . . . . . . . . . . . . . . . 78

6.5 Illustration of deriving an upper bound onαu
x1. . . . . . . . . . . . . . . . . 83

6.6 Scenario 1: (a) Computed and measured bounds on the arrival rate, (b)

Measured input buffer fill level, (c) Measured playout buffer fill level. . . . 95

6.7 Scenario 2: (a) Computed and measured bounds on the arrival rate, (b)

Measured input buffer fill level, (c) Measured playout buffer fill level. . . . 96

6.8 Scenario 4: (a) Computed and measured bounds on the arrival rate, (b)

Measured input buffer fill level, (c) Measured playout buffer fill level. . . . 97

6.9 Buffer fill levels in the single stream case: (a) Computed versus measured

maximum fill level of the input buffer, (b) Computed versus measured max-

imum fill level of the playout buffer, (c) Measured minimum playout buffer

fill level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.10 Buffer fill levels in the multiple streams case: (a) Computed versus mea-

sured maximum fill level of the input buffer, (b) Computed versus measured

maximum fill level of the playout buffer, (c) Measured minimum playout

buffer fill level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.11 Bounds on the arrival rate computed using VCCs and a simple modeling

scheme:(αl
x, α

u
x) and(Sαl

x
, Sαu

x
). . . . . . . . . . . . . . . . . . . . . . . . 99

6.12 αu
x −αl

x for two scenarios, with different valuesw1/w2 for a TDM scheduler. 99

6.13 Bounds on the arrival rate of a stream(xmin, xmax) and(αl
x, α

u
x) with play-

back delay value of0.3 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Processor cycle requirements of a sequence of macroblocks for an MPEG-2

decoder application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Histogram of the processor cycle demand per macroblock for an MPEG-2

video. The minimum and the maximum cycle demands are2218 and92247

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Approximate workload curves. . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



7.4 Illustration of frequency analysis . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Computed buffer sizes for different values ofε. . . . . . . . . . . . . . . . 115

7.6 Percentage of macroblocks dropped fromB2 for different values ofε. . . . 116

7.7 Probability of macroblocks dropped fromB2 for different values of buffer

sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.8 Frequency values ofPE2 for different values ofε. . . . . . . . . . . . . . . 118

x



1

Chapter 1

Introduction

1.1 Motivation

Today multimedia applications run on a wide range of consumer electronic devices, ranging

from set-top boxes to PDAs and mobile phones. Because of flexibility, low design costs

and time-to-market advantages, very often such devices are now designed using general-

purpose configurable multiprocessor System-on-Chip (MpSoC) platforms. Examples of

such platforms are the Eclipse architecture template [77, 79] and the Viper SoC architecture

[31] from Philips that target advanced set-top box and DTV markets, OMAP from Texas

Instruments [67] and PrimeXsys from ARM [71]. Many of these platforms are typically

designed to process concurrent streams of audio and video data associated with broadband

multimedia services and, at the same time, perform network packet processing to support

high-speed Internet access.

One of the major problems that a designer has to address while using such platforms

is the issue of platform configuration. Such platforms are typically designed for aclassof

applications. Given a particular application belonging to this class, the platform is tuned

(or configured) to perform optimally when running this application. Configuring a platform

may involve determining the size of on-chip buffers, bus width, cache configurations, etc.

and also the parameters for different schedulers and bus arbitration policies.

Determining an optimal platform configuration is typically not easy and involves sev-

eral design tradeoffs and constraints imposed by the platform itself. It should be fully con-

sidered about the flexibility, cost, performance and power consumption characteristics of



2

the designed platform. For example, lowering the power consumption may imply degraded

performance, and increasing flexibility is usually associated with increased cost and low

performance. Additionally, a designer may face challenges due to rapidly changing pro-

tocols and time-to-market pressure. This problem becomes even more challenging in the

context ofdesigningSoC platforms for multimedia devices, because of the high compu-

tational demands, real-time constraints, and low power consumption requirements of such

devices and various kinds of variabilities associated with multimedia processing. Also,

the underlyingdesign spaceis quite large and purely simulation-based techniques involve

prohibitively high running time. Such considerations have led to an increasing demand for

analysis techniques and system-level design tools for MpSoC platforms.

Research efforts have been paid to design multimedia SoC platforms using analytical

techniques. Very little work, however, has fully taken into account the characterization

of multimedia workloads during the design of SoC platforms. As we have mentioned,

multimedia applications exhibit high computational requirements and various kinds of data-

dependent variability. For example, arrival patterns of multimedia streams at the input of

the system may have a bursty nature. The number of bits to encode a frame or macroblock is

highly variable. The execution demand of a task may vary a lot from activation to activation

due to data-dependent program flow. Such kinds of variabilities have a great impact on

the selection of configuration parameters of SoC platforms and should be fully explored.

Stochastic models (e.g. queuing models) fail to accurately model these variabilities and

can only provide stochastic performance guarantees. A powerful analytical framework is

desired for the design of multimedia SoC platforms that can fully capture the characteristics

of multimedia workloads.

1.2 Thesis Contributions

This thesis presents an analytical framework for the system-level design of SoC platform

architectures for multimedia applications. The proposed framework is based on the theory

of Network Calculus[16], which was originally developed and is still largely used in the
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context of analyzing communication networks. Recently, it was extended to the domain

of real-time systems. It was developed to analyze the SoC architectures in the context of

network processors [21, 85] and further extended to the domain of general SoC platform

architectures [20]. This research follows this line of development and extends the theory to

analyze the SoC platforms for multimedia applications.

Firstly, we borrow the concept ofvariability characterization curves(VCCs) [63] to

characterize the worst-case characteristics of multimedia workloads, which are based on

the various concepts of “curves” introduced in the theory of network calculus. Using the

concept of VCCs, we propose a methodology of identifying ”representative“ workloads

from a large library of multimedia streams that can potentially run on the platform, the

amount of which may be too huge to analyze all these streams. The VCCs measured

for these set of selected streams are then used to represent the workloads imposed on the

platform.

Secondly, based on the accurate model of the multimedia workloads (i.e. VCCs), we

propose system-level analytical solutions for two typical cases of SoC platform design:

on-chip processor frequency selection and rate analysis. In the first case, our analytical

approaches can guide a system designer in identifying the frequency ranges that should

be supported by the different processors of a platform architecture. In the latter case, we

address the problem of determining tight bounds on the rates at which different multimedia

streams can be fed into a platform architecture. We believe that under our proposed frame-

work, effective analytical solutions can also be developed to determine other configuration

parameters for SoC platforms.

Finally, we propose a novel concept ofapproximate variability characterization curves

(or approximate VCCs) to characterize the “average-case” behavior of multimedia work-

loads. The concept is defined in a parameterized fashion, which denotes the amount of the

worst-case scenarios that is discarded. Analysis algorithms are also developed to quantita-

tively account for the performance degradation and the associated resource savings corre-

sponding to different values of the parameter.

The proposed analytical framework provides powerful and effective analytical approaches
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for the SoC platform design in the context of multimedia applications. It should be helpful

in the design space exploration of such platforms and to greatly reduce the design cycle.

It should help a system designer to achieve the various kinds of tradeoffs in the platform

design, by considering multimedia workload characterization and the platform design in

a uniform way. The proposed framework captures fully the characteristics of multime-

dia workloads imposed on the platforms, such as various kinds of variability arising from

multimedia processing. It should be able to analyze various performance metrics for the

targeted platforms and to determine various configuration parameters for a platform, given

the applications to be supported by the platform. On the other hand, it should be able to

determine the characteristics that the applications should satisfy given the platform whose

parameters are known. The proposed scheme of average-case characterization of multi-

media workloads may achieve great resource savings when applied in the design of SoC

platforms, due to the high variability presented in multimedia processing.

1.3 Organization of the Thesis

The organization of the thesis is as follows. In the next chapter, we introduce the back-

ground and review the related literature. In Chapter 3, we conduct the overview of fun-

damental models, the concept of VCCs, basic methodologies and experimental setup that

we have used. In Chapter 4, we present our methodology of identifying “representative”

workloads, from which VCCs are measured. It is followed by the analytical approaches

proposed for two typical system design problems: on-chip processor frequency selection

and rate analysis, which are presented in Chapters 5 and 6 respectively. The concept of ap-

proximate VCCs is then introduced in Chapter 7 and algorithms are presented to quantify

the performance degradation and resource savings for two system design cases. Finally, we

summarize the thesis and talk about the future work.
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Chapter 2

Background and Related Work

2.1 MpSoC Platforms

The ever increasing complexity of SoCs and the pressures of short time-to-market and low

cost requirements for SoC designs, has led to new design paradigms such as platform-

based design [47]. This paradigm encourages the extensive reuse of common architectural

components that can be shared among a variety of applications as well as can support

the future evolutions of applications, in order to reduce the overwhelming cost of chip

design and manufacturing. Based on this idea, general-purpose configurable SoC platforms

use complex on-chip networks to integrate multiple intellectual property (IP) blocks or

cores from some libraries (such as the IBM Blue Logic Core Library [43]) (or a third-

party vendor) on a single chip. Example of the IP blocks or cores that might be included

in such a platform are configurable processors, parameterized caches, specialized memory

hierarchies, flexible bus architectures, programmable logic and parameterized coprocessors

etc. These IP blocks or cores are already predesigned and verified and hence the designer

need not take care of the specific implementation of these individual components, while

only concentrating on the overall system.

In a general-purpose configurable SoC platform, the interconnected components and/or

architecture parameters can be customized towards the requirements of the target applica-

tion (or applications) that might run on this platform. Examples of such generic platforms

are PrimeXsys from ARM [71] and AcurX from Plamchip [3]. These platforms are tar-

geted towards a wide range of applications starting from DVD players and set-top boxes,
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to network routers and network security processors.

Although application-specific hardware (e.g., ASICs and custom SoCs) are customized

for a particular application domain and have the benefits of high performance capacity, low

power consumption, and small size, they are usually associated with heavy engineering

costs, slow time-to-market and inability to make provision for post-deployment upgrades

(hence reduced time-in-market). On the other end, solutions purely based on general-

purpose processors have the advantage of high degree of flexibility, enabling upgrades,

and shorter design cycles, but often fall short of performance and power requirements.

General-purpose configurable platforms, when used in a naive manner, still show a signifi-

cant difference in the performance and power utilization characteristics, compared to more

specialized solutions.

To bridge this gap, techniques are proposed to customize general-purpose configurable

platforms for specific applications. Such application-specific platforms are customized for

a particular application domain, but still support sufficient flexibility to allow them to be

configured for specific products belonging to that domain. An example of such a platform

is OMAP from Texas Instruments [67], which allow multimedia capabilities to be included

in 2.5G and 3G wireless handsets and PDAs. The Eclipse architecture template [77] and the

Viper SoC architecture [31], from Philips, are also examples of such application-specific

platforms which target advanced set-top box and DTV markets.

2.2 Y-chart Scheme of Designing SoC Platforms

To get the optimal configuration of a complex SoC platform for target applications, the

design space should be effectively explored, by taking fully into account both the applica-

tion and architecture aspects of the platform under study. A common approach to follow in

the design of SoC platforms is the Y-chart scheme [33, 48], as shown in Figure 2.1. This

scheme requires to make a clear distinction between application and architecture to allow

more effective exploration of alternative solutions, which is encouraged by the system de-

sign paradigm oforthogonalization of concerns[47]. Firstly, the designer characterizes the
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Figure 2.1: Y-chart scheme.

target application (applications), makes some initial calculations and proposes a candidate

architecture. Then the application is partitioned and explicitly mapped onto the differ-

ent architectural components. Next, performance analysis is conducted to quantitatively

evaluate the application-architecture combination. According to the resulting performance

numbers, the designer may decide to go ahead with the chosen architecture, or try to get

better performance numbers by reconfiguring the architecture, restructuring the application

or modifying the mapping of the application. This process is reiterated until satisfactory

performance figures are achieved.

In Figure 2.1, both the application and the architecture are modeled separately. The

application model is used to represent the application’s functional behavior, which is often

calledmodel of computation. Model of computation is a mathematical model that specifies

the semantics of computation and of concurrency for the application. The architecture

model captures performance constraints of architecture resources, by defining architectural

components that represent processors or coprocessors, memories, buffers, buses, and so

on. An application model is independent from the specific architectural characteristics and

hence a single application model can be used for evaluating different architecture models.

To explore the design space of complex SoC platforms, it is required that the perfor-

mance analysis of the platform architecture is done at multiple abstraction levels for target

applications. This makes it possible to control the speed, required modeling effort and at-

tainable accuracy of the performance evaluations. Higher-level abstraction models are used
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to efficiently explore the large design space in the early design stages. More detailed mod-

els are applied at later stages to allow focused architectural exploration. Hence the models

of the application and architecture should also be made at various levels of abstraction re-

spectively to enable the stepwise refinement approach in the design space exploration. In

this thesis, we are concerned with the modeling and performance analysis of multimedia

SoC platforms at system-level.

2.2.1 Models of Computation

System-level models of computation typically describe the functional behaviors of an ap-

plication as a hierarchical collection of tasks that are communicating with each other by

means of events carried by channels. Based on the specification of the behaviors, the com-

munication method, the implementation and validation mechanisms, and how the intercon-

nected tasks are composed into a single one, the most important models of computation

that have been proposed to date can be classified into being based on three basic models

[56]: Discrete Event, Finite State Machines (FSMs) and Data Flow.

Discrete Event Model: In discrete event model, tasks communicate through multiple-

writer and single-reader channels that carry globally ordered and time-tagged events. Task

behavior is usually specified by a sequential language. As a task receives input events, it is

executed and produces output events with the same or a larger time tag.

Finite State Machines: In finite state machines, task behavior is specified by a finite la-

beled transition system which is composed of states, transitions and actions. A state stores

information that reflects the input changes from the system start to the present moment.

The state executes the action (description of an activity) that is incurred when the required

conditions (for example, entering/exiting the state, input conditions, certain transition) are

satisfied. A transition indicates a state change, which is enabled only when a condition is

fulfilled.

Data Flow Model: Data flow model is a special case ofKahn Process Network(KPN) com-

putational model [45]. In a data flow process model, tasks communicate through one-way
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FIFO channels. Each channel has unbounded capacity and carries a sequence (a stream)

of data object. Each data object is written into the channel exactly once and read from

the channel exactly once. Writes to channels are non-blocking, but reads are blocking (the

read stalls when the input channel is empty). A task in data flow model is specified by a

mapping from one or more input streams to one or more output streams.

2.2.2 Models of Architecture

The architecture is modeled as a set of interconnected modules and components along with

their associated software to implement the functions imposed by applications. A module or

component in the architecture model is defined with specified interfaces and explicit context

dependency. The architecture is desired to be modeled in multiple abstraction levels. When

the level of abstraction is closer to the final implementation, it is more effective in reducing

cost and design cycles by reusing designs. Minimal variations in specification, however,

may result in very different implementations. The models with higher-level abstraction can

be more easily shared among different specifications and only a minimal amount of work

is needed to achieve final implementation. Having multiple levels of abstraction, however,

is important, since the lower levels may change due to the advances in technology, while

the higher levels stand stable across product versions.

2.2.3 Performance Analysis

The application model is mapped onto the architecture model after both of these models are

obtained, which is then followed by performance analysis of the application-architecture

combination. The most common techniques for performance evaluation applied in indus-

trial practice are simulation-based (e.g. VCC [88] and Seamless [80]). However, simulation

possesses several disadvantages: it involves extensive running time, which fall behind the

tight time-to-market demands today; it is also extremely difficult to find simulation patterns

that lead to worst-case situations; it is hard to identify corner cases by simulation.

A great amount of research efforts have been put on presenting analytical techniques



10

for performance analysis of SoC platforms as simulation-based methods fall short. Formal

analysis guarantees full performance corner-case coverage and bounds for critical perfor-

mance parameters, based on well-defined models.

Most of the formal analysis techniques are proposed for individual architectural compo-

nents and a general framework for analyzing system-level designs is not offered, especially

in the presence of heterogeneity. Few exceptions consider special cases of more complex

architectures, for example, analysis of response times for static-priority process scheduling

combined with a TDMA bus protocol [70]. Recently, an event stream interface model is

introduced [76, 73, 74] and functions are provided for event model transformations. Based

on identifying architectural components for which appropriate analysis methods already

exist in the literature, a unified framework is presented to couple different local analysis

techniques into a global compositional description of the complex system-level properties.

These works have been extended [44], where standard event models are extracted from real-

istic systems that exhibit complex task dependencies such as multi-rate data dependencies,

data rate intervals and multiple activating inputs. It is shown [58] that advanced perfor-

mance analysis techniques can take into accountsystem contexts, i.e. correlations between

successive computation or communication requests as well as correlated load distribution,

to yield tighter analysis bounds.

2.3 SoC Design for Multimedia Applications

Various methods and tools have been developed for SoC design, examples of which are

Ptolemy [1], Milan [64], Metropolis [10], Mesh [13], Koski [46], etc. Due to the prolifer-

ation of consumer electronics products that support media processing, attentions have also

been paid to design SoC platforms for multimedia applications. In the following, we intro-

duce two directly related work. The first [68] is the project ofArchitectures and Methods

for Embedded Media Systems(Artemis). The other is from Philips during the design of

Eclipse architecture templates for media processing SoCs [78, 79, 86].
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Application modeling: Artemis and Eclipse model multimedia applications using the

KPN computational model. KPNs fit nicely with multimedia processing application do-

main, where application is structured by a directed graph with each node representing a

task and each edge representing a data channel. Each data channel is a FIFO buffer, with

one producer and one or more consumers. Tasks are executed concurrently and exchange

information solely through the unidirectional data channels. The functional behavior of the

KPN model, which is observed as the sequence of data items that communicate through

channels, is independent of the order in which the tasks are executed. This deterministic

property means that the same input always results in the same application output and the

application behavior is independent of architecture models. Hence an application’s perfor-

mance metrics and resource constraints can be analyzed in isolation from the architecture.

Architecture modeling: Artemis aims to develop an architecture modeling and simulation

environment for the efficient design space exploration of heterogeneous embedded-systems

architectures at multiple abstraction levels.

In Artemis, the underlying architecture model does not model functional behavior,

which has been caught by the application model. The architecture model is constructed

from generic building blocks provided by a library, which contains performance models

for various platform components such as processing cores, communication buses and dif-

ferent memory types. At a high abstraction level, various processing cores such as a pro-

grammable processor, reconfigurable component or dedicated hardware unit are abstracted

as a processing-core model which functions as ablack-box. To model the execution of an

application event on a processing core, the architecture simulator assigns parameterizable

latencies to the input events and thus simulates the timing behavior of the specific architec-

tural implementation. The communication component within the architecture model (e.g.

buses, memories), which the communicating Kahn channel is mapped onto, will account

for the latencies associated with the data transfers.

Eclipse defines a heterogenous architecture template for designing high performance

streaming-processing SoCs. This heterogenous architecture consists of fully programmable

processor cores and various sophisticated hardwired function modules (coprocessors) opti-



12

mized for high performance with minimum power consumption and silicon area.

Eclipse aims to present an architecture template that is flexible, scalable and cost-

effective. The configuration flexibility of programmable cores is combined with high per-

formance of hardwired modules. It achieves scalability by avoiding centralized control in

the system. It allows hardwired modules to operate in parallel and independently, and can

also run multiple applications concurrently. By introducing such high levels of parallelism

and multi-tasking, cost-effectiveness is achieved.

Performance analysis.Artemis applies trace-driven cosimulation technique to achieve an

interface that includes the mapping specification between application models and architec-

ture models. Each executed task produces a trace of events that represents the application

workload that this task imposes on the architecture. The trace events correctly reflect data-

dependent functional behavior and refer to the computation and communication operations

an application task performs. Hence the architecture models, driven by the traces, can

simulate the performance consequences of the application events and then evaluate the ar-

chitecture’s performance.

Eclipse models the architecture as a flexible, cycle-accurate simulator. It obtains the

performance measurements such as buffer filling, coprocessor utilization and data access

latency at the application level (i.e. for each task and stream) through application simula-

tion and tuning for particular architectural instance.

Artemis and Eclipse rely on simulation to measure the performance metrics. Simulation-

based approaches, however, are known to suffer from the disadvantages of high running

time, incomplete coverage and failure to identify corner cases, which are even severe in the

context of designing multimedia systems.

Efforts have been put on presenting analytical solutions for performance analysis of

multimedia SoC platforms. Mathematical algorithms have been presented [69] to explore

the design space of system buses, the usage of which is believed to affect greatly perfor-

mances and power consumption of the system. These algorithms are used to optimize the

system bus usage by finding pareto-optimal solutions (supporting the target applications at
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the minimum cost in the sense of die area and energy consumption).

A formal technique for system-level power/performance analysis is presented [66],

based on a proposed model calledStochastic Automata Networks(SANs). A process graph

is used to model the application of interest and is translated to a network of automata,

which is then used to generate the underlying Markov chain. The steady-state behavior

of the SAN model is solved and performance measures are then derived. The technique,

however, is purely probability-based and does not give any type of performance guarantees.

2.4 Characterization of Multimedia Workloads

A large amount of work has been conducted to model the video traffic in the context of

network communications. A first model ofvariable bit ratevideo traffic models a video

source as a first-order autoregressive process with marginalprobability distribution func-

tion and an exponential autocorrelation function [57]. Later, a new methodology called

transform-expand-sampleis proposed to generate the number of bits in a frame following

an arbitrary distribution and to model the frame correlation structure [55]. Lazar et al. [53]

models the distribution and autocorrelation of a source bit stream accurately at the scene,

the frame and the slice level.

The frame-size distribution for the three types of frames (i.e. I, P, and B) is also studied

[81, 37, 40]. For example, a comprehensive characterization of MPEG video streams that

captures the bit rate variations at multiple time scales is presented [50]. The sizes of differ-

ent types of frames are modeled and intermixed as a complete model according to a given

group of picturespattern. The impact of scene changes on the long-term bit rate variations

is also incorporated, in addition to modeling the marginal distribution and autocorrelation

structure.

The above work concentrates on modeling the video traffic (i.e. the bit rate variations),

but does not consider the variation in the execution time of multimedia streams.

Some previous work has been presented to predict the execution time of multimedia

processing applications in order to employ real-time scheduling for efficiently implement-
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ing quality-of-service guarantees. Worst-case execution times (WCETs) of the MPEG-2

video decoding process are estimated [17] by integrating the WCET analysis into the de-

coder and taking into account of the actual input data. By considering frame type and size,

a linear model of MPEG decoding is presented [11] to predict the actual decoding time for

a frame.

Research has also been done on modeling the traffic and analyzing the execution time

variability for multimedia applications in the context of computer systems design. The

variability in the frame-level execution time on general-purpose architectures is analyzed

for several multimedia applications [42]. It is concluded that execution time variability

is mostly resulted from the application algorithm and the media input, and architectural

features only contribute little to the variability in the execution time.

A recent work [87] addresses the modeling of on-chip traffic for the design of platforms

for embedded multimedia appliances. It introduces that a fundamental property of self-

similarity is exhibited by the bursty traffic between on-chip modules in typical MPEG-2

video applications. It quantifies the degree of self-similarity using the Hurst parameter and

finds the optimal buffer-length distribution. In this work, a technique is also proposed to

synthetically generating traces having statistical properties similar to real video clips and

to speed up buffer simulations.

The above studies have mainly focused on modeling the video traffic and/or the exe-

cution time. They have not studied the design issues of the computer systems comprehen-

sively and applied fully these modeling techniques to the design practice.

2.5 Network Calculus Theory

Network calculus is originally proposed as a theory of deterministic queuing systems for

analyzing delay and backlog in a communication network, where the traffic and the service

are characterized as envelope functions. This theory has been pioneered in the early 1990s

for providing worst-case performance bounds for packet networks [28]. It is later developed

to be placed in themin-plus algebraformulation [22, 15, 4], where the concept ofservice



15

curvesis used to express service guarantees to a flow. A comprehensive understanding of

this theory can be referred to referred to the following textbooks [23, 16].

Recently, network calculus has been extended to analyze SoC architectures in the con-

text of network processors [21, 85]. Analytical frameworks based on this theory are de-

veloped to explore the design space of network processor architectures in the early design

stages. After a relatively small set of potential architectures are identified through analyti-

cal approaches, simulation techniques are used to get more accurate performance measures

in the later design stages.

Network calculus theory is further extended [20] to the domain of general SoC platform

architectures. It extends and generalizes the standard event models used in previous work

[73, 76], as well as presents a framework for analyzing various system properties like tim-

ing analysis, on-chip memory demand and resource loads of heterogenous platform-based

architectures.

The concept ofworkload curvesis proposed [60] to characterize the variable execution

demands of tasks, which provides tighter best-/worst-case bounds on the execution times

of tasks than traditional WCET analysis mechanisms. This concept is generalized [63] to

characterize (give best-/worst-case bounds on) the various kinds of variability arising from

multimedia processing on an MpSoC platform, the result of which is a new abstraction

called VCCs. This concept of VCCs is used to identify how the buffer requirements change

with different scheduling mechanisms implemented on the processors, and to achieve the

tradeoffs between savings on on-chip buffer sizes and scheduling overheads through ana-

lytical methods.

Our work in this thesis follows this line of development and concentrates on propos-

ing a framework for system-level design and analysis of SoC platforms for multimedia

applications. We will study the modeling techniques and effective analytical solutions for

the design space exploration of such platforms. In the next chapter, we will introduce the

fundamental concepts, models and techniques that are used in this thesis.
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Chapter 3

Fundamental Models and Techniques

3.1 Models of Application and Architecture

Our models of multimedia application and architecture follows the traditional modeling

techniques that have been extensively used in the literature [68, 78, 79, 86]. We model the

multimedia application using the KPN computational model. Since we concentrate on the

system-level study of the SoC platforms, we model the MpSoC platform architecture at

higher abstract level. The KPN model representing a multimedia application is partitioned

and mapped onto an abstract architecture model, as shown in Figure 3.1.

In this thesis, we consider the following system-level view of multimedia stream process-

ing on an MpSoC platform. Here we discuss the processing of one stream, which can be

easily extended to the case that multiple streams are processed. The platform architecture

consists of multiple processing elements (PEs) onto which different parts of an application

are mapped. An input multimedia stream enters a PE, gets processed by the task(s) im-

plemented on this PE, and the processed stream enters another PE for further processing.

At the input of each PE is a buffer (a FIFO channel of fixed capacity) used to store the

incoming stream to be processed. Finally, the fully processed stream is written into aplay-

out bufferwhich is read by somereal-time client(RTC) such as an audio or a video output

device. For the sake of generality, we consider any multimedia stream to be made up of

a sequence ofstream objects. A stream object might be a bit belonging to a compressed

bitstream representing a coded video clip, or a macroblock, or a video frame, or an audio

sample—depending on where in the architecture the stream exists.
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Figure 3.1: Illustration of the mapping of a multimedia application modeled as a KPN onto
an MpSoC platform architecture modeled at abstract level.

Figure 3.2: An MpSoC platform onto which an MPEG-2 decoder application is partitioned
and mapped.

As an example, Figure 3.2 shows an architecture with two PEs (PE1 andPE2), imple-

menting an MPEG-2 decoder application. Thevariable length decoding(VLD) and inverse

quantization(IQ) tasks have been mapped ontoPE1, and theinverse discrete cosine trans-

form (IDCT) andmotion compensation(MC) tasks ontoPE2. A video stream, after being

downloaded over a network, enters bufferB1. PE1 reads fromB1 and writes the resulting

partially decoded macroblocks into bufferB2. PE2 reads fromB2 and writes the fully

decoded macroblocks into the playout bufferBv. The video output device reads fromBv

at a pre-specified rate.
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3.2 Multimedia Workload Characterization

To design MpSoC platform architectures for multimedia processing, the first task is to char-

acterize the workloads imposed on the platforms by the target multimedia applications.

Clearly, workload characterization should be based onkey propertiesthat are important in

a particular design context. Usually these are properties that have a strong impact on the

performance of the architecture being designed. For instance, in microarchitectural design

such properties would be instruction mix, branch prediction accuracy and cache miss rates

[32]. In this thesis, we hypothesize thaton the system levelthe performance of multimedia

MpSoC architectures is largely influenced by various kinds ofdata-dependent variability

associated with the processing of multimedia data streams. This hypothesis rests on the

observation that such variability is the major source of the burstiness of on-chip traffic in

such multimedia MpSoC platforms [87]. The burstiness of the on-chip traffic necessitates

the insertion of additional buffers between architectural entities processing the multime-

dia streams, and the deployment of sophisticated scheduling policies across the platform.

Both of these inevitably translate into increased design costs and power consumption [42].

Therefore, it is certainly meaningful to characterize multimedia workloads with respect to

their variability properties.

What are the sources of variability that are usually associated with the processing of

multimedia streams on such MpSoC platforms? Firstly, arrival patterns of multimedia

streams at the input of the system may have a bursty nature, i.e. stream objects may arrive

on the system’s input in highly irregular intervals. A typical example of this is a multi-

media device receiving streams from a congested network. Secondly, each activation of a

task may consume and produce a variable number of stream objects from the associated

streams. For example, each activation of the VLD task in Figure 3.2 consumes a variable

number of bits from the network interface, although, it always produces one macroblock at

its output. Thirdly, the execution demand of a task may vary from activation to activation

due to data-dependent program flow. Both the tasks in our running example of the MPEG-2

decoder—VLD and IDCT—possesses this property. Finally, stream objects belonging to
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the same stream may require different amounts of memory to store them in the communi-

cation channels. Again, in the example architecture shown in Figure 3.2, we note that the

partially decoded macroblocks stored in bufferB1, depending on their type, may or may

not include motion vectors.

All these types of variability must be carefully considered and characterized during the

workload design process. The concept of VCCs is a generic model that allows us to quan-

titatively capture the variability found in multimedia streams. In the following we describe

this concept and give several examples of VCCs.

Variability characterization curves: VCCs are used to quantify best-/worst-case charac-

teristics ofsequences. These can be sequences of consecutive stream objects belonging to a

stream, sequences of consecutive executions of a task implemented on a PE while process-

ing a stream, or sequences of consecutive time intervals of some specified length. A VCC

V is composed of a tuple(V l(k),Vu(k)). Both these functions take an integerk as the input

parameter, which represents thelengthof a sequence. FunctionV l(k) then returns alower

boundon some property that holds forall subsequences of lengthk within some larger

sequence. Similarly,Vu(k) returns the correspondingupper boundthat holds forall subse-

quences of lengthk within the larger sequence. Let the functionP be ameasureof some

property over a sequence1, 2, . . .. If P (n) denotes the measure of this property for the first

n items of the sequence (i.e.0, . . . , n), then we haveV l(k) ≤ P (i + k) − P (i) ≤ Vu(k)

for all i ≥ 0 andk ≥ 1. By default,P (0) is assumed to be equal to 0. As examples, let us

now consider the following different realizations of a VCC.

Workload curve γ = (γl, γu): The VCCγ is used to characterize the variability in the

execution requirements of a sequence of stream objects to be processed by a PE. In this

case, given a sequence of stream objects,P (n) denotes the total number of processor cycles

required to process the firstn stream objects. Hence,γl(k) andγu(k) denote the minimum

and the maximum number of processor cycles that might be required byanyk consecutive

stream objects within the given sequence. Let us see an example as illustrated in Figure 3.3,

γl(4) ( γu(4)) denotes the minimum (maximum) number of processor cycles required by
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Figure 3.3: Illustration of workload curveγ.

any 4 consecutive stream objects within the given sequence, which records the minimum

(maximum) value ofP (i+4)−P (i) for all i ≥ 0. Hence,P (4), which denotes the number

of cycles required by the first 4 stream objects, is lower and upper bounded byγl(4) and

γu(4) respectively.

Let emin andemax be the minimum and the maximum number of processor cycles re-

quired by any single stream object belonging to a sequence. For any reasonably large value

of k, γl(k) is clearly greater thank × emin. Further, the difference between them increases

with increasing values ofk. Similarly, γu(k) is clearly smaller thank × emax. Hence,

the VCCγ is more expressive compared to simple best- or worst-case characterizations

commonly used in the real-time systems domain.

It is also meaningful to construct apseudo-inverseof a VCCV, which we denote as

V−1. In the case of a workload curve,γl−1
(e) = mink≥0{k | γl(k) ≥ e} andγu−1(e) =

maxk≥0{k | γu(k) ≤ e}. Hence,γl−1
(e) denotes the maximum number of stream objects

that may be processed usinge processor cycles.γu−1(e) denotes the minimum number of

stream objects that are guaranteed to be processed usinge processor cycles.

Arrival curve α = (αl, αu): This VCC is used to characterize the burstiness in the arrival

pattern of stream objects. Given a trace of the arrival times of a sequence of stream objects

at bufferb (e.g. the partially processed macroblocks being written into the bufferB2 in

Figure 3.2),αl(∆) andαu(∆) denote the minimum and the maximum number of stream

objects that arrive withinany time interval of length∆. Given a PE that is processing
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Figure 3.4: Illustration of arrival curveα.

a single stream,(αl
x, α

u
x) are used to represent the incoming stream,(αl

y, α
u
y) represent

the processed stream and(αl
c, α

u
c ) represent the bounds on the rate at which the stream

is consumed from the playout buffer. We will often refer to(αl
c, α

u
c ) as theconsumption

bounds. As illustrated in Figure 3.4,αl(6) andαu(6) respectively record the minimum

and maximum number of stream objects that may arrive at bufferb over any time interval

of length 6. Therefore,αl(6) andαu(6) show lower and upper bounds on the number of

stream objects over any time interval of length 6 (e.g.[0, 6]).

Let us see one more example, letαl
x(10) = αu

x(10) = 5, which essentially means that

within any time interval of length10, at least and at most5 stream objects can arrive at

buffer b. Hence, the average arrival rate is one stream object in every two time units. Now

suppose that we are also given thatαu
x(2) = 4, which means that within a time interval of

length2 there might be a burst of at most4 stream objects. Following this specification, if4

stream objects arrive atb during the time interval[0, 2], then over the time interval(2, 10] at

most1 stream object can arrive. Hence, although the “long-term” arrival rate of the stream

is 0.5 stream objects per unit time, there might be occasional bursts. The arrival curvesαl

andαu allow for the precise characterization of such bursts.

Service curveβ = (βl, βu): Due to the variability in the execution requirements of stream

objects, the number of stream objects that can potentially be processed within any specified

time interval varies (even when the processor runs at a constant frequency). We will use
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Figure 3.5: Illustration of service curveβ.

βl(∆) andβu(∆) to denote the minimum and the maximum number of stream objects that

can be processed (or served) by a processor withinany time interval of length∆. The

curvesβl andβu may also be derived from a trace of execution requirements of stream

objects and the clock frequency with which the processor is being run. Figure 3.5 shows

an example for service curves. The number of stream objects that can be served within any

time interval of length 4 is lower and upper bounded byβl(4) andβu(4) respectively.

Note that this specification ofserviceis stream dependent. It is also possible to specify

the service offered by a processor in a stream-independent manner. Towards this, letσl(∆)

andσu(∆) denote the minimum and the maximum number of processor cycles available

within any time interval of length∆. It is then easy to see thatβl(∆) = γu−1(σl(∆)) where

γu is the workload curve associated with the stream (which was described above).

Consumption and production curvesκ = (κl, κu) and π = (πl, πu): Let an input stream

be processed by a taskT . Each activation ofT consumes a variable number of stream

objects belonging to the input stream, and results in the production of a variable number of

output stream objects, possibly of a different type. This variability in the consumption and

production rates ofT can be quantified using two VCCsκ andπ, which we refer to as the

consumption and the production curves respectively.

κl(k) takes an integerk as an argument and returns the minimum number of activa-

tions of T that will be required to completely process anyk consecutive stream objects.
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Figure 3.6: Illustration of consumption curveκ.

Similarly, κu(k) returns the maximum number of activations ofT that might be required

to process anyk consecutive stream objects. Let us see an example. As shown in Fig-

ure 3.2, the bit stream at bufferB1 is processed byPE1. Each activation of the VLD/IQ

task processes one macroblock from bufferB1. As illustrated in Figure 3.6,κl(k) (κu(k))

returns the minimum (maximum) number of activations of the VLD/IQ task (i.e. number

of macroblocks) that is required to process anyk consecutive bits from bufferB1.

On the other hand, we defineπl(k) to be the minimum number of stream objects guar-

anteed to be produced due to anyk consecutive activations ofT . πu(k) is the maximum

number of stream objects that can be produced due to anyk consecutive activations ofT .

Therefore,k consecutive stream objects at the input ofT will result in at leastπl(κl(k))

and at mostπu(κu(k)) stream objects at its output. As an example, the production curves

πl(k) andπu(k) for PE1 shown in Figure 3.2, are straight lines with slopes that correspond

to the constant-rate production of one macroblock per task activation.

3.3 Performance Analysis

Given the MpSoC platform architecture that multimedia applications are mapped onto, the

workloads imposed on the architecture are firstly characterized and represented by VCCs.

We then evaluate the performance of this architecture and design/configure the architectural

parameters, by taking into account the cost, application and architectural constraints etc.
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Typical design constraints for a multimedia MpSoC platform architecture that we have

modeled (e.g. the one shown in Figure 3.2) are (i) the playout buffers should not underflow,

and (ii) none of the buffers should overflow. The constraint on the playout buffer underflow

is to ascertain that stream objects can be read out by the audio/video output devices at the

specified playback rate, and hence the output quality is guaranteed. The constraints on

buffer overflow are motivated by the fact that typically on-chip PEs use static voltage and

task scheduling policies. This is because using blocking write/read mechanisms efficiently

to prevent buffer overflows/underflows either require a multithreaded processor architecture

or substantial run-time operating system support for context switching.

We present an analytical framework for the performance analysis and design space ex-

ploration of multimedia MpSoC platform architectures. In contrast to simulation-based

approaches, which usually follow a trial-and-error approach and is very time-consuming,

our proposed framework can help a system designer to explore the design space in a very

short time and to systematically tune a platform architecture. Our framework is based on

the network calculus theory and extends this theory by developing new algorithms and

models. In the following, we introduce some notation and a technical result that will be

used in later chapters.

Notation. Throughout this thesis, all functionsf are assumed to be wide-sense increasing,

meaning thatf(x1) ≤ f(x2) for x1 ≤ x2 andf(x) = 0 for x ≤ 0. For any two functionsf

andg, themin-plus convolutionof f andg is denoted by

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}

and themin-plus deconvolutionof f andg is denoted by

(f ® g)(t) = sup
u≥0
{f(t + u)− g(u)}

We will usef ∧ g to denote the infimum or minimum (if it exists) off andg, andf ∨ g to

denote the supremum or maximum (if it exists) off andg.

Lemma 1 For any functionsf , g andh, g ⊗ h ≥ f if and only ifh ≥ f ® g.
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This lemma follows from the definitions of the min-plus convolution and deconvolution

operations and shows the relation between them.

3.4 Experimental Setup

We have conducted experiments to illustrate and validate our analytical framework. Since

MPEG-2 streams have a complex nature and a rich set of characteristics [50], they repre-

sented an interesting target for our experiments. We studied the MpSoC platform archi-

tectures with an MPEG-2 decoder application mapped onto, one of which is that shown in

Figure 3.2.

Our experimental setup consisted of the SimpleScalar instruction set simulator, a sys-

tem simulator and an MPEG-2 decoder program. The MPEG-2 decoder program was used

as an executable for the simulator and as a means to obtain traces of bit allocation to mac-

roblocks.

The instruction set simulator was used to obtain traces of execution times for the

VLD/IQ and IDCT/MC tasks of the MPEG-2 decoding algorithm. All the tasks processed

the data stream at the macroblock granularity. Thesim-profileconfiguration of the Sim-

pleScalar simulator and the PISA instruction set were used to model on-chip processors

of the architecture. Although this configuration does not model advanced microarchitec-

tural features of the processor, it allows fast simulation and was therefore the most suitable

choice. This choice is also justified by the fact that advanced features in the microarchi-

tecture of a general-purpose processors do not have significant impact on the variability of

multimedia workloads [42].

The system simulator consisted of a SystemC transaction-level model of the architec-

ture. We used it to measure backlogs in the buffers resulting from the execution of the

MPEG-2 decoder application on the platform.
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Chapter 4

Characterizing Multimedia Workloads:

Obtaining VCCs

To conduct performance analysis for given MpSoC platforms, we firstly have to charac-

terize the workloads for the application that can be run on the platforms. In this chapter,

we obtain the various kinds of characterization curves (VCCs) that represent the workloads

imposed on the architecture. Due to the large volume of potential inputs to the system, it

is impossible to cover every input stream and it is also time consuming. Hence good “rep-

resentative” multimedia inputs should be selected and VCCs are then measured for these

set of representative workloads. The measured VCCs are used to represent the workloads

imposed by the large library of potential inputs, in the sense of best-/worst-case bounds.

Selecting a good “representative” input set is of course not a new concern—benchmark

selection or workload design is a well recognized problem in the domain of microproces-

sor design. However, the main issues in that domain are microarchitecture-centric, where a

designer is mostly concerned with program characteristics like instruction mix, data and in-

struction cache miss rates and branch prediction accuracy. On the other hand, the concerns

in the case of system-level design of platform architectures are very different and these are

not suitably reflected in a benchmark suite designed for microarchitecture evaluation.

In this chapter we attempt to address this issue of workload design in the specific con-

text of system-level design of platform architectures for multimedia processing. Although

simulation-oriented design and evaluation are widespread in the domain of system-level de-

sign, to the best of our knowledge the issue of methodically selecting representative inputs
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for architecture evaluation has not received any attention so far. Most of the work reported

in the Embedded Systems literature, on novel system models or simulation schemes, shirk

off this problem and leave the responsibility of choosing a representative input or stimuli

to the architecture on the system designer (see, for example, [52]).

There are many reasons why this problem is interesting in the specific case of multime-

dia processing on MpSoC platforms. Firstly, many multimedia applications exhibit a large

degree of data-dependent variability that complicates the problem of choosing a represen-

tative input set. Secondly, in contrast to general-purpose architectures, MpSoC platforms

that are optimized for stream processing have heterogeneous parallel architectures. This

fact further complicates the problem. Thirdly, multimedia processing is in general compu-

tationally intensive, which makes workload selection an important problem.

Arbitrarily selecting inputs to form the “representative” input set is certainly not a good

idea. The goal of “representative” workload design should be to select inputs that represent

corner casesfor the target architecture, i.e. those inputs which impose worst- and best-

case loads on different parts of the architecture. However, determining what constitutes a

“corner case” is not a trivial undertaking due to the complex nature of most multimedia

workloads. Attempts towards using some qualitative technique to judge the properties of

multimedia streams based on their content (for example, by simply viewing video clips

to be processed by the architecture and classifying them based on experience or intuition)

might easily fail. Hence, a quantitative methodology is necessary, using which it should be

possible to objectively assess and compare the properties of different multimedia streams.

Based on such a comparison, a smallrepresentativesubset of a large library of samples can

then be chosen.

In this chapter we propose such a methodology to classify multimedia streams, which

can be used to identify a small representative set meant for architecture evaluation. To-

wards this, we first hypothesize that all the characteristics of multimedia streams that influ-

ence the performance of an MpSoC platform architecture, are related to their “variability”.

Later in this chapter, we will show our preliminary experimental results that validate this

hypothesis. Such variability manifests itself as data-dependent fluctuations of (i) execution
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time requirements and (ii) input-output rates associated with multimedia processing tasks.

These fluctuations stem from the fact that execution time requirements of the tasks and the

amount of data consumed and produced by the tasks depend on the properties of particu-

lar audio/video samples being processed. Now, given a library of multimedia streams, we

classify two streams assimilar if both of them exhibit the same kind of variability with re-

spect to execution time requirements and input/output rates as mentioned above. Therefore,

given a set of video streams which aresimilar, it would be sufficient to simulate an archi-

tecture with only one video stream from this set, as all the other streams would “stress”

the architecture in the same way. The variability associated with a stream, with respect

to an architecture, is quantitatively characterized with VCCs [63] which is summarized in

Section 3.2.

We would like to point out here that the kinds of variabilities that should be considered

in a multimedia stream for an effective classification would depend on the architecture and

the application at hand, and a detailed discussion of this is beyond the scope of this chapter.

Our work in this chapter also shows that the properties of multimedia streams, that should

be considered for representative workload identification in the context of performance eval-

uation of SoC platforms, can be expressed in the form of VCCs.

Related Work: The construction of representative workloads for performance evaluation

of computer systems has always been an area of active research since early 70s (see [83]

and references therein). Since then the termworkloadhas been widely understood as a mix

of programs (or jobs, or applications) for which the performance of a computer system was

evaluated. Domain-specific collections of such programs, calledbenchmarks, have been

designed and widely used as a standard means to evaluate and compare computer archi-

tectures. Examples of these are MediaBench [54] and the Berkeley multimedia workload

[82]. Design of such representative workloads was mainly concentrated on proper selec-

tion of theprogramsto be included in the workload. The selection of corresponding input

data sets was limited to the definition of their size (e.g. sampling rate, resolution etc.) The

dependency of program behavior on the values of the input data sets did not receive enough
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consideration in the process of forming such representative workloads.

Recently Eeckhout et al. [32] have shown that theworkload design spacemay be

very complex and therefore should be systematically explored during the construction of

representative workloads. Their workload design space consists ofprogram-input pairsthat

capture both, the variety of programs as well as various input data sets to those programs.

They use techniques such as principle component analysis and cluster analysis to efficiently

explore the space of possible workloads and select representative program-input pairs from

it.

The problem of reducing simulation time has been addressed usingtrace sampling tech-

niques(see [51] and references therein). The goal of such techniques is to identify repre-

sentative fragments in the program execution and simulate only those fragments, thereby

eliminating the need for simulating the entire program. Trace sampling techniques heavily

rely on the characterization and classification of the workload imposed on the architecture

by the different fragments in the program execution trace. However, it should be noted that

all the above mentioned research efforts were primarily targeted towards characterization

and composition of representative workloads in the domain of microprocessor design.

4.1 Measuring VCCs for Single Stream

In general, the construction of VCCs can be performed in many different ways. In some

cases it is possible to derive the curves analytically from a formal specification of the system

and its environment, whereas in other cases a simulation- and trace-based analysis approach

may be necessary and indeed sufficient for the problem at hand.

Let us consider the platform architecture shown in Figure 3.2 and illustrate our mea-

surement of VCCs. Here we will take the examples of the arrival curves at the bufferB2

(αx), the workload curves onPE2 (γ) and the consumption bounds(αl
C , αu

C).

Suppose that we adopt the simulation- and trace-based analysis method to obtainγ and

αx. We collect execution traces from a simulation of anabstract modelof the platform

architecture and then analyze them to derive the required curves. To obtain the workload
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curves(γl, γu), we first collect a trace of execution demands for the pair of tasks IDCT

and MC executing onPE2. Suppose that the sequence of macroblocks being processed by

PE2 is m1, m2, ..., and the trace records a sequence of the number of processor cycles to

process each macroblock. We then get the cumulative functionW (i) denoting the number

of processor cycles required to process the firsti macroblocks. For a givenk, γl(k) and

γu(k) record the minimum and the maximum values for the set of items{W (i + k) −
W (i)|i ≥ 0} respectively. Henceγl(k) andγu(k) identify the minimum and the maximum

processing demand imposed by any sequence ofk consecutive macroblocks within the

video sequence.

A trace of the arrival times of a sequence of macroblocks being written into the buffer

B2 (i.e. at the output ofPE1) can be obtained by measuring the execution demands of the

VLD and IQ tasks for each macroblock in the video sequence and by taking into account

(i) the constant arrival rate of the compressed bit stream at the input ofPE1, and (ii) the

amount of bits allocated to encode each macroblock in the stream. We can then obtain

the cumulative functionT (i) denoting the total time length during which the firsti mac-

roblocks arrive at the bufferB2 shown in Figure 3.2. Using a similar method to the one for

obtaining workload curves, we analyze the functionT (i) to obtain the pseudo-inverse of

arrival curves(αl
x, α

u
x). Finally we derive the arrival curves.

In similar way, we can derive the consumption bounds(αl
C , αu

C). However, in this case

since we precisely know the characteristics of the real-time client we do not need to rely

on the simulation.αl
C andαu

C can be constructed analytically by using the fact that the

real-time client reads macroblocks from the playout buffer at a predefined constant rate.

4.2 Classification of Streams

We propose to classify streams based on theshapesof the VCCs associated with them.

We hypothesize that if two streams are characterized by VCCs having similar shapes, then

their behaviors, in the worst/best-case, will also be similar. Each stream might be associated

with several types of VCCs, characterizing different aspects of variability within the stream.
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Therefore, if two streams have similarly shaped VCCs of respective types, then they will

impose similar workload on the architecture (in the worst- and best-case). For example,

streams with similarly shaped workload curves will consume similar amounts of processing

resources on a PE. Streams with similarly shaped workload curves and consumption curves

will create similar maximum backlogs in the buffers of the architecture as a result of their

processing.

4.2.1 Measuring Dissimilarity between Two Streams

To identify if two streams impose similar workloads on a platform architecture, the VCCs

measured for them are used and the types of VCCs used are dependent on the problem

studied. Firstly, we discuss how to compare two streams based only on a single variability

type, i.e. the same type of VCCs. We define a measure ofdissimilarity between two

VCCs of the same type. Considering the general case of comparing two objects (VCCs

here), an object is represented by a set of variables. The dissimilarity between two objects

is found by computing somemetric defined over these variables. In our case, a VCC,

which is defined for a set of pointsk = 1, 2, .., n, can be seen as an object described byn

variables. Intuitively, to see how dissimilar the shapes of two VCCs (of the same type) are,

we need to compare their values for each of the pointsk = 1, 2, .., n. By noting that alln

variables represent a VCC along essentiallyseparabledimensions, we can quantitatively

measure the dissimilarity between two VCCs using the City Block metric [35]. This metric

is chosen, because in comparison to other known metrics (e.g. Euclidean Distance) it is

more “sensitive” to differences in each of the dimensions, i.e. in our case, the metric is

more “sensitive” to the differences in the shapes of two VCCs. Given below is a formal

definition of the dissimilarity between two VCCs, based on the City Block metric.

Let θri(k) (k = 1, 2, .., n) denote a VCC of typer associated with theith stream. A

measure of the pairwise dissimilarity between two streamsi andj, with respect to a VCC

of typer, is then defined as

drij =
n∑

k=1

1

k
|θri(k)− θrj(k)| (4.1)
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wherek denotes the length of the analysis interval that is used to normalize the differences

|θri(k) − θrj(k)|. The reason that we use this normalization is that the longer the analysis

interval, the lesscritical is the difference in the values of the two VCCs corresponding to

this interval. The absolute difference for a larger value ofk is distributedover a larger num-

ber of stream objects than in the case of a smaller value ofk, and therefore this difference

becomes less critical.

In many cases it might be useful to characterize streams using more than one type of

VCCs. How should the dissimilarity between streams be quantified in such cases? We

believe that first, the measure of dissimilarity between VCCs having identical types should

be computed using Eqn. (4.1). These measures can then be combined in various possible

ways, one of them being simply computing the sum of all the dissimilarity measures for the

individual VCC types. The pairwise dissimilarity between two streamsi andj with respect

to VCCs of typesr = 1, 2, .., p is then defined as

dij =

p∑
r=1

drij (4.2)

4.2.2 Clustering of Similar Streams

Given a large library of streams, we need toclassifythem into different clusters. Streams

within the same cluster impose similar workloads. To classify streams using the dissim-

ilarity measure described above, we use a conventional hierarchical clustering algorithm

based on thecomplete linkagealgorithm [35] for computing distances between clusters.

The rationale behind the choice of the complete linkage algorithm is the need to keep the

clusters as dense as possible.

4.3 Empirical Validation

To see how the stream classification method described in the previous section performs on

real data samples, we conducted a number of experiments with MPEG-2 video streams.

We considered the following scenario. A generic MpSoC platform, such as the one
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shown in Figure 3.2, has to be customized such that it supports real-time decoding of

MPEG-2 video streams. Hence, we need to study the impact of different MPEG-2 streams

on the platform and based on the results of our study, optimize the architecture accordingly.

For this purpose we collected a large library of video clips that we believe our architecture

should be able to support. However, due to time constraints we cannot afford to run sim-

ulations for all the clips in the library. Furthermore, simulation of an entire clip takes a

prohibitively long time. Therefore, we are constrained to simulate only a limited number

of short fragmentsextracted fromselectedvideo clips belonging to the library.

Data Selection:We assume that any video clip in the library contains only onescene. In

a visual sense, a scene is “a portion of the movie without sudden changes in view, but with

some panning and zooming” [50]. Distinguishing between different scenes is necessary,

because even within a single MPEG-2 stream different scenes might have substantially

different characteristics. For example, characteristics of MPEG-2 streams (such as bit rate)

maysignificantlyvary at a large time scale, i.e. across different scenes, while at a short time

scale (i.e. within a scene) the variations are more moderate [50, 53]. If different scenes are

not treated separately while deriving their VCCs, due to the nature of VCCs, important

information about some scenes may be overshadowed by other scenes. Finally, we note

that in practice it is always possible to split a long movie into a series of individual scenes

(see [50] for the relevant references).

For our experiments, we used a library of MPEG-2 video clips that is shown in Ta-

ble 4.1. The clips in this library contain two categories. Each clip in Category A is a

8 Mbps constant bit rate stream consisting of only one scene with a resolution of704×576

pels and a frame rate of 25 fps, while clips in Category B are 4 Mbps constant bit rate

streams consisting of only one scene with a resolution of704 × 480 pels and a frame rate

of 30 fps. We believe that the variety of scenes represented by this library is sufficient for

a demonstration of our classification method.

To select representative streams for performance evaluation of our architecture, we clas-

sified the streams in the library based on (i) the variability in execution demand, and (ii)

the variability in the production and consumption rates of the tasks running on the PEs of
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category index video clip index video clip
1 100b080.m2v 7 pulb 080.m2v
2 bbc3080.m2v 8 susi080.m2v

A 3 cact080.m2v 9 tens080.m2v
4 flwr 080.m2v 10 time 080.m2v
5 mobl 080.m2v 11 v700 080.m2v
6 mulb 080.m2v
12 100b040.m2v 18 pulb 040.m2v
13 bbc3040.m2v 19 susi040.m2v

B 14 cact040.m2v 20 tens040.m2v
15 flwr 040.m2v 21 time 040.m2v
16 mobl 040.m2v 22 v700 040.m2v
17 mulb 040.m2v

Source: ftp.tek.com/tv/test/streams/Element/MPEG-Video/

Table 4.1: MPEG-2 video clips used in our experiments.

the platform. The VLD (i.e. VLD/IQ) task has both these types of variabilities. For each

activation, it consumes a variable number of bits from the input buffer and its execution

demand also fluctuates. Hence, we characterized it using the workload curves(γu
vld, γ

l
vld)

and the consumption curves(κu
vld, κ

l
vld). The IDCT (i.e. IDCT/MC) task was characterized

using only the workload curves(γu
idct, γ

l
idct), because its execution demand is variable but

consumption and production rates are constant.

Obtaining VCCs: Using the experimental setup described in Section 7.4, we simulated

with the platform architecture as shown in Figure 3.2. The VCCs were obtained from the

collected execution traces. To obtain an upper (lower) VCC we searched through the corre-

sponding trace with time windows of different lengths and identified the maximum (mini-

mum) execution requirements (or number of bits) occurring in the trace within each of these

time windows. The maximum window size was determined by the maximum time interval

over which the streams were compared. For each design scenario, this might be different.

In our experiments we had set the maximum window size to 12 frames. This corresponds to

the most frequently occurring length of group of pictures (GOP) in the MPEG-2 bitstreams.
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Results and Discussion:Our first step was to compute the maximum dissimilarity be-

tween VCCs obtained from different fragments of the same scene. If this dissimilarity is

sufficiently low then we can randomly pick a short fragment from a long video clip and use

it as a representative of the whole video clip. If this dissimilarity is too high, then we may

need to adopt other approaches to select short fragments. For example, fragments of the

same scene can be classified first. Thenseveralfragments can be chosen to represent that

scene.

From each clip in our library, we extracted 10 unique fragments of the same length

(30 frames) and measured their VCCs. Figure 4.1 shows results of the measurements for

(γl
vld, γ

u
vld) for two video clips, i.e. clip numbers 5 and 10 from Table 4.1. Video 5 rep-

resents a natural full-motion scene, whereas video 10 is a video test pattern displaying a

small running timer on a still background. By inspecting the plots in Figure 4.1 we can see

that the dissimilarity between fragments of video 5 is larger than those between fragments

of video 10. This can be explained by the higher degree of motion present in the scene of

video 5. Nevertheless, we can see that the curves for different fragments of video 5 exhibit

a similar behavior. For other videos in the library, we observed very similar trends.

Using Eqn. (4.1) for each VCC type we computed pairwise dissimilarities between



36

VCC max.dissim video VCC max.dissim video
γu

vld 57151356 4 γl
idct 37220944 3

γl
vld 23548299 4 κu

vld 2146073 4
γu

idct 22903156 9 κl
vld 752238 4

Table 4.2: Maximum dissimilarity between fragments of the same scene.

fragments of the same scene and selected their maximum value. Table 4.2 shows the ob-

tained maximum values takenover all the video clips in Category A. From this table we

can observe that video 4 probably contains a very complex and changing scene, because

almost all the VCC types of its fragments exhibit a higher dissimilarity compared to those

for the other clips.

For the classification of the (full length) video clips we decided to randomly pick one

fragment from each clip and then perform the classification based only on the selected frag-

ments. Actually, the classification of the video clips can follow a hierarchical way. Firstly,

in certain cases we can classify all the video clips in a large library into several coarse-

grained groups, based on the different property values that each clip have (e.g. different

resolutions, bit rates, contents etc.). We can then classify the clips in each group using the

methods presented in this chapter. Further classification can be operated for any interested

group that is already a classified result of previous steps.

In our example, we first classified all the video clips in the library into two groups:

Category A and Category B, based on their different bit rate and resolution values. In Figure

4.2, we show that this coarse-grain division is meaningful in some cases, for example, when

we perform the classification based on onlyoneVCC type,κu
vld. Figure 4.2 (a) shows that

based on the VCC shapes, all the video clips in the library are classified into two groups

that just belong to Category A and Category B respectively. The further classification of

Category A is shown in Figure 4.2 (b) and that of Category B is shown in Figure 4.2 (c).

In the remainder of this chapter, we only show our classification for Category A. For the

purpose of illustration, we first performed the classification based on onlyoneVCC type.

The results of the classification into four groups, based on the shape ofγu
vld, are presented
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Figure 4.2: Classification based onκu
vld only for all the clips.

in Figure 4.3. As we can see in the figure, our method could correctly identify groups of

curves having similar shapes. This indicates that the measure of dissimilarity defined by

Eqn. (4.1) leads to a meaningful classification. The same observation can be obtained in

Figure 4.4 as the classification is based on the shape ofγu
idct.

Figure 4.5 shows adendrogramof the hierarchical cluster tree obtained as a result of

the classification based onall VCC types, i.e. by using Eqn. (4.2). In this dendrogram

we can clearly distinguish between two major groups of clips: still and motion videos1.

This kind of a coarse-grained division into two groups would have been possible to obtain

just by viewing the videos on the screen. However, a more refined classification would be

difficult to achieve using such a subjective technique. For example, before performing the

1Since video 10 is mostly still, it was assigned to the group of still videos by our method.
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Figure 4.3: Classification based onγu
vld only for the clips in Category A.

experiments, by simply viewing the clips we could not predict that video 4 would have such

different properties in comparison to the other motion videos. However, we can easily see

this in the dendrogram: all other motion videos except video 4, form a tight cluster with the

maximum linkage distance almost three times smaller than the maximum linkage distance

when video 4 is included into the cluster.

Finally, to see how the results of the stream classification correlate with the actual

impact of the streams on the architecture, we performed simulations of the system shown

in Figure 3.2. We simulated the decoding of severalfull-lengthvideo clips from our library.

As a measure of thearchitectural impactwe decided to use maximum backlogs occurring

as a result of the MPEG-2 processing in the buffersB2 andBV . The backlog in the buffer

in front of PE1 was not taken into account due to its relatively small size.

Table 4.3 summarizes the simulation results. Our measurements show that, for example,

videos 1 and 7 produce very similar maximum backlogs in the both buffers. The maximum

backlogs produced by videos 9 and 2 areless similarthan the backlogs produced by videos

1 and 7. For videos 9 and 2, the differences in the backlogs inB2 andBV are 2110 and

245 macroblocks respectively. We can also see that video 9 ismore similar to video 2

than to video 3. The maximum backlogs for video 3 and video 9 differ by 4935 and 405
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Figure 4.4: Classification based onγu
idct only for the clips in Category A.
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Figure 4.5: Cluster tree.

macroblocks inB2 andBV respectively. Hence, we can see that the simulation results

exhibit the same tendency as that shown by the classification in Figure 4.5.

4.4 Summary

In this chapter we presented a promising approach for workload design for the specific con-

text of system-level design of MpSoC platforms. “Representative” VCCs were identified

that can be used in the performance analysis of MpSoC platforms, which is described in
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video B2 BV video B2 BV

1 8282 9433 6 5366 9190
2 5128 9027 7 8390 9593
3 7953 8867 9 3018 9272

Table 4.3: Measured maximum buffer backlogs.

detail later in this thesis. Our two main contributions in this chapter were: (i) identifying

VCCs as a means for representing properties of multimedia workloads for system-level

design of media processing platforms, and (ii) a classification method based on VCCs to

cluster multimedia streams which exert similar influences on a platform architecture. We

presented preliminary results that show the usefulness of this approach. However, there is

considerable scope for further research in this direction. For example, to clearly identify

the influence of multimedia workloads on buffer backlogs is not trivial, for which we need

to study further what more types of VCCs should be considered. Hence, a more systematic

study needs to be done to identify “variability types” beyond the ones considered in this

chapter. We are not aware of any previous work in this direction and hope that our work

in this chapter will encourage a systematic study of this problem, especially since simu-

lation time is a widely recognized deterrent in the case of simulation-based performance

evaluation of embedded systems.
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Chapter 5

System Design Case I: Processor

Frequency Selection

In this chapter, we apply our proposed analytical framework to study the issue of select-

ing frequency values for on-chip processors, which is one typical case in the design of

energy-aware MpSoC platform architectures specifically targeted towards media process-

ing in portable devices. Under the framework, we develop analytical approaches for solving

this challenging problem.

General-purpose configurable SoC platforms generally provide embedded processor

cores that offer a high degree of customization potential, such as instruction set tailoring

and register file sizing. In recent years, dynamic voltage scaled (DVS) processors have

appeared, and thus the operating voltage (and proportionally the operating frequency) can

be customized. Choosing the number ofoperating pointsand the values for these operating

points is becoming a part of this customization procedure. More levels imply more com-

plicated design and more cost, but may result in more energy savings. Trade-offs between

the cost and energy savings should be fully considered in the customization. Choosing

the efficient operating points is especially critical in the context of multimedia applications

because of the complex and bursty nature of on-chip traffic and the high variability in the

execution times of multimedia processing tasks—both of these resulting in a highly vari-

able demand on the computational resources available on the chip [87]. Hence, being able

to control the processor frequency accurately to counter this variability is important.

The problems we are interested in addressing are of the following form. Suppose that
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we are given a multiprocessor SoC platform architecture “template” and a number of mul-

timedia applications, all of which are required to be supported by this platform. Our job

is to derive a (concrete) platform architecture from this template, by choosing appropri-

ate processors, sizes of on-chip buffers and possibly other parameters such as bus widths

and cache configurations. The processors to be chosen for this platform support software-

controlled voltage and frequency scaling to allow different degrees of power consumption

at run time. Therefore, we are also required to choose the frequency/voltage ranges that

each processor should support. In this chapter we specifically focus on this last issue and

identify how this range depends on the other parameters of the platform architecture, such

as on-chip buffer sizes.

The results presented in this chapter also provide insights into questions such as: if

a processor supports only a fixed number of operating points, where each such point is

characterized by a voltage and a frequency value, then how many such operating points

should a processor ideally support and how should these values be chosen? A processor

which allows the voltage and frequency values to be changed continuously would typically

be more expensive than one which allows these values to be changed in discrete steps and

supports only a fixed number of these values or operating points. Today, processors of both

these types are available—Intel’s XScale processor is of the former type and Transmeta’s

Crusoe processor is of the latter type. Therefore, it is pertinent to ask questions like what

kind of performance impacts choosing a processor of the latter type would have, over a

more expensive processor which supports a continuous range of frequency values? Further,

a platform designer would also be interested in identifying how the frequency range, that

needs to be supported by a processor, varies with the available on-chip buffer size. Since

on-chip buffers are available only at a premium because of their high area requirements

[87], such information would help in choosing an appropriate tradeoff.
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5.1 Our Results and Relation to Previous Work

The main contribution of this chapter is analytical approach which can guide a system de-

signer in identifying the operating frequency range that different processors on a SoC plat-

form architecture should support in order to run a given multimedia application or a class of

applications. Identifying such a range accurately is not straightforward because of the rea-

sons mentioned above, i.e. the complex nature of on-chip traffic arising out of multimedia

processing and the variability in the execution times of tasks. Moreover, since different ap-

plications and input classes might have very different computational demands choosing an

appropriate processor frequency range involves several tradeoffs between processor cost,

flexibility and on-chip buffer requirements. Our approach can help a system designer in

identifying these tradeoffs.

To save energy consumption, there has been a significant amount of work in develop-

ing voltage and frequency scheduling algorithms in the context of multimedia applications

(see, for example, [2, 19, 26, 41, 65, 89], and also [6] and the references therein). Dynamic

voltage and frequency scheduling (DVFS) methods are trying to run the processor in as

low a frequency value as possible, while satisfying the quality-of-service requirements of

the applications. The core of these methods is to predict the execution time of the future

frames based on the history execution and thus to dynamically determine the lowest possi-

ble frequency value that can be run when an instance or instances of multimedia streams are

actually running on the system. DVFS schemes are to select the optimal frequency values

for given instances of multimedia streams on a given multimedia system where the voltage

and frequency levels of the processors are already fixed. In other words, DVFS schemes do

not involve in any issue of selecting voltage/frequency values that should be supported by

a processor that is concerned during the design phase.

The problem of processor design and processor frequency selection from an energy-

aware perspective has received considerably little attention so far. One representative work

in this direction is [38], which addresses the selection of the processor core and instruction

and data cache configuration in the design of variable voltage processors. Some other work
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has been done to select the multiple voltage levels at gate level [25][72][30]. However,

at gate level it is not easy to capture the workloads imposed by the applications, which is

especially important in the context of multimedia applications due to the high variability

exhibited from multimedia workloads.

Little work has studied the problem of voltage selection at the application level, which

is more related to what we do in this chapter. Quan and Hu [5] presented a technique to

determine voltage settings for a variable voltage processor, where the processor is limited to

utilizing a fixed-priority assignment to schedule jobs. The voltages of the processor are also

assumed to be able to change continuously. Hua and Qu [39] studied the voltage selection

problem in the case of only discrete voltage values being allowed. Analytical solution was

derived for dual-voltage system, but for the multiple-voltage systems, numerical methods

were used to approximate the solutions. Buss et al. [18] presented another work for the

case of the discrete variable voltage processors. The task to be executed on a processor is

firstly specified as a task graph whose vertices are annotated with execution requirements

and deadlines. A linear programming based technique is then proposed to optimally select

the number of operating voltage/frequency points and their specific distribution for optimal

power savings.

Our work in this chapter follows the line of development in network calculus theory, but

extends the underlying theory. None of the previous results provided means for computing

the range of processor frequencies from an input specification. This extension is presented

in Section 5.4. Our work presented here can be used to analyze aclassof input streams and

provide theoretical guarantees on the performance of an architecture for a class of inputs,

for which a more elaborate theory is necessary—this is explained in detail in Sections 5.3.1

- 5.3.3.

The rest of the chapter is organized as follows. The next section formally states our

problem. Given a specification of the application to be implemented on this architecture

and the class of input streams to be processed, in Section 5.3 we compute bounds on the

servicethat needs to be provided by each processor of this architecture. In Section 5.4

we show how such service bounds can be used to derive the operating frequency range
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of each processor. Finally, in Section 5.5 we present a case study involving an MPEG-2

decoder application to illustrate an application of the proposed approach, and also validate

the results obtained using detailed simulations.

5.2 Problem Formulation

In this chapter, we consider the system-level view of multimedia stream processing on

a SoC platform shown in Figure 3.2. A model of this platform architecture is shown in

Figure 5.1.

In Figure 5.1, letxi(t) denote the number of stream objects that arrive at a PEPEi

during the time interval[0, t]. Let yi(t) (equal toxi+1(t)) denote the number of processed

stream objects at the output ofPEi (or the input ofPEi+1) during the time interval[0, t].

The real-time clientRTC consumes stream objects from the playout buffer at a rateC(t),

which again denotes the number of stream objects consumed within the time interval[0, t].

The servicereceived by the stream entering the processing elementPEi is denoted

by a service curveβi, which is specified by a tuple(βl
i, β

u
i ). Within any time interval of

length∆, it is guaranteed thatPEi will processat leastβl
i(∆) number of stream objects

and it will be able to processat mostβu
i (∆) number of stream objects. The functionsβl

i

andβu
i therefore represent lower and upper bounds1 on the service provided byPEi and

is determined by the time required to process each stream object, the scheduling policy

implemented on this PE (in case multiple streams are being processed by it), and also

by the voltage/frequency scheduling policy implemented on it. Lastly, each PEPEi is

also associated with a workload curveγi = (γl
i, γ

u
i ), whereγl

i(k) andγu
i (k) denote the

minimum and the maximum number ofprocessor cyclesrespectively, that may be required

to processanyk consecutive stream objects belonging to the input stream.γi is therefore

used to capture the variability in the execution requirements of the different stream objects.

Now recall from above that for each PE belonging to the platform, we would like to

1In this chapter, unless specially noted as general bound, any reference to upper bound or lower bound
means the tightest bound, i.e. an upper bound (lower bound) means also the maximum (minimum) value
under certain constraints.
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Figure 5.1: System-level view of multimedia processing on a multiprocessor SoC platform.

determine the operating frequency range that should be supported by it. If the processor

supports only a fixed number of discrete frequency levels, then we would like to determine

how should these frequencies be chosen and what kind of performance impacts will this

decision have. Note that the platform should be designed to support aclass(or several

classes) of multimedia streams. For example, a portable multimedia device might have

a wireless interface through which MPEG-2 coded video streams of two different classes

come in—high-quality video clips with 8 Mbps input bit rate and low-quality clips with 4

Mbps input bit rate. The computational demands associated with these two input classes

might vary widely, which translates to different operating frequency requirements for any

PE on the platform. The input to a PE, when specified using the functionxi(t), however,

represents a concrete instance of a stream rather than aclassof streams. Therefore, to

specify the arrival pattern of a class or family of streams, we use one of the VCCs called

arrival curve which is similar to the concept ofservice curveβi described above. The

arrival curveαxi
representing the class of streams that might arrive at the input ofPEi is

also specified by a tuple(αl
xi

(∆), αu
xi

(∆)), where the first and the second terms represent

the minimum and the maximum number of stream objects that might arrive within any time

interval of length∆. In other words,αl
xi

(∆) ≤ xi(t + ∆) − x(t) ≤ αu
xi

(∆), ∀t, ∆ ≥ 0.

Therefore, any concrete arrival patternxi(t) is lower and upper bounded by the functions

αl
xi

andαu
xi

respectively. Similarly, we useαl
yi

andαu
yi

to denote lower and upper bounds

on the arrival pattern of the processed stream at the output ofPEi.

Now, let us consider the last PE in the path of a stream, i.e. the PE whose output is

written into the playout buffer (see Figure 5.1). Henceforth, for simplifying the notation,
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we drop the subscripti representing the PE identifier. Therefore, as described above, any

input instance to this PE is specified by the functionx(t) and the class of all input instances

is bounded by the arrival curveαx. Any output arrival pattern from this PE is represented

by the functiony(t) and the sizes of the internal and the playout buffers areb andB respec-

tively. The consumption pattern of stream objects from the playout buffer is specified by

the functionC(t) as described above. Now, givenαx(∆), γ(k), C(t) and the buffer sizes

b andB, the problem is to compute the set of all possible processor frequencies at which

this PE might be run, such that the following constraints are satisfied: (i) the playout buffer

never overflows, (ii) it never underflows, and (iii) the internal buffer never overflows.

Our solution to the above problem consists of two parts. In Section 5.3 we compute

lower and upper bounds on the service (βl andβu) that needs to be provided by the PE in

order to satisfy the above mentioned buffer constraints. In Section 5.4, we then show how

to compute the frequency range that needs to be supported by the PE in order to realize

these service bounds. The extension of these results to any other PE in the path of a stream

(i.e. one whose output is not written into the playout buffer, but instead into another PE) is

fairly simple, and is also explained in Section 5.3.4.

Throughout this chapter we assume the following processor model: a PE can either

support a continuous range of clock frequencies, or a fixed number of discrete frequencies,

where this number can also be equal to one—i.e. the PE runs at a fixed frequency and

does not support dynamic frequency scaling. Any clock frequency is associated with a

minimum operating voltage that needs to be supplied to run the processor at this frequency.

We assume that this is the voltage at which the processor is run for any frequency—i.e.

voltage and frequency are tightly coupled and determining the frequency results in the

voltage also being determined. Hence, we will only be concerned with determining the

frequency range or the discrete frequency values for any given PE.
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5.3 Computing Bounds on Service Requirements

Givenαx(∆), C(t) and the buffer sizesb andB for the last PE in the path of a stream, in this

section we compute the lower and the upper boundsβl(∆) andβu(∆) on the service that

needs to be provided to this stream to satisfy the buffer overflow and underflow constraints

described in Section 5.2. Within any interval of length∆, if the service provided is less than

our computedβl(∆), then either the internal buffer might overflow or the playout buffer

might underflow. Similarly, if the service provided is greater than the computedβu(∆),

then the playout buffer might overflow.

Following the notation introduced in Section 5.2, we usex(t) to denote any arrival pat-

tern of stream objects at the input of the PE andy(t) to denote the arrival pattern at the

output of the PE. Recall that the functionsx, y andC always denotecumulative values

over the time interval[0, t], whereas the functionsαx andβ take time interval lengthsas

the input parameter.

We assume that the first stream object arrives at the internal bufferb at timet = 0. The

playback delay associated with the output device be equal totd, i.e. the first stream object

is read out from the playout bufferB at timet = td. Then the constraint on the playout

buffer underflow can be stated as (see Figure 5.1):

y(t) ≥ C(t), ∀t ≥ 0 (5.1)

Similarly, the constraint on the playout buffer overflow can be stated as:

y(t) ≤ C(t) + B, ∀t ≥ 0 (5.2)

Finally, the constraint that the internal buffer in the PE should not overflow, is given by:

y(t) ≥ x(t)− b, ∀t ≥ 0 (5.3)

The constraints (5.1) and (5.3) can be combined and stated as:

y(t) ≥ C(t) ∨ (x(t)− b), ∀t ≥ 0
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Now, if Sl(t) denotes the minimum number of stream objects that is guaranteed to be

processed by this PE during time interval[0, t], then it can be shown thaty(t) ≥ (x⊗Sl)(t),

∀t ≥ 0 [16]. Hence,(x ⊗ Sl)(t) is the minimum value ofy(t) for anyt, and therefore the

above constraint ony(t) can be reformulated as:

(x⊗ Sl)(t) ≥ C(t) ∨ (x(t)− b), ∀t ≥ 0 (5.4)

From Lemma 1 we know that for any functionsf , g andh, g ⊗ h ≥ f if and only if

h ≥ f ® g. Using this result, Ineq. (5.4) can be reformulated as:

Sl(t) ≥ (C(t) ∨ (x(t)− b))® x(t), ∀t ≥ 0 (5.5)

Sinceβl(∆) is the minimum number of stream objects that is guaranteed to be processed

by this PE within any time interval of length∆, we have

βl(t) ≥ Sl(t) (5.6)

Ineq. (5.5) therefore gives a general lower bound on the serviceβl that needs to be provided

by the PE in order to satisfy the playout buffer underflow and the internal buffer overflow

constraints.

If Su(t) denotes the maximum number of stream objects that could be processed by this

PE during time interval[0, t], then it can be shown that [16]

y(t) ≤ (x⊗ Su)(t), ∀t ≥ 0

Hence, following the same reasoning as above,(x ⊗ Su)(t) is the maximum value of

y(t) for anyt, and by using this, the constraint (5.2) can be reformulated as:

(x⊗ Su)(t) ≤ C(t) + B, ∀t ≥ 0 (5.7)

To determine the maximum service that the PE should provide to satisfy the playout

buffer overflow constraint, we are always concerned the case that enough data arrives at the

input buffer, i.e.x(t) is greater thanC(t)+B. Note that in the case ofx(t) ≤ C(t)+B for

t ≥ 0, Su can be infinitely large, since no matter how much service is provided by the PE,
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the playout buffer can never overflow (this also follows directly from the definition of the

min-plus convolution operator). However, it is not meaningful to compute such a bound

that is infinite.

It can be shown [16] that for any functionsf , g andh, g⊗h ≤ f satisfyingg(t) > f(t)

for all t ≥ 0, if and only if h ≤ f ® g. Ineq. (5.7) can then be reformulated as:

Su(t) ≤ (C(t) + B)® x(t), ∀t ≥ 0 (5.8)

Sinceβu(∆) is the maximum number of stream objects that can be processed by the PE

within any time interval of length∆, we have

βu(t) ≤ Su(t) (5.9)

Ineq. (5.8) therefore gives a general upper bound on the serviceβu that can be provided by

the PE, in order to satisfy the playout buffer overflow constraint.

5.3.1 Computing Service Bounds for aClassof Streams

The above bounds onβl and βu are based on a specific instance of the arrival pattern

of a stream, i.e.x(t). Hence, these bounds can only guarantee the buffer overflow and

underflow constraints for this specific arrival pattern. However, we would like to derive the

service bounds for a class of arrival patterns—i.e. all arrival patterns which are bounded by

the arrival curveαx.
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5.3.1.1 Computing the Bound onβl

For a concrete arrival pattern of stream objects given byx(t), the bound onβl is given by

(from Ineqs. (5.5) and (5.6) ):

βl(t) ≥ (C(t) ∨ (x(t)− b))® x(t)

= sup
u≥0
{(C(t + u) ∨ (x(t + u)− b))− x(u)}

= sup
u≥0
{(C(t + u)− x(u)) ∨ (x(t + u)− x(u)− b)}

= max{sup
u≥0
{C(t + u)− x(u)}, sup

u≥0
{x(t + u)− x(u)} − b}

= max{(C ® x)(t), αu
x(t)− b}, ∀t ≥ 0

(5.10)

Sincex(t) ≥ αl
x(t) for all t ≥ 0, for any functionf , (f ® x)(t) ≤ (f ® αl

x)(t) for all

t ≥ 0. Hence, the constraint specified by Ineq. (5.10) can be reformulated as:

βl(t) ≥ (C ® αl
x)(t) ∨ (αu

x(t)− b), ∀t ≥ 0

Further, let us assume that the consumption pattern of stream objects from the playout

buffer, as specified by the functionC(t − td) is lower and upper bounded by the arrival

curveαC , i.e.

αl
C(∆) ≤ C(t− td + ∆)− C(t− td) ≤ αu

C(∆), ∀t ≥ td & ∆ ≥ 0

We assume that the bounds(αl
c, α

u
c ) hold over the time interval[td,∞) in order to obtain

tighter bounds. We then haveC(t) ≤ αu
C(t − td) and the above constraint onβl can be

stated as:

βl(∆) ≥ (αu
C(∆− td)® αl

x(∆)) ∨ (αu
x(∆)− b), ∀∆ ≥ 0 (5.11)

Ineq. (5.11) therefore provides a general lower bound on the minimum service that needs

to be provided by the PE, in order to satisfy the playout buffer underflow and the internal

buffer overflow constraints, where all arrival patterns at the PE are bounded byαx and

all consumption patterns from the playout buffer are bounded byαC . Once again, recall

thatαx andαC represent aclassor a family of arrival and consumption patterns of stream

objects, and not any specific instance of an arrival or a consumption pattern.
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5.3.1.2 Computing the Bound onβu

From Ineqs. (5.7) and (5.9), the bound onβu is obtained as:

βu(t) ≤ (C(t) + B)® x(t), ∀t ≥ 0 (5.12)

We know that any instance of an arrival patternx(t) at the input of the PE is upper bounded

by αu
x, and the lower bound on the consumption pattern of stream objects from the playout

buffer is given byαl
C , i.e. C(t) ≥ αl

C(t − td). Hence, the above constraint onβu can be

reformulated as:

βu(∆) ≤ αl
C(∆− td)® αu

x(∆) + B, ∀∆ ≥ 0 (5.13)

The above general upper bound onβu therefore guarantees that the playout buffer never

overflows when the arrival pattern of stream objects at the PE is bounded byαx and the

consumption pattern of stream objects from the playout buffer is bounded byαC .

5.3.2 Computing Service Bounds in Terms of Number of Processor

Cycles

The lower and the upper bounds on the service that needs to be guaranteed by a PE, i.e.

βl andβu, are specified in terms of the minimum and the maximum number of stream

objects that need to be processed within any given time interval. However, due to the data-

dependent variability in the execution times of multimedia tasks, the number of processor

cycles required to completely process any stream object might be highly variable. As ex-

plained in Section 5.2, this variability can be captured by the functionγ, which we refer

to as theworkload curve. γl(k) denotes the minimum number of processor cycles required

to process anyk consecutive stream objects andγu(k) denotes the maximum number of

processor cycles that may be required to process anyk consecutive stream objects. There-

fore, it follows from the last subsection thatγu(βl(∆)) is the minimum number of processor

cycles that must be provided to a stream within any time interval of length∆ to guarantee

that the playout buffer never underflows and the internal buffer at the PE never overflows.
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Similarly, γl(βu(∆)) is the maximum number of processor cycles that may be provided to

a stream within any time interval of length∆ to guarantee that the playout buffer never

overflows.

Here we would like to point out that from our definition of the functionβ, it follows

that

βl(∆) ≥ βl(s) + βl(∆− s)

for all ∆ ≥ 0 and0 ≤ s ≤ ∆. Similarly,

βu(∆) ≤ βu(s) + βu(∆− s)

for all ∆ ≥ 0 and0 ≤ s ≤ ∆. However, the bounds given by Ineqs. (5.11) and (5.13) need

not satisfy these properties. Let us assume that Ineq. (5.11) is of the formβl(∆) ≥ f(∆),

∀∆ ≥ 0 and Ineq. (5.13) is of the formβu(∆) ≤ g(∆), ∀∆ ≥ 0, i.e. f(∆) is the right

hand side term of Ineq. (5.11) andg(t) is the right hand side term of Ineq. (5.13). Now let

us define two functionsσl andσu as follows:

σl(∆) =





0 if ∆ = 0

γu(f(∆)) if ∆ = 1

max{γu(f(∆)), (σl⊗′σl)(∆)} if ∆ > 1

(5.14)

σu(∆) =





0 if ∆ = 0

γl(g(∆)) if ∆ = 1

min{γl(g(∆)), (σu ⊗′ σu)(∆)} if ∆ > 1

(5.15)

where⊗′ and⊗′ are redefined from the standard operations ofmax-plus convolution[16]

and min-plus convolution in network calculus theory. Given any two functionsf andg,

they are defined as follows:

(f⊗′g)(t) = sup
0<s<t

{f(t− s) + g(s)}

and

(f⊗′g)(t) = inf
0<s<t

{f(t− s) + g(s)}
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The functionsσl(∆) andσu(∆) are therefore defined over∆ = 0, 1, 2, . . ., and denote the

minimum and the maximum number of processor cycles that should be provided to a stream

within any time interval of length∆ for all the buffer overflow and underflow constraints

to be satisfied. Moreover, it can be shown that these two functions satisfy the properties

that any function which bounds the service provided by a PE should satisfy, i.e.

σl(∆) ≥ σl(s) + σl(∆− s), ∀∆ ≥ 0 and 0 ≤ s ≤ ∆

and

σu(∆) ≤ σu(s) + σu(∆− s), ∀∆ ≥ 0 and 0 ≤ s ≤ ∆

5.3.3 Bounding the Analysis Interval

So far, our computation of the service boundsσl andσu were based on the fact that the

arrival curvesαx andαC and the workload curveγ are known for all possible time interval

lengths∆ ≥ 0. These curves would usually be derived by simulating the processing or

execution of several representative audio/video samples on a template platform architec-

ture. The traces collected from such a simulation—from the different parts of the platform

architecture, such as the arrival pattern of stream objects in front ofPE2 in Figure 3.2—are

then analyzed to derive the different arrival and workload curves. However, since these

representative audio/video samples would always be of finite length, the curves or bounds

derived from the resulting traces would also be of finite length. But the platform designed

on the basis of these finite length traces might later be used to process larger audio/video

samples. Hence, we would like to guarantee the buffer overflow and underflow constraints

on input streams of any length (provided they satisfy the bounds dictated by the arrival and

the workload curves), although the analysis and the design of the platform is based on only

finite length representative inputs.

We would however like to point out here that in practice the above issue will not be of

major concern to any system designer. He would use sufficiently long (but finite length)

representative audio/video samples in the initial simulation phase to derive the bounds (i.e.
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arrival and workload curves) that any input belonging to the class represented by these au-

dio/video samples is expected to satisfy. Based on these bounds, the platform architecture

in question would be designed. When such an architecture processes input streams which

are longer in duration than the samples used for designing the architecture, it is assumed

that the variability of the entire stream is bounded by the variability existing in the sample

inputs. Such assumptions are not specific to our approach and are common whenever a

system is designed based onrepresentative inputs(for example, see [52]).

5.3.4 Extending the Analysis to Other PEs

The scheme presented so far is based on the assumption that the PE being analyzed is the

last one in the path of a stream i.e. its output is directly written into the playout buffer. Now

let us consider a PE, whose output is fed into another PE i.e. the next PE in the path of

the stream. An example of such a PE isPE1 in Figures 3.2 and 5.1. To derive the service

bounds for this PE, let us denote the arrival curve corresponding to the arrival pattern of

stream objects at the internal buffer ofPE2 asαx2. Similarly, let the arrival pattern of

stream objects at the internal buffer ofPE1 be bounded byαx1, and let the size of this

internal buffer beb1. Then bounds onβl andβu (such as those given by Ineqs. (5.11) and

(5.13)) forPE1 can be calculated fromαx1, αx2 andb1. The processed stream coming out

of PE1 must satisfy the boundsαx2. The only buffer constraint that needs to be satisfied

in this case is that the internal buffer ofPE1 should not overflow. The resulting bounds

on the service are therefore much simpler than the ones derived above, and hence we omit

them here. This same scheme can be applied to other PEs in the path of the stream which

are away from the playout buffer. If all of the PEs provide a service in accordance with

the bounds computed for them, then it is guaranteed that none of the internal buffers in the

architecture will overflow, and the playout buffer will neither overflow and nor underflow.
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5.4 Computing Processor Frequency Range

Given the service boundsσl andσu for a PE, in this section we compute the discrete fre-

quency levels or the frequency range that must be supported by the PE in order to realize

these service bounds. For any given multimedia application and a class of input streams to

be processed, accurately determining the appropriate processor frequency range is a non-

trivial problem. The situation is much more complicated when the PE in question has to

process multiple classes of input streams or multiple applications. In such cases, the differ-

ent input classes might have different computational demands and hence require different

processor frequencies. Here is it important to determine the range of processor frequen-

cies that must be supported for each class. If these ranges overlap, then the processor

might support some frequency belonging to this overlapping range. But if these ranges do

not overlap, then multiple frequency levels need to be supported. Further, the processor

frequency range to be supported by a PE is heavily dependent on the size of the on-chip

buffers. A platform designer would therefore be interested in obtaining insights into this

dependency. Our results presented below would help in obtaining such insights. These

results can be summarized as follows:

1. For any application and a class of input streams, we can statically generate frequency

schedules for a PE which satisfy all the buffer constraints. Such schedules specify

the frequency with which the PE should be run at any time.

2. We derive a frequency range(fmin, fmax) such thatall feasible frequency schedul-

ing algorithms will only use frequencies within this range. Therefore, it would be

sufficient if the PE supports frequencies belonging to this range only.

3. Finally, our schemes can also be used to identify how the bounds(fmin, fmax) change

by changing the on-chip buffer sizes (both the playout and the internal buffers).

For simplicity, we assume that the processor frequency can be changed at each time

unit. Then during any run of the processor over a time interval of lengthn (wheren may

be equal to∆max defined in Section 5.3.3), let its frequency values bef1, . . . , fn, i.e. fi
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is the frequency at which the processor is run during the time intervalt = (i − 1, i]. If

the service being offered to a stream as a result of this schedule has to be bounded by the

service curvesσl andσu, thenf1, . . . , fn is required to satisfy the following inequalities:

σl(1) ≤ fi ≤ σu(1) ∀i = 1, 2, ..., n

σl(2) ≤ fi + fi+1 ≤ σu(2) ∀i = 1, 2, ..., n− 1

σl(3) ≤ fi + fi+1 + fi+2 ≤ σu(3) ∀i = 1, 2, ..., n− 2

. . .

σl(n) ≤ fi + fi+1 + fi+2 + . . . + fi+n−1 ≤ σu(n) ∀i = 1

The above constraints may be summarized as follows. For all∆ = 1, 2, ..., n and i =

1, 2, ..., n−∆ + 1,

σl(∆) ≤
∆−1∑
j=0

fi+j ≤ σu(∆) (5.16)

From the constraints given by Ineq. (5.16), it may be seen that any frequency valuefi

is dependent on all the previously assigned frequencies. To be more clear about how this

dependency is, from Ineq. (5.16) we identify all those inequalities that only includefi and

the values inf1, ..., fi−1, which is shown in the following,

σl(1) ≤ fi ≤ σu(1)

σl(2) ≤ fi−1 + fi ≤ σu(2)

σl(3) ≤ fi−2 + fi−1 + fi ≤ σu(3)

. . .

σl(i) ≤ f1 + f2 + . . . + fi−1 + fi ≤ σu(i)

(5.17)

The above inequality shows thatfi is dependent on the sum of all the previousk assigned

frequencies proximate to it, for anyk = 0, . . . , i− 1.

Randomly Generated Frequency Schedules:Suppose that all the previous frequencies

f1, ..., fi−1 have been assigned, by solving Ineq. (5.17), the lower and upper bounds on any
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fi is given as follows:

f l
1 = σl(1)

fu
1 = σu(1)

f l
2 = max{σl(1), σl(2)− f1}

fu
2 = min{σu(1), σu(2)− f1}

f l
3 = max{σl(1), σl(2)− f2, σ

l(3)− (f1 + f2)}

fu
3 = min{σu(1), σu(2)− f2, σ

u(3)− (f1 + f2)}

. . .

Hence,

f l
i =





σl(1) if i = 1

max1≤j≤i−1{σl(1), σl(i− j + 1)−∑i−1
p=j fp} if i > 1

fu
i =





σu(1) if i = 1

min1≤j≤i−1{σu(1), σu(i− j + 1)−∑i−1
p=j fp} if i > 1

(5.18)

f l
i andfu

i therefore give lower and upper bounds on the frequency that can be assigned

during the time interval(i− 1, i], provided the frequencies at all the previous time intervals

are known. To generate a static frequency schedule, we can choose anyfi ∈ [f l
i , f

u
i ], and

the chosenfi will determine the range[f l
i+1, f

u
i+1].

Frequency Range:To compute the frequency range, that was mentioned above, we first

compute the lower and upper bounds onfi, by solving Ineq. (5.16). From equality (5.18),

we know that the bounds onfi is dependent on all values of
∑i−1

p=j fp. Like fi,
∑i−1

p=j fp

is also dependent on all the previous frequenciesf1, ..., fj−1, the constraints for which can

be derived in a similar way to that forfi (refer to Ineq. (5.17). We define two functions

(
∑i−1

p=j fp)
l and (

∑i−1
p=j fp)

u. The first provides a lower bound, and the second an upper
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bound on the sumfj + . . . + fi−1.

(
∑i−1

p=j fp)
min =





σl(i− 1) if j = 1

max1≤q≤j−1{σl(i− j), σl(i− q)− (
∑j−1

p=q fp)
max} if j > 1

(
∑i−1

p=j fp)
max =





σu(i− 1) if j = 1

min1≤q≤j−1{σu(i− j), σu(i− q)− (
∑j−1

p=q fp)
min} if j > 1

Using the above two functions, we can derive the bounds onfi as

fmin
i =





σl(1) if i = 1

max1≤j≤i−1{σl(1), σl(i− j + 1)− (
∑i−1

p=j fp)
max} if i > 1

fmax
i =





σu(1) if i = 1

min1≤j≤i−1{σu(1), σu(i− j + 1)− (
∑i−1

p=j fp)
min} if i > 1

(5.19)

fmin
i is the smallest possible processor frequency that can be assigned during the time in-

terval (i − 1, i], andfmax
i is the largest possible processor frequency that can be assigned

during this time interval. Then the frequency range is defined as:fmin = mini=1,...,n{fmin
i },

andfmax = maxi=1,...,n{fmax
i }. A dynamic programming method is also proposed to com-

pute the frequency range, as shown in Figure 5.2.

5.5 Case Study

In this section we present a case study to illustrate an application of the approach presented

in the last two sections. Towards this, we study a platform architecture consisting of two

PEs, as shown in Figure 3.2, onto which an MPEG-2 decoder application is mapped. The

goal is to compute the processor frequency range that needs to be supported by one of the

PEs and also identify how this range changes by changing the on-chip buffer size.

As shown in Figure 3.2, the MPEG-2 decoder application is partitioned into a set of

tasks executing in parallel on two PEs of the system architecture.PE1 executes the VLD

and the IQ tasks, whilePE2 executes the IDCT and the MC tasks. A compressed video bit
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Input: service curvesσl(∆), σu(∆) and time interval lengthn ;
Definition: arraysF l[n, n] andF u[n, n];
Initialization: F l(i, k) ← σl(k), F u(i, k) ← σu(k) for all 1 ≤ i, k ≤ n;
for i← 2 ton do

for j ← i to 2 do
F l(j, i− j + 1) ← max1≤q≤j−1{σl(i− j + 1), σl(i + 1− q)− F u(q, j − q)}

/*F l(j, i− j + 1) stores(
∑i

p=j fp)
min*/

F u(j, i− j + 1) ← min1≤q≤j−1{σu(i− j + 1), σu(i + 1− q)− F l(q, j − q)}
/*F u(j, i− j + 1) stores(

∑i
p=j fp)

max*/
endfor

endfor
for i← 1 ton do

fmin
i ← F l(i, 1), fmax

i ← F u(i, 1);
endfor
fmin ← mini=1,...,n{fmin

i };
fmax ← maxi=1,...,n{fmax

i };

Figure 5.2: Algorithm of Computing Frequency Range.

stream arrives from the network interface into the input buffer ofPE1. After processing on

PE1 the partially decoded stream consisting of stream objects calledmacroblocksenters

the bufferB2 in front of PE2. PE2 reads the buffer one macroblock at a time and computes

for each macroblock the IDCT and MC functions. After that the video stream emerges out

of PE2 as a fully decoded stream of macroblocks. This stream is written into the playout

buffer Bv, which is read at a constant rate by the video output portVout. The video output

port represents the real-time client (RTC) in this setup. The rate with which it reads the

playout bufferBv is determined by the resolution and the frame rate of the decoded MPEG-

2 video sequence. As we mentioned above, the service provided to the video stream on the

PEs of such an architecture is dependent on the buffer constraints. In the above setup, at

any point in time none of the buffersB1, B2 andBv are allowed to overflow, and the playout

bufferBv should not underflow.

Determining the service that must be offered by the PEs to the stream, and thereby

identifying their feasible clock frequency ranges under the given buffer constraints is not

an easy task. The main complexity of the problem stems from the highly variable load

imposed on the PEs of the architecture by the video stream. For example, let us consider
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the load imposed by the stream onPE2. Firstly, the execution demand of IDCT and MC

tasks performed byPE2 varies for different types of macroblocks (e.g. because of the

various kinds of motion compensation methods that have to be applied to the compressed

macroblocks). Secondly, the arrival pattern of macroblocks into the bufferB2 has a high

degree of burstiness, which is caused by the variability in the execution demand of the

tasks executing onPE1. The overall result is a very complex and variable nature of the

processing load imposed onPE2. This further increases the burstiness of the macroblock

stream emerging at its output and entering the playout bufferBv.

Now, using the above example ofPE2 we will demonstrate how the proposed method-

ology can be applied to compute the required service boundsσ and the associated feasible

clock frequency range ofPE2 for the given MPEG-2 decoder application.

5.5.1 Computing the Service Bounds and the Frequency Range for

PE2

Before we can compute the service boundsσ and the corresponding frequency range for

PE2, we need to obtain the arrival curvesαx andαC and the workload curvesγ character-

izing the stream processed byPE2, and the real-time clientVout.

Following the methods presented in Chapter 4, we obtain the arrival curves(αl
x, α

u
x),

(αl
C , αu

C) and the workload curves(γl, γu). Note that here we use a customized version of

the SimpleScalar instruction set simulator for collecting the traces of execution demands of

the MPEG-2 decoder tasks. Figure 5.3 shows the arrival curves(αl
x, α

u
x), which we have

obtained for a representative 4 Mbps video sequencevideo1.

Now we apply the results presented in Section 5.3 to compute the cycle-based service

bounds(σl, σu) corresponding to the service that must be offered byPE2, to any video

stream belonging to the class of streams bounded by the curvesαx, αC andγ. The bounds

(σl, σu) corresponding to the example video sequencevideo1, for two different system

configurationsare shown in Figure 5.4. The two system configurations differ only in the

sizes of the buffersBv andB2. By examining the plots on Figure 5.4 we can see that even
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Figure 5.3: Arrival curves(αl
x, α

u
x) of the macroblock stream on the output ofPE1 for the

video sequencevideo1. A fragment of the functionx(t) for video1 is shown in this figure.
Note that it is bounded by the corresponding arrival curves.

a relatively small change in the available buffer space may have a considerable impact on

the service bounds. Furthermore, the distribution of the total on-chip buffer space among

the different buffers may also have an impact on the service bounds..

We also compare with the service bounds computed by modeling the execution require-

ments of a sequence of stream objects using a simple best-/worst-case characterizations

commonly used in the real-time systems domain. Letemin andemax denote the minimum

and the maximum number of processor cycles required by any single stream object belong-

ing to a sequence. The minimum and the maximum number of processor cycles that might

be required by anyk consecutive stream objects within the given sequence are modeled by

k × emin andk × emax. Figure 5.5 shows that the computed service bounds (denoted by

(σl
s, σ

u
s )) using this simple modeling scheme are very pessimistic, compared to our com-

puted service bounds (denoted by(σl, σu)) using workload curves. The frequency range

resulted from this simple scheme is then computed to be (0, 1.107GHz), which is quite

pessimistic compared to the computed frequency range (0, 1.672GHz) for our scheme. It is

thus shown that our scheme using VCCs performs better than the simple modeling scheme.
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Figure 5.4: Service bounds(σl, σu) for video1 for two different system configurationsC1
andC2, whereC1 = {B2 = 4000, Bv = 7000} andC2 = {B2 = 4500, Bv = 6500}.

Video sequences belonging to different classes of streams may have very different on-

chip buffer requirements. Therefore, the service bounds for these sequences, and hence

their feasible clock frequency ranges might also be very different. This information about

how different these ranges might be for different classes of video sequences can be effi-

ciently obtained from the service boundsσ, as described in Section 5.4. In our example,

using the proposed approach we have computed the frequency ranges for two sets of video

streams. Each set has two classes of video sequences that are characterized by different

input bit stream rates, i.e. for 4 Mbps and 8 Mbps MPEG-2 streams. One set of streams

contains more motion and the other contains less motion. The computed frequency ranges

for the above two sets of video streams are shown in Figure 5.6 and Figure 5.7. In the left

of this subsection, we will discuss the results that can be concluded from Figure 5.6. The

same observations can also be obtained from Figure 5.7.

Figure 5.6 shows the dependency of the frequency range on the playout buffer size for a

4 Mbps and a 8 Mbps MPEG-2 video streams. In this figure it can be seen that the playout

buffer size has a considerable impact on the upper frequency boundfu. By increasing
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computed using a simple modeling scheme forvideo1 for system configurationC = {B2 =
12000, Bv = 16000}.

the buffer size, the maximum frequency with whichPE2 can run, also increases. This

corresponds to the intuitive understanding that the larger the playout buffer size, the more

bursty the incoming stream can be.

Figure 5.6 shows an overlap in the frequency ranges of the two classes of video streams.

This implies that for anyfeasibleplayout buffer size and a fixed size ofB2 (set to 3000

macroblocks), we can always find a clock frequency with whichPE2 can be run for video

sequences belonging to both the input classes (i.e. 4 Mbps and 8 Mbps input rates). It may

be noted here playout buffers only beyond a certain size are feasible—meaning that, for

them feasible service boundsσ exists. It may also be noted that in general such a common

clock frequency for any two input classes might not exist for a single system configura-

tion. In such cases it will be necessary to support multiple frequency ranges/values, where

the frequency level at which the processor is run depends on the class to which the input

belongs. Alternatively, the configuration of the system can be changed (for example by

increasing buffer sizes), till the frequency ranges of two input classes overlap. When this

happens, once again it would be sufficient for the processor to support a single frequency
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Figure 5.6: Dependency of frequency ranges on the playout buffer size for two different
classes of the MPEG-2 video streams with more motion: 4 Mbps (video1) and 8 Mbps
(video2). The size of bufferB2 is fixed to3000 macroblocks.

level belonging to this overlapping range. Our methodology can be used to efficiently

identify such design tradeoffs in the case of configurable platform architectures.

5.5.2 Validation of the Analytical Bounds

To validate our approach for processor frequency selection we simulated the platform ar-

chitecture using static schedules generated using the approach. Towards this, we used a

detailed simulator of the system shown in Figure 3.2. The simulator consisted of a trans-

action level model of the system architecture written in SystemC, and the models of PEs

were based on a customized version of the SimpleScalar instruction set simulator. Using

this simulation setup, we measured the maximum backlogs and recorded any buffer under-

flows that occurred as a result of running the system with a static frequency schedule for

PE2 (which was generated using our approach). Table 5.1 shows a representative set of the

simulation results.

We evaluated two frequency schedules forPE2 that are bounded by the computed fre-

quency range obtained using the proposed approach. These ranges correspond to different

system configurations and classes of the video streams. In Table 5.1 these schedules are in-
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Figure 5.7: Dependency of frequency ranges on the playout buffer size for two different
classes of the MPEG-2 video streams with less motion: 4 Mbps (video3) and 8 Mbps
(video4). The size of bufferB2 is fixed to3000 macroblocks.

dicated asrand1 andrand2, which indicate randomly generated static schedules from the

frequency bounds(fmin, fmax), as explained in Section 5.4. Two such randomly generated

schedules are illustrated in Figure 5.10 for a class of video streams.

In all the simulations we performed, the maximum backlogs measured in the buffers

never exceeded the buffer sizes. Furthermore, our simulation results also showed that play-

out buffer underflows never occurred for any of the simulated frequency schedules. It

therefore validates the proposed framework and suggest its practicality. Finally, we would

once again like to point out that obtaining equivalent results using purely simulation based

approaches is extremely time consuming and such approaches usually fail to provide any

formal performance guarantees.

5.5.3 Selection of the Analysis Interval

We also did experiments to see how the selection of the analysis interval (i.e.∆max) affects

the frequency range computed. Given a sample class of video streams, Figure 5.11 shows

the service bounds in terms of number of processor cycles for0 ≤ ∆ ≤ 5.6 sec. We then

chose∆max to be 0.7, 1.4, ..., 4.9, 5.6 seconds respectively and computed the frequency
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Figure 5.8: Dependency of frequency ranges on the internal buffer size for two different
classes of the MPEG-2 video streams with more motion: 4 Mbps (video1) and 8 Mbps
(video2). The size of bufferBv is fixed to6000 macroblocks.

ranges, as shown in Figure 5.12. It is observed that 0.7 sec is long enough for∆max such

that the frequency range computed from it can bound (here, are equal to) those computed

from any longer analysis interval than 0.7 sec.

5.6 Summary

In this chapter we presented our analytical approach that can be used for the design space

exploration of parameters or configurations of SoC platform architectures for multimedia

processing, that contain processor cores which support dynamic voltage/frequency scaling.

Specifically, our approach studied how to choose the frequency range that should be sup-

ported by each processor under the architectural and application constraints. In contrast to

simulation based approaches, which usually follow a trial-and-error approach and involve

very high simulation times, the proposed approach can provide useful insights into the de-

sign space and can aid a system designer in systematically tuning a platform architecture

for a class of applications.

Throughout this chapter we have assumed that a PE processes a single input stream.
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Figure 5.9: Dependency of frequency ranges on the internal buffer size for two different
classes of the MPEG-2 video streams with less motion: 4 Mbps (video3) and 8 Mbps
(video4). The size of bufferBv is fixed to6000 macroblocks.

However, in general a PE might process multiple input streams. For example, in the ar-

chitecture shown in Figure 3.2, assume that onPE2, in addition to the IDCT and the MC

tasks, an MP3 decoder task is also implemented. In such a case, this PE processes an audio

stream in addition to the video stream shown in the figure. Further, a task scheduler based

on some scheduling policy chooses the stream to be processed at any time instant. Given

a specification of the audio stream, our approach can be extended to identify the frequency

range to be supported by the PE in this case. In addition to the theory presented in this

chapter, this requires a modeling of the task scheduling discipline and how thetotal service

offered by the PE is divided among the two streams. Some of ideas pertaining to such a

scheme may be found in [20].
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video sequence buffer sizes schedule measured backlogs
B2 Bv B2 Bv

4000 7000 rand 1 3234 4511
video1 rand 2 3259 4601

4500 6500 rand 1 3761 4350
rand 2 3334 4568

4500 7000 rand 1 3639 4721
video2 rand 2 3518 4910

5000 6500 rand 1 3858 4912
rand 2 3685 4941

4500 6500 rand 1 3118 4542
video3 rand 2 2966 4649

5000 7000 rand 1 2781 5010
rand 2 2668 5006

4000 6000 rand 1 3764 3615
video4 rand 2 3878 3589

4500 5500 rand 1 3994 3556
rand 2 4270 3482

Table 5.1: The maximum buffer fill levels obtained by simulating a static frequency sched-
ule for PE2 that was derived using the proposed framework.video1 (video3) andvideo2

(video4) are 4 Mbps and 8 Mbps MPEG-2 video streams respectively.
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Figure 5.10: Two randomly generated schedules obtained from the service boundsσ.
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Chapter 6

System Design Case II: Generalized

Rate Analysis

In this chapter, we apply our analytical framework to specifically address a problem which

we refer to as therate analysis problem. Given a multiprocessor architecture and a mul-

timedia application that has been partitioned and mapped onto it, the problem we aim at

is to determinetight boundson the rates at which different multimedia streams can be fed

into this architecture. This is an important issue since when a stream arrives at a rate that

is higher than a certain upper bound, this may lead to buffer overflow in the architecture.

This problem is especially acute when dealing with architectures for portable devices (such

as PDAs and portable audio/video players) which have a very limited on-chip buffer mem-

ory. On the other hand, when the stream arrives at a lower rate compared to a specified

threshold, the quality of the output might suffer as well, i.e. the quality-of-service (QoS)

constraints associated with the application may be violated. The goal of our rate analysis

is precisely to compute these upper and lower bounds; this can help designing wireless

interfaces and suitable buffering and traffic shaping mechanisms for multimedia streams.

The main difficulties associated with the rate analysis problem stem from (i) the high

data-dependent variability in the execution time of multimedia tasks [79], (ii) the burstiness

of on-chip traffic arising from multimedia processing on multiprocessor architectures [87]

and (iii) the presence of on-chip buffers and different scheduling algorithms implemented

on the different architectural components. As a result, the rate analysis problem shouldnot

be restricted to computing a constant “long-term” arrival rate of a multimedia stream. It
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Figure 6.1: An MpSoC platform processing two concurrent MPEG-2 streams for a PiP
application.

should be rather concerned with computing the allowable burstiness of a stream at differ-

ent time scales. The wireless interface design and buffering mechanism mentioned above

depend on these computed bounds on the burstiness.

Another use of rate analysis arises in the context of IP-based design of media processing

architectures. Consider an architecture made up of different IP processor cores, where each

such core runs some multimedia tasks. The stream to be processed gets processed at the first

core and then, the partially processed stream, enters the next core for further processing.

Two such processor cores might communicate via a bounded buffer (see Figure 6.1). Since

designers usually treat these IP cores as black boxes, two cores may be connected if the

rate which the partially processed stream comes out of the first core “matches” the rate at

which a stream can be fed into the second processor core. Stated differently, the upper and

lower bounds on the rate associated with the second core must “enclose” the output rates

associated with the first core. We will show a concrete example in Section 6.1.

In the context of SoC platform configuration, the bounds returned by rate analysis de-

pend on architectural parameters such as the amount of on-chip memory available, clock

frequencies of different processors and bus arbitration policies. Further, these bounds also

depend on application characteristics, including how the application is partitioned and

mapped onto the architecture. If the input stream rates are dictated by the environment,

a designer has to tune the platform configuration such that these rates can be supported by

the architecture. The rate analysis framework that we present in this chapter can help a

system designer precisely to solve this problem and also identify all the tradeoffs involved.

Althoughschedulingof multimedia streams has been extensively studied by both, the
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multimedia and the real-time systems communities, the rate analysis problem has not been

addressed in sufficient detail, especially in the context of multimedia processing on multi-

processor architectures. Very restricted and simpler versions of this problem have however

been studied before in the general domain of embedded systems design (e.g. computing

maximum execution rates of concurrent processes interacting through synchronization).

We believe that our work can generalize some of these previous results on rate analy-

sis, studied in slightly different contexts. In addition, they can lead to new insights into

less-studied problems, like sensitivity of schedulability analysis on input parameters, and

eventually also inspire new techniques for solving them.

The rest of this chapter is organized as follows. In the next section we formally state

our problem and introduce the necessary mathematical tools. In Section 6.2 we present our

rate analysis approach. This is followed by our experimental results in Section 6.3. We

discuss some related work in Section 6.4 and finally summarize in Section 6.5.

6.1 Problem Formulation

In this chapter, we consider the following system-level view of an MpSoC platform, as

shown in Figure 6.1. This figure illustrates a picture-in-picture (PiP) application where two

concurrent video streams are being processed by the platform architecture. An MPEG-2

decoder application is partitioned and mapped onto three processing elementsPE1, PE2

andPE3. The VLD and IQ tasks of the decoder application have been mapped ontoPE1

and also replicated onPE3. Each of these two PEs process a different stream.PE2,

on the other hand, implements the IDCT and MC tasks and processes both the streams.

A scheduler implemented onPE2 schedules these streams, probably using different QoS

parameters for each stream. The stream corresponding to the main window in the PiP

application might be associated with a higher frame rate and resolution and will generate a

higher workload onPE2, compared to the stream associated with the secondary window.

When a user switches off the PiP mode, the stream associated with the secondary window

is switched off and all the processor cycles inPE2 are used for the main stream. In this
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platform architecture, the processing for each stream is same as that shown in Figure 3.2.

As have been discussed in previous chapters, typical design constraints that need to be

satisfied in a setup like this are (i) the playout buffers should not underflow (this would

result in the output device missing a frame to be displayed), and (ii) none of the buffers

should overflow. Note that because of factors like congestion in the network, the bitstream

arriving at the bufferB1 might be bursty in nature. However, the amount of burstiness

would also depend on the kind of processing and buffering done at the network interface. In

addition to this, the number of bits consumed by the VLD/IQ task to produce one partially

decoded macroblock at the output ofPE1 is also highly variable. Lastly, the number of

processor cycles required in this process (i.e. to generate one partially decoded macroblock)

is also variable. For many multimedia tasks, the ratio between the worst-case and the

average load on the processor can be as high as a factor of 10 [77]. As a result, the stream

of partially decoded macroblocks that get written intoB2 will be highly bursty in nature.

Given a scheduling policy (and its associated parameters) forPE2, the sizes of the

buffersB2 andBv, and the rate at whichBv is read out by the output device, we want to

compute tight bounds on the rate at which the stream objects can be allowed to arrive at

B2, such that the buffer overflow and underflow constraints are satisfied.

Recall from the above discussion that the rate at which stream objects are written out

by PE1 into B2 is highly bursty in nature. If this rate “matches” the bounds mentioned

above, then all buffer constraints will be satisfied for the system. However, if these rates do

not match, then certain parts of the architecture need to be tuned accordingly. This tuning

might include (i) changing buffer sizes, (ii) changing the scheduler inPE2, (iii) changing

the task mapping, or (iv) modifying the network interface. On the other hand, if the bounds

allowed byPE2 are much larger than those at whichPE1 outputs stream objects, then

certain buffer sizes can be reduced to save cost.

Since we are concerned with the rates of bursty streams, it is not sufficient to specify

such rates solely using the “long-term” arrival rates of stream objects. We would rather

want to accurately specify the amount of burstiness in a stream. Towards this we shall use

the concept of VCCs. Here we will show how they can be used to represent bounds on the
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Figure 6.2: Processing a single stream.

burstiness of a stream. We will also use VCCs to capture the data-dependent variability in

the execution requirements of stream objects and theserviceoffered by a processor to a

stream.

The Rate Analysis Problem:We are now ready to formally state the rate analysis problem.

Let us again consider Figure 6.2. Suppose that we are givenαl
c andαu

c , a lower bound or

guaranteed service offered by the PE (i.e.σl), the workload curvesγl andγu and the buffer

sizesb andB. The rate analysis problem consists of computing the functionsαl
x andαu

x

such that the bufferB does not underflow and neither of the buffers (i.e.b andB) overflow.

It can then be guaranteed that any stream whose arrival process is bounded byαl
x andαu

x

will satisfy the buffer underflow and overflow constraints.

Note that the VCCs always capture aclassof streams. For example, the workload

curvesγl andγu captureall possible execution traces for whichanyk consecutive stream

objects require a minimum ofγl(k) and a maximum ofγu(k) processor cycles. Hence,

the problem specification given above holds for not just one concrete stream, but a class of

streams.

When multiple streams are being processed by a PE, as shown in Figure 6.3, we are

also given a specification of the scheduler running on the PE. The problem in this case is to

compute the functionsαl
x andαu

x for each of the individual streams. Again, the computed

arrival curves are required to satisfy the buffer overflow and underflow constraints.

Lastly, in the case of architectures with multiple PEs connected in a pipelined fashion,

the problem is to propagate the results of the rate analysis from one PE to the next, starting

from the one closest to the output device (i.e.PE2 in Figure 6.1). The final result of such
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Figure 6.3: Processing multiple streams.

an analysis will then be precise bounds on the input rate at which a stream can be fed into

the platform architecture.

6.2 Rate Analysis

In this section, we first present our rate analysis framework for the case of a PE that is

closest to the output device. We will then show how to extend it to the case of other PEs in

the path of a stream.

6.2.1 The Single Stream Case

Let us again consider Figure 6.2. Using results from [63], it can be shown that the maxi-

mum backlog at the input bufferb is bounded by

sup
∆≥0

{αu
x(∆)− βl(∆)} (6.1)

whereβl can be obtained fromγu andσl as discussed in Section 3.2. For the sake of

notational simplicity, from hereon we will useb andB to denote both, the buffers and their

respective sizes.

Using this result, the constraint that the bufferb never overflows can be stated as:

αu
x(∆) ≤ βl(∆) + b, ∀∆ ≥ 0 (6.2)
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Similarly, the constraint that the playout buffer never overflows can be stated as:

αu
y(∆) ≤ αl

c(∆) + B, ∀∆ ≥ 0 (6.3)

Let the playback delay associated with the output device be equal totd, i.e. the first

stream object is read out from the plaout bufferB at timet = td. Thereafter,B is read out

at a rate specified by the consumption boundsαl
c andαu

c . The time intervalt = [0, td), is

often referred to as thebuffering time. We assume that the bounds(αl
c, α

u
c ) hold over the

time interval[td,∞) i.e. the buffering time is ignored. This is needed in order to obtain

tighter bounds.

Ineq. (6.3) guarantees that the bufferB never overflows subject to the condition that it

is empty at the timetd and starts filling up from thereon. In reality, this is of course not

true since stream objects are written intoB during the buffering time. As a result, even if

Ineq. (6.3) is satisfied, certain stream objects might be dropped. However, the maximum

number of dropped stream objects can be bounded and we shall derive this bound towards

the end of this subsection.

It can also be shown thatαu
y(∆) = (αu

x ® βl)(∆). Using this result, Ineq. (6.3) is

equivalent to

(αu
x ® βl)(∆) ≤ αl

c(∆) + B, ∀∆ ≥ 0

Using Lemma 1, this inequality can now be reformulated as:

αu
x(∆) ≤ (βl ⊗ αl

c)(∆) + B, ∀∆ ≥ 0 (6.4)

By combining the Ineqs. (6.2) and (6.4), we obtain the following upper bound onαu
x:

αu
x(∆) ≤ (βl(∆) + b) ∧ ((βl ⊗ αl

c)(∆) + B), ∀∆ ≥ 0 (6.5)

Next, we derive a lower bound onαl
x. It may be noted that this will depend on the upper

consumption boundαu
c , the service curveβl and the playback delaytd. Let us fist consider

the case where the playback delaytd = 0. In this case, the output device has to wait for a

maximum ofαl
y
−1

(k) − αu
c
−1(k) time units until thek-th stream object is written into the

playout bufferB. From this it is possible to bound the maximum time interval for which
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Figure 6.4: A graphical illustration of the playout buffer underflow constraint in terms of
αu

c , αl
y and the playback delaytd.

the output device might have to wait to read a stream object, as illustrated in Figure 6.4.

This bound is given by:

sup
k≥0
{αl

y

−1
(k)− αu

c
−1(k)}

Using this result, we have the following theorem for non-zerotd.

Theorem 1 Given the upper consumption boundαu
c , the lower output boundαl

y, and the

playback delaytd, the playout bufferB will never underflow if

sup
k≥0
{αl

y

−1
(k)− αu

c
−1(k)} ≤ td

Proof: Let C(t) denote the number of stream objects consumed by the output device and

y(t) denote the number of stream objects processed by the PE during the interval[0, t].

When the inequalitysupk≥0{αl
y
−1

(k) − αu
c
−1(k)} ≤ td holds, it follows that (see also

Figure 6.4):

C(t) ≤ αu
c (t− td) ≤ αl

y(t) ≤ y(t)

is also true. The guarantee that the playout buffer never underflows follows fromC(t) ≤
y(t). tu

From this theorem it follows that in order for the playout buffer not to underflow, the

following constraint needs to be satisfied:
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αl
y

−1
(k) ≤ αu

c
−1(k) + td, ∀k ≥ 0 (6.6)

For notational simplicity, we will useλu
c (∆) to denote the pseudo-inverse of the func-

tion αu
c
−1(k) + td. Ineq. (6.6) can then be written as:αl

y(∆) ≥ λu
c (∆), ∀∆ ≥ 0. Further,

it can be shown thatαl
y(∆) = (αl

x ⊗ βl)(∆). By combining this with the above inequality,

we obtain that(αl
x ⊗ βl)(∆) ≥ λu

c (∆). From Lemma 1 we can then obtain the following

lower bound onαl
x:

αl
x(∆) ≥ (λu

c ® βl)(∆), ∀∆ ≥ 0 (6.7)

Inequalities (6.5) and (6.7) therefore give upper and lower bounds on the rate of the

input stream.

Bounding the buffer overflow: Ineq. (6.3) guarantees that the playout buffer never over-

flows during the time interval[td,∞) subject to the condition that it is empty during[0, td].

In reality the assumption thatB is empty during[0, td] does not hold. However, it is possible

to obtain an upper bound on the number of stream objects that can arrive within this time

interval. This upper bound is the maximum number of stream objects that can overflow

from the buffer as a result of the above assumption. We know that the maximum number

of stream objects that can be processed within[0, td] is γl−1
(σl(td)), and the maximum

number of stream objects that can arrive atb within [0, td] is αu
x(td). Hence, the maximum

number of stream objects that can arrive atB during [0, td] is min{γl−1
(σl(td)), α

u
x(td)},

which is therefore equal to the maximum number of stream objects that can overflow from

B.

6.2.2 The Case of Multiple Streams

In this subsection we are concerned with the case where multiple streams are being processed

by a PE. We consider a PE processing two streams (see Figure 6.1) to illustrate our ap-

proach. The extension to more than two streams is straightforward. As in the single stream

case, we again assume that the PE of interest is the one next to the output device. Let



80

the playout and input buffers associated with each of the streams be of sizeBn and bn

respectively, withn = 1, 2. Similarly, let the workload curves and consumption bounds

associated with each of the streams be(γl
n, γ

u
n) and (αl

cn, α
u
cn) respectively. Finally, let

the service curve offered by the PE beσl. The scheduler implemented on the PE divides

the serviceσl among the two streams. Here we shall consider two scheduling disciplines—

fixed-priority and time division multiplexing, but our approach can be used to analyze other

schedulers as well. Figure 6.3 shows the problem setup that we discuss here.

6.2.2.1 Fixed-Priority Scheduling

Let the two streams being processed bes1 ands2, wheres1 is the higher priority stream.

Since it is required that the buffer constraints associated withboththe streams be satisfied,

our derivation of the bounds on the input rates ofs1 and s2 is based on the following

reasoning. We first need to ensure that sufficient service is available for the low-priority

stream for it to sustain its playout rate. The remaining service can then be offered to the

high-priority stream and any unused service can again be used by the low-priority stream.

Since at mostαu
c2(∆) stream objects froms2 can be consumed by the output device

within any time interval of length∆, to satisfy the playout buffer underflow constraint a

minimum service ofβl
2(∆) = αu

c2(∆) is required bys2. The remaining service can then be

potentially used bys1. Note that all of this service might not be used bys1 and whatever

is leftover will then be used bys2. Expressed in terms of the number of processor cycles,

these service curves are:

σl
2(∆) = γu

2 (βl
2(∆)) (service available tos2)

σl
1(∆) = σl(∆)− σl

2(∆) (service available tos1)
(6.8)

whereγu
2 is the upper workload curve that bounds the processor cycle demand ofs2. We

assume thatσl(∆)−σl
2(∆) is wide-sense increasing (see Section 6.2), otherwise it is trans-

formed into such a function.

When expressed in terms of the number of stream objects, the service curves given by

Eq. (6.8) are equal toβl
1(∆) = γu

1
−1(σl

1(∆)) andβl
2. From these service curves it is pos-

sible to derive the boundsαl
x1 andαu

x2 on the input rates of the streams, using our results
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in Section 6.2.1. It should be noted that the minimum service available tos2 may be larger

thanβl
2 (whens1 does not use all the service available to it). As a result, it might seem that

the playout bufferB2 can possibly overflow even when the arrival rate ofs2 is bounded

by αu
x2 (i.e. αu

x2 is not a correct upper bound since it underestimates the minimum service

available tos2). However, it can be shown thatB2 will not overflow even when the arrival

rate ofs2 is equal toαu
x2. To see this, letαu

y2 denote the upper bound on the output rate of

the processed stream. Sinceαu
y2 = αu

x2 ® βl
2, it follows thatαu

y2 does not increase whenβl
2

increases. Hence, Ineq. (6.3), which represents the playout buffer overflow constraint, con-

tinues to be satisfied with increasingβl
2. It is therefore safe to computeαu

x2 usingβl
2 = αu

c2.

Exactly the same reasoning also holds for computing the upper boundαu
x1 for the higher

priority streams1 (which is described below). Next, we derive the remaining two bounds

αu
x1 andαl

x2.

Bounding αu
x1: From Ineq. (6.5), we have

αu
x1(∆) ≤ ψ(∆), ∀∆ ≥ 0 (6.9)

whereψ(∆) = (βl
1(∆)+b1)∧((βl

1⊗αl
c1)(∆)+B1). Now, based on our previous assumption

that the streams1 does not use more thanβl
1(∆) amount of service, we obtain that

αu
x1(∆) ≤ βl

1(∆), ∀∆ ≥ 0

If the upper bound on the arrival rate ofs1 (i.e. αu
x1(∆)) is more thanβl

1(∆) then the stream

s2 (being the lower priority stream) might not receive enough service and its playout buffer

might underflow or its input buffer might overflow. Now, from the above two constraints,

we obtain the following bound onαu
x1(∆):

αu
x1(∆) ≤ ψ(∆) ∧ βl

1(∆), ∀∆ ≥ 0 (6.10)

However, in many cases this bound might be overly restrictive. For example, as illus-

trated in Figure 6.5, it might happen that for some∆s, ψ(∆) ≥ βl
1(∆) when∆ ≤ ∆s

and for other values of∆, ψ(∆) < βl
1(∆). Note from Figure 6.5 that it would have been
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possible to chooseψ(∆) as an upper bound onαu
x1(∆) had we not been concerned with the

service available to the lower-priority streams2. But sinces2 requires a minimum ofβl
2(∆)

amount of service within any time interval of length∆, αu
x1(∆) now needs to be bounded

by βl
1(∆) instead ofψ(∆) for any∆ ≤ ∆s.

Note that the constraints imposed by the upper boundαu
x1(∆) for small values of∆

have a greater influence on the allowable burstiness, than those imposed by larger values of

∆. As a result, the allowable burstiness ins1 might be overly restrictive ifβl
1(∆) (instead

of ψ(∆)) is an upper bound onαu
x1(∆) when∆ ≤ ∆s. For many applications, the high-

priority stream might exhibit a higher degree of burstiness. It might also be the case that a

stream is assigned a higher priority because it is more bursty. The above constraint might

be especially restrictive in such cases, and therefore we would like to relax it. Towards this

end, we choose a valuets (wherets ≤ ∆s) and replace Ineq. (6.10) with the following.

αu
x1(∆) ≤





ψ(∆) ∧ βl
1(ts), ∀ 0 ≤ ∆ ≤ ts

ψ(∆) ∧ βl
1(∆), ∀ ∆ > ts

(6.11)

The selection ofts clearly involves a tradeoff between the allowable burstiness ins1

and the service available to the lower-priority streams2 over intervals of length∆ ≤ ts. A

consequence of the reduced service available tos2 is that its input buffer mightoverflow.

We address this issue later in this section. It might seem that the playout buffer ofs2 may

alsounderflow. However, note that the service available tos2 over time intervals of length

∆ larger thants continues to be lower bounded byβl
2(∆). Hence, from our results in

Section 6.2.1, it is still possible to get a valid lower arrival boundαl
x2 for s2 such that its

playout buffer never underflows (given a sufficiently enough non-zero playback delay).

Bounding αl
x2: Clearly, the higher-priority streams1 can consume at mostαu

x1(∆) amount

of service within any time interval of length∆. Now, recall from the above discussion that

s1 will not consume more thanβl
1(∆) amount of service over any∆ > ts (follows from

Ineq. (6.11)). Hence, the service available to the lower-priority streams2 is lower bounded
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Figure 6.5: Illustration of deriving an upper bound onαu
x1.

as follows.

β̂l
2(∆) =





ζ(∆), ∀ 0 ≤ ∆ ≤ ts

βl
2(∆), ∀ ∆ > ts

whereζ(∆) = max{0, γu
2
−1(σl(∆)−γu

1 (αu
x1(∆)))}. ζ(∆) represents the minimum service

available fors2 when the arrival rate ofs1 is upper-bounded byαu
x1 (see Ineq. (6.11)).

Using β̂l
2(∆) as the service available tos2, we can now computeαl

x2 following our results

described in Section 6.2.1. When the service available tos2 is greater than̂βl
2(∆), clearly

the playout buffer underflow constraint would still be satisfied withαl
x2 as the lower bound

on the arrival ofs2. Hence, it is safe to computeαl
x2 usingβ̂l

2(∆) (in terms of respecting

the playout buffer underflow constraint).

A summary of the bounds we obtained so far on the arrival rates of the high- (s1) and

the low-priority (s2) streams is given in Table 6.1. In this table,λu
c1 andλu

c2 denote the term

λu
c in Ineq. (6.7), in the context of the streamss1 ands2 respectively.

Bounding the buffer overflow: As mentioned above, the input bufferb2 associated withs2

(see Figure 6.3) might overflow. However, we can bound the number of stream objects that

may be dropped atb2. First, we prove thatb2 might only overflow during the time interval

[0, ts].
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input arrival bounds values
αl

x1(∆) (λu
c1 ® βl

1)(∆)

αu
x1(∆)

{
ψ(∆) ∧ βl

1(ts), ∀ 0 ≤ ∆ ≤ ts

ψ(∆) ∧ βl
1(∆), ∀ ∆ > ts

αl
x2(∆) (λu

c2 ® β̂l
2)(∆)

αu
x2(∆) (βl

2(∆) + b2) ∧ ((βl
2 ⊗ αl

c2)(∆) + B2)

Table 6.1: Summary of the input arrival bounds.

Proof: Let x2(t) denote the number of stream objects that arrive atb2 during the time

interval[0, t]. Whent > ts, the maximum backlog atb2 at timet is equal tox2(t)− β̂l
2(t) ≤

αu
x2(t)−βl

2(t) ≤ b2 (follows from Ineq. (6.2)). Since the remaining service fors2 is at least

equal toβ̂l
2, it implies that the bufferb2 never overflows during the time interval[ts,∞].

Hence,b2 might only overflow during the time interval[0, ts]. tu

As discussed in Section 6.2.1 (see Eqn. (6.1)), the maximum backlog atb2 within [0, ts]

is bounded by

sup
0≤∆≤ts

{αu
x2(∆)− β̂l

2(∆)}

Hence, the maximum number of stream objects that can be dropped at the input bufferb2

(over the time interval[0,∞)) is equal tosup0≤∆≤ts{αu
x2(∆)− β̂l

2(∆)} − b2.

Similar to the single stream case, the playout buffers ofs2 and s1 might also over-

flow. Suppose that the playback delay associated withs2 is td2 and that associated with

s1 is td1. It can be shown that the maximum number of processor cycles available to the

low-priority streams2 (after processings1) within any time interval of length∆ is equal

to σu
2 (∆) = sup0≤τ≤∆{σl(τ) − γl

1(α
l
x1(τ))}. Hence, the maximum number of stream ob-

jects that may be dropped from the playout buffer associated withs2 (also over the time

interval [0,∞)) is equal tomin{γl
2
−1

(σu
2 (td2)), α

u
x2(td2)}. For the high-priority streams1,

the maximum service available to it during the time interval[0, td1] is σl(td1). Hence, the

maximum number of stream objects that can be dropped from its playout buffer is bounded

by min{γl
1
−1

(σl(td1)), α
u
x1(td1)}.

The bounds on the buffer overflow that we derived above are summarized in Table 6.2.
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buffer maximum number of dropped stream objects
b2 sup0≤∆≤ts{αu

x2(∆)− β̂l
2(∆)} − b2

B2 min{γl
2
−1

(σu
2 (td2)), α

u
x2(td2)}

B1 min{γl
1
−1

(σl(td1)), α
u
x1(td1)}

Table 6.2: Summary of the bounds on buffer overflow.

We would once again like to point out that all of these bounds correspond to the maximum

number of stream objects that may be dropped over the time interval[0,∞), i.e. these are

thetotal number of stream objects that can ever be dropped. This result is counter intuitive,

because these bounds do not depend on the length of the audio/video clip.

6.2.2.2 Time Division Multiplexing

Analyzing a time division multiplexing scheduler is similar to the technique used for the

single stream case. Ifσl(∆) is the guaranteed service offered by the PE within any time

interval of length∆, then the service offered to the two streams are:

σl
1(∆) = w1

w1+w2
· σl(∆)

σl
2(∆) = w2

w1+w2
· σl(∆)

(6.12)

wherew1 andw2 are the weights associated with the two streams by the scheduler. When

expressed in terms of number of stream objects, these bounds translate toβl
1(∆) = γu

1
−1(σl

1(∆))

andβl
2(∆) = γu

2
−1(σl

2(∆)). Bounds on the arrival rates of these two streams can then be

computed by following the exactly same procedure as that described in Section 6.2.1.

6.2.3 Multiple Processing Elements

Our view of multimedia processing on a multiprocessor System-on-Chip platform, as out-

lined in Section 6.1, consists of multiple PEs processing any stream in a pipelined fashion.

Between any two PEs a FIFO buffer stores the partially processed stream. The last PE in

the path of a stream writes out the fully processed stream into the playout buffer, which is

read out by an output device. The derivation of the bounds on the arrival rate of a stream,

that we presented so far, was only concerned with this last PE, which feeds the playout
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buffer. Recall that the computed bounds pertain to the maximum and minimum rates at

which a stream can arrive at the (input) buffer at the input to this PE. The constraints that

the computed bounds were required to follow were (i) the playout buffer should not under-

flow, and (ii) none of the buffers should overflow. Among the inputs to our rate analysis

problem were bounds on the consumption rate by the output device from the playout buffer,

specified as upper and lower arrival curves (the consumption bounds(αl
c, α

u
c )).

Let us now consider the PE (e.g.PE1 in Figure 6.1) adjacent to this last PE in the path

of the stream. To compute the bounds on the arrival rate of a stream at this PE, the input

bounds computed for the downstream PE (i.e.PE2 in Figure 6.1) serve as output bounds

for this PE (i.e. the processed stream coming out of this PE must satisfy these bounds). The

only buffer constraint that needs to be satisfied in this case is that the buffer at the input of

this PE (B1 in Figure 6.1) should not overflow. Deriving the input bounds on the arrival

is therefore much more simpler than the case we considered above. This is because, only

the following two constraints need to be satisfied: (i) Ineq. (6.2), and (ii) the bounds on

the processed stream must be constrained by the input bounds computed for the adjacent

downstream PE.

This process of computing the bounds on the arrival rate of stream is cascaded to all

the upstream PEs, until the first PE in the path of a stream is encountered. The input

bounds computed for this PE therefore serve as bounds on the arrival rate of a stream to be

processed by the platform architecture.

6.3 Experimental Evaluation

We validated our analytical approach using a number of detailed simulations. Towards

this end, we implemented a transaction-level model of the platform architecture shown in

Figure 6.1 using SystemC [84]. The on-chip PEs were modeled using the SimpleScalar

instruction set simulator [7], in which we used thesim-profileconfiguration and the PISA

instruction set.

We modeled each video stream at the macroblock granularity. For any given video clip,
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we first simulated its execution (decoding) using SimpleScalar and obtained execution time

traces of the VLD, IQ, IDCT and MC tasks. These traces record the execution requirement

(in processor cycles) of each macroblock belonging to the video clip, for each of the above

tasks. Based on these traces and the constant bitrate at which the video clip (which is a

compressed bitstream) is fed intoPE1 or PE3 (in Figure 6.1), it is possible to determine

the arrival pattern of the stream at the input ofPE2 (i.e. at the bufferB2) and also at the

playout buffer (i.e. bufferBv). For this we used the SystemC-based transaction-level model

of the architecture, which was also used to model the scheduling policy onPE2 when

multiple streams (two in this case) are processed by the architecture. From the SystemC

simulation, we measured the fill levels of the different buffers for any given video clip(s).

To validate our approach, we first compute bounds on the arrival rate of a stream at the

input ofPE2 (e.g. at the bufferB2). We then show using simulation that video clips which

respect these bounds satisfy the buffer overflow and underflow constraints. At the same

time, clips which do not respect the computed bounds, either result in buffer overflow or

underflow, thereby showing that the computed bounds are not overly pessimistic. Note that

these bounds are non-trivial, in the sense that they precisely capture the allowed burstiness

in a stream. Obtaining them using purely simulation-based techniques is certainly not

possible, due to the exhaustive simulation time involved. As discussed in the beginning

of this chapter, these bounds can provide useful insights helpful for tuning the platform

architecture (e.g. determining the optimal clock frequency ofPE1 and also designing the

input network interface).

Recall that one of the inputs to our analytical framework, is the workload curveγ(k)

specifying lower and upper bounds on the number of processor cycles required by anyk

consecutive stream objects. Clearly, for the bounds on the arrival rate of a stream–that are

computed by our approach–to be useful, they should hold good for aclassof streams or

video clips, not for just a single video clip. As an example, aclassmight be all video clips

having the same bitrate and frame resolution. Therefore, the workload curveγ(k) that we

use as an input, should also specify the workload demand of the class of video clips we are

interested in.
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For our PiP application (see Section 6.1) that we used in our experiments, we chose

two classes of video clips–those that have high motion content and second being made up

of still images. The former class of clips are to be displayed in the main window of the

PiP application; they are representative of usual video clips like movies. The latter class

is representative of text messages or similar information about the main window being

displayed in the secondary window of the PiP application. In what follows, for ease of

exposition, we drop the termclasswhen we talk about bounds on arrival rates; these bounds

are always expected to hold for a class of streams and not just a single stream.

To obtain the workload curves corresponding to the above two classes, we simulated

the execution of a set of MPEG-2 video clips using SimpleScalar, as mentioned above. We

then analyzed the resulting execution time traces for the IDCT and MC tasks (which are

mapped ontoPE2) and derived the boundsγl andγu (see Section 6.1). This procedure

follows a recently developed technique described in [62]; we refer the interested reader to

this paper for further details. The video clips for both these classes were encoded using a

constant bitrate of8 Mbps; they had a frame resolution of704× 576 pixels and a playback

rate of25 frames per second. Typically, the video clips displayed in the secondary window

of a PiP application would have a lower resolution and bitrate than those displayed in the

main window. However, for simplicity reasons, we decided to distinguish between the two

classes only on the basis of their content (i.e. motion versus still videos).

For reporting our experimental results, we denote the computed arrival rates of a stream

at the input ofPE2 using (αl
x, α

u
x). To validate these bounds, we compare them with

similar bounds obtained from simulation–we denote these bounds using(αl
m, αu

m) (where

the subscriptm denotes “measured”). Towards this end, we first record the trace of arrival

times of partially decoded macroblocks at the input ofPE2 and then analyze these traces

to obtain the bounds(αl
m, αu

m) (exactly as the workload curvesγl andγu were derived). To

measure the fill levels of buffers, ifBs is the specified buffer size andBd is the computed

upper bound on the number of stream objects that might be dropped (see e.g. Table 6.2)

thenBs+Bd is an upper bound on the maximum buffer fill level, which we want to validate

using simulations. Similarly, the fill level of a playout buffer should always be greater than
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class scenario input buffer size playout buffer size video violation
(mb.) (mb.) clip ?

1 4000 5600 A no
motion 2 4000 5600 B yes

3 3500 8000 C no
4 5000 3000 D yes

still 5 4000 5600 E no
6 3000 3000 F no

Table 6.3: Scenarios for the single stream case.

sched. scenario input buffer size playout buffer size video violation
policy (mb.) (mb.) clip ?
FPS FPS1 4000 5600 A no

FPS2 3000 3000 F no
TDM TDM1 4000 5600 A no

TDM2 3000 3000 F no

Table 6.4: Scenarios for the multiple streams case.

0 in order to satisfy the underflow constraint.

For our experiments, we used a selection ofscenariosshown in Tables 6.3 and 6.4.

Each scenario is specified by a class (of video clips), the input and playout buffer sizes

and a video clip belonging to the class. The bounds on the arrival rates are computed from

the class information and the buffer sizes. These are compared with the simulation results

based on the buffer sizes and a concrete clip belonging to the class. For all the experiments,

we runPE2 at a constant frequency. Hence, the service offered by it can be represented as

σl(∆) = c ·∆, wherec is the frequency.

6.3.1 The Single Stream Case

In this case, the PiP mode is switched off. For clarity of presentation, instead of plotting

the functionsαl
x, αu

x, etc. directly, we plot the differencesαu
x − αl

x, αu
m − αl

x andαl
m − αl

x.

Clearly, the arrival process of a video clip, which is captured in(αl
m, αu

m), violates the

analytically computed bounds(αl
x, α

u
x) wheneverαu

m − αl
x or αl

m − αl
x crossesαu

x − αl
x or
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goes below0.

These plots are shown in Figure 6.6, 6.7 and 6.8 for three different scenarios. The

same figures also show the fill levels of the input and the playout buffers i.e.B2 andBv in

Figure 6.1. Note that for Scenario 1, the measured arrival patterns satisfy the analytically

computed bounds (subfigure (a)). For this scenario, the measured fill levels of the input

buffer (subfigure (b)) and the playout buffer (subfigure (c)) are less than the computed upper

bounds. Also note that beyond the playback delay, the playout buffer does not underflow.

In Scenario 2, the measured upper arrival curveαu
m violates the computed upper bound

αu
x. In this case, the measured buffer fill levels are greater than the sum of the specified

buffer sizes and the upper bounds on the number of macroblocks that might be dropped.

This is indicated asbuffer overflowin Figure 6.7.

Finally, in Scenario 4, the measured lower arrival curveαl
m violates the computed lower

boundαl
x. In this case, the simulation results show that the playout buffer underflows. Note

that for all the scenarios, the input buffer sometimes underflows. However, this does not

affect the performance of the system and we also do not specify it as a constraint.

Figure 6.9 shows the computed bounds on the buffer fill levels and the measured fill

levels obtained using simulation, for all the six scenarios. From Table 6.3, note that apart

from Scenarios 2 and 4, the measured arrival bounds always satisfy the computed bounds.

Figure 6.9 confirms that it is only for these two scenarios that buffers either overflow or

underflow, thereby validating our proposed approach.

We also compare with the bounds on the arrival rate computed using a simple best-

/worst-case characterizations commonly used in the real-time systems domain. Letemin

andemax denote the minimum and the maximum number of processor cycles required by

any single stream object belonging to a sequence. The minimum and the maximum number

of processor cycles that might be required by anyk consecutive stream objects within the

given sequence are modeled byk×emin andk×emax. Figure 6.11 shows that the computed

bounds (denoted by(Sαl
x
, Sαu

x
)) using this simple modeling scheme are very pessimistic,

compared to our computed bounds (denoted by(αl
x, α

u
x)) using workload curves. Our

scheme allows the bursts on the arrival rate to be as great as(αl
x, α

u
x), while following
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the simple scheme the bursts can only be as great as(Sαl
x
, Sαu

x
). It is thus shown that our

scheme using VCCs provides better bounds on the arrival rate.

6.3.2 The Case of Multiple Streams

As mentioned above, in this case the main window of the PiP application displays a regular

video clip and the secondary window displays a still video (e.g. text information, program

menu, etc.). We have experimented with two different scheduling policies onPE2–fixed-

priority and time division multiplexing. In Table 6.4, for the fixed-priority scheduler (i.e.

FPS), the first class of streams is denoted as FPS1; this is the class of regular video clips.

From this class, video clipA was used for the simulation. FPS2 denotes the class of still

video clips, from which clipF was used for simulations. For each of the two streams being

processed byPE2, the corresponding buffer sizes are also specified in this table. The class

FPS1 was assigned higher priority.

For the time division multiplexing scheduler (i.e. TDM), again TDM1 denotes the

class of regular video clips and TDM2 denotes the class of still video clips. We associated

weights0.6 and0.4 with the classes TDM1 and TDM2 respectively.

The results obtained for both these schedulers are summarized in Figure 6.10. From

this figure, note that all the buffer overflow and underflow constraints are satisfied.

Our approach can also aid in selecting the TDM weights associated with the two streams

being processed byPE2. For the two classes of streams TDM1 and TDM2, Figure 6.12

shows the plot ofαu
x − αl

x for different values of TDM weights. In this figure,w1/w2

denotes the weightsw1 andw2 associated with the streams TDM1 and TDM2 respectively.

From Figure 6.12(a), note that the allowed burstiness in the stream TDM1 increases as the

value ofw1 is increased (w1 + w2 = 1). Similarly, Figure 6.12(b) plots how the allowed

burstiness in TDM2 increases asw2 is increased. Note that as the service provided to a

stream increases beyond a certain point, the allowed burstiness does not increase any more.

For the stream TDM1, this happens when the ratiow1/w2 increases beyond0.62/0.38.

Similarly, for TDM2 this happens whenw1/w2 is less than0.50/0.50.



92

6.4 Related Work

The rate analysis problem has been studied before in the embedded systems domain, albeit

in a different context. Broadly speaking, the setup considered before [59, 29] consists

of a collection of concurrently executing embedded systems components/processes that

interact through synchronization messages. The problem is to compute bounds on the

execution rates of these processes, given certain resource constraints. Alternatively, given

a number of rate constraints, the problem is to efficiently check if these constraints are

consistent. Often, it is required to check these constraints in an interactive fashion and

hence the emphasis in such cases has been on appropriate tool support.

In this chapter we were concerned with the rate analysis problem in the context of

processing multiple concurrent multimedia streams. Rather than computing bounds on the

execution rates of a process [59, 29], our aim has been to compute the allowable bursts in

a multimedia stream over different time scales. Such bursts are specified asarrival curves

which bound the minimum and maximum number of data items or events that can arrive

at the system within any specified time interval length. We believe that our results can be

combined with the previous work [59, 29] to model and analyze reactive systems consisting

of a number of interacting processes that are triggered by bursty event streams. More

specifically, the previous work [59] is only concerned with a periodic model, where the

different interacting processes execute in a periodic fashion. As a first step, this restriction

can be removed using our event model which allows the specification of arbitrary, but

bounded bursts.

Within the real-time systems area, there has been a growing interest in the problem of

computing theparameter spacefor which a system becomes schedulable. A recent paper

[36] addressed the problem of computing the end-to-end feasibility regions of distributed

aperiodic task systems under fixed-priority scheduling. The goal here was to compute

the multidimensional space–with each dimension as the utilization of a resource–within

which the system meets certain end-to-end deadlines. Similarly, it was addressed in [12]

the problem of identifying task activation rates for fixed-priority scheduled systems that
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meet certain deadline constraints. The work that we presented here is in the same general

direction as that of the above-mentioned two papers.

Our work has been inspired by a recent paper [61] which studied the rate analysis

problem for multimedia streams. However, in contrast to our work, this paper computes the

bounds on the arrival pattern of an input stream using two functionsxmin(t) andxmax(t).

Any arrival patternx(t), which is bounded by these two functions, i.e.xmin(t) ≤ x(t) ≤
xmax(t), is guaranteed to satisfy all buffer overflow and underflow constraints (exactly as

we specify here). The functionx(t) denotes the number of stream objects that can arrive

at the system during the time interval[0, t]. The use of such a concrete arrival trace–rather

than bounds on the burstiness, as we do here–considerably simplifies the formulation of the

buffer underflow and overflow constraints. The downside of such a formulation is that the

resulting bounds (xmin andxmax) are considerably more pessimistic than the bounds we

have derived.

To see this, we have used Scenario 1 in Table 6.3 to analytically compute the bounds

xmin andxmax based on the framework presented by Maxiaguine et al. [61]. These bounds

are compared with the boundsαl
x andαu

x (that we obtained in this chapter) in Figure 6.13.

Note that all these bounds analyze the arrival rate over the time interval[td,∞) in order to

achieve a fair comparison. It follows from our approach that for anyt, the value ofx(t) can

be as small asαl
x(t). On the other hand,x(t) can only be as small asxmin(t) if the bounds

derived by Maxiaguine et al. [61] are to be used. The reason behind the boundsxmin and

xmax being pessimistic is that these bounds donotcapture the burstiness in a stream. Given

a concrete arrival patternx(t), which is bounded byxmin andxmax, let αl
x andαu

x denote

the arrival curves which boundx(t). It is very likely thatαl
x(t) will be smaller thanxmin(t),

especially for small values oft. Similarly,αu
x(t) is likely to be greater thanxmax(t).

Apart from the fact that the formulation of the buffer overflow and underflow constraints

are more difficult in the case we consider in this paper, we also exploit the variability in the

execution requirements of a stream (captured using the workload curves). This variability

is not exploited by Maxiaguine et al. [61]. However, the bounds shown in Figure 6.13

do not make use of the workload curves when derivingαl
x andαu

x. These bounds were
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computed with the service curveβl(∆) set toC(∆) (the constant consumption rate of the

stream from the playout buffer). The boundsxmin andxmax were also computed with the

sameβl(∆). This was done to achieve a fair comparison between the two schemes.

6.5 Summary

In this chapter we applied our proposed analytical framework and presented an approach

for rate analysis of multimedia applications running on MpSoC platform architectures. In

contrast to the recent paper by Maxiaguine et al. [61]–which inspired our work–the bounds

on the arrival rate of a stream, that we derive, precisely capture the allowed burstiness.

This is especially important in the context of (i) multimedia applications, since they exhibit

a high degree of variability in their execution requirements [87], and (ii) such applications

running on heterogeneous multiprocessor architectures, implementing different scheduling

and arbitration policies [74, 76, 75].

Note that the approach we presented so far is purely functional in nature, i.e. it can

not model the processing of streams where the arrival process or the service depends on

the state of the system. For example, a PE might implement a protocol or a scheduler

which adjusts the service provided based on the fill level of the buffer. An interesting

research direction would be to extend the proposed approach to model and analyze such

architectures.

On the other hand, as mentioned in Section 6.4, it would also be worthwhile to explore

possible combinations of the work by Mathur and Dasdan et al. [59, 29] with our approach.

More specifically, our application model can be extended to allow for arbitrary task graphs

along with deadline constraints, in addition to the buffer constraints that we addressed here.
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Figure 6.6: Scenario 1: (a) Computed and measured bounds on the arrival rate, (b) Mea-
sured input buffer fill level, (c) Measured playout buffer fill level.
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Figure 6.7: Scenario 2: (a) Computed and measured bounds on the arrival rate, (b) Mea-
sured input buffer fill level, (c) Measured playout buffer fill level.
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Figure 6.8: Scenario 4: (a) Computed and measured bounds on the arrival rate, (b) Mea-
sured input buffer fill level, (c) Measured playout buffer fill level.
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Figure 6.9: Buffer fill levels in the single
stream case: (a) Computed versus measured
maximum fill level of the input buffer, (b)
Computed versus measured maximum fill
level of the playout buffer, (c) Measured
minimum playout buffer fill level.
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Figure 6.10: Buffer fill levels in the multi-
ple streams case: (a) Computed versus mea-
sured maximum fill level of the input buffer,
(b) Computed versus measured maximum
fill level of the playout buffer, (c) Measured
minimum playout buffer fill level.
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Chapter 7

Approximate VCCs: A New

Characterization of Multimedia

Workloads

To design a SoC platform architecture for a specific multimedia application, a common

practice is to use a set of representative audio/video clips that would be processed by the

application. The workload generated by such a representative set is then used to determine

parameters such as on-chip buffer sizes, clock speeds of the different processors, bus widths

and cache configurations. In the previous chapters, we have used the concept of VCCs to

characterize the workload imposed by the multimedia application and developed analytical

approaches for designing SoC platform architectures based on such characterization. We

have known that VCCs capture the best/worst-case behaviours of multimedia processing.

The designs based on VCCs (as have presented in Chapters 5 and 6) give worst-case so-

lutions that guarantee the architectural and application constraints are satisfied in any case

(even when the worst-case behaviours happen). In this chapter, we address the issue of

characterizing the average-case behaviours of multimedia processing, which may improve

or compensate the worst-case characterization schemes. At the same time, we conduct a

preliminary study of applying this new scheme in the design process, where numbers on

performance degradation can be bounded.

Multimedia workloads are known to exhibit a high variation in their resource demands.

For example, the ratio of the worst-case and the average load on a processor running a
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Figure 7.1: Processor cycle requirements of a sequence of macroblocks for an MPEG-2
decoder application.

multimedia task can easily be as high as a factor of 10 [77]. On the other hand, multimedia

applications typically have soft real-time constraints. This allows certain tasks to miss their

deadlines or a few data items to be occasionally dropped from a buffer, without significantly

deteriorating the output quality. A consequence of the above two characteristics is that a

worst-case analysis of multimedia workloads often lead to overly pessimistic results. At

the same time, a straightforward average-case analysis does not suffice because of the high

variability in the workload. Hence, appropriately characterizing multimedia workloads for

system-level design is a tricky problem. Figure 7.1 shows the processor cycle requirements

of a sequence of macroblocks for an MPEG-2 decoder application. The large variation in

the processor cycle requirements for the different macroblocks is clearly noticeable.

To address the above problem, in this chapter we propose a new characterization of

multimedia workloads, calledapproximate variability characterization curves(approxi-

mate VCCs) orε-VCCs, that can be used to characterize the “average-case” behavior of a

workload in a parameterized fashion. Towards this, we take into account thefrequencywith

which the worst-case occurs and discard worst-case scenarios that do not occur frequently

enough. Therefore, what we refer to as “average-case” (for the sake of simplicity), actu-

ally denotes the worst-case that occurs often enough. We quantify “often enough” using a
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parameter that is specified by the designer. By ignoring worst-case scenarios that do not

occur very frequently, significant amounts of resource savings are usually possible, with

negligible loss in the output audio/video quality. Our proposed characterization can also be

used to quickly identify the tradeoffs between the output quality and the potential resource

savings. Using purely simulation-oriented techniques to determine such tradeoffs is not

only expensive in terms of the simulation time involved, but is often also impractical.

As we have discussed, VCCs characterizebest-andworst-casescenarios without con-

sidering the frequency with which such scenarios occur. Simulating the execution of an

MPEG-2 decoder with a randomly chosen video clip shows that the worst-case proces-

sor cycle demand to decode a macroblock occurs in about0.02% of the total number of

macroblocks processed. For the execution trace in Figure 7.1, the histogram of the proces-

sor cycle demand per macroblock is shown in Figure 7.2. From this figure, it may be

noted that the cycle demands of about90% of all the macroblocks are less than half of the

maximum/worst-case cycle demand of a macroblock. VCCs, as proposed in [63], would

record this maximum value without taking into account the frequency of its occurrence.

An approximate VCC orε-VCC ignores at mostε percentage of the data from the right-

hand side of the histogram in Figure 7.2. The remaining data is then used to compute the
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worst-case scenario. As a result, all worst-case scenarios, whose cumulative frequency of

occurrence is less thanε percent are ignored. Given a trace such as the one shown in Fig-

ure 7.1, we show how to bound the error corresponding to different values ofε, for typical

system-level design problems. An example of this is to bound the maximum number of data

items that may be dropped from a buffer, when the buffer sizing is done based onε-VCCs.

It may be noted that when buffer sizing is based on VCCs, it can be guaranteed that no data

items will be dropped [63], albeit at the cost of much larger buffer sizes compared to when

ε-VCCs are used. Since worst-case scenarios occur very infrequently (as discussed above),

significant savingsare achieved by usingε-VCCs, at the cost ofnegligible lossin output

audio/video quality.

Related work: The concept of VCCs has its foundations in the theory ofnetwork calculus

[16, 28]. Whereas the originally proposed network calculus may be seen as a deterministic

queuing theory for analyzing communication networks, recently a number of extensions

to this theory have been developed [14, 27]. These extensions are concerned with provid-

ing statistical service guarantees rather than deterministic guarantees, which often lead to

resource over-provisioning. Along similar lines, Ayyorgun and Cruz [8, 9] have recently

proposed a service model which allows a certain portion of network packets to be dropped

based on a loss parameter. In contrast to the work presented in this chapter, they, however,

concentrate on a multiplexing problem and study the necessary capacity of a multiplexer

to provide deterministic service guarantees to each flow passing through it. As we already

mentioned, all the above efforts focus only on the domain of communication networks, and

the results obtained can not be applied to our problem setup (multimedia processing on

MpSoC platforms) in any straightforward manner.

Within the embedded systems domain, the concept ofStochastic Automatic Networks

(SANs) [66] has been proposed for average-case performance analysis of platform archi-

tectures. Whereas this is an automata-theoretic formalism, the workload characterization

that we present here is purely “functional”, where the “state” of the system is not modelled.

The focus is primarily on modelling the variability in the arrival process and the execution
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demand of multimedia streams, rather than thestateof the system processing these streams.

We believe that there is a potential for integrating our work with the SAN formalism.

Organization of the chapter: To understand howε-VCCs are defined, in Section 7.1 we

formulate the concept of VCCs. This is followed by our definition ofε-VCCs in Section

7.2. In Section 7.3 we present an analytical method for bounding the error incurred while

designing a system based onε-VCCs. Experimental results which validate our method are

presented in Section 7.4.

7.1 Formulation of VCCs

As we have described in Chapter 3, VCCs are used to quantify best-case and worst-case

characteristics ofsequences. Here we formulate the definition of VCCs. A VCCV is

defined as a tuple (V l(k), Vu(k)), wherek represents the length of the sequence. Let the

functionP be a measure of some property over a sequence. IfP (n) denotes the measure

of this property for the firstn items of the sequence, thenV l(k) andVu(k) for all k ≥ 0 are

defined as follows.

V l(k) = infi≥0{P (i + k)− P (i)}
Vu(k) = supi≥0{P (i + k)− P (i)}

(7.1)

V l(k) andVu(k) therefore provide lower and upper bounds on the measureP , for all

subsequences of lengthk, within a larger sequence. Let us now consider a few concrete

examples of VCCs that will be used in this chapter and see how they are formulated.

Workload Curve γ = (γl, γu): The VCCγ is used to characterize the variability in the

number of processor cycles required to process a sequence of stream objects by a PE. In this

case, given a sequence of stream objects,P (n) denotes the total number of processor cycles

required to process the firstn stream objects (here specifically we denote it asW(n)). Then

γl(k) andγu(k) are defined by

γl(k) = infi≥0{W(i + k)−W(i)}
γu(k) = supi≥0{W(i + k)−W(i)}

(7.2)
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Henceγl(k) andγu(k) denote the minimum and the maximum number of processor cycles

that might be required byanyk consecutive stream objects within the given sequence.

Pseudo-inverse of Arrival Curve ξ = (ξl, ξu): For notational simplicity, henceforth we

will denote the pseudo-inverse ofα (i.e. α−1) asξ. This VCC is used to characterize the

burstiness in the arrival pattern of stream objects. Given a trace of the arrival times of a

sequence of stream objects (e.g. the partially processed macroblocks being written into the

bufferB2 in Figure 3.2),P (n) denotes the total time length during which the firstn stream

objects arrive (here specifically we denote it asT (n)). Thenξl(k) andξu(k) are defined by

ξl(k) = infi≥0{T (i + k)− T (i)}
ξu(k) = supi≥0{T (i + k)− T (i)}

(7.3)

Hence,ξl(k) andξu(k) denote the minimum and the maximum time length for the arrival

of anyk consecutive stream objects.

7.2 Approximate VCCs

VCCs have been used to analyze and tune platform architectures for multimedia processing

(see Chapters 5, 6 and reference [63]). However, in the above formulation, the best- and

worst-case characterization using VCCs do not take into account the frequency with which

the best- or the worst-case occurs. Approximate VCCs generalize the concept of VCCs and

take into account the frequency with which the best-/worst-case occurs.

Recall our definition of VCCs, as given by Eqn. (7.1). Now, for any givenk, let a

setS be defined as follows:S = {P (i + k) − P (i) | i ≥ 0}. Instead of computing

the minimum and maximum value in the multisetS, to computeε-VCCs, we first remove

certain extreme observations fromS and then compute the minimum and the maximum

value from the remaining elements.

Let Sl
ε denote the set resulting from removing the smallestε percent of items from

the setS. Similarly, Su
ε denotes the set resulting from removing the largestε percent of

items fromS. An ε-VCC Vε can now be defined as follows:V l
ε(k) = infi≥0{Sl

ε} and

Vu
ε (k) = supi≥0{Su

ε }.
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Figure 7.3: Approximate workload curves.

The above definition ofε-VCC implies thatε percent of items inS are less thanV l
ε and

ε percent of items inS are larger thanVu
ε . Since the setS can contain a potentially large

number of elements, a computationally efficient algorithm is necessary to computeV l
ε and

Vu
ε . We adopt a histogram-based algorithm [89] which is simple and efficient. Although the

results obtained are not as accurate as percentile-based methods [24], they are sufficiently

precise for the problem setups that we are interested in.

The histogram-based algorithm works as follows. LetDmin andDmax be the minimum

and the maximum values of the elements inS. Suppose that the range[Dmin, Dmax] is split

into n equal-sized bins with the bin boundaries beingc0, c1, · · · , cn. First, we construct a

histogram for all the elements inS. We then computeri (for all 1 ≤ i ≤ n), which is the

ratio of the number of elements in thei-th bin (ci−1, ci] to the total number of elements in

S. Clearly, the sum
∑i

j=1 rj represents the fraction of items which are not larger thanci.

We then define a functionF , whereF (ci) =
∑i

j=1 rj for 0 ≤ i ≤ n (note thatF is defined

only for these values). Finally,V l
ε andVu

ε are defined as follows.

V l
ε(k) = max0≤i≤n{ci | F (ci) ≤ ε

100
}

Vu
ε (k) = min0≤i≤n{ci | F (ci) ≥ 1− ε

100
}

(7.4)

It follows from the above definition that VCCs are a special case ofε-VCCs, with ε
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set to zero. Figure 7.3 shows an approximate workload curve (for the VLD/IQ task in

Figure 3.2) withε = 10. The same figure also shows the corresponding workload curve

(i.e. the case whereε is set to0). It can clearly be seen that the approximate workload

curves represent more conservative bounds on the execution requirements of sequences of

stream objects, compared to the lower and upper bounds obtained from the (exact) work-

load curves.

7.3 Error Analysis

In a typical system design process, a designer would analyze a set of representative au-

dio/video clips to obtain differentε-VCCs. Theseε-VCCs would represent the workload

that the system will be required to support. In the context of platform-based design, these

ε-VCCs would determine different platform configuration parameters such as sizes of on-

chip buffers, bus widths and clock frequencies of the different on-chip processors. Sinceε-

VCCs represent more conservative bounds and ignore infrequent best- and worst-cases, the

resulting systems can also be more conservatively designed (and hence would be less ex-

pensive), albeit at the cost of small errors. For example, the minimum on-chip buffer sizes

determined usingε-VCCs would be smaller compared to those determined using VCCs.

The difference in size would depend on the value ofε chosen. However, the savings would

come at the cost of occasionally some stream objects being dropped from the buffer. In

this section we present an analytical method that can be used to bound the error incurred

for anyε. We present this method in the context of two system design problems: optimal

on-chip buffer sizing and processor frequency selection. By illustration, we still choose the

target platform architecture to be that shown in Figure 3.2.

7.3.1 On-Chip Buffer Sizing

Consider a PE (such asPE2 in Figure 3.2) processing a stream whose arrival process is

bounded by the arrival curveα. Letβ be the service curve offered by the PE. It can then be



109

shown that the minimum size of the buffer (or the maximum backlog) at the input of this

PE (i.e.B2 in this case), denoted bybmax, is equal to

bmax = sup
∆≥0

{αu(∆)− βl(∆)}

To see howβl is obtained, let us assume that the PE runs at a clock frequency off

clock cycles/second. Given a trace of processor cycle requirements per stream object (such

as the one shown in Figure 7.1) it is possible to compute the workload curveγu. It is then

easy to see thatγu−1(f ·∆) is the minimum number of stream objects that are guaranteed

to be processed within any time interval of length∆. Hence, we setβl(∆) to be equal to

γu−1(f ·∆).

For the buffer sizing to be done usingε-VCCs, we proceed as follows. Instead of

using the arrival curveα directly, we use its pseudo-inverseξ. From a representative trace

of arrival times of a sequence of stream objects, we computeξl
ε(k). From the trace of

execution time requirements of the stream objects we computeβl, as described above. The

estimated maximum backlog is then given by:

bε = sup
k≥0
{k − βl(ξl

ε(k))}

It may be shown from the proof below that

sup
k≥0
{k − βl(ξl

ε(k))} = sup
∆≥0

{αu
ε′(∆)− βl(∆)}

where the right hand side is similar in form to the computation ofbmax shown above. Here,

αu
ε′(∆) is obtained by invertingξl

ε(k). It may be noted that by invertingξl
ε(k) we obtain an

approximate arrival curve whoseapproximation ratioε′ is different from the approximation

ratio ε of ξl
ε(k).

Proof: Firstly we haveαu
ε′(ξ

l
ε(k)) = k, sinceαu

ε′(∆) is the pseudo-inverse ofξl
ε(k). Let

∆ = ξl
ε(k), then we haveαu

ε′(∆) = αu
ε′(ξ

l
ε(k)) = k andβl(∆) = βl(ξl

ε(k)), for all ∆ ≥ 0

andk ≥ 0. By combining the above two equations, it is easy to see thatsup∆≥0{αu
ε′(∆)−

βl(∆)} = supk≥0{k − βl(ξl
ε(k))}. tu

Clearly, if the buffer size is set tobε then stream objects might occasionally be dropped.

Given a trace of arrival times of stream objects at the buffer, we can bound the maximum
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number of stream objects that might be dropped. We assume thatβl, which was obtained

from a set of representative multimedia streams, also holds for this trace (i.e.βl(∆) is the

minimum number of stream objects that are guaranteed to be processed within any time

interval of length∆, for this stream as well).

Let T (i) denote the arrival time of thei-th stream object at the buffer. Letξ(i, k) =

T (i)− T (i− k) denote the length of the time interval during which the previousk consec-

utive stream objects adjacent to thei-th stream object arrive (0 ≤ k ≤ i). Thenβl(ξ(i, k))

represents the minimum number of stream objects that the PE can process during this time

interval. We can have the following theorem.

Theorem 2 The maximum backlog when thei-th stream object arrives at the buffer is equal

to

sup
0≤k≤i

{k − βl(ξ(i, k))}

Proof: Let x(t) denote the number of stream objects that have arrived at the buffer within

[0, t], andy(t) denote the number of stream objects that have been processed within[0, t].

From [16], the backlog at timet is

x(t)− y(t) ≤ x(t)− inf
0≤s≤t

{x(t− s) + βl(s)}

Thus

x(t)− y(t) ≤ sup
0≤s≤t

{x(t)− x(t− s)− βl(s)}

Let i = x(t) andk = x(t)− x(t− s), then we havet = T (i) ands = T (i)− T (i− k) =

ξ(i, k). It follows that when thei-th stream object arrives at the buffer, the backlog is

x(T (i))− y(T (i)) ≤ sup
0≤k≤i

{k − βl(ξ(i, k))}

It is equivalent to saying that the maximum backlog when thei-th stream object arrives at

the buffer is equal tosup0≤k≤i{k − βl(ξ(i, k)). tu

Hence, thei-th stream object might be dropped if

sup
0≤k≤i

{k − βl(ξ(i, k))} > bε



111

In the above inequality, the value ofβl(ξ(i, k)) is estimated to beγu−1(f · ξ(i, k)). This

assumes that theβl(ξ(i, k)) consecutive stream objects processed within the time interval of

lengthξ(i, k) require the maximum possible number of processor cycles. If we instead use

the approximate upper workload curveγu
ε , then the above inequality may be reformulated

as:

sup
0≤k≤i

{k − βl
ε′(ξ(i, k))} > bε

However, unlike the previous case, in this case we can not provide deterministic guarantees

on the maximum number of dropped stream objects.

7.3.2 Processor Frequency Selection

In addition to on-chip buffer size configuration, we illustrate our analytical method with the

case of processor frequency configuration in this subsection. Let us consider the platform

architecture shown in Figure 3.2. The fully processed stream objects are finally written out

into the playout bufferBv. This buffer is read by the real-time video output device at a pre-

specified rate. One of the design constraints while configuring this platform architecture is

to ensure thatBv never underflows. Clearly, the clock frequency of an on-chip PE should

at least be equal to sustain the rate at which stream objects are being consumed by the

output device. However, because of the variability in the execution time requirements

of stream objects, computing this minimum clock frequency is not trivial. The problem

becomes more complicated because of the buffering at the playout buffer. The problem of

computing this frequency has become especially interesting with the advent of processor

soft cores, which allow a high degree of customization. This problem has been addressed

in Chapter 5 using VCCs as a means of workload characterization.

Clearly, usingε-VCCs, the computed frequency will be substantially lower compared

to that obtained using VCCs. For the sake of simplicity, here we have only considered the

problem of computing the minimum constant frequency at which the PE needs to be run.

However, the method presented in Chapter 5 can be used in the case of frequency-scalable

processors as well (to compute the different frequency levels and the frequency range that
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the PE should support).

From the long-term playback rate of the input streams, a designer can derive the low-

est number of stream objects that a PE must process within any time interval of length∆,

i.e., the lower service curveβl(∆), for all ∆ ≥ 0. To guarantee that a PE can process at

leastβl(∆) number of stream objects within any time interval of length∆, in the worst

case the PE need to provideγu(βl(∆)) number of processor cycles within this time in-

terval. Then the minimum frequency to guarantee lower service curveβl is computed

asf = max∆≥0{γu(βl(∆))/∆}, assuming that these number of stream objects require

the maximum possible number of processor cycles, whereγu(k) represents the maximum

possible number of processor cycles required by anyk consecutive stream objects for all

k ≥ 0.

However, we know that if one stream object cannot use up the cycles allocated to

it, the redundant cycles will be used by its following stream objects. Hence, we ex-

pect that the approximate upper workload curveγu
ε achieves better estimation of the ex-

ecution demands. Thus, in the average-case analysis the minimum frequency becomes

fε = max∆≥0{γu
ε (βl(∆))/∆}.

Unlike the analysis of buffer size, where errors will cause objects to be dropped, error

in the frequency configuration will cause stream objects to miss their deadlines. In the rest

of this subsection, we present how to determine if a stream object will miss its deadline. If

a stream object is not available in the input buffer of a PE (or the output device) when it is

time to process it, we say that this stream object has missed its deadline. Given a stream,

we would like to analyze at most how many percent of stream objects miss their deadlines

when the frequencyfε is used.

When a stream object arrives at the input buffer of a PE, it gets processed immediately

or waits for some time based on whether the PE is busy or not. If the PE is still processing

some stream object when a new stream object arrives, the new object willwait. In the

following, we will start from a stream object that gets processed immediately upon entering

into the buffer, to analyze whether the subsequent stream objects will wait or not. In our

analysis, we need to refer to the definitions ofξ(i, k) and T (i) in last subsection. For
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Figure 7.4: Illustration of frequency analysis

simplicity, we useξ(i) to denoteξ(i, 1), representing the arrival interval betweeni-th and

(i−1)-th stream objects. Suppose thatW denote the total cycles required by all the previous

i stream objects, we useγ(i) = W(i) − W(i − 1) to represent the cycle requirement of

the i-th stream object. As shown in Figure 7.4, let thei-th stream object be one of the

stream objects that need not wait. The idle time for the PE isLi = ξ(i + 1) − γ(i)/fε

after thei-th stream object is finished and before the next one arrives into the input buffer.

If Li < 0, it means that the next stream object has to wait a time interval of length|Li|
before it is processed. Suppose that the nextk stream objects numberedi + 1, . . . , i + k

need to wait, then the idle time before the(i + k + 1)-th stream object is processed is

L(i, i + k) =
∑

i≤j≤i+k Lj. If L(i, i + k) < 0, it implies that the(i + k + 1)-th stream

object need to wait a time interval of length|L(i, i + k)| before it is processed. Similarly,

we can continue to identify whether the following stream objects need to wait or not. When

we meet the next stream object that need not wait, the influence of the wait from the stream

objects following thei-th stream object is stopped. In the same way, we can analyze the

subsequent stream objects after the nextnon-waitingstream object.

To identify if a stream object misses its deadline, we first assume that its next stream

object is a virtual one that arrives just right at the time of its deadline and check whether

its next virtual stream object needs to wait or not. As an example, we consider the last PE

in the path of the stream and analyze the number of stream objects that miss the playback

deadlines. Assuming that the real-time client starts to playback after a delay of timetd,

the i-th stream object will miss its deadline if it does not enter the playout buffer before

td + i−1
R

. Thus, if a virtual stream object arriving at the input buffer of the last PE attd + i−1
R

next to thei-th one needs to wait, then thei-th stream object will miss its deadline.
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7.4 Empirical Validation

To validate our scheme for workload characterization, we experimented with the platform

architecture shown in Figure 3.2 using the setup described in Section 7.4.

We experimented with multiple representative video clips chosen from a set of clips,

all of which have the same long-term playback rate, i.e. the same number of macroblocks

are consumed per second by the video output device. For each video clip, we first used the

SimpleScalar instruction set simulator to obtain traces of execution times for the VLD/IQ

and IDCT/MC tasks of the MPEG-2 decoder application. We then simulated the platform

architecture shown in Figure 3.2 using a transaction-level model of the architecture written

in SystemC. Traces containing the arrival times of the macroblocks at each on-chip buffer

and the buffer backlogs were obtained. The VCCs and theε-VCCs were measured from the

collected execution traces. In the following, we assume that the traces of execution times

have already been obtained.

7.4.1 Buffer Sizing

The results reported below only concern the buffer at the input ofPE2 (i.e. B2). Both

PE1 andPE2 were configured to run with their long-term average frequencies. These

frequencies were computed by taking into account the long-term playback rate of the output

device and the average cycle demands per macroblock for the tasks implemented on them.

The system was initially simulated for all the (representative) video clips, from which we

obtained the approximate lower pseudo-inverse curveξl
ε(k) corresponding to the arrival

process of stream objects at the bufferB2. From the simulation results we also obtained

the approximate upper workload curveγu
ε (k) for PE2. We then computed the buffer size

bε. As shown in Figure 7.5, the computed buffer size decreases asε is increased from0 to

20. We observed more than20% reduction in the buffer size whenε was set to be5.

For each video clip, we analytically estimated the upper bound on the percentage of

dropped macroblocks when the size ofB2 was set tobε. At the same time, we simulated

the execution of this clip with the size ofB2 set to bebε. The simulation results showed that
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Figure 7.5: Computed buffer sizes for different values ofε.

our analytical method gives an upper bound on the percentage of dropped macroblocks for

any of the clips used. Figure 7.6 shows the analytical bounds and simulation results for a

representative video clip. We can observe that the drop ratio is upper bounded at about5%

with ε equal to5. However, there is more than20% reduction in the buffer size compared to

whenε is equal to0. As shown in Figure 7.5, we also measured thePeak Signal-to-Noise

Ratio (PSNR) for this video clip corresponding to each buffer size. PSNR is commonly

used to measure the quality of a reconstructed frame with macroblock loss, compared to

the decoded frame without any loss. We defined the PSNR of a video clip as the average

value of PSNRs over all those frames which suffered loss of macroblocks. Although we

applied only a simple error concealment mechanism (a dropped macroblock just takes the

value of the corresponding macroblock from the previous frame), Figure 7.5 shows that at

ε = 5, the PSNR remains at39.2 dB. PSNR values above38 dB are generally accepted as

good video quality [34].

Comparison with queuing theory analysis: Queuing theory [49] models the queueing

systems using stochastic processes and can only provide stochastic performance guaran-

tees. Our framework presented in this thesis, based on network calculus, can offer de-

terministic performance guarantees. We illustrate the difference between our work and

queuing theory analysis, using the example of on-chip buffer sizing problem and studying
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Figure 7.6: Percentage of macroblocks dropped fromB2 for different values ofε.

the bufferB2. Firstly we show the results for queuing theory analysis. For the purpose

of illustration, we choose to model the bufferB2 as an M/M/1 queue. For a given video

clip and its simulation traces, we measured the mean arrival rateλ (i.e. the mean number

of macroblocks that can arrive at the buffer per second) and the mean processing rateµ of

PE2 (i.e. the mean number of macroblocks that can be processed byPE2 per second). It is

known from the queuing theory that when a macroblock arrives at the buffer, the probability

that the buffer fill level is equal ton macroblocks can be expressed as:

Pn = (1− ρ)ρn

whereρ is equal toλ/µ, representing the intensity of the traffic. Hence, supposing that the

buffer size is configured to beN , we obtain the probability that the buffer fill level is greater

thanN when a macroblock arrives at the buffer (i.e. the probability that a macroblock might

be dropped from the buffer):

P = 1−
∑
n≤N

Pn

Using the same video clip as that in Figure 7.6, Figure 7.7 shows the probability that the

backlog atB2 is greater than 200 macroblocks is less than 1%. It is equivalent to saying

that in probability-based sense, less than 1% of macroblocks might be dropped when the

size ofB2 is configured to be 200 macroblocks.
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Our framework models the multimedia workloads using the concept ofε-VCCs, which

is a general model and no assumption on the probability distribution of the workloads is

needed. For the on-chip buffer sizing problem, our framework offers the upper bound on

the percentage of macroblocks that might be dropped from the buffer under certain buffer

size value. For example, our framework gives the deterministic guarantee that at most

around 35% of macroblocks might be dropped when the size ofB2 is configured to be

about 1400 macroblocks andε is set to 20, as shown in Figures 7.6 and 7.5. It is also

observed that nearly 35% of macroblocks are actually dropped when the size of bufferB2

is configured to be 1400 macroblocks, while queueing theory can only tell that less than 1%

of macroblocks might be dropped. It thus shows that it is not enough to just use queueing

theory to quantitatively measure the buffer overflow errors in our context of multimedia

platforms. Also, our work guarantees that the maximum possible backlog atB2 will never

exceed 2822, while queuing theory analysis allows the possibility that the maximum buffer

backlog can be infinite. Hence, our work has the advantage over queueing theory analysis

on buffer dimensioning.
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Figure 7.8: Frequency values ofPE2 for different values ofε.

7.4.2 Frequency Selection

We will usePE2 to illustrate how the processor’s clock frequency may be lowered ifε-

VCCs are used. Based on the approximate upper workload curveγu
ε onPE2 and the long-

term playback rate, we computed the clock frequencyfε for PE2. As shown in Figure 7.8,

considerable reduction in the frequency values were achieved when the approximate curves

were used. For example, there was nearly a20% reduction in the frequency whenε was set

to be60.

PE1 was configured to its long-term average frequency. An initial simulation of the

system was conducted for all the representative video clips, after which we had the nec-

essary traces for the error analysis. For each video stream, we computed an upper bound

on the percentage of macroblocks that can potentially miss their deadlines whenPE2 is

run at different clock frequencies. When compared with simulation results, it may be seen

that our analytical method gives an upper bound on the percentage of macroblocks that

missed their deadlines. Table 7.1 shows the analytical bounds and the results obtained us-

ing simulation for a representative video clip with two different playback delay settingstd.

It may be noted that when the delay was set to0.30s, none of the macroblocks missed their

deadlines, even withε set to60, while the required frequency was reduced by nearly20%.
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% of macroblocks missing deadlines
ε td = 0.28s td = 0.30s

analysis simulation analysis simulation
0 3.84 3.80 0.00 0.00
20 9.73 9.63 0.00 0.00
40 16.7 16.5 0.00 0.00
60 44.0 43.7 0.00 0.00
80 97.0 97.0 80.4 69.5

Table 7.1: Analytical bounds and simulation results on the percentage of macroblocks that
miss their deadlines, for different values ofε.

7.5 Summary

In this chapter we proposed a parameterized scheme for characterizing multimedia work-

loads, based on the novel concept ofapproximate variability characterization curvesor

ε-VCCs. Since most multimedia applications only require soft real-time guarantees, we

demonstrated that by usingε-VCCs to design and configure platform architectures, signif-

icant resource savings may be achieved with only a negligible loss in output quality.

In our scheme, we also propose error analysis algorithms for two typical system design

cases (on-chip buffer sizing and processor frequency selection), which give the bound on

the error incurred by usingε-VCCs. Our scheme can be used to achieve the tradeoff be-

tween the output quality and the resource savings through an analytical way. Currently our

scheme can only give the error bounds for a single stream, where the traces for this stream

is needed. In the future, we would want to extend this scheme to provide guarantees for a

classof streams. Details of this will be discussed in Chapter 8.
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Chapter 8

Conclusion

In this thesis we proposed an analytical framework that can be used for the system-level

design of MpSoC platform architectures for multimedia applications. According to the

Y-chart scheme for the design of SoC platforms, we modeled multimedia applications us-

ing the KPN and used an system-level abstracted model of the SoC platform architectures.

Based on network calculus theory, we then presented a unified framework for modeling of

multimedia workloads and performance analysis of such modeled MpSoC platform archi-

tectures, which multimedia applications are partitioned and mapped onto.

8.1 Modeling of Multimedia Workloads

In our framework, we first need to model the multimedia workloads imposed on the plat-

form architecture. Given a large library of multimedia streams that might be run on the

platform, we proposed an approach that can be used for workload design in the context of

MpSoC platform design, i.e. obtaining the VCCs for this library of streams. Firstly the

pairwise dissimilarity between any two streams is measured, which is based on the shapes

of VCCs associated with each stream. We then used a hierarchical clustering algorithm to

classify the streams into different clusters. The “representative” streams can be identified

from each cluster (i.e. class) to represent the workloads imposed by this cluster. The VCCs

for these streams characterize the class of streams it belongs to. The VCCs associated with

the set of “representative” streams resulted from all the clusters then give an accurate model

of the original library.
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In our approach, the VCCs are obtained only from the instruction set simulation and

a simple trace-analysis algorithm. Therefore, our scheme for workload design is order of

magnitude faster than using full system simulation, achieving considerable savings in the

design time.

8.2 Design and Analysis

Using the obtained VCCs, which represent the workloads imposed by a class of multimedia

streams, we can develop analytical approaches that can be used for system-level design

and analysis of MpSoC platforms for multimedia applications, based on network calculus

theory. As illustrations of our framework, this thesis proposed analytical approaches for

two typical system design cases: processor frequency selection and rate analysis.

Processor Frequency Selection:We proposed an analytical approach that can help a

system designer to identify the operating frequency ranges that should be supported by

the different processors of a platform architecture, in order to run the target multimedia

streams (that may include multiple classes). Our approach also identifies how such fre-

quency ranges depend on the different parameters of the architecture such as on-chip buffer

sizes. The service bounds on a processor for a class of streams were firstly derived, given

the bounds on the arrival patterns of input streams and the playback rate. Based on the

definition of service curves, we formulated the constraints that should be satisfied by the

frequency values at which a processor runs. The frequency range was then identified. These

theoretical results were validated by experimenting with sample MPEG-2 streams, where

the on-chip processors run at the frequency schedules bounded by the computed frequency

ranges.

Rate Analysis:We proposed an analytical approach to determine tight bounds on the rates

at which different multimedia streams can be fed into a platform architecture. We also

studied this problem of rate analysis when a scheduler (such FPS and TDM) is implemented

on a processor. Our approach can aid in selecting the parameters for a scheduler, e.g. the
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weights associated with each stream for a TDM scheduler. Experimental results show that

our approach can give valid tight bounds on the arrival rates of multimedia streams.

The design of SoC platforms for multimedia applications is especially difficult due

to the various kinds of variabilities arising from multimedia processing, such as the high

variability in the execution requirements and great burstiness in the on-chip traffic etc.

Our framework accurately models the burstiness in these kinds of variabilities using the

concept of VCCs. At the same time, the analytical approaches developed for the design

space exploration and performance analysis of MpSoC platforms take fully into account the

various burstiness, which we think has critical influence on platform architecture design.

What is particular to our analysis is that all the operations are done for aclassof streams.

A major contribution of our analytical approaches is that it can help to greatly reduce the

design time and costs and avoid the time-consuming simulation.

8.3 New Characterization of Multimedia Workloads

In the above analytical approaches, we used VCCs to capture the worst-case characteristics

of multimedia workloads. In this thesis, we also proposed a new concept ofapproximate

variability characterization curvesor ε-VCCs to characterize the average-case characteris-

tics of multimedia workloads. By taking into account the frequency of the occurrences of

certain patterns, this new concept works in a parameterized fashion, whereε indicates how

many percent of worst-case occurrences are omitted.

We then applied the concept ofε-VCCs to determine the platform parameters config-

ured for a SoC platform, e.g. the sizes of on-chip buffer and the long-term frequency value

configured for an on-chip processor. For the design case of on-chip buffer sizing, the exper-

imental results showed that the value of buffer size computed usingε-VCCs reduces as the

value ofε increases. This is due to the reason that some worst-case occurrences of certain

patterns are ignored. It also showed that the value of computed buffer size decreases faster

when the value ofε is smaller, while this becomes slower as the value ofε is greater. This
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may be explained since worst cases in the workloads happen less frequently relative to the

average cases. Similar observations was also obtained for the case of configuring long-term

frequency value.

We also presented analytical algorithms that provide an upper bound on the errors asso-

ciated with different values ofε whenε-VCCs are applied in the design of SoC platforms.

The simulation results showed that the proposed algorithms analytically give a valid upper

bound on how many percent of stream objects might be dropped from the buffer when its

size is set to be the values computed usingε-VCCs. These algorithms also give an upper

bound on how many percent of stream objects might miss deadlines when the processor

frequency is configured with the values computed usingε-VCCs.

It is known that multimedia applications exhibit various kinds of high variability and

are characterized by soft real-time constraints, i.e. a small degree of degradation in the

output quality is acceptable. Hence, it is desirable to design the SoC platforms for multi-

media applications based on average-case characteristics of multimedia workloads, which

would achieve great resource savings and thus reduce the cost. Our proposed parame-

terized framework provides an efficient scheme of characterizing the average-case behav-

iors of multimedia workloads. Through error analysis algorithms, our framework can help

a designer to identify the tradeoffs between the output quality and the resource require-

ments (i.e. the selection of suitable value ofε) in an analytical way, which avoids the

time-consuming simulation. Some related work on statistical network calculus presents

probabilistic bounds on the errors. Our error analysis algorithms give deterministic bounds

instead, which provides an effective way of measuring the output quality for multimedia

applications and is complementary to the probability-based methods.

8.4 Future Work

We have presented the concept ofε-VCCs as a new characterization of multimedia work-

loads. Due to the importance of “average-case” analysis in the context of multimedia

SoC platform design, in the future we would want to extend our analytical approaches
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for system-level design and analysis, usingε-VCCs as models of multimedia workloads.

We hope that our framework will contain both “worst-case” and “average-case” analysis

mechanisms, which provides a full support for SoC platform design for multimedia appli-

cations.

The extended framework will work in a parameterized fashion. Different values of

ε correspond to different degree of resource savings and quality degradation. The ma-

jor challenge to develop analytical approaches usingε-VCCs is how to bound the quality

degradation associated with the different values ofε.

Same as VCCs, our concept ofε-VCCs is defined for a class of streams, and hence

the platform parameters (such as the buffer sizes or processor frequency values) analyzed

usingε-VCCs are valid for a class of streams. Note that the class is defined in the sense of

burstinessthat is shown in the behaviours of multimedia processing. Therefore, it is also

expected that we can bound the quality degradation for a class of streams.

Now, we have only conducted a preliminary study of the error analysis algorithms that

can bound the errors for a single stream belonging to the class. In practice, the system

designer may need to analyze multiple representative streams from a class of streams in

order to get an estimation of the errors associated with this class, which involves more

design efforts. In the future, we would extend the existing error analysis algorithms to

provide the error bounds for a class of streams. Such an extension would help to further

reduce the design costs.

In the future, we would also want to study more complex architectures and applications.

However, it is not trivial to develop the “average-case” analysis approaches for complicated

design cases and to provide the error bounds at the same time. To bound the errors, we may

need to identify the worst-case patterns in the sense of incurred errors after applyingε-

VCCs (VCCs are not enough to identify such patterns). The analytical approaches may

need to be developed with the error analysis algorithms in mind. We believe that there are

many issues to be explored along this direction.
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[2] A. Acquaviva, L. Benini, and B. Ricćo. An adaptive algorithm for low-power stream-

ing multimedia processing. InConference on Design, Automation and Test in Europe

(DATE), Munich, GERMANY, March 2001.

[3] PALM-DP-2000 AcurX configurable SoC platform.

http://www.palmchip.com/ .

[4] Rajeev Agrawal, R. L. Cruz, Clayton Okino, and Rajendran Rajan. Performance

bounds for flow control protocols.IEEE/ACM Transactions on Networking, 7(3):310–

323, June 1999.

[5] Gang Quan an Xiaobo Hu. Energy efficient fixed-priority scheduling for real-time

systems on variable voltage processors. InDAC, Las Vegas, Nevada, United States,

2001.

[6] H. V. Antwerpen, N. Dutt, R. Gupta, S. Mohapatra, C. Pereira, N. Venkatasubra-

manian, and R. von Vignau. Energy-aware system design for wireless multimedia.

In IEEE Design, Automation and Test in Europe (DATE), Paris, FRANCE, February

2004.

[7] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer

system modeling.IEEE Computer, 35(2):59–67, 2002.

[8] S. Ayyorgun and R. L. Cruz. A composable service model with loss and a scheduling

algorithm. InINFOCOM, Hong Kong, China, March 2004.



126

[9] S. Ayyorgun and R. L. Cruz. A service-curve model with loss and a multiplexing

problem. InICDCS, Tokyo, Japan, March 2004.

[10] F. Balarin, Y.Watanabe, H. Hsieh, L. Lavagno, and C. Passerone. Metropolis: an in-

tegrated electronic system design environment.IEEE Computer, 36(4):45–52, 2003.

[11] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting mpeg execution times. In

ACM SIGMETRICS, Madison, Wisconsin, USA, 1998.

[12] E. Bini and M. D. Natale. Optimal task rate selection in fixed priority systems. In

RTSS, Miami, Florida, USA, 2005.

[13] A. Bobrek, J. Pieper, J. Nelson, J. Paul, and D. Thomas. Modeling shared resource

contention using a hybrid simulation/analytical approach. InDesign, Automation and

Test in Europe, February 2004.

[14] R. Boorstyn, A. Burchard, J. Leibeherr, and C. Oottamakorn. Statistical service as-

surances for traffic scheduling algorithms.IEEE Journal on Selected Areas in Com-

munications, 18(13):2651–2664, 2000.

[15] J.-Y. Le Boudec. Application of network calculus to guaranteed service networks.

IEEE Transactions on Information Theory, 44(3):1087–1096, May 1998.

[16] J.-Y. Le Boudec and P. Thiran.Network Calculus - A Theory of Deterministic Queuing

Systems for the Internet. LNCS 2050, 2001.

[17] L.-O. Burchard and P. Altenbernd. Estimating decoding times of mpeg-2 video

streams. InInternational Conference on Image Processing, Vancouver, BC, Canada,

2000.

[18] M. Buss, T. Givargis, and N. Dutt. Exploring efficient operating points for volt-

age scaled embedded processor cores. In24th IEEE Real-Time Systems Symposium

(RTSS), Cancun, Mexico, December 2003.



127

[19] H. Kim C. Im and S. Ha. Dynamic voltage scheduling technique for low-power mul-

timedia applications using buffers. InInternational Symposium on Low Power Elec-

tronics and Design (ISLPED), California, USA, August 2001.

[20] S. Chakraborty, S. K̈unzli, and L. Thiele. A general framework for analysing system

properties in platform-based embedded system designs. In6th Design, Automation

and Test in Europe (DATE), Munich, Germany, February 2003.

[21] S. Chakraborty, S. K̈unzli, L. Thiele, A. Herkersdorf, and P. Sagmeister. Performance

evaluation of network processor architectures: Combining simulation with analytical

estimation.Computer Networks, 41(5):641–665, 2003.

[22] C.S. Chang. On deterministic traffic regulation and service guarantee: a systematic

approach by filtering.IEEE Transactions on Information Theory, 44(3):1097–1110,

May 1998.

[23] C.S. Chang.Performance guarantees in communication networks. Springer-Verlag,

New York, 2000.

[24] W. Chase and F. Bown.General Statistics. John Wiley & Sons, 1997.

[25] C. Chen and M. Sarrafzadeh. Provably good algorithm for low power consumption

with dual supply voltages. InICCAD, San Jose, CA, United States, 1999.

[26] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage and

frequency scaling for a MPEG decoder. InICCAD, San Jose, CA, USA, November

2002.

[27] F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve approach for the

stochastic analysis of networks. InACM Sigmetrics, 2005.

[28] R. Cruz. A calculus for network delay, Parts 1 & 2.IEEE Transactions on Information

Theory, 37(1), 1991.



128

[29] A. Dasdan, D. Ramanathan, and R. K. Gupta. A time-driven design and validation

methodology for embedded real-time systems.ACM Transactions on Design Automa-

tion of Electronic Systems (TODAES), 3(4):533–553, 1998.

[30] Sandeep Dhar and Dragan Maksimovic. Low-power digital filtering using multiple

voltage distribution and adaptive voltage scaling. InISLPED, Rapallo, Italy, July

2000.

[31] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SOC for advanced

set-top box and digital TV systems.IEEE Design & Test of Computers, 18(5):21–31,

September-October 2001.

[32] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload design: Selecting

representative program-input pairs. InIEEE PACT, pages 83–94, 2002.

[33] F. Balarin et al.Hardware-Software Co-design of Embedded Systems – The POLIS

approach. Kluwer Academic Publishers, 1997.

[34] C. A. Gonzales, H. Yeo, and C. J. Kuo. Requirements for motion-estimation search

range in MPEG-2 coded video.IBM Journal of Research and Development, 43(4),

1999.

[35] A. D. Gordon.Classification. Chapman & Hall/CRC, 1999.

[36] W. Hawkins and T. Abdelzaher. Towards feasible region calculus: An end-to-end

schedulability analysis of real-time multistage execution. InRTSS, Miami, Florida,

USA, 2005.

[37] D. P. Heyman, A. Tabatabai, and T. Lakshman. Statistical analysis and simulation

study of video teleconference traffic in atm networks.IEEE Transactions on Circuits

and Systems for Video Technology, 2(1):49–59, 1992.

[38] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava. Power optimization

of variable-voltage core-based systems.IEEE Trans. on Computer Aided-Design of

Integrated Circuits and Systems, 18(12), 1999.



129

[39] Shaoxiong Hua and Gang Qu. Approaching the maximum energy saving on em-

bedded systems with multiple voltages. InICCAD, San Jose, CA, United States,

November 2003.

[40] C. Huang, M. Devetsikiotis, I. Lambadaris, and A. Kaye. Modeling and simulation

of self-similar variable bit rate compressed video: a unified approach. InACM SIG-

COMM, 1995.

[41] C.J. Huges, J. Srinivasan, and S.V. Adve. Saving energy with architectural and fre-

quency adaptations for multimedia applications. In34th Annual International Sym-

posium on Microarchitecture (MICRO), 2001.

[42] C.J. Hughes, P. Kaul, S.V. Adve, R. Jain, C. Park, and J. Srinivasan. Variability in

the execution of multimedia applications and implications for architecture. InISCA,

pages 254–265, 2001.

[43] Blue Logic technology, IBM.

http://www.chips.ibm.com/bluelogic/ .

[44] M. Jersak and R. Ernst. Enabling scheduling analysis of heterogeneous systems with

multi-rate data dependencies and rate intervals. InProc. 40th Design Automation

Conference (DAC), 2003.

[45] G. Kahn. The semantics of a simple language for parallel programming. InInterna-

tional Federation for Information Processing Congress, North-Holland, Amsterdam,

August 1974.

[46] Tero Kangas, Petri Kukkala, Heikki Orsila, and Erno Salminen et al. Uml-based

multiprocessor soc design framework.ACM Transactions on Embedded Computing

Systems (TECS), 5(2):281–320, 2006.

[47] K. Keutzer, S. Malik, R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. Sys-

tem level design: Orthogonolization of concerns and platform-based design.IEEE

Transactions on Computer-Aided Design, 19(12), 2000.



130

[48] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. An approach

for quantitative analysis of application-specific dataflow architectures. InIEEE Inter-

national Conference on Application-Specific Systems, Architectures and Processors

(ASAP), LA, CA, USA, 1997.

[49] Leonard Kleinrock.Queuing Systems, Volume 1: Theory. John Wiley and Sons, 1975.

[50] Marwan Krunz and Satish K. Tripathi. On the characterization of VBR MPEG

streams. InACM SIGMETRICS, Cambridge, MA, June 1997.

[51] T. Lafage and A. Seznec. Choosing representative slices of program execution for

microarchitecture simulations: a preliminary application to the data stream. InWork-

load characterization of emerging computer applications, pages 145–163. Kluwer

Academic Publishers, 2001.

[52] K. Lahiri, A. Raghunathan, and S. Dey. System level performance analysis for design-

ing on-chip communication architectures.IEEE Trans. on Computer Aided-Design of

Integrated Circuits and Systems, 20(6):768–783, 2001.

[53] A. A. Lazar, G. Pacifici, and D. E. Pendarakis. Modeling video sources for real-time

scheduling.Multimedia Syst., 1(6):253–266, 1994.

[54] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: a tool for evaluating

and synthesizing multimedia and communicatons systems. InACM/IEEE MICRO,

pages 330–335, 1997.

[55] D.S. Lee, B. Melamed, A. Reibman, and B. Sengupta. Analysis of a video multi-

plexer using TES as a modeling methodology. InIEEE Global Telecommunications

Conference (GLOBECOM), Phoenix, USA, December 1991.

[56] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of

computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 17(12):1217–1229, 1998.



131

[57] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J.D. Robbins. Performance

models of statistical multiplexing in packet video communications.IEEE Transac-

tions on Communications, 36(7):834–844, 1988.

[58] Rolf Ernst Marek Jersak, Rafik Henia. Context-aware performance analysis for effi-

cient embedded system design. InProc. DATE, Paris, France.

[59] A. Mathur, A. Dasdan, and R. K. Gupta. Rate analysis for embedded systems.IEEE

Transactions on VLSI, 3(3):408–436, 1998.

[60] A. Maxiaguine, S. Knzli, and L. Thiele. Workload characterization model for tasks

with variable execution demand. InDATE, Paris, France, February 2004.

[61] A. Maxiaguine, S. K̈unzli, S. Chakraborty, and L. Thiele. Rate analysis for streaming

applications with on-chip buffer constraints. InASP-DAC, Yokohama, Japan, January

2004.

[62] A. Maxiaguine, Y. Liu, S. Chakraborty, and W. T. Ooi. Identifying “representa-

tive” workloads in designing MpSoC platforms for media processing. InESTIMedia,

Stockholm, Sweden, September 2004.

[63] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning SoC platforms for

multimedia processing: Identifying limits and tradeoffs. InCODES+ISSS, Stock-

holm, Sweden, September 2004.

[64] S. Mohanty and V. Prasanna. Rapid system-level performance evaluation and op-

timization for application mapping onto SoC architectures. InIEEE International

ASIC/SOC Conference, September 2002.

[65] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Inte-

grated power management for video streaming to mobile handheld devices. InACM

Multimedia (MM), Berkeley, CA, USA, November 2003.

[66] A. Nandi and R. Marculescu. System-level power/performance analysis for embedded

systems design. InDAC, Las Vegas, Nevada, USA, June 2001.



132

[67] OMAP for 2.5G and 3G: Overview, Texas Instruments.

http://www.ti.com/sc/omap/ .

[68] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van der Wolf, and

Ed F. Deprettere. Exploring embedded-systems architectures with artemis.IEEE

Computer, 34(11):57–63, 2001.

[69] Flavio Polloni, Luca Mazzoni, and Serge Di Matteo. Fast system-level design space

exploration for low power configurable multimedia systems-on-chip. InASIC/SOC

Conference, Rochester, New York, September 2002.

[70] P. Pop, P. Eles, and Z. Peng. Bus access optimization for distributed embedded sys-

tems based on schedulability analysis. InProc. Design, Automation and Test in Eu-

rope (DATE), 2000.

[71] PrimeXsys Platforms Overview, ARM.

http://www.arm.com/products/solutions/PrimeXsysPlatforms.html .

[72] Gang Qu and Miodrag Potkonjak. Techniques for energy minimization of communi-

cation pipelines. InICCAD, San Jose, CA, United States, 1998.

[73] K. Richter and R. Ernst. Model interfaces for heterogeneous system analysis. InProc.

6th Design, Automation and Test in Europe (DATE), Munich, Germany, March 2002.

[74] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance

verification. IEEE Computer, 36(4):60–67, 2003.

[75] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Bottom-up performance analysis

of Hw/Sw platforms. InProc. Distributed and Parallel Embedded Systems Confer-

ence (DIPES), Montreal, Canada, 2002.

[76] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling

analysis in platform design. InProc. 39th Design Automation Conference (DAC), New

Orleans, LA, June 2002. ACM Press.



133

[77] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der Wolf, O.P. Gangwal, and

A. Timmer. A heterogeneous multiprocessor architecture for flexible media process-

ing. IEEE Design & Test of Computers, 19(4):39–50, July-August 2002.

[78] M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol. Design of multi-tasking co-

processor control for eclipse. In10th International Workshop on Hardware/Software

Codesign (CODES), Colorado, USA, May 2002.

[79] M.J. Rutten, J.T.J. van Eijndhoven, and E.-J.D. Pol. Robust media processing in a

flexible and cost-effective network of multi-tasking coprocessors. In14th Euromicro

Conference on Real-Time Systems (ECRTS), Vienna, Austria, June 2002.

[80] Seamless Hardware/Software Co-Verification, Mentor Graphics.

http://www.mento.com/seamless/ .

[81] P. Skelly, S. Dixit, and M. Schwartz. A histogram-based model for video behavior in

an atm network. InIEEE INFOCOM, Florence, Italy, 1992.

[82] N.T. Slingerland and A.J. Smith. Design and characterization of the Berkeley multi-

media workload.Multimedia Syst., 8(4):315–327, 2002.

[83] K. Sreenivasan and A. J. Kleinman. On the construction of a representative synthetic

workload.Commun. ACM, 17(3):127–133, 1974.

[84] Open SystemC Initiative.

http://www.systemc.org .

[85] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for evaluating

design tradeoffs in packet processing architectures. InDAC, New Orleans, LA, USA,

June 2002.

[86] P. van der Wolf, W.M. Kruijtzer, and J.T.J. van Eijndhoven. System-level design of

embedded media systems. InTutorial at the 15th International Conference on VLSI



134

Design (VLSI) and Asia and South Pacific Design Automation Conference (ASP-DAC)

(joint conference), Bangalore, India, January 2002.

[87] G. Varatkar and R. Marculescu. On-chip traffic modeling and synthesis for MPEG-2

video applications.IEEE Transactions on VLSI, 12(1), 2004.

[88] The Cadence virtual component co-design.

http://www.cadence.com/products/vcc.html.

[89] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU scheduling for mobile

multimedia systems. InSOSP, NY, USA, October 2003.


