
A FORMAL MODELING APPROACH TO
ONTOLOGY ENGINEERING

MODELING, TRANSFORMATION & VERIFICATION

YUAN FANG LI

B.Sc.(Hons). NUS

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I would like to take this opportunity to express my sincere gratitude to those who
assisted me, in one way or another, with my Ph.D. in the last four years.

First and foremost, I would like to thank my Honor’s Year Project and Ph.D. advisor
Dr. Dong Jin Song for his never-ending enthusiasm, guidance, support, encouragement
and insight throughout the course of my post graduate study. His diligent reading
and insightful and constructive criticism of early drafts and many other works made
this thesis possible.

To my fellow students, Chen Chunqing, Sun Jun and my cousin Feng Yuzhang – your
friendship, collaboration and funny chit chat gave me inspiration and helped me go
through the long and sometimes not-so-smooth ride of Ph.D. study.

To my former lab mates Dr. Sun Jing and Dr. Wang Hai – for your suggestions on
all aspects of research works and generous hospitality.

I am indebt to Dr. Bimlesh Wadhwa and Dr. Khoo Siau Cheng for the valuable
comments on an early draft of this thesis. Dr. Wadhwa, in particular, carefully
reviewed the entire thesis and corrected many language errors. I am sincerely grateful
to her for the time and effort put into this.

I am also grateful to the external examiner and many anonymous reviewers who
reviewed this thesis and previous publications that are part of this thesis and provided
critical comments, which contributed to to the clarification of many of the ideas
presented in this thesis.

This thesis was in part funded by the “Defence Innovative Research Project – For-
mal Design Methods and DAML” by the Defence Science and Technology Agency of
Singapore. The Advanced Study Institute of NATO Science Committee sponsored
me for attending the 2004 Marktoberdorf Summer School. My gratitude also goes to
Singapore Millennium Foundation and National University of Singapore for the gen-
erous financial support, in forms of scholarship, the President’s Graduate Fellowship
and conference travel allowance.

I wish to thank sincerely and deeply my parents who have raised me, taught me and
supported me all these years and who always have faith in me.

Finally and most importantly, to my beloved wife Xing Meng Nan. Your ceaseless
love, encouragement, patience and wonderful cooking have kept my morale and sta-
mina high.

Contents

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Thesis Outline . 6

1.2.1 Chapter 2 . 6

1.2.2 Chapter 3 . 7

1.2.3 Chapter 4 . 7

1.2.4 Chapter 5 . 9

1.2.5 Chapter 6 . 10

1.2.6 Chapter 7 . 11

1.2.7 Chapter 8 . 11

1.3 Publications . 12

2 Background 13

2.1 The Semantic Web – Languages & Tools 13

2.2 Semantic Web Services Ontology OWL-S 25

2.3 Z & Alloy – Languages & Tools . 27

2.3.1 Z . 27

2.3.2 Alloy . 33

2.4 Institutions & Institution Morphisms 37

iii

CONTENTS iv

3 Checking Web Ontologies using Z/EVES 41

3.1 Z Semantics for DAML+OIL . 42

3.1.1 Basic Concepts . 42

3.1.2 Class Elements . 43

3.1.3 Property Restrictions . 44

3.1.4 Property Elements . 45

3.1.5 Instances . 46

3.2 Import Mechanisms & Proof Support 46

3.3 Military Plan Ontologies . 47

3.4 Transformation from DAML+OIL/RDF to Z 49

3.5 Checking DAML+OIL Ontologies using Z/EVES 51

3.5.1 Inconsistency Checking . 51

3.5.2 Subsumption Reasoning . 53

3.5.3 Instantiation Reasoning . 53

3.5.4 Instance Property Reasoning 54

3.6 Chapter Summary . 55

4 A Combined Approach to Checking Web Ontologies 57

4.1 Alloy Semantics for DAML+OIL . 59

4.1.1 Import Mechanisms & Proof Support 61

4.2 Z Semantics for SWRL . 61

4.3 Transformation from Web Ontologies to Z & Alloy 63

4.3.1 Transformation from SWRL to Z 63

4.3.2 Transformation from DAML+OIL to Alloy 64

4.4 The Combined Approach to Checking Web Ontologies 65

CONTENTS v

4.4.1 An Overview of the Combined Approach 65

4.4.2 Checking Military Plan Ontology 67

4.4.3 Reasoning About More Complex Properties 72

4.5 Chapter Summary . 81

5 Z Semantics for OWL: Soundness Proof Using Institution Morphisms 83

5.1 The OWL Institution O . 84

5.1.1 The Grothendieck Institution of OWL 91

5.2 The Institution Z . 92

5.2.1 The Use of the Mathematical Tool-kit 94

5.3 Encoding O in Z . 95

5.4 Chapter Summary . 102

6 The Tools Environment: SESeW 103

6.1 Overview of SESeW . 104

6.2 Ontology Creation . 105

6.2.1 Performance Evaluation . 107

6.3 Ontology Querying . 108

6.4 Ontology Transformation . 110

6.5 External Tools Connection . 112

6.6 Chapter Summary . 113

7 Simulating Semantic Web Services with LSCs and Play-Engine 115

7.1 LSCs & Play-Engine . 116

7.2 Modeling OWL-S with LSCs . 118

7.2.1 Basics . 118

CONTENTS vi

7.2.2 Processes . 120

7.3 Case Study . 124

7.3.1 System scenario . 124

7.3.2 Simulation . 127

7.4 Chapter Summary . 129

8 Conclusion 131

8.1 Main Contributions of the Thesis . 131

8.2 Future Work Directions . 136

8.2.1 Further Development of SESeW 136

8.2.2 Verification of Web Ontologies – Beyond Static Data 137

8.2.3 Augmenting the Semantic Web with Belief 139

A Glossary of Z Notation 155

A.1 Definitions and Declarations . 155

A.2 Logic . 156

A.3 Sets . 157

A.4 Numbers . 158

A.5 Relations . 159

A.6 Functions . 160

A.7 Sequences . 162

A.8 Bags . 163

A.9 Axiomatic Definitions . 163

A.10 Generic Definitions . 164

A.11 Schema Definition . 165

A.12 Schema Operators . 165

CONTENTS vii

A.13 Operation Schemas . 169

A.14 Operation Schema Operators . 170

B Z Semantics for DAML+OIL 171

B.1 Basic Concepts . 171

B.2 Class Elements . 172

B.3 Class Enumeration . 173

B.4 Property Restriction . 173

B.5 Property Elements . 175

B.6 Instances . 176

C Z Semantics for OWL DL 179

C.1 Basic Concepts . 179

C.2 Classes . 181

C.2.1 Class Descrpitions . 181

C.2.2 Class Axioms . 185

C.3 Properties . 186

C.3.1 RDF Schema Property Constructs 186

C.3.2 Relations to Other Properties 187

C.3.3 Global Cardinality Constraints on Properties 188

C.3.4 Logical Characteristics of Properties 188

C.4 Individuals . 189

C.4.1 Individual Identity . 189

Summary

The Semantic Web has been regarded by many as the new generation of the World
Wide Web. It enables software agents on the Web to autonomously and collab-
oratively understand, process and aggregate information by giving Web resources
well-defined and machine-interpretable markups, in the form of ontologies.

Ensuring the correctness of ontologies is very important as inconsistent ontologies
may lead software agents to reason erroneously. Such tasks are non trivial as the
more expressive ontology languages are, the less automated are the reasoners/provers
and with the growth of the size of ontologies, locating inconsistencies is also more
difficult.

Further, as the expressivity of these languages is also limited in more than one way,
certain desirable ontology-related properties cannot be expressed in these languages.
The ability to express and check these properties will make ontologies more accurate
and more robust. It is therefore highly desirable.

Dynamic Web services help make the Web truly ubiquitous. In the Semantic Web,
service ontologies describe the capabilities, requirements, control structures, etc., of
Web services. Their consistency must also be guaranteed to ensure the correct func-
tioning of software agents.

Software engineering and in particular formal methods are an active and well-developed
research area. We believe that mature formal methods and their tool support can
contribute to the development of the Semantic Web. This thesis presents a formal
modeling approach for verifying ontologies. By defining semantics of ontology lan-
guages in expressive formal languages, their proof tools can be used to ensure the
correctness of ontology-related properties.

The validity of the above approach entirely relies on the correctness of the semantics
of ontology languages in formal methods. Hence, the other important topic in this
thesis is the proof of such correctness. An abstract approach using institutions and
institution morphisms is employed to represent and reason about ontology languages
and formal languages. An integrated tools environment is also presented to facilitate
the application of the verification approach.

Key words: Semantic Web, DAML+OIL, institutions, ontology, OWL,
verification, Z, LSC

List of Tables

2.1 Predefined Qualified Name Prefixes 16

2.2 Strength & weakness of the reasoning tools 36

4.1 SWRL rules atoms in Z . 63

4.2 Statistics of the ontology planA.daml 75

7.1 A Partial Summary of the OWL-S constructs 121

ix

List of Figures

1.1 Generic architecture of the Semantic Web 2

2.1 A newly proposed layering of the Semantic Web 22

2.2 Architecture of the OWL-S ontology 26

3.1 Sample IE output . 48

4.1 Discovery of an unsatisfiable concept by RACER 68

4.2 Alloy concepts related to the inconsistency 69

4.3 Alloy Analyzer showing the source of unsatisfiability 71

6.1 Main Window of SESeW . 104

6.2 Flow of Ontology Creation . 105

6.3 Creating Datatype Property . 106

6.4 Performance of Ontology Creation . 108

6.5 The Query Interface . 109

7.1 Holiday booking System . 125

7.2 LSC Example: Budget checking . 127

7.3 Simulation Screen Shot . 128

xi

Chapter 1

Introduction

1.1 Motivation and Goals

The World Wide Web (WWW) is a computer network where data is shared mainly

for human consumption. Web contents are visually marked up by languages such as

HTML, CSS, etc. The Web has been tailored for human consumption. The usefulness

of the Web is limited by the fact that information cannot be easily understood and

processed by machines.

Recent advances of XML [108] technology have separated the markup of contents of

information from its layout. XML’s characteristics, such as the separation of concerns,

strict syntax well-formedness and the ability to allow user-defined tags permit for

greater flexibility. However, with no mutually-agreed meaning for tag names, it is

hard for information to be shared across organizational boundaries.

Proposed by Tim Berners-Lee et al, the Semantic Web [8] is a vision to extend the

current World Wide Web so that Web resources are given well-defined, content-related

and mutually-agreed meaning. The Semantic Web aims at realizing the full potential

1

Chapter 1. Introduction

of the Web by enabling software agents (intelligent software on the Web) to under-

stand, process and aggregate information autonomously and collaboratively.

The realization of this vision depends on the ability to semantically markup Web

resources, including both static data and dynamic Web services, by ontologies. On-

tologies are formal specifications of conceptualizations [34]. Building on mature tech-

nologies such as XML, Unicode and URI (Uniform Resource Identifier) [7], the on-

tology languages are positioned in a layered “cake”, as depicted in Fig. 1.1 by Tim

Berners-Lee.

Figure 1.1: Generic architecture of the Semantic Web

Resource Description Framework (RDF) [68] and RDF Schema [17] are the foundation

of the Semantic Web stack. They provide the core vocabularies and structure to

describe Web resources. Based on RDF Schema and description logics (DLs) [74], the

Web Ontology Language (OWL) [49] was developed and it provides more vocabulary

for describing resources. Briefly, Web resources are categorized as classes, each of

which holds a set of instances, pairs of which are related by properties.

Software agents’ ability of autonomously understanding, processing and aggregating

information builds on the decidability of the core ontology languages of the Semantic

2

1.1. Motivation and Goals

Web. It is for this reason that DAML+OIL [101] and (a subset of) OWL were designed

to be decidable [46, 40]. This is achieved by limiting their expressivity.

This design decision has made possible the construction of fully automated reasoning

engines for ontologies written in these languages. However, certain desirable proper-

ties of resources cannot be represented by these languages due to the limited expres-

sivity. This is mainly exhibited in the following two areas: expressivity limitation of

the DL against first-order logic and the the dynamic nature of Web services.

Description logics are a very important knowledge representation formalism with a

formal and rigid logical basis. They are a subset of first-order logic (FOL) [58] by

carefully selecting only certain features to include. By limiting their expressivity,

DLs are made decidable so that core reasoning services, namely concept subsumption,

satisfiability and instantiation, can be solved in full automation. Being based on DL,

ontology languages such as DAML+OIL and OWL are not expressive enough for

certain complex ontology-related properties to be represented in these languages.

For example, consider the scenario of a ticket booking agent on the Semantic Web. It

is very natural to express such a property that it should not book two tickets for any

client with the durations of the two tickets overlap. Allowing booking only one ticket

for a client is a possible, but overly restrictive solution. It is thus highly desirable that

this information can be explicitly stated in the ontology and verified by reasoners.

In the light of this, the OWL Rules Language, (ORL) [47] (and its successor, the

Semantic Web Rules Language (SWRL) [48]), a rules extension to OWL, was proposed

to add Horn-style rules to OWL. Although SWRL extends the expressivity of OWL,

it is still limited in expressing certain properties, the correctness of whom may, as we

will see later in Chapter 2, have a significant impact on the validity of the ontology.

Hence, the expression and verification of these properties are very important.

3

Chapter 1. Introduction

Hence, the main theme of the thesis is to develop systematic, effective and sound

approaches to verify Semantic Web ontologies.

Formal methods [16, 12, 11] have made significant development [41, 100, 62] and

received much attention in both academia and industries. Z [89, 107] is a formal

specification language designed to model system data and states. It is based on

ZF set theory and first-order predicate logic. Therefore, Z is more expressive than

ontology languages and it allows the specification of complex constraints which is not

available in ontology languages. There are tools developed to support it. Z/EVES [84]

is one such interactive proof tool for checking and reasoning about Z specifications.

Alloy [54], originally developed as a lightweight modeling language, is essentially

aimed at automated analysis. Its design is influenced by Z but is less expressive1.

Alloy Analyzer [55] is a fully-automated tool for analyzing Alloy specifications with

special model checking features, which are helpful to trace the exact source of errors.

Some earlier works [24, 27] showed that data-oriented formal methods and tools, e.g.,

Z/EVES and Alloy Analyzer, are capable of reasoning about ontologies. We also

noticed the complementary reasoning capabilities among Z/EVES, Alloy Analyzer

and Semantic Web reasoners such as FaCT++ [98] and RACER [36]. This motivated

us to propose a combined approach [23] to using these tools in conjunction so that

the synergistic reasoning power of these tools can be harnessed. By applying these

tools systematically to an ontology, not only can we uncover more errors than using

any one of them alone, inconsistencies can also be corrected more easily and precisely.

The effectiveness of the above combined approach relies on the soundness of the trans-

formation from DAML+OIL/OWL ontologies to Z specifications. As these languages

have different semantical bases, a higher-level device that is able to abstract and rep-

1See the Alloy FAQ at http://alloy.mit.edu/faq.php for a brief discussion.

4

http://alloy.mit.edu/faq.php

1.1. Motivation and Goals

resent the underlying logics of DAML+OIL/OWL and Z is necessary to prove the

soundness of the transformation. The notion of institutions [31] was introduced to

formalize the concepts of “logical systems”. Institutions provide a means of reasoning

about software specifications regardless of the logical system. We find the concept of

institutions suitable for proving the soundness of our approach. It was observed that

the underlying logical systems of DAML+OIL (OWL) and Z can be represented as in-

stitutions and further, by applying Goguen and Roşu’s institution comorphisms [33],

the soundness of the Z semantics for OWL (and hence DAML+OIL) can be proved.

Not all Semantic Web practitioners are experts in formal methods and they may find it

difficult to interact with tools such as Z/EVES or Alloy Analyzer. An integrated tools

environment is then developed to ease the application of the combined approach. The

functionalities of this environment include systematic ontology creation, automatic

ontology transformation, querying, invocation of various reasoning tools, etc.

The above text highlights the issues related to the static aspect of the Web. How-

ever, the Web is more useful only if online services can be dynamically discovered

and invoked to effect changes in the real world by automated software agents. The

Semantic Web can also play a role by semantically marking up Web services to fa-

cilitate automatic service advertisement, discovery, invocation and composition. The

OWL Services ontology (OWL-S) [95] is an OWL ontology that defines a core set

of vocabularies to describe the Web services’ capabilities, requirements, control con-

structs, etc. The dynamic nature of services makes the static reasoning techniques

such as theorem proving insufficient. Live Sequence Charts (LSCs) [18] are a broad

extension of the classic Message Sequence Charts (MSCs [53]). They rigorously cap-

ture communicating scenarios between system components. Play-Engine [38] is the

tool support to visualize and simulate LSCs. In this thesis, we use LSC to represent

OWL-S service process model ontologies and use Play-Engine to visualize and simu-

5

Chapter 1. Introduction

late them. This enables us to simulate and inspect the execution of services without

actually implementing them.

1.2 Thesis Outline

This section gives an overview of the structure of the thesis.

1.2.1 Chapter 2 – Overview

Chapter 2 introduces background information on technologies, languages, tools and

notations used in the presented work.

The Semantic Web languages take the central stage in this thesis. Hence, we first

introduce the Semantic Web and the various ontology languages, such as RDF, RDF

Schema, DAML+OIL, OWL, OWL− [56], SWRL, SWRL FOL [9] and WRL [1]. We

present the syntax and semantics of the main language constructs, followed by a brief

discussion on their tool support, including reasoners and visual editors.

Formal languages Z and Alloy are used extensively in the combined approach briefly

introduced in the previous section. These languages together with their proof tools

such as Z/EVES and Alloy Analyzer are also discussed and compared.

As a preparation for the discussion of the formal soundness proof of the transfor-

mation from ontology language OWL to Z using institutions, we present background

information on category theory, institutions and institution morphisms.

Lastly, we introduce the OWL Services (OWL-S) ontology and the visual design

language Live Sequence Charts (LSC). The visualization and simulation tool Play-

6

1.2. Thesis Outline

Engine is also discussed to facilitate the presentation of the work later in Chapter 7

on simulating and checking Semantic Web services.

1.2.2 Chapter 3 – Checking Web Ontologies using Z/EVES

Software engineering is a broad and well-developed research area over the past decades.

We believe that mature software engineering languages and tools can contribute to the

development of the Semantic Web vision. In this chapter, we demonstrate the abil-

ity of formal language Z in expressing Web ontologies and checking ontology-related

properties. Specifically, we define the semantics of ontology language DAML+OIL

in Z. By automatically transforming DAML+OIL and RDF ontologies into Z specifi-

cations, Core ontology reasoning services, namely concept subsumption, satisfiability

and instantiation, can be performed in Z/EVES, a powerful theorem prover for Z.

It can be observed in this chapter that the proof process using Z/EVES is very

interactive and requires substantial user expertise. This inspired us to propose a

combined approach of checking Web ontologies to harness the synergy of Semantic

Web and software engineering tools. This work is presented in the following chapter.

1.2.3 Chapter 4 – A Combined Approach to Checking Web

Ontologies

As briefly discussed in Section 1.1, the trade-off between decidability and expressivity

of ontology languages makes it awkward and difficult to represent certain complex

properties in these languages. The newly proposed rules extension SWRL and SWRL

FOL provide a partial remedy to this problem but they are still not as expressive as

first-order predicate logic. Further, since they are undecidable languages, a reasoning

7

Chapter 1. Introduction

engine to support full automation of all reasoning tasks would be an impossible task.

This shortcoming of DAML+OIL and SWRL led us to and propose to use Z to

express complex properties inexpressible in DAML+OIL, OWL or SWRL. This makes

it possible for Z proof tool such as Z/EVES to perform formal reasoning on these

properties to ensure the correctness of ontologies.

Proof using Z/EVES is highly interactive and requires substantial expertise. The

ontology languages were designed so that core reasoning tasks can be performed

using Semantic Web reasoning tools fairly automatically. Hence, it is natural to

combine Z/EVES and Semantic Web reasoning tools to harness their synergistic proof

power. Moreover, the inclusion of Alloy Analyzer adds another useful dimension to

the synergy since Alloy Analyzer is able to locate the source of errors in a specification.

In the rest of Chapter 4, we present a combined approach to checking DAML+OIL

and RDF ontologies by using proof tools RACER, Z/EVES and Alloy Analyzer to-

gether. We begin by defining Z and Alloy semantics for DAML+OIL. The Z and Alloy

semantics enables Z/EVES and Alloy Analyzer to understand DAML+OIL and RDF

ontologies. With this semantics as a basis, we then develop a transformation program

to automatically transform an ontology to Z and Alloy specifications, respectively.

The complementary proof power can be exploited through applying these reason-

ing tools in turn and expressing complex properties in Z and use Z/EVES to prove

these properties. Firstly, ontological consistency can be checked by SW reasoning

engines such as RACER and FaCT++ with full automation. Secondly, any such in-

consistency found can be precisely located by Alloy Analyzer. Thirdly, more complex

properties inexpressible in DAML+OIL and OWL can be expressed in Z and checked

by Z/EVES. The strength of the combined approach is demonstrated through a real-

world military planning case study. It is observed that Alloy Analyzer located the

source of ontological inconsistencies found by RACER; and a number of errors undis-

8

1.2. Thesis Outline

covered by RACER were found by Z/EVES.

1.2.4 Chapter 5 – Z Semantics for OWL: Soundness Proof

Using Institution Morphisms

Chapter 4 presents on the practical aspects of the combined approach, namely, the

transformation from DAML+OIL to Z and Alloy and the actual reasoning approach

using the combination of tools. A fundamental issue, the soundness of the Z and

Alloy semantics of DAML+OIL, is not addressed there.

Replacing DAML+OIL, the Web Ontology Language (OWL) became the W3C rec-

ommendation in February 20042. As OWL is the successor of DAML+OIL, they are

very similar in many aspects. Since OWL is also a W3C recommendation as the

ontology language designed to replace DAML+OIL, it is natural to shift focus to the

support of OWL.

Based on our work in [24], we have developed a Z semantics for OWL. In chapter 5,

we attempt to formally prove the soundness of the Z semantics for OWL by using

institutions [31] and institution morphisms [33].

Introduced by Goguen and Burstall [31], institutions are used to formalize the notion

of “logical systems”. They provide a means of reasoning about software specifications

regardless of the underlying logical systems.

The basic components of a logical system, an institution, are models and sentences, re-

lated by the satisfaction relation. The compatibility between models and sentences is

provided by signatures, which formalize the notion of vocabulary from which the sen-

tences are constructed. By modeling the signatures of a logical system as a category,

2This is about the time when the work on combined approach [23] was in progress.

9

Chapter 1. Introduction

we get the possibility to translate sentences and models across signature morphisms.

The consistency between the satisfaction relation and the translation is given by the

satisfaction condition, which intuitively means that the truth is invariant under the

change of notation.

Institutions are suitable for relating Z and OWL DL (and DAML+OIL) as the logical

systems (semantics) of these languages can be represented as institutions. In Chap-

ter 5, we also present the institutions of Z and OWL and by applying Goguen and

Roşu’s institution comorphisms [33], the soundness of the Z semantics for OWL (and

DAML+OIL) can be proved.

1.2.5 Chapter 6 – SESeW - An Integrated Tools Environ-

ment for the Semantic Web

Formal methods usually make extensive use of mathematical concepts and symbols,

which often prove to be difficult for users without the relevant mathematical back-

ground. In order to hide as much underlying formal methods notations as possible

and make the combined approach more friendly to users who are not familiar with the

various reasoning tools, an easy-to-use visual tool that supports automated creation,

transformation and querying of ontologies is much desired and valuable.

In Chapter 6, we present such an integrated tools environment, the SESeW (Software

Engineering for Semantic Web), that serves as a graphical front-end to the various

reasoning tools used in the combined approach under one umbrella. Using SESeW,

tasks such as ontology transformation, validation, querying, etc. can be visually per-

formed. To make SESeW more more versatile, we also implemented a systematic

approach to ontology creation, the Methontology [29]. With these functionalities,

SESeW is a prototype of an ontology creation, transformation, validation and query-

10

1.2. Thesis Outline

ing tool based on sound software engineering methods.

1.2.6 Chapter 7 – Simulating Semantic Web Services with

LSC and Play-Engine

The full potential of the Semantic Web can only be realized when dynamic resources

such as the Web Services are incorporated. The Semantic Web services ontology

OWL-S is an OWL ontology that defines an essential set of vocabularies for describing

the capabilities, requirements, effects, output, etc., of Web services. It is meant to be

used together with Web Services standards such as WSDL [14] and SOAP [110] to

enable software agents to automatically publish, discover and compose Web services.

The correctness of Semantic Web services is essential to the functioning of software

agents crawling the Semantic Web. We believe that erroneous service descriptions

will give rise to invocation of wrong services, with wrong parameters or resulting in

undesired outcome.

In Chapter 7, we propose to apply software engineering methods and tools to visualize,

simulate and verify OWL-S process models. Live Sequence Charts (LSCs) [18] are a

broad extension of the classic Message Sequence Charts (MSCs [53]). They capture

communicating scenarios between system components rigorously. LSCs are used to

model services, capturing the inner workings of services, and its tool support Play-

Engine [38] is used to perform automated visualization, simulation and checking.

1.2.7 Chapter 8 – Conclusion

Chapter 8 concludes the thesis, summarizes the main contributions and discusses

future work directions.

11

Chapter 1. Introduction

1.3 Publications

Most of the work presented in this thesis has been published/accepted in international

conferences proceedings.

The work on the Z semantics (Chapter 3) of DAML+OIL and checking DAML+OIL

ontologies using Z/EVES has been published in The Twenty-sixth International Con-

ference on Software Engineering (ICSE’04, May 2004, Edinburgh, acceptance rate

13%) [24].

The combined approach for checking Web ontologies (Chapter 4) has been published

in The Thirteenth International World Wide Web Conference (WWW’04, May 2004,

New York, acceptance rate 14.6%) [23].

Work on soundness proof of transformation from OWL to Z using institutions [63]

in Chapter 5 has been published in The Seventeenth International Conference on

Software Engineering and Knowledge Engineering (SEKE’05, July 2005, Taipei) [64].

The work on the integrated tools environment was presented at The Twelfth Asia-

Pacific Software Engineering Conference (APSEC’05, December 2005, Taipei) [22].

The work on simulating and visualizing Semantic Web services using LSC and Play-

Engine was published in Seventh International Conference on Formal Engineering

Methods (ICFEM’05, November 2005, Manchester) [90].

I have also contributed to other published works [25, 26, 21, 91, 104, 103, 105, 61, 65],

which are mostly as pre-thesis/follow-up works.

12

Chapter 2

Background

This chapter presents the background information of the various languages, notations,

techniques and tools that are involved in this thesis. It is divided into five parts. In

Section 2.1, we give a brief account of Semantic Web languages and tools. Following

that, Section 2.2 is devoted to the introduction to the Semantic Web services ontology

OWL-S, an OWL ontology that defines a set of core vocabularies for describing Web

services. In Section 2.3, we briefly introduce the formal languages Z and Alloy and

their tool support Z/EVES and Alloy Analyzer. Finally, institutions and institution

morphisms are briefly covered in Section 2.4.

2.1 The Semantic Web – Languages & Tools

Proposed by Tim Berners-Lee et al., the Semantic Web [8] is a vision of next gen-

eration of the Web. The current World Wide Web is designed mainly for human

consumption. It is believed that in the future, the Web is also ready for intelligent

software agents and it will be truly ubiquitous. Software agents will reside in, for

13

Chapter 2. Background

example, household appliances (which can also be part of the Web), and will be able

to understand the meaning of information on the Web and undertake tasks without

human’s supervision. To sum up, in the Semantic Web, software agents will be able to

autonomously and cooperatively understand, process and aggregate Web resources,

which include not only static data, but also dynamic Web services.

Semantic Web ontologies give precise and non-ambiguous meaning to Web resources,

enabling software agents to understand them. An ontology is a specification of a

conceptualization [34]. It is a description of the concepts and relationships for a

particular application domain. Ontologies can be used by software agents to precisely

categorize and deduce knowledge.

Languages in the Semantic Web

Ontology languages are the building blocks of the Semantic Web. As briefly men-

tioned in Chapter 1, the development of ontology languages takes a layered approach.

Depicted in Fig. 1.1, the Semantic Web languages are constructed on top of ma-

ture languages and standards such as the XML [108], Unicode and Uniform Resource

Identifier (URI) [7]. In the rest of this section, we briefly present some important

languages in the Semantic Web.

The Resource Description Framework (RDF) [68] is a model of metadata that de-

fines a mechanism for describing resources and makes no assumptions about a par-

ticular application domain. RDF allows structured and semi-structured data to be

mixed and shared across applications. XML describes documents, whereas RDF

is a framework for metadata: it describes actual things. RDF provides a simple

triples structure to make statements about Web resources. Each triple is of the form

〈subject predicate object〉, where subject is the resource we are interested in, predicate

specifies the property or characteristic of the subject and object states the value of

14

2.1. The Semantic Web – Languages & Tools

the property. Besides this basic structure, a set of basic vocabularies are defined to

describe RDF ontologies. This set includes vocabularies for defining and referencing

RDF resources, declaring containers such as bags, lists, and collections. It also has a

formal semantics that defines the interpretation of the vocabularies, the entailment

between RDF graphs, etc.

RDF Schema (RDFS) [17] defines additional language constructs for RDF ontologies.

It adds considerable expressivity to RDF by enabling one to group Web resources

into classes, to denote the domain and range of a property, to state the subsumption

relationship between classes and properties, etc.

RDF Schema can be considered as the first ontology language for the Semantic Web.

However, RDF and RDFS have a number of disadvantages. For instance, in order

for agents to understand Web resources unambiguously, it is necessary that these

resources are strictly structured. This requirement is relaxed by RDF to allow for

greater flexibility. Also, RDF Schema does not contain all modeling primitives users

desired.

In RDF, RDF Schema and subsequent ontology languages, Web resources are refer-

enced using full , URI references. It consists of a URI prefix (a namespace) and the

name of the resource, separated by a separator “#”. RDF also defines a shorthand

form for convenience. In this form, the full URI representing the resource is given an

XML qualified name, containing a prefix that is assigned to the namespace URI, the

local name (which is the name of the resource), separated by a colon (:). A number

of qualified name prefixes have been predefined in the Semantic Web domain. These

are summarized in Table 2.1.

With the above mapping between prefixes and full namespace URIs, a long URI

reference can be shortened. For example, the full URI reference for RDFS class is

http://www.w3.org/2000/01/rdf-schema#Class. With the above representation,

15

http://www.w3.org/2000/01/rdf-schema#Class

Chapter 2. Background

Table 2.1: Predefined Qualified Name Prefixes
Prefix Namespace URI
xsd: http://www.w3.org/2001/XMLSchema#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

daml: http://www.w3.org/2001/10/daml+oil#

owl: http://www.w3.org/2002/07/owl#

swrl: http://www.w3.org/2003/11/swrl#

it can be shortened to rdfs:Class.

The DARPA Agent Markup Language (DAML) is built on top of RDF Schema,

but with a much richer set of language constructs to express class and property

relationships and more refined support for data types. DAML project combined

effort with the Ontology Inference Layer (OIL) [13] project and it is now referred

to as DAML+OIL [101]. Being semantically equivalent to the expressive description

logic SHIQ [50], the other major advantage of DAML+OIL over RDFS is the ability

to define new classes and properties by defining restrictions on existing classes and

properties. This enhances ontology structure and facilitates ontology reuse.

The main ingredients of DAML+OIL can be categorized into three types: objects,

classes and properties, with data types supplying concrete values. The Object domain

consists of objects (individuals) that are members of DAML+OIL or RDFS classes.

Classes are the focus of DAML+OIL and they are elements of daml:Class, a sub class

of rdfs:Class. DAML+OIL defines a number of built-in properties. They serve a

number of purposes, which can be briefly summarized below.

• Some of the properties are used to relate two classes to define certain relationship

between them. For example, the property daml:disjointWith is used to denote

the disjointness of two classes.

• Some properties are used to construct classes from a list of classes or individ-

16

http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/10/daml+oil#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2003/11/swrl#

2.1. The Semantic Web – Languages & Tools

uals. For example, the property daml:unionOf relates a daml:Class X and

a daml:List Y of classes such that the instances of X is the union of all the

instances of classes in Y . The property daml:disjointUnionOf is similar, with

an additional constraint that the classes in the list Y are mutually disjoint.

• Some properties are used to define new classes by constructing “restrictions”,

which are (anonymous) classes that can be linked to other properties or cardi-

nality constraints.

For example, the built-in property daml:toClass can be used to define the class

of all objects for whom the values of property all belong to the class expression.

It can be used to define, for instance, a restriction whose instances eats only

Animals, as shown below.

<daml:Restriction>

<daml:onProperty rdf:resource="#eats"/>

<daml:toClass rdf:resource="#Animals"/>

</daml:Restriction>

In the above example, the restriction is defined on the property eats and class

Animals. This restriction can be used to define a class Carnivores by making

it a sub class of this restriction.

The cardinality properties define restrictions each of whose instances has exactly,

at least or at most n distinct property values.

The following DAML+OIL fragment defines a restriction, each of whose in-

stances has exactly one nationality.

<daml:Restriction>

<daml:cardinality>1</daml:cardinality>

<daml:onProperty rdf:resource="#natitonality"/>

</daml:Restriction>

• Finally, some built-in properties are used to define or relate other properties. For

example, the property daml:samePropertyAs asserts that the two properties it

17

Chapter 2. Background

relates are actually equivalent, meaning that their property extensions (the pair

of objects they relate) are actually the same.

In 2003, the W3C published a new ontology language, the Web Ontology Language

(OWL) [69] to replace DAML+OIL. Based on DAML+OIL, OWL is a suite of lan-

guages consisting of three species: Lite, DL and Full, with increasing expressiveness.

The three sublanguages are meant for user groups with different requirements of ex-

pressiveness and decidability. OWL Lite is the least expressive sublanguage, obtained

by imposing restrictions on the usage of OWL Full language constructs. OWL DL is

more expressive than Lite but is also a subset of OWL Full.

OWL Lite and DL are decidable whereas OWL Full is not. Simplistically speaking,

an OWL Lite or DL ontology is an OWL Full ontology with some constraints added.

These constraints include, for example, in OWL Lite, cardinality constraints can only

be 0 or 1; mutual disjointness among individuals, classes, properties, data types, etc.,

in OWL Lite and DL ontologies. DAML+OIL is most comparable to OWL DL, which

is a notational variance of description logic SHOIN (D) [49].

The following OWL DL fragment shows the definition of carnivores in an animal-plant

ontology. It defines an OWL class Carnivores that is a sub class of Animals. It is

also a sub class of an anonymous class that only eats Animals (the allValuesFrom

restriction). Note that the built-in DAML+OIL property toClass is renamed in

OWL to allValuesFrom.

<owl:Class rdf:about="#carnivore">

<rdfs:subClassOf>

<owl:Class rdf:ID="animal"/>

</rdfs:subClassOf>

<rdfs:subClassOf><owl:Restriction><owl:onProperty>

<owl:ObjectProperty rdf:ID="eats"/></owl:onProperty>

<owl:allValuesFrom>

<owl:Class rdf:about="#animal"/>

</owl:allValuesFrom>

</owl:Restriction></rdfs:subClassOf>

</owl:Class>

18

2.1. The Semantic Web – Languages & Tools

For any DAML+OIL or OWL ontology there are three types of core inference prob-

lems, namely concept (class) subsumption, concept consistency and instantiation rea-

soning. Concept subsumption checks if a concept subsumes another concept; concept

consistency checks if a concept is meaningful with respect to the ontology, and prop-

erty instantiation checks whether a given individual is an instance of a class. All the

above inference problems can be checked by mature tableau algorithms for description

logics in full automation.

The consistency of ontologies is essential to the proper functioning of agents. For

example, we can imagine how chaotic it can be if an online marriage registry agent

allows a person already married to register for marriage again. This could happen

if the marriage ontology does not constrain that a person can only have at most

one spouse. A consistent ontology satisfies the following two criteria: realization,

that every class has at least one instance and retrieval, that every individual is an

instance of some class [74]. Hence, the ontology consistency problem (and actually

all the other types of inference problems) can be reduced to the concept consistency

problem above.

Although the design of OWL has taken into consideration the different expressivity

needs of various user groups, it is still not powerful enough as only relatively simple

relationships can be expressed: such as class and property membership, individual

(in)equalities, etc. The main reason for these limitations is that although OWL pro-

vides relatively rich language constructs for describing class relationships, it does not

provide enough language primitives for describing properties. For example, properties

in OWL cannot be composed to construct complex properties.

These limitations have been recognized by a number of researchers and in 2004, Hor-

rocks and Patel-Schneider proposed a rules extension to OWL DL. The new language

is called OWL Rules Language (ORL) [47] and it is syntactically and semantically

19

Chapter 2. Background

coherent to OWL. By incorporating Horn clause rules into OWL and making rules

part of OWL axioms, which are used to construct classes and properties, ORL can

express more complex properties. ORL is now known as SWRL [48], with some sets

of built-ins for handling data type, such as numbers, booleans, strings, date & time,

etc.

The major extensions of SWRL over OWL DL include Horn style rules and (uni-

versally quantified) variable declaration. For presentation and brevity purposes, the

rules are in the form of antecedent → consequent, where both antecedent and con-

sequent are conjunctions of the following kinds of atoms: class membership, property

membership, individual (in)equalities and built-ins. Informally, a rule means that if

the antecedent holds, the consequent must also hold. Moreover, an empty antecedent

is treated as trivially true and an empty consequent is treated as trivially false. In

SWRL, variables are prefixed with a question mark (?). A simple example rule states

that if ?b is a parent of ?a and ?c is a brother of ?b, then ?c is an uncle of ?a, where

?a, ?b and ?c are variable names.

hasParent(?a, ?b) ∧ hasBrother(?b, ?c) → hasUncle(?a, ?c)

SWRL extends the expressivity of OWL by providing more support for describing and

composing properties as shown in the previous example. It has been shown to be non-

decidable. However, it is still not as expressive as Z. As one of the main motivations of

the rules extension is to infer knowledge not present in the ontology, disjunction and

negation are not allowed in SWRL. It also does not support explicit quantification

over rules. As we stated above, these design constraints hinder expressing certain

properties.

In view of this, Patel-Shneider proposed the language SWRL FOL [9] as a step further

towards first-order logic. On top of SWRL, it adds logical connectors such as ‘and’,

20

2.1. The Semantic Web – Languages & Tools

‘or’, ‘negation’, ‘implication’, and ‘existential’ and ‘universal’ quantification.

The ontology languages DAML+OIL and OWL are based on description logics, for

which highly optimized algorithms for solving concept consistency problems exist.

However, OWL has also been criticized for a number of reasons [56], such as the

inappropriate layering on top of RDFS; unnaturalness of certain modeling decisions;

inefficiency of query answering mechanisms; the lack of distinction between restric-

tions and constraints, etc. To overcome these disadvantages, the OWL− [56] suite of

languages were proposed. OWL− also consists of three sublanguages: OWL Lite−,

DL− and Full−, where OWL Lite− and DL− are strict subsets of the respective OWL

species. OWL DL− is an extension of OWL Lite− and OWL Full− is an extension of

OWL DL− towards OWL Full.

The semantics of OWL− languages are based on logic programming. OWL Lite− and

DL− are constructed in such a way that they can be directly translated into Datalog

programs. Hence mature techniques in the deductive databases in query answering

and rule extensions can be borrowed.

An extension to OWL−, the OWL Flight [20], has also been proposed. It adds

a number of features on top of OWL−, such as constraints and local closed-world

assumption.

The Web Rule Language (WRL) [1] is a proposal of a rule-based ontology language.

Based on deductive databases and logic programming, WRL is designed to be com-

plementary to OWL which is strong at checking subsumption relationships among

concepts. WRL focuses on checking instance data, the specification of, and reason-

ing about arbitrary rules. A new layering of Semantic Web ontology languages is

also proposed [19], as shown in Fig. 2.1. Moreover, WRL assumes a “Closed World

Assumption”, whereas OWL and SWRL assume an ”Open World Assumption”.

21

Chapter 2. Background

Figure 2.1: A newly proposed layering of the Semantic Web

There also exist other rules extensions besides the ones mentioned above. The Se-

mantic Web Services Language (SWSL) [2] has been developed under the Semantic

Web Services Initiative (SWSI)1 framework. It is a logic-based language for specify-

ing formal characterizations of Web service concepts and descriptions of individual

services. However, SWSL is domain-independent and it does not contain any con-

structs customized to Web services. SWSL has a layered structure. Unlike OWL,

the layers of SWSL are not organized according to expressivity. Rather, the SWSL

layers are orthogonal to each other and each introduces new features that enhance the

modeling power of the language. Moreover, these layers can be implemented together

or in any arbitrary combination so that users can implement the reasoning service

according to features required. SWSL includes two sublanguages: SWSL-FOL, a full

first-order logic language, which is used to specify the service ontology (SWSO), and

SWSL-Rules, a rule-based sublanguage, which can be used both as a specification

and an implementation language.

1cf. http://www.swsi.org/

22

http://www.swsi.org/

2.1. The Semantic Web – Languages & Tools

Recently, the Rule Interchange Format (RIF) working group 2 has been formed by

the W3C with the aim to producing a “standard means for exchanging rules on the

Web”.

Tools in the Semantic Web

Besides ontology languages, we also witness the growth of ontology tools in the recent

years. Various tools have been built to facilitate the diversified range of ontology

development tasks, including creation, management, versioning, merging, querying,

verification, etc. Here we briefly survey a few. An extensive survey was provided

in [77].

Cwm (Closed world machine) [96] is a general-purpose data processor for the SW.

Implemented in Python and command-line based, it is a forward chaining reasoner

for RDF.

Triple [87] is an RDF query, inference and transformation language. It does not have

a built-in semantics for RDF Schema, allowing semantics of languages to be defined

with rules on top of RDF. This feature of Triple facilitates data aggregation as user

can perform RDF reasoning and transformation under different semantics. The Triple

tool supports DAML+OIL through external DAML+OIL reasoners such as FaCT and

RACER.

Fast Classification of Terminologies (FaCT) [45], developed at University of Manchester,

is a TBox (terminology Box, concept-level) reasoner that supports automated concept-

level reasoning, namely class subsumption and consistency reasoning. It does not sup-

port ABox (assertion Box, instance-level) reasoning. FaCT implements a reasoner for

the description logic SHIQ [50]. It is implemented in Common Lisp and comes with a

2cf. http://www.w3.org/2005/rules/.

23

http://www.w3.org/2005/rules/

Chapter 2. Background

FaCT server, which can be accessed across network via its CORBA interface. Given

a DAML+OIL/OWL ontology, it can classify the ontology (performs subsumption

reasoning) to reduce redundancy and detects any inconsistency within it.

Recently a new version, the FaCT++ [44] system was released. It is an OWL Lite

reasoner and introduced some new optimization techniques.

RACER, the Renamed ABox and Concept Expression Reasoner [36], implements

a TBox and ABox reasoner for the description logic ALCQHIR+(D)− [35]. It can

be regarded as (a) a SW inference engine, (b) a description logic reasoning system

capable of both TBox and ABox reasoning and (c) a prover for modal logic Km. In

the SW domain, RACER’s functionalities include creating, maintaining and deleting

ontologies, concepts, roles and individuals; querying, retrieving and evaluating the

knowledge base, etc. It supports RDF, DAML+OIL and OWL. The RACER system

has recently been commercialized and it is now known as RacerPro3.

Both FaCT (FaCT++) and RACER (RacerPro) perform their functions in full au-

tomation, which means by “pushing a button”, these tools return a definitive answer

without intermediate steps.

OilEd [4] is a visual DAML+OIL and OWL ontology editor developed by the Uni-

versity of Manchester. In OilEd, users can create new classes/properties, relate

them using restrictions, view the hierarchy of classes and create instances of classes.

Protégé [30] is a system for developing knowledge-based systems developed at Stan-

ford University. It is an open-source, Java-based Semantic Web ontology editor that

provides an extensible architecture, allowing users to create customized applications.

In particular, the Protégé-OWL plugin [57] enables editing OWL ontologies and con-

necting to DIG [5]-compliant reasoning engines such as RACER [36] and FaCT++ [44]

3cf. http://www.racer-systems.com/

24

http://www.racer-systems.com/

2.2. Semantic Web Services Ontology OWL-S

to perform tasks such as automated consistency checking and ontology classification.

Both of the above two editors support description logics reasoners that conform to

the DIG interface [5], such as FaCT++ and RACER introduced above.

2.2 Semantic Web Services Ontology OWL-S

Web Services4 are a W3C coordinated effort to define a set of open and industry-

supported specifications to provide a standard way of coordination between different

software applications in a variety of environments. A Web service is defined as “a soft-

ware system designed to support interoperable machine-to-machine interaction over

a network. It has an interface described in a machine-processable format (specifically

WSDL [14]). Other systems interact with the Web service in a manner prescribed by

its description using SOAP [110] messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards” [10].

The various specifications in the Web services domains are all based on XML, mak-

ing information processing and interchange easier. However, as XML Schema only

defines the syntax of a document, it is hard for software agents to understand the

semantics of a Web service described using these specifications. A language that is

both syntactically well-formed and semantical is therefore desirable.

As introduced in the previous section, the Semantic Web [8] is an envisioned extension

of the current Web where resources are given machine-understandable, unambiguous

meaning so that software agents can cooperate to accomplish complex tasks without

human supervision.

4cf. http://www.w3.org/2002/ws/

25

http://www.w3.org/2002/ws/

Chapter 2. Background

OWL Services (OWL-S) [95] is a Web services ontology in OWL DL. It supplies

Web service producers/consumers with a core set of markup language constructs for

describing the properties and capabilities of their Web services in an unambiguous,

computer-interpretable form. OWL-S was expected to enable the tasks of “automatic

Web service discovery”, “automatic Web service invocation” and “automatic Web

service composition and inter-operation”. OWL-S consists of three essential types

of knowledge about a service: the profile, the process model and the grounding.

Figure 2.2 shows the high-level architecture of an OWL-S ontology.

Figure 2.2: Architecture of the OWL-S ontology

A Web service consists of mainly three ingredients, a ServiceProfile, a ServiceGrounding

and a ServiceModel. A ServiceProfile tells what the service does. It is the primary con-

struct by which a service is advertised, discovered and selected. The ServiceGrounding

tells how the service is used. It specifies how an agent can access a service by specify-

ing, for example, communication protocol, message format, port numbers, etc.. The

primary concern of our work in this paper is the OWL-S ServiceModel (also called

process model), which tells how the service works. Thus, the OWL class Service is

describedBy a ServiceModel. It includes information about the service’s inputs, out-

puts, preconditions and effects. It also shows the component processes of a complex

process and how the control flows between the components.

26

2.3. Z & Alloy – Languages & Tools

The OWL-S process model is intended to provide a basis for specifying the behaviors of

a wide array of services. There are two chief components of an OWL-S process model –

the process, and process control model. The process describes a Web Service in terms

of its input, output, precondition, effects and, where appropriate, its component

subprocesses. The process model enables planning, composition and agent/service

inter-operation. The process control model – which describes the control flow of a

composite process and shows which of various inputs of the composite process are

accepted by which of its sub-processes – allows agents to monitor the execution of

a service request. The constructs to specify the control flow within a process model

include Sequence, Split, Split+Join, If-Then-Else, Repeat-While and Repeat-Until. The

full list of control constructs in OWL-S and its semantics can be found in Chapter 7

and in the latest version of OWL-S [95].

2.3 Z & Alloy – Languages & Tools

The verification of Semantic Web ontologies to be presented in the following chap-

ters involves the use of formal languages. In this section, we briefly introduce these

languages, namely Z and Alloy, and their respective proof tool support.

2.3.1 Z

Z [107, 89] is a well-studied formalism based on ZF set theory and first-order predicate

logic. Its formal semantics [106] and elegant modeling style encouraged an object-

oriented extension, the Object-Z [28], and subsequently the Timed Communicating

Object-Z (TCOZ) [67]. These additions greatly expand the expressivity of Z-family

languages.

27

Chapter 2. Background

Z is specially suited to model system data and states. Z defines a number of language

constructs including given type, abbreviation type, axiomatic definition, generic def-

inition, state and operation schema definitions, etc. Besides, Z also defines a mathe-

matical library, the toolkit , which gives definitions of commonly used concepts, sym-

bols and operators, such as sets, set union, intersection, natural numbers, sequences,

functions, relations, bags, etc.

Declarations

Z is a strictly-typed specification language. In Z, a name must be declared before it is

referenced. Moreover, properties of systems being specified are stated using Z predi-

cates. Hence, declarations and predicates are the building blocks of Z specifications.

The basic form of Z declarations is x : A, where x is the newly introduced variable

of the type A. Moreover, this type A, which must be a set itself, should be defined

previously too. A variable declared is either global or local. A global variable is

visible from the point of declaration to the end of specification. A local variable’s

scope is the current enclosing environment. Interested readers may refer to [106, 88]

for details.

Predicates

As in first-order logic, predicates in Z are Boolean-valued statements over a number

of subjects. Z predicates allow the forms:

Equality & membership The basic Z predicates are equalities = and membership

relationships ∈. For example, the predicate x ∈ N states that variable x is a

member of natural numbers N.

28

2.3. Z & Alloy – Languages & Tools

Set relationship operators such as subset can be derived using set membership.

In general, the subset relationship A ⊆ B can be expressed as A ∈ PB , where P

is the powerset symbol. The expression PB denotes all the sets that are subsets

of B .

Propositional connectives These include the usual connectives in the proposi-

tional logic, namely ¬ , ∨, ∧, ⇒ and ⇔. They are used to connect simpler

predicates to construct complex ones.

Quantifiers Based on first-order logic, Z also allows quantifiers in predicates. These

include the universal quantifier ∀, the existential quantifier ∃ and the unique

existential quantifier ∃1. The predicate ∃1 S • P is true if there exists only one

way of value assignment for the variables in S .

Note that the • symbol denotes “such that”.

Let expressions The let expression constructs local definitions in a predicate. For

example, in the predicate let x1 == E1; . . . ; xn == En • P , the scope of vari-

ables x1, . . . , xn extends to the predicate P , but not into the bodies of expression

E1, . . . ,En .

The semantics of the let operator can be summarized as follows.

(let x1 == E1; . . . ; xn == En • P)
⇔ (∃1 x1 : t1; . . . ; xn : tn | x1 = E1; . . . ; xn = En • P)

Note that the vertical bar | denotes the conditions that the expression in front

of it must satisfy.

Relations Z also allows relation symbols to be used as predicates. The abstract

syntax is defined as follows.

Predicate ::= Expression Rel Expression Rel . . . Rel Expression

| Pre-Rel Expression

29

Chapter 2. Background

Treated as predicates, relations denote relational memberships. For example,

for a binary relation R, the predicate E1 R E2 denotes the membership predicate

(E1,E2) ∈ R. The predicate R E , where R is a unary prefix symbol, denotes

E ∈ R.

For the general form of chain of relations E1 R1 E2 R2 E3 R3 . . .En−1 Rn−1 En ,

it is equivalent to the conjunction of individual relation predicate E1 R1 E2 ∧
E2 R2 E3 ∧ . . . ∧ En−1 Rn−1 En .

Essential Language Constructs

In this subsection, we give a brief introduction to the more high-level Z language

constructs relevant to this thesis. A more detailed introduction can be found in

Appendix A.

Given type:

A given type introduces uninterpreted basic types, which are treated as sets in

Z. For example:

[Resource]

introduces one given type Resource, which is a set.

Axiomatic definition:

An axiomatic definition defines global variables, and optionally constrains their

values using predicates. These global variables cannot be globally redefined.

For example, the following axiomatic definition defines two variables Class and

Property as subsets of Resource. Furthermore, we assert that these two sets are

mutually disjoint (their intersection is an empty set).

30

2.3. Z & Alloy – Languages & Tools

Class : P Resource

Property : PResource

Class ∩ Property = ∅

Generic Definitions:

A generic definition is a generic form of axiomatic definition, parameterized by

a formal parameter, a set X .

For example, in OWL DL, a datatype property relates some individuals to

values of some data type. The mapping of such properties can be modeled

by the following generic definition sub valD . Note that in this definition the

predicate part is empty.

[X]
sub valD : DatatypeProperty → (Individual ↔ X)

Constraints:

A constraint (predicate) constrains values of global variables that have been

declared previously. For example, the following predicate states that the car-

dinality of the set is 2, implying that the two set members, which are both

previously defined, are actually distinct.

#{PLAN P3 P6 P1,PLAN P3 P6} = 2

Ontology languages such as DAML+OIL and OWL are based on description logics,

which are well known to be a subset of first-order logic [58]. Z, on the other hand,

embraces expressivity from both first-order logic and schema calculus. Hence, Z is

by nature more expressive than these languages. It is able to capture more complex

properties pertaining to an ontology than ontology languages can.

Z/EVES [84] is an interactive system for composing, checking, and analyzing Z speci-

fications. It supports the analysis of Z specifications in a number of ways: syntax and

31

Chapter 2. Background

type checking, schema expansion, precondition calculation, domain checking, general

theorem proving, etc.

In Z/EVES, properties about a specification can be specified as theorems. These

properties include facts and facts that one hopes to be facts. By proving theorems of

a particular specification, we gain more confidence about its correctness.

The abstract syntax of theorems is defined as follows [71].

theorem ::= \begin[para-opt]{theorem}{[usage] theorem-name}[gen-formals]

predicate

[\proof

command sep ... sep command]

\end{theorem}

In the above abstract syntax, the keyword “para-opt” has two options: disabled

or enabled, which indicate whether the theorem is to be automatically used by the

theorem prover. The “gen-formals” keyword is an optional list of formal parameters

appearing in the definition of the theorem.

The keyword “usage” have a number of options and it indicates the type of the

theorem and consequently how it is to be used by Z/EVES. The options for this

keyword are categorized as follows.

Facts The usage axiom indicates that the theorem is to be used by Z/EVES as a

fact.

Rewrite rules The usage rule specifies that a theorem is to be used as a rewrite

rule. Put it simply, a rewrite rule is a Z predicate, in the form of either a univer-

sal quantification, a logical implication, equivalence or an expression equality. If

32

2.3. Z & Alloy – Languages & Tools

such a theorem is used, Z/EVES will replace the left-hand side of the predicate

or expression by its right-hand side during reduction and rewriting.

Forward rules The usage frule specifies that a theorem is to be used as a forward

rule, which is in the form of an implication from a schema reference to a list of

conjuncted predicates. A forward rule can be fired during simplification and it

used to introduce predicates to Z/EVES.

Assumption rules The usage grule specifies that a theorem is to be used as an

assumption rule. As its name suggests, an assumption rule is used to make

Z/EVES assume some predicates. It can be used to introduce type information

and inequalities into the proof context.

For example, the following theorem is a disabled assumption rule that states if a

resource x is a member of Class , then it can be assumed that it is not a member of

Property . Note that in theorems, variables can be used without declaration.

theorem disabled grule classPropertyDisjointRule
x ∈ Class ⇒ x /∈ Property

In the ISO standard Z [52] and Z/EVES, Z specifications are organized into sections

to improve specification clarity and reuse. The built-in section toolkit, as introduced

above, defines basic constants and operators. Specifications are built hierarchically

by including existing sections as their parents.

2.3.2 Alloy

Alloy [54] is a structural modeling language emphasizing on automated reasoning

support. It treats relations as first-class citizens and uses relational composition as

33

Chapter 2. Background

a powerful operator to combine various structural entities. The design of Alloy was

influenced by Z and it can be (roughly) viewed as a subset of Z.

Essential Alloy language constructs are presented below.

Signatures:

A signature (sig) paragraph introduces a basic type and a collection of relations

(called fields) in it along with types of the fields and constraints on their values.

A signature may inherit fields and constraints from another signature. For

example

sig Resource {}

defines a signature Resource with no relations associated with it.

The signature below defines a basic type Class, which is a subset of Resource

defined above (Class extends Resource). Moreover, it has a field associated

with it, the instances, that maps a class to the set of its instances, which are

of the type Resource.

disj sig Class extends Resource

{instances: set Resource}

The keyword disj preceding the definition asserts that this definition and other

subsets of Resource are disjoint with each other.

Functions:

A function (fun) captures behavior constraints. It is a parameterized formula

that can be “applied” elsewhere. For example, in the following Alloy speci-

fication, subClassOf is a function that states for classes c1 and c2 to be of

subClassOf relationship, the instances of c1 must be a subset of the instances

of c2.

34

2.3. Z & Alloy – Languages & Tools

fun subClassOf(c1, c2: Class)

{c1.instances in c2.instances}

Facts:

A fact (fact) constrains the relations and objects. A fact is a formula that takes

no arguments and need not be invoked explicitly; it is always true. For example,

the following fact states that MilitaryTask is a sub class of MilitaryProcess.

fact{subClassOf(MilitaryTask, MilitaryProcess)}

Assertions:

An assertion (assert) specifies an intended property. It is a formula the cor-

rectness of which needs to be checked, assuming the facts in the model. For

example:

assert PrepareDemolitionTaskIsMilProcess

{subClassOf(PrepareDemolition_MilitaryTask, MilitaryProcess)}

Alloy Analyzer [55] is a constraint solver for Alloy that provides fully automated

simulation and checking. Alloy Analyzer works as a compiler: it compiles a given

problem into a (usually huge) boolean formula, which is subsequently solved by a

SAT solver, and the solution is then translated back to Alloy Analyzer. Inevitably, a

finite scope - a bound on the size of the domains - must be given to make the problem

finite.

Alloy Analyzer determines whether there exists a model for the formula. When it

finds an assertion to be false, it generates a counterexample, which makes tracing the

error easier, compared to theorem provers. However, the capability of Alloy Analyzer

is constrained by the way it works. Since Alloy Analyzer performs exhaustive search,

35

Chapter 2. Background

it does not scale very well. Similar to Z/EVES, Alloy specifications are in the form of

modules, organized into a tree. Existing modules can be reused by commands open

or use.

Besides Z/EVES and Alloy Analyzer, a number of Automated Theorem Provers have

been implemented in recent years [73, 82, 92] and Vampire [82] is one with very

high performance. In [97], It has been chosen to make comparison with a DL rea-

soner FaCT++, the next-generation of the FaCT reasoner introduced above. In the

comparison, core DL reasoning tasks, namely knowledge base classification and con-

cept subsumption were considered. As the comparison turned out, Vampire is out

performed by FaCT++. Based on the above result, the authors suggested that first-

order reasoners, including Z/EVES and Alloy Analyzer, are best suited to be used

in a hybrid way, performing some reasoning tasks DL Reasoners such as FaCT++

and RACER cannot deal with. This is exactly what we have done in our combined

approach.

So far we have introduced several Semantic Web reasoning tools and software engi-

neering proof tools. It is interesting to compare them. In Table 2.2, we summarize

the strength and weakness of RACER, Z/EVES and Alloy Analyzer.

Table 2.2: Strength & weakness of the reasoning tools
Tool Strength Weakness
RACER Fully automated rea-

soning
Kinds of reasoning
tasks limited

Alloy Analyzer Able to locate the
source of the errors

Scope is limited

Z/EVES Very expressive & pow-
erful

Interactive proof
process

36

2.4. Institutions & Institution Morphisms

2.4 Institutions & Institution Morphisms

Institutions and institution morphisms are used in this thesis to prove the correctness

of the Z semantics of OWL in Chapter 5. In this section, we give a brief introduc-

tion to them. We assume the reader is familiar with the basics of category theory,

including category, opposite category, functor, natural transformation, colimit, and

the categories Set of sets and Cat of categories; e.g., see [59] for an introduction to

this subject.

Institutions were introduced by Goguen and Burstall [31, 32] to formalize the notion

of logical systems and to provide a basis for reasoning about software specifications

independently of the underlying logical system chosen. The basic components of a

logical system are models and sentences, related by the satisfaction relation. The

compatibility between models and sentences is provided by signatures, which formal-

izes the notion of vocabulary from which the sentences are constructed. Modeling

the signatures of a logical system as a category, we get the possibility to translate

sentences and models across signature morphisms. The consistency between the sat-

isfaction relation and this translation is given by the satisfaction condition which

intuitively means that the truth is invariant under the change of notation.

Formally, an institution is a quadruple ℑ = (Sign, sen, Mod, |=) where Sign is a

category whose objects are called signatures, sen is a functor sen : Sign → Set

which associates with each signature Σ a set whose elements are called Σ-sentences,

Mod : Signop → Cat is a functor which associates with each signature Σ a category

whose objects are called Σ-models, and |= is a function which associates with each

signature Σ a binary relation |=Σ ⊆ |Mod(Σ)| × sen(Σ), called satisfaction relation,

such that for each morphism φ : Σ → Σ′ the satisfaction condition

Mod(φ)(M ′) |=Σ e ⇔ M ′ |=Σ′ φ(e)

37

Chapter 2. Background

holds for each model M ′ ∈ Mod(Σ′) and each sentence e ∈ sen(Σ). The functor

sen abstracts the way the sentences are constructed from signatures (vocabularies).

The functor Mod is defined over the opposite category Signop because a “translation

between vocabularies” φ : Σ → Σ′ defines a forgetful functor Mod(φop) : Mod(Σ′) →
Mod(Σ) such that for each Σ′-model M ′, Mod(φop)(M ′) is M ′ viewed as a Σ-model.

The satisfaction condition may be read as “M ′ satisfies the φ-translation of e iff

M ′ viewed as a Σ-model satisfies e”, i.e., the meaning of e is not changed by the

translation φ.

We often use Sign(ℑ), sen(ℑ), Mod(ℑ), |=ℑ to denote the components of the institution

ℑ. If φ : Σ → Σ′ is a signature morphism, then the Σ-model Mod(φop)(M ′) is also

denoted by M ′↾φ and we call it the φ-reduct of M ′.

The satisfaction relation is extended to sets of sentences and it is used to define the

semantical consequence notion. If E is a set of Σ-sentences, then:

1. M |=Σ E if M |= e for each e ∈ E .

2. Modth(Σ,E) = {M | M |=Σ E}.

3. E |=Σ e if M |= e for each model M ∈ Modth(Σ,E). We say that e is a

semantical consequence of E .

A specification (presentation) is a way to represent the properties of a system in-

dependent of model (= implementation). Formally, a specification is a pair (Σ,E),

where Σ is a signature and E is a set of Σ-sentences. A (Σ,E)-model is a Σ-model

M such that M |=Σ E . We sometimes write (Σ,E) |= e for E |=Σ e.

The migration from one logical system to another is captured by institution mor-

phism or institution comorphism. There are many variations on institution mor-

phisms/comorphisms in the literature. We recommend [33, 94] for systematic in-

vestigations of these notions and the relations between them. Here we recall from

38

2.4. Institutions & Institution Morphisms

[33] the definition for simple theoroidal comorphism. Let ℑ = (Sign, sen, Mod, |=)

and ℑ′ = (Sign′, sen′, Mod′, |=′) be two institutions. We denote by Th the category

of the specifications in ℑ and by Th′ the category of the specifications in ℑ′. Let

sign′ : Th′ → Sign′ be the forgetful functor which sends a specification (Σ′,E ′) in Th′

to its signature Σ′. A simple theoroidal comorphism (Φ, α, β) : ℑ → ℑ′ consists of:

1. a functor Φ : Sign → Th′ such that there is a functor Φ⋄ : Sign → Sign′ satisfying

Φ ; sign′ = Φ⋄,

2. a natural transformation α : sen ⇒ Φ⋄ ;sen′, and

3. a natural transformation β : Φ⋄ ;Mod′ ⇒ Mod,

such that the following satisfaction condition holds:

M ′ |=′
Φ(Σ) αΣ(e) iff βΣ(M ′) |=Σ e

for any Φ(Σ)-model M ′ of ℑ′ and Σ-sentence e of ℑ. We extend Φ to the functor

Φ : Th → Th′ such that if Φ(Σ) = (Σ′,E ′), then Φ(Σ,E) = (Σ′,E ′ ∪ αΣ(E)). In

other words, Φ(Σ,E) is Φ(Σ) to which we add the sentences αΣ(E). The functor

Φ associates with each signature Σ in ℑ a specification (Σ∅,E ∅) in ℑ′; this means

that the definition of vocabularies in ℑ includes properties which are expressed in

ℑ′ by E ∅. The natural transformation α consists of a morphism αΣ : sen(Σ) →
sen′(φ⋄(Σ)) for each signature Σ in ℑ; αΣ defines the translation of Σ-sentences in

ℑ into φ⋄(Σ)-sentences in ℑ′. The natural transformation β consists of a functor

βΣ : Mod′(φ⋄(Σ)) → Mod(Σ) for each signature Σ in ℑ; βΣ says how a φ⋄(Σ)-model

in ℑ′ can be seen as a Σ-model in ℑ. The meaning of the satisfaction condition is

similar to that from the definition of the institution.

Remark 1 The definition for simple theoroidal comorphism is slightly modified from

that given in [33]. If

39

Chapter 2. Background

– we extend Mod′th to a functor Mod′
th

: Th′op → Cat similar to Mod′ but defined over

specifications, and

– we denote by mod′ the natural transformation mod′ : Φop ; Mod′
th ⇒ Φ⋄op ; Mod′

such that for each signature Σ mod′
Σ : Mod′th(Φ(Σ)) → Mod′(Φ⋄(Σ)) is the inclusion,

and

– βth is the vertical composition mod′ ; β,

then (Φ, α, βth) is a simple theoroidal comorphism as in [33].

40

Chapter 3

Checking Web Ontologies using

Z/EVES

As stated in Chapter 2, ontology languages are the building blocks of the Semantic

Web as they prescribe how Web resources are defined and related. The reasoning and

verification tools for the Semantic Web are continually improving. However, due to

the inherent expressivity limitation of main ontology languages such as DAML+OIL

and OWL, the reasoning tools can only perform a very restricted set of tasks. It is

hence our belief that the Semantic Web is a novel application domain for software

modeling languages and tools.

Z [107, 89] is a formal modeling language for specifying software systems and Z/EVES [84]

is an integrated proof environment for Z. In this chapter, we demonstrate how Z and

Z/EVES can be used to represent and reason about DAML+OIL and RDF ontologies.

We begin by presenting the Z semantics for ontology language DAML+OIL in Sec-

tion 3.1. This semantic model is embedded as a Z section in Z/EVES, which serves as

an environment for checking and verifying Web ontologies. Following a brief introduc-

41

Chapter 3. Checking Web Ontologies using Z/EVES

tion of the military plan ontologies in Section 3.3, we present a tool for automatically

transforming DAML+OIL and RDF ontologies into Z specifications understood by

Z/EVES in Section 3.4. Finally in Section 3.5, we use a recent real application, the

military plan ontologies, to demonstrate the different reasoning tasks that Z/EVES

can perform. Section 3.6 summarizes the main contributions of this chapter.

3.1 Z Semantics for DAML+OIL

This section presents (part of) the Z semantics for the DAML+OIL language. The

full semantics can be found in Appendix B. The Z syntax used in this section are

documented earlier in Section 2.3.

3.1.1 Basic Concepts

Everything in the Semantic Web is a Resource. So we model it as a given type in Z.

[Resource]

Class corresponds to a concept, which has a number of resources associated with

it: the instances of this class. Hence, we model Class as a subset of resource and

instances as a function from classes to sets of resources.

Class : P Resource

instances : Class → P Resource

Property is also a subset of resource, disjoint with class. A property relates resources

to resources. The function sub val maps each property to the resources it relates.

Property : PResource

Property ∩ Class = ∅
sub val : Property →

(Resource ↔ Resource)

42

3.1. Z Semantics for DAML+OIL

The property equivalentTo relates two equivalent resources. It is used as a super

property of sameClassAs and samePropertyAs.

equivalentTo : Resource ↔ Resource

∀ a, b : Resource • a equivalentTo b ⇔ a = b

3.1.2 Class Elements

The property subClassOf is defined as a relation from class to class. For a class c1

to be the sub class of class c2, the instances of c1 must be a subset of instances of c2.

Other properties such as disjointWith are similarly defined.

subClassOf : Class ↔ Class

disjointWith : Class ↔ Class

∀ c1, c2 : Class •
c1 subClassOf c2 ⇔ instances(c1) ⊆ instances(c2)

c1 disjointWith c2 ⇔ instances(c1) ∩ instances(c2) = ∅

The properties intersectionOf and unionOf constructs a class from a list (sequence)

of classes whose instances are the intersection/union of the sequence of classes.

intersectionOf : seqClass → Class

unionOf : seqClass → Class

∀ cl : seqClass; c : Class •
intersectionOf (cl) = c ⇔ instances(c) =

⋂{x : ran cl • instances(x)}
unionOf (cl) = c ⇔ instances(c) =

⋃{x : ran cl • instances(x)}

43

Chapter 3. Checking Web Ontologies using Z/EVES

3.1.3 Property Restrictions

Properties introduced in this section can be used in DAML+OIL restrictions to con-

struct (anonymous) classes that are used to define other classes.

The property toClass attempts to establish a maximal possible set of resources as a

class. It states that any resource a1 is an instance of class c2 if either: a1 is defined

for property p and (a1, a2) ∈ sub val(p) implies that a2 is an instance of class c1; or

that p is not defined for a1 at all.

An example may better illustrate this property. Suppose that we want to define

a class carnivore in DAML+OIL by stating that it only eats animals. This can

be achieved by using the toClass property. Assuming that eats is a property and

Animal and Carnivore are a DAML+OIL class, the following Z predicate indicates

that Carnivore only eats Animal : toClass(Animal , eats) = Carnivore.

toClass : (Class × Property) → Class

∀ c1, c2 : Class; p : Property • toClass(c1, p) = c2 ⇔
instances(c2) =

{a : Resource | sub val(p)(| {a} |) ⊆ instances(c1)}

Property hasValue states that all instances of class c have resource r for property p.

hasValue : (Resource × Property) → Class

∀ r : Resource; p : Property ; c : Class • hasValue(r , p) = c ⇔
instances(c) =

{a : Resource | r ∈ sub val(p)(| {a} |)}

There are also a number of cardinality-related properties in DAML+OIL that define

a class through constraining the cardinality of the set of resources mapped by a

property to its instances. For example, the cardinality property defines the class c

of all resources that have exactly n distinct values for the property p, i.e. a is an

44

3.1. Z Semantics for DAML+OIL

instance of the defined class if and only if there are n distinct values y such that (x , y)

is an instance of p.

cardinality : (N × Property) → Class

∀n : N; p : Property ; c : Class • cardinality(n, p) = c ⇔
instances(c) = {a : Resource | #(sub val(p)(| {a} |)) = n}

Other similar properties such as minCardinality and maxCardinality and their

qualified variations can be similarly defined.

3.1.4 Property Elements

DAML+OIL also defines properties to restrict and relate existing properties.

The property subPropertyOf states that a property p1 is a sub property of another

property p2 if and only if sub val(p1) is a subset of sub val(p2).

subPropertyOf : Property ↔ Property

∀ p1, p2 : Property • p1 subPropertyOf p2 ⇔
sub val(p1) ⊆ sub val(p2)

The inverseOf property defines one property to be the inverse of another one by

reversing the mappings these two properties define.

inverseOf : Property ↔ Property

∀ p1, p2 : Property • p1 inverseOf p2 ⇔
(sub val(p1)) = (sub val(p2))∼

Similarly, TransitiveProperty defines the condition of a property being transitive.

45

Chapter 3. Checking Web Ontologies using Z/EVES

TransitiveProperty : P Property

∀ p : Property • p ∈ TransitiveProperty ⇔
(∀ x , y , z : Resource • (x , y) ∈ sub val(p) ∧ (y , z) ∈ sub val(p) ⇒

(x , z) ∈ sub val(p))

3.1.5 Instances

Properties under this section relate individuals in one way or the other. For example,

differentIndividualFrom is a property over resources. It asserts that two individuals

are different from each others.

differentIndividualFrom : Resource ↔ Resource

3.2 Import Mechanisms & Proof Support

The Z semantics is contained in a Z section daml2z, on top of the built-in section

toolkit. As suggested in [85], definitions alone are not sufficient to exploit the full

power of Z/EVES. An ample stock of rewrite rules, forward rules and assumption

rules is needed to make proof processes more automated. Based on the semantic

model, we constructed a Z section, called DAML2ZRules, of rules which describe the

above definitions in more than one angle and are used to help Z/EVES to perform

reasoning tasks. This section has daml2z as parent.

For example, toClassDisjointWithRule1 is a rewrite rule relating two properties:

toClass and disjointWith. It states that if classes c3 and c2 are disjoint and (c1, p) is

related by toClass to c3, then (c1, p) cannot be related by toClass to c2.

46

3.3. Military Plan Ontologies

theorem rule toClassDisjointWithRule1
∀ c1, c2, c3 : Class; p : Property •

(c2, c3) ∈ disjointWith ∧ toClass(c1, p) = c3 ⇒ toClass(c1, p) 6= c2

Ontologies in the Semantic Web are open, shared and reused. New ontologies are

built on top of existing ones. Other domain specific ontologies are built in terms of

basic concepts presented in this section and their corresponding Z models will have

DAML2ZRules or its descendent sections as parents.

3.3 Military Plan Ontologies

DSO National Laboratories (DSO) Singapore developed a DAML+OIL military plan

ontology [60], defining concepts in the military domain, including military organiza-

tions, specialities, geographic features, etc. For example, the class MilitaryTask is

defined as follows. It is a sub class of MilitaryProcess,

<daml:Class rdf:about="http://www.dso.org.sg/PlanOntology#MilitaryTask">

<rdfs:label>MilitaryTask</rdfs:label>

<rdfs:subClassOf>

<daml:Class rdf:about="http://www.dso.org.sg/PlanOntology#MilitaryProcess"/>

</rdfs:subClassOf>

</daml:Class>

The military plan ontology contains 98 classes, 26 properties and 34 individuals. The

OWL classes define the classification of military formations, military tasks, geographic

features, etc. The properties relate military units to tasks, defines chain of command,

etc. The individuals are mostly used to represent the military specialities.

A number of plan instances of this ontology were also generated from plain text by

an information extraction (IE) engine developed by DSO. Military plans are typically

prepared as both graphical overlays and textual documents detailing the plans. IE is

47

Chapter 3. Checking Web Ontologies using Z/EVES

used to transform the textual documents into ontological data. A typical IE workflow

consists of word segmentation & stemming, PoS (Part of Speech) tagging, Named

Entity recognition, etc. With all information gathered from the various steps, the IE

engine then fills the slots in pre-defined templates. Each template specifies the slots

to be emitted and the semantic classes of the value used to fill each slot. The output

of the IE engine is a document containing a set of records. Each record created based

on the templates contains key–value pairs. The first word on each line is the key and

the rest of the line is the value of the key. An example of the record emitted by the

IE engine is given in Fig. 3.1. Basically, the above IE output describes a movement

military plan, starting at time point 0 and ending at time point 1, of one infantry

battalion (1 Inf BN) to EASTLAND.

Action PLAN-P1-P1
Annotation moving 1 x Bn (-) to EASTLAND
Location EASTLAND
Name moving
End 1
Begin 0
Actor 1 INF BN
SubAction PLAN-P1-P1-P1
Next PLAN-P1-P2

Figure 3.1: Sample IE output

The entities described in each record from the IE output is mapped to concepts and

relations found in the plan ontology. For example the value INF BN has a mapping to

the concept InfantryBattalion. When this value is found in the slot of a record,

an instance of InfantryBattalion is created. The key of each record is mapped to a

relation in the plan ontology. As the record references other records (e.g. actions and

subactions) whose types are unknown at the point of processing, typeless instances

are created. The types of these instances are revised when sufficient information are

available to determine their types. Jena [51] is used to hold and output the instances

into an RDF file, which usually comprises the following four parts:

48

INF
BN
InfantryBattalion
InfantryBattalion

3.4. Transformation from DAML+OIL/RDF to Z

• A set of military operations and tasks, defining their types, phases and the logic

order.

• A set of military units, which are the participants of the military operations and

tasks,

• A set of geographic locations, where such operations take place and

• A set of time points for constraining the timing of such operations.

3.4 Transformation from DAML+OIL/RDF to Z

We have developed a tool (a part of the SESeW tool suite to be presented later in

Chapter 6) in Java to automatically transform ontologies into Z. Given a DAML+OIL

or RDF ontology, it iterates through all elements and transforms them into Z defini-

tions.

We used this tool to transform the military plan ontology into Z section military,

with DAML2ZRules as parent. To better utilize Z/EVES’s proof power, We made the

following enhancements to the military section:

• During transformation, labels are systematically added to Z predicates, making

them axioms (either rewrite rules or assumption rules) recognized by Z/EVES,

which will assume an assumption rule to be true and rewrite the left-hand side

of a rewrite rule to its right-hand side during the proof process.

• Since MilitaryProcess and its sub classes have a start and end time, start

and end are modeled as functions from MilitaryProcess to integer, so that

Z/EVES can perform reasoning over integer domain.

• A set of theorems specific to these military definitions are formulated. These

theorems describe the relationships among the various military entities. For

49

Chapter 3. Checking Web Ontologies using Z/EVES

example, we have theorems stating sub task relationship between different kinds

of military tasks, transitivity of sub task relationship, etc.

For example, the class MilitaryTask presented earlier is transformed into the fol-

lowing axiomatic definition. Note that the predicate is marked as an assumption

rule, which is automatically assumed to be true by Z/EVES during reduction and

rewriting.

MilitaryTask : Class

〈〈grule MilitaryTask subClassOf MilitaryProcess〉〉
(MilitaryTask ,MilitaryProcess) ∈ subClassOf

SESeW also transforms instance RDF ontologies into Z specifications, in which addi-

tional Z predicates are added to make the reasoning process of Z/EVES more auto-

mated.

In RACER and many other description logics reasoners, different names refer to

different entities (Unique Name Assumption [36]). However, in Z, different names

can refer to the same entity. We use cardinality of sets to make Z/EVES work the

same way. For example, in the instance ontology, whenever two military tasks are

related by sub task or super task relationship, we construct a set containing the two

tasks and assume the cardinality of the set is two, as follows:

〈〈grule ECA P3 P13 S1 disj ECA P3 P13〉〉
#{ECA P3 P13 S1,ECA P3 P13} = 2

50

3.5. Checking DAML+OIL Ontologies using Z/EVES

3.5 Checking DAML+OIL Ontologies using Z/EVES

This section gives a concise account of our work in checking DAML+OIL ontologies

using Z/EVES [24]. The presentation is focused on performing the core Semantic

Web reasoning tasks, namely inconsistency, subsumption, instantiation and instance-

property reasoning, over the military plan ontology.

3.5.1 Inconsistency Checking

Ensuring the consistency each class is an important task as the overall ontology

consistency can be reduced to class consistency problem [46].

After transforming the plan ontology into Z section military, We applied Z/EVES to

section military to systematically check consistency for its classes. During checking,

we identified the following closely-related Z definitions.

PrepareDemolition MilitaryTask : Class

(PrepareDemolition MilitaryTask ,MilitaryTask) ∈ subClassOf

EngineerUnit : Class

(EngineerUnit ,ModernMilitaryUnit) ∈ subClassOf

〈〈grule EngineerUnitSpeciality〉〉
((EngineerUnit , speciality),EngineeringMilitarySpeciality) ∈ hasValue

〈〈grule DemolitionAssignedtoEngin〉〉
((PrepareDemolition MilitaryTask , assignedTo),EngineerUnit) ∈ toClass

EngineerSection : Class

〈〈grule SectionIsSubClassOfUnit〉〉
(EngineerSection,EngineerUnit) ∈ subClassOf

((EngineerSection, echelon),SECT) ∈ hasValue

51

Chapter 3. Checking Web Ontologies using Z/EVES

ArtilleryFiringUnit : Class

〈〈FUIsMUnit〉〉
(ArtilleryFiringUnit ,ModernMilitaryUnit) ∈ subClassOf

〈〈grule FiringUnitDisjWithEngin〉〉
(ArtilleryFiringUnit ,EngineerUnit) ∈ disjointWith

〈〈grule DemolitionAssignedToFU〉〉
((PrepareDemolition MilitaryTask , assignedTo),ArtilleryFiringUnit) ∈ toClass

With the assumption rule label DemolitionAssignedToFU removed, we issue the fol-

lowing command to test the consistency of the above definitions.

try (((PrepareDemolition MilitaryTask , assignedTo),ArtilleryFiringUnit) ∈ toClass);

We enter a sequence of commands into Z/EVES. The first 2 are axioms (labelled pred-

icates) from the specification and the 3rd is a theorem defined in section DAML2ZRules.

The final command reduce performs simplification and rewriting.

Proof

use FiringUnitDisjWithEngin;
use DemolitionAssignedtoEngin;
apply disjointWithRule0;
reduce;

Z/EVES returns the following predicate as the remaining goal to be proven.

¬ (instances EngineerUnit ∩ instances ArtilleryFiringUnit) = {}

We suspect that there is potentially an inconsistency since the disjointness of the

above two classes is stated in the specification. Since it is very hard for a theorem

prover to prove falsity, we use the usual trick: negate the goal and retry.

52

3.5. Checking DAML+OIL Ontologies using Z/EVES

try (¬ ((PrepareDemolition MilitaryTask , assignedTo),ArtilleryFiringUnit) ∈ toClass);

With the same sequence of commands entered, Z/EVES manages to return true.

Hence we know that the predicate is inconsistent with the section. After checking

the original ontology, we found that there is indeed an inconsistency, which was

intentionally inserted as a test case for our tool without our knowledge.

3.5.2 Subsumption Reasoning

The task of subsumption reasoning is to infer that a DAML+OIL class is a sub class of

another class. It is supported by Z/EVES with a high degree of automation: usually

a reduce command will prove the goal.

3.5.3 Instantiation Reasoning

Instantiation reasoning asserts that one resource is an instance of a class. Some

Semantic Web reasoning tools, such as FaCT, are designed to only support TBox

reasoning, hence reasoning involving instances cannot be performed. We demonstrate

through an example that Z/EVES supports instance level reasoning.

In one of the instance ontologies, planE.daml, an instance of ModernMilitaryUnit is

assigned to an instance of PrepareDemolition MilitaryTask. We want to deduce

that it is an instance of the class EngineerUnit (since we know from one assumption

given in the previous section, that every instance of EngineerUnit is assigned to

some instance of PrepareDemolition MilitaryTask).

53

Chapter 3. Checking Web Ontologies using Z/EVES

ModernMilitaryUnit 8ad : Resource

〈〈grule ModernMilitaryUnit 8ad type〉〉
ModernMilitaryUnit 8ad ∈ instances(ModernMilitaryUnit)

PLAN P2 P4 : Resource

〈〈grule PLAN P2 P4 type〉〉
PLAN P2 P4 ∈ instances(PrepareDemolition MilitaryTask)
〈〈rule PLAN P2 P4 assignedTo〉〉
(sub val(assignedTo))(| {PLAN P2 P4} |) = {ModernMilitaryUnit 8ad}

try ModernMilitaryUnit 8ad ∈ instances(EngineerUnit);

With two axioms from the specification and two theorems from section DAML2ZRules

used, a final prove command cleans up the proof and Z/EVES returns true.

Proof

use imageTupleRule[p := assignedTo,
x := PLAN P2 P4, y := ModernMilitaryUnit 8ad];

use DemolitionAssignedtoEngin;
use PLAN P2 P4 type;
use toClassInstanceRule2
[c1 := PrepareDemolition MilitaryTask ,
c2 := EngineerUnit , a1 := PLAN P2 P4,
a2 := ModernMilitaryUnit 8ad , p := assignedTo];

prove;
�

3.5.4 Instance Property Reasoning

Another important reasoning task in the Semantic Web domain is instance property

reasoning, which is often regarded as knowledge base querying. In the Semantic Web,

a promising vision is that intelligent agents can infer information that is not explicitly

54

3.6. Chapter Summary

stored in the knowledge base. We illustrate Z/EVES’s capability of instance property

reasoning using an example.

In the beginning of this section, we know that the speciality of EngineerUnit is

EngineeringMilitarySpeciality and that EngineerSection is a sub class of EngineerUnit.

We want to know whether EngineeringMilitarySpeciality is also a speciality of

EngineerSection. The goal is established as follows:

try ((EngineerSection, speciality),EngineeringMilitarySpeciality) ∈ hasValue;

With the following commands issued, Z/EVES proves the goal to be true.

Proof

use EngineerUnitSpeciality ;
use SectionIsSubClassOfUnit ;
use subClassHasValueRule1

[c1 := EngineerSection, c2 := EngineerUnit ,
p := speciality , r := EngineeringMilitarySpeciality];

reduce;
�

As it can be seen, the highly interactive proof process and the potentially large size

of ontologies make it difficult to be applicable in the SW environment. The work

introduced in this chapter inspired us to propose the combined approach presented

in the next chapter, which is more effective and efficient as it is able to check more

complex properties and ontological properties with high automation.

3.6 Chapter Summary

The main contribution of this chapter can be summarized as follows.

• The Z semantics for the ontology language DAML+OIL is defined, which is

the foundation for the later work on checking Web ontologies using Z/EVES, a

theorem prover for Z language.

55

Chapter 3. Checking Web Ontologies using Z/EVES

• A Java transformation tool from DAML+OIL and RDF to Z is developed, mak-

ing this checking approach easier as large ontologies can be automatically trans-

formed into Z specifications ready to be checked by Z/EVES.

• The checking of core Semantic Web reasoning tasks, including concept incon-

sistency, subsumption, instantiation, etc., by Z/EVES is another contribution

of this chapter. It shows that software engineering languages and tools can

contribute to the development of the Semantic Web.

As it can be seen from the last section, the proof process in this Z/EVES-only ap-

proach is very interactive and it requires substantial user expertise in interacting with

the theorem prover.

Although Semantic Web reasoners such as RACER and FaCT++ can carry out only

a limited number of types of reasoning tasks (concept consistency, subsumption and

instantiation reasoning), due to the expressivity limitation of the ontology languages,

they are fully automated reasoners. It is advantageous to use SW reasoners to perform

reasoning tasks that can be automated.

Moreover, since ontology languages are based on description logics, certain complex

properties cannot be represented in these languages. We need a way to express and

verify the desirable properties, which may be critical to assuring the correctness of

the ontology.

The above two requirements inspired us to harness the synergy of Semantic Web

reasoners and software engineering proof tools for better automation, expressivity

and debugging aid.

56

Chapter 4

A Combined Approach to

Checking Web Ontologies

Ontology languages such as DAML+OIL and (a subset of) OWL were designed [40] to

be decidable so that core reasoning tasks such as subsumption and instantiation can

be carried out with full automation. However, decidability is achieved by limiting the

expressivity of these languages. An obvious shortcoming with this design decision is

that certain very desirable properties associated with ontologies cannot be expressed

in these languages. Consequently, they cannot be checked by Semantic Web reasoning

engines such as RACER or FaCT++. For example, in the military plan ontologies

case study presented in the previous chapter, it is important to ensure that no single

military unit is assigned to two different military tasks (that may be at different

locations) at the same time. This property cannot be expressed in DAML+OIL or

OWL but is very important to the validity of the military plan.

Based on the previous chapter, we observe that there is a complementary power be-

tween software engineering proof tools (Z/EVES and Alloy Analyzer) and Semantic

57

Chapter 4. A Combined Approach to Checking Web Ontologies

Web reasoning engines such as RACER and FaCT++. As formal languages such as Z

and Alloy can express more complex properties ontology languages cannot, Z/EVES

and Alloy Analyzer can be used to verify the correctness of these properties. Seman-

tic Web reasoning engines can automatically detect any ontological inconsistencies.

Moreover, Alloy Analyzer is able to locate the source of the error, making debugging

inconsistent ontologies easier.

As introduced in Chapter 2, the proposed rules extension to OWL, the SWRL (ORL

originally) partially solves the problem by adding Horn-style rules to OWL.

Although at the time of writing, the military ontologies were developed in DAML+OIL

format, it is almost a trivial task to update it to OWL format. Hence, this does not

present any challenge for incorporating SWRL into the picture.

In order to use software engineering tools such as Z/EVES and Alloy Analyzer to

check SWRL and DAML+OIL ontology-related properties, it is the necessary first

step to define Z and Alloy semantics for SWRL and DAML+OIL vocabularies. In

this chapter, part of the Alloy semantics for DAML+OIL, given in teletype font, and

Z semantics for SWRL will be presented. The full semantics can be found in [27, 24].

After introducing the semantics of DAML+OIL and SWRL in Sections 4.1 and 4.2,

the transformation process from DAML+OIL to Alloy and SWRL to Z in Section 4.3,

we proceed to present the combined approach using RACER, Z/EVES and Alloy

Analyzer in Section 4.4. The approach will be illustrated in detail by presenting how

it can be applied to verifying both plan ontology and instance ontologies.

58

4.1. Alloy Semantics for DAML+OIL

4.1 Alloy Semantics for DAML+OIL

In this section, the Alloy semantics for DAML+OIL is briefly presented. More details

can be found in [102]. The structure of this section closely follows that of Section 3.1

as the Alloy semantics for DAML+OIL is similar to that of Z.

Basic Concepts

We model Resource as a given type in Alloy.

sig Resource {}

In Alloy, we model Class as a subset of resource and instances a relation such that

each Class maps a set of resources via the relation instances, which contains all the

instance resources. The keyword disj is used to indicate that Class and Property

are disjoint, meaning that any member of type Class is not a member of Property,

and vice versa.

disj sig Class extends Resource

{instances: set Resource}

As in Z, Property is model as another subset of Resource, which is disjoint with

Class. In Alloy, the keyword disj is used to indicate that the types Class and

Property are disjoint from each other, although both of them are sub types of

Resource. In effect, this keyword ensures that any member of the type Class is

not a member of type Property and vice versa.

disj sig Property extends Resource

{sub_val: Resource -> Resource}

The property equivalentTo is a property that relates two equivalent resources. It

is used as a super property of sameClassAs and samePropertyAs.

59

Chapter 4. A Combined Approach to Checking Web Ontologies

fun equivalentTo(a, b: Resource)

{a = b}

Class relationships

In Alloy, a function is used to represent the subClassOf concept.

fun subClassOf(c1, c2: Class)

{c1.instances in c2.instances}

fun disjointWith (c1, c2: Class)

{no c1.instances & c2.instances}

Class & Property

The definitions of properties toClass, hasClass and hasValue closely mirror those

in Z.

fun toClass (p:Property, c1:Class, c2:Class)

{all a1, a2: Resource | a1 in c1.instances <=>

a2 in a1.(p.sub_val) => a2 in c2.instances}

fun hasValue (p:Property, c:Class, r:Resource)

{all a:Resource |

a in c.instances => a.(p.sub_val) = r}

fun hasClass(p: Property, c1: Class, c2: Class)

{all r1: Resource | r1 in c1.instances =>

some r1.(p.sub_val) & c2.instances}

60

4.2. Z Semantics for SWRL

Property relationships

The function below models the Alloy semantics for property subPropertyOf.

fun subPropertyOf (p1, p2:Property)

{p1.sub_val in p2.sub_val}

Individual relationships

differentIndividualFrom asserts that two individuals are different from each oth-

ers.

fun differentIndividualFrom(a,b: Resource)

{all a, b: Thing.instances | !a = b}

4.1.1 Import Mechanisms & Proof Support

The Alloy semantics is contained in a module called DAML. Similar to the Z/EVES ap-

proach, later Alloy models transformed from DAML+OIL ontologies will import this

module or its descendants to make use of the language constructs in these modules.

4.2 Z Semantics for SWRL

As introduced in Chapter 2, SWRL is an extension of OWL towards first-order logic

that improves its expressivity. As a result, SWRL is able to express some complex

61

Chapter 4. A Combined Approach to Checking Web Ontologies

properties inexpressible in OWL. This section presents the Z semantics for SWRL,

making the combined approach more versatile by incorporating SWRL.

In SWRL [48], a rule consists of an antecedent and a consequent, each of which

contains zero or more atoms. Atoms can be of the form C (x), P(x , y), sameAs(x , y)

or differentFrom(x , y), where C is an OWL (class) description (class membership),

P is an OWL property (property membership), and x , y are either OWL individuals,

OWL data values or SWRL variables (variables are prefixed with a question mark

“?”). Informally, an atom C (x) holds if x is an instance of the class description C ,

an atom P(x , y) holds if x is related to y by property P , an atom sameAs(x , y) holds

if x is interpreted as the same object as y , and an atom differentFrom(x , y) holds if

x and y are interpreted as different objects.

Multiple atoms in antecedent are treated as a conjunction, where empty antecedent

is treated as trivially true. Multiple atoms in consequent are treated as separate

consequents and an empty consequent is treated as trivially false. A rule may be read

as to mean that if the antecedent holds (is ”true”), then the consequent must also

hold.

As a result, the Z semantics of an SWRL rule is encoded as a universally quantified

implication predicate, with the atoms being ∧-connected. The Z semantics of SWRL

rules atoms can be found in Table 4.1. Since we will only be using Z/EVES to check

SWRL rules, we do not construct the Alloy semantics for SWRL, which is similar to

that of Z.

The properties sameAs and differentFrom are defined in OWL, which are equivalent

to equivalentTo and differentIndividualFrom in DAML+OIL, respectively.

SWRL also defines a set of built-ins that can be used as atoms. These include

built-ins for comparison(equal, less than or equal to, etc.), built-ins for mathematical

62

4.3. Transformation from Web Ontologies to Z & Alloy

Table 4.1: SWRL rules atoms in Z
SWRL Atom Z semantics

C (x) x ∈ instances(C)

P(x , y) (x , y) ∈ sub val(P)

sameAs(x , y) (x , y) ∈ sameAs

differentFrom(x , y) (x , y) ∈ differentFrom

operations (add, subtract,power, etc.), built-ins for Boolean values and built-ins for

string operations (concatenation, substring, to upper case, etc.). Most of these built-

ins can be directly translated into their Z counterparts.

4.3 Transformation from Web Ontologies to Z &

Alloy

4.3.1 Transformation from SWRL to Z

An SWRL rule is transformed to a rewrite rule in Z/EVES format. During proof,

a rewrite rule can be invoked in Z/EVES, with its left-hand side rewritten to its

right-hand side of the formula.

For example, although the military plan ontology is in DAML+OIL but not SWRL

syntax, it is very natural to model some domain-specific properties using SWRL rules.

For example, we can use SWRL rules to specify that if two overlapping military tasks

are at different locations, then they must be assigned to different military units.

overlaps(?a, ?b) ∧ differentFrom(?c, ?d) ∧ location(?a, ?c) ∧ location(?b, ?d) ∧
assignedTo(?a, ?e) ∧ assignedTo(?b, ?f)
→

differentFrom(?e, ?f)

63

Chapter 4. A Combined Approach to Checking Web Ontologies

where all the variables are instances of appropriate classes, e.g., ?a and ?b are in-

stances of MilitaryTask, ?c, ?d are instances of GeographicArea and ?e and ?f are

instances of ModernMilitaryUnit. This information does not need to be explicitly

stated as the class membership can be automatically inferred according to the OWL

and SWRL semantics.

The above rule is transformed as follows:

theorem rule durationOverlapRule
∀ a, b, c, d , e, f : Resource •
(a, b) ∈ sub val(overlaps) ∧ (c, d) ∈ sub val(differentFrom) ∧
(a, c) ∈ sub val(location) ∧ (b, d) ∈ sub val(location) ∧
(a, e) ∈ sub val(assignedTo) ∧ (b, f) ∈ sub val(assignedTo)
⇒
differentFrom(e, f)

4.3.2 Transformation from DAML+OIL to Alloy

The transformation from DAML+OIL & RDF ontologies to Alloy is straightforward.

Unlike Z, definitions of a name in Alloy does not need to appear before this name

is referenced. Hence, only one pass is required to correctly transform the ontology

into Alloy. The military ontology is transformed into a module military. The class

MilitaryTask is transformed into the following Alloy definition. Note that it is a sub

class of MilitaryProcess.

static disj sig MilitaryTask extends Class {}

fact{subClassOf(MilitaryTask, MilitaryProcess)}

64

4.4. The Combined Approach to Checking Web Ontologies

4.4 The Combined Approach to Checking Web On-

tologies

4.4.1 An Overview of the Combined Approach

In this section, we present the approach of checking DAML+OIL ontologies and using

tools RACER, OilEd, Z/EVES and Alloy Analyzer in conjunction. Moreover, we also

discuss how SWRL rules can be used to model properties that may be of interest in

the military domain and how Z/EVES can be used to check these rules.

Given an ontology, the combined approach performs the following steps:

1. We transform it to a Z specification and use Z/EVES as a type checker to check

for syntax and type errors. Any such error found by Z/EVES is corrected back

in the original ontology. Z/EVES performs the type checking automatically.

The purpose of this step is to remove trivial errors before actual checking is

performed. Sometimes, type errors are caused by implicit facts in the ontology.

Some properties are also redefined wrongly. For example, in the instance on-

tology (ABox) planA.owl, the datatype property end, which maps a military

process to its end time point, is erroneously redefined as an object property.

This kind of errors can be discovered automatically and corrected accordingly.

For example, in the instance ontology planA.daml, the resource ECA-P2-P7 is

an instance of class Thing. However, it is defined for the property start, whose

domain is instances of class MilitaryProcess and its sub classes. If RACER

is queried whether ECA-P2-P7 is an instance of MilitaryProcess, it will return

true and hence this fact is implicit and assumed. However, if similar query

is issued to Z/EVES, it will complain that ECA-P2-P7 is not well typed. The

revelation of implicit facts helps human to understand the ontology better.

65

Chapter 4. A Combined Approach to Checking Web Ontologies

2. We input the trivial-errors-corrected ontology into an ontology editor, such as

OilEd, and connect it to RACER to classify it. In this step, RACER performs

consistency, subsumption and instance checking, which automatically decides

whether there are ontological inconsistencies.

RACER reports any inconsistent classes. However, it is unable to tell where

the error lies. OilEd as an ontology editor collects information related to each

individual class and property, and that information about the inconsistent entity

is used in the next step to guide the identification of possible source of the

inconsistency (see next step).

3. For each inconsistency, as described in the previous step, OilEd returns a minimal

set of classes, properties and instances that constrain the offending concept.

Then we employ Alloy Analyzer to analyze the isolated ontology fragment to

determine the source of the error.

Our past experiences showed that the root cause of an ontological inconsistency

can often be revealed within a few classes & properties. In most cases, Alloy

Analyzer can pinpoint certain classes and properties which cause the inconsis-

tency.

If Alloy Analyzer does not detect an error, we need to iteratively augment the

fragment ontology by referring to OilEd and including classes, properties and

instances related to existing definitions. This step requires human interaction

but it can be handled with relative ease.

When Alloy Analyzer detects the inconsistency, it does more by indicating how

it is caused. A number of statements related to the inconsistency in the Alloy

specification, and possibly imported modules, are highlighted. With this help,

we return to OilEd and RACER to correct the original ontology.

If the fragment ontology is too large for Alloy Analyzer to analyze, we use

Z/EVES as a theorem prover to determine the source of the inconsistency, which

66

4.4. The Combined Approach to Checking Web Ontologies

requires substantial expertise in interacting with Z/EVES.

Steps 2) and 3) are iterated until no ontological inconsistencies are found. These

steps are presented in detail in Section 4.4.2.

4. Finally, we use Z/EVES again to check properties beyond the modeling capa-

bility of DAML+OIL and Alloy. As stated in Chapter 2, Z is a superset of

ontology languages and Alloy and it can capture a richer set of information,

which is sometimes crucial to the correctness of the ontology.

This step is domain-specific and it requires thorough understanding of the do-

main. For the military plan ontologies case study, we have constructed a set of

theorems in Z/EVES and used them to systematically test the correctness of the

instance.

By capturing properties that cannot be expressed by DAML+OIL using Z, we

actually treat Z as an ontology language but with increased expressiveness, at

the cost of decidability and automation. The benefit of the gained expressiveness

is domain-specific and it is exemplified in our case study in Section 4.4.3.

In the rest of this chapter, we use the military plan ontologies case study to demon-

strate this approach.

4.4.2 Checking Military Plan Ontology

In this subsection, we illustrate the application of the combined approach on the

military planning ontology introduced in Section 3.3.

Firstly, we transform this ontology into the corresponding Z section military. With

order of some Z definitions swapped, Z/EVES accepts this Z section, which means,

that the Z section does not contain any syntactic or type errors. The absence of such

67

Chapter 4. A Combined Approach to Checking Web Ontologies

errors is due to the reason that this ontology is visually developed with the help of

OilEd, and is not produced by the IE engine.

Secondly, we open OilEd and connect it to RACER. We then load the ontology into

OilEd and use RACER to classify it, as described in step 2) of Section 4.4.1. OilEd

instantly reports one unsatisfiable concept, as Fig. 4.1 shows.

Figure 4.1: Discovery of an unsatisfiable concept by RACER

Shown in Fig. 4.1, PrepareDemolition-MilitaryTask, the first class on the left

panel, is highlighted in red color by OilEd as an inconsistent class. Restrictions

imposed on this class are displayed at the bottom on the right.

RACER flags the class PrepareDemolition-MilitaryTask as inconsistent. However,

it cannot determine exactly where the inconsistency comes from. In the next step,

we employ Alloy Analyzer to pinpoint the source of the inconsistency.

Thirdly, we extract a small ontology fragment containing definitions of the offending

class and those classes, properties and instances appearing in the Restrictions panel,

namely assignedTo, EngineerUnit and ArtilleryFiringUnit. This fragment is

subsequently transformed into an Alloy module shown in Fig. 4.2, which is loaded

68

4.4. The Combined Approach to Checking Web Ontologies

into Alloy Analyzer to check for inconsistency.

module inconsistency_military open demo1/library/DAML

static disj sig MilitaryTask extends Class {}

static disj sig PrepareDemolition_MilitaryTask extends Class {}

fact {subClassOf(PrepareDemolition_MilitaryTask, MilitaryTask)}

static disj sig assignedTo extends Property {}

static disj sig ModernMilitaryUnit extends Class{}

static disj sig EngineerUnit, ArtilleryFiringUnit extends Class{}

fact {subClassOf(ArtilleryFiringUnit, ModernMilitaryUnit)}

fact {subClassOf(EngineerUnit, ModernMilitaryUnit)}

static disj sig EngineeringMilitarySpeciality extends Resource {}

static disj sig speciality extends Property {}

fact{hasValue (speciality, EngineerUnit, EngineeringMilitarySpeciality)}

fact {disjoinWith(ArtilleryFiringUnit, EngineerUnit)}

fact {toClass(assignedTo, PrepareDemolition_MilitaryTask, ArtilleryFiringUnit)}

fact {toClass(assignedTo, PrepareDemolition_MilitaryTask, EngineerUnit)}

fact {some (PrepareDemolition_MilitaryTask.instances).(assignedTo.sub_val)}

fun dummy() {} run dummy for 15

Figure 4.2: Alloy concepts related to the inconsistency

Basically speaking, this fragment of ontology states the following facts.

1. PrepareDemolotion MilitaryTask is a sub class of MilitaryTask.

2. Both DAML+OIL classes ArtilleryFiringUnit and EngineerUnit are sub

classes of ModernMilitaryUnit and that they are disjoint with each other.

3. All instances of the class PrepareDemolotion MilitaryTask are assigned to

some instances of ArtilleryFiringUnit.

4. All instances of the class PrepareDemolotion MilitaryTask are assigned to

some instances of EngineerUnit.

5. There exist some instances of class PrepareDemolotion MilitaryTask that

have been assignedTo some units (the last fact). This fact is necessary be-

cause of the definition of allValuesFrom (see Section 3.1 for details), which

69

Chapter 4. A Combined Approach to Checking Web Ontologies

states that if a property (assignedTo in this case) is not defined for an individ-

ual, it is an instance of the target class (PrepareDemolition_MilitaryTask in

this case). Hence, this fact rules out the individuals that are not in the domain

of assignedTo.

In the military domain, the engineer units (represented by the DAML+OIL class

EngineerUnit are solely responsible for the task of preparation of demolition of tar-

gets (represented by the DAML+OIL class PrepareDemolition MilitaryTask) us-

ing explosives. Intuitively, a unit that is responsible for firing weapons such as large

mounted guns and cannons should not be assigned to the above task. Hence, the

DAML+OIL fragment is inconsistent because of the third fact above.

Alloy Analyzer detects the inconsistency by its inability to find a solution that satisfies

all facts within the given scope. It may be due to the scope being too small. To

determine the reason, we use Alloy Analyzer’s utility “Determine unsat core” to

trace the source of the error. In an unconvincing case, we increase the scope and run

Alloy Analyzer again.

Fig. 4.3 shows how Alloy Analyzer determines which facts caused the problem. When

a clause is clicked, Alloy Analyzer automatically highlights the corresponding state-

ment in the left panel. Arrows are added in the figure to show this correspon-

dence. After examining the clauses in red, we found that the 4 clauses (_Fact_144

to _Fact_147) with arrows attached actually caused the problem. Hence, the lack

of solution was indeed due to the inconsistency of the original ontology. The incon-

sistency is caused by assigning PrepareDemolition_MilitaryTask to both classes

ArtilleryFiringUnit and EngineerUnit, which are disjointWith each other. Hence,

by removing any of the two assignments, the fact of disjointness or the fact that some

instances of EngineerUnit being assigned, the inconsistency can be eliminated. Since

the source of the inconsistency is discovered by Alloy Analyzer, we need not return

70

4.4. The Combined Approach to Checking Web Ontologies

to Z/EVES, in this case.

Figure 4.3: Alloy Analyzer showing the source of unsatisfiability

After checking the original ontology, we found that ArtilleryFiringUnit is mis-

takenly assigned to PrepareDemolition_MilitaryTask. After this fact is removed,

RACER confirms that the ontology is satisfiable.

From this example, we can see that the fact, that an inconsistency is caused by two

disjoint military unit classes being assigned to the same military task class, is rather

implicitly captured. With the help of SWRL rules, this property can be expressed

much explicitly.

EngineerUnit(?a) ∧ PrepareDemolition-MilitaryTask(?b) ∧
assignedTo(?b, ?a) ∧ assignedTo(?b, ?c)
→

(complementOf ArtilleryFiringUnit)(?c)

This SWRL rule states that if individual ?a is an instance of EngineerUnit, ?b is an

instance of PrepareDemolition-MilitaryTask and ?a and ?c are both assigned to

?b, then we can conclude that ?c is not an instance of ArtilleryFiringUnit. Since

SWRL disallows the use of negation, we cannot directly state that the consequent

is ¬ ArtilleryFiringUnit(?c). Instead, we can use the OWL class description to con-

struct an anonymous class to be the complement of ArtilleryFiringUnit and then

71

Chapter 4. A Combined Approach to Checking Web Ontologies

make individual ?c an instance of this class. The interpretation of the complement

is the universal set of individuals (instances of class Thing) minus those belonging

to the class ArtilleryFiringUnit. Although the idea of this SWRL rule can be

captured by the DAML+OIL (OWL DL) ontology, the presence of this rule explicitly

groups relevant information together, serving as a formal documentation to prevent

the wrong assignment of ArtilleryFiringUnit.

Lastly, we use Z/EVES to model and prove the SWRL rule we just mentioned.

This rule can be translated into a Z/EVES theorem as follows. Ten (parameterized)

Z/EVES commands prove the theorem.

theorem rule PrepareDemolitionAssignmentRule
∀ a, b, c : Resource •
a ∈ instances(EngineerUnit) ∧ b ∈ instances(PrepareDemolition MilitaryTask) ∧
(b, a) ∈ sub val(assignedTo) ∧ (b, c) ∈ sub val(assignedTo)
⇒
c ∈ (instances(Thing) \ instances(ArtilleryFiringUnit))

It can be seen that the proof of this theorem requires user ingenuity and expertise.

Compared to the RACER/Alloy reasoning, this certainly requires more time and

manpower. The advantage of using Z/EVES is that the property can be explicitly

stated for better management and documentation.

4.4.3 Reasoning About More Complex Properties

In this subsection, we discuss how Z/EVES is used to reason about more complex

properties that DAML+OIL cannot express. This reasoning task is applied to an

instance of the military plan ontology: planA.daml.

To ensure the correctness of military plan ontologies, it is not enough just to perform

checking using Alloy Analyzer and RACER. One requirement in the military planning

exercises is, for example, that no military unit is assigned to two or more military tasks

72

4.4. The Combined Approach to Checking Web Ontologies

at the same time, and that no military task is a sub task of itself. By performing the

last step of the approach, we discovered a number of such errors beyond the modeling

capabilities of DAML+OIL and Alloy.

The first three steps are not shown in order to concentrate on the final step of our

approach. In the first three steps, we performed the usual transformation and checking

and obtained an ontological-error-free document. It was then transformed into a Z

section. Part of this ontology and the corresponding Z definitions are shown below.

<rdf:Description rdf:about=’ECA-P1-P2-P2-S1’>

<NS4:subTaskOf rdf:resource=’ECA-P1-P2’/>

<NS4:subTaskOf rdf:resource=’ECA-P1-P2-P2’/>

<NS4:location rdf:resource=’E. AFRICA’/>

<NS4:target rdf:resource=’E. AFRICA’/>

<rdf:type rdf:resource=’http://www.dso.org.sg/

PlanOntology#HastyDefend-MilitaryTask’/>

<NS0:start rdf:resource=’0’/>

<NS0:end rdf:resource=’15’/>

<NS4:assignedTo rdf:resource=’InfantryBattalion_aa5’/>

</rdf:Description>

<rdf:Description rdf:about=’G. SMILAX’>

<rdf:type rdf:resource=’http://www.dso.org.sg/

PlanOntology#AxisOfAdvance’/>

</rdf:Description>

<rdf:Description rdf:about=’InfantryBattalion_aa5’>

<rdf:type rdf:resource=’http://www.dso.org.sg/PlanOntology#InfantryBattalion’/>

</rdf:Description>

The above DAML+OIL ontology fragment describes an individual ECA-P1-P2-P2-S1,

an instance of the class HastyDefend-MilitaryTask. Its start and end time points,

location, relationships to other tasks and assignment information are also described.

The fragment also describes a geographic feature G. SMILAX and an infantry battal-

ion.

73

Chapter 4. A Combined Approach to Checking Web Ontologies

ECA P1 P2 P2 S1 : Resource

〈〈grule ECA P1 P2 P2 S1 type〉〉
ECA P1 P2 P2 S1 ∈ instances(HastyDefend MilitaryTask)
〈〈rule ECA P1 P2 P2 S1 start〉〉
start(ECA P1 P2 P2 S1) = 0
〈〈rule ECA P1 P2 P2 S1 assignedTo〉〉
(sub val(assignedTo))(| {ECA P1 P2 P2 S1} |) =

{InfantryBattalion aa5}
〈〈rule ECA P1 P2 P2 S1 end〉〉
end(ECA P1 P2 P2 S1) = 15
〈〈rule ECA P1 P2 P2 S1 target〉〉
(sub val(target))(| {ECA P1 P2 P2 S1} |) = {E AFRICA}
〈〈rule ECA P1 P2 P2 S1 location〉〉
(sub val(location))(| {ECA P1 P2 P2 S1} |) = {E AFRICA}

G SMILAX : Resource

〈〈grule G SMILAX type〉〉
G SMILAX ∈ instances(AxisOfAdvance)

InfantryBattalion aa5 : Resource

〈〈grule InfantryBattalion aa5 type〉〉
InfantryBattalion aa5 ∈ instances(InfantryBattalion)

〈〈rule ECA P1 P2 P2 S1 subTaskOf〉〉
(sub val(subTaskOf))(| {ECA P1 P2 P2 S1} |) =

{ECA P1 P2,ECA P1 P2 P2}

It may be noted that the subTaskOf statement is modeled in a separate Z predicate

at the end. Actually all subTaskOf statement are extracted and put to the end of

the Z specification to prevent circular or advance reference of military tasks.

The brief statistics of the ontology and the Z section is shown in Table 4.2.

Note that there is a decrease in number of Z predicates from that of RDF statements.

There are two reasons: (1) statements with properties comment and label are not

transformed to Z since they are just textual descriptions of the subject; (2) statements

74

4.4. The Combined Approach to Checking Web Ontologies

Table 4.2: Statistics of the ontology planA.daml

Items Numbers
Resources 195
Operations, tasks, phases 78
Units 69
Geographic areas 48
Statements (in RDF) 954

Transformed Axiomatic Defns (in Z) 195
Transformed Predicates (in Z) 766

Type errors 8
Hidden errors 12

such as subTaskOf and assignedTo for any one instance are grouped to form one Z

predicate, as shown in the above rewrite rule ECA_P1_P2_P2_S1_subTaskOf.

Firstly, twenty-eight type errors were discovered by Z/EVES in step 1. Most of these

errors are caused by the inaccuracy of the IE engine. For example, Coastal_Hook_Force

is defined as a class in the plan ontology; it is redefined as a resource of type

Thing in this instance ontology. Although the user may have wanted to redefine

Coastal_Hook_Force as Thing, it is very unlikely since no semantic significance is

added and the ontology becomes harder to comprehend. Conservatively, we treat this

redefinition as an error.

In step 1, implicit facts are also made explicit by Z/EVES. For example, the type

of one of the military tasks ECA-P1-P4-P1 was Thing in the instance ontology, it is

reported by Z/EVES as a type error and corrected to be MilitaryProcess. The

reason is that ECA-P1-P4-P1 has start and end time points associated with it and

the domains of these two functions are restricted to instances of MilitaryProcess.

Note that in ontological sense, the above errors are not treated as inconsistencies: in

description logics, implicit information can be inferred and if there is no conflict, it

is assumed true. Hence, if RACER is queried whether ECA-P2-P9 is an instance of

75

Chapter 4. A Combined Approach to Checking Web Ontologies

MilitaryProcess, it will return true based on other facts present in the ontology.

However, Z/EVES is more restrictive in treating types of Z language constructs and

would not make such deductions, e.g., it will not assume ECA-P2-P9 to be an instance

of MilitaryProcess given the facts that it has a start and end time point.

Secondly, the ontology is opened in OilEd and RACER does not detect any onto-

logical inconsistency.

Thirdly, since there is no ontological inconsistency, this step is skipped and we

proceed to the final step of the combined approach.

Lastly, we apply the Z/EVES theorem prover to check for complex properties that

cannot be expressed in OWL or Alloy.

Before applying Z/EVES, we study the plan ontology and gain some insights of mili-

tary domain, based on which we formulate a number of theorems to test the correct-

ness of instance ontologies.

Generally speaking, the formulation of the Z/EVES theorems is done through the

interactions between domain experts, ontology developers and software engineering

(and formal methods in particular) practitioners. The domain experts state desired

properties, requirements while ontology developers and software engineering practi-

tioners decide which of the above can be part of the ontology and which are too

complex and can only be stated as Z/EVES theorems.

After a systematic checking of the ontology against this set of theorems, 14 hidden

errors are discovered.

• 2 are caused by military tasks having start time greater than end time,

• 4 are caused by military tasks that do not have end time defined,

76

4.4. The Combined Approach to Checking Web Ontologies

• 3 are caused by military units being assigned to different tasks simultaneously,

and

• 5 are caused by military tasks having more than one start or end time points.

In the rest of this subsection, we demonstrate how various kinds of checking can be

performed by Z/EVES.

In the first place, we test the local consistency of each military task. Two conditions

are to be satisfied for each such task. Firstly, its start time must be less than or equal

to its end time and secondly, it is not a sub task of itself.

In SWRL, these conditions can be expressed in the following two rules. In the first

rule, we specify that the start time of any instance of MilitaryTask is less than or

equal to its end time. Note that the less than or equals to operator ≤ is a SWRL

built-in comparison operator. In the second rule, we specify that any such instance

is not a subTaskOf itself. The second rule has an empty consequent, meaning that it

is trivially false. In this way we express negation in SWRL.

MilitaryTask(?x) ∧ start(?x , ?s) ∧ end(?x , ?e) →?s ≤?e

subTaskOf (?x , ?x) →

The above two SWRL rules can be combined to a Z theorem, as shown below. The

relational image (| x |) returns the set of Resources mapped by a property, in this

case subTaskOf , for x . By ensuring that x is not itself a member of this set, we ensure

that no instance of MilitaryTask is a sub task of itself.

theoremMilitaryTaskTimeSubTaskTest1
∀ x : instances(MilitaryTask) •
start(x) < end(x) ∧ x /∈ (sub val(subTaskOf))(| {x} |)

77

Chapter 4. A Combined Approach to Checking Web Ontologies

We systematically test all instances of military tasks (including sub classes) for the

above theorem. For example, one such instance, ECA_P1_P2_P1_S1, is tested as fol-

lows. It is an instance of class HastyDefend_MilitaryTask and it has two super

tasks: ECA_P1_P2 and ECA_P1_P2_P1.

Proof

try lemma MilitaryTaskTimeSubTaskTest1;
split x = ECA P1 P2 P1 S1;
cases;
use cardCup [Resource] [S := {ECA P1 P2 P1 S1},T := {ECA P1 P2}];
reduce;
use cardCup [Resource] [S := {ECA P1 P2 P1 S1},T := {ECA P1 P2 P1}];
reduce;
· · ·

The proof process is intuitive: we consider the super tasks of x (ECA_P1_P2_P1_S1 in

this case) one at a time as sub goals. When all sub goals are completed, the current

goal is proven. Defined in the built-in section toolkit, the rule cardCup is used here,

with Resource as the actual parameter, to make the two military tasks distinct, as

we stated in the end of Section 3.4. The last command reduce returns true, which

means that the current sub goal is proven, not the whole theorem.

We show the proof process for another military task: ECA_P3_P3_S1. This time, after

issuing similar commands, the remaining goal is of the form:

¬ x = ECA P3 P3 S1

This is an obvious contradiction to the 2nd step of the proof: instantiation of x to

ECA_P3_P3_S1. Hence we know for sure there is something wrong with this instance.

Since it is very hard for theorem provers to prove falsity, we need to negate the

theorem and show that the negated theorem can be proved to be true.

theoremnegatedMilitaryTaskTimeSubTaskTest1
∃ x : instances(MilitaryTask) •
¬ (start(x) < end(x) ∧ x /∈ (sub val (subTaskOf))(| {x} |))

78

4.4. The Combined Approach to Checking Web Ontologies

By negating the theorem and trying again, Z/EVES does return true. After checking

the ontology, we found that start time is 7 but end time is 4, hence it is indeed an

error, which was not discovered by RACER or Alloy Analyzer.

Two such instances failed this theorem. These errors may be caused by the inaccuracy

of the IE engine; or they may be human error. After checking with the developers at

DSO, it was found out that the errors were in the original textual document, which

is the input of the IE engine. Hence in this case, it is human error.

After ensuring that all instances of MilitaryTask (and sub classes) are locally correct,

we proceed to express and check the inter-task temporal relationship. It is required

that for any instance ?x of MilitaryTask, any super tasks ?y of ?x must satisfy

start(?y) ≤ start(?x) ∧ end(?y) ≥ end(?x). That means, the start time of a super

task must be less than or equal to that of its sub task, and the end time of a super

task must be greater than or equal to that of its sub task. Since we have ensured that

start time is before the end time for each military task, the above predicate suffices

to prove the correctness. This can be expressed in the following SWRL rule.

MilitaryTask(?x) ∧ subTaskOf (?x , ?y) → start(?y) ≤ start(?x) ∧ end(?y) ≥ end(?x)

As above, the following Z theorem basically states the above SWRL rule.

theorem subTaskOfTimingTest2
∀ x : instances(MilitaryTask) •
∀ y : P(instances(MilitaryTask)) | y = (sub val(subTaskOf))(| {x} |) •
∀ z : y • start(z) ≤ start(x) ∧ end(z) ≥ end(x)

A systematical application of this theorem against all appropriate military tasks show

that there is no such kind of errors in this ontology.

The next SWRL rule tests the relationship between a military unit and the military

tasks assigned to it. It states that for any given military unit and two military

79

Chapter 4. A Combined Approach to Checking Web Ontologies

tasks assigned to this unit, the durations of the two tasks do not overlap. As we have

proved the local consistency of each military task, the predicate end(?y) ≤ start(?z) ∨
end(?z) ≤ start(?y) is sufficient.

ModernMilitaryUnit(?x) ∧ MilitaryTask(?y) ∧ MilitaryTask(?z) ∧
assignedTo(?y , ?x) ∧ assigned(?z , ?x)

→
end(?y) ≤ start(?z) ∧ end(?z) ≤ start(y)

As above, this rule is also transformed into a Z theorem.

theoremMilitaryUnitTest
∀ x : instances(ModernMilitaryUnit) • ∀ y , z : instances(MilitaryTask) •

x ∈ (sub val(assignedTo))(| {y} |) ∧ x ∈ (sub val(assignedTo))(| {z} |) ∧
(end(y) ≤ start(z) ∨ end(z) ≤ start(y))

We exhaustively and systematically apply this theorem to appropriate military units

and tasks. During transformation process, we have collected information about what

tasks each military unit executes; it is easy to proceed in this case. The proof process

of one such combination is shown below.

Proof

try lemma MilitaryUnitTest ;
split x = CHF 1;
cases;
split y = ECA P3 P5 S1;
cases;
split z = ECA P3 P5 S3;
cases;
reduce;

After the last command reduce is entered, the following remaining goal is returned

by Z/EVES:

z = ECA P3 P5 S1 ∧ y = ECA P3 P5 S3
⇒ ¬ x = CHF 1

80

4.5. Chapter Summary

This is an obvious contradiction to the instantiation of quantified variables x , y and

z . Hence we suspect that there is an error with this combination of instances. So we

negate the theorem again and try to prove this negated theorem.

theoremnegatedMilitaryUnitTest
∃ x : instances(ModernMilitaryUnit) • ∃ y , z : instances(MilitaryTask) •

¬ (x ∈ (sub val(assignedTo))(| {y} |) ∧ x ∈ (sub val(assignedTo))(| {z} |) ∧
(end(y) ≤ start(z) ∨ end(z) ≤ start(y)))

After issuing similar commands, we proved the negated theorem. We found in the

original ontology that the start and end time of these two military tasks are the

same. Hence there is indeed an error that cannot be discovered by RACER or Alloy

Analyzer.

4.5 Chapter Summary

The main contribution of this chapter is the combined approach of checking DAML+OIL

and RDF ontologies using the complementary reasoning power of Semantic Web rea-

soning engines such as RACER and software engineering proof tools Z/EVES and

Alloy Analyzer.

The combined approach was based on the Z and Alloy semantics for DAML+OIL and

SWRL, which is the foundation of the respective transformation from DAML+OIL

and RDF ontologies to Z and Alloy specifications.

In our approach, Z/EVES is firstly deployed to check for type errors in the (trans-

formed) ontology. This step serves as a pre-processing so that unintended or unnec-

essary instantiation or subsumption can be removed, making the ontology easier to

understand by human. The type-correct ontology is then checked by RACER fully

automatically. If any inconsistency is detected, a fragment of the ontology relevant

81

Chapter 4. A Combined Approach to Checking Web Ontologies

to the inconsistency is then extracted and analyzed using Alloy Analyzer, which can

give the exact location of the error in the transformed Alloy specification, helping

debugging the original ontology. Finally, the theorem proving capability of Z/EVES

is used to check for more complex properties inexpressible in DAML+OIL/OWL or

Alloy.

Although expressible in SWRL, there has not been any tool support for SWRL.

Moreover, since SWRL FOL expands the expressivity of ontology languages more

into the first-order domain, Z and Z/EVES is a natural candidate for reasoning more

complex ontology languages such as SWRL and SWRL FOL.

This approach has been applied to a military planning ontology case study, where

one ontological inconsistency was detected and located and 14 errors inexpressible in

DAML+OIL were found by Z/EVES.

This chapter focuses on the practical aspect of the combined approach. However, its

validity relies on the correctness of the Z and Alloy semantics for DAML+OIL (hence

OWL) since obviously if the semantic library is incorrect, wrong conclusion may be

drawn from interacting with the various proof tools. In the next chapter, this issue

will be addressed.

82

Chapter 5

Z Semantics for OWL: Soundness

Proof Using Institution Morphisms

As mentioned in the previous chapter, the validity of the combined approach depends

on the correctness of the Z/Alloy semantics of the ontology languages. Since the Z

and Alloy semantics are very similar to each other, we will focus on one of these, i.e.,

Z.

As OWL has become the W3C recommendation as the ontology language for the

Semantic Web, it is necessary to extend the Z/Alloy support from DAML+OIL to

OWL. In the OWL species, OWL DL retains decidability and is more expressive than

OWL Lite, we have constructed the Z semantics for OWL DL, which can be found

in Appendix C.

Institutions and institution morphisms are a powerful tool to abstract and reason

about software systems without any assumption about the underlying logical systems.

They make a perfect candidate to reason about the relationship between OWL and

Z as they are based on description logics and first-order predicate logic respectively.

83

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

In this chapter, we use institutions to investigate the Z semantics of OWL DL. It is

proved at the end of the chapter, by making use of the Z semantics for OWL, that

there exists a comorphism between OWL DL and Z. Hence, the Z semantics for OWL

DL is sound.

This chapter is divided into four parts. In Sections 5.1 and 5.2, we construct the

institutions for OWL and Z, respectively. Section 5.3 is devoted to relating the two

institutions. Finally, Section 5.4 concludes the chapter.

5.1 The OWL Institution O

In this section we briefly introduce the definition of the logic underlying the Web

Ontology Language OWL DL. We note that in OWL DL there is mutual disjointness

between classes, properties, and individuals.

We suppose that all the OWL specifications share the same data types. Therefore

we consider given a set D of data type names, a set V of data values, and a function

[[]] which associates a subset [[D]] ⊆ V with each data type name D . The set of data

expressions is defined as follows:

D ::= D | {v1, . . . , vn}

where D ranges over data type names and vi ranges over data values. We extend

the definition of [[]] by setting [[{v1, . . . , vn}]] = {v1, . . . , vn}. In OWL definition [80]

a data type D is characterized by a lexical space, L(D), a value space, V (D), and

a mapping L2V (D) : L(D) → V (D). We represent a data type in a more abstract

way by forgetting the lexical space. V (D) is denoted here by [[D]]. For instance,

(D, [[]]) might be the set of the XML data types and/or the set of the OWL built-in

types. We separate the data world from the world over which we define ontologies.

84

5.1. The OWL Institution O

A first reason for this separation is that the specification of the data types is quite

different from that of ontologies. Another reason is that we get more flexibility in

relating web ontologies with various formalisms. For instance, we may use directly

the built-in implementations of the data types in these formalisms and focus only on

the translation of the taxonomy and its sentences.

An OWL signature consists of a quadruple O = (C, R, U, I), where C is the set of

the concept (class) names, R is the set of the individual-valued property names, U

is the set of the data-valued property names, and I is the set of individual names.

We suppose that D, C, R, U, and I are pairwise disjoint. We denote by N (O) the

set C ∪ R ∪ U ∪ I. An OWL signature morphism φ : (C, R, U, I) → (C′, R′, U′, I′)

consists of a quadruple of functions φ = (φco, φop , φdp, φin) where φco : C → C′,

φop : R → R′, φdp : U → U′, and φin : I → I′. Sometimes we see φ as a function

φ : N (O) → N (O′). We denote by Sign(O) the category of the OWL signatures.

Given an OWL signature O = (C, R, U, I), an O-structure (model) is a tuple A =

(∆A, [[]]A, ResA, resA) consisting of a set of resources ResA, a subset ∆A ⊆ ResA

called domain, a function resA : N (O) → ResA associating a resource to each name

in O, and an interpretation function [[]]A : C ∪ R ∪ U → P(Res) ∪ P(Res × Res)

such that the following conditions hold:

V ⊆ ResA,

∆A ∩ V = ∅,
[[C]]A ⊆ ∆A for each C ∈ C,

[[R]]A ⊆ ∆A × ∆A for each R ∈ R,

[[U]]A ⊆ ∆A × V for each U ∈ U,

resA(o) ∈ ∆A for each o ∈ I.

In order to have a uniform notation, we often write [[o]]A for resA(o).

85

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

The definition above corresponds to that of abstract interpretation of an OWL vo-

cabulary given by the direct model-theoretic semantics [80]. In particular we have

∆A = O , [[]]A |C = EC , [[]]A |R∪U = ER, and resA = S . Here [[]]A |
X

denotes the

restriction of the function [[]]A to the subset X .

Given two O-structures A = (∆A, [[]]A, ResA, resA) and A′ = (∆A′ , [[]]A′ , ResA′, resA′),

an O-homomorphism h : A → A′ is a function h : ResA → ResA′ such that:

1. h(∆A) = ∆A′ ;

2. resA′ = resA; h;

3. for each C ∈ C and x ∈ ∆A, x ∈ [[C]]A iff h(x) ∈ [[C]]A′ ;

4. for each R ∈ R and x , y ∈ ∆A, (x , y) ∈ [[R]]A iff (h(x), h(y)) ∈ [[R]]A′ ;

5. for each U ∈ U, x ∈ ∆A, and v ∈ V, (x , v) ∈ [[U]]A iff (h(x), v) ∈ [[U]]A′ .

Let Mod(O)(O) denote the category of the O-models. If φ : O → O′ is an OWL

signature morphism and A′ = (∆A′ , [[]]A′, ResA′ , resA′) an O′-structure, then the φ-

reduct A′↾φ is the O-structure A = (∆A, [[]]A, ResA, resA), where ResA′↾φ = ResA′,

∆A′↾φ = ∆A′ and resA(N) = resA′(φ(N)) for each name N ∈ N (O), and the inter-

pretation function [[]]A is defined as follows:

[[C]]A = [[φco(C)]]A′ for each C ∈ C;

[[R]]A = [[φop(R)]]A′ for each R ∈ R;

[[U]]A = [[φdp(U)]]A′ for each U ∈ U.

If h ′ : A′ → A′′ is an O′-homomorphism, then the reduct along φ of h ′ is the O-homo-

morphism h ′↾φ: A′↾φ → A′′↾φ given by h ′↾φ (x ′) = h ′(x ′). It is a matter of routine to

check that h ′↾φ is indeed an O-homomorphism. We may now consider the functor

Mod(O) : Sign(O)op → Cat mapping each OWL signature O to the category of its

models Mod(O)(O) and each OWL signature morphism h : O → O′ to the forgetful

86

5.1. The OWL Institution O

functor Mod(O)(φop) : Mod(O)(O′) → Mod(O)(O) defined by Mod(O)(φop)(h ′) =

h ′↾φ.

The set of the O-expressions is defined by:

C ::=⊥ | ⊤ | C | C ⊓ C | C ⊔ C | ¬ C
| ∀R.C | ∃R.C | 6n R | >n R | R : o

| ∀U .D | ∃U .D | 6n U | >n U | U : v

| {o1, . . . , on}
R ::=R | Inv(R)

where C ranges over concepts names, R ranges over individual-valued properties

names, U over data-valued properties, v over V, and oi over individuals names.

The set of OWL O-sentences is defined by:

F ::= C ⊑ C | C ≡ C | Disjoint(C, . . . , C)

| Tr(R) | R ⊑ R | R ≡ R
| U ⊑ U | U ≡ U

| o : C | (o, o′) : R | (o, v) : U | o ≡ o′ | o 6≡ o′

where n ranges over natural numbers, o and o ′ over individuals names, and v over

data values. We denote by sen(O)(O) the set of the OWL O-sentences. If φ : O → O′

is an OWL signature morphism, then sen(O)(φ) : sen(O)(O) → sen(O)(O′) is the

function translating the OWL O-sentences in OWL O′-sentences in the standard way;

for instance,

sen(O)(φ)(∀R.C ⊓ C ′) = ∀φop(R).φco(C) ⊓ φco(C
′).

We have now defined the functor

sen(O) : Sign(O) → Set.

87

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

Example 1 Here is a very simple example of OWL specification:

C = {Author, FamousAuthor, Paper},
R = {writtenBy, citedBy},
U = {noOfPages},
I = {Kleene,Mathematical Logic},

F = {FamousAuthor ⊑ Author,

Paper ⊑ > 1writtenBy,

⊤ ⊑ ∀writtenBy.Author,

Paper ⊑ > 1 citedBy,

⊤ ⊑ ∀ citedBy.Author,

> 1noOfPages ⊑ Paper,

⊤ ⊑ ∀ noOfPages.integer,

(Mathematical Logic,Kleene) : writtenBy,

Kleene : FamousAuthor}

The first sentence asserts that any famous author is an author. The second one asserts

that Paper is included in the domain of the individual-valued property writtenBy.

The third sentence asserts that the range (codomain) of writtenBy is included in

Author. We show the validity of these two assertions later when we give the semantics

for expressions and sentences. The next four sentences are similar to the second and

the third, respectively. The last two sentences are self-explanatory.

The semantics of the O-expressions is given by:

[[⊥]]A = ∅,
[[⊤]]A = ∆A,

[[Inv(R)]]A = {(y , x) | (x , y) ∈ [[R]]A},
[[C ⊓ C′]]A = [[C]]A ∩ [[C′]]A,

[[C ⊔ C′]]A = [[C]]A ∪ [[C′]]A,

[[¬ C]]A = ∆A \ [[C]]A,

88

5.1. The OWL Institution O

[[∀R.C]]A = {x | (∀ y)(x , y) ∈ [[R]]A ⇒ y ∈ [[C]]A},
[[∃R.C]]A = {x | (∃ y)(x , y) ∈ [[R]]A ∧ y ∈ [[C]]A},
[[6n R]]A = {x | #({y | (x , y) ∈ [[R]]A}) 6 n},
[[>n R]]A = {x | #({y | (x , y) ∈ [[R]]A}) > n},
[[R : o]]A = {x | (x , [[o]]A) ∈ [[R]]A},
[[∀U .D]]A = {x | (∀ v)(x , v) ∈ [[U]]A ⇒ v ∈ [[D]]},
[[∃U .D]]A = {x | (∃ v)(x , v) ∈ [[U]]A ∧ v ∈ [[D]]},
[[6n U]]A = {x | #({v | (x , v) ∈ [[U]]A}) 6 n},
[[>n U]]A = {x | #({v | (x , v) ∈ [[U]]A}) > n},
[[U : v]]A = {x | (x , v) ∈ [[U]]A},
[[{o1, . . . , on}]]A = {resA(o1), . . . , resA(on)}.

The satisfaction relation between O-structures and O-sentences is defined as follows:

A |=O C ⊑ C′ iff [[C]]A ⊆ [[C′]]A,

A |=O C ≡ C′ iff [[C]]A = [[C′]]A,

A |=O Disjoint(C1, . . . , Cn), iff [[Ci]]A ∩ [[Cj]]A = ∅ for all i 6= j ,

A |=O Tr(R) iff [[R]]A is transitive,

A |=O R ⊑ R′ iff [[R]]A ⊆ [[R′]]A,

A |=O R ≡ R′ iff [[R]]A = [[R′]]A,

A |=O U ⊑ U ′ iff [[U]]A ⊆ [[U ′]]A,

A |=O U ≡ U ′ iff [[U]]A = [[U ′]]A,

A |=O o : C iff [[o]]A ∈ [[C]]A,

A |=O (o, o′) : R iff ([[o]]A, [[o′]]A) ∈ [[R]]A,

A |=O (o, v) : U iff ([[o]]A, v) ∈ [[U]]A,

A |=O o ≡ o′ iff [[o]]A = [[o′]]A,

A |=O o 6≡ o′ iff [[o]]A 6= [[o′]]A.

Example 2 We have:

A |= Paper ⊑ > 1writtenBy iff

[[Paper]]A ⊆ [[> 1writtenBy]]A iff

[[Paper]]A ⊆ {x | #({y | (x , y) ∈ [[writtenBy]]A}) > 1}
iff

[[Paper]]A ⊆ {x | (∃ y)(x , y) ∈ [[writtenBy]]A} iff

[[Paper]]A ⊆ dom [[writtenBy]]A

89

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

and

A |= ⊤ ⊑ ∀writtenBy.Author iff

[[⊤]]A ⊆ [[∀writtenBy.Author]]A iff

∆A ⊆ {x | (∀ y)(x , y) ∈ [[writtenBy]]A ⇒ y ∈ [[Author]]A}
iff

(∀ x , y ∈ ∆A)(x , y) ∈ [[writtenBy]]A ⇒ y ∈ [[Author]]A iff

ranwrittenBy ⊆ [[Author]]A

Theorem 1 O = (Sign(O), sen(O), Mod(O), |=O), where |=O associates with each

OWL signature O the relation |=O defined as above, is an institution.

The next result proves the first main feature of the OWL institution.

Theorem 2 The category of OWL signatures Sign(O) is cocomplete.

The proof of the next corollary follows from Theorem 27 in [31] and it supplies the

mathematical support for putting together smaller ontologies to form larger ones.

Corollary 1 The category ThO is cocomplete.

The second main feature of the OWL institution is given by the following result and

it shows that there is a sound way to amalgamate consistent OWL models (worlds of

resources).

Theorem 3 The functor Mod(O) : Sign(O)op → Cat preserves pullbacks.

90

5.1. The OWL Institution O

5.1.1 The Grothendieck Institution of OWL

Since the institution we defined above is strongly dependent on the data type (D, [[]]),

it follows that we should denote it by O(D, [[]]). The data type can be organized

into a category DT as follows:

– the objects are pairs of the form (D, [[]] : D → | Set |)
– the arrows u : (D, [[]]) → (D′, [[]]′) are functions u : D → D′ such that [[D]] =

[[u(D)]] for all D ∈ D.

We define the functor owl : DTop → Ins as follows:

– owl(D, [[]]) = O(D, [[]]);

– if u : (D, [[]]) → (D′, [[]]′), then owl(u) is the institution morphism (φu , αu , βu)

where φu is the identity, αu
O : sen(O(D, [[]]))(O) → sen(O(D′, [[]]′))(O) maps each

O-sentence F over D to an O-sentence F ′ over D′ obtained from F by replacing the

occurrences of D ∈ D with u(D), and βu
O is identity.

The general institution of the web ontologies O can now be defined as the Grothendieck

institution owl#.

The Grothendieck construction can be done in a more general framework. Let d̂t

be an institution of data types. The signature category of the predefined types is

the Grothendieck category Mod(d̂t)#. The institution O is now the Grothendieck

institution of the indexed institution owl : (Mod(d̂t)#)op → Ins. A main consequence

of this fact is that we can change the syntactical notation for the data values or the

implementation of the same abstract data type without changing the properties of

the ontologies.

91

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

5.2 The Institution Z

Z [107, 89] is a formal specification language based on first-order predicate logic and

ZF set theory. It is well suited for modeling system data and states. Z has a rich set

of language constructs including given type, abbreviation type, axiomatic definition,

state and operation schema definitions, etc.

We briefly recall from [3] the institution Z, denoted by S in [3], formalizing the logic

underlying the specification language Z.

A Z signature Z is a triple (G ,Op, τ) where G is the set of the given-sets names, Op

is a set of the identifiers, and τ is a function mapping the names in Op into types

T (G), where T (G) is inductively defined by:

1. G ⊆ T (G),

2. T1 × · · · × Tn ∈ T (G) for Ti ∈ T (G), i = 1, . . . ,n,

3. P(T) ∈ T (G) for T ∈ T (G),

4. 〈x1 : T1, . . . , xn : Tn〉 ∈ T (G) for Ti ∈ T (G) and xi is a variable name, i = 1, . . . ,n,
such that i 6= j ⇒ xi 6= xj .

A Z signature morphism φ : (G ,Op, τ) → (G ′,Op ′, τ ′) is a pair of functions φgs :

G → G ′ and φop : Op → Op ′ such that τ ;T (φgs) = φop ; τ ′. T (φgs) is the standard

extension of φgs to T (φgs) : T (G) → T (G ′). We denote by Sign(Z) the category

of Z signatures. Given a Z signature Z = (G ,Op, τ), a Z-structure (model) is a

pair (AG ,AOp) where AG is a functor from G , viewed as a discrete category, to

Set, and AOp is a set {(o, v) | o ∈ Op} where v ∈ AG(τ(o)). The functor AG is the

standard extension of AG to AG : T (G) → Set. A Z-homomorphism h : (AG ,AOp) →
(BG ,BOp) is a natural transformation h : AG ⇒ BG given by hτ(o)(v) = v ′, where

(o, v) ∈ AOp and (o, v ′) ∈ BOp; again, h is the usual extension of h to h : AG ⇒ BG .

We denote by Mod(Z)(Z) the category of Z-structures. Given a Z signature morphism

92

5.2. The Institution Z

φ : Z → Z ′ and a Z ′-structure A′ = (A′
G′ ,A′

O ′), the φ-reduct A′↾φ is the Z-structure

A = (AG ,AOp) given by AG = φgs ; A′
G′ and AOp = {(o, v) | (φop(o), v) ∈ A′

Op′ , o ∈
Op}.
Given a Z signature Z, the sets of Z-expressions E , Z-schema-expressions S , and

(part) of Z-formulas P are defined by:

E ::= id | x | (E , . . . ,E) | E .i | 〈x1 7→ E , . . . , xn 7→ E 〉
| E .x | E (E) | {E , . . . ,E} | {S • E} | P(E)

| E × · · · × E | S
S ::= x1 : E ; . . . ; xn : E | (S | P) | ¬ S | S ∨ S | S ∧ S

| S ⇒ S | ∀ S .S | ∃ S .S | S \ [x1, . . . , xn]

| S [x1/y1, . . . , xn/yn] | S Decor | E
P ::= true | false | E ∈ E | E = E | ¬ P | P ∨ P | P ∧ P

P ⇒ P | ∀S .P | ∃ S .P

Example 3 The following simple Z specification:

[Class,Resource]

ClassesAsResources

instances : Class → P Resource

res : Class ֌ Resource

∀ c, c′ : Class; r : Resource; pr : P Resource •
c 7→ r ∈ res ⇒ ¬(r ∈ pr ∧ c′ 7→ pr ∈ instances)

is described in the terms of the institution Z as CR = ((G ,Op, τ),P) where G =

{Class,Resource}, Op = {instances, res}, τ(instances) = P(Class × P(Resource)),

τ(res) = P(Class × Resource), and P includes the formulas expressing the function-

ality of the relation instances, the functionality and the injectivity of the relation res,

together with the invariant of the state schema ClassesAsResources. It is easy to

see, e.g., that c 7→ r ∈ res is a CR-expression and c, c ′ : Class ; r : Resource; pr :

P Resource is a CR-schema-expression.

93

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

An environment (Z, (X , τX)) consists of a Z signature Z, a set of variables X =

{x1, . . . , xn}, and a function τX : X → T (G) which associates a type with each

variable. The sets of expressions and formulas are restricted to those well-formed

w.r.t. an environment. Intuitively, an expression is well-formed w.r.t. the environ-

ment (Z, (X , τX)) iff we can uniquely associate to it a type which can be deduced

from τ and τX . A Z-formula P is well defined w.r.t. the environment (Z, (X , τX))

iff all its operators and quantifiers are given over expressions having the types com-

patible with their definition. For instance, if X = {c, r}, τX (c) = Class, τX (r) =

Resource, then c 7→ r ∈ res is well defined w.r.t. the environment (CR, (X , τX))

whereas c 7→ r ∈ instances is not. Given a Z signature Z and an environment

(Z, (X , τX)), a variable binding β = (A,AX) consists of a Z-structure A and a set

AX = {(x1, v1), . . . , (xn , vn)} with vi ∈ AG(τX (xi)) for i = 1, . . . , n. The satisfac-

tion relation between variable bindings and Z-expressions and Z-formulas is defined

as expected (see [3] for details). For instance, if we consider the variable binding

β = (A,AX), where AX = {(c, vc), (r , vr)}, then β |= c 7→ r ∈ res iff (vc, vr) ∈ w and

(res,w) ∈ AOp. The Z-sentences are the Z-formulas well defined with the environ-

ment (Z, ({ }, τ{ })). A Z-structure A satisfies a Z-sentence P , written A |=Z,Z P , iff

(A, { }) |= P .

The institution Z is given by Z = (Sign(Z), sen(Z), Mod(Z), |=Z), where Sign(Z) is

the category of Z signatures, the functor sen(Z) maps each Z signature Z to its set

of Z-sentences, the functor Mod(Z) maps each Z signature Z to the category of

Z-structures, and |=Z,Z is defined as above.

5.2.1 The Use of the Mathematical Tool-kit

Many Z specifications use mathematical definitions included in so-called the Mathe-

matical Tool-kit or standard library [89]. The use of these definitions can be formally

94

5.3. Encoding O in Z

described in terms of the structured specifications. We show that by means of an

example. Let Z be the following Z specification:

[Resource]

Class : P Resource

Property : PResource

Class ∩ Property = ∅

In terms of the institution theory, the above specification is represented by (Z0,P0),

where G0 = {Resource}, Op0 = {Class, Property}, τ0(Class) = τ0(Property) =

P(Resource), and P0 = {Class ∩ Property = ∅}. The definitions for ∅, meaning

∅[Resource], and ∩ are included in the standard library:

∅[X] ::= {x : X | false}

[X]
∩ : P X × P X → P X

∀S ,T : PX • S ∩T = {x : X | x ∈ S ∧ x ∈ T}

The full description (Z,P) of the initial Z specification is obtained as the vertex of

the following pushout:

∅[Resource] −−−→ ∩ [Resource]y
y

(Z0,P0) −−−→ (Z,P)

5.3 Encoding O in Z

In previous two chapters, we developed the semantics for DAML+OIL language in

formal language Z as an extension of the standard library. This semantic library was

later on revised for the new ontology language OWL, incorporating changes incurred

95

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

in OWL from DAML+OIL. In this Section, we will demonstrate, through institutions

comorphisms, that the Z encoding of OWL is indeed sound.

The main idea is to associate a Z specification Φ(O,F) with each OWL specification

(O,F) such that an (O,F)-model can be extracted from each Φ(O,F)-model. The

construction of Φ(O,F) is given in two steps: we first associate a Z specification Φ(O)

with each OWL signature O and then we add to it the sentences F translated via a

natural transformation.

Since Φ(O,F) can be seen as a Z semantics of (O,F), it includes a distinct subspeci-

fication (Z∅,P∅) defining the main OWL concepts and the operations over sets. More

precisely, we consider (Z∅,P∅) as being the vertex of the colimit having as base the

standard library, the specification of the data types, together with the following Z

specification:

given sets:
Resource;

identifiers:
√

corresponding to OWL signatures:
Class, Property, ObjectProperty, DatatypeProperty,

Individual, Thing, Nothing√
giving Z semantics to OWL signatures:
instances, subVal√
corresponding to OWL class axioms:
disjointClasses, equivalentClasses, subClassOf√
corresponding to OWL descriptions and restrictions:
unionOf, intersectionOf, complementOf, oneOf,

allValuesFrom, someValuesFrom,

minCardinality, maxCardinality, cardinality√
corresponding to OWL property axioms:
domain, range, functional, inverseOf, symmetric,

transitive, inverseFunctional,

equivalentProperties, subPropertyOf

τ ∅ for the new identifiers:

96

5.3. Encoding O in Z

√
corresponding to OWL signatures:
τ∅(Class) = τ∅(Property) = τ∅(ObjectProperty) =

τ∅(DatatypeProperty) = P(Resource)

τ∅(Thing) = τ∅(Nothing) = Resource√
giving Z semantics to OWL signatures:
τ∅(instances) = P(Resource× P(Resource))

τ∅(subVal) = P(Resource× P(Resource× Resource))√
corresponding to OWL class axioms:
τ∅(disjointClasses) = τ∅(Class× Class)

= P(Resource× Resource)

τ∅(equivalentClasses) = P(Resource× Resource)

τ∅(subClassOf) = P(Resource× Resource)√
corresponding to OWL descriptions, restrictions
τ∅(unionOf) = τ∅((Class× Class) × Class)

= P((Resource× Resource) × Resource)

τ∅(intersectionOf) = P((Resource× Resource) × Resource)

τ∅(complementOf) = P(Resource× Resource)

τ∅(oneOf) = P(P(Resource) × Resource)

τ∅(allValuesFrom) = τ∅((Resource× Property) × Class)

= P((Resource× Resource) × Resource)

· · ·√
corresponding to OWL property axioms:
τ∅(domain) = τ∅(Property× Resource)

= P(Resource× Resource)

τ∅(range) = P(Resource× Resource)

τ∅(inverseOf) = τ∅(ObjectProperty× ObjectProperty)

= P(Resource× Resource)

τ∅(functional) = τ∅(Property) = P(Resource)

. . .

sentences :
√

corresponding to OWL signatures:
Class ∩ Property = ∅
Class ∩ Individual = ∅
Property ∩ Individual = ∅
ObjectProperty∩ DatatypeProperty = ∅
Property = ObjectProperty∪ DatatypeProperty√
giving Z semantics to OWL signatures:
instances(Thing) = Individual

instances(Nothing) = ∅
∀ c : Class • instances(c) ⊆ Individual

97

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

∀ p : Property • subVal(p) ⊆ P(Individual× Resource)

· · ·√
corresponding to OWL class axioms:
∀ c1, c2 : Class • c1 7→ c2 ∈ disjointClasses⇔

instances(c1) ∩ instances(c2) = ∅
∀ c1, c2 : Class • c1 7→ c2 ∈ subClassOf⇔

instances(c1) ⊆ instances(c2)

∀ c1, c2 : Class • c1 7→ c2 ∈ equivalentClasses⇔
instances(c1) = instances(c2)√

corresponding to OWL descriptions, restrictions:
∀ c, c1, c2 : Class • (c1, c2) 7→ c ∈ unionOf⇔

instances(c) = instances(c1) ∪ instances(c2)

∀ p : Property; c1, c : Class •
(p, c1) 7→ c ∈ allValuesFrom⇔
instances(c) = {x : Individual | ∀ y : Individual •

(x , y) ∈ subVal(p) ⇒ y ∈ instances(c1)}
∀ p : Property; n : N; c : Class •

(p,n) 7→ c ∈ minCardinality⇔
instances(c) =

{x : Individual | #(subVal(p)(| {x} |)) ≤ n}
· · ·√
corresponding to OWL property axioms:
∀ p1, p2 : Property • p1 7→ p2 ∈ subPropertyOf⇔

subVal(p1) ⊆ subVal(p2)

∀ p : Property; c : Class • p 7→ c ∈ domain⇔
domsubVal(p) ⊆ instances(c)

∀ p : Property • p ∈ functional⇔
∀ x , y , z : Resource(x , y) ∈ subVal(p) ∧

(x , z) ∈ subVal(p) ⇒ y = z

· · ·

We define Φ⋄ : Sign(O) → Sign(Z) as follows. Let O = (C, R, U, I) be an OWL
signature. Then Φ⋄(O) = (G ,Op, τ) is defined as follows:

G = G∅;

Op = Op∅ ∪ C ∪ R ∪ U ∪ I;

τ(C) = Resource for each C ∈ C,

τ(R) = Resource for each R ∈ R,

τ(U) = Resource for each U ∈ U,

98

5.3. Encoding O in Z

τ(o) = Resource for each o ∈ I.

If ϕ : O → O′ is an OWL signature morphism and Φ⋄(O) = (G∅,Op, τ) and Φ⋄(O′) =

(G∅,Op ′, τ ′), then Φ⋄(ϕ) : Φ(O) → Φ(O′) is the Z signature morphism (id : G∅ →
G∅, Φ⋄(ϕ)op : Op → Op ′) such that Φ⋄(ϕ)Op is the identity over the subset Op∅ and

Φ⋄(ϕ)op(N) = ϕ(N) for each name N in O. It is easy to check that τ ; T (id) =

Φ⋄(ϕ)op ;τ ′.

We extend Φ⋄ to Φ : Sign(O) → Th(Z) by defining Φ(O) = (Φ⋄(O),P), where P is
P∅ together with the following sentences:

{C ∈ Class) | C ∈ C} ∪
{R ∈ ObjectProperty | R ∈ R} ∪
{U ∈ DatatypeProperty | U ∈ U} ∪
{o ∈ Individual | o ∈ I}.

If O is an OWL signature, then
αO : sen(O)(O) → sen(Z)(Φ(O))

is defined by:

αO(⊥) = Nothing, αO(⊤) = Thing,

αO(N) = N for each name N in O
αO(C1 ⊓ C2) = intersectionOf(αO(C1), αO(C2)),

. . .

αO(∀R.C) = allValuesFrom(αO(R), αO(C)),

. . .

αO(6 n R) = maxCardinality(αO(R), n), . . .

αO(C1 ⊑ C2) = αO(C1) 7→ αO(C2) ∈ subClassOf,

. . .

αO(E) = {αO(e) | e ∈ E}.

Example 4 Let O be that defined in Example 1.

99

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

αO(Paper ⊑ > 1 writtenBy) =
Paper 7→ minCardinality(writtenBy, 1) ∈ subclassOf

which is equivalent to
instances(Paper) ⊆ dom subVal(writtenBy)

αO(⊤ ⊑ ∀writtenBy.Author) =
Resource 7→ allValuesFrom(Author, writtenBy)

∈ subclassOf

which is equivalent to
ran subVal(writtenBy) ⊆ instances(Author)

Lemma 1 α = {αO | O ∈ Sign(O)} is a natural transformation α : sen(O) ⇒
Φ⋄; sen(Z).

Proof: Let ϕ : O → O′ be an OWL signature morphism. Then it is a matter of

routine to check that the following diagram commutes:

sen(O)(O)
αO−−−→ sen(Z)(Φ⋄(O))

sen(O)(ϕ)

y
ysen(Z)(Φ(ϕ))

sen(O)(O′) −−−→
α
O′

sen(Z)(Φ⋄(O′))

For instance, if C1,C2 ∈ C, then αO(C1 ⊑ C2) = (C1 7→ C2 ∈ subClsassOf) and

sen(Z)(Φ⋄(φ))(αO(C1 ⊑ C2)) = (φ(C1) 7→ φ(C2) ∈ subClsassOf). On the other

hand, sen(O)(φ)(C1 ⊑ C2) = (φ(C1) ⊑ φ(C2)) and αO(φ(C1) ⊑ φ(C2)) = (φ(C1) 7→
φ(C2) ∈ subClsassOf). �

If O = (C, R, U, I) is an OWL signature and A′ = (A′
G ,A′

Op) a Φ⋄(O)-model, then
βO(A′) is the O-model A = (∆A, [[]]A, ResA, resA) defined as follows:

ResA = A′
G(Resource),

resA(N) = v where (N , v) ∈ A′
Op for each name N∈O,

∆A = v where (Thing, v) ∈ A′
Op ,

if C ∈ C, then [[C]]A = vC where (instances, v) ∈ A′
Op and (C , vC) ∈ v ,

100

5.3. Encoding O in Z

if R ∈ R, then [[R]]A = vR where (subVal, v) ∈ A′
Op and (R, vR) ∈ v ,

if U ∈ U, then [[U]]A = vU where (subDVal, v) ∈ A′
Op and (U , vU) ∈ v .

A is indeed an O-model. For instance, if (instances, v) ∈ A′
Op , then v is the graph

of the function defined in A′ by instances and vC is just the value of this function

for the argument C . Since τ ∅(instances) = P(Resource×P(Resource)), it follows

that vC ⊆ A′
G(Resource). We obtain [[C]]A ⊆ ∆A applying the sentences in P∅. We

extend βO to a functor βO : Mod′(Φ⋄(O)) → Mod(O) as follows: if h : A′ → B ′ is a

Φ⋄(O)-homomorphism, then βO(h) is the O-homomorphism βO(h) : βO(A′) → βO(B ′)

given by βO(h) = hResource.

Lemma 2 β = {βO | O ∈ Sign(O)} is a natural transformation β : Φ⋄op ; Mod(Z) ⇒
Mod(O).

Proof: Let ϕ : O → O′ be an OWL signature morphism. The commutativity of

the diagram:

Mod(Z)(Φ⋄op(O′))
β
O′−−−→ Mod(O)(O′)

Mod(Z)(Φ⋄op(ϕ))

y
yMod(O)(ϕop)

Mod(Z)(Φ⋄op(O))
βO−−−→ Mod(O)(O)

follows by checking that βO(A′↾Φ⋄op(ϕ)) = βO′(A′)↾ϕ for each Φ⋄(O)-model A′. �

Theorem 4 (Φ, α, β) : O → Z is a simple theoroidal comorphism.

Proof: We already proved that α and β are natural transformations. We have

to prove the satisfaction condition. Let O be an OWL signature, e an O-sentence,

and A′ a Mod(Z)(Φ(O))-model. We suppose first that A′ |=Φ(Σ) αO(e). We prove

101

Chapter 5. Z Semantics for OWL: Soundness Proof Using Institution

Morphisms

that βO(A′) |=O e by structural induction on e. For instance, we suppose that e is

C1 ⊑ C2. We have:

A′ |=Φ(O) αO(C1 ⊑ C2) iff A′ |=Φ(O) C1 7→ C2 ∈ subClassOf

Since A′ |= P∅ (we recall that Φ(O) = (Φ⋄(O),P∅)), it follows that A′ |= ∀ c1, c2 :

Class•c1 7→ c2 ∈ subClassOf ⇒ instances(c1) ⊆ instances(c2)) which implies

[[C1]]βO(A′) ⊆ [[C2]]βO(A′), i.e., βO(A′) |= C1 ⊑ C2. The inverse implication is proved in

a similar way. �

5.4 Chapter Summary

The main contribution of this chapter is the formal proof of the soundness of the Z

semantics of ontology language OWL DL, which is the semantical foundation of the

combined approach presented in the previous chapter.

As ontology languages and Z (and Alloy) are based on different logical systems (de-

scription logics vs first-order predicate logic), the proof of semantical equivalence

between the OWL language constructs and Z semantics has to resort to a higher-level

device that is able to reason with different logical systems.

In this chapter, we used the notion of institutions and institution comorphisms to

represent the two logical systems underlying OWL DL and Z. Two institutions, O

(for OWL DL) and Z (for Z) were defined and we proved that there is a simple

theoroidal comorphism (Φ, α, β) : O → Z between O and Z. Hence, we proved the

soundness of the Z semantics for OWL DL.

102

Chapter 6

The Tools Environment: SESeW

The combined approach presented in Chapter 4 is an effective way of verifying correct-

ness of the Semantic Web ontologies. However, it was also pointed out in Chapter 4

that there are a number rather involved steps in this approach. Moreover, there are

some other functionalities, such as ontology querying, that the users may desire but

not covered in the combined approach. An implementation of the ontology devel-

opment methodology, the Methontology [29], is incorporated to facilitate systematic

ontology creation.

For these reasons, we have developed a prototype of an integrated tools environ-

ment, the Software Engineering for the Semantic Web (SESeW), that facilitates the

application of the combined approach and supports a number of other functionalities.

This chapter is devoted to an introduction of our integrated tools environment for

developing and reasoning DAML+OIL and OWL ontologies. It is divided into the

following parts. In Section 6.1, we present SESeW in brief. In subsequent Sections,

we present the ontology creation process, querying, transformation and connection

with external tools. Finally, Section 6.6 summarizes the chapter.

103

Chapter 6. The Tools Environment: SESeW

6.1 Overview of SESeW

Figure 6.1 shows the main window of SESeW, with a military-domain OWL ontology

opened. It has four tabbed text areas for ontologies, Z, Alloy and PVS [78] 1 speci-

fications respectively. Transformed Z, Alloy and PVS specifications are displayed in

the respective text areas.

Figure 6.1: Main Window of SESeW

A user may load an existing ontology created using other editors like Protégé [30], in

which case SESeW provides a standard text editing environment and functionality

for editing the ontologies. Simple validation functions like well-formedness checking

are offered to make sure the syntactical correctness of the ontologies.

1The PVS text area is for research work [21].

104

6.2. Ontology Creation

6.2 Ontology Creation

Specification

Planification

Acquiring Knowledge

Documenting

Evaluating

Activities

Activity States

Conceptualization Formalization Integration Implementation

Mainenence

Figure 6.2: Flow of Ontology Creation

We implemented a systematic methodology for creating ontologies, namely Methon-

tology [29]. Basically, Methontology is a set of activities in ontology development

process, a life cycle to build ontologies based on evolving prototypes, and a well-

structured methodology used to build ontologies from scratch. The ontology life cycle

contains the following states: specification, conceptualization, integration, implemen-

tation, and maintenance (Figure 6.2, borrowed from [29]). The specification phase is

to produce either an informal, semi-formal or formal ontology specification document

in natural language, as a set of intermediate representations or using competency

questions. In the conceptualization phase, the domain knowledge is structured in a

conceptual model. A complete glossary of terms, i.e. concepts, instances, verbs, and

properties, is built. The integration phase speeds up the construction of the ontology

by considering reuse of definitions already built in other ontologies. Ontology imple-

mentation requires the use of an environment that supports the meta-ontology and

ontologies selected at the integration phase. Knowledge acquisition is an independent

activity in the ontology development process. Experts, books, handbooks, figures,

tables and even other ontologies are sources of knowledge from which the knowledge

can be elucidated.

105

Chapter 6. The Tools Environment: SESeW

In SESeW, we assume the existence of a list of gathered terms from text files or other

ontologies generated using knowledge acquisition techniques such as text analysis,

structured interview or brainstorming. In the conceptualization phase, users are

required to identify the classes from a list of possible classes, the instances of each

class, and the relationships between individuals and classes.

Properties are distinguished by whether they relate individuals to individuals or in-

dividuals to datatypes. Datatype properties may range over RDF literals or simple

XML Schema datatypes. To create a datatype property, users are required to provide

a property name by either selecting one from the Glossary of Terms or typing a name

into the text field. The user then selects the property domain and range. Figure 6.3

shows the window for introducing new datatype properties. A datatype property can

be a FunctionalProperty .

Figure 6.3: Creating Datatype Property

The creation of object properties is similar to the creation of datatype properties,

except that an object property has classes as its range (instead of datatypes). Besides

FunctionalProperty , it may be of three other property types: TransitiveProperty ,

SymmetricProperty , and InverseFunctionalProperty .

106

6.2. Ontology Creation

In addition to designating property characteristics, it is possible to further constrain

classes with property restrictions. The six types of restrictions defined in OWL are

all supported in SESeW:

• hasValue: which allows users to restrict classes by requiring the existence of

particular property values.

• allValuesFrom: which requires that for every instance of the class that has the

specified property, the values of the property are all members of the class indi-

cated by the allValuesFrom clause.

• someValuesFrom: which requires that for every instance of the class that has

the specified property, at least one value of the property is a member of the class

indicated by the someValueFrom clause.

• cardinality : which requires the specification of the exact number of elements in

a relation.

• minCardinality : which permits the specification of the minimum number of

elements in a relation.

• maxCardinality : which permits the specification of the maximum number of

elements in a relation.

After the user has fully specified the ontology, it is automatically generated, making

use of the Jena Framework [51] (bundled with SESeW), shown in its text area and

saved into the file designated.

6.2.1 Performance Evaluation

To evaluate the performance of ontology generation in SESeW, experimental perfor-

mance monitors are included to find out the memory and computational time used

107

Chapter 6. The Tools Environment: SESeW

for creation of ontologies.

Figure 6.4: Performance of Ontology Creation

Figure 6.4 shows how the increase in the number of ontology resources and relations

affects the time and memory usage of the tool, assuming that in an ontology building

process, each resource/relation costs same amount of time and consumes same amount

of memory. Approximately, the time and memory usage increases linearly as the

number of resources/relations increases. The average time needed for creating one

resource/relation decreases slowly.

6.3 Ontology Querying

A friendly user interface, shown in Figure 6.5, is provided for querying a given ontol-

ogy. A user may input queries in an SQL-like language RDQL [86]. The query engine

is a part of the ontology toolkit, the Jena Framework. An RDF model can be viewed

as a graph, often expressed as a set of triples. An RDQL consists of a graph pattern,

expressed as a list of triple patterns. Each triple pattern is comprised of named vari-

ables and RDF values (URIs and literals). An RDQL query can additionally have a

set of constraints on the values of those variables, and a list of the variables required

in the answer set. A typical query has the structure “SELECT...WHERE...USING...”,

108

6.3. Ontology Querying

Figure 6.5: The Query Interface

where ontology entities of interest are specified after the keyword SELECT along with

constraints after the keyword WHERE in the namespaces given after the keyword USING.

As SESeW was initially developed as part of a military-related research project, fre-

quently used query patterns in the military planning domain are categorized and

templates are created to ease the creation of such queries. For example, the cate-

gory “instantiation” provides a template to create queries to find out all instances

of a particular class. Once a user selects a query type, the text area for typing in

query is updated with the corresponding templates. After a query is entered, user

may perform syntax checking of the query before submitting it. As the target users

may not have the required expertise to identify the namespaces of a given ontology,

the namespaces in an ontology are automatically recognized and extracted for user’s

convenience.

For the military plans case study, we have developed a set of 14 query templates,

including queries to find the sub-task/super-task relationship with regard to a par-

ticular military task, queries to find all military tasks whose start and end time fall

109

Chapter 6. The Tools Environment: SESeW

into a particular time frame, queries to find all military tasks that proceeds/follows

a given task, and queries to find a military unit assigned to execute a given task, etc.

This set of templates greatly eases the querying and understanding of the ontology.

6.4 Ontology Transformation

The main purpose of the SESeW is to realize our approach of using software engi-

neering techniques and tools such as model-checking and theorem proving to verify

DAML+OIL/OWL/RDF ontologies. Thus, SESeW provides fully automated trans-

formation from ontologies to Alloy, Z and PVS specifications.

The transformation from DAML+OIL/OWL ontologies to Z specifications was dis-

cussed in detail in 3.4. Originally the transformation from DAML+OIL to Alloy

was accomplished with an XSLT [109] stylesheet. To be integrated into the SESeW

framework, the transformation program has been re-written using Java language. The

transformation is based on the semantics library for DAML+OIL built in Alloy and

Z. The semantical libraries are straightforwardly extended to OWL by defining the

Alloy and Z semantics for the OWL language. The Z semantics is contained in a sec-

tion owl2z , on top of toolkit . Similarly, the Alloy semantics is contained in a module

owl .

The transformed Alloy or Z specification is presented in its own text area. The first

lines of the transformed specification imports the Alloy or Z library for DAML+OIL

or OWL constructs. The transformed specification is ready to be imported to Alloy

Analyzer or Z/EVEs for various reasoning tasks.

The transformation from DAML+OIL/OWL/RDF to Z has been fine-tuned to make

the proof using Z/EVES more automated. In Z/EVES, a name must be declared

110

6.4. Ontology Transformation

before it is used. Hence, the transformation program extracts all the names of declared

classes, properties and individuals first, put them at the beginning of the generated Z

specification. In subsequent passes, predicates about these names are then grouped

and generated. As these predicates are used in proof process, labels are systematically

added to all the predicates for easy referencing later on.

In addition, SESeW also includes the fully automated transformation from ontology

languages to PVS so as to verify both OWL and SWRL ontologies. In order to use

PVS to verify and reason about ontologies with SWRL axioms, it is necessary to

define the PVS semantics for OWL and SWRL. This semantic model forms the rea-

soning environment for verification using PVS theorem prover. The complete PVS

semantics for OWL language primitives and the newly proposed SWRL are available

online2. To make the proving process of PVS more automated, a set of rewrite rules

and theorems are defined. They aim to hide certain amount of underlying model from

the verification and reasoning and to achieve abstraction and automation. Usually

these rules relate several classes and properties by defining the effect of using them in

a particular way. PVS is used for standard SW reasoning like inconsistency checking,

subsumption reasoning, instantiation reasoning as well as checking SWRL and be-

yond. For instance, OWL and SWRL cannot deal with the concrete domains: it can

only make assertions about linear (in)equalities of cardinalities of property instances

over integer. PVS, on the other hand, can perform basic arithmetic operations and

comparisons.

2cf. http://nt-appn.comp.nus.edu.sg/fm/ORL2PVS/OWL2PVS.pvs.txt

111

http://nt-appn.comp.nus.edu.sg/fm/ORL2PVS/OWL2PVS.pvs.txt

Chapter 6. The Tools Environment: SESeW

6.5 External Tools Connection

SESeW also integrates existing tools for developing and reasoning about ontologies so

that a user may choose his/her favorite tool(s) to prepare the ontology before using our

approach for reasoning about or verifying the finished ontology to obtain confidence.

The following tools are bundled with, or connected to SESeW with shortcuts:

• Alloy Analyzer: It is bundled with SESeW and can be invoked directly

• Z/EVES: A shortcut to Z/EVES previously installed in a machine is provided

in SESeW to invoke it.

• RACER: Acting as a background reasoner, RACER is bundled with SESeW

so that its reasoning functionality can be directly tapped whenever required.

Moreover, RACER also acts as a background reasoner for ontology editors.

• OilEd: Being an ontology editor for DAML+OIL, OilEd is bundled with SESeW

so that ontologies can be developed, visualized and reasoned about.

Alloy Analyzer is also developed in Java so that it is possible to develop programmatic

ways of accessing functionalities of Alloy Analyzer if the API is provided. In this way,

SESeW becomes a more integrated formal environment. As Alloy Analyzer can pin

point the source of identified error, it will be more user-friendly if SESeW can directly

command Alloy Analyzer to bring up the identified erroneous source statements. We

are currently involving people to explore the source code of Alloy Analyzer for this

purpose. Z/EVES is developed in Allegro Common Lisp and it presents a more

complicated challenge for integration with SESeW.

112

6.6. Chapter Summary

6.6 Chapter Summary

As we have shown in previous chapters, formal methods can be successfully applied to

the Semantic Web domain to improve the quality of ontologies. To advocate this ap-

plication, we developed an integrated tools environment, the SESeW, so that different

tools from both the SW and formal methods communities can be grouped together

and used in combination more efficiently. In a nutshell, SESeW allows systematic cre-

ation as well as effective querying, transformation, verification and reasoning about

DAML+OIL/OWL/RDF ontologies.

The SESeW includes functionalities such as ontology creation, querying, transforma-

tion, etc. It also links with a number of external tools to visualize and reason about

ontologies.

By implementing a systematic approach of ontology creation, the Methontology, and

supporting ontology querying and the combined approach of verifying ontology cor-

rectness, the SESeW supports a complete ontology life cycle.

So far, the chapters are only focused on transforming and verifying static Web re-

sources. The dynamic aspect of the Web, the Web services, will take stage in the

next chapter.

113

Chapter 7

Simulating Semantic Web Services

with LSCs and Play-Engine

As introduced in Chapter 1, the full potential of the Web is realized when not only

static information, but also dynamic Web services, are processable by software agents.

Web Services provide a standard way of interoperation between applications that

may be running on a variety of platforms. The interoperability is achieved by the

development of employment of a set of XML-based open standard protocols/languages

such as WSDL [14], SOAP [110] and UDDI [99]. Web services encoded in such

protocols can be autonomously understood by applications.

Although the above languages are still in evolution, it has been recognized that there

is a growing need for semantically richer specification languages. Such semantical

specifications can further automate various activities of the life cycle of a Web service,

such as service invocation, selection, composition, negotiation, etc. For these reasons

the Semantic Web Services ontology was developed.

The Semantic Web Services ontology, called OWL-S, is an ontology in OWL DL

115

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

language. As introduced previously, it contains essential mark-ups for describing

a Semantic Web service. Such markups can be categorized into three parts: service

grounding, service profile and service model. The details can be found in Chapter 2.2.

The service model component describes the how the service works, detailing its inputs,

outputs, preconditions, effects, control flow, etc. Hence, it is essential to the selection

and invocation of a service. It is important to ensure the correctness of such models

as erroneous service descriptions will give rise to invocation of wrong services, with

wrong parameters, resulting in undesired outcome.

In this chapter, we demonstrate how to encode Semantic Web service models as Live

Sequence Charts (LSCs) and how to simulate them using Play-Engine.

The chapter is divided into four sections. Section 7.1 is devoted to an introduction

to the LSCs and Play-Engine, the visualization and simulation tool support for LSC.

In Section 7.2, we introduce how OWL-S ontologies are transformed into LSCs. In

Section 7.3, we demonstrate the simulation process through a case study of an online

holiday booking system. Finally, Section 7.4 summarizes the chapter.

7.1 LSCs & Play-Engine

Live Sequence Charts (LSCs) [18] are a powerful visual formalism which serves as

an enriched requirements specification language. LSCs are a broad extension of the

classic Message Sequence Charts (MSCs [53]). They capture communicating scenarios

between system components rigorously. LSCs distinguish scenarios that must happen

from scenarios that may happen, conditions that must be fulfilled from conditions that

may be fulfilled, etc.

There are two kinds of charts in LSCs: existential charts and universal charts. Exis-

116

7.1. LSCs & Play-Engine

tential charts are mainly used to describe possible interactions between participants

in early stages of system design. At a later stage, knowledge becomes available about

when a system run has progressed far enough for a specific usage of the system to

become relevant. Universal charts are then used to specify behaviors that should

always be exhibited. A universal chart may be preceded by a pre-chart, which serves

as the activation condition for executing the main chart. Whenever a communication

sequence matches a pre-chart, the system must proceed as specified by the main chart.

A chart typically consists of multiple instances, which are represented as vertical lines.

Along with each line, there are a finite number of locations (i.e., the joint points of

instances and messages). A location carries the temperature annotation for progress

within an instance. Message passing between instances is represented as horizontal

lines. Cold conditions are used to assistant specifying complex control structures like

guarded-choice, do-while. Hot conditions are asserted to assure critical properties at

certain point of execution. Typically, a system is described by a set of LSCs, both

universal charts and existential charts. LSCs support advanced MSC features like

co-region, hierarchy, etc. For details on features of LSCs, refer to [37]. LSCs are far

more expressive than MSCs, which makes them capable of expressing complicated

inter-objects system requirements.

An interaction-based model specifies the desired inter-object relationships before a

system is actually constructed. It is beneficial if the model can be simulated and

tested so as to detect inconsistencies and under-specification. One of the significance

of LSCs is that descriptions in the LSC language can be executed by Play-Engine [38]

without implementing the underlying object system. Play-Engine is a tool recently

developed to support an approach to the specification, validation, analysis and execu-

tion of LSCs, called “play-in” and “play-out”. Behaviors are “played in” directly from

the system’s user interface, and as this is being done the Play-Engine continuously

constructs LSCs. Later, behaviors can be “played out” freely from the user inter-

117

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

face, and the tool executes the LSCs directly, thus driving the system’s behaviors.

When “playing out”, Play-Engine computes a “maximal response” to a user-provided

event, called a super-step. During the computation of a super-step, hot conditions

are evaluated. If any hot condition evaluates to false, a violation is caught. Other-

wise, simulation continues with the user provided events. This way, users may detect

undesired behaviors allowed by the specification early in the development. The ba-

sic play-out engine arbitrarily explores a single super-step, hence possibly running

into problems. The smart play-out approach uses model checking to compute a valid

super-step if it exists. Alternatively, test cases may be supplied by the users as exis-

tential charts so that Play-Engine may guide the system accordingly to verify that a

scenario of interactions between the user and system is possible.

7.2 Modeling OWL-S with LSCs

7.2.1 Basics

The work in this chapter is concentrated on the process model of OWL-S and we

abstract away the service profile and grounding details. The key idea of using LSCs

to visualize and simulate the OWL-S process models is to use an LSC universal chart

to capture a process model. In other words, each process is viewed as describing

a possible communicating scenario between a service-using agent and the service-

providing agent. For each process model, we assume there is a pre-service request

from the service-using agent to the service-providing agent that identifies the service

to perform, which corresponds to the service grounding phase that we ignore in this

work. For instance, the request() message in Figure 7.2 is a pre-service request from

a HolidayBookingAgent to a BdgtChker . Once a pre-service request is exchanged be-

tween the service-using agent and the service-providing agent, subsequent interactions

118

7.2. Modeling OWL-S with LSCs

follow precisely as defined in the service definition (the process model).

In OWL-S, processes are modeled as OWL classes and they are sub classes of one of the

three mutually disjoint OWL classes: AtomicProcess, SimpleProcess and CompositeProcess .

Processes can have inputs, outputs, preconditions, effects (IOPEs) and results, which

are also defined as OWL classes. A result bundles (conditioned) effects and outputs.

Besides defining these classes, the OWL-S ontology also defines a number of object

properties that defines the IOPEs of a process. The following list briefly explains

these properties.

• hasInput : It specifies one of the inputs of the service.

• hasLocal : It specifies one of the local parameters. Local parameters are only

used in atomic processes.

• hasOutput : It specifies one of the outputs of the service.

• hasPrecondition: It specifies one of the preconditions of the service. Precondi-

tions are evaluated with respect to the client environment before the process is

invoked.

• hasResult : It specified one of the Results of the service. Results can be asso-

ciated with post-conditions by the property inCondition. Result conditions are

effectively meant to be ‘evaluated’ in the server context after the process has

executed. The outputs and effects of a result can only occur if its conditions are

evaluated to true.

Post-condition of the inCondition properties in hasResult are conjoined and

identified with a shared hot condition at the end of the chart so that if the

post-condition is violated, an error is raised by Play-Engine. The withOutput

properties are then identified with communications after the hot condition.

119

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

7.2.2 Processes

An atomic process corresponds to the actions that a service can perform by engaging

it in a single interaction, i.e., a one-step service that expects a bundle of inputs and

produces a bundle of outputs. An atomic process is a “black box” representation;

that is, no description is given of how the process works (apart from IOPEs).

Basically, a service defined by an atomic process is translated to an LSC univer-

sal chart preceded by a pre-chart containing only the pre-service request. An atomic

process has always two participants, i.e., a service-using agent and a service-providing

agent if the participants are skipped in the OWL-S ontology. Otherwise, participants

in an ontology are translated to instances in the chart. According to [95], “inputs

and outputs specify the data transformation produced by the process”, hence they

are identified with communication between different participants in the main chart.

If a process has a precondition, it cannot be performed successfully unless the pre-

condition is true. Precondition of a service is, therefore, identified with a shared cold

condition (among all participants) at the very beginning of the main chart. Thus, if

the condition is violated, the chart terminates and hence the process (service) is not

performed.

The data bindings are analyzed to identify the correspondence between different in-

puts and outputs and local variables (if there are). Besides, built-in functions in the

process models are translated to external functions in LSC (Play-Engine) and local

variables are identified with variables associated with the instances in the chart.

Composite processes are composed of sub-processes, and specify constraints on the

ordering and conditional execution of these sub-processes. These constraints are

captured by the composedOf property. Composite processes are constructed using

control constructs and references to processes called Performs. These are analogous

120

7.2. Modeling OWL-S with LSCs

to function calls in procedural language function bodies. Perform itself is a kind of

control construct specifying where the client should invoke a process provided by some

server. Perform may be references to atomic or other composite processes. Performs

are composed using other control constructs. The minimal initial set includes Se-

quence, Split, Split+Join, Any-Order, Condition, If-Then-Else, Iterate, Repeat-While

and Repeat-Until. We summarize the list of control constructs in Table 7.1 (according

to OWL-S 1.1).

Table 7.1: A Partial Summary of the OWL-S constructs

OWL-S Constructs Description
Sequence Executes a list of processes in order.
Split Executes a bag of processes concurrently.
Split+Join Executes a bag of processes concurrently

with barrier synchronization.
Any-Order Execute a bag of processes in any order but

not concurrently.
Choice Chooses between alternatives and executes.
If-Then-Else Tests the if-condition. If true executes the

“Then” branch, if false executes the “Else”
branch.

iterate Serves as the common superclass of Repeat-
While and Repeat-Until and potentially
other specific iteration constructs.

Repeat-While Iterates execution of a bag of processes until
the while Condition becomes true.

Repeat-Until Iterates execution of a bag of processes until
the until Condition becomes true.

timeout Interval of time allowed for completion of
the process component (relative to the start
of process component execution).

In the following, we discuss how composite services are systematically transformed

to LSCs. We present the transformation in the following as transformation rules for

each and every control construct in Table 7.1.

121

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

• Sequence: It is naturally translated to sequential communication along the ver-

tical lines in a chart. If a sub-process itself is composed by other processes, the

sub-process is transformed to a sub-chart or a pre-service request in case the

sub-process is reused in other processes. Variables in the output bindings are

parameterized with the message so that they are unified with the variables in

the invoked processes.

• Split: Because no specification about waiting or synchronization is made among

the bag of process components, processes in Split correspond to multiple pre-

service requests grouped as a co-region so that the ordering of the execution

of the components are not constrained. Each pre-service request will in turn

activate an LSC modeling the corresponding service.

• Split+Join: Because of the possible barrier synchronization, it is transformed to

LSCs similarly as Split with additional 0-buffered communication corresponding

to the barrier synchronization. The 0-buffered communication events are shared

by all LSCs modeling the invoked services. Therefore, the synchronization is

made among all sub-processes. Moreover, the location where the co-region is set

to be hot so that completion of all components are guaranteed.

• Any-Order: All components of an Any-Order control construct must be executed,

but not concurrently. This requires that no execution of any two processes can

overlap. This is transformed to LSCs exactly as Split except all locations in

LSCs corresponding to the components are set to be hot so that completion of

all components are guaranteed.

• Choice: This corresponds to the Select-Case construct in LSCs. Thus, a choice

in OWL-S is transformed to a Select-Case sub-chart with equally distributed

possibility.

• If-Then-Else: The exact same construct if -then-else is available in LSCs. The

122

7.2. Modeling OWL-S with LSCs

If-condition and Else-condition are mapped to cold conditions in the respective

sub-chart. The only problem is to syntax-rewrite the logical expression used in

OWL-S (represented in SWRL [48], DRS1 or KIF2) properly to logical expression

in LSCs.

• Repeat-While and Repeat-Until: Both these two constructs are sub classes of

the abstract control construct Iterate, whereas the former is transformed to a

looping sub-chart in LSCs with a shared cold condition (corresponding to the

condition in the service definition) at the end of the sub-chart and the latter is

transformed to a looping sub-chart in LSCs with a cold condition (corresponding

to the negation of the condition in the service definition) at the end of the sub-

chart.

• timeout: timeout is defined as an object property on the above control constructs,

each of which can have at most 1 such timeout instance. It is mapped to a timer

set event followed by a timeout event in LSCs containing the respective process

components.

The transformation rules for composite processes are applied inductively. One of

the difficulties of using LSCs to simulate the OWL-S process models is to perform

correct data binding and data computation. We assume that a simple underlying

data and functional model of the system is supplied by the users, i.e. the underlying

system variables and the implementation of the external functions and so on. To

simulate the set of process models interactively, we may build a simple user interface

to trigger environmental events manually. A simple user-interface is built with a

button for triggering every process model. Play-Engine supports building such user-

interface with Visual Basic, and “playing-out” the corresponding LSCs according the

1cf. http://www.daml.org/services/owl-s/1.0/conditions.html
2cf. http://logic.stanford.edu/kif/dpans.html

123

http://www.daml.org/services/owl-s/1.0/conditions.html
http://logic.stanford.edu/kif/dpans.html

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

user interaction through the interface.

7.3 Case Study

This section illustrates the approach with an example of an online holiday booking

system.

7.3.1 System scenario

The holiday booking system is a Web portal offering access to information about air

tickets and hotels. This Web portal provides automated air ticket and hotel booking

services to users who are planning their holidays.

In the course of operation, the customer submits a request, which includes the infor-

mation about the destination, travelling time and maximum budget, to the holiday

booking agent. Upon receiving the request, the holiday booking agent tries to find the

most suitable air ticket and hotel based on information in the customer’s preferences,

which have been obtained from his online, OWL-encoded profile. The preferences

may include the preferred airlines, hotels, etc. Following that, the holiday booking

agent calculates if the total cost overruns the budget limit. If the total cost is more

than customer’s budget, the holiday booking agent tries to find another cheaper ho-

tel or ticket. If there is no ticket and hotel combination that can be found within

the budget, the customer will be notified. Otherwise the booking agent shows the

information about the matched ticket and hotel to the customer. If the customer

is satisfied, he/she submits his/her credit card information to the holiday booking

agent. The holiday booking agent asks a third-part credit checking agent to check if

the card is valid with sufficient credit. If it is, the booking will be made.

124

7.3. Case Study

Figure 7.1: Holiday booking System

Figure 7.1 is an RDF graph of the service model ontology. It shows part of the OWL-

S process model for the holiday booking agent3. The holiday booking service has

a composite process BookingProcess which sequentially performs four sub-processes

– SearchTicketHotel , CheckBudget , CheckCredit and PlaceOrder . SearchTicketHo-

tel is a composite process as well, which performs two atomic process, SearchHotel

and SearchTicket , in parallel. The complete OWL-S process model can be found at

http://www.comp.nus.edu.sg/~liyf/booking.xml.

Being part of our case study, the following is the process model of an atomic OWL-S

service ontology that checks whether the current air ticket and hotel prices are within

user budget, given as inputs the air ticket price (variable X1), hotel accommodation

cost (variable X2) and the user’s budget (variable X3)4. As output, this atomic service

3The diagram has been slightly revised for presentation purpose.
4These variables are represented as budget ticket Cost, budget hotel Cost and

125

http://www.comp.nus.edu.sg/~liyf/booking.xml

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

returns true for variable Check_Budget_result if X3 ≤ X1+ X2, and false otherwise.

For atomic processes, the inputs must come from the service-using agent.

<process:AtomicProcess rdf:ID="CheckBudget">

<process:hasInput><process:Input rdf:ID="budget_hotel_Cost">

<process:parameterType rdf:datatype="&xsd;#nonNegativeInteger"/>

</process:Input></process:hasInput>

<process:hasInput><process:Input rdf:ID="budget_ticket_Cost">

<process:parameterType rdf:datatype="&xsd;#nonNegativeInteger"/>

</process:Input></process:hasInput>

<process:hasInput><process:Input rdf:ID="budget_total_Cost">

<process:parameterType rdf:datatype="&xsd;#nonNegativeInteger"/>

</process:Input></process:hasInput>

<process:hasOutput><process:Output rdf:ID="Check_Budget_result">

<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#boolean

</process:parameterType></process:Output></process:hasOutput>

<process:hasResult>

<process:Result rdf:ID="Within_budget">

<process:withOutput>

<process:OutputBinding>

<process:toParam rdf:resource="#Check_Budget_result"/>

<process:valueData rdf:datatype="&xsd;#boolean">true

</process:valueData></process:OutputBinding></process:withOutput>

<process:inCondition>

<expr:KIF-Condition>

<expr:expressionBody>

(>= ?budget_total_Cost

(+ ?budget_ticket_Cost ?budget_hotel_Cost))

</expr:expressionBody>

</expr:KIF-Condition>

</process:inCondition>

</process:Result>

</process:hasResult>

<process:hasResult>

<process:Result rdf:ID="beyond_budget">

...

</process:Result>

</process:hasResult>

</process:AtomicProcess>

Figure 7.2 shows an LSC universal chart capturing the necessary interactions be-

tween a service-using agent and a budget-checking agent cooperating in the above

budget total Cost in the ontology, respectively.

126

7.3. Case Study

Figure 7.2: LSC Example: Budget checking

atomic service. Once the service-using agent requests the service CheckBudget (after

determining whether the service meets its needs by exploring the service profile), nec-

essary information like budget_ticket_Cost and budget_hotel_Cost is supplied by

the service-using agent. The budget-checking agent replies with true, if the budget is

at least as much as the sum of the air ticket and hotel prices, and false otherwise.

7.3.2 Simulation

Figure 7.3 shows in Play-Engine part of the LSC of the HolidayBooking process model.

Given a set of inputs including departure and destination cities, outbound and in-

bound dates, budgets, etc., the service searches for valid air tickets and hotels. Finally

if such flights and hotel accommodation are available, it proceeds to book the flight

and room.

Our simulation begins with building a simple Graphical User Interface (GUI) for

127

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

Figure 7.3: Simulation Screen Shot

interactively introducing external events. A systematic approach is to build one

GUI component for each user-accessible Web service. In our example, only one Web

service is accessible to service-using agents, namely HolidayBooking . The simple GUI

is shown in the left bottom corner of Figure 7.3. Play-Engine allows user-defined

variables and external function through ActiveX DLLs. For the purpose of simulation

before actual implementation, an abstract “implementation” capturing only necessary

details of the system is sufficient. However, if the underlying data and functional

system is implemented using techniques compatible with ActiveX DLLs, e.g. ASP,

.NET, Play-Engine may import the actual implementation of the underlying system

and perform the simulation.

From our experiences, symbolic messages and instances are very helpful for captur-

ing the OWL-S process models compactly. After building the LSC model, a user

may interactively play out the system by initiating an (or a series of) external event

128

7.4. Chapter Summary

and check how the system proceeds step-by-step. Assertion can be inserted freely by

introducing hot conditions in the LSCs. During simulation, a violation of the hot con-

dition will be caught by Play-Engine. This way, inconsistency and under-specification

is detected intuitively. In case an external process (to be offered by third party) is

assumed, the user may specify the possible output of the process manually or Play-

Engine would use model-checking techniques to automatically find a valid value (if

the variables have finite domain). In our example, during simulation, windows pop

up for the user to specify the ticket price and the hotel price. Alternatively, a user

may build a test case of the system as an existential chart (with assertions) and let

Play-Engine do the guided play-out according the existential chart.

In Figure 7.3, the HolidayBooking process is invoked by two different service-using

agents. Hence, two copies of the chart HolidayBooking (according to the HolidayBooking

process) are monitored. With simulation run of this scenario, where a number of

service-using agent are using the ticket-booking service, we gain confidence that the

same shared resource (e.g. ticket vacancy) is accessed exclusively.

7.4 Chapter Summary

In this chapter, we propose to use LSCs and Play-Engine to visualize and simulate

OWL-S process models. The significance and novel aspects can be summarized as

follows. Firstly, by transforming an OWL-S service model ontology into an LSC,

service developer can design the services in a more visual and intuitive manner. In

XML format, the LSCs can be easily transformed back to OWL-S. Secondly, we may

simulate the interactions without implementing the Web service (exploring the service

grounding), and be able to gain confidence of the service models. The key point of this

approach is that a Web service can be naturally viewed as a desired usage of the web

129

Chapter 7. Simulating Semantic Web Services with LSCs and

Play-Engine

agent, i.e., a scenario of the interaction between the service-using agent the service-

providing agent. Thirdly, as Play-Engine supports dynamic linked libraries such as

COM and ActiveX Controls, Web services written in these libraries can be more easily

transformed to LSCs, from which the OWL-S service model may be derived. Hence,

our approach also facilitates the integration of Web services with OWL-S. Moreover,

we presented a travel booking case study to demonstrate our approach.

There are a number of future work directions that we deem as worthwhile to pursue.

First of all, it is necessary to develop programs to automatically construct LSCs from

the OWL-S process models to make this approach more practical. Recently an OWL-

S editor has been developed5 as a plug-in for the Protégé OWL Editor [57]. It will

be valuable for OWL-S developers if they can obtain feedback, in terms of simulation

results, from Play-Engine simulations directly to the editor. Hence, such a deep

linking between Play-Engine and the OWL-S editor is desirable. Besides LSC and

Play-Engine, formal languages such as CSP [42] can also be considered to represent

OWL-S ontologies and their tool support, such as the FDR [83] or SPIN [43] model

checkers, may also be used to perform verification tasks. They are part of the future

research plan that will be detailed in the next chapter.

We foresee that Web Services will be a new and fruitful application domain of Software

Engineering (SE) methods and tools. Our approach, along with other approaches on

applying SE methods to the Web domain, offers both experience and possible tool

supports for developing Web services languages and techniques.

5cf. http://owlseditor.semwebcentral.org/index.shtml

130

http://owlseditor.semwebcentral.org/index.shtml

Chapter 8

Conclusion

This chapter serves two purposes. Firstly, a conclusion of the whole thesis is given,

summarizing the main contributions and secondly, a discussion on future work direc-

tions is also presented.

8.1 Main Contributions of the Thesis

Ontology languages form the foundation of the Semantic Web and they are of utter

importance to the upper-layer technologies in the Semantic Web, such as Web services,

trust modeling, etc.

As the Semantic Web is envisioned as a ubiquitous network for humans as well as

machines, software agents can cooperate and aggregate Web resources from different

sites to carry out complex tasks autonomously. Hence, automation of core reasoning

tasks performed by agents is very important. It is for this reason ontology languages

such as DAML+OIL and OWL are designed to be decidable.

131

Chapter 8. Conclusion

Decidability is achieved by limiting the expressivity of ontology languages.

Being based on description logics, a subset of first-order predicate logic, DAML+OIL

and OWL statements can only express properties with a limited degree of complexity.

Many desirable properties cannot be represented in these languages. Such a challenge

is often faced by Semantic Web developers as it is often the case that complex prop-

erties capture vital information pertaining to the validity of the ontology are too

complex to be modeled in DAML+OL or OWL, even in its most expressive species

OWL Full.

The newly proposed rules extension to OWL, the SWRL, partially solves the problem

by incorporating Horn-style clauses into OWL.

Being able to represent the complex properties is only the first step. The ability to

reason about ontologies and associated complex properties efficiently is at least as

important. However, as SWRL is undecidable, there is unlikely that a proof tool can

support all reasoning tasks for SWRL ontologies.

This thesis presents my research works in answering some of these challenges. The

five main contributions of this thesis can be summarized as follows.

• We identified the expressivity limitation of ontology languages and defined a Z

semantics (in Chapter 3) for the ontology languages DAML+OIL and OWL,

making it possible to use software engineering proof tools such as Z/EVES to

perform complex reasoning tasks on Semantic Web ontologies. We have shown

that properties crucial to the validity of an ontology can be checked by Z/EVES.

Some of these properties are inexpressible in ontology languages, even in SWRL.

• Based on the above work, we proposed a combined approach in Chapter 4,

exploiting the complementary power of software engineering proof tools such

as Z/EVES and Alloy Analyzer and Semantic Web reasoning engines such as

132

8.1. Main Contributions of the Thesis

RACER and FaCT++. The application of these tools in combination can verify

the correctness of DAML+OIL/RDF ontologies and debug inconsistent ontolo-

gies more effectively.

RACER and other Semantic Web reasoning engines are fully automated. Given

an ontology, these reasoners can judge whether it is consistent without user in-

teraction. However, as stated previously, the automation is based on the fact

that the expressivity of ontology languages is limited. Hence, complex proper-

ties inexpressible in these languages are certainly un-checkable by these tools.

Moreover, these description logics-based tools can only detect that there is an

inconsistency in the ontology, they cannot tell where and how this is caused,

making debugging large ontologies very hard.

Alloy Analyzer is an automated constraint solver with the ability of finding

the source of the error if there is one. This ability is achieved by giving a

finite scope to each Alloy specification to be solved by Alloy Analyzer. This fits

naturally with Semantic Web reasoning engines as Alloy Analyzer can be used

like a surgery tool to precisely locate the source of the inconsistencies found by

Semantic Web reasoning engines.

Theorem provers such as Z/EVES are very powerful and they can prove com-

plex properties that ontology languages and Alloy cannot represent. Hence, Z

language is used to represent complex properties about ontologies and Z/EVES

is used to perform a final proof of such complex properties interactively.

The above combined approach has been successfully applied to a military plan-

ning ontologies case study, where one ontological inconsistency was discovered

and located and a number of errors undetected by RACER and Alloy Analyzer

were found by Z/EVES.

• The applicability of the above combined approach largely relies on the soundness

of the Z/Alloy semantics for DAML+OIL and OWL DL. Hence, it is impor-

133

Chapter 8. Conclusion

tant to formally prove the soundness of these semantics. As OWL is based on

DAML+OIL and it has been recommended as the ontology language, we have

developed a Z semantics for OWL DL, a sub language of OWL that is most

comparable with DAML+OIL.

As ontology languages and Z are based on different logical systems, a more

abstract device that is able to represent and inter-relate different logical sys-

tems is needed to formally investigate their relationship. Institutions were intro-

duced to formalize the notion of logical systems. Institution morphisms provide

means of translating signatures of different institutions while preserving truth.

Hence, institutions and institution morphisms are natural candidates to prove

the soundness of Z semantics for OWL DL (hence DAML+OIL). In Chapter 5,

we have defined institutions O (for OWL DL) and Z (for Z) and used institution

comorphisms to prove the soundness of the above semantics.

• To ease the application of the combined approach, we have developed a tools

environment, the SESeW. Chapter 6 presented this environment in detail.

SESeW implements the ontology development methodology, the Methontology [29]

to systematically create an ontology. Given a number of terms in a particular

domain, a user can create an OWL ontology by following some simple steps to

designate terms to OWL classes, properties and individuals and relate them.

With an ontology, SESeW can perform a number of tasks. Firstly, a user can

transform it into specifications in various formal languages such as Alloy, Z and

PVS [79] fully automatically. Secondly, a user can query the ontology by issuing

RDQL [86] queries in the friendly interface provided by SESeW. A number of

query templates in the military domain have been created for non-expert users.

These templates simplifies the querying process by hiding non-necessary techni-

cal details.

Moreover, SESeW serves as a point of contact to the various external editing

134

8.1. Main Contributions of the Thesis

and reasoning tools such as OilEd, RACER, Alloy Analyzer and Z/EVES. It

can also invoke functionalities of RACER directly to check the consistency of a

given DAML+OIL or OWL ontology.

• In the development of the Semantic Web, a services ontology, the OWL Services

(OWL-S), has been developed to add semantic information to the Web services.

This is one step closer to realize the full potential of the Web.

This thesis presented an approach to visualize and simulate Semantic Web ser-

vices (OWL-S) [95] ontologies using Live Sequence Charts (LSCs) [18] and Play-

Engine [38].

The OWL-S ontology was developed to complement Web Services standards

such WSDL [14] to semantically markup the capabilities, requirements, control

constructs, inputs/outputs, preconditions and effects of Web services.

As OWL-S ontologies capture dynamic aspects of Web services, the core reason-

ing services, namely subsumption, consistency and instantiation, are no longer

adequate to ensure their correctness.

In Chapter 7, we translate OWL-S process models to Live Sequence Charts

and use Play-Engine to visualize and simulate them. By “playing out” the

charts, potential undesired scenarios can be detected early, without actually

implementing the services.

In summary, our research in this thesis attempts to answer some of the challenges

in the realization of the Semantic Web vision by representing and proving complex

ontology-related properties using a combination of software engineering and Semantic

Web techniques synergistically. It also opens up a new application domain for software

engineering languages and tools.

135

Chapter 8. Conclusion

8.2 Future Work Directions

Based on the works in this thesis, there are a number of directions of future research

that may be beneficial to the Semantic Web community. In this section, some of these

possible research works are briefly discussed.

8.2.1 Further Development of SESeW

As presented in Chapter 6, the SESeW tools environment is developed to ease the

application of the combined approach. Still in a prototype stage, there is room for

improvement. Based on the feedback from users, we will further improve it in the

following aspects:

Support of up-to-date RDF query engine Recently, a more sophisticated query

RDF language, the SPARQL [81] has been developed to replace RDQL. How

SESeW can support this query language is also a future research work.

Support of rules extension of OWL As we mentioned in the overview in Chap-

ter 2, SWRL [48] has been accepted by the W3C as a member submission. It

is layered on top of OWL to improve the expressivity of the Semantic Web lan-

guages. It is very likely for SWRL to be officially integrated into the Semantic

Web. Hence, it is necessary to keep SESeW updated with the technology trend.

The Z semantics for SWRL has been developed in Chapter 4. The Alloy and PVS

semantics for SWRL can be similarly defined. By incorporating transformation

procedures into SESeW, SWRL ontologies can be checked using software engi-

neering tools such as Z/EVES, Alloy Analyzer and the PVS theorem prover [78].

With the support of SWRL, we can look into SWRL FOL [9], an extension

of SWRL towards full first-order logic. With SWRL FOL, being a part of the

136

8.2. Future Work Directions

combined approach and SESeW, expressive power of Z and Alloy can be tapped

by translating Z theorems and/or Alloy assertions and facts into SWRL FOL

ontologies. By doing so, software engineering practitioners can work with on-

tologies with greater ease.

Tighter integration with external tools Some of the external reasoners used in

the combined approach such as Alloy Analyzer and RACER provide Java-based

APIs, which can be used to make direct function calls from within SESeW, e.g.,

calling reasoning functions from SESeW directly without invoking the GUI of

RACER to determine the consistency a given ontology.

This improvement has already been experimented where from SESeW, we can al-

ready invoke RACER’s methods to check the consistency of a given DAML+OIL/OWL

ontology.

More flexible support for ontology query Currently SESeW supports ontology

query with built-in query templates particularly geared towards the military

plan ontologies. It is our development plan that users are able to create, modify

and delete query templates in a future version.

8.2.2 Verification of Web Ontologies – Beyond Static Data

Semantically marked-up data on the Web alone cannot fulfill the full potential of the

Semantic Web. These data must be machine-interpretable and machine-processable.

Web Services, enable users to effect changes in the world. Built on top of OWL, the

OWL Services ontology OWL-S [95] provides semantic markup for low-level service

description languages. Looking into the issue on how software engineering techniques

and tools can benefit SW Services is another promising future research direction.

Chapter 7 presented our research of using Live Sequence Charts and Play-Engine to

137

Chapter 8. Conclusion

model, visualize and simulate OWL-S process models. With no open XML textual

representation of LSCs, the transformation from OWL-S to LSC is a manual process.

Model checking techniques [15] may prove to be applicable in this domain. Berghofer

and Nipkow [75] have recently developed a tool for Isabelle/HOL [76] that supports

random testing of specifications, which may be useful in specifying and verifying

Web services ontologies. The Communicating Sequential Processes (CSP) [42] is a

well-known event-based formal notation primarily aimed at describing the sequencing

of behavior within a process and the synchronization of behavior between different

processes. FDR (Failures-Divergence Refinement) [83] is a CSP model checker that

verifies CSP models automatically. It also provides a graphical interface for deter-

mining the source of errors by analyzing the trace of events that led up to the error.

Other model checkers such as SPIN [43] may also be used.

Symbolic Analysis Laboratory (SAL) [6] is a framework for combining different tools

for abstraction, program analysis, theorem proving and model checking. towards the

symbolic analysis of concurrent systems expressed as transition systems.

SAL defines a a common intermediate language to describe transition systems. This

intermediate language serves as a common medium from which various analysis tools

such as the PVS theorem prover and SMV [70] model checker can be invoked by

translating the intermediate language to the specific language used by these tools.

We believe that SAL can be a candidate environment for reasoning Web service

ontologies. Besides theorem proving and model checking, SAL specifications can

also be translated to Java code for animation purposes. By developing translators

to translate Web service ontologies to the SAL common intermediate language, the

above reasoning services can all be readily deployed.

138

8.2. Future Work Directions

8.2.3 Augmenting the Semantic Web with Belief

As the Web is a constantly evolving and totally distributed environment, software

agents may from time to time face incomplete, incoherent or incomplete data. This is

especially the case when the agent needs to aggregate data developed or maintained

by different sites. It will be valuable for agents in these situations to associate belief

with Web resources.

Currently, all ontology languages in the Semantic Web stack, such as RDF Schema,

OWL and SWRL, are based on crisp logics, in which all statements are interpreted to

be either true or false. Hence, the lack of the ability of associating confidence factors

with ontology statements is another prominent expressivity limitation of the current

ontology languages.

We believe that by extending ontology languages to allow fuzzy or belief-based inter-

pretations of statements will help to resolve the above problem. Belief Augmented

Frames (BAF) [93] is an extension to the Minsky knowledge representation sys-

tems [72]. In BAF, concepts are represented by frames and relations between concepts

are represented by slots. We associate a pair of values representing belief/disbelief val-

ues with each frame and slot. BAF-logic defines how the two values are calculated and

combined to give the confidence factor of a certain frame/slot. The belief/disbelief

values are obtained independent from each other, allowing for greater flexibility in

modeling ignorance and confidence.

The other future research direction that is worth to pursuit is to integrate BAF with

OWL and RDF to incorporate belief factors into the Semantic Web stack.

139

Chapter 8. Conclusion

140

Bibliography

[1] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krumme-

nacher, H. Lausen, A. Polleres, and R. Studer. Web Rule Language (WRL),

Version 1.0, 2005. http://www.wsmo.org/wsml/wrl/wrl.html.

[2] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,

D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet. Semantic Web Ser-

vices Language (SWSL). http://www.daml.org/services/swsf/1.0/swsl/,

2005.

[3] H. Baumeister. Relating abstract datatypes and Z-schemata. In D. Bert and

C. Choppy, editors, Recent Trends in Algebraic Development Techniques - Se-

lected Papers, volume 1827 of Lect. Notes in Comput. Sci., pages 366–382,

Bonas, France, 2000. Springer-Verlag.

[4] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able

ontology editor for the semantic web. In Proceedings of KI2001, Joint Ger-

man/Austrian conference on Artificial Intelligence, number 2174 in Lecture

Notes in Computer Science, pages 396–408, Vienna, September 2001. Springer-

Verlag.

[5] S. Bechhoffer. The dig description logic interface: Dig/1.1. Technical report,

The University Of Manchester, The University Of Manchester, Oxford Road,

Manchester M13 9PL, 2003.

141

http://www.wsmo.org/wsml/wrl/wrl.html
http://www.daml.org/services/swsf/1.0/swsl/

BIBLIOGRAPHY

[6] S. Bensalem, V. Ganesh, Y. Lakhnech, C. M. noz, S. Owre, H. Rueß, J. Rushby,

V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of

SAL. In C. M. Holloway, editor, LFM 2000: Fifth NASA Langley Formal

Methods Workshop, pages 187–196, Hampton, VA, jun 2000. NASA Langley

Research Center.

[7] T. Berners-Lee. Uniform Resource Identifiers (URI): Generic Syntax.

http://www.ietf.org/rfc/rfc2396.txt, 1998.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):35–43, 2001.

[9] H. Boley, M. Dean, B. Grosof, I. Horrocks, P. Patel-Schneider,

S. Tabet, and G. Wagner. SWRL FOL (November 2004).

http://www.daml.org/2004/11/fol/, Nov. 2004.

[10] D. Booth, M. Champion, C. Ferris, F. McCabe, E. New-

comer, and D. Orchard. Web Services Architecture.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, Feb. 2004.

[11] J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods. IEEE

Software, 12(4):34–41, 1995.

[12] J. P. Bowen and M. G. Hinchey. Ten Commandments of Formal Methods. IEEE

Computer, 28(4):56–63, 1995.

[13] J. Broekstra, M. Klein, S. Decker, D. Fensel, and I. Horrocks. Adding formal

semantics to the web: building on top of rdf schema. In ECDL Workshop on

the Semantic Web: Models, Architectures and Management, 2000.

[14] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-

vices Description Language (WSDL) 1.1. W3C, 1.1 edition, March 2001.

http://www.w3c.org/TR/wsdl.

142

http://www.ietf.org/rfc/rfc2396.txt
http://www.daml.org/2004/11/fol/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3c.org/TR/wsdl

BIBLIOGRAPHY

[15] E. Clarke. Automatic verification of finite state concurrent systems using tem-

poral logic specifications: A practical approach. In Proc. 10th ACM Symp. on

Princ. Prog. Lang., pages 117–127, 1983.

[16] E. Clarke and J. Wing. Formal methods: State of the art and future direc-

tions. ACM Computing Surveys, 28(4):626–643, Dec. 1996. Other working

group members: R. Alur, R. Cleaveland, D. Dill, A. Emerson, S. Garland, S.

German, J. Guttag, A. Hall, T. Henzinger, G. Hozmann, C. Jones, R. Kur-

shan, N. Leveson, K. McMillan, J. Moore, D. Peled, A. Pnueli, J. Rushbby, N.

Shankar, J. Sifakis, P. Sistla, B. Steffen, P. Wolper, J. Woodcock, and P. Zave.

[17] D. Brickley and R.V. Guha (editors). Resource description framework (rdf)

schema specification 1.0. http://www.w3.org/TR/rdf-schema/, Feb. 2004.

[18] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.

In Proceedings of the IFIP TC6/WG6.1 Third International Conference on For-

mal Methods for Open Object-Based Distributed Systems (FMOODS), page 451.

Kluwer, B.V., 1999.

[19] J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, and

A. Polleres. Relationship of WRL to relevant other technologies.

http://www.w3.org/Submission/WRL-related/, Sept. 2005.

[20] J. de Bruijn, R. Lara, A. Polleres, and D. Fensel. Owl dl vs. owl flight: concep-

tual modeling and reasoning for the semantic web. In A. Ellis and T. Hagino,

editors, WWW, pages 623–632. ACM, 2005.

[21] J. S. Dong, Y. Feng, and Y. F. Li. Reasoning Support for the OWL Rules Lan-

guage. In Proceedings of First International Colloquium on Theoretical Aspects

of Computing (ICTAC’04), Guiyang, China, Sept. 2004.

[22] J. S. Dong, Y. Feng, Y. F. Li, and J. Sun. A tools environment for devel-

oping and reasoning about ontologies. In Proc. of 12th Asia-Pacific Software

143

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/Submission/WRL-related/

BIBLIOGRAPHY

Engineering Conference (APSEC’05), Taipei, Taiwan, Dec. 2005.

[23] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. A Combined Approach to

Checking Web Ontologies. In Proceedings of 13th World Wide Web Conference

(WWW’04), pages 714–722, New York, USA, May 2004.

[24] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verifying DAML+OIL and be-

yond in Z/EVES. In Proceedings of 26th International Conference on Software

Engineering (ICSE’04), pages 201–210, Edinburgh, Scotland, May 2004.

[25] J. S. Dong, Y. F. Li, J. Sun, J. Sun, and H. Wang. XML-based static type

checking and dynamic visualization for TCOZ. In International Conference on

Formal Engineering Methods (ICFEM’02), pages 311–322, Shanghai, China,

Oct. 2002. LNCS, Springer-Verlag.

[26] J. S. Dong, Y. F. Li, and H. Wang. TCOZ Approach to Semantic Web Services

Design. In Proceedings of 13th World Wide Web Conference (WWW’04), pages

442–443, New York, USA, May 2004.

[27] J. S. Dong, J. Sun, and H. Wang. Checking and Reasoning about Semantic Web

through Alloy. In Proceedings of Formal Methods Europe: FME’03, volume 2805

of Lect. Notes in Comput. Sci., pages 796–814, Pisa, Italy, Sept. 2003. LNCS,

Springer-Verlag.

[28] R. Duke, G. Rose, and G. Smith. Object-Z: a Specification Language Advocated

for the Description of Standards. Computer Standards and Interfaces, 17:511–

533, 1995.

[29] M. Fernandez, A. Gomez-Perez, and N. Juristo. METHONTOLOGY: from

Ontological Art towards Ontological Engineering. In Proceedings of the AAAI97

Spring Symposium Series on Ontological Engineering, pages 33–40, Stanford,

USA, Mar. 1997.

144

BIBLIOGRAPHY

[30] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriks-

son, N. F. Noy, and S. W. Tu. The evolution of protégé: An environment for

knowledge-based systems development. Technical Report SMI-2002-0943, Stan-

ford Medical Informatics, Stanford University, 2002.

[31] J. Goguen and R. M. Burstall. Introducing institutions. In Proc. Logics of

Programming Workshop, number 164 in Lect. Notes in Comput. Sci., pages

221–256. Springer-Verlag, 1984.

[32] J. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specifi-

cation and Programming. Journal of the Association for Computing Machinery,

39(1):95–146, Jan. 1992. Predecessor in: LNCS 164, 221–256, 1984.

[33] J. Goguen and G. Roşu. Institution morphisms. Formal Aspects of Computing,

2002.

[34] T. Gruber. A translation approach to portable ontology specifications. Knowl-

edge Acquisition, 5(2):199–220, 1993.

[35] V. Haarslev and R. Möller. Practical Reasoning in Racer with a Concrete

Domain for Linear Inequations. In I. Horrocks and S. Tessaris, editors, Proceed-

ings of the International Workshop on Description Logics (DL-2002), Toulouse,

France, Apr. 2002. CEUR-WS.

[36] V. Haarslev and R. Möller. RACER User’s Guide and Reference Manual: Ver-

sion 1.7.6, Dec. 2002.

[37] D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements:

The Play-In/Play-Out Approach. Technical Report MCS01-15, The Weizmann

Institute of Science Rehovot, Israel, 2002.

[38] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using

LSCs and the Play-Engine. Springer-Verlag, 2003.

145

BIBLIOGRAPHY

[39] I. Hayes, editor. Specification Case Studies. International Series in Computer

Science. Prentice-Hall, 1987.

[40] J. Heflin. OWL Web Ontology Language Use Cases and Requirements.

http://www.w3.org/TR/2004/REC-webont-req-20040210/, Feb. 2004.

[41] M. Hinchey and J. P. Bowen, editors. Applications of Formal Methods. Prentice

Hall, 1995.

[42] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-

tional, 1985.

[43] G. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,

23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

[44] I. Horrocks. Fact++ web site. http://owl.man.ac.uk/factplusplus/.

[45] I. Horrocks. The FaCT system. Tableaux’98, LNCS, 1397:307–312, 1998.

[46] I. Horrocks. DAML+OIL: a description logic for the semantic web. IEEE Data

Engineering Bulletin, 25(1):4–9, 2002.

[47] I. Horrocks and P. F. Patel-Schneider. A proposal for an owl rules lan-

guage. In Proc. of the Thirteenth International World Wide Web Con-

ference (WWW 2004), pages 723–731, New York, USA, May 2004. ACM.

http://www.cs.man.ac.uk/~horrocks/DAML/Rules/.

[48] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, May 2004.

[49] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and

RDF to OWL: The making of a web ontology language. J. of Web Semantics,

1(1):7–26, 2003.

[50] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive

description logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

146

http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://owl.man.ac.uk/factplusplus/
http://www.cs.man.ac.uk/~horrocks/DAML/Rules/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

BIBLIOGRAPHY

[51] HP Labs. Jena Semantic Web Toolkit - version 1.

http://www.hpl.hp.com/semweb/jena1.htm.

[52] ISO/IEC 13568:2002. Information technology—Z formal specification

notation—syntax, type system and semantics, 2002. International Standard.

[53] ITU. Message Sequence Chart(MSC), Nov 1999. Series Z: Languages and gen-

eral software aspects for telecommunication systems.

[54] D. Jackson. Micromodels of software: Lightweight modelling and analysis with

Alloy. Available: http://sdg.lcs.mit.edu/alloy/book.pdf (an early version

has been published in TOSEM Vol-11), 2002.

[55] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy Constraint

Analyzer. In The 22nd International Conference on Software Engineering

(ICSE’00), pages 730–733, Limerick, Ireland, June 2000. ACM Press.

[56] Jos de Bruijn and Axel Polleres and Rubén Lara and Dieter Fensel. OWL−.

http://www.wsmo.org/wsml/wrl/wrl.html, 2004. Deliverable D20.1v0.2,

WSML.

[57] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé

OWL Plugin: An Open Development Environment for Semantic Web Appli-

cations. In Proceedings of the Third International Semantic Web Conference

(ISWC 2004),, Hiroshima, Japan, Nov. 2004.

[58] P. Lambrix. Description Logics home page.

http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html.

[59] S. M. Lane. Categories for the Working Mathematician. Springer-Verlag, New

York, second edition, 1985.

[60] C. H. Lee. Phase I Report for Plan Ontology. DSO National Labs, Singapore,

2002.

147

http://www.hpl.hp.com/semweb/jena1.htm
http://sdg.lcs.mit.edu/alloy/book.pdf
http://www.wsmo.org/wsml/wrl/wrl.html
http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html

BIBLIOGRAPHY

[61] Y. F. Li, J. Sun, G. Dobbie, J. Sun, and H. Wang. Validating Semistructured

Data using OWL. In Proceedings of the 7th International Conference on Web-

Age Information Management (WAIM’06), Hong Kong, China, June 2006.

[62] S. Liu. A Structured and Formal Requirements Analysis Method Based on

Data Flow Analysis and Rapid Prototyping. PhD thesis, The University of

Manchester, 1992.

[63] D. Lucanu, Y. F. Li, and J. S. Dong. Soundness proof of Z semantics of OWL

using institutions. In Fourteenth International Conference on World Wide Web

(WWW’05), pages 1048–1049, Chiba, Japan, May 2004.

[64] D. Lucanu, Y. F. Li, and J. S. Dong. Institution Morphisms for Relating OWL

and Z. In Proc. of The 17th International Conference on Software Engineering

and Knowledge Engineering (SEKE’05), Taipei, Taiwan, July 2005.

[65] D. Lucanu, Y. F. Li, and J. S. Dong. Semantic web languages – towards an

institutional perspective. In K. F. et al., editor, Algebra, Meaning and Compu-

tation, Festschrift in Honor of Prof. Joseph Goguen, volume 4060 of Lect. Notes

in Comput. Sci., pages 99–123. Springer-Verlag, 2006. to appear.

[66] M. Dean and G. Schreiber (editors). OWL Web Ontology Language Reference.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/, Feb. 2004.

[67] B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transac-

tions on Software Engineering, 26(2):150–177, Feb. 2000.

[68] F. Manola and E. M. (editors). RDF Primer.

http://www.w3.org/TR/rdf-primer/, Feb. 2004.

[69] D. L. McGuinness and F. van Harmelen (edi-

tors). OWL Web Ontology Language Overview.

http://www.w3.org/TR/2003/PR-owl-features-20031215/, Dec. 2003.

[70] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

148

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2003/PR-owl-features-20031215/

BIBLIOGRAPHY

[71] I. Meisels and M. Saaltink. The Z/EVES Reference Manual (for Version 1.5).

Technical Report TR-97-5493-03d, ORA Canada, One Nicholas Street, Suite

1208 - Ottawa, Ontario K1N 7B7 - CANADA, Sept. 1997.

[72] M. Minsky. A framework for representing knowledge. In J. Haugeland, edi-

tor, Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128.

MIT Press, Cambridge, MA, 1981.

[73] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr.

SETHEO and E-SETHEO – the CADE-13 systems. Journal of Automated

Reasoning, 18:237–246, 1997.

[74] D. Nardi and R. J. Brachman. An introduction to description logics. In

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,

editors, The description logic handbook: theory, implementation, and applica-

tions, pages 1–40. Cambridge University Press, 2003.

[75] S. B. T. Nipkow. Random testing in Isabelle/HOL. In Proceedings of the 2nd

Software Engineering and Formal Methods (SEFM 2004), Beijing, China, Sept.

2004. IEEE Computer Society Press. To appear.

[76] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[77] Ontoweb Ontology-Based Information. De-

liverable 1.3: A survey on ontology tools.

http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip.

[78] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.

In D. Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY, June 1992. Springer-Verlag.

149

http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip

BIBLIOGRAPHY

[79] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Lan-

guage Reference. Computer Science Laboratory, SRI International, Menlo Park,

CA, Dec. 2001.

[80] P. F. Patel-Schneider and I. Horrocks (editors). OWL: Direct Model-Theoretic

Semantics. http://www.w3.org/TR/owl-semantics/direct.html.

[81] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.

http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/, Apr. 2006.

[82] A. Riazanov and A. Voronkov. The design and implementation of vampire. AI

Communications, 15(2-3):91–110, 2002.

[83] A. W. Roscoe. Theory and Practice of Concurrency. International Series in

Computer Science. Prentice-Hall, 1997.

[84] M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G. Hinchey, and D. Till,

editors, ZUM’97: Z Formal Specification Notation, volume 1212 of Lect. Notes

in Comput. Sci., pages 72–85. Springer-Verlag, 1997.

[85] M. Saaltink. The Z/EVES 2.0 User’s Guide. Technical Report TR-99-5493-06a,

ORA Canada, One Nicholas Street, Suite 1208 - Ottawa, Ontario K1N 7B7 -

CANADA, Oct. 1999.

[86] A. Seaborne. RDQL - A Query Language for RDF, Jan. 2004.

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

[87] M. Sintek and S. Decker. triple—A query, inference, and transformation

language for the semantic web. In I. Horrocks and J. Hendler, editors, The

Semantic Web — ISWC 2002. Proceedings of the First International Semantic

Web Conference, volume 2348 of Lect. Notes in Comput. Sci., pages 364–378,

Sardinia, Italy, June 2002. Springer-Verlag.

150

http://www.w3.org/TR/owl-semantics/direct.html
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

BIBLIOGRAPHY

[88] J. M. Spivey. Understanding Z: A Specification Language and its Formal Seman-

tics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, 1988.

[89] J. M. Spivey. The Z Notation: A Reference Manual. International Series in

Computer Science. Prentice-Hall, 2nd edition, 1992.

[90] J. Sun, Y. F. Li, H. Wang, and J. Sun. ‘Visualizing and Simulating Semantic

Web Services Ontologies. In Proc. of 7th International Conference on Formal

Engineering Methods (ICFEM’05), pages 439–445, Manchester, UK, Nov. 2005.

LNCS, Springer-Verlag.

[91] J. Sun, H. Zhang, Y. F. Li, and H. Wang. Formal Semantics and Verifica-

tion for Feature Modeling. In Proc. of 10th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS’05). IEEE Press, June

2005.

[92] T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, Apr.

1997.

[93] C. K. Y. Tan. Belief Augmented Frames. PhD thesis, National University of

Singapore, 2003.

[94] A. Tarlecki. Moving between logical systems. In M. Haveraaen, O. Owe, and

O.-J. Dahl, editors, Recent Trends in Data Type Specifications. 11th Workshop

on Specification of Abstract Data Types, volume 1130 of Lect. Notes in Comput.

Sci., pages 478–502. Springer-Verlag, 1996.

[95] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.

http://www.daml.org/services/owl-s/, 2004.

[96] Tim Berners-Lee. cwm - a general purpose data processor for the semantic web.

http://www.w3.org/2000/10/swap/doc/cwm, 2004.

151

http://www.daml.org/services/owl-s/
http://www.w3.org/2000/10/swap/doc/cwm

BIBLIOGRAPHY

[97] D. Tsarkov and I. Horrocks. DL reasoner vs. first-order prover. In Proc.

of the 2003 Description Logic Workshop (DL 2003), volume 81 of CEUR

(http://ceur-ws.org/), pages 152–159, 2003.

[98] D. Tsarkov and I. Horrocks. Efficient reasoning with range and domain con-

straints. In Proc. of the 2004 Description Logic Workshop (DL 2004), pages

41–50, 2004.

[99] UDDI. Universal Description, Discovery, and Integration of Business for the

Web, October 2001. http://www.uddi.org.

[100] F. van Harmelen and D. Fensel. Formal methods in knowledge engineering. The

Knowledge Engineering Review, 10(4):345–360, 1995.

[101] F. van Harmelen, P. F. Patel-Schneider, and I. H. (editors). Reference descrip-

tion of the DAML+OIL ontology markup language. Contributors: T. Berners-

Lee, D. Brickley, D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J.

Hendler, O. Lassila, D. McGuinness, L. A. Stein, et. al., March, 2001.

[102] H. Wang. Semantic Web and Formal Design Methods. PhD thesis, National

University of Sinagpore, 2004.

[103] H. Wang, J. S. Dong, J. Sun, and Y. F. Li. TCOZ Approach to OWL-S Process

Model Design. In Proc. of The 17th International Conference on Software En-

gineering and Knowledge Engineering (SEKE’05), Taipei, Taiwan, July 2005.

[104] H. Wang, Y. F. Li, J. Sun, and H. Zhang. Verify Feature Models using

Protégé-OWL. In Fourteenth International Conference on World Wide Web

(WWW’05), pages 1038–1039, Chiba, Japan, May 2004.

[105] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan. A Semantic Web Approach

to Feature Modeling and Verification. In 1st Workshop on Semantic Web En-

abled Software Engineering (SWESE’05), Galway, Ireland, Nov 2005. LNCS,

Springer-Verlag. accepted.

152

http://ceur-ws.org/
http://www.uddi.org

BIBLIOGRAPHY

[106] J. Woodcock and S. Brien. W : A Logic for Z. In Proceedings of Sixth Annual

Z-User Meeting, University of York, Dec 1991.

[107] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.

Prentice-Hall International, 1996.

[108] World Wide Web Consortium (W3C). Extensible Markup Language (XML).

http://www.w3.org/XML.

[109] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version

1.0. http://www.w3.org/TR/xslt, 1999.

[110] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP)

1.1, 2000. http://www.w3c.org/TR/SOAP.

153

http://www.w3.org/XML
http://www.w3.org/TR/xslt
http://www.w3c.org/TR/SOAP

BIBLIOGRAPHY

154

Appendix A

Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesis. The glossary

is based on the glossary of Z notation presented in Hayes [39] with modifications to

reflect more closely the more recent Z notation of Spivey [89].

Mathematical Notation

A.1 Definitions and Declarations

Let x , xk be identifiers and let T ,Tk be non-empty, set-valued expressions.

LHS == RHS Definition of LHS as syntactically equivalent to RHS .

LHS [X1,X2, . . . ,Xn] == RHS
Generic definition of LHS , where X1,X2, . . . ,Xn are variables
denoting formal parameter sets.

x : T A declaration, x : T , introduces a new variable x of type T.

x1 : T1; x2 : T2; . . . ; xn : Tn

List of declarations.

x1, x2, . . . , xn : T =̂ x1 : T ; x2 : T ; . . . ; xn : T

155

Appendix A. Glossary of Z Notation

[X1,X2, . . . ,Xn] Introduction of free types named X1,X2, . . . ,Xn .

A.2 Logic

Let P ,Q be predicates and let D be a declaration or a list of declarations.

true, false Logical constants.

¬ P Negation: “not P”.

P ∧ Q Conjunction: “P and Q”.

P ∨ Q Disjunction: “P or Q or both”.

P ⇒ Q =̂ (¬ P) ∨ Q
Implication: “P implies Q” or “if P then Q”.

P ⇔ Q =̂ (P ⇒ Q) ∧ (Q ⇒ P)
Equivalence: “P is logically equivalent to Q”.

∀ x : T • P Universal quantification: “for all x of type T , P holds”.

∃ x : T • P Existential quantification: “there exists an x of type T such
that P holds”.

∃1 x : T • P Unique existence: “there exists a unique x of type T such that
P holds”.

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P
“For all x1 of type T1, x2 of type T2, . . . , and xn of type Tn ,
P holds.”

∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P
Similar to ∀.

∃1 x1 : T1; x2 : T2; . . . ; xn : Tn • P
Similar to ∀.

∀D | P • Q ⇔ ∀D • P ⇒ Q

∃D | P • Q ⇔ ∃D • P ∧ Q

t1 = t2 Equality between terms.

t1 6= t2 ⇔ ¬ (t1 = t2)

156

Appendix A. Glossary of Z Notation

A.3 Sets

Let X be a set; S and T be subsets of X ; t , tk terms; P a predicate; and D declara-

tions.

t ∈ S Set membership: “t is a member of S”.

t /∈ S ⇔ ¬ (t ∈ S)

S ⊆ T ⇔ (∀ x : S • x ∈ T)
Set inclusion.

S ⊂ T ⇔ S ⊆ T ∧ S 6= T
Strict set inclusion.

∅ The empty set.

{t1, t2, . . . , tn} The set containing the values of terms t1, t2, . . . , tn .

{x : T | P} The set containing exactly those x of type T for which P holds.

(t1, t2, . . . , tn) Ordered n-tuple of t1, t2, . . . , tn .

T1 × T2 × . . . × Tn

Cartesian product: the set of all n-tuples such that the kth
component is of type Tk .

first(t1, t2, . . . , tn)
=̂ t1
Similarly, second(t1, t2, . . . , tn) =̂ t2, etc.

{x1 : T1; x2 : T2; . . . ; xn : Tn | P}
The set of all n-tuples (x1, x2, . . . , xn) with each xk of type Tk

such that P holds.

{D | P • t} The set of values of the term t for the variables declared in D
ranging over all values for which P holds.

{D • t} =̂ {D | true • t}

PS Powerset: the set of all subsets of S .

P1 S =̂ P S \ {∅}
The set of all non-empty subsets of S .

157

Appendix A. Glossary of Z Notation

FS =̂ {T : P S | T is finite }
Set of finite subsets of S .

F1 S =̂ F S \ {∅}
Set of finite non-empty subsets of S .

S ∩ T =̂ {x : X | x ∈ S ∧ x ∈ T}
Set intersection.

S ∪ T =̂ {x : X | x ∈ S ∨ x ∈ T}
Set union.

S \ T =̂ {x : X | x ∈ S ∧ x /∈ T}
Set difference.

⋂
SS =̂ {x : X | (∀ S : SS • x ∈ S)}

Intersection of a set of sets; SS is a set containing as its mem-
bers subsets of X , i.e. SS : P(P X).

⋃
SS =̂ {x : X | (∃ S : SS • x ∈ S)}

Union of a set of sets; SS : P(PX).

#S Size (number of distinct members) of a finite set.

A.4 Numbers

R The set of real numbers.

Z The set of integers (positive, zero and negative).

N =̂ {n : Z | n ≥ 0}
The set of natural numbers (non-negative integers).

N1 =̂ N \ {0}
The set of strictly positive natural numbers.

m . . n =̂ {k : Z | m ≤ k ∧ k ≤ n}
The set of integers between m and n inclusive.

min S Minimum of a set; for S : P1 Z,
min S ∈ S ∧ (∀ x : S • x ≥ min S).

max S Maximum of a set; for S : P1 Z,
max S ∈ S ∧ (∀ x : S • x ≤ max S).

158

Appendix A. Glossary of Z Notation

A.5 Relations

A binary relation is modelled by a set of ordered pairs hence operators defined for

sets can be used on relations. Let X , Y , and Z be sets; x : X ; y : Y ; S be a subset

of X ; T be a subset of Y ; and R a relation between X and Y .

X ↔ Y =̂ P(X × Y)
The set of relations between X and Y .

x R y =̂ (x , y) ∈ R
x is related by R to y .

x 7→ y =̂ (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}
=̂ {(x1, y1), (x2, y2), . . . , (xn , yn)}
The relation relating x1 to y1, x2 to y2, . . . , and xn to yn .

domR =̂ {x : X | (∃ y : Y • x R y)}
The domain of a relation: the set of x components that are
related to some y.

ranR =̂ {y : Y | (∃ x : X • x R y)}
The range of a relation: the set of y components that some x
is related to.

R1
o
9 R2 =̂ {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z)}

Forward relational composition; R1 : X ↔ Y ; R2 : Y ↔ Z .

R1 ◦ R2 =̂ R2
o
9 R1

Relational composition. This form is primarily used when R1

and R2 are functions.

R∼ =̂ {y : Y ; x : X | x R y}
Transpose of a relation R.

idS =̂ {x : S • x 7→ x}
Identity function on the set S .

Rk The homogeneous relation R composed with itself k times:
given R : X ↔ X ,
R0 = idX and Rk+1 = Rk o

9 R.

159

Appendix A. Glossary of Z Notation

R+ =̂
⋃{n : N1 • Rn}

=
⋂{Q : X ↔ X | R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Transitive closure.

R∗ =̂
⋃{n : N • Rn}

=
⋂{Q : X ↔ X | idX ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Reflexive transitive closure.

R(| S |) =̂ {y : Y | (∃ x : S • x R y)}
Image of the set S through the relation R.

S ⊳ R =̂ {x : X ; y : Y | x ∈ S ∧ x R y}
Domain restriction: the relation R with its domain restricted
to the set S .

S −⊳ R =̂ (X \ S) ⊳ R
Domain subtraction: the relation R with the elements of S
removed from its domain.

R ⊲ T =̂ {x : X ; y : Y | x R y ∧ y ∈ T}
Range restriction to T .

R −⊲ T =̂ R ⊲ (Y \ T)
Range subtraction of T .

R1 ⊕ R2 =̂ (domR2 −⊳ R1) ∪ R2

Overriding; R1,R2 : X ↔ Y .

A.6 Functions

A function is a relation with the property that each member of its domain is associated

with a unique member of its range. As functions are relations, all the operators defined

above for relations also apply to functions. Let X and Y be sets, and T be a subset

of X (i.e. T : P X).

f t The function f applied to t .

X 7→ Y =̂ {f : X ↔ Y | (∀ x : dom f • (∃1 y : Y • x f y))}
The set of partial functions from X to Y .

160

Appendix A. Glossary of Z Notation

X → Y =̂ {f : X 7→ Y | dom f = X }
The set of total functions from X to Y .

X 7֌ Y =̂ {f : X 7→ Y | (∀ y : ran f • (∃1 x : X • x f y))}
The set of partial one-to-one functions (partial injections) from
X to Y .

X ֌ Y =̂ {f : X 7֌ Y | dom f = X }
The set of total one-to-one functions (total injections) from X
to Y .

X 7→→ Y =̂ {f : X 7→ Y | ran f = Y }
The set of partial onto functions (partial surjections) from X
to Y .

X →→ Y =̂ (X 7→→ Y) ∩ (X → Y)
The set of total onto functions (total surjections) from X to
Y .

X ֌→ Y =̂ (X →→ Y) ∩ (X ֌ Y)
The set of total one-to-one onto functions (total bijections)
from X to Y .

X 7 7→ Y =̂ {f : X 7→ Y | f ∈ F(X × Y)}
The set of finite partial functions from X to Y .

X 7 7֌ Y =̂ {f : X ֌ Y | f ∈ F(X × Y)}
The set of finite partial one-to-one functions from X to Y .

(λ x : X | P • t) =̂ {x : X | P • x 7→ t}
Lambda-abstraction: the function that, given an argument x
of type X such that P holds, gives a result which is the value
of the term t .

(λ x1 : T1; . . . ; xn : Tn | P • t)
=̂ {x1 : T1; . . . ; xn : Tn | P • (x1, . . . , xn) 7→ t}

disjoint [I ,X] =̂ {S : I 7→ P X | ∀ i , j : dom S • i 6= j ⇒ S (i) ∩ S (j) = ∅}
Pairwise disjoint; where I is a set and S an indexed family of
subsets of X (i.e. S : I 7→ P X).

S partition T =̂ S ∈ disjoint ∧ ⋃
ranS = T

161

Appendix A. Glossary of Z Notation

A.7 Sequences

Let X be a set; A and B be sequences with elements taken from X ; and a1, . . . , an

terms of type X .

seqX =̂ {A : N1 7→ X | (∃ n : N • domA = 1..n)}
The set of finite sequences whose elements are drawn from X .

seq∞ X =̂ {A : N1 7→ X | A ∈ seq X ∨ domA = N1}
The set of finite and infinite sequences whose elements are
drawn from X .

#A The length of a finite sequence A. (This is just ‘#’ on the set
representing the sequence.)

〈〉 =̂ {}
The empty sequence.

seq1 X =̂ {s : seq X | s 6= 〈〉}
The set of non-empty finite sequences.

〈a1, . . . , an〉 = {1 7→ a1, . . . , n 7→ an}

〈a1, . . . , an〉 a 〈b1, . . . , bm〉
= 〈a1, . . . , an , b1, . . . , bm〉
Concatenation.
〈〉 a A = A a 〈〉 = A.

head A The first element of a non-empty sequence:
A 6= 〈〉 ⇒ head A = A(1).

tail A All but the head of a non-empty sequence:

tail (〈x 〉 a A) = A.

last A The final element of a non-empty finite sequence:
A 6= 〈〉 ⇒ last A = A(#A).

front A All but the last of a non-empty finite sequence:

front (A a 〈x 〉) = A.

rev 〈a1, a2, . . . , an〉
= 〈an , . . . , a2, a1〉
Reverse of a finite sequence; rev 〈〉 = 〈〉.

162

Appendix A. Glossary of Z Notation

a/AA = AA(1) a . . . a AA(#AA)

Distributed concatenation; where AA : seq(seq(X)). a/〈〉 =
〈〉.

A ⊆ B ⇔ ∃C : seq∞ X • A a C = B
A is a prefix of B . (This is just ‘⊆’ on the sets representing
the sequences.)

squash f Convert a finite function, f : N 7 7→ X , into a sequence by
squashing its domain. That is, squash {} = 〈〉, and if f 6=
{} then squash f = 〈f (i)〉 a squash ({i} −⊳ f), where i =
min(dom f). For example, squash {2 7→ A, 27 7→ C , 4 7→
B} = 〈A,B ,C 〉.

A ↾ T =̂ squash (A ⊲ T)
Restrict the range of the sequence A to the set T .

A.8 Bags

bag X =̂ X 7→ N1

The set of bags whose elements are drawn from X . A bag is
represented by a function that maps each element in the bag
onto its frequency of occurrence in the bag.

[[]] The empty bag ∅.

[[x1, x2, . . . , xn]] The bag containing x1, x2, . . . , xn , each with the frequency that
it occurs in the list.

items s =̂ {x : ran s • x 7→ #{i : dom s | s(i) = x}}
The bag of items contained in the sequence s .

A.9 Axiomatic Definitions

Let D be a list of declarations and P a predicate.

The following axiomatic definition introduces the variables in D with the types as

declared in D. These variables must satisfy the predicate P. The scope of the variables

163

Appendix A. Glossary of Z Notation

is the whole specification.

D

P

A.10 Generic Definitions

Let D be a list of declarations, P a predicate and X1,X2, . . .Xn variables.

The following generic definition is similar to an axiomatic definition, except that the

variables introduced are generic over the sets X1,X2, . . .Xn .

[X1,X2, . . .Xn]

D

P

The declared variables must be uniquely defined by the predicate P .

164

Appendix A. Glossary of Z Notation

Schema Notation

A.11 Schema Definition

A schema groups together a set of declarations of variables and a predicate relating

the variables. If the predicate is omitted it is taken to be true, i.e. the variables are

not further restricted. There are two ways of writing schemas: vertically, for example,

S

x : N

y : seq N

x ≤ #y

and horizontally, for the same example,

S =̂ [x : N; y : seq N | x ≤ #y]

Schemas can be used in signatures after ∀, λ, {...}, etc.:

(∀ S • y 6= 〈〉) ⇔ (∀ x : N; y : seq N | x ≤ #y • y 6= 〈〉)
{S} Stands for the set of objects described by schema S . In decla-

rations w : S is usually written as an abbreviation for w : {S}.

A.12 Schema Operators

Let S be defined as above and w : S .

w .x =̂ (λ S • x)(w)
Projection functions: the component names of a schema may
be used as projection (or selector) functions, e.g. w .x is w ’s x
component and w .y is its y component; of course, the predicate
‘w .x ≤ #w .y ’ holds.

165

Appendix A. Glossary of Z Notation

θS The (unordered) tuple formed from a schema’s variables, e.g.
θS contains the named components x and y .

Compatibility Two schemas are compatible if the declared sets of each vari-
able common to the declaration parts of the two schemas are
equal. In addition, any global variables referenced in predicate
part of one of the schemas must not have the same name as
a variable declared in the other schema; this restriction is to
avoid global variables being captured by the declarations.

Inclusion A schema S may be included within the declarations of a
schema T , in which case the declarations of S are merged
with the other declarations of T (variables declared in both S
and T must have the same declared sets) and the predicates
of S and T are conjoined. For example,

T
S
z : N

z < x

is equivalent to

T
x , z : N

y : seq N

x ≤ #y ∧ z < x

The included schema (S) may not refer to global variables
that have the same name as one of the declared variables of
the including schema (T).

Decoration Decoration with subscript, superscript, prime, etc: systematic
renaming of the variables declared in the schema. For example,
S ′ is
[x ′ : N; y ′ : seq N | x ′ ≤ #y ′].

¬ S The schema S with its predicate part negated. For example,
¬ S is [x : N; y : seq N | ¬ (x ≤ #y)].

S ∧ T The schema formed from schemas S and T by merging their
declarations and conjoining (and-ing) their predicates. The

166

Appendix A. Glossary of Z Notation

two schemas must be compatible (see above).
Given T =̂ [x : N; z : P N | x ∈ z], S ∧ T is

S ∧ T
x : N

y : seq N

z : P N

x ≤ #y ∧ x ∈ z

S ∨ T The schema formed from schemas S and T by merging their
declarations and disjoining (or-ing) their predicates. The two
schemas must be compatible (see above). For example, S ∨ T
is

S ∨ T
x : N

y : seq N

z : P N

x ≤ #y ∨ x ∈ z

S ⇒ T The schema formed from schemas S and T by merging their
declarations and taking ‘ pred S ⇒ pred T ’ as the predi-
cate. The two schemas must be compatible (see above). For
example, S ⇒ T is

S ⇒ T
x : N

y : seq N

z : P N

x ≤ #y ⇒ x ∈ z

S ⇔ T The schema formed from schemas S and T by merging their
declarations and taking ‘ pred S ⇔ pred T ’ as the predi-
cate. The two schemas must be compatible (see above). For
example, S ⇔ T is

S ⇔ T
x : N

y : seq N

z : P N

x ≤ #y ⇔ x ∈ z

167

Appendix A. Glossary of Z Notation

S \ (v1, v2, . . . , vn)
Hiding: the schema S with variables v1, v2, . . . , vn hidden –
the variables listed are removed from the declarations and are
existentially quantified in the predicate. The parantheses may
be omitted when only one variable is hidden.

S ↾ (v1, v2, . . . , vn)
Projection: The schema S with any variables that do not occur
in the list v1, v2, . . . , vn hidden – the variables are removed from
the declarations and are existentially qualified in the predicate.
For example, (S ∧ T) ↾ (x , y) is

(S ∧ T) ↾ (x , y)
x : N

y : seq N

(∃ z : P N •
x ≤ #y ∧ x ∈ z)

The list of variables may be replaced by a schema; the variables
declared in the schema are used for projection.

∃D • S Existential quantification of a schema.
The variables declared in the schema S that also appear in the
declarations D are removed from the declarations of S. The
predicate of S is existentially quantified over D. For example,
∃ x : N • S is the following schema.

∃ x : N • S
y : seq N

∃ x : N •
x ≤ #y

The declarations may include schemas. For example,

∃ S • T
z : N

∃ S •
x ≤ #y ∧ z < x

168

Appendix A. Glossary of Z Notation

∀D • S Universal quantification of a schema.
The variables declared in the schema S that also appear in the
declarations D are removed from the declarations of S. The
predicate of S is universally quantified over D. For example,
∀ x : N • S is the following schema.

∀ x : N • S
y : seq N

∀ x : N •
x ≤ #y

The declarations may include schemas. For example,

∀ S • T
z : N

∀ S •
x ≤ #y ∧ z < x

A.13 Operation Schemas

The following conventions are used for variable names in those schemas which rep-

resent operations, that is, which are written as descriptions of operations on some

state,

undashed state before the operation,

dashed state after the operation,

ending in “?” inputs to (arguments for) the operation, and

ending in “!” outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

∆S =̂S ∧ S ′

Change of state schema: this is a default definition for ∆S . In
some specifications it is useful to have additional constraints

169

Appendix A. Glossary of Z Notation

on the change of state schema. In these cases ∆S can be
explicitly defined.

ΞS =̂ [∆S | θS ′ = θS]
No change of state schema.

A.14 Operation Schema Operators

pre S Precondition: the after-state components (dashed) and the
outputs (ending in “!”) are hidden, e.g. given,

S
x?, s , s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′

pre S is,

pre S
x?, s : N

∃ s ′, y ! : N •
s ′ = s − x? ∧ y ! = s ′

S o
9 T Schema composition: if we consider an intermediate state that

is both the final state of the operation S and the initial state
of the operation T then the composition of S and T is the
operation which relates the initial state of S to the final state
of T through the intermediate state. To form the composition
of S and T we take the pairs of after-state components of S and
before-state components of T that have the same basename,
rename each pair to a new variable, take the conjunction of the
resulting schemas, and hide the new variables. For example,
S o

9 T is,

S o
9 T

x?, s , s ′, y ! : N

(∃ ss : N •
ss = s − x? ∧ y ! = ss
∧ ss ≤ x? ∧ s ′ = ss + x?)

170

Appendix B

Z Semantics for DAML+OIL

In this appendix, we present the complete Z semantics for the ontology language

DAML+OIL. As DAML+OIL emphasizes on the description of abstract concepts,

discussion of concrete (data type-related) properties are not considered in the Z se-

mantics.

B.1 Basic Concepts

Everything in DAML+OIL (and RDF) is regarded a Web resource, hence, we make

Resource a given type, which is not interpreted.

In DAML+OIL, resources are grouped under various classes, which are related to

each other via properties. Hence, we model Class and Property as subsets of Resource.

Moreover, these two sets are disjoint.

[Resource]

Class : P Resource

Property : P Resource

Class ∩ Property = ∅

To link the members of a class to itself and the pairs of resources a property maps

171

Appendix B. Z Semantics for DAML+OIL

back to this property, we define two important auxiliary functions: instances and

sub val .

instances :
Class → P Resource

sub val :
Property → (Resource ↔ Resource)

In DAML+OIL, there are two pre-defined special classes: Thing and Nothing , which

is the super class/sub class of all classes, respectively. In other words, the instances

of Thing is the whole set Resource whereas Nothing does not hold any instance.

Thing ,Nothing : Class

instances(Thing) = Resource

instances(Nothing) = ∅

B.2 Class Elements

DAML+OIL defines a number of properties to relate classes. In this section, we

present the definitions of their Z counterparts. Note that these properties are trans-

lated as Z relations since they are meta-level properties.

The Z relations subClassOf , disjointWith, sameClassAs are all binary relations that

apply to two classes.

subClassOf , disjointWith, sameClassAs : Class ↔ Class

∀ c1, c2 : Class •
c1 subClassOf c2 ⇔ instances(c1) ⊆ instances(c2)

∀ c1, c2 : Class •
c1 disjointWith c2 ⇔ instances(c1) ∩ instances(c2) = ∅

∀ c1, c2 : Class •
c1 sameClassAs c2 ⇔ instances(c1) = instances(c2)

172

Appendix B. Z Semantics for DAML+OIL

Besides these binary relations, DAML+OIL also defines a number of boolean combi-

nations of classes. These include intersectionOf , unionOf and complementOf . The

relation disjointUnionOf combines disjiontWith and unionOf .

intersectionOf , unionOf : seq Class → Class

∀ cl : seqClass; c : Class •
intersectionOf (cl) = c ⇔ instances(c) =

⋂{x : ran cl • instances(x)}
∀ cl : seqClass; c : Class •

unionOf (cl) = c ⇔ instances(c) =
⋃{x : ran cl • instances(x)}

complementOf : Class ↔ Class

∀ c1, c2 : Class •
c1 complementOf c2 ⇔ Resource \ instances(c1) = instances(c2)

disjointUnionOf : seqClass → Class

∀ cl : seqClass; c : Class • disjointUnionOf (cl) = c ⇔
unionOf (cl) = c ∧
(∀ x , y : cl | x .1 6= y .1 • x .2 disjointWith y .2)

B.3 Class Enumeration

The class enumeration relation oneOf enumerates all the instances of a class.

oneOf : PResource → Class

∀ x : P Resource; c : Class • oneOf (x) = c ⇔ x = instances(c)

B.4 Property Restriction

Besides a class denoted by its name and class enumeration introduced above, class

expressions include also property restrictions.

173

Appendix B. Z Semantics for DAML+OIL

A toClass element defines the class c2 of all objects for which the values of property

p all belong to the class expression c1.

toClass : (Class × Property) → Class

∀ c1, c2 : Class; p : Property • toClass(c1, p) = c2 ⇔
instances(c2) =

{a : Resource | sub val(p)(| {a} |) ⊆ instances(c1)}

A hasValue element defines the class c of all objects for which the property p has at

least one value equal to the named object r or data type value (and perhaps other

values as well).

hasValue : (Resource × Property) → Class

∀ r : Resource; p : Property ; c : Class • hasValue(r , p) = c ⇔
instances(c) =

{a : Resource | r ∈ sub val(p)(| {a} |)}

A hasClass element defines the class c2 of all objects for which at least one value of

the property p is a member of the class expression or data type c1.

hasClass : (Class × Property) → Class

∀ c1, c2 : Class; p : Property • hasValue(c1, p) = c2 ⇔
instances(c2) =

{a : Resource | sub val(p)(| {a} |) ∩ instances(c1) 6= ∅}

DAML+OIL also defines a number of (qualified) cardinality-related constraints. For

example, the cardinality relation defines the class c of all objects that have exactly

n distinct values for the property p, i.e., a is an instance of c if and only if there are

exactly n distinct values mapped to a by p. Other relations are similarly defined.

174

Appendix B. Z Semantics for DAML+OIL

cardinality ,minCardinality ,maxCardinality : (N × Property) → Class

∀n : N; p : Property ; c : Class • cardinality(n, p) = c ⇔
instances(c) = {a : Resource | #(sub val(p)(| {a} |)) = n}

∀n : N; p : Property ; c : Class • minCardinality(n, p) = c ⇔
instances(c) = {a : Resource | #(sub val(p)(| {a} |)) ≥ n}

∀n : N; p : Property ; c : Class • maxCardinality(n, p) = c ⇔
instances(c) = {a : Resource | #(sub val(p)(| {a} |)) ≤ n}

The qualified cardinality constraints are similarly defined, except that the quantified

elements must be from a specific class expression.

cardinalityQ ,minCardinalityQ ,maxCardinalityQ : (N × Class × Property) → Class

∀n : N; c1, c2 : Class; p : Property • cardinalityQ(n, c1, p) = c2 ⇔
instances(c2) = {a : Resource | #(sub val(p)(| {a} |) ∩ instances(c1)) = n}

∀n : N; c1, c2 : Class; p : Property • minCardinalityQ(n, c1, p) = c2 ⇔
instances(c2) = {a : Resource | #(sub val(p)(| {a} |) ∩ instances(c1)) ≥ n}

∀n : N; c1, c2 : Class; p : Property • maxCardinalityQ(n, c1, p) = c2 ⇔
instances(c2) = {a : Resource | #(sub val(p)(| {a} |) ∩ instances(c1)) ≤ n}

B.5 Property Elements

In this section, we present the Z semantics of DAML+OIL language constructs for

describing properties. These constructs, such as domain, range, subPropertyOf , etc.,

are translated into Z functions or relations.

The following three relations model the relationship between two properties. They

are similar to those defined in Section B.2.

175

Appendix B. Z Semantics for DAML+OIL

subPropertyOf , samePropertyOf , inverseOf : Property ↔ Property

∀ p1, p2 : Property •
p1 subPropertyOf p2 ⇔ sub val(p1) ⊆ sub val(p2)

∀ p1, p2 : Property •
p1 samePropertyOf p2 ⇔ sub val(p1) = sub val(p2)

∀ p1, p2 : Property •
p1 inverseOf p2 ⇔ sub val(p1) = (sub val(p2))

∼

The relations domain and range maps a property to its domain and range, respec-

tively.

domain, range : Property → Class

∀ p : Property ; c : Class •
domain(p) = c ⇔ dom(sub val(p)) ⊆ instances(c)

∀ p : Property ; c : Class •
range(p) = c ⇔ ran(sub val(p)) ⊆ instances(c)

In DAML+OIL, a property can be transitive, unique (functional), or unambiguous

(inverse functional). Three properties are defined to model these characteristics.

TransitiveProperty ,UniqueProperty ,UnambiguousProperty : P Property

∀ p : Property •
p ∈ TransitiveProperty ⇔ (∀ x , y , z : Resource •

(x , y) ∈ sub val(p) ∧ (y , z) ∈ sub val(p) ⇒ (x , z) ∈ sub val(p))
∀ p : Property •
p ∈ UniqueProperty ⇔ (∀ x , y , z : Resource •

(x , y) ∈ sub val(p) ∧ (x , z) ∈ sub val(p) ⇒ y = z)
∀ p : Property •
p ∈ UnambiguousProperty ⇔ (∀ x , y , z : Resource •

(x , z) ∈ sub val(p) ∧ (y , z) ∈ sub val(p) ⇒ x = y)

B.6 Instances

DAML+OIL defines two properties to relate pairs of instances: sameIndividualAs

and differentIndividualFrom. They are modeled as relations in Z.

176

Appendix B. Z Semantics for DAML+OIL

sameIndividualAs : Resource ↔ Resource

differentIndividualFrom : Resource ↔ Resource

177

Appendix C

Z Semantics for OWL DL

In this chapter, we present the complete Z semantics for the ontology language OWL

DL. The presentation in this chapter will be divided into subsections roughly accord-

ing to [66].

C.1 Basic Concepts

As in the Z semantics for DAML+OIL, we model Resource as a given type.

[Resource]

In OWL, the instances of classes are grouped under one concept called Individual ,

which is modeled as a subset of Resource.

Individual : P Resource

As in DAML+OIL, Class and Property are similarly defined. Moreover, Class ,

Property and Individual are mutually disjoint.

179

Appendix C. Z Semantics for OWL DL

Class : P Resource

Property : PResource

Individual ∩Class = ∅
Property ∩ Class = ∅
Property ∩ Individual = ∅

Every class holds a number of individuals as its members. The function instances

maps a class to the set of Individuals it holds.

instances : Class → P Individual

As in DAML+OIL, OWL also defines the two special classes, Thing and Nothing .

Thing : Class

Nothing : Class

instances(Thing) = Individual

instances(Nothing) = ∅

In OWL DL, support for data types are more elaborate than in DAML+OIL. Hence,

we also tailor the Z semantics towards data types that might appear in the OWL

ontologies.

First of all, properties are further divided into 2 broad categories, those relate an

individual to another individual and those relate an individual to a value of a par-

ticular data type. These two types of properties are called ObjectProperty and

DatatypeProperty , which are disjoint with each other.

ObjectProperty : P Property

DatatypeProperty : P Property

ObjectProperty ∩ DatatypeProperty = ∅

Before presenting the definitions of these properties, define how these properties

are mapped to the pairs of resources that they relate. Two functions, sub val and

sub valD , are defined in Z.

180

Appendix C. Z Semantics for OWL DL

The function sub val is almost identical to that defined in Appendix B, except that

the domain is updated to ObjectProeprty and Resource is replaced by Individual .

sub val : ObjectProperty → (Individual ↔ Individual)

The function sub valD caters for the case where an individual is related to a data item

by a property. It is defined as a generic definition where the data type is represented

by the generic type X and the domain is changed to DatatypeProperty .

[X]
sub valD : DatatypeProperty → (Individual ↔ X)

C.2 Classes

C.2.1 Class Descrpitions

In this section, we will present the class descriptions, the building blocks for con-

structing OWL classes.

The simplest form of class description is, according to [66], by referring to the name

of the class. In Z, a concept must be declared before it is used. Hence, a class is

defined by using an axiomatic definition. When it is referred subsequently, its name

will be used, such as the class Individual when defining Class and Property in the

previous section.

Enumeration

As in DAML+OIL, OWL defines a class property oneOf that completely defines a

class by enumerating its instances.

181

Appendix C. Z Semantics for OWL DL

oneOf : P Individual → Class

∀ x : P Individual ; y : Class • oneOf (x) = y ⇔ x = instances(y)

Property Restrictions

In OWL, a property restriction usually describes an anonymous class by constraining

its membership through the use of a property. Two kinds of property restrictions are

defined: value constraints and cardinality constraints.

In OWL, the value constraints include three properties, namely allValuesFrom, someValuesFrom

and hasValue, which are similar to toClass , hasClass and hasValue defined in Ap-

pendix B.4.

Since these properties cater for both abstract and concrete values, we transform them

into different Z definitions, as detailed below.

allValuesFrom : (Class × ObjectProperty) → Class

∀ c1 : Class; p : ObjectProperty ; c2 : Class • allValuesFrom(c1, p) = c2 ⇔
instances(c2) =

{a : Individual | sub val(p)(| {a} |) ⊆ instances(c1)}

The above axiomatic definition of allValuesFrom handles the case where an OWL

class is constrained by another class and an object property. The following generic

definition allValuesFromD handles the case where an OWL class is constrained by a

(generic) data type and a data type property.

[X]
allValuesFromD : (P X × DatatypeProperty) → Class

∀ d : P X ; c : Class; p : DatatypeProperty • allValuesFromD(d , p) = c ⇔
instances(c) =

{a : Individual | (sub valD(p)(| {a} |)) ⊆ d}

182

Appendix C. Z Semantics for OWL DL

The treatment of someValuesFrom and hasValue are similar to that of allValuesFrom.

someValuesFrom : (Class × ObjectProperty) → Class

∀ c1, c2 : Class; p : ObjectProperty • someValuesFrom(c1, p) = c2 ⇔
instances(c2) =

{a : Individual | sub val(p)(| {a} |) ∩ instances(c1) 6= ∅}

[X]
someValuesFromD : (P X × DatatypeProperty) → Class

∀ t : P X ; p : DatatypeProperty ; c : Class • someValuesFromD(t , p) = c ⇔
instances(c) =

{a : Individual | sub valD(p)(| {a} |) ∩ t 6= ∅}

hasValue : (Individual × ObjectProperty) → Class

∀ r : Individual ; p : ObjectProperty ; c : Class • hasValue(r , p) = c ⇔
instances(c) =

{a : Individual | r ∈ sub val(p)(| {a} |)}

[X]
hasValueD : (X × DatatypeProperty) → Class

∀ r : X ; p : DatatypeProperty ; c : Class • hasValueD(r , p) = c ⇔
instances(c) =

{a : Individual | r ∈ sub valD(p)(| {a} |)}

The cardinality property constraints are updated based on those defined in DAML+OIL.

In OWL, qualified cardinality constraints are removed as they can be expressed by

using unqualified cardinality constraints and value constraints in conjunction.

To cater for data types, each of the cardinality constraints are also transformed into

two versions.

maxCardinality : (N × ObjectProperty) → Class

∀ c : Class; p : ObjectProperty ; n : N • maxCardinality(n, p) = c ⇔
instances(c) = {x : Individual | #(sub val(p)(| {x} |)) ≤ n}

183

Appendix C. Z Semantics for OWL DL

[X]
maxCardinalityD : (N × DatatypeProperty) → Class

∀ c : Class; p : DatatypeProperty ; n : N • maxCardinalityD(n, p) = c ⇔
instances(c) = {x : Individual | #[X](sub valD(p)(| {x} |)) ≤ n}

minCardinality : (N × ObjectProperty) → Class

∀ c : Class; p : ObjectProperty ; n : N • minCardinality(n, p) = c ⇔
instances(c) = {x : Individual | #(sub val(p)(| {x} |)) ≥ n}

[X]
minCardinalityD : (N × DatatypeProperty) → Class

∀ c : Class; p : DatatypeProperty ; n : N • minCardinalityD(n, p) = c ⇔
instances(c) = {x : Individual | #[X](sub valD(p)(| {x} |)) ≥ n}

cardinality : (N × ObjectProperty) → Class

∀ c : Class; p : ObjectProperty ; n : N • cardinality(n, p) = c ⇔
instances(c) = {x : Individual | #(sub val(p)(| {x} |)) = n}

[X]
cardinalityD : (N × DatatypeProperty) → Class

∀ c : Class; p : DatatypeProperty ; n : N • cardinalityD(n, p) = c ⇔
instances(c) = {x : Individual | #[X](sub valD(p)(| {x} |)) = n}

Boolean Combinations

A class description can also be one of the three boolean combinations, namely class in-

tersection, union and complement. The property disjointUnionOf defined in DAML+OIL

is removed from OWL as its effect can be achieved by using disjointWith and unionOf

in conjunction.

184

Appendix C. Z Semantics for OWL DL

intersectionOf : seqClass → Class

∀ cl : seqClass; c : Class • intersectionOf (cl) = c ⇔
instances(c) =

⋂{x : ran cl • instances(x)}

unionOf : seqClass → Class

∀ cl : seqClass; c : Class • unionOf (cl) = c ⇔
instances(c) =

⋃{x : ran cl • instances(x)}

complementOf : Class ↔ Class

∀ c1, c2 : Class •
c1 complementOf c2 ⇔ Individual \ instances(c1) = instances(c2)

C.2.2 Class Axioms

This section contains three properties that state the inter-class relationship, namely

subClassOf , equivalentClass and disjointWith.

The subClassOf is identical to that in DAML+OIL, which states that class c1 is a

sub class of c2 if its instances is a subset of c2.

subClassOf : Class ↔ Class

∀ c1, c2 : Class • c1 subClassOf c2 ⇔ instances(c1) ⊆ instances(c2)

As the name suggests, eqivalentClass states the conditions under which two classes

are equivalent.

equivalentClass : Class ↔ Class

∀ c1, c2 : Class • c1 equivalentClass c2 ⇔ instances(c1) = instances(c2)

Two classes are disjoint with each other if and only if the intersection of their instances

is an empty set.

185

Appendix C. Z Semantics for OWL DL

disjointWith : Class ↔ Class

∀ c1, c2 : Class • c1 disjointWith c2 ⇔ instances(c1) ∩ instances(c2) = ∅

C.3 Properties

C.3.1 RDF Schema Property Constructs

As stated in Section 2.1, RDF Schema can be regarded as the first ontology language.

It defines a number of language constructs for describing properties. In this section,

we present the transformation of these constructs, namely subPropertyOf , domain

and range. In OWL DL, all these three properties can be applied to both object

properties and datatype properties.

[X]
subPropertyOf : Property ↔ Property

∀ p1, p2 : Property • p1 subPropertyOf p2 ⇔
(p1 ∈ ObjectProperty ∧ p2 ∈ ObjectProperty) ⇒ sub val(p1) ⊆ sub val(p2) ∧
(p1 ∈ DatatypeProperty ∧ p2 ∈ DatatypeProperty) ⇒

sub valD [X](p1) ⊆ sub valD [X](p2)

The following two properties return the domain and range of a property respectively.

[X]
domain : Property → Class

∀ p : Property ; c : Class • domain(p) = c ⇔
p ∈ ObjectProperty ⇒ dom(sub val(p)) ⊆ instances(c) ∧
p ∈ DatatypeProperty ⇒ dom(sub valD [X](p)) ⊆ instances(c)

The property range defined in RDF Schema returns the range of the property. Since

186

Appendix C. Z Semantics for OWL DL

OWL DL allows this property to be applied to both object and datatype properties,

as before, we transform it to two versions in Z, one for each kind of properties.

range : ObjectProperty → Class

∀ p : ObjectProperty ; c : Class • range(p) = c ⇔
ran(sub val(p)) ⊆ instances(c)

[X]
rangeD : DatatypeProperty → P X

∀ p : DatatypeProperty ; d : PX • rangeD(p) = d ⇔
ran(sub valD(p)) ⊆ d

C.3.2 Relations to Other Properties

A property is equivalent to another property if its property extension is the same

as that of the other. This property is also defined for both object and datatype

properties.

[X]
equivalentProperty : Property ↔ Property

∀ p1, p2 : Property • p1 equivalentProperty p2 ⇔
((p1 ∈ ObjectProperty ∧ p2 ∈ ObjectProperty) ⇒

sub val(p1) = sub val(p2)) ∧
((p1 ∈ DatatypeProperty ∧ p2 ∈ DatatypeProperty) ⇒

sub valD [X](p1) = sub valD [X](p2))

The inverse of a property is another property with their domains and ranges flipped.

It is only applicable to object properties as the domain and range of such properties

must be of the same type.

inverseOf : ObjectProperty ↔ ObjectProperty

∀ p1, p2 : ObjectProperty • p1 inverseOf p2 ⇔
sub val(p1) = (sub val(p2))

∼

187

Appendix C. Z Semantics for OWL DL

C.3.3 Global Cardinality Constraints on Properties

A functional property is a property that can have only one (unique) value in its range

for each instance in its domain.

[X]
functionalProperty : PProperty

∀ p : Property • p ∈ functionalProperty ⇔
(p ∈ ObjectProperty ⇒ (∀ a : dom(sub val(p)) •

#(sub val(p)(| {a} |)) = 1)) ∧
(p ∈ DatatypeProperty ⇒ (∀ a : dom(sub valD [X](p)) •

#(sub valD [X](p)(| {a} |)) = 1))

An object property can be declared to be inverse-functional. If a property is declared

to be inverse-functional, the object of a property statement uniquely determines the

subject (some individual).

InverseFunctionalProperty : P ObjectProperty

∀ p : ObjectProperty • p ∈ InverseFunctionalProperty ⇔
(∀ a, b, c : Individual | (a, c) ∈ sub val(p) ∧ (b, c) ∈ sub val(p) • a = b)

C.3.4 Logical Characteristics of Properties

An object property can also be declared as being transitive. Formally speaking, if

pairs of individuals (a, b) and (b, c) are instances (members of the property extension)

of property p, then we can infer that (a, c) is also an instance of p.

TransitiveProperty : P ObjectProperty

∀ p : ObjectProperty • p ∈ TransitiveProperty ⇔
(∀ a, b, c : Individual • (a, b) ∈ sub val(p) ∧ (b, c) ∈ sub val(p) ⇒

(a, c) ∈ sub val(p))

188

Appendix C. Z Semantics for OWL DL

A symmetric property is a property for which holds that if the pair (x , y) is an

instance of a property p, then the pair (y , x) is also an instance of p. As the same

reason above, SymmetricProperty is a sub set of ObjectProperty .

SymmetricProperty : PObjectProperty

∀ p : ObjectProperty • p ∈ SymmetricProperty ⇔
(∀ a, b : Individual • (a, b) ∈ sub val(p) ⇒ (b, a) ∈ sub val(p))

C.4 Individuals

This section describes the properties that OWL defines for individuals.

C.4.1 Individual Identity

OWL provides three properties for stating the identity of an individual.

In OWL DL, the sameAs property states that two individuals are same as each other.

sameAs : Individual ↔ Individual

On the contrary to sameAs , differentFrom states that two individuals are actually

different.

differentFrom : Individual ↔ Individual

The property AllDifferent is defined in OWL for convenience to state the pairwise

disjointness among a list of individuals.

AllDifferent : P(seq Individual)

∀ ins : seq Individual • ins ∈ AllDifferent ⇔
(∀ x , y : ins | x .1 6= y .1 • x .2 differentFrom y .2)

189

	Introduction
	Motivation and Goals
	Thesis Outline
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

	Publications

	Background
	The Semantic Web -- Languages & Tools
	Semantic Web Services Ontology OWL-S
	Z & Alloy -- Languages & Tools
	Z
	Alloy

	Institutions & Institution Morphisms

	Checking Web Ontologies using Z/EVES
	Z Semantics for DAML+OIL
	Basic Concepts
	Class Elements
	Property Restrictions
	Property Elements
	Instances

	Import Mechanisms & Proof Support
	Military Plan Ontologies
	Transformation from DAML+OIL/RDF to Z
	Checking DAML+OIL Ontologies using Z/EVES
	Inconsistency Checking
	Subsumption Reasoning
	Instantiation Reasoning
	Instance Property Reasoning

	Chapter Summary

	A Combined Approach to Checking Web Ontologies
	Alloy Semantics for DAML+OIL
	Import Mechanisms & Proof Support

	Z Semantics for SWRL
	Transformation from Web Ontologies to Z & Alloy
	Transformation from SWRL to Z
	Transformation from DAML+OIL to Alloy

	The Combined Approach to Checking Web Ontologies
	An Overview of the Combined Approach
	Checking Military Plan Ontology
	Reasoning About More Complex Properties

	Chapter Summary

	Z Semantics for OWL: Soundness Proof Using Institution Morphisms
	The OWL Institution bold0mu mumu OORawOOOO
	The Grothendieck Institution of OWL

	The Institution bold0mu mumu ZZRawZZZZ
	The Use of the Mathematical Tool-kit

	Encoding 1.5bold0mu mumu OORawOOOO in 1.5bold0mu mumu ZZRawZZZZ
	Chapter Summary

	The Tools Environment: SESeW
	Overview of SESeW
	Ontology Creation
	Performance Evaluation

	Ontology Querying
	Ontology Transformation
	External Tools Connection
	Chapter Summary

	Simulating Semantic Web Services with LSCs and Play-Engine
	LSCs & Play-Engine
	Modeling OWL-S with LSCs
	Basics
	Processes

	Case Study
	System scenario
	Simulation

	Chapter Summary

	Conclusion
	Main Contributions of the Thesis
	Future Work Directions
	Further Development of SESeW
	Verification of Web Ontologies -- Beyond Static Data
	Augmenting the Semantic Web with Belief

	Glossary of Z Notation
	Definitions and Declarations
	Logic
	Sets
	Numbers
	Relations
	Functions
	Sequences
	Bags
	Axiomatic Definitions
	Generic Definitions
	Schema Definition
	Schema Operators
	Operation Schemas
	Operation Schema Operators

	Z Semantics for DAML+OIL
	Basic Concepts
	Class Elements
	Class Enumeration
	Property Restriction
	Property Elements
	Instances

	Z Semantics for OWL DL
	Basic Concepts
	Classes
	Class Descrpitions
	Class Axioms

	Properties
	RDF Schema Property Constructs
	Relations to Other Properties
	Global Cardinality Constraints on Properties
	Logical Characteristics of Properties

	Individuals
	Individual Identity

