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Summary

The Internet has considerably increased the scale of distributed information sys-

tems, where information is published on the Internet anywhere at anytime by

anybody. To avoid overwhelming users with such huge amount of information,

content-based dissemination systems have emerged, where users subscribe a set of

queries to the system to express the kinds of information they are interested in and

the dissemination system will automatically deliver newly published information to

the proper users. With the emergence of XML, it quickly becomes the standard for

data exchange on the Internet. There is a new trend to publish the data contents

in XML format and to provide users with a more expressive subscription language

as such XPath to address both the content and the structure of the data, which

makes the content-based dissemination of XML data increasingly important.

This dissertation focuses on content-based dissemination of XML data systems.

The effectiveness of such dissemination systems involves two aspects, i.e. the ef-

ficiency of the system and the functionalities that they provided. The adoption

of XML data in the system increases the complexity of subscription matching at

each router. While various approaches have been proposed to improve filtering effi-

ciency, these approaches focus on optimizing the filtering locally at each individual

router. In this dissertation, a global optimization approach is proposed that uses

vii
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the piggybacked annotations to enable collaborative filtering among routers.

With respect to the functionalities provided by the system, this dissertation

focuses on resolving two limitations of existing dissemination systems. Firstly,

due to the limitation that only complete XML documents are handled in current

dissemination systems, this thesis presents a three-step approach to match a set

of XPath-based subscriptions on fragmented XML data in content-based dissem-

ination, which is to satisfy the requirements for the resource-constrained mobile

devices or sensors for accessing data in terms of XML fragments. Secondly, due

to the implicit assumption that all published information within the same domain

conforms to the same DTD in current dissemination systems, this thesis introduces

a data-rewriting architecture to resolve the heterogeneous schema problem in the

content-based dissemination of XML data.

We have implemented these approaches, and conducted extensive experimental

studies to demonstrate the efficiency and effectiveness of these approaches. We

believe that our research helps to significantly improve the efficiency and to ef-

fectively extend the functionalities of the content-based XML data dissemination

system, which makes this system more practical and useful.
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Chapter 1
Introduction

Distribution is the natural character of the Internet or intranets. Participants at

different locations can join the distributed systems to provide data or consume

data from the system, which is called distributed information system. In this dis-

tributed information system, participants need some communication mechanism

to interact. Traditional communication mechanism leverages a kind of pull-based

technique, in which the data consumer actively sends a request to the data resource

to get the information from the data producer and the data producer responses the

consumer by sending back the information after processing the request, such as the

communication through remote procedure calls (RPC) [25, 108]. There are several

limitations for this kind of communication mechanisms :

• The pull-based communication involves synchronous communication among

the data consumers and data producers. For example, RPC requires that the

data producers and consumers are active synchronously, and the consumers

have to wait for the response from producers after sending the requests. Such

kind of communication mechanisms incurs the inflexibility of the distributed

information system, and limits the scalability of the distributed applications.
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• In the pull-based model, the data consumer has to continually poll the server

to obtain the up-to-date information. It may not only incur huge spikes of

the load at the server, but also overwhelm the data consumers in the large

amount of the information due to the information exploding nowadays.

The proliferation of the Internet has considerably increased the scale of the dis-

tributed information system. Currently, it is not uncommon that the distributed

information system is at the level of thousands of participants which may be

distributed worldwide and be on-and-off the distributed system asynchronously.

Clearly, the pure pull-based communication model is inappropriate to satisfy the

trends of the Internet. Therefore, there is a profound change for the communica-

tion to move from the pure pull-based model to a push-based model [29], which is

also mentioned as dissemination-based model. The dissemination-based communi-

cation model leverages the publish/subscribe mechanism [86]. In publish/subscribe

architecture, publishers (i.e. data producers) generate the information to the sys-

tem without knowing the destination of such information; subscribers (i.e. data

consumers) express their interests to the system, and then the information from

various publishers that matches their interests will be delivered to them by the

system. The data producers and data consumers in the dissemination-based com-

munication is loosely-coupled, asynchronous and anonymous, which makes it more

suitable for the modern internet application.

Based on the different ways to specify the interests of subscribers, the dissemi-

nation systems are typically classified into two categories, i.e. topic-based dissemi-

nation and content-based dissemination.

• Topic-based dissemination : this is the earlier version of dissemination

system, and has been implemented by many industrial solutions, such as

VITRIA [103], TIB/Rendezvous [109], JEDI [44]. Publishers associate some
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keywords with each message to indicate the topic the message belongs to; sub-

scribers express their interests using keywords. Then all messages belonging

to a topic will be delivered to the users who subscribe to this topic.

• Content-based dissemination : the topic-based dissemination only offers

a coarse-grained dissemination schema. The content-based dissemination im-

proves the expressiveness by allowing the subscribers to use some subscription

language to address the content of the information in which they are inter-

ested. In topic-based dissemination, the information is delivered towards a

group of users; while in content-based dissemination, the information is de-

livered towards each individual user. The content-based dissemination guar-

antees the users to receive accurate information they are interested in, which

makes it more attractive than the topic-based dissemination. A variety of

content-based dissemination systems are implemented by academic or indus-

try, such as Gryphon [24], Siena [37], Elvin [100] and ONYX [50].

The initial content-based dissemination leverages a predicate-based format for

the content of the information and the subscriptions, such as Le Subscribe [54],

Gryphon [24] and Siena [37]. Specifically, the content of the information is a set

of attribute-value pairs and the subscriptions are a set of predicates to specify the

constraints over values of the attributes. Recently, with the emergence of XML [12],

it quickly becomes the de facto standard for data exchange on the Internet. There

is an increasing interest to publish the information in the format of XML and use

a more expressive subscription language such as XPath [11] that can address both

the contents and structure of the published XML document. Various approaches

using different techniques have been proposed to handle the efficient matching

problem in content-based XML dissemination. For example, XFilter [20], YFil-

ter [49], YFilter∗ [117] and XMILK [63, 60] convert the set of queries to automata;
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WebFilter [88], XTrie [39], Predicate-based [69] and AFilter [36] index the com-

mon parts in different queries; BloomFilter [59] makes use of the properties of

Bloom filter, and FiST [71] and BoXFilter [83] converts XPath to sequences to

simplify matching. There also exists some commercial products of XML routers,

such as XmlBlaster [17], DataPower [2] and Sarvega [8]. Due to the advantages

of content-based dissemination for modern distributed information systems and as

XML becoming the universal language for data exchange on the web, it becomes

clear that the content-based dissemination of XML data will attract increasing in-

terests from both research and industry. This thesis focuses on the content-based

dissemination of XML data, and proposes approaches to optimize and extend the

content-based dissemination of XML data.

1.1 Content-based XML Dissemination

In the content-based XML dissemination, the information is published as the XML

documents and the subscriptions are expressed using some XML query language

such as XPath or XQuery. Figure 1.1 illustrates the architecture for a content-based

XML dissemination system. There are three components in the system :

- Publishers : The left part in Figure 1.1 shows the data publishers, which

are also called the data producers for the system. They generate the infor-

mation and encode it as XML documents, and send the XML documents

to the system. Many applications can work as publishers, such as newspa-

pers, databases, libraries, mobile sensors, etc. Various publishers generate the

XML documents independently, thus XML documents for the same domain

by different publishers may conform to different schemas. The publishers

can also associate headers with the XML documents to provide additional
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Figure 1.1: The Architecture for Content-based XML Dissemination

information for authentication, to improve the processing on the routers, etc.

- Subscribers : The right part in Figure 1.1 gives the subscribers which

are also called the data consumers, who receive the information from the

data publishers. The subscribers register their interests to the system by

subscribing their profiles to the system. In the XML dissemination, their

profiles are rewritten using some XML query language such as XPath [11] or

XQuery [13]. The subscribers would receive all and exactly the information

that matches their subscriptions. When the subscribers do not want the

information anymore, they need to unsubscribe their queries.

- XML Routing Network : The central part in Figure 1.1 illustrates the

XML routing network, which contains a set of XML routers that are inter-



6

connected. Each XML router receives the subscriptions from end-users or

other XML routers; and receives the XML documents from the publishers or

other XML routers. A routing table is stored at each router to store the set

of queries subscribed to the router, and the routing table also maintains the

information about the destination of a document if the document matches

some query in the table. For each incoming document, the router parses

the XML document to match all the queries. If a router Ri determines that

document d matches a query q which is subscribed from router Rj, then Ri

will forward d to Rj. Here Ri is considered as the upstream router of Rj and

Rj is considered as the downstream router of Ri.

1.2 Motivation

Efficiency of the system. Content-based dissemination system is to update the

data consumers with the newest published information. Some information is only

useful for a small period. For example, in the stock market, the stock quote is chang-

ing frequently, users are only interested in the most up-to-date stock quote; also in

monitoring systems, users should be alerted about abnormal events immediately so

that they can response in time. Therefore, the efficiency of dissemination is critical.

To disseminate XML data and to use XPath queries as the subscriptions improves

the expressiveness of the dissemination. However, matching XPath queries with

XML documents incurs larger processing cost than matching simple predicates

with attribute-value pairs. Several approaches are proposed to handle the efficient

matching problem for XPath queries [20, 39, 49, 117, 63, 60, 69, 36, 59, 71]. All

these approaches exploit only the optimization of processing on each individual

router. Actually, many routers collaborate to achieve the dissemination, which
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motivates the investigation on the collaboration among routers to optimize the

query processing globally.

Functionalities of the system. Besides the efficiency issue of the dissemination,

the functionalities provided by the system is also an important aspect to consider.

We have observed the following two limitations :

1. One limitation of existing dissemination systems is that they only accept

the information that is published as complete XML documents. However,

applications involving sensor devices typically collect and process data in

fragments. This motivates the work for handling fragmented XML data in

content-based dissemination.

2. Another limitation is that existing dissemination systems assume that all pub-

lished XML documents for the same domain conform to the same schema [15]

or DTD [12]. However, different publishers generate XML documents indi-

vidually such that it is not uncommon that there exists the heterogeneity in

both the structure and content of XML documents. The router has to handle

the matching of queries on heterogeneous data.

Figure 1.2 illustrates the relationship of the work in this thesis with existing

approaches. This thesis investigates the global optimization to further improve the

dissemination efficiency. Additionally, this thesis extends the functionality of the

dissemination system by handling the dissemination of the fragmented XML data

and heterogeneous XML data. The following sections elaborate the motivations for

each work in detail.
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1.2.1 Global Optimization for XML Data Dissemination

As aforementioned, the effectiveness of existing approaches for matching subscrip-

tions are limited to only locally improving the performance of each individual

router. Specifically, the fact that routers are interconnected and related are not

being fully exploited to optimize the subscription matching.

Consider how an XML document D is being routed from an upstream router Ri

to a downstream router Rj in a typical content-based XML dissemination system.

On receiving D, Ri parses and processes D against the set of subscriptions Si stored

in its routing table. Once a matching subscription s ∈ Si (that is maintained on Rj)

is detected, Ri then forwards D to Rj. A similar processing of D is then repeated

at Rj but with the matching now being done against a different set of subscriptions

Sj in Rj’s routing table.

Two observations can be obtained on the matching and routing process.

• Firstly, the overall processing being done at different routers during the dis-

semination of a document can be viewed as essentially processing the same
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data (i.e., XML document) against a sequence of collections of queries (i.e.,

sets of subscriptions along each path of forwarding routers).

• Secondly, the sequence of collections of queries being processed are not in-

dependent as they are partially related by a “containment property” that

determines whether or not a document is to be forwarded to a downstream

router. Specifically, the set of subscriptions Si and Sj are related in that the

subscriptions Sj in the downstream router are being aggregated (or summa-

rized) into a smaller set of subscriptions S ′j that is stored in the upstream

router Ri’s routing table (i.e., S ′j ⊆ Si) such that if a document D does not

match any of the subscriptions in S ′j, then D will certainly not match any of

the subscriptions in Sj (i.e., S ′j is “contained by” by Sj). Consequently, Ri

needs to forward D to Rj only if D matches some subscription in S ′j.

Thus, given that the same document D is being processed against related sets

of subscriptions, each upstream router Ri can help to optimize the performance of

its downstream router Rj (and thereby reduce the overall processing time to deliver

D to relevant subscribers) by passing along some useful information to Rj (about

D as well as the about related queries that Ri has processed) when it forwards D

to Rj. Rj can then try to exploit the hints that it receives from Ri to optimize

its own processing of D. The first work in this thesis optimizes the dissemination

by piggybacking annotations (i.e. hints) with the XML documents. This work

exploits the collaboration among different routers, which can be considered as global

optimization.
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1.2.2 Handling Fragmented XML Data

The popularity of the mobile devices, such as mobile phones, laptops and per-

sonal digital assistants, and the advance of the wireless networks has fostered the

increasing use of mobile devices in current distributed systems. Some work have

addressed the dissemination in a mobile environment [45, 70]. To employ the

resource-constrained mobile devices for accessing and monitoring data requires a

memory-efficient technique to process queries on fragmented data. Furthermore,

the data collected by sensor devices is often in fragments such that the querying

should be performed on the fragmented data. For example, in a military battle-

field, many mobile sensors are equipped to report the fragment of information for

their monitored locations. The information from various sensors forms the com-

plete information for the battlefield. Besides the above scenarios that the data is

fragmented by nature, disseminating XML data in fragments is also motivated by

the efficiency to propagate updated data without resending the entire document.

The size of the collection of queries being matched can vary depending on the

application context. A small-scale deployment can arise in specialized monitoring

applications that run on mobile devices, while a large-scale scenario can arise in

middleware-based applications that disseminate data to a large number of different

users based on their subscriptions. While the first scenario necessarily requires

the data to be fragmented for it to be processed by resource-limited devices, the

second scenario can also benefit from using fragmented data as this can enable

more opportunities for query optimization by exploiting the structural relationships

among the fragments to minimize unnecessary and redundant processing.

While there has been some research that addresses general query processing

issues on fragmented data [97, 95, 96], we are not aware of any work that examines

the problem of matching boolean XPath queries on fragmented XML data. The
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more specialized nature of processing boolean queries on fragmented XML data

opens up new opportunities for query optimization and processing. The second

work in the thesis addresses the problem of matching XPath-based subscriptions

on fragmented XML data, where the published XML data is being disseminated in

terms of a collection of disjoint fragments.

1.2.3 Handling Heterogeneous XML Data

In content-based dissemination , data publishers and data consumers are loosely-

coupled, anonymous, and do not necessarily agree on the same schema. Data con-

sumers may have no knowledge about the schemas from data publishers, and various

data publishers generate and publish their data independently. Therefore, publi-

cations from different publishers may conform to heterogeneous schemas although

they satisfy the same kinds of users’ interests. Thus, although the users’ subscrip-

tions do not exactly match the publications, the publications do satisfy the users’

interests.

"XML"

"John"title

namearticle

author

"John"

"XML" name

authortitle

paper

21 (b) D(a) D

Figure 1.3: Two Sample XML Documents

For example, Figure 1.3 gives the XML documents D1 and D2 from two data

publishers. Suppose a user is interested in the information about the papers from

author “John”, thus the user submits a subscription using the XPath expression

like /author[name = “John”]/paper/title. We know that items paper and article

have the same meaning, which makes D1 satisfies the user’s requirement; and D2
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also provides the information about the papers from author “John”, thus it should

also be forwarded to the user. However, the existing dissemination systems fail

to forward any of these documents to the user, since none of the approaches con-

sider the probable semantic and structural heterogeneity in schemas among data

publishers and users.

In the large-scale distributed system, it is not uncommon to have heterogeneous

data from various publishers who may be unaware of one another. There is indeed

a requirement for the system to handle such heterogeneous data, while the sup-

porting of the heterogeneous data should not be at the cost of the dissemination

efficiency. An approach is proposed in this thesis to handle the problem of efficient

dissemination of XML data while there exists heterogeneity in schemas. Besides

forwarding the XML data that match the subscriptions exactly to users, the data

whose semantic meanings satisfying the users’ interests is also forwarded to the

users.

1.3 Contributions

The major contributions of this dissertation are three-fold :

1. A novel, holistic optimization technique for XML data dissemination called

piggyback optimization is proposed. This approach enables upstream routers

to pass useful hints in the form of document header annotations to optimize

the performance of downstream routers. This new optimization is orthogonal

to the existing approaches for matching queries efficiently on each individual

router. Two types of annotations are proposed in this approach, i.e. posi-

tive annotations and negative annotations. Various annotations for each type

are provided and studied. These annotations help to improve the filtering
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efficiency on the downstream router either by detecting a matching query

earlier to forward the document without being parsed or by eliminating the

non-matching queries to reduce the number of processed queries. A com-

prehensive experimental study is provided to demonstrate the efficiency of

piggyback optimization. This work has been published in SIGMOD 2007

Conference [41].

2. A comprehensive study on matching XPath-based subscriptions directly on

fragmented XML documents without reconstructing the original documents

is presented. The approach extends the functionality of the content-based

dissemination system to handle data that is disseminated in fragments. Addi-

tionally, by exploiting the optimization to process only the relative fragments

for query evaluations, the filtering efficiency on each router is improved. The

optimizations based on the dynamic query processing results are proposed

to further improve the filtering performance. The experimental results us-

ing both synthetic and real-life datasets show that the fragmented approach

outperforms the traditional non-fragmented approach by up to a significant

margin. This work has been published in ICDCS 2006 Conference [40].

3. A novel framework leveraging dynamic data rewriting is proposed to handle

the efficient dissemination of heterogeneous XML data. Existing approaches

for query processing on heterogeneous data use the query rewritten mech-

anism, which is not suitable for the dissemination scenario where a large

number of queries are evaluated simultaneously. Eight operators for perform-

ing data rewriting are proposed, which cover a reasonable set of semantic and

structural heterogeneity in XML schemas. The algorithm to perform these

data rewriting operators dynamically during the parsing of the document to

evaluate queries is provided. Besides the dynamic data rewriting approach,
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other alternative approaches in terms of when and how to perform the data

rewriting are also exploited. An extensive performance study is conducted to

compare the dynamic data rewriting approach with other approaches. The

results on both simulation and real network verify the effectiveness of the

dynamic data rewriting approach. This work has been submitted for publi-

cation [85].

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides background knowl-

edge for the work conducted in this thesis. A survey of related work for various

approaches in content-based XML dissemination is presented in Chapter 3. The

related work for each particular work in the thesis is also discussed in Chapter 3.

Chapter 4 presents the piggyback optimization for content-based XML dissemina-

tion. Chapter 5 introduces the approach of matching XPath-based subscriptions

when the published XML data is being disseminated in terms of a collection of

disjoint fragments. Chapter 6 introduces the dynamic data rewriting approach to

handle the efficient dissemination of heterogeneous XML data. Finally, Chapter 7

concludes this thesis and points out some directions for future work.
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Chapter 2
Preliminaries

This chapter presents further background information for the work in this the-

sis. Firstly, this chapter introduces the XML, which is the data format to pub-

lish information in content-based XML dissemination. Secondly, the subscription

language used in the thesis, i.e. XPath, is presented. After that, the matching

approaches performed by the router to detect the matched subscriptions are intro-

duced. Finally, this chapter also introduces how the subscriptions are aggregated

and propagated in the dissemination system.

2.1 Extensible Markup Language (XML)

XML (stands for eXtensible Markup Language) is a markup language. Instead of

focusing on how to display the data as in HTML, XML is designed to describe data

and focus on what data is. XML is self-describing, machine-readable and extensible,

which makes it quickly become a de facto for data exchange on the Internet.

XML documents are composed of markup and content. The most common

markup is the element. An element begins with a start-tag < element name >, and

ends with an end-tag < /element name >. Attributes, which are name-pairs, can
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occur inside start-tags after the element name, e.g. < book, class = “whodunit” >.

Content, which is text data, can be enclosed between tag-pairs. Elements can be

nested in any depth in XML documents, but they must be well-nested, i.e. if the

start-tag of an element ni occurs in the tag-pair of another element nj, the end-tag

of ni should also occur in the tag-pair of nj. Every XML document has a root

element, and it can not be contained in any other element. Figure 2.1 gives an

example XML document providing the course information.

<?xml version = “1.0”? >
<Courses>

<Course Code = “CS3230”>
<Title> Database Management < /Title>
<Instructor>

<Name> Jim < /Name>
<Email> jim@comp.nus.edu.sg < /Email>

< /Instructor>
<Time> Wed, 16:00 - 18:00 < /Time>
<Location> LT33 < /Location>

< /Course>
< /Courses>

Figure 2.1: An Example XML Document

Name Email 

@Code

Course

Courses

"CS3230"

"Database
Management"

"Jim"

"Wed 16:00−18:00"

Time 

"LT33"

Location

"jim@comp.nus.edu.sg"

Instructor Title 

Figure 2.2: The Tree Structure for XML Document in Figure 2.1

The XML document can be modeled by a tree structure due to its hierarchical
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structure. Figure 2.2 shows the tree structure for the XML document in Figure 2.1.

The root of the document is the root of the tree. The element/subelement rela-

tionship in the document is modeled as the parent/child relationship in the tree.

Attributes are represented as children of their associated elements and contents are

represented as children of their associated elements or attributes.

2.2 XPath Expressions

XQuery [13] and XPath [11] are the query languages provided to address on the

XML document. The core component of XQuery is the XPath expressions and

most existing filtering approaches [20, 39, 49, 117, 63, 60, 69, 36, 59, 71] handle a

fragment of XPath expressions. Thus this thesis focuses on the XPath expressions.

The XPath language treats XML documents as a tree of nodes (corresponding to

elements) and offers an expressive way to specify and select parts of this tree. XPath

expressions are structural patterns that can be matched to nodes in the XML data

tree. The evaluation of an XPath expression yields an object whose type can be

a node-set, a boolean, a number, or a string. For subscription matching purpose

in content-based dissemination, an XML document matches an XPath expression

when the evaluation result is a non-empty node set.

The simplest form of an XPath expression specifies a single-path pattern, which

can be either an absolute path from the root of the document or a relative path

from some known location (i.e., context node). An XPath expression is composed

of one or more location steps. A location step has three parts: an axis, a node

test, and zero or more predicates. A node test specifies the node types and node

names selected by the location step. The wildcard “*” can be used as the node test

to match any node names. An axis specifies the hierarchical relationships between
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the nodes selected by the location step and the context node.

This thesis focuses on two main axis operators in XPath: parent-child oper-

ator “/” specifies the nodes at the adjacent level of the context node; ancestor-

descendant operator “//” specifies the nodes separated by any number of levels

from the context node. Considering the XPath expression Q1.

Q1 : /Courses/Course//T itle

It addresses all Title elements descendant of element Course which is the child

of element Courses.

Each location step can also include one or more predicates to further refine the

selected set of nodes. Predicate expressions are enclosed by “[” and “]” symbols.

The predicates can be applied to the text or the attributes of the addressed ele-

ments. The predicates may also include other path expressions, which makes the

XPath expression to be a tree pattern query. Any relative paths in a predicate ex-

pression are evaluated in the context of the element nodes addressed in the location

step at which they appear. Considering the XPath expression Q2 shown as follows.

Q2 : /Courses/Course[@Code = “CS3230”][Instructor/Name]/T itle

It specifies a tree-structured pattern starting at the root element Courses with

two children “branches” Course/Title and Course/Instructor/Name such that the

element Course has an attribute Code with the value to be “CS3230”.

2.3 Content-based Routing of XML Data

In content-based dissemination, the routers take charge of matching a collection of

XPath expressions on them with each incoming XML document. There are a batch

of approaches proposed to efficiently match the set of XPath expressions [20, 39, 49,
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117, 63, 60, 69, 36, 59, 71]. In traditional query processing, the XML documents are

stored statically in the database and some kinds of indexes for the documents may

be provided. The indexes are exploited or the documents are navigated to process

each query. While in content-based dissemination, a large number of subscriptions

are relatively static on the routers and these subscriptions are indexed for efficient

evaluation. The XML documents continuously arrive the routers as streams from

publishers or other routers, and these documents are parsed to match the set of

subscriptions on the routers. Figure 2.3 shows a schematic diagram of the key

components in a typical content-based router. An incoming XML document D is

first parsed by an event-based XML document parser. The parsed events are used to

drive the matching engine which relies on some efficient index on the subscriptions

to quickly detect matching subscriptions in its routing table; D is then forwarded

to neighboring routers and local subscribers with matching subscriptions.

Data
Events

Subscriptions

Index
Subscription

ParsedData

Parser Engine
MatchingXML

Figure 2.3: Content-based routing of XML data

The SAX API [9] is used to parse the XML document on-the-fly in the dissem-

ination. The SAX API brings the following two advantages :

- The query processing is started immediately once the XML document arrives.

There is no need to wait for the receiving of the complete document, which

improves the response time considerably.

- There only incurs small memory usage in SAX API, which makes the router
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be able to handle large XML documents.

start document
start element Courses
start element Course Code = “CS3230”
start element Title
characters Database Management
end element Title
start element Instructor

. . .
end element Instructor
start element Time
characters Wed, 16:00 - 18:00
end element Time

. . .
end element Course
end element Courses
end document

Figure 2.4: An Example for SAX Parser

SAX provides a mechanism for reading data incrementally from an XML doc-

ument. The XML stream is accessed unidirectionally such that the previously

accessed data can not be re-read unless re-parsing the document. The SAX parser

is implemented using an event-driven model in which the developer provides the

callback methods with respect to events which are invoked by the parser as it seri-

ally traverses the document. There exists several SAX API implementations, such

as Apache Xerces [1] and Libxml [4]. Figure 2.4 illustrates the sequence of events

by the SAX parser for the document in Figure 2.1. There are three main kinds of

events reported by the SAX API.

• start document/end document : the start document event reports the begin-

ning of an XML document, and the end document event reports the end of

the document.
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• start element/end element : the start element event indicates the start tag

of an element, it carries the information for the name of the element, the

attributes associated with the element and their values. And the end element

event indicates the enclose of the element, which corresponds to the previously

nearest start element event.

• characters : the characters event contains the text information between two

XML tags.

All existing matching approaches utilize the SAX API to parse the XML doc-

ument. As aforementioned, these approaches focus on improving the matching

efficiency on each individual router. The work in this thesis focuses on the global

optimization of the efficiency or the extension of the functionality of the dissem-

ination system, thus this thesis is orthogonal with the existing approaches. To

implement the approaches proposed in this thesis, the XTrie [39] filtering approach

by Chan et al is used at each router. A brief introduction for the XTrie method is

presented in the following.

The XTrie approach exploits the shared processing for the common substrings

in the collection of XPath expressions. The sequence of XPath expressions is first

decomposed into substrings. It requires that each pair of consecutive elements in

substrings must be separated by a parent-child (“/”) operator, and each substring

has the maximal length. A substring-table (ST) is used to store these substrings.

Each row in ST corresponds to one substring from some XPath expression. Phys-

ically, the substrings from the same XPath expression are clustered together and

are ordered by the simple decomposition of the expression. Logically, the same

substring from different XPath expressions are chained together using a linked list

to facilitate the following matching process. Each substring (denoted as si) in ST

has five attributes :
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• ParentRow : specifies the row number of the substring in ST corresponding

to the parent substring of si (If si is the root substring, ParentRow = 0).

• RelLevel : is the relative level of si with its parent substring. Let x denote

the distance in document level between the last element in si and the the last

element in si’s parent substring, if there are “//” between si and its parent

substring, then the RelLevel of si is [x,∞); otherwise RelLevel = [x, x].

• Rank : the substring si having rank k means that si is the kth child of its

parent substring.

• NumChild : indicates the total number of children of si.

• Next : is an integer indicates the row number of the substring sj such that

sj is the first substring behind si satisfying the requirement that sj is the

same with si. Next is used to logically group the substrings with same labels.

Actually, a linked list is formed, and the head of the linked list is substring

with the smallest row number in ST .

The above five attributes are used to check the matching of substring and further

the matching of XPath expressions with the XML document.

The set of decomposed substrings is indexed by a trie structure T . For the

substrings with the same label, only the substring with the smallest row number

is indexed in the trie T , and other substrings can be looked up using the Next

attribute in ST . The trie T is a rooted tree. Each edge of T is associated with an

element name, and each node N of T is labelled with a string formed by concate-

nating the edge labels along the path from the root node of T, which is denoted

as label(N). Each node N in T is also associated a value, denoted as α(N), which

is determined as follows : if label(N) corresponds to a decomposed substring, then
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α(N) is the row number of this substring in ST ; otherwise α(N) = 0. The trie T

is used to check whether the substring parsed from the XML document has some

matchings in XPath expressions.

XTrie method needs to construct another table called substring-table (ST).

When a start-element event e is encountered, the algorithm searches in the trie T .

If there is an edge label e from the current node to a node N , the search continues

on node N . For each node N visited, if α(N) 6= 0, a matching algorithm will be

invoked to check the matching of all substrings in the linked list pointed by the

substring at row α(N) in ST . The matching algorithm uses the attributes in the

ST table to check if the constraints are satisfied and return the XPath expressions

that matched. On the other hand, if there is no edge out the current node labelled

e, the search in the trie T will backtrack to the node that is the longest suffix of

the current node to check for other potential matchings.

1q  = /a/b/*/c

2

3

q  = //a/b//c/d

q  = /a//c/d
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Figure 2.5: The Example for XTrie

Example 2.1 Considering the collection of XPath expressions in Figure 2.5(a), the

Trie structure and ST table for them are shown in Figure 2.5(b) and (c) respectively.

The numbers at the left of nodes in the Trie structure point to the first rows of

the substrings with the same labels in ST. Given a data path /a/b/c/d in some

document, when the start elmement of a is reported, the Trie moves the current

node from node 1 to node 2. Then the number 5 is used to find the substring, i.e. a,
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in row 5 of the ST. Comparing the element a in the document with the information

in ST, the method detects substring a is matched. When the start element of b

is reported, the node in the Trie further moves to node 4, which corresponds to

row 1, i.e. substring /a/b, in ST. The Next attribute of row 1 is used to find

the substring /a/b in row 3. The processor detects that both two substrings are

matched. Similarly, when the substrings c in row 2 and c/d in row 4 and 6 are

matched. The matching of substrings are propagated from the child substring to its

parent substring, and the RelLevel is used to check the level requirement. Finally,

the processor detects are q2 and q3 are matched. 2

2.4 Document Dissemination and Subscription Ag-

gregation

In content-based dissemination environment, each data consumer registers his sub-

scription to his local router. In order for a router to know about subscriptions that

have been registered with other routers, a routing protocol is used by the routers in

the overlay network to exchange subscription information such that their subscrip-

tion tables are set up correctly to establish routing paths for forwarding documents.

As previously mentioned, the content-based dissemination system consists of

three components, i.e. publishers, subscribers and a routing network. A collection

of subscriptions are stored at routers to be matched with the incoming documents.

We use Ri to denote a router, and Ti to denote the set of subscription entries in its

routing table. Figure 2.6(b) illustrates a simple routing network with three routers

R1, R2 and R3. The rectangles in each router show the routing tables maintained on

the router. Conceptually, each entry in Ti is of the form (Sj, pj), where Sj denotes

a set of subscriptions and pj denotes a unique identifier that refers to either a local
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subscriber of Ri or a neighboring router of Ri. For a given document D, we use

S+
j (D) and S−j (D) to denote, respectively, the subset of subscriptions in Sj that

matched and did not match D (i.e., Sj = S+
j (D) ∪ S−j (D)). For each incoming

document D to Ri, Ri will forward D to pj if and only if S+
j (D) is non-empty.

If a router Ri forwards some document to a neighboring router Rj, we call Ri

as an upstream router and Rj a downstream router. In order for any document to

be forwarded from an upstream router Ri to a downstream router Rj, Rj needs

to have advertised (via some routing policy) its collection of subscriptions (i.e.,

Uj =
⋃

(S,p)∈Tj
S) to Ri so that an entry (Uj, Rj) can be recorded in Ti.

Example 2.2 Considering the routing network in Figure 2.6(b), R1 is the upstream

router of both R2 and R3, and consequently, R2 and R3 are the downstream routers

with respect to R1. R2 needs to advertise its collection of subscriptions to R1, which

incurs a tuple (S2, R2)(i.e. {s5}, R2 in Figure 2.6(b)) in the routing table T1 on R1.

The document D is published to R1 first. If R1 detects some subscription si ∈ S2

that matches D, R1 forwards D to R2. 2
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Figure 2.6: Data Dissemination Example

Since the entire collection of subscriptions in Ri (i.e., Ui =
⋃

(S,p)∈Ti
S) is gener-
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ally large, Ri needs to summarize (or aggregate) Ui to a smaller set S ′i of aggregated

subscriptions before advertising it to its neighboring routers. To preserve forward-

ing correctness, S ′i needs to satisfy the following containment property w.r.t. Ui:

for every document D, if D matches some subscription s ∈ Ui, then there must

exist some subscription s′ ∈ S ′i such that D also matches s′. We say that S ′i con-

tains Ui (or Ui is contained by S ′i), denoted by Ui v S ′i. Similarly, we say that a

subscription s′ contains another subscription s, denoted by s v s′, if {s} v {s′}.
The importance of the containment property (i.e., Ui v S ′i) is that using S ′i in

place of Ui for document matching will guarantee that there are no false negatives

(i.e., documents not being forwarded when they should); however, false positives

can arise (i.e., documents being forwarded when they need not) which are tolerable

and do not compromise correctness.

Several algorithms (e.g., [38, 117]) have been developed to aggregate a set of

subscriptions S into a smaller set S ′ such that S v S ′, and they are all formulated

(at a high level) in terms of the following two steps: first, partition S into a

collection of disjoint subsets S1, · · · , Sm, where m < |S|; next, aggregate each Si

into a single subscription s′i (i.e., Si v {s′i}) to obtain S ′ = {s′1, · · · , s′m} with the

properties that S v S ′ and |S ′| < |S|. In addition, to ensure that the aggregated

subscriptions are space-efficient, a space bound is generally impose on S ′ to limit

the total number of query steps among all the queries in S ′.

For each of the subscriptions s ∈ Si, Si v S ′, that becomes aggregated to

s′i ∈ S ′ (i.e., s v s′i), we refer to s as an aggregating subscription, and refer to s′i as

an aggregated subscription of s.

Example 2.3 Consider the set of XPath expressions S = {s1, s2, s3, s4} in Fig-

ure 2.6(a). One way to aggregate S into a smaller set is to first partition S into

two subsets S1 = {s1, s2} and S2 = {s3, s4}; followed by aggregating S1 and S2,
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respectively, into s5 and s6 as shown in Figure 2.6(a). It can be verified that S1

v {s5} and S2 v {s6}. We say that s5 and s6 are, respectively, the aggregated

subscriptions of S1 and S2; and the subscriptions in S1 and S2 are aggregating

subscriptions. 2
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Chapter 3
Related Work

As mentioned in Chapter 1, the content-based dissemination system has two im-

portant issues, i.e. filtering efficiency and functionality. Figure 3.1 illustrates the

design space of the work in this dissertation. All existing filtering approaches [20,

39, 38, 49, 117, 63, 60, 69, 36, 59, 71] focus on optimizing the matching efficiency

on each individual router, and they can only handle the XML data that are pub-

lished as complete documents, and they have the constraints that all data from the

same domain conform to the same XML schema. The work on global optimization

of XML data dissemination exploits the collaboration among routers to optimize

the filtering efficiency in a global manner; the work to disseminate the fragmented

XML data extends the functionality to handle the information published in frag-

ments; and the work to handle the heterogeneous XML data allows the publishing

of data in heterogenous structure. This chapter first classifies and introduces the

existing matching approaches that intend to improve the efficiency of the dissemi-

nation system. Secondly, this chapter reviews some approaches proposed to extend

the functionality of the dissemination system. After that, this chapter reviews the

techniques that are related with each particular work in this thesis. The related

techniques are constrained in the content-based dissemination scenario.
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Figure 3.1: The Design Space of Our Works

3.1 Improving the Matching Efficiency in Dis-

semination Systems

XFilter [20] is the first approach proposed in content-based XML dissemination to

handle the efficient matching of a large collection of XPath expressions. XFilter

converts every query to a Finite State Machine (FSM) and uses the events reported

by the SAX-based parser to drive the execution of the FSM for queries. Each

state in the FSM is represented by a path node which corresponds to one step in

the XPath expression except the “*” step. The path node contains four types of

information as follows :

• QueryId : the identity of the query that this path node belongs to.

• Position : the location of this path node in the order of the path nodes in the

query. The first path node is numbered as 1, and the rest of the path nodes

are numbered sequentially.

• RelativePos : the level distance of this path node with its previous path node.

If the axis of the current path node is “/”, this value is set to be 1 plus the
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number of wildcards (i.e. “*”) between this path node with its predecessor

path node; otherwise this value is set to be -1.

• Level : it tells that at which level in the XML document this path node should

be checked. This value will be updated dynamically during the evaluation of

queries.

These path nodes are indexed using a hash table based on the element names

that correspond to the path nodes. Each element name is associated with two lists

: the Candidate list and Wait list. For the path nodes that are the next-to-be-

processed node for the query are to be placed on the candidate list of the index

entry for its respective element name; and the path nodes that are to be processed

in the future are placed on the corresponding wait list. The lower right part of

Figure 3.2 gives seven XPath expressions. Figure 3.2(a) and Figure 3.2(b) show

the decomposed path nodes and the hash table index for these queries respectively.

The state transition of FSM is driven by the events from the SAX parser. For

the start element event, the processor looks up the element name in the hash table

and checks each path node in the candidate list of the entry. There are two kinds

of checks performed on the path nodes : level check, which is to make sure that the

element occurs in the level that satisfies the requirement in the path expression,

and predicate check, which is to satisfy the requirement on the attributes of the

element. If the path node passes these two checkings, the FSM of the query moves

to a new state by copying the next path node from the wait list to the candidate

list. If the current path node is the last path node in the query, this query is

matched by the document. For the end element, the corresponding path nodes are

deleted from the candidate list.

XFilter is a basic matching approach that does not exploit the common parts

in the queries such that XFilter is not very efficient to handle larger number of
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Figure 3.2: XFilter and YFilter Example

queries. Many approaches are proposed to improve the matching efficiency. These

approaches can be classified into three categories based on the mechanism to opti-

mize the matching.

- Approaches to share the processing. Each router stores a large number of

XPath expressions, thus there is a high probability that the common parts ex-

ist in XPath queries. To share the processing of these common parts could im-

prove the matching efficiency. YFilter [49], YFilter∗ [117] and LazyDFA [60]

share the processing of common prefixes; XTrie [39], Predicate-based [69]

share the processing of common substrings; AFilter [36] shares the processing

of both the common prefixes and suffixes; and XPush machine [63] shares the

processing of common predicates. Besides the common parts in queries, the
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shared processing for incoming XML documents is explored in [112].

- Approaches to reduce the number of processed queries. The matching time

increases as the number of processed XPath queries grows. This kind of

approaches intends to reduce the number of processed queries during the

parsing of the document. The approach to use precomputed views [61, 62]

and the tree pattern aggregation approach [38] belong to this category.

- Approaches to reduce the matching complexity. To match the path expres-

sions especially the tree pattern queries incurs larger cost. Some approaches

are proposed to convert the tree pattern matching to some simple match-

ings. The BloomFilter [59] uses the Bloom to hash the path expression and

converts the matching of tree patterns to be the matching of corresponding

bits. FiST [71] converts both the XPath queries and XML document to be

sequence, such that the matchings can be detected using string matching.

In the following, we introduce these approaches in details.

3.1.1 Approaches to Share Processing

Shared processing of common prefixes. Diao et al [49] have proposed an

automata-based approach called YFilter, which converts the collection of XPath

expressions on a router to a single non-deterministic finite state automata(NFA).

The common prefixes in different XPath expressions are combined into one path

in NFA such that the processing of these common prefixes are shared, thus the

filtering efficiency can be improved. Figure 3.2(c) shows the NFA in YFilter for

the set of XPath expressions in the lower right part of this figure. A circle stands

for a state in NFA and two concentric circles stand for a final state, which is

associated with the identities of the queries it accepts. The symbol “ ∗ ” matches
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any element in the document. The “//” axis in XPath expressions is converted to

an ε transition followed by a “∗” loop in the NFA. This figure clearly illustrates the

shared processing for the common prefix /x in all queries. The state transitions of

the NFA in YFilter are driven by the events generated by the SAX parser. When

the final state is reached, the queries associated with the final state are found to be

matched. Since YFilter eliminates the redundant processing on common prefixes of

the queries, it is more efficient than XFilter which shares nothing during processing.

YFilter∗ [117] is proposed by Zhang et al to further enhance the performance

of YFilter on the processing of tree pattern queries. The NFA in YFilter can only

handle the matching of single path expressions. To process the tree pattern queries,

YFilter conducts an expensive post-processing to join the matching of single paths

which are decomposed from the tree pattern queries. Then a large number of tem-

porary matching results for the single paths have to be maintained in the memory,

and may be discarded finally in the join procedure. YFilter∗ is to optimize the

processing by either detecting a matching tree pattern query or discarding an un-

necessary partial matching as early as possible. YFilter∗ additionally maintains

the information for branch point nodes of the tree pattern queries. The checking of

whether the tree pattern queries are matched is performed during the evaluation of

single paths using NFA. If some tree pattern query is determined to be matched,

the processing of the single paths decomposed from it can be short-circuited in the

following processing. The maintained branch point nodes can also help to deter-

mine that a matched single path cannot generate the matching of the tree pattern

query such that the matching of the single path can be discarded immediately.

Green et al [60] have proposed a method to use the Deterministic Finite Au-

tomata(DFA) to process the large number of XPath expressions on the routers. The

DFA is built in two steps : the collection of XPath expressions is converted into
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Nondeterministic Finite Automata(NFA) at first and then the NFA is converted

into a DFA. The DFA approach has two variants : eager DFA and lazy DFA. The

eager DFA method completely computes all the states before the query evaluation;

while the lazy DFA computes the states on demand during the query evaluation.

It shows that the wildcard (i.e. “*”) and the descendant axis (i.e. “*”) incur the

significant exponential growth in the number of states, which makes the eager DFA

prohibitive in practice. However, for the lazy DFA, it is theoretically proved that

an upper bound of the number of states exists depending on the character of the

XML data, thus the number of states in lazy DFA is manageable.

All the above approaches use some kind of automata. The large number of

states maintained in the memory may cause the data miss in the cache when the

state transitions are performed. A cache-conscious automata is proposed in [66] to

improve the locality of the automation state transition. The overall performance

is improved due to the higher cache hit rate.

Shared processing of substrings. The approaches in the previous section only

exploit the common parts in the prefixes. The XPath expressions, however, can

contain the common parts in other places. For example, the two XPath queries

/a/ ∗ /b/c and /e/ ∗ /b/c have the commons parts /b/c which is not the prefix, and

such common parts will not be shared using the approaches in the previous section.

The approaches XTrie [39] and Predicate-based Filter [69] can share the processing

of common substrings in the XPath queries.

XTrie achieves the shared processing for common substrings by decomposing

the XPath expressions into substrings. The detailed algorithm for XTrie is already

introduced in Section 2.3.

The Predicate-based Filter proposes a mechanism to encode the XPath expres-

sions using ordered sets of predicates, such that the common parts in the XPath
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expressions are encoded by the same predicates, and these predicates would be

stored and processed only once. Specifically, an XPath expression is represented

by a sequence of predicates : (a1, o1, v1) → (a2, o2, v2) → . . . → (an, on, vn), where

ai represents either a tag name or a pair of tag names; oi represents some relational

operator; and vi is the value constraints. There are four types of predicates :

• Absolute predicate (ani
, o, v) : specifies the position of the tag ni in the XPath

expression. This predicate is used to encode the first tag name in the XPath

expression. The operator o can be either ≥ or =. The = is used to encode the

absolute position of the tag ni. For example, / ∗ /ni is encoded as (ani
, =, 2).

The ≥ is used to encode the descendant operator or the relative expression.

For example, / ∗ //ni or ∗/ni is encode as (ani
,≥, 2).

• Relative predicate (d(ani
, anj

), o, v) : represents the constraints on the relative

position of two tags ni and nj. This predicate is used to encode the two tag

names in consecutive location steps. The operator o can be either ≥ or =.

The = is used to encode the parent/child relationship between the two tag

names; and the ≥ is used to encode the ancestor/descendant relationship.

For example, the expression ni/ ∗ /nj is represented as (d(ani
, anj

), =, 2) and

the expression ni// ∗ /nj is represented as (d(ani
, anj

),≥, 2).

• End-of-path predicate (a−1
ni

,≥, v) : specifies the position of a tag name ni

relative to the end of an XPath expression. This predicate is used to encode

the tag names that are followed by wildcards only. For example, for the tag

name ni in the expression / ∗ /ni/ ∗ /∗, the predicate (a−1
ni

,≥, 2) is used to

specify that there should have at least two tags following ni in a matching

XML path with this expression.

• Length predicate (length,≥, v) : specifies the constraints on the length of the
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XPath expression. This predicate is used to encode the path with wildcards

only. For example, the XPath expression / ∗ / ∗ /∗ is represented using the

predicate (length,≥, 3).

An XPath expression is encoded using a combination of the above predicates

in terms of the type of the XPath expression. In Predicate-based Filter approach,

all XPath expressions are translated to a set of predicates. A multiple stages of

hashtable is used to index all distinct predicates in the set of predicates. An XML

document is a collection of paths, denoted as (e1, e2, . . . , en), from the root of the

document to each leaf element. The path is then translated to a set of tuples as

follows :

(length, n),

(e1, 1), (e2, 2), . . . , (en, n),

(e1, e2, 1), (e1, e3, 2), . . . , (e1, en, n− 1),

(e2, e3, 1), (e2, e4, 2), . . . , (e2, en, n− 2),

. . .

(en−1, en, 1)

The matching algorithm consists of two phrases. Firstly, the above tuples

from XML document paths are used to retrieve the matched predicates from the

hashtable. Secondly, the matched predicates are combined to check the matching

of the complete XPath expressions.

Shared processing of both common prefixes and suffixes. AFilter [36]

leverages the shared processing in both common prefixes and suffixes. An AxisView

is created to capture the information of all nodes and all axes in the collection of

XPath expressions. Specifically, the AxisView (denoted Aview) is a directed graph

such that : (1) for an element name ei in some XPath expression, there exists
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a unique node with name ei in Aview; (2) if there exists an axis ei/ej or ei//ej in

some XPath expression, then Aview has an edge from node ni to nj; (3) if the XPath

expression with identity k has the axis ei/ej (resp. ei//ej) at the rth step, then the

edge from ni to nj is annotated with an assertion (qk, r)| (resp. (qk, r)||). Each node

in Aview is associated with a stack. During the parsing of the XML document, these

stacks maintain the currently active data nodes. The data nodes in stacks have

the pointers to the data nodes in other stacks to maintain the ancestor/descendant

and parent/child relationships for them. When the data node that matches a leaf

node in some XPath expression is encountered, a backward checking procedure is

triggered to determine whether the XPath expression is matched.

A trie structure is used to index the XPath expressions based on the com-

monalities in their prefixes. The backward checking procedure would cache the

matching results for some expressions. Thus, next time when the same checking

from the same pointer needs to be validated, the results in the cached can be re-

turned immediately. Similarly, a trie structure is also used to cluster the XPath

expressions based on their overlapping suffixes. The matchings of XPath expres-

sions are triggered by the matchings of some leaf nodes. To cluster the common

suffixes can reduce the number of assertions to consider. It shows that by combin-

ing the shared processing on both common prefixes and suffixes, AFilter achieves

better performance than YFilter.

Shared processing of common predicates. The above approaches only intend

to share the processing of the common parts in the axis navigation. However, for

the XPath expressions with value predicates, it is not uncommon to have some

common parts in the predicate parts. For example considering the two XPath

queries /b/a[@c = 2] and /e//a[@c = 2], the fact that the predicate [@c = 2] is

common in both queries can be exploited to speed up the filtering further. The
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XPush machine approach [63] can eliminate the redundant processing caused by

such common predicates.

XPush machine uses a deterministic pushdown automata to index the queries.

Besides the element names, XPush machine also converts the predicates to be the

states of the automata. The XPush Machine uses a modified pushdown automata

in which the states in XPush Machine have two components: a top-down state and

a bottom-up state. The top-down phrase builds the stack for the automata, and

the bottom-up phrase is the matching of the automata with the document. The

bottom-up state in the top of the stack stands for the total subquery that has been

evaluated to be true so far. The states transition is driven by the events reported

from the SAX parser. When an XML document is exhausted, the current state will

return a set of XPath expression identities that are matched with the document.

To construct an XPush machine for a collection of XPath expressions, the algo-

rithm first converts each of the XPath expression to an Alternating Finite Automa-

ton (AFA). The construction of AFA is like the construction of NFA in YFilter, and

it only needs to add an AND, OR, or NOT label to a state after constructing the

NFA. The construction of the bottom-up XPush machine follows the construction

of AFA. Each bottom-up state in XPush Machine stands for one common part (in-

cluding both the navigation part and the predicate part) in every AFA. Therefore,

the XPush machine can eliminate the redundant work in both structural navigation

part and predicate part.

When queries have multiple predicates, the query evaluation time may be dom-

inated by the predicate evaluation. To eliminate redundant processing in predicate

evaluation further improves the matching efficiency. In this case, XPush Machine

is more efficient. However since XPush machine incorporates the predicate infor-

mation in the states of automata, it may need more states than other approaches,
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especially when the number of predicates in the XPath expression is large. The

construction of XPush Machine may also take more time.

Shared processing of XML documents. Different XML documents conform-

ing to the same DTD may also contain similar parts in both structure and contents.

The RoXSum approach [112] designs a new structure (i.e. RoXSum) to aggregate

the content of multiple XML messages. The query matching is performed on the

RoXSum itself instead of original documents. This approach improves the effi-

ciency by batched processing of XML documents. Similarly, B-BoXFilter [83] also

explores the batched processing mechanism.

3.1.2 Approaches to Reduce the Number of Queries

The filtering time increases as the number of XPath expressions increases. This

section introduces the approaches aiming to improve the filtering efficiency by re-

ducing the number of subscriptions to be processed.

The methods in [38, 117] use query aggregations to reduce the number of sub-

scriptions. One disadvantage of these approaches is that the aggregation may cause

the irrelevant information to be forwarded to some users.

The problem of subscription aggregation is defined as follows. Given a set of

tree pattern subscriptions S and a space constraint k on the total size of aggregated

subscriptions, the aggregation computes a set of subscriptions S ′ which satisfies the

following conditions:

- All the documents that are matched with S are also matched with S ′.

- The number of nodes in S ′ is not greater than the constraints k.

- The error of the matching results between the two sets is minimized.
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To solve the above subscription aggregation, an algorithm to compute the ag-

gregation of two XPath expressions is required, which is addressed in [38]. Given

two tree patterns p and q, the algorithm iteratively traverses the subtree of p and

q. “ ∗ ” is the aggregation of the nodes at the same level with different name, and

“//” is the aggregation for the root nodes of the common sub-pattern at different

level of p and q.

Then the aggregation of a set of XPath expressions S to another set of XPath

expressions S ′ can be handled. The approach in [38] iteratively selects the pair

of XPath expressions to aggregate such that the aggregation maximizes the gain

in space while minimizes the loss in selectivity. The approaches in [117] defines a

similarity function to measure the similarity between two tree pattern queries and

the clustering mechanism is adopted to cluster and aggregation the similar queries.

Chand et al. [42] also proposed an approach to estimate the tree-patten similarity

based on the observed document stream. The effective clustering of similar queries

helps to increase the accuracy of the aggregation.

The methods in [61, 62] uses the attached additional information (i.e. precomputed-

view) with the published documents to detect matching subscriptions before evalu-

ations. This approach assumes that the publishers have some knowledge about the

queries issued by the subscribers such that the publishers can pre-compute some

information to benefit the matching on each router. Such information is attached

with the document as the header to be forwarded together. Specifically, the views

include a set of XPath expressions and their matching results. When a router

receives an XML document with the header, it first tries to answer the XPath ex-

pressions using the header. For the XPath expressions that match the header, their

evaluation can be skipped during the parsing of the document. Furthermore if all

XPath expressions are matched, the parsing of the XML document can be skipped.
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To attached views in this approach is similar with the work to piggyback addi-

tional information proposed in this thesis. However, the views in this approach are

pre-computed by the publishers; while the piggybacked information in this thesis

is dynamically computed by the upstream router based on its matching results.

3.1.3 Approaches to Reduce the Matching Complexity

The tree pattern matching performed between the XPath expressions and XML

documents dominates the filtering time. This category of approaches try to con-

vert the time-consuming tree pattern matching on each router to other simple

matchings.

The BloomFilter [59] approach uses the Bloom filter [26] to convert the tree

pattern matching to the matchings of bit-vectors, which can be performed more

efficient. A Bloom filter is a bit-vector of length m used to efficiently test whether

an element y is a member of a set S = {x1, x2, . . . , xn}. To store an element xi into

S, a set of hash function h1(xi), h2(xi), . . ., hk(xi) are computed such that the bits

at the positions corresponding to the computed values are set to be 1. To check

whether an element y ∈ S, the bits at positions h1(y), h2(y), . . ., hk(y) are checked.

If any position has the value 0, y is guaranteed to not belong to S; otherwise

y is considered to be in S. However, the false positive does exists although the

probability is relative low for many applications.

The BloomFilter approach uses one Bloom filter to store all queries for each

user. Given a set of users U = {u1, u2, . . . , un}, their corresponding Bloom filters

are denoted as B = {b1, b2, . . . , bn}. During the parsing of the XML document, let

n denote the currently parsed element, then all possible paths (including the paths

with wildcard “*” and axis “//”) are enumerated. For a certain path p enumerated,

if there exists a bloom filter bi such that p ∈ bi, then the document is considered
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to be matched ui’s interest and will be forwarded to ui. The efficient matching of

bit-vectors leads to the better performance of the BloomFilter approach. However,

as the depth of the XML document increases, the number of enumerated paths in-

creases exponentially which may diminish the improvement by the BloomFilter and

the BloomFilter may cause the false positive such that some irrelevant information

may be disseminated to the users.

FiST [71] converts the tree pattern matching to be the sequence matching. The

XML documents and XPath expressions are encoded using the Prüfer sequences.

Then the matching of an XPath expression with an XML document can be de-

termined by the matching of prüfer sequence for the query with the the prüfer

sequence for the XML document. The set of XPath expressions on each router will

be converted to a collection of sequences, and these sequences are organized using

a dynamic hash based index. The matching is conducted in two phrases. Firstly,

a progressive subsequence matching procedure is used to obtain a set of XPath

expressions whose prüfer sequences match some prüfer sequences generated during

the parsing of the XML document. This phrase identifies a superset of XPath ex-

pressions that potentially match the incoming XML document. The second phrase

is conducted to refine the results to eliminate the false positive matchings. By

converting the tree pattern matching to a holistic sequence matching, FiST avoids

the join operations for tree pattern queries in other approaches, which makes FiST

better for the XPath expressions with more branch nodes.

BoXFilter [83] also makes use of the Prüfer sequences for matching XPath

expressions. A early pruning mechanism is used to eliminate unnecessary XPath

expressions as early as possible.

The Branch Sequencing approach [94] also converts the complicated tree pattern

matching to the sequence matching, while the branch sequencing is proposed in
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the paper and used to encode both XML documents and XPath queries. Besides

determining whether an XPath query is matched, the branch sequencing approach

can also output the matched nodes for the query.

The SemCast [87] approach makes use of the multiple channels in the interior

dissemination network such that the time-consuming content-based filtering at the

interior routers are eliminated. In the SemCast, a number of multicast channels

are created for disseminating information. Each channel consists of several routers

which form a dissemination tree. The channel is represented by some predicates

expressions to specify the content. Data sources publish the information to one or

more channels in terms of the overlapping between the content of the data source

and the content of the channel. Data consumers subscribe to one or more channels

whose content collectively cover their interests.

There are five kinds of routers in SemCast system :

- Coordinator : is responsible for creating and managing channels. It com-

municates with both the source routers and gateway routers to inform them

about the content of the existing channels.

- Source Routers : receive the information from the publishers. By comparing

the content of the information with the content of channels from the coordina-

tor, the source routers determine the set of dissemination trees for forwarding

the information.

- Rendezvous routers : take charge of the dissemination trees and serve as the

roots of the dissemination trees.

- Internal Routers : forwards the information by identifying the identity of

the channels that correspond to this information.
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- Gateway Routers : take charge of forwarding the information to the end

users.

The SemCast improves the filtering efficiency by eliminating the content-based

matching at internal routers. However, SemCast may incur a large number of

channels to be maintained.

3.2 Extending the Functionalities of Dissemina-

tion Systems

The basic content-based dissemination system only supports the filtering of the

information. Once the information matches the subscription from some user, the

complete piece of information will be forwarded to the user. Some approaches are

proposed to provide more functionalities of the dissemination system.

To detect all matchings for queries. Besides the information that matches

the user’s interests, one user may also want to know all the matching positions for

the subscribed query such that a quick browsing for the interested parts can be

performed. MatchMaker [72] and Index-Filter [33] are proposed to find all matches

for subscriptions during the filtering of documents.

The MatchMaker indexes all the parent/child and ancestor/descendant relation-

ships in the XPath expressions. For each event reported from the SAX parser, the

MatchMaker uses the index to find the relevant queries to process. The matching

status for each query is recorded using some auxiliary lists. Once a matching for a

query is detected, the matching position is recorded. Thus when the document is

completely parsed, all matchings for queries are detected.

The Index-Filter provides the path queries with the position information of the
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elements in XML documents. The position of an element in the XML document

is represented by (L : R,D) where L and R are the offset of the start and the

end of the element from the beginning of the document by counting the numbers

of the words and D is the level of the element in the document tree. Index-Filter

algorithm is conducted in two phases. The first phase is to find the candidate

nodes that may participate in a new match using the position information of the

elements that associated with each node in the prefix tree of all the queries. The

representation of the position information makes it easy to determine the structural

relationship between two nodes. For example, given two nodes n1, n2 with the

position information as (L1 : R1, D1) and (L2 : R2, D2), if L1 < L2 and R1 > R2,

we can conclude that n2 is the descendant of n1. Further if D2 = D1 + 1, we can

conclude that n2 is the child of n1. The second phase of the algorithm decides

whether it is time to output the matching results and output the results once the

matching is finished. In the dissemination scenario, the position information of

elements is computed on-the-fly by parsing the document once. If the document

is large and the number of queries is small, the time to compute the position

information will delay the response time.

To customize the information with respect to specific users. ONYX [50]

extends the conventional content-based dissemination by supporting the informa-

tion transformation such that the information disseminated to users is customized

in terms of the users’ requirement. In ONYX, queries are written using a richer

subset of XQuery [13], which is the set of for-where-return expressions. The for

clause binds the elements that match a path expression with a variable name; the

where clause further filters the binding elements using a set of conjunctive predi-

cates; and the return clause retrieves the fragments of XML document requested

by users. Given an incoming XML document, the ONYX system returns the users
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the transformed XML document which is a set of tuples retrieved by the return

clause.

To handle a large set of queries, the shared processing for common parts in the

queries helps to improve the efficiency significantly. In ONYX, the shared process-

ing is exploited to handle the for -clause and the where-clause which can make use of

the shared matching engine in YFilter. Furthermore, the shared processing is also

exploited to handle the return-clause in some degree. Finally, a post-processing

procedure is performed to customize the information with respect to specific users.

To support stateful subscriptions. The traditional content-based dissemina-

tion system only allows the subscriptions to address an individual event, which is

called stateless subscriptions. However, some users may be interested in the trends

of a sequence of events happened in a period of time. For example, in the stock

ticker system, some user may have the request for a stock whose price consistently

increases in an hour. There are some systems proposed to support such kind of

request, which is constructed using the stateful subscriptions.

A state-persistent publish/subscribe system is proposed in [74]. The system

stores the states between the publications and subscriptions, which are the rela-

tionships about whether a publication matches some subscriptions or whether a

subscription is matched by some publications. Then a publication is only sent to

a user when some subscription from this user undergoes a state transition with

respect to this publication.

PADRES [77] is another system to support the stateful subscriptions, in which

the composite subscriptions are proposed to address a sequence of events. The

composite subscription is formed by linking the traditional subscriptions using some

logical or temporal operators. Each composite subscriptions is matched by a set of

events that satisfy its correlation requirements. The PADRES supports four kinds
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of composition operators on subscriptions, i.e. parallelization,alternation,sequence

and repetition. The parallelization operator is to address the set of events that

occur together; the alternation operator on two subscriptions s1 and s2 is matched

if an event matches either s1 or s2; the sequence operator is to address a set of events

that occur in a sequence, and the attribute time-span can be used to specify the

time interval between two events; and the repetition operator matches the events

that occur in aperiodically or periodically. The PADRES proposed a mechanism to

decompose the composite subscriptions and allocate the parts of subscriptions in

the distributed environment. A rule-based matching engine is extended to support

the matching of composite subscriptions.

The Cayuga [47] system also allows users to express subscriptions that span

a set of events. Four kinds of binary operators, addressing on subscriptions s1

and s2, are proposed to support the stateful subscriptions. The first operator is

union, which is similar with alternation operator in PADRES. The second operator

is called conditional sequence, which requires that s1 and s2 are the sequence of

two consecutive and non-overlapping events, and s2 satisfies the condition with

s1. The third operator is iteration operator, which is the repeated application of

the conditional sequence operator. The iteration iteratively applies the conditional

sequence operator on a sequence of events. This operator enables the powerful

parameterized subscriptions. The last operator is aggregate, which occurs over a

sequence of events. For example, to compute the summarization or average for

some attribute over a sequence of events needs the aggregate operator.

The queries supported in Cayuga are only simple attribute-value predicates.

In [67], Hong et al. further proposed an approach to process a large number of

XML queries involving joins over multiple XML documents.
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To provide the QoS property for dissemination. Many existing dissemina-

tion systems are based on the best effort principle. Subscribers are only allowed to

issue their interests for the kind of XML documents, but no parameters addressing

the quality of the dissemination service are provided to them. The router sends

matched XML documents to subscribers as soon as the processing of XML docu-

ments has been finished. Schmidt et al [99] extended such kind of dissemination

systems through implementing a prototype of a Quality-of-Service-based dissemi-

nation system, which is based on a state-of-the-art real-time operating system that

provides the native streaming support with QoS. The system gathers the QoS pa-

rameters from the DTD [12], the document and the XPath queries to estimate the

resource to be consumed and determine whether the queries can be accepted. If the

queries can be accepted, the operating system reserves the resource for the queries;

otherwise, the queries are rejected.

3.3 Query Processing Using Annotations

This section introduces some related work with the annotation mechanism used in

global optimization of XML dissemination. The annotation mechanism is exploited

in some other works to either improve the query processing efficiency or to reduce

the memory usage in the streaming processing.

Tucker et al. [110] proposed to use the annotations in processing continuous

queries in streaming data. Due to the infinite property of the continuous stream

data, the query processing encounters the blocking operators and unbounded stateful

operators problems. The annotations are leveraged to specify the end of a subset

of the attribute tuples in the stream with the format < attribute1, attribute2, . . .,

attributen >, which indicates that no more attributes following such annotation
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will match it. Then the operators that can not evaluated due to these attributes

can be processed. Ding and Rundensteiner [52] also made use of the annotations

in the continuous data stream to evaluate window join queries. These works are

different with the work in this thesis to optimize the dissemination with piggybacked

annotations in two aspects : (1) the above works concentrated on the streaming

data in the attribute-value format; while this thesis focused on the XML data; (2)

the annotations in the above works are inserted before transmitting the data; while

the annotations used in this thesis are inserted dynamically during the transmission

of the data.

Shen and Tirthapura [101] introduced the Lookup Reuse approach in the content-

based dissemination. Their approach based on the observation that the neighboring

routers are likely to have common subscriptions such that an event that matches

some subscription on a router is likely to match some subscription on its neigh-

boring routers. The Lookup Reuse approach allows the upstream router to insert

the identities of a list of matching subscriptions as the annotations, and these an-

notations are forwarded to the downstream router together with the data. Then

the downstream router would perform a hash lookup to detect the matching sub-

scriptions using the annotations which avoids the processing on the content of the

data. The Lookup Reuse approach utilizes a similar mechanism to exploit the col-

laboration among routers. However, firstly this approach does not consider the

subscription aggregation during the propagation of subscriptions. With the ag-

gregation, the subscriptions on the neighboring routers may not be exactly the

same such that a simple lookup may not work well. Secondly, only the correlation

among subscriptions are exploited in the Lookup Reuse approach; while the work

in this thesis additionally considered the correlation between the XML data and

subscriptions.
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3.4 Query Processing on Fragmented XML Data

In this section, we review some approaches that are related with the query pro-

cessing on fragmented XML data, while they are not applied in the dissemination

environment.

Bose and Fegaras proposed several approaches to process queries on fragmented

streaming XML data based on the hole-filler model [95, 97]. In the hole-filler

model, the XML stream data is transmitted in the unit of fragments, each of which

is associated with an unique ID. The fragments are related using the concepts of

holes and fillers. Each fragment is considered as a filler which contains holes in

it, and each hole specifies the ID of the filler that can be positioned to complete

the tree. The early works by Bose and Fegaras [55] processed the fragments based

on the navigation among fragments. Then the processing of some fragments has

to be suspended due to the lacking of their ancestor fragments. This method

not only incurs challenge requirements on the memory, but also delays the query

response time due to the waiting for a fragment that is necessary for the information

completeness to be processed.

With respect to such problem, another approach, called XFrag [96], was pro-

posed. The XFrag makes use of the structural summary of the XML data, which

indicates the structure of tags in the document and provides the information of

fragmentation. The structural summary is used to generate the evaluation plan for

an XQuery expression, and during the processing time, it can be used to decide

whether a fragment is needed to be kept in memory. In XFrag, the fragment is

processed upon arriving, and the fragments that are guaranteed not to contribute

to the results would be discarded as soon as possible. Thus, the XFrag is optimized

for memory usage. The goal of XFrag is to evaluate a single continuous query on

the streaming XML data to output all the selection results, which is different with
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our work that is to match a batch of boolean XPath expression in the dissemination

environment. Therefore, our work utilizes a different evaluation and optimization

mechanism. Furthermore, our work exploits scheduling strategies of fragments to

improve filtering efficiency.

The Active XML [18] is a framework for managing the distributed information

over the internet using a peer-to-peer architecture. The information is stored as the

Active XML document in the system. In the Active XML document, some parts

of the data are stored explicitly, while other parts contain the Web Service calls

to retrieve the fragment of XML document when required. To evaluate a query

on the Active XML document, the processor navigates the document to match the

query. When a Web service called is encountered, the called is activated to fetch

the corresponding data, and the returned data is inserted into the document for

the query evaluation. The returned fragment of XML data may also contain the

Web service calls, and they may be activated for the further processing if necessary.

To materialize all the service calls is not practical and necessary. Thus the peer

hosting the Active XML document decides when to activate a particular service

call. In [19], Abiteboul et al. proposed an approach to activate the Web service

call lazily, and the irrelevant Web service calls would not be invoked.

In Active XML, the XML fragments are stored distributed and statically on the

peers. The XML fragments would be sent to other peers by the service calls from

other peers. This is different with our work on disseminating the fragmented XML

data, in which environment the fragmented XML data is transmitted as a stream

in the publish/subscribe architecture. In the Active XML, the query processing

is initialized on one peer, and the relevant service alls are activated sequentially

when navigating in the document; while in our fragmentation work, each fragment

is identical and can be processed in any sequence.
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Some researchers have studied the distributed query processing on fragmented

XML data. Dan Suciu [105] addressed the problem of query evaluation on dis-

tributed semistructured database. In his setting, fragments of databases are stored

at a fix number of sites, and the cross links between two fragments are used to

connect the related information at different sites. The goal of the work is to min-

imize the communication among sites during the query evaluation. Deshpande et

al. [48] studied the query processing of XML data on a distributed sensor network,

where the fragments of XML data are collected by sensors. The data collected by

a sensor are stored close to this sensor, but can be cached elsewhere in the network

as required by some queries. Deshpande et al proposed the approach to efficiently

route the queries to the proper site for the evaluation and to efficiently collect the

missing data for processing the queries.

The above two works handled the query processing on the scenario that the

fragments of XML data are statically stored on the distributed sites. Either the

queries are routed to the proper sites or the missing data are fetched from other sites

to evaluate the queries. They tried to minimize the communication among sites for

query processing. Thus the query evaluation in their work is optimized at different

sites, which is different with our fragmentation work that the query evaluation

is optimized at one site, since in our scenario, the fragments of XML documents

are transmitted as streaming in the dissemination network and all fragments of an

XML document would arrive on the same router for matching the subscriptions.

Recently, a new technique for decomposing an XML document into a set of

vectors was proposed by Buneman et al. in [34]. Each fragment is identified by a

path and it contains all leaf text nodes for that path. The query processing makes

use of a compressed skeleton that describes the structure of the XML data, with

the necessary scanning of data vectors and decompression of skeletons. Their goal
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is to query a large XML repositories statically stored, which is different from the

dissemination environment that small documents are published and transmitted.

To disseminate and process the XML fragments, we need an approach to par-

tition the XML document. A batch of such approaches are proposed. Gertz and

Bremer [58, 32] developed a fragment specification to decompose an XML doc-

ument into a disjoint and complete set of tree-structured data fragments. The

fragmentation can be classified into two types: vertical fragmentation and horizon-

tal fragmentation, in which vertical fragmentation is based on the structure of data

and horizontal fragmentation is based on the attribute values. Bordawekar and

Shmueli [28] incorporated the workload during the partition of XML documents.

They assigned the weight, which measures whether two nodes should be put in the

same cluster, to each edge of XML tree and partitioned the tree based on the weight

such that intra-cluster weight is maximized and inter-cluster weight is minimized.

Wong et al. [113] introduced the concept of the semantic-based fragmentation of the

XML documents, where the structure and organization of the contents are taken

into consideration. W3C provided a recommendation called XML Fragment Inter-

change [14], which considers the XML document as a logical document composed

of possibly several entities. The above works examined how to fragment XML doc-

uments, which are the complementary of our work on disseminating the fragmented

work that focused on matching queries directly on the fragmented data.

3.5 Query Processing on Heterogeneous Data

In this section, we discuss some related works for querying heterogeneous data in

both dissemination and non-dissemination environment.

Petrovic et al. [89] proposed a semantic publish/subscribe system, i.e. S-ToPSS,
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to deal with the semantic filtering problem. The matching algorithm was extended

by adding three kinds of semantic capabilities. Firstly, the synonyms are considered

to match the events and subscriptions that use semantically equivalent attributes;

secondly, a concept hierarchy is exploited to match the events and subscriptions that

have specialization or generalization relationships; thirdly, the mapping functions

are allowed to define arbitrary relationships between schema and attribute values,

and these functions are exploited to match the events and subscriptions. The S-

ToPSS system handles the heterogeneous data which are published as the attribute-

value tuples. The XML data also incur the structural heterogeneity which is not

considered in S-ToPSS.

Uschold et al. [111] developed Xinfosphere system that makes use of the ontol-

ogy to provide the semantic matching in the dissemination. The ontology is created

using the DAML+OIL [68] syntax to represent the key concepts and relationships

in the domain of interests. The published data is associated with the semantic

annotations to represent the content of the data using ontology language. The

subscriptions in Xinfosphere are also represented using DAML+OIL to address a

set of interested objects. The building of ontology involves more effort and the

query matching using ontology is inefficient. In Xinfosphere, both the publishers

and subscribers should be aware the semantic matching, and perform the corre-

sponding operations. However, the work in this thesis keeps the dissemination of

the heterogeneous XML data transparent to both the data publishers and data

consumers.

The problem of querying heterogeneous data also occurs in the data integration

scenario, and the approaches based on query rewritten are proposed to address this

problem in data integration. A global schema exists for the heterogeneous data.

Queries are expressed in terms of the global schema, and will be reformulated to
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be a set of queries over the various data sources using the proper approach based

on how the correspondence between the data sources and the global schema is

specified. The query rewritten approaches are classified into three categories :

• local-as-view(LAV) [76, 80] : In LAV, the local data sources are represented

as a set of views over the global schema. The advantage of LAV is that new

data sources can be added without affecting the global schema, which makes it

more scalable. However, the query rewritten is known as a hard problem [75],

since there is no mediator to align the users’ query with a simple expansion

strategy as in GAV.

• global-as-view(GAV) [35, 79, 115, 116]: In GAV, the global schema is rep-

resented as a set of views over the local source schemas. Then the query

rewritten in GAV is straightforward since the associations between the global

schema and the local schemas are well-defined. However, the global schema

has to be modified once some new data source is added or some local schema is

modified. Thus, GAV prefers the scenario that the data sources are relatively

static.

• global-and-local-as-view(GLAV) [57] : it combines the data expressive power

of both LAV and GAV. It is shown that the data complexity of answering

queries in GLAV is no harder than in LAV.

These query rewritten approaches to query heterogeneous data are suitable for

the environment that a single query is evaluated on huge amount of data that is

stored on the disk. However, the work in this thesis dealt with the dissemination

of heterogeneous data, where a small document is parsed to match a large number

of queries simultaneously, which makes the query rewritten approach not scalable.

There also exist some works [98, 22, 81, 21] to solve the querying of structural
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heterogeneous data problem by relaxing one query to a set of queries for evaluation

and generating a ranked matching result. Three operations are used to relax the

queries, i.e. edge generalization, leaf deletion and subtree promotion. The relaxed

queries are combined into a DAG, and would be evaluated together. These ap-

proaches have to relax one query to several candidate queries for evaluation, which

is not suitable for the dissemination environment where the number of queries is

usual large. The reason is that to relax these queries will significantly increase the

number of processed queries, which further reduces the filtering efficiency.

3.6 Summary

The chapter first surveys a batch of works that are related in dissemination environ-

ment. After that some related works with each particular problem in this thesis are

studied. The works in the dissemination scenario is classified into two categories.

Section 3.1 introduced the set of approaches that intend to improve the filtering

efficiency. It is observed that all existing works in content-based dissemination of

XML data try to improve the efficiency on each individual routers, which is called

local optimization. This is different with the work in this thesis that optimize the

filtering efficiency by exploiting the collaboration among routers, which can be con-

sidered as the global optimization. Section 3.2 studied the approaches that focus on

extending the functionality of the dissemination system. It can be observed that

none of the existing works in content-based dissemination of XML data addressing

the problems to handle the data that are fragmented or heterogeneity in both the

content and the structure. These two problems are handled in this thesis.
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Chapter 4
Global Optimization for XML Data

Dissemination

4.1 Introduction

To publish data content in XML format and to use XPath as subscription language

provides a more expressive content-based dissemination mechanism. However, it

also increases the complexity of subscription matching at routers. Thus, there is

an even greater need for effective optimization techniques to meet the performance

challenge of content-based dissemination of XML data. The existing research efforts

have focused on two key optimizations to minimize the number of subscription

matchings.

1. The first optimization is to exploit efficient index structures (e.g.,[39, 49, 20,

33, 59, 60, 63, 69, 71, 117]) to perform selective matching with only a small

subset of potentially matching subscriptions.

2. The second optimization uses aggregation algorithms to summarize an initial

set of subscriptions into a smaller set of generalized subscriptions (based on
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subscription containment properties) to reduce the number of subscriptions

and the matching overhead [38, 117].

One limitation of the existing approaches is that they only consider the opportu-

nity to improve the performance on each individual router. However, as mentioned

in Section 1.2.1, in the content-based XML data dissemination system, the same

document D is being repeatedly processed against related sets of subscriptions on

the upstream and downstream routers. This opens up a new opportunity to im-

prove the filtering efficiency by exploring the collaboration among various routers.

To facilitate such “collaborative” processing, the upstream router Ri is allowed to

pass along some hint information (which is referred to as annotations) to its down-

stream router Rj when it forwards D to Rj. Such hint information is generated

based on the matching of document D with the set of subscriptions on Ri. On

receiving the document D with annotations, the downstream router Rj tries to

exploit the hint information to optimize its own processing of D. There are two

key ways that a downstream router Rj can optimize its processing and matching

of D by exploiting additional hint information from its upstream router Ri :

• The hint could enable Rj to quickly determine that D is to be forwarded to

a downstream router Rk without requiring Rj to parse and process D.

• The hint could enable Rj to quickly detect that a portion S ′j ⊆ Sj of the

subscriptions in Rj’s routing table are guaranteed not to match D, and Rj

can therefore speed up its matching of D against the smaller set (Sj − S ′j)

instead of Sj.

Let us use the following two examples to illustrate the above optimization op-

portunities.
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Example 4.1 Consider the following routing of a document D among three routers

(Ri, Rj, and Rk), where D is first forwarded from Ri to Rj due to a matching

subscription /a//d ∈ Si (that is associated with Rj); and then D is then forwarded

from Rj to Rk due to a matching subscription /a/b/c/d ∈ Sj (that is associated

with Rk). Observe that if Ri had forwarded to Rj (along with D) the additional

information on the data bindings for the matching subscription /a//d ∈ Si; i.e.,

that the wildcard “//” in /a//d actually matches the data path “b/c” in D, then Rj

could have very efficiently determined that D matches the subscription /a/b/c/d ∈
Sj without actually having to parse and process D against the subscriptions in Sj.

In this way, Rj is able to speed up the forwarding of D to Rk and thereby reduce

the overall processing time to disseminate D to relevant subscribers. 2

Example 4.2 Consider the scenario where a router Ri needs to forward a docu-

ment D to its downstream router Rj, and that after having parsed and processed D

against Si, Ri has obtained the following information about D and Si: (H1) D does

not match some subscription s ∈ Si that is associated with Rj; (H2) the data pat-

tern “x/y/z” occurs in D with its last occurrence located at some position p within

D; and (H3) the data pattern “a/b/c” does not occur at all in D. Observe that

each of these three pieces of information could be forwarded to Rj as hints to opti-

mize the performance of Rj. For (H1), Rj can use the non-matching subscription

s ∈ Si to identify the subset of subscriptions S ′j ⊆ Sj in Rj that were aggregated to

s (i.e., subscriptions that are guaranteed to not match D), and exclude matching

D against such subscriptions to improve the matching performance. For (H2), once

Rj has parsed D beyond position p, Rj can conclude that there will not be any

new matches of subscriptions that contain the data pattern x/y/z, and therefore

such subscriptions can be excluded from further matching and processing. Finally,

(H3) can be treated as a special case of (H2) with p being at the starting position
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of the document D. Thus, Rj can ignore matching D against the subscriptions in

Sj that contain the data pattern a/b/c/ right at the beginning of D. 2

This chapter presents our proposed piggyback optimization approach, which

is an orthogonal and holistic optimization that enables a downstream router to

leverage the subscription matching work completed by upstream routers to optimize

its own performance. This optimization could be used in combination with the

existing optimizations proposed for pub/sub systems (i.e., subscription indexing

and aggregation).

There are three key design issues to be addressed for our piggyback optimization

approach:

1. What type of information is useful to piggyback?

2. How can such information be efficiently computed by a forwarding router and

exploited by a receiving router?

3. How does this optimization impact the data matching protocol (i.e., when

a router Ri detects that some subscription corresponding to a downstream

router Rj matches a document D, should Ri forward D immediately to Rj?

And should Ri continue matching D against other subscriptions related to

Rj?)

As there are many possible types of hints that could be forwarded along with

a document, forwarding too much hints could increase both the transmission cost

as well as the overhead of pre-processing the hints and thereby possibly negating

the potential performance improvements. Thus, the hints need to be selected ju-

diciously to balance these tradeoffs. Intuitively, a hint is preferred if it is more

likely to be beneficial and can be efficiently computed by the upstream router and

exploited by the downstream router.
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In this chapter, we examine and evaluate several design options for piggyback

optimization. Our experimental study demonstrates that our proposed piggyback

optimization is indeed a feasible and effective technique to improve the performance

of content-based dissemination of XML data.

The rest of this chapter is organized as follows. Section 4.2 gives an overview of

our piggyback optimization technique. Section 4.3 presents each type of annotation

in detail. We discuss the mechanism to generate the annotations in Section 4.4 and

the approach to process the annotated document in Section 4.5. Section 4.6 presents

experimental results, and Section 4.7 concludes this chapter.

4.2 Overview of Piggyback Optimization

This section presents an overview of the novel approach, which is termed piggyback

optimization, to optimize the subscription matching by exploring the collaboration

among routers. The proposed technique is orthogonal to the two existing optimiza-

tions, namely, indexing techniques and subscription aggregation algorithms, that

are also targeted at improving the routers’ performance.

The central idea behind piggyback optimization is to optimize the performance

of a router by leveraging information from the work done by its upstream router.

This is possible because both the upstream and downstream routers are processing

the same document against subscriptions that are partially related (due to sub-

scription containment relationships). Thus, an upstream router could pass to its

downstream router some useful hints (along with the document being forwarded)

about properties of the document and/or matching/non-matching subscriptions

that it has encountered to enable the downstream router to optimize its perfor-

mance by expediting the forwarding of the document (without processing the doc-
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ument) and/or speeding up its subscription matching process.

In our proposed piggyback optimization, the hints from an upstream router are

disseminated to its downstream router in the form of header annotations in the

document. On receiving an annotated document, a router will first pre-process the

header annotations to optimize the subsequent processing of the document.

In the following, we use Ai,j to denote the header annotations that an upstream

router Ri adds to a document D before forwarding it to a downstream router Rj.

The annotated document that Rj receives from Ri is denoted by (D, Ai,j).

4.3 Types of Annotations

The first key issue for the piggyback optimization technique is to decide on what

types of information to include in the header annotation of a document to opti-

mize performance. Our design of the annotated information is guided by three

performance-related requirements.

1. It should be concise so that it incurs minimal processing overhead in terms

of parsing and transmitting the additional header information.

2. It should be efficiently generated so that the computation overhead incurred

by the upstream router does not offset any performance gains of its down-

stream routers.

3. It should be effective in that a downstream router can efficiently preprocess

the annotations to optimize its subscription matching performance.

Let us consider the possible sources of useful information that an upstream

router Ri can pass on to a downstream router Rj along with a document D that

needs to be forwarded to Rj.
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Subscription Data
Positive Data bindings for matching sub-

scriptions (PS)
Positions of last occurrences of
data patterns (PD)

Negative Non-matching subscriptions (NS) Non-occurring data patterns (ND)

Figure 4.1: Types of Annotations

After having matched its own subscriptions against D, Ri has acquired addi-

tional information about D and how its subscriptions are related to D. We can

classify this knowledge into positive and negative information:

• Positive information refers to information about (a) subscriptions in Ti that

matched D, and (b) patterns / properties that occur in D.

• Negative information refers to information about (a) subscriptions in Ti that

did not match D, and (b) patterns/properties that did not occur in D.

We shall refer to the annotations of these two types of information as positive

annotations and negative annotations.

In the following, we identify two types of positive annotations (PS and PD) and

two types of negative annotations (NS and ND), which are classified in Figure 4.1.

The emphasis of the discussion in this section is on the ideas; we address the

implementation issues in Section 4.4.

4.3.1 Positive Annotations

A positive annotation specifies information related to either (1) a matching sub-

scription or (2) a data pattern that occurs in the document. Subscription-related

information could be used to expedite a document forwarding decision without hav-

ing to process the document itself, while data-related information could be used to

reduce the effective number of subscriptions that need to be matched.
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Positive subscription (PS). To understand the positive subscription annotation,

we need to first define the simple aggregated subscription as follows.

Definition 4.3.1 (Simple aggregated subscription) A subscription s′ is said

to be a simple aggregated subscription of another subscription s (or s is a simple

aggregating subscription of s′) if the following two requirements are satisfied :

- s v s′

- s′ can be made to match s by simply substituting each wildcard (i.e., ∗ and

//) in s′ with some path of data element names

A PS annotation is of the form (sx, Bx), where sx is some subscription detected

by Ri to match D (i.e., sx ∈ Sj, (Sj, Rj) ∈ Ti), such that sx is a simple aggregated

subscription of some subscription in Tj; and Bx is the set of pairs (l, p) such that

l specifies the position of a wildcard (i.e., * and //) in sx and the p is the binding

of that wildcard corresponding to the detected matching. Thus, a PS annotation

essentially specifies a data pattern in D that matches some subscription in Ti.

Such an annotation can benefit Rj if the specified data pattern also matches some

subscription sy in Tj that aggregates to sx. When this happens, Rj can very quickly

detect that D matches sy (from processing Ai,j) without having to actually process

D (which is more costly to process than Ai,j). Rj can then immediately forward D

to the relevant downstream router.

Example 4.3 Let us use the set of subscriptions in Figure 4.2(a) and the dissem-

ination system in Figure 4.2(c) to elaborate the PS. s5 on R1 is the aggregated

subscription of s1 and s2 on R2; and s6 on R1 is the aggregated subscription of

s3 and s4 on R3. Consider the processing of the document D in Figure 4.2(b)

by the router R1, which has two immediate downstream routers R2 and R3. R1

first detects that D matches the subscription s6 with the wildcard * and // in s6
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matching data elements b and e in D, respectively. R1 then adds the PS annotation

(s6, {(1, b), (2, e)}) into A1,3 and forwards the annotated document (D, A1,3) to R3.

Next, R1 detects that D also matches the subscription s5 with the * in s5 matching

the data element x. R1 then adds the PS annotation (s5, {(1, x)}) into A1,2 and

forwards (D, A1,2) to R2. On receiving (D, A1,3), R3 will first check whether any

of the aggregating subscriptions for s6 (i.e., s3 and s4) matches s6 with the bind-

ings {(1, b), (2, e)}. In this case, there is indeed a matching for the subscription s3.

Thus, R3 can very quickly forward D to the router R6 without having to scan and

process D. On the hand, when R2 receives (D, A1,2), none of the subscriptions in

R2 (i.e., s1 and s2) matches the PS (s5, {(1, x)}) in (D, A1,2). In this case, R2 needs

to scan and process D before detecting that s1 matches D. Note that if R1 had

created a PS for the second matching of s5 in D as well, R2 would have been able

to detect the matching of s1 earlier without having to process D. 2

Positive data (PD). The purpose of a PD annotation is to specify some useful

property about the data D that can potentially be exploited by a downstream

router Rj to skip the matching of some of its subscriptions in Tj thereby reducing

Rj’s processing overhead.
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In this dissertation, we use a simple PD of the form (p, l), where p = e1/e2/ · · · /em

refers to a path of element names that exists in D, and l refers to the position of

the last occurrence of p in D. Here, the position information l means that the

end-tag of the element e1 in the last occurrence of p is lth end-tag in D. To see

how a PD (p, l) can be exploited, suppose Ri has just completed parsing the sub-

tree of data elements rooted at the lth element in D, then Ri can safely ignore

all of the subscriptions that contain the pattern p from further processing since

such subscriptions are guaranteed not to match the remaining yet-to-be-processed

portion of D. This subscription pruning optimization can improve performance

particularly if the location l is early or if there are many subscriptions in Ti that

contain p.

4.3.2 Negative Annotations

The main idea behind negative annotations is to identify the set of subscriptions

in the downstream router that are guaranteed not to match the document D being

forwarded. In this way, the downstream router can optimize its performance by

eliminating the need to compare against such subscriptions against D.

Negative subscription (NS). The NS annotation for a downstream router Rj

(w.r.t. D) is a list of the identities of all the non-matching subscriptions in Sj

(i.e., S−j (D)). This information can be exploited by Rj to skip the matching of all

the aggregating subscriptions that were aggregated to S−j (D). Specifically, for each

subscription s in Tj, if s is an aggregating subscription of an aggregated subscription

s′ ∈ S−j (D) (i.e., s v s′), then by the containment property, the fact that D did

not match s′ at Ri necessarily implies that D will not match s at Rj. Thus, the

matching of s against D at Rj is redundant and can be skipped without affecting

correctness.
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Negative data (ND). Besides using non-matching aggregated subscriptions to

skip the matching of corresponding aggregating subscriptions, a more general ap-

proach to enable a similar optimization is to exploit the absence of certain data

patterns in D to skip the matching of all subscriptions in Rj that contain such

patterns. As an example, if Ri knows that D does not contain the path of ele-

ments p = A/B, this negative information can be beneficial to Rj if there is a

large collection Cp of subscriptions in Tj that contain such a pattern p. By similar

reasoning using the containment property, Rj can safely skip the matching of the

subscriptions in Cp. In this dissemination, we use simple data patterns in the form

of linear paths of element names for ND annotations.

4.3.3 Impact on Matching Protocol

The matching protocol of a router Ri refers to the two key decisions that Ri makes

when it detects that some subscription corresponding to a downstream router Rj

matches D. The first deals with whether Ri should forward D immediately to

Rj; and the second deals with whether Ri should continue matching D against

other subscriptions related to Rj. This section discusses the impact of piggyback

optimization on the options for the matching protocol.

Eager forwarding with skipping. For routers in conventional pub/sub systems

(without piggyback optimization), the matching protocol adopted is that when a

document D is detected at an upstream router Ri to match some subscription

associated with some downstream router Rj, Ri will immediately forward D to Rj

and skips the matching of subscriptions associated with Rj. Forwarding a document

as soon as possible helps to improve response time, while skipping unnecessary

subscription matchings helps to reduce the processing overhead. We refer to this

conventional protocol as eager forwarding with skipping (denoted by ES).
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Lazy forwarding without skipping. The conventional ES approach of for-

warding D to a downstream router Rj as soon as a subscription matching for Rj is

detected generally occurs when D has not been completely processed. The eager

forwarding protocol has two implications with regards to the use of annotations.

First, negative annotations cannot be included in the forwarded document; and

second, only limited PS annotations (derived from the processed portion of D) can

be used. Given that negative annotations could potentially help to skip a large

number of subscriptions in Rj and PS annotations could enable a document to be

forwarded quickly without processing the document, it might actually be beneficial

to delay the forwarding of D to Rj until D has been completely processed at Ri.

Clearly, for this “lazy” forwarding protocol to generate additional annotations for

a matching downstream router Rj, it is necessary for Ri to continue matching D

against the subscriptions that correspond to Rj. We refer to this protocol as lazy

forwarding without skipping (denoted by L).

There is a performance tradeoff between the ES and L protocols. On the

one hand, by forwarding D immediately to a downstream router, ES can help to

reduce the response time of delivering a document to matching data consumers.

On the other hand, by delaying the forwarding to generate both negative as well

as complete PS annotations, L can potentially minimize the matching cost at each

downstream router by (1) using negative annotations to skip the processing of many

subscriptions, and (2) using PS annotations to enable D to be quickly forwarded

without having to first parse D. L is particularly cost-effective if at the time a

subscription matching is detected at Ri, only a small proportion of D has not been

processed.

Combining annotations and protocols. Based on the preceding discussion,

the design space of our piggyback optimization consists of four basic annotation
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types (PS, PD, NS, and ND) and two matching protocols (ES and L). A data

dissemination strategy is formed by choosing a subset of annotation types together

with a matching protocol. We use Pα
β to denote a dissemination strategy, where

P ∈ {ES, L} refers to the matching protocol used; α ⊆ {+s, +d} refers to the

set of positive annotations used; and β ⊆ {−s,−d} refers to the set of negative

annotations used. Here, +s, +d, −s, and −d denote, respectively, PS, PD, NS, and

ND annotations. For conciseness, we use +sd (resp., −sd) to represent {+s, +d}
(resp., {−s,−d}); moreover, an empty set value is simply represented by a blank,

and a singleton value {x} is abbreviated to x. For example, the conventional

dissemination strategy is denoted by ES ; and a strategy that uses lazy forwarding

with PS, PD, and ND annotations is denoted by L+sd
−d .

Note that it is not meaningful to have a dissemination strategy that involves

some negative annotation type together with the ES policy. This is because nega-

tive annotations cannot be added to D if it is eagerly forwarded when the processing

of D has not completed. Therefore, in this work, we do not consider dissemination

strategies ESα
β with β 6= ∅.

4.4 Generating Annotations

In this section, we discuss the details of how an upstream router Ri computes the

various annotations (i.e., Ai,j) for a data D to be forwarded to a downstream router

Rj. Except for NS annotations, all the other annotations in Ai,j can be created

more effectively if they exploit knowledge of the subscriptions in the downstream

router Rj. To achieve this, our approach generates PS, PD, and ND annotations

in two steps, referred to as the offline step and online step. The offline step is

performed only once as part of the routing protocol to set up the routing tables in
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the routers. Specifically, when a downstream router Rj is advertising its aggregated

subscriptions to each of its upstream routers, we also make use of this opportunity

to transmit some useful information that is derived from Rj’s subscriptions to the

upstream routers. This derived information from Rj will be stored by the upstream

routers and used to create annotations in the online step for documents that are

forwarded to Rj. The online step is performed by an upstream router each time it

needs to forward a document to some downstream router.

In general, since there are many possible options for each annotation type, we

devise a benefit metric for each annotation type to enable the effectiveness of an-

notations to be compared so that a reasonably small set of beneficial annotations

can be judiciously selected (for inclusion in the document header) that both max-

imizes the performance improvement for the downstream router as well as ensures

transmission efficiency.

In the following subsections, we first describe, for each of the four annotation

types, the intuitive benefit metric used to select annotations and how the annota-

tions are created. After that, we give a comprehensive approach to select the set of

annotations among all types of annotations given the size limitation for the header

annotations.
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4.4.1 Positive Subscription Annotation (PS)

Intuitively, a PS annotation (s,B) is beneficial for a downstream router Rj if s is

a simple aggregated subscription of many subscriptions in Rj as this increases the

chance that the pattern specified by (s,B) matches a subscription in Rj. On the

other hand, it is also desirable for the size of the binding B to be small so that the

annotation is space-efficient. We therefore define the benefit of using a subscription

s for a PS annotation in Ai,j as follows :

benefit(s) =
|S ′|∑

i∈w(s) size(i)

where S ′ is the set of simple aggregating subscriptions of s in Rj, w(s) is the

set of the wildcards in s, and size(i) is size of binding values for the ith wildcard

of s. Note that a subscription s has no benefit if S ′ = ∅. Ri will select the most

beneficial PS annotations based on the above metric.

PS annotations to be included in Ai,j are computed in two steps. In the offline

step, Rj will identify a set of candidate subscriptions that can be used for PS

annotations and advertise these candidates to Ri. In the online step, whenever Ri

needs to forward a document to Rj, Ri will create PS annotations from a subset of

these candidates by adding relevant data bindings.

More specifically, in the offline step, after Rj has aggregated its subscriptions,

Rj derives the information (s, |S ′|, l) for each simple aggregated subscription s

computed by Rj, where S ′ is the subset of subscriptions in Rj that was aggregated

to s such that s is a simple aggregated subscription of each subscription in S ′

(defined in Section 4.3.1); and l is a list of wildcard positions indicating which of

the wildcards (// and *) in s need to be instantiated with data path bindings to

match some aggregating subscription in S ′.
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Example 4.4 Consider the example in Figure 4.3, where the six subscriptions in

Rj are partitioned into three sets: S1 = {s1, s2}, S2 = {s3, s4}, and S3 = {s5, s6},
which are aggregated, respectively, into s′1, s′2, and s′3. And for simple aggregated

subscriptions s′1 and s′3, S ′1 = {s1, s2} and S ′3 = {s5}. The derived information

generated by Rj in the offline step for these aggregations are shown as i1, i2, and

i3 in Figure 4.3. Observe that i1 = (s′1, |S ′1|, l1), where |S ′1| = 2 and l1 = {2}
indicating that only the second wildcard (i.e., *) requires a data binding; however,

the first wildcard (i.e., //) does not require a data binding to transform s to any

of the subscriptions in S. On the other hand, since s′3 is the simple aggregated

subscription of only s5 ∈ S ′3, i3 = (s′3, |S ′3|, l3), where |S ′3| = 1 and l3 = {1, 2}. 2

The collection of derived information (s, |S ′|, l) will be passed to upstream

routers of Rj when Rj advertises its aggregated subscriptions to them. In the

online step, when an upstream router Ri detects a matching subscription s (as-

sociated with downstream router Rj) while matching a document D, Ri will first

compare s against the derived information from Rj to determine whether s could

form a candidate PS annotation.

Example 4.5 Continuing with Example 4.4, suppose that Ri in Figure 4.3 is

processing the document D from Figure 4.2(b). When Ri detects that subscrip-

tion s′1 matches the data /b/a/x/c in D, Ri uses the derived information i1 =

(//a/ ∗ /c, 2, {2}) to create the PS annotation (s′1, {(2, x)}) for s′1. Based on i1,

Ri knows that only the second wildcard in s′1 requires a data binding. On further

processing D, Ri detects that subscription s′3 matches D and creates the PS anno-

tation (s′3, {(1, b), (2, e)}) for this matching. Figure 4.3 shows the scenario where

Ri is forwarding all these PS annotations to Rj along with D (indicated by the

shaded box). 2
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4.4.2 Positive Data Annotation (PD)

A PD annotation (p, l) is beneficial for Rj if p is contained by many subscriptions

in Tj and the value of l is small so that Rj can skip many of its subscriptions after

processing only a small portion of D. We therefore define the benefit of a pattern

p to be freq(p)
pos(p)

, where freq(p) represents the number of subscriptions in Tj that

contain p; and pos(p) represents the position of the last occurrence of p in D. Ri

then selects a subset of the PD annotations of the form (p, pos(p)) that have the

highest benefit values.

PD annotations are also computed in two steps. In the offline step, Rj advertises

to Ri a small set of beneficial data patterns Pj (together with their frequencies)

derived from the subscriptions in Tj. based on the following benefit metric for a

data pattern p: benefit(p) = freq(p) · ln(l(p) + 1), where freq(p) represents the

number of subscriptions in Tj that contain p; and l(p) represents the length of the

linear pattern p. The function ln(l(p) + 1) provides an approximate measure of

the probability that the last appearance of p occurs early in the document. In

the online step, an upstream Ri keeps track of pos(p) for each pattern p ∈ Pj as

it processes D. With the freq(.) information from Rj and the pos(.) information

that it derives, Ri can approximately select the most beneficial PD annotations for

Ai,j.

Example 4.6 Consider again the example in Figure 4.3 which shows that Rj is ad-

vertising three candidate data patterns p1, p2 and p3 (along with their frequencies)

to Ri for possible use as PD annotations. In the online step, after Ri has completed

processing D (from Figure 4.2(b)), Ri detects that pos(p3) = 4 (note that there is

no occurrence of p1 and p2 in D). It decides to create the PD annotation (p3, 4)

and forwards it to Rj. 2



74

4.4.3 Negative Subscription Annotation (NS)

An NS annotation is a subscription s ∈ Ti that did not match D; and it is more

beneficial to Rj if there are more subscriptions in Tj that aggregate to s as it enables

Rj to skip the processing of a larger number of subscriptions. The benefit of each

s ∈ Ti is therefore defined to be the number of subscriptions in Tj that aggregates

to s. NS annotations are computed in two steps. In the offline step, Rj notifies

to its upstream router Ri the number of its subscriptions that aggregate to each

aggregated subscription. While processing a document D during the online step,

Ri selects from among the subscriptions in Ti that did not match D, the subset

with the highest benefit values as NS annotations. However, as the total number of

subscriptions is generally not too large, all the non-matching subscriptions can be

specified concisely and precisely using a bitstring with each subscription represented

by a single bit such that the bit is turned on if and only if the subscription is non-

matching.

4.4.4 Negative Data Annotation (ND)

An ND annotation is of the form of a linear data pattern p that is absent in D.

Intuitively, a data pattern p is more beneficial to Rj if there are more subscriptions

in Tj that contain p and the probability of p’s occurrence in D is low. In fact, ND

annotations can be viewed as a special case of PD annotations with pos(p) = 0.

Thus, we can use the same metric freq(p) · ln(l(p) + 1) (defined in Section 4.4.2

for PD annotations) to compare the benefit of different ND annotations. The

generation of ND annotations in Ai,j follows a similar two-step process, where Ri

advertises to Rj a set of candidate data patterns during the offline step; and during

the online step, Ri keeps track of the candidate patterns that did not occur in the

document being processed, and concisely represent the non-matching data patterns
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as a bitstring in the ND annotations.

Example 4.7 After Ri in Figure 4.3 has processed the document D from Fig-

ure 4.2(b), Ri detects that D did not match the subscription s′2 and that the data

patterns p1 and p2 did not occur in D. Thus, Ri can create the ND annotation 001

and the NS annotation 101 for Rj. 2

4.4.5 Annotation Selection

The previous sections provide some intuitions to select annotations independently

among each individual type. A more general problem for annotation selection is

given the size limitation for the header annotations, how to select a set of annota-

tions that can achieve largest improvement while the total size of these annotations

fits the header limitation. This section presents the approach to solve such general

problem.

For each annotation s (s can be PS,PD,NS, or ND), we can estimate the per-

formance improvement by s, which is denoted as value(s); and we can compute

the size of s, which is denoted as size(s). The annotation selection problem can be

formally defined as follows.

Definition 4.4.1 (Annotation selection problem) Given the size limitation K

for the header annotations, select the set of annotations (denoted as S) such that

(1)
∑

s∈S size(s) < K; (2)
∑

s∈S value(s) is maximized.

Value estimation. The improvement of annotations has two types : (1) to elimi-

nate unnecessary queries, let λ denote the benefit by eliminating one query; (2) to

immediately forward the data at the downstream router, let θ denote such benefit.

To process each annotation also incurs some additional cost, we assume the pro-

cessing cost for the annotations PS, PD, NS and ND as αPS, αPD, αNS and αND
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respectively. Then the value of each annotation s is defined by the improvement of

s divided by the processing cost of s.

Given a subscription s on some router, let ρs denote the probability that s is

matched; and given a data pattern p, let ρp denote the probability that p appears in

the document. The following gives the value estimation for each type of annotation.

PS: PS has both the above two types of improvement. Given a subscription si,

let A(si) denote set of subscriptions that are aggregated to si and satisfy the

requirements for PS, and |A(si)| denote the number of subscriptions in A(si).

The PS is useful when the subscription is matched on the upstream router,

and there exists some subscription sj ∈ A(si) that sj matches the annotations.

We assume that the probability of a subscription sj matches the annotations

is kj. For the set of subscriptions A(si), let Ad(si) denote the subscriptions

from the downstream router; and let Al(si) denote the subscriptions from

local users, then A(si) = Ad(si)∪Al(si). The value(psi) can be computed as

:

value(psi) =
ρsi
∗∑|A(si)|

j=1 kj ∗ λ + ρsi
∗∑|Ad(si)|

j=1 kj ∗ θ

αPS

PD: The benefit of PD is to eliminate unnecessary subscriptions. Given a data

item di, let l(di) denote the last occurrence of di in the document, and let

N(di) is the set of subscriptions that can be eliminated after position l(di),

then

value(pdi) =
l(di)

l
∗ |N(di)| ∗ λ

αPD

NS: The benefit of NS is to eliminate unnecessary subscriptions due to unmatched

aggregated subscriptions. Given a subscription si on the upstream router, let

N(si) denote the set of subscriptions on the downstream router that are

aggregated to si, then |N(si)| is the number of subscriptions in N(si). The
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NS is useful if the query is non-matching on the upstream router, then

value(nsi) =
(1− ρsi

) ∗ |N(si)| ∗ λ

αNS

ND: The benefit of ND is also to eliminate unnecessary subscriptions due to absent

data patterns. Given a data pattern p, let N(di) denote the set of subscrip-

tions on the downstream router that contain di, then |N(di)| is the number

of subscriptions in N(di). The ND is useful if the data item is absent from

the XML document, then

value(ndi) =
(1− ρdi

) ∗ |N(di)| ∗ λ

αND

Size computation. The following presents the computation of size for each type

of annotation.

PS: The size of PS is estimated based on the subscriptions. Given the aggregated

subscription sx and a simple aggregating subscription s′i of sx, we know the

required bindings Bi
x such that sx can be made to match s′i. Bi

x is the set of

pairs (li, pi) such that li specifies the position of a wildcard in sx and pi is the

bindings of the wildcards to make sx match s′i. We use the average length of

p of all sx’s simple aggregating subscriptions to estimate the size of PS for

sx. Let S ′x denote the set of sx’s simple aggregating subscriptions, and let

ksi
denote the probability that the aggregating subscription si ∈ S ′x matches

the annotations of sx. The size of PS for sx is computed using the following

function.

size(sx) =

∑
si∈S′x(

∑
pj∈Bi

x
|pj|) ∗ ksi∑

i∈S′x ks′i

∗ avgElementSize
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PD: The size of PD is 8 bits, where 4 bits are used to specify the identity of the

data item and the other 4 bits are used to specify the last occurrence of this

data item.

NS: Only 1 bit is required for each NS to indicate the matching status of the

subscription, where 1 represents that this subscription is matched, and 0

represents the non-matching.

ND: Similar with NS, only 1 bit is required for each ND.

Based on the computed value and size information for the annotations, we

can solve the annotation selection problem. The annotation selection problem is a

variant of the knapsack problem [64], since the value of an annotation is equivalent

to the value of each item and the size of an annotation is equivalent to the cost of

each item. It is known that the knapsack problem is an NP-complete problem, it

follows that the annotation selection problem is NP-complete.

The dynamic programming approach is used to solve this problem. Given n

annotations a1, a2, . . . , an, let ki denote the size for annotation ai and vi denote the

value for ai. The goal is to maximize total value while the constraint that the total

size is less than K is satisfied. For each i ≤ K, define A(i) to be the maximal value

obtained with total size less than or equal to i. Then the recursively structure is

defined as follows :

A(0) = 0;

A(i) = max{vj + A(i− kj)|kj ≤ i};

Thus the solution to this problem is A(K). The running time of this dynamic

programming solution is O(nK).

Another solution to solve this problem is to use greedy algorithm. These an-
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notations are sorted based on the metric value(si)/size(si). Then we select the

annotations in the decreasing order of this metric until there is no longer space in

the header for more annotations.

4.5 Processing Annotated Documents

This section describes the details of how a router Rj processes an annotated doc-

ument (D, Ai,j) that it receives from some upstream router Ri.

To efficiently and effectively process annotations in an annotated document

(D, Ai,j), each downstream router Rj maintains the following information:

Aggregation Table, Tagg. For each aggregated subscription s′ generated by Rj,

Tagg(s
′) stores the set of aggregating subscriptions of s′.

Simple Aggregation Table, Tsagg. For each aggregated subscription s′ generated

by Rj, if s′ is also a simple aggregated subscription, Tsagg(s
′) stores the set of pairs

(s, P ), where s is a simple aggregating subscription of s′. P is a set of pairs (li, pi),

where li specifies the position of a wildcard in s′ and pi specifies a data pattern

binding such that if for each (li, pi) ∈ P , the lth wildcard in s′ is replaced by the

pattern pi, then the transformed s′ will match s.

Pattern Table, Tpat. For each data pattern p that Rj has advertised to its up-

stream routers during the offline step for PD or ND annotations, Tpat(p) stores the

subset of subscriptions in Rj that contains p such that if a document D does not

match p, then D also does not match any of the subscriptions in Tpat(p).

Non-Matching Array, Anot. Anot is a bit-array of size equal to the number of

subscriptions in Rj such that the ith bit corresponds to the ith subscription in Rj.

Each Anot[i] is initialized to zero at the start when Rj receives D, which could be

set to one as Rj processes the annotations and D. Specifically, Anot[i] is set to one
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if and only if the ith subscription in Rj is guaranteed not to match the document

D being processed. Rj uses Anot to optimize its processing of D by skipping the

processing of subscriptions that indicated by Anot to be guaranteed to not match

D.

Figure 4.3 shows all the tables maintained at Rj for the six subscriptions. Note

that all the tables Tagg, Tsagg and Tpat are created only once in the offline step

after Rj has advertised his aggregated subscriptions and derived information to

its upstream routers. These tables remained static unless there are changes to

the subscriptions in Rj. The bit-array Anot is the only structure that needs to be

initialized and updated for each document that Rj processes.

4.5.1 Processing Annotations Ai,j

We are now ready to explain how Rj processes an annotated document (D, Ai,j)

that it receives from Ri using the following four steps.

Step 1: Processing PS Annotations. For each PS annotation (s′, B) ∈ Ai,j, Rj

compares (s′, B) against each (s, P ) ∈ Tsagg(s
′). If for each pair (li, pi) ∈ P , there

exists a pair (l′i, p
′
i) ∈ B such that li = l′i and pi matches p′i, then D is detected to

match subscription s and Rj can immediately forward D to the downstream router

(say Rk) associated with subscription s without the need to first process D1. Since

Rj has not yet processed D, Aj,k needs to be derived from Ai,j; the details are

described in Section 4.5.3.

Example 4.8 Suppose that Rj has just received from Ri the annotated document

(D, Ai,j) (indicated by the shaded box in Figure 4.3) and is processing the PS

annotations. For the PS annotation PS1 = (s′3, {(1, b), (2, e)}) ∈ Ai,j in which

1Note that the immediate forwarding due to a matching in Ai,j is independent of the forwarding
policy being used which applies when there is a matching in D.
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B = {(1, b), (2, e)}, Rj will process PS1 against each (s, P ) ∈ Tsagg(s
′
3). For the

tuple s = s5 and P = {(1, /b), (2, /e)} ∈ Tsagg(s
′
3), Rj detects that it matches PS1

since for (1, /b) ∈ P there exists a pair (1, b) ∈ B such that b matches /b; and for

(2, /e) ∈ P , there exists the pair (2, e) ∈ B and e matches /e. Thus Rj knows D

matches s5 without processing D. 2

Step 2: Processing NS Annotations. For each NS annotation s′ ∈ Ai,j, Rj

knows that D will not match any of the subscriptions in Tagg(s
′). Rj therefore

updates Anot[i] to one for each aggregating subscription si ∈ Tagg(s
′).

Step 3: Processing ND Annotations. For each ND annotation p ∈ Ai,j, Rj

knows that D will not match any of the subscriptions in Tpat(p). Rj therefore

updates Anot[i] to one for each subscription si ∈ Tpat(p).

Step 4: Processing PD Annotations & D. For each PD annotation (p, `) ∈
Ai,j, Rj will dynamically process each of them (in ascending order of their positions

`) as part of its processing of D. Specifically, if Rj has completed parsing some data

element in D at position ` and (p, `) is the next-to-be-processed PD annotation,

then Rj knows that the data pattern p will not occur in the remaining portion of D,

and that it is redundant to process any new matchings of subscriptions in Tpat(p).

Therefore, Rj updates Anot[i] to one for each subscription si ∈ Tpat(p).

4.5.2 Processing Document D

Based on the preceding discussion, Rj processes all the PS, NS, and ND annotations

before it begins to process D (steps 1-3). In some situations (step 1), it is even

possible for Rj to forward D to another downstream router without having to

process D at all. The PD annotations are processed (step 4) along with the normal

processing of D.
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When Rj detects that D matches some subscription (Sk, Rk) ∈ Tj, there are

two cases to consider. If the dissemination strategy used is the ES matching

protocol, then Rj will generate the appropriate annotations for Aj,k (depending

on the annotation types being used) and forward (D, Aj,k) to Rk. Moreover, Rj

will also skip all subscriptions associated with Rk from further matching as it

continues to process D; this is achieved by setting the appropriate bits in Anot to

one. Otherwise, if the dissemination strategy in use is the L matching protocol,

then Rj will only forward D to Rk (with appropriate Aj,k) after it has completely

processed D.

4.5.3 Deriving Negative Annotations

In this section, we consider the scenario where Rj is going to forward D to a down-

stream router Rk without having yet completed processing the entire document D.

An issue that arises from this situation is what are the possible negative annota-

tions (if any) that Rj can include in Aj,k given that Rj has not processed some

portion of D. Observe that Rj cannot arbitrarily include a subscription s that

has not matched the processed portion of D as an NS annotation since s could

potentially have matched D if Rj has processed D completely.

It turns out that Rj can actually derive some limited types of negative anno-

tations for Aj,k: (1)for each NS annotation s′ ∈ Ai,j, Rj can identify the subset of

subscriptions Sk ⊆ Tagg(s
′) that are associated with Rk. Thus, the subscriptions

in Sk can be included as NS annotations in Aj,k; (2)the ND annotations in Ai,j

can be directly inherited as ND annotations in Aj,k. However, since the inherited

annotations are not specifically optimized for Rk using derived information from

Rk, they are generally less beneficial than the customized ND annotations.
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4.6 Experimental Study

This section reports the extensive experimental results on the comparison of various

dissemination strategies. The results show that the dissemination strategy L+s
−sd

outperforms the conventional method ES by a factor of 2.

4.6.1 Experimental Testbed

The NS2 network simulator [5] is extended for our experiments by adding appli-

cation code for content-based routing and piggyback optimization. The subscrip-

tion indexing method and subscription aggregation approach implemented for each

router are based on existing solutions in the literature [39, 38]. It is important to

emphasize that our proposed piggyback optimization approach is orthogonal to the

specific algorithms used for filtering and aggregation.

The router network topology used was a complete binary tree with fours levels

and a total of 15 routers, where each router (except for the root router) has one

immediate upstream router at one level above. Data is disseminated from the root

router downwards to the leaf routers. Data users can subscribe to any router; and

each router aggregates all its subscriptions to a size that is k% of the original set;

our experiments used values of 12.5 and 25.0 (the default value) for k. The network

bandwidth values used were 1MBps, 10MBps (default), and 100MBps.

Data sets. Our experiments used three synthetic data sets (1) NITF DTD [7],

which has been used in previous studies [20, 49, 39]; (2) Treebank [10]; (3) DBLP

[3]. For each data set, ten documents were generated using IBM’s XML Generator

[51]. In addition, we also used one real-life Protein data set [6] by extracting data

from it to form small documents. The average sizes of the documents in each of

the data sets are shown in Table 4.1, where NITF2 is the default data set. Note
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that the document sizes used in our experiments are typical for data dissemination

settings [49, 39].

NITF1 NITF2 NITF3 Treebank DBLP Protein
50 129.4 200.8 144.1 116.6 276081

Table 4.1: Average document size used (# elements)

Subscriptions. The subscriptions were generated using the XPath generator in

[49], and the parameter values used are shown in Table 4.2 with the default values

used indicated in bold.

Parameter Description Value
L maximum number of steps 8
ρ∗ probability of “*” 0.1
ρ// probability of “//” 0.1
ρλ probability of nested paths 0.1,0.2,0.4
θ skewness of element names 0,0.5
P #subscriptions per node 2500,5000,50000

Table 4.2: Parameter values for subscriptions

In order to study the effect of the choice of forwarding policy on performance,

it is important to be able to control the position in the document at which the

first subscription matching is detected. Intuitively, the benefit of early forwarding

is more significant if the first subscription matching occurs early in the document;

while the benefit of lazy forwarding is more significant if the first subscription

matching occurs late in the document. To enable the first subscription match-

ing position to be varied, we inserted an unique element <test> in each generated

document (varying the location being inserted), and also added an additional pred-

icate //test to each generated subscription. In this way, a subscription matching

can occur only after the <test> element has been parsed in the document. In

our experimental graphs, the first matching position is represented as a fraction

f ∈ [0, 1] indicating the proportion of the document parsed before the occurrence
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of a first subscription matching. The values used for f are 0.25, 0.5, 0.75, and 1.

Algorithms. We compared the various dissemination strategies Pα
β discussed in

Section 4.3.3 by varying the annotation types (α and β) and matching protocols

(P ), including the conventional approach ES as a special case. The main per-

formance metric compared is the response time, which is defined as the average

time taken to disseminate a published document from its source to the relevant

users. The response time for disseminating a document D comprises of two key

components: (1) the transmission spent in in the network, and (2) the processing

time incurred by the routers to process annotations against D, match subscriptions

against D, and generate annotations. Each response time reported for a data set

is the average response time for disseminating the ten documents in the data set.

Our experiments were conducted on a 3GHz Intel Pentium IV machine with

1GB main memory running Windows XP, and all algorithms are implemented in

C++.

4.6.2 Experimental Results
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Figure 4.4: Experimental results for different dissemination approaches

Effect of annotation types. Figure 4.4(a) compares the performance of different
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annotation types using the lazy forwarding without skipping protocol as the first

matching position, f , is being varied on the x-axis. Among the four annotation

types, ND improves L the most, followed by PS, NS, and PD. L+d (not shown in

Figure 4.4(a) turns out to have similar performance as L, since the effectiveness

of PD to skip the matching operations is limited. L−d performs better than L−s

for the reason that the NITF DTD has many optional elements such that it is

likely that some elements or substrings absent from the documents which makes

ND more effective to eliminate non-matching subscriptions. Specifically, for our

default setting, 10% of the subscriptions on each router are matching. ND can

eliminate 70% of the total subscriptions while NS can eliminate only 37% of them.

Our results also show that PS is more effective than NS but less effective than ND.

Observe that when both NS and ND are combined, it improves over ND only

slightly. The reason is that a number of subscriptions that can be skipped using NS

can also be skipped by ND; consequently, using NS in addition to ND offers very

little improvement. However, as the overhead of using NS is small, adopting both

negative annotations is still better than using only a single negative annotation.

The performance of L−sd can be further optimized by also using PS, and L+s
−sd is

in fact the best strategy based on lazy forwarding. This is because PS enables

a document to be forwarded to some routers very quickly without parsing the

document; and when this is not possible, the negative annotations are effective in

skipping many subscription matchings.

On the other hand, our experimental results shown in Figure 4.4(b) indicate

that positive annotations2 do not enhance the performance of the eager forwarding

policy at all: ES+s has similar performance as ES, while ES+d actually performs

worse than ES. This is because only very limited PS annotations can be used

2Recall from Section 4.3.3 that negative annotations are not meaningful for eager forwarding.
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when a document is forwarded eagerly; and similar to the case for lazy forwarding,

PD turns out to be not cost-effective due to the fact that PD only enables a small

number of subscriptions to be skipped and its benefit is offset by its processing

overhead.

Eager vs. lazy forwarding. Figure 4.5(a) compares the performance of the best

eager-forwarding strategy (ES) and the best lazy-forwarding strategy (L+s
−sd). The

results show that L+s
−sd outperforms ES indicating that the slight delay incurred

by lazy forwarding is compensated by the improvement gained by the downstream

routers from exploiting a more complete set of annotations to optimize their pro-

cessing. We also observe that as f increases from 0.25 to 1, the improvement by

L+s
−sd over ES also increases from 22% to 42%. The reason is that as f grows, the

lazy forwarding in L+s
−sd incurs relatively smaller delay.

Effect of other workload. Figure 4.5(b)(c) show the results on other synthetic

data sets, i.e. DBLP and Treebank respectively. We observe the similar trends with

the NITF data set that is L+s
−sd obviously outperforming ES. Figure 4.5(d) shows

the comparison using the real-life Protein data set. Observe that ES is actually

better than L+s
−sd when f = 0.25, but as f increases, L+s

−sd outperforms ES with

increasing margin. The reason that ES performs better with f = 0.25 is due to

the large document size (about 10MB) : the benefit of the annotations is offset by

the longer delay incurred by L+s
−sd when f is very small. We also tried an adaptive

approach where ES is used when the first subscription matching occurs early and

L+s
−sd is used otherwise. Our result shows that this hybrid strategy (indicated as

“Adaptive” in Figure 4.5(d)) outperforms ES and L+s
−sd.

Effect of bandwidth. Figure 4.6(a) shows the effect of the network bandwidth.

With a small bandwidth of 1MBps, L+s
−sd has a 15% improvement over ES when

f = 0.25; which increases to over 30% when f increases to 1.0. As the bandwidth
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Figure 4.5: Experimental results for different DTD

increases to 10MBps, the performance improvement increases to 22% when f = 0.25

and to 42% when f = 1.0. This is because the disadvantage of L+s
−sd (in terms of

the delay in forwarding) becomes even less significant (relative to the processing

time incurred by the routers) with a higher network bandwidth. Not surprisingly,

our results for a bandwidth of 100MBps are similar to the results for a bandwidth

of 10MBps. Note that, the space overhead incurred by all annotations used in L+s
−sd

is 464bytes (the size of PS, NS, and ND are 224, 160, and 80 bytes, respectively)

for the default experimental setting where the size of the documents is around

7000bytes. We can see that the size occupied by the annotations is no more than

7% of the document size. Thus, transmitting the additional annotations with the

document only incurs a very small overhead in the network delay, while the speedup

obtained for the processing on the routers is up to a factor of 2.
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Figure 4.6: Effect of bandwidth & number of subscriptions

Effect of number of subscriptions. When the number of subscriptions P is

increased from 2500 to 5000, we observe that the improvement of L+s
−sd over ES

becomes larger (from 35% for P = 2500 to 42% for P = 5000). This is due to

an increase in the number of subscriptions that can be skipped by NS and ND.

Figure 4.6(b) shows the results when P is increased to 50000. We observe that for

larger f (i.e. f = 0.75 and f = 1.0), the improvement of L+s
−sd over ES stays the

same (e.g., 41% at f = 1.0). However, for smaller values of f , the improvement of

L+s
−sd over ES diminishes slightly; e.g., with f = 0.5, the improvements decreases

from 28% for P = 5000 to 11% for P = 50000. When f = 0.25, ES is more efficient

than L+s
−sd. The reason is because for L+s

−sd, the root router needs to match against

all the subscriptions; and when f = 0.25, the delay at the root router is increased

more significantly for L+s
−sd (relative to ES) such that the the overall efficiency of

L+s
−sd becomes diminished.

Effect of data size. Intuitively, a larger document has two conflicting effects on

the performance of L+s
−sd. On the one hand, the delay incurred by L+s

−sd is expected

to increase, but on the other hand, the improvement obtained from skipping sub-

scription matchings would also become more significant with a larger document.

Our experimental results shown in Figure 4.7(a) (using data sets NITF1, NITF2
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Figure 4.7: Effect of data size & subscription complexity

and NITF3) indicate that for larger documents (e.g. NITF3) when f = 0.25, the

improvement of L+s
−sd over ES becomes smaller (i.e. 16%), compared with the im-

provement for NITF2 (i.e. 22%). But their performance margin widens significantly

as the value of f increases. When f = 1, the improvement of L+s
−sd over ES for

NITF3 is 41%, which is almost the same with NITF2 (i.e. 42%).

Effect of subscription complexity. By varying the ρλ parameter to increase

the complexity of the subscriptions, we observe that the performance gain of L+s
−sd

over ES, shown in Figure 4.7(b), becomes more significant with more complex

subscriptions. In particular, when ρλ increases from 0.1 to 0.4, the improvement

of L+s
−sd over ES (with f = 1.0) increases from 38% to 44%. The reason is because

the processing cost of the subscriptions increases with their complexity; thus, the

savings from skipping subscription matchings also become more significant.

Other experiments. Figure 4.8(a) shows the results by setting the parameter

k from 12.5. With a smaller value of k (compared with the default setting k =

25), PS becomes slightly less effective since the more brute aggregation makes

the simple aggregation requirements harder to satisfy. Figure 4.8(b) shows the

results by setting parameter θ to 0. The results demonstrate the similar trends

with the default setting. It indicates that varying the distribution to generate the



91

 0

 20

 40

 60

 80

 100

1.00.750.50.25

R
es

p
o

n
se

 T
im

e 
(m

s)

First Matching Position, f

ES

L+s
-sd

(a) Effect of k

 0

 20

 40

 60

 80

 100

1.00.750.50.25

R
es

p
o

n
se

 T
im

e 
(m

s)

First Matching Position, f

ES

L+s
-sd

(b) Effect of θ

Figure 4.8: Effect of k & θ

subscriptions has little effect on the performance trend.

Throughput comparison. Although L+s
−sd performs better in terms of the re-

sponse time, the results show that the throughput of L+s
−sd is slightly worse than

ES : when f = 0.25, the throughput of L+s
−sd is 72% of that of ES; when f = 1.0,

it increases to 88% of ES’s throughput. The total throughput is determined by the

slowest router in the system. In L+s
−sd, the root router is the bottleneck since there

are no annotations that can be used and all subscriptions have to be evaluated,

thus the throughput of L+s
−sd loses to ES. However, at all downstream routers,

the disseminated documents are processed much faster using L+s
−sd than using ES

because of the effective annotation inserted. Therefore, if we use a more powerful

router at the root node, L+s
−sd can also achieve higher throughput than ES.

Discussions. Based on our experimental results, we have the following observa-

tions on the effectiveness of the various annotation types. First, the effectiveness of

PD annotations is found to be limited as only very few subscriptions can be pruned

using PD annotations and the marginal saving from using PD annotations is offset

by its overhead. Second, comparing ND and NS annotations, the former is gener-

ally more effective than the latter. This is due to a combination of two reasons.

As the disseminated documents are small and the data schema has many optional
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elements, many of the elements in the schema (and hence also appearing in many

queries) do not occur in the small documents. Thus, ND annotations can help

prune many queries in a downstream router. Moreover, the process of aggregating

subscriptions often results in a document D matching an aggregated subscription

s′ in an upstream router even when all of the aggregating subscriptions of s′ in a

downstream router do not match D. Finally, the relative effectiveness between ND

and PS annotations is less clear due to the different nature of their benefits. Recall

that the benefit of ND annotations is in reducing subscription matching in a down-

stream router, while the benefit of PS annotations lies in enabling the forwarding

of document without processing it. Neither ND nor PS annotations are found to

be significantly more effective than the other in our experiments.

4.7 Summary

This chapter presented a novel approach to optimize the performance of content-

based dissemination of XML data by piggybacking useful annotations to the doc-

ument being forwarded so that a downstream router can leverage the processing

done by its upstream router to reduce its own processing overhead. Four useful

annotations are proposed, i.e. PS, PD, NS and ND, and these annotations have

the benefits as follows.

- PS is useful to detect some matching subscriptions on the downstream router

such that the document can be forwarded along certain outgoing links on the

downstream router without parsing the document.

- PD helps to skip some processing operations on the downstream router.

- NS and ND are effective to largely reduce the number of processed subscrip-

tions on the downstream router.
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A large design space of dissemination strategies that combine four types of an-

notations and two forwarding policies is examined. The experimental study demon-

strates both the feasibility and effectiveness of the new approach. In particular,

the strategy of combining lazy forwarding with three types of annotations (i.e. PS,

NS and ND) turns out to be the best option that outperforms the conventional

method by a factor of 2.
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Chapter 5
Handling Fragmented XML Data

5.1 Introduction

The previous chapter focused on the efficiency aspect of content-based dissemina-

tion of XML data. This chapter and the next chapter will investigate the approaches

to extend the functionalities of the system. As mentioned in Chapter 1, the emer-

gence of XML as a standard for information exchange on the Internet has led to

an increased interest in using more expressive subscription/filtering mechanisms

that exploit both the structure and the content of published XML documents. The

existing filtering approaches in content-based dissemination of XML data require

that the data is published as a complete XML document. However, the increasing

use of XML in Web-based services and applications has led to the importance of

processing XML data in the distributed context, where the XML data is stored,

disseminated and processed in terms of fragments. Moreover, the prevalent use

of resource-limited mobile device as client devices has also motivated the need to

process and disseminate the fragments. And the widely deployed sensor devices

for monitoring always collect data in fragments. These observations indicate that

more and more data may be collected and published in terms of fragments, thus
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there is indeed a need to extend the functionality of the current content-based XML

dissemination system to support the XML data that is published in fragments.

Many research attentions have been paid on processing fragmented XML data

that spans many diverse issues from how to fragment XML document [58, 32, 28,

113], distributed query processing on fragmented XML data [105, 48], managing

the distributed XML data [18, 19], and processing XQuery queries on streaming

XML fragments [96]. However, there is no work that examines the problem of

efficiently matching boolean XPath queries on fragmented XML data in content-

based dissemination. The matching of XPath queries with fragmented data not

only provides additional service for the XML dissemination system to handle the

publications in fragments, but also opens up new opportunities for optimization the

query matching by routers. The challenge of evaluating boolean XPath queries on

fragmented XML data is how to efficiently and effectively schedule and optimize the

processing of fragments so as to “short-circuit” the query evaluation as early or as

much as possible by determining the evaluation result (either finding a matching in

the data if it exists or concluding that the outcome is non-matching) with minimal

unnecessary/redundant fragment evaluations. To the best of our knowledge, the

work in this thesis represents the first comprehensive approach to schedule and

optimize the evaluation of boolean XPath queries on fragmented XML data.

This chapter presents the work on matching XPath-based subscriptions directly

on fragmented XML documents without reconstructing the original documents.

The proposed query processing strategy consists of three main steps :

• identifying the relevant subqueries to evaluate on each fragment.

• scheduling the order to evaluate the fragments.

• optimizing each fragment evaluation to minimize unnecessary and redundant
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processing.

The proposed fragmented approaches are shown to outperform the traditional

non-fragmented approach by up to a significant margin.

The rest of this chapter is organized as follows. Section 5.2 introduces some

useful preliminaries and definitions. Section 5.3 gives an overview of our proposed

approach for disseminating fragmented XML data. Section 5.4 describes the pro-

posed approach in detail, which covers the XML fragmentation model, the steps to

matching queries on fragments, and two optimization mechanisms. An extensive

performance study is presented in Section 5.5. Finally, Section 5.6 concludes this

chapter.

5.2 Preliminaries and Definitions

The XPath expressions used as the subscriptions in content-based dissemination of

XML data has been introduced in Chapter 2. This work focused on a commonly

used subclass of XPath queries called tree pattern(or twig) queries that essentially

supports XPath’s / and // location steps and predicates for path expressions as

mentioned in Section 2.2. A tree pattern query is represented by an unordered

rooted tree, where each node is labelled with an element name or a wildcard that

is prefixed by either “/” (for a child-step) or “//” (for a descendant-step).

Given a query q and an XML document d, a matching of q in d is identified

by a mapping from the nodes in q to the nodes in d such that both the following

conditions are satisfied: (1) each mapped data node di matches its corresponding

query node qj (i.e., either di and qj have the same element tag or qj has a wildcard

tag); and (2) the structural (parent-child and ancestor-descendant) relationships

between query nodes are satisfied by their corresponding mapped data nodes. Thus,
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Figure 5.1: Fragmentation and query models

we say that q matches d if there exists at least one matching of q in d; otherwise,

q does not match d.

Example 5.1 Consider the XML document d and twig query q in Figure 5.1, each

dotted region of data nodes in d (labeled by some fi) denotes a data fragment

which can be ignored for now. For a document d′ to match q, d′ must have a root

element a that satisfies two conditions: (1) a must have a child element b which in

turn has a child element f that has a descendant element i; and (2) a must also

have a descendant element m that in turn has a child element c that satisfies the

two conditions: (a) c must have a child element k that in turn has a child element

x; and (b) c must also have a child element s that in turn has a child element y. It

can be easily verified that the document d matches the query q. 2

Consider a node ti in a (query or data) tree T . We define the prefix of ti, denoted

by prefix(ti), to be the path of nodes from the root node of T to ti (inclusive). We

define the minimum (maximum) height of ti, denoted by minHt(ti) (maxHt(ti)),

to be the length of the shortest (longest) path from ti to one of its descendant leaf

nodes in T .

Given a query node qj and a data node di, we can view prefix(qj) and prefix(di)

as a query tree and a data tree, respectively, and define the matching of prefix(qj)
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in prefix(di) similarly.

When the data nodes in an XML document d are partitioned into fragments,

finding a matching of a query q becomes more complex and requires seeking match-

ings of different subqueries of q among the fragments. Given a query node qi in

q, we define the subquery rooted at qi, denoted by subquery(qi), to be the query

subtree rooted at qi.

Example 5.2 Consider the XML document d and query q in Figs. 5.1(a) and (b),

respectively, where d is partitioned into seven fragments indicated by the dashed

regions of nodes (f1 to f7). In f4, prefix(c) = /a/m/c, minHt(c) = 2, and

maxHt(c) = 2. In q, prefix(i) = /a/b/f//i, minHt(a) = 3, and maxHt(a) = 4.

Note that subquery(/f) matches f1, subquery(/k) matches f3, and subquery(/s)

matches f4. Together with the matchings of query nodes /b in f2, /c in f4, and /a

and /m in f7, we have a matching of q in d. 2

5.3 Overview of Disseminating Fragmented XML

Data

Our approach of processing boolean XPath queries on fragmented XML data con-

sists of three main steps. The first step identifies what relevant subqueries to

evaluate on each fragment; the second step decides on the order in which the frag-

ments are evaluated; and the third step deals with how each fragment is evaluated.

Figure 5.2 gives an overview of our approach. Each of these steps will be elaborated

later in this chapter.

1. Identify relevant fragments. Since the data nodes are partitioned among

several fragments, finding a matching of an input query q in a fragmented
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Figure 5.2: Overview of processing XML fragments

XML document generally requires finding the matchings of different query

nodes of q in the various fragments. Thus, the first step is to make use of

the collection of fragment header information to identify a set of “relevant”

matchings to determine for each fragment. The goal is to minimize both

the number of relevant matchings as well as the number of fragments to be

evaluated.

2. Schedule fragment evaluations. The second step is to determine an order

in which to process the fragments based on the relevant fragment-subquery

pairs obtained in the first step. The goal is to “short-circuit” the query

evaluation as early or as much as possible: in the case that there is a matching

of the input query, the schedule should identify the matching data nodes early;

otherwise, the schedule should avoid processing

3. Evaluate subqueries on fragments. This step deals with how to efficiently

optimize and process the set of relevant subqueries associated with each frag-

ment. The evaluation results on one fragment may affect the scheduling for

the remaining fragments, therefore we may update the scheduling during the

evaluations. A key challenge is how to efficiently maintain the intermediate

set of matching nodes to facilitate the detection of a matching if it exists.



100

5.4 Algorithm for Processing XML Fragments

This section presents the detailed approach of processing boolean XPath queries on

fragmented XML data. Firstly, the XML fragmentation model used in this work is

introduced. Then the structures used to store the fragment header information is

discussed. Then the three steps of this approach are elaborated. And finally, two

dynamic optimizations are presented.

5.4.1 XML Fragmentation Model

This work assumes a very general data fragmentation model, where an XML doc-

ument is partitioned into a collection of fragments that satisfy the following three

properties:

P1. The fragments are disjoint ; i.e., each document node belongs to exactly one

fragment.

P2. The fragments are acyclic in the sense that whenever a fragment fi contains

some data node that is an ancestor of some data node in another fragment

fj, then fj can not also contain a data node that is an ancestor of some data

node in fi.

P3. The fragments are complete; i.e., the original non-fragmented document can

be reconstructed from the collection of fragments.

Property P1 is motivated by space-efficiency to avoid node duplication. Prop-

erty P2 specifies a desirable property to ensure that document nodes are contiguous

in the sense that if node x is an ancestor of node y and they both are stored in

the same fragment, then all the nodes along the path from x to y should also be-

long to that fragment. Property P3 is a necessary condition for correctness. These
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three properties are rather simple and reasonable requirements in our fragmenta-

tion model; and they are indeed satisfied by the various strategies that have been

proposed for fragmenting XML data (e.g., [56, 28]). The number of fragments

generated by a fragmentation algorithm is typically controlled by a size parameter

that determines the maximum number of data nodes per fragment.

Based on the above three properties, a fragment in general can consist of mul-

tiple partial subtrees as illustrated by the following example.

Example 5.3 As an example, consider the fragmented XML document in Fig-

ure 5.1(a) which is partitioned into seven fragments identified by f1 to f7. Observe

that the fragments satisfy the three properties (i.e., disjoint, acyclic, and complete).

In general, a fragment can consist of a forest of subtrees of nodes (e.g., f1 contains

two subtrees rooted at nodes f and e). Furthermore, a subtree in a fragment does

not necessarily correspond to a complete subtree in the XML document (e.g., the

subtree rooted at node b in f2 is partitioned between fragments f1 and f2). 2

In order to guarantee Property P3 (i.e., fragment completeness), it is necessary

to maintain some additional header information for each fragment to enable the

fragments to be “stitched” together to reconstruct the original XML document.

Specifically, we need to maintain information about the “inter-fragment” edges

(e.g., the edge between nodes a and b in Figure 5.1(a)). In addition to ensuring

completeness, note that the header information associated with the fragments can

also be exploited for query processing as it actually provides some partial structural

information about the fragments and their relationships.

5.4.2 Fragment Header Information

In this section, we discuss three annotation schemes for representing fragment

header information, namely, Edge, Prefix, and Prefix+Level. These schemes
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Fragment ID Edge
1 (2,1)
1 (2,1)
2 (7,1)
3 (4,1)
4 (7,2)
5 (6,1)
6 (7,2)
7 -

Fragment ID Prefix
1 /a[1]/b[1]/f
1 /a[1]/b[1]/e
2 /a[1]/b[1]
3 /a[1]/m[2]/c[1]/k
4 /a[1]/m[2]/c[1]
5 /a[1]/m[2]/c[2]/k
6 /a[1]/m[2]/c[2]
7 /a[1]

maxHt
2
1
2
1
2
1
2
2

(a) (b) (c)

Figure 5.3: Fragment Header Information (a) Edge (b) Prefix (c) Additional col-
umn for Prefix+Level

have different space-performance tradeoffs.

Edge Annotation. The most straightforward approach to represent a fragment’s

header information is to record the identity of the parent node of each incoming

inter-fragment edge into that fragment. Each node n can be uniquely assigned by

an identifier (fi,mj), where fi is the identifier of the fragment containing n, and

mj is the pre-order traversal order of node n within fragment fi. For example, in

Figure 5.1(a), there is one inter-fragment edge into fragment f2 and so the header

information for f2 would record (7, 1) as the parent node of node b. The complete

fragment header information is shown in Figure 5.3(a). While this simple approach

is clearly space-efficient and sufficient for completeness, the minimal information

being maintained does not provide much useful knowledge of the structural re-

lationships among the fragments that can be exploited for query evaluation (as

verified by our experimental results).

Prefix Annotation. The second method is referred to as Prefix, stores more

information about the path leading to the root node of each subtree in a fragment.

Specifically, each fragment is associated with the following header information: (1)

a unique identifier for the fragment; and (2) for each subtree (rooted at a data node
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Fragment ID Prefix Prefix + Level
1 /f, //m /f
2 /b, //m /b
3 /k, //m /k
4 /c, //m /c
5 /k, //m /k
6 /c, //m /c
7 /a −

Figure 5.4: Relevant Fragment-Query Node Information

di) in the fragment, its prefix given by prefix(di).

Example 5.4 Figure 5.3(b) shows the collection of header information for the

fragmented XML document in Figure 5.1(a). Each fragment fi is uniquely identified

by a positive integer value i; and each subtree (rooted at a node dj) contained in

fi, it is represented by its prefix prefix(dj). Note that for convenience, we have

used positional predicates in prefix(dj) to distinguish among distinct data paths

that share the same sequence of element tag names; other means of achieving this

purpose (e.g., assigning each node with a unique nodeID attribute value) can be

used as well. 2

Prefix+Level Annotation. The third method, Prefix+Level, is a simple exten-

sion of Prefix, that also additionally records maxHt(r) for each subtree rooted

at node r in a fragment. Figure 5.3(c) shows the header information representa-

tion based on Prefix+Level for the fragmented document in Figure 5.1(a). As

we shall explain in Section 5.4.3, the additional precomputed information turns

out to be very effective in improving query evaluation as it can avoid unnecessary

computations.
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5.4.3 Identifying Relevant Fragments

In order to determine whether or not there is a match of an input query q in a

fragmented document d, it is necessary to determine if there exists a collection of

matching data nodes in the fragments that could collectively form a match of q

in d. Instead of detecting matches of all query nodes in every fragment, which

is clearly inefficient, our goal is exploit the fragment header information to speed

up the detection of matching nodes in the fragments by minimizing unnecessary

matchings. As a simple illustration, consider again the fragmented document d and

twig query q in Figure 5.1. We can conclude that there is no matching of the query

subtree rooted at node b in fragment f4 based on the fact that the subtrees in this

fragment do not have the prefix /a/b.

Thus, to improve matching efficiency, our goal is to determine for each query

node qj, the set of “relevant” fragments that can potentially contain matchings of qj.

Informally, a fragment fi is said to be relevant for a query node qj (or equivalently,

fi is a relevant fragment for qj) if based on the fragment header information, fi

contains some subtree that could contain a matching of subquery(qj).

For notational convenience, we use R to denote the set of all relevant fragment-

query node pairs between a given fragmented document d and a twig query q; i.e.,

(fi, qj) ∈ R iff fragment fi is relevant for query node qj. In the following, we

elaborate on how relevant fragment-query node pairs are identified for the three

types of fragment header information.

Edge Annotation. The Edge annotation provides the least structural information

among the three schemes and therefore results in the largest number of relevant

fragment-query pairs in R. Specifically, If qj is both the root query node and a

child-step, then (fi, qj) ∈ R if fi contains the root data node. Otherwise, if qj is a

non-root query node or a descendant-step, then (fi, qj) ∈ R for every fragment fi.
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Example 5.5 Consider the example document d and query q in Figure 5.1. With

the Edge annotation scheme, we have (f7, /a) ∈ R and (fi, qj) ∈ R ∀ i ∈ [1, 7],

∀ qj in q except for root query node /a. 2

Prefix Annotation. With the Prefix header annotation scheme, (fi, qj) ∈ R
if there exists a subtree rooted at r in fi such that prefix(qj) matches prefix(r).

For example, in Figure 5.1, since prefix(/b) matches prefix(b) in f2, we have

(f2, /b) ∈ R.

However, when qj is a descendant-step, the relevance checking needs to be more

elaborate. For example, although prefix(//m) does not match prefix(b) in f2

(in Figure 5.1), it is incorrect to conclude that there can not be a matching of

subquery(//m) in f2. Indeed, prefix(//m), which is given by /a//m, is equivalent

to (/a/m ∪ /a//*//m); and it is clear that /a//∗ matches prefix(b) in f2. To

correctly capture both the cases of relevance matching, we define the extended prefix

of a query node qj, denoted by eprefix(qj), as follows:

eprefix(qj) =





prefix(qj) if qj is a child-step,

prefix(qk)//∗ if qj is a descendant-step & qk is the parent node of qj ,

//∗ otherwise.

Therefore, (fi, qj) ∈ R iff there exists a subtree rooted at r in fi such that

prefix(qj) or eprefix(qj) matches prefix(r).

Prefix+Level Annotation. With the additional maximum height information,

the Prefix+Level annotation scheme provides a more precise definition of rele-

vance. Specifically, (fi, qj) ∈ R iff there exists some subtree rooted at r in fi

such that (1) prefix(qj) or eprefix(qj) matches prefix(r) and (2) minHt(qj) ≤
maxHt(r).

Example 5.6 Consider again the fragment f2 and query q in Figure 5.1. With



106

the Prefix annotation, f2 is relevant for both query nodes /b and //m. However,

with the Prefix+Level annotation, f2 is relevant only for query node /b. The

reason that f2 is not relevant for //m is because maxHt(b) = 2 which is less than

minHt(qm) = 3. Figure 5.4 shows all the relevant query node matchings for query

q in Figure 5.1 under both Prefix and Prefix+Level annotations. 2

5.4.4 Scheduling Fragment Query Evaluations

To optimize the processing of the fragments, it is important to schedule the frag-

ment evaluations so as to minimize the processing of unnecessary fragments (i.e.,

fragments whose evaluations could be skipped without affecting the query’s re-

sult). In this section, we present five policies for scheduling fragment evaluations:

the first two are the simplest and are query-independent, while the remaining three

are query-dependent.

Topological Scheduling, T. This policy evaluates a fragment fi before another

fragment fj if some node in fi has an edge pointing to some node in fj.

Reverse-Topological Scheduling, R. This is the reverse of topological schedul-

ing, where fragment fi is evaluated before fragment fj if some node in fj has an

edge pointing to some node in fi.

Most-Specific Scheduling, S. The intuition for this policy is that a fragment fi

is more likely to contain some query node matching than another fragment fj if fi’s

prefix is more “specific” than fj’s prefix in terms of matching some query node’s

prefix. This is captured by the specificity of a fragment fi, denoted by s(fi), which

is given by

s(fi) = max
(fi,qj)∈R

{|prefix(qj)|}
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where |prefix(qj)| denote the number of non-wildcard steps in prefix(qj). A frag-

ment with a larger specificity value is processed earlier.

Maximal-Matching Scheduling, M. The intuition for this policy is that a frag-

ment that contains more relevant subtrees has a higher chance of producing a

matching. By giving priority to such fragments, the objective is to obtain a com-

plete matching of all the query nodes early after matching the first few fragments

that contain more relevant subtrees.

This notion is captured by the maximal-matching metric of a fragment fi, de-

noted by m(fi), which is given by

m(fi) =
∑

(fi,qj)∈R
|{si,k | si,k is a subtree in fi, si,k is relevant for qj}|

Fragments are processed in non-increasing maximal-matching values.

Most-Critical Scheduling, C. In contrast to the maximal-matching policy which

is designed to efficiently process matching queries, the most-critical policy is opti-

mized for non-matching queries by trying to process earlier “critical” query nodes

that can be potentially matched only in very few fragments.

fragment fi is said to be potentially matching for a query node qj if fi could

contain a matching for qj. More formally, fi is potentially matching for qj if fi is

relevant for an ancestor query node of qj (including qj itself).

Let F (qj) denote the set of fragments that can potentially contain a matching

for query node qj; and let Q(fi) denote the set of query nodes that can potentially

be matched in fragment fi. It follows from the definition of relevant matching that

F (qj) = {fi | ∃ qk, qk is an ancestor of qj in q, (fi, qk) ∈ R}, and

Q(fi) = {qj | ∃ qk, qk is an ancestor of qj in q, (fi, qk) ∈ R}
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A query node qj is defined to be critical if |F (qj)| ≤ |F (qk)| for each query node

qk in q. A fragment fi is defined to be critical if there exists some critical query

node in Q(fi). We define the criticality of a critical fragment fi, denoted by c(fi),

as follows:

c(fi) =

∑
qj∈Q(fi) |F (qj)|
|Q(fi)| .

In this policy, critical fragments are processed before non-critical ones; and critical

fragments are processed in non-descending order of their criticality values. Once it

is detected that all relevant fragments for a query node have been evaluated without

generating any matching for that query node, we can immediately conclude that

the input query has no matching and can terminate the evaluation.

Example 5.7 Consider the document d and query q in Figure 5.1. In terms

of Prefix+Level annotation, Rq = {(f1, /f), (f2, /b), (f3, /k), (f4, /c), (f5, /k),

(f6, /c)}. For the most-specific scheduling, f2, whose specificity is the smallest (i.e.

2), will be processed last. Clearly, the processing of f2 will be skipped since a

matching is found after processing the other fragments. For maximal-matching

scheduling, since every fragment has the same maximal-matching value, the order

of fragment evaluation is arbitrary. To illustrate the most-critical scheduling policy,

let us replace the query node //i with //j so that the modified query now becomes

a non-matching query. The ordering of the criticality values of the 6 relevant

fragments is as follows: f1 = f2 < f5 = f6 < f3 = f4. We can see that after

processing f1 and f2, //j has no matching yet and none of the remaining fragments

are relevant for //j; thus the query will not be matched. 2

Discussion. The basic approach presented above implicitly assumes that all frag-

ments are available before the scheduling and evaluation. However, due to the
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transmission delay in the network, it may not be practical to wait for the arrival of

all the fragments of a document before processing, therefore the approach should

be generalized to process fragments in batches. Instead of waiting for all fragments

to process, the generalized approach schedules and evaluates on every batch of say

w fragments. Specifically, the processor starts to process once w fragments have

arrived, and will start the next processing procedure once another w fragments

arrive. We refer to w as the scheduling window size. A larger w results a better

scheduling policy and enables more optimizations, while it may incur larger waiting

time; a smaller w can reduce the waiting time, while it may limit the optimization

opportunities due to the local scheduling and evaluations on a small number of

fragments. The tradeoff of varying this parameter is explored in Section 5.5.

5.4.5 Evaluating Queries in Fragments

The processing of a data fragment entails the simultaneous matching of the set of

subqueries relevant for that fragment. This requires the detection and maintenance

of various matching data nodes as the data nodes in a fragment are parsed and pro-

cessed. The matching of subqueries in fragments involves two challenges. Firstly,

since the data subtrees in a fragment are not necessarily complete as different parts

of a subtree might be distributed over several fragments, the matching algorithm

for fragments needs to be generalized to handle partial matching of subqueries.

Secondly, since the fragments are not necessarily evaluated in a “contiguous” man-

ner, the presence of partial matchings in various fragments need to be maintained

to enable the partial matchings to be “joined” to detect complete matchings. In

the following, the proposed solutions for the above two challenges are elaborated

in detail.
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Matching subqueries in fragments

Given a certain fragment, we know the set of subqueries that are to be evaluated on

it. There exists some algorithms such as XTrie[39] that can match a set of XPath

queries on the XML document. However, given a query, these algorithm can only

determine whether this query is matched; while to process queries on fragments

additionally requires the processor to return the maximum-matching subqueries

for non-matching queries. The maximum-matching subquery is defined as follows :

Definition 5.4.1 (Maximum-matching subquery) Given a query q and a doc-

ument d, suppose subquery(qi) from the query q matches the document d, and

there does not exist another subquery(qj) in which subquery(qi) is a partial tree of

subquery(qj) that also matches document d, then subquery(qi) is called the maximum-

matching subquery of query q.

/a

/b

/p

/e

/x

/f

/x

/a

/b

/p

/e

/x

/a

/b

/f

/x

(a) q (b) subquery(b) (c) subquery(f)

Figure 5.5: Example queries for maximum-matching

The reason for the requirement of maximum matching part is as follows. Con-

sidering the query q in Figure 5.5 (a) and the fragments in Figure 5.1(a) as an

example. Subquery(b) will be evaluated in the fragment f2, and there does not

exist a complete matching of it in f2. However, f2 contains a partial matching

of subquery(b), i.e. subquery(e) shown in Figure 5.5 (b). The matching of sub-

query(e) can be combined with the matching of subquery(f), shown in Figure 5.5
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(c), in f1 to form a complete matching of query q. These two matchings cause

the matching of the whole pattern. If we do not return the partial matching of

subquery(b) in f2, we will miss to find the matching of whole pattern. We know

that f2 also contains the matching of subquery(x) and subquery(q) which are also

the partial matching of subquery(b) in Figure 5.5 (a). However the matching of

subquery(x) and subquery(q) will finally form the matching of subquery(b) in Fig-

ure 5.5 (b), thus there is no need to detect such matchings, which means that only

the maximum matching part is necessary.

The subquery matching approach in this thesis is proposed by extending the

XTrie algorithm from Chan et al[39]. Given a subquery subquery(q) to be matched

on some fragment f , if subquery(q) is completely matched in f , the subquery

matching algorithm reports the complete matching of subquery(q) in f ; otherwise

if subquery(q) is not matched in f , the subquery matching algorithm returns the

maximum-matching subqueries for subquery(q) in f .

As mentioned in Section 2.3, in XTrie method, the twig queries are decom-

posed into substrings, and matchings for substrings are detected during the pars-

ing of XML documents. The matchings of substrings are propagated bottom-up

to detect larger partial matchings until the complete matchings are obtained. The

partial matchings are maintained and updated during the parsing of documents.

Specifically, when an event start element(n) is encountered, the procedure to detect

matching substrings is performed, and the matched substrings are recorded. Once

a leaf substring is matched, the matching propagation is triggered in the bottom-

up way until the largest partial matching (or the complete matching) is detected.

When an event end element(n) is encountered, the partial matchings involved with

element n that are not be used in the following matching will be cleared.
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Given a query node n in twig query q, a record in the form of (k, b0b1 . . . bn, l) is

used to store the matching status for the substring sk where n is the last element

in sk. In the record, k is the identity of sk in the ST-table; b0b1 . . . bn is a bit

vector, where b0 =0 indicates the matching of sk and bi = 0 indicates the complete

matching of subtree rooted at the ith child substring of sk; and l specifies at which

level such kind of matching is detected. It can be derived that if b0b1 . . . bn are all

0, the complete matching of the subtree rooted at sk is detected; if b0 = 0 and there

exist some bi = 0, a partial matching of the subquery rooted at the ith child of sk

is obtained; otherwise, no partial matching or complete matching at sk is detected.

Therefore, our algorithm to identify maximum-matching subquery is performed

as follows. Once an event end element(n) at level l is encountered, for each record

(k, b0b1 . . . bn, l) :

1. If b0b1 . . . bn are all 0, the complete matching of subtree rooted at sk is propa-

gated to the ancestor substring of sk. Then the maximum-matching subquery

should be generated in its ancestor substring, thus no maximum-matching

subquery is detected.

2. If b0 = 0 and ∃bi = 0, then a maximum-matching subquery subquery(si) is

obtained. Such maximum-matching subquery is recorded, and will be joined

with maximum-matching subqueries from other fragments to detect the com-

plete matching.

3. Otherwise, no maximum-matching subquery is generated.

Detecting complete matchings

In this section, we introduce the approach about how to maintain the matching

results of subqueries from each fragment to determine the complete matchings.
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The matching of subquery(qi) means that the path from root to qi and the subtree

rooted at qi is matched. With respect to qj, which is qi’s nearest branch node,

it means that the branch to qi is already matched and it needs to be joined with

the matching of other branches of qj to generate the larger matching (if qi does

not have ancestor branch node, the matching of subquery(qi) equals the matching

of the whole query pattern). The identity of the data node that matches qj in

the matching of subquery(qi) is used to specify the above matching. Specifically,

the algorithm to detect the complete matchings using matched subqueries from

fragments is performed as follows. Given a twig query q, let n1, n2, . . ., nk denote

the k branch nodes in q. For each branch bj of a branch node ni, an array (denoted

as A
bj
ni) is created to store these matching identities. Then when the branch bj of ni

is matched, the identity of the data node that matches ni is stored in array A
bj
ni . If

each array A
bj
ni of the branch node ni contains a common identity, the subquery(ni)

is matched, and such matching is propagated to ni’s ancestor branch node. The

complete matching is detected when the propagation reaches the root node of twig

query q.

Summary of evaluating queries in fragments

The previous two sections present the solutions for the two main challenges of evalu-

ating queries in fragments. This section gives a whole picture for query evaluations

in fragments. The SAX based XML parser is used to parse the XML fragments. As

aforementioned, a fragment is generally a forest of subtrees, thus a dummy node is

created as the root of all subtrees, which makes each fragment to be a valid XML

document.

For different subtrees in one fragment, different sets of subqueries will be evalu-

ated on them. The subqueries are classified in terms of the subtrees to be evaluated
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on. Then during parsing the fragment, once a new subtree of the dummy root is

encountered, the corresponding set of subqueries should be provided for process-

ing. The algorithm to match subqueries in fragments generates matching results

for subqueries, i.e. all matched subqueries and maximum-matching subqueries for

non-matching subqueries. The algorithm to detect complete algorithm will record

these matching results, and use them to detect the complete matching. The detail

algorithm for query evaluation in fragments are shown in Figure 5.6 and Figure 5.7.

Procedure QueryProcessing(q)

Input: query q ; R; fragments f1, f2, . . . , fn

Output: true or false

1: for i = 1 : n do
2: if ∃ (fi, qj) ∈ R then
3: level = 0, CurEva = NULL;
4: while ! END OF DOCUMENT do
5: if START ELEMENT t then
6: level += 1;
7: if level == 2 then
8: if ∃ trie t associated with this subtree then
9: CurEva = new Eva(t);

10: if CurEva != NULL then
11: CurEva.StartElement (name);
12: else
13: if level > 1 && CurEva != NULL then
14: CurEva.EndElement (name);
15: level = level - 1;
16: if level == 1 then
17: CurEva == NULL;
18: for each matched subquery and each maximum partial matching do
19: add the matched data node id to the list of its nearest branch node

(denoted as qk);
20: if propagate(qk, id) then
21: return true;
22: return false;

Figure 5.6: Algorithm for query evaluation on fragments

The CurEva indicates whether there exists subqueries to be evaluated on the
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Procedure: Propagate(qk,id)

curN = qk curID = id ;
ai is the list associated with branching i of curN;
for i =1: n do

if not exists k ∈ ai where k == curID then
return false;

while curN is not branching node do
curN = curN− >parent;
if curN == Root then

return true;
curID = GetID(curN);
if Propagate(curN, curID) == true then

return true;
else

return false;

Figure 5.7: Algorithm for propagation

currently parsing subtree. When a new subtree begins, the algorithm checks

whether the subquery set to be evaluated on the subtree is empty. If not empty,

the algorithm creates an evaluator to perform the matching operations based on

the trie structure during the parsing of the subtree and assign it to CurEva (line

8-9). For each encountered parsed event, i.e. start element(n) or end element(n),

if the CurEva is NULL, the algorithm does nothing; otherwise CurEva will perform

the corresponding operations in the matching subquery algorithm (line 10-14). For

the event end element(n), the level should be decreased by 1, and when the level is

1, the parsing of one subtree is finished, the CurEva is re-initialized to be NULL.

After parsing the fragment, for all matching subqueries and all maximum par-

tial matchings, the processor calls the propagate procedure to check the larger

matching (line 18-21). If the whole query pattern is matched, the processing will

terminate and return true, otherwise after all relevant fragments are evaluated, the

algorithm returns false.

Example 5.8 Consider the document d and query q in Figure 5.1 and assume that
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Prefix+Level annotation is used. Suppose f4 is first processed with the relevant

subquery subquery(/c). Since there is no complete matching of subquery(/c) in f4,

the algorithm returns the partial matching /c/s/y, which means that subquery(/s)

is matched. Now, suppose the next fragment to be processed is f3, which will result

in subquery(/k) being matched. From these two subquery matchings with different

fragments, the algorithm will detect a matching of subquery(/c). 2

Processing multiple queries

This section discusses the additional extensions to process multiple queries simul-

taneously on fragmented XML data.

Firstly, we need to modify the algorithm to identify the relevant matchings.

The naive approach is to handle the identification query by query. However, it is

definitely not scalable to large number of queries, since the time to identify the

relevant matchings increases as the number of queries increases. Different XPath

queries for the same DTD are likely to share the common prefixes. Then the

identification of relevant matchings for the various subqueries of different queries

can be processed efficiently by exploiting the common prefixes among different

queries. Given a set of XPath queries, we build a prefix sharing tree, denoted

as T . Actually, T can be considered as a tree pattern, as defined in Section 5.2,

with a special root node “/.”. Each node n′i in T is labeled with an element name

or a wildcard that is prefixed by either “/” or “//”. Additionally, each node n′i

is associated with an array A(n′i) to record the identities of the queries whose

corresponding nodes are collapsed to n′i. Similarly, prefix(n′i) is defined as the path

of nodes from the root of T to n′i (root node “/.” is not included).

Let q denote the query to be inserted, for each node ni in q, if there exists a

node n′i in T such that prefix(n′i) is the same with prefix(ni), then q is just added
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to the array of n′i; otherwise, suppose n′j is the node in T such that prefix(n′j) is the

longest prefix of prefix(ni), we know that there exist a node nj in prefix(ni) that

prefix(nj) is the same with prefix(n′j), then the subtree rooted at nj in query q is

appended to the node n′j in T by collapsing nj with n′j.

Since T can also be considered as a tree pattern, the same relevant relationship

of the nodes in T with each fragment can be defined as in Section 5.4.3. Suppose

node n′i in T is relevant with fragment fi, then for each node ni that in A(n′i), ni

is relevant with fi. The following example is used to illustrate the approach.

/a

/b

/e

//d

q 1(a) q 2(b) T(c)

/b /d //d

/c /e

/a

/./a

/b /d

/c

Figure 5.8: Tree patterns and their sharing prefix tree

Example 5.9 Figure 5.8 shows two tree pattern queries q1, q2 and prefix sharing

tree T built for them. The dotted lines point to the nodes in queries that are

collapsed to this node. We should notice that “/d” is not the same with “//d”,

thus they cannot be collapsed in T . Given a fragment with the header /a/b, by

comparing T with /a/b, we know that query node b in T is relevant. Then we can

find the corresponding nodes in the queries, and those nodes are relevant with this

fragment. 2

Secondly, for the fragment scheduling schemes, the scheduling metric values for

scheduling policies S, M and C need to be generalized to consider the subqueries

from all queries. The computation of metric values for these policies is addressed
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in the following.

• Most-Specific Scheduling, S. For processing multiple queries, the frag-

ment that may potentially match subqueries from larger number of queries

should be processed early. Then the specificity of a fragment fi is defined as

s(fi) =

∑n
k=1 max(fi,qk

j )∈R{|prefix(qk
j )|}

n

where qk
j is the query node from the kth query.

• Maximal-Matching Scheduling, M. The maximal-matching metric should

be modified to consider the relevant subqueries from all queries. Then m(fi)

is modified as follows :

m(fi) =

∑n
k=1

∑
(fi,qk

j )∈R |{si,k | si,k is a subtree in fi, si,k is relevant for qk
j }|

n

• Most-Critical Scheduling, C. To support multiple queries, we first define

F (qk
j ) = {fi | ∃ qi, qi is an ancestor of qj in qk, (fi, q

k
i ) ∈ R}, and

Q(fi) = {qk
j | ∃ qk

i , qk
i is an ancestor of qk

j in qk, (fi, q
k
i ) ∈ R}

Then the criticality of a fragment fi is modified as :

c(fi) =

∑
qk
j ∈Q(fi)

|F (qk
j )|

|Q(fi)|

Finally, the scheduling metric value should be updated once a query is found to

be matched or unmatched. Given a query, there may exist a set of fragments that

are relevant. And by processing several of them, the matching result of the query

may be obtained. Then the relevance information of this query should be eliminate
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from the corresponding fragments, and the scheduling metric values should be

updated. Therefore, to process multiple queries, once a matching result for a query

is decided, we need to update the scheduling metric values, and such that the

scheduling sequence of fragment for the following processing may be changed.

5.4.6 Dynamic Optimizations

This section presents two novel optimizations to further speed up the evaluation

of twig queries on fragmented XML data by eliminating certain relevant evalua-

tions. In contrast to the scheduling policies which are based on exploiting static

properties of the query and fragment header information to “short-circuit” query

processing, our new optimizations utilize dynamic information about the processed

fragments to eliminate certain yet-to-be-processed relevant evaluations without af-

fecting correctness. Specifically, the presence or absence of some node matching in

a processed fragment can make some evaluation in a yet-to-be-evaluated relevant

fragment redundant or unnecessary.

Eliminating Redundant Evaluations. This optimization is based on using the

existence of some matching in a processed fragment to eliminate certain relevant

evaluations in yet-to-be-processed fragments. Specifically, suppose there is a match-

ing of subquery(qi), where qj is the nearest ancestor branching node of qi, such that

qj is matched to a data node dj. Then, the evaluation of subquery(qk), where qk

is a descendant of qi (or qi itself), in a yet-to-be-evaluated fragment is considered

redundant if this matching requires qj (which is in the prefix of qk) to be matched

to dj.

The implementation of dynamically eliminating redundant evaluations is as

follows. As mentioned in query processing algorithm, when a matching of some

subquery or a matching of some maximum partial matching is found, the procedure
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propagate is called to generate larger matching part. Suppose the final obtained

matching subquery by calling propagation is subquery(qn) and qm is its nearest

ancestor branch node. Let idm denotes the identity of the data node that matched

qm in the matching of subquery(qn), then for any unprocessed relevant fragment-

query pair (fi, qj) that can be determined as redundant subquery as defined in

previous paragraph, we remove it from R. The eliminating redundant evaluation

optimization is applied at the end of each call for propagate.

Eliminating Unnecessary Evaluations. This optimization is based on using

the absence of some matching in a processed fragment to eliminate certain relevant

evaluations in yet-to-be-processed fragments. Specifically, consider a node qi in a

query q which matches a node di in a document D. If there exists a descendant

query node qj of qi in q such that there is no matching of subquery(qj) in the

subtree rooted at di, then it follows that there will no matching of subquery(qi) at

di. Therefore, for each descendant query node qk of qi, the evaluation of subquery

subquery(qk) in a fragment fk is considered unnecessary if every subtree in fk is a

subtree of di.

The work in this thesis detects two kinds of unnecessary subqueries. Suppose

subquery(qi) will be evaluated at a subtree sij in fragment fi with root node si,

and there exists a branch in qi whose matching can not be found in sij, then if one

of the following two conditions is satisfied, the eliminating unnecessary evaluations

can be performed.

• If the unmatched branch will not be evaluated in any other descendant sub-

tree of sij, then we know that the complete subtree rooted at si in the original

document does not contain a matching of this branch, hence it cannot con-

tain a matching of subquery(qi). Therefore, for any subquery(qj) in which

qj is some descendant node of qi, if the matching of qj will finally form a
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matching of qi with the matched root si, it is unnecessary subquery and can

be eliminated before processing.

• Suppose qk is the nearest branching ancestor node of qi in the query pattern,

let idki denote the id of the node which will be stored in the list associated with

qk if the matching of Qi in subtree sij is found. From the prefixes in the header

information, we can obtain the subtree that contains the node with id idik

and the subtrees whose roots are some descendant of node idik, let Si denote

the set of these subtrees. For each subtree sir ∈ Si, if either the unmatched

branch will not be evaluated in sir or it does not matched in sir, we know

that the complete subtree rooted at the node idki in original document does

not contain a matching of this branch, hence it cannot contain a matching of

qk. Therefore, for any subquery(qj) in which qj is some descendant node of

qk, if the matching of qj will finally form a matching of qk with the matched

root idki, the subquery is also unnecessary.

Example 5.10 Consider the fragmented document d and query q in Figure 5.1.

After processing f1, the evaluation of query node /f at f2 becomes redundant since

there is already a complete matching of subquery(/f) in f1 under the same data

node b in f2. After processing f6, the evaluation of query node /k with f5 becomes

unnecessary since (1) there is no matching of subquery(/s) in f6 and (2) there are

no other descendant fragments of f6 (besides f5) that could potentially provide a

matching of subquery(/s). Thus, even if there is a matching of subquery(/k) in f5,

this will not yield a complete matching of subquery(/c). 2
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5.5 Experimental Study

This section reports our experimental results. The experiments were designed to

evaluate the efficiency of the query processing approach on fragmented data and

the effectiveness of scheduling strategies and optimizations. Both synthetic and

real-life datasets were used in experimental studies. The performance metric is the

query processing time (in ms) which includes both the time to generate the relevant

fragment-query pairs based on the query and fragment header information, as well

as the time to schedule and evaluate the fragments. All experiments were conducted

on a 3 GHz Intel Pentium IV machine with 1 GB of main memory running Windows

XP; and all algorithms were implemented using C++.

5.5.1 Experimental Testbed and Methodology

Data Sets. Both synthetic and real-life XML data are used in the experiments.

The synthetic data (denoted by DXMark) is generated using the XMark benchmark

[16], while the real-life data (denoted by DDBLP ) is obtained by extracting 11.5

MB of data from the large DBLP XML document [3].

These datasets are fragmented using Natix’s algorithm [56] which controls the

maximum number of data nodes in a fragment using a threshold t. Essentially,

fragments are formed by traversing the document’s data nodes in document order

such that whenever the number of nodes visited exceeds t, the current node is used

as a separator node to create a new fragment which comprises of all the subtrees

below nodes that are left siblings of nodes along the path from the root node to

the separator node. By setting t to 5000, we obtain 34 fragments for DXMark; and

by setting t to 10000, the document from DBLP is fragmented into 29 fragments

(DDBLP ). DXMark is used as the default dataset. The parameter values for DXMark
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Q1 //open auctions/open auction/annotation//text
Q2 /site/open auctions/open auction/annotation//text
Q3 /site[//open auctions/open auction/annotation//text]/regions//namerica

/item/mailbox/mail
Q4 /site[//regions/europe/item][open auctions/open auction//text]/catgraph/edge
Q−

5 //open auctions/open auction/annotation//capital
Q−

6 /site[people/person/name]/regions[america]//eup//mailbox/mail
Q−

7 /site[people/profile]/catgraph/from
Q−

8 /site[open auctions//annotations/text/captical]/regions//europe//mail
Q9 //incollection//sup
Q10 /dblp/incollection/title/sup
Q11 /dblp[article//title]//incollection/title
Q−

12 /dblp/article//title/name
Q−

13 /dblp[//article/title]/incollection/name
Q−

14 /dblp[phdthesis/title][incollection/title/sup]/mastersthesis/title/sub

Table 5.1: XPath queries on DXMark and DDBLP

Parameter Values
Data size (MB) 15 (0.1),
(Scaling factor) 35 (0.3),

70 (0.6)
#Fragments 34
#Queries 10, 20, 40, 80

Algorithm Values
Scheduling R, T, S, M, C
Header E(Edge),P(Prefix)
annotation PL(Prefix+Level)
Dynamic +(redundant)
optimizations −(unnecessary)

(a) (b)

Table 5.2: parameters for DXMark and algorithms

and their default values are shown in Table 5.2(a), where the value in bold is the

default value used.

Queries. The XPath queries used in the experiments are listed in Table 5.1, in

which the first eight queries are addressed on DXMark and the last six queries are

addressed on DDBLP . Qi is used to denote a matching query and Q−
i is used to

denote a non-matching query. To evaluate the approach for processing multiple

queries, we used the XPath generator from the YFilter project [49] to generate a

set of random queries.

Algorithms. Various fragmented approaches are compared by exploiting differ-

ent scheduling strategies, header annotations and optimizations, as shown in Ta-
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ble 5.2(b). At first, it is assumed that all fragments are available before the pro-

cessing, then the scheduling can be performed among all fragments. For notational

convenience, Ax
y is used to denote a fragmented approach, where A ∈ {E, P, PL} rep-

resents the fragment header annotation scheme used; y ∈ {R, T, S, M, C} (as denoted

in Section 5.4.4) represents the fragment scheduling policy used; and x represents

the set of dynamic optimizations used. For example, PL+,−
S denote the fragmented

approach using the Prefix+Level annotation scheme, most-specific scheduling pol-

icy, and both dynamic optimizations. To illustrate the effect of scheduling strategies

and optimizations, the results for a single query are shown firstly. After that the

results for multiple queries are provided. Finally, the size of scheduling window is

varied to show the effect on the scheduling strategies and by modelling the delay

of each fragment as a percentage of the time to process the fragment, the effect of

the delay is also illustrated. The default scheduling window size used is w = ∞
(i.e. scheduling is done with all fragments available).
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Figure 5.9: Comparison of fragmentation header schemas

5.5.2 Experimental Results

Comparison of header annotation schemes. Figure 5.9(a) and Figure 5.9(b)

show the performance for different header annotations schemes for DXMark and
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DDBLP respectively. As Edge annotation scheme has to process the fragments in

topological sequence, thus we use T scheduling for Prefix and Prefix+Level. It

shows that Edge achieves the worst performance. The reason is that the limited

header information in Edge is not effective in pruning unnecessary relevant queries

on fragments. For the two header annotation schemes that exploit the prefix infor-

mation, PLR is consistently more efficient than PR since Prefix+Level annotation

is able to exploit the additional maxHt() information to prune off more non-relevant

fragments.

By comparing the results in Figure 5.9(a) and Figure 5.9(b), we observe that

the performance improvement of PLR over PR is more significant for DDBLP than

DXMark because the former document is shallower than the latter, which means

that there are more opportunities for maxHt()-based pruning in DDBLP than in

DXMark. Given that Prefix+Level-based methods consistently outperforms Edge

and Prefix-based methods, we will not include Edge and Prefix-based methods

in subsequent experimental graphs.
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Figure 5.10: Comparison of fragmentation with non-fragmentation

Fragmentation vs. Non-fragmentation. Figure 5.10(a) and Figure 5.10(b)

compare the performance of the NF against the fragmented approaches using the

default scheduling policy (i.e., PLR) for various queries on DXMark and DDBLP
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respectively. The results show that the approach PLR outperformed NF for all

queries; in particular, for Q2, PLR reduces the processing time of NF by 95%.

The performance improvement is due to the fact that fragmented approaches

are able to process the fragments selectively based on relevant information. If

the query is selective such that only a small number of fragments are relevant,

PLR is much better than NF. We record the number of fragmented processed by

NF and PLR, and it shows that for each tested query, PLR processed a smaller

set of relevant fragments. Actually, the time to identify relevant fragments using

header annotations is trivial compared with the processing time, thus even for

some case that PLR has to processed each fragment, the performance of PLR is

still competitive with NF.
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Figure 5.11: Comparison of scheduling policies

Comparison of scheduling policies. Figure 5.11(a) and Figure 5.11(b) demon-

strate the performance of the five different scheduling policies (i.e. R, T, M, S, C)

for various queries on DXMark and DDBLP respectively. The results show that in

both datasets the S is generally the most competitive for matching queries (except

for Q4 on DXMark); while C is generally the best policy for non-matching queries.

As aforementioned, the proposal of policy S is to process the fragment that is the

most promising to find a matching subquery, which causes the policy to achieve
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good performance for matching queries. The policy M also intends to find matching

queries earlier. However, the metric of M is not as precise as the metric of S to find

matching queries.

The reason for the relatively weaker performance of the S for Q4 on DXMark is

that many redundant evaluations with high specificities for the two most specific

branches in Q4 delay the matching of the remaining branch. However, as shown

later, when the redundant elimination optimization is also applied, the most-specific

policy (i.e., PL+
S ) outperforms the other policies (including PL+

R) for Q4. As the

dataset DDBLP always shows similar trends with DXMark, we ignore the results for

DDBLP in the following.
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Figure 5.12: Effect of dynamic optimizations, document size, DXMark

Effect of dynamic optimizations. Figure 5.12(a), Figure 5.12(b) and Fig-

ure 5.12(c) demonstrate the effect of the two dynamic optimizations for DXMark.



128

Figure 5.12(a) and Figure 5.12(b) consider the impact of the optimizations on the

two best scheduling policies, respectively: S for matching queries and C for non-

matching queries. For tree pattern queries that have more than one branch (e.g.,

Q3, Q4, Q−
6 , and Q−

8 ), once a matching for a query branch is found, the redundant

evaluation optimization can help to further improve performance such as Q3, Q4,

Q−
6 ; and once a matching for a query branch is guaranteed to be nonexist, the un-

necessary evaluation optimization can help to further improve performance such as

Q−
6 . We found that the redundant evaluation optimization is particularly effective

for PL+
S since policy S is likely to find matchings early.

Our results also reveal that the unnecessary evaluation optimization is less sig-

nificant than the redundant evaluation optimization due to the fact that the DXMark

data provides more opportunities for eliminating redundant evaluations. However,

when both the dynamic optimizations are combined, the combination generally

achieves the best performance. Figure 5.12(c) compares the effect of the combined

optimizations with various scheduling policies on DXMark. The results show that

for matching queries, PL+,−
S offers the best performance, while for non-matching

queries, PL+,−
C gives the best performance.

Effect of document size. Figure 5.12(d) compares the effect of document size

on the performance of the non-fragmented approach (i.e., NF) and the fragmented

approach PL+,−
S for DXMark. We vary the parameter scaling factor in XMark to

generate three different XML document with different size shown in Table 5.2(a).

The distribution of elements in different XML documents is the same, and the

number of fragments in each dataset is kept at 34. To avoid clutter, we only

show the results for scaling factors of 0.1 and 0.6. As expected, query processing

time increases with larger data size. Furthermore, the performance improvement

of PL+,−
S over NF becomes more significant as data size increases.
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Figure 5.13: Performance for multiple queries, DXMark

Effect of number of queries. Figure 5.13(a) demonstrates the performance of

our approach for multiple queries by varying the number of queries from 10 (Q10),

20 (Q20), 40 (Q40) to 80 (Q80). The y-axis measures the average processing time,

including both the time to determine relevant queries and the time to process each

relevant fragment to determine the matching results, over all queries in the set.

The numbers indicated above the bars represent the time (in ms) to process the

fragment header annotations. For a single query, the time to find relevant queries

is small enough to be ignored. As the number of queries grows, the time to process

the fragment header annotations increases correspondingly. However, for the case

Q80, the time for processing header annotations still takes a small part of the whole

processing time. For the dataset DXMark, the number of subtrees in each fragment

is large, which incurs a large number of prefixes to be compared with queries. Then

for other datasets that the number of subtrees in each fragment is small, the time

to process header annotations can be reduced.

Another component to affect the average processing time is the size of the frag-

ments parsed in our approach. For Q10 and Q20, our approach helps to skip parts

of the document for all scheduling strategies, thus fragmentation outperforms the

non-fragmentation. Among all PL+,−
S and PL+,−

M achieve the best performance,
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since they help to find matching queries earlier; and PL+,−
C also achieves relatively

good performance, since it helps to find non-matching queries earlier. As the num-

ber of queries increase, more fragments are likely to be relevant with more queries,

thus the improvement of the fragmented approach over NF may diminish. For Q40,

PL+,−
R performs worse than NF, since each fragment is relevant and with the time to

process the header information, PL+,−
R loses to NF. However, we observe that even

for Q80, PL+,−
S and PL+,−

C still outperform NF; this is due to their effectiveness

in short-circuiting subquery evaluations and eliminating redundant/unnecessary

evaluations.

Effect of the ratio of non-matching queries. Figure 5.13(b) shows the effect

of increasing the ratio of non-matching queries for the default query set Q40. For

PL+,−
R and PL+,−

T , which are independent of queries, the increasing of average pro-

cessing time is slower than NF. For the case where all the queries are non-matching,

each fragmentation approach outperforms NF. The reason is that for non-matching

queries, NF has to scan the whole document, while fragmentation can selectively

scan only relevant fragments. For PL+,−
S and PL+,−

M , since the propose of these two

strategies is to find matching queries earlier, the performance of these strategies

decreases as the number of non-matching queries increases. However, they still

outperform NF even when the ratio of non-matching queries reaches 100%. For

PL+,−
C , its performance improves as the number of non-matching queries increases

since the goal of the most-critical scheduling is to find non-matching query ear-

lier. The queries in the set are generated by choosing the probability of “//” as

0.1. If the queries contain less “//”, which means that the queries are more se-

lective, fragmentation can achieve better performance by skipping more irrelevant

fragments.

Effect of scheduling window size and transmission delay. Figure 5.14(a)
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Figure 5.14: Effect of Scheduling Window Size and Transmission Delay, DXMark

shows the effect of varying scheduling window size, w ∈ {1, 5, 10, 20,∞} using

policies S C M. We observe that the query processing time generally improves as the

scheduling window size w increases since scheduling and processing a larger batch

of fragments enables more effective optimizations. Figure 5.14(a) also demonstrates

that all three policies, i.e. S C M, show the similar trends.

We also vary the time delay t for w fragments to arrive to begin each batch

of scheduling and processing. Here, the t is measured in terms of the percentage

of time to parse one fragment, with t ∈ {0, 10, 20, 40}. As different scheduling

strategies show similar trends when varying the scheduling window size, we only

show the results for PL+,−
S . Figure 5.14(b) demonstrates that the transmission

delay t has larger effect when the scheduling window size is larger, since the arriving

of all fragments in a window will take more time. As shown in Figure 5.14(b), as the

delay t increases from 0% to 20%, the improvement from a larger w diminishes due

to more time spent waiting for the fragments. However, when the delay becomes

sufficiently large with t = 40%, the performance for w = ∞ is actually worse than

that for w = 1. This is because the benefit of processing a large batch of fragments

is offset by long delay for the fragments to arrive.
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5.6 Summary

This chapter introduced an approach for processing XPath boolean queries directly

on fragmented XML documents without reconstructing the original documents.

The proposed query processing strategy consists of three main steps:

(1) Identifying the relevant subqueries to evaluate on each fragment.

(2) Scheduling the order to evaluate the fragments.

(3) Optimizing each fragment evaluation to minimize unnecessary and redundant

processing.

As part of the first step, three techniques to represent fragment header infor-

mation are proposed to enable the effective identification of relevant subqueries

for each fragment. For the second step, several fragment scheduling policies are

proposed to enable the early determination of either a complete matching or a non-

matching outcome. For the third step, two novel optimizations are introduced to

maximize the elimination of redundant or unnecessary fragment-query evaluations.

The experimental results based on both synthetic and real-life datasets demonstrate

the effectiveness of the processing and optimization strategies with a performance

improvement of up to a factor of 20 over the conventional approach of process-

ing non-fragmented documents. Among the various fragment header annotation

schemes, fragment scheduling policies, and evaluation optimizations, the PL+,−
S

combination turns out to be the best approach for evaluating matching queries,

while the PL+,−
C combination turns out to be the best approach for evaluating

non-matching queries.
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Chapter 6
Handling Heterogeneous XML Data

6.1 Introduction

Existing work on XML data dissemination (e.g., [20, 39, 71]) are all implicitly based

on a homogeneous schema assumption where both the data published by different

publishers as well as the users’ subscriptions share the same schema. However, since

the data publishers in a pub/sub system are autonomous and independent, they

generally do not use the same schemas even when their published data are related

and belong to the same domain (e.g., product catalogues). Consequently, if a user’s

subscription is based on the schema of a specific publisher (say P ), then while the

user can receive relevant documents from P that match his subscription, it is very

likely that his subscription will not match relevant data from another publisher P ′

if the data schemas used by P and P ′ are different. Thus, the effectiveness of the

pub/sub systems in pushing relevant data to consumers becomes diminished in the

presence of heterogeneous data schemas.

This chapter addresses the problem of how to improve the effectiveness of XML

data dissemination in the presence of heterogenous data schemas. Our problem, re-

ferred to as heterogeneous data dissemination problem, can be stated as follows. We
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consider a pub/sub system where data published by different publishers are based

on different schemas. The problem is how to effectively disseminate a document

(based on some publisher’s schema S) to relevant subscribers whose subscriptions

might be based on schemas different from S. Previous work on content-based dis-

semination of XML data have focused on the special case where all the published

data and users’ subscriptions conform to a single schema.

For simplicity and without loss of generality, we assume that all the published

data are of the same domain such that it is possible to integrate the different

publishers’ schemas (of the same domain) into a single global schema. Our problem

and proposed techniques can be easily extended to the general case where each

publisher is associated with multiple schemas corresponding to different domains:

the general problem can be reduced to the simpler problem by first partitioning

the collection of publishers’ schemas into groups of schemas with similar domains,

and then generating a global schema for each group of related schemas.

To better motivate our problem, we want to differentiate the heterogeneous data

dissemination problem with the following two problems.

6.1.1 Data Integration Problem

Data integration problem focuses on how to query multiple data sources with differ-

ent schemas. In contrast, the problem that we are addressing is on how to compare

a published data against a collection of queries (i.e., subscriptions) to identify the

matching queries given that the data and queries are based on different schemas.

Thus, a fundamental difference between these two problems, which are related by

the presence of schema heterogeneity, is that the integration problem belongs to a

single-query-multiple-data scenario while the dissemination problem belongs to a

single-data-multiple-queries scenario.
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Figure 6.1: Query rewriting approach (QRA)

The central idea to address the data integration problem is query rewriting,

which is performed as follows. To facilitate the querying over disparate data sources

with different schemas, the approach taken is to first integrate the collection of local

data schemas into a global schema which then serves as a schema for querying. Each

query q against the global schema is processed by rewriting q into a collection of

local subqueries against the local schemas and evaluating each local subquery at

the appropriate data source.

Now, consider applying the query rewriting idea to solve the heterogeneous data

dissemination problem as follows:

(S1) First, integrate the collection {S1, S2, · · · , Sn} of different publishers’ schemas

(that are based on the same domain) into a global schema Sg. The global

schema Sg is then made available to users to specify their subscriptions.

(S2) Next, each “global” subscription qg (which is based on global schema Sg) is

then rewritten into a set of local subscriptions {q1,q2,· · ·,qn}, where each qi

is based on a local schema Si. To enable efficient matching a published data

(conforming to some local schema Si, i ∈ [1, n]) against local subscriptions

based on Si, an index Ij is constructed for each collection of subscriptions

based on local schema Sj, j ∈ [1, n].
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The above approach, which we refer to as the query rewriting approach (QRA) is

illustrated in Figure 6.1. For each incoming data D (based on some local schema

Sj), the matching engine only needs to compare D against the appropriate set of

local subscriptions via index Ij.

The query rewriting approach, however, suffers from three drawbacks.

• The scalability of the approach is limited as each input subscription needs

to be rewritten into one subscription for each local schema. This increases

the space overhead for storing and indexing the expanded set of local sub-

scriptions at each router. Note that although the input global subscriptions

are not used directly for document matching, these subscriptions still need to

be maintained for generating new rewritings whenever a new local publisher

schema is added (or changed).

• The approach also incurs a high update cost. Whenever a new data schema S ′

is introduced (by an existing or new publisher), it is necessary to generate and

install new subscriptions (for schema S ′) at each router by rewriting the global

subscriptions registered at each router to corresponding local subscriptions

on the new schema S ′.

• The query rewriting approach is an intrusive approach, in the sense that it

requires making changes to the conventional routing approach; specifically,

the matching engine needs to be enhanced to recognize some additional meta-

data about the document’s schema and to support multiple indexes on the

schema-specific collections of subscriptions.
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6.1.2 Query Relaxation Problem

Another direction taken to address the problem of schema heterogeneity is to apply

query relaxation techniques (e.g., [105, 22, 81, 21]). This can be viewed as a schema-

independent query rewriting approach where a query is “relaxed” to multiple queries

without relying on knowledge of data schemas but based on making local structural

changes to parts of the query. The motivation for this line of work is to enable

retrieval of approximate answers to a query and it is often used in combination

with some ranking and pruning mechanism during query evaluation at run-time

to control the number of relaxed queries generated. However, it is unclear how

this technique can be effectively applied to the context of the data dissemination

problem since the number of queries registered at each router is large which makes

run-time relaxation of a large set of queries a challenging problem. Alternatively,

another possibility is to try to precompute the relaxed queries offline; but in the

absence of the run-time data, it is unclear how the relaxed queries can be generated

efficiently and in a controlled manner without a large set of relaxed queries being

produced.

This chapter presents a novel paradigm to solve the heterogeneous data dissem-

ination problem that is based on the principle of data rewriting. The new approach

is referred as DRA for data rewriting approach. The conceptual idea of DRA is

as follows. As in step (S1) of QRA, the collection of local schemas from the pub-

lishers is first integrated to form a global schema Sg which is then made available

to users to specify their subscriptions. Unlike QRA, our DRA does not require

query rewriting which means that only the input global subscriptions are indexed

at each router. For each incoming data D` (conforming to some publisher’s local

schema S`) to a router, our DRA first rewrites D` to Dg (which conforms to the

global schema Sg) and then match Dg against the registered global subscriptions
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in that router. In contrast to QRA, our proposed DRA is more effective for the

heterogeneous data dissemination problem because pub/sub systems are typically

characterized by the following two properties:

1. the number of subscriptions at each router is large (which limits the scalability

of QRA); and

2. the data being disseminated is relatively small (which incurs only a small

processing overhead for data rewriting).

Thus, the propose DRA has three key advantages:

1. It is space-efficient as it only stores the registered global subscriptions (unlike

QRA which stores an expanded set of rewritten queries for each local schema).

2. It is also update-efficient as additions and changes to local schemas do not

require updating of registered queries at the routers.

3. It is also time-efficient as the overhead of data rewriting is low and the match-

ing of the document against a (non-expanded) set of queries is fast.

The rest of this chapter is organized as follows. Section 6.2 presents our novel

data rewriting framework. We discuss implementation issues for the various ap-

proaches in Section 6.3. The experimental results are presented in Section 6.4. We

conclude this chapter in Section 6.5.

6.2 Data Rewriting Framework

This section presents the new framework to solve the heterogeneous data dissemi-

nation problem by using data rewriting techniques.
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Firstly, the system architecture is presented in Section 6.2.1 and then three

main approaches to employ data rewriting are discussed in Section 6.2.2. After

that, Section 6.2.3 describes details of schema mappings used in our prototype im-

plementation. It is important to emphasize that our data rewriting framework is

orthogonal to the specific techniques for schema integration and mapping in Sec-

tion 6.2.3 and can be combined with other techniques as well. Finally, Section 6.2.4

introduces the set of data rewriting operators and Section 6.2.5 presents the mech-

anisms to derive those operators.

6.2.1 System Architecture

Similar to existing pub/sub systems, the system based on data rewriting has a

mediator agent (MA) that serves as a coordinator between the data publishers

and publishers [50, 23]. Besides collecting schemas from publishers and registering

queries for users, the MA is also responsible for integrating the local schemas from

the various data publishers to generate a global schema for each data domain.

We use S` to denote some publisher’s local schema, and Sg to denote a global

schema integrated from a collection of local schemas of the same domain. We use

D` (resp., Dg) to denote a document conforming to schema S` (resp. Sg).

As part of the schema integration process, the MA also creates a schema map-

ping, denoted by M`,g, for each local schema S` that is integrated to a global schema

Sg. A schema mapping M`,g is essentially a data transformation specification that

enables an input document D` to be mapped into an output document Dg that pre-

serves the appropriate information content of D`. The details of schema mappings

used in this work are discussed in Section 6.2.3.
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Figure 6.2: Data Rewriting Approaches

6.2.2 Data Rewriting Approaches

This section gives an overview of three main approaches to perform data rewriting.

These approaches can be classified based on where the rewriting is done; specifi-

cally, referring to the architecture of a typical content-based router in Figure 2.3,

the data rewriting step is introduced in three possible locations as illustrated in

Figure 6.2: (a) outside of the router, (b) between the parser and matching engine

components of the router, and (c) within the matching engine component. These

three architectural options have different implementation-performance tradeoffs. In

terms of implementation complexity, the last method is an intrusive approach in

that it requires making substantial changes to some software component: in this



141

case, the data rewriting step needs to be integrated into the matching engine. In

contrast, the first two approaches are non-intrusive and have a lower implementa-

tion effort.

The different methods can also be classified into static or dynamic approaches

depending on whether the data is rewritten only once before being forwarded to

the routers (e.g., the first approach) or rewritten dynamically by each router (e.g.,

last two approaches).

It is important to note that similar to the conventional approach and QRA, the

data rewriting approaches also deliver the original document D` (and not Dg) from

the publishers to the users. The purpose of rewriting D` to Dg is to enable the

document to be matched against the global subscriptions.

Static Data Rewriting (SDR). In the static data rewriting (SDR) approach

(illustrated in Figure 6.2(a)), each published data D` (based on some publisher’s

local schema S`) is rewritten to Dg (based on the integrated global schema Sg)

statically (but only once) by either the publisher itself or the MA. The advantage

of employing the MA to rewrite the data is that the publishers are shielded from

the details of the schema mappings and rewriting processing; however, this requires

each publisher to first forward D` to the MA for the rewriting before the MA

forwards the transformed data to the routers for dissemination.

Once D` has been rewritten to Dg, both D` and Dg are forwarded together to

the network of routers for dissemination. Here, Dg serves as metadata to enable the

forwarding of the payload data D`. Since the subscriptions stored in each router are

based on the global schema Sg, Dg is used for matching against the subscriptions

to detect matching subscriptions and decide to which router(s) the data needs to

forwarded next. For forwarding to the local subscribers at a router, only the actual

data D` needs to forwarded.
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One advantage of SDR is that it is a non-intrusive approach that can be easily

implemented. However, the tradeoff is that the amount of data that is being

forwarded is roughly doubled compared to the conventional approach.

Dynamic Data Rewriting (DDR). To avoid the transmission overhead of SDR,

an alternative strategy is for each router to forward only D` but the tradeoff is that

each router now needs to rewrite the data D` dynamically. This approach is referred

to as dynamic data rewriting (DDR) approach. Note that DDR does not materialize

Dg. Instead, the data rewriting is conducted during the parsing of documents for

query evaluation. Specifically, the XML parser still parses D`, while the evaluation

of queries is equivalent to match these queries against Dg.

Two dynamic data rewriting approaches are proposed based on the location to

perform data rewriting.

• NDDR The first option is to perform the rewrite outside of the matching

engine by installing a new software component, called the data rewriter, be-

tween the document parser and matching engine as shown in Figure 6.2(b).

The data rewriter essentially rewrites D` to Dg by intercepting the sequence

of events E` that is generated by the event-based XML parser (as it parses the

input document D`) and generating a modified sequence of events Eg to the

matching engine such that Eg is equivalent to the sequence of events gener-

ated by parsing Dg. We refer to this approach as non-intrusive dynamic data

rewriting (NDDR) approach since it does not require making any changes to

the existing XML parser and matching engine components. The challenge of

NDDR is how to intercept the sequence of events in data rewriter, which is

elaborated in Section 6.3.1.

• IDDR The second option is to rewrite the data within the matching engine

itself as shown in Figure 6.2(c); we refer to this approach as intrusive dynamic
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data rewriting (IDDR) approach. The challenge of IDDR is how to match

queries against the parsed events that are encountered out of document order.

This is to be elaborated in Section 6.3.2.

In order for a router R to perform data rewriting, R needs to have access to the

schema mappings generated by the MA. There are two possible options for routers

to access the schema mappings. The first option is for each router to keep a copy of

all the schema mappings generated by the MA. Thus, the MA needs to disseminate

its generated schema mappings to all the routers during an initialization process.

The second option is for each published data D` to be disseminated along with

its appropriate schema mapping M`,g as part of the data’s header information.

The additional header information can be inserted into the published data either

by the publisher itself or by the MA. In the first case, the MA needs to disseminate

relevant schema mappings to each publisher as part of an initialization process so

that the publisher can insert the appropriate schema mapping for each published

data. In the second case, each publisher simply disseminates its published data D`

via the MA, and the MA becomes responsible for inserting the appropriate schema

mapping into the data’s header before sending it out for dissemination.

Comparing the two options of accessing schema mappings, the first option is less

space-efficient since the schema mapping information is replicated in every router;

consequently, the first option is also more costly to maintain when updates arise

(e.g., when a new data schema is introduced by a new or existing publisher). In

contrast, by not replicating the schema mapping information, the second option

is more space- and update-efficient at the cost of a slightly higher transmission

overhead.

To distinguish between the options of storing all the schema mappings at the

routers or disseminating the data with an appropriate schema mapping, we use
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NDDRrouter (resp. IDDRrouter) to denote NDDR (resp. IDDR) combined with

the first option, and NDDRdata (resp. IDDRdata) to denote NDDR (resp. IDDR)

combined with the second option.

Alternative Approaches. This section discusses yet another approach to avoid

the transmission overhead of SDR. Unlike the DDR methods which disseminate

only D`, another approach is to disseminate only Dg; we refer to this approach

as dynamic reverse rewriting (DRR) approach. In DRR, the published data D`

is rewritten to Dg statically only once (similar to SDR) and only Dg is forwarded

to the routers for dissemination. While this approach does not incur the dynamic

rewriting overhead of DDR during the router-to-router forwarding, it will require a

reverse rewriting to transform Dg back to D` when forwarding the data to matching

subscribers. There are two options of when the reverse rewriting is performed at

some router R. The first option is to do it when the first matching subscriber is

detected at R in which case the subscription matching process is suspended and

Dg is rewritten to D` (using some reverse mapping operators). This approach is

denoted as EDRR. Note that the reconstructed D` is only an approximate form

of the original published data (e.g., ordering of sibling elements is not preserved).

The subscription matching then resumes once the converted D` is forwarded to the

matching subscriber. The second option is to hold back the reverse rewriting until

after Dg has been completed parsed and forwarded to all matching neighboring

routers. This approach is denoted as LDRR. The tradeoff between these options is

that the first option speeds up the forwarding to matching subscribers but delays

the forwarding to matching outgoing routers, while the reverse holds for the second

option. However, our experimental results show that the additional complexity of

reverse rewriting is not a good idea as both the DRR methods are outperformed

by the three main approaches.
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6.2.3 Schema Mapping

This section describes the schema mapping specification used in our work. A

schema mapping, denoted by M`,g, is a specification that enables an input doc-

ument D` (that conforms to a source schema S`) to be transformed to an output

document (that conforms to a target schema S`) such that the appropriate infor-

mation content of D` is preserved in Dg. Each schema mapping can be generated

as part of the schema integration process. The work in this thesis adopts a simple

schema mapping specification that consists of a tree representation of the source

schema (i.e. local schema) annotated with data rewriting operators.

It is important to emphasize that the focus of our work is on using a data

rewriting approach to solve the heterogeneous data dissemination problem and not

on schema mapping per se. Thus, we have decided on a schema mapping specifica-

tion that is reasonably expressive that supports a variety of data transformations

and that is also amenable to an efficient implementation. Note that our proposed

data rewriting paradigm is orthogonal to the actual choice of schema mapping

specification and implementation.

An XML schema is modeled using a tree structure, called a schema tree, where

tree nodes represent element types and tree edges represent element-subelement

relationships. Each node tree is optionally associated with a symbol (?, *, or +)

that represents the cardinality of the element that it represents. For simplicity,

we do not consider the union and recursion constructs in our schema model. Note

that even though a XML schema typically has common substructures and can be

more concisely modeled as a graph, it is more convenient to duplicate the common

substructures to model the schema as a tree [78] as this makes it easy to specify

different transformation operations to different instances of the same substructure.

An example schema tree for Sg is shown in Figure 6.3(a).
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Figure 6.3: Example Schema Mapping M`,g

We represent a schema mapping M`,g by an annotated schema tree of S`. Each

node in the schema tree is annotated with a (possibly empty) sequence of data

rewriting operators (to be discussed shortly). With this schema mapping, we can

transform an input data D` (conforming to S`) to a data Dg (conforming to Sg

that preserves the information contents of D`) by traversing each element e in D`

(in document order) and applying the sequence of rewriting operations associated

with element e in the annotated schema tree.

Given S` and Sg, M`,g can be computed from the following two steps:

1. First, compute a schema matching from S` to Sg using an existing method
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(e.g., [82]). The schema matching essentially specifies a 1-to-1 mapping be-

tween the elements of S` and Sg. An example of a schema matching between

S` and Sg is shown in Figure 6.3 (ignore the operator annotations for now)

where the 1-to-1 mappings are indicated by the dotted lines.

2. Next, using the computed schema matching and the available set of data

rewriting operators, annotate each element type e in S` with an appropriate

sequence of operators to achieve the associated schema matching for e.

Figure 6.3(b) shows an example of a schema mapping M`,g, where elements author,

instructor, faculty, and department each has one rewrite operator annotation;

while element course is annotated with a sequence of three rewrite operators.

6.2.4 Data Rewriting Operators

This section presents six basic data rewriting operators that can express a wide

variety of data transformations. The example schema mapping M`,g shown in

Figure 6.3 will be used as our running example to illustrate the operators. We use

E, E ′, or Ei to denote an element type, and child(E) to denote the set of child

subelement types of an element type E.

Rename(E, E ′). This operator renames E to E ′. In Figure 6.3, the operator

Rename (department, dept) is applied in S` to rename the department element to

dept in Sg.

ToElement(E, A). This operator converts the attribute A of E to become a

subelement of E such that the value of A becomes the contents of the new element

A. This kind of heterogeneity is mentioned in [114]. In Figure 6.3, the code

attribute of course element in S` is converted to become a new subelement named

code of element course in Sg.
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Insert(E, E1/E2/ . . . /Ek, S), S ⊆ child(E). This operator first moves each child

subelement E ′ of E, where E ′ ∈ S, to become a child subelement of Ek, where

E1/E2/ . . . /Ek is a new path of elements. The entire subtree rooted at E1 is then

inserted to become a child subtree of E. This is used to resolve the generalization

conflicts as mentioned in [104, 114]. Insert+(E, E1 /E2/ . . . /Ek) is a special case of

the Insert operator that is equivalent to Insert(E, E1/E2/ . . . /Ek, child(E)). In

Figure 6.3, the operator Insert(course, schedule, {time, schedule}) is applied in S`

to effectively group both the time and location subelements of course to become

subelements of a new schedule element which is inserted as a new subelement

of course. As another example in Figure 6.3, the operator Insert+(instructor,

contact) is applied in S` to group all the child subelements of the instructor

element to become subelements of a new contact element which is inserted as a

new subelement of instructor.

Upgrade(E, S), S ⊆ child(E). This operator “upgrades” each child subelement

Ei of E (together with the subtree rooted at Ei), where Ei ∈ S, to become a sibling

of E. Upgrade+(E) is a special case of the Upgrade operator that is equivalent to

Upgrade(E, child(E)). In Figure 6.3, the operator Upgrade+(faculty) is applied in

S` to move each child subelement of faculty (only department element in this

example) to become a sibling element of faculty.

Downgrade(E, S,E ′), S ⊆ child(E), E ′ ∈ child(E) − S. This operator “down-

grades” each child subelement Ei of E (together with the subtree rooted at Ei),

where Ei ∈ S, to become a child subelement of E ′. In Figure 6.3, the operator

Downgrade(course,{TAs},instructor) is applied in S` to move the TA subelement of

course to become a child subelement of instructor (which is a child subelement

of course).

Exchange(E, E ′), E ′ ∈ child(E). This operator swaps the roles of E and E ′ so
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that E becomes a child subelement of E ′. More specifically, the subtree rooted at

E (excluding the subtree rooted at E ′) becomes a new child subtree of E ′; and the

parent element of E becomes the parent element of E ′. This operator is used to

resolve the parent and child conflicts in the schema definition as mentioned in [43,

114]. In Figure 6.3, the operator Exchange(author,article) is applied in S` to swap

their parent-child roles so that author becomes a subelement of article. Note that

the Exchange(E, E ′) operator can result in the data subtree rooted at E (excluding

the subtree rooted at E ′) to be duplicated multiple times when rewriting data. This

effect is illustrated in Figure 6.4 where the operator Exchange(article,author) is

applied to rewrite D` to Dg. Observe that the title information for the first article

(i.e., “XML”) appears twice in Dg due to the fact the article has two authors.

Note, however, that while the author named “John” has authored two articles

in D`, the rewritten Dg does not merge the information from the first and third

author subtrees into a single subtree. This is because the Exchange operator is not

a “group by” operator; the latter is more a complex operator that requires some

notion of keys for grouping information which is outside the scope of our work.
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"Tom"title

author
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Figure 6.4: Rewriting D` to Dg with Exchange(article,author)
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6.2.5 Deriving Data Rewriting Operators

Given S` and Sg, M`,g can be computed in two steps. Firstly, a schema matching

is computed from S` to Sg using some existing method (e.g., [82]). The schema

matching essentially specifies a 1-to-1 mapping between the elements of S` and

Sg. An example of a schema matching between S` and Sg is shown in Figure 6.3

where the 1-to-1 mappings are indicated by the dotted lines. Next, the rewriting

operations annotated with each element e in S` (denoted by op(e)) is computed

using the computed schema matching and the following six rules.

Given an element e in S`, we use par(e) to denote the parent of e in S`, and

map(e) to denote the mapped element of e in Sg.

Rename Rule. If the labels of e and map(e) are different, then add Rename(e,map(e))

to op(e).

ToElement Rule. If e has an attribute attr such that map(attr) is a child of

map(e) in Sg, then add ToElement(e, attr) to op(e).

Insert Rule. If map(par(e)) is an ancestor of map(e) in Sg and for each element

ei ∈ p, where p is the path from map(par(e)) to map(e), there is no element in S`

that is mapped to it, then add Insert(par(e), p, e) to op(par(e)).

Downgrade Rule. If e has a sibling element e′ such that map(e′) is a child of

map(e) in Sg, then add Downgrade(par(e), e′, e) to op(par(e)).

Upgrade Rule. If e has a child element e′ such that map(e′) is a sibling of map(e)

in Sg, then add Upgrade(e, e′) to op(e).

Exchange Rule. If map(par(e)) is the child of map(e) in Sg, then add Exchange(par(e), e)

to op(par(e)).

The above rules are applied in two phases. In the first phase, S` is traversed in

preorder to update op(e) for each visited element e using only the Exchange rule.
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Based on those op(e), S` is transformed to S ′`. In the second phase, S ′` is traversed

in preorder to update op(e) for each visited element e using only the remaining

five rules. For each e visited, the rules are applied in any order to update op(e)

if the rule conditions are satisfied. The application of the Exchange rule needs to

be performed first before the other rules to avoid the ambiguity on other operators

caused by the Exchange operator.

6.3 Implementation Issues

This section discusses the implementation issues for the two dynamic rewriting

approaches, namely, NDDR and IDDR.

6.3.1 Non-intrusive Dynamic Data Rewriting

In NDDR (Figure 6.2(b)), the key component being introduced is the data rewriter

which is responsible for generating parsed events for Dg from the parsed events of

D` thereby giving the matching engine the illusion that it is matching its global

subscriptions against Dg. In this way, we can avoid changing the complex matching

engine component.

Cached-Tree. To dynamically rewrite the data, the data rewriter needs to change

the sequence of the parsed events. Some events can be forwarded to the processor

immediately while some events have to be delayed until other events happen. For

those events that are to be delayed, the data rewriters use a tree structure to store

them, which is called cached-tree. Each element in the document corresponds to

one node in the cached-tree. The node of the cached-tree captures the element’s

name, attributes and content information. If an element ei is the subelement of

element ej in the document, the node corresponds to ei is the child of the node
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corresponds to ej in cached-tree.

For each event start element E received by the data rewriter, the rewriter will

initiate the sequence of rewriting operations associated with element E in M`,g.

The complexity and therefore the cost of a rewriting operator depends on whether

the operator is blocking or non-blocking, which is described as follows.

1. Non-blocking operators. An operator is classified as non-blocking if the

effect of its rewriting can be pipelined by the data rewriter (in the form of a

parsed event for Dg) to the matching engine immediately. Rename(E, E ′),

ToElement(E, A), Upgrade+(E) and Insert+(E, E1/E2/ . . . /Ek) are non-

blocking operators.

2. Blocking operators. the cached-tree is required to handle these opera-

tors. The data rewriter informs the matching engine about a batch of events

from the cached-tree once some further event is parsed. Exchange(E, E ′),

Insert(E, E1/E2/ . . . /Ek, S), Upgrade(E, S) and Downgrade(E, S,E ′) are

blocking operators.

In the following, we first introduce the mechanisms to perform non-blocking

operators, followed by the mechanisms to perform blocking operators. Let Start(E)

denote the event start element E; and let End(E) denote the event end element E.

Rename(E, E ′). For the event Start(E) from the parser, the data rewriter sub-

stitutes the name E with the name E ′ and forwards the event Start(E ′) to the

matching engine. Similarly, for End(E) from the parser, the data rewriter forwards

End(E ′) to the matching engine.

ToElement(E, A). For event Start(E) from the parser, the rewriter extracts the

attribute A and the value of the attribute A (denoted as val(A)). Then attribute

A is erased from the element E. The rewriter first sends the event Start(E) to the
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matching engine (other attributes of E is sent together with Start(E)). Secondly,

the rewriter notifies the matching engine about the event Start(A), followed by the

event text(val(A)). Finally, the rewriter sends the event End(A) to the matching

engine. For End(E) the data rewriter just forwards End(E) to the matching engine.

Insert+(E, E1/E2/ . . . /Ek). For event Start(E) from the parser, the data rewriter

informs the matching engine of Start(E) followed by the sequence of events Start(E1),

Start(E2), . . ., Start(Ek). And when the End(E) is obtained from the parser, the

rewriter first sends the event End(Ek) to the matching engine, followed by the

events End(Ek−1), . . ., End(E1), and finally the event End(E) is forwarded to the

matching engine.

Upgrade+(E). For the Start(E) from the parser, the data rewriter would first

send the event Start(E) to the matching engine. Then the rewriter generates an

event End(E), and sends it to the matching engine. This is to tell the matching

engine that element E is finished, then the following elements that are the children

of element E at the parser’s side are treated as the siblings of element E at the

matching engine’s side. The End(E) from the parser will be ignored by the data

rewriter, since an End(E) event has be informed to the matching engine already.

Exchange(E, E ′). Since Start(E ′) will be parsed after Start(E), the data rewriter

needs to build a cached-tree for the subtree rooted at E (excluding the subtree

rooted at E ′), and also a cached-tree for the subtree rooted at E ′.

The detail operations for Exchange(E, E ′)) are as follows : when the Start(E)

is encountered, the rewriter creates a cached-tree TE with root E. The following

encountered elements are inserted into tree TE. When Start(E ′) is obtained from

the parser, the rewriter builds a new cached-tree TE′ with root E ′. Then the

following elements should be added to tree TE′ , and the rewriter should add the

tree TE as the child subtree of node E ′; when End(E ′) is encountered, TE′ is finished.
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Then the following parsed elements are inserted to tree TE. Finally when event

End(E) is obtained, the rewriter traverses the tree TE′ in pre-order sequence. Given

each node E in the tree, Start(E) is issued to the matching engine when the node

is visited for the first time; and End(E) is issued when the traverser traces back

from the node. Tree TE is traversed after issuing the Start(E ′). There may exist

more than one E ′ as descendants of element E, thus we may have multiple tree

TE′s, and these trees are traversed one by one. We do not need to store multiple

TE in memory, since the same TE are shared by all TE′s.

author
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"John"

name

"Tom"

E E’(a) T (b) T

article

title

author

name

"John"

E(c) T

"DB"

author

E’(d) T

article

title

"XML"

Figure 6.5: The Example for Exchange Operation

Example 6.1 Consider the rewriting of document D` in Figure 6.4(a), whose

mapping is shown in Figure 6.3. Figure 6.5(a)(b) illustrates the cached-tree that

are created for rewriting the first subtree rooted at “article”, and Figure 6.5(c)(d)

shows the cached-tree for rewriting the second subtree rooted at “article”. Take the

first subtree rooted at “article” as an example. When the data rewriter gets the

Start(article), the M`,g indicates that operator Exchange(article, author) is to be

performed, then the rewriter creates a tree TE with root “article”. The following

elements “title” with its content “XML” is added in TE. When Start(author) is

encountered, the rewriting knows that parameter E ′, i.e. “author”, is satisfied,

then the tree TE′ with root node “author” is created. The following node “name”

is inserted to TE′ . Tree TE is also added as the child subtree of node “author”,

as shown by the arrowed line the Figure 6.5. Similarly, when the second “author”
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is encountered, the reference to the child subtree TE is inserted. Finally, when

End(article) is encountered, the rewriter traverses the tree rooted at “author” to

inform the matching engine of the corresponding events. 2

Insert(E, E1/E2/ . . . /Ek, S). For the Start(E) from the parser, the data rewriter

notifies the matching engine of Start(E). At the same time, the data rewriter creates

the cached-tree rooted at node E1 with a child path E2/ . . . /Ek, denoted as TE.

Then for each following element E ′ which are one level deeper than element E, i.e.

E’s subelements, the data rewriter checks whether E ′ ∈ S. If E ′ ∈ S, the subtree

rooted at E ′ is inserted to the tree TE as the child subtree of Ek; otherwise, the

data rewriter just forwards the event to the processor. When the event End(E) is

encountered, the data rewriter traverses the tree TE and issues the corresponding

events in the same way as in the Exchange operator. Finally, the data rewriter

issues the event End(E) to the matching engine.

Upgrade(E, S). For the Start(E) from the parser, the data rewriter forwards it

to the matching engine immediately. Then for each following element E ′ which is

the subelement of E, the data rewriter checks whether E ′ ∈ S. If E ′ ∈ S, the

rewriter creates a tree TE′ with root node E ′ and the descendant elements of E ′ are

inserted to TE′ , and the tree TE′ is finished when the event End(E’) is encountered;

otherwise if E ′ /∈ S, then for element E ′ and all its descendants, the rewriter

forwards the events to the matching engine immediately. When event End(E) is

encountered, the rewriter first sends End(E) to the matching engine, and then the

rewriter traverses the set of cached-tree TE′ and issues the corresponding events to

the matching engine.

Downgrade(E, S,E ′). For the Start(E ′), the data rewriter creates a tree TE′ , and

the descendant elements of E ′ are inserted to TE′ as the descendant node of E ′. For
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the Start(e), in which e ∈ S, a tree Te is created, and the descendants of element

e are inserted into Te. When the End(E) (i.e. the parent of the element E ′ and

e ∈ S) is encountered, the data rewriter first traverses the tree TE′ in preorder and

issues the corresponding events to the matching engine. Before issuing the event

End(E ′), the rewriter finds the tree Te (e ∈ S), i.e. tree to be moved as the child

subtree of element E ′, and traverses the tree Te to issue each event to the matching

engine. Finally, the event End(E ′) followed by the event End(E) are forwarded to

the matching engine.

6.3.2 Intrusive Dynamic Data Rewriting

Among the three data rewriting approaches, IDDR (Figure 6.2(c)) is the most com-

plex to implement as it is an intrusive approach that necessitates modifying the

matching engine so that it integrates both the dynamic rewriting functionality as

well as the subscription matching functionality. To realize this dual functionality

efficiently, the matching engine actually maintains partial matchings of subscrip-

tions based on the assembled fragments of Dg that are rewritten from the parsed

events of D`. In this way, we do not need to first materialize the rewritten data Dg

before the subscription matching can commence.

To understand why matching in IDDR becomes more complex than the con-

ventional matching in SDR and NDDR, note that the matching engine works by

maintaining partial matches of subscriptions as the document is being parsed and

the parsed events are being incrementally processed. Once an event start element

E is encountered, the matching engine updates any partial matchings with the new

element E at the current context; and once an event end element E is encountered,

the matching engine eliminates the partial matchings that are guaranteed to not

lead to any complete matchings. The matching of the elements and the elimination
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of partial matchings are based on two properties of conventional event-based XML

parsers:

1. Once the start element event for an element E is received, all the ancestor

elements of E must necessarily have been parsed; and

2. Once the end element event for an element E is received, all the descendant

elements of E must necessarily have been processed.

Based on the first property, the matching engine can detect all the partial match-

ings involving element E for the event start element E; and based on the second

property, when the event end element E is encountered, the matching engine can

safely eliminate all partial matchings that entail the matchings in the subtree of

rooted at element E.

However, the above two properties that facilitate the updating of partial match-

ings are no longer satisfied for IDDR for two reasons. Firstly, some elements in

Dg may be parsed earlier than their ancestor elements. For example, the oper-

ator Downgrade(E, S,E ′) will move the subtree rooted at Ei, where Ei ∈ S to

become a child subtree of E ′. Consequently, element Ei may precede element E ′

in the document such that the start element of Ei is output by the parser be-

fore the start element of E ′. This means that the matching engine has to process

Ei without its ancestor element E ′. A similar issue also arises with the operator

Exchange(E, E ′).

Secondly, when the event end element Ei is encountered, it may happen that

not all of Ei’s descendants in Dg have been parsed. Consider again the opera-

tor Downgrade(E, S,E ′). When element E ′ precedes element Ei, where Ei ∈ S

in the document, the end-tag for E ′ is reported by the parser before element

Ei which should be the descendants of E ′. The operator Exchange(E, E ′) and
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Insert(E, E1/E2/ . . . /Ek, S) face this issue as well.

The integrated matching engine therefore maintains two types of partial match-

ings. Given an event start element E, if all its ancestors have been already parsed,

then the partial matchings detected by element E are confirmed. We call such

partial matchings as confirmed partial matchings ; otherwise, if some of its ances-

tor elements have yet-to-be-parsed, the partial matchings detected by element E

cannot be determined. We call such matchings as potential partial matchings. The

matching engine maintains both confirmed partial matchings and potential partial

matchings that are detected by element E. Once the element that incurs the poten-

tial partial matchings have been parsed, the matching engine uses this element to

verify the potential partial matchings. The successfully matched potential partial

matchings are handled in the same way as the confirmed partial matchings.

To handle the second problem that the descendant elements of an element E

could be parsed after the event end element E, the matching engine continues to

keep the partial matchings that can be combined with the matchings from the

descendant elements of E to generate larger matchings. These partial matchings

are eliminated once the matching engine determines that all the descendants of E

have been processed.

l(a) Document D

@id = 2

Downgrade(b,{c,d},e)

dec

b

a

(b) Subscription query Q 

[@id=2]

/e

/d//c

/b

/a

Figure 6.6: IDDR Example
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Example 6.2 Consider the document D` and query Q in Figs. 6.6(a) and (b),

respectively. Suppose the operator Downgrade (b, {c, d}, e) is to be performed on

D`. When the event start element c is received by the matching engine, the engine

knows that element c should be matched under element e, which is yet-to-be-parsed.

Thus, the matching engine can only detect the partial matching /a/b/e//c as po-

tentially partial matched, which is shown by the path of query nodes enclosed by

a dashed region in Figure 6.6(b). This is because the matching engine processor

does not yet know whether the element e contains an attribute “id” with a value of

2. Subsequently, when the the event start element e is parsed, the potential partial

matching /a/b/e//c is confirmed. When the event end element e is encountered,

since the matching engine knows that there may exist some elements that need to

be downgraded as descendants of e, the partial matchings detected by e are still

maintained. To handle the start element of d, the complete matching of query Q

is detected. Notice that if query Q was not matched when the end element b is

encountered, then the partial matchings detected by element e can be eliminated

since the matching engine guarantees that no elements will be processed as descen-

dant elements of e. 2

Discussions. The intrusive dynamic data rewriting problem incurs the evaluations

of partial XPath queries on a fragment of XML data, which has some similarity with

the problem presented in the previous chapter. However, the solution introduced in

the previous chapter is not suitable to resolve the matching problem in the intrusive

dynamic data rewriting due to the following reasons.

1. The approach introduced in the previous chapter was proposed to handle the

small-scale deployment, such as monitoring applications that run on mobile

devices, where the number of queries is not large. However, for the large-
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scale deployment described in this chapter, this approach would incur a large

number of subqueries, and the cost to derive these subqueries and to index

these subqueries on-the-fly is relatively large.

2. The approach for query processing on fragmented XML data requires the

knowledge of header information for the fragments before the query evalu-

ations, and such information will be used during the query evaluations to

detect the redundant and unnecessary evaluations. However, in the intru-

sive dynamic data rewriting problem, the incoming XML data is a complete

document, and there is no fragment header information before the query eval-

uations. Thus there is no information about the set of relevant subqueries of

other fragments. It follows that no information can be used to detect the dy-

namic optimizations, i.e. eliminating redundant evaluations and eliminating

unnecessary evaluations.

Considering that in the intrusive dynamic data rewriting, the fragment of sub-

tree would be rewritten to a position not far from its current position. Thus to

evaluate the fragment of rewritten subtree in the proper context would only incur

small modification of the current evaluation context, and the maintenance for po-

tential matching results would only need a short period compared with the whole

evaluation procedure. Thus the approach described in this chapter is more suitable

for the query evaluation in the intrusive dynamic data rewriting.

6.4 Experimental Study

This section reports our extensive experimental results, which demonstrate the ef-

fectiveness of the proposed data rewriting approach. The results show that the
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approaches IDDR and NDDR outperform all other approaches under various con-

ditions.

6.4.1 Experimental Testbed

NS2 [5] network simulator extended by the content-based routing application, is

used to study the filtering efficiency. Both the linear and tree structure are used for

network topology. The parameters for network setup are listed in the first part of

Table 6.1. For tree topology, a complete binary tree with four levels and 15 routers

in total is used. The experiments are also conducted on a real network, which is

denoted as Real. Four computers in a LAN are selected to form a linear topology.

Para Description Value
T types of topology Linear, Tree
N #routers on the linear path 2, 4, 8
λ bandwidth (Mbps) 10, 50, 100
P #subscriptions per router 1000,2000,4000
D size of the data sets 10K,20K,40K,1M
r cardinality of a certain subtree 2, 4, 6, 8
L maximum number of steps 8
ρ∗ probability of wildcard * 0.2
ρλ probability of nested paths 0.2

Table 6.1: Parameters and Values (the default values are indicated in bold)

Data sets. We make use of the THALIA benchmark [65], which contains a collec-

tion of 40 similar XML schemas representing the university course catalogs from

computer science departments around the world. The schema mapping tool pro-

vided by [82] is used to generate the global schema and the mappings between the

local schemas to the global schema. The documents are generated based on the

provided XML documents in THALIA with respect to each schema. The param-

eters for data sets are shown in the middle of Table 6.1. The size 10K represents

the data set in which the size range of documents are [10KB, 20KB). The param-
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eter r is used to illustrate the tradeoff between NDDR and IDDR, which is to be

explained later. We do not control r to generate documents in other experiments,

thus no default value is set for r.

Subscriptions. The XPath queries are generated using XPath generator in [49].

The parameters and values used are shown in the bottom of Table 6.1.

Algorithms and Metric. The performances for SDR, NDDR, IDDR and DRR

were studied and compared. The average response time is used to measure the per-

formance, which is defined as the average time for all users to receive the document

d since it is published. All experiments were conducted on a 3GHz Intel Pentium

IV machine with 1GB main memory running Windows XP, and all algorithms were

implemented in C++.

6.4.2 Experimental Results

The average response time can be divided into two components : (1) querying

time (denoted as Tq), which is the time for matching queries; (2) transmission time

(denoted as Tt), which is the time for transmitting data in the network. The stacked

barcharts are used to demonstrate these components.

Comparison of different schema mechanisms. As mentioned in Section 6.2.2,

there are two options to store the M`,g for dynamic data rewriting, which are

denoted as NDDRrouter (resp. IDDRrouter) and NDDRdata (resp. IDDRdata).

Figure 6.7(a) shows the performance comparison for NDDRrouter and NDDRdata

by varying the bandwidth. The performance of IDDRrouter and IDDRdata shows

the similar trends, which is omitted here. We observed that approaches NDDRdata

and NDDRrouter always achieve similar performance. It indicates that the header

information is small such that the overhead to transmit it is trivial and to create the
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Figure 6.7: Comparison of different schema mechanisms & data rewriting ap-
proaches

schema mapping on-the-fly based on the header is fast. Therefore, in the following,

we use NDDR(resp. IDDR) to represent both NDDRdata (resp. IDDRdata) and

NDDRrouter(resp. IDDRrouter).

Comparison of different approaches. Figure 6.7(b) compares the performance

of different data rewriting approaches. Firstly, it shows that the approaches EDRR

and LDRR are obviously outperformed by the proposed dynamic data rewriting

approaches, i.e. NDDR and IDDR. This is due to the overhead to rewrite Dg

to D` in these approaches, which takes about 27% of the total time. To rewrite
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Dg to D` immediately once a query from some user is matched in EDRR may

delay the matching of the following queries. Since if the query from some user

is matched before the query from the downstream router, EDRR will delay the

documents to be forwarded to the downstream router, which also increases querying

time on the downstream routers. However, to rewrite Dg to D` after parsing the

document completely in LDRR delays the forwarding of the document to end users.

This increases the querying time on this router, especially for the queries that are

matched at the beginning of the document. And with the overhead to rewrite Dg,

LDRR achieves the worst performance. Due to the bad performance of EDRR and

LDRR, we ignore the results for them in the following charts.

Secondly, we observe that the dynamic data rewritten approaches (i.e. NDDR

and IDDR) outperforms the approach SDR to achieve the best performance. NDDR

obtains similar querying time with SDR, which means that the additional cost for

dynamic data rewriting in NDDR is trivial. The amount of data transmitted in SDR

is about twice of the amount in NDDR and IDDR, thus SDR incurs much larger

transmission time. Therefore, the performance of SDR is outperformed by NDDR

and IDDR. NDDR and IDDR have the same transmission time. However, due

to the complicated matching algorithm in IDDR, it incurs slightly larger querying

time. Thus NDDR achieves better performance than IDDR.

Effect of the bandwidth, λ. Figure 6.7(b) demonstrates the effect of network

bandwidth in by decreasing λ from 100Mbps to 50Mbps and to 10Mbps. As λ

decreases, the components of transmission time Tt for each approach grow. The

effect of bandwidth to NDDR and IDDR is the same, since they transmit same

amount of data. SDR deteriorates faster as the decreasing of λ, since the amount

of data transmitted in SDR is twice of NDDR and IDDR. For λ = 100Mbps, the

component of Tt is very small. When λ decreases to 50Mbps, the component of
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Tt takes a small part of the response time. However, when λ further decreases

to 10Mbps, the component for Tt takes a large part of response time, especially

for SDR that Tt is about 78% of the response time. Thus as λ decreases, the

improvement of NDDR over SDR increases from 12% at λ = 100Mbps to 41% at

λ = 10Mbps. The internet develops fast in recent years, however the bandwidth

is still the critical resource, which makes SDR not suitable for small bandwidth

environment.
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Figure 6.8: Effect of document size and number of subscriptions per router

Effect of the document size, D. Figure 6.8(a) shows the performance by vary-

ing D using numbers indicated in Table 6.1, while λ is the default value 50Mbps.

As D increases, the average response time for all approaches increases due to larger

querying time and transmission time. We observe the performance gap between

NDDR and IDDR becomes slightly larger, since larger documents have more af-

fected on IDDR due to the more complicated matching algorithm in IDDR. It also

shows that the improvement of NDDR over SDR becomes larger as D increases,

from 20% at D = 10K to 25% at D = 40K. Similarly, the improvement of IDDR

over SDR also increases. The reason is that larger documents incur larger trans-

mission delay in SDR. The results for 1M dataset are omitted here since its average

response time is much larger than other datasets, which is not suitable to be shown
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in the same chart. We observe that the trends from 10K to 40K also keeps at

D = 1M , that is the improvement of NDDR over IDDR is 10%, and over SDR is

28%.

Effect of #subscriptions per router. Figure 6.8(b) shows the results by vary-

ing the number of subscriptions P from 1000 to 2000 to 4000. As P increases, The

querying time Tq for all three approaches increase correspondingly. The increasing

of querying time for NDDR and SDR is the same, thus the performance gap be-

tween NDDR and SDR keeps the same. However, due to its complicated matching

algorithm, the increasing of querying time for IDDR is larger than NDDR and

SDR, thus the improvement of NDDR over IDDR becomes larger.
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Figure 6.9: Effect of network topology

Effect of the network topology. This section studies effect of the network

topology on the performance.

Firstly, we increase N (i.e. #routers on the linear path) from 2 to 4 and to 8.

The results are shown in Figure 6.9(a). We observe that as N grows, The trans-

mission time Tt for all approaches increases correspondingly since the document

has to travel longer path before arriving at end users. The approach SDR that has

to transmit larger amount of data got larger transmission cost as N increases. We
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can see that the improvement of NDDR over SDR increases from 10% at N = 2 to

31% at N = 8.

Secondly, we test the case when only leaf router (the router without the down-

stream router) has the subscriptions from the users. The results are shown by

second cluster of bars in Figure 6.9(b). The transmission to the leaf router incurs

larger delay compared with upstream routers. Thus the performance gap between

NDDR (also IDDR) and SDR becomes larger.

Thirdly, we show the results on the Tree topology using the third group of bars

in Figure 6.9(b). Compared with Linear, the Tree topology has more routers as

the leaf routers. As aforementioned, queries on leaf routers incur larger Tt, the

transmission delay becomes larger in tree topology, thus the performance margin

between NDDR (as well as IDDR) and SDR becomes larger.

Results on the real network. We also experimented on a real network Real as

described in Section 6.4.1. The forth group bars in Figure 6.9(b) show the results

on Real. As we known, the bandwidth in the LAN is usually large. The bandwidth

in the LAN we used is more than 50Mbps. We can see that the performance of

all approaches on Real have similar trends with the performance of them on NS2

with λ = 50Mbps. NDDR achieves the best performance among all approaches. It

proves that the simulation using NS2 measures the performance well.

Memory usage of NDDR. The approach NDDR may need to cache certain

parsed events to dynamically rewrite data, which incurs additional memory usage.

Figure 6.10(a) shows the memory usage in NDDR for D = 20K. The y-axis is the

percentage of the largest memory used for the caching over the size of the parsed

document. In the worst case, we need to cache the whole document. However,

Figure 6.10(a) shows that for the set of documents, the largest memory usage takes

32% of the document size, and only three documents require cached space over 20%
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Figure 6.10: Experimental Results

of the document size. For most of the documents, the memory usage is around 5%

of the document size. And as we know, the documents in the data dissemination

are usually small, which means that the NDDR approach will not take up much

memory.

NDDR vs. IDDR. The previous results show that IDDR is slightly outperformed

by NDDR since IDDR makes the matching algorithm more complicated. However,

in some situation, IDDR is more efficient than NDDR by sharing the processing

of repeated subtrees. For example, operator Exchange(N1, N2) makes the subtree

rooted at N1 be repeated at the subtree rooted at N2 if the cardinality of element

N2 in document is larger than 1. In this experiment, we select the document that

contains the operator Exchange(N1, N2) and vary the cardinality of N2 (denoted as

r) from 2 to 8 in the step of 2. We observe that when n = 2, NDDR is better than

IDDR due to the complicated matching in IDDR. However, when n = 4, IDDR

starts to outperform NDDR, and as n increases, the improvement of IDDR over

NDDR becomes larger. The reason is that in IDDR, the processor is aware of the

data rewriting, and knows that same subtree rooted at N1 is repeated under each

N2, thus IDDR shares the processing of the subtree rooted at N1. As n increases,

the improvement of IDDR by sharing the repeated subtree becomes larger, which
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#subscriptions 1000 2000 4000
with data rewriting 9.13 9.20 9.37

without data rewriting 1.47 1.54 1.59

Table 6.2: Comparison of recall for with and without data rewriting

compensates the performance loss due to complicated matching algorithm.

Recall comparison for with and without data rewriting. With the data

rewriting mechanism, besides documents that exactly match users’ queries, the

dissemination system will also forward documents conforming to a heterogeneous

schema while indeed satisfying users’ interests to users. The mechanism helps to

increase the recall of the dissemination system such that users have low probability

to miss the information that is interested by them. We define the recall as the

average number of documents that are received by each user. Table 6.2 compares

the recall for the dissemination with and without data rewritings by varying the

number of subscriptions. We use 100 documents in total, and we observe that

the dissemination with data rewritings improves the recall by around six times

compared with the dissemination without data rewritings. The data rewriting

mechanism helps to transform the documents conforming to heterogeneous data

schemas to documents conforming to the global schema such that the documents

with heterogeneous structure could also be delivered to users.

6.5 Summary

This chapter introduced the the novel paradigm based on the principle of data

rewriting to address the schema heterogeneity problem in content-based dissemi-

nation of XML data. Several data rewriting approaches are proposed and explored

such as SDR, DDR and DRR. With respect to DDR, two options are compared,

i.e. NDDR and IDDR. The NDDR is non-intrusive approach in the sense that
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it does not require the modification on the matching engine; while IDDR is an

intrusive approach where the matching engine should be enhanced. With respect

to DRR, two approaches are proposed in terms of the time to perform the reverse

data rewriting, i.e. EDRR and LDRR.

Based on the experimental results, we have the following observations on the ef-

ficiency of various approaches. First, DRR always achieves the worse performance

due to the extra cost for reverse rewriting, and its delay to forward documents.

Second, to disseminate schema mapping M`,g as the data’s header information in-

curs little overhead, and this approach is space- and update-efficient. To compare

among IDDR, NDDR and SDR, SDR does not perform well due to the transmis-

sion of additional data, especially when the bandwidth is small or the number of

hops to subscribers is large. Moreover, IDDR does not scale well as the number

of subscriptions or the size of documents increases since it complicates the match-

ing algorithm. Generally speaking NDDR achieves the best performance, and the

memory usage in NDDR is small. However, IDDR performs better than NDDR

when there are many duplicated subtrees in the rewriting of D` to Dg.
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Chapter 7
Conclusions

This chapter concludes this dissertation by summarizing our work, discussing the

contributions of this thesis and presenting some future work.

7.1 Summary

The information explosion nowadays makes the push-based communication model

more suitable for large scale distributed information system. The features of XML

make it become the de facto standard for information exchange on the Internet.

The above two reasons result in the importance of content-based dissemination of

XML data in the large-scale distributed information systems. In this dissertation,

we presented three work that aim to improve the efficiency and effectiveness of

content-based dissemination of XML data systems.

Chapter 4 introduced a novel global optimization approach by using piggy-

backed annotations to improve the filtering efficiency in content-based dissemina-

tion of XML data. We have proposed four types of useful annotations, i.e. PS, PD,

NS and ND. We have demonstrated that PS is effective to enable the early for-

warding of a document at downstream routers; NS and ND are effective to reduce
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the number of processed subscriptions on downstream routers; and PD turns out

to be not effective since the benefit of PD is offset by the overhead to process it.

We have also proposed a new matching protocol, which is called lazy forwarding.

The best performance is achieved by the approach using lazy forwarding with the

combination of annotations PS, NS and ND.

Chapter 5 presented an approach to evaluate a set of boolean XPath queries

on fragmented XML data without reconstructing the original XML document. We

have proposed a three-step strategy for query processing. Various scheduling strate-

gies for processing fragments are exploited and two dynamic optimizations are also

proposed. The experimental studies demonstrate the effectiveness of the proposed

approach with the intelligent scheduling strategies and dynamic optimizations.

Chapter 6 addressed the schema heterogeneity problem in content-based dis-

semination of XML data. Considering the characteristic of the content-based dis-

semination system, i.e. multiple-query-single-data, a novel paradigm based on the

principle of data rewriting is proposed. We have explored a variety of data rewrit-

ing approaches, i.e. SDR, DDR and DRR. DDR is shown to be the best approach.

We have considered two options to implement DDR, which is IDDR and NDDR. It

is shown that in most cases NDDR outperforms IDDR since it does not make the

matching engine complicated, and the memory usage in NDDR is small. However,

IDDR performs better than NDDR when there are many duplicated subtrees in

the rewriting of D` (i.e. data conforming to some local schema) to Dg (i.e. data

confirming to the global schema).
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7.2 Contributions

Two important factors for content-based dissemination of XML data systems are

the efficiency of the system and the range of functionalities provided by the system.

We believe that this thesis has contributed to a more full-fledged content-based

XML dissemination system. The two main contributions of this thesis are listed as

follows.

Improving the efficiency. A novel global optimization based on piggybacking

annotations is introduced. The global optimization is orthogonal with the existing

local optimization approaches such that it can be combined with any local opti-

mization approach to further improve the filtering efficiency. We believe that the

global optimization is effective to improve the filtering efficiency significantly.

Expanding the range of functionalities. Functionality is also an important

aspect for the content-based dissemination system. This dissertation extends the

functionalities of the existing system by providing the approach to handle the XML

documents that are published in fragments and to handle the XML documents with

heterogeneous schemas. These extensions make the current dissemination system

more effective.

7.3 Future Work

This section suggests several future directions based on our research work. The

further work for each chapter is described first, followed by the possible future

work for the general content-based dissemination system.

Global Optimization for XML Data Dissemination (Chapter 4). The

annotations proposed in Chapter 4 only explore the properties of the structural
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aspect of XPath expressions. There may exist other types of annotations that

could also optimize the filtering efficiency. For example, if a document has an

annotation specifying that the values of each attribute “price” in this document

are greater than 4, then a router can immediately know the non-matching of a

subscription which has a value predicate like [@price < 3]. Therefore, there is still

something to explore for other types of annotations.

Recently, a new type of subscriptions called stateful subscriptions has been

proposed [46]. Stateful subscriptions address multiple events, and they are matched

by joining the matching on multiple documents. The proposed annotations in

Chapter 4 can be used to handle such subscriptions, since if we can determine the

non-matching on one document, we can conclude that the subscription does not

match the sequence of documents. However, some specific annotations that make

full use of the properties of these new types of subscriptions would achieve better

performance. Therefore, some annotations should be further studied for these new

types of subscriptions.

Additionally, there is another direction to further improve the dissemination

efficiency by considering a better mechanism to allocate users’ subscriptions to each

router and to aggregate the collection of subscriptions with more similar structures

into one general subscription.

Handling Fragmented XML Data (Chapter 5). The work in Chapter 5

focuses on the query evaluation on fragmented XML data. However, an intelligent

fragmentation strategy for XML data can also benefit the query evaluation on the

fragments. For example, based upon the knowledge of the set of subscriptions to be

evaluated, a better way to do the fragmentation is that the part of documents that

is relevant with a certain workload should be allocated to the same fragment such

that only the relevant part of the documents will be processed. Therefore a new
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fragmentation strategy that is customized by various workloads could be studied

further. It follows that the mechanism to maintain the fragmentation information

could be modified as well.

Another aspect to consider in this work is the parallel processing for the set of

XML fragments. Since we have disjointed XML fragments, the parallel processing

for these fragments may help to further improve the efficiency. The challenges to

consider here are how to distribute the workload on different processors and how to

combine the partial matching results on different processors to obtain the matching

results for the complete queries.

Handling Heterogeneous XML Data (Chapter 6). The data rewriting ap-

proaches proposed in this chapter do not leverage the knowledge of subscriptions

on the router. For the parts of the document that do not affect the subscription

matching results, it is unnecessary to rewrite these parts. The routers have the

knowledge of subscriptions on them before filtering, and the routers also have the

knowledge of the schema of documents, thus they can determine the parts of the

document that need not be rewritten. Therefore, a customized data rewriting ap-

proach might be studied, and it could further improve the data rewriting efficiency.

The following sections describe some future directions for content-based dissem-

ination systems.

QoS Constraints in the Content-based Dissemination. Many existing infor-

mation dissemination systems are based on the best effort principle. Subscribers are

only allowed to issue their interests for the kind of XML document, but there are no

parameters addressing the quality of the dissemination service provided to them.

However, in some cases the Quality-of-Service of the filtering of XML documents

should be considered. For example real-time trading systems need to guarantee

the deadline for the arrival of current prices, and air-traffic control systems require
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up-to-date data on aircraft position and status. Although the quality-of-service

considered in dissemination systems may reduce the whole systems’ throughput,

the requirement of users about the quality-of-service should be guaranteed.

To consider QoS problem in dissemination systems, we need to provide more

parameters for users to specify, such as the deadline to receive some information [99]

and the priority of some queries. The dissemination system should be modified to

adopt some strategy to match the incoming documents against subscriptions such

that all users’ requirements are best satisfied.

Hybrid Content-based Dissemination. The existing content-based dissemina-

tion systems either handle pure XML data or process pure attribute-value pairs.

However, both XML data and attribute-value based data are published on the

Internet, and there may be even other formats of data. A hybrid content-based

dissemination system can provide users with a uniform interface to subscribe their

queries, while the routers in the system take charge of matching the queries with

various formats of published information. For such kind of dissemination systems,

we need to consider what type of query interface is proper for users and how to index

the queries such that the processing on different data formats can be optimized.
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