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Summary 
 

Aurora kinases have evolved as a new family of centrosome- and microtubule-associated 

serine/threonine kinases that regulate multiple processes in mitosis, such as centrosome 

duplication and maturation, chromosome condensation, bipolar spindle assembly and dynamics, 

cytokinesis and checkpoint control. One of its members, Aurora-A kinase is a potential oncogene. 

Overexpression of Aurora-A kinase causes centrosome amplification and defective chromosome 

segregation, leading to aneuploidy and tumorigenesis in various cancer cell types.  

Our objective is to identify the negative regulator(s) for mammalian Aurora-A kinase. 

Exploiting the lethal phenotype associated with overexpression of Aurora-A kinase in yeast, we 

performed a dosage suppressor screen in yeast and successfully isolated a novel negative 

regulator of Aurora-A kinase, named as AKIP (Aurora-A Kinase Interacting Protein). AKIP is an 

ubiquitously expressed nuclear protein that interacts specifically with human Aurora-A in vivo. 

AKIP targets Aurora-A for protein destabilization in a proteasome-dependent manner. AKIP-

Aurora-A interaction is essential for the AKIP-mediated Aurora-A degradation. 

Aurora-A kinase normally undergoes cell cycle-dependent turnover through the Cdh1-

mediated APC/C-ubiquitin-proteasome pathway. In an attempt to investigate the mechanism of 

AKIP-mediated Aurora-A degradation, AKIP was found to potentiate the proteasome-dependent 

 xiii



degradation of Aurora-A by an alternative mechanism that is independent of ubiquitination. This 

implies Aurora-A kinase can be delivered to the proteasome for degradation via two distinct 

ubiquitin-dependent and ubiquitin-independent pathways. AKIP inhibits Aurora-A ubiquitination, 

through its interaction with the potential ubiquitination region of Aurora-A.   

  Interestingly, AKIP-mediated Aurora-A degradation is functionally linked to a family of protein, 

called antizyme (AZ), which plays the proteasomal targeting role and mediates the Ub-

independent degradation of some proteins. Antizyme can directly down-regulate Aurora-A 

protein stability, which is dependent on antizyme:Aurora-A interaction. Interestingly, defective 

antizyme:Aurora-A interaction or inhibition of antizyme function impairs AKIP-mediated 

Aurora-A degradation, implying AKIP and antizyme function on the same or parallel pathways in 

the ubiquitin-independent degradation of Aurora-A. AKIP indeed acts upstream of antizyme by 

enhancing binding of antizyme to Aurora-A, thereby targeting Aurora-A for proteasomal 

degradation. 
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1.1   Mitosis 

1.1.1  Overview of Eukaryotic Cell Cycle-Mitosis 

  Mitosis, though it is the shortest phase of the cell cycle, is highly structurally dynamic and 

plays a critical role in segregating the newly synthesized chromosomes symmetrically and 

accurately into the two daughter cells. By end of S phase, the centrosome duplication and 

DNA replication are accomplished. When the cells first enter into prophase, the chromatin 

condenses and the nuclear envelope breaks down. At the end of prophase, the mature 

centrosome pair separates and migrates to the opposite poles of the nucleus to serve as two 

microtubule-organizing centres (MTOCs). Prometaphase follows where the microtubules 

nucleate from the MTOCs, forming the bipolar spindle. Subsequent to progression into 

metaphase, the kinetochores capture the plus ends of microtubules and this facilitates the 

chromosomal bi-orientation and alignment at the metaphase plate in the center of mitotic 

spindle. In the meantime, there is a continuous activation of mitotic checkpoint to monitor the 

microtubule attachment to kinetochores and tension. Upon progressing into anaphase, the 

chromatids start to segregate to the opposite spindle poles and this process is facilitated by the 

gliding of polar-oriented microtubules. ATPase driven motors such as dynein, kinesins and 

kinesin-related proteins and their dynamic temporal and spatial coordination play an essential 

role during the process. During the telophase, nuclear division occurs. Actin and myosin also 

redistribute to form an actin ring, called post-mitotic bridge in the midzone region between 

the poles. Contraction of the actin ring initiates the destruction of the post-mitotic bridge and 
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cytokinesis [1-2]. An overview of eukaryotic cell cycle, in particularly M phase is shown in 

Figure 1-1.  

 

     Figure 1-1: Overview of Eukaryotic Cell Cycle 
            (Figure adapted from ref [3]) 

1.1.2.  Regulation by Mitotic Kinases 

  All these mitotic events are tightly governed by three regulatory mechanisms: protein 

localization, proteolysis and phosphorylation. Several protein kinases and their opposing 

phosphatases had been identified [2]. The best-studied kinases for the cell cycle progression 

are the cyclin-dependent kinases (CDKs) [4], which complex with cyclins and regulate 

various processes in mitosis, from DNA replication till mitotic entry and exit. Besides, the 

polo-like kinases (PLKs) [5] regulate the centrosome maturation, CDK1 activation and 

inactivation, and cytokinesis. In addition, the NimA-related kinases (NEKs) [6] regulate the 

centrosome cycle. Moreover, the kinetochore-localized Bub1 [7] kinase regulates the 

anaphase checkpoint signaling. Table 1-1 summarizes all the above kinases implicated in  
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mitotic progression and checkpoints. Figure 1-2 displays where the major checkpoints exert 

quality control over mitotic progression and where mitotic kinases are thought to act. 

Table 1-1: Mitotic Kinases (Table adapted from ref [1]) 

 

Figure 1-2: Cell Cycle and Kinase Signaling Cascades (Figure adapted from ref[1]) 
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1.2. Aurora Kinases 
 

1.2.1.  Members of Aurora Kinase Family 

  Recently, a new family of conserved mitotic serine/threonine kinase, named as Aurora 

kinase [1, 8-9] had been identified and played the implicated roles in centrosome separation 

and maturation, spindle assembly and stability, chromosome condensation, congression and 

segregation and cytokinesis. Homologues of Aurora kinase had been isolated in various 

organisms, including yeast, Caenorhabditis elegans, Drosophila and vertebrates. Mammalian 

genome encodes for three members, namely Aurora-A (also known as Aurora-2, AIR-1, AIK1, 

AIRK1, AYK1, BTAK, Eg2, IAK1, STK15), Aurora-B (also known as Aurora-1, AIM-1, 

AIK2, AIR-2, AIRK-2, ARK2, IAL-1 and STK12) and Aurora-C (also known as AIK3), while 

for other metazoans, like Xenopus laevis, Drosophila melanogaster and Caenorhabditis 

elegans, only Aurora-A and Aurora–B kinases were found, whereas the yeast genomes of 

Saccharomyces cerevisiae and Schizosaccharomyces pombe encoded only one Aurora-like 

homolog. Ipl1p from budding yeast S. cerevisiae and Aurora from Drosophila melanogaster 

are the founding members of Aurora kinase family. Ipl1p was identified through a genetic 

screen for mutations that led to increased chromosome missegregation [10]. Table 1-2 

summarizes the nomenclature of the Aurora family kinases. 
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Table 1-2: Nomenclature of Aurora Family Kinases (Table adapted from ref[1]) 

 
 

1.2.2.  Domain Organization of Aurora Kinases 

  The three Aurora kinases (309-403 a.a) share the similar domain organization, with their 

catalytic kinase domain flanked by very short C-terminal tail (15-20 a.a.) and N-terminal 

domain of variable length (39-129 a.a.). The N-terminal domain is highly variable in sequence 

and length between Aurora members and this confers selectivity and specificity for 

protein-protein interaction, whereas the catalytic kinase domain is highly conserved (67-76% 

identity), even across different organisms. The most conserved motif is the activation loop, 

which contains a highly conserved threonine residue (Thr288). Though all three Aurora 

kinases are similar in structure, they display different expression patterns, subcellular 

localizations and timing of activation [8, 11-12]. Figure 1-3 shows the domain organization of 

the Aurora kinases. 
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Figure 1-3: Structural Organization of Aurora Kinases (Figure adapted from ref [11]) 

 

KEN Box 

 

1.2.3.  Aurora Kinases Expression, Subcellular Localization and Functions in Mitosis 

 Aurora-A kinase is ubiquitously expressed, low in most tissues, yet high in tissues with high 

mitotic and meiotic index, such as thymus, fetal liver and testis. Aurora-A mRNA and protein 

expression levels as well as its kinase activity are cell cycle regulated, low in G1/S phase, 

peaking in G2/M and then dropping upon mitotic exit into the next G1. Aurora-A kinase 

displays dynamic subcellular localization, localized initially to the duplicated centrosomes at 

the end of S phase, translocating to mitotic spindle from prophase through telophase. 

Activation of centrosomal Aurora-A at late G2 phase is essential for centrosome maturation 

and mitotic entry. Its further activation and translocation are required for centrosome 

separation, leading to subsequent bipolar spindle formation and chromosomal alignment.  

 7



 Upon completing cytokinesis, Aurora-A kinase has to be rapidly degraded and inactivated. 

In summary, Aurora-A kinase plays a critical mitotic role in centrosome separation and 

maturation, microtubule nucleation and bipolar spindle assembly [8-9, 11-16]. 

  Aurora-B kinase is also highly expressed in tissues with a high mitotic index. Its mRNA 

and protein expression levels are also cell cycle regulated, peaking at G2/M phase and its 

kinase activity reaches the maximal from metaphase till end of mitosis. Aurora-B is identified 

as one of the components for the “chromosomal passenger protein” complex 

(Aurora-B-INCENP-survivin-borealin), which plays an important role in coordinating the 

chromosomal functions and cytoskeletal functions. Therefore Aurora-B kinase displays highly 

dynamic localization change in mitosis. Aurora-B associates along the chromosome arms 

during prophase, and is later concentrated at inner centromeres (kinetochore) in metaphase. At 

the anaphase onset, it translocates to the spindle midzone and cell cortex, the site for cleavage 

furrow formation. Aurora-B, thus, has multiple roles in mitosis, which include chromosome 

condensation, cohesion, bi-orientation, cytokinesis and spindle assembly checkpoint [8-9, 

11-16]. 

  Aurora-C, though found prominently in testis, is also detected in other cell types and is 

overexpressed in certain cancer cell lines. Just like Aurora-A and –B, its mRNA and protein 

expression levels are cell cycle-dependent, peaking at G2/M. Like Aurora-B, Aurora-C is also 

a chromosomal passenger protein, localizing initially to the centromeres and then to the 
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spindle midzone. Hence, the function of Aurora-C kinase overlaps with and complements the 

function of Aurora-B kinase in mitosis [8-9, 11-16]. 

  Figure 1-4 (A-D) gives an overview of the subcellular distribution of the Aurora kinases 

and their functional roles throughout mitotic cell cycle.  

 

Figure 1-4: Localization of Aurora Kinases During Cell Cycle 

(Figure above adapted from ref [3]) 

 

A 
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B 

(Figure above adapted from ref [14]) 

 

 

 

 

 

 

(Figure adapted from ref [64]) 

 

 

 

C
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(Figure adapted from ref [65]) 

D 
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1.3. Role of Aurora-A Kinase in Tumorigenesis 

 

1.3.1.  Association with Multiple Cancers 

  Aurora-A kinase has been the most strongly implicated in tumorigenesis among all the 

three members of Aurora kinase family. Aurora-A kinase maps to chromosome 20q13.2-q13.3, 

a region frequently amplified in many types of cancer. Aurora-A kinase is amplified and/or 

overexpressed in primary breast (12%), colorectal (52%) and gastric tumours as well as breast, 

ovarian, colon, prostate, liver, bladder, cervical and gastric cancer cell lines [17-32] (See 

Table 1-3). High level of 20q13 amplification correlates with poor prognosis. However in 

some cases, Aurora-A overexpression does not correlate with the gene amplification. For 

example, only 3% of the hepatocellular carcinomas (HCCs) have Aurora-A amplification 

although more than 60% of HCCs overexpress Aurora-A mRNA and protein [31]. Other 

mechanisms like transcriptional activation and defective proteolysis, could lead to this 

discrepancy.  

Table 1-3: Reported Aurora-A Kinase Abnormalities in Human Tumors 
(Table adapted from ref [33]) 
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1.3.2.   Phenotypes Associated with Overexpression of Aurora-A Kinase 

  Besides these correlative data, a number of studies had shown that overexpression of 

constitutively active Aurora-A kinase in rat1 and mouse NIH-3T3 fibroblasts led to in vitro 

transformation and tumour formation in nude mice [17-18], indicating the potential of 

Aurora-A kinase as an oncogene. Also, its ectopic expression in near-diploid human breast 

epithelial cells caused centrosome amplification [18] with induction of aneuploidy. It had 

been shown that overexpression of Aurora-A and centrosome amplification were the early 

events in tumorigenesis in a rat mammary carcinogenesis [34]. A clinical study also showed 

that Aurora-A overexpression and activation was an early pathology event in human ovarian 

tumorigenesis [35]. Thus, Aurora-A overexpression might accelerate or potentiate the 

multistep tumorigenesis.  

  Interestingly, kinase activity of Aurora-A is not essential for the induction of aneuploidy 

and centrosome amplification associated with Aurora-A overexpression, however the 

oncogenic transformation requires the active kinase [36]. 
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1.3.3.   Mechanisms of Aurora-A-induced Tumorigenesis 

 

1.3.3.1 Abrogation of post-mitotic G1 checkpoint 

  Recent studies have shown that Aurora-A overexpression does not directly trigger 

centrosome amplification, rather it causes abnormal mitotic spindle formation and cytokinesis 

failure, leading to tetraplodization [37]. Normal non-transformed cells have the functional 

p53-RB-dependent checkpoint, known as “post-mitotic G1 checkpoint”, which detects 

tetraploidy and induces G1 arrest. When Aurora-A kinase is overexpressed in cells that lack 

p53 and therefore is defective in G1 checkpoint, the newly generated tetraploid cells still 

progress through the mitosis and thus acquire multiple centrosomes and genomic instability. 

This is summarized in Figure 1-5. 

  Interestingly, the Aurora-A overexpression-induced tetraploidization or centrosome 

amplification does not require its kinase activity but the cellular transformation is still 

dependent on the kinase activity [17-18, 37]. 
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Figure 1-5: (Figure adapted from ref [14]) 

Diagram Depicting the Predicted Tumorigenesis by Aurora-A Overexpression 
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1.3.3.2.   p53 Inactivation 

  Few studies had clearly demonstrated the functional link between the Aurora-A and p53. 

p53 can interact with Aurora-A and inhibit its kinase/oncogenic function in a 

transactivation-independent manner [38]. On the other hand, Aurora-A kinase directly 

phosphorylates p53 at Ser315, facilitating the MDM2-degradation of p53 [39]. Moreover, 

phosphorylation of p53 at the alternative site, Ser215 by Aurora-A, leads to the inhibition of 

its transcriptional activity [40]. Therefore, deregulation of this mutual suppression mechanism 

between Aurora-A and p53 can thus induce checkpoint disruption and chromosome 

instability. 

  An Aurora-A transgenic mouse model, in which Aurora-A was conditionally overexpressed 

in mammary epithelial cells, was generated [41] and had provided further insight into the 

relationship between Aurora-A and p53. In these cells, cytokinesis failed, leading to 

significant increase of binucleated cells, which the activated the post-mitotic G1 checkpoint 

and were arrested in G1 and subsequently underwent apoptosis. Interestingly, the level of the 

p53 protein, a regulator of this post-mitotic G1 checkpoint, was also increased and malignant 

tumour formation was not observed after long latency. However, apoptosis was inhibited by 

deletion of p53, suggesting that tumorigenesis might require additional factors, like p53 

inactivation and expression of anti-apoptotic proteins.  

  In vivo evidence from a recent clinical observation [31] demonstrated that Aurora-A  
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overexpression and p53 inactivation played a cooperative role in tumorigenesis. Not only 

Aurora-A overexpression correlates with p53 mutation in hepatocellular carcinoma, tumours 

which harbour both Aurora-A overexpression and p53 mutation, also have worse prognosis 

than those with p53 mutation alone.  

 

1.3.3.2 Overriding Spindle Assembly Checkpoint 

  Besides the functional link between Aurora-A and p53-dependent G1 checkpoint, Aurora-A 

overexpression had been found to override the BUB1-dependent spindle assembly checkpoint, 

activated either by taxol (Paclitaxel) [36, 42] or nocodazole (microtubule depolymerizing 

drug) [43]. Eventually, cells inappropriately entered into anaphase in the presence of defective 

spindle formation, leading to polyploidization.  

  Normally upon taxol treatment, cells arrest at metaphase and eventually undergo apoptosis, 

however, cells that overexpress Aurora-A, have acquired increased resistance to taxol-induced 

apoptosis [36]. Study with nocodazole had demonstrated that Aurora-A overexpression caused 

checkpoint override in the presence of nocodazole by disrupting the binding of BubR1 to 

Cdc20, leading to chromosomal instability (CIN) phenotype [43].  

  On the other hand, signals generated from the DNA damage had been found to inhibit 

Aurora-A kinase activity and induce G2 arrest. Aurora-A overexpression disrupted the DNA 

damage induced G2 checkpoint, leading to premature mitotic entry in the presence of DNA 

damage. Therefore, checkpoint disruption through Aurora-A overexpression probably leads to  
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cell transformation [44-46]. 

  Aurora-A overexpression abrogates the activated mitotic checkpoint signaled by Mad2 [42], 

as shown in Figure 1-6. Mad2 inhibits Cdc20, an activator of Anaphase Promoting 

Complex/Cyclosome (APC/C) complex, which targets protein for degradation and thus 

triggers the metaphase-anaphase transition. Retainment of Mad2 on the kinetochore signals to 

the cells the presence of unattached chromosome and blocks the metaphase-anaphase 

transition. Only when the kinetochore captures the microtubule, the Mad2 will dissociate 

from the kinetochore, thus relieving its inhibition on Cdc20, which can then activate the 

APC/C. However, when Aurora-A is overexpressed, it acts downstream of Mad2 and 

upstream of Cdc20, thereby interfering the Mad2-Cdc20 interaction and overriding the 

checkpoint. The Mad2-Cdc20 interaction may be interfered by binding of Aurora-A kinase to 

Cdc20, as their in vivo interaction had been previously shown [47]. 

  Aurora-B kinase, however, is also implicated in the spindle assembly checkpoint [48]. 

Inhibition of Aurora-B function impairs the retainment of the checkpoint proteins at the 

kinetochore and thus overriding of the taxol-sensitive spindle checkpoint [49-51]. One study 

had shown that phosphorylation of CENP-A by Aurora-A was necessary for the recruitment of 

Aurora-B to the inner centromere in prometaphase [52]. Since Aurora-A plays a role in 

recruitment of Aurora-B, the effect of Aurora-A on spindle assembly checkpoint may be 

indirect. 
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Figure 1-6: (Figure adapted from ref [36]) 

 

Figure 1-6 
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1.3.3.3 Aurora-A Kinase as Tumour Susceptibility Gene 

  Moreover, Aurora-A was discovered to be a low-penetrance tumour susceptibility gene or 

tumour modifier gene for multiple cancer cell types [53-61]. Two polymorphisms of Aurora-A 

(Phe-31-IIe and Val-57-IIe) are involved in the human tumour susceptibility. The allelic 

variant, IIe31, is frequently amplified in human colon [53], breast [58], esophageal [57] and 

ovarian tumours [59]. The co-existence of two polymorphisms (IIe31 and Val57) correlates 

well with the increased risk of breast cancer [55-56].  

  IIe31 allele was shown to transform more potently than the common Phe31 allele. Study 

had identified Aurora-A kinase as the direct substrate for ubiquitination by UBE2N, an E2 

ubiquitin-conjugating enzyme, and interestingly, the “strong” IIe31 variant bound the UBE2N 

far less efficiently than the “weak” Phe31 variant and thus had compromised ubiquitination, 

which may probably lead to subsequent impaired degradation and inactivation, with induction 

of cellular transformation [53]. 

 

1.3.3.4 Enhanced Cell Migration 

  Another significant study had provided mechanistic insights into the distinct role of 

Aurora-A kinase in cellular transformation by promoting the cell migration. Aurora-A 

phosphorylates one of its downstream substrates, RalA on Ser194, and the Ser194 

phosphorylation leads to RalA activation, therefore enhancing the transforming activity of 

Ras and Raf by promoting the cell motility and anchorage-independent growth [62]. 
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1.3.3.5 Transforming target-HURP 

  Other transforming target of Aurora-A kinase, such as HURP (Hepatoma Upregulated 

Protein), were also isolated. HURP is a mitotic protein [63].  Phosphorylation of HURP by 

Aurora-A leads to its protein stabilization. Eventually, the accumulated intracellular HURP 

promotes the serum- and anchorage-independent growth. 
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2.1.  Negative Regulation of Aurora-A Kinase 

  Given the strong implication of Aurora-A in tumorigenesis, Aurora-A kinase serves as a 

potential therapeutic target of great interest. Understanding its normal regulation would be 

very essential to identify and develop inhibitors for Aurora-A kinase. Aurora-A kinase can be 

regulated at two different levels: its kinase activity and protein stability [1]. 

 

2.1.1.   Regulation at the Kinase Activity Level 

2.1.1.1.  PP1 Inhibition of TPX-2-induced Aurora-A Kinase Activation  

  As we know, Aurora-A kinase activity is cell cycle-regulated and peaks in mitosis. 

Regulation of human Aurora-A kinase activity involves phosphorylation and 

dephosphorylation at three major potential phosphorylation sites, Thr288, Ser51 and Ser342 

[2]. Phosphorylation of Thr288 in the activation loop of human Aurora-A activates the kinase 

activity. Thr288 is in a protein kinase A (PKA) consensus motif and also an 

autophosphorylation site [3]. PKA can phosphorylate and activate Aurora-A in vitro [1].  

  On the other hand, Ser51 in the N-terminal A box of human Aurora-A is also 

phosphorylated during M phase and this negatively regulates Aurora-A degradation till the 

end of mitosis [4]. However, there is no effect of Ser51 phosphorylation on Aurora-A kinase 

activity. Finally, the role of Ser342 phosphorylation on human Aurora-A kinase activity is still 

unclear although crystal structure of Aurora-A kinase [14] has suggested that phosphorylation 

at this site could affect the conformation of Aurora-A, therefore playing a regulatory or 
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structural role in Aurora-A activation. It is also found that Ser342 is not essential for Aurora-A 

kinase activity but Ser342 phosphorylation (Xenopus S349D mutant) blocks kinase activation 

[2]. Interestingly, Ser342 is located immediately adjacent to Aurora-A binding motif of type I 

phosphatase PP1, a negative regulator of Aurora-A activity [5-7]. Probably, in vivo 

phosphorylation of Ser342 enhances PP1 binding to Aurora-A, preventing phosphorylation of 

Thr288. 

  Aurora-A and PP1 are both enriched on centrosomes. They can interact directly in vivo and 

each can negatively regulate the other in a regulatory feedback loop [7]. A thorough structural 

study had shown that prior to the Aurora-A activation, the T loop of Aurora-A is in a flexible 

conformation, exposing the Thr288 for continuous interaction with PP1, therefore maintaining 

the Thr288 in the dephosphorylated form.  

  TPX2 (Target Protein for Xenopus kinesin-like protein 2) is currently the best-understood 

substrate that activates Aurora-A [8-13]. Once Aurora-A associates with the activator 

substrate TPX2, the activation loop changes to a more compact conformation so that the 

Thr288 is now hidden and protected from PP1-catalyzed dephosphorylation. This triggers 

Aurora-A autophosphorylation, leading to its activation. In vitro study had shown that the 

activated Aurora-A could also phosphorylate and inhibit PP1. Aurora-A has two PP1-binding 

motifs (KVxF) in the catalytic kinase domain, one includes the catalytic lysine residues 

(KVLF), the other is immediately adjacent to Ser342 (KVEF).  
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  TPX2 is a microtubule-associated protein and plays an important role in small GTPase 

Ran-mediated mitotic spindle assembly process. Intriguingly, TPX2 is required for binding 

and localizing Aurora-A to the spindle poles, thereby stimulating the autophosphorylation and 

subsequent activation of Aurora-A, as shown in Figure 2-1.  

Figure 2-1: A model linking Ran-GTP to Aurora-A Activation on Spindle Apparatus 
(Figure adapted from ref [15]) 

TPX2 establishes a link between Ran-GTP and the activation of Aurora-A on mitotic spindle. TPX2 is 

inhibited in the interphase by binding of importin-α/β. The active GTP-bound Ran stimulates Aurora-A 

kinase activity by displacing TPX2 from importin α/β. The free TPX2 in turn binds efficiently to 

Aurora-A, resulting in autophosphorylation and activation of Aurora-A. The kinase is now in its active 

conformation for substrate binding and catalysis as well as protection from PPI inactivation. The local 

concentration of Ran-GTP is controlled by chromatin-associated exchange factor, RCC1 (RanGEF). 

While TPX2 acts primarily on Aurora-A that is associated with spindle microtubules, CNN 

(centrosome component centrosomin) and Ajuba regulate the centrosome-associated pool of Aurora-A. 

 

 

 

 

 

 

 

 

 

 

2.1.1.2. Inhibition by p53 

  Another interesting negative regulator of Aurora-A kinase is the well-known tumour 

suppressor, p53. In response to DNA or spindle damage or inappropriate activation of 
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oncogenes, p53 plays an important role in maintaining the genomic stability through 

transcriptional activation of target genes, which can induce G1 and/or G2 checkpoint arrests. 

p53 is localized to the centrosomes during mitosis, downregulation or loss of p53 leads to 

centrosome amplification and defective spindle formation. Significantly, overexpression of 

Aurora-A also induces the similar defects, which are further exacerbated in the p53 mutant 

cells [16].  

  Aurora-A was isolated as a p53-interacting partner in a two-hybrid screen using a 

transactivation-defective p53 as the bait. An in vitro study had shown that p53 interacted with 

the N-terminal non-catalytic domain of Aurora-A and inhibited its kinase activity. This 

negative regulation of Aurora-A by p53 could suppress the Aurora-A-induced centrosome 

amplification and cellular transformation in a transactivation-independent manner [17].  

  As described previously, Aurora-A phosphorylates p53, leading to the inactivation of p53 

transcriptional activity and enhanced MDM2-mediated p53 degradation [18]. A fine-tuned 

balance of this mutual suppression mechanism between Aurora-A and p53 is therefore 

essential. Overexpression or hyperactivation of Aurora-A may override the p53-mediated 

negative regulation, leading to checkpoint defects, chromosome instability and subsequent 

cell transformation. 

 

2.1.1.3  Inhibition by RasGAP 

  In another study, Aurora-A was identified as the SH3 (Src Homology 3) binding protein for 
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the RasGAP (GTPase-Activating Protein) [19]. Interestingly, RasGAP functions normally as a 

negative regulator of Ras by stimulating the GTP hydrolysis and Ras deactivation. RasGAP 

interacts with the kinase domain of Aurora-A and inhibits its kinase activity. Instead, in 

tumour cells where oncogenic Ras was expressed, RasGAP acted as a Ras effector and no 

longer negatively regulated its downstream effector, Aurora-A, leading to hyperactivation of 

Aurora-A. Aurora-A, RasGAP and survivin existed as a ternary complex, regulating the 

balance between cell division and apoptosis. A recent study had demonstrated that 

overexpression of Aurora-A augmented the G12V-mutated HRAS-induced oncogenic 

transformation and interestingly, expression level of Aurora-A determined the susceptibility to 

in vitro oncogenic transformation [46]. In addition, Ajuba, an Aurora-A activator [47], 

interacts with Grb2 and affects Ras signaling [48], and presumably, the Aurora-A/Ajuba 

complex may also modulate Ras signaling. 

 

2.1.2.   Regulation at the Protein Stability through Ubiquitination 

  Protein degradation plays an essential role in the regulation of many fundamental cellular 

physiological processes, such as cell cycle, immune and inflammation response, development, 

differentiation and transformation [20]. In particular, the role of protein degradation in cell 

cycle control is to ensure the periodic expression of various cell cycle proteins as aberrant 

protein degradation could lead to uncontrolled cell cycle and cancers.  
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2.1.2.1.  Ubiquitin-Proteasome System 

  The ubiquitin-proteasome system has evolved as the key machinery in the selective 

degradation of most intracellular short-lived regulatory or abnormal proteins [21]. Target 

proteins are covalently tagged with multiple ubiquitins, forming the polyubiquitin chain, 

which not only serves as the recognition signal for 26S proteasome, but also assists in the 

unfolding of target proteins. Ubiquitination is a multistep process where the ubiquitin is 

covalently attached to the acceptor lysine residues and this requires the ubiquitin-activating 

enzyme (E1), the ubiquitin conjugating enzyme (E2) and the ubiquitin ligase (E3), where E3 

confers the substrate specificity. E1 activates the ubiquitin and the activated ubiqutin is 

transferred from E1 to ubiquitin-conjugating E2, which can then transferred the ubiquitin to 

substrates by itself, or in cooperation with an ubiquitin ligase. Normally there are only one 

isoform of E1 and multiple isoforms of E2s and E3s. The multitude of E2 and E3 enzymes 

allows elaboration of ubiquitination pathway in vivo and therefore ensures the specific and 

regulated turnover of a wide array of substrates. Once after the K48 (lysine) of first ubiquitin 

is covalently attached to the protein, additional ubiquitins can be linked to form a 

substrate-tethered polyubiquitin chain. A tetra-ubiquitin chain serves as the minimal targeting 

signal for degradation. 

 

2.1.2.2. Cdh1-mediated Cell Cycle-dependent Degradation 

  Aurora-A kinase represents one of the many mitotic proteins, where its protein level is 
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temporally regulated by the ubiquitin-dependent proteolysis at the end of mitosis before the 

cells progress into the G1 phase of next cell cycle [1, 22]. Aurora-A kinase is ubiquitinated by 

Cdh1-activated (APC/C), an E3 ubiquitin ligase through the recognition of C-terminal 

destruction box (D3 box) and non-catalytic N-terminal A box [23-26]. The Cdh1-dependent 

degradation of Aurora-A does not require the KEN sequence, an APC/C recognition signal, 

which is located at the N-terminal of Aurora-A. The A box contains the highly conserved 

Ser51 among the Aurora-A orthologs. Ser51 is normally phosphorylated in mitosis and 

dephosphorylated upon mitotic exit [4]. The A box is initially thought to be specific for 

Aurora-A orthologs, but a recent study had also identified the A box in Aurora-B and 

degradation of Aurora-B requires the intact KEN and A boxes [45]. 

 

2.1.2.3.   Chfr-mediated Degradation 

  Besides the cell cycle-dependent degradation of Aurora-A mediated by Cdh1, Aurora-A 

kinase is also targeted for ubiquitin-dependent degradation by Chfr (Checkpoint protein with 

FHA and Ring domain), an E3 ubiquitin ligase [27]. Chfr is a newly identified early mitotic 

checkpoint protein, which responds to mitotic stress by delaying the progression to metaphase 

[28]. Its N-terminal FHA domain plays a role in phosphoprotein interaction [29], whereas its 

Ring domain is involved in protein ubiquitination [30]. As an E3 ubiquitin ligase, Chfr 

directly interacts with Aurora-A and ubiquitinates Aurora-A in vivo. Therefore, Chfr is a 

tumour suppressor and Chfr-mediated degradation of Aurora-A controls the expression level 
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of Aurora-A and maintains the chromosomal stability. 

 

2.1.2.4.  hDCD4-mediated Degradation 

  Another ubiquitin ligase, FBXW7/hCDC4 is also implicated in the regulation of Aurora-A 

stability. The study had shown that mouse embryo fibroblast from Fbxw7-deficient mice or 

wild-type mouse expressing Fbxw7 siRNA, had significantly higher level of Aurora-A kinase 

[31]. However, the mechanism of which is still unclear. 

 

2.2.   Aurora Kinase Inhibition by Small Molecule Inhibitors  

2.2.1.  Aurora-A Kinase as Anti-Cancer Target 

  Ideally, a good target for cancer therapy should be a specific gene, or protein or process that 

is different between the normal and cancer cells [32]. So, are the Aurora kinases good targets 

for anticancer drug development?  

  Aurora-A is a potential oncogene with various implicated roles in tumorigenesis. As 

mentioned in the earlier chapter, Aurora-A overexpression causes centrosome amplification, 

multipolar spindle, aneuploidy and oncogenic transformation. Amplification of AURKA locus 

and Aurora-A overexpression correlates with the chromosome instability in a wide range to 

human tumours. Amplification of AURKA locus also correlates with poor prognosis [33].  

  On the other hand, Aurora-B is also overexpressed in multiple human tumour cell lines and 

primary colorectal cancers [34]. Impaired Aurora-B function could lead to CIN (gain or loss 

 37



of chromosomes) phenotype, generating the genetic heterogeneity of cancers and also 

promoting tumorigenesis. Survivin, part of the Aurora-B complex (chromosome passenger 

protein), plays the protective role against apoptosis and/or mitotic catastrophe [35]. Similarly, 

Aurora-C kinase is often overexpressed in primary colorectal cancer and various tumour cell 

lines [36]. Given these facts, Aurora kinases undeniably become popular targets for cancer 

drugs design by many pharmaceutical companies.  

  The previous clinical success of targeted therapy for chronic myelogenous leukemia (CML) 

using Gleevec [37], a small molecule kinase inhibitor that targets BCR-ABL, x-Kit and PDGF 

receptor kinase, has boosted confidence that small molecule inhibitors of specific kinase have 

the potential to be the highly effective anticancer drugs.  

 

2.2.2.   Development of Small Molecule Aurora Kinase Inhibitor 

  To date, three Aurora kinase small-molecule inhibitors have been developed and 

characterized to quite a good extent—ZM447439 [38], Hesparadin [39] and VX-680 [40]. 

Table 2-1 shows their comparisons in term of structure, specificity and phenotype in treated 

cells [32, 41]. However, none of these inhibitors selectively inhibits a single kinase. 

ZM447439 was founded by AstraZeneca through the screening of a 250000 compound library 

using Aurora-A kinase and a model peptide substrate. ZM447439 inhibited Aurora-A and –B 

kinases at least 10-fold more potently than other 13 kinases tested. Its inhibition of Aurora-C 

had not yet been tested. On the other hand, Hesparadin developed by Boehringer Ingelheim, 
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specifically inhibited Aurora-B of the family. It was still unclear whether hesparadin can 

inhibit Aurora-A and –C. VX-680 was the most recently discovered drug by Vertex 

Pharmaceuticals, designed from a knowledge-based chemical synthesis programme according 

to the crystal structure of Aurora kinase, which consists of several unique structural features. 

VX-680 potently inhibited all three Aurora kinases, with highest selectivity for Aurora-A 

kinase. On the other hand, VX-680 displayed more than 100-fold selectivity for Aurora-A 

kinase over a diverse panel of 55 other kinases tested. 

Table 2-1: Aurora-Kinase Inhibitors (Table adapted from ref [32]) 

 

 39



2.2.3.   Action of Aurora Kinase Inhibitors 

  All these three reversible inhibitors selectively target the enzymatic activity of Aurora 

kinases by occupying the catalytic ATP-binding site. All three inhibit phosphorylation of 

histone H3 on serine 10 and cause cytokinesis defect without inducing any mitotic arrest, 

which is clearly different from the classic “anti-mitotic” drug. The drug-treated tumour cells 

enter and exit from mitosis normally and endo-reduplicate their genomes, leading to 

tetraploidy. Depending on the p53 status of the cells, cells treated with Aurora inhibitors can 

have different fates upon longer exposure. In the event of DNA damage or abnormal mitosis, 

the p53 can induce the post-mitotic G1 checkpoint and arrest the cells in G1 or S/G2 phase to 

allow repair or alternatively induce apoptosis. This serves as a secondary defense to the 

spindle checkpoint to prevent further genome instability. Therefore in most tumour cells that 

usually lack the functional p53, they will not undergo cell cycle arrest upon drug treatment. 

Instead, they continue to divide in more additional cycles and become massively polyploidy, 

leading to mitotic catastrophe and eventual apoptosis [32, 41-42].  

  These Aurora inhibitors are only selective against tumour cells, not on the viability of the 

non-cycling primary human cells, which usually have low or undetectable level of Aurora 

expression and kinase activity [32,41-42]. Thus, Aurora inhibition is a good target for cancer 

intervention, where the dividing and non-dividing cells can be discriminated by the Aurora 

inhibitors, unlike some of the conventional chemotherapeutic drugs that target microtubules 
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[43], such as taxanes, epothilones, discodermolides, Vinca alkaloids, nocodazole, colchicines, 

etc. With such discrimination, toxic side effect can be further minimized or avoided. For 

instance, treatment with taxanes (e.g. taxol) causes peripheral neuropathy due to its effect on 

the neuronal microtubule network [42].  

 

2.2.4.  VX-680-The Most P otent Among All 

  With respect to their tumor killing potential, VX-680 seems to be the most promising one 

to further progress into clinical development. VX-680 blocked the cell cycle progression and 

induces apoptosis in diverse range of tumour cell types. Profoundly, VX-680 effectively killed 

three different tumour cell types (leukemia, colon and pancreas) in the in vivo xenograft 

models. These three tumour cell types were usually refractory to conventional treatment in 

human cancer patients, however, their significant inhibition could be achieved with VX-680 

at well-tolerated doses without any signs of mechanism-independent toxicity. In vitro studies 

had shown that VX-680 could completely abolish the colony formation of primary AML cells 

isolated from patients who are refractory to the standard therapies. VX-680 also potently 

inhibited the tumour growth in vivo in the human AML xenograft model, though the efficacy 

was accompanied with some level of toxicity to the bone-marrow cells, neutropenia and some 

body weight loss, but they recovered after drug withdrawal. The existence of other toxic side 

effects and/or long-term survival rates in these treated mice was not addressed yet and this 

should be the essential next step towards clinical trials. Therefore, targeted therapy using this 
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Aurora-A inhibitor, VX-680 could be a new potential approach to kill tumours that are 

refractory to the conventional therapies [40].  

  Interestingly, although VX-680 can inhibit Aurora-A kinase more potently than other 

members of the family, the phenotypes or responses observed in VX-680-treated cells most 

closely resemble those described for Aurora-B inhibition, rather than those observed after 

genetic disruption of Aurora-A. Recently, a study had addressed this question on why 

treatment of cells with dual-specific Aurora A and B kinase inhibitors produced phenotypes 

identical to Aurora-B inactivation. It was found that Aurora-B inhibition bypassed the mitotic 

requirement for Aurora-A and leads to polyploidy. Inactivation of Aurora-A activates spindle 

checkpoint kinase BubR1 and mitotic arrest in the Aurora B-dependent manner [44].  

 

2.2.5.   Future Outlook 

  Despite the encouraging demonstrations that these small molecule Aurora kinase inhibitors 

are effective in cancer killing, we should be very careful about their overall efficacy when 

applying clinically in human cancer treatment. Interestingly to note that these inhibitors 

treatment only slightly increased the proportion of apoptotic population, and moreover, the 

mechanism of how these inhibitors cause cell death via polyploidization was still an 

unanswered doubt. Does this mode of polyploidization-induced apoptosis also happen in vivo? 

What is the long-term effect of their inhibition? Will this induced polyploidization instead 

cause greater probability of genetic heterogeneity and hence potential risk for tumour 
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evolution? Again, nothing is understood as to what extent of massive chromosome loss would 

be sensed in the cancer cell to induce the apoptosis, not survival. Hence, the pharmacological 

properties of these inhibitors in the clinical setting are still unclear yet. Most probably, second 

or third generation inhibitors with even less toxicity or optimized biological properties will be 

developed. One important future challenge before the entrance of these inhibitors into clinical 

trials would be the ability to monitor the kinase suppression in treated patients by biomarkers. 

Phosphorylation status of histone H3 at Ser10 would be a useful biomarker for Aurora-B 

inhibition, whereas specific biomarkers for Aurora-A inhibition are yet to be identified. 

Finally, another aspect of future study would be the understanding of the tumour types that 

are responsive to these inhibitors. Various factors can determine and modify the sensitivity, 

such as p53 status of the tumour, kinase selectivity profile of the drug, proliferation rate of 

tumour and the complexicity of the tumour genotype [32, 41].  
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3.1.  Architecture of Proteasome Degradation System: 20S and 26S 

  In eukaryotic cells, the multicatalytic proteinase complex, proteasome, is the main 

proteolytic weapon for the extralysosomal proteolysis. The 20S proteasome is 700 KDa 

barrel-like structure formed by four stacked 7-subunits rings, 2 α-rings and 2 β-rings, as 

shown Figure 3-1. Only the inner β-rings contain the active catalytic site for proteolysis, 

directed toward the inner chamber. The outer α-rings control the opening of the chamber and 

play the role in the conditional degradation of cellular proteins [1]. The 20S proteasome is 

present up to 1% of the total cellular protein. Capping of 19S regulatory complexes at both 

ends of the 20S core forms the 26S proteasome (Figure 3-1) [2-3]. The 19S assembly consists 

of a “base” and a “lid”. The base contains ATPases and binds to the end of 20S cylinder to 

catalyze the substrate unfolding. The lid binds the base and functions in the substrate 

recognition and insertion [4].  

  Generally, substrates destined for degradation must first be recognized and associated with 

the proteasome [5], followed by ATP-dependent unfolding and denaturation of the substrates 

if necessary [6]. In the meantime, the pore of proteasomal core is opened to allow substrate 

entry [7-8]. Before the substrate entry, the degradation tag must be cleared and recycled. 

Ubiquitins are recovered from the Ub-protein conjugates through the catalytic activity of the 

Ub-isopeptidase [9-10]. Only then, the unfolded substrate can be inserted into the pore. 

Further processive translocation leads to complete transfer of the polypeptide chains to the 
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inner catalytic chamber and subsequent proteolysis to small peptides [11-14].  

Figure 3-1: Architecture of 20S and 26S Proteasome 
(Figure adapted from ref [15-16]) 

 

3.2.   Alternative Ubiquitin-Independent Degradation Pathway 

  In the past 20 years, most of the researches on extralysosomal proteolysis have focused on 

the role of 26S proteasome in the ubiquitin-dependent degradation pathway. Therefore, it has 

been long thought that all the substrates of 26S proteasome are to be marked with 
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polyubiquitin tag before being targeted for degradation. However, this has led us to 

underestimate a globally existed class of proteasomal substrates that can be degraded without 

the prior ubiquitin tagging, either by the 26S proteasome in the presence of ATP or by the 20S 

proteasome directly [8]. In the recent few years, a lot of evidences had shown that the 20S 

proteasome and 26S proteasome could degrade some proteins in an ubiquitin-independent 

manner [18]. It will be interesting to know what substrates have been identified that are not 

dependent on ubiquitin for degradation and how are they processed without the ubiquitin tag? 

What are the differences and/or similarities in the characteristics of proteasomal degradation 

for the ubiquitin-dependent and independent substrates?   

  For some proteins, the polyubiquitination and degradation processes can be uncoupled and 

thus no prior modification is required for degradation. The number of proteins recognized as 

targets of this ubiquitin-independent proteasomal degradation will continue to increase in the 

future.  

  On the other hand, some proteins can be modified by SUMO (Small Ubiquitin-like 

Modifier), a protein of 97 amino acids, which is structurally similar to ubiquitin [58]. Similar 

to ubiquitin, SUMO is also covalently attached to certain lysine residues of specific target 

proteins [59]. However, in contrast to ubiquitination, sumoylation does not always promote 

protein degradation, instead plays important roles in regulating the subcellular localization, 

protein-protein interaction, DNA binding or transactivation functions of the protein substrates 
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[59-61]. With respect to the role in regulation of protein degradation, sumoylation has been 

found to regulate the ubiquitination of proteins, such as NFκB inhibitor IκBα, PCNA, Smad4, 

and Mdm2, either directly by competition for the modified lysine or indirectly, the effects of 

sumoylation could be mediated via control of protein level in general or turnover of specific 

subpopulations of a protein in a cell [59, 62-63].  

 
3.3. Evidences for the Existence of Ubiquitin-Independent 

Degradation 
3.3.1.  Lysine-less Substrate 

  There are a few approaches that can be used to assess if the ubiquitination is essential for a 

protein’s degradation, one of which is the mutation of the acceptor lysine residues in the target 

substrate, thereby inhibiting the formation of polyubiquitin chain in cis [15]. However, lysine 

residues are commonly found in most proteins and thus replacement of many (if not all) of the 

lysine residues in target substrates is required for elimination of all the possible ubiquitination 

target sites. Sheaff and coworkers had created the lysine-free p21 mutant, which was still fully 

functional in its activity, however, could still be degraded efficiently by the proteasome [18]. 

 

3.3.2.  Lysine-less or Mutant Ubiquitin 

  On the other hand, inhibition of ubiquitination in trans via overexpression of a mutant 

lysine-free ubiquitin leads to the chain-terminating effect on the ubiquitin chain extension 

[15]. Again, overexpression of this lysine-free ubiquitin mutant stabilizes the cyclin E, a 

positive control protein that depends on ubiquitin conjugation for its degradation, but has no 
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effect on the turnover of wild-type p21 [15, 18]. Though lysine K11, K29, K48 and K63 of 

the ubiquitin could be used for formation of polyubiquitin chain, only the K48-linked 

multiubiquitin chains had been shown to be functional in targeting substrates for degradation 

[19]. Thus, overexpression K48R ubiquitin mutant is also used as an alternative approach for 

inhibition of polyubiquitination. Incorporation of K48R mutant blocks further ubiquitin chain 

extension.  

 

3.3.3.  N-terminal Fusion of Epitope 

  Interestingly, some lysine-free proteins can still be targeted for ubiquitin-dependent 

degradation via ubiquitination at the amino-terminal free amine group [20-21], such as MyoD 

[20]. Fusion of epitope to the N-terminus stabilizes MyoD but fails to stabilize both the wild 

type and lysine-free p21 [18]. 

 

3.3.4.   Inactivation of E1 Ubiquitin-Activating Enzyme 

  Another strategy of polyubiquitination inhibition in trans is thermal inactivation of the 

temperature-sensitive mutant of E1 ubiquitin-activating enzyme at the non-permissive 

temperature [15, 22]. Again, the p21 degradation is not inhibited in these mutant cells 

harboring the temperature-sensitive mutation in E1 [18], implying the in vivo existence of 

ubiquitin-independent proteasomal degradation for p21. 
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3.4. Proteasome-Dependence of Ubiquitin-Independent Degradation 
Pathway 

3.4.1   26S Proteasome in Ub-independent Protein Degradation 

  How does the 26S proteasome recognize its substrates if they are not tagged with ubiquitin? 

It is still possible for the 26S proteasome to catalyze the Ub-independent degradation 

provided another protein can take over the targeting role of ubiquitin or protein substrates 

themselves harbour the degradation signal sequence [8]. Ornithine decarboxylase (ODC) was 

the first example of protein shown to be degraded by the 26S proteasome in the 

Ub-independent manner [23-25]. Its ATP-dependent degradation requires the antizyme (AZ), 

which promotes the targeting of ODC to proteasome. Furthermore, the presence of a 

degradation signal sequence in the C-terminal region of ODC enhances its recognition by the 

26S proteasome. The detailed mechanism of how the antizyme mediates the ODC degradation 

will be discussed in the following chapter.  

  Other proteins, which are degraded through the Ub-independent, 26S 

proteasome-dependent pathway, include c-Jun [26], calmodulin [27], troponin C [28], 

cyclin-dependent kinase inhibitor p21 [18] and tumor suppressor protein p53 [29]. Some 

proteins, such as p21 and p53 can be targeted for degradation by 26S proteasome in both the 

Ub-dependent and Ub-independent manner. Recently, p21 was also shown to be susceptible to 

degradation directly by the 20S proteasome [30]. In the case of p53, its Ub-independent 

degradation is negatively regulated by the NADPH quinone oxidoreductase I (NQO1). 
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Inhibition of the NQO1 activates the Ub-independent degradation of p53 [29]. 

 

3.4.2.   20S Proteasome in Ub-Independent Protein Degradation 

The free 20S proteasome forms the major portion of the total proteasomes (20S, 26S and 

20S-11S-REG) present in the cells [31]. Native unfolded proteins, short or long-lived proteins, 

oxidized, misfolded, mutated or damaged proteins are all susceptible to the 20S 

proteasome-mediated Ub-independent degradation [8].  

 

3.4.2.1. Preferred Substrates 

  Multiple native and oxidized proteins, such as oxidized glutamine synthetase, calmodulin, 

casein, superoxide dismutase, hemoglobin, myoglobin, serum albumin and oxidized histones, 

serve as good substrates for the 20S proteasomal degradation [32-35]. Protein oxidation 

increases the surface hydrophobicity [33], and therefore the oxidized substrates are targeted 

better by the 20S proteasome for degradation, as compared to the 26S proteasome even in the 

presence of ATP and ubiquitin. Interestingly, studies on intact cells have shown that mild 

oxidation impairs the ubiquitin-dependent system and the activity of the 26S proteasome 

without affecting that of the 20S proteasome [36]. 

  The role of the 20S proteasome in the degradation of the oxidized protein is strengthened 

by two different studies. Firstly, genetically modified yeast, lacking the regulatory complex 

and thus was defective in 26S proteasome assembly, could degrade the oxidized protein more 
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efficiently as compared to the wild type yeast [37]. On the other hand, mutant cells harboring 

the thermal inactivation of E1 Ub-activating enzyme and displaying markedly compromised 

ubiquitination at the restrictive temperature, however, degraded oxidized proteins in the 

proteasome-dependent manner [38]. 

 

3.4.2.2.   Mechanisms 

  Since the 19S or 11S regulatory complexes does not participate in the 20S 

proteasome-mediated degradation process, alternative mechanisms that lead to protein 

targeting, protein unfolding and catalytic pore opening must have evolved [8]. These 

mechanisms are discussed below and summarized in Table 3-1 

Table 3-1: 
Proposed Mechanisms for Ubiquitin-Independent Proteolysis by 20S Proteasome 

(Table adapted from ref [8]) 
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3.4.2.2.1.   Protein Targeting 

  Like the 26S proteasome-mediated Ub-independent degradation, targeting of a substrate to 

the 20S proteasome can be facilitated by an accessory protein or by a sequence within the 

substrate itself. An example of accessory factor that promotes substrate targeting is Tax [39], a 

protein encoded by human T cell leukemia virus. Tax enhances the binding of IκB to the 20S 

proteasome subunit HsN3, leading to the constitutive Ub- and phosphorylation-independent 

degradation of IκB. The human cytomegalovirus protein, pp71, represents another example of 

accessory factor that targets the hypophosphorylated member of Rb (retinoblastoma) tumor 

suppressor for the Ub-independent degradation [40].  

  On the other hand, example of substrate that targets itself to the 20S proteasome is p21. 

C-terminus of p21 binds to the C8 α-subunit of the 20S proteasome, promoting its own 

degradation. This mechanism is novel as the α-subunit of the proteasome is first documented 

to play a role in protein degradation and the degradation is direct without the help from 19S 

regulatory complex and ubiquitin [41]. Another example comes from the studies on the 

bacterial proteasome, such as the CIp complexes from E.coli [42]. CIpY, which is distantly 

related to the ATPases of the eukaryotic 19S cap, sandwiches the CIpQ, which is related to the 

proteolytically active eukaryotic 20S core. There is a conserved SSD (sensor and substrate 

discrimination) domain in CIpY [43], which can directly interact with degradation-targeting 

signal sequence embedded within the substrates, such as the unfolded citrate synthase [44].  
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3.4.2.2.2.   Protein Unfolding 

  Protein unfolding is essential to initiate the transfer of protein substrate to the catalytic core 

of the proteasome [44]. In the case of 26S proteasome, substrate unfolding is mediated by the 

ATPases in the 19S regulatory cap, which is now absent in the 20S proteasome. 

  Since the conformation of many proteins is formed and maintained by the disulfide bonds, 

therefore disruption of these disulfide linkages may promote protein unfolding [8]. Lysozyme, 

a model substrate for Ub-dependent degradation pathway is resistant to 20S 

proteasome-mediated degradation in vitro, however, it becomes susceptible to degradation 

once its disulfide linkages are reduced [45]. The reduction of disulfide linkages is also 

observed for Ig-μ heavy chain before it is transferred from endoplasmic reticulum (ER) to 

cytoplasm for degradation, implying the existence of this mechanism [46]. 

  TCRα chains that are unprocessed and fail to assemble in the ER, are transported back to 

cytoplasm and degraded by the 20S proteasome in the Ub-independent manner [47]. 

 

3.4.2.2.3.   Opening of Gated Catalytic Chamber 

  The N-terminal tails of the outer α-subunit ring occlude the opening of the proteolytically 

active chamber of the 20S proteasome, preventing uncontrolled protein degradation [48]. This 

opening of access to the catalytic chamber could be effected either by an accessory factor or 

the substrate itself [8]. Recent studies had shown that histone H3 and H4 accelerated the 20S 

proteasomal degradation of casein and lysozyme [45]. Other accessory factors identified 
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include the cardiolipin and hydrophobic peptides [49-50]. On the other hand, p21 and 

α-synuclein were recently found to promote the gating of the proteasome themselves [30]. 

Their unfolded forms were degraded efficiently by the latent closed channel form of the 20S 

proteasome. 

3.4.2.2.4.   Allosteric Activation At the Active Site 

  The proteolytic activity of proteasome depends on the structural integrity of the proteasome, 

which relies much on the interaction between subunits [8]. Different proteasome activators 

(REGγ, PA200 [51-52] and histone H3 [45]) or inhibitors (e.g. Hsp90 [53] and Ritonavir [54]) 

can differentially regulate the allosteric interaction between the proteasomal subunits, leading 

to changes in the active site geometry and selective activation of distinct catalytic center. 

 
3.5. Evolution of Ubiquitination to Complement Ub-Independent 
Degradation 

  Lower organisms (prokaryotes and archeae) employ only the Ub-independent mechanism 

to regulate their selective proteasomal degradation. However, the evolution has adopted the 

ubiquitination as an additional mechanism in the eukaryotic proteolytic pathways [15]. What 

is the central role for the evolution of ubiquitination system? Ubiquitin-mediated targeting (1) 

expands the range of substrates that can be selectively degraded, (2) allows greater flexibility 

in regulating proteolysis, (3) increases the specificity of substrate targeting, and (4) enhances 

the biochemical repertoire of the proteasome [15]. 
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3.5.1.  Expanded Substrate Repertoire  

  This acquired ubiquitin-mediated targeting tool in turn widens the range of substrates that 

can be selectively degraded through the evolvement of multiple E2 and E3 enzymes [11]. 

Different combinations of E2s and E3s, each with different substrate specificity, definitely 

diversify the substrate repertoire as they can expand the range of substrate targeting motifs 

and pathways [15]. 

 

3.5.2.   Flexibility in Proteolysis Regulation   

  With the expanded substrate range, the ubiquitination allows greater flexibility in 

regulation of proteolysis [15]. The turnover of proteins can be differentially regulated in 

response to a wide variety of signals, such as phosphorylation or mitosis-triggered 

ubiquitination and degradation [55]. Moreover, the requirement of a multiubiquitin chain 

enables additional fine-tuning of substrate selection where a protein’s stability can be 

controlled by changes in the rate of either ubiquitination or deubiquitination [19].   

 

3.5.3.   Enhanced Functional Repertoire of Proteasome 

  On the other hand, ubiquitination enhances the functional repertoire of the proteasome [15]. 

Most of the 26S proteasome substrates, like cyclins, Cdk inhibitors, securin and IκB, exist as 

heteromeric assemblies and must be efficiently degraded for proper functioning of the 

regulatory switch. However, the prokaryotic proteasomal system may be too rapid and thus 
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does not allow efficient unfolding of multidomain polypeptide chains and disassembly of 

multisubunit complexes. Substrate ubiquitination, however, allows enough time for the 19S 

ATPases to unfold and translocate the substrate before it enters into the proteolytic core [15].  

 

3.6.  Conclusion 

  In conclusion, for both Ub-dependent and Ub-independent degradation, conformational 

flexibility of the protein substrates is important for their proteasomal recognition and 

processing [17]. As we know, the Ub-dependent degradation pathway requires the prior 

unfolding of the substrates before being delivered into the proteasomal core for downstream 

processing [17]. Similarly, those proteins that are targeted for Ub-independent degradation are 

usually globally loosely folded [56] or consist of a disordered domain [57], which is 

necessary for interaction with proteasome.  

  At present, our understanding for the Ub-independent mode of degradation is still very 

limited. This is partly hindered by the difficulty in demonstrating the in vivo physiological 

function of this degradation system. Hopefully, future identification of more substrates and/or 

players in this Ub-independent pathway will help us to appreciate the physiologic and 

metabolic significance of this pathway. 
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4.1.    Physiological Role of Antizyme 

4.1.1   Polyamine Homeostasis 

  The polyamines (spermidine, spermine and putrescine) are small abundant multivalent 

organic cations that are largely bound to negatively charged molecules, such as DNA and 

RNA [1]. Polyamines are not only essential for cell growth and differentiation, but also are 

important in cell proliferation and tumour development. Polyamines are found in prokaryotes 

and eukaryotes. Ornithine Decarboxylase (ODC) is the first rate-limiting enzyme in 

polyamine biosynthetic pathway, catalyzing the decarboxylation of ornithine to putrescine, 

which is then converted into spermidine and spermine (Figure 4-1) [1]. Elevated ODC 

activity or overexpression of ODC can lead to the tumorigenic transformation [2-5] and are 

found in most human cancers [6]. 

 

 
Figure 4-1: Polyamine Biosynthesis 

(Diagram adapted from website of Northern IIIinois University-John Mitchell Lab)  
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4.1.2.  Role of Antizyme in Regulatory Feedback Control of  
Polyamine Pool 

  Since intracellular polyamine level plays important roles in both normal and neoplastic 

growth, the polyamine levels, including polyamine uptake [7-8] and biosynthesis [9], are 

tightly regulated, as shown in Figure 4-2. Antizyme (AZ) and ODC together participate in the 

feedback regulation of the polyamine homeostasis, restricting the pools of polyamines, the 

downstream products of ODC enzymatic activity.  

 
Figure 4-2: Control of Polyamine Pool by Antizyme 

(Diagram adapted from website of Northern IIIinois University-John Mitchell Lab)  
 

4.1.2.1.   Mechanism of AZ-mediated ODC Degradation 

Antizymes bind ODC with very high affinity, therefore stoichiometrically forming the 

ODC-AZ heterodimers, thereby preventing the formation of the enzymatically active ODC 

homodimers, which are of the weak self-association. Mutagenesis and structural studies have 
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identified regions of ODC and AZ required for their interaction and for ODC degradation. A 

C-terminal ODC domain is required for AZ-dependent degradation. Within AZ, the 

C-terminal is sufficient for interaction with ODC, but the proteasomal degradation requires 

additional domain within the AZ N-terminus (Figure 4-3). 

 

Figure 4-3  

(Figure adapted from ref [10]) 
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4.2.   Regulation of Antizyme 

4.2.1.  Synthesis by Polyamine-Induced Translational Frameshift 

  In response to elevation in cellular polyamine levels, the expression of functional AZ is 

rapidly induced by a remarkable unique ribosomal frameshift [11] mechanism (Figure 4-4).  

Figure 4-4: Antizyme-Induced Translational Frameshifting 
(Figure adapted from ref [10]) 

  The antizyme mRNA has two overlapping open reading frames (ORFs), comprised of a 

short ORF1 and a long ORF2. The short ORF1 has two potential translational start codons 

and a stop codon at the frameshift site, but yet does not appear to produce a protein product. 

The long ORF2 encodes most of the protein but lacks an initiation start site. ORF2 is in the +1 

 73



reading frame in relation to ORF1. Therefore, synthesis of a functional, full-length antizyme 

requires initiation of translation at the start site in ORF1 followed by a translational +1 

frameshift at the codon immediately preceding the short ORF1 stop codon. This frameshift is 

greatly enhanced by the elevation of the intracellular polyamines, the mechanism of which is 

not completely understood. Two conserved elements that are critical for the polyamine effect, 

are present in the AZ sequence. One is located 5’ to the frameshift site, whereas the other one 

is situated immediately following the frameshift site, which forms a pseudoknot that 

stimulates the frameshifting. The induced AZ degrades ODC, thereby impairing further 

polyamine synthesis [12].  

  AZ also inhibits polyamine uptake and stimulates polyamine secretion [7-8]. This forms the 

basis for the feedback control of polyamine levels. 

 

4.2.1.1.   The Family of Mammalian Antizymes 

  In human, antizymes consist of a family of at least four members (AZ1-4) [13]. All the four 

isoforms share the following characteristics: (1) high structural homology, particularly in the 

C-terminus; (2) interaction with ODC, which decreases ODC abundance and/or activity; (3) 

polyamine-induced translational frameshifting that depends on the conserved motifs near the 

frameshifting site [14]. The best studied member of family is antizyme-1 (AZ1) which 

consists of 227 amino acids and is widely distributed many cell types [12]. Antizyme-2 has 

the similar tissue distribution as antizyme-1, but less abundant [15]. Antizyme-3 is testis 
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specific and is expressed in certain stages of spermatogenesis [16-17]. Antizyme-4 was 

isolated as an EST clone from a human brain cDNA library and not fully characterized yet 

[14]. 

4.2.1.2.   Multiple Forms of Antizyme-1 

  As shown in Figure 4-5, there are multiple forms of AZ1 (29 and 24.5 kDa) due to the 

presence of two potential start sites and the post-translational modification, such as 

phosphorylation. The 24.5 kDa form predominates and is synthesized in larger amount 

whereas the 29 kDa form contains a mitochondrial targeting sequence and is found only in 

mitochondria [18-20].  

Figure 4-5: Multiple forms of Antizyme 
(Diagram adapted from website of Northern IIIinois University-John Mitchell Lab) 
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4.2.2.   Regulation of Antizyme Protein Stability 

  Unlike ODC, the degradation of antizyme is mediated through the ubiquitin-dependent 

pathway. Studies from mammalian and yeast had found that polyamines interfered with the 

ubiquitination of antizyme and thus blocked the degradation of antizyme [9, 21]. 

 

4.2.3.   Inhibition of Antizymes by Antizyme Inhibitor (AZI) 

  In addition to the control of antizyme synthesis by polyamines, all members of the 

antizyme family are inactivated by a protein, termed the antizyme inhibitor (AZI) [22-23], as 

shown in Figure 4-6. 

Figure 4-6: Schematic diagram showing 
antizyme (AZ) and antizyme inhibitor (AZI)-mediated regulation of ODC 

(Diagram adapted from ref [16]) 
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AZI shares substantial homology with ODC but it lacks any enzymatic activity [24]. 

Antizyme binds more tightly to AZI than they bind to ODC, and thus releasing the ODC from 

the antizyme:ODC complex [23]. Relief of ODC from antizyme inhibition leads to ODC 

stabilization. Besides being identified as a physiological player of the polyamine pathway, 

AZI also plays some possible roles in cell proliferation and cell cycle progression, as shown 

by the rapid induction of AZI mRNA upon growth stimulation [23] and its upregulation in 

certain forms of human cancers [25]. Normally AZI has a short half-life (<30 min) and it is 

ubiquitinated and subsequently degraded by 26S proteasome. However, binding of antizyme 

stabilizes the AZI by preventing its ubiquitination [26]. 

 

4.3.   Antizyme as Alternative Degradation Recognition Signal 

  Although generally most proteins are ubiquitinated and are therefore recognized and 

targeted for proteasomal degradation, exceptionally there is a small set of proteasome 

substrates that are not ubiquitinated and instead use other signals to mark themselves for 

degradation [27]. Studies on the degradation of ornithine decarboxylase (ODC) demonstrated 

that poly-ubiquitin tag is no longer the only signal recognized by the 26S proteasome [28-29]. 

The recognition of ODC by the 26S proteasome is mediated through non-covalent interaction 

between ODC and the polyamine-induced antizyme (AZ) [28-31].  
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4.3.1. Mechanism of Antizyme-Mediated Ub-Independent Protein Degradation of ODC 

  Antizyme promotes the ODC degradation by enhancing ODC association with proteasome, 

rather than accelerating the rate of proteasomal processing [32]. The attachment of antizyme 

causes the conformational change in ODC, thereby exposing its C-terminal degradation signal 

for recognition by 26S proteasome [33], as shown in Figure 4-7. Unlike ubiquitin, AZ is 

usually spared from destruction and is released from the ODC:AZ complex at the proteasome 

[29]. Therefore, a single AZ can catalyze multiple rounds of ODC degradation. Interestingly, 

in vitro [34] and in vivo [35-36] studies had revealed that ubiquitin did not participate in this 

AZ-mediated protein degradation process. However, substrate-linked or free polyubiquitin 

chains could competitively inhibit the AZ-stimulated degradation of ODC [37], suggesting 

that AZ-ODC and polyubiquitin chains share the same recognition element(s) on the 

proteasome. In another words, ODC may adapt the molecular mimicry for proteasomal 

recognition using the antizyme as the functional equivalent of polyubiquitin [38]. 

Figure 4-7: Antizyme-induced ODC Degradation  
(Diagram adapted from website of Northern IIIinois University-John Mitchell Lab)  
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4.3.2.   Other Proteasomal Substrates Targeted by Antizyme  

4.3.2.1.   Cyclin D1 

  Although initially thought to accelerate only the degradation of ODC, AZ1 had recently 

been demonstrated to bind other proteins and facilitate their proteasomal degradation. A study 

had shown that AZ1 interacted specifically with cyclin D1 and accelerated Ub-independent 

degradation of cyclin D1 [39]. Stable mutant of cyclin D1 (T286A), which could no longer be 

targeted for Ub-dependent degradation, was rapidly degraded in the presence of AZ1 

overexpression [39].  

 

4.3.2.2.   Smad1 

  Another study had identified Smad1 and proteasomal subunit HsN3 as the interacting 

proteins of AZ1. HsN3 is one of the seven subunits of the 20S proteasome, the catalytic core 

of the 26S proteasome. Indeed, AZ1, Smad1 and HsN3 together formed a ternary complex 

[40-41]. Interestingly, Smad1 also bound ubiquitin and therefore Smad1 ubiquitination, 

together with AZ and HsN3, played important roles in proteasomal targeting and degradation 

of Smad1 [40]. Unlike ODC, whose degradation is completely Ub-independent and 

AZ1-dependent, degradation of cyclin D1 and Smad1 can also be regulated via the 

Ub-dependent pathway [42].  
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4.4. Differences Between Antizyme-Mediated vs Ubiquitin-Mediated 
Protein Degradation 

  Both Ub-dependent and AZ-mediated degradation target protein to the same 26S 

proteasome. But, Ub-dependent proteolysis is more complex as several enzyme-catalyzed 

reactions are required for the covalent attachment of ubiquitins to the target proteins. Instead, 

AZ-dependent degradation is a very rapid process with no requirement for additional 

components [38]. 

  They also differ in their ways for tag clearance [38]. Polyubiquitin must be removed by the 

cleavage of covalent bonds through the intrinsic proteasome enzymatic activity, while the 

antizyme just dissociates from ODC. With the present limited knowledge, their differences 

seem to emerge at the earlier steps and they may converge after proteasomal association, 

given the observation that polyubiquitin and ODC:AZ competitively bind a proteasomal 

recognition site. However, it may be more complex than what we postulate.  

 

4.5.   Conclusion 

AZ has evolved recently as an ancient gene family and AZ-mediated, ubiquitin-independent 

degradation is found to be evolutionarily conserved from S.cerevisiae to human [29]. It would 

be interesting to probe into the role played by AZ-mediated degradation in comparison to 

Ub-dependent degradation and its specificity. 
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5.10.   Buffers for Immunoprecipitation, 101 
____________________________________________________________________ 
5.1 Yeast Strain 
Yeast Dosage Suppressor Screen 
5.1.1.  EGY188  MATa trp1 his3 ura3 leu2::2 LexAop-LEU2  

 

5.2. Bacterial Strain 
General 
5.2.1.  DH5α competent cells  
 
GeneEditor in vitro Site-Directed Mutagenesis 
5.2.2.  BMH 71-18 mutS competent cells  
 

5.2.3.  JM109 competent cells 

 
5.3. Cell Lines 
5.3.1. HeLa, COS7, NIH-3T3, U2OS, MCF7, SW480, K562, 2774 were obtained from 

the American Type Culture Collections (ATCC). 
 

5.3.2. HeLa Tet-On cell line was obtained from Clontech (Cat. No. 630901) 
 

5.3.3. ts20TG mouse cells were obtained from Dr. Harvey Ozer, New Jersey, USA. 
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5.3.4. ts20-CHO cells were obtained from Dr. Ger J Strous, Utrecht, Netherlands. 
 

5.3.5. AT2.1 Dunning rat prostate carcinoma cells were obtained from Dr. John T Isaacs, 
Baltimore, USA. 

 
5.4.  Primers 
Primers for Yeast Dosage Suppressor Screen 
5.4.1. Primers for Determination of the Reading Frame and Identity of Positive Clones 

Isolated from Yeast Dosage Suppressor Screen and PCR Amplification of cDNA 
Clone 

5’ target fusion primer: 5’-CTGATGGGAGATGCCTCC-3’ 

3’ target fusion primer: 5’-GCCGACAACCTTGATTG-3’ 

 

5.4.2. Primers for Sequencing the Junction between LexA and Bait Protein IAK1 

5’ bait fusion primer: 5’-CGTCAGCAGAGCTTCACC-3’ 

 

5.4.3. Primers for amplifying or sequencing the cDNA inserts in pCR2.1TOPO 

M13F: 5’-GTAAAACGACGGCCAG-3’ 

M13R: 5’-CAGGAAACAGCTATGAC-3’ 

 

Primers for Northern Blot 
5.4.4. Primers specific for β-actin probe  

β-actin-F: 5’-GTGATGGTGGGCATGGGTCA-3’ 

β-actin-R: 5’-TTAATGTCACGCACGATTTCCC-3’ 

 

Primers for Cloning of AKIP 

5.4.5. Primers for PCR Cloning of full-length AKIP 

AKIP-F: 5’-CGCTGCCGATCGGGGCCGACT-3’ 

AKIP-R: 5’-ACTACGGATCACAGCAGCAAC-3’ 

 
Primers for General Sequencing/PCR Screening 
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5.4.6. Primers for Sequencing or PCR Screening of the cDNA Insert in pCEP4 

pCEP-F: 5’-AGAGCTCGTTTAGTGAACCG-3’ 

EBV-R: 5’-GTGGTTTGTCCAAACTCATC-3’ 

 

5.4.7. Primers for Amplifying or Sequencing the cDNA inserts in pCDNA3 

Sp6: 5’-ATTTAGGTGACACTATAG-3’ 

       T7: 5’-TAATACGACTCACTATAGGG-3’ 

 
Primers for Tagging AKIP 
5.4.8. Primers for Generating Flag-tagged AKIP-TR 

1st PCR 

AKIP(TR)-F: 5’-CAAGGACGACGATGACAAGGAATTCGGCACG-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

 

5.4.9. Primers for Generating Flag-tagged Full Length AKIP 

1st PCR 

AKIP(FL)-F: 5’-CAAGGACGACGATGACAAGACCCTGCTCCTG-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

 

5.4.10. Primers for Generating HA-tagged AKIP-TR 

1st PCR 

AKIP(TR-HA)-F: 5’-GTCCCAGACTACGCTGATACCGGGACCGCAG -3’ 
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AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

2nd PCR 

HA: 5’-GCCATGGCATACCCATACGACGTCCCAGACTAC-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

 

5.4.11. Primers for Generating HA-tagged Full Length AKIP 

1st PCR 

AKIP(FL-HA)-F: 5’-GTCCCAGACTACGCTCTGCTCCTGGGGCGCCTG -3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

2nd PCR 

HA: 5’-GCCATGGCATACCCATACGACGTCCCAGACTAC-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

 
Primers for Tagging Aurora Kinase 
5.4.12. Primers for Generating Flag-tagged Human Aurora-A Kinase 

1st PCR 

AIK-F: 5’-CAAGAA CGACGATGACAAGCTGGACCGATCTAAAG-3’ 

AIK-R: 5’-CCTGCACGATTCCTAAGACTGTT-3’ 

2nd PCR 

AIK-FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AIK-R: 5’-CCTGCACGATTCCTAAGACTGTT-3’ 

 

5.4.13. Primers for Generating HA-tagged Aurora-A Kinase 

1st PCR 

AIK-HA-F: 5’-GTCCCAGACTACGCTCTGGACCGATCTAAAG -3’ 

AIK-R: 5’- CTCCTAAGACTGTTTGCTAGC-3’ 

2nd PCR 
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HA: 5’-GCCATGGCATACCCATACGACGTCCCAGACTAC-3’ 

AIK-R: 5’- CTCCTAAGACTGTTTGCTAGC -3’ 

 

5.4.14. Primers for Generating FLAG-tagged Human Aurora-B Kinase  

1st PCR 

AurB-F: 5’-CAAGGACGACGATGACAAGAGGCTGGCCCAGAAGGAG-3’ 

AurB-R: 5’-GGACCATCAGGCGACAGATTGAAGGGCAG -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AurB-R: 5’-GGACCATCAGGCGACAGATTGAAGGGCAG -3’ 

 
Primers for Tagging Antizyme and its Regulators 
5.4.15. Primers for Generating His-tagged Antizyme 1 (Wild Type or Mutant) 

1st PCR 

AZ1(H)-F: 5’-CATCATAGCCTCGGTGAATTCATGGTGAAATCC-3’ 

AZ1-R: 5’-GCACTCGAGCTACTCCTCCTCCTCTCCCGAAGACTCTCTC-3’ 

2nd PCR 

HIS:5’GCCATGGGGGGTTCTCATCATCATCATCATCATAGCCTCGGTG 3’ 

AZ1-R: 5’-GCACTCGAGCTACTCCTCCTCCTCTCCCGAAGACTCTCTC -3’ 

 

5.4.16. Primers for Generating HA-tagged Antizyme 1 (AZ1, Wild Type or Mutant) 

1st PCR 

AZ1-HA-F: 5’-GTCCCAGACTACGCTCTGGTGAAATCCTCCCTG-3’ 

AZ1-R: 5’-GCACTCGAGCTACTCCTCCTCCTCTCCCGAAGACTCTCTC-3’ 

2nd PCR 

HA: 5’-GCCATGGCATACCCATACGACGTCCCAGACTAC-3’ 

AZ1-R: 5’-GCACTCGAGCTACTCCTCCTCCTCTCCCGAAGACTCTCTC-3’ 
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5.4.17. Primers for Generating HA-tagged Antizyme Inhibitor (AZI) 

1st PCR 

AZI-HA-F: 5’-GTCCCAGACTACGCTCTGAAAGGATTTATTGATG-3’ 

AZI-R: 5’-CTCGAGTTAAGCTTCAGCGGAAAAGCT -3’ 

2nd PCR 

HA: 5’-GCCATGGCATACCCATACGACGTCCCAGACTAC-3’ 

AZI-R: 5’-CTCGAGTTAAGCTTCAGCGGAAAAGCT -3’ 

 
Primers for Tagging Ubiquitin 
5.4.18. Primers for Generating His-tagged K48R Ubiquitin Mutant 

1st PCR 

K48R-F: 5’-CATCATAGCCTCGGTGAATTC-3’ 

K48R-R: 5’-GAGTTAACCACCACGAAGTCTCAAC-3’ 

2nd PCR 

HIS:5’GCCATGGGGGGTTCTCATCATCATCATCATCATAGCCTCGGTG 3’ 

K48R-R: 5’- GAGTTAACCACCACGAAGTCTCAAC-3’ 

 
Primers for Construction of Deletion Mutants 
5.4.19. Primers for Construction of FLAG-tagged Deletion Mutants of AKIP 

**DNA Template: FLAG-tagged Full Length AKIP 

ΔN99-AKIP 

1st PCR 

N99-F: 5’-CAAGGACGACGATGACAAGTGCGGGCCCCT-3’ 

AKIP-R: 5’-TCATTTGCCCCGCAGGTAGATCTTG -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 
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AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

ΔN198-AKIP 

1st PCR 

N198-F: 5’-CAAGGACGACGATGACAAGAGGAAGATGTC -3’ 

AKIP-R: 5’-TCATTTGCCCCGCAGGTAGATCTTG -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AKIP-R: 5’- TCATTTGCCCCGCAGGTAGATCTTG -3’ 

ΔC99-AKIP 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

C99-R: 5’-TCAGATCTGCTTGCGTCTCAGGCGTCC -3’ 

ΔC198-AKIP 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

C198-R: 5’-TCAGCGGATCTTCAGCACGTTTTTG -3’ 

 

5.4.20. Primers for Construction of FLAG-tagged Deletion Mutants of Aurora-A 

**DNA template: FLAG-tagged Aurora-A Kinase 

ΔN300-AIK 

1st PCR 

N300-F: 5’-CAAGGACGACGATGACAAGACCCCCCTGCCATCGGCAC-3’ 

AIK-R: 5’- CTCCTAAGACTGTTTGCTAGC -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AIK-R: 5’- CTCCTAAGACTGTTTGCTAGC -3’ 

ΔN600-AIK 

1st PCR 
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N600-F: 5’-CAAGGACGACGATGACAAGACCCATGATGCTACCAGAGTC-3’ 

AIK-R: 5’- CTCCTAAGACTGTTTGCTAGC -3’ 

2nd PCR 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

AIK-R: 5’- CTCCTAAGACTGTTTGCTAGC -3’ 

ΔC300-AIK 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

C300-R: 5’-GCACTACATTTCAGGGGGCAGGTAGTC -3’ 

ΔC600-AIK 

FLAG: 5’-GCCATGGACTACAAGGACGACGAT-3’ 

C600-R: 5’-GCACTAGAAATAACCATACAGTCTAAG -3’ 

 
Primers for RT-PCR Cloning 
5.4.21. Primers for RT-PCR Cloning of Antizyme 1(AZ1)  

AZ1-F: 5’-GAGGAATTCATGGTGAAATCCTCCCTGCAGCG -3’ 

AZ1-R: 5’-GCACTCGAGCTACTCCTCCTCCTCTCCCGAAGACTCTCTC-3’ 

 

5.4.22. Primers for RT-PCR Cloning of Antizyme Inhibitor (AZI)  

AZI-F: 5’-GAATTCATGAAAGGATTTATTGATGATGC -3’ 

AZI-R: 5’-CTCGAGTTAAGCTTCAGCGGAAAAGCT -3’ 

 

5.4.23. Primers for RT-PCR Cloning of Human Aurora-B Kinase  

AurB-F: 5’- CAAGGACGACGATGACAAGAGGCTGGCCCAGAAGGAG-3’ 

AurB-R: 5’-GGACCATCAGGCGACAGATTGAAGGGCAG -3’ 

 
Oligonucleotides for Site-Directed Mutagenesis 
5.4.24. Antizyme 1 (Frameshift Mutation) 

5’-GTGGTGCTCCGATGCCCCTC-3’ 
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5.4.25. Aurora-A Kinase (A box Stabilizing S51D Mutation) 

5’-CGGGTCTTGTGTCCTGACAATTCTTCCCAGCGG-3’ 

 
Primers for Real-Time PCR 
5.4.26. Primers Specific for AKIP  

AKIP(RT)-F: 5’-TTCCTGCCCAGACTGGATAC -3’ 

AKIP(RT)-R: 5’- CGTCTTCTTCACCAGCTTCC-3’ 

 

5.4.27. Primers Specific for Aurora-A Kinase  

AurA(RT)-F: 5’-ATTACAGCTAGAGGCATCATG -3’ 

AurA(RT)-R: 5’- GGCGACAGATTGAAGGGC-3’ 

 

5.4.28. Primers Specific for GADPH Housekeeping Gene  

GADPH(RT)-F: 5’-GGTGGTCTCCTCTGACTTCAACA -3’ 

GADPH(RT)-R: 5’- GTTGCTGTAGCCAAATTCGTTGT-3’ 

 

5.5.  cDNA Library 
Yeast Dosage Suppressor Screen 
 
cDNA Library: HeLa cell from OriGene Technologies, Inc (Cat. No: DLH-103) 
Number of Independent Clones: 9.6 x106 

Size range of Inserts: 0.3-3.3 kb 
 

5.6. Plasmids 
5.6.1. pCR2.1-TOPO (Invitrogen): TA cloning vector 
 
Yeast Dosage Suppressor Screen 
5.6.2. Bait Plasmids [pEG202]: HIS3, 2 μm, AmpR, constitutive ADH promoter expresses 

LexA-bait fusion protein 
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5.6.3. Target Plasmid [pJG4-5]: TRP1, 2 μm, AmpR, inducible GAL1 promoter expresses 
B42-HA tag target fusion protein from HeLa cDNA expression libraries 

 

5.6.4. Reporter Gene (lacZ) Plasmid [pSH18-34]: URA3, 2 μm, AmpR, 8 ops-lacZ (high 
sensitivity) 

 
Eukaryotic Expression Vector 
5.6.5. pCDNA3 (Invitrogen): Constitutive mammalian expression from CMV promoter 
 

5.6.6. pIRES (Clontech): Bicistronic mammalian expression vector for simultaneous 
translation of two genes of interest from the same mRNA transcript 

 

5.6.7. pTRE2hyg (Clontech): Tetracycline or doxycycline-inducible mammalian 
expression vector, used in conjunction with HeLa Tet-On cell line 

 

5.6.8. HA-tagged p21 expression construct is a gift from Dr. Michele Pagano. 
 

5.6.9. His-tagged wild type ubiquitin and HA-tagged K48R mutant ubiquitin 
expression construct is a gift from Dr. Ivan Dikic. 

 

5.6.10. Cyclin B1 expression construct is a gift from Dr. Prochownik. 

 

5.7. Antibodies 
Custom-synthesized Antibodies 
5.7.1. Anti-AKIP, pAb, rabbit IgG, 0.75 mg/ml, affinity-purified peptide antibody, 

BioGenes GmbH 

Peptide synthesized for immunization: CQTPKIYLRGK 
 

5.7.2. Anti-human Aurora-A, pAb, rabbit IgG, crude serum of peptide antibody  
Peptide synthesized for immunization: CQNKESASKQS 

 

Secondary Antibodies for Immunocytochemistry 

5.7.3. Alexa Fluor 488 goat anti-mouse IgG, 2 mg/ml, Molecular Probes, A-11001 

5.7.4. Alexa Fluor 488 goat anti-rabbit IgG, 2 mg/ml, Molecular Probes, A-11008 
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5.7.5. Alexa Fluor 594 goat anti-rabbit IgG, 2 mg/ml, Molecular Probes, A-11012 

Secondary Antibodies for Western Blot 
5.7.6. Goat Anti-Mouse IgG, (H+L) Horseradish Peroxidase Conjugated, 0.8 mg/ml, 

Pierce, 31430 
 

5.7.7. Goat Anti-Rabbit IgG, (H+L) Horseradish Peroxidase Conjugated, 0.8 mg/ml, 
Pierce, 31460 

 

5.7.8. Mouse Anti-Goat IgG, (H+L) Horseradish Peroxidase Conjugated, 0.8 mg/ml, 
Pierce, 31400 

 

Aurora Kinases Antibodies 

5.7.9. Anti-Aurora A, pAb, rabbit IgG, 1 mg/ml, Abcam, ab12324 

5.7.10. Anti-Aurora A/AIK, pAb, rabbit IgG, Cell Signaling, 3092 

5.7.11. Anti-IAK1/mouse Aurora-A kinase, mAb, mouse IgG1, 1mg/ml, BD Transduction 
Laboratories, 610939 

 

5.7.12. Anti-Aurora-B (H-75), pAb, rabbit IgG, 0.2 mg/ml, Santa Cruz Biotech, sc-25426 

 

AKIP Antibody 
5.7.13. Anti-AKIP, pAb, rabbit IgG, affinity-purified peptide antibody, 0.49 mg/ml, Abcam, 

ab3883 

 

Antibodies for Loading Control 

5.7.14. Anti-β tubulin, mAb, mouse IgG1, 2 mg/ml, Sigma, T4026 

5.7.15. Anti-Actin (I-19), pAb, goat IgG, 0.2 mg/ml, Santa Cruz Biotech, sc-1616. 

 

Cyclin and CDK Inhibitor Antibodies 

5.7.16. Anti-Cyclin A (H-432), pAb, rabbit IgG, 0.2 mg/ml, Santa Cruz Biotech, sc-751 
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5.7.17. Anti-Cyclin B1 (H-433), pAb, rabbit IgG, 0.2 mg/ml, Santa Cruz Biotech, sc-752 

5.7.18. Anti-Cyclin D1 (DCS-6), mAB, mouse IgG2a, 0.2 mg/ml, Santa Cruz Biotech, 
sc-20044 

 

5.7.19. Anti-p21 (C-19), pAb, rabbit IgG, 0.2 mg/ml, Santa Cruz Biotech, sc-397 

 

Antizyme Antibody 
5.7.20. Anti-Antizyme (AZ), pAb, Rabbit IgG, crude serum, was a gift from Dr. John L A 

Mitchell, Northern Illinois University.  

 

Protein Tag Antibodies 

5.7.21. Anti-FLAG M2, mAb, mouse IgG1, 2 mg/ml, Stratagene, 200472 

5.7.22. Anti-FLAG, pAb, rabbit IgG, 0.8 mg/ml, Sigma, F7425 

5.7.23. Anti-HA (Y-11), pAb, rabbit IgG, 0.2 mg/ml, Santa Cruz Biotech, sc-805 

5.7.24. Anti-HA, mAb, mouse IgG1, 3.7 mg/ml, Sigma, H9658 

5.7.25. Anti-HA, pAb, rabbit IgG, 0.5 mg/ml, Sigma, H6908 

5.7.26. Anti-polyHIS, mAb, mouse IgG2a, 3mg/ml, Sigma, H1029 

Nucleolus Marker Antibody 
5.7.27. Anti-Nucleolin C23 (MS-3), mAb, mouse IgG1, 0.2 mg/ml, Santa Cruz Biotech, 

sc-8031 

 

Ubiquitin Antibody 
5.7.28. Anti-Ubiquitin (P4D1), mAb, mouse IgG1, 0.2 mg/ml, Santa Cruz Biotech, sc-8017 

 
5.8. General Buffer Preparation 
 

5.8.1. Phosphate Buffered Saline (PBS) [137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 
1.4 mM KH2PO4, pH 7.4] 
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5.8.2. TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH8.0) 

Bacterial Transformation 
5.8.3. LB broth [1% (w/v) Bacto-tryptone. 0.5% (w/v) Bacto-yeast extract, 0.5% (w/v) 

NaCl] 
 

5.8.4. LB Agar [1% (w/v) Bacto-tryptone. 0.5% (w/v) Bacto-yeast extract, 0.5% (w/v) 
NaCl, 2% (w/v) bacto-agar] 

 

5.8.5. SOC media [2% bacto-tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 
mM MgCl2, 10 mM MgSO4, 20 mM glucose] 

 
Yeast Growth Media 
5.8.6. YPD rich medium 
 
Peptone                20 g 
Yeast Extract            10g 
Glucose                20 g 
Bacto-Agar             20 g 
NaOH                 0.1 g 
 
Add 1L of distilled water and sterilize by autoclaving at 121oC for 15 min. For plates, cool to 
50oC before pouring. 
 

5.8.7. Synthetic Complete Drop-Out Selective Medium 
 
Yeast Nitrogen Base w/o amino acids                1.7 g 
Synthetic Complete Drop out Mix                   0.6 g 
Glucose                                        20 g 
Bacto Agar                                      20 g 
 
Add 1L of distilled water and sterilize by autoclaving at 121oC for 15 min 
 
For plates, cool to 50oC before pouring. 

 
Competent E.coli Preparation 
5.8.8. TfbI buffer [30 mM KOAc, 100 mM Rubidium Chloride (RuCl), 10 mM CaCl2. 

2H2O, 50 mM MnCl2.4H2O, 15% (v/v) glycerol, adjust pH to 5.8 with diluted acetic 
acid] 
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5.8.9. TfbII buffer [10 mM MOPS, 75 mM CaCl2. 2H2O, 10 mM RuCl, 15% 9v/v] 
glycerol, adjust pH to 6.5 with diluted NaOH] 

 
Agarose Gel Electrophoresis 
5.8.10. 10X TBE [0.89 M Tris, 0.89 M Boric Acid, 0.02 M EDTA] 
 

5.8.11. 10X Sample Loading Buffer [0.25% (w/v) Bromophenol Blue, 0.25% (w/v) Xylene 
Cyanol, 50% (v/v) Glycerol] 

 
Southern Blotting 
5.8.12. 20X SSPE [3 M NaCl, 0.2 M NaH2PO4, 0.02 M EDTA, pH 7.4] 
 

5.8.13.  20X SSC [3M NaCl, 0.3M trisodium citrate, pH 7.0] 
 

5.8.14.  Denaturation Buffer [1.5 M NaCl, 0.5 M NaOH] 
 

5.8.15.  Neutralization Buffer [1.5 M NaCl, 0.5 M Tris.Cl, pH 7.0] 
 

5.8.16.  50X Denhardt’s Solution [1% (w/v) Ficoll 400, 1% (w/v) Polyvinylpyrrolidone, 
1% (w/v) BSA] 

 

5.8.17.  Hybridization Buffer [5X SSPE, 10X Denhardt’s Solution, 100 μg/ml ssDNA, 2% 
SDS] 

 

5.8.18.  Stripping Buffer [0.1X SSC, 0.1% (w/v) SDS, 0.2 M Tris-HCl, pH 7.5] 

 
Northern Blotting 
5.8.19. Hybridization Buffer [1% (w/v) BSA, 1 mM EDTA, 0.5 M PO4 Buffer, pH 7.2, 7% 

(w/v) SDS] 
 

5.8.20. Wash Buffer A [0.5% BSA, 1 mM EDTA, 40 mM PO4 Buffer, 5% SDS] 
 

5.8.21. Wash Buffer B [1 mM EDTA, 40 mM PO4 Buffer, 1% SDS] 
 

5.8.22. 20X SSC [3M NaCl, 0.3M trisodium citrate, pH 7.0] 
 

5.8.23. Stripping Buffer [0.5% (w/v) SDS] 
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5.8.24. 10X MOPS [0.2 M MOPS, 0.05 M Na Acetate, 0.01 M EDTA] 
 

5.8.25. DEPC-treated water [0.1% DEPC (Sigma, P/N D5758) in dH2O, stir overnight and 
autoclave] 

 

5.8.26. Sample Loading Buffer [49.2% (v/v) Formamide, 16.4% (v/v) Formaldehyde, 9.8% 
(v/v) 10X MOPS, 24.6% of 0.1% Bromophenol Blue/50% Glycerol] 

 
SDS-PAGE and Western Blotting 
5.8.27. Lower Tris, pH 8.8 [1.5 M Tris base, 0.4% (w/v) SDS, adjust pH to 8.8 with conc. 

HCl] 
 

5.8.28. Upper Tris, pH 6.8 [0.5 M Tris base, 0.4% (w/v) SDS, adjust pH to 6.8 with conc. 
HCl] 

 

5.8.29. 10X Laemli Running Buffer [0.25 M Tris Base, 1.92 M Glycine, 1% (w/v) SDS] 
 

5.8.30. Blotting Buffer [10% (v/v) 10X Laemli Buffer, 20% (v/v) Methanol] 
 

5.8.31. 10X TBS [1.5 M NaCl, 0.2 M Tris base] 
 

5.8.32. 5X Sample Buffer [0.6 M Tris, pH 6.8, 6.25% (w/v) SDS, 25% (v/v) Glycerol, 20% 
(v/v) Mercaptoethanol, 0.063% (w/v) Bromophenol Blue] 

 

5.8.33. Blocking Buffer [5% non-fat milk powder in 1X TBS] 
 

5.8.34. Diluent Buffer for 1o Antibody [2% BSA in 1X TBS, 0.02% sodium azide] 
 

5.8.35. Wash Buffer [1X TBS, 0.05% Tween 20] 
 

Immunocytochemistry 
5.8.36. Blocking Buffer [1X TBS, 1% (w/v) BSA, 0.1% (v/v) Triton X-100, 10% (v/v) goat 

serum, 0.02% (w/v) sodium azide] 

 
Flow Cytometry (FACS) 
5.8.37. PI Staining Buffer[1X PBS, 0.1%(v/v)Triton-X100, 50μg/ml PI, 100μg/ml Rnase A] 
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5.9.  Buffers for In vivo Ubiquitination Assay 
 

5.9.1. Lysis Buffer G [6 M Guanidinium-HCl, 0.1 M Na2HPO4/NaH2PO4, pH 8.0, 10 mM 
imidazole] 

 

5.9.2. Wash Buffer I [Buffer G diluted in 25 mM Tris-HCl at 1:4 ratio, pH 6.8, 20 mM 
imidazole] 

 

5.9.3. Wash Buffer II [25 mM Tris-HCl, pH 6.8, 20 mM imidazole] 
 

5.9.4. Elution Buffer (2X SDS Sample Buffer) [90 mM Tris.Cl, pH 6.8, 20%(v/v) 
Glycerol, 2% (w/v) SDS, 0.1 M EDTA, 0.1 M DTT, 0.02% (w/v)Bromophenol Blue] 

 
5.10.  Buffers for Immunoprecipitation 
 
General Immunoprecipitation 
5.10.1. Lysis Buffer [1X TBS, 10% (v/v) glycerol, 1% (v/v) NP-40, 1X protease inhibitor 

cocktail] 
 

5.10.2. Wash Buffer I [1X TBS, 10% (v/v) glycerol, 0.5% (v/v) NP-40, 1% BSA] 
 

5.10.3. Wash Buffer II [1X TBS, 10% (v/v) glycerol, 0.5% (v/v) NP-40] 

 
Flag Immunoprecipitation-- EzView Red Anti-FLAG M2 Affinity Gel 
5.10.4. Bead Equilibration Buffer [50 mM Tris HCl, pH 7.4, 150 mM NaCl] 
 

5.10.5. Lysis Buffer [50 mM Tris HCl, pH 7.4, 150 mM NaCl, 1X Protease Inhibitor 
Cocktail, 1% (v/v) Triton X-100] 

 

5.10.6. Wash Buffer [50 mM Tris HCl, pH 7.4, 150 mM NaCl, 1% (v/v) Triton X-100] 
 

5.10.7. Elution Buffer (2X sample buffer) [125 mM Tris HCl, pH 6.8, 4% (w/v) SDS, 20% 
Glycerol (v/v), 0.004% (w/v) Bromophenol Blue, 100 mM 2-Mercaptoethanol] 
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6.1. Methods for Yeast Dosage Suppressor Screen 

6.1.1.  Yeast Transformation—LiAc Method 

  The yeast strain was inoculated in 10 ml of YEPD or appropriate drop-out medium and 

incubated at 30oC with shaking at 250 rpm overnight to stationary phase (O.D.600 >1.5). 

O.D.600 of the overnight culture was measured and the culture was diluted to final O.D600=0.1 

in a final volume of 50 ml. The diluted culture was grown at 30oC with shaking for 4-6 hours 

until O.D600 =0.4-0.45 (log phase). The culture was then harvested at 3000 rpm, 5 min, RT. 

The cell pellet was washed once in 5 ml of sterile dH2O and resuspended in 0.25 ml of 1x TE 

/ 0.1M LiAc, which was sufficient for 5 transformation reactions. Fifty μl of cell suspension 

was aliquoted into 1.5 ml microcentrifuge tube. One hundred μg of ssDNA (boiled for 5 min 

and quick chilled on ice for 5 min) and 1 μg (linearized) or 0.1 μg (circular) DNA were added 

to the cell suspension. Three hundreds and ninety five μl of transformation reaction mix (1X 

TE, 0.1M LiAc, 40% PEG) was then added. The mixture was vortexed vigorously and 

incubated at 30oC for 30 min. Prior to the heat shock, DMSO was added to a final conc of 

10% and mixed by gentle inversion. The mixture was heat shocked in the 42oC water bath for 

20 min and later chilled on ice for 2 min. The heat-shocked cell mixture was transferred to 15 

ml drop-out medium and allowed to recover for 1 hour at 30oC with shaking. The transformed 

cells were harvested at 3000 rpm, 5 min, RT and resuspended in dH2O before plating on the 

drop-out medium plate. The plate was incubated at 30oC for 3-4 days. 
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6.1.2.  Yeast Dosage Suppressor Large-scale cDNA Library Screening 

  For cDNA library screening, EGY188 cells were grown to log phase in YPD and 

co-transformed with plasmids containing 150 μg of Aurora-A-pEG202 and 150 μg HeLa cell 

cDNAs in pJG4-5 using the LiAc method. The resulting transformants were selected on 

galactose containing synthetic dropout media lacking histidine and tryptophan (SD-His-Trp). 

Yeast clones, which survived the Aurora-A mediated cytotoxicity, were reconfirmed by 

streaking onto glucose- and galactose-containing synthetic dropout media, and the clones 

which grew only on the galactose-containing plates were characterized further by sequencing. 

 

6.1.3.  Yeast Colony PCR 

  Single yeast colony was inoculated into 20 μl of dH2O. The cell suspension was then boiled 

for 5 min. Five μl of the boiled cell suspension was used for setting up the PCR reaction. 

 

6.1.4.  Rapid Yeast Plasmid Isolation 

  Two ml of yeast culture was grown to saturation. The cells were collected by centrifugation. 

The cell pellet was resuspended in 0.2 ml Buffer A (2 % Triton X-100, 1 % SDS, 100 mM 

NaCl, 10 mM Tris-HCL, pH 8.0, 1 mM EDTA, pH 8.0), 0.2 ml phenol : chloroform : isoamyl 

alcohol (25:24:1) and 0.2 ml glass beads. The mixture was vortexed for 2 min and spinned for 

5 min at RT. One to two μl of the aqueous layer was used to transform the competent E.coli. 
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6.1.5.  Rapid Yeast Protein Isolation 

  One point five ml of overnight grown cells were first pelleted by centrifugation and 

resuspended in 1 ml of 0.25 M NaOH / 1% 2-mercaptoethanol, followed by incubation on ice 

for 10 min. Fifty percent of trichloroacetic acid was then added to the mixture and incubated 

on ice for another 10 min before pelleted by centrifugation at 13K rpm for 10 min. The cell 

pellet was resuspended in 1 ml of ice-cold acetone and recentrifuged at 14K rpm, 10 min. The 

pellet was air dried and resuspended in 200-500 μl of SDS sample buffer. 

 

6.2. Molecular Biology Methods 

6.2.1.  TOPO TA Cloning 

  The TOPO TA cloning kit (Invitrogen, P/N K4500-01) was used for subcloning PCR 

product into a pCR2.1-TOPO vector. For PCR products generated by Taq polymerase, PCR 

products were directly used in the TOPO cloning reaction. Four μl of PCR product was mixed 

gently with 1 μl of salt solution and 1 μl of pCR2.1-TOPO vector, incubated for 30 min at RT 

and chilled on ice. Two μl of the reaction mixture was mixed gently with a vial of One Shot 

Chemical Competent E.coli and incubated on ice for 25 min. After heat shock at 42oC for 30 

sec, the cells were immediately cooled on ice for 2 min, and 250 μl of SOC media was then 

added to the cells. After shaking at 200 rpm for 60 min at 37oC, 10-50 μl of the 

transformation mixture was spread on a prewarmed 100 μg/ml ampicillin containing LB plate 

with X-gal and IPTG and incubated overnight at 37oC.  

 106



6.2.2.   Subcloning 

  To clone the PCR product containing gene of interest into an expression vector or subclone 

the gene of interest from one expression vector to another, 5 μg of plasmid vector(s) were 

independently digested with appropriate restriction enzymes at their optimal temperature 

(37oC / 25oC / 55oC) for overnight and dephosphorylated. After agarose gel electrophoresis, 

the desired bands of DNA fragment were excised and purified by the QIAquick Gel 

Extraction Kit (Qiagen, 28704). The concentration of eluted DNA fragments were determined 

by agarose gel electrophoresis using a quantitative DNA marker (Fermentas, SM0243S & 

SM0313S). For ligation reactions, the molar ratio of vector : insert (gene of interest) was at 

least 1:5. 20 μl of ligation reaction mixture containing vector, insert, 1X ligation buffer and 1 

μl T4 DNA ligase (Roche) was incubated for 5 min. The ligation reaction mixture could then 

be used directly for the transformation of competent E.coli. 

  Use of Pfu DNA polymerase for DNA amplification resulted in blunt-ended PCR product, 

therefore subsequent phosphate modification of the PCR product by the T4 polynucleotide 

kinase (NEB) was necessary for PCR cloning. 

 

6.2.3.  Competent Cells Preparation (Rubidium Chloride Method) 

  A single colony of DH5α was inoculated in 5 ml of LB broth and cultured overnight at 

37oC. One ml of the overnight culture was inoculated into 100 ml of LB broth and incubated 

at 37oC with shaking at 240 rpm. The growth of bacteria culture was monitored using a 

 107



spectrophotometer. When the absorbance reading at 600 nm reached 0.48, the bacteria culture 

was then kept on ice for 15 min and centrifuged at 5,000 rpm for 5 min at 4oC without 

applying brake. The bacterial cell pellet was resuspended in 40 ml of TfbI buffer and 

incubated on ice for 15 min. After centrifugation at 5,000 rpm for 5 min at 4oC, the cell pellet 

was then resuspended in 4 ml of TfbII buffer. The competent cells were transferred to 

pre-chilled 1.5 ml tubes in 200 μl aliquots and snap-frozen in liquid nitrogen before 

transferring to -80oC for long term storage. 

 

6.2.4.   Bacterial Transformation 

  Ten ng of plasmid DNA or 10 μl of ligation mixture was mixed with 100 μl of competent 

E.coli and incubated on ice for 1 hr. This transformation mixture was heat shocked at 42oC for 

1 min and incubated again on ice for 2 min. Nine hundreds μl of pre-warmed SOC medium 

was added and the transformation mixture was incubated at 37oC for 1 hr with shaking. After 

1 hr, the transformation mixture was plated on LB agar plate with appropriate selective 

antibiotic and incubated overnight at 37oC for colony formation. 

 

6.2.5.   Bacterial Colony PCR Screening 

  The bacterial colonies were individually picked using toothpick and resuspended in 20 μl 

dH2O. The resuspended bacterial colonies were boiled for 5 min before using 5 μl of the 

boiled cells for PCR set up. 
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6.2.6.  Polymerase Chain Reaction (PCR) 

  For normal PCR screening, Taq DNA polymerase (Promega) without the proof-reading 

(3’ 5’ exonuclease) activity was used. In the PCR set-up, 10-20 ng of plasmid DNA was 

used as the template and mixed with final concentration of 1X reaction buffer, 0.2 mM for 

each dNTP, 2 mM MgCl2, 1 μM of forward primer, 1 μM of reverse primer and 2.5 U of Taq 

polymerase in a thin-walled reaction tube. The tubes were then placed in a thermal cycler and 

PCR reaction was run with selected thermal cycling profile (1 min extension time for every 1 

kb of amplicon).  

  For PCR cloning, Pfu DNA polymerase (Promega) with proof-reading activity was used 

instead. In the PCR set up, 50 ng of plasmid DNA was used as the template and mixed with 

final concentration of 1X reaction buffer, 0.2 mM for each dNTP, 2 mM MgSO4, 1 μM of 

forward primer, 1 μM of reverse primer and 2.5 U of Pfu DNA polymerase. In this case, 2 

min extension time was required for every 1 kb of amplicon. 

 
6.2.7.  Plasmid Isolation 

  Plasmid was isolated from 5 ml of overnight E.coli cultures in selective LB broth using 

QIAprep Spin Miniprep kit (Qiagen) according to manufacturer’s instructions. For large scale 

of plasmid isolation, a single colony was inoculated into 200-400 ml (copy number-dependent) 

selective LB broth and grown at 37oC for 16 hrs with vigorous shaking (~240 rpm). Plasmid 

isolation was then performed using the QIAGEN Plasmid Endofree Maxi Kit according to 

 109



manufacturer’s instructions. 

 

6.2.8.  DNA Sequencing 

  DNA sequencing was performed using the ABI PRISM BigDye Terminator v1.1 cycle 

sequencing Ready Reaction Kit (Applied Biosystem). Thirty to ninety ng of PCR products or 

200-500 ng of plasmid DNA in 5 μl was mixed with 4 μl of BigDye reaction mixture, 1 μl of 

10 μM primer and incubated for 25 cycles of 96oC for 10 sec, 50oC for 5 sec and 60oC for 4 

min. The reaction mixture was precipitated with 10 μl dH2O, 2 μl of 3 M sodium acetate and 

50 μl of 95% ethanol at RT for 15 min and centrifugation at 13,000 rpm for 20 min at RT. The 

pellet was washed with 250 μl of 70% ethanol and vacuum dried. DNA was resuspended in 

15 μl of ABI loading solution and denatured at 95oC for 2-5 min before running on ABI prism 

377XL automated DNA sequencer. 

 

6.2.9.   Total RNA Isolation 

  Total RNA isolation from cell lines was carried out with Trizol Reagent (Gibco) according 

the manufacturer’s instruction. Briefly, 2 x 107 cells were harvested and lysed in 1.5 ml Trizol 

reagent. The lysates were homogenized and incubated at room temperature for 5 min. 0.3 ml 

of chloroform (Sigma) was added, followed by vigorous shaking and incubation at room 

temperature for 5 min. The samples were centrifuged at 12,000 g for 15 min at 4oC. The upper 

aqueous phase was transferred to a fresh tube and 0.7 ml isopropyl alcohol (Sigma) was 

added to precipitate RNA from this aqueous phase. The samples were incubated at room 

 110



temperature for 10 min, followed by centrifugation at 12,000g for 10 min at 4oC. The RNA 

precipitates were washed with 75% ethanol and re-centrifuged at 7,500 g for 5 min at 4oC. 

The air-dried RNA pellets were eventually resuspended in DEPC-treated dH2O. 

6.2.10.    Reverse Transcription

  The reverse transcription from total RNA template was carried out using the ImProm-II 

Reverse Transcription System (Promega), according to the manufacturer’s instruction. Briefly, 

1 μg of total RNA was mixed with 0.5 μg Oligo(dT)15 primer or 10-20 pmole gene-specific 

primer and heat denatured at 70oC for 5 min, followed by quick chill on ice water for 5 min. 

This denatured RNA template was added to the reverse transcription reaction mix containing 

1X reaction buffer, 6 mM MgCl2, 0.5 mM dNTP mix, 20U recombinant RNasin ribonuclease 

inhibitor and 1 μl ImProm-II reverse transcriptase. The annealing reaction was carried out at 

25oC for 5 min and subsequently extension reaction was carried out at 42oC for 1 hr. At the 

end of incubation, the reverse transcriptase was thermally inactivated at 70oC for 15 min. The 

heat-inactivated reverse transcription reaction products could be used directly for PCR 

amplification of cDNA (1 μl for 100 μl PCR reaction). 

 

6.2.11.  Southern Blot Analysis

  DNA fragments in the agarose gel were pre-rinsed with 0.25 M HCl, followed by 

denaturation with the Denaturation Buffer and subsequent neutralization with the 

Neutralization Buffer. The denatured DNA fragments were transferred to Hybond N+ 
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membrane by capillary transfer. The DNA blot was fixed by UV cross-linking and baked at 

80oC for 1 hr. The blot was then pre-hybridized for 3 hr at 65oC before subjected to overnight 

hybridization in the presence of denatured labeled cDNA probe. The hybridized blot was 

washed twice at 65oC with 2X SSC/0.1% SDS first, followed by two washes with 0.2X 

SSC/0.1% SDS and last two washes with 0.1X SSC/0.1% SDS. The blot could then be 

exposed to X-ray film at –80oC using the intensifying screen. For stripping of blot signal, the 

blot was incubated at 45oC for 30 min in 0.4 M NaOH and transferred to incubation with the 

membrane stripping buffer for 15 min. 

 

6.2.12.  Northern Blot Analysis 

  Pre-made blots containing poly(A) RNA isolated from adult human tissues and a human 

cancer cell line panel were purchased from Clontech and used for hybridization with 

AKIP-specific probe. Blots were hybridized according to Church and Gilbert method [1] with 

a 477-bp AKIP 3’-end fragment labeled using a High Prime DNA labeling kit (Roche), 

according to the manufacturer’s instruction. Blots were then stripped and reprobed with 

β-actin to quantitate RNA loading. 

 

AKIP cDNA Probe Labeling 

  Two hundreds ng of AKIP cDNA probe was boiled for 10 min and quick chilled on ice. To 

the denatured cDNA probe, 4 μl High Prime reaction mixture, 3 μl of dATP, dGTP, dTTP 
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mixture and 5 μl of [α32P] dCTP (3000 Ci/mmol) were added and incubated for 37oC for 10 

min. The labeling reaction was stopped by heating to 65oC for 10 min and the unincorporated 

nucleotides were removed by NucTrap probe purification columns (Stratagene). The probes 

were boiled for 5 min and quick chilled on ice before use. 

 

Church & Gilbert Hybridization [1] 

  The membrane was pre-hybridized with the hybridization buffer for 1 hr before the 

overnight hybridization with the 32P-labeled AKIP cDNA probe at 42oC. The hybridized 

membrane was washed two times with Buffer A at 65oC, 30 min for each wash, followed by 

three 30 min washes with Buffer B at 65oC. The membrane was exposed using screen for 

PhosphorImager (BioRad). Stripping of blot signal was done by incubating the blot with 

boiled stripping buffer and allowed to cool down to the room temperature. 

 

6.2.13.   Real-Time PCR 

  The QuantiTechTM SYBR Green PCR kit (Qiagen, P/N 204143) was used according to the 

manufacturer’s instructions. One to two μl of cDNA was mixed with 2 μl of 10 μM primer 

mix, 10 μl of QuantiTechTM SYBR Green PCR master mix and dH2O in a final volume of 20 

μl. Real time PCR was performed using a Rotor-Gene real-time PCR machine (Corbett 

Research, Australia). The cycle profile of PCR included an initial hot start at 95oC for 15 min, 

followed by 40 cycles of 95oC for 15 sec, 50-60oC for 30 sec and 72oC for 30 sec. All PCR 
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reactions were performed in duplicate. Standard curves of GADPH, Aurora-A and AKIP were 

generated independently by 10X serial dilution of template DNA (diluted PCR product) in 

each run. Melting curves were analyzed for each sample to check for product specificity. The 

relative copy number of each sample was calculated according to the corresponding standard 

curve using RotorGene v4.6 software. Normalization was performed in each sample by 

dividing the copy number of Aurora-A and AKIP to that of GADPH. The relative expression 

levels were calculated by arbitrarily designating the lowest normalized value to 1. 

 

6.1.14.   Site-Directed Mutagenesis 

  The site-directed mutagenesis was carried out using the GeneEditor in vitro Site-Directed 

Mutagenesis System from Promega, according to the manufacturer’s instruction. The 

overview of GeneEditor in vitro Site-Directed Mutagenesis System is schematically 

diagramed in Figure 6-1.  

  To summarize, the GeneEditor system provides a selection oligonucleotide encoding 

mutation that alters the amplicillin resistance gene in the plasmid vector, generating a new 

additional resistance to the GeneEditor Antibiotic Selection Mix. This selection 

oligonucleotide is annealed to the double-stranded DNA template together with the mutagenic 

oligonucleotide that introduces the desired mutation. Subsequent synthesis and ligation of the 

mutant strand link the two oligonucleotides. The resistance to GeneEditor Antibiotic Selection 

Mix encoded by this mutant DNA strand facilitates high efficiency selection of the desired 
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mutation. The drawback is that only the cloning vector with ampicillin resistant selectable 

marker can be used for this system. Mutants generated by this system retain ampicillin 

resistance in the meantime also gain resistance to the GeneEditor Antibiotic Selection Mix. 

 

  
Figure 6-1: Schematic Diagram of the GeneEditor In vitro Mutagenesis Procedure 

(Adapted from Promega Technical Manual No.047) 

  In brief for the protocol, the dsDNA template was first alkaline denatured by treating 0.5 

pmol dsDNA template with 2 μl 2 M NaOH/2 mM EDTA in 20 μl reaction for 5 min at room 

temperature. The reaction was neutralized by adding 2 μl of 2M ammonium acetate, pH 4.6 
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and the DNA was precipitated with 75 μl 100% ethanol at –70oC for 30 min, followed by 

washing of DNA pellet with 70% ethanol. The pellet was resuspended in TE buffer, pH 8.0 

and was ready for the next annealing reaction. For hybridization of both selection and 

mutagenic oligonucleotides to the denatured DNA template, 0.05 pmol of template DNA 

together with 0.25 pmol selection oligonucleotide and 1.25 pmol mutagenic oligonucleotide, 

were diluted in 1X annealing buffer and heated to 75oC for 5 min, followed by slow cooling 

down to 37oC. Once the annealing reaction mixture had cooled down, 1X synthesis buffer 

containing T4 DNA polymerase and T4 DNA ligase was added to the mixture and incubated 

at 37oC for 90 min to perform mutant strand synthesis and ligation. Once completed, an 

aliquot of the mutagenesis reaction mixture was used to transform the DNA repair defective 

BMH 71-18 mutS competent cells and cells were grown in the selective media containing the 

GeneEditor Antibiotic Selection Mix to select for clones containing the mutant plasmid. 

Plasmids resistant to the novel GeneEditor Antibiotic Selection Mix were then isolated and 

re-transformed into the final host strain, JM109, under the same selection conditions. As this 

system generally produces 60-90% mutants, so colonies were further screened by direct DNA 

sequencing. 
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6.3. Cell Biology Methods 

6.3.1.  Cell Culture and Synchronization 

  ts20-TG mouse cell, U2OS, 2774, NIH-3T3 and COS7 cells were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) (Sigma) in 37oC humidified incubator with 5% CO2. 

HeLa, MCF7, SW480, K562 cells were maintained in RPMI 1640 medium (Sigma) at 37oC. 

AT2.1 cells were maintained in RPMI 1640 medium supplemented with 250 nM 

dexamethasone (Sigma). ts20 Chinese Hamster lung cell line, which harbors the 

temperature-sensitive mutation in E1 ubiquitin-activating enzyme, was maintained at 30oC in 

α-MEM medium (Sigma) supplemented with 4.5g Glucose/L. Inactivation of E1 

ubiquitin-activating enzyme had been carried out by incubating the cells at 40oC for 16hrs. All 

mediums were supplemented with 10% heat-inactivated fetal bovine serum (Hyclone), 100 

U/ml penicillin, 100 μg/ml streptomycin (GIBCO), 2 mM L-glutamine (GIBCO), 0.1 mM 

non-essential amino acid (GIBCO) and 1 mM sodium pyruvate (GIBCO). For long term 

storage of cell stock, ~106 cells were resuspended in cryovials in 0.8 ml FBS containing 8% 

DMSO (Sigma) and 2% glycerol (USB), frozen overnight at -80oC and then transferred to 

liquid nitrogen. 

  For synchronization of the cells at G1/S phase border by double thymidine block, the 

subconfluent growing cells were first treated with 2 mM thymidine, an inhibitor of DNA 

synthesis for 12 hr, followed by the wash and release from G1/S or S phase into 

thymidine-free medium for 8 hr and re-incubated with 2 mM thymidine-containing medium 
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for 12-14 hr. For release from G1/S arrest, the cells were washed 3 times in serum-free 

medium and replaced with thymidine-free medium. Alternatively, the G1/S synchronization 

could also be achieved by treatment with 1 μg/ml Aphidicolin for 24 hr. 

  For enrichment of mitotic cells by nocodazole arrest, the subconfluent growing cells were 

treated with 0.1 μg/ml nocodazole, a microtubule depolymerizing drug, for 16 hr. For 

subsequent release from the M phase arrest, the round mitotic cells were collected by the 

mechanical mitotic shake-off, washed 3 times in serum-free medium, and replaced with 

nocodazole-free medium. 

6.3.2.  Transfection 

  Cells were plated and grown in their respective culture medium one day before the 

transfection. Eighty to ninety percent of cell confluency should be reached on the day of 

transfection. Transfection had been carried out using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s recommended protocol. Briefly, for a 60 mm dish 

transfection, 3 μg of plasmid DNA and optimal volume of Lipofectamine 2000 (7.5 μl-12 μl) 

were diluted separately in 250 μl OptiMEM I reduced serum medium (GIBCO) and incubated 

at RT for 5 min. The two were mixed in a final volume of 500 μl and incubated at RT for 

another 20 min. During the incubation, the seeded cells were washed twice with and 

resuspended in 1.5 ml of their respective medium without antibiotics. The 

DNA-Lipofectamine complexes were added onto the pre-rinsed cells. After incubation for 

 118



5-16 hours, the medium was discarded and replenished with 5 ml fresh medium without 

antibiotics. 

6.3.3.  Cell Lysis 

  For normal western blot analysis, the cells were lysed with 1X Laemli Buffer, followed by 

pulsed sonication (3 x 5 sec) on ice and subsequently cleared by centrifugation at 13,000 rpm 

for 5 min at 4oC.  

  For immunoprecipitation, the cells were lysed for 30 min on ice in a different lysis buffer 

described in chapter 5. The lysates were then cleared by centrifugation at 13,000 rpm for 20 

min at 4oC. 

  The protein concentrations of the lysates were assayed using Coomassie Plus Protein Assay 

Reagent (Pierce).  

 

6.3.4.   Flow Cytometry 

  Cells were collected by trypsinization, pelleted and resuspended in phosphate-buffered 

saline (PBS) to a final volume of about 1 x 106 cells/ml. Two volumes of cold, absolute 

ethanol were added and the samples were stored at –20oC until the day of analysis. At that 

time, the cell were pelleted, washed twice with PBS + 0.1% (v/v) Triton X-100 and finally 

resuspended in PI (Sigma) staining solution. Samples were stored at 4oC for at least 1 hr in 

the dark prior to analysis. 

   Flow cytometry analysis for PI fluorescence was performed using a FACScan machine 
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from Becton Dickinson and the CellQuest software with doublet discrimination. For each 

analysis, at least 20000 gated events were collected to permit accurate and reliable cell cycle 

analysis of the cell population. The PI fluorescence signal was collected at the 572/26 bandpass 

(FL2). Data analysis was performed using CellQuest and ModfitLT. The PI fluorescence was 

collected on a linear scale and all mean fluorescence intensity values were determined as linear 

values from the CellQuest software. 

 

6.3.5.   Immunocytochemistry 

  For immunofluorescence staining, the dividing cells were grown on glass coverslips in 

35-mm culture dish. The cells were fixed in –20oC methanol (MERCK) for 5 min or 4% 

paraformaldehyde (Sigma) for 30 min at room temperature. After fixation, the cells were 

washed 3 times in TBS and then incubated in blocking buffer for 30 min at room temperature. 

Incubation with the primary antibodies diluted in blocking buffer was carried out for 1 hr at 

room temperature, and the coverslips were then washed 3 times in TBS. The cells were then 

incubated with respective Alexa Fluor-conjugated secondary antibodies for 1 hr at room 

temperature, washed 3 times in TBS and mounted on slides. For propidium iodide (PI) 

staining, cells were incubated with 0.05 μg/ml PI (Sigma). For DAPI staining, the cells were 

counterstained with the mounting medium containing DAPI. The cells on slides were 

analyzed by using a Leica epifluorescence microscope equipped with a multiband filter set.  
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6.4.   Protein Biology Methods 

6.4.1.   SDS-PAGE and Western Blot Analysis 

SDS-PAGE 

12 % Resolving Gel  

40% Acrylamide/Bis-acrylamide (37.5:1)        3 ml 
Lower Tris Buffer                         2.5 ml 
10% APS                                0.2 ml 

TEMED                                  10 μl 
dH2O                                   4.5 ml 
_____________________________________________ 
Total Volume                             10 ml 

 

4% Stacking Gel 

40% Acrylamide/Bis-acrylamide (37.5:1)       1.3 ml 
Upper Tris Buffer                          2.5 ml 
10% APS                                0.25 ml 

TEMED                                  17 μl 
dH2O                                    6.2 ml 
______________________________________________ 

Total Volume                          10 ml 

 

The SDS-PAGE was run with 1X Laemli running buffer at 160V. 

 

Western Blot 

  The resolved proteins on SDS-PAGE were transferred to nitrocellulose membrane using the 

Western blotting apparatus. The Western Blot was carried out using the transfer buffer and run 

with cooling ice at 320 mA for at least 75 min. At the end of protein transfer, the membrane was 

incubated at RT with blocking buffer (5% Non-Fat Milk) for at least 1 hr before probing with 

primary antibody for overnight at 4oC. After washing the blot 3 times (10 min each) with the 
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wash buffer, secondary HRP-conjugated antibody was added and incubated at RT for 1 hr. 

Again, the blot was washed 3 times with wash buffer before proceeding to chemiluminescence 

detection using Pico or Dura Enhanced Chemiluminescence Reagent (Pierce). 

 
6.4.2.  In vivo Ubiquitination Assay [2] 

  The transfected cells were treated with 20 μM MG132 for 12 hours prior to harvest. The 

collected cells were lysed in 1 ml of Buffer G per 60 mm dish. The lysate was sonicated in 

pulses (3 x 5sec) to shear the genomic DNA and incubated with 100 μl of 50% slurry of 

nickel-NTA-agarose (Qiagen) with rotation for 3 hours at room temperature. The beads were 

washed twice with 1 ml Buffer G, twice with 1 ml of Wash Buffer I, and twice with Wash 

Buffer II, 5 min for each wash with rotation. Precipitated ubiquitinated proteins were eluted 

by boiling beads in 2X SDS sample buffer and analyzed by immunoblotting. 

 

6.4.3.  General Immunoprecipitation 

  Prior to the immunoprecipitation, 1 mg of total protein lysate was precleared by incubation 

with 80 μl of 50% slurry of protein-A or -G agarose (Sigma) for 1 hour at 4oC. For antibody 

coupling to the protein-A or –G agarose, 20 μl of rabbit anti-human Aurora-A crude serum or 

6 μg of FLAG M2 mouse monoclonal antibody were incubated with 80 μl of 50% slurry of 

protein-A or -G agarose for 1 hr at room temperature. For immunoprecipitation, the 

pre-cleared lysate and the antibody-coupled protein-A or –G agarose were mixed and rotated 

for 2 hr at 4oC. Immune complexes were washed twice with wash buffer I and twice with 
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wash buffer II, 5 min each with rotation. The immune complexes were solubilized by boiling 

with SDS sample buffer and resolved by SDS-PAGE.  

 

6.4.4.    Immunoprecipitation with EzView Red ANTI-FLAG M2 Affinity Gel 

  EzView Red ANTI-FLAG M2 Affinity Gel (Sigma) is a highly visible, red colored 

ANTI-FLAG M2 agarose affinity gel (ANTI-FLAG M2 mAb covalently coupled to agarose 

CL-4B beaded particles) for use in immunoprecipitation of the FLAG-tagged proteins from 

cell lysates.  

  Forty μl of the 50% slurry EzView Red ANTI-FLAG M2 Affinity Gel beads were used for 

each immunoprecipitation reaction. Before immunoprecipitation, the beads were washed and 

equilibrated with the bead equilibration buffer. Five hundreds μg of cell lysates were then 

incubated with the equilibrated beads and they were rotated for overnight binding at 4oC. At 

the end of binding, the beads were washed 6 times with wash buffer, 5 min for each wash 

with rotation. The immunoprecipitates were eventually eluted with 2X sample buffer without 

any reducing agent, which was only added after boiling and transfer of supernatants to fresh 

tubes. 
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7.1.  Summary 

Overexpression of Aurora-A plays an important role in tumorigenesis. The present work aims 

to identify the negative regulators of human Aurora-A. Exploiting the lethal phenotype 

associated with the overexpression of Aurora-A in yeast, we performed a dosage suppressor 

human cDNA library screen in yeast and reported the identification of a novel negative 

regulator of Aurora-A, named as AKIP (Aurora-A Kinase Interacting Protein). The full-length 

AKIP cDNA contains a 597-bp open reading frame, which encodes a 199-amino acid 

polypeptide. AKIP amino acid sequence shares high homology to its orthologs in rat and 

mouse. It is ubiquitously expressed in various tissues. Distinct from Aurora-A, AKIP mRNA 

expression is cell cycle-independent and its protein expression is regulated at the 

post-translational manner. AKIP is normally an unstable protein and is degraded by the 

proteasome-dependent pathway. AKIP is a nuclear protein, with specific localization to the 

nucleolus in the nucleus during interphase and to mitotic spindle and post-mitotic bridge in 

mitosis. AKIP colocalizes with Aurora-A in mitosis. Interestingly, AKIP interacts specifically 

with Aurora-A in vivo. Isolated as the negative regulator of Aurora-A, AKIP down-regulates 

Aurora-A at the level of its protein stability. This AKIP-mediated Aurora-A destabilization is 

dose- and time-dependent as well as highly specific. Furthermore, AKIP:Aurora-A interaction 

is essential for the AKIP-mediated Aurora-A degradation, which is mediated through the 

proteasome.  
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7.2.  Results 
 
7.2.1.  Yeast Dosage Suppressor cDNA Library Screen for Potential 
Negative Regulator(s) of Human Aurora-A Kinase 

  Overexpression of Aurora-A kinase is lethal in yeast. By exploiting this lethal phenotype 

resulted from Aurora-A kinase overexpression, we performed the dosage suppressor cDNA 

library screen, aiming to isolate the mammalian proteins that could suppress the lethal 

phenotype and rescued the yeast when co-transformed and expressed, as shown in Figure 7-1.   

IAK1 Overexpression in Yeast

HeLa cDNA Library

LETHALITY

Rescue & Survival

 

Figure 7-1: Yeast Dosage Suppressor Screen 

  For this purpose, a plasmid construct was made in yeast expression vector pEG202 where 

constitutive expression of the full-length mouse Aurora-A kinase in yeast was under the 

control of alcohol dehydrogenase (ADH) promoter. Yeast strain EGY188 was co-transformed 

with this Aurora-A plasmid and a HeLa cDNA library in yeast expression vector pJG4-5, 

where cDNAs were expressed under the galactose-inducible GAL1 promoter.  A total of 0.5 

x 106 co-transformants were screened, and the resulting positive clones were subjected to 

secondary selection for the galactose-dependent reversal of Aurora-A-mediated cell death and 

characterized further by DNA sequencing, as summarized in Figure 7-2. 
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Figure 7-2: Schematic Diagram Depicting the Yeast Dosage Suppressor Screen for 

Isolation of Potential Aurora-A Negative Regulator(s) 

 

7.2.2.   Isolation of the Novel Full Length AKIP 

  Interestingly, sequence analysis of a total of 141 positive clones revealed a 477-bp partial 

cDNA fragment, which we designated as AKIP (Aurora-A Kinase Interacting Protein), 

containing the 3’-end of the mRNA, was represented 24 times, as shown in Table 7-1.  
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Table 7-1:  
List of Candidate Suppressor Proteins Isolated from Yeast 

Dosage Suppressor Screen 
Candidate Protein Frequency 

AKIP 24 
SLM-1 9 
KIA0905 1 
Ribosomal Protein  4 
Ferritin H chain 1 
Mitochondria Protein 2 
Chromosome 20, P1 clone 1 
Putative Glioblastoma Protein 1 
Cytokeratin 18 1 
BRAC2 1 
ARP2/3 Complex 1 
KIAA0108 1 
23kDa Highly Basic Protein 2 
Integrin β4 Binding Protein 1 
CGI-98 1 
G Protein β Subunit 1 
Guanine Nucleotide Binding Protein 1 
Tumourous Imaginal Discs 1 
KIAA1082 1 
Ca2+ Binding Protein 1 

Other candidate clones were either 
 non-coding or had very short homology 

 

The authenticity of these 24 clones was verified by the galactose-dependent rescue from 

Aurora-A mediated cell death, as shown in Figure 7-3. The high frequency (17% of the total 

positive clones) and the reproducible rescue from the Aurora-A-mediated lethality by AKIP 

prompted us to characterize this cDNA fragment further.   

 130



 
 

 

 

Eight representative yeast clones expressing both Aurora-A and AKIP were streaked on both 

galactose and glucose containing synthetic medium lacking histidine and tryptophan. Photographs 

were taken after 4 days at 30oC 

Figure 7-3: AKIP Suppresses Aurora-A-Induced Yeast Cell Death 

  The predicted translation product of the cDNA fragment isolated from the dosage 

suppressor screen in yeast is presented in Figure 7-4. Comparison of the protein and 

nucleotide sequence of AKIP with the sequences in the GenBank database revealed that it was 

identical to the sequence corresponding to many of the EST clones and full-length clones, 

encoding a protein with uncharacterized function. 

 

 

 

   

Figure 7-4: AKIP Amino Acid Sequence 
The deduced amino acid sequence of AKIP isolated by dosage suppressor screen in yeast is presented. 

This sequence lacks the 87 amino acids from the N-terminus of the full-length AKIP protein. 

  We went on to clone the putative full-length AKIP cDNA by 5’-Rapid Amplification of 

cDNA Ends (5’-RACE). The full-length AKIP cDNA contains a 597-bp open reading frame 

that encodes a 199-amino acid polypeptide with a predicted molecular mass of 22 kDa. 
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  Figure 7-5 compares the deduced amino acid sequence of AKIP with the homologous 

sequences available in databases.  Human AKIP shares 72 and 73% identity at the amino 

acid level over its entire length with the mouse and rat AKIP, respectively. However, 

AKIP-related sequences are not found in the genomes of the lower eukaryotes, such as yeast, 

Drosophila and C.elegans. Based on the above information, we conclude that AKIP is a novel 

gene.  

 
 

 

 

 

 

Figure 7-5: Amino Acid Sequence Alignment of Human, Mouse and Rat AKIP 
Amino acid sequence alignment of human AKIP (hAIP) with those of mouse (mAIP) and rat (rAIP). 

The mouse and rat sequences were derived from the EST database. The mouse AKIP sequence was 

derived from EST clones AI425574 and AA545527, and the corresponding rat AKIP sequence was 

derived from EST clone AI104388. Identical amino acids in the sequences are presented in bold face. 

AKIP was previously published as AIP. 
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7.2.3.   Characterization of AKIP 

7.2.3.1.  Tissue Distribution 

  Northern Blot analysis of human tissues and cancer cell lines indicated that AKIP is 

ubiquitously expressed in a wide variety of tissues, especially high in heart and testis, as 

shown in Figure 7-6. 

 

AKIP

β Actin

 

 

 

 

 

 

 

 

 

 

 

Figure 7-6: AKIP mRNA Expression in Various Human Tissues and Cancer Cell Lines 
Northern blot analysis of AKIP mRNA in adult human tissues was carried out with pre-made Northern 

blots purchased from Clontech. The blots were hybridized with a 477-bp AKIP cDNA fragment derived 

from the yeast dosage suppressor screen. The blot was stripped and reprobed with β actin. 

7.2.3.2.  Endogenous mRNA and Protein Expression of AKIP 

7.2.3.2.1.  mRNA Expression in Cell Cycle 

  Since AKIP was isolated from the screen as the potential suppressor for Aurora-A kinase, 

and Aurora-A mRNA expression is regulated in the cell cycle-dependent manner, therefore it 

would be interesting to investigate if AKIP mRNA expression is cell cycle regulated as well. 

For the current study, we collected cells from different points of cell cycle after release from 
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the G1/S arrest and analyzed the AKIP, Aurora-A and GADPH mRNA expression by 

real-time PCR. Aurora-A kinase was used as the positive control gene with the cell cycle 

regulated mRNA expression profile, whereas the housekeeping gene GADPH was used as the 

normalization control.  

  As shown in Figure 7-7, Aurora-A displayed the expected cell cycle expression pattern, low 

in G1 phase (0 or 12 hr post G1/S release) and high in M phase (6 hr post G1/S release). 

However, in contrast, there was no fluctuation in the AKIP mRNA expression during the cell 

cycle progression, suggesting that AKIP is not cell cycle–regulated at the transcriptional level. 
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Figure 7-7: AKIP mRNA Expression Pattern in Cell Cycle 
HeLa cells were released from the double thymidine G1/S block and 

collected at 0, 3, 6, 9, 12 and 15 hr post-release. FACS analysis (left) of cells 

collected at these time points was displayed. These cells were successfully 

arrested at G1/S, upon release, progressed through S phase (3hr), M phase (6 

hr) till G1 of the next cell cycle (12 hr). These collected cells were 

subsequently analyzed by real-time PCR for the cell cycle expression change 

of AKIP and Aurora-A. GADPH was used as the normalization control. 
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7.2.3.2.2.  Endogenous Protein of AKIP 

  To detect the endogenous AKIP protein, we had custom synthesized a small immunogenic 

peptide from the C-terminus of AKIP and used it for rabbit immunization to generate the 

rabbit anti-AKIP polyclonal peptide antibody. The anti-AKIP peptide antibody was 

subsequently affinity purifed from the crude serum. This affinity-purified anti-AKIP peptide 

antibody was assessed for its reactivity against both the exogenously and endogenously 

expressed AKIP. Our study had shown that it could efficiently detect the exogenously 

expressed AKIP, as shown in Figure 7-8. 
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Figure 7-8: Functional Testing of AKIP Peptide Antibody 
HeLa cell lysate expressing the FLAG-tagged AKIP were analyzed for AKIP protein expression 

using anti-AKIP peptide polyclonal antibody (left panel, against C-terminus of AKIP) and 

anti-FLAG monoclonal antibody (right panel, against N-terminus of AKIP). 

  Surprisingly, it could not detect any endogenous protein of AKIP in all the cancer cell lines 

tested, which were under their basal state. However, when we delivered the proteasomal stress 

to these cells by treatment with MG132, we could start to observe the appearance of AKIP 

protein with the predicted molecular weight of 22 kDa. The observed increase in the protein 

stability of AKIP upon proteasomal stress was time-dependent, as shown in Figure 7-9. 
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  Similar MG132 treatment of other cancer cell lines indicated that AKIP was an ubiquitous 

protein and it was only detectable upon inhibition of proteasomal degradation process, as 

shown in Figure 7-10. This implied that AKIP is normally an unstable protein and its protein 

degradation is mediated through the proteasomal pathway. 
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HeLa cells were treated with 20 μM Mg132 for the indicated duration and harvested for Western Blot 

analysis of the endogenous AKIP using the affinity-purified anti-AKIP peptide antibody.  

Figure 7-10: Endogenous AKIP Protein in Various Cancer Cell Lines  
U2OS (osteosarcoma cell), MCF7 (breast cancer cell), HeLa (cervical cancer cell), SW480 (colon 

cancer cell), K562 (chronic myelogenous leukemia) and 2774 (ovarian cancer cell) were treated with 

20 μM Mg132 for 24 hrs and harvested for Western Blot analysis of the endogenous AKIP using the 

affinity-purified anti-AKIP peptide antibody.  

Figure 7-9: Time-dependent Stabilization of Endogenous AKIP Protein 
Upon Proteasomal Inhibition 

7.2.3.3.  Domain Organization and Subcellular Localization 

7.2.3.3.1.  Nuclear Localization Signal 

  Computer-assisted search for the motifs presented in AKIP protein found a tandem bipartite 

nuclear localization signal at the C-terminus of AKIP (Figure 7-11), suggesting AKIP could 

be a nuclear protein.  
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Figure 7-11: Nuclear Localization Signal (NLS) of AKIP 
The location of the tandem bipartite nuclear localization signal (NLS) is highlighted with italics and 

underlining in the truncated form of AKIP (AKIP-TR) and schematically in the full-length AKIP. 

7.2.3.3.2.   Subcellular Localization 

  Indeed, ectopically expressed FLAG epitope-tagged AKIP was localized to the nuclear 

compartment of the cell, as shown in Figure 7-12. 
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  A doxycycline-inducible HeLa Tet-On cell line, stably expressing the AKIP, was also 

constructed subsequently. Upon doxycycline induction, the selected positive clones displayed 

very tight control of the AKIP protein expression with no background leaky expression, as 

shown in Figure 7-13.  

Figure 7-12: Nuclear Localization of AKIP 
HeLa cells were transiently transfected with a FLAG-tagged AKIP cDNA, and the subcellular 

localization of the transfected AKIP protein (left panel) was detected by staining with FLAG M2 

monoclonal antibody followed by fluorescence microscopy. Counterstaining of DNA (middle panel) 

was carried out with propidium iodide. Right panel represents the merged image to show the nuclear 

localization of the transfected AKIP protein. 

 137



+D
ox

-D
ox

AKIP

HeLa Tet-On
AKIP Stable

 

 

 

 

HeLa Tet-On cells were transfected with AKIP-pTRE2hyg and positive AKIP expressing clones 

were selected by hygromycin. One of the positive clones, showing high inducibility and low 

background expression, was shown, where AKIP expression was induced by doxycycline for 24 hr. 

Figure 7-13: Doxycycline-Inducible AKIP-Expressing HeLa Tet-On Stable Cell Line 

  Interestingly, in some of the selected positive clones that expressed lower level of AKIP 

protein upon doxycycline induction, we observed a nucleolar-like subcellular localization for 

the AKIP protein in the interphase cells, as shown in the Figure 7-14. 
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  To investigate whether or not AKIP protein was localized to the nucleolus, we 

immunostained the cells with the nucleolar marker protein, C23 and looked for the 

co-localization of AKIP with the C23. Indeed, Figure 7-15 had clearly demonstrated that 

AKIP was indeed localized to nucleolus during interphase. 

Figure 7-14: Nucleolar-like Localization Pattern of AKIP 
FLAG-tagged AKIP inducible stable HeLa cells were induced with doxycycline for 24 hrs, and 

the subcellular localization of the AKIP protein (left panel) was detected by staining with FLAG 

M2 monoclonal antibody followed by fluorescence microscopy. Counterstaining of DNA 

(middle panel) was carried out with DAPI. Right panel represents the merged image to show the 

nuclear localization of the AKIP protein. 

 138



AKIP

DAPI

C23

AKIP

DAPI

C23

 
 

 

 

 

 

 

  

 Besides, we also attempted to detect AKIP localization in mitotic cells. As shown in Figure 

7-16 and 7-17, AKIP could localize to the mitotic spindles in metaphase and post-mitotic 

bridge in telophase.  

AKIP DAPI  

 

 

 
 

FLAG-tagged AKIP inducible stable HeLa cells were induced with doxycycline for 24 hrs, and the 

subcellular localization of the AKIP (top left panel) and C23 (top right panel) were detected by 

staining with FLAG rabbit polyclonal antibody (red) and C23 mouse monoclonal antibody (green), 

respectively, followed by fluorescence microscopy. Counterstaining of DNA (bottom left panel) was 

carried out with DAPI (blue). Bottom right panel represents the merged image to show the 

co-localization of AKIP and C23 in the nucleolus of the nucleus. Due to fluorescence bleach-through 

between channels, two AKIP expressing cells in the top right panel displayed the colocalization of the 

AKIP and C23 (yellow) whereas other surrounding non-expressing cells were stained with C23 

(green) only. 

Figure 7-16: Localization of AKIP in Mitosis-Mitotic Spindle in Metaphase 
FLAG-tagged AKIP inducible stable HeLa cells were induced with doxycycline for 24 hrs, and the 

subcellular localization of the AKIP protein (left panel) was detected by staining with FLAG 

polyclonal antibody followed by fluorescence microscopy. Counterstaining of DNA (middle panel) 

was carried out with DAPI. Right panel represents the merged image to show the mitotic spindle 

localization of AKIP in metaphase. 

Figure 7-15: Localization of AKIP in Interphase- Nucleolus 
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Since AKIP could localize to the mitotic structure and Aurora-A is known to be a mitotic 

kinase, they might colocalize together during mitosis. Indeed, as shown in Figure 7-18, we 

could detect colocalization of AKIP and Aurora-A during mitosis. 
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Figure 7-17: Localization of AKIP in Mitosis-Post-Mitotic Bridge in Telophase 
FLAG-tagged AKIP inducible stable HeLa cells were induced with doxycycline for 24 hrs, and the 

subcellular localization of the AKIP protein (left panel) was detected by staining with FLAG 

polyclonal antibody followed by fluorescence microscopy. Counterstaining of DNA (middle panel) 

was carried out with DAPI. Right panel represents the merged image to show the post-mitotic bridge 

localization of AKIP in telophase. 

Figure 7-18: Colocalization of AKIP and Aurora-A in Mitosis 
FLAG-tagged AKIP inducible stable HeLa cells were induced with doxycycline for 24 hrs, and the 

subcellular localization of the AKIP protein (left panel) and Aurora-A (middle panel) was detected 

by staining with FLAG polyclonal antibody and IAK1 monoclonal antibody, respectively, followed 

by fluorescence microscopy. Right panel represents the merged image to show the colocalization 

(yellow) of the AKIP and Aurora-A protein. 
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7.2.4.   In vivo Interaction of Aurora-A Kinase and AKIP 

7.2.4.1.   Yeast Two-Hybrid Assay 

  Through the yeast dosage suppressor screen, we had isolated AKIP as a potential negative 

regulator for Aurora-A kinase. However, the dosage suppressor screen was capable of 

identifying both the direct and indirect regulator(s) of Aurora-A kinase. 

  To distinguish whether AKIP regulates Aurora-A kinase directly or indirectly, we 

performed the yeast two-hybrid in vivo interaction assay to assess whether or not the AKIP 

cDNA (“prey” protein, fused to LexA activation domain) interacted with Aurora-A kinase 

(“bait” protein, fused to LexA DNA binding domain). Their in vivo interaction in yeast 

thereby reconstituted the functional full length LexA transcriptional factor, which could then 

bind to the LexA operator to activate the LEU reporter gene expression, and thus the survival 

of yeast on the –His-Trp-Leu + Galactose selective plate, as shown in Figure 7-19. Indeed, the 

yeast co-transformants of AKIP and Aurora-A formed colonies on the –His-Trp-Leu selective 

plate. This gave us some preliminary information that AKIP might interact directly with 

Aurora-A in vivo. 

 Figure 7-19: Overview of Yeast Two Hybrid Assay 
IAK1 cDNA is fused to the DNA binding domain (DB) of LexA whereas AKIP cDNA is fused to the 

activation domain (AD) of LexA, forming the IAK1-DB (Bait) and AKIP-AD (Prey) fusion protein 

respectively. Only when the “prey” protein interacts with “bait” protein, this brings closer the AD to 

DB, thereby reconstituting functional LexA transcriptional factor which can then transactivates the 

LEU reporter transcriptional expression, allowing yeast to survive and grow as Leu+ colonies on 

the –Leu selective plate. In the absence of bait-prey interaction, only the bait protein with the DB 

domain can bind to the LexA operator, but LexA DB alone is not functional. 
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Aurora-A: AKIP In vivo Interaction in Yeast 
Six representative yeast clones expressing both Aurora-A 

and AKIP were streaked on galactose containing synthetic 

medium lacking histidine, tryptophan and Leucine. 

Photographs were taken after 4 days at 30oC 
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7.2.4.2.  In vivo Interaction between Exogenous Aurora-A and Exogenous AKIP 

  To verify a similar in vivo interaction between AKIP and Aurora-A occurs in the 

mammalian cell context, HeLa cells were co-transfected with Aurora-A together with 

FLAG-tagged AKIP (truncated or full length), and the cell lysate were subjected to 

coimmunoprecipitation followed by Western blot analysis.  

  As shown in Figure 7-20, the transfected Aurora-A was immunoprecipitated using the 

Aurora-A specific antibody. As expected from the yeast data, both AKIP-TR and AKIP were 

found to be co-immunoprecipitated with the Aurora-A.   
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HeLa cells were co-transfected with Aurora-A and either empty vector or FLAG-tagged AKIP-TR 

or FLAG-tagged AKIP at 1:1 ratio. Cell lysates were used for immunoprecipitation with rabbit 

antiserum against Aurora-A. The immunoprecipitates were probed for the interacting AKIP, using 

the anti-FLAG mouse monoclonal antibody. The corresponding lysates were probed for Aurora-A 

and AKIP exogenous expression using anti-Aurora-A rabbit polyclonal antibody and anti-FLAG 

mouse monoclonal antibody, respectively. 

Figure 7-20: In vivo Interaction of Exogenous Aurora-A vs Exogenous AKIP: 
Aurora-A Immunoprecipitation 
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  On the other hand, the reverse immunoprecipitation of the AKIP also pulled down the 

Aurora-A specifically, as shown in Figure 7-21. 
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AKIP Immunoprecipitation 
HeLa cells were co-transfected with Aurora-A and either empty vector or FLAG-tagged AKIP-TR 

or FLAG-tagged AKIP at 1:1 ratio. Cell lysates were used for immunoprecipitation with FLAG 

mouse monoclonal antibody. The immunoprecipitates were probed for the interacting Aurora-A, 

using the anti-Aurora-A rabbit polyclonal antibody. The corresponding lysates were probed for 

Aurora-A and AKIP exogenous expression using anti-Aurora-A rabbit polyclonal antibody and 

anti-FLAG mouse monoclonal antibody, respectively. 

Figure 7-21: In vivo Interaction of Exogenous Aurora-A vs Exogenous AKIP: 

7.2.4.3. In vivo Interaction between Endogenous Aurora-A and Exogenous AKIP 

  To explore the interaction further, we overexpressed the FLAG-tagged AKIP cDNA into 

HeLa cells and attempted to coimmunoprecipitate the endogenous Aurora-A with the 

transfected AKIP protein.  

  The immunoprecipitation of the transfected AKIP pulled down the endogenous Aurora-A, 

as shown in Figure 7-22. Conversely, the reverse immunoprecipitation of endogenous 

Aurora-A also co-immunoprecipitated the transfected AKIP, as shown in Figure 7-23. 

 144



V
ec

to
r

Endogenous Aurora-A 

Total Lysate

FLAG IP (AKIP)

CO-IP Aurora-A

AKIP

A
K

IP
 

 

 

 

 

 

 

AKIP Immunoprecipitation 
HeLa cells were transfected with FLAG-tagged AKIP. Cell lysates were used for AKIP 

immunoprecipitation with FLAG mouse monoclonal antibody. The immunoprecipitates were 

probed for the interacting endogenous Aurora-A, using the anti-Aurora-A rabbit polyclonal 

antibody. The corresponding lysates were probed for Aurora-A and AKIP expression using 

anti-Aurora-A rabbit polyclonal antibody and anti-FLAG mouse monoclonal antibody, 

respectively. 

Figure 7-22: In vivo Interaction of Endogenous Aurora-A vs Exogenous AKIP:  
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HeLa cells were transfected with FLAG-tagged AKIP. Cell lysates were used for endogenous Aurora-A 

immunoprecipitation with anti-Aurora-A rabbit polyclonal antibody. The immunoprecipitates were 

probed for the interacting AKIP, using the anti-FLAG mouse monoclonal antibody. The corresponding 

lysates were probed for Aurora-A and AKIP expression using anti-Aurora-A rabbit polyclonal antibody 

and anti-FLAG mouse monoclonal antibody, respectively. 

Figure 7-23: In vivo Interaction of Endogenous Aurora-A vs Exogenous AKIP:  
Aurora-A Immunoprecipitation 
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7.2.5. AKIP Negatively Regulates Protein Stability of Aurora-A 
Kinase 

  Since AKIP has been isolated as the negative regulator of Aurora-A kinase, we presumed 

that the direct interaction of AKIP and Aurora-A kinase should result in the down-regulation 

of either the stability and/or the activity of Aurora-A kinase.  

  To study the impact of AKIP-Aurora-A interaction on Aurora-A protein stability, the 

endogenous protein level of Aurora-A in the AKIP-transfected cells was investigated. 

However, the initial attempts to study the effect of AKIP overexpression on the endogenous 

protein level of Aurora-A were unsuccessful probably because of the lower transfection 

efficiency.   

  Instead, we employed the alternative strategy where COS7 cells were co-transfected with 

Aurora-A and FLAG-tagged AKIP or AKIP-TR expression constructs at 1:9, and the effect of 

AKIP or AKIP-TR overexpression on the protein stability of exogenous Aurora-A was 

followed. As presented in Figure 7-24, overexpression of both the full length AKIP or 

N-terminally truncated form of AKIP (AKIP-TR) could down-regulate the Aurora-A protein, 

however, the AKIP-TR showed a better efficiency in that it could completely deplete the 

ectopically expressed Aurora-A protein in COS7 cells. This was probably due to higher levels 

of AKIP-TR protein accumulated inside the cells or better binding of AKIP-TR to Aurora-A 

kinase. AKIP appeared to be less stable compared to its truncated form. Hence, AKIP-TR 

would be used for all subsequent studies related to the AKIP-mediated Aurora-A degradation. 
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Figure 7-24: Effect of AKIP Overexpression on Exogenous Aurora-A 
COS7 cells were co-transfected with Aurora-A and either FLAG-tagged AKIP-TR or AKIP or 

empty pCDNA3 vector at 1:9 ratio for 36 hrs before harvested for Western blot analysis of 

Aurora-A and AKIP using anti-AIK1 rabbit polyclonal antibody and anti-FLAG mouse monoclonal 

antibody, respectively. β tubulin was used as the loading control. 

  To further characterize the nature of AKIP-mediated Aurora-A degradation, NIH-3T3 or 

COS7 cells were co-transfected with Aurora-A and FLAG-tagged AKIP-TR expression 

constructs at different ratios, starting from 1:0 to 1:9, and the effect of differential AKIP-TR 

expression on the protein stability of exogenous Aurora-A was followed and compared, as 

shown in Figure 7-25. On the other hand, the co-transfection ratio was fixed at 1:9 for 

Aurora-A: AKIP-TR and the effect of different time frame of AKIP-TR expression on protein 

stability of exogenous Aurora-A was analyzed and compared, as shown in Figure 7-26. As 

presented in Figure 7-25 and Figure 7-26, overexpression of AKIP-TR could down-regulate 

the Aurora-A protein in both dose- and time-dependent manner. 
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Figure 7-25: Dose-Dependence of AKIP-mediated Down-regulation of Aurora-A  
 

NIH-3T3 cells were co-transfected with Aurora-A and FLAG-tagged AKIP-TR at different ratios 

starting from 1:0 to 1:9, for 36 hrs before harvested for Western Blot analysis of Aurora-A and 

AKIP using anti-AIK1 rabbit polyclonal antibody and anti-FLAG mouse monoclonal antibody, 

respectively. Actin was used as the loading control. 
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COS 7 cells were co-transfected with Aurora-A and FLAG-tagged AKIP-TR at 1:9, for different time 

points, up to 48 hrs before harvested for Western Blot analysis of Aurora-A and AKIP using anti-IAK1 

and anti-FLAG mouse monoclonal antibodies, respectively. β tubulin was used as the loading control. 

Figure 7-26: Time-Dependence of AKIP-mediated Down-regulation of Aurora-A Protein 
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7.2.5.1.  Role of AKIP:Aurora-A Kinase Interaction 

7.2.5.1.1.  Construction of Deletion Mutants of AKIP 

  To address the question of whether the interaction between AKIP and Aurora-A is a 

necessary step for the down-regulation of Aurora-A, we attempted to isolate a deletion mutant 

of AKIP protein, which does not interact with the Aurora-A protein. A total of four deletion 

mutants (ΔN99-AKIP, ΔN198-AKIP, ΔC99-AKIP, ΔC198-AKIP) lacking regions from either 

the N or C terminus of AKIP were constructed and used for in vivo Aurora-A interaction 

studies. The size and location of these deletions in the different AKIP deletion mutants in 

relation to the wild type AKIP are indicated in Figure 7-27.  
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Comparisons of the size and location of the deletions of all the AKIP mutant proteins with 

full-length AKIP protein. All of the AKIP variants contain a FLAG tag at the N-terminus. The 

numbers within parentheses denote the nucleotides of AKIP cDNA, and number 1 corresponds to 

the nucleotide A of the translational start ATG. 

Figure 7-27: AKIP and its Various Deletion Mutants 
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  Expression of these deletion mutants in HeLa as well as COS7 cells showed that these 

mutant proteins had comparable stability except the ΔC198-AKIP mutant, which displayed 

relatively lower protein stability. As shown in Figure 7-27, this mutant lacked the bipartite 

nuclear localization signal (NLS). It is unclear whether the lack of nuclear localization signal 

is responsible for the lower stability and function of this mutant. However, all of the deletion 

mutants could be expressed successfully in both HeLa and COS7 cells.  

 

7.2.5.1.2.  Identification of Aurora-A Non-Interacting Mutant of AKIP 

  To compensate for the lower stability of the ΔC198-AKIP mutant, a higher ratio of 

ΔC198-AKIP to Aurora-A (9:1) was used instead of the usual 1:1 in the interaction assay 

without compromising the levels of Aurora-A protein. Under these conditions, the expression 

of ΔC198-AKIP was comparable to other AKIP mutant proteins. The data presented in Figure 

7-28 suggested that the ΔN99-AKIP and ΔN198-AKIP mutants could interact with Aurora-A 

protein efficiently, like the wild type AKIP protein. The ΔC99-AKIP mutant could also 

interact with Aurora-A protein, albeit at the lower efficiency. However, the ΔC198-AKIP 

mutant did not show any interaction with Aurora-A protein. ΔC198-AKIP was thereby 

identified as the Aurora-A non-interacting mutant of AKIP. This suggests that the amino acids 

127-166 of AKIP contain elements that are necessary for the interaction with Aurora-A 

protein.  
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HeLa cells were co-transfected with Aurora-A and FLAG-tagged AKIP mutant constructs at 1:1 

ratio, except for the ΔC198-AKIP was co-transfected at a higher ratio of 1:9. 24 hrs 

post-transfection, the transfected cells were harvested for Aurora-A immunoprecipitation using the 

anti-AIK1 rabbit polyclonal antibody. The immunoprecipitates were probed for the interacting 

AKIP mutant(s), using the anti-FLAG mouse monoclonal antibody. The corresponding lysates 

were probed for Aurora-A and AKIP mutants expression using anti-Aurora-A rabbit polyclonal 

antibody and anti-FLAG mouse monoclonal antibody, respectively. 

Figure 7-28: In vivo Interaction between Aurora-A and AKIP Deletion Mutants: 
Aurora-A Immunoprecipitation 

7.2.5.1.3.  Aurora-A:AKIP Interaction is Essential for AKIP-mediated Aurora-A    
Degradation 

  To further investigate the efficacy of the non-interacting ΔC198-AKIP mutant in degrading 

the Aurora-A protein, an in vivo Aurora-A degradation assays was performed using the wild 

type AKIP and these AKIP mutants. The results presented in Figure 7-29 demonstrated that 

the non-interacting ΔC198-AKIP mutant was less efficient in degrading Aurora-A protein 

compared with the wild type and other deletion mutants. This suggested that the 

AKIP-Aurora-A interaction is important for the degradation of Aurora-A protein. 
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Figure 7-29: AKIP Mutants-mediated Aurora-A Degradation 
COS7 cells were co-transfected with Aurora-A and either empty vector or the individual AKIP mutant 

(AKIP, ΔN99-AKIP, ΔN198-AKIP, ΔC99-AKIP, ΔC198-AKIP) constructs at a 1:9 ratio. 36 hrs 

post-transfection, the cells were harvested for Western Blot analysis of the Aurora-A and AKIP using 

anti-AIK1 rabbit polyclonal antibody and anti-FLAG mouse monoclonal antibody. β tubulin was 

used as the loading control. 

 

7.2.5.2.   Specificity 

  To verify the specificity for the effect of AKIP overexpression on down-regulation of 

Aurora-A protein, the effect of AKIP overexpression on mouse (Figure 7-30) or human 

(Figure 7-31) Aurora-B, another closely related member of the Aurora kinase family, as well 

as human cyclin B1 (Figure 7-32) was investigated. The rationale for selecting cyclin B1 is 

that, similar to Aurora-A, it is also degraded through the proteasome-dependent pathway.  

  As shown Figure 7-30 to 7-32, the overexpression of AKIP-TR did not affect the protein 

stability of either Aurora-B or cyclin B1. This implied that AKIP targeted Aurora-A more 

specifically than Aurora-B for degradation. Also, the failure of AKIP to down-regulate cyclin 
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B1 suggested that the effect of AKIP on Aurora-A protein stability is not mediated through the 

generalized activation of the proteolytic machinery. 
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Figure 7-30: Effect of AKIP Overexpression on Mouse Aurora-B Stability 

COS7 cells were co-transfected with either Aurora-A or mouse Aurora-B and AKIP-TR constructs at 

a 1:9 ratio. 36 hrs post-transfection, the cells were harvested for Western Blot analysis of the effect of 

AKIP-TR overexpression on the levels of Aurora-A or mouse Aurora-B.  
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Figure 7-31: Effect of AKIP Overexpression on Human Aurora-B Stability 
CHO cells were co-transfected with either human Aurora-A or human Aurora-B and AKIP-TR 

constructs at a 1:5 ratio. 36 hrs post-transfection, the cells were harvested for Western Blot analysis 

of the effect of AKIP-TR overexpression on the levels of Aurora-A or Aurora-B.  
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Figure 7-32: Effect of AKIP Overexpression on Human Cyclin B1 Stability 

COS7 cells were co-transfected with human cyclin B1 and either empty vector or AKIP-TR 

constructs at a 1:9 ratio. 36 hrs post-transfection, the cells were harvested for Western Blot analysis 

of the effect of AKIP-TR overexpression on the levels of cyclin B1.  

7.2.5.3.   Proteasome Dependency 

  It has been shown that the proteasome plays a major role in the regulation of Aurora-A 

stability. Hence, it is possible that the effect of AKIP overexpression on the down-regulation 

of Aurora-A could be mediated through the potentiation of proteasome-dependent degradation 

of Aurora-A. To address this question, we followed the AKIP-TR-mediated down-regulation 

of Aurora-A in the presence and absence of specific proteasome inhibitors, such as MG132, 

ALLN, and clasto-lactacystin β-lactone.  

  As shown in Figure 7-33, these proteasome inhibitors could specifically reverse the 

AKIP-mediated down-regulation of Aurora-A protein to different levels depending on their 

potencies to inhibit the proteasome machinery. Calpain inhibitor ALLM could not reverse the 

AKIP-mediated degradation of Aurora-A protein, suggesting that the cystein protease calpain 
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is unlikely to play a role in the AKIP-mediated down-regulation of Aurora-A. Taken together, 

these results indicated that the proteasome plays a major role in the AKIP-mediated 

down-regulation of Aurora-A protein. 
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Figure 7-33: Proteasome-Dependence of AKIP-mediated Aurora-A Degradation 

COS7 cells were co-transfected with Aurora-A in combination with either empty vector or 

FLAG-tagged AKIP-TR. Co-transfection with AKIP-TR construct was carried out in 5 sets. 4 sets 

were treated with the proteasome inhibitors: MG132 (20 μM), ALLN (150 μM), Lactacystin 

β-lactone (25 μM) and the calpain inhibitor ALLM (25 μM), the last set were treated with the 

vehicle diethyl suffixed (DMSO) for 12 hrs. 36 hrs post-transfection, the cells were harvested for 

Western Blot analysis of Aurora-A and AKIP protein. β tubulin was used as the loading control. 
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7.3.  Discussions 

  The serine/threonine Aurora-A kinase plays multiple crucial roles during cell division, 

including mitotic entry, bipolar spindle formation, chromosome segregation and cytokinesis 

[1-6]. Ectopic overexpression of Aurora-A kinase in somatic cells could lead to oncogenic 

transformation and tumor formation in nude mice [7-11]. Overexpression of Aurora-A protein 

occurs in a remarkably high proportion of human cancers [7-11]. Regulation of Aurora-A 

kinase expression and activity is of utmost importance and this can occur at multiple levels, 

such as gene amplification, transcription, phosphorylation and degradation through the 

proteasome-dependent pathway [10-15]. Currently, in an attempt to understand further the 

negative regulation of Aurora-A kinase at molecular level, we had employed the dosage 

suppressor screen in yeast and had isolated the AKIP, a novel negative regulator of Aurora-A 

kinase. We had shown that AKIP interacted specifically with Aurora-A and down-regulated 

Aurora-A kinase by potentiating its degradation through the proteasome-dependent pathway.  

  To date, other negative regulators of Aurora-A, which target protein stability of Aurora-A, 

had been identified and they include Cdh1 [14-15], Chfr [16] and hCDC4 [17]. Cdh1 is a 

well-known APC/C activator that targets many mitotic proteins for ubiqutin-dependent 

proteolysis during late mitosis and G1 in somatic cell cycle. Similarly, Cdh1 regulates the cell 

cycle-dependent destruction of Aurora-A kinase during the mitotic exit and G1. Interestingly, 

this Cdh1-mediated Aurora-A degradation requires a D box in the C-terminal catalytic domain 
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and a novel A box in the N-terminal non-catalytic domain. Moreover, phosphorylation adds 

another level of complexity in the Cdh1-mediated Aurora-A degradation. Phosphorylation of 

Ser51 in the A box negatively regulates the Aurora-A degradation and its dephosphorylation 

during mitotic exit enables the recognition of both the A box and D box by Cdh1-activated 

APC/C. Surprisingly, the N-terminal KEN sequence, previously identified as a Cdh1 

recognition signal in other proteins, is not essential for this Cdh1-mediated Aurora-A 

degradation. However, it seems unlikely that AKIP-mediated Aurora-A degradation is 

mediated through the Cdh1-mediated cell cycle-dependent pathway as the transcriptional 

expression of AKIP is cell cycle-independent as well as the highly unstable nature of AKIP 

protein. The A box mutant or D box mutant, which is defective in the Cdh1-dependent 

degradation, will be useful to address the role of the Cdh1 in AKIP-mediated Aurora-A 

degradation. Cdc20, another APC/C activator, was previously shown to interact with human 

Aurora-A [18] but it remains to be answered whether Cdc20 targets Aurora-A for degradation. 

  Though AKIP seems to be an unstable protein, we cannot exclude the possibility that AKIP 

may be regulated in the post-translational level in the cell cycle-dependent manner, where its 

protein stability increases at a specific phase of cell cycle, which we might have overlooked 

in our study. A more detailed cell cycle study of endogenous AKIP protein will give us some 

clues. Besides, our study had shown that ectopically expressed AKIP was localized to the 

sub-nuclear compartment—nucleolus during interphase and some mitotic structures in mitosis. 
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However, when anti-AKIP antibody was used to study the localization pattern of the 

endogenous AKIP, we could only detect the AKIP localization on the mitotic structure, but not 

in nucleolus (data not shown). This discrepancy might result from different adapted protein 

conformations of AKIP, which are regulated by its subcellular localization. It is possible that 

AKIP interacts with different anchoring proteins when present in different subcellular 

compartment.  

  Localization to these specialized subcellular structures may pose difficulties for us to detect 

the endogenous AKIP protein. Cell fractionation to specifically isolate and enrich these 

subcellular components may be more appropriate. Therefore, it is yet to confirm whether 

AKIP is truly an unstable protein. Studies on the half-life of the exogenous AKIP protein 

should give us some hints. It should be noted that an antibody against a small peptide of AKIP 

may not be useful for immunodetection of the endogenous AKIP in its native conformation. 

The use of a polyclonal antibody against the whole molecule of AKIP may be the solution for 

detection of endogenous protein by immunocytochemistry or western blot. If AKIP protein is 

really unstable in the cellular context, it will be interesting to search for the normal 

physiological trigger or specific cellular stress for the induction of its expression.  

  On the other hand, Chfr constitutes another regulator of Aurora-A protein stability but its 

regulation is not cell cycle-dependent. Chfr is an E3 ubiquitin ligase and a newly identified 

mitotic checkpoint protein, which responds to mitotic stress. Chfr binds Aurora-A and 

 158



ubiquitinates Aurora-A in vivo [16]. Sequence analysis of AKIP does not reveal any similarity 

to either F box proteins [19] or U box proteins [20], which plays crucial role in targeting and 

ubiquitination. Therefore, we exclude the possibility that AKIP may act as the ubiquitin ligase. 

However, even if AKIP cannot play any direct role in ubiquitination of Aurora-A, AKIP may 

play an indirect role by enhancing the interaction of Aurora-A with its specific E3 ligase, 

thereby promoting ubiquitination of Aurora-A and facilitating its proteasomal degradation.  

So, it will be interesting to probe into the role of AKIP on potentiation of Aurora-A 

ubiquitination in the future. 

  We had clearly shown that AKIP down-regulated Aurora-A kinase in the 

proteasome-dependent manner, either through the 20S or 26S proteasome. Our study had 

observed the failure of AKIP-dependent cyclin B1 degradation and this confirms the notion 

that the AKIP does not activate the proteasome machinery in a generic way. The specific 

interaction of AKIP with Aurora-A kinase as well as the essential nature of the 

AKIP:Aurora-A interaction for the degradation of Aurora-A raise interesting possibilities, 

such as AKIP may directly modify and/or target Aurora-A kinase for destabilization or 

AKIP:Aurora-A interaction evolves as the rate-limiting step in the Aurora-A kinase 

degradation. 

  Analysis of the deletion mutants of AKIP for their interaction with and degradation of 

Aurora-A had demonstrated that the ΔC198-AKIP mutant lacked the elements essential for 
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the AKIP:Aurora-A interaction, and this interaction was important for the degradation of the 

Aurora-A kinase. Interestingly, this mutant lacks the nuclear localization signal and therefore 

was excluded from nucleus and localized to cytoplasm (data not shown). This suggests that 

the targeting of AKIP to the nucleus may be necessary for the interaction and degradation of 

Aurora-A kinase. The study of AKIP-mediated Aurora-A degradation in the presence of the 

nuclear export inhibitor LMB may help further addressing the absolute requirement of nuclear 

localization for the AKIP-mediated Aurora-A degradation. 

  Since AKIP was isolated as the negative regulator of Aurora-A oncogene, its potential as a 

candidate tumour suppressor is definitely worth to be explored in the future. What is the role 

of AKIP in cancer? Is there any inverse correlation between Aurora-A and AKIP expression in 

cancer? Surprisingly, our data on AKIP mRNA expression in a panel of cancer cell lines from 

different tissue origins had demonstrated that AKIP was overexpressed in most of them. This 

finding is irreconcilable with our hypothesis that AKIP could be a tumour suppressor gene. 

One rare example of tumour suppressor gene having significantly higher mRNA expression in 

tumours than normal tissues is WT1 (Wilms’ Tumor) [21]. It is likely that these highly 

expressed WT1 or AKIP mRNA are produced from the mutated genes, which encode for the 

non-functional protein. Whether or not this increased AKIP mRNA expression directly 

correlates with its protein expression is not known yet and need to be further verified. If AKIP 

is a specific tumour suppressor for Aurora-A oncogene, its wild type mRNA and protein 
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expression should be down-regulated in those tumours overexpressing Aurora-A kinase. 

   A systematic comparative analysis of AKIP versus Aurora-A mRNA and/or protein 

expression in Aurora-A overexpressing primary tumours versus their normal counterparts 

should be able to clarify the tumour suppressor property of AKIP. This can be further 

supported by the study of the effect of siRNA down-regulation of AKIP expression in normal 

cells. If AKIP does play the anti-tumour role, long term inhibition or down-regulation of 

AKIP expression may lead to increase in endogenous Aurora-A expression, which could be 

potentially oncogenic and may eventually transform the normal cells. 

 

7.4.   Conclusion 

  In summary, we had successfully identified a novel negative regulator of Aurora-A kinase. 

Further understanding of the normal function of AKIP as well as the characterization of the 

molecular mechanisms involved in the AKIP-mediated destabilization of Aurora-A are 

necessary for the future studies. Excitingly, the targeted degradation of Aurora-A by AKIP 

provides us an alternative strategy to manipulate the endogenous level of the oncogenic 

Aurora-A kinase. Hence, AKIP could therefore be a potential target gene for anti-cancer drugs 

in the future. 
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8.1.  Summary 

Aurora-A normally undergoes cell cycle-dependent regulation of both its synthesis and 

protein degradation in mitosis. The cell cycle-dependent turnover of Aurora-A is mediated by 

Cdh1 through the APC/C-ubiquitin-proteasome-dependent pathway. AKIP, previously isolated 

as the negative regulator of Aurora-A kinase, also destabilizes the Aurora-A through the 

proteasome-dependent pathway. The present work aims to further investigate the mechanism 

of the AKIP-mediated Aurora-A degradation. Interestingly, AKIP degrades Aurora-A through 

the proteasome-dependent but Ub-independent pathway. AKIP-mediated Aurora-A 

degradation is cell cycle-independent, which is distinctly different from the Cdh1-mediated 

Aurora-A degradation. A Box mutant, which cannot be targeted for proteasome-dependent 

degradation by Cdh1, can still be degraded by AKIP. It is also clearly shown that AKIP 

inhibits the polyubiquitination of Aurora-A and this requires the binding of AKIP to Aurora-A. 

We have identified a domain in Aurora-A protein, which is important for the ubiquitination of 

Aurora-A. Interestingly, AKIP targets and binds to this ubiquitination domain, which may 

probably lead to inhibition of Aurora-A ubiquitination. Inhibition of cellular 

polyubiquitination either by expression of the K48R dominant negative ubiquitin mutant or 

temperature-sensitive inactivation of the E1 ubiquitin-activating enzyme, did not abolish the 

AKIP-mediated Aurora-A degradation. Indeed, the Ub-independent degradation pathway does 

exist for Aurora-A degradation. Therefore, Aurora-A can be targeted for both Ub-dependent 
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and Ub-independent protein degradation. This AKIP-mediated Ub-independent degradation of 

Aurora-A is very specific and mediated through the proteasome. Taken together, there exists 

an Ub-independent alternative pathway for Aurora-A degradation and AKIP potentiates 

Aurora-A degradation through this Ub-independent, yet proteasome-dependent pathway. 
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8.2.   Results 
8.2.1. AKIP-TR-mediated Aurora-A Degradation Pathway is 
Distinctively Different from the known “Cdh1-Ubiquitin- 
Proteasome- Cell Cycle”-Dependent Pathway 
 

8.2.1.1.   Cell Cycle-Independence 

  As mentioned earlier, multiple regulators of Aurora-A kinase protein stability, like cdh1, 

hCDC4 and Chfr had been isolated recently. All of them target Aurora-A through the 

ubiquitin-dependent proteasome-dependent degradation pathway, in particular, Cdh1 regulates 

the degradation of Aurora-A in the cell-cycle dependent manner. As a further step to 

understand the role of AKIP in Aurora-A degradation, we sought to investigate the mechanism 

by which AKIP destabilizes Aurora-A.  

  To address the possible role of AKIP in cell-cycle dependent turnover of Aurora-A, we 

carried out the in vivo AKIP-TR-mediated Aurora-A degradation assays in cells synchronized 

at different phases of the cell cycle. Cells were initially co-transfected with Aurora-A and 

either AKIP-TR or empty vector and subsequently synchronized with cell cycle 

phase-specific inhibitors before being harvested for analysis. The cell synchronization worked 

well, as shown in Figure 8-1, that under the identical transfection conditions, the ectopically 

expressed Aurora-A displayed the normal cell cycle-dependent protein stability, low in G1/S 

phase and high in M phase. Interestingly, the results presented in Figure 8-1 demonstrated that 

AKIP-TR degraded Aurora-A independently of the cell cycle. This was in contrast to the 

Cdh1, where Cdh1 showed a cell cycle-specific differential effect on steady-state levels of 
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Aurora-A, with no effect in M phase cells but significant decrease in log or G1/S phase cells 

[6]. Thus, this provided the first evidence that AKIP functions differently from Cdh1 in the 

regulation of Aurora-A protein stability. 
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Figure 8-1: Cell Cycle-Independence of AKIP-TR-mediated Aurora-A Degradation 

COS7 cells were co-transfected with HA-tagged human Aurora-A and either empty vector or 

FLAG-tagged AKIP-TR at 1:9 ratio respectively. 24 hrs post-transfection, the transfected cells were 

collected at different phases of cell cycle by another 16-hr treatment with either DMSO (Log), 

Aphidicolin (G1/S) and Nocodazole (M). Cell extracts were analyzed for Aurora-A and AKIP-TR 

proteins using the anti-HA and anti-FLAG mouse monoclonal antibodies, respectively. β tubulin was 

used as the loading control. 

8.2.1.2.  AKIP-TR can Degrade Ubiquitination-Defective A-Box Stabilizing 
Mutant of Aurora-A 

  As mentioned earlier, the Cdh1-ubiquitin-dependent proteasomal degradation of Aurora-A 

involves two degradation boxes, namely N-terminal A Box and C-terminal D3 Box. The point 

mutation S51D in the A Box blocks the Cdh1-mediated destabilization of Aurora-A, probably 

through the inhibition of Aurora-A ubiquitination. To further explore whether 

polyubiquitination is necessary for AKIP-TR-dependent Aurora-A degradation, the effect of 
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AKIP-TR overexpression on the protein stability of A-box mutant was studied.  

  For the present study, we had constructed the A Box mutant by the site-directed 

mutagenesis of Ser51 of Aurora-A. Before using the A Box mutant for the AKIP-TR-mediated 

degradation assay, we verified its functionality that whether it was resistant to the normal cell 

cycle-dependent degradation. The change in the protein stability of A Box mutant during the 

transition from M to G1 phase was monitored and compared to that of its wild type 

counterpart. Cells expressing the wild type Aurora-A or A Box mutant were initially arrested 

in M phase by nocodazole and subsequently released into G1 in the presence of 

cycloheximide, which inhibited further protein synthesis. The change in the protein level of 

endogenous cyclin B1 served as the positive control for verifying the success of M to G1 

transition. 

A Box
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HeLa cells were transfected with either HA-tagged wild-type or A-Box mutant of Aurora-A. 24 hrs 

post-transfection, the cells were treated with 0.1 μg/ml Nocodazole for 16 hrs to arrest them at M 

phase. The floating mitotic cells were collected by mitotic shake-off and released in fresh medium 

containing 50 μg/ml cycloheximide. The cells were harvested for analysis 4 hrs post-mitotic release. 

Stability of wild-type and A-Box mutant of Aurora-A at the M-G1 transition was detected using the 

anti-HA mouse monoclonal antibody. Endogenous cyclin B1 levels were used as the positive control to 

verify the M-G1 transition.  

Figure 8-2: Stability of Wild-type and A Box Stabilizing Mutant of Aurora-A  
from M to G1 Transition 
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As shown in Figure 8-2, wild-type Aurora-A was degraded rapidly upon exit from mitosis into 

G1 phase, whereas in contrast, the A-box mutant of Aurora-A remained stabilized throughout 

the M-G1 transition, indicating the A Box mutant of Aurora-A was functionally defective in 

the cell cycle-dependent degradation. 

  When this A-box mutant of Aurora-A, which no longer could be targeted for 

ubiquitin-dependent degradation, was used for the in vivo AKIP-TR-mediated degradation 

assay, the results showed that the A-box mutant of Aurora-A could still be degraded by 

AKIP-TR at the same efficiency as the wild-type Aurora-A in the presence of AKIP-TR, as 

shown in Figure 8-3. These results suggested that AKIP-TR could target even a 

non-ubiquitylatable form of Aurora-A, further supporting the cell cycle-independent nature of 

AKIP-TR-mediated Aurora-A degradation. 
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Figure 8-3: Effect of AKIP Overexpression on Stability of A-Box Mutant of Aurora-A 
 

COS7 cells were co-transfected with HA-tagged Aurora-A (wild-type or A-Box mutant ) and either 

empty vector or FLAG-tagged AKIP-TR at 1:9 ratio. The cells were harvested for Western Blot 

analysis 36 hrs post-transfection. Aurora-A and AKIP-TR were detected by anti-HA and 

anti-FLAG mouse monoclonal antibodies, respectively. β tubulin was used as the loading control. 
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8.2.2.   Role of AKIP-TR on Ubiquitination of Aurora-A 

8.2.2.1.  AKIP Inhibits Polyubiquitination of Aurora-A 

  Ubiquitination represents one of the essential modifications to target the proteins for 

recognition by 26S proteasome and subsequent degradation. It was previously shown that 

Aurora-A was poly-ubiquitinated before cell cycle-dependent degradation by APC/C. In order 

to understand the mechanism of AKIP-mediated degradation, we asked whether AKIP played 

any role in the ubiquitination of Aurora-A.  

  To determine the possibility that AKIP might potentiate the poly-ubiquitination of Aurora-A 

and therefore enhance its degradation similar to cdh1 and chfr, we employed the in vivo 

Aurora-A ubiquitination assays to monitor any change in the level of Aurora-A ubiquitination 

in the absence and presence of AKIP overexpression.  

  HeLa cells were co-transfected with wild-type Aurora-A, wild-type ubiquitin and either 

empty vector or AKIP expression constructs. ΔC198-AKIP mutant, an Aurora-A 

non-interacting mutant of AKIP, was also used as a control to verify whether the interaction 

between AKIP and Aurora-A was essential for the AKIP-mediated Aurora-A ubiquitination. 

   As shown in Figure 8-4, Aurora-A could be ubiquitinated readily at the basal state. 

However, to our surprise, in the presence of AKIP-TR or AKIP co-expression, 

polyubiquitination of Aurora-A was drastically diminished. This AKIP-mediated inhibition of 

polyubiquitination was specific to Aurora-A kinase as the total cellular polyubiquitination was 

unaffected by the AKIP.  

 172



Ubiquitinated Aurora-A

Total Ubiquitinated Proteins

Aurora-A

AKIP-FL

βTubulin

AKIP-TR
AKIP-ΔC198

+---AKIPΔC198

-+--AKIP

--+-AKIP-TR

---+Vector

++++Ubiquitin

++++Aurora-A

 

 

 

 

 

 

 

Figure 8-4: Aurora-A Polyubiquitination in the Presence of AKIP 
HeLa cells were transiently transfected with HA-tagged Aurora-A in combination with either empty 

vector pCDNA3 or AKIP constructs (AKIP-TR, AKIP and ΔC198-AKIP mutant) at 1:9 ratio, 

respectively in the presence of an expression construct encoding His-tagged wild-type ubiquitin 

(His-Ub). All the His-Ub-tagged proteins were pulled down and subsequently analyzed specifically 

for the ubiquitinated species of Aurora-A. Total cellular polyubiquitination is detected using the 

anti-ubiquitin mouse monoclonal antibody.  Aurora-A and AKIP proteins in the total cell lysate were 

probed with anti-HA and anti-FLAG mouse monoclonal antibodies, respectively. β tubulin was used 

as the loading control. 
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  Moreover, we also ruled out that the drop in polyubiquitination level of Aurora-A was due 

to the concomitant decrease in the Aurora-A protein stability in the presence of AKIP as the 

Aurora-A protein levels were maintained with proteasome inhibitor MG132 in all cell lysates. 

MG132 blocks the protein degradation but not the protein modification by ubiquitin. In 

another word, AKIP indeed directly inhibited the polyubiquitination of Aurora-A.  

  Interestingly, ΔC198-AKIP mutant, that did not interact with Aurora-A and was less 

efficient in targeting Aurora-A for degradation, restored similar level of Aurora-A 

polyubiquitination to the basal state as the empty vector control. These observations 

suggested that AKIP inhibited polyubiquitination of Aurora-A, and this inhibition required 

interaction between AKIP and Aurora-A. This supported the previous findings that the 

AKIP-mediated Aurora-A degradation was not through the more common Ub-dependent 

mechanism. 

 

8.2.2.2.   Identification of the Ubiquitination Domain of Aurora-A  

  We had demonstrated that the in vivo interaction between AKIP-TR and Aurora-A was 

essential for the AKIP-TR-mediated Ub-independent degradation of Aurora-A and binding of 

the AKIP-TR to Aurora-A inhibited the in vivo ubiquitination of Aurora-A very efficiently. So, 

how did AKIP-TR interaction with Aurora-A affect the ubiquitination of Aurora-A? To 

address this question, we would like to identify and narrow down the region(s) of Aurora-A, 

which contains the potential ubiquitination sites and assess whether AKIP-TR specifically 
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inhibits the ubiquitination by directly binding in the vicinity of this ubiquitination region and 

overriding the Ub-dependent degradation mode. 

  To search for the potential ubiquitination region(s) in Aurora-A, we had performed 

systematic deletion of Aurora-A from both N- and C-terminus and constructed four deletion 

mutants of Aurora-A, two of which were N-terminal deletion mutants, named as 

ΔN300-AIK1 (deletion of 309 bp from N-terminus) and ΔN600-AIK1 (deletion of 609 bp 

from N-terminus), whereas the other two were C-terminal deletion mutants, named as 

ΔC300-AIK1 (deletion of 312 bp from C-terminus) and ΔC600-AIK1 (deletion of 612 bp 

from C-terminus), as shown in Figure 8-5.  
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Comparison of the size and location of the deletions of all the Aurora-A deletion mutant proteins with 

full length Aurora-A protein. All of the Aurora-A variants contain a FLAG tag at the N-terminus. The 

numbers within the parentheses denote the nucleotides of Aurora-A cDNA, and number 1 corresponds 

to the nucleotide A of the translational start ATG. The locations of KEN, A, and D (D1,D2, D3) boxes 

are indicated. 

Figure 8-5: Aurora-A Kinase and Its Various Deletion Mutants 
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  All the Aurora-A deletion mutants were tagged with FLAG epitope at their N-terminus. 

Various degradation motifs had been identified in Aurora-A, which include KEN Box and A 

Box at the N-terminus and D Boxes (D1-3) at the C-terminus. Both ΔN300-AIK1 and 

ΔN600-AIK1 mutants lacked the KEN box and A Box, ΔC300-AIK1 lacked D3 Box, 

however, Δ600-AIK1 had all the three D Boxes deleted. 

  To identify the region of Aurora-A that is important in regulating the ubiquitination, we had 

carried out the in vivo ubiquitination assay using these Aurora-A deletion mutants and 

attempted to detect their in vivo ubiquitination level. The Aurora-A mutant, which carried the 

deletion of ubiquitination region, should have markedly reduced or totally abolished 

ubiquitination. As shown in Figure 8-6, ubiquitination of ΔC600-AIK1 was totally abolished, 

whereas the ubiquitination of the other three mutants like ΔN300-AIK1, ΔN600-AIK1 and 

ΔC300-AIK1 were unaffected as demonstrated by their ubiquitination ladders. However, in 

comparison with the normal wild type Aurora-A counterpart, ΔN300-AIK1 and ΔN600-AIK1 

both had reduced level of ubiquitination, whereas interestingly, the ΔC300-AIK1 had 

markedly increased level of ubiquitination, suggesting the probable presence of negative 

element for ubiquitination in the region of Aurora-A from a.a. 910 to 1221. From these results, 

we could conclude that the region of Aurora-A from a.a. 610 to 909 should carry either the 

critical functional ubiquitination sites or the recognition domain for ubiquitination enzymes. 
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Figure 8-6: Mapping for Ubiquitination Domain in Aurora-A 
HeLa cells were transfected with His-tagged wild-type ubiquitin and FLAG-tagged Aurora-A or its 

various deletion mutants. 24 hours post-transfection, the transfected cells were treated with 20 μM 

MG132 for 16 hours before harvested for His immunoprecipitation. The ubiquitinated Aurora-A and 

the deletion mutants were specifically detected using anti-FLAG mouse monoclonal antibody. 

8.2.2.3.  In vivo Binding of AKIP-TR to Ubiquitination Domain of Aurora-A 

  As shown previously, the [AKIP-TR]-[Aurora-A] interaction was necessary to inhibit the 

ubiquitination of Aurora-A. With our identification of the ubiquitination region of Aurora-A, 

we could now examine the possibility whether or not AKIP-TR might bind to this critical 

region of Aurora-A and therefore block its ubiquitination. In vivo interaction between 

AKIP-TR and the ubiquitination-defective mutant, ΔC600-AIK1, would be studied and 

compared to the wild-type and other deletion mutants of Aurora-A. As shown in Figure 8-7, 

no interaction could be detected between AKIP-TR and ΔC600-AIK1 in vivo, whereas the in 
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vivo interaction between AKIP-TR and the wild-type or other deletion mutants (ΔN300-AIK1, 

ΔN600-AIK1, ΔC300-AIK1) of Aurora-A were readily detected. In conclusion, AKIP-TR 

targets the ubiquitination region of Aurora-A and masks subsequent recognition and ubiqutin 

conjugation. This probably could be one of the mechanisms on how the 

[AKIP-TR]-[Aurora-A] interaction inhibits the Aurora-A ubiquitination. 
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Figure 8-7: Mapping of AKIP-Interacting Domain in Aurora-A 
HeLa cells were transfected with HA-tagged AKIP-TR and FLAG-tagged Aurora-A or its various 

deletion mutants at 1:1 ratio. 24 hours post-transfection, the transfected cells were harvested for 

FLAG immunoprecipitation. The interacting AKIP-TR was detected using the anti-AKIP rabbit 

polyclonal antibody. 

8.2.3.  Existence of the Ubiquitin-Independent Degradation Pathway 
for Aurora-A Kinase 

  Since AKIP-TR can target the ubiquitination-defective A-Box mutant of Aurora-A for 
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degradation, alternative degradation pathway, which is independent of ubiquitination, should 

exist for Aurora-A kinase. To study the existence of this alternative pathway, it is necessary to 

completely inhibit the Ub-dependent mode of degradation and in the meantime monitor the 

turnover of the Aurora-A kinase. A cell line, which harbours the temperature-sensitive 

mutation and hence the inactivation of E1 ubiquitin-activating enzyme at the restrictive 

temperature, would be very helpful for such a study. Under the permissive temperature 

condition, both Ub-dependent and Ub–independent pathways are functional, however, when 

the growth temperature is shifted to the non-permissive one, the Ub-dependent pathway will 

be switched off, leaving only the Ub-independent pathway still operational.  

8.2.3.1.  Exogenous Aurora-A  

  To verify the existence of an Ub-independent pathway for Aurora-A degradation, the 

turnover of Aurora-A, p21 and cyclin B1 was assessed in the presence of cycloheximide in 

ts20-CHO temperature-sensitive E1 Ub-activating mutant cells. p21 was previously 

demonstrated to be able to serve as a target for Ub-independent degradation whereas cyclin 

B1 has been a prototype target for Ub-dependent degradation.  

  From the results presented in Figure 8-8, temperature shift to the non-permissive 40oC did 

not completely stabilize the p21, supporting the previous finding that p21 can be degraded in 

the absence of ubiquitination, and hence can act as the substrate for Ub-independent 

degradation.  
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Figure 8-8: p21, A Target for Ubiquitin-Independent Degradation Pathway. 
To determine the half-life of p21 in ts20-CHO cells in the presence and absence of 

polyubiquitination, cells were transfected with HA-tagged p21 expression plasmid at 30oC. 24 hrs 

post-transfection, the cells were divided into two sets, one set was maintained at 30oC permissive 

temperature whereas the other set was shifted to 40oC for 16 hrs. After 16 hrs, the cells were treated 

with 50 μg/ml cycloheximide and both sets were harvested at 0, 0.5, 1, 2 and 4 hrs post-treatment. 

The level of p21 was analyzed by anti-HA mouse monoclonal antibody. β tubulin was used as the 

loading control. 

  In contrast, cyclin B1 level was completely stabilized upon temperature shift to 40oC, as 

shown in Figure 8-9, indicating that cyclin B1 can only be targeted for the Ub-dependent 

degradation.  
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Figure 8-9: Cyclin B1, A Target for Ubiquitin-Dependent Degradation Pathway. 
To determine the half-life of cyclin B1 in ts20-CHO cells in the presence and absence of 

polyubiquitination, cells were transfected with cyclin B1 expression plasmid at 30oC. 24 hrs 

post-transfection, the cells were divided into two sets, one set was maintained at 30oC permissive 

temperature whereas the other set was shifted to 40oC for 16 hrs. After 16 hrs, the cells were treated 

with 50 μg/ml cycloheximide and both sets were harvested at 0, 0.5, 1, 2 and 4 hrs post-treatment. The 

level of cyclin B1 was analyzed by anti-cyclin B1 rabbit polyclonal antibody. β tubulin was used as the 

loading control. 
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Figure 8-10: Aurora-A, A Target for Ubiquitin-Independent Degradation Pathway 
To determine the half-life of Aurora-A in ts20-CHO cells in the presence and absence of 

polyubiquitination, cells were transfected with FLAG-tagged Aurora-A expression plasmid at 30oC. 

24 hrs post-transfection, the cells were divided into two sets, one set was maintained at 30oC 

permissive temperature whereas the other set was shifted to 40oC for 16 hrs. After 16 hrs, the cells 

were treated with 50 μg/ml cycloheximide and both sets were harvested at 0, 0.5, 1, 2 and 4 hrs 

post-treatment. The level of Aurora-A was analyzed by anti-FLAG mouse monoclonal antibody. β 

tubulin was used as the loading control. 

  In the case for Aurora-A, it was evident that even within 30 minutes of cycloheximide 

treatment, there was a sharp decline in Aurora-A steady state level, indicating that Aurora-A is 

normally an unstable protein. However, upon suppression of the Ub-dependent pathway at 

40oC, its steady state level was increased but not stabilized completely, as displayed in Figure 

8-10. The lack of complete stabilization implied that Aurora-A could also be targeted for 

degradation in the absence of ubiquitin similar to p21. Both Aurora-A and p21 can therefore 

be targeted for degradation, not only through the Ub-dependent pathway, but also through the 

alternative Ub-independent route. 
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8.2.3.2.   Endogenous Aurora-A 

  To address the question whether the endogenous Aurora-A also follows the same fate as the 

exogenous protein with respect to the stabilization in the absence of ubiquitination, we chose 

to carry out the experiment in the temperature-sensitive mouse cell line ts20-TG, also 

harbouring a mutation in E1 ubiquitin-activating enzyme, to facilitate the detection of 

endogenous proteins with the available antibodies. As described previously with ts20-CHO 

cells, identical experiments were carried out in this mouse cell line to investigate the turnover 

of endogenous Aurora-A, p21 and cyclin B1 in the presence of cycloheximide. The results 

presented in Figure 8-11 demonstrated that the endogenous Aurora-A, p21 and cyclin B1 

behave similar to their exogenous counterparts with respect to their turnover in the absence of 

polyubiquitination. 

Mouse ts20b
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Aurora-A Kinase
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Figure 8-11: Ubiquitin-Independent Degradation of Endogenous Aurora-A Kinase 
Mouse ts20b cells were incubated at 32oC or 40oC for 18 hrs followed by the cycloheximide treatment 

for the indicated times. The protein levels of the endogenous Aurora-A, p21 and cyclin B1 were 

analyzed by Western Blot analysis using the anti-IAK1 mouse monoclonal, p21 and cyclin B1 rabbit 

polyclonal antibodies, respectively. β tubulin was used as the loading control. 
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8.2.4.  Role of AKIP-TR in the Ubiquitin-Independent Degradation 
Pathway for Aurora-A Kinase 

  At present, Aurora-A can serve as the target for Ub-independent degradation pathway. The 

previous use of ubiquitination-defective A Box mutant of Aurora-A had identified AKIP-TR 

as the regulator for the Ub-independent mode of Aurora-A degradation. To further confirm the 

Ub-independent nature of AKIP-mediated Aurora-A degradation, we employed other 

approaches, where polyubiquitination was inhibited, such as (i) overexpression of the 

dominant negative K48R ubiquitin mutant; (ii) previously described temperature-sensitive 

inactivation in E1 ubiquitin-activating enzyme. 

 

8.2.4.1.  Inhibition of Cellular Polyubiquitination by Dominant Negative K48R 
Ubiquitin Mutant 

  Ub-dependent protein degradation involves the covalent attachment of multiple ubiquitins 

to the lysine residues of the target protein(s), facilitating the substrate recognition by the 26S 

proteasome. To verify whether the AKIP-mediated Aurora-A degradation is affected under the 

condition where the cellular polyubiquitylation was inhibited, we performed the 

AKIP-TR-mediated Aurora-A degradation assay in the presence of K48R dominant negative 

ubiquitin mutant. Incorporation of this dominant negative mutant ubiquitin led to the chain 

terminating effect, thereby blocking further ubiquitin chain extension, as shown in Figure 

8-12. This impaired ubiquitination of Aurora-A was expected to result in less efficient 

recognition of Aurora-A by the proteasomal degradation machinery.  
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Figure 8-12:  
Suppression of Cellular Polyubiquitination of Aurora-A via  

Overexpression of K48R Ubiquitin Mutant 
HeLa cells were co-transfected with FLAG-tagged Aurora-A and either empty vector or His-tagged 

wild-type or K48R mutant ubiquitin expression construct. Total ubiquitinated proteins were pulled 

down with NTA-agarose and the ubiquitinated FLAG-tagged Aurora-A was detected with anti-FLAG 

mouse monoclonal antibody. The protein levels of Aurora-A in the total lysates under different 

conditions were analyzed using FLAG mouse monoclonal antibody. β tubulin was used as the loading 

 

However, as shown clearly in Figure 8-13, the AKIP-TR-mediated Aurora-A degradation was 

unaffected in the presence of K48R mutant ubiquitin overexpression and was still as efficient 

as under the condition with the presence of wild-type ubiquitin. Again, this implied that the 

targeting of Aurora-A for degradation, mediated by AKIP–TR, did not require the prior 

ubiquitination of Aurora-A. 
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HeLa cells were co-transfected with FLAG-tagged Aurora-A and either empty vector pCDNA3 or 

FLAG-tagged AKIP-TR at 1:9 ratio, in the presence of either His-tagged wild-type or K48R mutant 

ubiquitin expression construct. 36 hrs post-transfection, the cells were harvested and analyzed for  

Aurora-A and AKIP-TR, both detected with anti-FLAG mouse monoclonal antibody. β tubulin was 

used as the loading control. 

Figure 8-13:  
Effect of Polyubiquitination Suppression on AKIP-TR-mediated Aurora-A Degradation: 

Overexpression of K48R Ubiquitin Mutant 

8.2.4.2.   Inhibition of Cellular Polyubiquitination by Inactivation of E1 
Ub-Activating Enzyme 

  To further confirm the Ub-independent nature of AKIP-TR-mediated Aurora-A degradation, 

in vivo degradation assays had been performed in ts20-CHO cells. In support of the results 

from the previous approach using the dominant negative K48R ubiquitin mutant, suppression 

of polyubiquitination by temperature-sensitive mutation of the E1 Ub-activating enzyme at 

the non-permissive temperature, increased the basal levels of Aurora-A but still did not 

abolish the AKIP-TR-mediated Aurora-A degradation, as shown in Figure 8-14. This data 

confirmed again that AKIP-TR mediates Aurora-A degradation without the help of ubiquitin 

as the targeting factor.  
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Effect of Polyubiquitination Suppression on AKIP-TR-mediated Aurora-A Degradation: 
            Inactivation of E1 Ub-Activating Enzyme 
ts20-CHO were co-transfected with FLAG-tagged Aurora-A and either empty vector pCDNA3 or 

FLAG-tagged AKIP-TR at 1:9 ratio. The transfected cells were divided into two sets, both sets were 

initially incubated at 30oC permissive temperature for 24 hrs. After 24 hrs, one set was maintained at 

30oC while the other set was incubated at 40oC non-permissive temperature for 16 hrs. The cells were 

harvested and analyzed for Aurora-A and AKIP-TR using anti-FLAG mouse monoclonal antibody. β 

tubulin was used as the loading control. 

Figure 8-14:  

As observed in Figure 8-14, in the absence of AKIP-TR, inhibition of the polyubiquitination 

leads to a higher basal level of Aurora-A. This implies that under the normal condition, the 

Ub-dependent degradation is a major pathway operational for Aurora-A turnover and 

AKIP-TR potentiates Aurora-A degradation through an Ub-independent pathway. 
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8.2.4.3.  Specificity 

  To verify the specificity of AKIP-mediated Ub-independent Aurora-A degradation, the 

effect of AKIP overexpression on human Aurora-B, p21 and cyclin B1 stability was 

investigated in ts20-CHO cells. Aurora-B belongs to one of the closely related members of the 

Aurora kinase family and shares high sequence homology in the kinase domain with 

Aurora-A. Therefore, it will be interesting to know if AKIP-TR targets Aurora-A member 

specifically even among other closely related members of the same family.  

  On the other hand, p21 has been well documented for its ability to serve as the substrate for 

Ub-independent degradation whereas cyclin B1 is a prototype substrate solely targeted for 

Ub-dependent degradation. As shown in Figure 8-15 to 8-17, in contrast to the AKIP-TR 

effect on Aurora-A, overexpression of AKIP did not influence the protein stability of 

Aurora-B (Figure 8-15) or p21 (Figure 8-16) or cyclin B1 (Figure 8-17), implying the high 

specificity of the AKIP-TR-mediated Aurora-A degradation. 
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Figure 8-15: Effect of AKIP-TR Overexpression on Aurora-B Protein Stability 
ts20-CHO were co-transfected with FLAG-tagged human Aurora-B and either empty vector 

pCDNA3 or HA-tagged AKIP-TR at 1:5 ratio. The effect of AKIP-TR overexpression on Aurora-B 

kinase stability was assessed at 36 hrs post-transfection at both permissive and non-permissive 

temperature. The cells were harvested and analyzed for Aurora-B and AKIP-TR using anti-FLAG 

and anti-HA mouse monoclonal antibodies, respectively. β tubulin was used as the loading control. 
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ts20-CHO were co-transfected with HA-tagged p21 and either empty vector pCDNA3 or 

FLAG-tagged AKIP-TR at 1:9 ratio. The effect of AKIP-TR overexpression on p21 stability was 

assessed at 36 hrs post-transfection at both permissive and non-permissive temperature. The cells 

were harvested and analyzed for p21 and AKIP-TR using anti-HA and anti-FLAG mouse 

monoclonal antibodies, respectively. β tubulin was used as the loading control. 

Figure 8-17: Effect of AKIP-TR Overexpression on Cyclin B1 Protein Stability 
ts20-CHO were co-transfected with cyclin B1 and either empty vector pCDNA3 or FLAG-tagged 

AKIP-TR at 1:9 ratio. The effect of AKIP-TR overexpression on cyclin B1 stability was assessed at 

36 hrs post-transfection at both permissive and non-permissive temperature. The cells were 

harvested and analyzed for cyclin B1 and AKIP-TR using anti-cyclin B1 rabbit polyclonal antibody 

and anti-FLAG mouse monoclonal antibody, respectively. β tubulin was used as the loading 

Figure 8-16: Effect of AKIP-TR Overexpression on p21 Protein Stability 
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8.2.5. Proteasome-Dependence of the AKIP-mediated Ubiquitin- 
Independent Degradation of Aurora-A 

  Previous studies had shown that AKIP-mediated Aurora-A degradation was susceptible to 

inhibition by the specific proteasome inhibitors, implying the proteasome-dependence of 

AKIP-TR-mediated Aurora-A degradation. To address even more specifically the 

proteasome-dependency of the AKIP-mediated Ub-independent Aurora-A degradation, we 

had performed the in vivo AKIP-TR-mediated Aurora-A degradation in the absence or 

presence of proteasome inhibitor, MG132 under the condition that ubiquitination was blocked 

either by (i) the ubiquitination-defective A Box mutant of Aurora-A; and/or (ii) the 

overexpression of dominant negative K48R ubiquitin mutant. 

8.2.5.1.  A Box Mutant 

  As demonstrated earlier, the A Box mutant, which lacked the poyubiquitination, was 

specifically targeted by AKIP-TR for protein degradation. Addition of proteasome inhibitor 

MG132 and Lactacystin reversed the AKIP-TR-mediated degradation of A Box mutant, 

suggesting that the Ub-independent degradation of Aurora-A is proteasome-dependent, as 

shown in Figure 8-18. 

 
Figure 8-18:  

Proteasome-Dependence of Ub-Independent Degradation of Aurora-A via AKIP-TR: 
A-Box Mutant 

HeLa cells were co-transfected with HA-tagged A-Box mutant of Aurora-A and either empty pCDNA3 

vector or FLAG-tagged AKIP-TR at 1:9 ratio. 24 hours post-transfection, the cells were treated with either 

DMSO or 20 μM MG132 or Lactacystin for 16 hours before harvested for Western Blot analysis. A Box 

mutant and AKIP-TR were detected using the anti-HA and anti-FLAG mouse monoclonal antibodies, 

respectively. β tubulin was used as the loading control. 
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8.2.5.2.  Dominant Negative K48R Ubiquitin Mutant 

  To further verify the proteasome-dependent nature of the Ub-independent pathway of 

AKIP-mediated Aurora-A degradation, we also looked at the effect of proteasome inhibitor 

MG132 on the AKIP-TR-mediated degradation of Aurora-A in the presence of dominant 

negative K48R ubiquitin mutant. As displayed in Figure 8-19, the proteasome inhibitor 

MG132 could reverse the AKIP-TR-mediated degradation of wild type Aurora-A even in the 

presence of dominant negative K48R ubiquitin mutant.  

Aurora-A

Vector

AKIP-TR

+ +++
+ ---
- +++

DMSO MG132 Lactacystin

Aurora-A

AKIP-TR

β Tubulin

K48R Ubiquitin + +++

 

 

 

 

 

 

Figure 8-19:  
Proteasome-Dependence of Ub-Independent Degradation of Aurora-A via AKIP-TR: 

K48R Ubiquitin Mutant 
HeLa cells were co-transfected with HA-tagged Aurora-A and either empty pCDNA3 vector or 

FLAG-tagged AKIP-TR at 1:9 ratio in the presence of K48R ubiquitin mutant overexpression. 24 hours 

post-transfection, the cells were treated either with DMSO or 20 μM MG132 or Lactacystin for 16 hours 

before harvest for Western Blot analysis. Aurora-A and AKIP-TR were detected using the anti-HA and 

anti-FLAG mouse monoclonal antibodies, respectively. β tubulin was used as the loading control. 
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8.3.   Discussion 

  The abundance of Aurora-A protein is tightly controlled by the balance of its synthesis and 

degradation, as its overexpression could lead to checkpoint disruption [1-2], induction of 

aneuploidy and oncogenic transformation [3-4].  The cell cycle-dependent degradation of 

Aurora-A is mediated by Cdh1 through the Ub-dependent proteasomal degradation pathway 

[5-7]. Chfr [8] and hCDC4 [9] represent two other new candidate regulators, which are 

involved in the destabilization of Aurora-A. However, there is a shared feature among these 

three regulators, in which they all target Aurora-A for proteasomal degradation with prior 

ubiquitination of their substrate, Aurora-A. Herein, we provide the first demonstration that 

there exists an alternative Ub-independent pathway for Aurora-A protein degradation and 

AKIP facilitates the Aurora-A degradation through this alternative pathway.  

  Protein degradation via the Ub-independent pathway is no longer a new concept. Though 

ubiquitination is a pre-requisite for the majority of extralysosomal proteolysis by the 26S 

proteasome, some proteins can be degraded in the Ub-independent manner, either by the 20S 

proteasome directly or the 26S proteasome in the presence of ATP [10]. Ornithine 

decarboxylase (ODC) was the first protein demonstrated to be degraded by the 26S 

proteasome through this alternative pathway [11]. Other proteins, which can be degraded by 

26S proteasome in the Ub-independent manner, include c-Jun [12], Cdk inhibitor p21 [13-14], 

tumor suppressor p53 [15-16] and calmodulin [17]. In the absence of help from ubiquitin tag, 

targeting of protein substrates to 26S proteasome relies on other accessory proteins or a 
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degradation signal within the substrate itself to replace the targeting role of ubiquitin.  

  For example, ODC is directed to the proteasome by its specific binding partner—antizyme 

[18-19]. Tax, a protein encoded by human T cell leukemia virus, promotes the binding of the 

IκBα substrate to the HsN3 subunit of 20S proteasome, thereby facilitating the constitutive 

degradation of IκBα in the Ub- and phosphorylation-independent manner [20]. Similarly, 

hyperphosphorylated form of retinoblastoma (Rb) protein is targeted by the viral protein pp71 

for the Ub-independent proteasomal degradation [21]. Besides, the proteasome-dependent 

Ub-independent cellular degradation of Rb protein is shown to be mediated by MDM2, which 

itself can interact with the C8 subunit of 20S proteasome and thereby facilitating or 

stabilizing the Rb-C8 interaction [22]. It is interesting to note that MDM2, being an ubiquitin 

ligase, can play alternative role in the Ub-independent protein degradation. Moreover, NQO1, 

which can bind both p53 and p73 as well as the 20S proteasome, functions as a gatekeeper of 

the 20S proteasome and negatively regulates the degradation of p53 and p73 [15]. Inhibition 

of NQO1 has been shown to induce the p53 and p73 degradation through the 20S 

proteasome-dependent, Ub-independent pathway [15]. On the other hand, p21, a 

transcriptional target of p53, represents an example of a protein, which targets itself for 

Ub-independent degradation by direct binding to the 20S proteasome. It has been shown that 

p21 directly interacts with the C8 subunit of 20S proteasome in vitro and the turnover of 

mutant p21 in vivo directly correlates with its affinity for the C8 subunit in vitro [23]. Taken 
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together, it is apparent that interaction of the target substrate with the proteasomal machinery 

is a pre-requisite for the Ub-independent degradation, which is similar to the Ub-dependent 

degradation. 

  On the other hand, our study also uncovered another role of AKIP in the Ub-independent 

degradation of Aurora-A, in which binding of AKIP interfered with the normal ubiquitination 

of Aurora-A. Using the Aurora-A deletion mutants, we had identified a region of Aurora-A, 

which might contain signal(s) for ubiquitination and we demonstrated that AKIP targeted this 

region. The region deleted in that ubiquitination-defective Aurora-A mutant (ΔC600-AIK1) 

contained the D1 and D2 destruction boxes. This result was consistent with the previous 

findings from another group. Through their mutagenesis analysis of the D boxes of Aurora-A, 

they showed that D2 box might serve as a signal for polyubiquitination, but not a signal for 

proteolysis [26]. Therefore, this implied that AKIP might also target the D2 box of the 

Aurora-A and mask the ubiquitination signal for recognition by the ubiquitination machinery. 

The speculation of AKIP targeting of the ubiquitination domain of Aurora-A was further 

supported by the observation that the non-interactive AKIP mutant, which was defective in 

binding Aurora-A, restored the ubiquitination of Aurora-A. 

   The AKIP-mediated inhibition of Aurora-A ubiquitination is unlikely due to the 

potentiation of Aurora-A deubiquitination. At present, no evidence has indicated any role of 

deubiquitination in the Ub-independent protein degradation pathway, instead, recent study [27] 
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had demonstrated that deubiquitination event plays a crucial role in the proteolysis of 

ubiquitinated substrates and it is tightly coordinated with the substrate unfolding and 

translocation. Proteasomes represent the important player in the deubiquitination process as 

they exhibit a broad spectrum of intrinsic and associated deubiquitinating activities [28]. The 

same study also showed that the constitutively ubiquitinated protein substrates were trapped 

in the proteasome and underwent incomplete proteolysis. 

  As our study had clearly demonstrated that AKIP promoted the Ub-independent 

degradation of Aurora-A. An interesting question posed would be how AKIP targets Aurora-A 

to the proteasome in the absence of ubiquitination. Generally, marking of the substrates serves 

two functions, unfolding and targeting [20-21, 24]. Since AKIP can bind Aurora-A, it is 

unclear yet whether the binding of AKIP assists in the unfolding of Aurora-A, hence making 

Aurora-A a better substrate to be recognized by the 20S proteasome. Alternatively, AKIP may 

replace the protein targeting role of ubiquitin and AKIP binding to Aurora-A targets Aurora-A 

directly to the proteasome. In this context, it will be interesting to investigate whether AKIP 

interacts directly with the 20S proteasome and whether Aurora-A can be degraded by 20S 

proteasome in vitro in the presence of AKIP. However, it is also possible that AKIP may not 

play a direct role in targeting of Aurora-A to the proteasome, instead AKIP may induce 

modification of Aurora-A by other ubiquitin-like small molecule [25] or there could be 

involvement of other secondary proteins in the targeting of Aurora-A to the proteasome. We 
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cannot rule out another possibility that Aurora-A itself can also bind to C8 subunit of 20S 

proteasome and AKIP promotes or stabilizes the Aurora-A: C8 interaction, similar to the 

MDM2-mediated Rb degradation. 

  Using the ubiquitination-defective Aurora-A mutant, dominant negative ubiquitin mutant 

and the temperature-sensitive mutant cell lines defective in E1 ubiquitin activating enzyme at 

the restrictive temperature, we had clearly demonstrated that Aurora-A could be degraded 

even in the absence of polyubiquitination. Furthermore, AKIP, which constitutively targeted 

Aurora-A for degradation in proteasome-dependent manner, did not require 

polyubiquitination. Our results presented herein conform to the trend of a protein being 

degraded by both the Ub-dependent and Ub-independent pathways, such as p53 [15], Rb 

[21-22] and p21 [14]. As Ub-independent pathway can co-exist with the Ub-dependent 

pathway for Aurora-A degradation, could AKIP be one of the determinants for the switch 

between these alternative pathways? It is possible as AKIP can inhibit the polyubiquitination 

of Aurora-A and we had shown that binding of AKIP to Aurora-A might interfere with the 

interaction of the ubiquitination machinery with Aurora-A. Future investigation on the 

cross-talk between AKIP and Aurora-A ubiquitination is absolutely required to understand the 

role of AKIP as the molecular switch between Ub-dependent and Ub-independent pathways. 
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8.4.   Conclusion 

  In summary, we have added Aurora-A to the increasing list of substrates that can be 

targeted for Ub-independent proteasomal degradation and AKIP facilitates the degradation of 

Aurora-A through this Ub-independent pathway. At this juncture, it is not clear why there 

should be two pathways for the degradation of the same protein and what is the physiological 

significance of AKIP-mediated Ub-independent Aurora-A degradation in the cellular context. 

These questions remain unanswered for most of the substrates targeted for the 

Ub-independent proteasomal degradation. However, irrespective of the mechanism and 

cellular context, AKIP-mediated degradation of Aurora-A still provides an alternative strategy 

to down-regulate this oncogene and makes AKIP a prospective anti-cancer target. 
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9.1.  Summary 

We had previously demonstrated the existence of Ub-independent pathway for Aurora-A 

protein degradation, which was specifically potentiated by its negative regulator, AKIP. The 

present work aims to further characterize the detailed mechanism for the Ub-independent 

AKIP-mediated Aurora-A degradation. In this chapter, we have investigated antizyme, 

another modulator of Aurora-A protein stability. Antizyme is a well-studied mediator for the 

Ub-independent protein degradation pathway. Our study had shown that antizyme could also 

directly regulate the protein stability of Aurora-A in the Ub-Independent manner, either by 

ectopic or polyamine-induced expression of antizyme. These interesting findings had 

prompted us to search for any functional link between the antizyme and AKIP in regulating 

the Ub-independent degradation of Aurora-A. Inhibition of antizyme function blocked the 

AKIP-mediated degradation of Aurora-A. Moreover, our studies had identified in vivo 

interaction between Aurora-A and antizyme, which might be important for the in vivo 

[Aurora-A]-[AKIP]-[antizyme] ternary complex formation. The interaction between Aurora-A 

and antizyme was not only essential for the antizyme-mediated Aurora-A degradation, but 

also important for the AKIP-mediated Aurora-A degradation. Hence, antizyme played an 

important regulatory role in the AKIP-mediated Aurora-A degradation. Further study had 

demonstrated that AKIP acted upstream of the antizyme by enhancing the binding affinity of 

antizyme to Aurora-A, thereby enhancing the recognition and targeting to proteasome and the 

subsequent degradation. 
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9.2.   Results 

9.2.1 Antizyme can Directly Target Aurora-A for Degradation 

  We had previously demonstrated that Aurora-A could be a substrate for the Ub-independent 

protein degradation pathway. On the other hand, antizyme had been well studied for its role as 

a mediator of Ub-independent protein degradation. Hence, we were interested to investigate 

whether antizyme might somehow be involved in the Ub-independent degradation of 

Aurora-A. 

 

9.2.1.1.  Effect of Exogenous Antizyme Overexpression on Protein Stability of 
Exogenous or Endogenous Aurora-A 

  To study the possible role of antizyme in regulating the protein stability of Aurora-A, we 

followed the protein stability of Aurora-A, in the presence of ectopically expressed antizyme 

in HeLa and/or CHO cells.  Cyclin D1 was used as the positive control for the antizyme 

effect as it was reported to be degraded by antizyme, whereas the cyclin B1 was used as the 

negative control.  As shown in Figure 9-1 and 9-2, the exogenously overexpressed antizyme 

decreased the protein stability of both the endogenous and transfected Aurora-A while cyclin 

B1 levels were unaltered.  Thus, antizyme could play a role in the negative regulation of the 

Aurora-A protein stability.  
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HeLa or CHO cells were co-transfected with HA-tagged Aurora-A and either empty vector or 

His-tagged AZ1 at 1:9 ratio. 36 hours post-transfection, the transfected cells were harvested for 

Western Blot analysis of exogenous Aurora-A protein stability. Aurora-A and AZ1 were detected 

using anti-HA mouse monoclonal antibody and anti-AZ rabbit polyclonal antibody, respectively. β 

tubulin was used as the loading control. 

 

Figure 9-1: Effect of Antizyme Overexpression on Exogenous Aurora-A Stability 
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HeLa cells were transfected with either empty vector or His-tagged AZ1. 36 hours post-transfection, the 

transfected cells were harvested for Western Blot analysis of the endogenous Aurora-A protein stability. 

Aurora-A and AZ1 were detected using anti-IAK1 mouse monoclonal antibody and anti-AZ rabbit 

polyclonal antibody, respectively. Cyclin D1 was used as the positive control and detected using the 

anti-cyclin D1 mouse monoclonal antibody, whereas cyclin B1 was used as the negative control and 

detected with anti-cyclin B1 rabbit polyclonal antibody. β tubulin was used as the loading control. 

 
Figure 9-2: Effect of Antizyme Overexpression on Endogenous Aurora-A Stability 
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9.2.1.2.  Effect of Polyamine-Induced Antizyme Expression on Protein Stability 
of Endogenous Aurora-A 

  To verify whether upregulation of the endogenous level of antizyme promotes Aurora-A 

protein degradation, we exploited the polyamine putrescine, which is the physiological 

inducer of antizyme frameshifting and expression. As expected, treatment of the rat prostate 

carcinoma AT2.1 cell line with putrescine led to the induction of the endogenous antizyme 

expression with a concomitant decrease in the protein stability of the endogenous Aurora-A 

and the positive control cyclin D1, while the protein stability of the negative control cyclin A 

was unaffected (Figure 9-3).  These data confirmed a role for antizyme in the negative 

regulation of Aurora-A protein stability. 
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AT 2.1 cells were treated with 10 mM of Putrescine for 24 hours post-transfection prior to harvest for 

Western Blot analysis of endogenous protein stability of Aurora-A, positive control cyclin D1, negative 

control cyclin A and endogenous induction of AZ1. Aurora-A and AZ1 were detected using anti-IAK1 

and anti-AZ rabbit polyclonal antibody, respectively. Cyclin D1 was used as the positive control and 

detected using the anti-cyclin D1 mouse monoclonal antibody, whereas cyclin A was used as the 

negative control and detected with anti-cyclin A rabbit polyclonal antibody. β -tubulin was used as the 

loading control. 

Figure 9-3: Effect of Endogenous Antizyme Induction on Endogenous Aurora-A Stability 
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9.2.1.3.  AZ-mediated Aurora-A Degradation Occurs via The 
Proteasome-Dependent but Ubiquitin-Independent Pathway 

  Since antizyme plays a crucial role in the Ub-independent protein degradation pathway, we 

would like to verify if antizyme also targets Aurora-A for degradation through the 

Ub-independent pathway. An in vivo antizyme-mediated Aurora-A degradation assay in the 

presence of Aurora-A polyubiquitination suppression was carried out. As shown in Figure 9-4, 

antizyme could still target the ubiquitination-defective A box mutant of Aurora-A for protein 

degradation. Similarly, inactivation of E1 Ub-activating enzyme at the non-permissive 

temperature did not affect the antizyme-mediated Aurora-A degradation, as shown in Figure 

9-5. Therefore, similar to other targets of antizyme, antizyme-mediated Aurora-A degradation 

is also Ub-independent. Furthermore, the use of specific proteasome inhibitors like MG132 

and Lactacystin in the in vivo antizyme-mediated Aurora-A degradation assay (Figure 9-6) 

had demonstrated that antizyme targets Aurora-A to proteasome for degradation. 
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HeLa cells were co-transfected with HA-tagged A 

Box Mutant of Aurora-A and either empty vector 

pCDNA3 or His-tagged AZ at 1:9 ratio. 36 hours 

post-transfection, the transfected cells harvested 

and analyzed for A Box mutant and AZ using the 

anti-HA and anti-AZ rabbit polyclonal antibody. 

β tubulin was used as the loading control. 

Aurora-A A Box mutant Protein Stability 
an Ubiquitination-Defective Mutant. 

Figure 9-4:  
Effect of AZ Overexpression on  
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Figure 9-5:  
Effect of Polyubiquitination Suppression on AZ-mediated Aurora-A Degradation: 

Inactivation of E1 Ubiquitin-Activating Enzyme  
ts20-CHO cells were co-transfected with HA-tagged Aurora-A and either empty vector pCDNA3 or 

His-tagged AZ at 1:9 ratio. 24 hours post-transfection, the transfected cells were divided into two sets, 

one set was maintained at 30oC permissive temperature, while the other set was incubated at 40oC 

non-permissive temperature for 16 hours. The cells were harvested and analyzed for Aurora-A and AZ 

using the anti-HA and anti-AZ rabbit polyclonal antibody. β tubulin was used as the loading control. 

           

A Box Mutant

AZ1

β Tubulin

A Box Mutant

AZ1

pcDNA3

+ + + +

- + + +

+ - - -

DMSO MG132 Lac

 

 

 

 

Figure 9-6: Proteasome-Dependence of AZ-mediated Aurora-A Degradation 
HeLa cells were co-transfected with HA-tagged A Box mutant of Aurora-A and either empty vector 

pCDNA3 or His-tagged AZ at 1:9 ratio. 24 hours post-transfection, the transfected cells were 

treated with either DMSO or 20 mM MG132 or Lactacystin for 16 hours. The cells were harvested 

and analyzed for Aurora-A and AZ using the anti-HA and anti-AZ rabbit polyclonal antibody. β 

tubulin was used as the loading control. 
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9.2.1.4.   In vivo Interaction between Antizyme and Aurora-A  

  It had been shown that the antizyme bound to ODC and enhanced the targeting of ODC to 

proteasome and subsequent Ub-independent degradation. It will be interesting to know if 

there exists a similar interaction between the antizyme and Aurora-A, which targets Aurora-A 

to the proteasome.  To demonstrate an interaction between Aurora-A and antizyme, an in 

vivo interaction assay as described previously was carried out. Results from Figure 9-7 

showed that antizyme could be coimmunoprecipitated with Aurora-A, suggesting that 

antizyme was capable of interacting with Aurora-A.  
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HeLa cells were co-transfected with His-tagged AZ1 and either empty vector or FLAG-tagged 

Aurora-A at 1:1 ratio. 24 hours post-transfection, the transfected cells were harvested for FLAG 

immunoprecipitation. The interacting AZ1 was detected using the anti-AZ rabbit polyclonal 

antibody. Aurora-A was detected using the anti-FLAG rabbit polyclonal antibody. 

Figure 9-7: In vivo Interaction between Aurora-A and Antizyme 
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9.2.1.5.   Isolation of Antizyme Non-Interacting Mutant of Aurora-A  

  As shown in the previous section, antizyme could directly interact with Aurora-A in vivo. 

The next pondering question would be whether the antizyme-Aurora-A interaction is essential 

for antizyme-mediated Aurora-A degradation.  To address this question, we carried out in 

vitro interaction assays with antizyme and previously described Aurora-A deletion mutants  

(ΔN300-AIK1, ΔN600-AIK1, ΔC300-AIK1, ΔC600-AIK1) to identify a mutant Aurora-A that 

is defective in interaction with antizyme. We immunoprecipitated the wild-type Aurora-A and 

its various deletion mutants and checked if their interactions with the antizyme had been 

impaired by the deletion in Aurora-A. 

  Results from Figure 9-8 showed that all Aurora-A deletion mutants, except the 

ΔC600-AIK1 mutant, retained their ability to interact with antizyme, suggesting the region of 

Aurora-A from a.a. 610-909 was essential for its interaction with antizyme, which coincided 

with the interaction domain for AKIP-TR.   

 209



V
ec

to
r

Δ
N

30
0-

A
IK

1

Δ
N

60
0-

A
IK

1

A
IK

1

Δ
C

30
0-

A
IK

1

Δ
C

60
0-

A
IK

1

AZ1 +

Aurora-A 
& Mutants

AZ1

Co-IP AZ1

Total IP of Aurora-A

Total Lysate

Flag IP (Aurora-A)

 

 

 

 

 

Figure 9-8: Domain Mapping of AZ1-Interacting Domain in Aurora-A 
HeLa cells were co-transfected with His-tagged AZ1 and either empty vector or FLAG-tagged 

wild-type or various deletion mutants of Aurora-A at 1:1 ratio. 24 hours post-transfection, the 

transfected cells were harvested for FLAG immunoprecipitation. The interacting AZ1 was detected 

using the anti-AZ rabbit polyclonal antibody. Aurora-A was detected using the anti-FLAG rabbit 

polyclonal antibody. 

9.2.1.6. Dependency of Aurora-A Degradation on antizyme-Aurora-A interaction   

  With the identification of the Aurora-A mutant (ΔC600-AIK1) which was defective in 

binding antizyme, we could now study the effect of impaired antizyme:Aurora-A interaction 

on the antizyme-mediated Aurora-A degradation. We used the ΔC600-AIK1 non-interacting 

mutant for the in vivo antizyme-mediated degradation assay and compared to the wild-type 

(AIK1) or other antizyme-interacting Aurora-A mutants (ΔN300-AIK1, ΔN600-AIK1, 

 210



ΔC300-AIK1) with respect to their susceptibilities to antizyme-mediated degradation. As 

shown in Figure 9-9, both the wild-type and the antizyme-interacting Aurora-A mutants could 

be targeted by antizyme for degradation, whereas non-interacting ΔC600-AIK1 mutant was 

not susceptible for antizyme-mediated degradation, implying that the antizyme:Aurora-A 

interaction played an essential role in the antizyme-mediated Aurora-A degradation. 
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Figure 9-9: Effect of Impaired Aurora-A:AZ1 Interaction on  
AZ1-mediated Aurora-A Degradation 

ts20-CHO cells were co-transfected with His-tagged AZ1 and either FLAG-tagged wild-type or 

various deletion mutants of Aurora-A at 5:1 ratio. 36 hours post-transfection, the transfected cells 

were harvested for Western Blot analysis of the protein stability of Aurora-A, both wild-type and 

mutants in the presence of AZ1 overexpression. The Aurora-A and AZ1were detected using the 

anti-FLAG mouse monoclonal antibody and anti-AZ rabbit polyclonal antibody, respectively. β 

tubulin was used as the loading control. 

9.2.2.  Functional Link between Antizyme and AKIP-TR-mediated 
Aurora-A Degradation 

  The results presented thus far pointed to the fact that both AKIP-TR and antizyme could 

interact with and target Aurora-A for degradation.  Since AKIP-TR targeted Aurora-A for 

degradation through an Ub-independent pathway, and antizyme had also been implicated in 
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the regulation of Ub-independent degradation of other proteins like ODC and cyclin D1, it 

will be interesting to explore whether there exists a functional link between AKIP-TR and 

antizyme in the Ub-independent degradation of Aurora-A.  

9.2.2.1.  Antizyme Inhibition by Antizyme Inhibitor (AZI) 

  It had been established that the functional activity of antizyme could be inactivated by its 

negative regulator, antizyme inhibitor (AZI) [28]. To search for any interdependency between 

AKIP-TR and antizyme in Aurora-A degradation, we carried out the AKIP-TR-mediated 

Aurora-A degradation assay in the presence of antizyme inhibitor (AZI). We presumed that if 

the AKIP-TR-mediated Aurora-A degradation is antizyme-dependent, it should be sensitive to 

antizyme inhibition by the AZI overexpression.  

 For this experiment, we generated recombinant expression plasmid co-expressing AZI and 

AKIP-TR from a single bicistronic expression vector. Transfection of cells with constructs 

expressing AKIP-TR alone or with AZ1 showed (Figure 9-10) that overexpression of 

AKIP-TR alone led to the efficient down-regulation of Aurora-A. However, to our excitement, 

the coexpression of AZI and thus inhibition of antizyme function did impair the 

AKIP-TR-mediated Aurora-A degradation. This suggested that antizyme did play a role in the 

AKIP-TR-mediated Aurora-A degradation. On the other hand, to rule out the possibility that 

AZI overexpression might affect the Aurora-A protein stability directly, we included the 

negative control where we overexpressed AZI alone, however, it did not have any effect on 

 212



the Aurora-A protein stability.  
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Figure 9-10: Effect of Antizyme Inhibition via Antizyme Inhibitor (AZI) on 
AKIP-TR-mediated Aurora-A Degradation 

ts20-CHO cells were co-transfected with HA-tagged Aurora-A and (i) pIRES (Lane 1); (ii) 

pIRES-[Flag-AKIP-TR] (Lane2); (iii) [HA-AZI]-pIRES (Lane3); (iv) [HA-AZI]-pIRES-[Flag 

AKIP-TR] (Lane 4) at 1:9 ratio. 36 hours post-transfection, transfected cells were harvested for 

Western Blot analysis of the protein stability of Aurora-A kinase in the presence of AKIP-TR or AZI 

or both AKIP-TR and AZI overexpression. Both Aurora-A and AZI were detected using the anti-HA 

mouse monoclonal antibody and AKIP-TR was detected using the anti-FLAG mouse monoclonal 

9.2.2.2.  Defective Degradation of Antizyme Non-Interacting Mutant of 
Aurora-A by AKIP-TR 

  As shown in the previous section, inhibition of antizyme function by the antizyme inhibitor 

blocked the AKIP-TR-mediated Aurora-A degradation. Moreover, both AKIP-TR and 

antizyme bound Aurora-A and targeted Aurora-A for degradation. To further demonstrate the 

existence of a functional link between AKIP-TR and antizyme in mediating Aurora-A 

degradation, we went on to investigate the consequence of impaired antizyme:Aurora-A 

interaction on the AKIP-TR-mediated Aurora-A degradation. 
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  To this end, we carried out in vivo degradation assay in the presence of AKIP-TR using the 

antizyme non-interacting ΔC600-AIK1 mutant. Its susceptibility to AKIP-TR-mediated 

degradation was compared to that of wild type and other antizyme-interacting Aurora-A 

mutants (ΔN300-AIK1, ΔN600-AIK1, ΔC300-AIK1). As shown in Figure 9-11, only the 

ΔC600-AIK1 mutant was defective in being targeted by AKIP-TR for degradation, suggesting 

that antizyme: Aurora-A interaction was essential for the AKIP-TR-mediated Aurora-A 

degradation. 
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Figure 9-11: Effect of Impaired Aurora-A:AZ1 Interaction on  
AKIP-TR-mediated Aurora-A Degradation 

ts20-CHO cells were co-transfected with HA-tagged AKIP-TR and either FLAG-tagged 

wild-type or various deletion mutants of Aurora-A at 5:1 ratio. 36 hours post-transfection, the 

transfected cells were harvested for Western Blot analysis of the protein stability of Aurora-A, 

both wild-type and mutants, in the presence of AKIP-TR overexpression. The Aurora-A and 

AKIP-TR were detected using the anti-FLAG and anti-HA mouse monoclonal antibodies, 

respectively. β tubulin was used as the loading control. 
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9.2.2.3.  In vivo Interaction between Antizyme and AKIP-TR 

  To further understand how the antizyme participates the AKIP-TR-mediated Aurora-A 

degradation, we decided to probe into the possibility of any in vivo interaction between the 

antizyme and AKIP-TR.  We had previously demonstrated the in vivo interaction between 

the AKIP-TR and Aurora-A and the AKIP-TR-mediated Aurora-A degradation involved 

antizyme. To investigate the relationship between AKIP-TR and antizyme further, we carried 

out in vivo interaction assays between AKIP-TR and antizyme.  However, as shown in 

Figure 9-12, no in vivo interaction could be detected between AKIP-TR and antizyme, 

indicating that the functional role of antizyme in AKIP-TR-mediated Aurora-A was 

independent of antizyme-AKIP-TR interaction. 
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Figure 9-12: In vivo Interaction between AKIP-TR and Antizyme 
HeLa cells were co-transfected with His-tagged AZ1 and either empty vector or FLAG-tagged 

AKIP-TR at 1:1 ratio. 24 hours post-transfection, the transfected cells were harvested for FLAG 

immunoprecipitation. The interacting AZ1 was detected using the anti-AZ rabbit polyclonal 

antibody. AKIP-TR was detected using the anti-FLAG rabbit polyclonal antibody. 
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9.2.2.4.   [Aurora-A] : [Antizyme] : AKIP-TR] Ternary Complex 

  At present, in vivo interaction had been detected between Aurora-A and AKIP-TR and 

between Aurora-A and antizyme, though in vivo interaction between AKIP-TR and antizyme 

was undetectable. Therefore, it is possible that Aurora-A, AKIP-TR and antizyme might form 

a ternary complex in vivo.  
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Figure 9-13: In vivo Ternary Complex of [Aurora-A] : [AZ1] : [AKIP-TR] 
HeLa cells were co-transfected with His-tagged AZ1, HA-tagged Aurora-A and either empty 

vector or FLAG-tagged AKIP-TR at 1:1:1 ratio. 24 hours post-transfection, the transfected cells 

were harvested for FLAG immunoprecipitation. The interacting AZ1 and Aurora-A were 

detected using the anti-AZ and anti-HA rabbit polyclonal antibodies, respectively. AKIP-TR was 

detected using the anti-FLAG rabbit polyclonal antibody. 

  To study the formation of the [Aurora-A]: [antizyme]: [AKIP-TR] ternary complex in vivo, 

we immunoprecipitated AKIP-TR from cell lysate overexpressing Aurora-A, antizyme and 

AKIP-TR and attempted to detect the co-immunoprecipitated Aurora-A and antizyme. 

 216



Immunoprecipitation study had shown that the immunoprecipitated AKIP-TR pulled down 

both Aurora-A and antizyme, as shown in Figure 9-13. This suggested that AKIP-TR, 

Aurora-A and antizyme could exist as a ternary complex in vivo. 

 

9.2.3.   Role of AKIP-TR and Antizyme in Aurora-A Degradation 

9.2.3.1.  Affinity of Antizyme to Aurora-A in the Presence of AKIP-TR 

  Now we had clearly demonstrated the existence of a functional link between the AKIP-TR 

and antizyme in mediating the degradation of Aurora-A, the next question that looms is the 

order of these modulators in the pathway. Based on the current knowledge on the mechanism 

of antizyme-mediated degradation where binding of antizyme to its protein substrate enhances 

the recognition and targeting of substrate to the proteasome, we speculate that AKIP-TR acts 

upstream of antizyme in targeting the Aurora-A for protein degradation. There are two 

possible mechanisms for the Aurora-A Ub-independent degradation. In one case, AKIP-TR 

might increase the affinity of Aurora-A to antizyme and therefore Aurora-A can be targeted 

more efficiently to the proteasome for degradation in the Ub-independent manner. On the 

other hand, it is also possible that AKIP-TR could stimulate the frameshifting and expression 

of antizyme and hence increase binding of antizyme to Aurora-A and subsequent 

enhancement of the Aurora-A targeting to proteasome for Ub-independent degradation. 

  To assess whether AKIP-TR acts upstream of antizyme by enhancing the antizyme: 

Aurora-A interaction, we employed the co-immunoprecipitation assay to study the efficiency 
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of interaction between Aurora-A and antizyme in the presence and absence of AKIP-TR 

overexpression. As shown in Figure 9-14, in the presence of AKIP-TR overexpression, the 

binding of antizyme to Aurora-A was significantly enhanced.  
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Figure 9-14: Binding Affinity of Antizyme to Aurora-A in the Presence of AKIP-TR 
HeLa cells were co-transfected with His-tagged AZ1 and FLAG-tagged Aurora-A at 1:1 ratio in the 

absence or presence of HA-tagged AKIP-TR overexpression. 24 hours post-transfection, the 

transfected cells were harvested for FLAG immunoprecipitation. The interacting AZ1 was detected 

using the anti-AZ rabbit polyclonal antibody. The Aurora-A and AKIP-TR were detected using the 

anti-FLAG and anti-HA rabbit polyclonal antibody. 
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9.2.3.2.  Affinity of AKIP-TR to Aurora-A in the Presence of Antizyme 

  On the other hand, we also studied the efficiency of interaction between Aurora-A and 

AKIP-TR in the presence and absence of antizyme overexpression. As expected, the 

Aurora-A:AKIP-TR interaction was not influenced even in the presence of antizyme 

overexpression, as demonstrated in Figure 9-15, supporting our initial hypothesis that 

AKIP-TR acted upstream of antizyme in mediating the degradation of Aurora-A. 
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Figure 9-15: Binding Affinity of AKIP to Aurora-A in the Presence of Antizyme 
 
HeLa cells were co-transfected with FLAG-tagged AKIP-TR and HA-tagged Aurora-A at 1:1 ratio in 

the absence or presence of His-tagged AZ1 overexpression. 24 hours post-transfection, the 

transfected cells were harvested for FLAG immunoprecipitation. The interacting Aurora-A was 

detected using the anti-HA rabbit polyclonal antibody. The AZ1 and AKIP-TR were detected using 

the anti-AZ and anti-FLAG rabbit polyclonal antibody. 
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9.2.3.3.   No Induction of Antizyme Expression in the Presence of AKIP-TR 

  Finally, we also probed into the other possibility that AKIP-TR might stimulate the 

translational frameshifting and expression of antizyme, thereby promoting the interaction 

between Aurora-A and antizyme. A wild-type form of antizyme without the pre-incorporated 

frameshift mutation, was used in the present study to assay if the AKIP-TR overexpression 

induces the translational frameshift and expression of antizyme. Putrescine-induced 

frameshifting of the wild-type antizyme was used as the positive control. Results from Figure 

9-16 had shown that putrescine did induce the antizyme expression by translational 

frameshifting whereas the AKIP-TR overexpression did not, suggesting AKIP-TR did not 

promote the antizyme binding to Aurora-A through the induction of antizyme expression by 

translational frameshift. 
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Figure 9-16: Effect of AKIP-TR Overexpression on  
Translational Frameshifting and Expression of Antizyme 

HeLa cells were co-transfected with His-tagged wild type AZ1 and either empty vector or 

FLAG-tagged AKIP-TR at 1:3 ratio in the absence or presence of putrescine treatment for 24 

hours. 24 hours post-transfection, the transfected cells were harvested for FLAG 

immunoprecipitation. The expression of frameshifted AZ1 in the presence of AKIP-TR 

overexpression or putrescine treatment was monitored. The AZ1 and AKIP-TR were detected using 

the anti-AZ and anti-FLAG rabbit polyclonal antibody. 
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9.3.   Discussions 

  The protein degradation of increasing number of cell cycle regulators is found to deviate 

from the prevailing ubiquitin-proteasome paradigm of destruction, instead their degradation 

can be completely Ub-independent or coexist with the Ub-dependent pathways [1]. These cell 

cycle regulators include Cdk inhibitor-p21 [2-3] and p27 [4], cyclin D1 [5] as well as the 

tumor suppressor-p53, p73 [6-7] and Rb [8-9]. We had previously demonstrated that Aurora-A 

kinase, one of important regulators for mitosis, could also be targeted for its protein 

degradation through the Ub-independent pathway and this Ub-independent degradation of 

Aurora-A was potentiated by AKIP. In view of the existence of an Ub-independent 

degradation for these cell cycle proteins, this alternative pathway, which uncouples 

degradation from ubiquitin modification, may reflect a specialized regulatory mechanism for 

cell cycle regulation, which remains an interesting question yet to be answered. 

  With respect to the detailed mechanism on how the protein substrates could be targeted to 

proteasome in the absence of the polyubiquitin tag, the knowledge is still very limited though 

a few studies had shed some lights on the possible ways to protein targeting. Our present 

work focusing on the mechanism AKIP-mediated targeting of Aurora-A for Ub-independent 

proteasomal degradation, had successfully discovered a functional link between 

AKIP-mediated Aurora-A degradation to antizyme, currently the most well-studied mediator 

for Ub-independent protein degradation. To date, the protein degradation of ornithine 

decarboxylase (ODC) [10] and cyclin D1 [5] had been shown to be regulated by antizyme 
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(AZ) [11-12] in the Ub-independent manner, however, the mechanism of AZ-mediated 

degradation of ODC is more well characterized.  

  AZ can interact with ODC and this binding is essential to target ODC for degradation by 

the 26S proteasome. With respect to role of AZ in mediating ODC protein degradation, 

studies had found that the attachment of AZ changed the ODC protein conformation, thereby 

exposing its C-terminal degradation signal for recognition by 26S proteasome and hence 

enhancing the association of ODC with proteasome [13]. Moreover, AZ was also thought to 

be a potential functional equivalent of polyubiquitin tag as studies had shown that 

substrate-linked or free polyubiquitin chains could compete for the AZ-mediated ODC 

degradation [14]. In other word, AZ and polyubiquitin chain might share the same recognition 

element on the proteasome [14]. Similarly, AZ also interacts with cyclin D1 and this 

interaction facilitates the cyclin D1 Ub-independent protein degradation [5]. However, 

whether or not AZ enhances the cyclin D1 association with proteasome in a similar way to 

ODC has not been addressed and demonstrated.  

  The role of AZ in Aurora-A degradation was clearly shown in our study, as either ectopic 

expression of AZ or endogenous AZ induction by polyamine could lead to the 

down-regulation of Aurora-A protein stability, which was consistent with cases with ODC and 

cyclin D1. Furthermore, AZ could also interact with Aurora-A and the AZ:Aurora-A 

interaction was essential for the AZ-mediated Aurora-A degradation, as had been observed for 
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the AZ-mediated ODC and cyclin D1 degradation. Based on the role of AZ in 

proteasome-targeting of ODC, it would be interesting to investigate whether it was also the 

same case for the role of AZ in the recognition and targeting of Aurora-A to proteasome. 

However, our study had added another level of complexity in the AZ-mediated degradation of 

Aurora-A, which involved the regulation from AKIP. Our study had shown that AKIP acted 

upstream AZ in the Ub-independent degradation pathway for Aurora-A, where AKIP 

enhanced the affinity of Aurora-A to AZ. It is yet to be demonstrated whether this enhanced 

binding of AZ to Aurora-A in the presence of AKIP helps targeting Aurora-A more efficiently 

to proteasome for ubiquitin-independent degradation. However, the results from our study 

showed that AKIP overexpression exerted no effect on induction of AZ translational 

frameshifting and expression, suggesting that AKIP may regulate the AZ-mediated Aurora-A 

degradation at the post-translational level of AZ expression. It should be noted that the study 

was carried out with the N-terminally truncated form of AKIP, which we had previously 

shown to be sufficient for mediating Aurora-A degradation as well as more efficient in 

Aurora-A degradation. However, it is possible that the N-terminus truncated portion of AKIP, 

though may be unnecessary for mediating Aurora-A degradation, may instead important for 

inducing the translational frameshifting and expression of AZ. This possibility awaits future 

investigations. 

  Our studies on in vivo ternary complex formation of AKIP:Aurora-A:AZ and the 
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characterization of their interactions in any combination of two,  had suggested the potential 

of in vivo ternary complex formation of endogenous AKIP:Aurora-A:AZ and this ternary 

complex formation depended on both the Aurora-A:AKIP interaction and Aurora-A:AZ 

interaction with no direct involvement of the AKIP:AZ interaction. There is a possibility that 

the binding of AKIP to Aurora-A may change its protein conformation, thereby exposing the 

important domain for the recognition and binding by AZ. A successful testing of this 

possibility probably accounts for the mechanism on how AKIP promotes the AZ binding to 

Aurora-A.  

  Our two main studies showing the abrogation of AKIP-mediated Aurora-A degradation in 

the presence of either antizyme inhibition or impaired Aurora-A:AZ interaction, had clearly 

identified the important role of antizyme in AKIP-mediated Aurora-A degradation. Though 

antizyme had been previously shown to target ODC for degradation via 26S proteasome in the 

ATP-dependent manner [15], it was unclear yet whether AKIP-mediated Aurora-A 

degradation, which we had shown to be also AZ- and proteasome-dependent, is mediated 

through the ATP-dependent 26S proteasome or ATP-independent 20S proteasome. 

  Surprisingly, another study uncovered a novel but contradictory role of AZ against its 

normal regulation of the Ub-independent protein degradation. AZ together with the 

proteasomal subunit HsN3 were shown to be involved in targeting the Smad 1 to the 

proteasome for degradation through the Ub-dependent mechanism [16-17], the first and only 
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demonstration of AZ playing a role in the regulation of Ub-dependent protein degradation. 

  Several studies had shown that perturbation of the antizyme level could affect the cell cycle 

progression [18-21], but the mechanism by which antizyme influences the cell cycle is still a 

doubt. The previous study with AZ-mediated cyclin D1 degradation [5] and our current study 

on AZ-mediated Aurora-A degradation suggested this effect of antizyme could be mediated by 

a direct interaction between antizyme and cell cycle regulators. Antizyme overexpression or 

induction could lead to cell cycle arrest in G1 phase and growth inhibition and this growth 

phenotype was observed in many organisms [22-24], implying that direct regulation of the 

cell cycle by antizyme is an evolutionary conserved biological mechanism. Therefore, 

AZ-mediated Aurora-A degradation may play a potential tumour suppressor role in those 

cancer cells overexpressing Aurora-A, probably also through the suppression of cell 

proliferation and induction of apoptosis. Since Aurora-A also plays a positive role in cell 

migration, down-regulation of Aurora-A in cancer cells via AZ induction may inhibit the 

metastasis, thereby reducing the invasiveness of the cancer. So, it would be interesting and 

crucial to know how significance is the role AZ-mediated Aurora-A down-regulation in the 

suppression of cell proliferation and metastasis. 

  During the cell cycle, cyclin D1 is phosphorylated at Thr-286 and this phosphorylation is 

essential for promoting the ubiquitination and cell cycle-dependent degradation of cyclin D1 

[5]. In addition, this phosphorylation also controls the nuclear localization of cyclin D1 in 
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which phosphorylation induces the nuclear export of cyclin D1 to cytoplasm [25]. This 

redistribution of cyclin D1 depends on the nuclear exportin CRM1 [25]. Similarly, nuclear 

localization signals had been identified in antizyme and antizyme had also been shown to 

shuttle between nucleus and cytoplasm in a CRM1-dependent manner [26]. Interestingly, 

localization of antizyme and ODC to the nucleus had been demonstrated during mouse 

development [27]. All these findings suggested antizyme could bind to ODC and other 

proteins in the nucleus and escort them to cytoplasm for degradation [26]. This implication 

may be relevant to the possible physiological role of AKIP-mediated Aurora-A degradation. 

As AKIP is a nuclear protein and Aurora-A is regulated by phosphorylation in the cell 

cycle-dependent manner, it will be interesting to investigate the subcellular localization of 

AKIP-mediated Aurora-A degradation as well as how AKIP co-operates with antizyme in 

Aurora-A degradation.  

 

9.4.  Conclusion 

  In summary, our identification of antizyme role in Aurora-A degradation has further 

strengthened the implicated role of antizyme in cell cycle regulation, though its physiological 

significance is yet to be discovered. Moreover, the identification of AKIP as an upstream 

regulator of antizyme in Aurora-A degradation provides us a stepping stone towards a better 

understandings of the ubiquitin-independent protein degradation mediated by antizyme. I 

believe a clearer understanding of the physiological roles of AKIP and antizyme in Aurora-A 
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degradation in the future will shed some lights on the tumour suppressor potential of AKIP 

and make AKIP a good target for the anti-cancer drug. 
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10.1.  Current View and Hypothesis 
 
Possible Anti-Tumour Role of AKIP-mediated Ub-Independent 
Degradation of Aurora-A 

  Based on the information and data presented in this thesis, a hypothesis on the possible 

anti-tumour role of AKIP through its interplay with AZ in the Ub-independent degradation of 

Aurora-A is summarized in Figure 10-1. 

  The protein levels of Aurora-A can be upregulated under two situations: (1) physiological 

induction during M phase of the cell cycle; (2) abnormal induction through acquired gene 

amplification, transcriptional activation and protein stabilization. Under normal condition, 

Aurora-A undergoes cell cycle-dependent protein degradation, with its protein expression 

peaking at G2/M and rapidly degraded upon mitotic exit into next G1 phase. This cell 

cycle-dependent degradation of Aurora-A is mediated by the Cdh1-Ub-dependent pathway. 

Defective Aurora-A degradation during M to G1 transition could also lead to aberrant mitosis 

and subsequently induction of chromosomal instability and oncogenic transformation. 

  Alternatively Aurora-A can be degraded in an Ub-independent mode, which is mediated 

through the AKIP. Normally, AKIP protein may be unstable, present at low level or 

sequestered in nucleolus, thereby protecting Aurora-A from the AKIP-induced constitutive 

Ub-independent degradation. However, under certain physiological setting, which is yet to be 

discovered, AKIP protein stability may increase or the AKIP sequestered in the nucleolus may 

be released. The induced or released AKIP can then bind Aurora-A. Binding of Aurora-A by 
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AKIP blocks the ubiquitination of Aurora-A, thereby turning off the Ub-dependent pathway 

for Aurora-A degradation. The Ub-dependent mode of degradation may not be not favored 

under certain abnormal situation as it is more energy consuming and more complex involving 

protein modification by ubiquitin tag. Instead, Aurora-A will be channeled through the 

Ub-independent degradation pathway. 

  Normally Aurora-A associates weakly with antizyme (AZ) and plays important role in 

targeting protein to proteasome for subsequent Ub-independent degradation. Binding of AKIP 

to Aurora-A increases the affinity of AZ to Aurora-A, hence enhancing the recognition and 

targeting of Aurora-A to proteasome for degradation. AZ is spared from destruction and thus 

recycled for another round of AKIP-mediated Aurora-A degradation until normal level of 

Aurora-A protein is reached. Therefore, this protective mechanism against abnormal Aurora-A 

accumulation via AKIP may therefore prevent the transformed phenotypes induced by 

Aurora-A overexpression. 
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Figure 10-1: Hypothesis of Possible Anti-Tumour Role of AKIP-Mediated 
Ub-Independent Degradation of Aurora-A
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10.2.   Future Outlook 

   The data obtained from current studies could lead us to speculate various interesting 

possibilities for future studies. The localization of AKIP to nucleolus suggests the possibility 

of a role for AKIP in ribosomal biogenesis, which is essential for the protein synthesis in the 

cell [1-2]. Interestingly, recent studies had uncovered a wider and more dynamic role of 

nucleolus. Nucleolus is not just a site for the ribosomal synthesis machinery, but also for some 

newfound nucleolar oncogenes and tumor suppressors [3]. It can function as a cellular stress 

sensor and adapt to stress through not only ribosome production and subsequent protein 

translation but also through activation of downstream growth suppressors, such as ARF and 

p53 [4]. Nucleolar dysfunction has now been closely linked to tumorigenesis [3]. Hence, it 

might be interesting to investigate the link between AKIP-mediated Aurora-A degradation and 

cellular stress response, which may have significant implications in tumorigenesis. Our 

preliminary data showed that cellular stress by UV could influence the subcellular localization 

of AKIP (data not shown). We had observed that UV treatment of AKIP-expressing cells 

induced the translocation of AKIP out from nucleolus into nucleoplasm. The significance of 

this finding in relation to AKIP-mediated Aurora-A degradation could be addressed in the 

future. 

  On the other hand, the change in AKIP localization from nucleolus during interphase to 

mitotic structure during mitosis showed similarity to that of a group of proteins, called mitotic 
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exit network (MEN) proteins. MEN functions as a checkpoint protein that is different from 

that of the spindle assembly checkpoint, where it regulates the processes at the end of mitosis. 

MEN is found on the spindle pole body where it controls the activation of APC/C by the Cdh1 

activator. It is normally sequestered in nucleolus throughout most of the cell cycle and 

released from nucleolus only at the end of mitosis. Much works on MEN were performed in 

yeast, knowledge on the role of MEN in higher eukaryotes is still very limited. One example 

of MEN protein is the Cdc14 from S.cerevisiae. Cdc14 is localized in the nucleolus during 

most of the cell cycle as part of the RENT complex (REgulation of Nucleolar silencing and 

Telophase exit) and is then liberated from nucleolus at the end of mitosis. Cdc14 activates 

APCCdh1-dependent degradation of Clb2 and increase the expression and stability of Cdk 

inhibitor Sic1, thereby promoting the mitotic exit and assembly of pre-replication complexes 

for DNA synthesis in next cycle. Cdc14 is bound to Net1 in the nucleolus, which anchors and 

inhibits Cdc14. It would be interesting to investigate whether AKIP also takes up the similar 

role as MEN, regulating the mitotic exit by ensuring the proteolysis of Aurora-A upon exit 

into G1 [9-14] and how this is linked with the Cdh1-Ub-dependent degradation of Aurora-A, 

which also occurs during M to G1 transition. 

  The identification of AKIP as a negative regulator of Aurora-A oncogene suggests its 

potential as a target for anti-cancer drugs. Several small molecule inhibitors of Aurora kinases, 

which target specifically their kinase activity by occupying the catalytic ATP-binding sites, 
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had been developed recently [6-7]. One of them, called VX-680 had shown very promising 

results in its anti-tumor potential and treatment of tumors that are resistant to the standard 

therapies [8]. The development of these inhibitors has strengthened our confidence that 

targeting Aurora kinases could be useful for cancer therapy. However, these inhibitors did not 

selectively inhibit a particular member of Aurora kinase family and this might increase the 

potential for toxic effects in the clinical setting. Therefore, if inhibition of kinase activity of a 

single Aurora family member can mediate the anti-tumor activity, then it could be beneficial 

to develop selective inhibitors of that particular Aurora kinase.  

  In this context, AKIP may be a good candidate as shown by its specificity towards 

Aurora-A. Still, it is yet to be demonstrated that Aurora-A is the most suitable and useful 

target among the Aurora kinase family for therapeutic intervention. In the context of cancer 

therapy by targeting Aurora-A kinase, drugs that target the protein stability of Aurora-A may 

be a better choice than those that target the kinase activity of Aurora-A. The centrosome 

amplification induced by Aurora-A overexpression, which is implicated in subsequent failure 

of bipolar spindle assembly and aneuploidy, does not require the kinase activity of the 

Aurora-A, although kinase activity is still necessary for the oncogenic transformation [15]. 

AKIP, being a negative regulator of Aurora-A targeting its protein stability, can therefore 

serve as a better anti-cancer target in preventing transformation phenotypes caused by both 

levels of high protein expression and kinase activity. Moreover, if Aurora-A exists as part of a 
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multiprotein complex that has structural or catalytic roles, destabilization of Aurora-A protein 

may affect the stoichiometry of the complex and disrupt the normal localization and function 

of its binding partners. Therefore, future works focusing on the tumour suppressor role of 

AKIP is of utmost importance. The role of AKIP in the reversal of Aurora-A-induced 

transformed phenotype, like increased cell proliferation, centrosome amplification, 

aneuploidy, in vitro transformation and formation of tumour in nude mice, should be 

addressed and investigated next. 

   In a recent attempt to address the possibility of Aurora-A as the therapeutic target for 

pancreatic cancer, it was found that specific knockdown of Aurora-A in pancreatic cancer 

cells strongly suppressed the in vitro cell growth and in vivo tumorigenicity, by inducing 

G2/M arrest and subsequent apoptosis. Furthermore, the knockdown of Aurora-A also 

synergistically enhanced the sensitivity of the pancreatic cancer cells to the chemodrug Taxol 

[5]. As AKIP also knocks down Aurora-A protein level through potentiation of its degradation, 

it would be interesting to investigate the possibility that down-regulation of Aurora-A by 

AKIP might also have similar anti-tumor or taxol chemosensitizing activity. 

  Apart from its role in the destabilization of Aurora-A kinase when overexpressed, the 

normal function of AKIP is yet to be established. It will be interesting to investigate whether 

AKIP is also the normal physiological trigger for Aurora-A degradation. Other pertinent 

questions to be answered include the subcellular location where interaction between AKIP 
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and Aurora-A occurs. Being a negative regulator of Aurora-A oncogene, there is a possibility 

that down-regulation of AKIP could play a role in tumorigenesis. Systematic analysis of AKIP 

mRNA and protein expression in the tumor tissues may be necessary to address this question. 
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Aurora kinases have evolved as a new family of mi-
totic centrosome- and microtubule-associated kinases
that regulate the structure and function of centrosomes
and spindle. One of its members, Aurora-A, is a potential
oncogene. Overexpression of Aurora-A is also implicated
in defective centrosome duplication and segregation,
leading to aneuploidy and tumorigenesis in various can-
cer cell types. However, the regulatory pathways for
mammalian Aurora-A are not well understood. Exploit-
ing the lethal phenotype associated with the overex-
pression of Aurora-A in yeast, we performed a dosage
suppressor screen in yeast and report here the identifi-
cation of a novel negative regulator of Aurora-A, named
AIP (Aurora-A kinase Interacting Protein). AIP is a
ubiquitously expressed nuclear protein that interacts
specifically with human Aurora-A in vivo. Ectopic ex-
pression of AIP with Aurora-A in NIH 3T3 and COS cells
results in the down-regulation of ectopically expressed
Aurora-A protein levels, and this down-regulation is
demonstrated to be the result of destabilization of
Aurora-A through a proteasome-dependent protein
degradation pathway. A noninteracting deletion mutant
of AIP does not down-regulate Aurora-A protein, sug-
gesting that the interaction is important for the protein
degradation. AIP could therefore be a potential useful
target gene for anti-tumor drugs.

Faithful chromosome segregation and cytokinesis are two
essential steps in mitosis, which is responsible for the viability
and genetic stability of daughter cells. This involves the con-
certed spatial and temporal interactions among various com-
ponents such as the chromosomes, centrosomes, actin, and the
microtubule cytoskeleton. Defined at the molecular level, the
stability and the activation/inactivation of the proteins associ-
ated with these structures result in the regulation of the chro-
mosome, centrosome, spindle microtubules, and actin dynam-
ics. Reversible protein phosphorylation plays an important
regulatory role in orchestrating the interactions among various
proteins during mitosis (1–6). Many of the protein kinases and
their opposing phosphatases, which are involved in these sig-
naling cascades, have been identified (7). For example, the
cyclin-dependent kinases are activated by cdc25 phosphatase
(8) to regulate different stages of M phase, starting from trig-

gering the mitotic entry, spindle formation, anaphase to cyto-
kinesis (9–12). Similarly, polo-like kinases regulate several
processes, which include centrosome maturation, cyclin-
dependent kinase 1 activation and inactivation, and cytokine-
sis (9, 13–15). Other participating kinases include Bub1 kinase,
which localizes to the kinetochore and regulates the anaphase
checkpoint (16), and the centrosome-associated NimA-related
kinase, which primarily regulates the centrosome cycles (17).
The stability of the mitotic regulators also plays a pivotal role
in the progression and completion of mitosis. In mitotic cells,
progression into anaphase depends on the activation of the
anaphase-promoting complex/cyclosome (APC/C)1 by phospho-
rylation to degrade the mitotic regulators (18, 19).

Recently, the Aurora kinase family emerged as a new family
of mitotic serine threonine kinases regulating the centrosomal
and microtubule function, ensuring the accurate chromosome
segregation and efficient completion of cytokinesis (20, 21). The
Aurora kinase family was first identified in the budding yeast
as Ipl1 (22), and subsequently various homologs of Ipl1 have
been isolated from diverse organisms, ranging from Drosoph-
ila, Xenopus, Caenorhabditis elegans, mouse, rat, to human
(20, 21). Ipl1 is the only representative of this family in yeast,
two Aurora-related kinases are found in Drosophila and C.
elegans, and three in mammals (20, 21). Their roles in chromo-
some segregation are implicated in the phenotypes of various
mutants. S. cerevisiae ipl1 mutants showed abnormal chromo-
some segregation and ploidy (22–24). Drosophila Aurora mu-
tants showed defective centrosome separation resulting in the
formation of monopolar spindles (25). They share similarity in
their kinase catalytic domain but no or little similarity in their
N-terminal domain, which seems to be species- and member-
specific. Their expression and kinase activity are tightly cell
cycle-regulated, peaking at M phase and disappearing rapidly
upon mitotic exit (26–30). In mammals, there are three mem-
bers of this family, designated Aurora-A, Aurora-B, and Auro-
ra-C. Orthologs of Aurora-A kinase localize to the centrosome
and mitotic spindle and function during the early part of the
mitosis from prophase (27, 29, 31, 49). Aurora-B kinase local-
izes to the mid-body and postmitotic bridge, functioning during
the late mitosis, and plays a role in cytokinesis (30, 32). Human
Aurora-C kinase localizes to the anaphase centrosomes (33),
and its function remains to be elucidated.

Increased attention has now been focused on Aurora-A
kinase because of its suggestive role in tumorigenesis. Over-
expression of Aurora-A kinase is observed in more than 50%
of primary colorectal tumors and 6–18% of primary breast
tumors (29, 31). Human Aurora-A kinase maps to chromosome
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20q-13.2 (30), which is frequently amplified in several human
tumors (29, 34–38). Ectopic overexpression of Aurora-A in near
diploid normal breast epithelial cells causes centrosome hyper-
amplification and aneuploidy (31). Also, overexpression of
Aurora-A in rodent cells displayed cellular transforming activ-
ity, suggesting that when overexpressed, Aurora-A could func-
tion as a potential oncogene (29, 31). The extensive research
done on the yeast homolog Ipl1, Xenopus homolog Eg2, and
Drosophila aurora had shed some light into the functional role
of Aurora-A kinase in mitosis. Kinesin-related proteins CIN8
(39), Pav (40) and Eg5 (41) were found to interact directly with
the Aurora kinase homologs in yeast (Ipl1), Drosophila (auro-
ra), and Xenopus (Eg2), respectively. Also, yeast Ipl1 is also
found to interact with the kinetochore protein Ndc10, implying
the possible role of Aurora kinase in the establishment of the
mitotic checkpoint via monitoring the capture of the chromo-
some kinetochores by the spindle microtubule (24, 42, 43).
Human Aurora-A kinase is shown to interact with Cdc20 (44),
which is involved in the mitotic activation of anaphase-promot-
ing complex APC/C (45).

Presently, only very limited knowledge is available on the
function(s) of Aurora-A kinase in mammals. Understanding the
functions of Aurora-A kinase and delineation of the Aurora-A
kinase signaling pathway would definitely help us to have a
clearer understanding of the role of the kinase in chromosome
segregation and neoplastic transformation. Hence, in an effort
to identify any interacting proteins as well as the negative
regulators of Aurora-A kinase, a dosage suppressor screen in
which HeLa cell cDNAs that can alleviate Aurora-A-mediated
cytotoxicity in yeast has been carried out. In this paper, we
report the identification of AIP, one such potential negative
regulator of Aurora-A kinase.

EXPERIMENTAL PROCEDURES

Yeast Dosage Suppressor Screening—Yeast strain EGY188 (MATa
trp1his3ura3leu2::2 LexAop-LEU2) was maintained in the rich YPD
medium. Yeast transformation, plasmid isolation, and protein extracts
were prepared as described (46). For cDNA library screening, EGY188
cells were grown to log phase in YPD and cotransformed with plasmids
containing 150 �g of Aurora-A cDNA in pEG202 and 150 �g HeLa cell
cDNAs in pJG4-5 using the LiOAc method (47). The resulting transfor-
mants were selected on galactose containing synthetic dropout media
lacking histidine and tryptophan (SD�His�Trp). Yeast clones, which
survived the Aurora-A-mediated cytotoxicity, were reconfirmed by
streaking onto glucose- and galactose-containing synthetic dropout
media, and the clones, which grew only on the galactose-containing
plates, were characterized further by sequencing.

Cloning of AIP and Plasmid Constructs—To clone a full-length AIP
cDNA, a PCR-based approach was employed. Two primers, GG8 (5�-
CGC TGC CGA TCG GGG CCG ACT-3�) and GG10 (5�-ACT ACG GAT
CAC AGC AGC AAC-3�), were designed for PCR cloning of AIP from the
HeLa cell cDNA library. All Aurora-A and AIP constructs were made in
the mammalian expression vector pCDNA3 (Invitrogen). The cyclin B1
expression plasmid pAPuro-CyclinB1 was a kind gift from Dr.
Prochownik, Pittsburgh, PA. To trace the transfected AIP, a FLAG
epitope was introduced at the N terminus of both truncated AIP-TR
(87–600 bp) and full-length AIP (1–600 bp) constructs by PCR as
described previously (28).

Northern Blot Analysis—Pre-made blots containing poly(A) RNA
isolated from adult human tissues and a human cancer cell line panel
were purchased from Clontech and used for hybridization with AIP-
specific probe. Blots were hybridized according to Church and Gilbert
(48) with a 477-bp AIP 3�-end fragment labeled using a random prime
labeling kit. Blots were then stripped and reprobed with �-actin to
quantitate RNA loading.

Cell Culture, Transfection, and Drug Treatment—NIH 3T3 and COS
cells were maintained in Dulbecco’s modified Eagle’s medium, and
HeLa cells were maintained in RPMI 1640 supplemented with 10%
fetal bovine serum. Transfections of cultured cell lines have been car-
ried out using LipofectAMINE (Invitrogen) according to the manufac-
turer’s recommended protocol. Typically, 8 � 105 HeLa cells were
seeded in a 60-mm dish 24 h prior to the transfection and transfected

with different plasmids at a total concentration of 3 �g. For the in vivo
interaction assay, equal amounts of either HsAurora-A or MmAurora-B
plasmids were cotransfected with different combinations of control or
AIP-expressing constructs using the LipofectAMINE PLUS reagent (15
�l of LipofectAMINE and 8 �l of PLUS reagent) for 5 h. Similarly, 7 �
105 NIH 3T3 cells or 1.8 � 106 COS cells were plated in a 60-mm dish
24 h prior to the transfection. For Aurora-A degradation study, COS7
cells were cotransfected with HsAurora-A and FLAG-tagged AIP at
different ratios while maintaining the total amount of DNA transfected
to 3 �g. The same optimized transfection conditions were used. For
immunofluorescence staining, 3 � 105 cells were seeded on the coverslip
placed in the 35-mm dish 1 day prior to the transfection. A total of 1 �g
of plasmid DNA and 6 �l of LipofectAMINE/6 �l of PLUS reagent were
used for transfection. To inhibit 26 S proteasome-mediated protein
degradation, COS cells were treated with 20 �M N-Cbz-Leu-Leu-
Leu-AL (MG132; Sigma), 25 �M ALLM (Calbiochem), 25 �M lactocystin
�-lactone (Calbiochem), and 150 �M ALLN (Calbiochem) for 12 h.

Cell Lysis, Immunoprecipitation, and Immunoblotting—The cells
were lysed for 15 min on ice in lysis buffer (1� TBS, 10% glycerol, 1%
Nonidet P-40) containing protease inhibitors mixture (Roche Molecular
Biochemicals). The lysates were cleared by centrifugation at 13,000 rpm
for 10 min at 4 °C. The protein concentration of the lysates was meas-
ured by the Bio-Rad Protein Assay (Pierce). Prior to the immunopre-
cipitation, 1 mg of lysates was precleared by incubation with 80 �l of
50% slurry of protein G-agarose (Sigma) for 1 h at 4 °C. For antibody
coupling to the protein G-agarose, 20 �l of rabbit anti-HsAurora-A
serum (44) or 6 �g of FLAG M2 mouse monoclonal antibody (Strat-
agene) was incubated with 80 �l of 50% slurry of protein G-agarose
(Sigma) for 1 h at room temperature. For immunoprecipitation, the
precleared lysate and antibody-coupled protein G-agarose were mixed
and rotated for 2 h at 4 °C. Immune complexes were washed twice with
wash buffer I (1� TBS, 10% glycerol, 0.5% Nonidet P-40, 1% bovine
serum albumin) and twice with wash buffer II (1� TBS, 10% glycerol,
0.5% Nonidet P-40). The immune complexes were solubilized by boiling
with SDS sample buffer and resolved by SDS-PAGE. The proteins were
subsequently transferred to Hybond C� nylon membrane (Amersham
Biosciences). After blocking with 5% nonfat milk in TBS, the blots were
incubated with rabbit anti-HsAurora-A (1:1,500) or mouse monoclonal
anti IAK1 (Transduction Laboratories) at a dilution of 1:1,000 or FLAG
M2 mouse monoclonal antibody (Stratagene) at 1:2,000 overnight at
4 °C. The horseradish peroxidase-conjugated secondary antibodies were
also diluted accordingly in blocking buffer (goat anti-rabbit horseradish
peroxidase (Bio-Rad), 1:5,000; goat anti-mouse horseradish peroxidase
(Pierce), 1:8,000) and incubated with the blot for 1 h at room tempera-
ture. The secondary antibodies were detected by enhanced chemilumi-
nescence (ECL; Amersham Biosciences) and exposed to Kodak Biomax
MR film.

Construction of AIP Deletion Mutants—Four AIP deletion mutants
were created by PCR-based deletion mutagenesis. A 99-bp and a 198-bp
deletion, each separately from the N and C terminus of AIP, were
synthesized using four pairs of primers flanking the desired domain.
The forward primers were designed to add the 8-amino acid FLAG tag
to the N terminus of each mutant protein. The amplified fragments
spanning different regions of AIP were cloned into pCDNA3 for expres-
sion purposes. The expected sequences of the deletion mutants were
confirmed by sequencing.

In vivo interaction and degradation assays were carried out with
these AIP mutants as described previously.

Immunofluorescence Staining—Cells grown on coverslips were fixed
in �20 °C methanol for 5 min at room temperature. After blocking for
30 min in blocking buffer (1� TBS, 1% bovine serum albumin, 0.1%
Triton X-100, 10% goat serum, 0.02% sodium azide), cells were incu-
bated with the primary antibody, mouse anti-FLAG (Stratagene;
1:800), for 1 h at room temperature. The cells were washed thoroughly
in 1� TBS and incubated further with the respective secondary anti-
bodies. Alexa Fluor 488-conjugated goat anti-mouse IgG (Molecular
Probes) was used as the secondary antibody. For propidium iodide
staining, cells were incubated with 0.05 �g/ml propidium iodide. Cells
were analyzed by using a Leica epifluorescence microscope (Bio-Rad)
equipped with a multiband filter set and/or confocal microscopy.

RESULTS

Molecular Cloning of AIP—Overexpression of Aurora-A
kinase is lethal in yeast (29). By exploiting the lethal pheno-
type of Aurora-A kinase, we attempted to isolate mammalian
proteins that can suppress the lethal phenotype when cotrans-
formed and rescue the yeast from Aurora-A-mediated death.
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For this purpose, a plasmid construct was made in yeast
expression vector pEG202 where constitutive expression of the
full-length Aurora-A kinase in yeast is achieved using the
alcohol dehydrogenase promoter. Yeast strain EGY188 was
cotransformed with this Aurora-A plasmid and a HeLa cell
cDNA library in pJG4-5 where cDNAs were expressed under a
galactose-inducible GAL1 promoter. 0.5 � 106 cotransformants
were screened, and the resulting positive clones were selected
for galactose-dependent reversal of Aurora-A-mediated cell
death and characterized further by sequencing. Interestingly,
sequence analysis of a total of 141 positive clones revealed that
a 477-bp cDNA fragment, which we designate as AIP, contain-
ing the 3�-end of the mRNA, was represented 17 times. The
authenticity of these 17 clones was verified by the galactose-
dependent rescue from Aurora-A-mediated cell death. The high
frequency (12% of the total) and the reproducible rescue from
the Aurora-A- mediated lethality by AIP led us to characterize
this cDNA fragment further. The predicted translation product
of the cDNA fragment isolated by the suppressor screen in
yeast is presented in Fig. 1a. Comparison of the protein and
nucleotide sequence of AIP with the sequences in the GenBank
data base revealed that it is identical to the sequence corre-
sponding to an uncharacterized protein with the accession
number AK000615, a sequence submitted to the data base as a
part of the human genome sequence project. Sequences similar
to human AIP were found in mouse and rat EST data bases
also. Fig. 1b compares the deduced amino acid sequence of AIP
with the homologous sequences available in the data bases.
Human AIP shares 72 and 73% identity at the amino acid level
over its entire length with mouse and rat AIP, respectively.
However, AIP-related sequences were not found in the lower
eukaryotic genomes such as yeast, Drosophila, and C. elegans.
Based on the above information, we concluded that AIP is a
novel gene and cloned the putative full-length AIP cDNA by
5�-rapid amplification of cDNA ends. The full-length AIP cDNA
contains a 597-bp open reading frame that encodes a 199-
amino acid polypeptide with a predicted molecular mass of 22

kDa. RNA blot analysis of human tissues and cancer cell lines
indicated that AIP is ubiquitously expressed in a wide variety
of tissues, especially high in heart, skeletal muscles, and testis
(Fig. 2a). Computer-assisted search for the motifs presented in
AIP protein found a tandem bipartite nuclear localization sig-
nal, suggesting AIP could be a nuclear protein. Indeed, ectopi-
cally expressed FLAG epitope-tagged AIP was localized to the
nuclear compartment of the cell (Fig. 2b).

AIP Interacts with HsAurora-A in Vivo—The dosage sup-
pressor screen employed here to isolate AIP is capable of iden-
tifying both the direct and indirect regulator(s) of Aurora-A
kinase. Preliminary information that AIP might interact
directly with Aurora-A kinase came from the yeast two-hybrid
in vivo interaction assay where the partial AIP cDNA inter-
acted with Aurora-A to activate the LEU reporter in yeast (data
not shown). To verify whether a similar interaction between
AIP and Aurora-A occurs in mammalian cell context, we over-
expressed the FLAG-tagged AIP cDNA into HeLa cells and
attempted to coimmunoprecipitate the Aurora-A with the
transfected AIP protein. The results presented in Fig. 3 indi-
cate that AIP associates with Aurora-A in vivo and that AIP
can be coimmunoprecipitated with Aurora-A, and conversely,
Aurora-A can be coimmunoprecipitated with FLAG-tagged AIP
using FLAG antibody. However, it is noted that the interaction
of transfected AIP with the endogenous Aurora-A in vivo was
difficult to demonstrate. We presumed that the difficulty in
demonstrating the coimmunoprecipitation could be caused by
the lower amounts of Aurora-A available in AIP-transfected
cells. The result presented in Fig. 3a is the best that is achieved
under the given experimental conditions. To explore the inter-
action further, HeLa cells that are otherwise contained in com-
paratively lower levels of Aurora-A protein (data not shown)
were transfected with HsAurora-A together with FLAG-tagged
AIP, and coimmunoprecipitation followed by Western blot
analysis were carried out. The results presented in Fig. 3b
demonstrate that the transfected AIP protein and Aurora-A
protein can be coimmunoprecipitated independently of whether

FIG. 1. AIP amino acid sequence
alignment. a, the deduced amino acid
sequence of AIP isolated by dosage sup-
pressor screen in yeast is presented. This
sequence lacks the 87 amino acids from
the N terminus of the full-length AIP pro-
tein. The location of the tandem bipartite
nuclear localization signal is highlighted
with italics and underlining. b, amino
acid sequence alignment of human AIP
(hAIP) with those of mouse (mAIP) and
rat (rAIP). The mouse and rat sequences
were derived from the EST data base. The
mouse AIP sequence was derived from
EST clones AI425574 and AA545527, and
the corresponding rat AIP sequence was
derived from EST clone AI104388. Identi-
cal amino acids in the sequences are pre-
sented in bold face.
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FLAG M2- or Aurora-A-specific antibodies were used.
Overexpression of AIP Down-regulates Aurora-A Protein—

Because AIP has been isolated as the negative regulator of
Aurora-A kinase, we presumed that direct interaction of AIP
with Aurora-A kinase should result in the down-regulation of
either the stability and/or activity of Aurora-A kinase. In an
attempt to study the impact of AIP-Aurora-A interaction on the
Aurora-A protein, the levels of Aurora-A protein in AIP-trans-
fected cells were investigated. Initial attempts to study the
effect of AIP overexpression on the levels of Aurora-A protein
were unsuccessful because of lower transfection efficiency,
which was not sufficient to demonstrate the effect of AIP over-
expression on endogenous Aurora-A protein. Hence, dividing
NIH 3T3 or COS cells were cotransfected with FLAG-tagged
AIP and HsAurora-A expression constructs at different ratios,
and the levels of HsAurora-A protein were followed by Western
blot analysis. A human Aurora-A-specific peptide antiserum
was used to detect the transfected human Aurora-A in the
background of the endogenous mouse and monkey Aurora-A
protein. Ectopic expression of Aurora-A protein in human or
monkey cell lines resulted in multiple Aurora-A-specific bands.
These protein bands were verified to be Aurora-A-specific by
Western blot analysis with two different Aurora-A-specific
antibodies (data not shown). In COS cells, ectopic expression of

Aurora-A results in two Aurora-A-specific bands of which the
top band comigrated with the 46,000 endogenous Aurora-A
protein from HeLa cells (data not shown). The nature of these
other fragment(s), at present, is not clear. However, the results
presented demonstrate that AIP, when overexpressed, could
down-regulate the Aurora-A protein-specific bands in both a
dose-dependent (Fig. 4a) and time-dependent manner (Fig. 4b).
Both full-length AIP as well as the N-terminal truncated form
of AIP (AIP-TR) were able to down-regulate Aurora-A protein
(data not shown) although the truncated AIP was more effi-
cient in that it could completely deplete the ectopic expressed
Aurora-A protein in COS cells (Fig. 4, a and b).

AIP Interaction with Aurora-A Is Important for the Down-
regulation of Aurora-A—To address the question of whether
the interaction between AIP and Aurora-A is a necessary step
for the down-regulation of Aurora-A, we attempted to isolate a
deletion mutant of AIP protein, which does not interact with
Aurora-A protein. A total of four deletion mutants lacking
regions from either the N or C terminus of AIP protein were
constructed and used for Aurora-A interaction studies as de-
scribed previously. The size and location of these deletions in
the different deletion mutants in relation to the wild type AIP
protein are given in Fig. 5a. Expression of these deletion mu-
tants in HeLa as well as COS cells showed that these mutant
proteins have comparable stability (data not shown) except the

FIG. 2. AIP mRNA expression and nuclear localization. a,
Northern blot analysis of AIP mRNA in adult human tissues and cancer
cell lines was carried out with pre-made Northern blots purchased from
Clontech. The blots were hybridized with the 477-bp AIP cDNA derived
from the yeast dosage suppressor screen. The blot was stripped and
reprobed with �-actin. b, HeLa cells were transiently transfected with a
FLAG epitope-tagged AIP cDNA, and the subcellular localization of the
transfected AIP protein (panel 1) was detected by staining with FLAG
M2 monoclonal antibody (Stratagene) followed by confocal microscopy.
Counterstaining of DNA was carried out with propidium iodide (panel
2). Panel 3 represents the merged image to show the nuclear localiza-
tion of the transfected AIP protein.

FIG. 3. AIP interacts with HsAurora-A kinase in vivo. a, HeLa
cells were transfected with empty vector or FLAG-tagged AIP as
described under “Experimental Procedures.” Cell lysates equivalent to
1 mg of protein were used for immunoprecipitation (IP) with rabbit
antiserum against HsAurora-A protein as well as mouse FLAG M2
monoclonal antibody. The cell lysates and the corresponding immuno-
precipitates were separated by PAGE and blotted onto nitrocellulose
filters. The blots were probed reciprocally with HsAurora-A (lanes 1–4)
and FLAG M2 (lanes 5–8) antibodies. b, HeLa cells were transfected
with HsAurora-A and FLAG-tagged AIP constructs at a 1:1 ratio as
described before. Cell lysates equivalent to 1 mg of protein were used for
immunoprecipitation with rabbit antiserum against HsAurora-A as
well as FLAG M2 monoclonal antibody. The immunoprecipitates and
the corresponding lysates were separated by SDS-PAGE and blotted
onto nitrocellulose filters. The blots were probed reciprocally with
HsAurora-A (lanes 1–6) antibodies and FLAG M2 (lanes 7–12).
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mutant �C198-AIP, which showed lower stability. This mutant
lacks the bipartite nuclear localization signal, and it remains to
be shown whether the lack of nuclear localization signal is
responsible for the lower stability and function of this mutant.
However, all of the deletion mutants can be expressed success-
fully in both HeLa and COS cells. To compensate for the lower
stability of the �C198-AIP mutant, a higher ratio of �C198-AIP
to Aurora-A (9:1) was used instead of the usual 1:1 in the
interaction assay without compromising the levels of Aurora-A
protein. Under these conditions, the expression of �C198-AIP
protein was comparable with that of other mutant AIP pro-
teins. To rule out further the possibility that the lower levels of
�C198-AIP protein in the lysate are responsible for the absence
of detectable protein in the interaction assay, the coimmuno-
precipitation was carried out from 1 mg as well as 2 mg of
�C198-AIP protein lysates. The data presented in Fig. 5b sug-
gest that the mutants �N99-AIP, �N198-AIP, and �C99-AIP
can interact with Aurora-A protein efficiently (lanes 7–9), like
the wild type protein (Fig. 3b). However, the C-terminal dele-
tion mutant �C198-AIP did not show any interaction with
Aurora-A protein irrespective of the levels of the mutant
protein (lanes 10 and 11). This suggests that amino acids
127–166 of AIP contain elements that are necessary for the
interaction with Aurora-A protein. To investigate further the
efficacy of the noninteracting �C198-AIP mutant in degrad-
ing Aurora-A protein, an in vivo degradation assay as
described previously (Fig. 4) was performed with the wild
type AIP as well as the AIP mutants. The results presented in
Fig. 5c demonstrate that the noninteracting �C198-AIP
mutant was less efficient in degrading Aurora-A protein com-
pared with the wild type and other deletion mutants. This
suggests that the AIP/Aurora-A interaction is important for
the degradation of Aurora-A protein.

AIP Specifically Down-regulates Aurora-A—To verify the
specificity of the effect of AIP overexpression on the down-

regulation of Aurora-A protein, the effect of AIP overexpression
on MmAurora-B, another member of the Aurora kinase fam-
ily, as well as cyclin B1 was investigated. The rationale for
selecting cyclin B1 is that, like Aurora-A protein, the protea-
some-dependent pathway (50, 51) also degrades it. COS cells
were transfected with FLAG-tagged AIP-TR together with
either MmAurora-B or human cyclin B1 at ratio of 9:1,
respectively, and the effects of AIP-TR overexpression on the
levels of these proteins were analyzed. The data presented in
Fig. 6, a and b, indicate that the overexpression of AIP-TR
does not affect the down-regulation of either MmAurora-B or
human cyclin B1 and support the notion that AIP down-
regulates Aurora-A protein specifically. Also, the failure to
down-regulate cyclin B1 suggests that the effect of AIP is not
mediated by the generalized activation of the proteolytic
machinery.

Proteasome Inhibitors Reverse the AIP-mediated Down-regu-
lation of Aurora-A—It has been shown the proteasome plays a
major role in the regulation of Aurora-A stability (50). Hence, it
is possible that the effect of AIP overexpression on the down-
regulation of Aurora-A could be mediated through the potenti-
ation of proteasome-dependent degradation of Aurora-A. To
address this question, COS cells were transfected with FLAG-
tagged AIP-TR together with empty vector or HsAurora-A ex-
pression constructs, and the effect of AIP overexpression on the
down-regulation of Aurora-A was followed in the presence and
absence of proteasome inhibitors such as MG132, ALLN, and
clasto-lactacystin �-lactone. As shown in Fig. 7, proteasome
inhibitors could reverse the AIP-mediated down-regulation of
Aurora-A protein to different levels depending on their poten-
cies to inhibit the proteasome machinery. Calpain inhibitor
ALLM could not reverse the AIP-mediated degradation of
Aurora-A protein, suggesting that the cysteine protease calpain
is unlikely to play a role in the AIP-mediated down-regulation
of Aurora-A. Taken together, these results indicate that the
proteasome plays a major role in AIP-mediated down-regula-
tion of Aurora-A protein.

DISCUSSION

Aurora-A kinase is a member of a serine/threonine kinase
family implicated in equal segregation of chromosomes
between daughter cells. Aurora-A kinase is suggested to play a
role also in tumorigenesis (29). Overexpression of Aurora-A
kinase transforms cultured rodent cells and causes aneuploidy
in near diploid mammary epithelial cells (31). Regulation of
Aurora-A kinase expression and activity occurs at multiple
levels such as gene amplification, transcription, phosphoryla-
tion, and degradation through the proteasome-dependent path-
way (29, 31, 50). Currently, attempts are being made to under-
stand the functions of Aurora-A kinase at the molecular level.
In this paper, using a dosage suppressor screen in yeast, we
have isolated and investigated AIP, a novel negative regulator
of Aurora-A kinase. We have shown that AIP interacts specif-
ically and down-regulates Aurora-A kinase by potentiating its
degradation through the proteasome-dependent pathway. We
demonstrated that both the full-length and N-terminal trun-
cated AIP could interact with Aurora-A kinase, suggesting that
the C-terminal portion of AIP alone is sufficient for the inter-
action. However, the interaction of endogenous Aurora-A
kinase with AIP in cells overexpressing AIP was difficult to
demonstrate probably because of the degradation of endoge-
nous protein by AIP. This inference was supported by the
observation that when Aurora-A protein levels were increased
by the coexpression of Aurora-A and AIP, AIP and Aurora-A
kinase can be coimmunoprecipitated readily (Fig. 3, a and b).
Similarly, both full-length and truncated AIP were effective in
the down-regulation of Aurora-A kinase (data not shown).

FIG. 4. AIP down-regulates HsAurora-A level in vivo. a, NIH
3T3 cells were transfected with HsAurora-A and FLAG-tagged, trun-
cated AIP construct at different ratios starting from 1:0 to 1:9, respec-
tively, for 36 h. Cell extracts were prepared, and HsAurora-A and AIP
proteins were detected with the corresponding antibodies described
before. The blot was reprobed with goat anti-actin to verify loading.
HeLa cell extract was used as the positive control on the Western blot.
b, COS cells were transfected with HsAurora-A and FLAG-tagged,
truncated AIP constructs at a 1:9 ratio, respectively, for different time
points until 48 h, and the cell extracts were analyzed for HsAurora-A
and AIP proteins using monoclonal IAK1 and FLAG M2 antibodies.
Extract from COS7 cells was used as the negative control. The blot was
reprobed with mouse anti �-tubulin to verify loading.
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However, the truncated AIP was more efficient in the down-
regulation probably because of either the higher levels of the
truncated protein accumulated inside the cell or the better
binding to Aurora-A kinase. The increased level of truncated
AIP was evident from all of our Western blot analysis that the

cells accumulated more of the truncated AIP than the full-
length AIP (Fig 3b). Analysis of the mutant AIP proteins for
the interaction/degradation of Aurora-A protein demon-
strated that the mutant �C198-AIP lacks the elements

FIG. 5. AIP/Aurora-A interaction is important for the degradation of Aurora-A. a, comparison of the size and location of the deletions of
all the AIP mutant proteins with full-length AIP protein. All of the AIP variants contain a FLAG tag at the N terminus. The numbers within
parentheses denote the nucleotides of AIP cDNA, and number 1 corresponds to the nucleotide A of the translational start ATG. b, HeLa cells were
transfected with Aurora-A and FLAG-tagged AIP mutant constructs at 1:1 ratio, respectively, as described before, except that the �C198-AIP was
cotransfected at a higher ratio of 1:9. For all samples, cell lysates equivalent to 1 mg of protein were used for immunoprecipitation (IP) with rabbit
antiserum against human Aurora-A. In the case of �C198-AIP, coimmunoprecipitation was carried out from 1 mg as well as 2 mg of protein lysates.
The immunoprecipitates and the corresponding lysates were separated by SDS-PAGE and blotted onto nitrocellulose filters. The blots were probed
FLAG M2 antibody to detect the AIP proteins. c, COS cells were cotransfected with HsAurora-A and either pCDNA3 or any of the AIP mutant
constructs at a 1:9 ratio, respectively, and the effect of overexpression of the AIP proteins on the degradation of Aurora-A protein was assessed at
36 h after transfection as described previously. Cell extracts were analyzed for HsAurora-A and AIP proteins using monoclonal IAK1 and FLAG
M2 antibodies, respectively. The blot was reprobed with mouse anti �-tubulin to verify loading.

FIG. 6. Overexpression of AIP does not down-regulate either
MmAurora-B or cyclin B1. HsAurora-A or MmAurora-B or human
cyclin B1 was cotransfected with FLAG-tagged AIP-TR expression con-
struct at a ratio of 1:9, respectively, into COS cells, and the effect of
overexpression of AIP-TR on the levels of HsAurora-A, MmAurora-B,
and cyclin B1 was assessed. AIP-TR, HsAurora-A, and MmAurora-B (a)
and AIP-TR and cyclin B1 (b) levels were analyzed by Western blot
analysis using the respective antibodies. Extracts from COS7 cells were
used as the negative control. The blot was reprobed with mouse anti-
�-tubulin to verify loading.

FIG. 7. AIP degrades HsAurora-A through a proteasome-de-
pendent pathway. COS cells were transfected with HsAurora-A in
combination with empty vector as well as FLAG-tagged, truncated AIP.
Cotransfection with AIP construct was carried out in five sets. Four sets
were treated with the proteasome inhibitors MG132 (20 �M) ALLN (150
�M), lactocystin �-lactone (25 �M), and the calpain inhibitor ALLM (25
�M), and the last set was treated with the vehicle dimethyl sulfoxide for
12 h. 36 h after transfection, cell lysates were prepared and analyzed for
HsAurora-A and AIP protein by Western blotting. The blot was rep-
robed with mouse anti �-tubulin to verify equal loading.
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essential for the AIP/Aurora-A interaction, and the interac-
tion is important for the degradation of Aurora-A kinase (Fig.
5, a and b). Interestingly, this mutant lacks the nuclear
localization signal, suggesting that the targeting of AIP to
the nucleus may be necessary for the interaction and degra-
dation of Aurora-A kinase.

We have shown that AIP down-regulates Aurora-A kinase
possibly through proteasome-dependent degradation. AIP is
not unique in that there are other examples of proteins in-
volved in instigating the degradation of cell cycle-related inter-
acting partners through the proteasome pathway. Jab1 has
been shown to promote the degradation of the cell cycle regu-
lator p27kip1 in a proteasome-dependent manner (52). How-
ever, the exact role of Jab1 in the degradation is still unclear.
The WD repeat-containing protein cdc20 interacts with and
targets the budding yeast anaphase regulator Pds1 (securin)
for degradation through the APC/C (53). Similarly, it has been
well documented that MDM2 can facilitate the degradation of
p53 (54). In this case, it is evident now that MDM2 itself can act
as the ubiquitin ligase facilitating the ubiquitination of p53
(55). The observation that AIP also could destabilize Aurora-A
kinase specifically through 26 S proteasome raises an interest-
ing question as to what proteasome-targeting mechanism is
employed for AIP-mediated Aurora-A degradation. AIP se-
quence analyses do not reveal any similarity to either F box
proteins (56) or U box proteins (57), which play crucial roles in
targeting and ubiquitination, respectively. On the other hand,
the failure of AIP-dependent cyclin B1 degradation in cells
overexpressing AIP confirms the notion that AIP does not
activate the 26 S proteasome machinery in a generic way. The
specific interaction of AIP with Aurora-A kinase as well as
the essential nature of the AIP/Aurora-A interaction for the
degradation of Aurora-A supports interesting possibilities
such as AIP directly modifying and/or targeting Aurora-A
kinase for destabilization or AIP/Aurora-A kinase interaction
being the key rate-limiting step in the Aurora-A kinase deg-
radation pathway. Although it is known that Aurora-A
kinase is polyubiquitnated before degradation by APC/
cyclosome (50), it still remains to be shown that AIP plays a
role in the ubiquitination of Aurora-A kinase. It has been
shown that cdc20/p55cdc, which is capable of activating APC,
interacts with human Aurora-A (44). However, the question
of whether cdc20 targets Aurora-A for degradation also
remains to be answered.

Apart from its role in destabilization of Aurora-A kinase
when overexpressed, the normal function of AIP is yet to be
established. The results obtained so far point to the fact that
AIP is a ubiquitously expressed nuclear protein. It will be
interesting to investigate whether AIP is the normal physio-
logical trigger for Aurora-A degradation. Other pertinent ques-
tions to be answered will include the subcellular location where
interaction between AIP and Aurora-A occurs and at which
stage of cell cycle AIP-mediated Aurora-A degradation occurs.
Being a negative regulator of Aurora-A, a potential oncogene,
there is a possibility that down-regulation of AIP could play a
major role in tumorigenesis. Currently, experiments are being
carried out to address these issues.

In summary, the findings reported in this paper identify a
novel negative regulator of Aurora-A kinase. Understanding the
normal function of AIP as well as the characterization of the
molecular mechanisms involved in the AIP-mediated destabili-
zation of Aurora-A will be the next chapter in this investigation.
Moreover, the targeted degradation of Aurora-A by AIP provides
us with the handle to manipulate the endogenous level of the
oncogenic Aurora-A kinase. Hence, AIP could therefore be a
potential target gene for anti-cancer drugs in the future.
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ABSTRACT: 

 

Mitotic Aurora-A is an oncogene, which undergoes cell cycle-dependent regulation of both 

synthesis and degradation.  Overexpression of Aurora-A leads to aneuploidy and cellular 

transformation in cultured cells.  It has been shown that the cell cycle dependent turnover of 

Aurora-A is mediated by cdh1 through the APC/C1-ubiquitin-proteasome pathway.  We have 

described earlier the identification of an Aurora-A kinase interacting protein, AURKAIP1 

(formerly described as AIP), which is also involved in the destabilization of Aurora-A through 

proteasome-dependent degradation pathway.  In an attempt to investigate the mechanism of 

AURKAIP1-mediated Aurora-A degradation, we report here that AURKAIP1 targets Aurora-A 

for degradation through proteasome-dependent but ubiquitin-independent manner. AURKAIP1 

inhibits polyubiquitination of Aurora-A.  A non-interactive AURKAIP1 mutant that cannot 

destabilize Aurora-A restores ubiquitination of Aurora-A.  An A-box mutant of Aurora-A, which 

cannot be targeted for proteasome-dependent degradation by cdh1, can still be degraded by 

AURKAIP1.  Inhibition of cellular ubiquitination either by expression of dominant negative 

ubiquitin mutants or by studies in ts-20 CHO cell line lacking the E1 ubiquitin activating enzyme 

at the restrictive temperature, cannot abolish AURKAIP1-mediated degradation of Aurora-A. 

AURKAIP1 specifically decreases the stability of Aurora-A in ts-20 CHO cells at the restrictive 

temperature, while cyclinB1 and p21 are not affected.  This demonstrates that there exists an Ub-

independent alternative pathway for Aurora-A degradation and AURKAIP1 promotes Aurora-A 

degradation through this Ub-independent yet proteasome-dependent pathway. 
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INTRODUCTION 

 

Protein degradation plays an essential role of in the regulation of many cellular physiological 

processes, particularly in cell cycle control, where cell cycle proteins are periodically expressed. 

Aberrant protein degradation could lead to uncontrolled cell cycle and cancers. The ubiquitin-

proteasome system has evolved as the key machinery in the selective degradation of most 

intracellular short-lived regulatory or abnormal proteins [1-4]. Target proteins are covalently 

tagged with multiple ubiquitins, forming the polyubiquitin chain, which not only serves as the 

recognition signal for the 26S proteasome, but also assists in the unfolding of target proteins. 

Ubiquitination requires the ubiquitin activating enzyme (E1), the ubiquitin conjugating enzyme 

(E2) and the ubiquitin ligase (E3), where E3 confers the substrate specificity.  The Ub-dependent 

degradation pathway is presumed to be involved in the degradation of most of the proteins.  

However, some of the proteins can also be degraded in the absence of detectable prior 

ubquitination either directly by 20S proteasome or by 26S proteasome in the presence of ATP (5).  

 

Aurora-A represents one of the many mitotic proteins, whose protein levels are temporally 

regulated by the Ub-dependent proteolysis at the end of mitosis before the cells progress into the 

G1 phase of next cell cycle. Aurora-A is ubiquitinated by the Cdh1-activated APC/C, an E3 

ubiquitin ligase through the recognition of C-terminal destruction box (D-box) and N-terminal A-

Box. Dephosphorylation of the highly conserved serine 51 in A-box during mitotic exit could 

control the timing of Aurora-A degradation [6-8]. Regulation of Aurora-A degradation is very 

important as ectopic expression of Aurora-A in human and rodent cells induces centrosome 

amplification, aneuploidy, transformed phenotype and tumor formation in nude mice [9,10]. 

Aurora-A is overexpressed in many cancer types and mapped to chromosome 20q13 region, 

frequently amplified in many human cancers [11-13]. Overexpression of Aurora-A significantly 

correlates with induction of aneuploidy, centrosome anomaly, poor prognosis and invasiveness of 

the primary human tumours and of experimental tumours in animal model systems [14,15]. 

 

     Previously, in our attempt to understand the negative regulation of Aurora-A, we have isolated 

a novel direct negative regulator of Aurora-A, named as Aurora-A Kinase Interacting Protein 1 

(AURKAIP1) [16]. AURKAIP1 targets Aurora-A for degradation in a proteasome-dependent 

manner. AURKAIP1-Aurora-A interaction is necessary for AURKAIP1-mediated Aurora-A 

degradation. The exact mechanism of AURKAIP1-mediated Aurora-A degradation is unclear.  

Presently, we try to explore the mechanism of Aurora-A degradation in the AURKAIP1-regulated 
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pathway. The results presented here demonstrate that AURKAIP1 facilitates proteasome-

dependent degradation of Aurora-A by an alternative mechanism that is independent of 

ubiquitination. This implies that Aurora-A can be delivered to the proteasome via two distinct 

Ub-dependent and Ub-independent pathways.  

 

Materials and Methods 

 

Plasmids and Cloning 

     HA-tagged p21 expression construct is a gift from Dr. Michele Pagano; His-tagged wild type 

ubiquitin and HA-tagged K48R mutant ubiquitin expression construct is a gift from Dr. Ivan 

Dikic.   Addition of a histidine tag to the K48R mutant ubiquitin was carried out by PCR and 

cloned into pCDNA3 (Invitrogen); His-tagged wild type ubiquitin plasmid was used as the 

template to generate the K48R/K63R double mutant using the Gene Editor in vitro Site-directed 

mutagenesis system (Promega); FLAG-, HA-tagged human Aurora-A were PCR amplified and 

cloned into pCDNA3; the A-box mutant (S51D) of Aurora-A mutant in pCDNA3 was also 

generated using the Gene Editor in vitro Site-Directed Mutagenesis System (Promega); HA-, 

FLAG-tagged human AURKAIP1 and TR-AURKAIP1 were PCR amplified and cloned into 

pCDNA3.  All cloned sequences were verified by sequencing. 

 

Antibodies 

     Mouse monoclonal anti-FLAG M2 antibody (Stratagene), 1:2000; rabbit polyclonal anti- 

FLAG (Sigma), 1: 2000; mouse monoclonal anti-β tubulin antibody (Sigma), 1:1000; mouse 

monoclonal anti-HA-tag (Sigma), 1:2000; mouse monoclonal anti-IAK1 (BD Transduction), 

1:1000; rabbit polyclonal anti-Cyclin B1 antibody (Santa Cruz), 1:3000 and mouse monoclonal 

anti-His-tag antibody (Sigma), 1:1000 were used.  All HRP-conjugated secondary antibodies 

(Pierce) were used at 1:6000 to 1:8000 dilutions.  

 

Cell Culture, Transfection and Drug Treatment 

• ts20TG mouse cells were obtained from Dr. Harvey Ozer, New Jersey, USA. 

• ts20-CHO cells were obtained from Dr. Ger J Strous, Utrecht, Netherlands.  

ts20-TG mouse cells and COS7 cells were maintained in Dulbecco’s modified Eagle’s medium 

(Sigma) and HeLa cells were maintained in RPMI 1640 medium (Sigma) supplemented with 10% 

fetal bovine serum (JRH). ts20 Chinese Hamster lung cell line, which harbors the temperature-

sensitive mutation in E1 ubiquitin-activating enzyme was maintained in α-MEM medium 
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(Sigma), supplemented with 4.5 g Glucose/L and 10% fetal bovine serum at 30oC.  Cells were 

incubated at 40oC for 24 hours to inactivate the E1 ubiquitin-activating enzyme.  Transfection of 

cultured cell lines has been carried out using Lipofectamine 2000 (Invitrogen).  Typically, cells 

were grown in their respective growth medium without antibiotic and transfected with expression 

plasmids using lipofectamine 2000 and OPTIMEM according to the manufacturers 

recommendations. To block the 26S proteasome-mediated protein degradation, cells were treated 

with 20 μM MG132 for 16 hours. To block the protein synthesis, the ts20 CHO and ts20-TG 

mouse cells were treated with 50 μg/ml cycloheximide (Sigma) for various indicated times. 

 

Cell cycle synchronization and flow cytometry:   

To obtain cells arrested at G1/S and M phase of the cell cycle, asynchronously growing HeLa 

cells were treated with aphidicolin (1μg/ml) for 24 hours and nocodazole (0.1 μg/ml) for 16 hours 

respectively.  Cells treated similarly with the vehicle (DMSO) were used as the control.  The 

extent of synchronization was assessed by propidium iodide (PI) staining and flow cytometry.  

Briefly, cells were harvested and fixed with 70% ethanol overnight at 4oC. The fixed cells were 

washed twice in 0.1% Triton X-100/PBS, resuspended in PI staining solution (50μg/ml 

Propidium Iodide, 100μg/ml RNAse and 0.1% Triton X-100) and incubated for one hour at room 

temperature before analysis. DNA content was analyzed using FACSCalibur system (Becton 

Dickinson) and the data were analyzed using the Modfit software. 

 

Cell lysis and Immunoblotting 

Typically, cells were lysed for 15 min on ice in lysis buffer [1X TBS (50mM Tris, 150 mM NaCl 

pH 7.6); 10% Glycerol and 1% Nonidet P-40] containing protease inhibitor cocktail (Roche 

molecular Biochemical). The lysates were then cleared by centrifugation at 13000 rpm for 10 min 

at 4oC.  Alternatively cells were also lysed in 1X Laemli Buffer, followed by pulsed sonication on 

ice and subsequently cleared by centrifugation at 13K rpm at 4oC. The protein concentrations of 

the lysates were assayed using Bio-Rad Protein Assay Reagent (Pierce). 50-100 μg proteins were 

separated on a 10 or 12% SDS-PAGE. The proteins were subsequently transferred to the 

nitrocellulose membrane (Gelman Laboratory). After blocking with 5% non-fat milk in TBS, the 

blots were incubated with various antibodies at their optimal dilutions overnight at 4oC. The 

horseradish peroxidase (HRP)-conjugated secondary antibodies [goat anti-rabbit HRP & goat 

anti-mouse HRP (Pierce)] were diluted at 1: 8000 in blocking buffer and incubated with the blot 

for 1 hour at room temperature. The conjugated secondary antibodies were detected by 

SuperSignal Pico or Dura Chemiluminescence (Pierce) detection system.  
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In vivo ubiquitination Assay 

The in vivo ubiquitination assays were carried out essentially as described in (17).  HeLa cells 

were co-transfected with HA tagged-Aurora-A, His-tagged wild type or K48R mutant ubiquitin 

and either pCDNA3 or AURKAIP1. 36 hrs post-transfection, the cells were treated with 20 μM 

MG132 for 12 hours prior to harvest. The cells were lysed in 1 ml Buffer G (6 M Guanidinium-

HCl, 0.1 M Na2HPO4/NaH2PO4—pH8.0, 10 mM imidazole) per 60 mm dish. The lysate was 

sonicated in pulses to reduce viscosity and incubated with 100 μl of 50% slurry of nickel-NTA-

agarose (Qiagen) with rotation for 75 min at room temperature. The beads were washed three 

times with 1 ml Buffer G, twice with 1 ml of Wash Buffer I (Buffer G diluted in [25 mM Tris-

HCl, pH 6.8 / 20 mM imidazole] at the ratio of 1:4), and twice with 1 ml of Wash Buffer II (25 

mM Tris-HCl, pH 6.8 / 20 mM imidazole). The bound proteins were eluted by boiling the beads 

in 2X SDS sample buffer supplemented with 100 mM EDTA and analyzed by immunoblotting. 

 

 

RESULTS 

 

 Degradation of Aurora-A by AURKAIP1 is cell cycle-independent 

Multiple regulators of Aurora-A kinase stability like cdh1, hcdc4 and chfr have been described 

recently (18,19), which target Aurora-A through Ub-dependent, proteasome-dependent 

degradation pathway.   Previously, we have described the isolation of AURKAIP1, a novel 

interacting partner and negative regulator of Aurora-A, which also targets Aurora-A for 

degradation through proteasome-dependent pathway (16).  As a further step towards 

understanding the role of AURKAIP1 in Aurora-A degradation, we sought to investigate the 

mechanism by which AURKAIP1 destabilizes Aurora-A.  Though the full length AURKAIP1 

was capable of interacting and destabilizing Aurora-A, the N-terminal truncated form of 

AURKAIP1 (TR-AURKAIP1), which was originally isolated in the yeast dosage suppressor 

screen described in (16), was more stable and potent than the full length AURKAIP1 in the 

destabilization of Aurora-A (Fig.1a).  This suggests that the N-terminal 87 amino acids of 

AURKAIP1 might harbor putative negative elements, which render the full-length protein less 

stable and thus less effective. To verify the specificity of the truncated AURKAIP1 in 

destabilizing Aurora-A, the in vivo degradation assays were carried out with Aurora-B.  The 

results presented in Fig.1b showed that the truncated from of AURKAIP1 did not have any 

destabilizing effect on Aurora-B while it could destabilize Aurora-A more effectively suggesting 
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that the truncated AURKAIP1 contain all the necessary elements to specifically destabilize 

Aurora-A. Hence all the subsequent experiments designed to understand the mechanism of 

Aurora-A degradation were performed with the truncated form of AURKAIP1. To address the 

role of AURKAIP1 in cell-cycle dependent turnover of Aurora-A, we carried out the in vivo 

degradation assays in cells arrested at different phases of the cell cycle.  Cells were co-transfected 

with Aurora-A and TR-AURKAIP1 or control empty vector and subsequently synchronized with 

cell-cycle phase-specific inhibitors before analysis.  Monitoring cell cycle distribution by flow 

cytometry indicated that both aphidicolin and nocodazole arrested more than 80% of the cells in 

G1/S and G2/M phase of the cell cycle respectively (Supplementary Fig.S1a). TR-AURKAIP1 

was able to target Aurora-A for degradation in both aphidicolin and nocodazole treated cells 

suggesting that the AURKAIP1-mediated degradation of Aurora-A is cell cycle-independent 

(Fig.1c).  To exclude the possibility that the missing N-terminus of AURKAIP1 in the truncated 

version used above might be involved in the specification of cell cycle-dependent degradation of 

Aurora-A, identical experiments were performed with the full-length AURKAIP1 also 

(supplementary Fig.S1 b-c).  The results suggested that both full-length and TR-AURKAIP1 

could target Aurora-A for degradation independent of the cell cycle stages. The observation that 

AURKAIP1 targets Aurora-A for degradation independent of cell cycle stages is in contrast to the 

differential effect of hCdh1 on the steady-state levels of Aurora-A in S and M- phase arrested 

cells.   Human Cdh1 showed a cell cycle-specific differential effect on the steady-state levels of 

Aurora-A with no significant effect in M phase cells while the control untreated and thymidine 

treated (S phase) cells showing significant decrease of Aurora-A protein (20). 

 

AURKAIP1 can target cdh1-resistant Aurora-A mutant protein for degradation      

To further compare the nature of cdh1-dependent and AURKAIP1-dependent Aurora-A 

degradation, the effect of AURKAIP1 on the degradation of the A-box mutant, an Aurora-A 

mutant that cannot be targeted for degradation by cdh1 was studied.  Mutation of the serine 

residue at position 51 located within the A-box of human Aurora-A to aspartic acid leads to 

stabilization of Aurora-A, through the inhibition of the degradation (6-8). As shown in Fig. 2a, 

wild-type Aurora-A was degraded rapidly upon exit from mitosis into G1, whereas the A-box 

mutant was stabilized.  In vivo Aurora-A degradation assays with this A-box mutant showed that 

the A-box mutant was targeted for degradation with the same efficiency as the wild type Aurora-

A in the presence of TR-AURKAIP1 (Fig.2b).  These data further reinforced the mechanistic 

differences in the cdh1-dependent and AURKAIP1-dependent degradation of Aurora-A.  

However, reversal of this AURKAIP1-mediated degradation of the A-box mutant by proteasome 
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inhibitors MG132 and lactocystin (Fig.2c) confirmed the proteasome-dependent nature of this 

process. 

 

AURKAIP1 inhibits polyubiquitination of Aurora-A 

     Ubiquitination represents one of the essential modifications to target the protein(s) for 

recognition by 26 S proteasome and subsequent degradation. It is known that Aurora-A is poly-

ubiquitinated before cell cycle dependent degradation by APC/Cyclosome (17). In order to 

understand the mechanism of AURKAIP1-mediated degradation, we asked whether AURKAIP1 

plays any role in the ubiquitination of Aurora-A. To determine the possibility that AURKAIP1 

might potentiate the polyubiquitination of Aurora-A and therefore enhance its degradation similar 

to chfr, in vivo Aurora-A ubiquitination assays were performed as described under experimental 

methods. HeLa cells were co-transfected with wild type Aurora-A and ubiquitin in the presence 

of either AURKAIP1 expression constructs or empty vector. As shown in Fig 3, wild type 

Aurora-A can be ubiquitinated readily.  However, coexpression of TR-AURKAIP1 totally 

abolished the polyubiquitination of Aurora-A (panel 1).  The decreased polyubiquitination of 

Aurora-A in the presence of TR-AURKAIP1 was not due to the alteration of total cellular 

polyubiquitination (panel 2).  Under the experimental condition, which is carried out in the 

presence of proteasome inhibitor MG132, Aurora-A levels were maintained even in the presence 

of TR-AURKAIP1 (panel 3), suggesting that the decreased polyubiquitination observed in the 

presence of AURKAIP1 is mainly due to inhibition of the polyubiquitination of Aurora-A per se 

rather than due to decreased Aurora-A protein levels.    ΔC198-AURKAIP1 mutant, an Aurora-A 

non-interactive AURKAIP1 mutant, was also used as a control to verify whether the interaction 

between AURKAIP1 and Aurora-A is essential for the ubiquitination. Interestingly, ΔC198-

AURKAIP1 mutant, that does not interact with Aurora-A and is less efficient in mediating 

Aurora-A degradation, lacked this inhibitory effect and restored similar level of Aurora-A 

polyubiquitination as the empty vector control. These observations suggest that AURKAIP1 

inhibits polyubiquitination of Aurora-A and its interaction with Aurora-A is essential for the 

inhibitory effect on polyubiquitination. 

 

To further verify the interaction-dependent inhibition of the ubiquitination of Aurora-A, mapping 

of the regions of Aurora-A protein essential for the ubiquitination and binding of AURKAIP1 

was carried out.  Both N-terminal and C-terminal truncated overlapping fragments of Aurora-A 

were generated (Fig 4a) and subjected to in vivo ubiquitination and AURKAIP1 interaction 

assays as described earlier.  The results presented in Fig. 4b show that both N-terminal deletions 

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 9

(ΔN300 and ΔN600) of Aurora-A lead to a decreased polyubiquitination, but still were capable of 

polyubiquitinated.  Surprisingly, in contrast to the general belief that the A-box mutant is 

ubiquitylation-defective, we were able to observe ubiquitylation of A-box mutant to an extent 

similar to that of wild type Aurora-A under given experimental conditions.  The difference in the 

effect on polyubiquitination by mutations in the A-box and N-terminal deletion mutants of 

Aurora-A could be due to the nature of the mutations as one is a point mutation compared to 

deletion in the others.  It is worthy of note that despite the prediction that the (S51D) mutation in 

the A-box of Aurora-A will negatively impact ubiquitination and subsequent degradation of 

Aurora-A (6,7), a formal demonstration of the effect of Aurora-A S51D mutation on the 

ubiquitylation of Aurora-A is still lacking. On the other hand, the C-terminal deletion ΔC300 

showed increased polyubiquitination of Aurora-A.  This observation is in agreement with the 

previously published results, which also showed an increase in the polyubiquitination of Aurora-

A protein lacking the extreme C-terminal region of the protein (17).  However, further deletion of 

the C-terminus (ΔC600) completely suppressed polyubiquitination, suggesting that this region is 

essential for the efficient polyubiquitination of Aurora-A.  Analysis of the Aurora-A regions 

necessary for interaction with AURKAIP1 (Fig.4c) showed that the ΔN300 could interact with 

AURKAIP1 with similar efficiency as the full length Aurora-A.  The other deletions ΔN600 and 

ΔC300 were capable of interacting with AURKAIP1 albeit with lower efficiency.  Interestingly, 

the polyubiquitination defective ΔC600 was incapable of binding AURKAIP1, suggesting that 

there could be an overlap between the regions of Aurora-A protein necessary for 

polyubiquitination and its interaction with AURKAIP1.   
 

 

AURKAIP1 targets Aurora-A for degradation in the presence of dominant negative 

ubiquitin mutants   

Destabilization of Aurora-A despite the inhibition of its polyubiquitination by AURKAIP1 

prompted us to investigate the ubiquitin-independent degradation of Aurora-A.  To this end, a 

dominant negative ubiquitin mutant (K48R) to suppress cellular polyubiquitination was 

employed. Ub-dependent degradation involves the attachment of multiple ubiquitins to the lysine 

residue of the target protein(s), facilitating the substrate recognition by the 26S proteasome. 

Incorporation of K48R dominant negative mutant ubiquitin has been shown to have chain 

terminating effect, blocking further ubiquitin chain extension (21). The lysine residue at position 

63 (K63) of ubiquitin is also implicated in the polyubiquitination of target proteins. However, 

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 10

unlike K48, its role in protein degradation is minimal. Regardless, to exclude a role for K63–

mediated polyubiquitination in the degradation of Aurora-A, a K48R/K63R double mutant was 

also generated.  To verify whether the AURKAIP1-mediated Aurora-A degradation is affected 

under the conditions where the cellular polyubiquitination is suppressed, AURKAIP1-mediated in 

vivo degradation of Aurora-A was carried out in the presence of K48R and K48R/K63R dominant 

negative ubiquitin mutants. It was observed that the AURKAIP1-mediated Aurora-A degradation 

was unaffected even in the presence of K48R or K48R/K63R mutant ubiquitins and was as 

efficient as observed with wild type ubiquitin. (Fig.5a).  Taken together, efficient degradation of 

Aurora-A even in the presence of K48R/K63R double mutant and the inhibition of Aurora-A 

polyubiquitination by AURKAIP1 without compromising its effect on degradation indicated that 

the Aurora-A could be targeted for degradation even in the absence of polyubiquitination. To 

verify that the AURKAIP1-mediated degradation of Aurora-A in the presence of mutant ubiquitin 

involves proteasomal function, a similar experiment as described above was carried out in the 

presence and absence of proteasomal inhibitors MG132 and lactocystin.  The data shown in 

Fig.5b showed that the observed AURKAIP1-mediated degradation of Aurora-A in the presence 

of dominant negative mutant ubiquitin is also proteasome-dependent. 

 

Lack of polyubiquitination does not completely stabilize Aurora-A 

As an alternative approach to verify the existence of an Ub-independent pathway for Aurora-A 

degradation, the turnover of Aurora-A, p21 and cyclin B1 was assessed in the presence of 

cycloheximide in ts20 CHO cells harboring a temperature-sensitive mutation in E1-ubiquitin 

activating enzyme (22). The turnover of these proteins was assessed at either permissive 

condition (30oC) where both Ub-dependent and independent pathways are functional or non-

permissive condition (40oC) where only the Ub-independent pathway is functional. p21 was 

previously demonstrated to be a target for Ub-independent degradation (23) whereas cyclin B1 

has been a prototype target for Ub-dependent degradation.  Results presented in Fig 6a showed 

that the temperature shift to 40oC did not completely stabilize the p21, supporting previous 

findings that p21 can be degraded in the absence of ubiquitination and hence act as the target for 

Ub-independent degradation. In contrast, Cyclin B1 level was completely stabilized upon 

temperature shift to 40oC, indicating that cyclin B1 can only be targeted by the Ub-dependent 

degradation (Fig.6b). It was evident that even within 30 minutes of cycloheximide treatment, 

there was sharp decline in Aurora-A steady state level, indicating that Aurora-A is normally an 

unstable protein. However, its steady state level was increased but not stabilized when the Ub-
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dependent pathway was blocked at 40oC (Fig.6c). The lack of complete stabilization implies that 

Aurora-A can also be targeted for degradation in the absence of ubiquitin similar to p21. 

 

     To address the question whether the endogenous Aurora-A also follow the same fate as the 

exogenous protein with respect to the stabilization in the absence of ubiquitination, we chose to 

carry out the experiment in the temperature sensitive mouse cell line ts20-TG harboring a 

mutation in the E1 ubiquitin activating enzyme to facilitate detection of endogenous proteins with 

the available antibodies. Identical experiments as described previously with ts20-CHO cells to 

investigate the turnover of exogenous Aurora-A, p21 and cyclin B1 were carried out in this 

mouse cell line.  The results presented in Fig.6d demonstrate that the endogenous Aurora-A, p21 

and cyclin B1 behave similar to the exogenous counterparts with respect to their turnover in the 

absence of polybiquitination. 

 

AURKAIP1 specifically targets Aurora-A for degradation through Ub-independent pathway 

To further confirm the Ub-independent nature of Aurora-A degradation in the presence of 

AURKAIP1, in vivo degradation assays were performed in ts20 CHO cells.  In support of the 

results from the first approach using dominant negative ubiquitin mutant, suppression of poly-

ubiquitination by temperature-sensitive mutation of the E1 enzyme increased the levels of 

Aurora-A but still did not abolish the AURKAIP1-mediated Aurora-A degradation (Fig.7a). 

These data confirm that AURKAIP1 mediates Aurora-A degradation even in the absence of 

polyubiquitination. Therefore, Aurora-A can be targeted by both Ub-dependent as well as Ub-

independent degradation pathways.  To verify the specificity of AURKAIP1-mediated Ub-

independent Aurora-A degradation, the effect of overexpression of TR-AURKAIP1 on human 

Aurora-B, p21 and cyclin B1 stability was investigated in ts-20 CHO cells. In contrast to the 

effect on Aurora-A, overexpression of TR-AURKAIP1 did not influence the stability of either 

Aurora-B (Fig.7b) or p21 (Fig.7c) or cyclinB1 (Fig.7d).  Interestingly, in the absence of 

AURKAIP1, inhibition of the polyubiquitination leads to a higher basal level of Aurora-A. This 

implies that under normal conditions, the Ub-dependent degradation is a major pathway 

operational for Aurora-A turnover and AURKAIP1 promotes Aurora-A degradation through an 

Ub-independent but proteasome-dependent pathway. 
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DISCUSSION 

The abundance of Aurora-A protein is tightly controlled by synthesis and degradation, as its 

overexpression leads to disruption of checkpoints (24,25) induction of aneuploidy and 

transformation (9,10). Cell cycle dependent degradation of Aurora-A is mediated by cdh1 through 

Ub-dependent proteasomal degradation pathway (6,7).  Recently, two other candidate regulators, 

hcdc4 and chfr, involved in the destabilization of Aurora-A have been described (18,19). All 

these candidate regulators however, target Aurora-A for proteasome-dependent degradation with 

prior ubiquitination.  Herein we provide the first demonstration that there exists an alternative 

Ub-independent pathway for Aurora-A degradation and AURKAIP1 facilitates the degradation of 

Aurora-A through this alternative pathway.  

 

     Though ubiquitination is a pre-requisite for majority of the extralysosomal proteolysis by the 

26S proteasome, both 20S and 26S proteasome can degrade many proteins in an Ub-independent 

manner (5).   Ornithine decarboxylase was the first example of a protein degraded by the 26S 

proteasome using this alternative pathway (26).  The other proteins, which are degraded by 26S 

proteasome in an Ub-independent manner, include c-jun (27), p21 (28), p53 (29) and calmodulin 

(30). The 26S/20S proteasome can degrade proteins in an Ub-independent manner, provided the 

substrate is targeted to the proteasome machinery by another protein or by a degradation signal 

present in the substrate itself.  For example, Tax, a protein encoded by human T cell leukemic 

virus promotes binding of IκBα to the HsN3 subunit of 20S proteasome and facilitates the 

constitutive degradation of IκBα by ubiquitin and phosphorylation-independent manner (31). 

Similarly, hyperphosphorylated forms of members of retinoblastoma protein family were targeted 

by the viral protein pp71 for Ub-independent, proteasome-dependent degradation (32).   On the 

other hand, NAD(P)H quinone oxidoreductase 1 (NQO1), which is capable of binding both p53 

and 20S proteasome, functions as a gatekeeper of the 20S proteasome and negatively regulates 

the degradation of p53 (29,33).  Dicoumarol, an inhibitor of NQO1, has been shown to induce 

p53 degradation by 20S proteasome-dependent, Ub-independent pathway (34).   p21, a 

transcriptional target of p53, constitutes an example of a protein, which targets itself for Ub-

independent degradation by directly binding to the 20S proteasome (34). It has been shown that 

p21 directly interacts with C8 subunit of 20S proteasome in vitro and the turnover of mutant p21 

in vivo directly correlates with its affinity for C8 subunit in vitro (35).  Thus, it is apparent that 

the interaction of the target proteins with the proteasomal machinery is a prerequisite for Ub-

independent degradation. 
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     Using dominant–negative ubiquitin mutant and temperature-sensitive mutant cell lines 

defective in E1 ubiquitin activating enzyme at the restrictive temperature, we have shown that 

Aurora-A can be degraded even in the absence of polyubiquitination.  We further show that 

AURKAIP1, which constitutively targets Aurora-A for degradation in proteasome-dependent 

manner (16), can obviate the need for polyubiquitination. Our results presented herein conform to 

the trend of a proteins being degraded by both Ub-dependent and independent pathways (27-29).  

It has been shown recently that MDM2 can target Rb protein for degradation through a similar 

Ub-independent pathway (36).  It is intriguing to note that though MDM2 promotes the 

degradation of p53 through Ub-dependent pathway with its ubiquitin ligase activity, the 

degradation of Rb protein by MDM2 is Ub-independent, which accompanies suppression of 

polyubiquitination. We also observed the suppression of polyubiquitination of Aurora-A in the 

presence of AURKAIP1 suggesting that the AURKAIP1-mediated suppression of poly-

uquitination might be one of the determinants to switch between these alternative pathways.  

Studies carried out to understand the mechanism by which AURKAIP1 could suppress 

polyubiquitination of Aurora-A suggest that the binding of AURKAIP1 to Aurora-A might 

inhibit the interaction of ubiquitination machinery with Aurora-A.  This speculation was 

supported by the observation that the non-interactive AURKAIP1 mutant ΔC-198 restores 

ubiquitination of Aurora-A. Further studies with Aurora-A deletion mutants showed that there is 

an overlap of the AURKAIP1 binding region and region essential for proper polyubiqitination of 

Aurora-A. Thus, the binding of AURKAIP1 to Aurora-A could mask the region essential for 

ubiquitination thereby inhibiting polyubiquitination.   

 

The next interesting question is how AURKAIP1 targets Aurora-A to the proteasome in the 

absence of ubiquitination?  Generally, marking of the substrates with ubiquitin is thought to serve 

two functions - unfolding and targeting (31,32,37).  It is not yet clear whether binding of 

AURKAIP1 can unfold Aurora-A so that it can be a better substrate for 20S proteasome.  

Similarly, it is yet to be shown that AURKAIP1 is capable of targeting Aurora-A directly to the 

proteasome. In this context, it will be interesting to investigate whether AURKAIP1 can interact 

directly with proteasome and Aurora-A can be degraded by 26S/20S proteasome in vitro in the 

presence of AURKAIP1.  On the other hand, in the AURKAIP1-mediated Aurora-A degradation 

pathway, other possibilities such as modification of Aurora-A by other small molecules (38) or 

involvement of other secondary proteins that can cooperate with AURKAIP1 in the targeting of 

Aurora-A to the proteasome also cannot be ruled out.  
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 In summary, we have shown that Aurora-A can be targeted for degradation even in the absence of 

ubiquitination and AURKAIP1 facilitates the degradation of Aurora-A through this Ub-independent 

pathway.  At this juncture, it is unclear why there should be two pathways for the degradation of the 

same protein or what is the cellular context for AURKAIP1-mediated Ub-independent degradation 

of Aurora-A.  The physiological relevance of Aurora-A:AURKAIP1 interaction can be appreciated 

better when we have adequate information on the biology of AURKAIP1.  Preliminary studies 

carried out on the expression of AURKAIP1 using antibody raised against the C-terminal 

AURKAIP1 peptide, showed that while transfected and in vitro translated AURKAIP1 can be 

easily detected, the endogenous AURKAIP1 was undetectable even in cells which expressed very 

high levels of AURKAIP1 transcripts (our own unpublished data).  This suggests that AURKAIP1 

could be regulated post-transcriptionally and/or the AURKAIP1 protein might be expressed only 

under specific cellular context.  Future studies on the identification of this yet unidentified cellular 

context as well as the mechanism by which AURKAIP1 promotes Ub-independent degradation of 

Aurora-A will definitely throw more light on the physiological significance of this alternative 

pathway.

 

 

 

 

 

 REFERENCES 

 

1. King, R.W., Deshaies, R.J., Peter, J.M., and Kirschner, M.W. (1996) How proteolysis 

drives the cell cycle. Science 274, 1652-1659. 

2. Peters, J.M. (1998) SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. 

Curr. Opin. Cell Biol. 10, 759-768. 

3. Koepp, D.M., Harper, J.W., and Elledge, S.J. (1999) How the cyclin became a cyclin: 

regulated proteolysis in the cell cycle.  Cell 97, 431-434. 

4. Hershko, A., and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 

67, 425-479. 

5. Orlowski, M. and Wilk, S (2003) Ubiquitin-independent proteolytic functions of the 

proteasome. Arch. Biochem.Biophys. 415, 1-5 

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 15

6. Castro, A., Arlot-Bonnemains, Y., Vigneron, S., Labbe, J.C., Prigent, C., and Lorca, 

T. (2002) APC/Fizzy-Related targets Aurora-A kinase for proteolysis. EMBO Rep. 3, 457-

462. 

7. Littlepage, L.E. and Ruderman, J.V. (2002) Identification of a new APC/C recognition 

domain, the A box, which is required for the Cdh1-dependent destruction of the kinase 

Aurora-A during mitotic exit. Genes Dev. 16, 2274-2285. 

8. Castro, A., Vigneron, S., Bernis, C., Labbe, J.C., Prigent, C., and Lorca, T. (2002) 

The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-

Box sequence of Aurora-A. EMBO Rep. 3, 1209-1214. 

9. Zhou, H., Kuang, J., Zhong, L., Kuo, W.L., Gray, J.W., Sahin, A., Brinkley, B.R., and 

Sen, S. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, 

aneuploidy and transformation. Nat. Genet. 20, 189-193. 

10. Bischoff, J.R., Anderson, L., Zhu, Y., Mossie, K., Ng, L., Souza, B., Schryver, B., 

Flanagan, P., Clairvoyant, F., Ginther, C., Chan, C.S., Novotny, M, Slamon, D.J., 

Plowman, G.D. (1998) A homologue of Drosophila aurora kinase is oncogenic and 

amplified in human colorectal cancers. EMBO J. 17, 3052-3065. 

11. Bischoff, J.R., and Plowman, G.D. (1999)  The Aurora/Ipl1p kinase family: regulators of 

chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454-459. 

12. Katayama, H., Brinkley, W.R., Sen, S. (2003). The Aurora kinases: role in cell 

transformation and tumorigenesis..Cancer and Metastasis Rev. 22, 451-464. 

13. Tanaka, T., Kimura, M., Matsunaga, K., Fukada, D., Mori, H., and Okano,Y. (1999) 

Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast 

Cancer Res. 59, 2041-2044. 

14. Miyoshi, Y., Iwao, K., Egawa, C., Noguchi, S. (2001) Association of centrosomal kinase 

STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int. 

J. Cancer 92, 370-373. 

15. Goepfert, T.M., Adigun, Y.E., Zhong, L., Gay, J., Medina, D., Brinkley, W.R. (2002). 

Centrosome amplification and overexpression of aurora A are early events in rat mammary 

carcinogenesis. Cancer Res. 62, 4115-4122. 

16. Kiat, L.S., Hui, K.M., Gopalan, G. (2002) Aurora-A kinase interacting protein (AIP), a 

novel negative regulator of human Aurora-A kinase. J. Biol. Chem. 277, 45558-45565. 

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 16

17. Honda, K., Mihara, H., Kato, Y., Yamaguchi, A., Tanaka, H., Yasuda, H., Furukawa, 

K. and Urano, T. (2000) Degradation of human Aurora2 protein kinase by the anaphase-

promoting complex-ubiquitin-proteasome pathway. Oncogene 19, 2812-2812.  

18. Mao, J.H., Perez-Losada, J., Wu, D., Delrosario, R., Tsunematsu, R., Nakayama, K.I., 

Brown, K., Bryson, S. and Balmain, A. (2004) Fbxw7/Cdc4 is a p53-dependent, 

haploinsufficient tumour suppressor gene. Nature 432, 775-779. 

19. Yu, X., Minter-Dykhouse, K., Malureanu, L. Zhao, W.M., Zhang, D., Merkle, C.J., 

Ward, I.M., Saya, H., Fang, G., van Deursen, J. and Chen, J. (2005) Chfr is required for 

tumor suppression and Aurora A regulation. Nat. Genet. 37, 401-406.  

20. Taguchi, S., Honda, K., Sugiura, K., Yamaguchi, A., Furukawa, K and Urano, T. 

(2002)  Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett.  

519: 59-65. 

21. Ward, C.L., Omura, S. and Kopito, R.R. (1995) Degradation of CFTR by the ubiquitin-

proteasome pathway. Cell  83, 121-127. 

22. Strous G.J., van Kerkhof, P., Govers, R., Ciechanover, A. and Schwartz, A.L. (1996) 

The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation 

of the growth hormone receptor. EMBO J. 15, 3806-3812. 

23. Sheaff, R.J., Singer, J.D., Swanger, J., Smitherman, M., Roberts, J.M., and Clurman, 

B.E. (2000) Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. 

Cell 5, 403-410. 

24. Marumoto, T., Hirota, T., Morisaki, T., Kunitoku, N., Zhang, D., Ichikawa, Y., 

Sasayama, T., Kuninaka, S., Mimori, T., Tamaki, N., Kimura, M., Okano, Y and 

Saya, H. (2002) Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian 

cells. Genes cells  2, 1173-1182. 

25. Anand, S., Penrhyn-Lowe, S. and Venkitaraman, A.R. (2003) AURORA-A 

amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to 

Taxol. Cancer Cell 3, 51-62. 

26. Bercovich, Z., Rosenberg-Hasson, Y., Ciechanover, A. and  Kahana, C. (1989) 

Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but 

ubiquitin-independent. J. Biol. Chem. 264, 15949-15952. 

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 17

27. Jariel-Encontre, I., Pariat, M., Martin, F., Carillo, S., Salvat, C. and Piechaczyk, M. 

(1995) Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by 

the 26 S proteasome. J. Biol. Chem. 270, 11623-11627.  

28. Jin, Y., Lee, H., Zeng, S.X., Dai, M.S. and Lu, H. (2003) MDM2 promotes 

p21waf1/cip1 proteasomal turnover independently of ubiquitylation EMBO J. 22, 6365-

6377. 

29. Asher, G., Tsevetkov, P., Kahana, C. and Shaul, Y.(2005)  A mechanism of ubiquitin-

independent proteasomal degradation of the tumor suppressors p53 and p73. .Genes Dev. 

19, 316-321. 

30. Tarcsa, E., Szymanska, G., Lecker, S., O’Connor, C.M. and Goldberg, A.L. (2000) 

Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 

26 S proteasomes without ubiquitination. J. Biol. Chem. 275, 20295-20301.  

31. Krappmann, D., Wulczyn, F.G. and Scheidereit, C. (1996) Different mechanisms 

control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB 

alpha in vivo. EMBO J. 15, 6716-6726. 

32. Kalejta, R.F. and Shenk, T. (2003) Proteasome-dependent, ubiquitin-independent 

degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 

protein. Proc. Natl. Acad. Sci. USA 100, 3263-3268. 

33. Asher, G., Lotem, J., Tsvetkov, P., Reiss, V., Sachs, L. and Shaul, Y. (2003) P53 hot-

spot mutants are resistant to ubiquitin-independent degradation by increased binding to 

NAD(P)H:quinone oxidoreductase 1 Proc. Natl. Acad. Sci. USA 100, 15065-15070. 

34. Asher, G., Lotem, J., Sachs, L., Kahana, C. and Shaul, Y. (2002) Mdm-2 and ubiquitin-

independent p53 proteasomal degradation regulated by NQO1. Proc. Natl. Acad. Sci. USA 

99, 13125-13130. 

35. Touitou, R., Richardson, J., Bose, S., Nakanishi, M., Rivett, J., Allday, M.J. (2001) A 

degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 

alpha-subunit of the 20S proteasome. EMBO J. 20, 2367-2375. 

36. Sdek,P., Ying, H., Chang, D.L.F., Qiu. W., Zheng, H., Touitou, R., Allday, M.J.and 

Xiao, Z.J. (2005) MDM2 promotes proteasome-dependent ubiquitin-independent 

degradation of retinoblastoma protein. Mol. Cell  20: 699-708 

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 18

37. Ghislain, M., Dohmen, R.J., Levy, F. and Varshavsky, A. (1996) Cdc48p interacts with 

Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces 

cerevisiae. EMBO J. 15, 4884-4899. 

38. Jentsch, S. and Pyrowolakis, G. (2000) Ubiquitin and its kin: how close are the family 

ties.  Trends Cell Biol. 10, 335-342. 

 

 

 

 

                                          ACKNOWLEDGEMENT 

We thank Dr. Ger. J. Strous and Dr. Harvey Ozer for providing us with the ts20-CHO and 

ts20TG mouse cell lines respectively.  We also thank Dr. Michele Pagano, Dr, Ivan Dikic 

and Dr. Prochownik for the p21, K48R ubiquitin, cyclin B1 expression plasmids 

respectively.  This work is supported by the National Medical Research Council of 

Singapore in the form of a research grant (NMRC/0815/2003) to Dr. Gopalan and as 

Institutional Block Grant to National Cancer Centre, Singapore. 

 
 
 
1 Footnotes 

The abbreviations used are:  APC/C, anaphase promoting complex/cyclosome; AKIP, 

Aurora-A interacting protein; TR-AKIP, N-terminal truncated AKIP; TBS. Tris buffered 

saline: MG132, Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal ; Ub, ubiquitin and CHX, 

cycloheximide 
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FIGURE LEGENDS 

 

Figure 1:  Degradation of Aurora-A by AURKAIP1 is cell cycle-independent.          

 a) N-terminal truncated AURKAIP1 is more effective in destabilizing Aurora-A than the full 

length AURKAIP1: COS7 cells were co-transfected with Aurora-A and FLAG-tagged full length 

AURKAIP1 or TR-AURKAIP1 at 1:9 ratio for 36 hrs before harvested for Western Blot analysis 

of Aurora-A and AURKAIP1 using IAK1 antibody and anti-FLAG mouse monoclonal antibody, 

respectively. A vector control has been included in which AURKAIP1 plasmid has been replaced 

by the vector pCDNA3.  β-tubulin was used as the loading control.  b) TR-AURKAIP1 

specifically targets Aurora-A for degradation:  ts20-CHO cells were co-transfected with plasmids 

expressing FLAG-tagged human Aurora-A or Aurora-B and HA-tagged TR-AURKAIP1 at 1:5 

ratio respectively. A vector control has been included in which AURKAIP1 plasmid has been 

replaced by the vector pCDNA3. The effect of TR-AURKAIP1 overexpression on Aurora-A or 

Aurora-B kinase stability was assessed at 36 hrs post-transfection by immunoblot analysis. Cell 

extracts were analyzed for Aurora-A, Aurora-B and TR-AURKAIP1 proteins using the FLAG 

M2 and anti-HA antibodies. The blot was probed with mouse anti-β−tubulin for loading control.  

c) TR-AURKAIP1-mediated Aurora-A degradation is not cell cycle-dependent.  Cos 7 cells were 

co-transfected with HA-tagged human Aurora-A and FLAG-tagged TR-AURKAIP1 at 1:9 ratio 

respectively. Vector control has been included as described previously.  Twenty-four hours post-

transfection, the transfected cells were collected at different phases of cell cycle by treatment with 

either DMSO (Log), Aphidicolin (G1/S) and Nocodazole (M) for another 16 hrs. Cell extracts 

were analyzed for Aurora-A and TR-AURKAIP1 proteins using the anti-HA and anti-FLAG M2 

antibodies, respectively. The blot was probed with anti-β tubulin as loading control. 

 

Figure 2: AURKAIP1 can target cdh1-resistant Aurora-A mutant protein for 

degradation.   a) A-box stabilizing mutant of Aurora-A is not degraded at G1: HeLa cells were 

transfected with either HA-tagged wild type or A-box mutant of Aurora-A. 24 hrs post-

transfection, the cells were treated with 0.1 μg/ml nocodazole for 16 hrs to arrest them at M 

phase. The floating mitotic cells were collected by shake-off and replated in the presence of 50 

μg/ml cycloheximide. The cells were harvested for analysis 4 hrs post-mitotic release. Stability of 

the wild type and A Box mutant of Aurora-A at the M/G1 transition was detected by 

immunoblotting using anti-HA antibody. Endogenous cyclin B1 levels were used as the positive 

control to verify M/G1 transition.  b) TR-AURKAIP1 can degrade mutant Aurora-A:  For in vivo 
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degradation assay, COS7 cells were co-transfected with HA-tagged Aurora-A (wild type and A-

box mutant) and FLAG-tagged TR-AURKAIP1 at the 1:9 ratio respectively.  A vector control has 

been included in which TR-AURKAIP1 plasmid has been replaced by the vector pCDNA3. The 

cells were harvested and analyzed 36 hours post-transfection by immunoblot analysis.  Aurora-A 

and TR-AURKAIP1 proteins were detected with anti-HA and FLAG M2 antibodies, 

respectively. β tubulin was detected as the loading control as described earlier.  c) 

AURKAIP1-mediated degradation of A Box Mutant is proteasome-dependent: HeLa cells 

were co-transfected with HA-tagged A-Box mutant and FLAG-tagged TR-AURKAIP1 at 

1:9 ratio respectively. A vector control has been included in which AURKAIP1 plasmid 

has been replaced by the vector pCDNA3.  Twenty four hours post-transfection, one set was 

treated with DMSO as control, whereas another set was treated with 20 μM MG132 for 16 hours 

before harvest for western Blot analysis. A-Box mutant and TR-AURKAIP1 were detected using 

the anti-HA and FLAG M2 antibodies respectively. β−tubulin was used as the loading control. 

 

Figure 3: AURKAIP1 inhibits polyubiquitination of Aurora-A.  HeLa cells were transiently 

transfected with HA-tagged Aurora-A in combination with either empty vector pCDNA3 or 

AURKAIP1 constructs (TR-AURKAIP1, AURKAIP1 and ΔC198-AURKAIP1 mutant) at 1:9 

ratio, respectively in the presence of an expression construct encoding His-tagged wild type 

ubiquitin (His-Ub).  In vivo ubiquitination assays were performed as described in Experimental 

Procedures. Total ubiquitinated proteins were pulled down with NTA-agarose and the 

ubiquitinated HA-tagged Aurora-A was detected with anti-HA antibodies. The polyubiquitinated, 

HA-tagged Aurora-A appears as a ladder (Panel 1). The total cellular polyubiquitination was 

determined by western blot analysis of the total lysates with anti-His antibodies (Panel 2). The 

protein levels of Aurora-A in the total lysates under different conditions were analyzed using anti-

HA antibodies (Panel 3).  The blot used for the experiment described in Panel 3 was reprobed 

with anti-tubulin for loading control.   

 

Figure 4:  Mapping of regions of Aurora-A essential for ubiquitination.  a) Aurora-A Kinase 

and Its Various Deletion Mutants. The diagram illustrates the size and location of the deletions of 

all the Aurora-A deletion mutant proteins with full length Aurora-A protein. All of the Aurora-A 

mutants contain a FLAG tag at the N-terminus. The locations of KEN, A, and D (D1, D2, D3) 

boxes are indicated.  b) Domain Mapping for efficient Ubiquitination of Aurora-A. HeLa cells 

were transfected with His-tagged wild-type ubiquitin and FLAG-tagged wt-Aurora-A or the A-

Biochemical Journal Immediate Publication. Published on 27 Nov 2006 as manuscript BJ20061272

Copyright 2006 Biochemical Society



 21

box mutant or various deletion mutants of Aurora-A.  Twenty-four hours post-transfection, the 

transfected cells were treated with 20μM MG132 for additional 16 hours before harvesting for 

immunoprecipitation with anti-His antibody.  The ubiquitinated Aurora-A and the deletion 

mutants were detected using anti-Flag antibody.  c) Mapping of AURKAIP1-Interacting Domain 

in Aurora-A.   HeLa cells were transfected with HA-tagged TR-AURKAIP1 and FLAG-tagged 

Aurora-A or its various deletion mutants at 1:1 ratio. 24 hours post-transfection, the transfected 

cells were harvested for immunoprecipitation with anti-Flag antibody. The interacting TR-

AURKAIP1 was detected using the anti-HA antibody. 

 

Figure 5:  AURKAIP1 targets Aurora-A for degradation in the presence of dominant negative 

ubiquitin mutants.   

a) Overexpression of K48R and K48R/K63R dominant negative ubiquitin mutants does not affect 

AURKAIP1-mediated Aurora-A degradation:  HeLa cells were co-transfected with FLAG-tagged 

Aurora-A and FLAG-tagged TR-AURKAIP1 at 1:9 ratio, in the presence of either His-tagged 

wild type or K48R or K48R/K63R mutant ubiquitin expression constructs. A vector control has 

been included in which TR-AURKAIP1 plasmid has been replaced by the vector pCDNA3. 

Thirty-six hours post-transfection, the cells were harvested and analyzed for Aurora-A and TR-

AURKAIP1 using Flag M2 antibodies. β-tubulin was detected as the loading control as described 

earlier. b) AURKAIP1-mediated Ub-independent degradation of Aurora-A is proteasome-

dependent:  HeLa cells were co-transfected with HA-tagged Aurora-A and FLAG-tagged TR-

AURKAIP1 at 1:9 ratio in the presence of K48R ubiquitin mutant overexpression. A vector 

control has been included in which AURKAIP1 plasmid has been replaced by the vector 

pCDNA3.  Twenty four hours post-transfection, one set was treated with DMSO as control, 

whereas another set was treated with 20 μM MG132 for 16 hours before harvest for western blot 

analysis. Aurora-A and TR-AURKAIP1 were detected using the anti-HA and anti-FLAG 

antibodies respectively. β− tubulin was used as the loading control. 

  

Figure 6:Lack of polyubiquitination does not completely stabilize Aurora-A.   To determine the 

turnover of Aurora-A, cyclin B1 and p21 in ts20-CHO cells in the presence and absence of 

polyubiquitination, cells were transfected with FLAG-tagged Aurora-A, HA-tagged p21 and 

cyclin B1 expression plasmids at 30oC. 24 hours post-transfection, the cells were divided into two 

sets; one set was maintained at 30oC permissive temperature whereas the other set was shifted to 

non-permissive temperature, 40oC for 16 hrs. After 16 hrs, cells were treated with 50 μg/ml 

cycloheximide and both sets of cells were harvested at indicated time points.  The levels of p21 
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(a), cyclin B1 (b) and Aurora-A (c) were analyzed by immunoblot analysis by FLAG, cyclin B1 

and HA-tag antibodies respectively.  β tubulin was detected as the loading control as described 

earlier. d. Ub-independent Degradation of Endogenous Aurora-A Kinase: Mouse ts20b cells were 

incubated at 32oC or 40oC for 18 hr followed by cycloheximide treatment for the indicated times. 

The protein levels of endogenous Aurora-A, p21 and cyclin B1 were analyzed by immunoblot 

analysis using the IAK1, p21 and cyclin B1 antibodies respectively.  β−tubulin was detected as 

the loading control 

 

Figure 7: AURKAIP1 specifically targets Aurora-A for degradation in an Ub-independent 

manner.  

ts20 CHO cells were co-transfected with FLAG-tagged TR-AURKAIP1 and the constructs 

expressing the targets genes (Aurora-A, Aurora-B, p21 and cyclinB1) at 9:1 ratio. A vector 

control has been included in which TR-AURKAIP1 plasmid has been replaced by the vector 

pCDNA3. The transfected cells were divided into two sets; both sets were initially incubated at 

permissive temperature, 30oC for 24 hrs. One set was maintained at 30oC permissive temperature 

and the other set was incubated at the non-permissive temperature, 40oC for 16 hrs.  The cells 

were harvested and the steady state levels of Aurora-A (a), Aurora-B (b), p21 (c) and cyclinB1 

(d) proteins were analyzed using the respective antibodies.  The TR-AURKAIP1 expression was 

also monitored.  The blots were probed with mouse anti-β tubulin for loading control. 
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ABSTRACT: 
 
Overexpression of Aurora-A oncogene has been shown to induce genomic instability and 

tumorigenesis.  Cellular levels of Aurora-A are regulated by multiple mechanisms including 

the proteasome-dependent degradation of Aurora-A protein. Cell-cycle-dependent turnover of 

the Aurora-A is mediated by cdh1 through ubiquitin (Ub) and proteasome-dependent 

pathway. AURKAIP1, a negative regulator of Aurora-A, also promotes proteasome-

dependant Aurora-A destabilization, however, through an Ub-independent mechanism.  In an 

attempt to understand how AURKAIP1 promotes Aurora-A destabilization through Ub-

independent pathway, we demonstrate here that antizyme1 (Az1), a well-studied mediator of 

Ub-independent protein degradation pathway regulates Aurora-A protein stability.  We show 

that ectopic or polyamine-induced expression of Az1 can lower the steady state levels of 

Aurora-A.  The destabilizing effect of Az1 on Aurora-A was shown to be proteasome-

dependent, but ubiquitin-independent.  Az1 interacts with Aurora-A in vivo and that the 

interaction between Aurora-A and Az1 is essential for the Az1-mediated Aurora-A 

degradation.  Furthermore, we observed that AURKAIP1 could not destabilize Aurora-A 

mutant, which is defective in Az1 interaction.  Co-expression of the antizyme inhibitor (AzI), 

which downregulates Az1 functions, also abrogated AURKAIP1-mediated destabilization of 

Aurora-A.  We further demonstrated that AURKAIP1, Az1 and Aurora-A could exist as a 

ternary complex and AURKAIP1 enhances the interaction between Az1 and Aurora-A.   We 

propose that AURKAIP1 might function upstream of the Az1 by enhancing the binding 

affinity of the Az1 to Aurora-A to promote recognition, targeting to proteasome and 

subsequent degradation. 
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INTRODUCTION: 

Aurora-A kinase is an important member of the family of aurora kinases that play essential 

roles in mitotic events.  Regulation of the steady-state levels of Aurora-A is very important as 

higher levels of Aurora-A in human and rodent cells induce centrosome amplification, 

aneuploidy, transformed phenotype and tumor formation in nude mice [Bischoff et al., 1998; 

Zhou et al., 1998]. Aurora-A is overexpressed in many cancer types and mapped to 

chromosome 20q13 region, that is frequently amplified in many human cancers [Gritsco et 

al., 2003; Li et al., 2003; Tanaka et al., 1999]. Overexpression of Aurora-A significantly 

correlates with induction of aneuploidy, centrosome anomaly, poor prognosis and 

invasiveness of the primary human tumors and of experimental tumors in animal model 

systems [Buschhorn et al., 2005; Sakakura et al., 2001].   Aurora-A levels and functions are 

regulated by multiple mechanisms such as gene amplification, transcription, post-translational 

modifications including phosphorylation/dephosphorylation and protein degradation through 

proteasome–dependent pathway [Honda et al., 2000; Walter et al., 2000].  Aurora-A 

represents one of the many mitotic proteins, whose protein levels are temporally regulated by 

the Ub-dependent proteolysis at the end of mitosis before cells progress into subsequent G1 

phase. Aurora-A is ubiquitinated by the Cdh1-activated APC/C, an E3 ubiquitin ligase 

through the recognition of C-terminal destruction box (D-box) and N-terminal A-box. It has 

been proposed that dephosphorylation of the highly conserved S51 in A-box during mitotic 

exit could control the timing of Aurora-A degradation [Honda et al., 2000; Littlepage and 

Ruderman, 2002; Taguchi et al., 2002]. 

 

Antizyme (Az) represents one of the important classes of evolutionarily conserved proteins 

that regulate cell growth and metabolism.  It is involved in the ubiquitin-independent protein 

degradation and small molecule transport [Gerner and Meyskens, 2004].  Az expression is 

induced by an unusual polyamine-dependent mechanism in which a programmed +1 frame-
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shift occurs during translation of the Az mRNA leading to the expression of full-length and 

functional Az protein [Ivanov et al., 2000].  Once expressed, Az binds and inhibits ornithine 

decarboxylase (ODC), a rate-limiting enzyme in polyamine biosynthesis and targets it for 

degradation through ubiquitin-independent pathway [Rom and Kahana, 1994]. Increased 

polyamines and ODC activities are associated with many human malignancies [Gerner and 

Meyskens, 2004)].  As a negative regulator of ODC and thus polyamine levels, 

overexpression of Az leads to cell cycle arrest, apoptosis [Koike et al., 1999; Iwata et al., 

1999] and inhibition of tumor growth in in vivo mouse models [Feith et al., 2001; Fong et al., 

2003]. Az increases the ODC degradation by enhancing ODC association with proteasome, 

rather than accelerating the rate of proteasomal processing [Zhang et al., 2003]. The 

attachment of Az causes conformational changes in ODC, thereby exposing its C-terminal 

degradation signal for recognition by 26S proteasome [Li and Coffino, 1993)]. Unlike 

ubiquitin, Az is usually spared from destruction and released from the ODC-Az complex at 

the proteasome [Murakami et al., 1992]. Therefore, a single Az molecule can catalyze 

multiple rounds of ODC degradation. Studies in vitro [Bercovich et al., 1989] and in vivo 

[Rosenberg-Hasson et al., 1989; Glass and Gerner, 1987] have revealed that this Az-mediated 

protein degradation process is essentially ubiquitin-independent.  Recent studies have 

demonstrated that Az can bind other proteins [Newman et al., 2004; Lin et al., 2002] besides 

ODC and facilitate their degradation through ubiquitin-independent pathway.   

 

We identified earlier AURKAIP1 [Kiat et al., 2002], an Aurora-A kinase interacting protein, 

which is involved in the destabilization of Aurora-A through proteasome-dependent pathway. 

Further studies on the AURKAIP-dependent destabilization of Aurora-A revealed that there 

exists an alternative Ub-independent pathway for Aurora-A degradation and AURKAIP1 

promotes Aurora-A degradation through this Ub-independent yet proteasome-dependent 

pathway [Lim and Gopalan 2007]. However, the mechanism underlying the targeting of 

Aurora-A to the proteasome in the absence of ubiquitination remains unexplored.   As Az is 

known to play a role in ubiquitin-independent targeting of a few substrates other than ODC, 
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we investigated whether Az1, a well-studied member of the antizyme family, could mediate 

ubiquitin-independent degradation of Aurora-A.  Here, we present that Az1 can interact with 

Aurora-A and target it for degradation through proteasome-dependent but ubiquitin-

independent pathway.  AURKAIP1 enhances the binding of Az1 to Aurora-A and promotes 

recognition and targeting of Aurora-A to proteasome in the absence of ubiquitination. 

 

 

 

RESULTS: 

Az1 targets Aurora-A for proteasomal degradation 

Previous studies showed that Aurora-A could be degraded through proteasome-dependent 

pathway in the absence of ubiquitination [Lim & Gopalan, 2007].  To provide a mechanistic 

explanation for how Aurora-A is targeted in the absence of ubiquitination, we studied Az1, an 

established player in ubiquitin-independent proteasomal targeting.   To begin with, we 

investigated whether Az1 can destabilize Aurora-A.   Coexpression of Aurora-A and Az1 led 

to decreased steady state levels of transfected Aurora-A in both HeLa and CHO cells 

(Fig.1A).   ODC, a well-documented target of Az1, was also destabilized when coexpressed 

with Az1, verifying the reliability of the assay (supplementary Fig.1a).  As the Az1-

mediated destabilization was followed with ectopically expressed Aurora-A whose expression 

is driven by CMV promoter, the involvement of transcriptional mechanisms could be ruled 

out.  Thus, the decrease in the steady-state levels of Aurora-A observed in the presence of 

Az1 is mainly post-transcriptional.  Endogenous Aurora-A protein also was subjected to a 

similar destabilization effect by ectopic expression of Az1 in HeLa cells.  Endogenous 

CyclinB1 was not affected by the expression of Az1, while cyclinD1, a reported Az1 target 

was destabilized (Fig.1B). Exogenous addition of polyamines has been shown to upregulate 

the synthesis of functional Az1 through unique translational frame-shift mechanism [Rom and 

Kahana, 1994].  To verify whether higher endogenous levels of Az1 will have a similar 

destabilizing effect on Aurora-A, AT2.1 prostate carcinoma cells were treated with 10mM 
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putrescine to stimulate Az1 expression and Aurora-A levels were monitored.  As shown in 

Fig.1C, higher endogenous levels of Az1 could destabilize both Aurora-A and cyclinD1 while 

cyclin A was spared.  To demonstrate that the destabilizing effect of Az1 is indeed the 

degradation of Aurora-A through the proteasome-dependent pathway, Az1 and Aurora-A 

were coexpressed in HeLa cells in the presence of proteasome inhibitors MG132 and 

lactacystin and the destabilization of Aurora-A was followed.  Treatment with proteasome 

inhibitors abolished the Az1-mediated destabilization of both transfected (Fig.1D) as well as 

endogenous (Fig. 1E) Aurora-A, suggesting that Az1 destabilize Aurora-A through 

proteasome-dependent pathway.   It has been demonstrated that Az1 is capable of degrading 

its substrates in vitro in reticulocyte lysates, a rich source of proteasome.   To demonstrate 

Az1-mediated destabilization of Aurora-A in vitro, degradation assays were performed in 

vitro in reticulocyte lysates as the source of proteasome.  Az1 and Aurora-A proteins were 

synthesized separately in an in vitro coupled transcription/translation system and incubated 

together in the presence of an ATP-regenerating system.  Wild type Aurora-A has been shown 

to be less stable in reticulocyte lysate presumably due to the presence of low levels of cdh1 in 

the lysates, which could degrade Aurora-A through proteasome-dependent pathway [Crane et 

al, 2004].  Hence, a stable A-box mutant of Aurora-A, which is recalcitrant to cdh1-mediated 

degradation, was used in the in vitro degradation assays.  Preliminary studies using this A-box 

mutant and Az1 proteins showed that both proteins are relatively more stable in the lysates 

under the assay conditions.  However, when combined together, Az1 led to lower levels of 

Aurora-A in a dose-dependent (Fig. 1F) and time-dependent manner (Fig. 1G) with faster 

kinetics (Fig. 1H).   

 

Az1 could destabilize Aurora-A in the absence of ubiquitination 
 
Az1 is known to target its substrates like ODC, cyclinD1 and Smad1 for proteasomal 

degradation in the absence of ubiquitination.  To address the nature of Az1-mediated 

degradation of Aurora-A, we used the A-box mutant of Aurora-A, which is resistant to cdh1-

mediated degradation [Littlepage and Ruderman, 2002]. We have earlier shown that 
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coexpression of Az1 and wild type Aurora-A resulted in the loss of Aurora-A protein.  

Similarly, when the cdh1-resistant A-box mutant of Aurora-A was coexpressed, Az1 was able 

to destabilize the A-box mutant of Aurora-A also with similar efficacy (Fig. 2A).  This 

suggests that Az1 destabilizes Aurora-A in a manner distinct from cdh1.  However, reversal 

of the destabilizing effect of Az1 on the A-box mutant of Aurora-A by the proteasomal 

inhibitors MG132 and lactacystin demonstrated that the Az1 effect on A-box mutant is still 

proteasome-dependent.  To demonstrate whether Az1-mediated degradation of Aurora-A can 

occur in the absence of prior ubiquitination, Az1 and Aurora-A were coexpressed in ts20-

CHO, a temperature-sensitive cell line lacking ubiquitin activating enzyme E1 at the 

restrictive temperature and thus defective in the ubiquitination of proteasomal substrates 

[Strous et al., 1996].  Az1 was able to destabilize Aurora-A in the ts20-CHO cells even at the 

restrictive temperature (40oC) as effectively as at the permissive temperature (30oC) or in 

HeLa cells supporting the ubiquitin-independent nature of degradation (Fig 2B).  Similar 

Az1-mediated ubiquitin-independent degradation of the ODC, positive control substrate, 

could also be demonstrated at the restrictive temperature (supplementary Fig.1b).  To 

address whether the Az1-mediated destabilization of Aurora-A is due to increased turnover, a 

cycloheximide chase experiment was performed. Az1 and Aurora-A were coexpressed in 

ts20-CHO cells and Aurora-A turnover in the presence of cycloheximide was followed at both 

permissive and non-permissive temperatures. The results presented in Fig. 2C showed that 

Az1 induced faster turnover of Aurora-A at both permissive and non-permissive temperature 

suggesting that the destabilizing effect of Az1 could be mainly degradation.  Efficient 

degradation of Aurora-A by Az1 even at restrictive temperature indicated that the Az1-

mediated degradation of Aurora-A is ubiquitin-independent.   It is noteworthy that the levels 

of Az1 itself is stabilized at the non-permissive temperature supporting the previous 

observation that antizyme is rapidly degraded through ubiquitin-dependent proteasomal 

activity [Gandre et al., 2002].  On the other hand, Az1 could not destabilize the CDK 

inhibitor, p27 or the tumor suppressor p53 at both temperatures (Fig. 2D), vouching for the 

specificity of Az1-mediated Aurora-A degradation through this pathway.   
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Az1 interacts with Aurora-A in vivo 

The results presented in the previous sections suggest that Az1 targets Aurora-A for 

proteasomal degradation through ubiquitin-independent pathway.  To further elucidate the 

role of Az1 as the targeting molecule, we investigated whether Az1 can interact with Aurora-

A.  Az1 and HA-tagged Aurora-A were coexpressed in HeLa cells, and pull-down assays 

were performed with antibodies against anti-HA tag antibody to pull down ectopically 

expressed Aurora-A.   The result presented in Fig. 3A show that Az1 could be coprecipitated 

with Aurora-A suggesting an interaction between Az1 and Aurora-A.  To address the 

specificity of interaction, an interaction domain mapping experiment was performed.  To this 

end, deletion constructs lacking different regions of Aurora-A (Fig.3B) were coexpressed 

with Az1 and pull-down assays as described earlier were performed to map the region of 

Aurora-A that interacts with Az1.  The results presented in Fig. 3C, show that a deletion of N-

terminal 200 amino acids (ΔN600) and C-terminal 100 amino acids (ΔC300) does not 

interfere with the binding of Aurora-A with Az1.  However, a further deletion of 100 amino 

acids from the C-terminus (ΔC600) of Aurora-A completely abolished the interaction with 

Az1 suggesting that the region spanning residues 203-303 of Aurora-A is involved in the 

interaction with Az1. 

 

Residues R131 and G145 of Az1 are essential for the destabilization of Aurora-A 

It has been demonstrated that N-terminus of ODC interacts with Az1 [Li and Coffino, 1992] 

and that the element contained within amino acids 130-145 of rat Az1 is essential for the 

targeting of ODC for proteasomal degradation [Chen et al., 2002].  To define whether this 

targeting domain of Az1 is involved in the targeting of Aurora-A for degradation, Az1 

mutant, which lacks the N-terminal 120 amino acids (ΔN120-Az1) and Az1 which lacks only 

the amino acids 130-145 (Δ130-145-Az1) (Fig.4A) were made and used to study in vivo 

degradation of Aurora-A in HeLa cells as described earlier.  ΔN120-Az1 mutant targeted 
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endogenous Aurora-A for degradation as effectively as the full length Az1.  However, the 

Δ130-145-Az1, which lacked the 16 amino acid region was not competent enough to target 

Aurora-A protein for degradation (Fig. 4B). However, it is possible that the deletion of 16 

amino acid residues from the middle of the protein could have hampered the functionality of 

the protein as predicted before [Hoffman et al., 2005].  To rule out this possibility, a double 

mutant in which the residues R131 and G145 of human Az1 changed to aspartic acid 

(R131D/G145D) as described in [Chen et al., 2002] was also generated and tested for its 

efficiency of Aurora-A degradation.  It has been shown that simultaneous conversion of R131 

and A145 in rat Az1 to aspartic acid totally abolishes its degradative capacity.  It should be 

noted that the arginine residue at 131 has been conserved between rat and human Az1 while 

the alanine at position 145 of rat Az1 has been replaced with glycine in human Az1. Despite 

this change, R131D/G145D double mutant of human Az1 showed decreased ability to target 

endogenous Aurora-A for degradation suggesting that these residues are essential for the 

degradation of Aurora-A also (Fig.4B).  Coexpression of Az1 mutants with Aurora-A in 

HeLa cells followed by immunoblot analysis revealed that the Az1 mutants lacking the 

element present within amino acids 130-145 of human Az1 are less effective in targeting 

exogenous Aurora-A also for degradation (Fig.4C). These data reiterated the essential nature 

of the R131 and G145 residues in targeting Aurora-A for degradation. To further demonstrate 

that the failure of Δ130-145-Az1 or R131D/G145D-Az1 to degrade Aurora-A protein did not 

arise due to their inability to interact with Aurora-A, pull-down assays were performed as 

described earlier.  However, the results presented in Fig. 4D, show that Δ130-145-Az1 and 

R131D/G145D-Az1 were as efficient as the full length Az1 in interacting with Aurora-A 

suggesting that the amino acid residues R130 and G145 of human Az1 are dispensable for the 

interaction while essential for the degradation of Aurora-A. 

 

Functional link between Az1 and AURKAIP1   

 9



We have shown earlier that the negative regulator AURKAIP1 facilitates destabilization of 

Aurora-A through proteasome-dependent but ubiquitin-independent pathway [Lim and 

Gopalan, 2007].  The results presented here suggest that Az1 might play the targeting role in 

the ubiquitin-independent degradation of Aurora-A.  To investigate whether there exists any 

functional link between AURKAIP1 and Az1, we exploited the antizyme inhibitor (AzI), a 

physiological regulator of the antizyme family [Mangold, 2006].  High AzI level 

downregulates antizyme-mediated degradation of ODC as well as polyamine transport 

[Coffino, 2001].  To investigate whether Az1 plays a targeting role in AURKAIP1-mediated 

degradation of Aurora-A, AzI was expressed alone or with AURKAIP1 and Aurora-A 

stability in vivo was followed as described earlier.  The result presented in Fig. 5A show that 

the expression AzI alone had only a minimal effect on the stability of Aurora-A.  However, it 

was able to counteract the destabilizing effect of AURKAIP1 suggesting the involvement of 

Az1 in the AURKAIP1-mediated degradation of Aurora-A.  To exclude any possibility that 

reversal of AURKAIP1-dependent Aurora-A degradation by AzI could be Az1-independent 

or to show a direct involvement of Az1 in this pathway, the Aurora-A deletion mutant 

ΔC600-Aurora-A, which is defective in interacting with Az1, was employed to study the 

degradation of Aurora-A in vivo.  While full-length as well as other deletion constructs such 

as ΔN300, ΔN600 and ΔC300 could be destabilized by AURKAIP1, the ΔC600 deletion was 

resistant to AURKAIP1-mediated degradation Fig. 5B. Together, the results presented above 

suggest a role for Az1 in AURKAIP1-mediated degradation of Aurora-A.  To define a 

functional link between Az1 and AURKAIP1, any interaction between AURKAIP1 and Az1 

was studied by pull-down assays as described earlier. We could not detect any direct 

interaction between AURKAIP1 and Az1 by pull down assays (data not shown).  However, 

Az1 was found to coprecipitate with AURKAIP1 when both Az1 and TR-AURKAIP1 

[truncated AURKAIP1, a more potent form of AURKAIP1 in interacting and targeting 

Aurora-A for degradation (Lim and Gopalan, 2007; Kiat et al., 2002)] were coexpressed with 

Aurora-A (Fig. 5C). This raised an intriguing possibility that Az1, AURKAIP1 and Aurora-A 
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could form a ternary complex.  To further explore the existence of such a ternary complex in 

Aurora-A degradation, we studied the interaction between Az1 and Aurora-A in the presence 

and absence of AURKAIP1.  Az1 showed a basal affinity towards Aurora-A in the absence of 

AURKAIP1.  However, expression of AURKAIP1 enhanced the binding of Az1 to Aurora-A 

significantly (Fig. 5D) suggesting that AURKAIP1 might function upstream of Az1 

promoting its interaction with Aurora-A and facilitate the Az1-mediated proteasomal 

targeting of Aurora-A. 

 

 

DISCUSSION: 

Multiple regulators of Aurora-A kinase stability have been described recently [Mao et al., 

2004; Yu et al., 2005].  Most of them target Aurora-A through ubiquitin-dependent and 

proteasome-dependent degradation pathway.  In contrast, we identified a negative regulator 

Aurora-A, AURKAIP1, which destabilizes Aurora-A in a proteasome-dependent but 

ubiquitin-independent pathway [Lim and Gopalan; 2007] and demonstrated for the first time 

that an ubiquitin-independent pathway exists for Aurora-A degradation.  To provide a 

mechanistic explanation regarding how AURKAIP1 targets Aurora-A to the proteasome 

machinery in the absence of ubiquitination, we investigated antizyme, an established 

proteasome-targeting molecule in the ubiquitin-independent pathway.  We have shown here 

that antizyme1 can also target Aurora-A for degradation through proteasome-dependent but 

ubiquitin-independent pathway.  Both ectopic and polyamine-induced expression of Az1 can 

regulate the steady state levels of Aurora-A.  Increased turnover of Aurora-A in the presence 

of Az1 under both in vivo and in vitro conditions and the restoration of the steady state levels 

of Aurora-A by proteasomal inhibitors supported the conclusion that Az1-mediated loss of 

Aurora-A is not an indirect effect of Az1 expression on Aurora-A levels but is proteasome-

dependent degradation of Aurora-A.  This is further supported by the direct interaction 

between Az1 and Aurora-A.  Studies carried out using the A-box mutant of Aurora-A and 

temperature-sensitive cell line defective in ubiquitination at the restrictive temperature, 
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suggest that Az1-mediated degradation of Aurora-A is mechanistically different from the 

cdh1-dependent degradation of Aurora-A and is ubiquitin-independent.   

 

Despite the dismal knowledge we have on the significance and the physiological relevance of 

this alternative pathway, the growing list of protein substrates [Asher et al., 2005; Jin et al., 

2003; Sdek et al., 2005] targeted to the proteasome in the absence of ubiquitination suggests 

that the ubiquitin-independent route to the proteasome is as important as the ubiquitin-

dependent pathway.  Antizyme-mediated degradation of ornithine decarboxylase, the first 

demonstrated prototype example of ubiquitin-independent degradation, is essential for the 

maintenance of polyamine homeostasis in cells [Li and Coffino, 1992].  Antizyme is capable 

of interacting with β subunit HsN3 of proteasome and this interaction might facilitate 

targeting of its substrates to the proteasome [Lin et al., 2002].  It has been shown that the 

amino acid residues R131and A145 of rat Az1 are essential for the degradation of ODC [Chen et 

al., 2002]. Mutating similar residues in human Az1 downregulated the ability of Az1 to target 

Aurora-A also for degradation suggesting an important role for these residues in substrate 

degradation.  This observation also increased the likelihood that these residues might be 

involved in the targeting of other substrates such as cyclinD1 and Smad1 [Lin et al., 2002; 

Newman et al., 2004].  It is yet to be shown whether these residues are indispensable for its 

interaction with the proteasome.   

 

Higher levels of antizyme have been shown to be associated with decreased cell proliferation 

and hence antizyme has been envisaged as a tumor-suppressor [Fong et al., 2003; Iwata et al., 

1999].  It is tempting to speculate that the negative regulation of the oncogenic Aurora-A 

could be one of the manifestations of its tumor-suppressor functions.  Recently, cyclinD1, a 

crucial regulator of cell cycle progression, has been described as the target of antizyme1.  

Antizyme-mediated downregulation of cyclinD1 by proteasome was proposed as a mean to 

cease cell proliferation with G1 arrest following antizyme up-regulation [Newman et al., 

2004].   Current knowledge on the expression and functions of Aurora-A does not support a 
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role as a mediator of polyamine-induced G1 arrest.  However, antizymes have evolved as a 

family with different functions other than polyamine metabolism and transport.  It has been 

shown that treatment of cells with the rare polyamine, agmatine, suppresses proliferation by 

frame-shift induction of antizyme and attenuation of cellular polyamine levels [Satriano et al., 

1998]. Moreover, HTC cells treated with agmatine showed a progressive accumulation of 

cells in G2/M phase of the cell cycle with no evident signs of apoptosis or necrosis [Gardini et 

al., 2003].  Against this background, it is tempting to speculate that antizyme-mediated 

Aurora-A destabilization might be one of the multiple functions of antizyme on cell growth. 

. 

The identification of the Aurora-A binding proteins AURKAIP1 and Az1 as the regulators of 

the ubiquitin-independent degradation of Aurora-A, poses the obvious question, whether there 

are any functional link between these two proteins.  The results presented in this 

communication (Fig.5) suggest that AURKAIP1 might act upstream of Az1 and promote its 

interaction with Aurora-A.  Inhibition of Az1 functions by antizyme inhibitor or use of 

Aurora-A mutant defective in interacting with Az1 ameliorated AURKAIP1-dependent 

degradation of Aurora-A, predicting a mediator role for Az1 in this pathway.  However, it is 

yet to be investigated whether antizyme could function independent of AURKAIP1 in the 

degradation of Aurora-A or despite its ability to target Aurora-A, Az1 should await for cue 

from AURKAIP1.  In other words, the cellular context under which these pathways are 

operative is an intriguing future direction of investigation, which has the potential to unravel 

the mysteries of the physiology of AURKAIP as well as the significance of this alternative 

pathway of Aurora-A degradation.  Based on the current knowledge on the mechanism of 

antizyme-mediated degradation where binding of antizyme to its protein substrate enhances 

the recognition and targeting of the substrate to the proteasome, we propose that AURKAIP1 

functions upstream of Az1 promoting its interaction with Aurora-A and facilitates the Az1-

mediated proteasomal targeting. 
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MATERIALS AND METHODS 

Plasmids 

p27Kip1 wt-pFLAG-N3 was obtained from Christoph Geisen, The Burnham Institute, USA. 

FLAG-tagged mouse ODC-pCDNA3 was obtained from Phillip Coffino, University of 

California, USA.  

The cDNA encoding the wild type human antizyme1 was obtained by RT-PCR (Promega) of 

the RNA prepared from putrescine-treated HeLa cells using the primers: Az1-Forward 

(5’gaggaattcatggtgaaatcctccctgcagcg3’) and Az1-Rev (5’gcactcgagctactcctcctcctctcccgaa 

gactctctc3’). The human antizyme inhibitor (AzI) cDNA was also obtained by RT-PCR of 

normal HeLa cell RNA using the primers: AzI-Forward (5’gaattcatgaaaggatttattgatgatgc3’) 

and AzI-Rev (5’ctcgagttaagcttcagcggaaaagctg3’). Various epitope tags (His, HA, FLAG) 

were added to the cDNAs by PCR and cloned into the pCDNA3 (Invitrogen) and pIRES 

(Clontech) vectors. The frame-shift mutant of Az1 was generated by site-directed mutagenesis 

using the GeneEditor in vitro Site-Directed Mutagenesis System (Promega) according to the 

manufacturer’s protocol. The mutagenic oligonucleotide used is 5’gtggtgctccgatgcccctc3’. All 

Az1 deletion mutants were constructed by PCR. ΔN120-AZ1 mutant cDNA was amplified 

using the designed primer pairs spanning the region of Az1 from amino acid residue 121 to 

229 (stop codon). FLAG tag was subsequently added to the N terminus by second PCR.  The 

Δ130-145-Az1 mutant, an internal deletion of 16 amino acids from residue 130 to 145 was 

generated by nested PCR amplification. During this amplification, the 48 bp sequences 

corresponding to the region between amino acid residues from 130 –145 were replaced with 

sequences containing Sma1 and EcoR1 restriction sites without compromising the reading 

frame. FLAG-Az1 in pCDNA3 (full length, frameshifted mutant) was used as the PCR 

template. Two individual primary PCRs were set up; one reaction amplifying from 5’ end of 

FLAG-Az1 cDNA (T7 primer) till amino acid residue 129 (gene-specific primer with SmaI 

and EcoRI sites at the 5’ end) and the second reaction amplifying from amino acid residue 

146 (gene-specific primer with SmaI and EcoRI sites at the 5’ end ) till 3’ end of FLAG-Az1 

cDNA (SP6 primer). The two overlapping  (SmaI and EcoR I regions) primary PCR products 
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were gel purified and mixed in equal ratio and the Δ130-145 Az1 mutant cDNA was 

amplified by secondary PCR using the primer pair flanking the FLAG tag at the 5’ end to the 

stop codon of Az1.  The double mutant R131D/G145D was also generated using a two-step 

PCR. Desired mutations have been incorporated into the gene-specific primers used for the 

primary PCR amplification.  The sequence of the gene-specific primers used in the primary 

PCR are R131D-R: 5’gtagaggctgccgccactcagcactgtgtcccagttaatgcg3’ and G145D-F: 5’ggcgg 

cagcctctacatcgagatcccggacggcgcgctgc3’.  FLAG tagged wild type Az1 in pCDNA3 was used 

as the template in two PCR reactions: one with T7 and R131D-R primers and the other with 

SP6 and G145D-F primers.  The primary PCR products were gel purified, mixed and 

subjected to second PCR using the primer pair flanking the FLAG tag at the 5' end to the stop 

codon of Az1. 

 

Antibodies 

The specific antibodies used in this study are as follows: Anti-β-tubulin (mouse monoclonal, 

1:1000, Sigma), Anti-Cyclin A (rabbit polyclonal, 1:500, Santa Cruz), Anti-Cyclin D1 

(mouse monoclonal, 1: 200, Santa Cruz), Anti-Cyclin B1 (rabbit polyclonal, 1: 3000, Santa 

Cruz), Anti-Az1 (rabbit polyclonal, 1: 2000, a gift from John Mitchell, Northern Illinois 

University), Anti-FLAG M2 (mouse monoclonal, 1: 2000, Stratagene), Anti-FLAG (rabbit 

polyclonal, 1:3000, Sigma), Anti-HA (mouse monoclonal, 1:2000, Sigma), Anti-HA (rabbit 

polyclonal, 1:400, Santa Cruz), Anti-His (mouse monoclonal, 1:1000, Sigma), Aurora-A 

(anti-IAK1, mouse monoclonal, 1:2000, Pharmingen) and anti-p53 (mouse 

monoclonal,1:2000, Santa Cruz).  All HRP-conjugated secondary antibodies (Pierce) were 

used at 1:8000 dilution.  

 

Cell Culture, Transfection and Drug Treatment 

The AT2.1 Dunning rat prostate carcinoma cells were obtained from Dr. John T Isaacs, 

Baltimore, USA and maintained at 37oC in RPMI 1640 medium supplemented with 250 nM 

Dexamethasone (Sigma). ts20 Chinese Hamster cell line, which harbors the temperature-

sensitive mutation in E1 ubiquitin-activating enzyme, were obtained from Dr. Ger J Strous, 
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Utrecht, Netherlands and maintained at 30oC in α-MEM medium supplemented with 4.5g/L 

glucose. HeLa cells were maintained in RPMI 1640 medium. All mediums were 

supplemented with 10% heat-inactivated fetal bovine serum, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.1 mM non-essential amino 

acids. 

For transient transfection, HeLa and ts20-CHO cells were plated at the density of 1 x 106 and 

2.5 x 106 per 60 mm dish one day prior to transfection. On the day of transfection, the cells 

were transfected with 3 μg of plasmid DNA using the Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s recommendations. Due to very high level of transgene 

expression, the p27 kip1-expressing construct was trasfected with only 0.3 μg (1/10th of 3 μg 

normally used) of plasmid DNA .  

For proteasomal inhibition, the cells were treated with 20 μM of MG132 (Sigma) or 20 μM 

lactacystin (Calbiochem). For induction of endogenous antizyme expression, the AT2.1 cells 

were treated with 10 mM putrescine (Sigma) for 24 hours.  

 

Cell Lysis, Immunoblotting and Immunoprecipitation  

Harvested cells were washed twice with ice cold PBS and lysed in 1x Laemmli Buffer (25mM 

Tris Base, 192 mM Glycine, 0.1% SDS), followed by pulsed sonication (Vibra Cell, Sonics & 

Materials Inc.; 5 x 5 secs with 10 sec interval) on ice and subsequently cleared by 

centrifugation at 16000 x g for 10 min at 4oC. The protein concentrations of the lysates were 

assayed using Bio-Rad Protein Assay Reagent (Pierce). 50-100 μg proteins were separated on 

a 10 or 12% SDS-PAGE. The proteins were subsequently transferred to the nitrocellulose 

membrane (Gelman Laboratory). After blocking with 5% non-fat milk in TBS, the blots were 

incubated with various antibodies at their optimal dilutions overnight at 4oC. The horseradish 

peroxidase (HRP)-conjugated secondary antibodies [goat anti-rabbit HRP & goat anti-mouse 

HRP (Pierce)] were diluted in blocking buffer and incubated with the blot for 1 hour at room 

temperature. The conjugated secondary antibodies were detected by SuperSignal Pico or Dura 

Chemiluminescence (Pierce) detection system. To quantify the signal intensities in the 
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immunoblots, ImageJ (version 1.36b) software (Rasband, W.S., ImageJ, U. S. National 

Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2006) was 

used. 

For immunoprecipitation, cells were lysed for 15 min on ice in lysis buffer (1 X TBS, 10% 

glycerol, 1% Nonidet P-40) containing protease inhibitors cocktail (Roche).  The lysates were 

cleared by centrifugation at 16000 x g for 10 min at 4oC.  After measuring the protein 

concentration of the lysates as described above, the lysates were precleared by incubation 

with 50 μl of   50% slurry of protein G-agarose (Sigma) for one hour at 4oC.  Antibodies were 

coupled to Protein G-agarose by incubation for one hour at 4oC and the precleared lysates 

were mixed with antibody-coupled protein G-agarose and rotated for two hours at 4oC.  

Immune complexes were washed twice with buffer I (1xTBS, 10% glycerol, 0.5% Nonidet P-

40, 1% bovine serum albumin) and twice with buffer II (1xTBS, 10% glycerol, 0.5% Nonidet 

P-40).  The immune complexes were solubilized with the sample buffer and subjected to 

immunoblot analysis. Typically, a total of 500 μg of lysate protein were used for 

immunoprecipitation experiments while 50 μg of the total lysates were used for immunoblot 

analysis of the total lysates. 

 

In vitro Protein Degradation Assay 

 

Aurora-A and Az1 were translated separately in vitro using reticulocyte-based TNT T7 

Quick-Coupled Transcription/Translation system (Promega). The Aurora-A expressing 

lysates were mixed with antizyme expressing lysates at 1:3 ratio and incubated in a assay 

buffer containing 50 mM Tris-HCl, pH 7.5; 2 mM DTT with 1X Energy Regeneration 

Solution (Boston Biochem, USA) for up to 4 hours at 37oC. The reactions were stopped at 

different time points by addition of an equal volume of 2X SDS-PAGE sample buffer (0.24M 

Tris, pH 6.8, 2.5% SDS, 20% glycerol, 8% β-mercaptoethanol) and boiled prior to analysis by 

SDS-PAGE. 
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TITLES AND LEGENDS TO FIGURES: 
 
 

Figure 1:  Az1 targets Aurora-A for proteasomal degradation.  A. HeLa or CHO cells were 

co-transfected with HA-tagged Aurora-A and His-tagged Az1 at 1:9 ratios. A negative control 

has been included in which Az1 plasmid was replaced with the empty vector.   Thirty-six 

hours post-transfection, the cells were harvested for western blot analysis of exogenous 

Aurora-A protein stability. Aurora-A and Az1 were detected using anti-HA and anti-Az1 

antibodies, respectively. β tubulin was used as the loading control.   B.  HeLa cells were 

transfected with either empty vector or His-tagged Az1. Thirty-six hours post-transfection, 

cell lysates were prepared for western blot analysis of the endogenous Aurora-A protein. 

Aurora-A and Az1 was detected using anti-IAK1 and anti-Az1 antibodies, respectively. 

Cyclin D1 and cyclin B1 were detected as the positive and negative control respectively. β 

tubulin was used as the loading control.  C.  AT 2.1 cells were treated with 10 mM of 

putrescine for 24 hours prior to harvest for western blot analysis of endogenous Aurora-A 

with anti-IAK1 antibody.  Cyclin D1 and cyclin A were detected with their respective 

antibodies. Induction of endogenous Az1 was followed with anti-Az1 antibody. β -tubulin 

was used as the loading control.  D.  HeLa cells were co-transfected with HA-tagged wild 

type Aurora-A and His-tagged Az1 at 1:9 ratios. A negative control has been included in 

which Az1 plasmid was replaced with the empty vector.  Twenty-four hours post-transfection, 

cells were treated with either DMSO or 20 μM MG132 or lactacystin for 16 hours. The cells 

were harvested and analyzed for Aurora-A and Az1 proteins. β-tubulin was used as the 

loading control.  E.   HeLa cells were transfected with His-tagged Az1 or empty vector.  

Twenty-four hours after transfection, cells were treated with either DMSO or 20 μM MG132 

or lactacystin for another 16 hours before analyzing for the levels of endogenous Aurora-A 

and expression of Az1.   β-tubulin was detected as the loading control.  F. HA-tagged A-box 

mutant of Aurora-A and Az1 were individually synthesized by coupled in vitro 

transcription/translation in rabbit reticulocyte extracts.  Aurora-A and Az1-containing lysates 
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were mixed at different ratios in the presence of ATP-regenerating system and incubated for 

two hours at 37oC.  Stability of Aurora-A was assessed by immunoblot analysis.  Aurora-A 

and Az1 were detected using the anti-HA and anti-Az1 antibodies.  G. HA-tagged, A Box 

Mutant of Aurora-A and Az1 were individually synthesized by coupled in vitro 

transcription/translation in rabbit reticulocyte extracts. Aurora-A and Az1-containing extracts 

were mixed at 1:3 ratios and incubated with an ATP-regenerating system at 37oC.  Samples 

were withdrawn at defined intervals and the stability of Aurora-A at different time points was 

assessed by immunoblot analysis.  Az1 was detected using anti-Az1 antibody.  H.  The 

Aurora-A levels (signal intensities) in the presence and absence of Az1 at different time 

points (immunoblot from Fig. 1G) were quantified using ImageJ software and plotted against 

time.  The intensities at zero time points were assumed as 100 percent. Control ( ) and Az1 

(•). 

 

 Figure 2:  Az1 destabilizes Aurora-A in the absence of ubiquitination.  A. HeLa cells were 

co-transfected with HA-tagged A-box mutant of Aurora-A and His-tagged Az1 at 1:9 ratios. 

Vector control has been included in which Az1 plasmid has been replaced with pCDNA3.  

Twenty-four hours post-transfection, cells were treated with either DMSO or 20 μM MG132 

or 20 μM lactacystin for 16 hours. The cells were harvested and analyzed for Aurora-A and 

Az1 using anti-HA and anti-Az1 antibodies. β−tubulin was used as the loading control.  B.  

ts20-CHO cells were co-transfected with HA-tagged Aurora-A and either empty vector 

pCDNA3 or His-tagged Az1 at 1:9 ratios. Twenty-four hours post-transfection, cells were 

divided into two sets; one set was maintained at 30oC, while the other set was incubated at 

40oC for 16 hours. The cells were harvested and analyzed for Aurora-A and Az1 using the 

anti-HA and anti-Az1 antibodies. β-tubulin was used as the loading control.  C.  ts20-CHO 

cells were co-transfected with HA-tagged Aurora-A and either pCDNA3 (vector)  or His-

tagged Az1 at 1:5 ratios.  Eight hours post-transfection, one set of transfected cells was 

maintained at 30oC while the other set was shifted to 40oC.   At 24 hours post-transfection, 

both sets were treated with 50 μg/ml cycloheximide for the indicated times and harvested to 
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assess Aurora-A protein turnover by immunoblot analysis. β−tubulin was detected as the 

loading control.  D.  ts20-CHO cells were co-transfected with FLAG-tagged p27 or mouse 

p53 and His-tagged Az1 at 1:9 ratios. Vector control has been included in which Az1 plasmid 

has been replaced with pCDNA3.  Twenty-four hours post-transfection, cells were divided 

into two sets; one set was maintained at 30oC while the other set was incubated at 40oC for 16 

hours. The cells were harvested and analyzed for p27, p53 and Az1 expression using anti-

FLAG M2, anti-p53 and anti-Az1 antibodies, respectively. β-tubulin was used as the loading 

control.   

 

 

Figure 3: Az1 interacts with Aurora-A in vivo. A.  HeLa cells were co-transfected with His-

tagged Az1 and either empty vector or FLAG-tagged Aurora-A at 1:1 ratio. Twenty-four 

hours post-transfection, cells were harvested for pull down with anti-FLAG antibody. The 

interacting Az1 was detected using the anti-Az1 antibody. Aurora-A was detected using the 

rabbit anti-FLAG antibody.  B.  Comparison of the size and location of the deletions of all the 

Aurora-A deletion mutant proteins with full length Aurora-A protein. All of the Aurora-A 

variants contain a FLAG tag at the N-terminus. The numbers within the parentheses denote 

the nucleotides of Aurora-A cDNA, and number 1 corresponds to the nucleotide A of the 

translational start ATG. The locations of KEN, A, and D (D1,D2,D3) boxes are indicated.  C. 

HeLa cells were co-transfected with His-tagged Az1 and FLAG-tagged wild type or various 

deletion mutants of Aurora-A at 1:1 ratio. A negative vector control has been included in 

which Aurora-A plasmid was replaced with the empty vector.  Twenty-four hours post-

transfection, cells were harvested for pull down with mouse anti-Flag antibody. The 

interacting Az1 was detected using the rabbit anti-Az1 antibody and Aurora-A was detected 

using the rabbit anti-FLAG antibody. 

 

Figure 4: Amino acid residues R131 and G145 of human Az1 are essential for the 

destabilization of Aurora-A.  A. Comparison of the size and location of the deletions of the 

Az1 deletion mutant proteins with full length Az1 protein is presented. All of the Az1 variants 
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contain a FLAG tag at the N-terminus. The numbers within parentheses denote the amino 

acids of the Az1 protein, and number 1 corresponds to the translation start methionine.    B. 

HeLa cells were transfected with either empty vector or wild type/mutants of Az1. Thirty-six 

hours post-transfection, cells were harvested for western blot analysis of the endogenous 

Aurora-A in the presence of overexpressed wild type or mutant Az1. The Aurora-A and Az1 

were detected using rabbit anti-IAK1 antibody and mouse anti-FLAG M2 antibody, 

respectively.  β−tubulin was used as the loading control.  C.  HeLa cells were co-transfected 

with HA-tagged Aurora-A and either empty vector or wild type or mutants of Az1 at 1:9 

ratios. Thirty-six hours post-transfection, the transfected cells were harvested for western blot 

analysis of the protein stability of Aurora-A in the presence of overexpressed wild type or 

mutant Az1. The Aurora-A and Az1 was detected using rabbit polyclonal anti-HA antibody 

and mouse anti-FLAG M2 antibody, respectively. β−tubulin was used as the loading control.  

D.  HeLa cells were co-transfected with HA-tagged Aurora-A and either empty vector or 

FLAG-tagged wild type/deletion mutant of Az1 at 1:1 ratio. Twenty-four hours post-

transfection, the transfected cells were harvested for pull down with mouse anti-FLAG 

antibody. The interacting Aurora-A was detected using rabbit polyclonal anti-HA antibody. 

Both wild type and deletion mutants of Az1 were detected using the rabbit anti-FLAG 

antibody. 

 

Figure 5: Functional link between Az1 and AURKAIP1.   A.  ts20-CHO cells were co-

transfected with HA-tagged Aurora-A and (i) pIRES (Lane 1); (ii) pIRES- [FLAG-TR-

AURKAIP1] (Lane2); (iii) [HA-AzI]-pIRES (Lane3); (iv) [HA-AzI]-pIRES- [Flag TR-

AURKAIP1] (Lane 4) at 1:9 ratio. Thirty-six hours post-transfection, transfected cells were 

harvested for western blot analysis to assess the stability of Aurora-A kinase in the presence 

of TR-AURKAIP1 or AzI or both. Both Aurora-A and AzI were detected using the anti-HA 

antibody and TR-AURKAIP1 was detected using the anti-FLAG M2 antibody.  β tubulin was 

used as the loading control.  B.  ts20-CHO cells were co-transfected with HA-tagged TR-

AURKAIP1 and FLAG-tagged wild-type or various deletion mutants of Aurora-A at 5:1 

ratio. Thirty-six hours post-transfection, the transfected cells were harvested for western blot 
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analysis to assess the stability of both wild type and mutant Aurora-A, in the presence of TR-

AURKAIP1. The Aurora-A and TR-AURKAIP1 was detected using the anti-FLAG M2 and 

anti-HA mouse monoclonal antibodies, respectively. β tubulin was used as the loading 

control.  C.  HeLa cells were co-transfected with His-tagged Az1, HA-tagged Aurora-A and 

FLAG-tagged TR-AURKAIP1 at 1:1:1 ratio. A negative control has been included in which 

TR-AURKAIP1 plasmid was replaced with the empty vector.  Twenty-four hours post-

transfection, the transfected cells were harvested for immunoprecipitation with mouse anti-

FLAG antibody. The interacting Az1 and Aurora-A were detected using the anti-Az1 and 

anti-HA antibodies, respectively. TR-AURKAIP1 was detected using the rabbit anti-FLAG 

antibody.  D.  HeLa cells were co-transfected with His-tagged Az1 and FLAG-tagged Aurora-

A at 1:1 ratio in the absence or presence of HA-tagged TR-AURKAIP1. Twenty-four hours 

post-transfection, the transfected cells were harvested for immunoprecipitation with mouse 

anti-FLAG M2 antibody. The interacting Az1 was detected using the anti-Az1 antibody. 

Aurora-A and TR-AURKAIP1 were detected using the anti-FLAG and anti-HA antibodies 

respectively. 
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