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Summary

Polymorphism, in which multiple crystal forms exist for teeme chemical com-
pound, is of significant interest to industry. The variatiarphysical properties
such as crystal shape, solubility, hardness, colour, nigefibint, and chemical re-
activity makes polymorphism an important issue for the fagkcialty chemical,
and pharmaceutical industries, where products are spaiieonly by chemical
composition, but also by their performance. Controllindyptorphism to ensure
consistent production of the desired polymorph is impdrtarthose industries,
including drug manufacturing where safety is paramountthis thesis, the mod-
elling, simulation, and control of polymorphic crystalliron of L-glutamic acid,
comprising the metastabteform and the stablg-form crystals, are investigated.
With the ultimate goal being to better understand the edfe€tprocess condi-
tions on crystal quality and to control the formation of thesied polymorph, a
kinetic model for polymorphic crystallization of L-glutacacid based on popula-
tion balance equations is developed using Bayesian infereé8uch a process model

can facilitate the determination of optimal operating dtods and speed process

Vi
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development, compared to time-consuming and expensadeatnid-error methods
for determining the operating conditions. The developed#tc model appears to
be the first to include all of the transformation kinetic paeders including depen-
dence on the temperature, compared to past studies on trelmgof L-Glutamic
acid crystallization.

Next, numerical simulation of the developed model is ingaded. It is impor-
tant to have efficient and sufficiently accurate computaiorethods for simulating
the population balance equations to ensure the behavigheafumerical solution
is determined by the assumed physical principles and naadghosen numerical
method. In this thesis, the high-order weighted essentiah-oscillatory (WENO)
methods are investigated and shown to give better compotdtefficiency com-
pared to the high resolution (HR) and the standard secodekdinite difference
(FD2) methods to simulate the model of polymorphic crysation of L-glutamic
acid developed in this thesis.

In non-polymorphic crystallization, the two most populantrol strategies are
the temperature control (T-control) and concentratiortradC-control) strategies.
In this study, the robustness of these control strategiesraestigated in poly-
morphic crystallization using the model developed in thissis. Simulation studies
show that T-control is not robust to kinetics perturbatiamsile C-control performs
very robustly but long batch times may be required.

Despite the high impact of model predictive control (MPCagademic research

and industrial practice, its application to solution caffstation processes has been
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rather limited and there is no published result on the impletation of MPC or
nonlinear MPC (NMPC) to a polymorphic crystallization, whiis more challeng-
ing. In this thesis, an efficient NMPC strategy based on thergbed predictive
self-adaptive control (EPSAC) which does not rely on nadinprogramming is
developed for the polymorphic transformation process. famed to the T-control,
C-control, and quadratic matrix control with successinedrization (SL-QDMC),
simulation results show that the NMPC strategy gives go@dalvrobustness while
satisfying all constraints on manipulated and state vigalwithin the specified
batch time.

Finally, exploiting the repetitive nature of batch proesssan integrated non-
linear model predictive control and batch-to-batch (NMBEZR) control strategy
based on a hybrid model is developed for the polymorphicsfaamation process.
The hybrid model consists of a first-principles model and 8 Riodel, where infor-
mation from the previous batches are utilized to update dnéral trajectory in the
next batch. The proposed NMPC-B2B strategy allows the NMPgetform online
control which handle the constraints effectively while Hatch-to-batch control re-
fines the model by learning from the previous batches. Coedbtr the standard
batch-to-batch (B2B) control strategy, the proposed NMBZB- control strategy
gives better performance where it satisfies all the statstcants and produces
faster and smoother convergence. In addition, it is verthedlthrough the learning
process, both B2B and NMPC-B2B control strategies are navardageous to be

employed to address the plant-model mismatch in an efieati@nner.



List of Tables

3.1 L-glutamic acid aqueous solutions used for calibration 30
3.2 Solubility data for L-glutamic acid polymorphs. 32
3.3 Values for densities, volume shape factors, and saiarabncen-

tration parameters. 47
3.4 Seed crystal size distribution data and the purity-6brm crystals

at the end of batche(,). 53
3.5 Definition of measured variablgsand interested parametetsor

«a- and-seeded experiments. 54
3.6 The model parameters determined from parameter egiimat 54
3.7 Seed crystal size distribution data and the purity-6brm crystals

at the end of batche(,) for model validation. 54

4.1 Values ofh andd,, for LOCWENO, JSHWENO, and WPower-
ENO methods. 76
4.2 Initial seed distribution parameters ferandj-forms. 85

4.3 L, self-convergence ordef)(,) for the various numerical methods. 85



LIST OF TABLES Xi

5.1 The parameters describing the seed distributions. 96
5.2 Variations in model parameters for robustness studge Qais the
nominal model, Case 2 has slow nucleation and fast growth rat
parameters fof-form crystals, and Case 3 has fast nucleation and
slow growth rate parameters fGeform crystals. 96
5.3 Values of the control objective; obtained for the three sets of
model parameters in Table 5.2. 104
5.4 Values of the control objective, obtained for the three sets of

model parameters in Table 5.2. 104

6.1 Tuning parameters for the NMPC strategy. 133
6.2 Values of the control objective; obtained for the three sets of
model parameters in Table 5.2. 133

6.3 Values of the control objective, obtained for the three sets of

model parameters in Table 5.2. 133
7.1 Tuning parameters for the B2B control strategy. 158
7.2 Tuning parameters for the NMPC-B2B control strategy. 8 15

7.3 Values of the control objective, obtained for the Cases 2 and 3 in
Table 5.2. 158
7.4 Values of the control objective, obtained for the Cases 2 and 3 in

Table 5.2. 159



List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

Solubility diagram. 10
Nucleation mechanism. 10
Crystal incorporation sites: flat faces (A), step sit@s and kink

sites (C). 14
Solubility curves in polymorphic systems. 16
Solubility curves of L-glutamic acid polymorphs. 32

Experimental and model trajectories for (a) tempeeat(o) the
first-order moment of the-form crystals, and (c) solute concen-
tration for Experiment 1 of Table 3.4. The vertical line irop(a)
shows the seeding time. 55
Experimental and model trajectories for (a) tempeeat(p) the
first-order moment of the-form crystals, and (c) solute concen-
tration for Experiment 2 of Table 3.4. The vertical line irop(a)

shows the seeding time. 56

xii



LIST OF FIGURES Xiii

3.4

3.5

3.6

3.7

3.8

Experimental and model trajectories for (a) tempeesdind (b) the
first-order moment of the and-form crystals, and (c) solute con-
centration for Experiment 3 of Table 4. The vertical line lntga)
shows the seeding time. The experimental trajectory of tisé fi
order moment is not plotted because the FBRM data was cedupt
due to sensor fouling. Hence, the first-order moment from e
periment was not used in the parameter estimation.

Experimental and model trajectories for (a) tempeeat(o) the
first-order moment of the-form crystals, and (c) solute concen-
tration for Experiment 4 of Table 3.4. The vertical line irop(a)
shows the seeding time. 58
Experimental and model trajectories for (a) tempeeat(p) the
first-order moment of thg/-form crystals, and (c) solute concen-
tration for Experiment 5 of Table 3.4. The vertical line irop(a)
shows the seeding time. 59
Experimental and model trajectories for (a) tempeeat(o) the
first-order moment of the-form crystals, and (c) solute concen-
tration for Experiment 6 of Table 3.4. The vertical line irop(a)
shows the seeding time. 60
The marginal distributions of parametérgbtained fromy-seeded

experiments (Table 3.5). 61



LIST OF FIGURES Xiv

3.9

The marginal distributions of parametérgbtained from3-seeded

experiments (Table 3.5). 62

3.10 Experimental and predictive trajectories of (a) terapge, (b) the

first-order moment of the-form crystals, and (c) solute concentra-
tion for Experiment V1 of Table 3.7. The vertical line in pl@t)

shows the seeding time. 63

3.11 Experimental and predictive trajectories of (a) terapee, (b) the

4.1

4.2

4.3

4.4

4.5

4.6

first-order moment of thg-form crystals, and (c) solute concentra-
tion for Experiment V2 of Table 3.7. The vertical line in pl@a)

shows the seeding time. 64

Computational cells. 72
Temperature profile used in simulations.

CSD of nucleated: form at the end of the batch for the various
numerical methodsXZ = 0.6 um). 86
CSD of nucleated form at the end of the batch for the various
numerical methodsXZ = 0.6 pum). 87
CSD of seeded form at the end of the batch for the various nu-
merical methodsA L = 0.6 ym). 87
CSD of seeded form at the end of the batch for the various nu-

merical methodsA L = 0.6 pm). 88

86



LIST OF FIGURES XV

4.7 Evolution of the errof,; norm with time for the various numerical
methods AL = 0.6 pm). 88
4.8 ErrorL; norm at the end of the batch versid. for the various
numerical methods. 89
4.9 CPU time versua L for the various numerical methods. 89
4.10 CPU time required for the various numerical methodsafgiven
error L; norm at the end of the batch. 90
4.11 Relative CPU time for the various numerical method$ wespect
to CPU time from JSHWENO for a given erré norm at the end

of the batch. 90

5.1 Implementation of C-control for a batch cooling crysstalr [175]. 98
5.2 Concentration-temperature trajectory corresponiipgoduct qual-

ity (5.1) obtained from T-control and C-control strategies 99
5.3 Concentration-temperature trajectory corresponiipgoduct qual-

ity (5.2) obtained from T-control and C-control strategies 100
5.4 Concentration and temperature trajectories for CaséHhlokjec-

tive J;. The solid lines are trajectories corresponding to the two

control strategies studied, the dashed lines are the ofptiajacto-

ries, and the shaded region indicates the inequality cainsi(5.4)

corresponding to the control strategies. 105



LIST OF FIGURES XVi

5.5

5.6

5.7

5.8

Concentration and temperature trajectories for Caséokjec-

tive J;. The solid lines are trajectories corresponding to the two
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 106
Concentration and temperature trajectories for CasélBakjec-

tive J;. The solid lines are trajectories corresponding to the two
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 107
Concentration and temperature trajectories for CaséHhlobjec-

tive J,. The solid lines are trajectories corresponding to the two
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 108
Concentration and temperature trajectories for Caséobjec-

tive J;. The solid lines are trajectories corresponding to the two
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)

corresponding to the control strategies. 109



LIST OF FIGURES Xvii

5.9

6.1

6.2

6.3

6.4

Concentration and temperature trajectories for CasélBakjec-
tive J;. The solid lines are trajectories corresponding to the two
control strategies studied, the dashed lines are the ojtiajpacto-
ries, and the shaded region indicates the inequality cainsi(5.4)

corresponding to the control strategies. 110

The variables decomposition in EPSAC. 115
Concentration and temperature trajectories for CaséHhlobjec-

tive J;. The solid lines are trajectories corresponding to the four
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 134
Concentration and temperature trajectories for Caséobjec-

tive J;. The solid lines are trajectories corresponding to the four
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 135
Concentration and temperature trajectories for CasélBobjec-

tive J;. The solid lines are trajectories corresponding to the four
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)

corresponding to the control strategies. 136



LIST OF FIGURES XVili

6.5

6.6

6.7

7.1

7.2

7.3

Concentration and temperature trajectories for CaséHhlokjec-

tive J;. The solid lines are trajectories corresponding to the four
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 137
Concentration and temperature trajectories for Caséokjec-

tive J,. The solid lines are trajectories corresponding to the four
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)
corresponding to the control strategies. 138
Concentration and temperature trajectories for CasélBobjec-

tive J,. The solid lines are trajectories corresponding to the four
control strategies studied, the dashed lines are the ojtiajpacto-

ries, and the shaded region indicates the inequality cainsi(5.4)

corresponding to the control strategies. 139

Database employed for Case 2 and objecfjvia B2B and NMPC-
B2B control strategies. 160
Database employed for Case 3 and objecfjva B2B and NMPC-
B2B control strategies. 160
Database employed for Case 2 and objecijia B2B and NMPC-

B2B control strategies. 161



LIST OF FIGURES

XiX

7.4

7.5

7.6

7.7

7.8

Database employed for Case 3 and objecija B2B and NMPC-
B2B control strategies.

Result of B2B control strategy for Case 2 and objective(a) to
(d) are the concentration trajectories and the shadedmregiows
the constraints on the concentration; (e) to (h) are the ¢eatpre
trajectories. Solid line: B2B control, dashed line: optimmantrol.
Result of NMPC-B2B control strategy for Case 2 and object;:
(@) to (d) are the concentration trajectories and the shaelgdn
shows the constraints on the concentration; (e) to (h) aeeim-
perature trajectories. Solid line: NMPC-B2B control, deghine:
optimal control.

Comparison of; values obtained by the B2B)Yand NMPC-B2B

161

162

163

(A) control strategies for Case 2. The insets show the congdrai

violation for B2B control strategy in batches 5 to 8.

Result of B2B control strategy for Case 3 and objeciive(a) to
(d) are the concentration trajectories and the shadednegjiows
the constraints on the concentration; (e) to (h) are the ¢eatpre

trajectories. Solid line: B2B control, dashed line: optimantrol.

164

165



LIST OF FIGURES

XX

7.9 Result of NMPC-B2B control strategy for Case 3 and object;:
(a) to (d) are the concentration trajectories and the shaelgdn
shows the constraints on the concentration; (e) to (h) areetmn-
perature trajectories. Solid line: NMPC-B2B control, dadhine:
optimal control.

7.10 Comparison of; values obtained by the B2B)Yand NMPC-B2B

166

(A) control strategies for Case 3. The inset shows the congdrai

violation for B2B control strategy in batch 2.

7.11 Result of B2B control strategy for Case 2 and objecfive(a) to
(d) are the concentration trajectories and the shadednegjiows
the constraints on the concentration; (e) to (h) are the ¢eatpre
trajectories. Solid line: B2B control, dashed line: optimmantrol.

7.12 Result of NMPC-B2B control strategy for Case 2 and dbjed,:
(a) to (d) are the concentration trajectories and the shaelgdn
shows the constraints on the concentration; (e) to (h) aeeim-
perature trajectories. Solid line: NMPC-B2B control, deghine:
optimal control.

7.13 Comparison oP, values obtained by the B2B)Yand NMPC-B2B
(A) control strategies for Case 2.

7.14 Comparison of;, values obtained by the B2B)Yand NMPC-B2B

(A) control strategies for Case 3.

167

168

169

170

170



LIST OF FIGURES XXi

7.15 Result of B2B control strategy for Case 3 and objecfive(a) to
(d) are the concentration trajectories and the shadednegjiows
the constraints on the concentration; (e) to (h) are the ¢eatpre
trajectories. Solid line: B2B control, dashed line: optim@antrol. 171
7.16 Result of NMPC-B2B control strategy for Case 3 and dbjed,:
(a) to (d) are the concentration trajectories and the shaelgdn
shows the constraints on the concentration; (e) to (h) aeeim-
perature trajectories. Solid line: NMPC-B2B control, deghine:

optimal control. 172



Nomenclature

a; 1, Qi 2, ;3 Parameters for the saturation concentration of the

i-form crystals

Q412 Roe speed

B; Nucleation rate of the-form crystals

C Solute concentration

Coat.i Saturation concentration of tlidorm crystals

dy, Unmeasured disturbances

o(+) Dirac delta function

E,F Residuals matrices

Ey Activation energy for the growth rate afform
crystals

Er, Prediction errors in terms of thie, norm

E[] Expected value

€ Vector of slack variables

f System dynamics function

XXii



NOMENCLATURE

fis fseed,is fnucl,i

kbou kgou kda

kog.js kgp.j

L, Lo

L y)

Ly

Total, seed, and nucleated crystal size distribution

of thei-form crystals

Growth rate of the-form crystals
Measurement function

The jth step response coefficient

Linear and nonlinear constraints for the system
The jth impulse response coefficient

Thekth cell

Smoothness indicator

Kalman gain

Nucleation, growth, and dissolution rates @f
form crystals

The jth nucleation and growth rates gFform
crystals

Pre-exponential factor for the growth rate of
form crystals

Volumetric shape factor of thieform crystals
Characteristic length of crystals and nuclei
Likelihood of 6

Characteristic length of crystals at th¢h dis-

cretized point



NOMENCLATURE

XXIV

AL

Ai (k)

nucl

P,
Iusﬁe%d
Hin

Hseed,i

N)atent
Ny,

Ty

0.Q

Oy,

Discretization size of crystal length

Scaling factor for the seed crystal size distribution
of i-form crystals

The third moment of the nucleatgdform crystals
The third moment of the seed gfform crystals
Thenth moment of the-form crystals

Mean for the seed crystal size distribution ief
form crystals

Total samples in a batch

Number of time samples ofi® variable in
Bayesian inference

Number of measured variables in Bayesian infer-
ence

Total number of values drawn from the second
halves for all the chains

Number of the latent variables used in PLS
Number of inputs

Number of system states

Number of measured variables

Matrices of loadings foX andY

L, self convergence order



NOMENCLATURE

XXV

P, P,
Py

P,

Pr
Pr(0)

Pr(y | 0)

La,k—1

Taly

Dh+1/2, Dk—1/2

Scalar weight to each candidate sterstjl for the

flux approximation

Predicted and desired final product quality

The first product quality: mass gfform crystals
The second product quality: ratio of the nucleated
crystal mass to the seed crystal massidbrm
crystals

Probability function

Prior distribution of?

Sampling distribution (or data distribution) for
fixed parameterg

Augmented states covariance at the previous sam-
pling time

Predicted cross-covariance matrix between the
augmented system states and the measured vari-
ables

Numerical flux approximation at nodet 1/2 and
k—1/2

Flux limiter

Quadratic polynomial flux approximation func-

tion



NOMENCLATURE

XXVi

Pi

Psolv

Oseed,i

Xik—1

o
Xik—1

T

Tmina Tmax

HC’S

Hmina emax

Potential scale reduction factors

Density of thei-form crystals

Density of the solvent

Matrices of scores foK andY

Supersaturation of thieform crystals

Candidate stencil

Standard deviation of the measurement noise in
the ;" variable

Standard deviation for the seed crystal size distri-
bution ofi-form crystals

Scaled sigma points

Unscaled sigma points

Crystallizer temperature

Minimum and maximum temperatures due to the
limitation of water bath heating/cooling
Approximated samples from the target distribu-
tion

A vector of unknown parameters of interest
Simulation draws of parametéfrom step chain:

at steps

Minimum and maximum values o&f



NOMENCLATURE

XXVil

Up, k+i
Uk ufc
OUp 14
U

W au, Way

Wau, Wau

W

X, Y

Predetermined future control scenario
Process inputs

Optimizing future control actions
Noise on the measured variables
Weight matrices which penalize excessive
changes in the input variable which occur
within-batch and inter-batch in the B2B control
strategy
Weight matrices which penalize excessive
changes in the input variable which occur within-
batch and inter-batch in the NMPC-B2B control
strategy

Weight matrix for the product quality in NMPC
strategy

Weight matrix for the change in input variables in
NMPC strategy

Scalar weight corresponding to the final product
quality in B2B/NMPC-B2B control strategy

Noise on the system states

Database matrices for PLS model

Augmented system states



NOMENCLATURE

XXVili

&k

Tk
y

Yjiks Z?jk

Yk

Zb,k+i

J
“p.k

Rk+i

Rl ki

J
AZpls,k

Noise on the unmeasured disturbances

System states at thi¢h sampling instance
Collected data which is used to infér
Measurement and predicted value;8f variable
at sampling instanck, respectively

Measured variables

Part of z;,; calculated using the nonlinear model
and predetermined sequengg, ;;

Part of zi calculated using the first-principles
model with nominal model parameters

Process variable of interest

Process variable of interest at sampling instant
and batchy

Part ofz, ; calculated using impulse response co-
efficient

Part of2 calculated using the PLS model



Abbreviations

ATR-FTIR Attenuated total reflection Fourier transform in-
frared

B2B Batch-to-batch

BMPC Batch model predictive control

C-control Concentration control

CLD Chord length distribution

CSD Crystal size distribution

DE Differential evolution

DE-MC Differential evolution Markov chain

EKF Extended Kalman filter

ENO Essentially non-oscillatory

EPSAC Extended predictive self-adaptive control

FBRM Focused beam reflectance measurement

FD2 Second-order finite difference

FVM Finite volume method

XXiX



ABBREVIATIONS

XXX

HR
ILC

JSHWENO

KF
LOCWENO
LTV

MCMC
MPC
NMPC

NMPC-B2B

ODE
PBE
PBM
PCR
PDE
PLS

PSD

Q-ILC

High resolution

lterative learning control

Jiang and Shu’s version of WENO with Henrick
mapping

Kalman filter

Liu et al's version of WENO

Linear time varying

Markov Chain Monte Carlo

Model predictive control

Nonlinear model predictive control

Integrated nonlinear model predictive control and
batch-to-batch

Ordinary differential equation

Population balance equation

Population balance model

Principal component regression

Partial differential equation

Partial least squares

Particle size distribution

Quadratic criterion-based iterative learning con-

trol



ABBREVIATIONS XXXI

QDMC Quadractic dynamic matrix control

QP Quadratic programming

QPLS Quadratic partial least squares

SL-QDMC Quadractic dynamic matrix control with succes-

sive linearization

T-control Temperature control

TVD Total diminishing variation

UKF Unscented Kalman filter

uT Unscented transformation

WENO Weighted essentially non-oscillatory

Wpower-ENO Weighted power ENO method

XRD X-ray diffraction



Chapter 1

Introduction

1.1 Motivation

Crystallization is one of the oldest unit operations andais the most utilized
purification technique in pharmaceutical industries. let,fanost pharmaceutical
manufacturing processes include a series of crystaltimgtrocesses where their
product quality is often associated with the crystal finaifdsuch as crystal habit,
shape and size distribution). Unfortunately, despitedtsylhistory, crystallization
process is still not very well understood as it involves maagnplex mechanisms
(e.g., fine dissolution, agglomeration, growth dispers&t) in addition to the main
ones (i.e. nucleation and growth). This makes controllingtallization process
very challenging.

Recently, there is a rapid growth of interest in polymorphi$, 30, 42, 132,

172]. Itis a phenomenon that a substance can have more teamymtal form. This
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phenomenon was first observed in 1798 by Klaproth. He digedvihe calcium
carbonate polymorphs, namely, calcite and aragonite. @9 ,18stwald concluded
that almost every substance can exist in two or more solidgsharovided the
experimental conditions are suitable. According to OstvgaRule of Stages, in
a polymorphic system, the most soluble metastable formalwhys appear first,
followed by the more stable one.

The appearance of metastable phases is associated wittMihenenental con-
ditions at the time of precipitation and as a result it is ofisiderable importance
in biomineralization, diagenesis and synthetic induktiemistry. In the latter
context, metastable solid phases are commonly encouniernbe production of
specialty chemicals such as pharmaceuticals, dyestuffspasticides. Deliber-
ate isolation of these phases is sometimes effected becéhtiseir advantageous
processing or application properties. In other cases, Wexehe formulation of a
product as a metastable phase may be unacceptable becagesefuent phase
transformation and crystal growth, which could occur dgriorage and result in
product degradation [21].

Morris et al. [111] stated that unexpected or undesiredmolphic transforma-
tion of pharmaceutical is not uncommon during manufactgprocesses including
crystallization process. For example, in 1998, Abbot labanies withdrew its HIV
drug, Ritonavir, because of the unexpected appearance @vanystal form that
had different dissolution and absorption characteridtims the standard product.

The two crystal forms, which have the same molecular stracture distinguished
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by the way in which the molecules are packed within the ctystnd each has
distinct physical and thermodynamic properties [6]. Inidd, to highlight the

importance of polymorphism in the pharmaceutical indysimg U.S. Food and
Drug Administration (FDA) has tightened regulations fomndrug applications to
ensure that the drugs contain only the desired polymorph.

The variations in physical properties such as crystal shegiability, hardness,
colour, melting point, and chemical reactivity make polyptasm an important is-
sue for the food, speciality chemical and pharmaceutichlstries, where products
are specified not by chemical composition only, but also leyr tberformance [6].
As a result, controlling polymorphism to ensure consisfgotuction of the de-
sired polymorph is very crucial in those industries, inghgddrug manufacturing
industry where safety is of paramount importance.

Encouraged by the importance of polymorphism in pharmacauhdustries,
this study investigates the modelling, simulation, andiicof polymorphic crys-
tallization of L-glutamic acid, which consists of the meétdde«-form and the sta-

ble 5-form crystals.

1.2 Contributions

The main contributions of this thesis in the area of modg|lsimulation, and con-

trol of polymorphic crystallization process can be sumaedias follows:

(1) Process model can facilitate the determination of ogitioperating condi-
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(@)

tions and speed up process development in pharmaceutitedtires. In this
study, a kinetic model of L-glutamic acid polymorphic ciftization is de-
veloped from batch experiments with in-situ measuremerdisiding atten-
uated total reflection Fourier transform infrared (ATR-RYIspectroscopy
which is used to infer the solute concentration and focusedhbreflectance
measurement (FBRM) which provides crystal size infornmati®ayesian in-
ference is employed to obtain the posterior distributiontfee model para-
meters, which can be used to quantify the accuracy of moeeéligirons and
can be incorporated into robust control strategies fortatlyzation process
[114]. Furthermore, the developed kinetic model appeaisetthe first to
include all of the transformation kinetic parameters idahg dependence on
the temperature, compared to past studies on the modellibg&Gutamic

acid crystallization [115, 139].

Numerical simulation of the developed model is impatriarthe investiga-
tion of the effects of various operating conditions on thé/pmrphic crys-
tallization and can be used for optimal design and contrd| [B30, 139].
Therefore, it is indispensable to select an efficient anficseifitly accurate
computational method for simulating the model to ensurd#taviour of the
numerical solution is determined by the assumed physiaatiptes and not
by the chosen numerical method. In this study, high-ordenemical simu-

lation techniques based on the weighted essentially nofiaisry (WENO)



CHAPTER 1. INTRODUCTION 5

3)

(4)

methods are investigated and shown to give better computdtefficiency
compared to the high resolution (HR) finite volume method argkcond-
order finite difference (FD2) method to simulate the modebalymorphic

crystallization of L-glutamic acid developed in this tresi

The two most popular control strategies implementedan-polymorphic
crystallization processes have been the temperatureatdmtcontrol) and
concentration control (C-control) strategies. In thigigtihese control strate-
gies are implemented in the polymorphic transformatiorcess using the
model developed in this thesis. Simulation studies showTw@ntrol is not
robust to kinetics perturbations, while C-control perferaery robustly but

long batch times may be required.

Model predictive control (MPC) strategy is widely recazed as a pow-
erful technique to address industrially important conpodblems. How-
ever, its implementation to crystallization processesleen rather limited
[35, 79, 113, 131, 155] and there is no published result onrtiemen-
tation of MPC or nonlinear MPC (NMPC) to a polymorphic cryktation,
which is more challenging for a number of reasons. Firstpiiese equilib-
ria and crystallization kinetics are more complicated.d®el the method of
moments heavily used in past control algorithms for cryig&tion processes
does not apply during a polymorphic transformation, so thatfull PDEs

need to be solved. As a consequence, the computation timeeddgncreases
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considerably which prohibits the straightforward apgii@aof nonlinear pro-
gramming. In this study, a practical NMPC strategy basedxbeneled pre-
dictive self-adaptive control (EPSAC) [32, 34, 70, 134, L1B6developed
for the polymorphic transformation of L-glutamic acid fraime metastable
a-form to the stable3-form. To implement the proposed NMPC strategy,
an unscented Kalman filter (UKF) [74—78] is utilized to esttenthe unmea-
surable states. Compared to the T-control, C-control, araticatic matrix
control with successive linearization (SL-QDMC), the NMBt@ategy shows
good overall robustness while satisfying all constraimtsyeanipulated and

state variables within the specified batch time.

(5) Exploiting the fact that batch processes are repetitiveature, it is possible
to implement batch-to-batch (B2B) control to the polymaeptrystalliza-
tion process considered in this study, which uses infolwnatiom previous
batches to update the process model in order to iterativatypcite the op-
timal operating conditions for each batch. However, dueht dpen-loop
nature of batch-to-batch control, this optimal policy i4 mplemented un-
til the next batch. As a result, when the process model isrgitlaccurate,
which is likely the case in the first few batches, it is possithlat the input
or/and output constraints will be violated. Therefore hiis study we propose
an integrated nonlinear model predictive control and b&debatch (NMPC-

B2B) control strategy based on a hybrid model. The hybrid @admpris-
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ing the nominal first-principles model and a correction dadtased on an
updated partial least square (PLS) model is utilized to iptdtie process
variables and final product quality. In the proposed NMP@Bantrol strat-
egy, the NMPC performs online control to handle the constsaeffectively
while the batch-to-batch control refines the model by leagriiom the previ-
ous batches. Simulation studies show that the proposed NBEECcontrol
strategy produces faster and smoother convergence astiesadll the state
constraints, compared to the standard B2B control stratagyhermore, the
learning process in both B2B and NMPC-B2B control strateg@unteracts

the plant-model mismatch effectively after several batche

1.3 Thesis Organization

This thesis is organized as follows. In the next chaptenrdiure review on the fun-
damental of crystallization and the recent developmeni®htodelling, simulation,
and control of crystallization process is presented. Girepresents the modelling
of the L-glutamic acid polymorphic crystallization, folled by the investigation on
the high-order simulation of polymorphic crystallizationChapter 4. The control
strategies which includes the temperature control (Tvobpntconcentration con-
trol (C-control), nonlinear model predictive control (NI, and batch-to-batch
control strategies are discussed in Chapters 5 to 7. Fjralyclusions from the

present work and suggestions for the future work are givéshiapter 8.



Chapter 2

Literature Review

This chapter discusses the fundamental of crystallizatioich includes the defini-
tion, driving force, mechanism, and polymorphism. Subsedtjy, the recent devel-

opment on the modelling, simulation and control of crystation is reviewed.

2.1 Crystallization fundamentals

Crystallization is a supramolecular process by which armtde of randomly or-
ganized molecules, ions or atoms in a fluid come togetherto &n ordered three-
dimensional molecular array which is called crystal [29y<Gallization is indis-
pensable in drug manufacturing as it is the main separatidmparification process.
Not only does crystallization affect the efficiency of doweam operations such as
filtering and drying, the efficacy of the drug can be dependenthe final crystal

form [42].
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To understand crystallization process, it is importantriow the key elements

of crystallization which are discussed next.

2.1.1 The driving force for crystallization

As with any chemical rate process, crystallization is a &mprocess which is
driven by concentration. However, in crystallization, ttcentration range over
which the process can occur is limited by the equilibrium position of the sys-
tem corresponding to the conditions chosen [29]. FiguresBdws a hypothetical
solubility curve. A solution whose composition lies beldwetsolubility curve is
undersaturated and existing crystals will dissolve. A sotulying above solubility
curve is termed supersaturated, since the amount of dextghiute is greater than
the equilibrium saturation value. Crystals can nucleategaow only if the solution
is supersaturated and so the production of a supersatwgalgiibn is a prerequi-
site for crystallization. Supersaturation is typicallgated by cooling, evaporation,
and/or addition of antisolvent, including changing the pyduldition of acid or
base.

There is a region above solubility curve called metastableez In this zone,
though existing crystals will grow, it is difficult to createew crystals. Once this
zone is exceeded, new crystals form spontaneously and bgosois now labile

[29].
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Figure 2.1: Solubility diagram.

2.1.2 Nucleation

The process of creating a new solid phase from a supersaduraimogeneous phase
is called nucleation. Nucleation mechanisms are commantypkd into one of
two categories: primary and secondary nucleation, and eduarther classified as

shown in Figure 2.2 (adopted from [128]).

Nucleation

[ I I I ]
Contact with
Homogeneous Heterogeneous External
Surface

tal- tal - " D iti
Crystal-Crysta Initial Breeding Fracture endnAlc
Contact Separation

Figure 2.2: Nucleation mechanism.

Mechanism of formation of crystal that is independent ofgghesence of other

suspended crystals is classified as primary or spontanemlsation. Primary nu-
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cleation is associated with high levels of supersaturaiwhis usually partitioned
as homogeneous nucleation, which occurs in the pure bulkisn| and heteroge-
neous nucleation, which is induced by foreign surfaces agdmpurities.

Classical thermodynamic free energy minimization is useddrive the rate
of homogeneous nucleation [163]. This theory postulatespioduction of em-
bryos from the combination of solute molecules in a serigsrablecular reactions.
The free energy of the embryos achieves a maximum at a ¢sima particular to
the chemical system. Once an embryo exceeds this critizal #ie free energy
decreases with further growth, leading to spontaneouseatioh. The very high
supersaturation required to overcome interfacial tens&ween embryo and solu-
tion makes homogeneous nucleation an unlikely mechanismrystal formation
for most chemical systems under industrial conditions |53)].

Foreign surfaces and particles promote nucleation as dt r@san ordering
process caused by interactions across the interface [T6®.result of this catal-
ysis is that primary heterogeneous nucleation can occuusrsaturation levels
significantly lower than required for homogeneous nuateesind is, therefore, the
dominant mechanism of primary nucleation when impuritrespgesent. Neverthe-
less, the supersaturation levels of heterogeneous niatiese often still too high
for good crystal growth and production of crystals of ddsdeamorphology [27].
Also, classical theory suggests that primary heterogenaaaleation is character-
ized by a process that is either starved for nuclei or ovelnvéeé by a burst of new

crystals [27], making Crystal Size Distribution (CSD) aahdifficult.
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Secondary nucleation describes the nucleation that tdkes due to the pres-
ence of other solute crystals. It always accompanies pyimacleation and is the
dominant mechanism in most industrial crystallizations4&, 124]. Secondary
nucleation is more easily controlled than primary nucteatnd occurs at super-
saturation levels conducive to good crystal quality. Treeeea variety of proposed
mechanisms whereby the crystals promote formation of ngstals. For exam-
ple, Botsaris [8] postulated two questions: what are thecssuof the potential
nuclei, and how are the potential nuclei extracted from therce and displaced
into the bulk solution to initiate new crystals. Proposedrses of potential nuclei
include protrusions from growing crystal surfaces, solttesters on or near the
crystal surface, and embryos in the supersaturated solugeveral mechanisms
for the conversion of potential nuclei into nuclei have bperposed which include
spontaneous removal of dendrites due to free energy drfeirng, fluid shear, and
contact nucleation resulting from the contact of crystatk &n external surface or
other crystals [8, 27, 73, 125, 152].

The variety and complexity of the mechanisms of secondagjeation have
forced researchers to use the simplified modeling of nuoledty assuming an
empirical functional form. The following expression is caoronly used to describe

secondary nucleation:

B° = kyexp(—FEy/T) S, (2.1)
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wherek,, b, E,, andj are considered to be empirical constaptsjs the k£* mo-
ment of the CSD, and is the relative supersaturation definedsas- Ca—ctt The
temperature effect o®° is complicated and some kinetic studies show that nu-
cleation can actually decrease with increasing tempegxatumich corresponds to a
negative activation energy [46]. A common hypothesis f@g tbservation is that
higher temperature leads to increased growth rates, imglyreater efficiency of
molecular diffusion on and integration into crystal sudscthus, fewer potential
nuclei are available for secondary nucleation [60]. Néwdgss, evidence suggests
thatb is independent of temperature [46] and Arrhenius-typeesgion is probably

adequate for characterizing temperature dependence.

2.1.3 Growth

As soon as stable nuclei (i.e. particles larger than thizatize) have been formed
in a supersaturated or supercooled system, they beginwoigto crystals of visi-
ble size. At the microscopic level, solute molecules moving the bulk solution
adsorb on the crystal solid surface and are incorporatedtive crystal lattice. A
well-defined, smooth crystal face is planar and new soluteeocutes must migrate
across the surface to find energetically favorable incaifpam sites [128]. Three
such potential sites are shown in Figure 2.3 (adopted frd28])1 Site A is ther-
modynamically unfavorable compared with B, a step site ax Kipk site. Surface
adsorption and diffusion determine whether a solute mddeisuincorporated into

the crystal or returns to the bulk phase [128].
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Figure 2.3: Crystal incorporation sites: flat faces (A)pssées (B), and kink sites
(C).

Many attempts have been made to explain the mechanism amafratystal
growth, which can be classified into three categories, ngriseirface energy’, ‘dif-
fusion’ and ‘adsorption-layer’ theories [112].

The surface energy theories are based on the postulatioibbs @1878) and
Curie (1885) that the shape a growing crystal assumes igvthiah has a minimum
surface energy. This approach, although not completelnddozed, has largely
fallen into disuse. The diffusion theories originated byyl® and Whitney (1897)
and Nernst (1904) presume that matter is deposited contghyion crystal face at a
rate proportional to the difference in concentration bemvehe point of deposition
and the bulk of the solution. In 1922, Volmer suggested tingtal growth was
a discontinuous process, taking place by adsorption, laydayer, on the crystal
surfaces [112].

For engineering purposes, the semiempirical power law éesrbe the standard

representation of the growth rate, which assumes the follgp¥orm,

G = kyexp(—E,/RT)L% 59 . (2.2)
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wherek,, g1, g2, andE,, are empirical constants.

Note that the temperature dependencezohas been incorporated using an
Arrhenius-type expression. Also notice that the growtle iatdependent on the
crystal size () by power law. Ifg; = 0, G is size-independent and this assumption
is usually referred to as McCabe’sL law. However, there are several examples of
systems that violate this assumption [17, 20]. Size-depeingrowth rate is usu-
ally attributed to either bulk diffusion effects or the G#slbhomson effect, which
suggests an increasing growth rate with increasing sizausecof an inverse rela-
tionship between solubility and size [128]. Garside et 4b] [presents a theory of
size-dependent surface integration kinetics.

Modeling of growth rate is further complicated by a phenooreknown as
growth rate dispersion. It describes the situation in whictall of the crystals grow
at identical or constant rates although the crystallized@mons remain constant. A
more detailed discussion regarding growth rate dispersaonbe found in [48, 71,

125, 126, 164, 176].

2.1.4 Polymorphism

The ability of a material to crystallize into more than ongstal form is known as
polymorphism. Polymorphs of a given compound can have wideferent prop-
erties such as dissolution rate, bioavailability, meltpognt, hardness and electrical
properties. As a result, polymorphism is important in tharpiaceutical industry

where safety and reliability are of paramount importandee Tinexpected appear-
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ance of a second polymorphic form of an active pharmacdutigeedient used for
the treatment of HIV, with substantially different disstitun and absorption charac-
teristics, highlights the importance of polymorphism ie ffharmaceutical industry
[6]. Realizing the importance of polymorphism, the U.S. &#@md Drug Admin-
istration (FDA) has tightened regulations for new drug aaions to demonstrate
control over the manufacturing process [16, 142].

In the chemical and pharmaceutical industry, the demandhifgr yields and
high production rates has forced chemists and engineerperate processes far
from equilibrium, such that it exacerbates the tendencyptamfpolymorphic struc-
tures. Hence, itis important to investigate the stabilftgach polymorph at a given

temperature, pressure, and composition.
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Figure 2.4: Solubility curves in polymorphic systems.

The relative stability of each polymorph is reflected by efative solubility,
with the more stable polymorph having the lower solubility.polymorphic sys-

tems, phase diagrams (i.e. solubility curves) are foundfilarito one of the two
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categories shown in Figure 2.4: Monotropic in which the treéastability of the
polymorphs are independent of temperature, and Enangiotio which the rela-
tive stability of the polymorphs are temperature depen{9ijt

The kinetic processes involved in phase transitions betwes/morphs depend
largely on the extent of structural changes involved [29}oPpossible transforma-

tions are

(1) Solvent-mediated (reconstructive) transformationwhich the metastable

phase dissolves while the stable phase renucleates and fymwsolution.

(2) Solid state (displacive) transformation, in which raatlon and growth of
the new phase take place in crystals of the unstable phash t&unsitions
are often reversible when the temperature is raised andéalrterough the

transition temperature

Solvent-mediated transformation often involves a lowdivation energy than a
solid state transformation. Consequently, the formenisried to occur well below
melting point and therefore its kinetic mechanism is widedgd in pharmaceutical

industries.
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2.2 Recentdevelopmenton the modelling, simulation,

and control of crystallization

2.2.1 Modelling

Together with the crystal morphology, the crystal sizeribstion (CSD) produced
within crystallizer is of crucial importance in determigithe ease and efficiency
of subsequent solid-liquid separation steps, the suitalof crystals for further
processing, their caking and storage characteristicstl@ndventual customer ac-
ceptance of the product [29]. The most common way of trackigCSD is by
making use of population balance equations [125], whiclerles the material bal-
ance that accounts for the distribution of different siaestals in the crystallizer.

For simplification, most batch crystallization studieshe titerature only con-
sider nucleation and growth kinetics (i.e. no agglomeratind dendritic growth)
and ignore shape changes. For non-polymorphic systemsintipdified population
balance equation for one dimensional growth in a well-mixath process is given
below:

or 0

o (G S T0.)) = BU.S.Ti,)d(L), 23)

whereas for polymorphic systems:

of; 0 . 0 : =
815 + a_L (Gz(Lza Sia Ta egl)fz) + 8L (DZ(La Slv T, edl)fl) -
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Bi(fia SZ', T, 0b1)5(L) s (24)

whereT is the temperature§ is the supersaturatiorf; (f) is the number density
of polymorphi (crystals),L is the crystal’s characteristic siz€; (G) is the growth
rate of polymorph (crystals),D; is the dissolution rate of the polymorphB; (B)
is the nucleation rate of polymorplcrystals) is the Dirac delta functiorf,; (6,),
04, andby,; (6,,) are vectors of growth, dissolution and nucleation kinpicameters
of polymorphi (crystals), respectively.

The modelling of one dimensional and multidimensional poh/morphic crys-
tallization based on population balance equations has theenssed frequently in
the literatures [54, 66, 67, 105, 109, 128, 158, 161]. Kosetif polymorphic trans-
formation process have been estimated by various procefte 136, 137, 171],
and weighted least squares method is commonly applieditbastthe model para-
meters [18, 40, 115, 139]. Although the papers by Ono et ab][and Scholl et al.
[139] are major contributions to the field of polymorphic stgllization, the effect
of temperature variation was neglected and the parametartamties were not
reported in these two papers. This motivates this studyveldp a more compre-
hensive model which includes the effect of temperatureatian and the marginal
distributions of the kinetic parameters.

While weighted least squares methods are adequate for malolgpms, Bayesian
inference (which will be employed in this study) is able tolude prior knowledge

in the statistical analysis which can produce models witihér predictive capa-
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bility. In addition, the resulting posterior distributidor the estimated parameters
can be used to accurately quantify the accuracy of modelgireas and can be in-
corporated into robust control strategies for crystalicmaprocess [114]. Although
Bayesian inference is not within the standard toolkit foertical engineers, there
have been many applications to chemical engineering probt@/er the years in-
cluding the estimation of parameters in chemical reactiodefs [9], heat transfer
in packed beds [38], microbial systems [7, 28, 117], and oglgctronics processes

[53].

2.2.2 Simulations

Numerical simulations of the resulting model enable thestigation of the effects
of various operating conditions and can be used for optirasigh and control [64,

130, 139]. Solving population balance equations is pdgrtyichallenging when

the PDEs are hyperbolic with sharp gradients or discortigsiin the distribution

[148]. Standard first-order methods require a very smatl gide in order to reduce
the numerical diffusion (i.e., smearing), whereas stashdagher order methods
introduce numerical dispersion (i.e., spurious oscdlas), which usually results in
a crystal size distribution with negative values. Theref@fficient and sufficiently
accurate computational methods for simulating the pojudtalance equations
are required to ensure the behaviour of the numerical solugidetermined by the
assumed physical principles and not by the chosen numenietidod.

There have been many papers on the numerical solution ofigtogubalance



CHAPTER 2. LITERATURE REVIEW 21

models (PBMs). The method of moments approximates thalision by its mo-
ments [69], which under certain conditions, converts thpenlgolic PDEs into a
small number of ordinary differential equations (ODESs)tttl@scribe characteris-
tics of the distribution. The method of moments does notyappPBEs which do
not satisfy moment closure conditions. The method of weidésiduals approxi-
mates the size distribution by a linear combination of bagistions [147], which
results in a system of ODEs. For most practical crystalbzres, a large number of
basis functions is needed to approximate the distributiich results in high com-
putational cost. The Monte Carlo method tracks individuatiples, each of which
exhibits stochastical behaviour according to a proballimodel [15, 58, 123].
This approach is too computationally expensive for mostigtdal crystallizations.
Another problem-specific numerical method for solving dapan balance equa-
tions is the method of characteristics [83, 121]. This méthmlves each population
balance equation by finding curves in the characteristie-8me plane that reduce
the equation to an ODE. While the method is highly efficienewlkhe kinetics are
simple, the approach does not generalize to more completi&sn Most publica-
tions on numerical methods for solving PBEs involve varityses of discretiza-
tions and go by a variety of names including “method of classad “discretized
population balance equations” [65, 82, 100, 101, 118]. ten¢ years there have
been several efforts to reduce the numerical diffusion amderical dispersion for
distributions which contain sharp gradients or disconties, which is common in

batch crystallizations. High resolution finite volume nuh (FVMs) popular in
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astrophysics and gas dynamics [56, 92, 93, 116, 153] wesneéegt to the appli-
cation of multidimensional population balance equatids fL04, 119, 120, 166].
A typical implementation applies a first-order method naacaehtinuities or sharp
gradients and a second-order method everywhere else, vdsahts in less numer-
ical dispersion than the second-order method and less mahdiffusion than the
first-order method [52].

In recent years, new high order finite difference methods t@en developed in
the field of computational physics that are designed to thptreat discontinuities
by upwinding in the vicinity of a discontinuity while maintang high order accu-
racy in smooth regions. Among those methods are the eslbeniam-oscillatory
(ENO) finite difference methods [57]. A generalization amdgpical improvement
of these very successful schemes is the weighted ENO (WENshads. In this
study, various WENO methods [61, 72, 99, 141] are considinesdolving popu-
lation balance models. The performance of these WENO metagcompared to
the high resolution (HR) finite volume method and a secorntdofinite difference

(FD2) method, for the polymorphic crystallization modeVeeped in this thesis.

2.2.3 Control

The vast majority of papers on non-polymorphic crystatliamahave considered the
optimal control of only one or two characteristics of thesta} size distribution,
such as weight mean size. The most widely studied approdctietermine a tem-

perature profile (hominal T-control) that optimizes an cohjee function based on
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an offline nominal model [66, 86, 128, 167, 174]. Then, thiagerature profile

is used as the recipe during the crystallization processe &pproach to imple-
ment this control strategy is to parameterize the tempegdime trajectory into

piecewise linear functions with temperature values at spoiets of time as the
decision variables. Then, optimization is carried out taimize/maximize a spec-
ified objective function. Although T-control is simple to lement, it has become
well-known in recent years that T-control can be very sarestb variations in the

kinetic parameters resulting from plant-model mismat@) [133].

This motivated the development of robust T-control [36, ,1029]. This ap-
proach is similar to the nominal T-control, with the objgetfunction explicitly in-
cludes the impact of uncertainties while determining thénog@l temperature-time
trajectory to be followed during batch operation. One apphoto include the im-
pact of uncertainties is through the worst-case analysisygworst-case parameter
vector and an initial estimate of performance degradatasetl on a Taylor series
expansion that describes the local behavior about the radtnajectory is computed
first. Then, a nonlinear dynamic simulation is used to comple improved esti-
mates. The difference between the initial and final estimptevides an indication
as to the accuracy of the Taylor series expansion in cagptting process dynamics
in the vicinity of the control trajectory. These guantiwatiestimates can be used
to decide whether more laboratory experiments are needptbthuce parameter
estimates of higher accuracy, or to define performance tgscfor lower-level

control loops that implement the optimal control trajegtfd03].
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With advances in sensor technologies, another contraégyaleveloped to pro-
vide improved robustness to model uncertainty is C-conwbich follows an op-
timal or nearly optimal concentration-temperature trigc[41, 42, 50, 97, 133,
175]. There are two common approaches in implementing tieer@-ol, namely,
the first-principles approach and the direct-design aggroan the former ap-
proach, a model constructed from material and energy baessane used to optimize
an objective function, in which the decision variables cosgs the parameters
of the concentration-temperature trajectory parametgom. Then, the resulting
concentration-temperature trajectory is used as the isgtipo the lower-level con-
trol loop during the crystallization process. On the othandh the latter approach
does not require any kinetics model and determines a subaptioncentration-
temperature trajectory within the metastable zone as ttpwise to be followed
during the crystallization process. In many experimental simulation studies of
non-polymorphic batch crystallizations, the C-controastgy has resulted in low
sensitivity of the product quality to most practical distances and variations in
kinetic parameters. Recently, the C-control strategy & applied to polymor-
phic crystallizations to produce large crystals of anydele polymorph [80] and to
ensure maximum productivity in polymorphic transformatjwrocess [64]. In this
thesis, both T-control and C-control strategies will belegabto the polymorphic
crystallization process model developed in this study. dditgon, their resulting
control performance will serve as benchmark for the othetrob techniques de-

veloped in this thesis.
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Despite the high impact of model predictive control (MPCY,[B4, 44, 62,
110, 122, 127] in academic research and industrial pradtgapplication to solu-
tion crystallization processes has been rather limited 785 113, 131, 155]. One
contribution considered the effects of uncertainties @xdbsed-loop performance
of nonlinear model predictive control (NMPC) applied to stallization processes
[113]. As in many other papers, the method of moments waetiilto simplify
the population balance equations which are partial diffeegjuations (PDES) to a
set of ordinary differential equations (ODES) in terms @& thoments. The NMPC
optimization problem was solved using nonlinear prograngaind the states were
estimated using an extended Kalman filter (EKF). To the aigtkoowledge, there
is no published result on the implementation of NMPC to palypiic crystalliza-
tion, which is more challenging for a number of reasons.tRine phase equilibria
and crystallization kinetics are more complicated. Sectmeimethod of moments
heavily used in past control algorithms for crystallizatgrocesses does not apply
during a polymorphic transformation, so that the full PDEgdto be solved. As a
consequence, the computation time required increasegleoalsly which prohibits
the straightforward application of nonlinear programmifig alleviate this short-
coming, a practical NMPC control strategy for the polymacpirystallization will
be developed in this thesis.

Recognizing that the system under study is a batch procéssh vg repetitive in
nature, it is possible to utilize the information from theyious batches to improve

the control performance from batch-to-batch (batch-tiwibaontrol). The key idea
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of batch-to-batch control is to improve the transient resgoperformance of an
unknown/uncertain system that operates repetitively avigxed time interval by
using the previous actual operation data to compensatentmrtainty [2]. Though
batch-to-batch control strategy has been widely studietajor chemical processes
such as polymerisation process [26, 37, 169], rapid thepmuadessing [88], and so
on, the application to crystallization processes has nehldeund. This serves
as a motivation to investigate the implementation of batebatch control to the

polymorphic crystallization process under study.



Chapter 3

Modelling the Crystallization of

L-glutamic Acid Polymorphs

3.1 Introduction

In this chapter, a kinetic model of L-glutamic acid polymioig crystallization
is developed from batch experiments with in-situ measurgsnmcluding atten-
uated total reflection Fourier transform infrared (ATR-RJIspectroscopy to in-
fer the solute concentration and focused beam reflectanesurement (FBRM)
which provides crystal size information. Kinetics of polgrphic transformation
have been estimated by various procedures [21, 136, 137, 1&Xkommonly
used method to estimate model parameters in nonlineargsocedels is weighted
least squares [3, 4, 106], which has been applied to polymorgrystallization

[18, 40, 115, 139]. While weighted least squares methodsadeguate for many

27
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problems, Bayesian inference is able to include prior keoge in the statistical
analysis which can produce models with higher predictivyeabdity. Although
Bayesian inference is not within the standard toolkit ofrafeal engineers, there
have been many applications to chemical engineering probtever the years in-
cluding the estimation of parameters in chemical reactiodets [9], heat transfer
in packed beds [38], microbial systems [7, 28, 117], and oglgctronics processes
[53].

Quantifying uncertainties in the parameter estimatesgsired for assessing
the accuracy of model predictions [109, 114]. When weigltedt squares meth-
ods are used for parameter estimation, the widely used apipes to quantify un-
certainties in parameter estimates are the linearizetststatand likelihood ratio
approaches [5]. In the linearized statistics approachptbeéel is linearized around
the optimal parameter estimates and the parameter umtdgriairepresented by
a x? distribution. This model linearization can result in higlhaccurate uncer-
tainty estimates for highly nonlinear models [5], and thapmach ignores physical
constraints on the model parameters. The likelihood ragr@ach, which is the
nonlinear analogue to the well-known F statistic, takeslinearity into account
but approximates the distribution [5], and ignores comstsaon the model parame-
ters. This study applies a Bayesian inference approacmttainly avoids making
these approximations but also includes prior informatianrdy the estimation of
parameter uncertainties.

In this study, the parameters in a kinetic model for L-glutaacid polymor-



CHAPTER 3. MODELLING THE CRYSTALLIZATION OF L-GLUTAMIC
ACID POLYMORPHS 29

phic crystallization process are determined by Bayesiamaton. The probability
distribution of process model parameters is defined thranglBayesian posterior
density, from which all parameter estimates of interesy.(eneans, modes, and
credible intervals) are calculated. However, the conesati approach to calculate
the above estimates often involves complicated integifalseoBayesian posterior
density which are analytically intractable. To overcomss tfrawback, Markov
Chain Monte Carlo (MCMC) integration [47, 98, 157] was apglito compute
these integrals in an efficient manner. MCMC does not recpprroximation of
the posterior distribution by a Gaussian distribution [28, 85]. This posterior
distribution for the estimated parameters can be used toraiety quantify the ac-
curacy of model predictions and can be incorporated intagsbbontrol strategies
for crystallization process [114].

This chapter is organized as follows. The next section dessrthe experi-
mental procedure to obtain measurement data for paramsieragéion. A short
review of Bayesian theory and MCMC integration is in SecBoB. In Section 3.4,
the L-glutamic acid crystallization model is described émelparameter estimation

results discussed. This is followed by the conclusions.

3.2 Experimental methods

The crystallization instrument setup used was similar & tiescribed previously

[41]. A Dipper-210 ATR immersion probe (Axiom Analytical)ith ZnSe as the
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Table 3.1: L-glutamic acid aqueous solutions used for catiibn.
Concentrationg/g of water] Temperature rangéecC]

0.00837 351021
0.01301 481013
0.01800 o710 32
0.02300 64 to 34
0.02800 64 to 45

internal reflectance element attached to a Nicolet Proté@eFI IR spectropho-
tometer was used to obtain L-glutamic acid spectra in agusolution, with a

spectral resolution of 4m~!. The chord length distribution (CLD) for L-glutamic
crystals in solution were measured using Lasentec FBRMexied to a Pentium

[l running version 6.0b12 of the FBRM Control Interface tyedre.

3.2.1 Calibration for solution concentration

Different solution concentrations of L-glutamic acid (99%gma Aldrich) and de-
gassed deionized water were placed in a 500-ml jacketeddfrbatiom flask and
heated until complete dissolution. The solution was themlembat 0.5°C/min
while the IR spectra were being collected, with continudirsisg in the flask using
an overhead mixer at 250 rpm. Table 3.1 lists the five diffesefution concentra-
tions used to build the calibration model.

The IR spectra of aqueous L-glutamic acid in the range 148Bdm ! and the
temperature were used to construct the calibration mod&dan various chemo-
metrics methods such as principal component regressioR)YR@d partial least

squares regression (PLS) [159]. The calculations wergechout using in-house
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MATLAB 5.3 (The Mathworks, Inc) code except for PLS, whichssfeom the PLS
Toolbox 2.0. The mean width of the prediction interval wasdias the criterion to
select the most accurate calibration model. The noise lgaslselected based on
the compatibility of the prediction intervals with the acacy of the solubility data.
The chemometrics method forward selection PCR 2 (FPCR 3] [dés selected
because it gave the smallest prediction interval; usingisenievel of 0.001, the
prediction interval (0.73 g/kg) was compatible with thewwecy of this model with

respect to solubility data reported in the literature [115]

3.2.2 Solubility determination and feedback concentratia con-
trol experiments

The commercially available L-glutamic acid crystals weegified to be pures-
form using powder X-ray diffraction (XRD) and were used fbe tdetermination
of the g-form solubility curve. Purex-form crystals obtained using a rapid cool-
ing method outlined previously [115] were used to deterntlirgey-form solubility
curve in similar fashion as thg-form in a separate experiment. For each poly-
morph, the IR spectra of L-glutamic acid slurries (satutasand with excess crys-
tals) were collected at different temperatures rangingnf2& C to 60°C. The slurry
was equilibrated for 45 minutes to 1 hour at a specified teatpex before recording
the IR spectra. The solution concentration was then cdkilasing the aforemen-

tioned calibration model. The resulting solubility measuents for L-glutamic acid



CHAPTER 3. MODELLING THE CRYSTALLIZATION OF L-GLUTAMIC
ACID POLYMORPHS

32

Table 3.2: Solubility data for L-glutamic acid polymorphs.

Temperature®C]  Solubility of a-form [g/kg]  Solubility of 5-form [g/kg]
25 10.5971 8.5434
30 13.1599 9.7362
35 15.8004 12.4257
40 19.1689 13.7163
45 23.3185 17.0729
50 27.0364 19.8722
55 31.7768 23.3904
60 36.8028 27.7567

40
e CSat « (experimental)
351 x Co, 8 (experimental)
Csam (quadratic polynominal fitting) o
30 — Cyp (quadratic polynominal fitting)
=) va |
S 25f T
2 © g
'.g) 20 o P x~
B X -
15+ ) - ~
Lo x -
T
525 3‘0 3‘5 4‘0 4‘5 5‘0 5‘5 60

Temperature (° C)

Figure 3.1: Solubility curves of L-glutamic acid polymogph

polymorphs are tabulated in Table 3.2 and Figure 3.1 comsghremeasurements

to their quadratic polynomial fitting.

In the seeded batch crystallization experiments, apprtgamounts of L-glutamic

acid (99%, Sigma Aldrich) in 400 g of water was heated to aBbddtabove thes-

form saturation temperature in a 500-mL jacketed roundelboflask with an over-

head mixer at 250 rpm, to create an undersaturated solufioa.crystallizer was
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then cooled and seed crystals (either pwrer 5-form) were added when the solu-
tion was supersaturated with respect to the seeded fornfer&ift supersaturation
setpoint profiles were followed during crystallization ed®n in-situ solution con-
centration measurement as described previously [41]. ©h&d algorithm was

started shortly after seeding.

3.3 Review of Bayesian inference

3.3.1 Bayesian posterior

Bayesian inference is the process of fitting a probabilitydeido a set of data
and summarizing the results by a probability distributiontloe parameters of the
model and on unobserved quantities such as predictionei@oiservations [47].
The fundamental difference between Bayesian and tradit&tatistical methods is
the interpretation of probability. Classical methodspdtaown as the frequentist
methods, perceive probability as the long-run relativgudency of occurrence de-
termined by the repetition of an event. A Bayesian methodeees probability
as a guantitative description of the degree of belief in @giproposition [14, 28].
With this interpretation of probability, the Bayesian mathallows a practitioner to
account for prior information in a statistical analysis.

Furthermore, Bayesian inference facilitates a commoseénterpretation of
statistical conclusions. For instance, a Bayesian creditierval for an unknown

guantity of interest can be directly regarded as having & bigbability of con-
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taining the unknown guantity, in contrast to a frequentistf@ence interval, which
may strictly be interpreted only in relation to a sequencsiwiilar inferences that
might be made in repeated practice. A brief introduction &y&sian inference is
given below. Interested readers are referred to referdthide82, 47] for a thorough
discussion.

The main substance of Bayesian inference is Bayes' rule:

Pr(y|0)Px(6)

Pr(fly) = Prly)

(3.1)

whered is a vector of unknown parameters of interest gsnmdpresents the collected
data which is used to infé. These data usually consist of observed state variables
(e.g., concentration) at different time pointBr(6) is the prior distribution of,
Pr(y|0) is referred as the sampling distribution (or data distidnjtfor fixed pa-
rameters). When the datg are known and the parametérare unknown (i.e., as
parameter estimation), the tef(y|0) is referred as the likelihood function and
denoted ad.(f]y). Pr(d]y) is referred as the Bayesian posterior distributior ,of
andPr(y) = [ Pr(y|f)Pr(6)df acts as a normalizing constant to ensure that the
Bayesian posterior integrates to unity. This constantss ahlled marginal like-
lihood or Bayes factor. For the inference @fthe Bayes factor can be omitted

since it does not affect the the resulting posterior diatidn of ¢, which yields the
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unnormalized posterior distribution:
Pr(0|y) oc L(6|y)Pr(0) . (3.2)

In this study, it is assumed that the model structure is cgreend the measure-
ment noise is distributed normally with zero mean and unkneariance. Then the

likelihood is of the form

L(fly) = L(Oys cly)

Nm Ndj

= H H Pl"(yjk|05ysa U)

j=1k=1

j ~ 2
_ HH 1 exp _(?/jk yjl;(esyS))
. vV 271'0']' 20j
Nm, Ndj ~ 2
1 Yjk — Yj Hs S
T | S = T e
H (\/%cr]) j =1 k=1 J

J=1

wheref = [0y, o]" is the vector of parameters of interest which consist of sys-
tem/model ¢s,s) and noise €) parametersy;, andy;; are the measurement and
predicted value oft" variable at sampling instandég respectively)N,, is the num-
ber of measured variabled];, is the number of time samples ¢f* variable, and
o; is the standard deviation of the measurement noise ifi‘theariable.

The prior distributionPr(#) can be informative or non-informative, depending
on the prior knowledge of. The most commonly used non-informative prior is

Pr(0) o< 1. However, this is an improper prior distribution, sinceiitgegral is in-
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finity, and may lead to an improper posterior distributioheTuse of an informative
prior distribution is preferred, for example, a prior dilstition which specifies the

minimum and maximum possible valuestois

1 lf emin S ‘9 S emax
Pr(0) (3.4)

0 otherwise,

which means that all values éfbetweerd,,;, andé,,., have equal probability. In
cases where the prior distribution is available from pashpeter estimation stud-
ies, the distribution is not uniform [53]. A detailed dissien regarding informative
and non-informative priors can be found in the literatui@, A2, 47].

The product of the likelihood and prior distribution defirthe Bayesian poste-
rior, which is the joint probability distribution for all pameters after data have been
observed. Once the Bayesian posterior is defined, it isal@sito determine the
mean, mode, and credible intervals associated with eadteqgfarameters. Markov
chain simulation, also called Markov Chain Monte Carlo (MCMis employed for

that purpose in this study.

3.3.2 Markov chain simulation

Markov chain simulation draws values@from approximate distributions and then
corrects these values to better approximate the targeibdigson. In this case, the

target distribution is the Bayesian posterior. The samatesdrawn sequentially,
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with the distribution of the sampled values depending orldkevalue drawn. The
Markov chain is a sequence of random variatsfe®', . . ., for which, for anys, the
distribution of 9**! given all previous)’s depends only on the most recent value,
05. The key to the method’s success, however, is not the Markapgoty but rather
that the approximate distributions are improved at eaghistthe simulation, in the
sense of converging to the target distribution.

In the application of Markov chain simulation, several plat@hains are drawn.
Parameters from each chaifg“®, s = 1,2, 3, ..., are produced by starting at some
point 6<% and then, for each sten drawing#=**! from a jumping distribution,
T,(6°*1|6>*) that depends on the previous drad#:. The jumping probability
distributions must be constructed so that the Markov chanverges to the target
posterior distribution.

The Metropolis algorithm [108] is a simple algorithm to ctrmst a Markov
chain which converges to the posterior distribution. Thgathm is an adaptation
of a random walk that uses an acceptance/rejection rulenizecge to the specified
target distribution. In the Metropolis algorithm, the wiglesed approach to create
the next step of the chain 6“°», is to perturb the current step of the chéirt by
adding some amount of nois#(» = 0“° + ¢), wheree is distributed normally with
zero mean and covariance matrix However, specifying the covariance matrix can
be challenging. This covariance matrix needs to be chosendh a way so as to

balance progress in each step and a reasonable acceptandepaorly chosen co-

*For further information on Markov chains, readers are reféto other literature [47, 98].
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variance matrix may cause slow convergence. Traditioniddéycovariance matrix
is estimated from a trial run and much recent research istddvo ways of doing
that efficiently and/or adaptively [55]. If parametérare highly correlated, special
precautions must be taken to avoid singularity of the esgchaovariance matrix.

Recently, there has been a development in combining ewvolarty algorithms
with MCMC. [11, 87, 95, 96]. Among others, the combinatiorddferential evo-
lution (DE) with MCMC is particularly interesting. BehindBis an evolutionary
algorithm for numerical optimization; its combination wiMCMC (shortened as
DE-MC [11]) solves an important problem in MCMC, namely tb&thoosing an
appropriate scale and orientation for the jumping distrdou(i.e., related to the co-
variance matrix: in the Metropolis algorithm). In DE-MC, the jumps are simply
fixed multiple of two random parameter vectors that are culyen the population,
and the selection process of DE-MC works via the usual Metispatio which de-
fines the probability with which a proposal is accepted. Maigd by its efficiency
and effectiveness, DE-MC is utilized to construct the Markbains ofé in this
study.

Constructing the Markov chains is one step. Next is to momite convergence
of the chains in order to decide how many samples need to bexted or when to
stop the MCMC simulation. Too few samples will result in aadnurate distribu-
tion of the parameteré. Here, potential scale reduction factofs Y were adopted
to monitor the convergence of the Markov chains [47], whistineate the potential

improvement in the Markov chain estimation of the respectt parametep; if
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the Markov chain simulation were continued. This poterdcale reduction factor

is calculated from the following equations:

Var+(0|Y)i

R, = _ 3.5
W, (3.5)
~A 4 n—1 1
vart (fly); = W:+ —B;, (3.6)
n n
n = — —~\2
B, = 0. e
; m_lczl(ez 0:)" (3.7)
1 —,
Wi = —> (d), (3.8)
c=1
e 1 . c,S
0 = ﬁzlei : (3.9)
_ 1 & -
0, = EZ@g, (3.10)
c=1
c\2 1 - c,s ne\ 2
(d)? = n_1z(8i —6%)", (3.11)

s=1

whered;”’ is the simulation draws of parameterom step chain: at steps, B; and
W, are the between- and within-sequence variances of paraietspectivelym
is the number of parallel chains, with each chain of lengtiThe potential scale
reduction factor decreases asymptotically @sn — oo. OnceR; is near 1 for all
1, it is safe to stop the simulation.

To summarize, the following is the procedure for constngtMarkov chains

using DE-MC with the potential scale reduction factor asstepping criterion:

(1) Draw starting parameters for all chairs (¢ = 1,...,m), from a start-

ing distribution or choose starting parameters from dispegwvalues around a

fAccording to Gelman et al. [47], a value below 1.1 is acceptab
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crude approximation of the parameters.

(2) Ateach step, create a proposed vdltie according to the jumping rule

3)

gcse — o8 + ~ (031,8 _ 03278) +e, (312)

wheree is drawn from a symmetric distribution with a small variaromsm-
pared to that of the target, but with unbounded support,(e.g N (0, )¢
with b small,b = 10~* is utilized in this study) Ny is the number of parame-
ters ind, 0fv* and#’2* are randomly selected without replacement from all
chains at step, and~ is a scaling constant with typical values betwéeh
and1. From the guidelines in the literature [11], the optimal ickoof -y is
2.38/y/2Ny. This choice ofy is expected to give an acceptance probability

of 0.44 for Ny = 1, 0.28 for Ny = 5, and 0.23 for largeV,.

Calculate the ratio of the posterior densities,

_ Pr(0°°rly)

r=—=———"x. 3.13
Pr @Ty) 849
and obtairg***! from
0% with probability min{r, 1}
0ot = (3.14)

0<%  otherwise.
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(4) For each parametércalculate the potential scale reduction fadpby Egs.
(3.5) to (3.11). IfR; < 1.1foralli = 1,2,..., N, stop the iteration and

construct the matrix

o - 6
Q{VS . 9%2

where© contains the approximated samples from the target disioiband
N, is the total number of values drawn from the second halveslfahe

chains.

Otherwise, ifR; > 1.1 for anyi, sets = s + 1 and go to Step 2.

3.3.3 Monte Carlo integration

In the previous sections, the Bayes posterior was define@ amethod for drawing
samples from it was described, from which a matixvas generated. Here, the
significance of this matrix is described through its use fcwalating the desired
properties of the Bayes posterior.

In order to calculate any properties of the Bayes posteitias, necessary to

evaluate integral

Omax
Blro) = [ so)rely)i, 316
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where E[-] is the expected valugf(6) is a function for which the expected value
is to be estimated. Conventionally, this integration capédormed analytically if
the resulting function inside the integral operator is danplowever, the Bayesian
posteriors most often have irregular forms such that aicalyintegrations become
infeasible. In such situations, it is suitable to performr#oCarlo integration [47,

98, 157] which utilizes the matri® obtained in the previous section:

1 I
BlfO) = Jim Z cy
1
v Z f(6" for large N, (3.17)
5 =1
whereg = [6},65,. .., 6}, ] is arandom sample drawn from the Bayesian posterior

which is obtained from thé&" row of matrix ©. For example, the mean of each
parametep); is obtained by setting(¢') = ¢' in Eq. (3.17).

It is also desirable to obtain the marginal mode and creditikrval for each
parameter. Conventionally, this is done by drawing samiptes the marginal pos-
terior for each parameter and analyzing their histogranmgrevthe marginal pos-
terior is calculated by integrating the Bayes posteriohw@spect to all parameters

except the desired parameter as follows

Gl,max Gj,max eN@,max
Pr(0i|y):/€ /0 /9 Pr(0:,...,0;,....0n,y)

1,min J,min Ng,min
-~ do; - doy, .

(3.18)
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wherej # ¢ andPr(0;|y) is the marginal posterior @f;. By taking advantage of
the MCMC approach, this integration is not required sina gamples from the
marginal posterior of; are given by thé" column of the matri>®. The marginal
mode off; was estimated by determining the highest peak in the hiatogrof
the marginal posterior. Finally, th&% credible interval ofY; was estimated by
determining the range & which have cumulative marginal distribution between

2.5% t097.5%.

3.4 L-glutamic acid crystallization model

A kinetic model for the crystallization of metastabldorm and stablgi-form crys-
tals of L-glutamic acid is developed. This appears to be tis¢ inodel for poly-
morphic crystallization that includes all of the kinetiopesses, and also includes
their dependence on the temperature. An earlier model fesistem did not in-
clude the nucleation and growth kinetics @fform crystals [115]. An improved
model which includes those kinetics [139] only considerathary heterogeneous
nucleation, which only applies when the crystallizatioreiher starved of nuclei
or overwhelmed by a burst of new crystals, and hence noteglpé to industrial
practice [27]. To develop a model amenable for industriglliaption, secondary

nucleation is considered in this study.
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3.4.1 Kinetic model

The mass balance on the crystals is described by a popukstiance equation [69]

ofi | 9(Gifi)
ot oL

= BO(L - Ly),i=a,3 (3.19)

where f; is the crystal size distribution of theform crystals[#/m?] (i.e., a- or
p-form crystals),B; andG; are the nucleatiofi#/m?s] and growth ratgm/s| of
the-form crystals, respectively, and L, are the characteristic size of crystais
and nucleim], respectively, and(-) is a Dirac delta function.

For parameter estimation, the method of momiewtss applied to Eq. (3.19) to

give

dpiio

Y~ B, 3.20
o (3.20)
d’;j;" nGilin—1 + B;LE, n=1,2 ..., (3.21)

where theath moment of the-form crystalg# mm=3] is given by

[l = / L"f,dL . (3.22)
0

iThe approach applies for the experimental conditions mghidy in which data were collected
during nucleation and growth. The full population balangeation (3.19) is used under conditions
in which dissolution occurs.
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The above equations are augmented by the solute mass halance

dC 103
= __3
dt Psolv

(pakvaGaMa,Q + pﬁkaGﬁMﬁ,Q) > (323)

whereC'is the solute concentratidg/kg], ps.1v is the density of the solvefitg /m?],
p: is the density of the-form crystalskg/m?], &, is the volumetric shape factor of
thei-form crystals (dimensionless) as definedby- %,; L3, whereu; is the volume
of thei-form crystal[m?], and10? is a constanig/kg] to ensure unit consistency.

The kinetic expressions are

B, = kba(sa - 1)”0&,3 (324)
(a-form crystal nucleation rate)

kga(Sa — 1)%  if S, > 1
G, = (3.25)

kdo(Se — 1) otherwise

(a-form crystal growth/dissolution rate)

Bs = kg1 (Sp—1) pra3 + kes2(Ss— 1) pg3 (3.26)

(6-form crystal nucleation rate)

Gy = kg (55— 1) exp (—%) (3.27)

(6-form crystal growth rate)

whereS; = C/Cqy; andCye i = a; 1T + a;2T + a; 3 are the supersaturation and

the saturation concentratigg/kg| of thei-form crystals, respectively, aridis the
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solution temperatur@C]. The kinetic parameters,,, k,., andk,, correspond to
the nucleatiori# /m?s|, growth [m/s], and dissolutiorim/s] rates ofa-form crys-
tals, respectively, wheredss ; andk,s ; correspond to thgth nucleation# /m?s|
and growth[m/s] for j = 1 and dimensionless for = 2 rates ofg3-form crystals,
respectively, ang; is the growth exponent of theform crystals which may have a
value between (for diffusion-limited growth) an@ (for surface integration-limited
growth) [107]. The Arrhenius equation was used to accounttfe variability of

crystal growth rate with temperature:

E
Lok _ go 3.28
go 9“’°eXp< 8.314(T+273))’ (3.28)
Eys
Kap1 = Kgpoexp <_8.314(73+ 273)) ’ (3.29)

wherek,; o andE,, are the pre-exponential facton/s] and activation energy /mol]
for the growth rate of-form crystals, respectively. The values for densitied; vo
umetric shape factors, and parameters for the saturatioceotration are in Ta-
ble 3.3.

Secondary nucleation is assumed for bettand-form crystals, since it is the
dominant nucleation process in seeded crystallizatioma?y nucleation is not in-
cluded in the model since it is negligible compared to thesdary nucleation. The
nucleation rate expression (3.25) and the second term i(ER7) were adapted
from that reported in the literature fgrcrystals for L-glutamic acid [115]. We have

introduced the first term in Eq. (3.27) to model the nucleatb 5-form crystals
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Table 3.3: Values for densities, volume shape factors, atdation concentration
parameters.

Parameters Values
Psolv 990
Pa 1540
kva 0.480
ks 0.031
(o1 8.437 x 1077
Ao 2 0.03032
(a3 4.564
a1 7.644 x 1073
a3 —0.1165
ass 6.622

from the surface ofv-form crystals. The growth rate expression for tiidorm
crystals includes both growth (positive supersaturatamd dissolution (undersatu-
ration). Dissolution occurs during the polymorphic tramsiation ofa- to 5-form
crystals, wherew-form crystals dissolve ang-form crystals nucleate and grow. As
reported in the literature [115, 139], the dissolution kice cannot be estimated
accurately from polymorphic transformation experimeatsthe growth rate of-
form crystals is limiting. Thus the simple form of dissotutirate with exponential
factor of 1 was used with,, determined by a correlation equation based on mass
transfer-limited dissolution, as reported in the literat[139]. The growth rate ex-
pressions for both- and 5-form crystals are also adopted from the literature [81],
except that the exponential term for théorm crystals is omitted in this study as it

had a negligible effect on the model fitness to the data.
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3.4.2 Parameter estimation

Before parameter estimation is carried out, the measuradbles are discussed
first. The various in-situ sensors that have become availtdyl crystallization
processes have removed or reduced sampling of the crystay sluring crystal-
lization and reduced the amount of pharmaceutical needeéafth batch experi-
ment. The two in-situ measurements utilized in this studyew&TR-FTIR spec-
troscopy which infers the solute concentration and FBRMcWiprovides crystal
size information throughout the batch. Inferential modeglwas used to construct
a calibration curve to relate the FTIR spectra to the solotecentration, using
procedures described elsewhere [158, 160]. FBRM measweahbrd length dis-
tribution (CLD), which is not the same as the crystal sizeritigtion (CSD) that
appears in the models in the previous section.

The CSD can be computed from the CLD under certain assungpft@) 135,
146, 154]. For some systems, the square-weighted chordhleves found to be
comparable to laser diffraction, sieving, and electri@lssng zone analysis over
the range ob0 — 400 um [59]. Although the aforementioned methods are able to
estimate the CSD from CLD successfully for some systemghté@y behind these
methods require many assumptions, including that thegbestperfectly backscat-
ter light at all angles and that shape of the crystals is knodlthough these as-
sumptions are true for many particulate systems (such aslnpolymer beads with

a rough surface in water at low-to-moderate solids dersgi68]), the assumptions
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are not accurate for other particulate systems includirgsystem studied here
which has crystals with a similar refractive index as thaisoh (and hence poor
backscattering properties). Due to the limited time andrplageutical quantity
available in the early-stage of batch crystallization desit is typically not pos-
sible to carry out the extensive studies to verify the asgionp and to determine
the effects of non-ideality of the assumptions on the aayudd the estimates of
the CSD from the CLD. Furthermore, computing the CSD fromGh® when as-
sumptions such as perfect laser backscattering do not figkillian open problem
[135, 161].

An alternative approach is to use the low-order moments @fGhD directly
[54, 161] without first estimating the CSD from the CLD. Thigaoach replaces
the first-principles model for the CSD with a gray-box modelthe CLD, in which
the structure of the first-principles model for the low-ardeoments of the CSD
is used to parametrize the low-order moments for the CLD Jj1@he reasoning
behind this particular gray-box model is that the mappintyveen the CLD and
the CSD is static (most of the aforementioned mapping metlasdume that the
mapping is actually linear), so the low order moments of th®Ghould follow the
same dynamic trends as the low-order moments of the CSD. @t tlimitation
of the FBRM precision, the zeroth moment was not used becaB&M would
undercount the very small crystals. On the other hand, ibtsadlvisable to use
moments with order higher than two because higher order mtavege sensitive

to low-sampling statistics of the large crystals [54]. Imstbtudy, the first-order
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moment was used. As with any model [5], this study assesgeapplicability of
this gray-box modelling by quantifying the accuracy of thieekic parameters and
the model’s predictions.

The experiments are categorized into two sets, namebgeded and-seeded

experiments. The seed crystal size distribution was apmabed as a normal dis-

tribution
fi(L,0) = fseea,i (L) = o A exp ——( 9 — 7i)2 (3.30)
' ’ s O seed,i SQGGd,i ’ .

with the parameters\(, ogeed,i» @Ndjiseeq ;) IN Table 3.4. The time series for the tem-
perature, first-order moment of tlidorm crystals, and solute concentration for all
experiments are shown by the solid lines in Figures 3.2Fov all the-seeded ex-
periments, there is no apparent formatiomefbrm crystals at the end of all batches
(Table 3.4): As a result, the kinetic parameters féfform crystals were indepen-
dently obtained from thg-seeded experiments, exceptfgs ,, which accounts for
the nucleation ofj- from a-form crystals. Onev-seeded experiment was operated
at a high enough temperature that a measurable quantityfaim crystals nucle-
ated and grew (Experiment 3 in Table 3.4), so there would loeigminformation
content in the data fak,s; to be estimated. This experimental design enabled the
kinetic parameters fgs-form crystals to be obtained before determining the kineti

parameters fon-form crystals.

§Samples were taken at the end of all batches and XRD was uskedeionine the crystals form
purity.



CHAPTER 3. MODELLING THE CRYSTALLIZATION OF L-GLUTAMIC
ACID POLYMORPHS 51

The nucleation and growth kinetics@fands-form crystals have ten parameters
to be estimated, fourk(,, ks.0, 9o, Ega) COrresponding to the kinetics afform
crystals and sixys.1, kis.2, kg5.0, kg2, 93, E43) corresponding to the kinetics of
G-form crystals. In relation to the notation defined in Sett®3, the measured
variablesy and parameters of intereétfor each set of experiments are defined
in Table 3.5, where;, 0,,, ,, 0., are the noise parameters for théorm crystals.
The prior distributionPr(#) came from a preliminary parameter estimation that
was carried out using maximum likelihood techniques asrdssd in Miller and
Rawlings [109], which resulted in a normal distribution &ch parameter. These
were modified forg, andgs according to Eq. (3.4) to limit their values between 1
and 2. The resulting marginal probability distributionsfdfrom «- and 5-seeded
experiments are in Figures 3.8 and 3.9, respectively. Wdalae of the marginal
probability distributions could be approximated by a ndrmatribution, others
are not. These distributions can be directly inserted iht.s¢ model predictive
control and other control algorithms that have been desigonensure robustness
to stochastic parameter uncertainties [114]. The meandem@an®5% credible
intervals for the model parameters based on their margnobigbility distributions
are in Table 3.6. Figures 3.2-3.7 compare the temperatwstepfider moment of the
i-form crystals, and solute concentration trajectoriesinied from experimental
data and those predicted through simulation using the mf@néoned mean values
as the model parameters.

It is well-known that concentration data alone are not sigfficto character-
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ize nucleation [109]. The small uncertainties in the nunbeakinetic parameters
indicate that the first-order moment of the FBRM providedwggioinformation to
characterize the nucleation kinetics. The small range énuthcertainties for the
activation energies indicates that the temperature ramge 24 to 55C in the ex-
periments was large enough to enable activation energiesastimated. The rather
large uncertainty i, o is mainly due to the large correlation coefficient of 0.993
betweenk,, , and £,,, where a small change if,, necessitates a larger change
in kyq0 to ensure the resultink,, in Eq. (3.28) is of the same order of magnitude.
Similar reasoning explains the large uncertaintyjp,, with the correlation coef-
ficient betweerk,s, and £,3 equal to 0.997. The growth exponent for thidorm
is near 2, which indicates that theform growth rate is surface integration-limited,
whereas that for thg-form is near 1, suggesting that theform growth rate is
diffusion-limited. Unlike past studies that quantified artainties in the kinetic
parameters for crystallization processes [109, 161], tlayais in this study ex-
plicitly takes into account hard theoretical bounds on thieies for the parameters.
In particular, the application of the linearized analyssediin past papers would
have resulted in a confidence interval that included valdies; o< 1, whereas the
Markov Chain simulation approach takes the lower bound oftd account during
the statistical analysis (see Figure 3.9d).

To assess the predictive capability of the resulting ma@ther pair of exper-
iments (i.e., onex- and oneS-seeded experiment) were carried out with the seed

distributions in Table 3.7. The trajectories of the tempew first-order moment
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of thei-form crystals, and solute concentration trajectoriesioied from experi-

mental data and those predicted through simulation aréeplat Figures 3.10 and
3.11. As can be seen from those figures, the predictive dyadfithe model is

sufficiently accurate for use in process design and corifta. solute concentration
predicted by the model are quite close to the measured smuatentration in both
validation experiments, with the differences between tiegelicted and experimen-
tal first-order moment being comparable to or smaller thandifferences in the
model and experimental first-order moments in the experisnesed for parame-
ter estimation (compare Figures 3.10 and 3.11 with Figur2s3¥). The biases
observed in the model predictions for the first-order monadrthe i-form crys-

tals could be due to the FBRM undercounting very small argklarystals, which

would cause a different time-varying bias in different exments.

Table 3.4: Seed crystal size distribution data and theypafit:-form crystals at the
end of batch£,).

No. Seed Size Mass i Oseed.i [seed,i Tq
[um]  [g/kg] [m] x 10° [m] x 10°

180 — 250 0.613  8.227 x 107 8.608 214977  ~1.000

75—180 0.613 3.877 x 10® 12.127 127.269  ~ 1.000

75—180 0.592 3.731 x 10° 12.115 127.427 0.924

40 — 270 4.900 2.483 x 1019 27.289 155.069  ~ 0.000

40 — 270 3.225 1.630 x 1019 27.989 155.017 =~ 0.000

40 — 270 2972 1.501 x 101%  28.131 155.004 =~ 0.000

o B WN
DR L LR
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Table 3.5: Definition of measured variablgsand interested parametegtdor o-
andg-seeded experiments.

Seed o7 yT
«a [ln(k:ba), In(kya,0), Gor IN(Eya ), (kg 1), In(0ca ), In(oy, . ), ln(axa)} [C, thav1s T
ﬁ [ln(kbﬁﬁ)? ln(kgﬁﬁ)v ln(kgﬁ,Q)v 9s; ln(Egﬁ)v hl(O'cg), ln(auﬁ 1 )] [Cv M@l]

Table 3.6: The model parameters determined from paramstieraion.
Parameters mean mode  95% credible interval
In(kpa) 17.233  17.213 17.083t017.377
In(kgao0) 1.878  1.778 0.801t02.912
Ja 1.859  1.860 1.77510 1.944
In(Eyq) 10.671 10.671 10.612t0 10.725
( ) 15.801 15.796 15.758 t0 15.842
(kpg2)  20.000  20.000 19.961 to 20.036
In(kys0) 52.002 52426  50.745t053.322
(ky2) —0251 —0.251 —0.311to—0.197
9z 1.047 1.016 1.002to 1.143
In(Eyp) 12.078  12.076 12.060 to 12.097

Table 3.7: Seed crystal size distribution data and theyafit-form crystals at the
end of batch,) for model validation.
No. Seed Size Mass i Tseed i Hseed,i T
[pm]  [g/kg] [m] x 10° [m] x 10°
V1 « 75— 180 0.613 3.877 x 10° 12.127 127.269 =~ 1.000
V2 3 40-270 3.060 1.547 x 10  28.081 154.978 = 0.000
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3.5 Conclusions

A model of polymorphic crystallization of L-glutamic acigghich consist ofa-
and -form crystallization, has been developed. The detaileétics model takes
into account the temperature dependence of the crystaliykinetic parameters,
compared to past studies on the modelling of L-glutamic agydtallization [115,
139]. In addition to providing point estimates of the kiegtarameters, a Bayesian
inference approach is used to determine a detailed margiobability distribution
for each parameter. The marginal probability distribusiari the parameters can
give practitioners insight regarding the parameter uaggties and are of significant
value to develop robust control strategies for the cryigttibn process [114].
Although this study considers a specific polymorphic cijigition, the same
parameter estimation method can be applied for crysttithiasin which many nu-
cleation and growth rates occur simultaneously, or wherethee no prior literature
data or estimates for the model parameters. The detailg oftbleation and growth
rate expressions may be different, depending on the phatisolute-solvent sys-
tem. With multiple polymorphs in the crystallizer, impralvparameter estimates
would be obtained by including polymorph ratio measuremetained from in-

situ Raman spectroscopy in Eg. (3.3) [150].



Chapter 4

High-order Simulation of

Polymorphic Crystallization

4.1 Introduction

Numerical simulations for polymorphic crystallizationsadle the investigation of
the effects of various operating conditions and can be usedgdtimal design and
control [64, 130, 139]. Solving population balance equsics particularly chal-
lenging when the patrtial differential equations (PDES) layperbolic with sharp
gradients or discontinuities in the distribution [148].a&dard first-order methods
require a very small grid size in order to reduce the numkdifasion (i.e., smear-
ing), whereas standard higher order methods introduce ncahéispersion (i.e.,
spurious oscillations), which usually results in a crysiaé distribution with neg-

ative values. Efficient and sufficiently accurate compotal methods for simu-

66



CHAPTER 4. HIGH-ORDER SIMULATION OF POLYMORPHIC
CRYSTALLIZATION 67

lating the population balance equations are required tarertee behaviour of the
numerical solution is determined by the assumed physicatiptes and not by the
chosen numerical method.

There have been many papers on the numerical solution ofigtogubalance
models. The method of moments approximates the distribuijoits moments
[69], which under certain conditions, converts the hypecbBDESs into a small
number of ordinary differential equations (ODES) that diésccharacteristics of
the distribution. The method of moments does not apply toufasjpn balance
equations (PBEs) which do not satisfy moment closure camdit The method
of weighted residuals approximates the size distributiprablinear combination
of basis functions [147], which results in a system of ODEsr most practical
crystallizations, a large number of basis functions is edetb approximate the
distribution, which results in high computational cost. eTMonte Carlo method
tracks individual particles, each of which exhibits stastial behaviour accord-
ing to a probabilistic model [15, 58, 123]. This approachos tomputationally
expensive for most industrial crystallizations. Anotheslgem-specific numerical
method for solving population balance equations is the otethf characteristics
[83, 121]. This method solves each population balance equby finding curves
in the characteristic size-time plane that reduce the emuab an ODE. While
the method is highly efficient when the kinetics are simples &pproach does
not generalize to more complex kinetics. Most publicationsnumerical meth-

ods for solving PBEs involve various types of discretizasi@nd go by a variety
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of names including “method of classes” and “discretizedypaipon balance equa-
tions” [65, 82, 100, 101, 118]. In recent years there have Isegeral efforts to re-
duce the numerical diffusion and numerical dispersion fstrthutions which con-
tain sharp gradients or discontinuities, which is commobatch crystallizations.
High resolution finite volume methods (FVMs) popular in eptrysics and gas dy-
namics [56, 92, 93, 116, 153] were extended to the applicationultidimensional
population balance equations [52, 104, 119, 120, 166]. Acalpmplementation
applies a first-order method near discontinuities or shaagignts and a second-
order method everywhere else, which results in less nualetispersion than the
second-order method and less numerical diffusion thantstedider method [52].
This study considers a class of numerical algorithms knosvmveighted es-
sentially non-oscillatory (WENO) methods which were depeld for especially
accurate simulation of shock waves and provide much higieeraccuracy than
the previously considered methods for solving populatiaiatce models (PBMs).
Three WENO methods are considered: Liu et al's version of \WENOCWENO)
[99], Jiang and Shu’s version of WENO with Henrick mappinGHHWENO) [61,
72], and the weighted power ENO method (Wpower-ENO) [141jeSe WENO
methods are compared to the high resolution (HR) finite velumethod and a
second-order finite difference (FD2) method, for polymacpdnystallization of L-
glutamic acid under conditions in which the distributiomtains sharp gradients.
In the next section, the five numerical methods are discuasddollowed by the

discussion of simulation results. Then, conclusions apgiged.
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4.2 Numerical methods

In order to monitor the CSD of both seeded and nucleatedadsyst is convenient

to represent Eg. (3.19) as:

afseed,i 6 (Gifseed,i) o

St T ~ 0, (4.1)
6fnucl,i 6 (Gifnucl,i)

ot + oL Bio (L — Ly) , (4.2)

where fieqa; and fnuq ; are the crystal size distributions of tirdorm crystals (i.e.
a- or 3-form crystals) obtained from seed crystals and nucleatgstals|#/m?*],
respectively.

The numerical methods described here differ in terms ofr thisicretization
along the crystal size dimension)( each of which produces a system of ODEs
describing the time evolution of the crystal size distnbnfat the chosen discretized
points L, [138]. To provide a fair basis for comparison, the implena¢ion of
all of the methods integrated the ODEs using a fourth-oratrogonal Runge-
Kutta Chebyshev method [1], which is a class of explicit Relgtta methods with
extended stability domains along the negative real axig sthbility properties of
this method make it suitable for stiff problems.

It is advantageous for a numerical method tacbaservativethat is, to ensure
that a quantity remains conserved by calculating a singleviloich describes the
flow of that quantity between neighbouring cells [61, 92].thélugh flux conser-

vative schemes are normally formulated using finite volunaenite difference
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scheme is utilized here based on the approach describedlifil88]. The inho-

mogeneous PDEs with source terms (4.2) were converted ammfeneous PDEs

with boundary conditions:

8fnucl,i + 0 (Gifnucl,i>

|
o

ot OL (4.3)
B;
fnucl,i (LOa t) - Gi . (44)
To simplify notation, Egs. (4.1) and (4.3) are written in §ane form
ou Jdp
o tor 0
ou dp
& =~ (4.5)

whereu is foeed,i OF faucl,i @NAD IS G fseea,i OF G fuuar,i- Equation (4.5) is discretized

in the L domain with uniform intervals of sizA L, L, = kAL indicates the crystal

size at nodet, andl, = [Ly_1/2, Li41,2] is thekth cell. The conservative approxi-

mation to the spatial derivative is used:

o NG (Prs1/2 — Pr-1/2) (4.6)

whereu,, is the value of. at L, and the numerical flug;. . , » approximates,, ,» =

h(Lk+1/2) with h(L) implicitly defined by [144]

L+ALJ2
=57 [ h©ds. (@.7)

—ALJ2
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For stability, it is important that upwinding is used in comsting the numerical
flux pr41/2. One way is to compute the Roe speed to determine the dineatithe

wind:

Pk+1 — Dk (4.8)

Ak41/2 = ;
U1 — Uk

wherep, is the value op at L.

In the context of process model, the Roe speed is

apy1/2 ~ Gy, (4.9)

and

e if G; > 0 then the wind blows from the left to the right and the numdrica

fluxespy1/2 andpy._,/» are approximated by, , /o andp, , Ja» respectively.

e if GG; < 0 then the wind blows from the right to the left and the numdrica

fluxespy1/» andpy_1» are approximated by, 12 andp; | Jar respectively.

The difference between the values with superseript the same locatiohy ; /-
is due to the possibility of different stencils for cé}l and for cell I, that is,
Pr112 1S due to the stencil for cell, andp;,, , is due to the stencil for cell,.;,
(see Figure 4.1). In the next sections, five reconstructiooguures are described
to obtainp, ,, , andp,_, , only, asp;’,, ,, can be readily derived fromj;_, , for

cell Iy = I44 andpl;l/2 can be derived from,, forcell I, = I;,_;.

+1/2
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Figure 4.1: Computational cells.

4.2.1 WENO variants

All WENO methods discussed here are the derivatives of tiggnal essentially
non-oscillatory (ENO) method developed by Harten et al.] [571987. This pa-
per was the first to obtain a self similar (i.e., no mesh sipethdent parameter),
uniformly high order accurate, yet essentially non-oatalty interpolation (i.e., the
magnitude of the oscillations decays@&Az") wherer is the order of accuracy)
for piecewise smooth functions. ENO methods are especsalitable for prob-
lems containing both shocks and complicated smooth flovestres, such as those
occurring in shock interactions with a turbulent flow and dhmteraction with
vortices. To improve the ENO method and further expand ifdiegtions, ENO
methods based on point values and total diminishing vangfiVD) Runge-Kutta
time discretizations were developed, which can reduce coatipnal costs signif-
icantly for multiple space dimensions [143, 144]. Then imgduring selection

of the stencil was proposed for enhancing stability and eayu[39, 145]. Later,
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WENO methods were developed, using a convex combinatiol cdrdidate sten-
cils instead of just one as in the original ENO [61, 72, 99,]141

WENO methods improve the accuracy of the original ENO metdtie opti-
mal order in smooth regions while maintaining the essdwtiain-oscillatory prop-
erty near discontinuities. Liu et al [99] converted itk order ENO method into an
(r + 1)th order WENO method with a cell average approach. Basedepdmt-
wise finite difference ENO method [143, 144] and a new smaegkmndicator, the
WENO method by Jiang and Shu [72] can achieve the optiival- 1)th order
accuracy. Jiang and Shu's WENO version was later modifiedddyng a mapping
function for the original nonlinear weight which improvescaracy near smooth
extrema [61]. Serna and Marquina [141] improved the behlafidiang and Shu'’s
WENO method by introducing the powergnor powermog limiter, resulting in
an (2r — 1)th order weighted power ENO method. The powegemopowermod
limiter substantially reduces smearing near disconti@sisaind results in better res-
olution of corners and local extrema.

All WENO methods adopt the following idea. Denote theandidate stencils

by

Sm = (Lk-i—m—r-i—la Lk+m—r+27 B Lk+m) y M= 07 17 cees T 17 (410)
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whose correspondingh order ENO approximation of the flux,, ; is

Pry12 = G (Ptm—r1, - - - 7pk+m)|L:Lk,+1/2 : (4.11)

Using the smoothest stencil among theandidates for the approximation of
hi+1/2 is desirable near discontinuities to avoid introducingyetal oscillations.
All of the stencils are smooth in regions where the solutsosrnooth, in which case
it is better to combine the results of multiple stencils thge to produce a higher
order (higher thamth order, the order of the original ENO method) approximatio
to the flux hy41/2 [72]. WENO methods assign a weight,, to each candidate
stencil S,, to obtain the combined approximation/of, , » as

r—1
p];rl/g = Z qurn(pk—i—m—r—i—la s 7pk+m)|L:Lk+l/2 : (412)

m=0

To achieve the essentially non-oscillatory property, tiegghts adapt to the rel-
ative smoothness gfon each candidate stencil such that any discontinuousiktenc
is effectively assigned a zero weight. In smooth regionsibights are adjusted
such that the resulting approximation gives an order of mayuhigher tham. The
differences between WENO methods lie on the method for setethe weights
wn, and the flux approximationg, (px+m—r+1, - - -, Pk+m). 1he subsequent WENO
methods have = 3 with the flux approximations’, (px+m—r+1, - - -, Pk+m) CON-

structed based on quadratic polynomials.
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Liu et al’s WENO (LOCWENO) method

The flux approximations and weights for the fourth-orderuaate LOCWENO

method are [99]

3 Pktm — 2Pktm—1 + Dktm—2 2
m—2; m—1, m) = L — Ly
qm(pk+ 2, Pk+m—1, Pk+ ) N ( k+ 1)
Pk+m — Pk+m—2
L—-L _
= 9ar L Drem)
n _ DPr+m — 2Pk 4+m—1 + Pktm—2
Pk+m—1 Y
(4.13)
and
Am
Wm = =3 , (4.14)
>0
where
din for p,.
ISm—+e)t k+1/2
A, = 4 1T / (4.15)

d2—m +
(ISm+e)" for pi_y 5 -

The values of andd,,, in Eqg. (4.15) are in Table 4.1 anrds a small number

to avoid division by zero (i.e = 10~* was used in this study). ThgS,, are
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Table 4.1: Values of andd,,, for LOCWENO, JSHWENO, and WPower-ENO
methods.

‘LOCWENO JSHWENO WPower-ENO

h 3 2 2

dy 1/12 1/10 1/5
dy 1/2 3/5 1/5
dy 1/4 3/10 2/5

smoothness indicators given by

IS = (Prtm—1 — pk+m—2)2 + (Pr4m — pk+m—1)2
"o 2

+ (Pktm — 2Pk4m—1 + pk+m72>2 . (4.16)

Jiang and Shu’'s WENO method with Henrick mapping (JSHWENO)

The Jiang and Shu’s WENO method used here is based on theatjagualynomial

instead of the original linear approximation. With

diy12 = Pkl — Pk, (4.17)
d dj—

d, = ’”1/2; k1/2 (4.18)

Dy = diyro —dp—1)2, (4.19)

the flux approximations are

Dy
G (Pr—2, Dk—1,DPk) = D — kLo
24
(L - Lk‘) Dk;—l Dk;—l L _ Lk‘
—— |dj_
AL k—1/2 T 9 + 5 N ’

(4.20)
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Dy (L—1Ly) Dy (L— L,
@ (e o pr) = pe— o g [t (Tx )|
(4.21)
D
@ (ks Prt1s Prr2) = Dr — ;il +
(L — Ly) p ~ Disa N Dyyy (L — Ly,
AL M2 2 AL )|’
(4.22)
and the weights are [72]
Am
w’s = (4.23)

where)\,, is defined in Eqg. (4.15) and the valueshoéndd,,, are in Table 4.1. The

smoothness indicatorsS,,, are

13 1

1Sy, = 1 (Pk—2 — 2pK—1 +pk)2 + 1 (Pr—2 — 4pr—1 + 3pk)2 ) (4.24)
13 9 1 2

15, = I (Pr—1 — 2Pk + 1) + 1 (Pr—1 — Prs1)” (4.25)
13 2 1 2

1S, = 12 (P — 2Pk41 + Pry2)” + 1 (3pk — APkt1 + Prta2)” - (4.26)

The Henrick mapping [61]

( )_w(dm+d72n—3dmw+w2)
Iml) =" (1= 2d)w

(4.27)
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is used to revise these weights to improve the accuracy neaoth extrema:

)\*
wi?® = T (4.28)
> im0
with
Ar = gm(w)P) (4.29)

to produce a fifth-order accurate method.

Weighted power ENO (Wpower-ENO) method

Using the definitions in Egs. (4.17)-(4.19), the flux appnoaiions for the Wpower-

ENO method are

Powk,
qg’(Pk—mpk—l,pk) = Dk — ke
24
(L — Lk) POwk,1/2 POwk,1/2 L — Lk
~——— |dp_
AL e AL ’
(4.30)
D (L — L) D L—-L
3 k k k k
_ = [— A d _n
Q5 (Pk—1, Pkes Pit1) Pk 24+ AL |:k+ 5 ( AL )] )
(4.31)
Powk 1/2
qg(pk,pk+1,pk+2) = Pk — TH
(L — Ly) J _ Powgyyys n Powyy1/2 (L — Ly
AL kr1/2 P P AL ’

(4.32)
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where
Powy 1/ = powerenos(Dy, Dy41), (4.33)

is the powereno limiter acting obh = L/, where

powerenos(z,y) = minsign(z,y) - powers(|z|, |y|), (4.34)
sign(z) if x| <yl

minsign(x,y) = (4.35)
sign(y) otherwise,

z® + y® + 2[max(z, y)]°

EEm (4.36)

powers(z,y) = min(z,y)

The weightsv,, and parameters,, are the same as for the LOCWENO method,

except that the smoothness indicators

13 1

[SO — E (Powk,1/2)2 + Z (2pk — 2pk71 + Powk71/2)2 s (437)
13 o 1 2

15, = - (Pr—1 — 2pk + Prt1)” + 1 (Pr—1 — Prt1)” (4.38)
13 2 1 2

ISQ = E (POwk+1/2) + Z (2pk+1 — 2pk - Powk+1/2) . (439)

are used. This method is fifth-order accurate.

4.2.2 High resolution (HR) method

The popular high resolution method uses second-orderafization with a flux

limiter to ensure non-oscillatory behaviour. K@y > 0, a backward second-order
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discretization is used:

_ _ 1 1 1
Pry1jo P12 = 5(3]% —4pr_1 +pk72) = 5(3]% —pkq) - 5(31%71 _pk72)

(4.40)

or

1

_ 1
Pryrj2 = 5(31719 — Pr-1) =P + §(pk — Pr-1) (4.41)

where the first term is first-order and the second term is contyneferred to as
an “anti-diffusion term” because it reduces numericaludiibn. Applying a flux

limiter on the anti-diffusion term yields

1
Pryij2 = Pr+ §¢(wk)(pk — Dk—1) (4.42)
wherewy, is the upwinding ratio defined by

wy = Dr+1 — Pk (4.43)
Pk — Pk—1

ando(-) is the flux limiter. In this study, the popular Van Leer flux lter [162] was

used:

$(w) = . (4.44)
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ForG; < 0, a forward second-order discretization is used:

. s 1 1 1
Pri1j2 Pr—1j2 = 5(_3pk+4pk+1_pk+2) = 5(_pk+2+3pk+1)_§(_pk+1+3pk)

(4.45)
or
+ 1 1
Pr_172 = 5(32% — Prt1) =Dk — §(pk+1 — Pk) (4.46)
Similar inclusion of a flux limiter to the anti-diffusion tergives
£ =pi— 26 (— ) (ess = p2) (4.47)
pkfl/g = Dk 9 Wy Pr+1 Pk) - .

This high resolution method is second-order accurate inosimeegions, and

first-order accurate near discontinuities.

4.2.3 The second-order finite difference (FD2) method

A second-order finite difference method with correct upwigduses the fluxes

Prt1/2 andpl;tl/2 given by Egs. (4.41) and (4.46), respectively.



CHAPTER 4. HIGH-ORDER SIMULATION OF POLYMORPHIC
CRYSTALLIZATION 82

4.3 Simulation results

The five numerical methods were applied to the L-glutamid aolymorphic crys-
tallization model. The initial seed distributiotfs.q ;(L, 0) for a- and3-forms are

described by Gaussian distributions:

fseed,i<L7 0) = w) ) (448)

K
—— exp | —
/ 2
27To'seed,i 2Useed,i

with the parameters in Table 4.2 selected so that the disioifis would be sharp
enough to challenge numerical methods. The temperatufegepisin Figure 4.2

where the vertical solid line indicates the seeding time,(att = 10 min). Since

an analytical solution is not available, the reference tsmhg for all CSDs were
obtained by using WPower-ENO method with very fine resofutidll the compu-

tations were performed using Compaq Fortran 6.6 on a HP wairge XW6400

(Intel Xeon 5150 (2.66 GHz) and 2 GB of RAM).

In an unseeded crystallization the CSD profiles for all mdshare nearly coin-
cident with the reference profiles (see Figures 4.3 and éhdix;ating that a conven-
tional numerical method such as FD2 might suffice, which rssesient with expec-
tations since no sharp gradients occur in these distribsititn the case of seeded
crystallization (the usual case in practice), the diffeemin the CSD profiles be-
tween the WENO variants and their conventional countespane significant (see
Figures 4.5 and 4.6). While the three WENO variants are peéadlistinguishable

with the reference profiles, the HR and FD2 methods exhibmerical diffusion
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and do not resolve the peaks accurately. In addition, the lBtod introduces
a spurious oscillation (known as numerical dispersion)ciwlian occur near sharp
gradients with this method. The HR method does not produgeays oscillation
because the flux limiter detects the presence of sharp gitsdaad limits the size
derivatives. The larger numerical errors in the CSD profibtained by HR and
FD2 methods for the seededform compared to the seedgeform are associated
with its sharper gradient.

The prediction errors were quantified in terms of thenorm (£, ):

1
EL = X
1
2(]\/vgrid,seed + Ngrid,nud)
Ngrid,seed Ngrid,nucl
ref ref
§ : § : ’fseed,i,k - fseed,i,k} + E ’fHUCI,i,k - fnucl,i,k )
1={a,8} k=1 k=1

(4.49)

wherefif,  and fi<, ;| are the reference solutions for the seeded and nucleated
crystals size distributions amd,iq scea aNANgyid nuc are the number of grids used to
discretize the size coordinate of the seeded and nucleatstiksize distributions,
respectively. The errok,; norms from the three WENO variants are much smaller
in magnitude and grow much slower than those from the HR argliRBthods (see
Figure 4.7). In terms of thé; norm, the JISHWENO method gave the smallest
numerical errors. Figure 4.8 indicates that the JSHWENGhowegave smaller

numerical errors for the full range @£ from 0.1 to 2.0um.

The JSHWENO method generally had lower CPU times than theMgRENO
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method, but somewhat higher CPU times than the other metioodasost values
of AL (see Figure 4.9). To fairly compare the overall efficiency tftese meth-
ods, the CPU time was compared for discretizations thatym@the same errdr,
norm. From Figure 4.10 it is observed that, for any givenrekrxonorm, the WENO
variants used less or equal CPU time to the HR and FD2 metlodshence the
WENO variants were more efficient. The JSHWENO method wasist efficient
for nearly all desired accuracy levels. Figure 4.11 shows¢hative cost of the nu-
merical methods with respect to the JISHWENO method. The HiRodavas more
efficient than the FD2 method for nearly all desired accuteegls, and was more
efficient than the WPower-ENO method for some accuracy sebelt was not as ef-
ficient as the LOCWENO and JSHWENO methods. While the WENGhous are
more complicated to implement, their efficiency is much dretthen sufficiently
high accuracy in the size distribution is desired. AmongWENO variants, the
performance of JSHWENO is followed by that of the LOCWENO Inoet by a
small margin, and then followed by that of the WPower-ENOhodt

Another way to assess numerical methods is to computg;tkelf-convergence
order

In (Lm)
Op, = —Pular ) (4.50)
In2

This metric provides information on the internal consisteof the numerical method

and its intrinsic convergence [49]. THg self-convergence order for all numerical
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methods are in Table 4.3. For a linear model with a smoothisoluthese values
would correspond to the order of the truncation error fovaginumerical method.
This is not the case here due to the nonlinearity of the modelthe sharp gra-
dients in the distribution. On average, the JSHWENO methweesghe best,

self-convergence order, followed by the WPower-ENO, LOQWE HR, and FD2

methods.

Table 4.2: Initial seed distribution parametersderand-forms.

7 K; Oseed,i [Hl] X 106 Hseed,i [Hl] X 106
a 2 x 101 2.000 30.000
B 2 x 109 4.000 50.000

Table 4.3:L, self-convergence ordef),) for the various numerical methods.
AL [pm] \ LOCWENO JSHWENO WPower-ENO HR FD2

0.1 1.62 1.30 1.583 1.67 1.81
0.2 2.43 1.45 1.97 1.66 1.78
0.3 2.41 2.40 2.12 1.65 1.57
0.4 2.26 2.84 2.28 1.57 1.37
0.5 2.27 2.87 2.55 1.50 1.20
0.6 2.46 2.98 2.79 1.44 1.07
0.7 241 3.12 2.86 1.34 0.98
0.8 2.24 3.06 2.68 1.25 0.88
0.9 2.11 3.06 2.60 1.20 0.82
1.0 1.94 2.86 2.39 1.09 0.75

average ordef  2.22 2.59 2.38 1.44 1.22
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Figure 4.2: Temperature profile used in simulations.
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Figure 4.3: CSD of nucleatedform at the end of the batch for the various numer-
ical methods QAL = 0.6 pm).
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Figure 4.4: CSD of nucleategform at the end of the batch for the various numer-
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15

x 10
initial profile initial profile
reference
4r — — — WPower-ENO
—-— - JSHWENO
----- LOCWENO
3 L

2t the three \
WENO

variants
and the
1} reference

are almost .
} t:oincident

- ,<\FD2 produces
v spurious

CSD of seeded a—form (# m™%s™)

oscillation

0 50 100 150
Characteristic length (um)

Figure 4.5: CSD of seededform at the end of the batch for the various numerical
methods AL = 0.6 um).
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Figure 4.6: CSD of seedegiform at the end of the batch for the various numerical
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Figure 4.7: Evolution of the errof; norm with time for the various numerical
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Figure 4.8: ErrotL; norm at the end of the batch versii4. for the various numer-
ical methods.
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Figure 4.9: CPU time versu& L for the various numerical methods.
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Figure 4.10: CPU time required for the various numericalhods for a given error
L, norm at the end of the batch.
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4.4 Conclusions

This study proposed the use of WENO methods for the numesadation of popu-
lation balance models for crystallization processes. TOEWENO, JSHWENO,
and WPower-ENO methods were compared to standard disaietiznethods. In
simulations of the polymorphic crystallization of L-glat& acid, the WENO meth-
ods produced much less numerical diffusion and dispersvith,the LOCWENO
and JSSHWENO methods having the highest overall efficiertet (5, lowest CPU
time for the same level of numerical accuracy). Theself-convergence order
which characterizes integral consistency and convergesasethe highest for the
JSHWENO method, followed by the other two WENO methods. &hresults rec-
ommend WENO methods for the simulation of crystallizatioogesses, especially
when the distributions are sharp and very high accuracyssete These methods
combine very high order of accuracy with good convergenoggnties even in the

presence of sharp variation in the size distributions.



Chapter 5

Temperature and Concentration

Control Strategies

5.1 Introduction

The efficiency of downstream operations such as filteringa@mahg, and the ef-
ficacy of products can be dependent on the final crystal forchi@nsize distri-
bution. Hence, control of crystallization is an integrapast in pharmaceutical
industries. However, pharmaceutical crystallizationcess can be challenging to
control due to variations in solution thermodynamics antekts induced by con-
taminants, complex nonlinear dynamics associated withideal mixing and den-
dritic growth, and unexpected polymorphic phase transéion [129].

Most crystallization in pharmaceutical industries areigiesd and controlled

based on trial-and-error experimentation, which can be @onsuming and ex-
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pensive. Recently in-process sensors have enabled thiopdeent of systematic
first-principles (model-based) and direct design (measarg-based) approaches
for the control of industrial crystallization processe2][4

The first-principles approach to crystallization contsthe most widely stud-
ied [12, 128], where a model constructed from material arefggnbalances are
used to optimize some function (e.g., mean crystal sizdd)ya the crystal size
distribution. Since small model uncertainties (e.g., kmparameters, solubility
curves) can have a large effect on the crystal size and shstpiation of the prod-
uct crystals, this approach requires the model to be suftigi@accurate and/or an
appropriate measure to counteract the effect of the unoges

The direct design approach, on the other hand, does notreefisit-principle
models. Instead, this approach uses feedback control kmnvf@ predetermined
concentration-temperature curve in the metastable zohe [#his approach re-
guires in-situ concentration measurement in additiontgpierature measurement.
The concentration-temperature trajectory is suboptinmaesit does not optimize
any performance objective. Instead, this approach prevadeonstant tradeoff be-
tween the need to avoid excessive nucleation and to avoidydeag batch times
(keeping the growth rate large) [42].

Until now, many studies have been done on non-polymorphjistalization
control which focused on controlling crystal size disttiba and some characteris-
tic functions derived from it. Recently, there has been adrgpowth in the study

of polymorphism, with the desired objective being to pragloae polymorph while
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avoiding others. This is crucial in drug manufacturing csinifferent polymorphs
of the same drug compound may have very different charatiteriand may cause
undesired side effect.

In this study, several control strategies for the polymarptansformation of L-
Glutamic acid from the metastahleform to the stable-form using first-principles
approach are investigated and developed in Chapters 5 tbi§ chiapter discusses
the temperature control (T-control) strategy, of whicheatye is to obtain an opti-
mal temperature profile as a function of time which maximeaearticular objective
function, and concentration control (C-control) strateglgich implements optimal
concentration-temperature trajectory. In the next sactiwe description of product
quality, process constraints, and the parameter pertartsaare given. Then the T-
control and C-control strategies are developed, and fatbtoy simulation studies
which compare the performance and robustness of the twoat@ttategies. This

is followed by conclusions.

5.2 Product quality, process constraints, and para-

meter perturbations

For all control strategies studied in Chapters 5 to 7, twedcijes are considered
for the polymorphic transformation af- to 5-form crystals. The first objective is

to maximize the mass of-form crystals, which is equivalent to maximizing the
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third-order moment or the yield gf-form crystals:

b = (:uﬁ,?:)t:tf . (51)

The second objective is to minimize the ratio of the nuckeatgstal mass to the

seed crystal mass gkform crystals, which can be written as

,ugu?t):l
P, = (FO , (5.2)
t:tf

673

wheret is the batch time. The control problem is subject to the foilhg inequality

constraints:

Tmin S T (t) S Tmax, (53)
Csatﬁ (t) <C (t) < Csatoz (t) ) (5.4)
C (tf) < Cmax(tf) ) (5-5)

whereThin = 25°C, Thax = 50°C are the minimum and maximum temperatures
due to the limitation of water bath heating/cooling. Theguality constraint (5.4)
aims to avoid the nucleation and growth ratexefiorm crystals and the dissolution
of 5-form crystals during the polymorphic transformation pres. Finally, the final
inequality constraint (5.5) ensures that the minimum yrelquired by economic
considerations is satisfied.

In the polymorphic transformation process, baethand g-form crystals are
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seeded according to Gaussian distribution with paramelees given in Table 5.1

and the process is subject to two cases of parameter pdrturbgiven in Table 5.2

Table 5.1: The parameters describing the seed distritaition

Seed Masg] Mean crystals sizum| Standard deviation of crystals sigen]

o 10.0 100.0 10.0

3 1.0 100.0 10.0

Table 5.2: Variations in model parameters for robustnesdystCase 1 is the nom-
inal model, Case 2 has slow nucleation and fast growth raenpeters fors-form
crystals, and Case 3 has fast nucleation and slow growtlpaateneters fof-form
crystals.

Cases IQkys1) In(kes2) IN(kggo) IN(kgso)  gs  IN(Egp)

1 15.801 20.000 52.002 -0.251 1.047 12.078

2 15.758 19.961 53.200 -0.280 1.100 12.060

3 15.842 20.036 50.883 -0.240 1.019 12.070

5.3 T-control and C-control strategies

The most widely studied approach for the optimal controlari+polymorphic crys-
tallization processes has utilized T-control in which temperature trajectory has
been computed from the optimization of an objective funcbased on an offline
model with nominal parameters [128]. This is the most commased method
found in literatures and has been implemented in pharmi@e¢utdustry to maxi-
mize crystal size and minimize the coefficient of variatia61]. In this study, the

design of T-control strategy comprises the minimizatiomhef following objective
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JT—control - m{}n (P - Pd)2 ) (56)

where P and P, are the predicted and desired final product quality (whiatnezo
sponds to either Eq. (5.1) or (5.2)), respectiv@ly= [ug, ..., uy_1]" , uy is the
input value (i.e. the crystallizer temperature) atztie sampling instance, and is
the total samples in a batch. The above minimization proléesnbject to process
model and inequality constraints (5.3) to (5.5). To implebtbe T-control strategy,
the temperature-time trajectory is parameterized as adiidsr spline with 18 time
intervals and differential evolution (DE) [84, 151] techue is utilized to solve the
above minimization problem.

In many experimental and simulation studies of non-polyshar batch crystal-
lizations, the C-control strategy (Figure 5.1) has resuitelow sensitivity of the
product quality to most practical disturbances and vametiin kinetic parameters
[41, 42, 50, 97, 133, 175]. Recently, the C-control strategyg been applied to
polymorphic crystallizations to produce large crystalsany selected polymorph
[80] and to ensure maximum productivity in polymorphic sBarmation process
[64]. C-control can be interpreted as nonlinear state faeklicontrol [63, 175], in
which the nonlinear master controller acts on the conctatrd’ as a measured
state [159] to produce the setpoint temperatfijteas its manipulated variable. The

difference between the calculatégl; and the measured temperatdraes used by
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Figure 5.1: Implementation of C-control for a batch coolangstallizer [175].

the slave controller to manipulate the jacket temperaiiso that the deviation be-
tweenT,.; andT is reduced. Because the slave controller is just temperatntrol
of a mixed tank, and the batch dynamics are relatively slow,raasonably tuned
proportional-integral controller will result in accurdtacking of7.;.

Hence, the main idea of C-control is to obtain a suitable rpatazation for
concentration-temperature trajectory and use it to cateulemperature setpoint
throughout the crystallization run. In this study, the camtcation-temperature
trajectory is obtained by applying the optimal temperatime trajectory from T-
control to the nominal model. Then, a set of equations is tsquhrametrize the
concentration-temperature trajectory, and is utilized¢dtculate temperature set-
point during crystallization process. The parameterzatf the concentration-
temperature trajectory corresponding to the product tyu@il) is as follows (Fig-

ure 5.2):

(1) Initialize the temperature & = 50°C.
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Figure 5.2: Concentration-temperature trajectory cpoading to product quality
(5.1) obtained from T-control and C-control strategies.

(2) Calculate the temperature for the current sampling fiinaccording to:

T}, = min {max [1.003 Tier s, 25] , 50} | (5.7)

where

—Gn9 + \/agé?2 —4day 1 (aas — Ch)

20/0{72

Tref,k = ) (58)

a,; are the parameters for the saturation concentration-fufrm crystals
(see Table 3.3), and;, is the measurement of the solution concentration at

the current sampling time.
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Figure 5.3: Concentration-temperature trajectory cpoading to product quality
(5.2) obtained from T-control and C-control strategies.

On the other hand, the parameterization of the concentrétimperature trajec-

tory corresponding to the product quality (5.2) is desatibelow (Figure 5.3):

(1) Initialize the temperature & = 50°C' and setnode = 1, wheremode is a

parameter used in the following step.

(2) Calculatel, . by Eqg. (5.8) and obtain the temperature for the current sam-
pling time T}, according to:
(a) If thea-form crystals are still present and

o If Tier i < 50 andmode = 1, setT}, = 50.

e Otherwise, sef}, = Ti.¢x andmode = 2.
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(b) If the a-form crystals are absent, set

T, = min{max [T} + 0.6125(Cy — Ci_1),25],50} , (5.9)

whereT),_; and(},_; are the temperature and concentration measure-

ments at the previous sampling time, respectively.

5.4 Simulation results

In the polymorphic transformation, botlx and 5-form crystals are seeded accord-
ing to a Gaussian distribution with parameter values giwefable 5.1. The initial
solute concentratiod, and maximum final solute concentratiGhy.x(ts) are 20
g/kg with a default batch time is 3 hours which is extended if the inequality
constraint (5.5) is not satisfied at that time. The sampiimg is ten minutes. The
optimization of two types of product qualitie®; in Eq. (5.1) andP, in Eq. (5.2),
are considered, which from here onwards will be called dhjec/; and objective
Jo, respectively. It is assumed that the process is subjeatda@ases of parameter
perturbations given in Table 5.2.

The resulting temperature and concentration trajectwrescontrol, C-control,
and the optimal trajectories for objectiveare given in Figures 5.4 t0 5.6. The opti-
mal results are obtained using the T-control strategy byrasgy that the parameter
perturbations are known. The resulting values?pfor both control strategies and

its optimal value are tabulated in Table 5.3. The optimak@rirajectory for this
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objective is very close to the solubility curve @fform crystals (see Figure 5.4a)
due to the slow growth rate gi-form crystals relative to the dissolution ratewf
form crystals. As a result, the optimal solution is to maxenthe supersaturation
with respect to the solubility of thé-form crystals while operating between the two
solubility curves. When there is no plant-model mismataFe 5.4), all control
strategies produce similar results which are very closka@orresponding optimal
one. As can be seen from Figure 5.5, the T-control strategyptisobust for the
modelling error given by Case 2, because the resulting teatyre trajectory devi-
ates significantly from the optimal trajectory and the résglP; value is17% lower
than the optimal one. Furthermore, for Case 3 (Figure 52),Ttcontrol strategy
violates one of the constraint most of the time during thela®n the other hand,
the C-control strategy shows a very good robustness in séicavhere it produces
P, values within1% of the optimal ones. The robustness of the C-control glyate
for this objective is in agreement with those reported byrkarto et al. [64].
Objective.J; is more sophisticated than objective For objective/;, the pur-
pose is to maximize the yield of. Physically, this can be done when the nucleation
and growth rates ofi-form crystals are maximized. On the other hand, objective
J5 Is equivalent to maximizing the yield gi-form crystals while trying to simulta-
neously minimize its nucleation. This results in maintagha tradeoff between the
nucleation and growth rates gtform crystals. For objectivd,, the temperature
and concentration trajectories obtained by all contr@tstsies are shown in Fig-

ures 5.7 to 5.9 and the correspondifigvalues are tabulated in Table 5.4. The opti-
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mal solute concentration at the end of the batch is equaktptdefinedmax(t )

for all three sets of parameters. For solute concentratoht@mperature consid-
ered here, the nucleated massgeform crystals always increases at a faster rate
than the seed mass @Gfform crystals. As thej-form crystals nucleate and grow,
the ratio of nucleated crystal mass to seed crystal magsfofm crystals always
increases. As a result, any value@fax(t;) lower that the value specified by its
upper bound constraint at 20 g/kg would increase the obgegiiand would not be
optimal. The performance of the T-control strategy for Casepoor (Figure 5.8),
which results inP; value39% higher than the optimum value. In addition, imple-
menting T-control strategy in Case 3 (Figure 5.9) needsxtension of batch time
to 4.5 hours in order to satisfy the inequality constrainb)5 For Cases 2 and 3,
the P, values obtained by the C-control strategy is better thasdlobtained by the
T-control strategy. However, they are achieved at the ddshg batch time, where
it requires abou0 hours (Case 2) anal8 hours (Case 3) to satisfy the inequality

constraint (5.5).
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Table 5.3: Values of the control objectivg obtained for the three sets of model
parameters in Table 5.2.
Cases T-control C-control optimal
1 0.3119 0.3099 0.3119
2 0.3478 0.4187 0.4195
3 0.2569 0.2630 0.2667

Table 5.4: Values of the control objectivé obtained for the three sets of model
parameters in Table 5.2.
Cases T-control C-control optimal
1 0.0381 0.0385 0.0381
2 0.0064 0.0050 0.0046
3 0.0683 0.0679 0.0659

iThese values are obtained after the batch time is extendstisdy constraint (5.5)
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Figure 5.4: Concentration and temperature trajectorie€é&se 1 with objectivd;.
The solid lines are trajectories corresponding to the twarod strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 5.5: Concentration and temperature trajectorie€é&se 2 with objectivd;.
The solid lines are trajectories corresponding to the twarod strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 5.6: Concentration and temperature trajectorie€ése 3 with objectivd;.

The solid lines are trajectories corresponding to the twarod strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 5.7: Concentration and temperature trajectorie€é&se 1 with objectivd,.
The solid lines are trajectories corresponding to the twarod strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 5.8: Concentration and temperature trajectorie€é&se 2 with objectivd,.

The solid lines are trajectories corresponding to the twarod strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 5.9: Concentration and temperature trajectorie€ése 3 with objectivd,.
The solid lines are trajectories corresponding to the twarod strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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5.5 Conclusions

The T-control and C-control strategies, which are the papebntrol strategies in
non-polymorphic crystallization processes, are disaligsehis chapter. The ro-
bustness of these control strategies in the polymorphisteamation of L-glutamic
acid from the metastable-form to the stablei-form crystals is investigated. Two
control objectives”; and P, are considered. The first objective aims to maximize
the third moment of3-form crystals, which implies the yield gf-form crystals,
whereas the second objective is to minimize the nucleatgstairmass to seed
crystal mass ratio gf-form crystals.

From simulation results, it is shown that T-control is veensitive to parameter
perturbations, especially for Case 2, which results7% and39% deviation from
the optimal values oP; and P, respectively. On the other hand, C-control performs
very robustly for objective/;, which produces almost identical result to the optimal
values for all cases. For objective, the C-control strategy obtains betiervalues
than T-control, although longer batch times are requiredClses 2 and 3 to satisfy

the yield constraint (5.5).



Chapter 6

Nonlinear Model Predictive Control

Strategy

6.1 Introduction

Although T-control is the most widely adopted control stpt for crystallization
process, it has become well-known that it can be very seadii variations in the
kinetic parameters [13, 133], as also evidenced by the sitiounl results given in
Chapter 5. While C-control can provide better robustneas the T-control, it is
not capable of handling the input and output constraintsmaomy encountered
during process operation. From the simulation results iagddr 5, it is evident that
C-control may require a very long batch time because of itsriain meeting the
yield constraint within the specified batch time.

To address the shortcoming of T- and C-control strategmespowerful model

112
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predictive control (MPC) [19, 34, 44, 62, 110, 122, 127] w@gues are considered
in this chapter. Despite the high impact of MPC in acadenseaech and industrial
practice, its application to solution crystallization pesses has been rather limited
[35, 79, 113, 131, 155]. One contribution considered theatsf of uncertainties
on the closed-loop performance of nonlinear model prediatontrol (NMPC) ap-
plied to crystallization processes [113]. As in many othapgrs, the method of
moments was utilized to simplify the population balanceatigms which are par-
tial differential equations (PDES) to a set of ordinary @iéintial equations (ODES)
in terms of the moments. The NMPC optimization problem wagesbusing non-
linear programming and the states were estimated usingtanded Kalman filter
(EKF).

To the author’s knowledge, there is no published result enirtiplementation
of NMPC to a polymorphic crystallization, which is more dealging for a number
of reasons. First, the phase equilibria and crystallirakimetics are more com-
plicated. Second, the method of moments heavily used inquedtol algorithms
for crystallization processes does not apply during a polyhic transformation,
so that the full PDEs need to be solved. As a consequencepthputation time
required increases considerably which prohibits the gittéorward application of
nonlinear programming. In this study, a practical NMPCtstyg based on extended
predictive self-adaptive control (EPSAC) [32, 34, 70, 1B36] is developed for the
polymorphic transformation of L-glutamic acid from the mastablen-form to the

stables-form. To implement the proposed NMPC strategy, an unsdeiigman
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filter (UKF) [74-78] is utilized to estimate the unmeasueabtates. The perfor-
mance and robustness of the proposed design is comparet-eatitrol, C-control,
and a standard NMPC algorithm in a numerical study.

This chapter is organized as follows. The next section dessthe system rep-
resentation and elaborates on the NMPC strategy based oMEHSis is followed
by a brief description of the UKF which is utilized for the &taestimation. Then
the performance and robustness of the the proposed NMP@thlgas compared

to the T-control and C-control strategies. This is follovilgdconclusions.

6.2 System representation and NMPC strategy

The optimal control problem to be solved online at every dargpnstance in the

NMPC algorithm can be represented as

min J(zg, ug) (6.1)
U,
subject to
vy, = fop_1,wp—1) +wy, (6.2)
dp = dg—1+ &, (6.3)
ye = g(xg,ug) +dp + vy, (6.4)
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where J is the objective functiony,, uy, yi, andd, are the vectors of, system
states,n,, inputs,n, measured variables, ang, unmeasured disturbances at the
kth sampling instance; andy, &, andv, are the vector of noises on the system
states, unmeasured disturbances, and the measured @aribe system dynamics
are described by the vector functigih the measurement equations by the vector
functiong, and the linear and nonlinear constraints for the systerdeseribed by

the vector functiork.
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Figure 6.1: The variables decomposition in EPSAC.

The key idea of EPSAC is to approximate nonlinear processas by it-

erative linearisation around future trajectories so thaltconverge to the same
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nonlinear optimal solution [134]. For this purpose, thaifetsequence of the input
variablesu, ,; is considered as the sum of a predetermined future conteolesio

up 1+ and the optimizing future control actions,; (Figure 6.1):
Uk+i = Up,k+i + 5uk+i, 1= 0, 1, cey Nu — 1, (66)

whereN,, is the control horizon and

Auhk == 5uk,

m
Mgy = E Aul,k-{—ja
Jj=0

Then the future trajectory of any process variables of egeg,. . ;) can be con-

sidered as being the cumulative result of two effects:

Zkti = Zbk4i T ZLk+i (6.7)

wherez, ., is calculated using the nonlinear model and predetermirgdesice

up p+i- ON the other handy ;. is obtained by:

ki = hidup 4 hi—10Upqr + hi—o0Upqo + - - + him N, 420Uk N, —2 +

hi— Ny 410Uk Ny—1 + -+ 10Uk, (6.8)

whereh; is thejth impulse response coefficient. Noting thaj v, 1 = dugn, =
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-+ = dup4;_1, the above equation can be written as

ki = hidup 4+ hi—10Upqr + hi—20Upqo + - - + him N, 420Uk N, —2 +
(hi +ho+ -+ hi—n,41) Ok N, —1
= hidug + hi—10Upr1 + Ni—20Upyo + - + him N, 420Uk N, —2 T+

Gi— Nyt 10Uk Ny —1 5 (6.9)

whereg; is thejth step response coefficient.

For convenience; ,4; can be represented as a linear functiog,adnd A, ;:

1 2
ki = hilDugg + hiy Z Auppyj+ his Z Augjqj+ -+

Jj=0 Jj=0

Nu—2 Nu—1
hi—N,+2 E AUy gyj+ GioNy+1 E Auy gy

j=0 Jj=0

= (hi+hic1+hio+ -4+ hi—ngt2+ Gimny+1) Dugy +
(hici + hico + -+ hicnys2 + GimNyt1) DUy ppr + -+ +
(hi-Ny12 + GimNyt1) Aty N, 2 + Gi Ny 11 AU LN, 1

= GiAupk + gi1 AU g1+ Gie N1 AU RN, 1 (6.10)

Considering a batch process with the control horizon idahto the prediction
horizon which covers from the next sampling time to the enldat€h time denoted

by N, = N, = N — k, whereN is the total samples in a batch, the sequence of
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2l k+i 1S

Zlk+1 = glAUl,k )

Zgr2 = GAu g+ G AU g1,

AN = IN-kAUE + gNk—1 AU g1 -+ AU N,

or
7, — GAU, (6.11)
whereZ, = (21541, 2142, > an) Ty AU = [Augg, Aug gy, -, Auy—1]7, and
7 0 0
92 g1 e 0
G, =
IN—k 9N-k-1 “° G1

In summary, the future process variables of interest in tediption horizon can

be conveniently represented in matrix form as

7 = 7y, + G,AU, (6.12)

T T
whereZ = (211, Zpr2, - 5 2] andZy = (2 jq1, 242, 20N -
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Now consider an objective functiohpc With single input ¢, = 1):
Jxupe = min - [P — P, W, [P - P, + AUTW,AU, (6.13)

whereP, P,, andAU are the vectors of the product quality, desired productityal

and the change in input variables, respectively, given by

P = [pk+17pk+27'” 7pN]T

7
_ T
Py, = [pak+1,Pak+2: s Pan]

AU = [Auk, Auqul, ety AuN,l]T s

andW, andW,, are the weight matrices for the product quality and the chang

input variables, respectively. Thé@handAU can be decomposed into

P = P,+G,AU,, (6.14)

AU = AU, + AU, (6.15)

whereG,, is the step response coefficient matrix corresponding tpribeuct qual-
ity variable, andP, is the product quality calculated using the nonlinear modt

predetermined future inpulsS, = [up k., wp 11, - - - ,ub,N,l]T, and

T
AUb = [Auhk, Aub7k+1, Ty, AubJV_l] s

AU, = [Augg, Augpsr, -, Augy—1]”
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Hence, the minimization problem becomes:

JNMPC = gllljrll [(Pb — Pd) + GplAUl]TWp [(Pb — Pd) -+ GplAUl] +
[AU, + AU W, [AU, + AU
= mpin AU GIW,G,AU, +2 (P, — Py)" W,G,AU; +
AUFW, AU, + 2AU['W,AU;,

= min AU/TAU, + 9 AU, (6.16)

AU,

where

I = Ggprlerwu,

T
b= 2 (Pb—Pd)TWpGpl+AUgfwu] .

The minimization is subject to the constraints:;, u;) < 0,Vj > k, wherek
is the current sampling instance. For notational convex@ghz;, u;) is denoted
as h;, which can be decomposed into the base and linear/gagt hy; + hy ;.

Therefore, the matrix form of the constraints in the pradithorizon is
H, + G,,AU,; <0, (6.17)

whereGy, is the step response coefficient matrix corresponding t@dnstraints
function hj ande = [hng, hb,k-i—la SRR hb7N]T.

From the author’s experience, when the constraints ardyhiginlinear, han-
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dling the inequality constraints (6.17) directly will sotimees cause difficulty for

the quadratic programming (QP) employed for the optimarato find a feasible

solution. Therefore, the soft-constraint approach[14@itilized which replaces the

minimization problem with

min JscNnmpC
AU[,E '

subject to

H, + G,,AU; < ¢,

(6.18)

(6.19)

(6.20)

where Jscnvpe = JIamvpe + €2 Wee + el'wy, € is a vector of slack variabledy. is

a diagonal matrix of positive weight, and, is a vector of positive elements. This

modified minimization problem can be written as

wenvee = min AUJTAU +¢"AU + " Wee + €' w,

AU[,E
‘ r 0 AU;
= inUllr,le [AUIT ET}
0 W, €
AU;
v o]

= mHin OTAIL + 77111,

(6.21)
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subject to
H, Gn -1
+ m<o0. (6.22)
0 0 -I
r o
wherell = [AUT, e7]7, A = , andr = [T, wl|T.
0 W,

To summarize, the procedure for implementing the NMPC egrabased on

EPSAC for each sampling instankes:

(1) ObtainU, by the following method:

e if £ = 0 anditer = 1, U, is chosen from the nominal operating point

which was used in the previous batches;

e if k> 0anditer = 1, U, is set as th&J ;. Obtained in the previous

sampling instance;

e if iter > 1, the updatedJ, from the previous iteration is used;

whereiter is the iteration count.

(2) Given the estimated current system states, ol®giandH, by usingU, as

the input to the nonlinear process model (6.1) to (6.5).

(3) Obtain the step response coefficient matriGgs and G;; by introducing a

step change inu.
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(4) ObtainIl* = [AU;,¢*]T from the solution to the minimization problem

(6.21) and (6.22), then update the element&/piising

J
Up, k45 = U ktj T+ E Aup ey
=0

wherej =0,...,N — 1+ k.

G
(5) Calculateerr = g AU, If err is greater than a specified toler-

Ghl
ance, iter = iter + 1, and go back to Step 1. Otherwise, &&},ima = Uy

and implement the first element B, i, to the process.

6.3 Unscented Kalman filter

In practice, not all states can be measured and those unredasgtates need to be
estimated from available measurements. The most widelywkrstate estimator for
nonlinear systems is the extended Kalman filter (EKF). Altiothe EKF maintains
the computationally efficient recursive update form of Kafnfilter (KF), it has
limitations. First, EKF relies on the linearization of thentinear system dynamics.
Hence, if the system is highly nonlinear, then the stateregés can be poor. At
worst, it may cause the state estimates to diverge. Secdit#arization can be
applied only if the Jacobian matrix exists. This means th&E Ehay not be applied

to discontinuous systems. Finally, computing the Jacomatrix can be poorly

*1 x 10~* was used in this study.
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numerically conditioned for some processes.

Julier et al. [78] proposed an approach for filtering nordingystems to address
the aforementioned problems by using what is now known asitiseented trans-
formation (UT) [74—77]. The UT works by constructing a sepoints, referred as
a sigma point, which are deterministically chosen to hagesdme known statistics
(e.g., means and covariance) as a given state estimate, dspecified nonlinear
transformation is applied to each sigma point, and the umiedeestimate is ob-
tained by computing the statistics of the transformed ské ificorporation of UT
into the KF framework is called the unscented Kalman filtelKRY [78]. The fol-
lowing describes briefly the implementation of UKF basedrengpherical simplex
unscented transformation [75].

Consider the: (= n,-+n,) dimensional augmented system statgs = [z, di.]”

and recast the system equations (6.2) to (6.4) as

Lok = fa(xa,k:—la uk—l) + Wa k-1 » (623)

Yo = Ga(Tak,ur) + vk, (6.24)

where

T
fo(@ap-1,up-1) = [fT(xk—lauk—l) CEJ ’

Go(Tapsur) = g(xg, ug) + di,

T
wa,k:—l = |: wlz; 5]{ :| .
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A summary of the UKF procedure is below:

(1) Calculate sigma pointg; ,—; fori =0,1,...,n+ 1 by the spherical simplex

unscented transformation as follows:

(a) Obtain the initial weight sequence by specifying theghiefor the first
sigma pointy, x—1, W§, which is a scalar weight for the mean value
of the augmented system states. The initial weights for ¢se of the

sigma points are obtained as

1— W

We = for i=1,...,n+1. (6.25)
n+1
(b) Forj =2,3,...,n, generate the vector sequence by using the following
equation:
{ ~
X
fori =0,
0
X7
X = fori=1,...,7, (6.26)
I S
L JE+HWP
Oj_l
fori=45+1,
j
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where

1
D Xy =

2W? V2P

Xg=0; Xj=-

(6.27)

(c) Compute the unscaled sigma points according to:

Xik-1= Lak-1+ ATXz‘n ) (6.28)

where #,,_; and A" are the mean of the augmented states and the

Cholesky decomposition of the augmented states covarraatex P, ,
at previous sampling time, respectively.if= 1, 2,0 = E [z,0] and
P o=E |(Tap — Ta0) (Tao — ;f:mo)T] = AT A. Otherwise,i,; ; and

P,

Ta,k—1

are defined in Step 7.

(d) Calculate the scaled sigma points and their associateghts by

Xik-1 = Xog_1T7 (szq - Xg,kq) ) (6.29)
M forZ’ =0

W, = ! (6.30)
we fori #£0,

where0 < v < 1 is a scaling factor indicating the distance of the sigma

points to their mean values.
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(2) Propagate the sigma points through the augmented sygséenequations:

Xiklk—1 = fa (Xig—1,up—1), fori =0,1,... , n+1. (6.31)

(3) Compute the predicted mean and covariance matrix ofugmanted system

states from

n+1
Fapior = > Wikikle—1, (6.32)
i=0

n+1

Prprpr = Z (Wi(Xinih—1 — Zagh—1) Xigh-1 — Zapp-1)" | +
=0

(1 =) (Xogk-1 — Zarp—1) Xogp-1 — Tagp-1)" +Q,

(6.33)
where() is the process noise covariance matrix.
(4) Propagate; -1 through the observation equation:
Yiklk—1 = ga<Xi,k|kfla Uk) (6-34)

(5) Compute the predicted mean and the covariance matrheaheasured vari-
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ables:
n+1
k-1 = > Witlige—1. (6.35)
=0
n+1
Prpoy = Z (Wi (i je—1 — Grip—1) Wi o1 — Grjp—1)" | +
=0

(1 =) (Work—1— Grpe—1) Work—1 — Jrp—1)” + R,

(6.36)

whereR is the measurement noise covariance matrix.

(6) Compute the predicted cross-covariance matrix betweeaugmented sys-

tem states and the measured variables from

n+1
P, = Z Wi (Xigpi—1 — Zakik—1) Yiktk—1 — Jakir—1)" - (6.37)

=0

(7) Once the measurement is available, correct the predictions according to

Kalman filter equations:

Tak = ZTapk-1 T Ke(ye = Grip-1) (6.38)
an,k = Pma,k\kfl - Kkpyk\k71Klza (639)

where the Kalman gaii, is defined ags;, = anyPy;‘lk_l.
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6.4 Simulation results and discussion

In the polymorphic transformation, botix and5-form crystals are seeded accord-
ing to a Gaussian distribution with parameter values giwefable 5.1. The initial
solute concentratiod, and maximum final solute concentratiGhy.x(ts) are 20
g/kg with a default batch timé; is 3 hours which is extended if the inequality

constraint (5.5) is not satisfied at that time. The samplimg is ten minutes.

6.4.1 Description of specific control implementations

In order to implement the NMPC strategy, the partial différ@ equations (4.1)
and (4.2) need to be discretized into a series of ODEs as in(&®). For this
purpose, JISHWENO discretization method detailed in Chiapte employed. The
resulting discretizations Qfeeq; and fruc,; With respect td. together with the solute
concentration are considered as the system states. Ofealydtem states, only
solute concentration is measured. Hence, the rest of themsystates need to be
estimated from available measurements. In this study,alh@ding measurements

are considered:

Yy = [,u‘a,la ,ua,27 ,U‘,B,lu ,uﬁ,27 XOH Cu T]T7 (640)

where X, is the crystal concentration ef-form crystals. The first four variables

(i.e., the first- and second-order momentswefand 5-form crystals) can be mea-
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sured using the online high-speed imaging system develop#te pharmaceutical
manufacturer GlaxoSmithKline [31]. The crystal concetitra of a-form crys-

tals can be measured by Raman Spectroscopy [115, 139]. éberdine tech-
niques are available for measuring the solution conceotrauch as conductivity
or attenuated total reflection Fourier transform infrarpdcsroscopy (ATR-FTIR)
[128, 160]. Temperature measurements are readily availadihg teflon-coated
thermocouples.

The optimization of two different product qualitieB, = (us3),_ ; in Eq. (5.1)

t

and P, = (ﬁ:geg:’;) . in Eq. (5.2), are considered, which from here onwards will
be called objective/; and objective/,, respectively. The tuning parameters for the
NMPC strategy for both objectives are given in Table 6.1. pédormance and ro-
bustness of the NMPC strategy to the perturbations in thetikiparameters in Ta-
ble 5.2 are compared with that of T-control, C-control, anddyatic dynamic ma-
trix control with successive linearization (SL-QDMC). Theontrol and C-control
strategies are explained in the previous chapter, whiléotimeulation of SL-QDMC

is based on the quadratic dynamic matrix control (QDMC) bycizaand Morshedi
[43], with the successive linearization of the process mpddormed to obtain the
dynamic matrix at every sampling instance. The constrargshandled in a sim-
ilar way as in the NMPC strategy. Although the simulatioruissof the T- and

C-control strategies have been discussed and providedaptéh5, the pertaining

discussions are repeated here for the sake of easy reference



CHAPTER 6. NONLINEAR MODEL PREDICTIVE CONTROL
STRATEGY 131

6.4.2 Comparison results and discussion

For the first control objectivd;, the concentration and temperature trajectories for
all four control strategies compared to the correspondpigral trajectories, for
the three sets of parameters, are shown in Figures 6.2 to B corresponding
values ofP; (which is proportional to the mass yield gfcrystals) are in Table 6.2.
When there is no plant-model mismatch (Figure 6.2), all mdrstrategies except
SL-QDMC produce similar results which are very close to tpgmal solution. As
discussed in Chapter 5, the T-control strategy is not rotaughe modelling error
given by Case 2, with the temperature trajectory deviatiggiicantly from the
optimal trajectory and the resulting, value is17% lower than the optimal one
(Figure 6.3 and Table 6.2). For Case 3 (Figure 6.4), the Trobstrategy violates
one of the constraints most of the time during the batch. hiregt, the C-control
strategy provides very good robustness in all cases, pnoglu¢ values within
1% of the optimal ones. The poor performance of the SL-QDMCJases 1 and

2 with P, values13% and31% lower than optimal may be accounted for by the
high process nonlinearity and the closeness of the optiolatien to a constraint,
the solubility curve ofa-form crystals. This closeness to the constraint prevents
the use of aggressive tuning parameters for SL-QDMC, otisertthe constraint is
violated even for Case 1 with no model uncertainty. SL-QDMGuits in good

performance for Case 3 with/ value within 2% of the optimal one, but violates a

tThe optimal temperature trajectory was computed by apglJieontrol to the sets of parame-
ters treated as known.
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state constraint near the end of the batch (Figure 6.4c) NMEC strategy shows
good robustness for Case 3, but itis less robust for CasetRodgh the temperature
and concentration trajectories for the NMPC strategy faseCaare different from
the optimal trajectories (Figure 6.3), tlig value is nearly optimal (i.e., withi#9%)
for all three sets of parameters.

For objective/,, the temperature and concentration trajectories obtdgede
four control strategies are plotted in Figures 6.5 to 6. hv#t values tabulated in
Table 6.3. For Case 1 (Figure 6.5), all control strategiegpxSL-QDMC produce
nearly the optimalP, value (Table 6.3). The performance of T-control for Case 2
is poor (Figure 6.6), with &, value 39% higher than optimum. Implementing T-
control in Case 3 (Figure 6.7) needs an extension of the lmbehto 4.5 hours in
order to satisfy the inequality constraint on the yield J5.bhe P, value obtained
by C-control is much better than obtained by the T-control@ase 2 but only
moderately better for Case 3 (Table 6.3). This improved stiess is achieved,
however, by using a longer batch time, requiring about 50$1¢Qase 2) and 5.8
hours (Case 3) to satisfy the inequality constraint (5.9 Gases 2 and 3, thg,
values of SL-QDMC are worse than C-control and NMPC but tifferdince is not
nearly as big as in Case 1. For all three sets of parameter@BUC was able to
satisfy all the constraints for the second objective withim specified batch time.

For the second objective, the NMPC strategy had the bestnpeaihce and ro-
bustness among the four control strategies for both setemfifped parameters,

with P, values within 7% from the optimal ones. While C-control andRC gave
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nearly the samé, values and both satisfied all of the constraints during thieesn
batch, a clear advantage of NMPC was that it completed tlobbaivithin the spec-
ified batch time. Although the greater ease of implementadifoC-control makes
it easier to transfer to industry [97, 175], this simulat&indy demonstrates that
there is room for improved robust performance and proditgtiy using a more

sophisticated NMPC strategy.

Table 6.1: Tuning parameters for the NMPC strategy.

Values for objective/; Values for objective/,
W,=1 W,=1
(W)t =7[1+100G —1)] x 107* (W,)ui' =[1+2(G —1)] x 1074
W, =101 W, =101
we=10[1,1,...,1]" we=10[1,1,...,1]"
Wy =0.8 Wy =0.8
v=0.1 v=0.1
TThe diagonal elements of matric¥¥,,, where: = 1, ..., N —k

Table 6.2: Values of the control objectivg obtained for the three sets of model
parameters in Table 5.2.
Cases T-control C-control SL-QDMC NMPC optimal
1 0.3119 0.3099 0.2720 0.3117 0.3119
2 0.3478 0.4187 0.2881 0.4031 0.4195
3 0.2569 0.2630 0.2634 0.2666 0.2667

Table 6.3: Values of the control objectivé obtained for the three sets of model
parameters in Table 5.2.

Cases T-control C-control SL-QDMC NMPC optimal
1 0.0381 0.0385 0.0406 0.0384 0.0381
2 0.0064  0.0050 0.0053 0.0049 0.0046
3 0.0683 0.0679 0.0681 0.0679 0.0659

iThese values are obtained after the batch time is extendstisdy constraint (5.5)
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Figure 6.2: Concentration and temperature trajectorie€ése 1 with objectivd;.
The solid lines are trajectories corresponding to the famtol strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 6.3: Concentration and temperature trajectorie€é&se 2 with objectivd;.
The solid lines are trajectories corresponding to the famtol strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 6.4: Concentration and temperature trajectorie€é&se 3 with objectivd;.
The solid lines are trajectories corresponding to the famtol strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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(a) T—control (b) C—control
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Figure 6.5: Concentration and temperature trajectorie€ése 1 with objectivd,.
The solid lines are trajectories corresponding to the famtol strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 6.6: Concentration and temperature trajectorie€é&se 2 with objectivd,.
The solid lines are trajectories corresponding to the famtol strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.
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Figure 6.7: Concentration and temperature trajectorie€ése 3 with objectivd,.
The solid lines are trajectories corresponding to the famtol strategies studied,
the dashed lines are the optimal trajectories, and the dhaggon indicates the
inequality constraint (5.4) corresponding to the contt@tegies.



CHAPTER 6. NONLINEAR MODEL PREDICTIVE CONTROL
STRATEGY 140

6.5 Conclusions

An NMPC strategy based on EPSAC and UKF was presented fdn patgmorphic
crystallization processes. A simulation study considehedcontrol objectives of
maximizing the yield of3-form crystals {;) and minimizing the ratio of nucleated
crystal mass to seed crystal massgeform crystals (). The performance and
robustness of the NMPC strategy was compared to establi@dl strategies,
namely T-control, C-control, and SL-QDMC.

T-control was very sensitive to parameter perturbatiospeeially for Case 2,
which results in 17% and 39% deviation from the optimal valoé P, and P,
respectively. C-control was robust for the maximizatiory@d, which produced
almost identical results to the optimal values for threes sétparameters. While
C-control satisfied all of the constraints and produégdsalues better or similar
to those of the other control strategies, the simulatiodysghowed that C-control
could take a very long batch time to satisfy the yield conistrgb.5). SL-QDMC
performed very poorly, even when there is no plant-modehmaish, due to high
process nonlinearity exacerbated by closeness of the algitution to a state con-
straint. The NMPC strategy showed good overall robustnesgdth objectives
(within 4% and7% of the optimal values, respectively) while satisfying @-

straints within the specified batch time.



Chapter 7

Integrated Nonlinear MPC and

Batch-to-Batch Control Strategy

7.1 Introduction

Due to the plant-model mismatch, optimal control obtainexinf offline process
model is often suboptimal when applied to the real procespldiing the fact that
batch processes are repetitive in nature, batch-to-batuinat uses results from pre-
vious batches to iteratively compute the optimal operatmgditions for each batch.
Batch-to-batch control has been studied extensively irpst decade. Zafiriou et
al. [173] proposed an approach for modifying the input segadrom batch-to-
batch to deal with plant-model mismatch. Their approachased on an analogy
between the iteration during numerical optimization of djeotive function and

successive batches during the operation of the plant. &Rrlngle and MacGre-

141
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gor [26] proposed a method to correct the manipulated vigrithjectories from
batch-to-batch with application to the optimization of e@ilar weight distribution
in a polymerization process. The method uses errors bettteemeasured and
desired molecular weight distributions at the end of a b&dalpdate the manipu-
lated variable trajectories for the next batch. Lee and od<ers [89] presented the
guadratic criterion-based iterative learning controll(@) approach for tracking
control of batch processes based on a linear time-varyaukitng error transition
model. Doyle et al. [37] used batch-to-batch optimizatiorathieve the desired
particle size distribution (PSD) target in an emulsion podyization reactor. A
simplified theoretical model is used as predictor, but tlegljmtion is corrected us-
ing an updated PLS model that relates the manipulated Vesiab the error from
the theoretical model prediction and the measured digtabu Xiong and Zhang
[170] presented a recurrent neural network based ILC sctientstch processes
where the filtered recurrent neural network predictionrsrfaom previous batches
are added to the model predictions for the current batch gtichization is per-
formed based on the updated predictions. Li et al. [94] pteska batch-to-batch
optimal control based on recursively updated nonlinearehobh their approach,
a batch-wise recursive nonlinear PLS algorithm was propés@pdate the model
after each batch.

With the ability of model predictive control (MPC) to resmbto disturbances
occuring during the batch and batch-to-batch control toexbrany bias left uncor-

rected by the MPC, combining both methods to obtain bettaetrobperformance
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is possible. This integrated control strategy can combif@mation from the past
error tracking signals with that from the current batch tquatthe manipulated
variable trajectories more effectively in real time. If Wiances occur, the inte-
grated control method is expected to counteract more mapidl effect of distur-
bances than batch-to-batch ILC only. Lee and co-workers92591] proposed a
batch MPC (BMPC) technique for tracking control by incomgtorg the capability
of real-time feedback control into Q-ILC. Chin et al. [24bpiosed a two-stage con-
trol framework by combining the Q-ILC and BMPC methods toasepely handle
the real-time disturbance and the batch-wise persistisigidiance, respectively.
However, the aforementioned integrated control strasel@é, 25, 90, 91] rely
on linear time varying (LTV) models, which is known to be lagkin the extrap-
olative capability. Motivated by this consideration and tenefits of the integrated
control strategy, a new integrated nonlinear MPC and betdbatch (NMPC-B2B)
control strategy is proposed in this chapter. The proposetthoa makes use of a
hybrid model consisting of the nominal first-principles rabdnd a correction fac-
tor obtained from an updated PLS model. One major benefitadf Bybrid model is
the ability to harness the extrapolative capability of thetfprinciples model while
the PLS model provides a means for simple model updating. NMBC based on
the extended predictive self-adaptive control (EPSAC) 833 70, 134] is utilized to
perform online control to handle the constraints effedyivehile the batch-to-batch
control refines the model by learning from the previous begclsimulation studies

show that the proposed control strategy results in impra@atstraints handling,
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faster and smoother convergence compared to the standatdtbabatch control
strategy. In the next section, the batch-to-batch (B2B)robstrategy adopted in
this study is explained. Itis followed by the discussionief proposed NMPC-B2B
control strategy. Then, simulation studies are presewntedrhpare the performance
of the B2B and NMPC-B2B control strategies in the polymogahansformation of
L-glutamic acid from the metastabteform to the stablgi-form crystals. Lastly,

conclusions are given.

7.2 Batch-to-batch (B2B) control strategy

In this study, batch-to-batch control strategy based onbgittynodel consisting of
a first-principles model and a PLS model is adopted. The heokesuch model
lies in its ability to exploit the extrapolative power of thgrinciples model while
the inevitable modelling error is corrected through a serPLS model using data
from previous batches. Therefore, for any process vaatfienterest (such as the
product quality and constrained variables) attttesampling time ofjith batch,zi,
its prediction can be decomposed into two factors:

zi = zgp,k + Azéls’k , (7.1)

Wherez{m is obtained from the first-principles models (Chapter 3hwibminal

model parameters whiLezgl&k is the correction obtained from the PLS model using
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the quadratic PLS (QPLS) [165] technique.

Generally, PLS method reduces the dimension of the predieigablesX <
R™*"= and response variabl& < R"*"v, wheren, n,, n, denote the respective
numbers of datasets, input, and output variables, by pgrogethem to the directions
that maximize the covariance between input and output vigsa The decomposi-

tion of X andY into their score and loadings matrices is shown below:

Nlatent

X = SO"+E= ) s +E, (7.2)
h=1
N]atent

Y = UQ"+F= ) wq] +F, (7.3)
h=1

whereS € R™*™atent gndU € R™*™atent gre the matrices of scores f&r andy,
respectivelyQ € R"=*™Matent gnd@Q € R™»*™atent gre the matrices of loadings fo
andY, respectivelyE andF are matrices of residuals,, oy, u;, andq,, are thehth
column of matricesS, O, U andQ, respectively, ana,.;..; IS the number of the
specified latent variables used in PLS. In the conventioh8l &proach, the score
vectorss,, andu, are related linearly. In contrast, they are related quarddat in

the QPLS as follows:

uy, = Cop + C1p8p + CQhS% + €n, (7.4)

wherec;), is the jth regression coefficient ang is the residual vector.

The first step to obtairzﬁzfj'ls,k is to prepare the matriceX andY from the
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historical database. Each row of matixconsists of the input variables at sampling
time 0 to k£ — 1 for a particular batch, while each row of matr& contains the
deviation between real process variable and the one peeldst the first-principles
model at sampling timé in the same batch. There are two common approaches
to determine the number of dataset$ kept in the database. The first approach is
to keep the datasets from all past batchesn¢reases every batch) and the other
approach is to keep only the datasets from the latésttches (i.e. moving window
approach). The second step to obtAiff;ls’ . IS to decompose both database matrices
into their corresponding scores and loadings vectors. &uently, the regression
coefficients are obtained by the QPLS algorithm given in tippendix A. In this
study, n.ient IS Chosen as the maximum number such that the explainecheaga
in matricesX andY does not exceeg®)%. Finally, for a new input vectat,,, the

output correction terrrzﬁzfj'ls?,C can be obtained as follows:
(1) Arrange the row vectat,,s in the same way as the database maxix

(2) Forh = 1,..., natent, Calculate the contributions to the output veqygr. ,

as follows:

(a) Obtain the input score vect® corresponding to the new input vector:
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(b) Calculate the output score vecioy:

. A A2
Uy, = Cop + C1pSh + CopS, -

(c) Obtain the residuals vecter

and setx,; = e for the next dimension = h + 1.

(3) Calculate the output correction term:

Nlatent

J _ A T
Azplsvk— E Ua,q;, -

h=1

In the batch-to-batch control strategy, the objective fiamcto be minimized

before thejth batch is as follows:

Jaon = min W, (P — P))? 4+ AUT W ny AU+ dUT W gy, AU (7.5)
where
u = [u%,u{ ,u&_l]T ,
AU = [u{ —uh,ul — g, Ul — ugw] ,

— J j=1 3 j '
du = [uO_uO yUp — Uy o, Uy — Uy
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andP and P, are the predicted and desired final product quality, whichesponds
to either Eq. (5.1) or (5.2), respective’qr; is the input value at théth sampling

time of jth batch,N is the total number of samples in one bat@h, is the scalar
weight corresponding to the final product quality, Vg, andW 4, are the weight
matrices which penalize excessive changes in the inpuharivhich occur within-
batch and inter-batch, respectively. The above minimozagiroblem is subject to
process model and inequality constraiBt$l/) < 0. In this study, differential evo-
lution (DE) [84, 151] technique is utilized to solve the abawinimization problem

before every batch.

7.3 Integrated NMPC and batch-to-batch (NMPC-

B2B) control strategy

The main shortcoming of batch-to-batch control strategg In its open-loop na-
ture, where the correction is not made until the next bataha Aesult, its capability
to handle constraints for the current batch solely dependthe accuracy of the
corrected model from the previous batch. Hence, when thed®ad model is still

not accurate, which is likely the case in the first few batcit@s possible that the
constraints will be violated when the input values are immated to the process. If
online measurement of some process variables are avaiiisleossible and ben-
eficial to integrate nonlinear model predictive control (R¥)) technique into the

batch-to-batch control strategy to develop the proposegrated NMPC-B2B con-
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trol strategy. As such, both control strategies will compéat each other such that
the NMPC can perform online control to handle the constsagitectively while
the batch-to-batch control refines the model by learninmftioe previous batches.
In the proposed integrated control strategy, the formaortedif the hybrid model
remains the same, except that the definition of the ma&triin the PLS model
includes both the input and measured variables at sampimgtto £ — 1. The

objective function to be minimized at every sampling timassollows:

Jxape-pap = min W, (P — P)’+AUT Way AU+dUT Way dU, (7.6)

where
_ J o, J
U = [ukvuk—f—lv"'qufl] )
AU = [uj—uj W —ul e uh  — }T
- k k-1 Yk+1 k> »y PN—1 N-2 ’
dU = [uj Y A v S —uj_l}T
- k ko YVk+1 k+1> » YN—1 N-1 )

andWay andW 4y are the weight matrices which penalize excessive changes in
the the input variable which occur within-batch and intatdh, respectively. The
above minimization problem is subject to process model aaduality constraints
H (U) <0.

The NMPC strategy considered here is based on the EPSACiqeen33, 34,

70, 134] as described in Chapter 6. Using the represent@idf), P, AU, and
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dU in Eq. (7.6) can be decomposed into:

P = B+ G,AU;, (7.7)
AU = AU, + AU,, (7.8)
dU = U,+MAU, - U,,., (7.9)

where P, is the product quality calculated using the hybrid modehwitedeter-

mined future inputdJ, = [up k, up kt1, - - - ,Ub,N—l]T, G, is the step response coef-
ficient matrix corresponding to the product qual,e, = [w] ', ul ], - - ,ufv__ll}T
is the input sequence from the previous batsh], = [Aup k., Aup g1, - - - ,Au@N,l]T

is the change in the predetermined future inputs, &hd a lower triangular ma-

trix with all elements equal to one. Therefore, the the mination problem (7.6)

becomes:
JNMPC_BQB = Igl[lj_ﬂ AUITFAUZ+Q/}TAUZ, (710)
l
where

I' = W,G) Gy + Wau+ M WeuM,

T
Y = 2|W,(Py— P))" Gy + AUIWay + (Uy — Uper)” WauM| .
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Similarly, the inequality constrainid (U) can be decomposed into:

H, + G,,AU,; <0, (7.11)

whereGy, is the step response coefficient matrix corresponding tedmnstraints
and H, is the constraints calculated using the hybrid model witbdptermined
future inputsU,,. In this study, the soft-constraint approach [140] is méil and the

minimization problem is modified as follows:

fn Jsc,NMPC-B2B, (7.12)
subject to

Hb + GMAU[ S €, (713)

e > 0, (7.14)

whereJse nmpc-e2s= JInvpc-s2s + €1 W e+ ¢! w, , e is a vector of slack variables,
W. is a diagonal matrix of positive weight, ard is a vector of positive element.

Hence, the solution to the modified minimization problemsgalows:

JeenmpcB2B = glUilnE AUITAU; +9TAU; + e Wee + f'w,
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_ I o AU,
- g [avr o] .
0 W, €
AU,
v v ]
€

= min ITAIT + 7711, (7.15)

where

r o
A = :
0 W,
T
]
subject to
H, Gn -1
+ ImI<o. (7.16)
0 0 -I

In summary, the procedure of implementing the integrated@@\&nd batch-to-

batch control strategy for each batghnd sampling timé is as follows:

(1) Prepare the database matridéandY for the PLS model as follows:

e if j = 1, the database matricé§ andY for the PLS model can be

obtained from the historical batch data. Alternativelyguhsequences
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around the nominal trajectory which is the optimal inputisstce for
the first-principles model are implemented to the procedgslamresult-

ing measurements are used to construct the database.

e if j > 1, update the database matrices by including the previow$ bat
measurements dataset into the database. In this studyaviagrwin-
dow approach is adopted, where the dataset from the ednh¢sh is

removed every time a new dataset is included.

(2) ObtainU, by the following method:

e if £ = 0 anditer = 1, U, is chosen to be the input trajectory imple-

mented in the previous batch.

e if k> 0anditer =1, U, is set as th&J ;. Obtained in the previous

sampling time of the current batch.

e if iter > 1, the updatedJ, from the previous iteration is used.

whereiter is the iteration count.

(3) ObtainP, andH, by usingU, as the input to the hybrid process model. In
this study, it is assumed that the constrained variablesnaasured. Then,
the bias between the predictions and the measurements abtistrained
variables at the current sampling tirh@re added into the future predictions.
If the constrained variables are not measured, it is passtoemploy state

estimation such as extended Kalman filter (EKF) or unsceligdchan filter
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(UKF) to estimate them.

(4) Obtain the step response coefficient matriGgs and G, by introducing
step change inu. Generally, product quality measurement of batch process
is only available at the end of the batch. Consequently, ttfe ¢rrection
can only be calculated for the end of batch only (i.e. for damggime N).
Therefore in order to obtaiGr,,;, the PLS correction for the sampling time

is added to the prediction of product quality at samplingetimio N — 1.

T
(5) ObtainIl* = { AU; ¢ } from the solution to the minimization problem

(7.15) and (7.16), then update the element&/phs follows:

j
Up ket = Upktj + E Ay s
=0

wherej =0,...,N — 1+ k.

Gy
6) If err = g AUy || is greater than a specified tolerangex( 10~ is

G
used in this study)iter = iter 4+ 1 and repeat from step (2). Otherwise, set

Uptimar = U, and implement the first element ©f,,¢;,,,.; to the process.

(7) If the end of the current batch is reached, repeat from @gand go to the

next batch.
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7.4 Simulation results and discussion

In the polymorphic transformation process, bathand 3-form crystals are seeded
according to Gaussian distribution with parameter valuesrgin Table 5.1. The
initial solute concentratiol, and maximum final solute concentratiGhyax (ts)

are 20g/kg. The batch time/ is 3 hours and the sampling time is ten minutes.

7.4.1 Description of specific control implementations

The optimization of two different product qualitieB; = (s3),_,, in Eq. (5.1)

ty
and P, = (%;é;)ttf in Eg. (5.2), are considered, which from here onwards will
be called objective/; and objective/,, respectively. It is assumed that the process
is subject to two cases of parameter perturbations giverabieT5.2. Note that
only Cases 2 and 3 are considered, since batch-to-batcktendjnt is not required
when there is no plant-model mismatch (Case 1). The tunimgnpeters for the
B2B and NMPC-B2B control strategies for both objectivesgiven in Tables 7.1
and 7.2, respectively. For all cases and objectives, thalimlatabase (i.e. for
the first batch) utilized for the PLS model comprises his@roperating data from
ten batches. These include temperature trajectories drinennominal trajectory
(see the solid lines in Figures 7.1 to 7.4) obtained by ogziimgi the nominal first-
principles model, the corresponding deviation betweemthasured concentration

and the predicted concentration by the first-principles ehaghd the deviation val-

ues in final product quality. For the subsequent batchesjngavindow approach
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is adopted to update the database, where the latest 15 batichkept in the data-
base. For all cases and objectives, the optimal resultsdésabed by the dashed
line in Figures 7.5 to 7.10 are obtained by applying the teatpee control strat-
egy, where the temperature-time trajectory is paramet@éras a first-order spline
with eighteen time intervals, to the first-principles moah the set of parameters

treated as known.

7.4.2 Comparison results and discussion

For the first control objectivd;, the respective concentration and temperature tra-
jectories obtained for the B2B and NMPC-B2B control strege@pplied to Case 2
are given by Figures 7.5 and 7.6. As can be seen from thesedigboth control
strategies produce solutions which converge to the optimalgradually and result
in temperature and concentration trajectories very clogbe corresponding opti-
mal ones at batch 20. Figure 7.7 comparesihealues obtained by both control
strategies for batches 1 to 20. It is clear that not only Fhevalues obtained by
the NMPC-B2B control strategy converge at a faster rate thase obtained by
the B2B control strategy, but also the former gives a smaatbevergence while a
slight oscillation can be observed in batches 13 to 18 foBB control strategy.
Furthermore, the NMPC-B2B control strategy is able to §atdl the constraints
for every batch, while the B2B control strategy violates oféhe constraints dur-
ing batches 5 to 8 as shown in Figure 7.7. For Case 3, the irgggtbncentration

and temperature trajectories for both control strategidsaiches 1, 7, 14, and 20
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are shown in Figures 7.8 and 7.9, where the convergence lofdoaotrol strategies
to the corresponding optimal one is illustrated. The trehé’ovalues as given in
Figure 7.10 shows similar observation to the Case 2, medhatghe NMPC-B2B
control strategy results in a faster convergence and ssiafl constraints, while
the B2B control strategy violates one of the constraintsaitciv 2.

For control objective/,, Figures 7.11 and 7.12 show the concentration and tem-
perature trajectories for B2B and NMPC-B2B control strage@pplied to Case 2,
respectively. Although there is a slight difference betwde temperature trajec-
tories obtained by both control strategies and the optisraperature trajectory in
batch 20, the correspondirdg values (Figure 7.13) obtained by both control strate-
gies are reasonably close to the optimal one (with296). This phenomenon also
indicates that thé, value is less sensitive to the changes in temperature atbend
optimal temperature trajectory. Again, it is observed thatNMPC-B2B control
strategy converges at a faster rate than the B2B contrdkgira Likewise, Fig-
ure 7.14 shows that thg, values in batch 20 obtained by the two control strategies
for Case 3 are very close to the optimal one (withit%), despite the difference
in the corresponding concentration and temperature tajes produced by both
control strategies and the optimal ones (Figures 7.15 ab@)).7.In addition, the
convergence of thé;, values obtained by the NMPC-B2B control strategy is much
faster and smoother than that obtained by the B2B contrategy.

The P, and P, values obtained by the B2B and NMPC-B2B control strategies

at batch 20 and those obtained by NMPC strategy developetiaptér 6 are tab-
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ulated in Tables 7.3 and 7.4, respectively. It can be sedriltbd; and P, values

obtained by the B2B and NMPC-B2B control strategies are ularge to each other
and comparable to the true optimal values for all cases.hEurtore, through the
learning process, these control strategies outperforrNMBC strategy, except for
Case 3 of objective/;, where the NMPC strategy obtains a marginally befter

value (.1% better than that obtained by the NMPC-B2B strategy).

Table 7.1: Tuning parameters for the B2B control strategy.

Values for objective/; Values for objective/,
Wy =1 Wyo=1
(Way1)iil =2[1+150G —1)] x 107°  (Waya)ii' =3[1+0.5( —1)] x 107°
Wy =3x107°1 Wayz =5 x 1071
W, =101 W, =101
we=10[1,1,...,1]" we=10[1,1,...,1]"
"The diagonal elements of matric¥¥ Ay¢,1 andW a2, wherei =1,. .., N.

Table 7.2: Tuning parameters for the NMPC-B2B control stygt

Values for objective/; Values for objective/;
Wpr=1 Wyo=1
(Wavu1)ii' =[14+15G0—1)] x 107° (Waya)ii' =9[1+0.7( —1)] x 107°
Wau1=15x107°1 Waue =6 x 107°7
W, =101 W, =101
we=10[1,1,...,1]" we=10[1,1,...,1]"
TThe diagonal elements of matric¥¥ Ayy,;1 andWay 2, Wherei = 1,. .., N — k.

Table 7.3: Values of the control objectiy& obtained for the Cases 2 and 3 in Table

5.2.
Cases NMPC B2B NMPC-B2B optimal

2 0.4031 0.4194 (after batch 11) 0.4194 (after batch 8) &419
3 0.2666 0.2662 (after batch 6) 0.2663 (after batch 3) 0.2667
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Table 7.4: Values of the control objectiy&g obtained for the Cases 2 and 3 in Table
5.2.
Cases NMPC B2B NMPC-B2B optimal
2 0.0049 0.0046 (after batch 9)  0.0046 (after batch 7)  0.0046
3 0.0679 0.0659 (after batch 20) 0.0659 (after batch 10) 5206

7.5 Conclusions

An integrated nonlinear predictive control and batch-&beh (NMPC-B2B) control
strategy utilizing a hybrid model was developed for batclypmorphic crystalliza-
tion processes. The performance of the proposed contaikgly to optimize two
control objectives?, and P, is evaluated under two cases of plant-model mismatch.
Simulation results show that the NMPC-B2B control stratpgyduces better per-
formance compared to the standard B2B control strategylfmaaes and objec-
tives considered. Beside being able to satisfy all the caims, the convergence of
the product qualities obtained by the NMPC-B2B controltetyg is always faster
and smoother than that obtained by the B2B control stratégympared to the
NMPC strategy developed in the previous chapter, both BZBNIIPC-B2B con-
trol strategies obtain better product quality values (pkder Case 3 of objective
J1). Hence, it is verified that through the learning processh IB2B and NMPC-
B2B control strategies are more advantageous to be emptoyattiress the plant-

model mismatch in an effective manner.
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Figure 7.1: Database employed for Case 2 and objedtiieB2B and NMPC-B2B
control strategies.
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Figure 7.2: Database employed for Case 3 and objedtiieB2B and NMPC-B2B
control strategies.
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Figure 7.3: Database employed for Case 2 and objegtireB2B and NMPC-B2B
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Figure 7.4: Database employed for Case 3 and objegiiveB2B and NMPC-B2B
control strategies.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Encouraged by the importance of polymorphism in pharmacaundustries, this
thesis investigated the modelling, simulation, and cdrdfg@olymorphic crystal-
lization of L-glutamic acid, which consists of the metastai-form and the stable
(-form crystals.

In Chapter 3, a kinetic model of L-glutamic acid polymorpbiystallization
is developed from batch experiments with in-situ measurgsnecluding atten-
uated total reflection Fourier transform infrared (ATR-RJ pectroscopy to infer
the solute concentration and focused beam reflectance neeasot (FBRM) which
provides crystal size information. The developed kinetmded appears to be the
first to include all of the transformation kinetic parametercluding dependence

on the temperature, compared to past studies on the magleflin-Glutamic acid
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crystallization [115, 139]. The model parameters are datezd using Bayesian
inference instead of the standard weighted least squardsods as such prior
knowledge can be included in the statistical analysis. titamh to providing point
estimates of the kinetic parameters, the Bayesian inferapproach is able to deter-
mine a detailed marginal probability distribution for egzrameter. The marginal
probability distributions of the parameters can give ptiacters insight regarding
the parameter uncertainties and are of significant valuesteldp robust control
strategies for the crystallization process [114].

In Chapter 4, numerical simulations of the polymorphic tailzation of L-
glutamic acid using high-order WENO methods are develoddw: performance
of three WENO methods: Liu et al's version of WENO (LOCWEN®Y], Jiang
and Shu’s version of WENO with Henrick mapping (JSHWENO),[62], and
the weighted power ENO method (Wpower-ENO) [141] are coregbdo the high
resolution (HR) finite volume method and a second-orderéfidifference (FD2)
method. From simulation results, it is shown that the thré&N® methods outper-
form the HR and FD2 methods in terms of computational effoyewith LOCWENO
and JSHWENO methods having the highest overall efficiency.

In Chapters 5 to 7, control strategies for the polymorphaasformation of L-
glutamic acid from the metastableform to the stables-form crystals, where two
types of objective are considered. The first objective is &ximize the mass of
(g-form crystals, which is equivalent to maximizing the thocder moment or the

yield of g-form crystals, whereas the second objective is to minirtheeratio of
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the nucleated crystal mass to the seed crystal masdain crystals.

Specifically, Chapter 5 discusses two popular controleggiat in non-polymorphic
crystallization, the T-control and C-control strategi8gnulation results show that
T-control is in general sensitive to parameter perturletiovhich is in accordance
with the observation for non-polymorphic crystallizatio®n the other hand, the
C-control strategy performs very robustly for both objees, but long batch times
may be required.

Since the method of moments which is heavily used in the ptsyMPC con-
trol algorithms developed for non-polymorphic crystadlibn processes [35, 79,
113, 131, 155] does not apply for the polymorphic transfdaromaprocesses, the
full PDEs of the population balance model need to be solveshs€quently, the
computation time required increases considerably whiohipits the straightfor-
ward application of nonlinear programming. In Chapter 6 e#fitient nonlinear
predictive control (NMPC) strategy based on the extendediptive self-adaptive
control (EPSAC) is developed. The resulting NMPC strategly cequires a stan-
dard quadratic programming, which increases computdtieffiaiency consider-
ably compared to the nonlinear programming counterpartmp@ed to the T-
control, C-control, and quadratic dynamic matrix contrahvsuccessive lineariza-
tion (SL-QDMC), the NMPC strategy shows good overall rohass for two dif-
ferent control objectives, which were both withi#o of their optimal values, while
satisfying all constraints on manipulated and state vigalwithin the specified

batch time.
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Finally, realizing that batch processes are repetitivatore, an integrated non-
linear predictive control and batch-to-batch (NMPC-B2Bhtrol strategy utilizing
a hybrid model is developed in Chapter 7. The hybrid modelmrising the nom-
inal first-principles model and a correction factor base&omupdated partial least
squares (PLS) model is utilized to predict the process blsaand final product
guality. In the proposed NMPC-B2B control strategy, the NBABerforms online
control to handle the constraints effectively while thechato-batch control refines
the model by learning from the previous batches. Simulasinlies show that
the proposed NMPC-B2B control strategy produces fastersamoother conver-
gence and satisfies all the state constraints, comparee &tdhdard B2B control
strategy. Further observations suggest that the learnmoceps in both B2B and
NMPC-B2B control strategies counteracts the plant-modstmatch effectively af-

ter several batches.

8.2 Suggestions for future work

There are few suggestions that warrant further investigatvhich are summarized
below.

Firstly, distributional uncertainty analysis can be cadrout based on the poly-
morphic crystallization model developed in this thesismpoehensive uncertainty
analysis of mechanistic models is important to quantifyittiielence of parameter

uncertainties on the process states and outputs. Thisificatiin eventually can be



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 177

used to design efficient schemes for model or data refinenyeti¢diding whether
more laboratory experiments are needed to provide bettanper estimates or
whether other model structure should be selected. In addlitine distributional un-
certainty analysis together with the posterior distribatof the model parameters
provided in this thesis can be used to develop a robust Tralostrategy for the
polymorphic crystallization process.

Secondly, the models developed in this thesis and otheatites [115, 139] as-
sume perfect mixing. It is possible that this assumptioh mat be satisfied for in-
dustrial size crystallizer. Therefore, to consider thedff hydrodynamics of the
vessel which accounts for non-ideal flow behavior, compantnmodelling tech-
nique can be utilized. Basically, the compartment modgltachnique divides the
crystallizer into few sections with different degree of mgx, in order to simulate
the mixing imperfection.

Thirdly, data-based modelling techniques like neural ek can be investi-
gated to model the polymorphic crystallization insteacheffirst-principles model.
The benefits of modelling using data-based technique iecthd much less en-
gineering effort required as compared to the first-prirespinodelling technique
and the possibility to perform online model updating. Onataebased model can
be obtained, various control strategies can be investigaased on this modelling
technique and their performance can be compared to the @awedoged in this
thesis.

Fourthly, in the last decades the salting-out techniquedhe@asn more attention
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and has been more frequently seen as a valid alternativeollmgand evapora-

tion. The antisolvent addition reduces the solubility of ffroduct compound in
the original solvent thereby facilitating supersatunatieneration. This method is
attractive since it can lead to significant savings in enegysumption and oper-
ation costs in comparison to the conventional techniquesthErmore it can be
seen as an alternative methodology whereby the limited ¢éeatpre stability of the

solid product precludes the use of evaporation, as in threeafgsharmaceuticals and
biochemicals, or when, because of the weak temperaturendepee of the solute
solubility, it is not possible to use the cooling technigussch as for sodium chlo-
ride in water. Therefore, it is worthwhile to investigate tnodelling, simulation,

and control of antisolvent crystallization.



Appendix A

Quadratic Partial Least Squares

The following describes the quadratic partial least squé@#LS) procedure [165]:
(1) Center matriceX andY by their means and scale them to unit variance.
(2) Setu;, equal to a column o¥ with maximum variance.

(3) Setthe dimension index= 1.

(4) Regress columns & onuy:

. th

uluy,

W

(5) Normalizew, to unit length:
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(6) Calculate the input scoreg:

XWh
Sy =

wlwy,

(7) Fitthe nonlinear inner relation by least squares:

2
Uy = Cop + C1nSh + CopSjy + €p,

and calculate the estimateg (i,):

N 2
Uy = Cop + C1nSh + C2iSy, -

(8) Obtain the output loadings,:

Y Tqy,
an = 7~ -
alay,

(9) Normalizeq,to unit length:

an

qp = .
" \/qg%

(10) Calculate newa,values:

_ Yqy
(1;7; an ’

up
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then recalculate the coefficients in the inner relatign ¢, andcyy, by least

squares.

(11) Calculate correction te as follows:

(a) Construct matri®, with its firstn, columns equal tdc;;, + 2capsp) ®
x; and its last three columns equal tos},, ands?, where® means

element by element multiplication aid= 1, . . ., n,.

(b) Obtainvy:

Zyuy,

VvV, = .
uluy,

(c) Normalizev,, to unit length:

Zth

d =
h viIvy

(e) Obtainby,:
dguh

by, = .
" ald,
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() Updatew,, as follows:

Wy = Wy, + Awy,,

where

Awy, (j) =0bvy (j) forj=1,...,n,.

(12) Calculates; according to step (6)

(13) Check convergence am,. If the norm of the relative change i, with
respect to the previous iteration is less than a specifiedaote (i.e1071% is

used in this study), proceed to step (14). Otherwise, rdpaatstep (7).

(14) Using the latest,, calculate the final values di,, q;,, u, according to steps

(7) to (10).

(15) Calculate th& loadings:

XSh
= —F .

Op

(16) Calculate the residuals &f andY:

T
E = X-s,05,

F = Y -uwq/.
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If the current dimension is less than the specified latent variables to be used
(Matent ), SE€th = h + 1, use residual& andF asX andY, respectively and

repeat from step (4).
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