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Summary 

Applying operating state-based supervisory control to chemical process becomes 

more and more attractive since chemical processes operate in multiple steady state 

operating conditions and transition between them. Global process control using fixed 

control models and configurations leads to poor process performance and quality 

control when the process moves away from the pre-considered operating state. A local 

control strategy that adapts to the current process operating state is an optimal 

operating strategy. Monitoring of steady state and transition operations of industrial 

processes is the base to realize such a control strategy. In this thesis, three closely 

related problems towards the uses of effective operation have been addressed.  

Offline clustering of process states in historical data can be used to compare 

different operating states. Different stages of a multi-step operation (such as startup of 

FCCU) can be assessed for similarity. Also, different runs of the same operation (such 

as catalyst loading) can be compared. These lead to improved understanding of 

transitions. Furthermore, by correlating features of successful runs to product 

properties, process efficiency, etc, process operations can be optimized. The obvious 

need for efficient and automatic identification of the different process states using 

large historical datasets, in lieu of manual annotation by an engineer provides the 

motivation for the work. Traditional clustering methods are computationally expensive 

and normally perform poorly on temporal signals. A two-step clustering method based 

on Dynamic Principal Component Analysis (DPCA) is proposed in this thesis. 

Temporal data are first classified into modes corresponding to quasi-steady states and 

transitions. Dynamic PCA based similarity measures are then used in the second phase 

to compare the different modes and the different transitions and cluster them. This
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methodology can be applied to high dimensional, temporal data and has low 

computational requirements.  

Once offline clustering has provided the essential understanding of the process, 

an online classifier has to be built to monitor and identify the process state in real time. 

A number of techniques for this purpose have been developed. While each technique 

has its own advantages, artificial neural networks have been widely used in industrial 

applications because their ability to approximate any well-defined nonlinear function 

with arbitrary accuracy. However, one common problem arises during the training of 

neural network. Usually the structure of the network is decided based on the input 

dimensionality and the complexity of the underlying classes. A typical chemical 

process section has hundreds of sensors each generating thousands of observations 

every day. These data are noisy and contains patterns from different operating states. 

The construction of an accurate neural classifier for such multi-variate, multi-class 

temporal classification problem suffers from the “curse of dimensionality”. Two new 

neural network structures ─  One-Variable-One-Network (OVON) and One-Class-

One-Network (OCON) ─ that overcome this problem are proposed in this thesis. Both 

the architectures use a set of neural networks – in OVON there is one network for each 

variable, while in OCON, one network is used for each pattern class to be identified. In 

comparison to traditional monolithic neural networks, both the proposed architectures 

improve classification accuracy and minimize the training complexity. In addition, 

OVON is robust to sensor failures and OCON is well suited for addition of new pattern 

classes.  

Context-based pattern recognition arises when the interpretation of a pattern 

varies across contexts. It is shown that the identification of the state of chemical or 

biological processes is context-dependent. The resulting one-to-many mapping 
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between patterns and their classes cannot be adequately handled by traditional pattern 

recognition approaches. To address this problem, a neural network based architecture 

─ operating state identification neural network (OSINN) ─ is proposed in this thesis. 

In OSINN, process measurements can be used as primary features for identifying the 

current process state, and the previous process state provides the context in which the 

primary features have to be interpreted. Three variations of the architecture, each using 

a different approach to identify change of context, are described.  

All the proposed methods in this thesis are tested on a number of industrial-scale 

problems. Their performances are compared with traditional methods and analyzed in 

detail. 
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ĵndX  ĵnd -dimensional feature vector 

( )dX t l−  d-dimensional process vector 1 2[ , , , ]dx x x  at time t-l 
d
nnX  Normalized historical data matrix based on measurement ranges 

nkX  Dataset { (1), (2), , ( )}X X X t  containing all pre-processed process feature 
vectors generated from operating state ˆ

nkS  

( )X t  Output of data pre-processor 

yk The kth score value obtained from dynamic PCA transform 
k

cenY  The chosen central vector of current scores window 

max min,k kY Y  High and Low limits of the score matrix from PCA operation 

Yk Score matrix constructed by the first k PCs from PCA operation  
k

iY  The ith vector of the scores set 1 2[ , , , ]k k k
nnY Y Y  obtained from PCA 

transform 
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Chapter 1. Introduction 

1.1 Introduction 

Industrial processes are operated in a number of steady states named as operating 

modes and frequently undergo transitions among them. An operating mode is a 

particular process status with most variables varying in a narrow band. Small 

fluctuations caused by disturbances or process noise are allowed within a mode. A 

transition occurs when the process moves from one steady state to another. During a 

transition, state variables usually undergo a relatively large change. A transition could 

arise in many situations, like unit start up or shutdown, grade change or fluctuations 

caused by big disturbances, and faults. The product quality control during transitions is 

normally poor, and sometimes the energy and utility consumption high. Controlling 

the process to transit quickly and smoothly to the next state is important and can result 

in large benefit.  

In traditional process monitoring and control strategies, the relevant control 

parameters and configurations, such as PID parameters, process models and alarm 

limits are uniformly applied for the entire process operation from start-up to shutdown. 

This set of parameters is normally tuned and set based on the main operating modes. 

However, many processes of concern to chemical engineers exhibit non-linear 

behavior, where the relationship between the controlled variable and the manipulated 

variable is dependent on the operating conditions. Examples of such processes include 

pH neutralization, exothermic chemical reactions, biological systems, and batch 

processes. While the low-level control constituted by feedback and feed-forward 

control loops is usually sufficient under normal conditions when the characteristics of 
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the process are reasonably constant, as the operational conditions change during 

different operating states, the control set points often have to be adjusted accordingly 

to obtain the desired operation. In addition, for some advanced control techniques such 

as model based control, good process models are essential to guarantee a good 

performance. When the process moves to a different operating state, sometimes the 

embedded process models have to be adapted. Otherwise, the control performance will 

degrade. Therefore a supervisory control layer which can enable the lower layer level 

controllers to adapt to the current operating state is necessary. The corresponding local 

control strategy can be applied. To achieve such supervisory control, it is necessary to 

monitor the process variables and identify the current operating state in real time. 

Developing this supervisory control layer is the main goal of this thesis. 

The identification of current process operating states can be considered as a 

pattern recognition problem. Some attributes of the process defined by user can be 

used to characterize the process. The unique behavior of the attributes within a 

particular operating state differentiates an operating state from others. The most 

frequently used features are online process variables, such as flowrate, temperature, 

pressure, level, and analyzer data. The measurements of these variables are monitored 

and recorded to provide the information of the process for operation or analysis 

purpose.  

An offline analysis of the process and its operation has to be conducted before 

the construction of the online monitoring system. Clustering of process states in 

historical data can be used to compare operating conditions. Different stages of a 

multi-step operation (such as startup of FCCU) can be assessed for similarity. Also, 

different runs of the same operation (such as catalyst loading) can be compared. These 

lead to improved understanding of operating states. Furthermore, by correlating 
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features of successful runs to product properties, process efficiency, etc, process 

operations can be optimized.  

By clustering, the process is segmented to distinguish operating states, and the 

features of each operating state can then be extracted. If a clustering operation results 

in many trivial operating states without useful operation information, the construction 

of the on-line monitoring system will become difficult. On the other hand, if a 

clustering operation results in only a few states at a low resolution, the information 

provided will be inadequate. Therefore, an accurate analysis is needed. Several 

automated clustering techniques have been proposed in literature. One shortcoming of 

these clustering methods is that the number of clusters has to be specified a priori. In 

addition, most methods consider the entire process data monolithically and the 

temporal information is missed. These methods are therefore inapplicable for process 

states which are characterized by the temporal evolution. In this thesis, these problems 

for clustering are addressed. 

An online operating state monitoring and identification system can be built based 

on the process knowledge provided by the clustering. The objective of this system is to 

extract useful information from the process measurements. The information obtained 

in the monitoring phase can be used to identify the current operating state by 

comparing the information with pre-stored operating state information. The 

construction of the online classifier is achievable for industrial processes because many 

chemical processes continue to operate through the same set of states without drastic 

changes for long periods. The same operating states can repeat with the same features 

as well as small deviations. Once the pattern of a state has been learnt, it can be used 

for future state identification. Therefore, the problem of constructing a supervised 

classifier is that of extracting and storing historical information such that relevant 
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patterns can be retrieved and compared easily during on-line operations. In this thesis, 

artificial neural networks (ANNs) have been used for this purpose. 

Artificial Neural Networks is attractive for industrial applications because 

theoretically it can approximate any well-defined nonlinear function with arbitrary 

accuracy. The main advantages of ANNs appear when dealing with hard problems, e.g., 

in the case of significant overlapping patterns, high noise, and dynamically changing 

environments. Among the different types of neural networks, Elman recurrent network 

and Time Delay Neural Network (TDNN) have been frequently used for temporal 

information classification. The performances of these structures in terms of recognition 

accuracy are basically rather similar and there is no universal criterion for selecting a 

specific structure for a practical application. Usually the structure of the network is 

decided based on the input dimensionality and the complexity of the underlying classes. 

However, general neural network structure cannot scale well to the large-scale 

multivariate temporal patterns that occur in state identification. Specialized neural 

network architectures have been therefore developed. A typical chemical process 

section has hundreds of sensors each generating thousands of observations every day. 

These data are noisy and contains patterns from different operating states. The 

construction of an accurate neural classifier for such multi-variate, multi-class 

temporal classification problem suffers from the “curse of dimensionality”. This is 

because classification is based not only on the process vector but also the temporal 

evolution. If the process has d variables and has a memory of l, the input to neural 

network will be of dimension ( 1)d l× + . This high dimensionality introduces extra 

complexities such as amplifying the effect of noise, especially during transitions, and 

increasing the number of parameters needed to construct a classifier, and overlap 

among process patterns resulting from the time lag l. Therefore, training takes a 
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considerable computation time and even then, the resultant network may perform 

poorly. In this thesis, two neural network structures are proposed to solve this problem. 

They overcome the “curse of dimensionality” by decomposing the initial identification 

problem to a set of sub-problems, which are less complex in terms of the 

dimensionality of inputs and the complexity of patterns. Consequently, the training of 

the system can be simplified and the accuracy of the network increased.  

In many real-world domains, the context of a pattern has to be taken into the 

consideration in addition to the pattern itself. This is especially true for activities such 

as identifying and explaining unanticipated events and helping to handle them. Context 

is defined as the information that constrains problem solving without intervening in it 

explicitly. Many pattern recognition problems have to consider “context”. For example, 

suppose we are attempting to distinguish healthy people (class A) from sick people 

(class B), using an oral thermometer. Context 1 consists of temperature measurements 

made on people in the morning, after a good sleep. Context 2 consists of temperature 

measurements made on people after heavy exercise. Sick people tend to have higher 

temperatures than healthy people, but exercise also causes higher temperature. When 

the two contexts are considered separately, diagnosis is relatively simple. If we mix the 

contexts together, correct diagnosis becomes more difficult. It is shown in this thesis 

that the identification of the state of chemical or biological processes is also context-

dependent. The resulting one-to-many mapping between patterns and their classes 

cannot be adequately handled by traditional pattern recognition approaches which do 

not consider the context information. A novel neural network-based structure is 

proposed in this thesis to address this problem. It can employ context information in 

addition to process measurements to improve state identification accuracy. 
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1.2 About This Thesis 

The importance of operating state based control strategies was discussed in above 

Section. As discussed, this requires the solving of three sub-problems: (1) data 

clustering, (2) temporal pattern recognition, and (3) context-based pattern recognition. 

The shortcomings of the existing methods were reviewed in Chapter 2. Novel methods 

for these problems have been developed in this thesis specifically.  

In Chapter 3, the importance of process data clustering is discussed and a 

dynamic PCA-based multivariate clustering method is proposed. Clustering of process 

states in historical data can be used to compare operating conditions. These lead to 

improved understanding of operating states and their optimization.  

A process unit’s state can be classified into modes and transitions. A clustering 

method which is based on differentiating between the states—modes and transitions in 

the process is developed in chapter 3. It segments the multivariate process data by 

identifying steady state operating regimes.  These steady states can therefore be used to 

segment the data into different operating modes and transitions. The operating states 

are then grouped into different clusters based on the similarity between them. If the 

similarity degree between two modes or two transitions is sufficiently large, they will 

be concluded as belonging to the same cluster. Therefore the proposed method 

includes two sub-problems: (1) Steady state identification, and (2) Similarity 

comparison.  

During a steady state, most observations of state variable should be concentrated 

in a small region (in terms of their values) while the observations obtained during 

transitions will distribute in scattered manner. The procedure for state clustering can be 

summarized as: Firstly, PCA is performed on the auto-scaled historical data to reduce 

data dimensionality. The obtained scores are k-dimensional comprised of first k PCs. 
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Next, a data window with length Tw is moved along the dataset. Each k-dimensional 

vector k
nY  within the window is compared with some randomly selected centers Ycen 

and the distance D between k
nY  and Ycen calculated. If at least δ  fraction of the vectors 

in the window lie within a short distance from the selected centers, the process is 

concluded to be within a mode during the current window. The data window is then 

moved forward by step size L and the process repeated. 

After steady states are located, all remaining regions are then tagged as 

transitions. The segments are then divided into two groups containing modes and 

transitions respectively. Similarity comparison is carried out separately in two groups. 

A mode is characterized by constant variables. Hence, the mean is the principal 

property of the mode. The differences between elements of two means will be used to 

evaluate the dissimilarity degree of two segments. DPCA similarity factor is used in 

this thesis to compare two multivariate transitions. DPCA transformation is carried out 

on time-lagged sets to generate k PCs. The corresponding matrices of weights are 

denoted by H and O respectively. The DPCA similarity factor is defined based on the 

average value of the cosines of the angles between every two principal component of 

H and O. Once similar operating states are found, they are grouped into different 

clusters. 

The two-step clustering strategy has been tested on data generated from 

ShadowPlant and Tennessee Eastman (TE) plant. The ShadowPlant is a simulator of 

Fluidized Catalytic Cracking (FCC) released by Honeywell while the Tennessee 

Eastman (TE) plant is a popular testbed for process systems applications such as plant-

wide control, optimization, predictive control, faults diagnosis and signal comparison. 

The examination of the results reveals that in all cases the identified states agree with a 
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priori process knowledge and similar transitions could be picked out by the DPCA 

factor. 

Once the process data has been clustered into different modes and transitions, the 

obtained knowledge can be used to develop the online classifier to monitor the process 

even during non-steady state operation. This is discussed in Chapter 4. Due to the 

advantages mentioned, we adopt neural network as classification tools. The 

construction of an accurate neural classifier for the multivariate, multi-class, temporal 

classification problem suffers from the “curse of dimensionality”. To address this, the 

One-Variable-One-Net (OVON) and One-Class-One-Net (OCON) architectures are 

proposed in chapter 4.  

In OVON, the traditional network is replaced by a set of networks where each 

network processes only one variable. The OVON comprises of two layers: the sub-

state identification layer and the unification layer. The sub-state identification layer 

consists of d sub-networks corresponding to d variables, each sub-network identifies 

the sub-state of a single variable. The outputs of the sub-state identification layer 

1 2[ ( ), ( ), , ( )]dxx xS t S t S t  form the input to the unification layer where the process state 

of the entire process is classified based on the mapping: 

1 2ˆ( ) ( ) :[ ( ), ( ), , ( )]dxx xxS t D t S t S t S t← . The structure and training method are 

discussed in detail in Chapter 4. Another structure which can decompose the original 

problem into a number of simpler ones is the One-Class-One-Net (OCON) system. 

The system also consists of two layers: the sub-network identification layer and the 

regulator layer. The sub-network identification layer consists of nk neural networks, 

corresponding to nk operating states. All the networks share the same input variables at 

time t. A sub-network is trained to identify only a specific operating state. That is, only 

when data are generated from a particular state, the corresponding sub-network will 
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output one. In the regulator layer, a set of rules are used to infer the operating state 

based on the nk networks outputs 1 2[ , , , ]nkZ Z Z . Instead of the common method 

“winner-takes-all” strategy, we propose a novel rule to infer the final operating state. 

The proposed structures are tested on a number of units of the ShadowPlant simulator. 

Compared with traditional neural networks, OVON and OCON yield higher 

classification accuracy and require less training burden. 

In chapter 5, the problem of context-based pattern recognition is discussed in 

detail. In pattern recognition, a feature can be considered as contextual information if it 

does not directly determine the class of a pattern. However, the absence of this feature 

would lead to ambiguous or erroneous classification. The presence of contextual 

features usually becomes evident when a change in the context leads to a radical 

change in the interpretation of a pattern (Brezillon, 1999). Traditional pattern 

recognition approaches are suitable for one-to-one or many-to-one mappings and 

cannot adequately characterize one-to-many situations, which arise in context-based 

pattern recognition problem.  

A dynamic neural network architecture for context-based operating state 

identification network ─ OSINN ─ is proposed in chapter 5. Three variations of 

OSINN, each using a different approach to identify change of context, are described. 

OSINN includes three blocks: Context Manager, State Identification Block, and Data-

preprocessor. A data-preprocessor is used to ameliorate the input data before it is used 

for state identification. Preprocessing can either be a normalization based on the 

contextual information ˆ
conS  or a preliminary classification to identify the process 

pattern PAi. The context manager detects changes in context and provides the correct 

contextual feature to the state identification block. The state identification block uses 
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the contextual feature along with the primary features to identify the current operating 

state of the process. 

The proposed strategy has been tested on data generated from the ShadowPlant 

simulator and a lab-scale fed-batch process. The results reveal that in all cases, the 

state identification accuracy is improved by OSINN. 

Finally in Chapter 6, the summary of this work and conclusions are presented. 

Also recommendations for future enhancements are given in this chapter. 
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Chapter 2. Literature Review 

As presented in the introduction of the thesis, an operating state based 

supervisory control becomes more and more crucial in modern industrial process. 

Rosen and Yuan (2001) have mentioned some reasons why a supervisory control is 

needed: 

1. A process may display non-linear behavior when the operational conditions 

are far from the normal operating point, requiring changes to control set 

points.  

2. During extreme operational conditions such as hydraulic shocks or toxicity, 

the aim of the operation may shift significantly. Thus, a higher-level control 

system is needed to determine the control set points or control structure of 

the low-level control systems.  

In Rosen and Yuan’s paper, an approach to automatic supervisory control of 

wastewater treatment operation is proposed. By integrating on-line monitoring and 

control, appropriate low-level controller set point and structures for the current 

operational state of the process can be determined. The authors declare that the plant 

can benefit a lot from local control strategy. 

Another typical operating state based application is alarm management system. 

Along with the development of Distributed Control Systems (DCS), the problem called 

“alarm flood” has attracted more and more attention.  A large number of alarms occur 

during upset conditions, and long lists of standing alarms start to build up during 

normal operations. Operators are therefore becoming “numb” to alarms, and cannot 

easily identify the real important alarms. This can cause serious problems, such as 
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abnormal shutdown and even accidents. One of the reasons for alarm floods is 

improper alarm limits setting. When the process is operating under different conditions 

from the ones for which the initial alarm limits are set, the process measurements will 

be out of range and trigger alarms. Jensen (1997) suggested that the alarm 

configuration should switch dynamically according to the current operating state to 

avoid alarm floods. Although traditional DCS do not generally allow the selective 

application of alarm configurations for different operating states, but they do offer 

opportunities to manage alarm configuration through application programs. A process 

monitoring tool is necessary to switch configuration along with the operation state. 

Moore (1997) indicates that this dynamic alarm configuration strategy can be realized 

by monitoring the process operating state in either a manual or automatic way. The 

former is obviously impractical due to the complexity of large-scale processes. Arnold 

(1989) suggested establishing a logic structure for dynamic configuration. The alarm 

system will disable the unnecessary alarm setting dynamically based on the process 

operating state. Such advanced strategies for alarm management will need to identify 

the current operating condition accurately.  

Fault detection and diagnosis is another example of the operating state based 

applications. While existing techniques for fault detection have largely focused on 

steady-state operations and are not directly applicable during transitions, Anshuman et 

al. (2003) proposed a novel model-based fault detection scheme that explicitly caters 

to the non-steady states and wide operating condition changes during transitions. The 

proposed approach is based on dividing a process into different phases. Different 

process models are employed for fault detection and diagnosis based on the current 

operating condition.  
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2.1 Data Clustering 

Automated clustering techniques can be broadly categorized into static and 

dynamic clustering techniques. Given nn observations d
nnX , static clustering techniques 

such as k-means and c-means clustering partition them into nm clusters, [C1, C2, … , 

Cnm] with 1 nm nn≤ ≤ , each centered at 
i

d
cenX  with 1 i nm≤ ≤ . The objective of the 

clustering is to find the centers to minimize a given cost function. Sebzalli and Wang 

(2001) proposed a two-step strategy to apply the c-means fuzzy clustering method to 

industrial process data. In the first step, Principal Component Analysis (PCA) is 

applied to reduce the dimensionality of the input. In the second step, fuzzy c-means 

clustering is used to locate the optimal centers. The authors concluded that the results 

from c-means clustering are comparable to the ones from manual examination of two-

dimensional principal component plots. Zullo (1996) also reported a similar conclusion. 

One shortcoming of these clustering methods is that the number of clusters has to be 

specified a priori. Eltoft and de Figueiredo (2001) proposed a neural network-based 

clustering algorithm that overcomes this. In their approach, clustering starts with a 

single hidden layer neuron and a new neuron is added to the hidden layer every time 

the Euclidean distance between the input vector and existing neurons exceeds a 

predefined threshold. However, in the presence of process noise and disturbances, this 

method may result in unnecessary clusters arising from a few outliers in the data. In 

addition, in all these methods, temporal information is lost since only the relative 

position between feature vectors and centers is taken into consideration. These 

methods are therefore inapplicable for process states which are characterized by the 

temporal evolution of the process variables.  

Dynamic clustering methods segment the time series data by investigating the 

underlying temporal relationships among the process variables. Consider an 
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autoregressive process where the variable value xt at time t can be approximated by a 

linear function l-tl2-t21-t1t xa  xaxa x:f +…++= . It is assumed that the underlying 

function f governing the process in one cluster is uniform but is different from that in 

another cluster (Gupta, et al., 2000). Klaus et al. (1996) proposed a neural network 

system consisting of q single networks, and q>m, where m is the estimated number of 

clusters. The system is trained so that each network approximates the underlying 

regression function f of a single cluster. After training, clustering of a new feature 

vector is achieved through the comparison of q prediction errors from the q networks. 

However, this method suffers from an inadequateness to work well in the face of 

process noises also it is not suitable to multivariate process monitoring.  

A typical chemical process can be operated in a set of modes connected by 

transitions. It is then possible to cluster the multivariate process data by identifying 

steady state operating regimes. These segments are grouped into different clusters 

based on the similarity degree between any two modes or transitions.  

Several methods for steady state identification have been proposed in recent 

years, a review can be found in the paper of steady state identification by Cao and 

Rhinehart (1995). An intuitive approach for identifying steady states in a uni-variate 

process is to estimate the variable’s mean in a moving data window. If the estimated 

mean in the data window ˆ ( )tµ  at time t deviates significantly from the one at the 

previous time ˆ ( 1)tµ − , i.e., ( ) ( 1)t tµ µ θ− − > , where θ  is a user-defined threshold, 

the process is said to be in a non-steady state. However, this method will lead to 

incorrect results in presence of sudden disturbances. In addition, the average value has 

to be calculated at every time instant, which is computationally expensive. A related 

approach calculates standard deviation of the process variable data over a moving 

window. The process is considered to move out of a steady state whenever the standard 
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deviation exceeds a threshold. The threshold is normally determined based on steady 

state historical data. This method is also computationally expensive. 

An alternate statistical approach is the use of the t-test (Lawrence, 1970; John, 

1990). A t-test is carried out on the slope of a linear model built using a window of 

data. If the slope is found to be deviating from zero with a high confidence factor, the 

process is said to be in a non-steady state. Another approach based on the F-test was 

proposed by Cao and Rhinehart (1995). Here, the variance of the data in the most 

recent window is calculated by using two different methods. The ratio R of the two 

variances is used to identify steady state. The computational load is reduced in this 

method by calculating the variance using a regression approach. Jiang et al. (2003) 

proposed a wavelet-based method for on-line steady state detection. Sundarraman et al. 

(2003) presented a trend analysis-based approach to segment modes and transitions. A 

wavelet-based trend identification approach is used to identify quasi-steady and 

transition in a process. The temporal evolution of each variable is decomposed into a 

set of sequenced trends which are also known as primitives and examined to identify 

successive quasi-steady states. A segment of multivariate process is considered to be in 

steady state only when all the variables are in steady state during this period. All above 

methods are uni-variate. For multivariate case, each variable has to be analyzed 

separately and the results of the individual analysis are combined using a variety of 

rules (Brown, 2000). In this thesis, a PCA-based multivariate steady state identification 

technique is proposed. 

The similarity degree between two steady states can be defined based on the 

means of two states. Two modes are defined to be instances of the same canonical 

mode if all their constituent variables overlap substantially. However, the comparison 

of two transitions is more complex. Given two time sequence S (s1, s2, … ,sns) and T (t1, 
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t2, … , tnt), with ns and nt number of observations respectively, the degree of similarity 

is usually based on estimating the “distance” between the two. The difference among 

the various approaches is largely related to the definition of the “distance” metric. One 

popular approach for time series comparison is Dynamic Time-Warping (DTW) 

(Kassidas, et al., 1998). DTW shifts two sets of data in parallel until the best match is 

found. This method has been widely used in speech recognition and signal processing. 

Kassidas et al. (1998) reported the application of DTW for synchronizing batch 

trajectories. However, DTW is directly applicable only to one-dimensional signals. 

When applied to multivariate industrial processes, each variable has to be analyzed 

separately. Two temporal series can also be compared using the sequence of trends 

(Sundarraman, et al., 2003). However, like DTW, this method also analyzes only one-

dimensional signals. 

Another approach to sequence comparison is based on PCA. PCA is a commonly 

used dimensionality reduction technique (Jolliffe, 1986). It can transform the 

measurement data through a set of linear combinations. Thus, the process 

measurements can be reduced to a smaller informative set. Krzanowski (1982) defined 

a PCA similarity factor SPCA for estimating the degree of similarity between two data 

sets. Consider two temporal data sets S and T that have the same dimensionality, d. 

PCA transformation is carried out on both data sets to generate k PCs. If the 

corresponding d k×  matrix of weights are denoted by H and O respectively, the SPCA 

is defined based on H and O as: 

 ( )T T

PCA
trace H OO HS

k
=  [2-1] 

It can also be written as the average of the cosines of the angles between pairs of 

principal components in H and O as:  
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 2

1 1

1 cos
k k

PCA ij
i j

S
k

θ
= =

= ∑∑  [2-2] 

Equation [2-2] can be understood as a comparison of the trend of the first k PCs 

of the two sets of data. Singhal and Seborg (2001) used the modified PCA similarity 

factor PCAS λ  instead of Equation [2-2] to account for the variance.  

 
2

1 1

1

cosk k S T
i j iji j

PCA k S T
i ii

S λ
λ λ θ

λ λ
= =

=

=
∑ ∑

∑
 [2-3] 

Here, S
iλ and T

jλ are the ith and jth eigenvalues of the S & T time series 

respectively. Singhal and Seborg (2001) compared the PCA similarity factor with other 

methods such as T2 statistic and Q statistic and concluded that PCA similarity factor 

results in a more accurate comparison. 

One problem with traditional PCA is that it implicitly assumes that the measured 

variables are independent of each other across the time series (Chen and Liu, 2002). 

However, this situation is only possible when sampling interval is long enough. To 

reflect the dynamics of the process, Ku et al. (1995) proposed dynamic principal 

component analysis (DPCA). DPCA shows better modeling ability than static PCA as 

it considers not only the relationship across different variables but also that of the same 

variable across time (Chen et al., 2001). Therefore, a DPCA based similarity factor is 

proposed in this thesis to overcome the problem of traditional PCA. 

2.2 Temporal Pattern Recognition 

A supervised classifier can be developed for operating state identification based 

on historical data. The construction of the supervised classifier becomes possible for 

industrial processes because: (1) computer-based process control systems measure 

thousands of process variables, (2) the process continues to operate in a series of states 

without drastic run to run changes for long periods, and (3) historical databases with 
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several months or years of operations data are becoming common. Since the same 

process states repeat in different runs and display single patterns with small deviations, 

the expectation that there are good quality historical data for all operating states is 

justified and is the basis for the current work. Once the pattern of a state has been 

learnt, it can be used for future state identification. Therefore, the problem of 

constructing a supervised classifier is that of extracting and storing historical 

information such that relevant patterns can be retrieved and compared easily on-line.  

Data classification or pattern recognition methods can be categorized into three 

classes (Schalkoff, 1992): statistical pattern recognition, syntactic pattern recognition 

and machine learning. The basis of the statistical method is the Bayes rule. Given an 

input feature vector nd
newX  whose class is unknown, the probability ( | )

new

nd
i ip C X  that 

nd
newX  belongs to ith class Ci can be estimated. The vector nd

newX  will be labeled with class 

Ci if ,i jP P i j< ∀ ≠ , where ,i j nm∈  and nm is total number of classes. The 

construction of a Bayes classifier is to find out a set of discriminant functions to 

calculate the posterior probability ( | )
new

nd
i ip C X .  

In the syntactic approach, a complex pattern is first decomposed to many simple 

patterns referred as primitives. Then, a structural language is used to describe the 

relationships among these sub-patterns. Finally, two patterns are compared by “string 

matching” or “parsing”.  

Support vector machines (SVMs) and neural networks are two typical examples 

of machine learning. A SVM projects the original input vector to a high dimensional 

space to make the problem linearly separable (Schalkoff, 1992). Then support vectors, 

which maximize the margin between separating hyperplane and patterns are found. 

Artificial neural networks (ANNs) simulate the working mechanism of the human 

brain. Neural networks have been widely used for pattern recognition due to their 
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powerful ability to approximate complex nonlinear functions. Hecht et al. (1988, 1989) 

indicated that a multilayer neural network with a sigmoid activation neuron can 

approximate arbitrary nonlinear functions with any desired level of accuracy. Later, 

Hornik et al. (1989) confirmed this conclusion by proving that an arbitrary 

nondecreasing activation function can approximate a continuous mapping 

: [ , ]n mR X Xφ ← −  with any small error (e). Furthermore, Kreinovich (1991) gave a 

more general result: Assume h(x) is an arbitrary smooth function RR → , X and e are 

positive real numbers, and φ is a continuous mapping from mXX ],[−  to Rn. Then there 

exists a neural network that can approximate the mapping under the error e. Because of 

this ability, the applications of neural networks cover a wide variety of real world 

problems: such as chemical process related pattern recognition problems (Bulsari, 

1995; Baughman and Liu, 1995; Muthuswamy and Srinivasan, 2003), speech 

recognition (Bengio, 1993; Kim et al. 1993; Levin et al. 1993), image processing (Li 

and Wang, 1993; Li and Nasrabadi, 1993), signature verification (Bromley et al., 1993; 

Burges et al., 1993; Drucker et al., 1993) and industrial process identification (Chen et 

al., 1999; Tsai et al., 1996; Wang et al., 1999). 

Many approaches have been developed for temporal pattern recognition since it 

is very common in industrial processes. The main problem involved is how to store 

time information in the neural network. One approach is the use of past information 

explicitly as in the Time Delayed Neural Network (TDNN) (Bambang et al., 2001; 

Martin, 2001; Wohler and Anlauf, 2001,). In TDNN, the information in the recent past 

is stored in a buffer and presented to the network along with the current inputs. The 

method can be represented as a mapping: 1: :[ , , , ]nd d d d
t t t t t lF Z X X X X− −← , where  

( 1)nd d l= × + . By converting the time domain information into space domain, the 

TDNN makes use of simple static neural networks to model dynamic processes (Figure 
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2-1). The system regressive order, l, has to be estimated before TDNN can be utilized. 

In addition, the applicable l is limited by the size of the neural network input layer and 

hardware computational limit.  

Xt

Xt

Xt-1

Xt-2

Xt-l

Feed forward
neural network Zt

 

Figure 2-1: Time delay neural network 

Past information can be stored in a more implicit manner in recurrent neural 

network structures such as the Elman network which was first proposed by Elman 

(1990). The output of the Elman network hidden layer is fedback to itself so that the 

dynamics of process are captured (Figure 2-2). Theoretically, the first input will affect 

all the following network outputs and the network therefore gain the ability to process 

temporal signal. However, this is only ideal situation. In fact, our experiments with 

Elman neural networks prove that the information is retained in the network for around 

20 time steps before being washed out.  
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Figure 2-2: Elman neural network 
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A transform of the input matrix is another method to capture process dynamics. 

A novel transform proposed by Stiles and Ghosh (1997) is based on the phenomenon 

called habituation. Primarily, habituation is a means by which biological neurons can 

filter out repetitive and hence irrelevant information. Neurons achieve this by adjusting 

their synaptic strength (the counterpart in artificial network is the “connection 

weights”). If the presynaptic neuron is active for a period of time, habituation tends to 

reduce the synaptic strength and recovers it only after the activity is over. When the 

concept is applied to input encoding, it turns out to be an input weights calculation 

method. The essential idea of habituation transform is to use a set of weights instead of 

original input nd
tX . After the encoding which is based on time, the input nd

tX  is 

converted to ],,[ 1 lttt WWW −−  (Figure 2-3). A discrete time version of the habituation 

model was first presented by Wang and Arbib (1990) in the following form:  

 1 0

1 1

( )
( 1)

t t t t t t

t t t t t

W W Z W W W I
Z Z Z Z I

τ α
γ

+

+ −

= + − −
= + −

 [2-4] 

where It is the output of the presynaptic neuron, τ  and α  are constants used to vary 

the habituation and recovery rate and Zt is a monotonically decreasing function. In the 

case of multi-dimensional input, encoding each variable in the above manner can give 

the transferred input matrix. The Wt will decease to zero eventually after a period of 

time that is determined by τ , α  and γ . 
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Habituation       Transform

Feed forward neural network

Wt Wt-1 Wt-l

Zt

Online Data '
tX  

Figure 2-3: Habituation neural network 

In the past decade, the discovery that most biological neural systems use spikes 

to encode the time-related input information has led to the development of the Spiking 

Neural Network (Wolfgang, 1997). A “spiking neuron” has an excitatory or inhibitory 

activation function (Jan et al., 2001) and a time variant bias function (Figure 2-4). As a 

result, temporal information is transferred to a series of “spikes” at the output layer at 

irregular time intervals. The “spiking neural network” is expected to be capable of 

learning very large time sequences. 
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Figure 2-4: Activation functions of spiking neuron (a) Excitatory function (b) Inhibitory function  
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When a neural network is constructed, its structure is decided not only by the 

input dimensionality but also by the complexity of underlying classes. When both the 

input dimensionality and the number of classes are high, as is the situation in industrial 

temporal signals, the training of network becomes a challenge task. A typical chemical 

process unit usually has hundreds of sensors each generating thousands of observations 

every day. These data are noisy and contains patterns corresponding to the different 

operating states. Although the neural network computes in a parallel manner, its 

training is a major challenge especially when a single neural network is used. The 

training takes a considerable computation time even then the resultant network may 

perform poorly. In this thesis, two novel neural network structures which can identify 

the temporal patterns accurately with modest training requirement are proposed. 

2.3 Context-based Pattern Recognition 

Patterns whose interpretation varies across contexts are common in many 

engineering domains such as natural language processing, databases, communication, 

electronic documentation, and vision (Brezillon, 1999). Kettebekov and Sharma (1999) 

discussed the interpretation of a human gesture. The same gesture (primary feature) 

can imply a number of meanings in different occasions (contexts). Using simultaneous 

speech information as contextual features is essential to avoid misunderstanding of a 

gesture. Another example is language interpretation ─ the same word (primary feature) 

could have very different meanings in different situations (Hunter, 2001; Maskery and 

Meads, 1992). While these problems are extreme examples where the recognition of 

the objective is impossible without context information, in other cases, context 

information can improve the recognition performance. Turney and Halasz (1993) used 

contextually normalized features to improve aircraft gas turbine engine diagnosis. In 

this domain, ambient temperature is the context and affects the feature patterns arising 



Chapter 2  Literature Review 
___________________________________________________________________________________ 

 - 19 -  

from a fault. In their approach, the context effect was first removed from the primary 

features before pattern recognition was performed. Turney (1993) also presents a 

survey of a wide range of research problems where context information can improve 

machine learning performance.  

Turney (1993a, 1993b) introduced the general definition of context-sensitive 

features in any pattern recognition problem. The context-based pattern recognition 

problem is defined by differentiating between three types of types of features: primary, 

contextual, and irrelevant. Primary features are defined as those features ix  that are 

useful for classification when considered in isolation, without regard to other features. 

Contextual feature is not useful in isolation, but can be useful when combined with 

other (primary) features. Irrelevant features are not useful for classification, either in 

isolation or when combined with other features. 

Once features have been segregated into primary, contextual, and irrelevant ones, 

a mechanism to incorporate contextual information into pattern recognition has to be 

formulated. Several strategies have been proposed for this (Katz, et al., 1990; Turney, 

1993a; Turney, 1993b). In contextual normalization, contextual features are used to 

normalize the context-sensitive primary features, prior to classification. The intent is to 

process context-sensitive features in a way that reduces their sensitivity to context. For 

example, a feature can be normalized so that its ranges in different contexts do not 

overlap. A related approach to contextual normalization is contextual weighting. There, 

the contextual features are used to weight the primary features, prior to classification. 

The intent of weighting is to assign more importance to features that, in a given 

context, are more useful for classification. An alternative approach is to expand the 

feature space by including the contextual features as well as the primary features. This 

is called contextual expansion. The contextual features are handled by the classifier in 
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the same manner as other features. In contextual classifier selection, classification 

proceeds in two steps. In the first step, different classifiers are trained, each 

specializing in a particular context. Subsequently, the contextual features are used to 

select the right classifier for a given situation (context). During contextual 

classification adjustment, the two steps in contextual classifier selection are reversed. 

In the first step, all the classifiers are used to predict the class using the primary 

features. The final identification is through a composition based on the contextual 

features.  

While context-based pattern recognition problem is well-defined and some 

frameworks are proposed, few structures have been presented so far. In this thesis, a 

novel structure is presented to solve this problem. 
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Chapter 3. Dynamic PCA Based Methodology 

for Clustering Process  

3.1 Introduction 

An agile chemical plant normally operates in a number of operating states. Plant 

startup, grade change and shutdown are some common examples. The holy grail of the 

control community has been to enable optimal control of the process during different 

operating states. One crucial task towards this is the online identification of a process’ 

operating state. Different control configurations or controller parameters may then be 

used (Rosen and Yuan, 2001). Model identification, fault detection, and alarm 

management (Arnold and Darius, 1989) are other applications whose parameters have 

to be adjusted to fit the current process state. Therefore, the ability to identify the state 

of operation from the time evolution of the sensor data is essential for process 

automation in agile chemical plants (Roverso, 2000).  

A process unit’s state can be classified into modes and transitions (Srinivasan et 

al., 2001). A mode corresponds to the continuous operation of the unit and a fixed 

flowsheet configuration, i.e. no equipment is brought online or taken offline. During a 

mode, the process unit operates in a quasi-steady state. Thus, its constituent variables 

are at steady states and their values vary within a narrow range. The concept of steady 

state from the process operation point of view is different from statistical “stationarity” 

(Cao and Rhinehart, 1995). Statistical stationarity requires that the statistical properties 

do not change with time whereas steady state only requires that the slope of every key 

variable X(t) is small (Jiang et al., 2003): 
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 [3-1] 

where fT  is user-defined threshold. An example is used to illustrate the steady state. 

Two variables of a typical chemical process are plotted vs. time (10 second 

sampling rate) in Figure 3-1. From the figure, three modes can be distinguished: M0 

between t=1x10s and t=80x10s, M1 between t=702x10s and t=1315x10s and M2 

between t=1440x10s and t=1580x10s. 
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Figure 3-1: Evolution of two variables of a typical chemical process 

Transitions correspond to discontinuities in the plant operation such as change of 

set-point, opening of valve, change of equipment configuration, turning on or idling 

equipment, etc. These operational events are usually induced by operator action. When 

a unit undergoes a transition, at least one of its constituent variables would show a 

significant change. However, all constituent variables do not have to vary during a 

transition. The time evolutions of the key variables contain distinct signatures that can 
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be used to identify a transition and differentiate it from other transitions in the unit. A 

transition is characterized by the key variables along with the distinct features in their 

evolutions, the preceding mode, the subsequent mode, and the start and end times of 

the transition. Two transitions are shown in the example in Figure 3-1: T1 between 

t=81x10s and t=701x10s and T2 between t=1316x10s and t=1439x10s. As can be seen, 

the time evolutions of X1 and X2 are different in the two transitions. Also, T1 begins 

from mode M0 where X1 has a value of 9 and X2 of -0.5 and ends at mode M1 where X1 

has a value of -1.2 and X2 of -1.2. In contrast, transition T2, that begins from mode M1 

and ends at mode M2 where X1 has a value of -1.8 and X2 of 0.5. 

As mentioned in the Chapter 1, clustering of process states in historical data can 

be used for a number of purposes, such as comparing operating condition to improve 

the understanding of transitions, correlating features of successful runs to product 

properties, process efficiency, etc.  

Some existing automated clustering techniques have been reviewed in Chapter 2. 

While all the methods mentioned consider the entire process data monolithically, we 

propose a method which is based on differentiating between the states—modes and 

transitions in the process. It is possible to segment the multivariate process data by 

identifying steady state operating regimes.  These steady states can therefore be used to 

segment the data into different operating modes and transitions. The operating states 

are then grouped into different clusters based on the similarity between them. If the 

similarity degree between two modes or two transitions is sufficiently large, they will 

be concluded as belonging to the same cluster. Therefore the proposed method 

includes two sub-problems: (1) Steady state identification, and (2) Similarity 

comparison. Existing methods are reviewed next. 
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The rest of this Chapter is organized as follows. In Section 3.2, the proposed 

DPCA-based process state clustering method is presented. Next, in Section 3.3 and 

Section 3.4, the application of the proposed method is illustrated on two simulated case 

studies – a fluidized catalytic cracking unit and the Tennessee Eastman challenge 

problem. 

3.2 Proposed Method for Clustering Process States 

The proposed process state clustering strategy is summarized in Figure 3-2. 

Historical data are first analyzed to identify periods of steady states using the 

multivariate method that that will be presented in Section 3.2.1. These steady states are 

used to segment the data into different operating modes and transitions. The operating 

states are then clustered using similarity measures described in Section 3.2.2.  
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Figure 3-2: Proposed process state clustering approach 
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3.2.1 Identification of Steady States 

As we have discussed in Chapter 1, a mode is characterized by near constant 

values for all process variables in a given time window. However, a chemical plant has 

hundreds of variables. Considering all the variables one-by-one is computationally 

expensive and makes combining results from individual variable analysis difficult. To 

overcome these and also account for the redundancy of sensors, PCA is used here to 

reduce the dimensionality of the data. 

An operating state can be treated as a mode if all variables fluctuate within a 

limited range. Since the obtained scores from the PCA operation are a linear 

combination of the original variable values, during a mode, the variation of the scores 

will also be small. It is illustrated by the score plot for the example in Figure 3-1, 

which is shown in Figure 3-3. Samples from M0, M1 and M2 are concentrated in small 

ellipses. In contrast, the samples from T1, T2 are scattered over a larger area. We 

exploit this property to segregate steady states from transitions. 



Chapter 3                                                    DPCA Based Clustering Methodology for Clustering Process 
___________________________________________________________________________________ 

 27

-2 -1 0 1 2 3 4 5 6 7 8 9

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

PC1

PC
2

Data from M0
Data from T1
Data from M1
Data from T2
Data from M3

Data from M2

Data from M1

Data from T1

Data from T2

Data from M0

 

Figure 3-3: Score plot of modes M0, M1, M2 and transitions T1, T2 

The proposed steady state identification methodology is summarized in Figure 

3-4. The historical data d
nnX :[X1,,X2,,…, Xnn,] are auto-scaled and PCA performed. The 

first k principal components are retained for the next step. The selection of k is based 

on a plot of Pi vs. i,  

 
1

i
i k

ii

P λ
λ

=

=
∑

 [3-2] 

where iλ  is ith eigenvalue of the covariance matrix of d
nnX . k is selected as a 

cutoff point on a sharp change in the slope of the graph. An alternative is to retain k 

principals such that:  

 
1

93%
k

i
i

P
=

>∑  [3-3] 

Here, the 93% threshold is a commonly used cutoff and can be replaced by 

another based on domain knowledge and the expected noise levels (Sebzalli and Wang, 

2001). 
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Figure 3-4: Proposed steady state identification approach 

The resulting  k x nn dimensional scores kY  is then analyzed to identify steady 

states. Steady states are identified by looking at a data window of length Tw along the 

score matrix. Each k-dimensional vector k
iY  within the window is compared with 

randomly chosen centers k
cenY  (described below) and the distance D between k

iY  and 

k
cenY  calculated: 

 ( , ) | |k k k k
i cen i cenD Y Y Y Y= −  [3-4] 

Here, ( , )k k
i cenD Y Y  is defined as a k-dimensional vector so that each variable can 

be compared separately. Every k
iY  is then checked for the following condition: 

 max min( , ) .( )k k k k
i cen dD Y Y Y Yθ< −  [3-5] 
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where dθ  is a pre-specified “variation tolerance”, max
kY  and min

kY  are the vector of the 

maximum and minimum values of kY  over the whole process respectively. The “<” in 

Equation [3-5] is defined as an element-wise comparison requiring that every element 

satisfies the condition. If at least δ  fraction of k
iY  in a window satisfy Equation [3-5], 

then the process is concluded to be within a mode during the window. The data 

window is then moved forward by step size L and the process repeated for the entire 

kY . All steady states in the historical data are thus identified. It should be noted that a 

process may change gradually and process variables would have a gradient close to 

zero. In such cases, when the variables are changing within the “variation tolerance”, 

the proposed method will correctly identify such states as modes. 

The k
cenY  plays a critical role during steady state identification. In our approach, 

several data points from within the window are used as centers. This is because if a 

single k
cenY  is used and an outlier or disturbance point is selected for this, then the 

identification would be susceptible to misclassification. For instance, Figure 3-5 shows 

data from steady state operation with a few outliers probably from noise or process 

disturbance. If one of these disturbance points is selected as k
cenY , the distance 

( , )k k
i cenD Y Y  of most observations will exceed the variation tolerance and the current 

window will be inaccurately identified as being in a non-steady state. To avoid this 

without using computationally heavy outlier detection, we use several randomly 

selected points from within the data window as centers. If the criterion in Equation 

[3-5] is satisfied by even one k
cenY , the window is concluded to be in a steady state. 

Only when none of the centers satisfy the criteria, will the process be concluded as 

being in a transition state. The reader would note that, through this, outliers would not 

be mistaken as transitions. 
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Figure 3-5: A disturbance during steady state operation 

A steady state is considered to be a mode only if it lasts for at least a certain 

period. This minimum duration is called the dwell time and denoted as TSmin. It is 

needed because even during a transition, the process variable evolution could contain 

short periods with nearly constant values. The dwell time constraint prevents mis-

identification of these short constant periods as modes. A valid mode can thus last for 

any duration longer than TSmin. A proper setting of TSmin is important to get correct 

segmentation of the process data. It is usually possible to specify TSmin from process 

knowledge and historical data.  

Edge Detection: When the process is detected to move from a mode to a 

transition or vice versa, a further check is performed to accurately detect the edge. 

While the technique is directly applicable to multivariate processes. For the 

convenience of illustration, we use a uni-variate process. Figure 3-6 shows a part of a 

mode and a transition. By the method discussed above, the data in the window 
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[ ]wL L Tα α− − +  is identified as a mode, and data within the window [ ]wTα α +  is a 

transition. Now for the window [ ]wTα α + , the beginning of the transition ─ that is, 

change point A ─ must be located. To accurately detect the position of A, data window 

[ ]wTα α +  is sub-divided into r sub-windows. Data in each sub-window of length Tw/r 

is compared with the mean of the data in the preceding window [ ]Lα α−  using a 

condition analogous to Equation [3-8] to check if it is a steady state. If the “variation 

tolerance” is crossed by a part in the sub-window, that sub-window is deemed to be a 

transition and its beginning point is declared as the start point of the transition. In the 

example in Figure 3-6, 2 wT
r

α +  is identified as the start point of the transition. Similar 

method is used to detect the change point when a process moves from a transition to a 

mode. The key advantage of this edge detection is that while the resolution of steady 

state identification is improved from Tw to Tw/r, the total computational burden does 

not increase much since the edge detection is executed only when a state changing is 

detected from a mode to a transition or vice versa. Therefore, L can be large to 

maintain a good computational performance without adversely affecting accuracy. 
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Figure 3-6: Mechanism for edge detection during steady state identification 
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3.2.2 Similarity Measurement 

Once the modes have been identified and their beginning and end points located, 

the rest of the regions in kY  are tagged as transitions. The whole historical data d
nnX  is 

also divided based on the segments into modes and transitions. To finish the clustering 

task, similar modes and transitions in d
nnX  have to be clustered together. 

3.2.2.1 Similarity between Modes 

As described earlier, modes are characterized by small fluctuations in the 

variable values. Hence, the mean vector is the principal property of a mode and the 

similarity degree between two modes is defined based on this property. The traditional 

method for comparing means is the t-test (Douglas and George, 1994). However this is 

a uni-variate statistic. In this thesis, I propose a simple multivariate method.  

Normalization: In order to avoid the effect of different scales during the 

distance calculation, each variable xi is first normalized to [0, 1] based on the 

measurement range of the sensor.  

 i L
i

H L

X XX
X X

−
=

−
 [3-6] 

where, iX  is the normalized process variable, and HX  and  LX  are the high and 

low limits of the sensor range respectively. The corresponding normalized historical 

data d
nnX is subsequently used for clustering modes. 

Suppose Mi and Mj are two modes. Their process mean vectors ˆ
iMµ  and ˆ

jMµ  is 

estimated from d
nnX . Mi and Mj are considered to be instances of two different modes if 

at least one of the process variables has distinctly different mean values in the two 

modes. Note that this is congruent to Equation [3-5] and in line with the definition of 
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transition in Section 3.2.1. In general, the distance between Mi and Mj is defined as the 

maximum distance along the elements between the ˆ
iMµ  and ˆ

jMµ . That is:  

 ( , ) max | |
i jM Mi jD M M µ µ= −  [3-7] 

Since xi is normalized and therefore the elements of ˆ
iMµ  and ˆ

jMµ  are in [0 1], 

( , )i jD M M  is also in [0 1]. The similarity factor between two modes is then defined as: 

 ( , ) 1 ( , )M i j i jS M M D M M= −  [3-8] 

Following this, two modes Mi and Mj are classified into the same cluster if: 

 ( , )M i j MS M M θ>  [3-9] 

where Mθ  is a user-defined threshold and can be estimated from historical data. 

3.2.2.2 Similarity between Transitions 

The comparison of transitions is based on the comparison of the corresponding 

variable profiles. We use a DPCA-based similarity factor for this purpose since it can 

account for the autocorrelation in the variables by augmenting the data matrix with 

time-lagged variables. Hence, if the current value of a variable X(t) is expressed as the 

weighted sum of past observations 1 2( ) . ( ) . ( 1) . ( )lX t A X t A X t A X t l= + − + + − , 

where, Al is the regression coefficients and l is the regression order of the process, the 

dynamics of the process and the time-dependent relationships between the variables is 

contained in the extended matrix, delayX  (Rosen and Yuan, 2001). 

 

( ) ( 1) ( )
( 1) ( 2) ( 1)

( )

( ) ( 1) ( )

d d d

d d d

delay

d d d

X t X t X t nn l
X t X t X t nn l

X t

X t l X t l X t nn

 − − +
 − − − + − =
 
 

− − − −  

 [3-10] 

where 1 2( ) [ ( ), ( ), , ( )]d T
dX t x t x t x t=  is the d-dimensional process data vector at time t. 

The dimension of delayX  is ( 1)nh nn l× − + , where ( 1)nh d l= × + .  

DPCA consists of applying traditional PCA to the extended data matrix Xdelay:  
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 T
delayY U X=  [3-11] 

where Y is the projection of the delayX  on a new set of bases U. The transformation 

matrix U is composed of the eigenvectors of the covariance matrix of delayX . Equation 

[3-11] can also be written as: 

 1

1

1

1

( ) ( )

( 1) ( 1) ( )
d

d d d nh

k k k d

k k d k d

y a x t a x t

a x t a x t a x t l
+ +

= + +

+ − + − + + −
 [3-12] 

where yk is the value of kth score or latent value, ( )dx t l−  is the value of variable Xd at 

time (t-l), and 
1 2

{ , , , }
nhk k ka a a  is the value of  kth PC. The obtained kth score yk  is now 

a linear summation of nh  values, including not only the current process measurements 

but also the previous ones. Note that two kinds of dynamic relations are taken into 

consideration, (1) the relationships between the current value of Xd and its past values 

( 1) ( 2) ( )
[ , , , ]

t t t ld d dX X X
− − −

, and (2) the relationships between the value of variable Xd and 

the other variables and their values from time t l−  to t. The nh eigenvectors thus 

reflect the essential temporal correlation within a data window.  

A DPCA similarity factor SλDPCA can now be defined analogous to the PCA 

similarity factor that been given in literature review. For reader’s convenience, I 

present the equation here again.  

 
2

1 1

1

cosk k S T
i j iji j

PCA k S T
i ii

S λ
λ λ θ

λ λ
= =

=

=
∑ ∑

∑
 [3-13] 

SλDPCA is defined on Equation [3-13] based on the nh vectors in U . The DPCA 

similarity factor compares the temporal profiles as brought out by the following 

example. Figure 3-7 shows two transitions A and B in a process with two variables: 

During transition A, variable x1 is first ramped up and then ramped down to the 

original value. During transition B, x1 is only ramped up. The range of x1 is the same 

during both the transitions, while x2 is constant except for noise. Transition A and B 
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are two different dynamic responses of the process and should be identified as different 

temporal patterns. Without the use of autocorrelation information, transitions A and B 

are indistinguishable. The principal components from PCA for both transitions are 

exactly the same.  

1/ 2 1/ 2

1/ 2 1/ 2
A BU U

 − −
= =  

−  
 

The PCA similarity factor PCAS λ  between the two transitions is equal to one which 

implies that two transitions are identical. When the autocorrelation is considered using 

DPCA, for a lag l=8, the corresponding principal components are: 
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The 18-dimensional eigenvectors of the two transitions are no longer identical 

and DPCAS λ  is 0.54. The two transitions are now distinguishable based on the difference 

in their autocorrelations. Another advantage of the DPCAS λ  is that it is insensitive to the 

duration of the transition; only the underlying direction of change is considered. 

Therefore, the need to synchronize transitions before they can be compared is obviated. 

The multivariate relationships captured by the DPCA ensures that equipment failure or 

mal-operation during a transition will be reflected in the eigenvectors. This property 

can be used for detecting faults during the execution of a known transition. The 
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selection of k (<< nh) also make this method less susceptible to noise and to other 

small variations in the variable evolution which would not recur in every instance of a 

transition. 
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Figure 3-7: Transitions in a two-variable example 

The proposed transition comparison method can be summarized as follows: 

Suppose Ti and Tj are two transitions. The data from Ti and Tj are auto-scaled to zero 

mean and unit variance first. The process autoregression order l is determined based on 

process characteristics and knowledge of time constants. Then DPCA operation is 

performed on the auto-scaled data and the first k principal components are retained.  

The DPCA similarity factor DPCAS λ  is calculated based on the k PCs. The resulting 

similarity factor takes values between zero and one, where zero denotes no similarity 

between the two transitions and one indicates that the two are identical. Without 
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considering the magnitude information, based on principal components along, Ti and Tj 

are classified into the same cluster if: 

 ( , )DPCA i j TS T Tλ θ>  [3-14] 

where, Tθ  is a “trend-deviation” threshold. DPCAS λ  is sufficient when only the profiles 

or the underlying dynamics are to be matched without regarding the magnitude. 

However, when a process state classification is required taking into account the 

magnitude of the transition as well, the DPCAS λ  factor has to be complemented with a 

magnitude comparison. The mode transition segmentation provides a natural means to 

achieve this through the SM factor discussed above. Since any transition Ti is 

sandwiched between two modes, say Mp at the beginning and Mq at the end, the ˆ
pMµ  

and ˆ
qMµ  provide an adequate information for comparing two transitions’ magnitudes. 

So when comparing Ti with a transition Tj that is sandwiched between Mg and Mh, 

SM(Mp,Mg) and SM(Mq,Mh) can be considered in addition to ( , )DPCA i jS T Tλ . In case when 

a comparison between both profile and magnitude is required, two transitions are 

similar if all following three criteria hold: 

 ( , )DPCA i j TS T Tλ θ>  [3-15a] 

 ( , )M p g MS M M θ>  

 ( , )M q h MS M M θ>  

The proposed process state clustering method involves several parameters –– 

min , , , , ,w d MTS T L lθ θ  and Tθ . While different processes may require different values 

for these parameters, we have found that most of the settings can be used across case 

studies (see Section 3.3 and 3.4). If necessary, fine-tuning can be performed based on 

the clustering results and process knowledge, some basic guidelines are given below: 

[4-15b] 

[4-15c] 
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• The dwell time TSmin can be easily specified by a process engineer based on the 

shortest steady state expected in the process. 

• Tw and L can be specified based on TSmin. If Tw is too big, the modes will be 

merged into the transitions and become undetectable. On the other hand, if Tw 

is too small, short segments of transition would be misidentified as modes. It 

will also increase the computational burden. Similarly, too small L will 

aggravate the computational burden while a large one may miss short mode. 

We therefore use  

 min min
1,
2wT TS L TS= =  [3-16] 

• dθ  is selected based on the noise level in the process. If dθ  is too small, noise 

in the measurement would lead to the misclassification of modes as transitions. 

If dθ  is too large, large changes will be allowed within a mode therefore 

transitions will be merged into modes. 

• The value of l is a measure of the nonlinearity expected in the process. Large 

values of l will be needed in highly nonlinear process while simple processes 

will require a small l. A large value of l increase the size of delayX  and hence the 

computational complexity.  

• Mθ  and Tθ  can be estimated from historical data. If a priori knowledge reveals 

two instances of the same modes or transitions, then SM and DPCAS λ  from these 

states can be calculated and used as a lower bond. This is discussed in details in 

Section 3.3. 

These procedures are illustrated based on the case studies in Section 3.3 and 3.4.  
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3.3 Fluidized Catalytic Cracking Case Study 

The proposed two-step clustering strategy has been tested on the startup of a 

simulated Fluidized Catalytic Cracking Unit (FCCU). FCCU converts a mixture of 

heavy oils into more valuable light products. The control of the FCCU, especially 

transition control, has attracted extensive attention recently because of its complexity 

(Khalilian and Dhib, 2001; Pramit and Raghunathan, 2000). A high-fidelity dynamic 

simulator of a FCCU, called ShadowPlant, is used for this purpose (Honeywell, 2000). 

The ShadowPlant consists of five main sections as shown in Figure 3-8: 

1. Feed preheater 

2. Riser/Regenerator  

3. Main Fractionator  

4. Waste heat boiler 

5. Air-preheater  

The main operational states of the ShadowPlant are: 

1. Cold startup 

2. Steady state operation at various feed grades 

3. Transition between grades  

4. Shutdown 
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Figure 3-8: Schematic of FCCU Process 

Of these, the startup is one of the most difficult transitions and requires 

experienced operators. One of the first steps in the startup of the ShadowPlant is the 

startup of the air-preheater section. The air blower is started slowly and operated at a 

steady state speed of about 4000 rpm. Air is heated in the preheater furnace to about 

370°C and is used to initially increase the temperature of reactor/regenerator. Once this 

operation is stabilized, torch oil flow is started in the regenerator. This supplies the 

necessary heat and the fuel gas supply to the air-preheater is stopped. Catalyst is then 

added to the regenerator gradually and the temperature maintained around 400°C by 

manipulating the torch oil flow rate. When the catalyst level in the riser reaches 60%, 

the regenerator slide valve is opened and the catalyst moves through the riser to the 

reactor. Once the regenerator/reactor section has reached an intermediate steady state, 

with the regenerator temperature around 600°C, the Fractionator is flushed with 

kerosene and started up with fresh feed. When the Fractionator reaches a steady state, 

it is connected to the reactor/regenerator. Feed is started through the reactor and 
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cracked products are fed to the main Fractionator. Throughput is gradually increased 

and steady state flow established. Details of the unit and the startup transition are 

reported by Honeywell (2000) and Sundarraman and Srinivasan (Srinivasan et al., 

2001). 

Data Generation: The startup operation described above takes 40 to 60 hours. 

Several runs of the startup were performed following the standard operating procedure 

and data collected at 10 second intervals. While the procedure for starting up the 

FCCU was the same in all the runs, minor differences in the magnitudes and duration 

were introduced between the runs. Two runs G1 and G2 are considered in details here. 

The average duration of the startup transition in these runs was 54 hours. Random 

noise was also added to the measured variables to simulate measurement noise in the 

real process. A compressed database with 100-second sampling (that is 1 data point 

saved out of every 10) was generated from the original data in order to emulate the 

data compression in historians in real plants. The entire process has 335 measured 

variables. In each section, superfluous variables were first eliminated to decrease the 

computational requirements. The subset of the variables was selected based on the 

following criteria:  

1. Only process variables (PV) such as pressure, temperature, or flow-rate were 

selected. Control signals and set points affect the section but do not directly 

reflect its state. Also, often there is a lag between a change in these variables 

and the process’ response. Hence, these were removed.  

2. Redundant variables were removed. For example, if two pressure 

measurements at adjacent positions along a pipeline were available, only one of 

them was selected if the information content in the difference is negligible.  
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For ease of explanation, in the following, the states are compared for each 

section separately. 

3.3.1 Clustering of Regenerator States  

Sixteen measurements are available in the regenerator section. Figure 3-9 shows 

the evolutions of three important variables 16PC108, 16PDC112, and 16TC116 from 

G1. As can be seen in the figure, the section operates in several states.  
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Figure 3-9: Three variables of regenerator section of ShadowPlant 

State Identification:  The PCA-based steady state identification method 

described in Section 3.2.1 was used to segregate the states. Figure 3-10 shows the 

variance contributions of the 16 PCs for G1. The sixth PC was found to be an inflection 

point, so k=6 is used in the subsequent step to identify the modes. Figure 3-11(a) 

shows the time evolution of the first two scores and Figure 3-11(b), the identified 

modes and transitions. The value of TSmin was set to 90 min and the value of Tw and L 
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calculated from Equation [3-16]. Six modes, 1
RM  to 6

RM  and five transitions, 1
RT  to 

5
RT  were identified. Analysis of these states and comparison with the operator log and 

operating procedures reveal that all the transitions are unique within a run – 1
RT  

corresponds to the regenerator startup operation, 2
RT  to catalyst circulation, 3

RT , to the 

introduction of the feed, 4
RT , to the startup of the wet-gas compressor in the main 

Fractionator section, and 5
RT , to the increase in the feed flowrate to the riser. 1

RT  

includes several actions for starting up the section such as warming up the regenerator 

using hot air, introducing diesel for further temperature increase, and catalyst loading. 

2
RT  corresponds to opening the slide valve to enable catalyst circulation between riser 

and regenerator. Subsequently, during 3
RT , feed is introduced to the regenerator and 

reaction starts. 1
RM  is the initial “cold-start” state of the regenerator section, and 6

RM  

the final state corresponding to steady state operation. 2
RM  to 5

RM  are intermediate 

modes during which the operator stabilizes the regenerator, starts up other sections of 

the FCCU, and links them to the regenerator section. Similar results were identified for 

data set G2 as well. 
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Figure 3-10: Plot of variance represented by each PCs in regenerator section 
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Figure 3-11: Eleven operating states identified in regenerator section based on 6 PCs, TSmin 

=90min (a) Evolution of first two (b) Durations of modes and transitions 

Comparisons between the start and end times of the states from the operator log 

and those from the state identification are shown in TABLE 3-1. As can be seen, the 

two set of state timings are in close match. The only difference is at the edge of the 

states. On an average, this difference is 2.36 samples ─ a small error acceptable for 

steady state identification. It can therefore be concluded that the proposed method can 

identify steady states that corresponding to actual operating philosophy with high 

accuracy. 

TABLE 3-1: Operating state identification error in regenerator section 

Operating State a priori Knowledge 
(x100s) 

Identification Results 
(x100s) 

Num. of Mis-
classified samples 

1
RM  [1 82] [1 80] 0 

1
RT  [83 470] [81 472] 2 

2
RM  [471 573] [473 568] 2 
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2
RT  [574 718] [569 712] 5 

3
RM  [719 1298] [713 1296] 6 

3
RT  [1299 1439] [1297 1436] 2 

4
RM  [1440 1594] [1437 1592] 3 

4
RT  [1595 1613] [1593 1612] 2 

5
RM  [1614 1732] [1613 1732] 1 

5
RT  [1733 1949] [1733 1952] 0 

6
RM  [1950 2160] [1953 2160] 3 

Average   2.36 

 

State Clustering: Once the process data has been segmented into modes and 

transitions, similarity degrees between the modes and between the transitions can be 

calculated. During regenerator startup, none of the states is repeated within a run and 

all the 6 modes as well as the 5 transitions are unique. This is confirmed using the 

similarity calculations described in Section 3.3.2. TABLE 3-2 shows the SM similarity 

degree among the modes. It can be seen that among the six modes, only 4
RM  and 5

RM   

are similar (SM = 0.915). This is verified by the process operation since the 

intermediate transition 4
RT  is caused by an external disturbance that does not affect the 

dynamics of the regenerator. It can also be confirmed visually in Figure 3-11(a). The 

similarity degrees among the five transitions in G1 calculated using DPCAS λ  and PCAS λ  are 

summarized in TABLE 3-3 and TABLE 3-4, respectively. Low similarities are 

calculated among all the transitions by both DPCA and PCA thus implying that the 

underlying dynamics in all the transitions are distinct. The highest similarity, observed 

between 4
RT  and 5

RT , indicates that the two belong to different clusters. This can also 

be visually confirmed from the evolutions of 16PC108 during these transitions shown 
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in Figure 3-12. Thus, the transition clustering results from the DPCA similarity factor 

is consistent with the overall evolutions as evident from the trends. 

TABLE 3-2: SM for modes in regenerator section during G1 

SM 
1
RM  2

RM  3
RM  4

RM  5
RM  6

RM  

1
RM  1 0.052 0.007 0.053 0.052 0.048 

2
RM   1 0.262 0.072 0.067 0.067 

3
RM    1 0.320 0.315 0.007 

4
RM     1 0.915 0.479 

5
RM      1 0.482 

6
RM       1 

TABLE 3-3: DPCA similarity factors for transitions in regenerator section during G1 

Transition 
1
RT  2

RT  3
RT  4

RT  5
RT  

1
RT  1 0.145 0.139 0.179 0.246 

2
RT   1 0.476 0.131 0.101 

3
RT    1 0.114 0.269 

4
RT     1 0.357 

5
RT      1 

TABLE 3-4: PCA similarity factors for transitions in regenerator section during G1 

Transition 
1
RT  2

RT  3
RT  4

RT  5
RT  

1
RT  1 0.148 0.229 0.251 0.456 

2
RT   1 0.548 0.227 0.231 

3
RT    1 0.292 0.473 

4
RT     1 0.538 

5
RT      1 
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Figure 3-12: Evolution of 16PC108 in regenerator section startup (a) Transition 4
RT  (b) 

Transition 5
RT  

Next, the similarities among the states in two different regenerator startup runs – 

G1 and G2 are investigated. A comparison among all the modes from the two runs 

yielded an average SM=0.973 between the corresponding ones, and an average 

SM=0.482 for the second closest match. This indicates that the modes can be exactly 

matched despite run-to-run differences. A comparison of the transitions in G1 and G2 

showing the best match and the second closest (in brackets) is shown in TABLE 3-5. 

Using the transitions in G1 as the templates, all the corresponding transitions have been 

correctly identified from G2.  Figure 3-13 shows that there are significant differences 

(especially spikes at t=1305x100s and t=1360x100s) in the evolution of 16PC108 in 

G1 and G2, but these are correctly disregarded by the similarity factor since they do not 

indicate any change in the underlying dynamics.  



Chapter 3                                                    DPCA Based Clustering Methodology for Clustering Process 
___________________________________________________________________________________ 

 48

TABLE 3-5: Comparing transitions from G1 and G2 in regenerator section 

Factor 
1
RT  2

RT  3
RT  4

RT  5
RT  

DPCAS λ  1
RT : 0.997  

( 5
RT :0.257)    

2
RT : 0.998 

( 3
RT :0.329)    

3
RT : 0.933 

( 2
RT : 0.414)   

4
RT : 0.941 

( 5
RT : 0.350)   

5
RT : 0.981 

( 4
RT : 0.374) 

PCAS λ  1
RT : 0.998 

( 5
RT :0.451)    

2
RT : 0.999  

( 3
RT :0.385)     

3
RT : 0.923 

( 5
RT : 0.379)     

4
RT : 0.979 

( 5
RT : 0.644)    

5
RT : 0.989 

( 4
RT : 0.633) 
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Figure 3-13: 3
RT  from different runs in regenerator section 

3.3.2 Clustering the Waste Heat Boiler Data 

State Identification: The two-step clustering is performed on data from the 

Waste Heat Boiler section. The same parameter settings Tw=90 min, 0.05dθ =  and l=5 

are used here as well. Based on the plot of Pi vs. i, 3 PCs are retained for state 

identification (k=3). As seen in Figure 3-14, the data was segmented into ten operating 

states – five modes, 1
WM  to 5

WM  and five transitions, 1
WT  to 5

WT . The evolution of the 

first two scores is also shown for comparison. An analysis of the operations log reveals 
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that 1
WT  is caused by the regenerator warm-up action, 2

WT  by catalyst loading, and 3
WT  

by the introduction of the feed. The feed introduction during 3
WT  is accompanied by a 

ramp increase in fuel gas temperature 16TI120 as shown in Figure 3-15. 4
WT  and 5

WT  

are characterized by sudden drop in temperature due to activities in other sections of 

the plant. In both cases, the temperature returns quickly to a steady state as seen in 

Figure 3-15. 1
WM  is the initial “cold start” steady state of the unit and 5

WM  the final 

state corresponding to steady state operation. 2
WM  is a long intermediate state when 

other sections of the plant are started up. 3
WM  and 4

WM  are intermediate modes 

punctuated by 4
WT  and 5

WT  respectively. 
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Figure 3-14: Ten operating states identified in waste heat boiler section based on 3 PCs, 

TSmin =90min (a) Evolution of first two scores (b) Durations of modes and transitions 
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Figure 3-15: Two disturbances that lead to 4
WT and 5

WT  in waste heat boiler section 

State Clustering: Similarity degrees between the modes and between the 

transitions are calculated next. The close similarity between 3
WM  and 4

WM  discussed 

above is revealed by the high value of SM( 3
WM , 4

WM )=0.976 in TABLE 3-6. The 

similarity degrees among the five transitions in G1 are shown in TABLE 3-7. A high 

match 4 5( , ) 0.971W W
DPCAS T Tλ =  is found between 4

WT  and 5
WT  accurately reflecting their 

similar dynamics. However, as seen in Figure 3-15, there is a small difference in their 

magnitudes and the fuel gas temperature 16TI120 settles down to a higher level in 

5
WM . If it is necessary to differentiate between 4

WT  and 5
WT  for operational purposes, 

Equation [3-15] which includes the additional comparison of the terminal modes can 

be used. In this example, SM( 4
WM , 5

WM )=0.834 indicates that the ending states for 4
WT  

and 5
WT  are different. The operational difference of these transitions with 3

WT  is also 

adequately captured by the lower 3 4( , )W W
DPCAS T Tλ  and 3 4( , )W W

DPCAS T Tλ  values. The 



Chapter 3                                                    DPCA Based Clustering Methodology for Clustering Process 
___________________________________________________________________________________ 

 51

similarities among transitions from G1 and G2 was also investigated. Among the total 

10 transitions from the two runs, as summarized in TABLE 3-8, the corresponding 

transitions were always found to have high similarity values (between 0.931 and 

0.996). 

TABLE 3-6: SM of modes in waste heat boiler section during G1 

SM 
1
WM  2

WM  3
WM  4

WM  5
WM  

1
WM  1 0.533 0.455 0.432 0.267 

2
WM   1 0.607 0.584 0.419 

3
WM    1 0.976 0.811 

4
WM     1 0.834 

5
WM      1 

TABLE 3-7: DPCA similarity factors for transitions in waste heat boiler section during G1 

Transition 
1
WT  2

WT  3
WT  4

WT  5
WT  

1
WT  1 0.092 0.780 0.531 0.567 

2
WT   1 0.08 0.151 0.145 

3
WT    1 0.763 0.826 

4
WT     1 0.971 

5
WT      1 

TABLE 3-8: Comparing transitions from G1 and G2 in waste heat boiler section 

Factor 
1
WT  2

WT  3
WT  4

WT  5
WT  

DPCAS λ  1
WT :0.990 

( 3
WT :0.790) 

2
WT :0.943 

( 4
WT :0.312) 

3
WT :0.996 

( 5
WT :0.867) 

4
WT :0.970 

( 5
WT :0.927) 

5
WT :0.931 

( 5
WT :0.945) 

PCAS λ  1
WT :0.990 

( 4
WT :0.864) 

2
WT :0.997 

( 1
WT :0.647) 

3
WT :0.998 

( 5
WT :0.937) 

4
WT :0.999 

( 5
WT :0.998) 

5
WT :0.999 

( 4
WT :0.999) 
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The waste heat boiler dataset also brings out the advantage of the DPCAS λ  over 

PCAS λ  for transition comparison. The PCAS λ  among 1
WT  to 5

WT  is shown in TABLE 3-9. 

Here, while the largest value 4 5( , ) 0.999W W
PCAS T Tλ =  correctly indicates the similarity 

between 4
WT  and 5

WT , the other large values, 3 4( , ) 0.968 W W
PCAS T Tλ =  and 

3 5( , ) 0.957 W W
PCAS T Tλ =  confirm that PCAS λ  cannot adequately distinguish between 

transitions based on their dynamics, that is, ramping up cannot be distinguished from 

spikes. 

TABLE 3-9: PCA similarity factors for transitions in waste heat boiler section during G1 

Transition 
1
WT  2

WT  3
WT  4

WT  5
WT  

1
WT  1 0.539 0.856 0.859 0.851 

2
WT  1 0.431 0.539 0.551 

3
WT   1 0.968 0.957 

4
WT    1 0.999 

5
WT     1 

 

Tuning Parameters:  The effect of the tuning parameters on the clustering 

results is discussed here. The value of k required to adequately describe a dataset has 

received considerable attention in literature (Valle et al., 1999). Figure 3-16 shows the 

effect of k on mode identification results for the regenerator section. When k is 

increased, more PCs corresponding to smaller eigenvalues are considered in the steady 

state identification. Due to the ensuing increase of noise in the scores, the durations of 

the transitions increase and modes can be merged into transitions. However, as can be 

seen, the effect of k is not significant and the majority of modes and transitions are 

consistently identified regardless of the value of k.  
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Figure 3-16: Steady states identification in regenerator section based on different k 

The TSmin is an important parameter that significant affects the resolution of the 

states as well as the computational capacity. It can normally be specified using process 

knowledge, specifically the process operation, time constant and the expected duration 

of modes. Mode identification results for several values of TSmin are summarized in 

TABLE 3-10. When TSmin is increased from 60 min to 120 min, short periods of steady 

states within a transition are not flagged as modes and the total number of modes 

reduces from 10 to 6. The durations of the transitions consequently increase and the 

number of transitions decreases. 

TABLE 3-10: Number of states identified for different TSmin 

TSmin Number of Modes Number of Transitions 

60min 10 9 

90min 6 5 

120min 6 5 
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The variation tolerance threshold dθ  also affects the length and number of modes 

identified. However, as shown in Figure 3-17 this effect is marginal. For a wide range 

of dθ , from 3% to 12%, the number of modes identified is the same but only their start 

and end times vary slightly. When dθ  is increased, new modes are identified (see dθ  

increase from 11% to 13%) and some modes are amalgamated (see dθ  increases from 

14% to 17%). The number of modes identified will increase to a maximum and then 

reduce to one for large values since in the latter case, the whole dataset will be deemed 

to be in a mode. We have found dθ =5% to be a suitable choice for most cases.  
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Figure 3-17: Steady states identification in regenerator section based on different dθ  

Mθ  and Tθ  can be estimated from historical data based on a priori knowledge of 

the process. They should reflect the noise level and the run-to-run variations expected 

in the process. We have found the value of 0.9 to be suitable for both and used this 

value in all case studies. As seen in TABLE 3-2 and TABLE 3-6 for inter-mode 
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similarities, TABLE 3-3 and TABLE 3-7 for inter-transition similarity, and TABLE 

3-5 and TABLE 3-8, for intra-transition similarity can all be adequately identified with 

this threshold.   

The regression order l plays a significant role in the ability of DPCA to 

differentiate between transitions. Ku et al. (1995) proposed an iterative procedure for 

determining l. While l=2 has been reported to be adequate for many processes, Figure 

3-18 reveals that, to completely capture the nonlinearities in the ShadowPlant, a value 

of l=5 is necessary. A larger lag l is better to differentiate transitions; however, it leads 

to increased computational requirements. As shown in the figure, when l is increased, 

the similarity factors between the different transitions (such as 3
WT  and 4

WT  and 3
WT  

and 5
WT ) declines faster while the similarity factor between analogous transitions (such 

as 4
WT  and 5

WT ) reduces slowly. For clustering therefore, an intermediate value such as 

l=5, presents a good tradeoff between accuracy and calculation speed. In the Section 

3.4, I present the results from clustering process states in the Tennessee Eastman 

process. 
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Figure 3-18: Effect of lag l on DPCAS λ  in waste heater boiler section 

3.3.3 Comparison of Proposed Method with Existing Approaches 

Several existing clustering algorithms have been discussed in the literature 

review. Static clustering techniques such as k-means and c-means clustering 

investigate only the relative position between feature vectors and centers. The auto-

correlation information in temporal signal is lost. Therefore, these methods are 

inapplicable for process states which are characterized by the temporal evolution of the 

process variables.  

Klaus et al. (1996) proposed a neural network system consisting of q single 

networks, and q>m, where m is the estimated number of clusters. The system is trained 

so that each network approximates the underlying regression function f of a single 

cluster. After training, clustering of a new feature vector is achieved through the 

comparison of q prediction errors from the q networks. This method is tested on waste 

heat boiler section. The procedure of Klaus’ method is summarized here: 
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1. Initializing a number of q neural networks. There is no requirement for the 

type of neural network. The number q is selected randomly, but it must be 

larger than the number of clusters. That is, the number of clusters has to be 

estimated a priori 

2. Training q networks simultaneously by using gradient decreasing 

t
t i

i i
t i

w p
w
ε∂

∆ ∝ −
∂∑ . iw  is the network weights. The weighting coefficient t

ip  

corresponds to the relative probability for the contribution of network i and 

the 1ii
p =∑ . t

ip  will reinforce the training of one of the networks to 

approximate the particular function, while at the same epoch other networks 

remain unchanged or very small change.  

3. After training, finding out the networks segmented the time series almost 

exactly at the switching points, while others will be drifted off.  

4. Using these networks to do winner-take-all clustering in term of their 

prediction error. 

Klaus’ method clusters the process data based on the neural network prediction 

error. It is therefore only suitable to uni-variate case. In waste heat boiler section, a 

single variable 16FC118 is selected for the test. The evolution of the variable is shown 

in Figure 3-19. 
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Figure 3-19: Evolution of 16FC118 in waste heat boiler section 

Six RBF networks with same centers and random initial weights are built. After 

training, the data from G2 are fed into the network and the prediction errors are 

investigated. At each time instance, the smallest prediction error is picked out and the 

corresponding network is chosen to mark the data cluster. The final validation results 

are shown in Figure 3-20. In the figure, the solid line represents the operating states 

from 1 to 6 identified by the networks. It can be seen from the figure, the underlying 

dynamics of the steady state is uniform. In these steady states, the identification results 

of mode are acceptable such as M1 and M2. However, during process transition T1 and 

T2, the process presents rich dynamics that can not be categorized by a single function. 

Therefore, in these states, the clustering results are very confused. The method 

proposed by Klaus required that the process does not switch dynamics frequently. This 

is normally not satisfied in real process especially during transition. In addition, it is 
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difficult to know the number of clusters a priori and select the number of networks 

accordingly. 
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Figure 3-20: Six operating states identified in waste heat boiler section by Klaus’s method 

 As discussed in literature review, a trend-based approach to mode and transition 

identification has been previously proposed by Sundarraman et al. (2003). A 

comparison of the results obtained from the trend-based approach with the proposed 

method indicates that both methods identify essentially the same modes and transitions. 

The trend-based approach identified seventeen operating states comprising nine modes 

and eight transitions for the regenerator section and fifteen operating states including 

eight modes and seven transitions for the waste heater boiler section. There is a one-to-

one match in the long duration modes and transitions found by the two methods. 

Examples of this are shown in Figure 3-21 and Figure 3-22. Figure 3-21 (a) shows a 

mode identified by the trend-based approach in waste heat boiler section and Figure 

3-21 (b), the corresponding state identified by the PCA method. It can be noted that 
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both methods identify almost the same beginning and end positions of these two steady 

states. Both the approaches find the same two instances of this mode during the entire 

startup. Similarly, Figure 3-22 shows a transition identified in waste heat boiler section 

by the two approaches. Differences were found between the two approaches in the 

characterization of the short-duration states (both modes and transitions) and are to be 

expected because of the differences in the comparison schemes and the parameter 

settings.   
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Figure 3-21: Steady state identified in waste heat boiler section (a) Steady state identified by 

trend-based approach (b) Steady state identified by proposed PCA approach 
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Figure 3-22: Transition identified in waste heat boiler section (a) Transition identified by 

trend-based approach (b) Transition identified by proposed PCA approach 

From the above comparison, one key advantage of the proposed PCA clustering 

approach is its inherent multivariate nature whereas the Klaus and trend-based 

approaches require that each variable is investigated one by one. Also, the trend and 

the DTW-based transition comparison are computationally expensive and are therefore 

performed on selected key variables instead of all variables in a process unit. The 

selection of key variables for a process unit is a nontrivial problem which is eliminated 

in the PCA-based approach. The analogous problem of selecting a subset of the PCs is 

a simpler one with clear guidelines. The PCA-based approach used here is based on the 

normalization of process variables; transition comparison therefore focuses only on 

process trends and not on the magnitudes of the variable. In contrast, the trend-based 

approaches use additional quantitative process information such as the starting value of 

a variable during transition and hence perform a stricter comparison.  

The PCA operation in the proposed clustering method can also filter the process 

measurement noise. The steady state identification and transition similarity comparison 
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therefore are not affected significantly by the disturbance. However, Klaus algorithm 

examines the underlying function of the process data by monitoring the prediction 

error. This is comparatively sensitive to the process noise which can cause the process 

unobservable during transitions.   

3.4 Tennessee Eastman Process 

The Tennessee Eastman (TE) process reported by Downs and Vogel (1993) is a 

popular test bed for process systems applications such as plant-wide control, 

optimization, predictive control, fault diagnosis and signal comparison. The process 

produces two products (G and H) and a byproduct (F) from reactants A, C, D, and E. 

The process flowsheet is shown in Figure 3-23. The process has five unit operations: a 

two-phase reactor, a product condenser, a flash separator, a recycle compressor, and a 

product stripper. The simulation in this work uses the closed-loop process Matlab 

simulator developed by Singhal (2001) based on the base control structure of McAvoy 

and Ye (1994). There are 53 variables in the process: 22 of these are process 

measurements variables, 19 are component compositions, and 12 process manipulated 

variables. The agitator speed is left constant in the simulation, hence it is not 

considered in the analysis. The remaining 52 variables are investigated to evaluate the 

DPCA-based method robustness. A sampling time of 3 minutes is used here.  
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Figure 3-23: Schematic of Tennessee Eastman process with control system 

In order to simulate agile, multi-mode operation, I have introduced five set point 

changes in the process, which resemble multi-mode operations in real industrial 

processes. The five new classes XD1 – XD5 affect the A feed flowrate, reactor 

pressure, reactor level, reactor temperature, and compressor work. Further, different 

instances (runs) of the same class have different start times, duration, and magnitude. 

For example, during XD1-A, the flowrate of A feed from upstream is increased from 

the base case value of 0.25052 kscmh to 0.3902 kscmh (a 60% change) at t=180 min. 

After the process recovers from these, the inverse change, decreasing the A feed flow 

is introduced at t=780 min. The process is then allowed to return to a steady state. The 

effect on the A flow rate (XMEAS(1)) and the downstream pressures (XMEAS(13) 

and XMEAS (16)) is shown in Figure 3-24. Two other instances XD1-B and XD1-C 

with magnitude of 55% and 50% are also introduced as shown in Table 3-11. As 
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summarized in TABLE 3-12, similar changes were introduced to bring forth classes 

XD2–XD5. 

 

Figure 3-24: Process signals for XD1 

Table 3-11: Disturbance profile for XD1 

 Target Time 
(min) Target Time 

(min) Target Time 
(min) Target Time 

(min) 

XD1-A 1.20*Base 
value 180 1.40*Base 

value 190 1.60*Base 
value 200 1.0*Base 

value 780 

XD1-B 1.15*Base 
value 240 1.35*Base 

value 254 1.55*Base 
value 268 1.0*Base 

value 900 

XD1-C 1.10*Base 
value 300 1.30*Base 

value 318 1.50*Base 
value 336 1.0*Base 

value 1020

TABLE 3-12: Operating states for Tennessee Eastman process 

Case Description Base Value Change  

XD1 Increase ‘A’ feed flowrate   0.25052 kscmh 50% 55% 60% 

XD2 Increase of Reactor pressure  2705 kPa gauge 6% 6.5% 7% 

XD3 Increase in the reactor level  75% 12% 13.5% 15% 

XD4 Reactor temperature increase 120.04°C 12% 13.5% 15% 

XD5 Decrease of compressor work  341.43 kW 12% 13.5% 15% 
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Each instance of the five classes has five operating states – two transitions 

corresponding to the two transients and three modes. The two-step clustering method 

was applied to identify and compare these states. Steady state identification was 

performed using k=5, Tw=120 min and 0.1dθ = . In all cases, the five operating states 

were successfully identified with an average change point detection error of 1.1%. The 

similarity factors SM among the 15 modes for the instances are shown in TABLE 3-13. 

As can be seen, the second mode (M2) in any run can be clearly differentiated from the 

first (M1) and the third (M3) with an average SM less than 0.55. M1 and M3 are clustered 

together in four classes with an average SM of about 0.92. In these cases, M1 and M3 are 

similar since the process is returned near the original state by the controllers after 

transition T2. During XD4, the stripper steam valve is 47% open during M1 but only 

34% during M3. This difference in the process state is reflected by the low similarity 

(SM= 0.58) between them. 

TABLE 3-13: Average euclidean distances among modes in XD1 ─ XD5 

Case 
1 2( , )MS M M  2 3( , )MS M M  1 3( , )MS M M  

XD1 0.806 ± 0.010 0.800 ± 0.010 0.954 ± 0.003 

XD2 0.518 ± 0.020 0.523 ± 0.030 0.877 ± 0.004 

XD3 0.607 ± 0.040 0.606 ± 0.040 0.910 ± 0.000 

XD4 0.329 ± 0.070 0.359 ± 0.070 0.586 ± 0.01 

XD5 0.483 ± 0.055 0.550 ± 0.050 0.926 ± 0.006 

 

A regression order of l=25 was found to be optimal for this process. Within the 

same class, all six transitions show similar dynamics. The average DPCAS λ  for intra-class 

comparison is 0.958. This high similarity factor reflects the fact that the transitions 

from the same class, even of different magnitudes, are clustered together. The 

similarity comparison is thus robust to run-to-run magnitude differences.   
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The DPCA factor DPCAS λ  is then used to cluster the 30 transitions and the results 

are shown in TABLE 3-14. The average value of DPCAS λ  between the 10 (that is, 5
2C ) 

pairs of transitions is 0.733 and illustrates the ability to differentiate between operating 

states resulting from different sources and exhibiting different dynamics. Two pairs of 

operating states are found to have similar dynamics, (XD1,XD2)=0.871 and   

(XD3,XD5)=0.880. As discussed before, if differentiation between XD1 and XD2, or 

XD3 and XD5 is required for an application, it can be achieved by using the 

supplementary mode comparisons in Equation [3-15]. In this case, SM(XD1-M2, 

XD2-M2)=0.319 and SM(XD3-M2, XD5-M2)=0.466, and the magnitude-sensitive 

comparison reveals that XD1 and XD2, XD3 and XD5 are from different classes. 

The transition comparison method proposed here is general and can be used for 

other applications such as fault diagnosis. The twenty disturbances proposed by Downs 

and Vogel [26] are used for the purpose. Twenty disturbances (IDVs) for the TE plant 

involving inlet-cooling temperature, A/C feed ratio, sticking valve, etc. These 

disturbances have been built into the simulation and have been popularly used in 

literature for testing process control and monitoring algorithms. In this work, IDV6 is 

not considered. Each disturbance can be initiated randomly and the process evolution 

observed. In the closed-loop process, usually the controller would reject the 

disturbance and eventually bring the process back to the original state. For the twenty 

IDVs, this period ranges from 12 to 24 hours.  

Any pattern comparison algorithm is evaluated through its ability to differentiate 

among the disturbances. A PCA similarity factor based comparison of the 19 

disturbances is shown in  

TABLE 3-15 and brings forth the difficulty in differentiating among them due to 

the nonlinearity and noise in the process. Among the 210 disturbance-pairs, 39 pairs 
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corresponding to eleven disturbances are similar ( 0.9PCAS λ ≥ ) indicating that these 

faults are closely clustered in the feature space. This is also illustrated by the spread in 

the similarity factor (mean 0.67 and the standard deviation of 0.2) among the 190 non-

diagonals. Another shortcoming of the PCA similarity factor is inconsistency in the 

clusters (that is a lack of the transitive property, as explained below). Similar 

difficulties were pointed out by Huang [28] where nonlinear extensions to PCA could 

correctly isolate in the order of 50% of the cases. 

The DPCA-based transition similarity factor was used to differentiate between 

the IDVs. The comparison results using l=25 are shown in TABLE 3-16. We can see 

that there are 22 disturbance-pairs that are similar ( 0.9DPCAS λ ≥ ). The DPCAS λ

 based 

similarity comparison consequently cannot differentiate among 9 faults, a clear 

improvement over the above results. The lower mean (0.60) and the larger standard 

deviation (0.27) also highlight the efficacy of the DPCAS λ  metric. In addition, the results 

from DPCAS λ  are consistent, that is if IDV3 is similar to IDV4 and IDV4 is similar to 

IDV5 then IDV3 and IDV5 are also flagged as similar. Exploiting this, for faults such 

as IDV3 where a single cause cannot be pinpointed, the comparison results can be used 

to narrow the search to only the faults in that cluster (for example IDV4,IDV5,IDV9).  
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TABLE 3-14: DPCA similarity factors among transitions in XD1 ─ XD5 

Transition XD1-T1 XD1-T2 XD2-T1 XD2-T2 XD3-T1 XD3-T2 XD4-T1 XD4-T2 XD5-T1 XD5-T2 

XD1-T1 0.926 ± 0.040 0.896 ± 0.010 0.878 ± 0.040 0.832 ± 0.090 0.712 ± 0.010 0.742 ± 0.007 0.458 ± 0.006 0.608 ± 0.008 0.778 ± 0.009 0.822 ± 0.004 

XD1-T2  0.996 ± 0.001 0.900 ± 0.004 0.876 ± 0.060 0.822 ± 0.005 0.812 ± 0.007 0.545 ± 0.001 0.686 ± 0.008 0.840 ± 0.008 0.839 ± 0.009 

XD2-T1   0.927 ± 0.040 0.855 ± 0.050 0.625 ± 0.008 0.629 ± 0.007 0.426 ± 0.020 0.562 ± 0.008 0.696 ± 0.008 0.714 ± 0.006 

XD2-T2    0.955 ± 0.050 0.847 ± 0.040 0.860 ± 0.007 0.556 ± 0.020 0.749 ± 0.008 0.848 ± 0.010 0.864 ± 0.010 

XD3-T1     0.998 ± 0.002 0.980 ± 0.001 0.632 ± 0.050 0.820 ± 0.005 0.871 ± 0.008 0.862 ± 0.010 

XD3-T2      0.998 ± 0.001 0.617 ± 0.003 0.814 ± 0.004 0.899 ± 0.008 0.889 ± 0.001 

XD4-T1       0.997 ± 0.003 0.917 ± 0.004 0.511 ± 0.006 0.504 ± 0.009 

XD4-T2        0.992 ± 0.000 0.689 ± 0.006 0.647 ± 0.016 

XD5-T1         0.995 ± 0.005 0.952 ± 0.003 

XD5-T2          0.996 ± 0.001 
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TABLE 3-15: PCAS λ  among twenty IDVs 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1.000 0.231 0.447 0.456 0.460 1.000 0.530 0.851 0.463 0.439 0.477 0.562 0.726 0.447 0.450 0.431 0.556 0.572 0.429 0.597
2 1.000 0.509 0.504 0.496 0.231 0.329 0.238 0.505 0.466 0.426 0.394 0.374 0.490 0.501 0.425 0.364 0.141 0.483 0.165
3 1.000 0.971 0.997 0.447 0.461 0.591 0.996 0.900 0.874 0.902 0.549 0.973 0.999 0.915 0.628 0.612 0.980 0.626
4 1.000 0.971 0.456 0.472 0.591 0.972 0.872 0.924 0.889 0.567 0.984 0.972 0.886 0.636 0.605 0.959 0.633
5 1.000 0.460 0.480 0.613 0.996 0.901 0.881 0.918 0.557 0.973 0.998 0.919 0.641 0.639 0.980 0.652
6 1.000 0.530 0.851 0.463 0.439 0.477 0.562 0.726 0.447 0.450 0.431 0.556 0.572 0.429 0.597
7 1.000 0.653 0.477 0.427 0.477 0.593 0.628 0.466 0.465 0.461 0.557 0.574 0.468 0.617
8 1.000 0.606 0.563 0.656 0.783 0.692 0.592 0.593 0.590 0.754 0.894 0.605 0.898
9 1.000 0.900 0.884 0.915 0.564 0.972 0.996 0.915 0.639 0.626 0.979 0.640

10 1.000 0.789 0.839 0.512 0.872 0.899 0.938 0.580 0.584 0.893 0.593
11 1.000 0.878 0.548 0.911 0.875 0.807 0.710 0.674 0.885 0.697
12 1.000 0.598 0.887 0.902 0.876 0.762 0.819 0.910 0.834
13 1.000 0.555 0.552 0.490 0.684 0.562 0.522 0.598
14 1.000 0.975 0.888 0.635 0.604 0.958 0.636
15 1.000 0.916 0.625 0.614 0.979 0.627
16 1.000 0.610 0.648 0.913 0.652
17 1.000 0.841 0.655 0.857
18 1.000 0.642 0.994
19 1.000 0.658
20 1.000  
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TABLE 3-16: DPCAS λ  with l=25 among twenty IDVs 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0.210 0.245 0.322 0.247 1.000 0.419 0.730 0.244 0.245 0.337 0.264 0.677 0.251 0.238 0.202 0.385 0.319 0.231 0.313
2 1.000 0.234 0.284 0.217 0.210 0.285 0.187 0.228 0.225 0.222 0.149 0.341 0.222 0.217 0.159 0.319 0.075 0.203 0.087
3 1.000 0.938 0.992 0.245 0.332 0.524 0.991 0.863 0.812 0.839 0.368 0.976 0.998 0.868 0.566 0.567 0.967 0.592
4 1.000 0.937 0.322 0.376 0.531 0.937 0.800 0.865 0.802 0.429 0.955 0.938 0.804 0.570 0.556 0.911 0.580
5 1.000 0.247 0.350 0.559 0.992 0.870 0.825 0.875 0.365 0.971 0.995 0.878 0.582 0.601 0.969 0.625
6 1.000 0.419 0.730 0.244 0.245 0.337 0.264 0.677 0.251 0.238 0.202 0.385 0.319 0.231 0.313
7 1.000 0.508 0.339 0.306 0.406 0.415 0.537 0.343 0.331 0.313 0.459 0.497 0.344 0.487
8 1.000 0.542 0.492 0.622 0.732 0.553 0.521 0.524 0.524 0.714 0.840 0.558 0.838
9 1.000 0.865 0.833 0.868 0.363 0.973 0.992 0.873 0.579 0.588 0.967 0.614

10 1.000 0.710 0.791 0.336 0.838 0.863 0.893 0.525 0.567 0.859 0.582
11 1.000 0.836 0.406 0.860 0.810 0.732 0.673 0.653 0.819 0.678
12 1.000 0.332 0.824 0.841 0.834 0.723 0.796 0.862 0.820
13 1.000 0.367 0.358 0.280 0.546 0.350 0.338 0.351
14 1.000 0.976 0.842 0.567 0.565 0.943 0.589
15 1.000 0.869 0.558 0.568 0.967 0.592
16 1.000 0.554 0.602 0.874 0.622
17 1.000 0.840 0.593 0.848
18 1.000 0.603 0.988
19 1.000 0.632
20 1.000
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3.5 Conclusions and Discussion 

Operating states in multi-mode operation evolve over long periods of time. In 

batch operation as well as during startup, grade change, and shutdown activities in 

continuous processes, the process is characterized by complex temporal dynamics. 

Process automation applications for advanced and supervisory control are applicable to 

specific process states (usually the quasi-steady state). In order to function properly 

during periods of transition, these applications have to be dynamically reconfigured 

with state-specific parameters and models. State identification is therefore essential 

during agile operations. As a step towards that goal, I have developed a multivariate 

statistics-based methodology to cluster process states in historical operations data.  

Process data are first segmented based on regions of steady state operations into 

modes and transitions. Similar modes are identified by comparing their means. A new 

dynamic PCA-based similarity factor, which accounts for the autoregressive nature, 

has been developed to cluster transitions. The technique was applied to data collected 

from two kinds of agile operation – startup of a simulated FCCU and multi-mode 

operation in the Tennessee Eastman plant simulation. Application to fault isolation was 

also demonstrated in the latter case study. In all cases, the method correctly identified 

and clustered the modes and transitions. These tests thus highlight the applicability of 

the state segregation and the superiority of the DPCA-based transition similarity factor.  

The proposed strategy is compared with several existing algorithm such as Klaus 

clustering method and trend-based approach. The proposed methodology offers several 

advantages. It accounts for the multivariate nature of chemical processes naturally and 

is hence superior to methods like Klaus, DTW and qualitative trend comparison, which 

are designed for one-dimensional data. Also, the trend and the DTW-based transition 

comparison are computationally expensive and are therefore performed on selected 
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key variables instead of all variables in a process unit. The selection of key variables 

for a process unit is a nontrivial problem which is eliminated in the proposed approach. 

The homologous problem of selecting k, the subset of the PCs, is a simpler one with 

clear guidelines. The normalization of process variables during transition comparison 

ensures that the focus is on the underlying dynamics. The magnitude of the change is 

correctly ignored thus making the comparison more robust to run-to-run differences. 

However, if a stricter comparison is necessary, magnitudes can also be included 

through the SM factors as demonstrated in the TE case study. The DPCA factor results 

in a quantitative comparison of two transitions instead of a binary judgment. While this 

makes the similarity results dependent on the tuning parameters, the results are 

consistent for a range of parameter values. The proposed DPCA factor is also 

compared with the traditional PCA factor. DPCA factor shows superiority especially 

when the process presents high auto-correlation. I have also developed clear guidelines 

for setting the parameter values. The computational requirement of this approach is 

quite modest and allows large amount of data to be analyzed in a short period. 
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Chapter 4. Neural Network Systems for 

Multivariate Temporal Pattern Classification 

4.1 Introduction 

In Chapter 3, I have proposed a DPCA-based multivariate clustering method, 

which can segment and group the process operating states according to their temporal 

features. The resulted operating state knowledge can then be used to train the 

supervisory classifier to identify the operating state in real time. However, the 

proposed clustering method is not suitable to univariate process data. In case a priori 

knowledge is needed to train a network monitoring univariate process (like the case of 

OVON which will be discussed later), a visually checking for clustering is adopted.  

Consider a process whose state at time t is reflected by the nd dimensional vector 

( ) :[ ( ), ( 1), , ( )]nd d d dX t X t X t X t l− − , where ( )dX t l−  is the value of process vector 

1 2[ , , , ]dx x x  at time t-l, d denotes the number of variables, l represents the size of the 

data window or the memory of the system, ( 1)nd d l= × +  and nd ndX ∈ . Here the 

vector ndX  that reflects the temporal pattern at a certain time is called the process 

feature vector (note its difference from process vector). The problem of identifying the 

operating state from the process measurements is a data classification problem of 

finding a mapping ˆ( ) ( )ndS t X t← , where 1 2( ) { , , , }nkS t S S S∈ . ˆ( )S t  is normally an 

integer that represents the ith operating state. In this chapter, the process feature vector 

is assumed to be context independent, i.e. each pattern represents a unique operating 

state (Srinivasan et al., 2004a); so the mapping between ˆ( ) and ( )ndX t S t  has to be 
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one-to-one or many-to-one. Suppose a set of process vectors generated from a 

particular operating state ˆ
ˆ

jS from time (t-q) to (t-p) ( p q< ) 

is ˆ : { ( ), ( 1), , ( )}d d d d
jD X t p X t p X t q− − − − . The corresponding feature vector set is 

ˆ : { ( ), ( 1), , ( )}nd nd nd nd
jD X t p X t p X t q− − − − , where every element of ˆ

nd
jD  is a 

snapshot of a moving data window of size l that is expected to contain sufficient 

temporal information for state identification.  

Several methods for supervised classification have been proposed. Neural 

networks are widely used for data classification in industrial control due to their 

robustness and learning capacity as I reviewed in Chapter 2. However, the application 

of neural network becomes a challenge when the data dimensionality and pattern 

complexity is very high. This is well-known as “dimensionality curse”. In this chapter, 

I propose two new neural network structures that overcome the curse of dimensionality 

and the complexities in temporal pattern recognition. The One-Variable-One-Network 

(OVON) architecture decomposes the problem in the variable dimension – uni-variate 

temporal patterns, called sub-states, are first identified in each variable; subsequently, 

the process state is inferred using the variable sub-states. The One-Class-One-Network 

(OCON) architecture uses a problem decomposition in the class dimension – the 

presence of specific temporal patterns in a high-dimensional space is first established 

using a bank of two-class classifiers. The process state is then identified by 

aggregating the results of the different classifiers. Both the architectures use a set of 

neural networks – in OVON there is one network for each variable, while in OCON, 

one network is used for each pattern class to be identified. In comparison to traditional 

monolithic neural networks, both the proposed architectures improve classification 

accuracy and minimize the training complexity. In addition, OVON is robust to sensor 

failures and OCON is well suited for addition of new pattern classes. The structures 



Chapter 4                                Neural Network Systems for Multivariate Temporal Pattern Classification 
___________________________________________________________________________________ 

 75

and training methodologies of the two architectures are presented and their 

performance compared against traditional neural networks using patterns arising 

during transitions in a simulated fluidized catalytic cracking unit.  

This chapter is organized as follows. Two neural network-based systems that can 

simplify the classification problem are described in Section 4.2. In Section 4.3, I 

illustrate the performance of these systems on several case studies from a simulated 

fluidized catalytic cracking unit. Finally in Section 4.4, a comparison of the two 

methods is presented and conclusions are drawn. 

4.2 Neural Classification Systems for Temporal Pattern Classification 

4.2.1 One-Variable-One-Net (OVON) System 

System Structure: A neural network architecture, called One-Variable-One-Net 

(OVON), which is based on the decomposition of the multivariate input into a set of 

uni-variate ones, is proposed in this section. In OVON, patterns in each variable are 

first identified based on spatial or temporal features; subsequently these are unified to 

identify the operating state.  

In a multivariate process with nk operating states, each variable xi can be 

considered to have nki sub-states. An example of temporal patterns from a bi-variate 

process is shown in Figure 4-1. Three distinct sub-states are defined for X1 from an 

operations point-of-view ─ sub-state 1 during t=[1 35] when X1 is at a quasi-steady 

state around 110, sub-state 2 during t=[36 125] when X1 increases, and sub-state 3 

during t=[126 270] when x1 settles down to another steady state around 180. X2 can 

also be simply classified into two sub-states ─ sub-state 1 during t=[1 125] when X2 is 

in a steady state and sub-state 2 when X2 drops to another steady state after a short 
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transient. Here the sub-states are classified primarily based on the slope of the 

variables; however, in general, any criterion can be used to demarcate the states.  

20 70 120 170 220 270
-50

0

50

100

150

Time

Va
ria

bl
e

sub-state 1

sub-state 2

sub-state 1

sub-state 2

sub-state 3

x1
x2

1̂S 2Ŝ 3Ŝ
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Figure 4-1: Example of sub-states 

The OVON is based on demarcating the states at the variable-level. Figure 4-2 

shows the typical structure of the OVON system. It comprises of two layers: the sub-

state identification layer and the unification layer. The sub-state identification layer 

consists of d neural networks [VN1, VN2, …,VNd] corresponding to the d process 

variables. Each network VNi identifies the sub-state of variable xi. The input to VNi  is 

the value of feature vector [ ( ), ( 1), , ( )]i i i ix t x t x t l− −  that provides temporal 

information for pattern identification. The output of VNi is an integer ( )ixS t , the sub-

state of variable Xi  at time t. 1 2( ) [ , , , ]i i i i

i

x x x x
nkS t S S S∈ . Network VNi can be designed 

based on the characteristics of the variable and its features. A Multilayer Perceptron 

network (MLP), Radial Basis Function network (RBF), Elman recurrent network, 
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Time Delay Neural Network (TDNN), or other neural networks can be used in the sub-

state identification layer.  

VN 1 VN2 VN d

Neural Network
Unification

layer

Sub-state
identification

layer

Operating state

( )xD tOutput:

1 2( ) { , , , }nkS t S S S∈

1
1 ( )ndx t 2

2 ( )ndx t ( )dnd
dx t

1 ( )xS t 2 ( )xS t ( )dxS t

 

Figure 4-2: Structure of OVON 

The unification layer is used to infer the operating state of the process based on 

the outputs of the sub-state layer networks. The operating state of the multivariate 

process is thus obtained by the mapping: 1 2ˆ( ) ( ) :[ ( ), ( ), , ( )]dxx xxS t D t S t S t S t←  where 

1 2( ) [ , , , ]i i i i

i

x x x x
nkS t S S S∈  and 1 2( ) [ , , , ]nkS t S S S∈ . Different combinations of the 

outputs from the sub-state identification layer indicate different process operation 

states. Note that, 
1

d

i
i

nk nk
=

≤∏ . The unification layer can be any neural network. We 

have found RBFs to be efficient due to the local nature of their approximation and the 

ease of training them with integer inputs, as is the case here. 

Training: The training of the OVON begins with the training of the sub-state 

identification networks. Process data are first normalized to [0, 1] based on the 
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measurement range of the sensor to avoid the effect of different scales (Equation[3-6]). 

Each VNi is trained individually using a priori knowledge of the nki operating states. 

The structure of each iVN  is defined based on the complexity of the patterns. When a 

variable contains intricate dynamics, temporal information is crucial for classification. 

A large lag l, more hidden neurons, and several hidden layers would be needed in such 

cases. Each iVN  is then trained to output: 

 ( ( )) ( )i i i i

i

x nd nd nd
j VN i i jS f X t if X t D j= ∈ ∀  [4-1] 

where 
iVNf  is the mapping embedded in iVN . The training set 

1 2
1 1 2 2{( , ), ( , ), ,( , )}i ii i

i i

nd xnd x xnd
nk nkD S D S D S  thus comprises of ind

jD , the feature matrix with the 

values of delayed feature vectors ( ) :[ ( ), ( 1), , ( )]ind
i i i i ix t x t x t x t l− −  corresponding to 

each sub-state  ix
jS . The dimensionality ind  of the input feature vector could be 

different for different iVN  since the input time delay il  is based on the characteristics of 

the patterns in variable iX . The training algorithm is selected based on the network 

structure, for example, back propagation for MLP, Elman network, and TDNN or 

linear least squares for RBF. Each iVN  in the sub-state identification layer is trained in 

this manner. 

The unification layer is then trained using the outputs of the trained sub-state 

networks. The trained iVN  are simulated with the normalized training data indX . Each 

element in the d-dimensional output 1 2( ) :[ ( ), ( ), , ( )]dxx xxD t S t S t S t  is rounded to the 

nearest integer to form 1 2( ) :[ ( ), ( ), , ( )]dxx xxD t S t S t S t , where 1 1( ) round( ( ))x xS t S t= . 

The purpose of rounding is to minimize the propagation of noise in the process data to 

the unification layer (See Section 4.4). The training set 
1

1 22{( , ),( , ), , ( , )}x x x
nknkD S D S D S  
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thus comprises of 
1

xD , the matrix with the output vectors from the sub-state 

identification layer corresponding to each sub-state   

Advantages: The main advantage of the hierarchical structure in OVON is that 

temporal classification is reduced to a low (l+1)-dimensional space instead of the 

original, much higher ( 1)d l× +  one. It also provides the flexibility to select a variable-

specific value for li in the sub-state identification networks. This is in contrast to a 

monolithic neural network where l has to be assigned based on the longest time 

constant among the d variables in order to capture the process dynamics adequately. 

Consequently, more complex networks such as Elman networks can be used to 

improve sub-state identification accuracy if necessary while maintaining modest 

computational requirements. Another important advantage is that due to the 

independent and distributed nature of sub-state identification, this architecture is more 

robust to measurement faults. Sensor faults are common in chemical plants and can 

compromise state identification results. For proper functioning of a traditional 

monolithic network in such situations, the network would need to be completely 

retrained using only the correctly functioning sensors. In the case of OVON, since only 

one sub-state identification network would be affected for each measurement fault, the 

resulting errors are localized and can be eliminated by retraining only the unification 

layer. Thus minimizes the computational burden. It should be noted that if the state of 

the system becomes unobservable due the sensor failure, the results from any state 

identification approach, including the monolithic network and OVON, will be 

unreliable. Conversely, when a new sensor measurement becomes available, only one 

new sub-state identification network has to be developed and the unification layer 

retrained to take advantage of the additional information. This is also an easier task 

compared to retraining a monolithic network. 
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4.2.2 One-Class-One-Net System 

System Structure: The One-Class-One-Net (OCON) architecture is based on 

the decomposition of the multi-pattern classification problem into a set of two-pattern 

classification sub-problems. This simplification strategy has been used in face 

recognition (Jou et al., 1995), handwriting recognition (Baltzakis and Papamarkos, 

2001; Jou et al., 1992; Tsay et al., 1992) and speech recognition (Sekhar and 

Yegnanarayana, 1996) and is reported to provide a good trade-off between 

classification accuracy and training complexity.  

Figure 4-3 shows the typical structure of the OCON system. It comprises of two 

layers: the state identification layer and the regulator layer. When a single neural 

network is applied to a multi-pattern classification problem, it has to establish a 

number of up to (nk-1) surfaces to separate the input ndR  space into nk sub-spaces. 

This is a challenge especially when the patterns are complex and nk is large. The 

OCON overcomes this challenge by reducing it into simpler two-class separation sub-

problems which require only one surface in ndR . As shown in Figure 4-3, the state 

identification layer of OCON consists of nk sub-nets [CN1, CN2, …,CNnk] 

corresponding to the nk operating states. All the networks share the same input 

variables ˆ ( )jndX t . Each ĵCN  is trained so that it outputs one when the input vector 

ˆ ( )jndX t  is generated from ˆ
ˆ

jS  and zero when the input is from any other operating state. 

That is: 
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 ∈= = ≤ ≤
∉

 [4-2] 

where ĵZ  is the output of sub-network ĵCN , ˆ

ˆ
jnd

jD  is the feature matrix containing 

delayed feature vectors from operating state ˆ
ˆ

jS , and 
ĵCNf  is the mapping embedded in 
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the ĵ -th   neural network ĵCN . The dimensions ĵnd  of the input feature vector can be 

modified to reflect the pattern complexity by varying the input time delay ĵl  for 

different ĵCN . MLP, RBF, Elman recurrent network, TDNN, or other neural networks 

can be used in the state identification layer.  

CN1 CN2 CNnk

Regulator

State
identification

layer

Operating state

nkndX2ndX1ndX

Z2Z1 Znk

Ragulator
layer

ˆ ( )S t

 

Figure 4-3: Structure of OCON 

The role of the regulator layer is to infer the final operating state ˆ( )S t  based on 

the outputs of the nk state identification sub-networks, i.e., 1 2
ˆ( ) ( , , , )s nkS t f Z Z Z= . 

Several functions for sf  have been proposed in literature (Josef and Fabio, 2000). One 

common method is the winner-takes-all criterion where the network with the largest 

output is considered the winner.  

 ˆ1 2( ) , max( , , , )j nk jS t S if Z Z Z Z= =  [4-3] 

An important shortcoming of the winner-takes-all criterion is that it requires that 

at any given instant t, there is only one sub-network whose output is close to one. The 

outputs of all other (nk-1) networks have to be close to zero. In chemical plants, due to 
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process disturbances and operating condition deviations, sometimes there may be no 

clear winner, that is, more than one sub-network may give an output close to one, or 

conversely, no network may clearly dominate. To overcome this, we have 

complemented the winner-takes-all criterion with the following hold-strategy. In our 

hold-strategy, if the outputs of the state identification layer are ambiguous, the 

regulator would consider them as arising due to excess noise in the process data and 

would continue to output the previous operating state. The outputs of classifier system 

are regarded as ambiguous under two situations: (1) If all the networks give an output 

lower than a threshold rθ   or (2) if more than one network gives an output greater than 

rθ . 

 ˆ
ˆ( ) ( 1), { | , } {( , ) , }t r rjj i

S t S t if Z j or Z Z i jθ θ= − < ∀ > ≠  [4-4] 

Training Algorithms: Similar to the training of sub-networks in OVON, each 

ĵCN  is first trained individually using historical data. Normalized process data are used 

for this purpose. The training set is in the form of ˆ1

1 ˆ{( ,0), , ( ,1), ,( ,0)}j nk
nd ndnd

nkjD D D . 

The determination of the structure of each ĵCN  and the corresponding time delay ĵl  is 

based on features of the process and the patterns indicating each operating state. The 

guidelines for structure selection described in Section 4.2.1 are also applicable here.  

While ĵCN  can be any kind of network, RBF is attractive because of the 

localized nature of its activation function. The training of each ĵCN  enables it to 

recognize the following pattern:  
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Instead of using data from every state to train each ĵCN , to reduce the 

computational effort in training, only data from two operating states are used to train 
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each ĵCN . Data from ˆ
ˆ

jS  provide the positive examples from the state to be identified 

while data from any other state ˆ
ˆ

iS  with i j≠  provide the negative examples to enable 

the network to learn the decision boundary. The localized activation function of RBF 

can then adequately map other classes (even those that were not used for training) to 

zero. In this chapter, the Gaussian basis function has been used in all cases. It was 

observed that the choice of the basis function does not affect the RBF’s performance 

(Chen, et al., 1991). In contrast to the unification layer of OVON, the regulator in 

OCON does not need to be trained. The only parameter to be tuned ─ rθ  ─ can be set 

by experimental evaluation.  

Advantage: The advantage of the OCON system is that multi-pattern 

classification has been decomposed into a number of simpler sub-problems. Each 

network deals with a two-class classification problem in the d-dimensional input space. 

This simplifies the classification task and improves the network's generalization 

capability. In addition, similar to OVON, the value of l does not need to be the same 

for each ĵCN . This makes it easier to design a sub-network to balance network structure 

complexity and pattern complexity. Another important advantage of the RBF-based 

OCON is that the local activation functions in ĵCN  are robust to new patterns. Thus, 

even patterns that are not used during training would be rejected by ĵCN  (through an 

output ˆ 0jz ≅ ) if they adequately differ from ˆ
ˆ

jS . Chemical plants commonly operate in 

new states when new raw materials are to be processed or new product grades have to 

be manufactured. In such cases where the new pattern does not significantly overlap 

with the previous ones, all the ĵCN -s in the OCON do not need not to be retrained; 

only the training of one additional sub-network to identify the new state is necessary. 

These results in time-saving compared to monolithic networks which would need to be 
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completely retrained when the set of states has to be modified. In the following 

Sections, we illustrate these features of OVON and OCON using a simulation of a 

large-scale chemical process. 

4.3 Testing on Industrial-Scale FCC Unit 

The classification-ability and performance of the OVON and OCON systems for 

industrial-scale applications was tested  using data from a high-fidelity simulation of a 

refinery Fluidized Catalytic Cracking Unit (FCCU). The ShadowPlant that has been 

introduced in Chapter 3 is used here. As mentioned earlier, several runs of the startup 

were performed following the standard operating procedure. Two of them G3 and G4 

are used here. In each section, superfluous variables were first eliminated to decrease 

the computational requirements. 

Equation [3-6] is then applied to normalize both groups of the multivariate data 

to [0, 1]. A manual clustering based on operator logs is carried out to identify the target 

operating states for training. The boundary between contiguous operating states is 

recorded and used to define the training dataset.  

 Training criteria: The two network architectures have been trained and tested 

for all the sections in the FCCU. For comparison purpose, results from TDNN, RBF 

and Elman are also shown. In all cases, the training is stopped when any of the 

following conditions is satisfied: (1) 1000 epochs for sub-networks in OVON or 

OCON and 3000 epochs for traditional monolithic networks; (2) If the validation error 

is much larger than training error, which indicates overfitting, the number of epoch is 

reduced; (3) training mean square error ≤ 0.1; (4) training error does not decrease for a 

number of epochs.  

Definition of Error: The training and testing performance of each network is 

evaluated using two metrics: (1) the classification error ε ; (2) the training time. 
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 number of mis-classified validation samples
total number of validation samples

mis

total

N
N

ε ==  [4-6] 

The training time (calculated on an Intel PIII workstation with 1.2GHz CPU and 

1GB RAM) is the sum of training times of every individual sub-network for OVON 

and OCON. For detailed analysis, we categorize the classification error into two types:  

 Type-1 errors which occur in the midst of an operating state. This type of error 

is largely due to the disturbances and noise during process operation.  

 Type-2 errors which occur at the beginning or end of an operating state. This 

type of error is mainly caused by complex dynamics of the process not 

adequately captured by the network. 

4.3.1 Air Pre-heater Section 

The air pre-heater section consists of two sub-sections ─ air blower and pre-

heater as shown in Figure 4-4. During startup, when the air blower reaches the steady 

state speed and flow rate, it is connected to the regenerator through the pre-heater. Air 

preheating is used only during startup for initially bringing up the cracker section. 
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Figure 4-4: Overview of air pre-heater section 
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4.3.1.1 Pre-heater Sub-Section 

In the pre-heater section, only 4 of 10 variables are relevant. As can be seen from 

Figure 4-5, the process can be clustered into four states. Therefore, both OVON and 

OCON have four sub-networks. In this case study, RBF is used as sub-nets of OVON 

and OCON.  
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Figure 4-5: Evolution of two process variables of pre-heater  

Testing results: The sub-state identification layer of OVON for this case study 

comprises of four separate RBFs. The classification errors calculated using Equation 

[4-6] are shown in TABLE 4-1. The overall validation error of this OVON is found to 

be 5.3%. 

TABLE 4-1: OVON sub-state identification networks for pre-heater sub-section 

Sub-network Variable name No. of sub-
states 

RBF 
Structure 

Training ε  Validation ε

VN1 16FC105 2 5-15-1 2.0% 2.0% 

VN 2 16FC107 2 5-7-1 1.0% 1.8% 

VN 3 16FI108 2 5-20-1 6.0% 7.0% 

VN 4 16FX103 3 5-10-1 3.6% 3.7% 
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An OCON system was also constructed and tested. Four RBFs corresponding to 

the four states discussed above were initialized with the structures listed in TABLE 4-2. 

The final identification error of OCON is similar to OVON (about 5.3%).  

TABLE 4-2: OCON sub-state identification networks for pre-heater sub-section 

Sub-network RBF Structure Training ε  Validation ε  

CN1 20-10-1 1.3% 1.6% 

CN 2 20-15-1 2.6% 1.7% 

CN 3 20-10-1 3.0% 3.2% 

CN 4 20-30-1 5.2% 4.4% 

 

 For comparison purposes, TDNN, RBF and Elman networks with structures 5-

20-1, 5-30-4 and 1-20-1 respectively were also trained and tested. A summary of their 

performances is shown in TABLE 4-3.  TDNN and Elman networks have higher 

validation errors which are above 10%. In addition, Elman network has a very long 

training time compared all of other networks. The classification error of a single RBF 

is about 6% which is a little higher than OVON and OCON. In this case study, OVON 

and OCON has the best performance in terms of classification error. However, as 

shown in the table, it is not superior much to a single RBF. In the following case study, 

more complicated cases will be used to test the performance of the networks. 

TABLE 4-3: Performances of neural networks for pre-heater subsection 

 Training Time (s) Validation ε  

Sub-networks: 20 
OVON 

Unification layer: 2.5

5.3% 

Winner-takes-all: 5.3% 
OCON 25 

Regulator: 5.1% 

TDNN 117 13.7% 

RBF 15 6.0% 

Elman Network 1323 10.5% 
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4.3.1.2 Air Blower Sub-Section 

Seven measured variables are used for pattern classification in the air blower 

sub-section. Figure 4-6 shows the evolution of two important variables. As seen in the 

figure, the process data can be divided into six segments ─ three transitions ( 1
BT , 2

BT , 

and 3
BT ) and three modes ( 1

BM , 2
BM , and 3

BM ). 1
BT  is caused by the regenerator warm-

up action, 2
BT  by the introduction of the feed and 3

BT  by a sudden surge. 1
BM  is 

intermediate mode during which the operator stabilizes the process. 2
BM  and 3

BM  are 

the steady states. For operation purposes, 1
BT , 2

BT , and 3
BT  need not be distinguished 

and can be considered to be transition states. 2
BM  and 3

BM  are also similar. Thus, three 

operating state 1 2 3, and S S S  are to be identified by the networks as shown in  Figure 4-6. 

The beginning and ending time of each state is used as a priori knowledge to train the 

neural networks. 
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Figure 4-6: Evolution of two process variables of air blower sub-section of G3 
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TABLE 4-4: Operating states of air blower sub-section of G3 

Operating state Sample range 

1̂S  
[1 24] 

2Ŝ  
[241 404] 

1̂S  
[405 539] 

3Ŝ  
[540 684] 

1̂S  
[685 847] 

3Ŝ  
[848 1000] 

 

Testing Results: The sub-state identification layer of OVON for this case study 

comprises of seven separate TDNNs. The structure of each sub-network is designed 

based on the complexity of the patterns in the input variable. The classification errors 

calculated using Equation [4-6] are shown in TABLE 4-5. The largest classification 

error occurs in 16FI106 because its evolution has overlapping patterns (for example, at 

ends of 1
BT  and 2

BM , and ends of 2
BT  and 1

BM ) as can be seen in Figure 4-6. Another 

sub-network that gives large classification error is VN3. As seen in Figure 4-7, the 

difference in 16PDI101 between  3
1
xS  to 3

2
xS  is small, subsequently, the sub-network 

VN3 generates large classification error. Similar situations arise in VN5 and VN6 as well. 

A RBF with 10 hidden neurons was then trained (using the newrb function in Matlab’s 

neural network toolbox (Mathworks, 2002)) as the unification layer to map the sub-

states of the seven variables to the process operating state. The rounded outputs from 

the sub-state identification networks are used as training inputs. The training target 

consist of three states 1̂S , 2Ŝ  and 3Ŝ . Finally, the trained sub-state identification 

networks are integrated with the trained unification layer RBF to construct the 

hierarchical OVON. This combined network now takes the process variables as input 
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and outputs the tag of process operating state. The validation error of this OVON is 

found to be 6.3%.  

TABLE 4-5: OVON sub-state identification networks for air blower sub-section 

Sub-network Variable name No. of sub-
states 

TDNN 
Structure 

Training ε  Validation ε

VN1 16SI100 2 7-10-1 0.07% 0.05%

VN 2 16FI100 2 7-10-1 0.07% 0.05%

VN 3 16PDI101 4 10-25-1 8.2% 8.4% 

VN 4 16FI101 2 5-10-1 1.4% 1.5% 

VN 5 16FC102 4 10-20-1 6% 6% 

VN 6 16TI100 4 10-20-1 7% 6.8% 

VN 7 16FI106 6 10-10-1 13% 13.2%
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Figure 4-7: Sub-state of 16PDI101 of air blower sub-section of G3 

An OCON system was also constructed and tested. Three RBF corresponding to 

the three states discussed above were initialized with the structures listed in TABLE 

4-6. The network ĵCN  with output ĵz  is trained to identify the ĵ -th operating state, 

where ˆ [1 2 3]j∈ .  The test results of three state identification networks are shown in 
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Figure 4-8 and the classification errors listed in TABLE 4-6. As can be seen from the 

figure, each ĵCN  can detect its corresponding state correctly and thus has a low 

classification error. The final identification error of OCON is about 5.5%.  

TABLE 4-6: OCON state identification networks for air blower sub-section 

Sub-
network 

Network 
Structure 

Training ε  Validation ε  

CN1 70-20-1 5.4% 5.6% 

CN 2 70-5-1 2.3% 2.3% 

CN 3 70-10-1 4.6% 3.8% 
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Figure 4-8: Output of CN1 (b) Output of CN2 (c) Output CN3 (d) Output of OVON for air 

blower sub-section on G4 

For comparison purposes, TDNN, RBF and Elman networks with structures 70-

70-3, 70-10-3 and 7-20-3 respectively were also trained and tested. A summary of their 

performances is shown in TABLE 4-7.  Both OVON and OCON perform better than 

any single neural network with errors that are about 34% less than that of Elman which 
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is the best performer among the traditional networks. The training of Elman network 

takes 19 times longer than OVON and illustrates the complexity of the problem. In 

addition, while the monolithic RBF and the OCON use similar network structures, 

OCON performs better due to the different training philosophy. The OVON and 

OCON thus achieve better performance through the decomposition of the original 

complex problem into a set of simpler sub-problems. 

TABLE 4-7: Performances of neural networks for air blower sub-section 

 Training Time (s) Validation ε  

Sub-networks: 185 
OVON Unification layer: 

2.85 

6.3% 

Winner-takes-all: 5.5% 
OCON 29.5 

Regulator: 5.4% 

TDNN 476 12.7% 

RBF 30 12.8% 

Elman Network 3517 9.6% 

  

Tuning Parameters:  The effect of the tuning parameters on the classification 

results is discussed here. The time lag il  (for OVON) and jl  (for OCON) are selected 

based on process dynamics. If l is too small, operating states with long periods of 

dynamics may be misclassified. In contrast, if l is too long, it will increase the 

computational burden. Also, there will be a delay in identifying short states. For 

OVON, the selection is based on the time constant of the individual variables. 

However the performance is relatively robust within a broad range of values. For 

example, during training of VN7, the validation error is less than 15% for [8 15]il ∈ . 

For OCON, the selection of l is based on the dynamics of the operating states. In this 

case study since the process displays a long ramping pattern in 1
BT , we specified 
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10jl = . A short l will not be able to detect this pattern. For example, if 8jl < , the 

validation error for 1
BT  jumps to 6.3%.   

The regulator is quite robust to the value of rθ  since the output of RBF is only a 

binary. In the above case study, varying rθ  from 0.3 to 0.8 does not have any 

significant effect on performance. We have found rθ =0.5 to be a suitable choice for 

most cases. 

Effectiveness of OVON unification layer: The unification layer of OVON has 

the ability to filter out classification errors of individual sub-networks and improve the 

final classification accuracy. Figure 4-9 shows the rounded output of the sub-network 

VN5 (16FC102) and the unification layer. In REGION A, while the sub-network has 

Type-I classification errors, there is no corresponding classification error from the 

unification layer. The errors from the sub-network are filtered out by the unification 

layer because of the localized nature of the RBF. Suppose, during the training of the 

unification layer, the value of output vector 1 2[ , , , ]nkz z z  from the sub-state 

identification layer is trained to be mapped to the operating state ˆ
ˆ

jS . During validation, 

if the Euclidean distance between the output vector of the sub-state identification layer 

and 1 2[ , , , ]nkz z z  is within the width of the Gaussian function, the unification layer 

will still map it to the state ˆ
ˆ

jS  even if a few sub-networks generate classification errors. 

The unification layer thus accounts for sub-state identification errors and identifies the 

state correctly. If many sub-networks mis-classify the same sub-state, the unification 

layer will fail to filter the combined errors as illustrated in REGION B of Figure 4-9. 
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Figure 4-9: (a) Output of VN5 (16FC102) (b) Output of OVON for air blower sub-section 

Effectiveness of OCON regulator layer: A similar property is exhibited by the 

regulator layer in OCON. To illustrate the robustness of the regulator, a disturbance is 

added to samples of G4 from 300 to 350 as shown in Figure 4-10. When the OCON 

trained on G3 is tested on this new dataset, classification errors are generated by the 

sub-networks as shown in Figure 4-11. During the period of disturbance (REGION C), 

CN2 fails to identify the pattern and incorrectly outputs zero; the other sub-networks 

are not affected and correctly output zero. In this situation, there is no clear outcome 

and the winner-takes-all strategy could give a wrong result. The regulator strategy 

however would reject the disturbance and correctly conclude that the current operating 

state is 2Ŝ . REGION D (see Figure 4-11) illustrates another situation where the 

winner-takes-all strategy erroneously identifies the operating state as 3Ŝ  since 3 2Z Z> . 

In contrast, the regulator correctly identifies the operating state as 2Ŝ . These illustrate 

that the regulator can reject Type-1 errors and is superior to winner-takes-all strategy 

in this situation. Regulator can also correct Type-2 errors caused by process transitions 
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as illustrated in Figure 4-12. In REGION E, during the process state change from 2Ŝ  to 

1̂S , the three outputs z1, z2 and z3 are lower than rθ  (=0.5) and no sub-network 

dominates. In this case, the regulator filters the false negative of CN2 and correctly 

concludes that the current operating state is 2Ŝ  (previous operating state). Thus, Type-1 

and Type-2 errors can be corrected by the regulator layer of OCON. However, the 

regulator cannot always improve the final OCON performance. Investigating the Type-

2 errors in REGION F of Figure 4-13, during the process state change from 1̂S  to 2Ŝ , 

CN1 gives a false negative while CN3 gives a false positive. Because CN3 is the only 

network which gives an output of one, the regulator incorrectly concludes that the 

current operating state is 3Ŝ . Thus the regulator fails when a false negative in a state-

identification network occurs in conjunction with exactly one false-positive from 

another network.  
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Figure 4-10: Two variables of air blower sub-section on G3 with disturbance 
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Figure 4-11: (a) Output of CN1 (b) Output of CN2 (c) Output CN3 (d) Output of OCON for 

air blower sub-section on disturbance-added dataset 
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Figure 4-12: Output of sub-networks and regulator during state change from 2S  to 1S  for 

air blower sub-section 
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Figure 4-13: Output of sub-networks and regulator during state change from 1S  to 2S   for 

air blower sub-section 

4.3.2 Regenerator Section 

Figure 4-14 shows the schematic of the regenerator section. The regenerator is a 

large cylindrical vessel where coke deposited on the catalyst surface as the result of 

cracking reactions is burned off using air. Eighteen variables of the section are used for 

state identification. Figure 4-15 shows the profile of two variables. As seen in the 

figure, there are two operating modes 1
RM  and 2

RM , and two transitions 1
RT  and 2

RT . 1
RT  

corresponds to the regenerator startup operation and includes warming up the 

regenerator using hot air, introducing diesel for further temperature increase, and 

catalyst loading. Subsequently, during 2
RT , feed is introduced to the regenerator and 

reaction starts. 1
RM  is the intermediate mode during which the operator stabilizes the 

regenerator and starts up other sections of the FCCU. 2
RM  is the final state of the 

section. Accordingly, for this section four states 1̂S , 2Ŝ , 3Ŝ  and 4Ŝ  are to be identified. 



Chapter 4                                Neural Network Systems for Multivariate Temporal Pattern Classification 
___________________________________________________________________________________ 

 98

 

Figure 4-14: Overview of regenerator section 
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Figure 4-15: Evolution of two process variables of regenerator section of G2 
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The OVON and OCON structures were trained as summarized in TABLE 4-8 

and TABLE 4-9 respectively. For comparison purposes, TDNN, RBF and Elman 

networks with structures 180-30-4, 180-10-4, and 18-30-4 respectively were also 

trained. Their testing performances are summarized in TABLE 4-10. OCON and 

OVON have the least classification errors among the five structures. OVON requires a 

larger training time since there are 18 variables in this section. In this case, boundaries 

among two operating states are comparatively clearer and traditional network 

structures yield good classification performances. Although the differences among the 

performances are not significant, some improvement is still achieved by using OVON 

and OCON. In addition, the performance of OCON with regulator is substantially 

better than any other networks.  

TABLE 4-8: OVON sub-state identification networks for regenerator section (18 variables; 4 

states) 

Sub-network Variable No. of sub-states TDNN Structure Training ε  Validation ε

VN1 16PC108 4 9-10-1 3.7% 3.5% 

VN 2 16PDC112 3 6-5-1 1.3% 1.4% 

VN 3 16TC116 4 6-5-1 0.9% 1.0% 

VN 4 16FI112 2 6-5-1 0% 0% 

VN 5 16LI100 6 6-5-1 0.9% 0.8% 

VN 6 16DI101 3 8-10-1 3.6% 3.9% 

VN 7 16PDC102 2 6-3-1 0.4% 0.5% 

VN 8 16PC105 3 6-10-1 3.8% 4.0% 

VN 9 16TI119 4 8-15-1 3.9% 3.91%

VN 10 16PDC104 4 6-10-1 2% 2.1% 

VN 11 16FC117 2 5-3-1 0.3% 0.29%

VN 12 16FC116 2 6-3-1 0.1% 0.1% 

VN 13 16FC115 2 6-3-1 0.3% 0.3% 

VN 14 16PDC104 3 6-10-1 3.4% 3.3% 

VN 15 16FC111 2 6-3-1 0.5% 0.51%

VN 16 16FI110 2 6-3-1 0.3% 0.3% 

VN 17 16FC109 4 9-10-1 1% 1.3% 
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VN 18 16TI114 5 6-5-1 0.6% 0.7% 

TABLE 4-9: OCON state identification networks for regenerator section (18 variables; 4 states)  

Sub-network Network 
Structure 

Training  ε  Validation  ε  

CN1 180-20-1 1.4% 1.5% 

CN 2 180-20-1 0.7% 0.9% 

CN 3 180-20-1 0.9% 1.1% 

CN 4 180-20-1 0.5% 0.5% 

 

TABLE 4-10: Performances of neural networks for regenerator section (18 variables; 4 states)  

 Training Time (s) Validation ε  

Sub-
networks: 280 

OVON 
Unification 

layer: 10 

1.0% 

Winner-takes-all: 1.0% 
OCON  34 

Regulator: 0.2% 

TDNN 65 1.3% 

RBF 24 2.6% 

Elman Network 1157 1.5% 

 

Sensors faults: As discussed above, in chemical processes, sensors may become 

unavailable due to faults. When measurement from a faulty sensor is used for state 

identification classifier, the classifier result will be erroneous. Figure 4-16 shows an 

example of the degradation of the operating state identification by RBF when the 

sensors for 16FC109 and 16TI114 in regenerator section are stuck. Even when all the 

other sensors provide accurate measurements, the classifier performance degrades 

completely and the classification error increases (6% for TDNN, 10% for Elman 

network, and 35% for RBF). Similar results can be observed from other sensor faults 

as well. To overcome this, the networks will have to be retrained using the remaining 
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available measurements. The retraining usually takes as long as the original training. 

However, for OVON, since the sub-networks are specific to individual variables, the 

system can be used without retraining the sub-state identification layer. Previously 

trained sub-networks can be used directly and only the unification layer needs to be 

retrained by using of the other variables. The performance of the retrained networks is 

shown in TABLE 4-11. While there is no significant change in the accuracy, the 

retraining of OVON takes only 8s which is 68% lesser that the next best network. This 

is an important advantage of OVON. 
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Figure 4-16: Operating state identification results of RBF for regenerator section with 

faulty sensors 

TABLE 4-11: Performances of neural networks for regenerator section (16 variables; 4 states) 

 Re-Training Time (s) Validation ε  

Sub-networks: 0 
OVON 

Unification layer: 8

1.0% 

OCON  35 Winner-takes-all: 0.9% 
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  Regulator: 0.1% 

TDNN 63 1.5% 

RBF 25 2.3% 

Elman Network 1160 1.4% 

 

New Patterns: The OCON architecture is beneficial when additional states (that 

is new patterns) need to be introduced such as when new raw materials are to be 

processed or new product grades have to be manufactured. In such situations, OVON, 

TDNN, RBF, and Elman networks have to be retrained to recognize the new states. 

However, for OCON, the existing sub-networks need not to be retrained since their 

output will be close to zero even when data from the new state is input because of the 

localized activation function of the RBF networks used in the state identification layer. 

Only one additional RBF needs to be trained to recognize the new operating state as 

illustrated next. Suppose in the regenerator section, a new state resulting from the 

shutdown transition 3
RT  (see Figure 4-17) has to be included. For this purpose, the 

traditional networks and OVON are completely retrained. In contrast, in OCON, a new 

state identification RBF with structure 180-20-1 is trained using data from 2
RM  and 3

RT  

and included in the previously trained structure. As seen in TABLE 4-12, while there 

is no significant change in the accuracy, the retraining of OCON takes only 10s which 

is substantially smaller than the other networks. 
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Figure 4-17: Evolution of two process variables of regenerator section with new operating state 

TABLE 4-12: Performances of neural networks for regenerator section (18 variables; 5 states) 

 Re-Training Time (s) Validation ε  

Sub-networks: 285 
OVON 

Unification layer: 10

1.2% 

Winner-takes-all: 0.5% 
OCON 10 

Regulator: 0.1% 

TDNN 65 1.6% 

RBF 30 1.9% 

Elman Network 1167 1.5% 

 

OVON and OCON are also tested for other sections of the ShadowPlant. They 

are briefly presented in the following sections. 

4.3.3 Fractionator Section 

Figure 4-18 shows the schematic of the Fractionator section. Twelve variables of 

the section are used for state identification. Figure 4-19 shows the profile of two 

variables. As seen in the figure, there are five segments ─ two transitions ( 1
FT  and 2

FT ) 
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and three modes ( 1
FM , 2

FM  and 3
FM ). However, 1

FT  and 2
FT  are similar, also are 2

FM  

and 3
FM . Therefore, there are only three distinguishable states. 

 

Figure 4-18: Overview of Fractionator section 
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Figure 4-19: Evolution of two process variables of Fractionator section 

Testing results: The sub-state identification layer for this case study comprises 

of 12 separate TDNNs. The classification errors are shown in TABLE 4-13. The 

overall validation error of this OVON is found to be 6.5%. 

TABLE 4-13: OVON sub-state identification networks for Fractionator section 

Sub-network Variable name No. of sub-
states 

TDNN 
Structure 

Training ε  Validation ε

VN1 16TI225 3 60-10-1 2.4% 2.6% 

VN 2 16PDI202 5 60-10-1 1.5% 1.5% 

VN 3 16TI221 4 60-10-1 2.7% 2.6% 

VN 4 16FC215 4 24-10-1 0.4% 0.7% 

VN5 16TI216 3 48-10-1 1.8% 1.7% 

VN 6 16FI211 2 12-5-1 0% 0.01%

VN 7 16FC212 3 12-5-1 0% 0% 

VN 8 16TI214 3 24-5-1 0.1% 0.15%

VN9 16TI206 3 24-5-1 1.0% 1.1% 

VN 10 16FC207 3 84-10-1 1.7% 1.5% 

VN 11 16TI212 2 36-10-1 0.8% 0.9% 

VN 12 16FC221 4 36-10-1 1.5% 1.7% 
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An OCON system was also constructed and tested. Three RBFs corresponding to 

the three states discussed above were initialized with the structures listed in TABLE 

4-14. The final identification error of OCON is about 5.4%.  

TABLE 4-14: OCON sub-state identification networks for Fractionator section 

Sub-network RBF Structure Training ε  Validation ε  

CN1 20-10-1 2.3% 2.6% 

CN 2 20-15-1 4.7% 4.3% 

CN 3 20-10-1 1.0% 1.2% 

 

 For comparison purposes, TDNN, RBF and Elman networks with structures 60-

50-1, 60-20-1 and 12-50-1 respectively were also trained and tested. A summary of 

their performances is shown in TABLE 4-15.  As can be seen from the table, OVON 

and OCON has the highest classification accuracy. 

TABLE 4-15: Performances of neural networks for Fractionator section 

 Training Time (s) Validation ε  

Sub-networks: 196 
OVON 

Unification layer: 4 

5.3% 

Winner-takes-all: 5.4% 
OCON 25 

Regulator: 5.2% 

TDNN 268 6.8% 

RBF 8 7.1% 

Elman Network 3658 8.3% 

 

4.3.4 Waste Heat Boiler Section 

Figure 4-18 shows the schematic of the waste heat boiler section. Five variables 

of the section are used for state identification. Figure 4-19 shows the profile of two 

variables. As seen in the figure, there are five segments ─ two transitions ( 1
ST  and 2

ST ) 

and three modes ( 1
SM , 2

SM  and 3
SM ). However, 1

ST  and 2
SM , 1

SM  and 3
SM  are 

indistinguishable. Therefore, 3 operating states are identified.   
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Figure 4-20: Overview of waste heat boiler section 
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Figure 4-21: Evolution of two process variables of waste heat boiler section 
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Testing results: The sub-state identification layer for this case study comprises 

of five separate TDNNs. The classification errors are shown in TABLE 4-13. The 

overall validation error of this OVON is found to be 7.5%. 

TABLE 4-16: OVON sub-state identification networks for waste heat boiler section 

Sub-network Variable name No. of sub-
states 

TDNN 
Structure 

Training ε  Validation ε

VN1 16FC118 3 25-8-1 9.8% 11.6%

VN 2 16FI119 3 25-10-1 7.5% 6.7% 

VN 3 16LC102 2 25-10-1 1.3% 1.2% 

VN 4 16LI102A 2 25-8-1 1.3% 1.2% 

VN5 16PC111 2 25-8-1 1.7% 1.5% 

 

An OCON system was also constructed and tested. Three RBFs corresponding to 

the three states discussed above were initialized with the structures listed in TABLE 

4-14. The final identification error of OCON is about 5.4%.  

TABLE 4-17: OCON sub-state identification networks for waste heat boiler section 

Sub-network RBF Structure Training ε  Validation ε  

CN1 25-20-1 6.3% 6.4% 

CN 2 25-15-1 7.5% 7.5% 

CN 3 25-20-1 5.4% 5.6% 

 

 For comparison purposes, TDNN, RBF and Elman networks with structures 25-

40-1, 25-20-1 and 5-20-1 respectively were also trained and tested. A summary of their 

performances is shown in TABLE 4-15.  Although, the identification error of Elman 

network is slightly less than OVON and OCON, the training time is considerably large, 

thus illustrating the good tradeoff between accuracy and training time of OVON and 

OCON. 

TABLE 4-18: Performances of neural networks for waste heat boiler section 

 Training Time (s) Validation ε  
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Sub-networks: 100 
OVON 

Unification layer: 5 

7.5% 

Winner-takes-all: 8.6% 
OCON 25 

Regulator: 8.4% 

TDNN 250 12.4% 

RBF 14 11.5% 

Elman Network 3634 7.2% 

4.4 Conclusions and Discussion  

Multi-dimensional temporal pattern recognition is an industrially important but 

challenging problem. Neural networks can be used for this purpose, however their 

training is computationally intensive especially when the number of variables is large 

and the patterns are complex. Two new neural network architectures are proposed in 

this chapter. In both structures, the original classification problem is decomposed into 

a number of simpler classification problems. The OVON uses a sub-state identification 

layer where a set of neural networks are used to identify simpler uni-variate, temporal 

patterns. A unification layer is subsequently used to infer the process state based on the 

sub-states, through multi-dimensional, static pattern recognition. The OCON 

incorporates a different philosophy: a state-identification layer is used to identify the 

presence or absence of a temporal pattern in multi-dimensions; the state of the process 

is inferred by analyzing the static, multi-dimensional outputs from the state-

identification layer.  

OVON and OCON are usually superior to traditional monolithic networks in 

terms of classification accuracy and training time. Each sub-network in OVON and 

OCON has a simpler structure than a monolithic neural network for the same problem. 

Generally, the OVON unification layer and the OCON regulator layer can filter out 

errors from the sub-layer and provides robustness to noise and disturbances. The 

OVON is superior in terms of training time, if retraining is necessary to accommodate 
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sensor faults. The OCON is superior in terms of training time, if retraining is necessary 

to accommodate new operating states. 

The improved classification accuracy of OVON is derived at an additional cost. 

In order to train the sub-state identification layer, a prior knowledge of sub-states of 

each variable is necessary. The uni-variate nature makes this a straightforward step 

when the boundaries between clusters can be located accurately. However, for 

problems with a large number of variables, this analysis is cumbersome. The OCON 

does not have any such additional requirement. In both OVON and OCON (and in 

traditional networks), misclassification occurs during state change where there is no 

clear separation between the states or the sub-states. For instance, in the air blower 

section, about 50% of the errors occur when the process moves from 1
BT  to 1

BM . A 

better method for accurate state boundary recognition is therefore needed and is the 

subject of our current work. 
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Chapter 5. Context-Based Recognition of 

Process States 

5.1 Introduction 

In chapter 4, we have discussed the temporal pattern recognition using neural 

network in industrial process. However, it is found that patterns whose interpretation 

varies across contexts are common in many state identification problems. The resulting 

one-to-many mapping between patterns and their classes cannot be adequately handled 

by traditional pattern recognition approaches. In this chapter, this problem is addressed. 

In many real-world domains, the classification of a pattern heavily depends on 

the context. In general, context can be considered as one or more features that 

“constrain problem solving without intervening in it explicitly” (Brezillon, 1999). It 

thus serves as a filter to define what knowledge or features should be considered, and 

how they should be used. As a classical example, consider the following rule in 

MYCIN (Clancey, 1983), an expert system for advising physicians on treating 

bacterial infections of the blood and meningitis.  

IF  

(1) The infection which requires therapy is meningitis  

(2) Only circumstantial evidence is available for this case 

(3) The type of meningitis is bacterial 

(4) The age of the patient is greater than 17 years old, and  

(5) The patient is an alcoholic 

THEN  
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There is evidence that the organisms causing the infection, are 

diplococcus-pneumoniae or E.coli.  

Here, clause (4) does not serve to identify the infection, but has the purpose of 

screening, i.e., to make the rule valid only for adults. It thus just constrains the 

applicability of the other features and does not explicitly determine the result.  

Similar situations occur in chemical and biological processes. Consider the 

fermentation process for an antigen production reported by Muthuswamy and 

Srinivasan (2003). The process uses yeast Pichia pastoris for the production of the 

antigen. Being methylotrophic, P. pastoris is able to thrive on methanol as well as 

glucose/glycerol-based substrates. To take advantage of this, the process is operated in 

different phases. Initially the process is operated in a batch phase; airflow is introduced 

subsequently to overcome the stirrer’s limited capacity to provide oxygen to the 

reactor. When all the nutrients are depleted, a glycerol feed is started. The process 

continues in this (fed-batch) phase until a critical cell mass is reached. The feed is then 

stopped and fermentation continues in the batch mode. When the glycerol nutrient in 

the fermentor is exhausted, a methanol feed is started in order to induce product 

formation.   

The switch from one phase to another can be detected from patterns in the 

process variables. In this process, the depletion of nutrient is manifested as a spike in 

dissolved oxygen, which the process operator or a supervisory control system can use 

to infer the process state (Muthuswamy and Srinivasan, 2003). The feature is thus 

essential in the air-flow-assisted-phase as well as the subsequent batch-phase. However, 

as shown in Figure 5-1, the same pattern (spike in dissolved oxygen) also occurs 

numerous other times due to process disturbances. These do not have any 

physiological significance and no control actions need be taken at these times. Thus, 
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the “spike” pattern is a relevant feature in some process states but irrelevant in others. 

The interpretation and use of this pattern therefore has to take the current process 

phase (i.e. the context) into account. Similar traits have been reported in other 

biological processes as well (Gollmer and Posten, 1995)  
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Figure 5-1: Operating states in run SMB78 of P. pastoris 

In pattern recognition, a feature can be considered as contextual information if it 

does not directly determine the class of a pattern. However, the absence of this feature 

would lead to ambiguous or erroneous classification. The presence of contextual 

features usually becomes evident when a change in the context leads to a radical 

change in the interpretation of a pattern (Brezillon, 1999). As can be seen from the 

above example, context sensitivity necessitates a one-to-many mapping, i.e., a pattern 

may correspond to many classes. Traditional pattern recognition approaches are 

suitable for one-to-one or many-to-one mappings and cannot adequately characterize 

one-to-many situations. To convert the one-to-many mapping to a conventional one, 

contextual information has to be introduced.  
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Turney (1993a, 1993b) introduced the general definition of context-sensitive 

features in any pattern recognition problem. Let Cnm be a finite set of classes in an nd-

dimensional input space and [ ndX , C] be a training pair, where 1 2
nd

ndX F F F∈ × × ×…  and 

nmC C∈ . We assume that instances are sampled identically and independently. In an 

instance of the form [ ndX , C], where 1 2[ , , , ]nd
ndX X X X= , we use 

i
X  to notate the i-th 

feature and ix  to represent the value of i-th feature. Similarly, c is the value of C. The 

context-based pattern recognition problem is defined by differentiating between three 

types of types of features: primary, contextual, and irrelevant.  

Primary Feature: iX  is a primary feature for predicting class C when there is a 

value ix  of iX  and there is a value c of C such that 

( | ) ( )i ip C c X x p C c= = ≠ =  

Primary features are defined as those features ix  that are useful for classification 

when considered in isolation, without regard to other features. In the fermentation 

example, the ‘spike’ in dissolved oxygen is a primary feature.  

Contextual Feature: A feature iX  is contextual for predicting the class C when 

iX  is not a primary feature for predicting the class C and there is a value set of ndX  

such that: 

 1 1 1 1 1 1 1 1( | , , ) ( | , , , , , )nd nd i i i i nd ndp C c X x X x p C c X x X x X x X x− − + += = = ≠ = = = = =  

In other words, if iX  is a contextual feature, we can make a better prediction 

when we know the value of iX  rather than when the value is unknown. It is not useful 

in isolation, but can be useful when combined with other (primary) features. The phase 

of the fermentation process is an example of a contextual feature.  
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Irrelevant Feature: A feature iX  is irrelevant for predicting the class C when 

iX  is neither a primary feature nor a contextual feature. Irrelevant features are not 

useful for classification, either in isolation or when combined with other features. 

1 1 1 1 1 1 1 1( | , , ) ( | , , ,  , , )nd nd i i i i nd ndp Y y X x X x p Y y X x X x X x X x− − + += = = = = = = = =  

Context-sensitive Feature: A primary feature iX  is said to be context-sensitive 

to a contextual feature jX  when there are values of these features such that: 

 ( | , ) ( | )i i j j i ip Y y X x X x p Y y X x= = = ≠ = =  

In the previous example, dissolved oxygen is a context-sensitive feature.  

Once features have been segregated into primary, contextual, and irrelevant ones, 

a mechanism to incorporate contextual information into pattern recognition has to be 

formulated. Several strategies have been proposed for this (see Chapter 2). This 

chapter proposes the use of context-based pattern recognition in chemical and 

biological processes. In Section 5.2, we show that online identification of process 

states can be formulated as a context-based pattern recognition problem. The primary 

and contextual features for this problem and the mechanism to use contextual 

information are also described. In Section 5.3, we describe a novel neural network-

based architecture, called Operating State Identification Neural Network (OSINN). We 

explore three different ways to detect context changes in real-life processes. 

Subsequently, we illustrate the efficacy of these using two case studies. Normal and 

abnormal operating states during the startup of a fluidized catalytic cracking unit 

simulation are identified using OSINN in Section 5.4. In Section 5.5, the phases during 

the operation of a lab-scale fed-batch fermentation process are identified. 



Chapter 5                                        Context-Based Recognition of Process States Using Neural Networks 
___________________________________________________________________________________ 

 116

5.2 State Identification as a Context-based Pattern Recognition Problem 

Chemical plants commonly operate normally at a finite set of operating states Ŝ  

which can be classified as modes and transitions (Srinivasan, 2002). An operating state 

where the process variables vary within a narrow band is termed as a mode. The state 

of the process between two modes and characterized by large changes in one or more 

variables is termed as a transition. A long transition can be sub-divided into several 

phases to obtain a higher resolution. The control of non-steady state processes often 

requires state-specific control configurations and controller settings (Muthuswamy and 

Srinivasan, 2003). Advanced control and optimization strategies make use of state-

specific models. Alarm management systems can set alarm limits based on the current 

operating state to avoid nuisance alarms (Arnold et al., 1989; Jensen, 1997; Wang et 

al., 2000). To implement state-specific control strategies, the current active state of the 

process has to be determined (Rosen and Yuan, 2001).  

Process operating state identification is the task of identifying the state of the 

plant at any point of time. The operating state is normally inferred from the time 

evolution of the real-time sensor values. For a process with d online measurements, the 

nd dimensional vector ( ) :[ ( ), ( 1), , ( )]nd d d dX t X t X t X t l− −  is termed as the process 

feature vector, where ( )dx t l−  is the value of d process variables 
1 2:[ , , , ]d

dX X X X  

at time ( )t l− . Here, the data window ( 0l ≥ ) is used in order to capture information 

from the process evolution and not just the current value of ( )dX t . l  determines the 

size of the data window and ( 1)nd d l= × + . Thus, the process feature vector nd ndX ∈  

reflects the dynamic status of the process at time t and can be used as the primary 

feature for the identification of operating state. An alternate primary feature can be 

developed as follows. Let nm be the number of distinguishable patterns in ndX . A 
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process pattern summarizes the temporal evolution of the process within duration l and 

arises from the mapping ( )nd
iPA X t← . Each process pattern can be encoded by a label 

1 2{ , , , }i nmPA PA PA PA∈ . Process feature vectors that are labeled with the same pattern 

PAi have similar values and temporal evolutions in ndX . A classifier for state 

identification can use the process pattern or the process feature vector as the primary 

feature. The selection of the former is appealing especially for cases where the 

temporal evolution of the feature vector is complex. In the subsequent discussion, the 

process pattern is used as the primary feature for ease of notation, but the process 

feature vector can also be used (see Section 5.3.1).  

The process feature vector and the process pattern are context-sensitive and a 

contextual feature ˆ
conS  is necessary for satisfactory state identification. In this thesis, 

we use the preceding operating state as the contextual feature. During process 

evolution, the foregoing state ˆˆ
js  does not usually foretell which state will follow and is 

not a primary feature. 

( ( ) | ) 1i con jP S t s S s= = <<  

But it contains essential historical process state information needed to interpret 

the process pattern which is used to infer the next state. It therefore serves a contextual 

role.  

 ˆ( ( ) | , ) ( ( ) | )nd nd
i con j ii iP S t s X PA S s P S t s X PA= ∈ = ≥ = ∈  [5-1] 

Thus, the operating state identification problem is formulated as a context-based 

pattern recognition problem.  

Context-based operating state identification is illustrated using the fermentation 

process described in Section 5.1. As seen there, the operating state cannot be identified 

based only on the process pattern since the same pattern (for e.g., spike in pO2) can 
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occur numerous times and be either relevant or irrelevant in a given phase. 

Muthuswamy and Srinivasan (2003) detect the onset of a process state using rules, 

which consider the pattern only in the context of a process state. Their rule for 

identifying the beginning of  2
PT  can be interpreted as follows:  

IF  

(1) There is a spike in pO2, and 

(2) The previous state is airflow-assisted-batch-phase  

THEN  

It can be concluded that the glycerol nutrient has been depleted ( 2
PT ) 

If Clause (1) is used by itself, nutrient-depletion will be erroneously identified 

over 500 times during the process evolution, that is, 

 2 2
1( | Feature Spike in pO )

500
PP T = ≅   

where P represents the probability that the transition 2
PT  occurred at time t. The 

contextual information – previous process state (Clause (2)) – is used to constrain 

Clause (1) and improve the prediction. That is,  

 2 2( | Feature = Spike in pO & context airflow-assisted-batch-phase) 1PP T = ≅   

As can be seen from the above example, the contextual feature is a discrete 

variable that takes values from the set of discrete process states. The contextual feature 

is not a measured quantity, and does not change continuously at the process sampling 

rate. It changes only when a process state change occurs and therefore at irregular 

intervals during the evolution of the process. In the following section, we propose a 

neural network-based architecture, called Operating State Identification Neural 

Network (OSINN).  
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5.3 Neural Network Architecture for Operating State Identification  

The identification of operating state requires the detection and management of 

context, as well as pattern recognition using primary and contextual information. 

Additionally, when the process pattern is used as the primary feature, the identification 

of process pattern from the process feature vector has to be considered. As shown in 

Figure 5-2, in OSINN, these are implemented by the Context Manager, State 

Identification Block, and Data-preprocessor. 

Online Data

Data Pre-processor

Context ManagerState
Identification Block

Operating State

Context-
controller

State-change
Detector

( )ndX t

( )X t( )X t

ˆ ( )S t

ˆ
conS

 

Figure 5-2: Structure of OSINN  

A data-preprocessor is used to ameliorate the input data ( )ndX t  before it is used 

for state identification. Preprocessing can either be a normalization based on the 

contextual information ˆ
conS  or a preliminary classification to identify the process 

pattern PAi. Statistical pattern recognition, syntactic pattern recognition, or neural 

networks can be used for the latter. Neural networks have been adopted in this thesis, 

because they have ability to approximate complex nonlinear functions. Some 
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commonly used neural networks are Time Delayed Neural Network (TDNN), Radial 

Basis Function (RBF) Network, and Elman Network. We use a RBF in case study 1 

(Section 5.4) and TDNN for case study 2 (Section 5.5). The preprocessed data ( )X t  is 

fed to the context manager and/or state identification block. The main advantage of 

preprocessing the data is that the OSINN becomes more robust to noise which is 

filtered at this stage.  

During process evolution, state change can occur at irregular intervals ranging 

from minutes to days. One main requirement in context-based pattern recognition is 

the ability to detect the occurrence of context change. The context manager detects 

changes in context and provides the correct contextual feature to the state identification 

block. It consists of two sub-blocks ─ Context-controller and State-change Detector. 

The output of the context-controller is the preceding operating state of the process 

which is a discrete contextual feature. When the process operates within the same 

context, there is no change in the context-controller’s output. The state-change detector 

monitors the process and flags state change. A change of context is conditional on a 

state change. Similarly, a change of state is conditional on a change in the process 

pattern. Therefore, in OSINN, context change is detected by monitoring for drift in 

ˆ( )S t  or ( )X t . Specifically, if the change of ˆ( )S t  or ( )X t  exceeds a user-defined 

threshold called the sensitivity-threshold ( θ ), the context-change detector flags a 

change. When a context change has to be implemented, the context-controller replaces 

the value of the contextual feature with one corresponding to the current operating 

state. 

The state identification block uses the contextual feature ˆ
conS  along with the 

primary features to identify the current operating state of the process, i.e., it realizes 

the mapping ( ),i conS X t S← . The output of the state identification block is the tag 
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(normally an integer value) of the current state. The general procedure for designing an 

OSINN is as follows: 

Data Analysis: Analyze the process feature vector and specify the target 

operating states based on process knowledge. Clustering may be used for this purpose 

(Srinivasan et al., 2004a). Include the value of the contextual features to the training 

data (See Section 5.4 for an example). 

Structure Selection: Select a suitable algorithm for data preprocessing. Several 

algorithms and structures can be used as described in the following sections.   

Network Training: The state identification block is first disconnected from the 

other blocks and trained. Suppose the process data contains nk operating states. The 

training pair for state identification block can be formed as: 

{ }1 21 21 2[ , , ],[ , , ], ,[ , , ]nkcon con con nknkX S s X S s X S s , where  1X  is the dataset containing all 

the pre-processed vectors generated from operating state 1̂s , and
1

ˆ
conS  is the contextual 

feature for operating state 1̂s . Thus,
11

ˆ, conX S  is used as the input to the state 

identification block and 1̂s  as the training target. 

Once an OSINN has been trained, it can be used for online state identification by 

inputting real-time process data to the data-preprocessor and specifying the initial 

value of ˆ
conS . The general architecture of OSINN described above can be implemented 

in different structures with particular algorithms for the three blocks. Three such 

structures are described next, each using a different method to detect context change. A 

comparison among them is presented subsequently using two case studies. 
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5.3.1 Contextual Normalization OSINN (OSINN-N) 

This OSINN structure implements contextual normalization as shown in Figure 

5-3. Here, the process feature vector ( )ndX t  is input to the data-preprocessor along 

with the contextual information ˆ
conS . In the data-preprocessor, the process feature 

vector is normalized based on their measurement ranges as well as ˆ
conS . ˆ

conS  serves as a 

transform factor and shifts the input ( )ndX t  to a new region in the input space so that 

there is no overlap among the patterns.  

 ˆ( ) ( ( ), )nd
conX t G X t S=  [5-2] 

where G() is a transform function. While a variety of functions can be used for 

G(), we use a simple linear transform in this thesis:  

 ˆ( ) ( )nd
conX t X t WS= +  [5-3] 

where W  is a real number selected so that there is no overlap among the range of 

the primary features in different context. The mapping for state identification 

ˆ
ˆ ( )iS X t← is thus transformed into a traditional one-to-one or many-to-one type. 

The context manager monitors the state identification block output ˆ( )S t  and 

provides the context information ˆ
conS . The state change is flagged when 

( ) ( ( ) ( 1)) NS t S t S t θ∆ = − − > , the sensitivity-threshold. 
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Figure 5-3: Structure of OSINN-N 

5.3.2 Context Change Detection Using Drift in Process Pattern 

This structure, pattern-based OSINN (OSINN-P), is an implementation of 

contextual expansion. The context information ˆ
conS  is used explicitly together with the 

process pattern as an additional input as for pattern identification. The data-

preprocessor shown in Figure 5-4 consists of two sub-parts: data normalization and 

process pattern identification. The normalization part scales the process feature vector 

( )ndX t  based on Equation [5-4].  

 i L
i

H L

X XX
X X

−
=

−
 [5-4] 

where, iX  is the normalized process variable Xi, and HX  and  LX  are the high 

and low limits of the sensor range respectively. The normalized feature vector ( )ndX t  

is presented to a neural network, which classifies the temporal inputs based on their 

values and evolution. The outputs ( )X t  of this network is the process pattern PA(t). 

Since this pattern recognition step is context independent, any network can be chosen 

based solely on the complexity of the pattern.  
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Figure 5-4: Structure of OSINN-P 

The context manager and state identification block for OSINN-P are shown in 

Figure 5-5. The context manager consists of two sub-blocks: State-change Detector 

and Context-controller. The state-change detector monitors PA(t). If the output PA(t) 

drifts from PAi, that is, ( ) ( ( ) ( 1)) PPA t PA t PA t θ∆ = − − > , where Pθ  is the sensitivity-

threshold,  the process is considered to undergo a state change. The state-change 

detector identifies the change and the context-controller updates the contextual 

information ˆ
conS  if needed.  
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Figure 5-5: Structure of Context Manager and State Identification Block of OSINN-P 

The state identification block is a neural network with two types of neurons in 

the input layer, U1 and U2. U1 receives the process pattern PA(t) from the data-

preprocessor and U2 receives the contextual information ˆ
conS  from the context 

manager. The state identification block identifies the operating state based on the 

combination of PA(t) and ˆ
conS . This is again a traditional one-to-one or many-to-one 

mapping problem which can be directly solved by the network.  

5.3.3 Context Change Detection Using Drift in Operating State 

This structure, called state-based OSINN (OSINN-S), is another implementation 

of contextual expansion. Figure 5-6 shows the structure of the OSINN-S. The context 

manager and state identification blocks are shown in Figure 5-7. In contrast to OSINN-

P, where drift in PA was used to detect context change, in OSINN-S a drift in state is 

used for this purpose. The state-change detector monitors and detects the drift in ˆ( )S t . 
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Once ( ( ) ( 1)) SS S t S t θ= − − > , where sθ  is the sensitivity-threshold, the context-controller 

will update the contextual feature accordingly. The working mechanism of OSINN-S 

is similar to OSINN-P.   

State Identification
Block

Process Pattern: PA(t)

Operating state

Data Pre-processor

Context Manager

Context-
controller

State-change
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Neural Network
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Figure 5-6: Structure of OSINN-S 
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Figure 5-7: Structure of Context Manager and State Identification Block of OSINN-S 
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Disturbance Rejection in OSINN: Chemical processes are susceptible to large 

disturbances which can last for several samples. In order to make state identification 

robust, all three OSINN architectures incorporate three checks. The occurrence of any 

new context is flagged only after it has lasted for a minimum duration called dwell-

time Td (Bhagwat et al., 2003). During this period, OSINN holds the value of the state, 

i.e., ( ) ( 1)S t S t= − . While this would delay state identification by a period equal to Td 

samples, the result is less sensitive to disturbances. Reducing Td will reduce the delay 

in identifying the new state but increase risk of premature context change detection. 

This is alleviated by a backtracking mechanism provided by the evaluation interval. If 

a context change occurs because of a state change, it is considered tentative until a 

period of time, called evaluation-interval, Te has passed. If this (first) state change has 

occurred due to a disturbance, the new state will last only for a short duration. If 

another (second) state change is detected before the end of the evaluation-interval, it is 

construed as an indication of a process disturbance and the original context (the one 

before the first state change) is reverted to.  The evaluation-interval does not delay 

state identification but provides a mechanism to recover the original context in the face 

of misidentification of state change.  The duration of Td and Te are set based on the 

knowledge of process disturbances and expected minimum duration of the states. In 

the following sections, we illustrate three OSINN structures using two case studies. 

5.4 Operating State Identification in a Fluidized Catalytic Cracking Unit 

In this section, the performance of the OSINN for industrial-scale applications 

was tested using data from the ShadowPlant. The ShadowPlant has been introduced in 

Chapter 3. As mentioned earlier, several runs of the startup were performed following 

the standard operating procedure. Two of them G1 and G2 are used here. In each 
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section, superfluous variables were first eliminated to decrease the computational 

requirements. 

5.4.1 Air Bower Section 

Data from air blower section is used here to evaluate the networks’ ability to 

identify the operating state. The air blower supplies air which is used to preheat the 

reactor/regenerator section during startup. Figure 4-4 shows an overview of the section. 

Out of the sixteen variables in the section, the seven shown in TABLE 5-1 were 

selected.  

TABLE 5-1: Variables of air blower section 

Name of variable Description 

16SI100 Speed of air blower 

16FI100 Flowrate of steam to air blower 

16PDI101 Differential pressure P∆  in air blower 

16FI101 Flowrate of air discharged from air blower 

16FC102 Flow in surge control 

16TI100 Air blower discharge temperature 

16FI106 Flowrate through air vent 

 

The process data was clustered and similar process patterns were first identified 

based on the values and trends (Srinivasan, et al., 2004a). For example, the process 

data shown in Figure 5-8 was clustered into eight operating states. 1
AM  is the initial 

“cold-start” state of the section, 1
AT  corresponds to the air-blower start-up, when P∆  

16PDI101 increased. During 2
AM , since the regenerator overhead valve 16PV105 is 

opened, regenerator overhead pressure drops and leads to a drop in 16PDI101. 2
AT  is an 

intermediate state. During 3
AM , the regenerator overhead pressure control valve 

16PV105 is closed and the pressure in regenerator builds-up. Correspondingly, air 

blower P∆  is also increased. 3
AT  and 4

AT  correspond to the introduction of feed to the 
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reactor. 4
AM  is an intermediate state during which the operator stabilizes the 

regenerator, starts up other sections of the FCCU, and links them to the regenerator 

section.  
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Figure 5-8: Process patterns and corresponding operating states in air blower section 

An investigation of the data reveals that two modes –  2
AM  and 3

AM   –  share the 

same process pattern PA3. Two transitions 1
AT  and 3

AT  also have similar patterns, 

termed PA2. From an operations point of view, these are different states since the valve 

16PV105 is closed during 1
AT  but is opened in 2

AT .  However, a traditional pattern 

recognition method cannot distinguish between 2
AM  and 3

AM  or 1
AT  and 3

AT  and a 

context-based state identification is needed.  

The performance of OSINN-P was evaluated first. A RBF (structure 70-40-6) 

which uses seven input variable values each with a data window of 10 samples is used 

as the data-preprocessor to identify the data pattern PA(t) based on temporal process 

features. Here, a new context is defined corresponding to each pattern (i.e. state). The 
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state identification block is a RBF network. Samples from G1 are used for the training 

of data-preprocessor to identify the six process patterns. The sensitivity-threshold for 

state-change detector in the Context Manager is set to 0.5Pθ = . 

The performance of each network was then evaluated using Equation [4-6] on 

the validation data set G2. The overall validation error on G2 for OSINN-P based on is 

4.3%. In contrast, a RBF network with the same structure when trained directly to map 

the normalized process feature vector ( )ndX t to operating states ˆ
iS without any 

contextual information has a validation error of 15%. The outputs of this RBF network 

without context information are shown in Figure 5-9. As can be seen, the network 

cannot distinguish between 2
AM  and 3

AM  or 1
AT and 3

AT . This illustrates that the 

traditional neural network structure is insufficient for operating state identification and 

context information is crucial. 

0 100 200 300 400 500 600
1

2

3

4

5

6

7

8

Sample

O
pe

ra
tin

g 
S

ta
te

TDNN output
Classification target

 

Figure 5-9: Operating state identification by RBF without context in air blower section 
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A detailed evaluation of the results was also performed. The classification error 

is categorized into Type-1 and Type 2 as presented in Chapter 4 (Section 4.3).  

Figure 5-10 shows the output of OSINN-P for the validation dataset.  The error 

distribution in the different states is shown in TABLE 5-2. It is clear that most of the 

errors are of Type-2. This is because (1) the process measurement is noisy especially 

during transitions, and (2) the dwell-time value of Td=7 leads to a lag error during state 

changes. Similar results were obtained with OSINN-S ( 0.5Sθ = ) as can be seen in 

Figure 5-11. The validation error was found to be 4.2%. 
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Figure 5-10: Operating state identification by OSINN-P in air blower section 

TABLE 5-2: Validation errors by OSINN-P in air blower section 

Operating state
1
AM  1

AT  2
AM  2

AT  3
AM  4

AM  3
AT  4

AT  

Type-1 error 0 9 0 0 0 0 0 0 

OSINN-P 

Type-2 error 7 0 9 9 7 7 12 14 
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Figure 5-11: Operating state identification by OSINN-S in air blower section 

OSINN-N was also constructed and tested for this section. To simplify the 

training, only two contexts are defined. ˆ 1conS =  for four operating states before 2
AT  and 

ˆ 2conS =  for the subsequent states. This is adequate because as can be seen in Figure 5-8, 

the same process pattern is mapped to different operating states only after 2
AT . With a 

RBF (70-110-9) as the state identification block, the OSINN-N has an identification 

error of 3.5%. The complete identification results are shown in Figure 5-12 and 

TABLE 5-3. The Type-2 error induced by the dwell-time is smaller than that in 

OSINN-P and OSINN-S since the mis-identification during context switch is 

minimized. 
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Figure 5-12: Operating state identification by OSINN-N in air blower section 

TABLE 5-3: Validation errors by OSINN-N in air blower section 

Operating state 
1
AM  1

AT  2
AM  2

AT  3
AM  4

AM  3
AT  4

AT  

Type-1 error 0 16 0 0 0 0 0 0 

OSINN-N 

Type-2 error 0 0 8 9 4 18 5 0 

5.4.2 Selection of Parameter Settings 

The proposed OSINN structures use three parameters whose main role is to filter 

noise. Their values have to be specified by the user based on knowledge of the process 

and its operation. In this section, we discuss the effect of these on state identification 

results. The sensitivity-threshold  θ  is used to detect context change.  If θ  is too small, 

the context-change detector will be triggered even by small changes in the process. 

This will make the OSINN susceptible to process disturbances. If θ  is too large, the 

context-change detector will miss context changes and also leas to poor performance. 

A robust setting for θ  is therefore important. In OSINN-N, the state-change detector 
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monitors the change in process state, which is represented by an integer set (1, 2, 3, 

etc). Since, any context change results in a integer (large) change in ˆ( )S t , we have 

found that it is easy to set a robust Nθ . Nθ  values in [0.4 0.8] resulted in similar 

performance;  hence, we have used 0.5 in all case studies. Similar results arise for Pθ  

and Sθ . In OSINN-P, the state-change detector monitors for a change in PA(t) which is 

also an integer set. The robustness for OSINN-S arises from the local activation 

property of the RBF network used in the state identification block.  

The dwell-time and evaluation-interval work in concert to flag context switch 

correctly. Td can be specified by analyzing the Type-2 error during the training of the 

data-preprocessor block (for OSINN-P and –S) or state-identification block (OSINN-

N). If Td, is set to a large value, the delay in context change detection will be 

unnecessary long. Reducing Td will improve the speed of detection but will increase 

the risk of mis-identification by the context-controller. The evaluation-interval helps 

the context-controller to backtrack after a wrong state change. As discussed above, a 

valid state has to last at least for a period Te. If the new state lasts for a shorter duration, 

it is considered to be invalid and the context-controller will revert to the previous 

contextual feature to correct the mistake. Te is specified based on knowledge of the 

process operation and its time constants. A fraction (say 50%) of the shortest operating 

state can usually be used.  

The robustness of the Td setting is brought out using an example. In the above 

case study, if Td is reduced from 7 to 4 and evaluation-interval turned off (set to zero), 

the OSINN error will increase substantially (about 30%). In the Figure 5-13(a), errors 

arise in OSINN-P’s process pattern identification around sample 115 due to process 

disturbances. The resulting drift in ( )PA t  is considered as a signal of state change and 

the context-controller prematurely changes the contextual feature incorrectly. The 
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subsequent state identification results therefore are incorrect as shown in Figure 

5-13(b). This is prevented by turning on the evaluation-interval. Figure 5-13(c) shows 

the state identification for the same value of Td, but with Te=25. As can be seen from 

the figure, although the initial state results are incorrect, at sample 122, the system 

automatically corrects the mis-action of the context-controller and the subsequent state 

identification result is correct. Because of this backtrack feature, acceptable results can 

be obtained even for small values of Td. 
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Figure 5-13: Example of the implementation of evaluation-interval in air blower section (a) 

Process pattern identification error (b) Mis-action of context controller leads to state identification 

error (c) State identification results with the implementation of evaluation-interval 

5.4.3 Fractionator Section 

In this section, data from Fractionator section is used to evaluate the networks’ 

performance. Figure 4-18 shows the schematic of the Fractionator section. Twelve 

variables of the section are used for state identification as shown in TABLE 4-13. 
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Figure 4-19 shows the profile of two variables. As seen in the figure, there are five 

segments ─ two transitions ( 1
FT  and 2

FT ) and three modes ( 1
FM , 2

FM  and 3
FM ).  

An investigation of the data reveals that two modes –  2
FM  and 3

FM  –  share the 

same process pattern. Two transitions 1
FT  and 2

FT  also have similar patterns. Therefore, 

a traditional pattern recognition method cannot distinguish between 2
FM  and 3

FM  or 

1
FT  and 2

FT , and a context-based state identification is needed.  

The performance of OSINN-P was evaluated first. The OCON presented in 

Chapter 4 (Section 4.3.3) is used as the data-preprocessor to identify the data pattern 

PA(t) based on temporal process features. Here, a new context is defined 

corresponding to each pattern (i.e. state). The state identification block is a RBF 

network. Samples from G1 are used for the training of data-preprocessor to identify the 

six process patterns. The sensitivity-threshold for state-change detector in the Context 

Manager is set to 0.5Pθ = . 

The performance of each network was then evaluated using Equation [4-6] on 

the validation data set G2. The overall validation error on G2 for OSINN-P based on is 

6.0%. In contrast, a TDNN network when trained directly to map the normalized 

process feature vector to operating states has a validation error of 38%. The outputs of 

this TDNN network without context information are shown in Figure 5-14. As can be 

seen, the network cannot distinguish between 2
FM  and 3

FM  or 1
FT  and 2

FT . This 

illustrates that the traditional neural network structure is insufficient for operating state 

identification and context information is crucial. 
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Figure 5-14: Operating state identification by TDNN without context in Fractionator 

section 

Figure 5-15 shows the output of OSINN-P for the validation dataset. Similar 

results were obtained with OSINN-S ( 0.5Sθ = ) as can be seen in Figure 5-16. The 

validation error was found to be 6.5%. 
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Figure 5-15: Operating state identification by OSINN-P in Fractionator section 
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Figure 5-16: Operating state identification by OSINN-S in Fractionator section 
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OSINN-N was also constructed and tested for this section. To simplify the 

training, only two contexts are defined. ˆ 1conS =  for three operating states before 2
FT  and 

ˆ 2conS =  for the subsequent states. This is adequate because as can be seen in Figure 

4-19, the same process pattern is mapped to different operating states only after 2
FT . 

With a TDNN (60-50-1) as the state identification block, the OSINN-N has an 

identification error of 5.9%. The complete identification results are shown in Figure 

5-17. 
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Figure 5-17: Operating state identification by OSINN-N in Fractionator section 

5.4.4 Fault Detection during Air Blower Startup 

One of the applications of state identification is to implement context-sensitive 

supervisory process monitoring. In this section, we illustrate context-based fault 

detection. During the startup of the air blower section, the same fault results in 

different signature (pattern) at different states of operation. Also, the same process 
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pattern can reflect normal operation in one state, but be an indication of an abnormal 

situation at another. Context-based pattern recognition is therefore essential for 

accurate fault diagnosis.  

During a normal startup, the air blower P∆  will drop after 1
AT  when the 

regenerator overhead valve 16PV105 is opened. This can be seen in Figure 5-8 around 

sample 190. However, if the valve is stuck, 16PDI101 will remain at a high value. This 

situation is shown in Figure 5-18(a) which shows the profile of 16PDI101 during G3 

(which is the dataset containing fault). At the end of 1
AT  (Sample 144 in G3), 16PDI101 

does not decrease and stays at a quasi-steady state around 0.6. This value for 

16PDI101 by itself is not an indicator of a fault since during 4
AT  this is considered 

normal (See Figure 5-8). In fact, all the seven variables in the air blower remains at a 

level which corresponds to PA6 during normal operation and the fault cannot be 

detected if context information is not used. 
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Figure 5-18: Example of valve 16PV105 fault (a) P∆  evolution in abnormal situation (b) 

process pattern identification by OSINN in abnormal situation 

To use the OSINNs for fault detection, they have to be trained to signal a fault 

for patterns that do not arise during normal process evolution. To enable this, we use a 

RBF in the state identification block and exploit the RBF’s local activation property 

which maps unknown patterns (that were not seen during training) to 0 (Srinivasan et 

al., 2004b). The result of OSINN-P when used for abnormality detection is shown in 

Figure 5-19. In the figure, which shows only the first 600 samples for clarity, during 

the first 143 samples, when the process is evolving normally the network output tracks 

the current state of the process starting at State-1 and changing to State-2 at 56th 

sample. The abnormality is first detected by the state identification RBF at the 153rd 

sample and confirmed as ˆ 0S =  (abnormal operation) at the 160th sample after the 

dwell-time criterion has been satisfied. Subsequently, the output remains at zero 

indicating the abnormal evolution of the unit. The fault detection performance of 
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OSINN-S is similar to OSINN-P and is not shown here due to space constraints. The 

performance of OSINN-N is better as shown in Figure 5-20. The fault is detected and 

flagged at Sample 146. Fault detection is faster here since there is no context change in 

this architecture till state 2
AT  and hence the dwell-time does not come into play.  
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Figure 5-19: Fault detection by OSINN-P 
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Figure 5-20: Fault detection by OSINN-N 

5.5 Case Study 2: Operating State Identification in P. Pastoris 

In this section, we describe the state identification for the fed-batch fermentation 

process described in Section 5.1. The reader is referred to (Muthuswamy and 

Srinivasan, 2003) for more details of the process. Eight variables are being measured 

online (in three minute intervals) in the process: Airflow, Stirrer speed, Dissolved 

oxygen (pO2), Cumulative base addition, Cumulative acid addition, pH, Exit O2 

concentration, Exit CO2 concentration. Further the carbon-dioxide evolution rate and 

O2 uptake-rate are calculated by the control system based on the online measurements 

of O2, CO2. Data from 7 of these are used for phase identification; Cumulative acid and 

base addition and pH are not used here. Data from 6 runs of this lab-scale process were 

available (Muthuswamy, 2001). We have used data from Run SMB-74 to train the 

OSINNs and from Run SMB-78 to validate the results. It should be noted that the 
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duration of the different states are not the same in the two runs; neither do the state 

changes occur at the same times. A list of the process states is shown TABLE 5-4. As 

seen in Figure 5-1, 1
PT , 2

PT , 3
PT  and 4

PT  have very similar process patterns (spike in pO2) 

and are indistinguishable. 2
PM  and 3

PM  are also similar in terms of their trend and 

values. For accurate state identification, these five process patterns should be mapped 

to the nine operating states. 

TABLE 5-4: Operating state of P. pastoris fermentation 

Operating state Process description 

1
PM  

Batch-exponential-growth phase 

1
PT  

Stirrer speed attains a predefined maximum 

2
PM  

Airflow-assisted growth phase 

2
PT  

Low substrate concentration causes a sharp increase in pO2 

3
PM  

Glycerol-fed-batch phase 

3
PT  

Critical cell mass attained 

4
PM  

Second-airflow-assisted growth phase 

4
PT  

Low substrate concentration causes a sharp increase in pO2 

5
PM  

Methanol-fed-batch phase 

 

A TDNN (structure 35-15-1) is used as the data-preprocessor for OSINN-P/S. As 

revealed by the structure, the input time delay is set to 5 min (i.e., 5 samples). The state 

identification block is a RBF. We set 0.5Pθ =  and 0.5Sθ = . The dwell-time Td was set 

to 3 min since the states in the process last for short durations. The validation error for 

OSINN-P was found to be 6.34%. The error distribution during validation is shown 

TABLE 5-4. Figure 5-21 shows the classification output of OSINN-P. It is clear that 

the network can correctly identify the operating state even when the process patterns 

are identical in different operating states. For comparison, a TDNN with the structure 

of 35-15-1 and time delay of 5 min was trained. The classification error of this network 
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is 17.18%. This shows the superiority of the OSINN when dealing with context-based 

patterns. In addition, this case study also clearly demonstrates that OSINN is robust to 

process measurement noise (see Figure 5-1 and Figure 5-21). Similar results were 

found for OSINN-S. 

TABLE 5-5: Validation errors by OSINN-P for P. pastoris fermentation 

 
1
PM  1

PT  2
PM 2

PT  3
PM  3

PT  4
PM  4

PT  5
PM  

Lag error (Nmis) 0 0 6 4 4 4 5 1 0 

Classification error (Nmis) 0 2 0 0 0 0 0 1 0 
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Figure 5-21: Operating state identification by OSINN-P in P. pastoris 

OSINN-N was also tested for this case study. Three contexts were defined as 

shown in TABLE 5-6. With this, the four instances of PA2 as well as two instances of 

PA3 can be correctly mapped. With a TDNN (35-15-1) as the state identification block, 

the overall identification error is 8.38%. The operating state identification results are 

shown in Figure 5-22 and the error distribution in TABLE 5-7.  
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TABLE 5-6: Process patterns and corresponding operating states in P. pastoris fermentation 
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Figure 5-22: Operating state identification by OSINN-N in P. pastoris 

TABLE 5-7: Validation errors by OSINN-N for P. pastoris fermentation 

 
1
PM  1

PT  2
PM  2

PT  3
PM  3

PT  4
PM  4

PT  5
PM  

Lag error (Nmis) 0 0 3 0 2 1 1 6 0 

Lead error (Nmis) 0 0 0 0 6 0 0 0 3 

Type-I error (Nmis) 0 7 0 0 0 4 8 1 0 

5.6 Conclusion 

Situations where the same pattern maps to different classes suggest context-

dependency. Traditional pattern recognition techniques perform poorly when the 
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context changes and there is a dramatic change in the pattern mapping. Contextual 

features can be used in such cases to improve predictive performance of primary 

features. Context-based pattern recognition approaches exploit the ability of these 

contextual features to constrain reasoning, increase information content, and thus 

improve performance. In this chapter, we have shown that process state identification 

is a context-based pattern recognition problem. A neural network-based architecture ─ 

Operating State Identification Neural Network (OSINN) ─ is proposed for online state 

identification. In OSINN, the process state is recognized by a state identification block 

using multivariate temporal data from online sensors. The contextual feature is an 

additional input to the state identification which modifies the feature space so that the 

final mapping is reduced to the classical one-to-one or many-to-one situation. The 

contextual feature is regulated by a context manager which detects changes in context 

and controls the transfer of the feature to the state identification block.  

The OSINN architecture can be implemented using different structures. Three 

suitable structures have been presented in this chapter. In OSINN-N, the contextual 

information is used to normalize the network’s input so that process measurements 

from different contexts map to different regions of the input space. Through this 

contextual normalization strategy, process patterns from different contexts do not 

overlap and can be interpreted differently. OSINN-P and OSINN-S implement 

contextual expansion and realize context-based recognition in two steps. The process 

pattern is first identified by a data-preprocessor. The context manager detects the 

change in context by monitoring either PA(t) or  ˆ( )S t . The context is made available to 

the state identification block which uses it along with the process pattern to identify the 

process state. The additional network to identify process patterns makes OSINN-P and 

-S robust to measurement noise.  
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The context-based pattern recognition achieved by OSINN has several 

applications. We have shown that process supervision applications – specifically, 

process state identification and fault detection lead to context-dependent patterns. In 

the first case study, OSINN correctly identified the states arising during the startup of a 

simulated FCCU although the same process patterns occur in several states. We also 

show that abnormal situations during the startup that cannot be deciphered by normal 

pattern recognition approaches can be detected correctly using the proposed approach. 

In the second case study, the phases in a pilot-scale fed-batch fermentation process 

were identified accurately although the same pattern has different interpretations in 

different phases. The robustness of the OSINN to process noise as well as run-to-run 

variation is also highlighted in this case study.  

The performance of OSINN is conditional on the correct detection of changes in 

the context. If the contextual feature used for state identification block is incorrect, the 

subsequent state identification will also be incorrect. Two noise-cancellation 

mechanisms – dwell-time and evaluation-interval – have been incorporated in OSINN 

to enhance context identification and management. The effect of the tuning parameters 

on state identification performance have been discussed in detail and guidelines 

developed to select suitable settings. 

The improved performance from context-based pattern recognition comes at an 

additional cost – the selection of a suitable context is necessary. In the two case studies 

presented here, we have shown that this additional load is minimal since the previous 

process state from the same process unit can be used as the context. Thus, the only step 

that is additional to traditional pattern recognition approaches is the specification of 

context-change points.  During the operation of large-scale processes, operators may 

incorporate information from not only the same section, but also other neighboring 
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sections while interpreting process patterns. This is because exogenous variables from 

other process sections may have a substantial effect on the state of a process unit. In 

sections cases where external dependencies can be identified, the OSINN architecture 

can be extended to incorporate historical information from the neighboring sections as 

context. The implementation of this extension for large-scale multi-section processes is 

straightforward. 
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

Supervisory control is an attractive strategy to optimize the control of nonlinear 

and batch processes. The identification of the process operating state can be used to 

localize the control configuration and parameters. The work in this thesis corroborates 

the growing importance of operating state identification in chemical and biology 

process and has focused on two main problems of process monitoring: clustering and 

classification.  

Clustering is an offline technique that can identify the distinct operating states 

from historical process data. It can provide necessary information for online 

monitoring. A multivariate statistics-based methodology to cluster process states in 

historical operations data is proposed in this thesis. Process data are first segmented 

based on regions of steady state operations into modes and transitions. Similar modes 

are identified by comparing their means. A new dynamic PCA-based similarity factor, 

which accounts for the autoregressive nature, has been developed to cluster transitions. 

The technique was applied to data collected from two kinds of agile operation – startup 

of a simulated FCCU and multi-mode operation in the Tennessee Eastman plant 

simulation. Application to fault isolation was also demonstrated in the latter case study. 

In all cases, the method correctly identified and clustered the modes and transitions. 

These tests thus highlight the applicability of the state segregation and the superiority 

of the DPCA-based transition similarity factor.  

The proposed clustering methodology offers several advantages. It accounts for 

the multivariate nature of chemical processes naturally and is hence superior to 
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methods like DTW and qualitative trend comparison, which are designed for one-

dimensional data. Also, the trend and the DTW-based transition comparison are 

computationally expensive and are therefore performed on selected key variables 

instead of all variables in a process unit. The selection of key variables for a process 

unit is a nontrivial problem which is eliminated in the proposed approach. The 

homologous problem of selecting k, the subset of the PCs, is a simpler one with clear 

guidelines. The use of PCs in lieu of the original variables also bestows the method 

with inherent noise filtering ability. In cases, where noise level is very high, the raw-

data can be pretreated with wavelets or other filtering methods before clustering is 

performed. The normalization of process variables during transition comparison 

ensures that the focus is on the underlying dynamics. The magnitude of the change is 

correctly ignored thus making the comparison more robust to run-to-run differences. 

However, if a stricter comparison is necessary, magnitudes can also be included 

through the SM factors as demonstrated in the TE case study. The DPCA factor results 

in a quantitative comparison of two transitions instead of a binary judgment. While this 

makes the similarity results dependent on the tuning parameters, the results are 

consistent for a range of parameter values. We have also developed clear guidelines for 

setting the parameter values. The computational requirement of this approach is quite 

modest and allows large amount of data to be analyzed in a short period.  

After the process data are clustered, the data from different operating states can 

be used to build supervisory classifiers. Neural networks are used in this thesis to 

identify the operating state due to their nonlinear approximation ability and robustness 

to process measurement noise. While the training of the traditional neural networks to 

classify high dimensional temporal pattern is a challenging task, we present two neural 

network architectures which can achieve better classification performance and 
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maintain lower computational requirements. In both structures, the original 

classification problem is decomposed into a number of simpler classification problems. 

The OVON uses a sub-state identification layer where a set of neural networks are 

used to identify simpler uni-variate, temporal patterns. A unification layer is 

subsequently used to infer the process state based on the sub-states, through multi-

dimensional, static pattern recognition. The OCON incorporates a different philosophy: 

a state-identification layer is used to identify the presence or absence of a temporal 

pattern in multi-dimensions; the state of the process is inferred by analyzing the static, 

multi-dimensional outputs from the state-identification layer.  

OVON and OCON are usually superior to traditional monolithic networks in 

terms of classification accuracy and training time. Each sub-network in OVON and 

OCON has a simpler structure than a monolithic neural network for the same problem. 

Generally, the OVON unification layer and the OCON regulator layer can filter out 

errors from the sub-layer and provides robustness to noise and disturbances. The 

OVON is superior in terms of training time, if retraining is necessary to accommodate 

sensor faults. The OCON is superior in terms of training time, if retraining is necessary 

to accommodate new operating states. 

Situations where the same pattern maps to different classes suggest context-

dependency. Traditional pattern recognition techniques perform poorly when the 

context changes and there is a dramatic change in the pattern mapping. Contextual 

features can be used in such cases to improve predictive performance of primary 

features. Context-based pattern recognition approaches exploit the ability of these 

contextual features to constrain reasoning, increase information content, and thus 

improve performance. In this thesis, we have shown that process state identification is 

a context-based pattern recognition problem. A neural network-based architecture ─ 
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Operating State Identification Neural Network (OSINN) ─ is proposed for online state 

identification. In OSINN, the process state is recognized by a state identification block 

using multivariate temporal data from online sensors. The contextual feature is an 

additional input to the state identification which modifies the feature space so that the 

final mapping is reduced to the classical one-to-one or many-to-one situation. The 

contextual feature is regulated by a context manager which detects changes in context 

and controls the transfer of the feature to the state identification block.  

The OSINN architecture can be implemented using different structures. Three 

suitable structures have been presented in this thesis. In OSINN-N, the contextual 

information is used to normalize the network’s input so that process measurements 

from different contexts map to different regions of the input space. Through this 

contextual normalization strategy, process patterns from different contexts do not 

overlap and can be interpreted differently. OSINN-P and OSINN-S implement 

contextual expansion and realize context-based recognition in two steps. The process 

pattern is first identified by a data-preprocessor. The context manager detects the 

change in context by monitoring either PA(t) or  ˆ( )S t . The context is made available to 

the state identification block which uses it along with the process pattern to identify the 

process state. The additional network to identify process patterns makes OSINN-P and 

-S robust to measurement noise.  

The context-based pattern recognition achieved by OSINN has several 

applications. We have shown that process supervision applications – specifically, 

process state identification and fault detection lead to context-dependent patterns. In 

the ShadowPlant case study (chapter 5), OSINN correctly identified the states arising 

during the startup of a simulated FCCU although the same process patterns occur in 

several states. We also show that abnormal situations during the startup that cannot be 
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deciphered by normal pattern recognition approaches can be detected correctly using 

the proposed approach. In the fed-batch case study, the phases in a pilot-scale fed-

batch fermentation process were identified accurately although the same pattern has 

different interpretations in different phases. The robustness of the OSINN to process 

noise as well as run-to-run variation is also highlighted in this case study.  

The performance of OSINN is conditional on the correct detection of changes in 

the context. If the contextual feature used for state identification block is incorrect, the 

subsequent state identification will also be incorrect. Two noise-cancellation 

mechanisms – dwell-time and evaluation-interval – have been incorporated in OSINN 

to enhance context identification and management. The effect of the tuning parameters 

on state identification performance have been discussed in detail and guidelines 

developed to select suitable settings. 

6.2 Suggestions for Future Work   

While the developments in this thesis solve the overall problems in the state 

identification, these can be extended in the future. 

The DPCA operation on process data provides a lot of information of the process 

profile. Besides reflecting the distribution of the process variable dynamics through the 

direction of main PCs, it also explicitly gives the resources from which the largest 

variations of the process come from by the coefficients of the loadings. How to utilize 

this information for transition identification is an interesting problem. And through 

these studies, the underlying mechanism of DPCA operation can be understood better.  

 DPCA similarity factor shows great potentials in pattern comparison. Its 

implementation in other possible field such as fault detection, model identification is a 

good study direction. For example, most modern industrial control algorithms need an 

explicit process mathematic model. Step test is the main method to get these models in 
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practical applications. If these models can be derived from historical dataset, the model 

identification can be tremendously facilitated. However, the historical dataset is 

usually very large. How to find a proper period of data for model identification is then 

a challenge work. It may be possible to build a library including data patterns that have 

ideal features for model identification. Then DPCA similarity factor can be used to 

locate proper period of data from historical dataset. 

6.2.1 OVON and OCON Structures 

OVON and OCON have shown better classification performance than traditional 

neural network. However, the improved classification accuracy of OVON is derived at 

an additional cost. In order to train the sub-state identification layer, a prior knowledge 

of sub-states of each variable is necessary. The uni-variate nature makes this a 

straightforward step when the boundaries between clusters can be located accurately. 

However, for problems with a large number of variables, this analysis is cumbersome. 

In both OVON and OCON (and in traditional networks), misclassification occurs 

during state change where there is no clear separation between the states or the sub-

states. A better method for accurate state boundary recognition is therefore needed and 

is the subject of our future work.  

6.2.2 Context Recognition Problem 

The improved performance from context-based pattern recognition comes at an 

additional cost – the selection of a suitable context is necessary. In the two case studies 

presented in chapter 5, it is shown that this additional load is minimal since the 

previous process state from the same process unit can be used as the context. Thus, the 

only step that is additional to traditional pattern recognition approaches is the 

specification of context-change points.  During the operation of large-scale processes, 
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operators may incorporate information from not only the same section, but also other 

neighboring sections while interpreting process patterns. This is because exogenous 

variables from other process sections may have a substantial effect on the state of a 

process unit. In sections cases where external dependencies can be identified, the 

OSINN architecture can be extended to incorporate historical information from the 

neighboring sections as context. The implementation of this extension for large-scale 

multi-section processes is straightforward. 
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