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Abstract

This research is motivated by a need to simulate surgical suturing which will be

used in a microsurgery training system currently under development in a collabora-

tion between Control and Mechatronics laboratory, NUS and National University

Hospital. We have developed a palpable (the thread can be felt using a haptic

device) virtual nylon thread, which will be used in suturing training. This work

on thread led to discovery of problem of vibrations in haptics when bifurcations

are encountered. We have developed a novel technique to handle bifurcations in

haptics. The usual numerical techniques involve using second order Taylor series

approximation for energy of the system, and finding the equilibria using standard

Newton’s method. This fails near bifurcations, places where number of available

equilibria change suddenly. And leads to vibrations when feeling such a system

using haptic techniques. We use higher order energy approximation to solve this

problem. We show that higher order terms are necessary, but using bifurcation

theory prove that third and fourth derivatives of energy (second and third of force)

are sufficient.

We model first a single variable system which bifurcates, a Zeeman machine.

To our knowledge this is the first haptic realization for it. We demonstrate using

Zeeman machine that using third and fourth derivatives in energy approximation,

leads to elimination of vibrations . For a multi-variable system, like a 2D elastic

curve, which simulates a tape-like thread which has preferred plane of bending, the

number of third and fourth derivatives are huge and finding all of them is compu-

tationally expensive, an important consideration in haptics for avoiding vibrations

due to delayed response. We make use of splitting lemma and prove that it is suf-
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ficient to look for higher derivatives along a specific direction. This significantly

reduces the computational load as the higher derivatives can be found easily using

numerical differentiation along this direction. The results demonstrate that the

algorithm works excellently well.

We have developed an energy based method for simulating a nylon thread.

The nylon thread is an example of non-linear dynamics. It shows phenomenon

such as bifurcations, leading to ‘snap-through’ jumps and large flexible deforma-

tion, which is in essence of knotting. We model the thread energy using stretching

and bending energies, and find equilibria. The algorithm developed for handling

bifurcations is applied, and works extremely well. We successfully demonstrate

the phenomena associated with a real nylon thread in our virtual thread. Smooth

haptic experience is also achieved. A full description of thread will require in-

clusion of twisting energy and self-collision detection, and will be dealt with in

future. Nevertheless, our technique for the first time brings out the characteristic

features associated with a nylon thread, which are ignored sometimes for more

visual realism.
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Chapter 1

Introduction

Many studies have investigated interaction with, walls, hard surfaces, soft textured

surfaces, springy frictional surfaces. These are always surfaces of fixed shape, and

the local deformation depends on the user’s current input. On the other hand

many simulations - for example surgery - involve large scale changes of shape.

Pull a membrane, tear it off a gall bladder and you feel where it is still attached,

inches away. Pulling and pushing a nylon thread, such as that used in suturing

is a simpler but similar problem. The forces depend on the current shape and

the user’s input history. The current shape changes smoothly, but sometimes it

jumps.

Surgical simulation [2] requires simulating suturing process, wherein the sur-

geon manipulates a nylon thread to form a surgical knot. To make this thread

palpable, by which we mean that the thread can be felt using a force feedback

haptic device, dynamics based simulation of thread is required. Where a suture

(a)

G

(b)

G

(c)

G

Figure 1.1: The surgeon must create exactly the right loop (c) to reach through
for a knot, and does not trace its curve through the air, in contrast to knot tying
simulation based on geometry [1]. G refers to the grasped end of thread
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needle creates a track in tissue that the suture thread must follow, it is enough to

define a curve [1] by pulling a needle through it. However, a key step in surgical

knotting is to grasp one thread with the left forceps and create a loop through

which the right forceps reach the other (Fig. 1.1). The first grasp taken far to the

left, pushes grasped point rightwards in untraced space. Nylon mechanics forms

the loop, to the right of any point where the forceps tip has gone. A ‘following

simulation’, where the thread is like a multi-linked chain with one node leading

rest of the nodes, does not match the task. This example shows the unavoidable

need to simulate the bending of an elastic curve fixed at one point and subject to

a changing user-controlled constraint at another. The shape must come from me-

chanics, not by geometric tracking, and the surgeon must master this mechanics -

including the propensity to snap.

A nylon thread exhibits snap-through jumps (Fig. 1.3A), which are caused

whenever it passes through energy bifurcation. Understanding of this phenomenon

requires first defining a few concepts:

Equilibrium: A physical system is said to be in equilibrium when the derivative

of its energy with respect to the variables of the system is equal to zero. A

physical system not disturbed by external forces always reaches its equilib-

rium state corresponding to a minimum of energy. A system can have single

or multiple equilibria.

Bifurcation: A system is said to bifurcate when the number of equilibrium states

available to it change suddenly, with very slight change in the system pa-

rameters. For example, a system can have two stable equilibria at a given

time, with the system resting in one of them, and on changing the system

parameters slightly one will vanish.

The red ball in Fig. 1.2 illustrates the variable which defines the state of the system.

The curves show the energy as a function of system variables, for a fixed set of

system parameters. In Fig. 1.2A, the system has three equilibria (three places on

the energy curve where derivative of energy is zero), and the system is in one of the
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two local minima. With slight change in parameters, the equilibrium states of the

system change (Fig. 1.2B) and finally one stable minimum vanishes and the system

jumps to the remaining (now global) minimum (Fig. 1.2C). A similar phenomenon

is encountered when the tectonic plates of earth shift suddenly leading to massive

earthquakes [15] or when nylon thread undergoes snap-through jump.

A B C

Figure 1.2: Number of equilibrium states of the system changes near bifurcations.

In 3D simulation, just as with real nylon (Fig. 1.3), the shape taken by the

thread does not always change smoothly as G (the grasped end) smoothly moves.

This leads to a completely different class of problem in haptic simulation. Haptics

to date has generally concerned itself with systems where the response force F is

a function F (u) of the user’s immediate input u (t) at time t (typically a spatial

position (x, y, z), perhaps including orientation data for the grip, and sometimes

applied force, which may include torque). Ideally this would be an instantaneous

response — reasoning with Newton’s third law usually assumes that action and

reaction are equal, opposite, and also simultaneous — but real haptics prevents

this. Delayed response easily creates vibrations or chaos, and a large literature

has developed on preventing this. For example, [5], [6], [7], [8], [9], [10], [11]

discuss stability criteria for a force response law F (u), generally posing questions

equivalent to “If the user attempts to hold the device steady, or apply a steady

force, will the system converge to a steady state?”. We here address a different

source of instability, in a wider context, where the required returned force is a

function of input history (not merely of u (tnow), but of previous events).

The problem of handling bifurcation related instabilities can be solved by us-

ing higher order Taylor series approximation of thread energy, used in the energy
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minimizing scheme for simulating dynamics of thread. But in a multi-variable

system such as nylon thread it is not computationally feasible to calculate higher

derivatives in so many variables. This presents a technical challenge for the so-

lution scheme that has to be devised. In the first part of this thesis, we use

‘quasi-static’ mechanics to bring out the role of bifurcation (change in the set of

available equilibria), and the ways that bifurcation theory can reduce the computa-

tional load, but emphatically preserving the ‘snap’ buckling instability which still

arises in such systems (Fig. 1.3). We illustrate this with the first haptic realization

of the Zeeman machine [12], an example with minimal degrees of freedom and an

elastic 2D curve, example with many degrees of freedom. By using the second

and third derivatives of force instead of only the first one as in usual algorithms,

we can suppress the physical shaking both in numerical tests and experimental

implementations [13].

Several schemes have been used to model a rope or nylon for simulating knot

tying. In [1] Joel Brown proposed a geometric approach to realize real time knot

tying, in which the rope is modelled as a series of nodes linked together. The

grasped node (the leader) is followed by rest of the nodes (followers) such that

the internodal length remains constant. This follow-the-leader approach leads to

a visually nice but (even visually) incorrect knot-tying simulation, because the

thread’s mechanics, which play an important role in loop formation (Fig. 1.1) are

not considered. A dynamic approach was recently developed in our lab [3],[4],

in which the nylon thread is modelled as a series of masses and springs. Springs

implement stretching, bending and twisting. When the grasped node is perturbed,

the nodes move in direction of resultant force at each node until the force is zero.

Real time simulation is achieved with this approach, with effects such as twisting

are realized, however essential non-linearities in the mechanics of thread such as

snaps have not been dealt with. The second part of this thesis describes details

of loop formation which involves minimization of thread’s energy. We develop a

3D curve as a paradigm for 3D thread. The 3D curve is broken into segments

and computationally simple bending and stretching energies are associated with
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it. We find the equilibria of this system using the standard Newton method to

find equilibria of the thread subject to the constraints, which include the position

and direction of the grasped node and segment controlled using a PHANToM

haptic device(Fig. 1.4). Multiple equilibria lead to snap-through jumps which is

demonstrated by our nylon thread model as in Fig. 1.3C, 1.3D. When the currently

followed equilibrium vanishes, the nylon thread descends to another equilibrium

in a ‘snap-through’. The situation near bifurcations is handled with higher order

methods, where we use the scheme developed in the first part of this thesis, which

emphasizes its significance.

The thesis is organized as follows. Chapter 2 addresses the problem of vibra-

tions near bifurcations , illustrates it on Zeeman machine and 2D curve, introduces

a novel scheme for handling bifurcations, thereby eliminating these vibrations,

and demonstrates its effectiveness. In Chapter 3 we describe energy based scheme

developed by us and our three dimensional thread model. We emphasize the ap-

plication and significance of the scheme developed in Chapter 2 and demonstrate

the possibilities offered by the virtual thread.
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Figure 1.3: A manipulated nylon suture moves sometimes smoothly with
the forceps, sometimes jumps as the grip crosses an unseen boundary. A
shows this on a real nylon thread, and B in our simulation of a virtual ny-
lon thread. C shows unphysical chatter at the snap points occuring when
using a standard Newton algorithm approach. We developed a novel ap-
proach based on bifurcation theory to successfully address this problem, as
is illustrated in D. Visualizing the movement requires movies available at
http://guppy.mpe.nus.edu.sg/∼eburdet/People/ankur/video.html .
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Figure 1.4: A user manipulating virtual nylon thread using PHANToM haptic
device.
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Chapter 2

Handling Bifurcations in Haptics

2.1 Introduction

Haptics to date has generally concerned itself with systems where the response

force F is a function F (u) of the user’s immediate input u (t) at time t (typi-

cally a spatial position (x, y, z), perhaps including orientation data for the grip,

and sometimes applied force, which may include torque). Ideally this would be

an instantaneous response — reasoning Newton’s third law usually assumes that

action and reaction are equal, opposite, and also simultaneous — but real haptics

prevents this. Delayed response easily creates vibrations or chaos, and a large

literature has developed on preventing this. For example, [5], [6], [7], [8], [9],

[10], [11], discuss stability criteria for a force response law F (u), generally posing

questions equivalent to “If the user attempts to hold the device steady, or apply

a steady force, will the system converge to a steady state?”.

We in this thesis address a different source of instability, in a wider context,

where the required returned force is a function of input history (not merely of

u (tnow), but of previous events). The system model includes an internal state σ

of positions, momenta, etc., whose dynamics σ̇ (σ, u) depends on the current state

but is also influenced by u, and response force F is a function F (u, σ) of both the

current input and the state which the system has reached. There can be instability

from a number of sources, notably:
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Figure 2.1: We consider a more tape-like thread, whose buckling can stay in its
preferred-bending plane, with left end clamped. Moving the right end R vertically
causes snaps between ‘bent up’ and ‘bent down’ states a–h. Corresponding heights
for a reference point r on the curve jump up or down after R has crossed the mid-
level. In i the evolution is tracked using our algorithms: j, computed by a standard
approach, shows unphysical chatter at the snap points. Related video is available
at [14].

1. The dynamics σ̇ may be oscillatory or chaotic even for constant u, and even

for the real system modelled. (A fibrillating heart feels chaotic, like a handful

of excited worms, and a simulation should feel the same.)

2. Delay in computing F may introduce inappropriate instability, in interaction

with the changes in u resulting from the user-side response law u̇ (u, F ).

(We include under u̇ such neuromotor effects as change in position under

the combined forces of the haptic device and the user’s muscles, tendons,

etc. These affect the dynamics even where force due to the user is not

mechanically sensed as an input to the haptics.)

3. Instability in computing σ̇, with consequent fluctuations in F (u, σ), even

if F has no impact on the evolution of u. This is particularly liable to

occur transiently where u is changing and the dynamics of σ̇ pass through a
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bifurcation point. The convergence criterion used in much of the literature,

which assumes a user is not attempting to change σ, is unhelpful for such

transients.

We here address (3), barring oscillations and chaos by ‘quasi-static’ mechanics to

bring out the role of bifurcation, and the ways that bifurcation theory can reduce

the computational load, but emphatically preserving the ‘snap’ buckling instability

which still arises in such systems (Fig. 2.1). We compute the haptic response F ,

replacing F (u) by an implicit force law, but do not in our simulations allow u to

respond to it. For a clear focus on source (3), we change u in a pre-programmed,

unresponsive way and thus exclude (2), though user experiments with a real haptic

device cannot uphold such an exclusion. The physical shaking that prompted this

study is in fact suppressed in both our numerical and our experimental tests,

supporting the relevance of our analysis and the computational strategy it gives

rise to.

Most equilibria — vanishing points for force — are efficiently found by New-

ton’s method, based on the first derivative of force as a function of state. This lin-

earization of force works well wherever the linear approximation is non-degenerate,

which is true near most individual equilibria. However, bifurcation occurs at points

where the linear approximation is degenerate, and in sustained interaction such

points can be topologically unavoidable. Buckling, in particular, is a feature of real

manipulated systems such as surgical stents and sutures, and buckling is rooted

in bifurcation.

We describe the system in which we first encountered this problem, and an

illustrative example (the ‘Zeeman machine’ [12] with minimal internal degrees of

freedom. In each case the reduction techniques of bifurcation theory show that

higher derivatives of force than the first become important numerically, but that

the second and third are sufficient: we illustrate this with a haptic realization of

the Zeeman machine. For n internal degrees of freedom, an energy-minimizing

force has n (n + 1) /2 first derivatives but n (n + 1) (n + 2) (n + 7) /24 second and

third, which would confine use of this to small systems, except that theory also

10



drastically limits the ones actually needed. We illustrate this with a 2D elastic

curve simulation.

2.2 Instability Studies

Most of the literature generally poses questions equivalent to “If the user attempts

to hold the device steady, or apply a steady force, will the system converge to a

steady state?” Fundamental stability and performance issues associated with hap-

tic interaction are addressed in [5], [6]. Necessary and sufficient conditions for the

stability of a haptic simulation are developed, assuming the human operator and

virtual environment are passive. In the dissertation [7] and [8], [9], the problem

of guaranteed stability in the haptic display of virtual environments is addressed.

An implementation of stiff virtual wall is being focussed upon. A wall represents

boundary between zone of high stiffness and low stiffness. It has been observed

that humans are adept at adjusting their behavior to destabilize a virtual wall, if

possible. In other words, users will quickly find ways to setup a sustained or grow-

ing oscillations by gripping the haptic device lightly or firmly, as necessary. The

ability to set up oscillations is evidence of active walls : because the frequencies

of these oscillations are often outside the range of voluntary motion, and because

this behavior is not observed with physical walls, it is evident that the energy sup-

ply for the oscillations is the virtual wall, not the human. Suitable criteria have

been developed to make the wall passive. Colgate et.al. in [10] and [11] inves-

tigated non-linear mass/spring/damper virtual environments designed to prevent

oscillations in haptic display and other chaotic behavior in the signal presented to

human operator.

The scheme developed in this thesis is, to the best of our knowledge, the first

in haptics to address oscillations arising near bifurcations. No previous work for

comparison is available.
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2.3 Elastic buckling

This study was prompted by work towards simulation of surgical suturing [2]. The

details of loop formation involve minimization of energy, an essentially 3D matter

discussed in detail in next chapter. The shape must come from the mechanics, not

by geometric tracking, and the surgeon must master this mechanics — including

the propensity to snap.

In 2D or 3D simulation (Fig. 2.1), just as with real nylon, the shape taken

by the thread does not always change smoothly as grasped end smoothly moves.

The change in the set of available equilibria (the bifurcation) that makes it jump

causes numerical failure, in techniques that work well at points of smooth behavior.

We take the 2D case here for clarity, as it well exemplifies snaps and continuous

buckling, and we can handle them without sacrificing haptic speed.

(x0, y0)
(x1, y1)

(x2, y2)

(xi , yi)
(xi+1, yi+1) (xn, yn)

t1

t2

ti
ti+1 ti+2

tn

P

Figure 2.2: Two-dimensional elastic curve model.

2.3.1 Elastic curve model

We here provide a brief insight into a 2D curve model, which is sufficient to

understand the concepts involved in this chapter. This resembles a more-tape-like

thread, whose buckling can stay in its preferred bending plane. A detailed analysis

in three dimensions will be described in the next chapter. We model the 2D curve

(Fig. 2.2) using nodes (xi, yi), separated by vectors vi = (xi, yi) − (xi−1, yi−1)

giving unit tangent vectors ti = vi/ ‖vi‖. A configuration c is given by the 2n− 1

non-constants in (0, 0, x1, 0, . . . , xn, yn). For computational speed we take bending
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energy proportional to bi (c) = 1−ti−1 ·ti at node i: to third order this matches the

square of the node’s bending angle, which normally remains small. An extension

energy ei (c) = γ (‖vi‖ − li)
2, where li is a reference length, allows for compression

and stretching. We fix (x0, y0) = (0, 0) and clamp the end by setting y1 ≡ 0. We

‘grasp’ by letting the user (or a program simulating the user) fix a point (X,Y ),

giving

(x0, y0, y1, xn, yn) = (0, 0, 0, X, Y ) (2.1)

as current constraint. The total energy is

E (c) =
n∑

i=1

(
bi (c) + ei (c)

)
. (2.2)

2.3.2 Equilibrium surface

We thus identify an equilibrium — subject to (2.1) — with a state c such that

[
∂E
∂x1

(c) ∂E
∂x2

(c) ∂E
∂y2

(c) · · · ∂E
∂xn−1

(c) ∂E
∂yn−1

(c)

]

=
[

0 · · · 0

]
, (2.3)

These 2n − 3 equations and (2.1) typically define a set of isolated points in

(0, 0,x1, 0, . . . , xn−1, yn−1)-space, for fixed (X, Y ), and a 2D surface M in the

(2n− 1)-dimensional space of (0, 0, x1, 0, . . . , xn−1, yn−1, X, Y ) space with all (X, Y )

considered. For each m in M there is a force f(m) appropriate for the haptic de-

vice to deliver to the user (see §2.3.4 below), but since there is not a unique m for

each (X, Y ), f does not define a haptic response force F (X, Y ) as a function of

user position. This is clearest in the analogous case of a simpler elastic system, the

Zeeman machine (Fig. 2.3), which has often been simulated but not previously (to

our knowledge) haptically. It is not a flexible-cruve system - except in the ignored

sense that the elastic strings could bend - but undergoes an bifurcation identical

to the nylon thread. The following account (§ 2.3.3) follows [12], and serves here

as an introduction to this bifurcation, and the methods available for its analysis.
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elastic fixed end

elastic
attached to wheel

wheel

control for
free end

control pts
with shared
equilibrium
angle

1

(0,-3)

x

y

(X,Y)

L1

L2

Y = Y0

θ

A

B C D

Figure 2.3: The Zeeman machine: a unit-radius wheel (diagram A) turns about
(x, y) = (0, 0) attached to elastica held at (0,−3) and at (X,Y ) with unextended
lengths 1 and Young’s Modulus γ = 2. (Other dimensions would give equivalent
results.) For the quasi-static behavior discussed here the wheel should not be heavy
or frictionless, but static friction should be low. B shows the physical prototype we
have built, C the virtual one, and D the reach-in haptic environment for interaction
with it. Related videos are available at [14].
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2.3.3 Zeeman machine

Zeeman Machine is a simple example of systems demonstrating energy bifurca-

tions. Bifurcation is a phenomenon where a system encounters change in the

number of equilibrium states available, with a slight change in the control param-

eters of the system. Fig. 2.3A explains the Zeeman Machine. Moving the control

(X,Y ) in Fig. 2.3A modifies the energy dependence on θ,

E(X,Y ) (θ) =

(√
sin2 θ + (cos θ − 3)2 − 1

)2

+

(√
(X + sin θ)2 + (Y + cos θ)2 − 1

)2

. (2.4)

Expanding in θ and
(
X, Ỹ

)
= (X,Y0 − Y ), where (0, Y0) =

(
0,

(
3 +

√
33

)
/4

)
is

the lower cusp point in Fig. 2.3A, gives

E(X,Ỹ ) (θ) = C
(
X, Ỹ

)
+

(
141− 21

√
33

16

)
θ4

4

+
(√

33− 3
)

Ỹ
θ2

2
+

(
33− 7

√
33

8

)
X θ + tayl (2.5)

where ‘tayl’ represents terms above fourth order in θ or above linear in
(
X, Ỹ

)
.

We chose Y0 to give a vanishing θ2 term when Ỹ = 0, so that when X = 0 the

angle θ = 0 gives a local minimum for E when Ỹ > 0 and a local maximum

when Ỹ < 0. With these non-zero coefficients, ‘k-determinacy’ test (AppendixA,

[15]) guarantees the following: there exists, for small θ, X and Ỹ , a change of

coordinates to

X̂ = X + O2
(
X, Ỹ

)
Ŷ = Ỹ + O2

(
X, Ỹ

)
(2.6)

t = θ + O2
(
θ,X, Ỹ

)

which smoothly replaces X and Ỹ by coordinates that to first order are the same,

and reparametrizes θ in an
(
X, Ỹ

)
-dependent way that also leaves it unchanged
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to first order, and gives

e(X̂,Ŷ ) (t) = Ĉ
(
X̂, Ŷ

)
+

(
141− 21

√
33

16

)
t4

4
(2.7)

+
(√

33− 3
)

Ŷ
t2

2
+

(
33− 7

√
33

8

)
X̂ t exactly,

with no neglected higher terms unless we approximate the
(
X̂, Ŷ

)
-dependent

constant Ĉ by linear expansion1 For convenience we rescale to

Y =
4
√

33− 12√
141− 21

√
33

Ŷ , X =
33− 7

√
33

4
4
√

141− 21
√

33
X̂ ,

T = t
4
√

141− 21
√

33

2
(2.8)

giving

e(X,Y ) (T ) = C
(
X, Y

)
+

T 4

4
+ Y

T 2

2
+ XT (2.9)

The constant-free version T 4/4 + Y T 2/2 + XT is known as the standard cusp:

very many bifurcations reduce to it in this way. For small T the T -positions of

equilibria, where ∂e/∂T = 0, correspond closely to the positions of points where

∂E(X̂,Ŷ )

∂θ
= 0 (2.10)

exactly, that truly exist for small enough
(
X, Y

)
. This is in contrast to the zeros

of an example like

u2 + 4uv2 + O4(u, v) : (2.11)

the bare cubic u2+ 4uv2 vanishes on the u-axis and on u = −2v2, while u2 +

4uv2 + 5v4 = (u + 2v2)
2

+ v4 vanishes only at (0, 0). Since u2+ 4uv2 + O4(u, v)

allows both possibilities, little can be said about its zeroes, unlike those of ∂E/∂θ

above. However,

W (u, v) = u2 + 4uv2 + O5(u, v) (2.12)

1Most expositions of unfolding theory discard this ‘variable constant’ term, as merely repre-
senting a change of origin in energy space. This is reasonable if one is concerned only with the
θ values at equilibria, but for haptics we are concerned also with actual energy.
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X

X

Y

Y

T

Figure 2.4: The equilibrium surface (2.13), in
(
X, Y , t

)
space and in projection to(

X, Y
)

space. The lines are derived from (2.13) and lie on the equilibrium surface.
For any fixed value of T, a line is defined by the equation. The lines help in
visualizing the correspondence between the equilibrium surface and its projection.
The points on dotted lines, and their projections, correspond to unstable equilibria

(energy maxima). Any control with
(
X, Y

)
with 27X

2
< 4Y

3
gives an unstable

equilibrium between two stable ones

is locally exactly reducible — for any O5(u, v) remainder — to the form U2+4UV 2

with no tayl, by a smooth coordinate change (U, V ) = (U(u, v), V (u, v)) which to

first order is the identity. The Taylor polynomial u2 + 4uv2 is 4-determinate,

considered as a 4th order expansion with 0 quartic term: any 5th addition can

locally be transformed away. It is not 3-determinate, since quartic additions can

change it.

The equilibrium condition, for varying
(
X, Y

)
, gives

T 3 + Y T + X = 0. (2.13)

Moving the control
(
X, Y

)
has interesting effects on the wheel, which generally

stays near the equilibrium surface until a jump is forced by meeting a fold. To-

and-fro X motion with Y < 0 gives hysteresis, while looping clockwise around the
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cusp point gives repeated upward jumps in T as
(
X, Y

)
crosses the X < 0 branch

of the cusp curve, alternating with smooth decrease. Looping anti-clockwise gives

smooth increase, alternating with repeated jump decreases when crossing the X >

0 branch [14].

We model this with the ‘quasi-static’ assumption that as
(
X, Y

)
varies, T in

(2.13) or θ in (2.4) moves continuously — if possible — to occupy always a lo-

cal minimum, neglecting inertial terms. This extends the common assumption

that a single elastic string always has the minimal energy configuration (straight,

and stretched evenly between its end points) that as in (2.4) makes its energy

a quadratic function of the end positions, ignoring transient vibrations through

curved states. Here, however, the function is of higher order, with multiple min-

ima, and as
(
X, Y

)
varies the set of equilibria can bifurcate, changing its count

and topology.

2.3.4 Haptic forces on the controls

As with a plain elastic string, the force on the free end P may be defined as the

‘covector’ f mapping infinitesimal changes δ =
(
δX, δY

)
in the position

(
X, Y

)

of P to the energy f
(
δ
)

such δ subtract from the system, most often via the

unique vector F such that F · δ = f
(
δ
)
. One result of bifurcating minima is

that the equilibrium equation (2.3, 2.10, or 2.13) does not define the state as a

function θequ (x, y) of the controlled end. Nor, therefore, does a unique energy

e
(
X, Y

)
= E(X,Y )

(
θequ

(
X, Y

))
for each

(
X, Y

)
, exist as for a spring. We can-

not therefore compute the energy change required in adding δ to
(
X, Y

)
as a δe

found by differentiation of e, since e does not exist. We must implicitly differ-

entiate E(X,Y ) (θ) subject to the equilibrium condition. This is straightforward

at an equilibrium point
(
x, y, θ

)
where ∂2E/∂θ2 6= 0, giving a non-degenerate

linearization in
(
x̃, ỹ, θ̃

)
=

(
x− x, y − y, θ − θ

)

∂2E

∂x∂θ

∣∣∣∣
(x,y,θ)

x̃ +
∂2E

∂y∂θ

∣∣∣∣
(x,y,θ)

ỹ +
∂2E

∂θ2

∣∣∣∣
(x,y,θ)

θ̃ = 0 (2.14)
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θ ≈ θ −
∂2E
∂x∂θ

∣∣∣
(x,y,θ)

x̃ + ∂2E
∂y∂θ

∣∣∣
(x,y,θ)

ỹ

∂2E
∂θ2

∣∣
(x,y,θ)

(2.15)

The Implicit Function Theorem ensures that there is a smooth function θ (x, y)

locally approximated to O2 (x̃, ỹ) by the linear one (2.15), giving θ’s local equilib-

rium value as a function of x and y, and thus that there is no bifurcation — the

equilibrium moves, but persists. Inserting (2.15) into E for a locally defined energy

e (x̃, ỹ) suffices, by the Chain Rule, to find

[
∂e/∂x̃ ∂e/∂ỹ

]
at (x, y) and thus

the force there. (With N internal variables xi, the corresponding condition is non-

degeneracy of [∂2E/∂xi∂xj].) The logic is more subtle where ∂2E/∂θ2 vanishes,

since the theorem does not apply and the number of equilibria can change discon-

tinuously.

As (2.9) still exactly represents the original energy of the system, merely rela-

belling the equilibria by reparametrizing the states and controls, the energy cost

of a change is unaltered. First derivatives in the X and Y directions suffice to

compute force, so we replace (2.9) by

E(X,Y ) (T ) = CXX + CY Y +
T 4

4
+ Y

T 2

2
+ XT (2.16)

with Taylor CX and CY . Along any
(
X (s) , Y (s) , T (s)

)
with

(
X (0) , Y (0) , T (0)

)
=

(0, 0, 0) that satisfies the constraint (2.13), the derivative

d

ds

(
T 4 (s)

4
+ Y (s)

T 2 (s)

2
+ X (s) T (s)

)
(2.17)

exists and is zero. In a haptic simulation, the force to be displayed is thus simply

(−CX ,−CY ): this holds true for general bifurcation points in a quasi-static sys-

tem. Where there is no jump between different equilibrium branches, the force is

continuous in the control points, and indeed is slightly simpler to compute than at

a regular point, where the slope of the equilibrium surface enters the computation.
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Figure 2.5: Force computed with (2.18) for (a) the thread and results of equilibrium
search (blue) for (b) the Zeeman machine and (c) standard cusp, against analytical
equilibria (red), as hand position is varied. The chattering due to a very flat
vanishing of the gradient appears even for the reduced polynomial case. Position
of hand is represented by (X,Y).

2.3.5 Computational instability

Our first physical implementation of the model (2.2), with the user’s hand or a

program loop varying the position of the free end P , gave major vibrations around

the transition between stretching and buckling the thread. Ten un-held nodes in

(2.2) give nineteen state variables, so in Fig. 2.5a we plot the y-component of force

returned to the hand. To isolate the problem in a fewer-variable system we ap-

plied the same solution method (2.18) to the Zeeman machine and the polynomial

standard cusp, with the similar results shown.

This instability is essentially linked to the change of control point: with con-

stant user position or applied force, the system converges to an equilibrium. The

criteria in [5], [6], [7], [8], [9], [10], [11], for convergence with fixed inputs, do not

connect with it. The problem is strictly in the solution algorithm.

The normal second-order Newton search[16] for a minimum of an energy function

f is

linearly approximate the field ∇f at guess xi

↘ solve for a zero-gradient point xi+1 ↗ (2.18)

Fig. 2.6 shows the one-variable case. This converges fast where the minimum

is dominated by its quadratic term (Fig. 2.6a), but the solution step becomes

unreliable (Fig. 2.6b) for f near a bifurcating minimum, where the quadratic term

vanishes. We must thus invoke higher terms.
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Figure 2.6: Newton’s method (2.18) robustly converges a minimum of f = 0.13 +
0.69 x + 0.64x2 + 0.2x3 + x4, but for g = 0.3 − 0.048 x + 0.31x2 − 0.9x3 + x4 its
successive solutions move far from any minimum. Drastic step size limits can
reduce jumping about, but this reduces the method to a slow gradient-descent
Euler method.

Where the lower terms vanish the higher terms ‘generically’ do not (simulta-

neous vanishing would simultaneously satisfy too many equations in too few state

unknowns (x1, . . . , xn) and control unknowns (X,Y, . . .) ).We use the bifurcation

theory ‘k-determinacy’ test (AppendixA) for the order k of terms needed, numer-

ically replacing ‘not zero’ by ‘not small’, and solve for a zero of the derivative of

the corresponding higher Taylor polynomial instead of the quadratic one. For the

Zeeman machine (Fig. 2.7a) we iterate to find equilibria, as in the Newton itera-

tion of linear solving; for the standard cusp (Fig. 2.7b) the polynomial solution is

by definition exact. In both cases we get dynamically appropriate behavior and

haptic forces, smooth except where a fold curve forces a jump.

2.4 Multi-variable states

In a single variable the k-determinacy test is simply ‘first xk not vanishing’, but for

examples like (2.11) it is more subtle. Moreover, for a 20-variable state like (2.2)
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Figure 2.7: Higher-order computed equilibria (green) for (a) the Zeeman machine
and (b) standard cusp, as hand position moves along a line very near the plane
of symmetry of the equilibrium set found analytically (red). Position of hand is
represented by (X,Y).

with 10 free nodes, it is impractical to solve a cubic problem with 10,395 terms,

as a full quartic expansion of the energy would require. We therefore exploit

the Splitting Lemma (see Appendix B). This guarantees that around a point

(a1, . . . , ac, x1, . . . , xn) where a minimum of a function f(a1,...,ac) (x1, . . . , xn) of n

internal variables with c controls has a Hessian matrix
[
∂2f(a1,...,ac)/∂xi∂xj

]
of rank

n− q, there is locally an (a1, . . . , ac)-dependent reparametrization of (x1, . . . , xn)

as (x̂1, . . . , x̂n) to give it the form

C (a1, . . . , ac) + (x̂1)
2 + . . . + (x̂n−q)

2

+ f̂(a1,...,ac) (x̂n−q+1, . . . , x̂n) , (2.19)

with the quadratic expansion of f̂(a1,...,ac) around (x1, . . . , xn) exactly zero, as are

all higher terms in (x̂1, . . . x̂n−q). Moreover, for the ‘corank’ q to stably occur we

must satisfy q (q + 1) equations in the ∂2f(a1,...,ac)/∂xi∂xj as well as the n equations

∂f(a1,...,ac)/∂x1 = . . . = ∂f(a1,...,ac)/∂x1 = 0, which needs c ≥ q (q + 1) /2 additional

unknowns (a1, . . . , ac). Corank q = 2, needing three unknowns, cannot stably

occur with a 2D-control system like (2.2). Corank q = 3 requires six degrees of

freedom in control, and so on, independently of n as long as it is finite2. We thus

2Where n is better handled as infinite, ([17]) illustrates that splitting off a low-dimensional
bifurcation variable may stably fail. However, it can also stably be possible, and often is.
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expect bifurcations of minima of (2.2) to be reducible to

C (X, Y ) + (x̂1)
2 + . . . + (x̂19)

2 + f̂(X,Y ) (x̂20) , (2.20)

as is the case here since the stiffness matrix has only one near-zero eigenvalue.

To use this numerically we track the condition of
[
∂2f(a1,...,ac)/∂xi∂xj

]
. When its

eigenvalues λ1, . . . , λn are well separated from 0, we use the quadratic/linear New-

ton method, as in [16]. When one or more λi approach zero, we split (x1, . . . , xn)-

space into a sum Eδ of their eigenspaces and a complement Eᵀ
δ to it. The or-

thogonal complement (Eδ)
⊥ can robustly be used for this, but one can with less

numerical effort use whatever subspace defined by restricting q of the xi to zero

is most orthogonal to Eδ, which provides coordinates (x̃1, . . . , x̃n−q) and already-

computed ∂2f/∂x̃i∂x̃j. The eigenvectors of the λi give a basis and thus coordinates

for Eδ. We solve by the standard method in E⊥
i directions and by higher polyno-

mial approximations along Ei. When q = 1, this is the same polynomial solution

process as for the single-internal-variable Zeeman machine.

2.4.1 Curved separation of quadratic and degenerate di-

rections

We, however, use higher derivatives in more than the straight λi eigendirection as

it is not quite sufficient to take derivatives in that direction only. The example

x2 − 4xy2 + 3y4 (2.21)

has quadratic approximation simply x2, degenerate along the y-axis L. Along

this line the function reduces to 3y4, which suggests a strict (though degenerate)

minimum at (0, 0). An approach to energy-minimisation that used 3y4 as the ap-

proximation in this direction would find (when the function is slightly perturbed) a

candidate minimum near (0, 0), so no large jumps would occur. However, rewriting
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the example as
(
x− 2y2

)2 − y4, (2.22)

making clear that it has a strict maximum in the degenerate direction, and energy

minimisation should carry us far away. (Higher terms can introduce new equilibria

to jump to, at a distance, but cannot affect the local topology of this example.)

If we change to coordinates (u, v) = (x− 2y2, y) the function becomes exactly

u2 − v4, and it is clear that any minimum points must lie on the v-axis u = 0,

which in the original coordinates is the curve x = 2y2.

2.4.1.1 Two internal variables

Before treating general n, we discuss the needed computation for two internal

variables. Without loss of generality we can choose the origin at the degenerate

equilibrium we are interested in, which generically has only one degenerate direc-

tion. We linearly choose coordinates to make that direction the y-axis. In this

form we have

[
∂f
∂x

(0, 0) ∂f
∂y

(0, 0)

]
=

[
0 0

]
, (2.23)




∂2f
∂x2 (0, 0) ∂2f

∂x∂y
(0, 0)

∂2f
∂x∂y

(0, 0) ∂2f
∂y2 (0, 0)


 =




α 0

0 0


 , (2.24)

for α 6= 0. Any nearby equilibria are necessarily on the curve C (Fig. 2.8) defined

by

∂f

∂x
(x, y) = 0, (2.25)

which exists and is tangent to the y-axis by the Implicit Function Theorem. We

can parametrize C as

c (s) = (X (s) , s) , with X (0) =
dX

ds
(0) = 0 (2.26)

Moreover, since the non-degeneracy condition ∂2f
∂x2 (0, 0) 6= 0 must still hold for

small perturbations of f , the curve C persists and moves around smoothly with
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Figure 2.8: Degeneracy direction and the curve on which equilibria lie.

any smooth control parameter a.

To approximate where on C the equilibria are, we approximate the restricted

function f̂ = f | C by more than the vanishing quadratic terms along C, and

hence must find some higher derivatives along C: generically, derivatives up to

fourth order will suffice for ‘elementary catastrophe’ bifurcations if a is only 2-

dimensional. These are not in general the same as the derivatives along the straight

line tangent to it, in this example the y-axis. From (2.26) we have the expansion

X (s) = ξ2s
2 + ξ3s

3 + ξ4s
4 + O(5), (2.27)

with vanishing constant and linear terms. We substitute this into the expansion

of f (x, y),

pxxx
2 + (pxxxx

3 + pxxyx
2y + pxyyxy2 + pyyyy

3) +

(pxxxxx
4 + pxxxyx

3y + pxxyyx
2y2 + pxyyyxy3 + pyyyyy

4) + . . .

where

pxx =
1
2

∂2f

∂x2
(0, 0) =

α

2
, (2.28)

pxxx =
1
6

∂3f

∂x3
(0, 0) , pxxy =

1
2

∂3f

∂x2∂y
(0, 0) , pxyy =

1
2

∂3f

∂x∂y2
(0, 0)

pyyy =
1
6

∂3f

∂y3
(0, 0) , pxxxx =

1
24

∂4f

∂x4
(0, 0) , pxxy =

1
6

∂4f

∂x3∂y
(0, 0)

pxyy =
1
4

∂4f

∂x2∂y2
(0, 0) , pyyy =

1
6

∂4f

∂x∂y3
(0, 0) , pyyyy =

1
24

∂4f

∂x∂y3
(0, 0)
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to get

f̂ = pyyys
3 +

(
pyyyy + ξ2

2pxx + ξ2pxyy

)
s4 + O(5),

which shows us that only the coefficient ξ2 in (2.27) is needed here. To find it,

we substitute (2.27) into the defining equation (2.25) of C, using the expansion

(2.28). We have, for all small s,

0 =
∂f

∂x
= 2pxxx +

(
3pxxxx

2 + 2pxxyxy + pxyyy
2
)
+

(
4pxxxxx

3 + 3pxxxyx
2y + 2pxxyyxy2 + pxyyyy

3
)

+ . . .

0 = (pxyy + 2ξ2pxx) s2 + (pxyyy + 2ξ3pxx + 2ξ2pxxy) s3 + . . . (2.29)

Equating coefficients,

pxyy + 2ξ2pxx = 0 (2.30)

ξ2 = − pxyy

2pxx

, (2.31)

so that the energy along the curve C can be written as

f̂ = pyyys
3 +

(
pyyyy +

(
− pxyy

2pxx

)2

pxx +

(
− pxyy

2pxx

)
pxyy

)
s4 + O(5)

= pyyys
3 +

(
pyyyy −

p2
xyy

4pxx

)
s4 + O(5) (2.32)

In particular, for the example (2.21) above,x2 − 4xy2 + 3y4, we have

pxx = 1, pxyy = −4, pyyyy = 3

and all other coefficients zero. This gives to fourth order

f̂ = 0s3 +

(
3− (−4)2

4

)
s4 = −s4, (2.33)

revealing the local maximum along C. Without a need for us to spot the rear-
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rangement as (2.22), we have found the fourth-order coefficient −1 that it reveals

along the degeneracy curve.

2.4.1.2 Non-axis degeneracy

Any two-variable quadratic expression that is degenerate in one direction can be

diagonalized to the form (2.24) by a linear change of variables, but we used that

form above for expository clarity, not for computational necessity. Numerically, it

is better to avoid it.

Consider an unreduced case

[
∂g
∂x

(0, 0) ∂g
∂y

(0, 0)

]
=

[
0 0

]
, (2.34)




∂2g
∂x2 (0, 0) ∂2g

∂x∂y
(0, 0)

∂2g
∂x∂y

(0, 0) ∂2g
∂y2 (0, 0)


 =




α β

β γ


 , (2.35)

where αγ−β2 = 0. This is degenerate in the direction of the vector v = (β,−α) :




sβ

−sα




T 


α β

β γ







sβ

−sα


 = α

(
αγ − β2

)
s2 ≡ 0 (2.36)

We assume |α| ≥ |β|, so that v cannot lie along the x-axis. (If |β| ≥ |α|, switch

the names of x and y.) A linear coordinate change that would diagonalise this

case is to set u = (1, 0), the unit x-axis vector, and choose (u,v) as a basis. This

simply replaces pxyy = 1
2

∂3f
∂x∂y2 (0, 0) above by the second derivative

1

2

d2

ds2

(
∂g

∂x
(sv)

)
, (2.37)

which is straightforward to find numerically.
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2.4.1.3 Multiple internal variables

Now consider the general one-dimension-of-degeneracy case, still choosing the

point of interest as origin.

[
∂g
∂x1

(0, 0) . . . ∂g
∂xn

(0, 0)

]
=

[
0 . . . 0

]
, (2.38)




sv1

...

svn




T 


∂2g
∂x2

1
(0, . . . , 0) . . . ∂2g

∂x1∂xn
(0, . . . , 0)

...
. . .

...

∂2g
∂x1∂xn

(0, . . . , 0) . . . ∂2g
∂x2

n
(0, . . . , 0)







sv1

...

svn




≡ 0 (2.39)

for some non-zero v = (v1, . . . , vn). We write the Taylor expansion to order 4 of g

as

γ (x1, . . . , xn) =
∑

i=1,...,n
j=1,...,n

pijxixj +
∑

i=1,...,n
j=1,...,n
k=1,...,n

pijkxixjxk +
∑

i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

pijklxixjxkxl , (2.40)

where

pij =
1

2

∂2g

∂xi∂xj

(0, . . . , 0) , (2.41)

pijk =
1

6

∂3g

∂xi∂xj∂xk

(0, . . . , 0) , (2.42)

pijkl =
1

24

∂4g

∂xi∂xj∂xk∂xl

(0, . . . , 0) . (2.43)

Note that the pijk etc., do not exactly correspond to the pxxy and so on of the

two-variable case above, since the sums are more simply expressed with repetitions.

(For example, x2
1x2 occurs with the three (equal) coefficients p112, p121 and p211,

and similarly others.)

We define the curve C by requiring equilibrium in a hyperplane H of directions
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transverse to v (see Appendix C for definition on transverse). Generically this is

true for all possible choices of n − 1 axes (the typical line is transverse to both

standard axes in (x, y)-space, to the (x, y), (y, z) and (x, z) planes in (x, y, z)-

space, and so on), but we make certain of this and make it numerically robust by

assuming that v1 is the smallest-modulus component of v and vn the largest. We

rescale v to arrange vn = 1, and parametrize the line L:

l(s) = sv = (v1s, v2s, v3s, . . . , s) (2.44)

As in the the two-variable case, only the second-order expansion of the curve

C is needed. Cubic terms in s, substituted in (2.40), give terms order 5 and higher

in s, which are outside the expansion we need. We parametrise C (tangent to L)

as

c(s) = sv+s2w+O(3) =
(
v1s + w1s

2 + O(3), v2s + w2s
2 + O(3), , . . . , s

)
, (2.45)

where w = (w1, w2, . . . , wn−1, 0) ∈ H is to be determined. The nth component of

sv + s2w is simply s, as in (2.26). We have

∂γ

∂xi

=
∂

∂xi




∑
i=1,...,n
j=1,...,n

pijxixj +
∑

i=1,...,n
j=1,...,n
k=1,...,n

pijkxixjxk +
∑

i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

pijklxixjxkxl




(2.46)

= 2
∑

j=1,...,n

pijxj + 3
∑

j=1,...,n
k=1,...,n

pijkxjxk + 4
∑

j=1,...,n
k=1,...,n
l=1,...,n

pijklxjxkxl (2.47)
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On C, to fourth order in s this gives

2
∑

j=1,...,n

pij

(
svj + s2wj

)
+ 3

∑

j=1,...,n
k=1,...,n

pijk

(
svj + s2wj

) (
svk + s2wk

)
+

4
∑

j=1,...,n
k=1,...,n
l=1,...,n

pijkl

(
svj + s2wj

) (
svk + s2wk

) (
svl + s2wl

)
(2.48)

= δ1s + δ2s
2 + δ3s

3 + δ4s
4 + O(5), where (2.49)

δ1 = 2
∑

j=1,...,n

pijvj

δ2 = 2
∑

j=1,...,n

pijwj + 3
∑

j=1,...,n
k=1,...,n

pijkvjvk

δ3 = 3
∑

j=1,...,n
k=1,...,n

pijk (vjwk + vkwj) + 4
∑

j=1,...,n
k=1,...,n
l=1,...,n

pijklvjvkvl

δ3 = 3
∑

j=1,...,n
k=1,...,n

pijkwjwk + 4
∑

j=1,...,n
k=1,...,n
l=1,...,n

pijkl (vjvkwl + vjvlwk + vkvlwj)

We require that this vanishes identically for every i. The linear term δ1s vanishes

by construction of v as a solution of (2.39). Equating quadratic coefficients gives

us

0 = 2
∑

j=1,...,n

pijwj + 3
∑

j=1,...,n
k=1,...,n

pijkvjvk (2.50)

2




p11 . . . p1n

...
. . .

...

p1n . . . pnn







w1

...

wn−1

0




= −3




∑
j=1,...,n
k=1,...,n

p1jkvjvk

...
∑

j=1,...,n
k=1,...,n

pnjkvjvk




(2.51)

analogous to (2.30). The Hessian matrix P = [pij] has no inverse, but there is a
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unique solution w to

2




p11 . . . p1(n−1)

...
. . .

...

p1(n−1) . . . p(n−1)(n−1)







w1

...

wn−1




= −3




∑
j=1,...,n
k=1,...,n

p1jkvjvk

...
∑

j=1,...,n
k=1,...,n

p(n−1)jkvjvk




(2.52)

because this matrix gives the restriction of the Hessian to the hyperplane H, which

does not contain the degeneracy direction v of P , and is thus invertible on H.

Cramer’s rule would give us an explicit form for w, which we could substitute into

(2.40) in analogy with (2.32), but the resulting closed formula is overcomplicated.

In this case it is better to solve the (usually sparse) problem (2.52) numerically,

and substitute the resulting w numerically into (2.40). We have

ĝ (s) =
∑

i=1,...,n
j=1,...,n

pij

(
svi + s2wi

) (
svj + s2wj

)

+
∑

i=1,...,n
j=1,...,n
k=1,...,n

pijk

(
svi + s2wi

) (
svj + s2wj

) (
svk + s2wk

)

+
∑

i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

pijkl

(
svi + s2wi

) (
svj + s2wj

) (
svk + s2wk

) (
svl + s2wl

)

(2.53)

=




∑
i=1,...,n
j=1,...,n

pijvivj


 s2 +




∑
i=1,...,n
j=1,...,n

pij (viwj + vjwi) +
∑

i=1,...,n
j=1,...,n
k=1,...,n

pijkvivjvk




s3+
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+




∑
i=1,...,n
j=1,...,n

pijwiwj +
∑

i=1,...,n
j=1,...,n
k=1,...,n

pijk (vivjwk + vivkwj + vjvkwi)

+
∑

i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

pijklvivjvkvl




s4 (2.54)

= 0s2 + γ3s
3 + γ4s

4 for short.

(2.55)

Note that the cubic coefficient γ3 is not given simply by the third derivative in the

v direction, since w contributes to it.

2.4.2 Around a bifurcation point

In numerical work, we detect that we are effectively near an equilibrium by es-

tablishing that the derivative of the energy is small. We then detect whether we

are near a point where the above calculations apply by testing whether the Hes-

sian is close to degenerate (by its small determinant). We find v that belongs to

the near-zero eigenvalue, and follow the analysis above to give us the expansion

(2.54). The resulting γ3s
3 + γ4s

4 gives a local ‘background’ non-quadraticity in

the v direction.

We then add the estimated first and second derivatives in the v direction, which

are small relative to the ‘background’ coefficients and do change fast relative to

their current scale (for example, passing through 0 and so changing sign) to give

us a non-linear equilibrium problem in s, using single-variable quadratic or cubic

polynomial methods to solve it.
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2.5 Experiments and Results

We have simulated 2D curve dynamics using the ideas in § 2.3.1 and § 2.3.2. The

user moves an end of the ‘thread’ by a haptic controller, implemented both with

a Delta haptic interface [18] and a desktop PHANToM [19], on a Dell workstation

with Dual 2.6 XG Xeon processors.

Unwanted vibrations (§2.3.5) led us to a systematic study of bifurcating sys-

tems, using simulations instead of haptic device implementations to eliminate in-

stability sources such as delay and motor noise. For computational clarity, we first

studied single-parameter systems such as the Zeeman Machine and Standard Cusp

described in § 2.3.3. We developed a virtual quasi-static haptic Zeeman Machine,

calculating forces by changes in minima of the energy in (2.4), as explained in

§2.3.4. In two sets of simulations, we found energy minima by iterative quadratic

fitting, and also by higher order Taylor terms (requiring more derivatives). In ex-

periments we moved the grasped ‘control point’ across the fold or through the cusp

point, and similarly for the Standard Cusp simulation. Typical results for both

sets (Figs. 2.5b, 2.7a for the Zeeman Machine, Figs. 2.5c, 2.7b for the standard

cusp) clearly show such higher order terms eliminating vibrations.

Our iterative search for equilibrium (quadratic Newton at non-degenerate points,

higher order near bifurcations) stops when the computed internal force is below

10−6N, allowing haptic speeds. Around a non-bifurcating equilibrium the expan-

sion of this force is dominated by its linear term, making accuracy comparable

in force-vanishing and in equilibrium-location. At a bifurcation larger location

errors can occur with near-zero force, precisely because the linear relation is de-

generate. Fig. 2.9 shows (a) a sequence of computed equilibria, including a snap,

(b) the differences between these equilibria and those found more leisurely with

a 10−10N cutoff, and (c) those with 10−8N and 10−10N cutoffs. The small differ-

ences in (c) indicate that both these cutoffs give near-true values, so that (b) is

a good indicator of error levels at practical speed. Since the haptic force at each

user-constrained equilibrium x = (x1, . . . , xn) follows from x and from analyti-
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Figure 2.9: Typical time course (a) of equilibria computed with a 10−6N conver-
gence cutoff, with error estimated (b) by differences from 10−10N cut-off values,
which differ only as in (c) from 10−8N cut-off values.
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Figure 2.10: Force profiles while manipulating the 2D curve’s grasp point, com-
puted with the quadratic/linear Newton’s method (blue) and the bifurcation-
algebra-based method introduced in this paper (green). Figs. (a) and (b) show
responses to hand manipulation (using the Delta haptic device). Fig. (a, blue)
is live, while green curve is the chatter-free force profile found with the scheme
described in this paper, for the same grasp point history. Fig. (b) shows the force
profile of a separate live Delta manipulation, with chatter-free snap-jumps, found
by the scheme described in this paper.
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cally known derivatives, given the quasi-static assumption, the forces are similarly

accurate.

With a multi-parameter energy function such as that of a curve, it is too

time consuming for real-time display to use all derivatives to this higher order.

We developed the scheme in §2.4 for an effective solution process, much faster

as it requires far fewer derivatives. In similar experiments, we moved the grasped

end across bifurcation points, numerically and via a haptic device. Fig. 2.10a (blue

curve) shows the results with iterative quadratic Taylor fit for energy and Fig. 2.10a

(green curve) shows the results with our scheme, which completely eliminates

vibrations. Fig. 2.1i also shows the implementation of our scheme on a 2D curve

(or asymmetrical 3D thread moving in its preferred bending plane) when it meets

fold points (Fig. 2.1a–h). The difference between Figs. 2.1j and 2.1i shows the

benefits of our scheme. Finally Fig. 2.10b clearly illustrates vibration free haptic

experience of the palpable 2D curve resulting from our algorithms.
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Figure 2.11: Measured numerical refresh rate as a function of the number n of
internal variables (free node coordinates), on a log-log scale. The straight line
shows the best-fit power law n−1.9, but a better CPU cost model is needed.
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2.6 Discussion

The haptic wall shows that delay can give improper vibration: [8] shows how

to manage it. This instability would vanish when using a perfectly stiff interface

with negligible feedback delay. Buckling and jumps cause improper vibration quite

differently, by the failure of the standard Newton’s Method. Bifurcation theory is

the tool to manage this.

The method developed here is, to the best of our knowledge, the first to com-

pute haptic forces around snap discontinuities: no previous work for comparison

is available. It operates at haptic speeds, giving appropriate forces for display.

This paper applied it both in the paradigmatic Zeeman machine and in a model

of thread, whose characteristic jumps have been neglected by the haptics and

simulation communities.

Our simulations showed that bifurcation theory provides appropriate approxi-

mations in a numerically cost-efficient way, limiting the use of variables and higher

derivatives to exactly those required. As a function of the number n of free internal

variables (node coordinates) xi and yi, the computational load grows comparably

with the Newton quadratic fit method, since it uses the stiffness matrix to identify

degenerate directions and then does O (n) computations in those directions, rather

than handling cubic problems with O (n4) coefficients. Its speed is thus similar to

that of the standard snap-incapable Newton approach, making it usable on models

of comparable scale. A general stiffness matrix is up to O (n2) in its entry count,

though a thread’s (organized by its sequential topology, unlike a membrane’s) is

sparse and near-diagonal. Fig. 2.11 shows our achieved rate versus n, on a log-log

scale. The fitted line has a slope of −1.9, but it is clear that an n−1.9 power law is

over-optimistic for large n. More work to identify the growth bottlenecks would

be useful.

Bifurcation-theory-based numerics open the door to a wider range of practical

simulations, and to education on critical aspects of nonlinear dynamics, where

students should literally ‘get a feel for’ bifurcating systems. A general theorem,
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and a theory of interaction with the user’s dynamics, remain for further work.

In next chapter, we develop the 2D curve dynamics further into a palpable 3D

nylon thread. The issue of bifurcations comes up and is handled efficiently, using

the scheme developed on this chapter.
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Chapter 3

Palpable Virtual Nylon Thread

3.1 Introduction

Suturing is a critical part of surgery, where surgeons suture vessels 1mm across.

It is a particularly skilled task. Fine manipulation under an optical microscope

is different from the macro world and requires significant training. Surgeons use

nylon thread to create sutures, first passing a needle through vessels or other

tissues and then tying knots. Knot tying is difficult when the thread must be

handled indirectly with forceps that are seen via a microscope or a laparoscopic

camera, where the visible direction of motion and rotation are turned form those

felt by the users’ hands. The dynamics of nylon thread is non-linear and is an

example of large flexible deformation, unlike feeling a surface as hard of soft, that

cannot be treated by a computed response using only properties near the user’s

contact point.

Large deformation is in essence of the knotting task. Where a suture needle

creates a track that the suture thread must follow, as in [1], it is enough to define

a curve by pulling a needle through it. However, a key step in surgical knotting

is to grasp one thread with the left forceps and create a loop through which the

right forceps grasps the other (Fig. 1.1). The first grasp taken far to the left,

pushes the grasped point rightwards into untraced space. Nylon mechanics forms

the loop, to the right of any point where the forceps tip has gone: a ‘following’
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simulation does not match the task. How to simulate these large deformations?

To our knowledge no work has been done on global deformation of a flexible

nylon thread - including visualizing and feeling such topologically essential non-

linearities as ‘snap through’ jumps. With these jumps, comes the issue of handling

bifurcations and applying the scheme developed in previous chapter, evaluating

its effectiveness. This chapter deals with dynamically realistic thread simulation,

which is important for learning the skills required for knot tying. We model the

nylon thread as a geometric curve and associate energy with it. During thread

manipulation, we find an equilibrium state.

3.2 Literature review

Several schemes have been used to model a rope or nylon for simulating knot

tying. In [1] Joel Brown proposed a geometric approach to realize real time knot

tying, in which the rope is modelled as a series of nodes linked together. The

grasped node (the leader) is followed by rest of the nodes (followers) such that

the internodal length remains constant. This follow-the-leader approach leads to

a visually nice but (even visually) incorrect knot-tying simulation, because the

thread’s mechanics, which play an important role in loop formation (Fig. 1.1) are

not considered. Thread simulation based on dynamics was presented in [20], in

which the authors simulate knot tying with a spline of linear springs and control

points at their ends. The focus was on handling self-collisions when the knot is

being pulled and tied, while conserving energy, mass and momentum of the system.

Conservation of energy may create problems, because real thread dynamics are

dissipative. A dynamic approach was recently developed in our lab [3], [4] in which

the nylon thread is modelled as a series of masses and springs. Springs implement

stretching, bending and twisting. When the grasped node is perturbed, the nodes

move in direction of resultant force at each node until the force is zero. Real time

simulation is achieved with this approach, with realistic effects such as twisting

realized, however essential non-linearities in the mechanics of thread such as snaps
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Figure 3.1: Press down a little on the compressible upright (a) and it shortens
(b). Press further and it bends to one side or the other: move to the other side
and the bend jumps across (d). We want to feel such phenomena.

have not been dealt with. The details of loop formation involve minimization of

stretching, bending and twisting energies, and we use precisely this approach to

model thread dynamics, though this thesis includes only bending and stretching.

We model these energies in a computationally simple way and find the equilibria.

We introduce a 3D thread model on which we apply this technique. Multiple

equilibria lead to snap-through jumps which is demonstrated by our nylon thread

model as in Fig. 1.3B.

3.3 Development of nylon thread dynamics

We develop model of a flexible 3D curve as a paradigm for development of a virtual

nylon thread. We are more concerned here with matter like feeling the way a 3D

curve like Fig. 3.1 moves and jumps as the user controls an end point, and similar

experiments. The user would hold the tip by a freely rotating grip, or a fixed

grip, where the curve end is force to a particular angle. We first explain the curve

modelled with stretching and bending and then explain modelling of twist.
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Figure 3.2: Three dimensional curve model, a simple extension of the two-
dimensional model.

3.3.1 Geometric Descriptors

We use a reference interval Π = [P0, PN ] ⊂ R, containing node points P0, . . . , Pi, . . . , PN

mapped by curve state S to (Fig. 3.2)

S(Pi) = pi = (xi, y i, zi) , i = 0, . . . , N (3.1)

Each sub-interval Πi = [Pi−1, Pi] ⊂ Π of parameter length Li = Pi − Pi−1 has in

R3 an associated image vector (abstractly and in coordinates)

vi = pi − pi−1 (vx
i , v

y
i , v

z
i ) = (xi − xi−1, yi − yi−1, zi − zi−1) (3.2)

of geometric length

li = ‖vi‖ =

√
(vx

i )
2 + (vy

i )
2 + (vz

i )
2 . (3.3)

and a normalized direction vector

wi =

(
vi

li

)
(3.4)

(wx
i , w

y
i , w

z
i ) =

(
vx

i

li
,
vy

i

li
,
vz

i

li

)
(3.5)
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There is no natural,local assignment of a normal frame1, so we must propagate a

starting frame by minimal rotations. It is not needed for the present thread model

based only on stretching and bending.

We associate bending with the sub intervals Πi. We could compute the single

joint angles, but the inverse trigonometric functions involved are more costly in

several ways. Further, we are more concerned with the large global change of

shape, and the associated non linearities, than with extreme localized bending.

We need our bending formulation to behave in a way that we have zero bend in

configuration where adjacent image vectors are 0◦ apart and maximum bend in

configuration where adjacent image vectors are 180◦ apart. (1− wi · wi−1) behaves

in a similar fashion and to third order matches the square of the node’s angle, which

normally remains small. Since we associate bending with the sub intervals, the

bend is defined as

bi =

(
(1− wi+1 · wi) + (1− wi−1 · wi)

2

)
(3.6)

Each sub interval Πi has a reference length Li (which may be, but need not

be, the length ‖Vi‖ ), and a reference bend Bi (zero for all in the simplest case).

3.3.2 Dynamics

We take an energy formulation, associating energy Ei (li, bi) with each segment.

This formalism allows for the interactions between bending and length change.

Ei (li, bi) = Elength
i (li) + Ebend

i (bi) (3.7)

Elength
i (li) =

γ

2
(li − Li)

2 (3.8)

Ebend
i (bi) =

β

2
(bi −Bi) (3.9)

1The Frenet choice of bending direction as a first normal direction breaks down where bending
is zero, creates major difficulties where bending passes near zero, and is irrelevant to mechanical
twisting.
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where γ and β are stretching and bending stiffness coefficients respectively.

We ignore inertia for the present, assuming quasi-static dynamics that mini-

mizes

E (S) =
i=m∑
i=1

Ei (li, bi) (3.10)

subject to appropriate constraints. We need to compute equilibrium positions

minimizing E, and the forces of the device to deliver.

For a particular curve state S given by vertex image points pi = (xi, yi, zi), we

have a quadratic expansion

E (S) = E
(
S
)

+ DSE (∆ (S)) +
1

2
D2

S
E (∆ (S)) + ... (3.11)

for E in general S in terms of vector ∆ (S) of differences between the vertex image

points pi = (xi, yi zi) of S and those of S.

∆ = ∆ (S) =




δx0

δy0

δz0

δx1

δy1

δz1

...

δxN

δyN

δzN




=




x0 − x0

y0 − y0

z0 − z0

x1 − x1

y1 − y1

z1 − z1

...

xN − xN

yN − yN

zN − zN




(3.12)

DE (∆ (S)) = Λ∆ (3.13)

D2E (∆ (S)) = ∆T Q∆ (3.14)

Where Λ and Q are (3N + 3)× 1 and (3N + 3)× (3N + 3) square matrices given

respectively by the first and second derivatives at S of E with respect to xi, yi and

zi. With no constraints, Q is necessarily degenerate, but if the coefficients γ and
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β are strictly positive we can clamp one or both ends, pin both ends, or clamp

one end and grasp another point with the haptic device, to give non degenerate

Q. We fix (x0, y0, z0) = (0, 0, 0) and clamp the end by setting y1 = 0, z1 = 0. We

‘grasp’ by letting the user fix a point (X,Y, Z) thereby giving

(x0, y0, z0, y1, z1, xN , yN , zN) = (0, 0, 0, 0, 0, X, Y, Z) (3.15)

as the current constraint. Writing C for the uninteresting constant E
(
S
)
, the

quadratic approximation in (3.11) becomes

E = C + Λ∆ +
1

2
∆T Q∆ (3.16)

To find equilibrium (unique in this local quadratic approximation) we set the

derivative of (3.16) equal to zero

Λ + ∆T Q = 0 (3.17)

We iterate given a current guess S. The solution of (3.17) gives us a candidate

S + ∆◦, which would be true equilibrium if E were truly quadratic. If S was a

reasonable guess,S + ∆◦ is a much better one. When changing constraints modify

E, a previous minimum is usually a good starting guess for the current one. When

the currently followed minimum vanishes, the process descends to another in a

‘snap-through’. Near bifurcations, where we have ‘snap-through’, we use scheme

that was developed in the previous chapter for multi-variable states. We have

explicitly demonstrated the scheme for a 2D curve, for a 3D thread (curve) it

follows analogously. The forces are obtained using the scheme explained in §2.3.4,

except that now the force vector is 3D.
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Figure 3.3: A forceps grasps the curve far to the right and the push the grasped
end rightwards. Nylon mechanics forms the loop, to the right of any point where
the forceps tip has gone. A ‘following’ simulation does not match the task.

3.4 Experiments and Results

We have simulated 3D thread dynamics using the scheme developed in this chapter.

For the experiments, we have used a 10-segment discretization of the thread,

each segment being of unit length, and used cubic spline interpolation [21] to

render visually smooth thread. The user moves an end of the ‘thread’ by a haptic

controller, which enforces position constraints at the end and direction constraint

at the end segment, implemented both with a Delta haptic interface [18] and a

desktop PHANToM [19], on a Dell workstation with Dual 2.6 XG Xeon processors.

The loop formation in a thread comes from the bending of thread, unlike following

the end point of thread around a loop. This is demonstrated in Fig. 3.3, where a

thread fixed at one end is manipulated at the other end by a virtual forcep. The

picture showing the intermediate stages of loop formation makes it clear, that a

loop can be formed without following the loop ‘exactly’.

The ‘snap-through’ jumps is an essential non-linearity of a flexible nylon thread
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(Fig. 1.3A). The snap-sequence is explained in Fig. 3.4. The snaps take place be-

cause of bifurcations, which means that there is change in the number of available

equilibria with a small change in the system parameter, in this case the Delta or

PHANToM controlled end point of thread. The snap sequence makes this phe-

nomenon clear. The videos, illustrating this better, are available at [14].

Figure 3.4: The thread encounters ‘snap-through’ jumps near bifurcations. Even
with a small change in the forceps position, the thread undergoes a big change.

Experiments with the force feedback result in vibrations when we use the

standard Newton’s solution method. These vibrations are completely eliminated

(Fig. 3.5) when the algorithm developed in previous chapter is implemented. The

refresh rates obtained are shown in Fig. 3.6. As is usual, there is a trade-off

between the haptic speed and visual realism. Better visual realism will require

finer discretization of thread model, but it will increase the number of internal

variables in the system leading to lower refresh rates. Where the aim is only to

visualize the thread, the thread can be modelled using sufficient segments.
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Figure 3.5: Vibrations (blue curve) are eliminated (green curve) by implementing
the algorithm developed in previous chapter. The two curves are obtained by
moving the grasped end of the thread along identical paths.
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Figure 3.6: Measured numerical refresh rate as a function of the number of seg-
ments in the thread model.
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3.5 Discussion

We have successfully modelled a virtual nylon thread, which demonstrates phe-

nomenon such as large flexible deformation and ‘snap-through’ jumps. Using the

haptic device appropriate forces can be felt, which lead to a palpable thread. The

application of bifurcation handling algorithm ensures vibration free behavior of

thread.

We took into account the stretching and bending energies, which was suf-

ficient to demonstrate the advantages of energy-based method, developed here

using computationally simple energy definitions. We clearly have a model which

takes into account the essentials of loop formation and non-linearities of thread

dynamics, which a geometric approach [1] cannot realize. However, our approach

is much more computationally expensive than the latter. So, there is an inevitable

trade-off.

To include twist in our model, we need to first assign a normal frame to each

segment (§3.3). There is no natural,local assignment of a normal frame, so we

must propagate a starting frame by minimal rotations. Measurement of twist will

be by rotation of a mechanically fixed normal m away from this frame. But to

use the vector m as the variable includes too many numerical degrees of freedom,

since a vector takes three numbers to specify while m at a point p of the curve can

vary only around a circle in the plane orthogonal to the curve at p. We do better

to use the twist τ directly, specifying it as a scalar rate (continuous version) or

step (finite version) at points along the curve. Integrating or summing it, we have

a scalar angle ψ between the physically attached normal m and the geometrically

untwisted normal field n along the curve. The tricky part is that n can only be

found by propagation along the whole curve, from the (arbitrary) starting normal

vector n0 at P0. When we grasp the free end of the curve we are constraining

the directions wN and mN as well as PN ; the thread must then adjust to minimize

energy, balancing bending and twist. This will add a lot to the computational

burden and less expensive techniques have to be developed.
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Another issue that we have not discussed here is the issue of dealing with

self-collision and collisions with external objects, though the former is more im-

portant. Various geometric techniques are available, and a BVH based technique

is discussed in [1], [3]. [22], [23], [24], [25] and [26] discuss more about such tech-

niques. These techniques are as computationally fast as they can be, but we work

in an energy paradigm here. Using collision detection techniques for finding ge-

ometric intersection ‘only’ can be easily done but is not enough, as the core of

our method is dynamical realism. Self-collision indeed plays an important role in

loop formation and affects ‘snap-through’ jumps. The ideal thing for us will be to

include self-collision as a constraint which we can enforce in our solution process,

as we do with the end point position and direction of end segment.
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Chapter 4

Conclusion

We have developed a novel technique to handle bifurcations in haptics, and a

model towards a palpable virtual nylon thread. This study was prompted by

work towards simulation of surgical suturing. We felt the need of simulating ny-

lon dynamics which was not looked into carefully upto now, specifically ignoring

phenomenon such as ‘snap-through’ jumps. We developed a computationally sim-

ple energy-based model of thread which includes stretching and bending energies.

The solution process involves finding equilibrium for the thread. The jumps are

successfully demonstrated and virtual thread is realistic. Jumps occur near bifur-

cations which means that the number of available equilibria suddenly change with

slight change in system parameters. The usual numerical techniques, such as stan-

dard Newton’s method, to find energy equilibria fail near bifurcations and hence

result in unwanted instabilities. We showed with the example of Zeeman ma-

chine and later detailed analysis that this instability can be removed using higher

derivatives for approximating energy and then solving the equilibrium equation.

Haptics require very fast update rates and hence the standard Newton’s method

is a natural choice for the solution process. But in systems demonstrating bifurca-

tions, which includes nylon thread, we need higher derivatives. Using bifurcation

theory, we demonstrate that we can restrict the higher derivatives of energy upto

fourth order. But in a system like the virtual thread model developed here, we

have many variables. A typical 3D thread modelled in this thesis with 10 segments
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has 21 free internal variables, and finding derivatives upto fourth order in those

variables is computationally very expensive and of no use whatsoever for haptic

applications. We in this thesis demonstrate that we can cleverly avoid these many

derivatives and look for higher derivatives along particular directions.

A full description of thread will require inclusion of twisting energy and self-

collision detection, and will be dealt with in future. Nevertheless, our technique for

the first time brings out the characteristic features associated with a nylon thread,

which are ignored sometimes for more visual realism. The algorithm for handling

bifurcations is not specific to the thread, and opens up many possibilities for the

visual and haptic simulation of dynamics with bifurcations and other nonlinear

dynamics.
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Appendix A

k-determinacy

Definition For any smooth function f : Rn → R,

f is k-determinate at 0 if any smooth function f + g, where g is of order k + 1

at 0, can be locally expressed as f(y(x)) where y : Rn → Rn is a smooth reversible

change of coordinates.

Theorem Let f : R→ R be a smooth function, such that

f(0) = Df
∣∣
0

= · · · = Dk−1f
∣∣
0
,

but

Dkf
∣∣
0
6= 0.

Then there exists a smooth local change of coordinates under which f takes the

form

xk (k odd)

±xk (k even)

and in the latter case the sign is that of Df |0.
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Appendix B

Splitting Lemma

Let f : Rn → R be a smooth function, with Df(0) = 0 whose Hessian at 0 has

rank r (and corank n − r). Then f is equivalent, around 0, to a function of the

form

±x2
1 ± · · · ± x2

r + f̂(xr+1, . . . , xn)

where

f̂ : Rn−r → R

is smooth.

Proof By a linear change of coordinates u = u(x) we can transform the Hes-

sian of f at 0 into the form




1

. . . 0

1 0

−1

0
. . .

−1

0 0








r
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The Implicit Function Theorem now allows us to express the set

{u
∣∣∣ ∂f
∂u1

= · · · = ∂f
∂ur

= 0}

(locally) as the graph

{(g1(ur+1, . . . , un), . . . , gr(ur+1, . . . , un), ur+1, . . . , un)}

of a smooth function

g : Rn−r → Rr.

We use g to turn this graph into the (ur+1, . . . , un)-axis, by a map φ, easily seen

to be a diffeomorphism, defined by

φ(u1, . . . , un) = (u1 + g1(ur+1, . . . , un), . . . , ur + gr(ur+1, . . . , un), ur+1, . . . , un).

(This step is crucial to the argument, as an initial tidying step to get the correct

kind of dependence on ur+1, . . . , un.)

Let F = f ◦ φ. Locally, each function

F(ur+1,...,un) : Rr → R

(u1, . . . , ur) 7−→ F (u1, . . . , ur, ur+1, . . . , un)

has a Morse critical point at the origin of Rr, though not necessarily taking the

value 0 at that point. We write

f̂(ur+1, . . . , un) = F (0, . . . , 0, ur+1, . . . , un).

Now the argument appearing in the first part of the proof of the Morse Lemma

(AppendixD) may be used (after generalizing Lemma 1 in AppendixD to the case

where f vanishes along a multi-axis) to write

F (u) = f̂(ur+1, . . . , un) +
∑

k,m≤r ukumh
(ur+1,...,un)
km (u1, . . . , ur),

where for each choice of ur+1, . . . , un the function

h
(ur+1,...,un)
km : Rr → R

is smooth. The remainder of the proof of Morse Lemma, applied in a (ur+1, . . . , un)-

dependent fashion to this expression, reduces F to the form

f̂(ur+1, . . . , un)± v2
1 ± · · · ± v2

r

and proves the theorem. In essence, the whole process of reduction to standard
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form used to prove the Morse Lemma depends smoothly on ur+1, . . . , un, once the

initial tidying has been done.

This theorem says, in a strong sense, that the behavior of a function near a

degenerate critical point can be found by studying a function involving a number

of variables equal to the corank of the Hessian. Thus, say, a critical point of a

function of 2001 variables, of corank 3, requires us to study only a function of three

variables. This reduction to a small number of variables is what makes Splitting

Lemma so useful, and so surprising.
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Appendix C

Transversality

Two subspaces U and V of Rn are transverse if they meet in a subspace whose

dimensions is as small as possible. If dim U = s and dim V = t then this minimal

dimension is

max(0, s + t− n).

For example, two planes in R3 are transverse if they meet in a line (or, equiv-

alently, do not coincide), for

max(0, 2 + 2− 3) = 1.

A 4-dimensional and a 6-dimensional subspace of R7 are transverse if they meet

in a space of dimension

max(0, 4 + 6− 7) = 3.
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Appendix D

The Morse Lemma

Lemma 1 Let f : Rn → R be smooth in a neighbourhood of 0, with f(0) = 0.

Then in a possibly smaller neighbourhood, there exist functions gi : Rn → R such

that

f =
∑n

i=1 xigi,

where each gi is smooth, and gi(0) = ∂f
∂xi

∣∣∣
0
.

Proof We have

f(x1, . . . , xn) =
∫ 1

0
d
dt

(f(tx1, . . . , txn))dt =
∫ 1

0

∑n
i=1

∂f
∂xi

∣∣∣
(tx1,...,txn)

· xidt

Hence we define

gi(x1, . . . , xn) =
∫ 1

0
∂f
∂xi

∣∣∣
(tx1,...,txn)

dt.

Differentiating partially with respect to xi shows that gi(0) = ∂f
∂xi

∣∣∣
0

Lemma 2 (Morse Lemma) Let u be a nondegenerate critical point of the smooth

function f : Rn → R. Then there is a local coordinate system (y1, . . . , yn) in a

neighbourhood U of u, with yi(u) = 0 for all i, such that

f = f(u)− y2
1 − · · · − y2

l + y2
l+1 + · · ·+ y2

n

for all y ε U .

Proof We can translate the origin to u and hence assume u = 0, and f(u) =

f(0) = 0. By Lemma 1 we may then write

f(x) =
∑n

j=1 xjgj(x)
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in some neighborhood of 0. Since 0 is a critical point, we have

gj(0) = ∂f
∂xj

∣∣∣
0

= 0.

Hence, using Lemma 1 again, there exist smooth functions hij such that

gj(x) =
∑n

i=1 xihij(x),

and we can write

f(x) =
n∑

i,j=1

xixjhij(x). (D.1)

If we replace hij by

ĥij = 1
2
(hij + hji)

this equation still holds, and further ĥij = ĥji.

Partially differentiating (D.1) twice, we see that

∂2f
∂xi∂xj

∣∣∣
0

= 2 ˆhij(0),

and hence the matrix

[ ˆhij(0)] =
[

1
2

∂2f
∂xi∂xj

∣∣∣
0

]

is non-singular since 0 is nondegenerate critical point.

Suppose inductively that there exist local coordinates u1, . . . , un in a neigh-

bourhood U1 of 0 such that

f = ±u2
1 ± · · · ± u2

r−1 +
∑

i,j≥r uiujHij(u1, . . . , un),

where Hij = Hji. By a linear change in the final r coordinates we may assume

that Hrr(0) 6= 0. Let

g(u1, . . . , un) =
√
| Hrr(u1, . . . , un) |.

By the Inverse Function Theorem this is smooth in some neighbourhood U2 of 0,

contained in U1. (This step is the main reason why the Morse Lemma holds locally

in general). We change coordinates to v1, . . . , vn defined by

vi = ui (i 6= r),

vr = g(u1, . . . , un)
(
ur +

∑
i>r

uiHir(u1,...,un)
Hrr(u1,...,un)

)

which, again using the Inverse Function Theorem, is a local diffeomorphism. Now
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f(v1, . . . , vn) = ±v2
1 ± · · · ± v2

r +
∑

i,j≥r+1 vivjH
′
ij(v1, . . . , vn),

a formula like that for the ui, but with r replaced by r + 1. Hence, by induction,

we obtained the conclusions of the theorem.
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