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Summary 

The High Level Architecture (HLA) is widely used in Modeling & Simulation as a 

common structure which aims to facilitate the reusability of simulation models and 

the interoperability among the models. In order to support these goals, the HLA 

Federation Development and Execution Process (FEDEP) [1] was defined to provide 

a high-level framework to build a set of multiple interacting simulation models, the 

HLA federation. It is a generalized process for building HLA federations from 

scratch. However, simulation model development, implementation, testing, and 

execution are time consuming and expensive processes. So, is there a way to reuse 

the existing simulation models and develop new models more efficiently? 

In the year 2001, a project “A net based modeling and simulation platform 

(NetMas)” [2] was initiated aiming at developing a platform to utilize the simulation 

models/codes and computing resources more efficiently. One of the main parts of the 

NetMas platform is the Model Construction (Design) Environment (MCE), in which 

a model builder may use the existing sub-models to compose new models. The 

models used here are Federation Object Model (FOM) and Simulation Object 

Models (SOM) based on the HLA OMT [3]. The key aspect of the MCE is to ensure 

that the models are compatible and interoperable, which is named the “Matching 

Algorithm” here. Also the comparison process has to be done automatically. 

This thesis describes the design and development of the current MCE, in which the 

composing FOM/SOMs are checked by the Matching Algorithm and the new FOM 



x 

is developed. In addition, it examines whether the HLA OMT is sufficient for 

ensuring the compatibility and interoperability among federates in the federation. 

After performing two case studies and theoretical research, it is found that the HLA 

OMT may bring some substantive interoperability problems and non-exchange data 

problems. An Extensible Element scheme is introduced in this thesis later to improve 

the semantics of the federate/federations. The scheme is helpful to strengthen the 

identity and accuracy of the object models. 

This work attempts to investigate the possibility to build HLA federations 

automatically. Meanwhile, it argues for an alternative method for federation 

development. It can be useful to further facilitate the reusability and interoperability 

of the HLA federate/federations.
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Chapter 1 Introduction 

1.1. Overview 

Simulation is useful in such situations where it is difficult, expensive or impossible 

to do experiments with the real system for some special reasons, or, in some cases, 

the experiment has to be done for several times but the resources are unable to be 

recovered after each time. Simulation enables people to represent some behavior of 

the real systems, to simulate it and to get the result before they actually build the 

system. By getting the results in advance, simulation can avoid wasting time and 

money on those low cost-efficiency projects/plans. 

1.1.1. Computer Simulation 

Computer simulation is the process of designing and executing a model on a digital 

computer [4]. It is one of the most important applications in the computer science 

area. With the emergence of low-cost and high-power computers, computer 

simulation is making great strides in recent years. 

There are several areas that computer simulation applications can make contributions 

to. With the strong computational power of the current computer systems, computer 

simulation can help the wide-spread use of computational intelligence. Also, 

computer simulation facilitates the development of multimedia user interface and 

virtual reality, which further promotes the popularity of computer-based interactive 

games. As Object-Oriented Analysis and Design is getting more mature, computer 
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simulation can play a more and more important role as a useful computer application 

area. 

1.1.2. Parallel and Distributed Simulation 

Sometimes the simulation would be involved with heavy computation or would vary 

in problem size. Thus, increasing the numbers of processors and memories to 

parallelize the computation would help in this situation. There are two types of 

concurrent computation, one is parallel simulation, and the other is distributed 

simulation. 

Parallel simulation is often used to improve the performance of the system. Usually 

parallel simulation uses multiple CPUs and data stores. By decomposing the 

simulation into different parts and increasing the computation power, parallel 

simulation can reduce the execution time and increase the problem size. 

Distributed simulation is used on both Local Area Network (LAN) and Wide Area 

Network (WAN). The purpose of it is to strengthen the collaboration among 

computer systems in different locations. Distributed simulation can potentially 

increase the scalability of the system. Also, it would increase the fault tolerance of 

the simulation system [5]. With the existence of reliable and broadband data 

communication technologies, distributed simulation has been applied in the areas 

below: 

•  Military Applications, including War Gaming Simulations, Training 

Environments and Test & Evaluation; 
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•  Education and Training; 

•  Entertainment and Gaming; 

•  Telecommunication Networks; 

•  Transportation. 

1.1.3. High Level Architecture (HLA) 

One of the first concerns of distributed simulation is how to shape and organize the 

simulation models in a unified format. The High Level Architecture (HLA) has been 

developed under the leadership of the Defense Modeling and Simulation Office 

(DMSO) to provide a common architecture for distributed modeling and simulation 

(M&S). The HLA was widely used in M&S for it facilitated the reusability of the 

simulations and the interoperability among them, and it was approved as an open 

standard through the Institute of Electrical and Electronic Engineers (IEEE) in 

September 2000. 

To support the general goals of the HLA, the HLA Object Model Template (OMT) [3] 

was introduced to prescribe the format and syntax for recording the information in 

HLA object models. It not only provides a template for documenting the 

HLA-relevant information as individual models (federates), but also facilitates 

understanding and comparisons of different simulation models in a unified 

simulation environment (federation). 

There are many ways to construct an HLA federation. Among them, the HLA 
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Federation Development and Execution Process (FEDEP) [1] provides a high-level 

framework and a common sense system engineering methodology for HLA 

federation. It divides the federation construction into six basic steps in sequence, 

from federation objective definition, model development to federation execution and 

results collection. It can be used to meet all kinds of individual application 

requirements. Thus, it is deemed as a generalized process for building HLA 

federations from scratch. 

However, simulation model development, implementation, testing, and execution are 

time consuming and expensive processes. With the wide spread use of the Internet, 

more and more resources can be shared online, which facilitates the possibility to 

reuse these resources. So, is there a way to reuse the existing simulation models and 

develop new models more efficiently? The question will be explored in this thesis. 

1.2. Related Work 

Many researchers have tried to establish the modeling and simulation environment 

for construction and maintenance of simulation models. The HOMME 

(Heterogeneous Object-oriented Multipurpose Modeling Environment) [6] was 

developed to construct heterogeneous models with different techniques, such as the 

differential algebraic equations (DAEs) and neural networks. The user can use an 

editor in the HOMME system to generate intermediate representation of 

meta-classes or meta-objects. Besides, the user can store the models in an 

object-oriented database. However, a match for the modeling process still needs to 
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be developed in the HOMME. 

The NanoComp Project [7] was started in 1998 and aimed at investigating the 

feasibility of future electronics based on quantum devices. A web-based 

collaborative environment supporting reuse and interoperability of M&S 

components was developed in the project [8]. To select from the heterogeneous 

models and tools, the environment relies on the Dublin Core Metadata Initiative 

(DCMI) [9], which is an open forum engaged in the development of interoperable 

online metadata standards that support a broad range of purposes and business 

models. The environment supports on-line research and development by sharing and 

reuse of various models in different formats. But the compatibility among the 

different formats of the models is doubted. 

A novel design environment for developing multi-agent systems (MASs) for 

applications in mobile robotics was introduced in [10]. This automated design 

environment used generic algorithm to select the best candidate designs, then created 

and managed the new models. The environment was based on the HLA. 

1.3. Background 

In year 2001, a project “A net based modeling and simulation platform (NetMas)” [2] 

was initiated aiming at developing a net based platform to utilize the simulation 

models/codes and computing resources more efficiently. It is a cooperative project 

between NUS and two major Swedish sponsors, the Royal Institute of Technology 

(KTH) and the Swedish Defense Research Agency (FOI). The main purpose of this 
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project is to investigate how the advances in networking technologies, such as the 

Internet, can contribute to improve interoperability, portability and reusability of 

simulation models and codes. 

One of the first concerns is collaboration. The Internet enables people from different 

locations to work together. By sharing all the outcomes as a big virtual library to the 

authorized members of a group, each member gains a lot more than what he/she can 

generate. Thus, those who can only build small specialized sub-models can also 

contribute to the society in building large stand-alone monolithic models. As reward, 

they gain access to the entire range of models in the library. Figure 1-1 shows an 

illustration of the collaboration among different organizations, e.g. NUS, FOI and 

KTH. 

 

Figure 1-1 The Collaboration Among Different Organizations 

Also, a modeling environment should provide the development tools and storage and 

NUS 

FOI 

KTH

Model Virtual 
Library 
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management of the models. The model development tools (textual or graphical) 

should be available for the user to build the models. After creating the models, the 

user should be able to store it in a permanent structure that could be understood by 

other users. 

1.4. Objective 

This thesis work focuses on one of the main parts of the NetMas platform, the Model 

Construction Environment (MCE). In the MCE, a model builder may use the 

existing sub-models to compose new models. The key aspect of the MCE is to 

ensure that the models are compatible, interoperable and can communicate with each 

other. This is achieved through an algorithm, called the “Matching Algorithm”, 

which automatically checks compatibility among the sub-models. 

All these require the models to be built in a well structured template or format. The 

HLA OMT is chosen as our model construction standard for its great support for 

model reusability and interoperability. The sub-models that are used in this platform 

are Simulation Object Models (SOM), the description of a federate according to the 

OMT. Besides, the corresponding Federation Object Model (FOM) is created under 

this scheme and saved for future reuse. The FOM/SOM will be discussed in detail in 

Section 2.1.3. 

Another interesting question is whether the HLA OMT can ensure the compatibility 

among the sub-models or not. Although HLA OMT has defined the syntax and 

structure of the HLA federate/federation, it does not guarantee the fidelity levels 
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(how well the simulation makes its representation) among the simulation models are 

the same. Thus, we propose an Extensible Element with priority level scheme to help 

in this study. 

1.5. Contribution 

This work attempts for an alternative method to automatically build HLA FOMs 

with existing HLA SOMs, which further facilitates the reusability of HLA federates 

and the interoperability among them. It is a first attempt to investigate the possibility 

to build HLA federation automatically. To check the compatibility among the 

simulation models, a Matching Algorithm is set up and tested with real examples.  

Furthermore, this work examines whether the HLA OMT is sufficient for ensuring 

the compatibility, interoperability and communicability among federates in the 

federation. Some practical suggestions are made towards the current HLA OMT 

specification, which show a promising and potentially effective way to describe and 

shape federates through the HLA. 

This work can contribute to more cost-efficient methodologies for development and 

execution of simulation models and codes. Meanwhile, it brings forward some 

helpful suggestions and early stage implementations to the augmentation of the 

current HLA OMT standard. 

1.6. Organization of the thesis 

The rest of this thesis is organized as follow: 
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Chapter 2 describes the background of the distributed simulation field, including the 

HLA OMT, the FEDEP model and the interoperability and fidelity challenges of the 

model construction. 

Chapter 3 introduces the MCE environment, which is made up of a client interface 

and a file server, and how they work together. The infrastructure part introduces the 

XML based DIF as the format for models as well as a DIF-XML converter. The 

framework part introduces the client interface and the file server and how they 

communicate. 

Chapter 4 first explains the Matching Algorithm used in the MCE, which is made up 

of four consecutive processes: the DataType Check, the Routing Space Check, the 

Object Match and the Interaction Match. The Matching Algorithm is then enhanced 

with some concepts based on the FOM Agility. Finally, this chapter explains how to 

build a FOM using the data which are parsed in the Matching Algorithm. 

Chapter 5 investigates on two case studies in building FOMs with the MCE. The 

feasibility of the MCE is discussed and some deficiencies of the scheme are given as 

well as the reasons behind them. The limitations of the current HLA OMT are also 

discussed in this chapter. 

Chapter 6 introduces the traditional schemes that are used to strengthen the 

semantics of the simulation model. Besides, an embedded Extensible Element 

scheme for the DIF is introduced in this work and is suggested as an augmentation of 

the current HLA OMT. 
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Chapter 7 concludes the thesis and suggests some aspects for future work. 
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Chapter 2 Basic Concepts in Distributed 
Simulation & HLA 

This chapter provides the reader with some necessary theoretical background in the 

distributed simulation field. The HLA OMT is a standard format and syntax for 

recording the information in HLA object models. The FEDEP model is a generalized 

process for building HLA federations. And we still need to think about the fidelity 

and interoperability challenges of the models to ensure that what we have built 

represents exactly what we want. These are described in the following three 

subsections respectively. 

2.1. HLA OMT 

2.1.1. HLA Overview 

Different simulations are developed by different organizations. This raises the 

problem of interoperability among the different simulations when people want to 

utilize others’ simulation. At the same time, for the reason of the high cost in 

constructing a new model every time, there exists the big desire to reuse the existing 

simulations. Setting up flexible and abstract standards for simulation is under 

demand. 

The High Level Architecture (HLA) provides a common architecture for modeling 

and simulation and is widely used across large amount of simulation application 

areas [11]. The HLA was developed under the Department of Defense (DoD) 
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Modeling and Simulation Master Plan [12] to facilitate interoperability among 

simulations and promote reuse of simulations and their components. 

The HLA is made up of three main components: 

•  HLA Rules, which describes the general principles defining the HLA and 

delineates the set of rules that apply to HLA federations and federates; 

•  HLA Interface Specification, which provides a specification for the DoD 

HLA functional interfaces between federates and the runtime infrastructure 

(RTI); 

•  HLA Object Model Template (OMT), which prescribes the format and 

syntax for recording the information in HLA object models. 

In the HLA, the simulation unit could be one or several federates or federations. A 

federation is defined as a set of simulations that are used to form a larger model or 

simulation. A federate is a member of a federation. Federate and federation are the 

basic entities of the HLA infrastructure. 

The HLA is widely adopted in M&S for the following reasons: Firstly, it enables the 

simulation to be shaped as interacting components/models, which could be easily 

implemented by different parties. Secondly, it provides the simulation planning 

method, which is essential in the simulation preparation period. Thirdly, it is a good 

way to model the simulation. Lastly, it provides the users with means for model 

validation and verification. 
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2.1.2. Runtime Infrastructure (RTI) 

A simulation is not yet accomplished until it is implemented with certain software. 

The Runtime Infrastructure (RTI) is defined to work with the HLA as a collection of 

software that provides common services required by multiple simulation systems. It 

is also an architectural foundation encouraging portability and interoperability. The 

RTI consists of six service groups: 

•  Federation Management: Create and delete federation executions join and 

resign federation executions control checkpoint, pause, resume, restart 

•  Declaration Management: Establish intent to publish and subscribe to 

object attributes and interactions 

•  Object Management: Create and delete object instances; Control attribute 

and interaction publication; Create and delete object reflections 

•  Ownership Management: Transfer ownership of object attributes 

•  Time Management: Coordinate the advancement of logical time and its 

relationship to real time 

•  Data Distribution Management: Supports efficient routing of data 

Figure 2-1 illustrates how a simulation is built with HLA and how HLA and RTI 

play in the framework. 
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Figure 2-1 An HLA Federation 

2.1.3. HLA OMT 

The HLA OMT is a standardized structural framework for specifying relevant 

information of the simulation models. It is an essential component of the HLA as it 

provides a common mechanism for specifying the data exchange and federate 

coordination, and a foundation that design and application tool sets for HLA object 

model construction can base on. 

In the OMT, a Simulation Object Model (SOM) is used to describe an individual 

federation member (federate), while a Federation Object Model (FOM) is used to 

describe a named set of multiple interacting federates (federation). In either case, the 

primary objective of the OMT is to facilitate interoperability among simulations and 

reusability of simulations or simulation components. 

Functionally, the FOM should ensure the critical requirement of a federation, that is, 

Federation 

Simulation 
(Federate) 

Simulation 
(Federate)

Simulation 
(Federate) 

Runtime Infrastructure (RTI) 

Interface 
Specification

Interface 
Specification
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all federation members should achieve a common understanding among all the 

participating federates. At the same time, it provides a specification for data 

interchange among federates in a common and standardized format. Differing from 

the FOM, the SOM expresses the suitability of simulation systems for best meeting 

the overall objectives in a federation. 

The OMT consists of the following components in the form of tables: 

2.1.3.1. Object Model Identification Table 

The Object Model Identification Table is used to document important identifying 

information with the HLA object model. These information, such as the 

point-of-contact (POC), is necessary for other users who wish to reuse the model and 

want to know the details about how a federate/federation was constructed. Table 2-1 

shows an example of the Object Model Identification Table: 

Object Model Identification Table 

Category Information 

Name Mission Planning Simulator 

Version 00.6.1 

Date 01/24/2000 

Purpose 
Provide space-time location and orientation of 
simulated test objects and instruments to data 
collectors. 

Application Domain Test and Evaluation 

Sponsor Army Test and Evaluation Command 

POC Mr. Jeffrey Thomas 

POC Organization White Sands Missile Range 

POC Telephone (505) 678-4597 

POC Email thomasj@wsmr.army.mil 
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Table 2-1 An Example of the Object Model Identification Table 

2.1.3.2. Object Class Structure Table 

In the OMT, an HLA object class is a collection of objects with certain 

characteristics or attributes in common. It is essential for specifying characteristics 

(attributes) of simulation objects. Also, it provides the means for federation 

participants to subscribe to information about all individual instances of HLA objects 

with common attributes. An HLA class structure is defined in terms of hierarchical 

relationships among classes of objects. 

The Object Class Structure Table is used to record the namespace of all 

simulation/federation object classes and to describe their class-subclass relationship. 

2.1.3.3. Interaction Class Structure Table 

An interaction is defined in the OMT as an explicit action taken by a simulated entity 

(or aggregation of entities) in a federate that may have some effect or impact on 

another federate. An interaction structure is composed of relations of generalization 

(or specialization) between different types of interactions. 

The Interaction Class Structure Table is used to record the namespace of all 

simulation/federation interaction classes and to describe their class-subclass 

relationship. 

2.1.3.4. Attribute Table 

Attributes of HLA object classes are specified to support subscription to their values 
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by other interested members of a federation. During the federation execution, 

knowledge of object attributes is commonly required for effective communication 

between federates. 

The Attribute Table is used to specify features of object attributes in a 

simulation/federation. 

2.1.3.5. Parameter Table 

Interaction parameters are used to associate relevant and useful information with 

classes of interactions. These parameters are used to support calculation of new 

attribute values for objects affected by the interaction. 

The Parameter Table is used to specify features of interaction parameters in a 

simulation/federation. For every interaction class identified in the interaction class 

structure table, the full set of parameters associated with that interaction shall be 

described in the parameter table. 

2.1.3.6. Routing Space Table 

Routing spaces are the most fundamental Data Distribution Management (DDM) 

concept which is defined in the HLA RTI Programmer’s Guide [13]. A routing space 

is a multidimensional coordinate system through which federates either express an 

interest in receiving data or declare their intention to send data. 

The Routing Space Table is used to specify routing spaces for object attributes and 

interactions in a federation. 



18 

2.1.3.7. FOM/SOM Lexicon 

The FOM/SOM Lexicon provides a means for federations to document the 

definitions of all terms (such as the objects, the interactions) utilized during the 

construction of simulation models. It helps to achieve a common understanding of 

the semantics of the model. Federation/federate developers are provided maximum 

flexibility in this lexicon. With the lexicon, constructing libraries of reusable data 

views and making the libraries available for general use is possible in future 

application. 

The FOM/SOM Lexicon Table is used to define all of the terms used in the tables. 

2.1.4. Data Interchange Format (DIF) 

The OMT Data Interchange Format (DIF) is a standard file exchange format used to 

store and transfer FOMs and SOMs between FOM/SOM builders. It is also specified 

in the OMT [3]. The DIF is formally defined in terms of extended Backus Naur 

Form (BNF), which is normally used to describe inductive specifications. As defined 

in [14], BNF has three main parts: 

•  Terminals: require no further definition 

•  Non-terminals: are defined in terms of other non-terminals and terminals 

•  Productions: state how the non-terminal is constructed for each of them 

The DIF is built on a common meta-model that represents the information needed to 

represent and manage object models. It documents the major components in OMT, 
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for instance, the object model identification, the objects, the interactions, the 

attributes and parameters. For example, Figure 2-2 illustrates the HLA OMT DIF 

BNF definition for HLA Object: 

<Class> ::= “(Class (ID ” <<CLS_ID>> “)”

“(Name ” <<CLS_Name>> [<NoteRef>] “)”

[“(MOMClass ” <<CLS_IsMOMClass>> “)”]

“(PSCapabilities ” <<CLS_PSCapabilities>> “)”

[“(Description ” <<CLS_Description>> “)”]

{<ClassComponent>}* “)”;

<<CLS_ID>> ::= <Identifier>;

<<CLS_PSCapabilities>> ::= “P” | “S” | “PS” | “N”;

<<CLS_Name>> ::= “＂＂＂＂” <TextString> “＂＂＂＂”;

<<CLS_IsMOMClass>> ::= “True” | “False”;

<<CLS_Description>> ::= “＂＂＂＂” <TextString> “＂＂＂＂”;

<ClassComponent> ::= <Attribute> | <SuperClass>;

Figure 2-2 An Example of HLA OMT DIF BNF Definition 

As one can see from Figure 2-2, an HLA object is defined with class name, class ID, 

PSCapabilities, Name, Description, class component, etc. Each component of the 

object class can be further defined using the similar BNF format as shown in this 

example. 

The DIF is structured as a stream of object model meta-data, and it is always 

represented in a simple ASCII file. Furthermore, the DIF content consistency defines 

a set of rules to meet the requirements of the OMT. Thus, it could be regarded as a 

representation of the FOM/SOM. 
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2.2. Federation Development and Execution Process 

(FEDEP) 

2.2.1. FEDEP Introduction 

With the fast development of HLA, many software engineering methods and 

procedures are used in the M&S industry. Most of them focus on the function 

development, concept evaluation and testing. However, the advantage of HLA that 

data can be exchanged dynamically at run-time is always ignored. As more and more 

simulations are migrating to HLA, there should be a framework to guide people 

when building HLA federations. 

The Federation Development and Execution Process (FEDEP) model is a 

generalized process for building HLA federations [1]. It was designed to provide a 

high-level framework for HLA federation development and execution, rather than 

replace other engineering processes. It should also be aware that the FEDEP is not 

designed as a universal and common procedure for federation development. The 

reason is that different applications have different realities, for instance, the size, 

complexity and documentation requirements. 

Since the needs and requirements of the simulation applications vary a lot, the 

FEDEP is designed as a starting framework for identifying and addressing the 

general issues for distributed simulation. It is also flexible in the process so that HLA 

applications could be composed to achieve the objectives of particular needs. To sum 

up, this framework is a foundation for all federation development, while it can be 
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tailored to design applications for specific purpose at the same time. 

2.2.2. Six-Step Process 

Although the FEDEP can be different among different federation builders, these 

processes can be summarized into several basic steps in the theoretical level. The 

FEDEP defines six steps for these processes, though the actual implementation may 

not be restricted to them [1]. Table 2-2 summarizes the six steps in sub-tasks. These 

steps will also be discussed below. 

Index Steps Sub-Tasks 

Step 1 Define Federation Objective •  Identify needs 
•  Develop objectives 

Step 2 Develop Federation Conceptual Model 
•  Develop Scenario 
•  Perform conceptual analysis 
•  Develop federation requirements 

Step 3 Design Federation 
•  Select federates 
•  Allocate functionality 
•  Prepare Plan 

Step 4 Develop Federation 
•  Develop FOM 
•  Establish federation agreements 
•  Implement federate modifications 

Step 5 Integrate and Test Federation 
•  Plan execution 
•  Integrate federation 
•  Test federation 

Step 6 Execute Federation and Prepare Results 
•  Execute federation 
•  Process output 
•  Prepare results 

Table 2-2 The FEDEP Six Steps 

•  Step 1 Define Federation Objective: As a beginning, the federation user and 

federation development team should identify the basic needs and 

requirements of the federation. They should also give a detailed objective 

statement in this step. 
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•  Step 2 Develop Federation Conceptual Model: A function specification is 

developed in this step, followed by a representation of the real problem space. 

The fidelity requirements of the federation are then identified. 

•  Step 3 Design Federation: The participant federates are selected from all 

resources and their functionality and responsibilities are determined. A 

coordinated plan is prepared and documented. 

•  Step 4 Develop Federation: The Federation Object Model (FOM) is 

developed in this step, together with some agreements on the details of the 

software, database and algorithm to be used. Modifications that are 

necessary are implemented as well. 

•  Step 5 Integrate and Test Federation: In this step the plans for the whole 

execution and testing process and the measurement for evaluation are 

prepared. All participant federates including their software and hardware are 

integrated and installed. The interoperability among the participants is then 

tested. 

•  Step 6 Execute Federation and Prepare Results: The federation is executed 

and the simulation data are collected. Outputs are generated and analyzed if 

necessary. The objectives of the federation are checked whether they have 

been met or not and if the answer is yes, all the federation products are saved 

and kept for future reuse. 
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2.2.3. Implementation 

This six-step process can be implemented in many different ways depending on the 

nature of the application [1]. This is because a lot of issues and requirements of an 

HLA federation could vary significantly. For example, the time and effort 

requirement, the degree of formality, personnel requirements, etc. can vary greatly 

from application to application, so that the procedures in developing the models can 

be quite different. 

The degree of reuse of existing federation products may affect the implementation 

part, too. In some cases, federations may be developed largely from a scratch. Thus, 

the development process is rather new and time consuming. In other cases, users 

would like to follow long-standing requirements and care about the extensibility for 

each new product. In these situations, reusing is more often adopted and therefore 

both cost and development time is saved. 

The six-step process provides a top-level view of the FEDEP, a comprehensive, 

generalized framework for HLA federation construction. However, users must be 

aware that during implementation, this process model will normally need to be 

adjusted and modified as appropriate to address the unique requirements and 

constraints of their particular application area. 

2.3. Fidelity & Interoperability Challenges 

A computer simulation is designed to represent some behavior of some things in the 

real world. However, no one computer simulation can simulate the objects in the real 
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world 100% accurately. The simulation fidelity is defined as “the accuracy of the 

representation when compared to the real world” [15]. It reflects how well the 

simulation responses and results correspond to what the simulation represents. The 

model designers should consider the fidelity before they actually build a model. 

Another problem will occur if a model designer wants to reuse some models 

developed by others: the model designer cannot ensure the models from elsewhere 

can fit into his. This is defined as substantive interoperability, “the capability of 

federates, when connected, to provide adequate, accurate and consistent simulated 

representations that adhere to the principles of ‘fair fight’ and address the mission 

objectives” [16]. 

In order to produce meaningful simulation results, the entities represented across the 

federation must work together in a manner consistent with the needs of the 

federation application. A model designer should be aware of the following situations: 

Representational Anomalies, Functional Dependencies and Manifold 

Representations [17] so that the execution will adequately accomplish the mission. 

2.3.1. Representational Anomalies 

Representational anomalies are those states and events that would not occur in the 

stimuland (the real system being simulated by a simulation) under identical 

conditions. Whenever an anomaly occurs, it indicates that a simulation has omitted 

or incorrectly represented some aspects of object coupling that exist in the physical 

world. 
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There are mainly four kinds of representational anomalies which were defined in [17] 

and listed below: 

•  State Error Anomalies: state error anomalies occur when there exists a 

difference between the state that a simulated object assumes and the state 

that object’s referent (a codified body of knowledge about the thing being 

simulated) assumes under identical conditions and that difference is beyond 

levels tolerable by the application. 

•  Event Ordering Anomalies: Event ordering anomalies occur when a 

simulated object produces the same events that the simuland would under 

identical conditions but in a different order. 

•  Event Phase Anomalies: Event phase anomalies occur when a simulated 

object produces the same events in the same order that the simuland would 

under identical conditions but with a timing or phase error. 

•  Registration Anomalies: Object state registration anomalies occur when the 

simulated states of two coupled objects differ from what the states of their 

coupled simulands would under the same conditions. 

2.3.2. Functional Dependencies 

Functional dependencies occur when the computation of one or more object states in 

one simulation depend upon the result produced by another simulation. Figure 2-3 

illustrates an example of functional dependencies: the result of Simulation A is a 

dependent variable of the result of Simulation B, which means that the latter can 
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only be calculated after the former is ready. 

 
Figure 2-3 Functional Dependencies between Two Simulations 

Function dependencies would bring some problems if there are some differences in 

the dependent variable between the two simulations. For instance, the result might be 

wrong if the measure of unit is different in the two simulations, or, it may cause 

exceptions if the result of Simulation A is out of range in the function that uses the 

result in Simulation B. 

2.3.3. Manifold Representations 

Manifold representations occur when two or more interacting simulations represent 

the same state or behavior of the same object. They are often used to reduce 

communication between the simulations, for example, the dead reckoning algorithm. 

In some simulations, different objects may wish to know the positions of other 

objects. To reduce the communication cost among the objects, the dead reckoning 

algorithm is used [18]. In the algorithm, each object publishes its starting position 

and velocity vector only, and all the other objects will calculate the current position 

Simulation A 

Results A

Simulation B 

Results B = 
F (Results A)



27 

themselves. Thus, there is no need to exchange the large amount of information in 

every time step. 
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Chapter 3 Model Construction 
Environment 

The Net-based Modeling and Simulation platform (NetMas) [2] project was initiated 

in 2001, and aimed at building simulation models more efficiently. A major new idea 

about the model building process is to reuse the existing simulation models through 

the network. Based on this concern, one of the main parts of the Netmas is to set up 

an environment for the users to select some existing model/sub-models from the 

resource library to build a new model. 

The Model Construction Environment (MCE) is designed to meet this goal. It shows 

all the shared candidate simulation models which are documented in XML format. 

All the selected models should be carefully examined through a compatibility check 

before a new model is created. The compatibility checker is defined as the Matching 

Algorithm in this work and will be discussed in detail in chapter 4. The MCE also 

provides the users with a means to save the newly created model for future reuse. 

This chapter introduces the MCE in design space approach and explains how it 

works. The DIF-XML converter which is used to generate the models in XML 

format is also introduced in this chapter. 

3.1. Infrastructure 

As mentioned in chapter 1, the HLA OMT is selected as our standard to describe the 

simulation models. Thus, the “simulation model” appearing in this thesis refers to 
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the HLA FOM/SOM. 

The HLA OMT data interchange format (DIF) is a standard file exchange format 

used to store and transfer HLA FOMs and SOMs between FOM/SOM builders. The 

simulation models used in this work are all in the DIF format. 

The Extensible Markup Language (XML) [19] is the universal format for structured 

documents and data on the Web. XML is a meta-language, a language for describing 

custom languages or formats. From the day of being invented, XML has been widely 

used to describe object models. It is worth investigating of the possibility to structure 

OMT DIF based on XML. 

3.1.1. XML Based DIF 

Many researchers have studied the feasibility of using XML to define OMT DIF [20, 

21]. Basically, XML has several advantages as presented below: 

Firstly, XML is supported by many Commercial Off-the-shelf (COTS) software 

applications and libraries. It is a noticeable fact that during simulation model 

development and analysis, various different HLA tools might use the data that is 

exchanged among simulations. As XML is proven to be an effective tool for data 

interoperability, more and more COTS software have been built by simulation 

industry to support the data interchange among simulations [20]. Therefore, HLA 

developers can focus on developing HLA FOM/SOMs and do not have to worry 

about creating interoperable tools. 

Secondly, XML provides users with means to validate the format of the model. XML 
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documents are described in Document Type Definition (DTD) or schemas. XML 

tools can automatically validate the format of a compliant XML data file with the 

DTD/schemas. With the validation scheme, the syntax of the FOM/SOMs is ensured 

[21]. For example, the validation scheme will check whether required elements are 

present and associated information with that element is provided. 

Thirdly, XML has been recommended to IEEE as the standard for HLA DIF 

descriptions. XML DIFs are being developed for many HLA-related data application, 

e.g. the Unit Order of Battle (UOB) DIF [22]. Thus, the FOM/SOMs in this work are 

stored in XML format based on DIF. Part of the DTD to describe the HLA object 

definition for the XML based DIF is listed in Figure 3-1. 

<!ELEMENT Class (ID, Name, MOMClass?, PSCapability, Description?,

SuperClass?, Attribute*)>

<!ELEMENT ID NMTOKEN>

<!ELEMENT Name NMTOKEN>

<!ELEMENT MOMClass (TRUE | FALSE)>

<!ELEMENT PSCapability (P | S | PS | N)>

<!ELEMENT Description CDATA>

<!ELEMENT SuperClass NMTOKEN>

<!ELEMENT Attribute (Name, DataType, Cadinality?, Units?,

Resolution?, Accuracy?, AccuracyCondition?, UpdateType?,

UpdateCondition?, TransferAccept?, UpdateReflect?,

Description?, RoutingSpace?)>

<!ELEMENT Name NMTOKEN>

<!ELEMENT DataType NMTOKEN>

<!ELEMENT Cadinality CDATA>

<!ELEMENT Units CDATA>



31 

<!ELEMENT Resolution CDATA>

<!ELEMENT Accuracy CDATA>

<!ELEMENT AccuracyCondition CDATA>

<!ELEMENT UpdateType (Static | Periodic | Conditional)>

<!ELEMENT UpdateCondition CDATA>

<!ELEMENT TransferAccept (T | A | TA | N)>

<!ELEMENT UpdateReflect (U | R | UR)>

<!ELEMENT Description CDATA>

<!ELEMENT RoutingSpace NMTOKEN>

Figure 3-1The HLA Object Class DTD Definition 

3.1.2. DIF-XML Converter 

The original DIF files are usually stored in ASCII text files. Thus, these files need to 

be converted to XML format before we can use them in this work. To solve the 

problem, a DIF-XML converter is built and tested. 

The DIF and XML format are similar in that both of them can be deemed as tree 

structure. For the nature of the DIF files, the non-terminals are translated into XML 

elements and the terminals are translated to XML texts. A stack is used to record the 

XML element string so that it can be reached once the element finishes. 

However, the XML format is different from the DIF that only one top level element 

is allowed in an XML document while the DIF is not restricted to that. One solution 

is that for each DIF file, a top level element is added when it is converted to XML 

file. The tag of the top level element comes from the file name (the file suffix is 

excluded) from the original file. 

The conversion procedure is summarized in Figure 3-2: 



32 

void convert ()

read(file, buffer, filelength) //read the original file

while !(end of file)

switch (*buffer)

case ‘(‘ : //the beginning of a non-terminal

string = the string that follows the ‘(‘

write_string(“<”+string+”>”)

//generate an XML element

stack.push(string) //put the tag in stack

case ‘)’ : //the end of a non-terminal

write_string(“</”+stack.top()+”>”)

stack.pop() //pop out the tag

case ‘”’ : //the text string defined in the DIF

find out the next ‘”’

write_string(the contents between the quotes)

default : //the contents of the rest DIF

write_char(buf)

buffer++

End procedure

Figure 3-2 DIF-XML Conversion Procedure 

The DIF-XML converter is built with C++ under Windows platform. It is an 

executable program, as illustrated in Figure 3-3. To use this converter, a user should 

first press the “Open” button and select a source DIF file. The file is then opened and 

the contents of the file will be displayed as well. By clicking the “Save As” button, 

the DIF file is converted to XML format and the user can choose a directory path to 

save the converted file. Figure 3-4 illustrates the windows for saving the file. 
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Figure 3-3 DIF -XML Converter - Initialized 

 

Figure 3-4 DIF-XML Converter – Save As 

Figure 3-5 illustrates part of a SOM file which is generated by the DIF-XML 
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converter. 

<?xml version="1.0" ?>

<ITBSOM__1_0V2>

<DIF>HLA-OMT v1.3<Type>Single</Type></DIF>

<ObjectModel>

<Name>ITBSOM</Name>

<VersionNumber>1.0V2</VersionNumber>

<Type>SOM</Type>

<Purpose>To implement subset of the RPRFOM as defined in

the GRIM </Purpose>

<ApplicationDomain> Integrated Test Bed Simulations

</ApplicationDomain>

<SponsorOrgName>Simulation Interoperability Standards

Organization </SponsorOrgName>

<POCHonorificName>The</POCHonorificName>

<POCFirstName>Ken</POCFirstName>

<POCLastName>Stauffer</POCLastName>

<POCOrgName>AFRL/IFSC</POCOrgName>

<POCPhone>937-255-4827 X3341</POCPhone>

<POCEmail>kenneth.stauffer@wpafb.af.mil</POCEmail>

<ModificationDate>10/28/1999</ModificationDate>

<EnumeratedDataType>

<Name>HLAboolean</Name>

<Enumeration>

<Enumerator>HLAtrue</Enumerator>

<Representation>2</Representation>

</Enumeration>

<Enumeration>

<Enumerator>HLAfalse</Enumerator>
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<Representation>1</Representation>

</Enumeration>

</EnumeratedDataType>

<Class>

<ID>4</ID>

<Name>HLAobjectRoot</Name>

<MOMClass>true</MOMClass>

<PSCapabilities>PS</PSCapabilities>

<Description>N/A</Description>

<Attribute>

<Name>HLAprivilegeToDeleteObject</Name>

<DataType>any</DataType>

<Cardinality>1</Cardinality>

<UpdateType>Conditional</UpdateType>

<UpdateCondition>N/A</UpdateCondition>

<TransferAccept>N</TransferAccept>

<UpdateReflect>UR</UpdateReflect>

<Description>N/A</Description>

</Attribute>

</Class>

...

Figure 3-5 Part of a SOM Example 

As one can see from Figure 3-5, every component of the original DIF file is 

transferred into XML format here. In this example, the SOM covers the contents in 

the Object Model Identification Model, an Enumerated Data Type definition and an 

object class with one attribute. This is just an example of part of the SOMs that are 

used in the MCE. The actual SOMs are bigger and more complicated than what is 

shown here. 
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3.2. MCE Framework 

The main purpose of the NetMas project is to share the simulation models with 

people in different locations. In order to promote sharing through the network, the 

MCE should have the world wide accessibility. An easy solution is to build the MCE 

as a Java applet. However, saving the newly created model needs the file 

accessibility to the file system which is forbidden in Java applet for network security 

reasons. Thus, the MCE is designed as a client-server framework: a user interface 

built in Java applet on the client side and a Java application on the server side. 

Figure 3-6 illustrates the relationship and the data flow chart between the two parts. 

 

Figure 3-6 The MCE framework 

As one can see from Figure 3-6, the client interface first loads all the models from 

the model library and lists them before the user. Then the user decides which models 

he needs and puts them together in the model pool. Later on, the models selected 
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will go through a Matching Algorithm to check for compatibility. If the matching 

result is false, the user should be informed of the details where the models are not 

compatible, and some of the models will be either modified or replaced to meet the 

user’s desire. But if the matching result is successful, a new model is created and if 

the user wants to, the new model will be saved on the server side for future reuse. 

3.2.1. User Interface 

The user interface is the platform for the users to construct FOMs with existing 

SOM/FOMs. Figure 3-7 shows the User Interface when initialized: 

 

Figure 3-7 The User Interface – Initialized 

As one can see from Figure 3-7, the user interface is primarily made up of four parts. 

The Source panel on the upper left side is a place to display all the models in the 
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model library. The tabbed panel on the upper right side is a container for the user 

selected models. The three function buttons between the two panels are used to 

manage the components of the new FOM. The Status panel on the bottom is used to 

record the result and/or error status during the matching process. 

3.2.1.1. Source Panel 

The Source panel shows all the existing models in the library. It is designed in the 

Tree View mode. Every model (in XML file) is converted to a tree node of the root 

of the tree. Every child node of the model comes from the elements of the XML file. 

The nodes can either be expanded for viewing the details, or be collapsed as single 

nodes. The Source panel with the models is illustrated in Figure 3-8: 

 

Figure 3-8 The Source Panel – Model Library Tree View 

Meanwhile, a search function is provided for the user to find the model/component 

that he needs. This search function allows keyword search; any words that match the 

keyword will be set on the focus, no matter where it is in the model. By filling in the 
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edit box with the model/component’s name and pressing the Find button, the user 

can easily select an appropriate model/component. 

3.2.1.2. Tabbed Panel 

The Tabbed Panel is a container that contains the models selected by the user 

temporarily. It has three tabs altogether, namely, the Pool tab, the View tab and the 

Edit tab. 

The Pool tab displays the existing models in the container in icon mode. When a 

model in the pool is clicked by the user with the right mouse button, a popup menu 

will appear. In the popup menu, the Remove menu item allows the user to remove 

the model which the user is clicking on; the View menu item allows the user to view 

the model in XML file format in the View tab; the Edit menu item allows the user to 

edit every item of the model in the Edit tab. The Pool tab is illustrated in Figure 3-9: 

 
Figure 3-9 The Tabbed Panel – Add a Model 

The View tab allows the user to view the selected model in XML file format. It is 

illustrated in Figure 3-10: 
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Figure 3-10 The Tabbed Panel– View XML Format 

The Edit tab allows the user to edit the selected model in tree view mode. It is 

illustrated in Figure 3-11: 

 

Figure 3-11 The Tabbed Panel– Edit an Item in the Model 

If the result of the compatibility check is a match, the user shall make the decision to 

save the newly created model or not with a Save Confirm dialog. Figure 3-12 

illustrates the Save Confirm dialog. 
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Figure 3-12 The Save Confirm Dialog 

If the user wants to save the new model, he/she should enter a file name for the new 

model in the edit box and then send the save request to the server by clicking the 

Save As button. The edit box and the Save As button is illustrated in Figure 3-13: 

 

Figure 3-13 The Edit Box and the Save As Button 

3.2.1.3. Function Buttons 

There are three function buttons used to manage the components of the new FOM. 

They are located between the Source Panel and the Tabbed Panel. The Add button 

enables the user to add one model into the container. It is enabled only after a model 

in the Source Panel is selected. The Del button enables the user to remove one model 

from the container. It is enabled only after a model in the Tabbed Panel is selected. 

As long as there are more than two models in the container, the Match button is 

enabled and when it is pressed, the models will be checked using the Matching 

Algorithm. 

3.2.1.4. Status Panel 

The Status panel reports the match result or mismatch status during the compatibility 
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check. The match result means the models being checked are compatible with each 

other, while the mismatch status tells the user with which feature the models are not 

compatible so that the user can either modify or replace the models. Figure 3-14 

shows an example of the failure status. 

 

Figure 3-14 The Status Panel 

3.2.2. File Server 

The server side application is used to listen to the save request from the interface and 

to perform the save action. It is designed to run in a loop to capture the request from 

the interface at any time. Once it captures a request, it first accepts the tree node 

which stands for the new model sent from the client side, then converts it into the 

XML DIF format. Because the application is running on the server side, it can easily 

save the contents of the new model as a file through random file access. If being 

successfully saved, the new model can be an addition the existing model library. 

3.2.3. Client-Server Communication 

The client and server programs communicate through the socket scheme. They are 

designed to communicate through a specified port. The client side initiates the socket 

connection whenever the user wants to save the new model. It first creates an I/O 

stream, then writes the file name as a string and the model as an object into the 
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stream, and finally sends out the stream. 

Correspondingly, the server side listens to the network and gets one stream at a time. 

It analyzes the stream and gets the file name and the model object respectively. Then 

it works as described in section 3.2.2. The accept method of the server socket is put 

into a circulation which never stops so that the server side application is ready to 

save a newly created model all the time. 

3.3. Summary 

The Model Construction Environment (MCE) in this work is a platform for users to 

develop new simulation models with those existing ones in the model library. This 

chapter introduced the MCE from both the infrastructure and the framework aspects.  

The Data Interchange Format (DIF) is selected as data format to store the 

FOM/SOMs. XML has been suggested to IEEE as the standard format for HLA DIF, 

XML has noticeable advantages which are explained in this chapter, the XML based 

DIF is adopted in the MCE as the representation format of FOM/SOMs. To convert 

the DIF to XML format, a DIF-XML converter was built and tested. 

The MCE constitutes a user interface applet and a file server application. The user 

interface allows users to view and edit models, as well as to check the compatibility 

among some selected models based on the Matching Algorithm. The file sever 

performs the save action for newly created models. 

The web-based MCE can be a useful tool to develop HLA FOM automatically. Its 

world wide accessibility can further strengthen the reusability of the simulation 
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models. 
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Chapter 4 The Matching Algorithm & 
FOM Development 

The MCE provides the users with an interface to construct new models with the 

existing ones. However, a critical condition for this scheme to work smoothly is that 

all the sub-models in the new model must be compatible. Also the data of different 

sub-models must be parsed and be ready to be integrated in the new model. This is 

the job of the Matching Algorithm: it checks the compatibility among the models, 

presents the result, and then prepares data for new model development. As the 

models used in this work are FOM/SOMs based on the HLA OMT, the theoretical 

foundation of the Matching Algorithm is based on the HLA OMT and the FEDEP 

Model. 

This chapter can be divided to two parts: one part for the Macthing Algorithm and 

the other for FOM development. The Matching Algorithm is made up of four 

consecutive processes: the DataType Check, the Routing Space Check, the Object 

Match and the Interaction Match. A match is successful only if all of the four 

processes results are successful. In other words, failing in any of the four processes 

will lead to a mismatch and the data/elements that led to the mismatch will be 

reported. If the result is not a mismatch, a new FOM can be created using the data 

collected from the Matching Algorithm. This chapter also explains how the 

Matching Algorithm is enhanced with some ideas from the FOM agility concepts. 
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4.1. DataType Check 

4.1.1. Base Data Types & User-defined DataTypes 

The DataType defined in HLA OMT is used to reference the data type of the OMT 

elements. The DataType may be chosen from the list of permissible base data types, 

or it may be a user-defined DataType. There are thirteen base data types defined in 

the OMT, namely “unsigned short”, “short”, “unsigned long”, “long”, “unsigned 

long long”, “long long”, “double”, “float”, “boolean”, “any”, “string”, “char” and 

“octet”. 

User-defined DataTypes, including the Enumerated DataType and the Complex 

DataType, are supplementary formats used to help document the structure and 

content better. Their names should be different from the names of the base data types. 

The Enumerated DataTypes describe the data types whose values could only come 

from a finite discrete set of possible values, for example, the seven days of the week. 

The data types should be completely documented with every enumerator and its 

representation of the enumerations. The Complex DataTypes describe those complex 

data types which aggregate other DataTypes into a structure. They are made up of 

several complex components in which detailed information such as data type, 

cardinality, units, accuracy, etc. are documented. 

4.1.2. DataType Check Procedure 

One of the first steps for the matching algorithm is to ensure the consistency in the 
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data type definition among all federates in the federation. Both the Enumerated 

DataTypes and the Complex DataTypes are checked during this procedure. The rule 

for checking is that whenever user-defined data types with the same name occurred 

in the federation, check whether the enumerators and representations of the data type 

(for enumerated data types) or components (for complex data types) are accordingly 

the same. 

The Enumerated DataType Check process is organized as follows. At the beginning, 

an Enumerated DataType array is initialized with the number of Enumerated 

DataTypes in the models. Then the tree node in the model pool is parsed. Whenever 

an Enumerated DataType node is found, the check process examines whether this 

DataType conflicts with those that are already in the array. If a conflict occurs, the 

check will return false which indicates the result is mismatch. And if no conflict 

occurs, this DataType will be appended to the end of the array. Figure 4-1 records the 

pseudo-code of the Enumerated DataType Check Procedure as an example of the 

DataType Check. 

int Parse_EDataType (TreeNode node)

If (node is a EnumeratedDataType)

For each i in the EDataType record

//check if any conflict exists

If (node.Name = EDataType[i].name)

If !(node equals to EDataType[i]) return -1

//return error

EDataType[i] = new EDataType(node)

//record this Enumerated DataType
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Else for each child j of node

Parse_EDataType (node.getChildAt(j))

//recursion to traverse the entire tree

Return 0 //successful return

End procedure

Figure 4-1 The DataType Check Procedure 

As the Complex DataType Check procedure is similar to this one, it is skipped from 

explanation. 

4.2. Routing Space Check 

The Routing Space is defined in the HLA Data Distribution Management (DDM) 

services [13]. It is a multidimensional coordinate system for federates to either 

express an interest in receiving data or declare an intention to send data.  

4.2.1. Dimension, Region & Extent 

In DDM, several key conceptions are defined: 

•  Dimension: A Dimension is a measure of the routing space. The routing 

space is a collection of dimensions. 

•  Extent: An Extent is a bounded range defined across the dimensions of a 

routing space. It represents a volume in the multi-dimensional routing space. 

•  Region: A Region is a set of extents with the same interest in receiving data 

or sending data. 

Regions can be further divided into two types as 
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•  Subscription Regions: sets of routing space extents that narrow the scope of 

interest of the subscribing federate 

•  Update Regions: sets of routing space extents that are guaranteed to enclose 

an object’s location in the routing space 

In HLA OMT, the Routing Space specifies the particulars of routing space and the 

dimensions inside. The dimensions shall form the parameter space in which update 

and subscription regions shall be specified by the federates to the RTI. By having 

this agreement about the meaning of routing space dimensions, the RTI can calculate 

the intersections of update and subscription regions efficiently without having to 

understand the semantics of the dimensions. 

4.2.2. Routing Space Check Procedure 

During the development of an HLA federation, it is critical that all federation 

members achieve a common understanding of DDM routing spaces and their 

semantics, and agree to a common set of routing space specifications. These 

agreements are necessary for federates to filter object attribute updates and 

interaction in a correct and consistent manner. 

Just like the DataType check, we should ensure that the definitions of the routing 

spaces in different members of the federation are consistent. This is done similarly to 

the Data Type check that whenever two routing spaces have the same name, check 

whether all the dimensions and the contents inside are the same for the two 

correspondingly. The routing spaces are also recorded in the memory in the form of 
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array. 

4.3. Object Match 

4.3.1. HLA Object 

In HLA OMT, objects are defined entirely by identifying characteristics that are 

exchanged between federates during execution. An HLA object class is a collection 

of objects with certain characteristics or attributes in common [3]. It is the key 

component in the HLA OMT. The object class structure of an HLA object model 

shall be defined by a set of relations among classes of objects from the simulation or 

federation domain. 

An HLA class structure shall also be defined in terms of hierarchical relationships 

among classes of objects. The class hierarchy is used to expand the capability of 

publication and subscription about broad super classes of objects [3]. Publication and 

subscription to the values of HLA object attributes are services provided by the RTI. 

By subscribing to all attributes of a specified object class, a federate is assured of 

receiving all value updates of attributes defined for that class and all of its super 

classes. 

4.3.2. Publishable & Subscribable 

There are several properties in the object class definition; one of the most important 

properties is the PSCapabilities, which indicates the publication and subscription 

capabilities for each object class. The possible values of this property are listed 
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below: 

•  Publishable (P): The specified object class can be published by a federate; 

•  Subscribable (S): A federate is currently capable of utilizing and (potentially) 

reacting to information on objects in the specified class; 

•  Publishable and Subscribable (PS): The object class is publishable, as well 

as subscribable by a federate; 

•  Neither Publishable nor Subscribable (N): The object class is neither 

publishable nor subscribable by a federate. 

The publishable designation of an object is intended to allow federates to distinguish 

their internal capabilities for modeling objects of the associated classes as well as 

their ability to share information about such objects in an HLA federation. An object 

class shall be subscribable by a federate only if the federate can make substantive 

use of instances of the class when it is notified of them by the RTI. An object class 

shall not be subscribable by a federate if it always ignores instantiation notices and 

updates for objects attributes in that class. 

4.3.3. Attributes 

Each HLA object is characterized by a fixed set of attribute types. The Attributes are 

named portions of their object’s state whose value can change over time. An HLA 

object model shall support representation of the following characteristics for 

attributes in the attribute table: 
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•  Name: The name to identify the attribute; 

•  DataType: The data type of the attribute; 

•  Cardinality: Record the size of an array or sequence; 

•  Units: The units (e.g., m, kg, km) used for the attribute; 

•  Resolution: Specify the smallest resolvable value separating attribute values; 

•  Accuracy: Capture the maximum deviation of the attribute value from its 

intended value in the federate or federation; 

•  Accuracy condition: Contain any conditions required for the given accuracy 

to hold in a given simulation or federation execution; 

•  Update type: Record the update type for the attribute. It shall be specified as 

“static”, “periodic” or “conditional”; 

•  Update condition: Specify initial conditions for attribute updates; 

•  Transferable/acceptable: Record the information about being able to transfer 

or accept in attribute publication and subscription; 

•  Updateable/reflectable: Identify the current capabilities of a federate with 

respect to attribute updating and reflection; 

•  Routing space: Record the association of an object attribute with a routing 

space. 
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4.3.4. Objects Match Procedure 

Whenever an object class is publishable in a federation, there shall be a class which 

subscribes to the object otherwise it is useless to publish the object. This is the main 

objective of the Objects Match Procedure. 

To ensure every object which is published within the federation has at least one 

subscriber, we created two lists: the publishing list (P_List) and the subscription list 

(S_List). The goal is to check that for each object in the P_List, there exists at least 

one object in the S_List. As illustrated in Figure 4-2, the objects are checked with 

PSCapabilities and when the PSCapabilities of an object is: 

•  <P>: The object will be added into the P_List; 

•  <S>: The object will be added into the S_List; 

•  <PS>: The object will only be added into the S_List because even before 

matching we can tell that the object itself is a subscriber; 

•  <N>: The object will be discarded. 

                   …
 

Object

Object 

PS 
Capabilities 

                   …
 

Object 

Object 
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Figure 4-2 P_List and S_List Construction 

After generating the two lists, the next step of the Object Match is to find at least one 

subscriber for each object in the P_List from the S_List. The subscriber should also 

have the same attributes characteristic definitions. Figure 4-3 illustrates the match 

procedure between two Objects. 

boolean obj_match (TreeNode A, TreeNode B)

//A and B stand for the two Object nodes respectively

if !(A.Name = B.Name) return false

for each Child in A //each Child is an Attribute

attr = getNode(B, Child.Name)

//get the Attribute node with the same name in B

for each properties in Child

if !(properties = attr.properties)

printErrorStatus(properties)

//print the error status in the MCE

return false

return true //successful return

End procedure

Figure 4-3 The Match Procedure between Two Objects 

4.4. Interaction Match 

4.4.1. HLA Interaction 

An HLA interaction is defined as an explicit action taken by a simulated entity (or 

aggregation of entities) in one federate that may have some effect or impact on 
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another federate [3]. The interaction class structure is much the same way like the 

object class structure described in section 4.3.1. 

Interactions are one of the principal determinants of interoperability among 

simulations. Interoperability ordinarily requires some consistency in the treatment of 

interactions afforded by the different federates in which they appear. In addition, the 

publication and subscription of the interactions are also involved in a simulation 

execution. 

4.4.2. Initiates, Senses and Reacts 

Similar to the PSCapabilities designation provided in the object class structure, the 

interaction class structure also provides certain designation of federate/federation 

capabilities with respect to give classes of information. It is called ISRType and the 

possible values are listed below: 

•  Initiates (I): Indicates that a federate is currently capable of initiating and 

sending interactions of the given type; 

•  Senses (S): Indicates that a federate is currently capable of subscribing to the 

interaction and utilizing the interaction information, without necessarily being 

able to effect the appropriate changes to affected objects; 

•  Reacts (R): Indicates that a federate is currently capable of subscribing and 

properly reacting to interactions of the type specified by effecting the 

appropriate changes to any owned instance attributes of affected objects; 
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•  Initiates and Senses (IS): Both initiates and senses; 

•  Initiates and Reacts (IR): Both initiates and reacts; 

•  Neither Initiates, Senses nor Reacts (N): Indicates that a federate is not 

currently capable of initiating, sensing, or reacting to this interaction class. 

4.4.3. Parameters 

Most interaction classes will also be characterized according to a list of one or more 

interaction parameters which are much similar to the object attributes. They are used 

to associate relevant and useful information with classes of interactions [3]. 

An HLA object model shall support representation of the following characteristics 

for each parameter: Name, DataType, Cardinality, Resolution, Accuracy and 

Accuracy Condition. 

Unlike object attributes, interaction parameters may not be subscribed to on an 

individual basis. This implies that routing space information shall be specified at the 

interaction class level rather than at the individual parameter level. 

4.4.4. Interaction Match Procedure 

In a federation, at least one federate should sense or react to every interaction class 

that is initiated. This is the main concern of the Interaction Match Procedure. 

As a solution, we use a similar scheme to the Object Match procedure to create the 

Initiates list (I_List) and Senses/Reacts list (SR_List). As illustrated in Figure 4-4 

below, in this procedure we check every interaction with ISRType and when the 
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ISRType of an interaction is: 

•  <I>: The interaction will be added into the I_List; 

•  <S> or <R>: The interaction will be added into the SR_List; 

•  <IS> or <IR>: The interaction will only be added into the SR_List because 

even before matching we can tell that itself is a subscriber; 

•  <N>: The interaction will be discarded. 

 

Figure 4-4 I_List and SR_List Construction 

The result of interaction match procedure will be successful in the case that for each 

interaction in the I_List, there exists at least one interaction in the SR_List and the 

two interactions have the same parameter information and other properties details. 

The comparison between two interactions is also similar to the one between objects 

and will not be discussed in detail here. 

                   …
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4.5. FOM Agility Enhancement 

Conceptually an HLA federate is able to participate in several federations. To further 

facilitate the reusability of federates, the modern trends for HLA federation 

development is to build several functionality independent federates first and select 

some of them to build overall federations. However, due to the differences in 

requirement and implementation of different federations, these federates may need to 

be modified to be compatible in the federations. 

4.5.1. Agile FOM Framework (AFF) 

To enable the general purpose SOM to participate in multiple FOMs, an Agile FOM 

Framework (AFF) is introduced in [23]. The AFF provides wide range of feature 

mappings from the SOM to destination FOM. These feature mappings include name 

independence, attribute atomicity, unit and coordinate conversions, defaulting and 

even attribute to object mapping [23]. After the mappings, the FOM developer 

should provide some converter as the implementation of the mappings. 

The beauty of the AFF is that a SOM can be easily plugged into a FOM without any 

code changes in the SOM. This is achieved by inserting a RTI Interface Layer (RIL) 

between the RTI and the application. The FOM/SOMs are still running on RTI, but 

the exchange of data should go through the RIL, then they will be sent to RTI. Figure 

4-5 illustrates where the RIL is located and how it works. 
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Figure 4-5 The RIL Role between RTI and Applications 

The RIL consists of a set of C++ classes. There are two major functionalities for the 

RTI: one is to provide the connection between RTI and applications, the other is to 

make use of the AFF to support FOM Agility. FOM developers should build some 

converters which are also C++ classes and deploy them in the RIL. The converter 

development requirements and processes are introduced in detail in [23]. 

Apparently, the AFF does not guarantee a SOM can be mapped to any FOM. FOM 

developers should study carefully the features of the SOM that they want to reuse. It 

is unacceptable and meaningless to map some conceptually unrelated SOMs into the 

FOM. 

4.5.2. Matching Algorithm Enhancement 

The AFF defines some mapping capabilities to help FOM developers to reuse the 

general purpose SOMs. Even a GUI based tool has been developed to define and 
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configure the mappings [24]. To further facilitate reusability in the MCE, the 

concepts in the AFF should and can be adopted in the Matching Algorithm. The 

compatibility checkers inside the four processes of the Matching Algorithm are all 

involved. 

However, differing from the AFF, the Matching Algorithm is an automatic approach. 

Therefore not all the mappings in the AFF can be implemented in the Matching 

Algorithm. Some enhancements of the Matching Algorithm based on the AFF are 

listed below: 

1. Name Independence 

Naming is not a big issue in modeling the FOM/SOMs. As long as model 

developers are talking about the same thing, an attribute name of “velocity” in a 

SOM can be converted to the name of “speed” in the FOM. During the 

compatibility check, the name check result for the object/interaction match is no 

longer essential. The differences (if any) of naming are only displayed on the 

status panel in the user interface. 

2. Attribute Atomicity 

When modeling complex attribute/parameters in the object/interaction, some 

developers would like to list them one by one, while others prefer define a 

complex DataType and include them all in one item. With the AFF, this is no 

longer a problem: a converter can map the two different scenarios. For example, 

Figure 4-6 and 4-7 illustrate two scenarios: 

<Class>
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<Name>Coordinates</Name>

<Attribute>

<Name>Coordinate_X</Name>

<DataType>double</DataType>

</Attribute>

<Attribute>

<Name>Coordinate_Y</Name>

<DataType>double</DataType>

</Attribute>

<Attribute>

<Name>Coordinate_Z</Name>

<DataType>double</DataType>

</Attribute>

</Class>

Figure 4-6 Scenario 1: Define Three-Dimensional Coordinates Directly 

<ComplexDataType>

<Name>Three_Dimension</Name>

<ComplexComponent>

<FieldName>Coordinate_X</FieldName>

<DataType>double</DataType>

</ComplexComponent>

<ComplexComponent>

<FieldName>Coordinate_Y</FieldName>

<DataType>double</DataType>

</ComplexComponent>

<ComplexComponent>

<FieldName>Coordinate_Z</FieldName>

<DataType>double</DataType>

</ComplexComponent>

</ComplexDataType>
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<Class>

<Name>Coordinates</Name>

<Attribute>

<Name>Coordinate_Attribute</Name>

<DataType>Three_Dimension<DataType>

</Attribute>

</Class>

Figure 4-7 Scenario 2: Define Three-Dimensional Coordinates with Complex 
DataType 

As one can see from these two scenarios, the definitions of the object attributes 

are different, but the semantics of the two are the same. In this circumstance, the 

two objects should pass the compatibility check in the Matching Algorithm. A 

warning of the difference will be displayed in the status panel. 

3. Unit Conversion 

The Units property defined in the attribute/parameter is a measurement of the 

data that are exchanged during simulation. Since the AFF can provide a wide 

range of converters mapping data from one unit to another, the unit differences 

caught in the Matching Algorithm can be ignored. The unit difference should 

also be displayed in the status panel. 

The Matching Algorithm is altered with the three enhancements above. Table 4-1 

summarizes these three enhancements and explains what are involved. 

Enhancements Affected Elements Matching Algorithm 
Involvement 

“Name” for Enumerated DataType and 
Complex DataType 
“FieldName” for Complex Component 

DataType Check 
Name 

Independence 

“Name” for Routing Space and Dimension Routing Space Check 
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“Name” for Object and Attribute Object Match  
“Name” for Interaction and Parameter Interaction Match 
Attribute definition for Object Object Match Attribute 

Atomicness Parameter definition for Interaction Interaction Match 
“Units” for Complex Component DataType Check 
“Units” for Attribute Object Match 

Unit 
Conversion 

“Units” for Parameter Interaction Match 
Table 4-1 The Matching Algorithm Enhancement Involvements 

With the differences between the SOMs displayed in the status panel, it is up to 

FOM developers to implement the converters based on the AFF. 

4.6. FOM Development 

The Matching Algorithm checks the compatibility among the FOM/SOMs. If the 

result is not a mismatch, the next step would be the FOM development. As all the 

contents of the FOM/SOMs have been stored in the memory during the check, the 

FOM development process is rather easy. According to the DIF structure, the process 

consists of five steps: 

1. Provide the object model identification information 

The FOM Developer should provide the object model identification information 

in the FOM. These information include the name, version, date, purpose, 

application domain, sponsor and POC (Point of Contact) information of the 

model. 

2. Create DataType information 

The Enumerated DataTypes and Complex DataTypes that occurred in the models 

are recorded in the memory. This step takes out the DataType information (in 

java classes) and form the XML representation of these information. 



64 

3. Create Object classes 

All the object classes have been stored in the P_List and S_List during the 

Matching Algorithm. The PSCapability of an object in the FOM can only be 

“PS” or “S” [3]. Since after the Matching Algorithm, each object in the P_List is 

ensured to have at least one subscriber in the S_List, we only create the object 

classes in the S_List. The creation of Object classes with the S_List is 

summarized in Figure 4-8: 

void createObjectClasses ()

for each object in S_List

if (object.PSCapability == “PS”)

//some “PS” objects only exist in S_List

ToXML(object)

else if (P_List contains object)

object.PSCapability = “PS”

//the PSCapability of the object should be “PS”

ToXML(object)

else if !(P_List contains object)

ToXML(object)

//the PSCapability of the object should be “S”

End Procedure

Figure 4-8 The Object Classes Creation Process in FOM Development

As illustrated in Figure 4-8, the “PS” objects are recorded with no doubt. Some 

objects which have publisher in the P_List are assigned “PS” and then are 

recorded as well. The rest of the objects in the S_List are recorded with “S”. 

4. Create Interactions 
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The creation of interactions is similar to that of objects. Only the interactions in 

the SR_List are recorded. All the “IS” and “IR” interactions are recorded. The 

“S” interactions which have initiator in the I_List are assigned “IS”, the “R” 

interactions which have initiator in the I_List are assigned “IR”. Then these 

interactions are recorded. The rest of the interactions are recorded as what they 

are. 

5. Create Routing Spaces 

The Routing Space information is also stored in the memory. This step is similar 

to step 2. 

After these five steps, a FOM is created. It is then sent to the file server and stored 

for future reuse. 

4.7. Summary 

This chapter introduced the Matching Algorithm which is used to check the 

compatibility among models. It was made up of four consecutive processes, namely 

DataType Check, Routing Space Check, Object Match and Interaction Match. The 

algorithm was then enhanced with some concepts from the Agile FOM Framework. 

The enhancements are believed to strengthen the reusability and compatibility of the 

models. 

If the matching result is not mismatch, the user may want to create the FOM with the 

compatible models. The Matching Algorithm also provided the conveniences for the 

FOM development. The FOM development was also introduced in the chapter. 
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Chapter 5 Results and Discussion 

This thesis work built up the MCE system for automatic FOM construction and 

provided a Matching Algorithm for the compatibility check among the SOMs. We 

can use the MCE to build new models with existing ones. Because all the 

FOM/SOMs used in this work are based on the HLA OMT DIF standard, the system 

and the algorithm are based on the same standard too. This could work fine as they 

are on the same problem space. However, is the standard an accurate and omnipotent 

one that never generates wrong results? 

This chapter investigates on two case studies with the MCE system and analyzes the 

results. Later on, the feasibility of the MCE is discussed and some deficiencies of the 

current scheme are given as well as the reasons behind them. Some limitations of the 

current HLA OMT are also investigated in this chapter. 

5.1. Case Studies 

There are altogether 10 FOM/SOMs in our model library currently. Among the 

models, 8 are SOMs and 2 are FOMs. These models are summarized in Table 5-1: 

All the models in the library are available for federation construction. We choose 

some of them to check the compatibility among them. Two case studies are provided 

and described in the following sub-sections. 
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Name Type Version Purpose 

ACETEF_SOM SOM 1.2 Simulation Object Model for Air Combat 
Environment Test And Evaluation Facility. 

C4ISR Federation 
Object Model - 
Combat 

SOM 1.0 

Provide a Command, Control, 
Communications, Computers, Intelligence, 
Surveillance, and Reconnaissance (C4ISR) 
Simulation. 

Cobra Ball SOM SOM 1.3 
The Object Model for the Cobra Ball 
Simulator. Based upon the Real-time 
Platform Reference (RPR) FOM 0.5. 

Computer Generated 
Forces (CGF) FOM 2.0 A generic computer generated forces 

application. 

EADSIM SOM 8.00 SOM for Extended Air Defense Simulation 
(EADSIM). 

FATS SOM SOM 1.0 

Reference SOM based on RPR FOM. This 
SOM has much of the FOM data removed 
and has a few FATS enhancements 
“environment interactions”. 

ITBSOM SOM 1.0V2 
To implement subset of the RPR FOM as 
defined in the Guidance, Rationale and 
Interoperability Modalities (GRIM). 

Mission Planning 
Simulator SOM 00.6.1 

Provide space-time location and orientation 
of simulated test objects and instruments to 
data collectors. 

Restaurant FOM FOM 1.3 To provide an example of an object model 
for a restaurant federate. 

Tiger version 2.0 
SOM SOM 1.0 Tiger SOM entirely based on RPR FOM 

version 0.5. 
Table 5-1 Summary of FOM/SOMs in the Model Library 

5.1.1. Combat Federation Case Study 

One of the main application areas for the M&S is military simulation. In military 

institutions, the computer-driven combat simulation has the advantage in officer 

training, mission rehearsal and tactics exploration. The need for military simulations 

such as combat simulation is continually increasing [25]. In this case study we plan 

to build a federation for combat simulation. After carefully examining the existing 
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models in the library, we choose the Computer Generated Force (CGF) FOM and the 

EADSIM to build the federation. 

CGF is defined in the U.S. DoD M&S Master Plan [12] as a generic term used to 

refer to computer representations of forces in simulations and to model human 

behavior sufficiently so that the forces will take some actions automatically. DoD 

programs addressing various levels of computer automation of forces include 

Command Forces, Intelligent Forces, Modular Semi-Automated Forces, Integrated 

Tactical Environment Management System, and Close Combat Tactical Trainer 

Semi-Automated Forces. 

Extended Air Defense Simulation (EADSIM) is sponsored by U.S. Army Space & 

Missile Defense Command. It is a workstation-hosted, system-level simulation 

which is used by combat developers, materiel developers, and operational 

commanders to assess the effectiveness of Theater Missile Defense (TMD) and air 

defense systems against the full spectrum of extended air defense threats. EADSIM 

provides a many-on-many theater-level simulation of air and missile warfare, an 

integrated analysis tool to support joint and combined force operations, and a tool to 

provide realistic air defense training to maneuver force exercises at all echelons. 

The compatibility check result of the two models is mismatch in the original 

Matching Algorithm. It is found that both models have the definition of a 

ComplexDataType under the name of RelativePositionStruct, while there are some 

minor differences between the two definitions of ComplexComponents. Table 5-2 

presents the differences between the two definitions: 



69 

Element CGF FOM EADSIM 

FieldName BodyX, BodyY and BodyZ BodyXDistance, BodyYDistance 
and BodyZDistance 

Units Metres Meters 
Table 5-2 Differences in Definition of ComplexDataType RelativePositionStruct 

between CGF FOM and EADSIM 

However, these differences are no longer problems with the enhanced Matching 

Algorithm. The first difference is handled by Name Independence, while the second 

one is handled by Unit Conversion. The differences are only presented as warnings 

in the status bar. Thus, a new Combat Federation FOM is created and the model 

developer should have converters implemented under the AFF. This newly created 

FOM can be a practical implementation of CGF. 

5.1.2. RPR FOM Case Study 

The Real-time Platform Reference (RPR) FOM is a reference FOM for the Real-time 

Platform simulation community. It is a development effort to create a FOM that 

transforms the widely used real-time simulations based on the IEEE 1278 DIS 

standard to HLA compliance [26, 27]. This FOM keeps the functionality that exists 

in DIS simulations while benefits from the scalability and interoperability of the 

HLA. The FOM was also approved as the SISO (Simulation Interoperability 

Standards Organization) Standard SISO-STD-001.1-1999 [28] in 1999. 

In order to do research based on the RPR FOM, we select three SOMs that are 

related to the RPR FOM. These three SOMs are: the Tiger version 2.0 SOM, the 

Cobra Ball SOM and the FATS SOM. The compatibility between any two of them is 

checked, and the results are summarized below. 
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5.1.2.1. Tiger Version 2.0 SOM vs Cobra Ball SOM 

The match result for the Tiger version 2.0 SOM and the Cobra Ball SOM is 

mismatch. There exist some differences in definition of ComplexDataType 

RTIObjectIdStruct, as represented in Table 5-3. Moreover, there is no subscriber for 

the Publishable Objects EmbeddedSystem, IFF and IffTransponder. 

Element Tiger version 2.0 SOM Cobra Ball SOM 
ID.DataType Octet String 
ID.Cardinality Dynamic 1 
ID.Accuracy N/A Perfect 
ID.Accuracy Condition N/A Always 
Table 5-3 Differences in Definition of ComplexDataType RTIObjectIdStruct 

between Tiger version 2.0 SOM and Cobra Ball SOM 

5.1.2.2. Cobra Ball SOM vs FATS SOM 

The match result for the Cobra Ball SOM and the FATS SOM is mismatch. The 

differences in definition of ComplexDataType RTIObjectIdStruct are the same as the 

previous result. In other words, the definition is the same between the FATS SOM 

and the Tiger version 2.0 SOM. Besides, there exist the Publishable Objects 

including MilitaryPlatformEntity, MilitaryAirLandPlatform, EmbeddedSystem, IFF 

and IffTransponder which do not have a subscriber. 

5.1.2.3. Tiger Version 2.0 SOM vs FATS SOM 

The match result for the Tiger version 2.0 SOM and the FATS SOM is mismatch. 

There are a number of differences in definitions of ComplexDataTypes between the 

two SOMs. These differences of definitions are summarized in Table 5-4.



 

ComplexDataType Element Tiger version 2.0 SOM FATS SOM 
FixedDatumValue. Resolution N/A 1 FixedDatumStruct 
FixedDatumID. DataType DatumIDEnum DatumIDEnum32 
EntityKind. DataType EntityKindEnum Octet 
Domain. DataType EntityDomainEnum Octet 
Category. DataType EntityCategoryEnum Octet 

RadioTypeStruct 

Country. DataType EntityCountryEnum short 
SphericalHarmonicAntennaStruct ReferenceSystem.DataType ReferenceSystemEnum ReferenceSystemEnum8
BeamAntennaStruct ReferenceSystem.DataType ReferenceSystemEnum ReferenceSystemEnum8

AttributeSetCount.DataType Octet Long AttributeValueSetStruct 
AttributeSetCount.Resolution N/A 1 

VariableDatumStruct DatumID.DataType DatumIDEnum DatumIDEnum32 
Subcategory.DataType EntitySubcategoryEnum Octet 
EntityKind.DataType EntityKindEnum Octet 
Specific.DataType EntitySpecificEnum Octet 
Domain.DataType EntityDomainEnum Octet 
Extra.DataType EntityExtraEnum Octet 
Category.DataType EntityCategoryEnum Octet 

EntityTypeStruct 

Country.DataType EntityCountryEnum Short 
RTIObjectIdArrayStruct ID.DataType Octet RTIObjectIdStruct 
ArticulatedParameterStruct ArticulatedParameterType.DataType ArticulatedTypeEnum ArticulatedTypeEnum32
 ParameterValue.DataType ParameterValueType ParameterValueStruct 
MarkingStruct CharacterSet.DataType CharacterSetEnum CharacterSetEnum8 
AntennaPatternStruct AntennaPatternType × √ 

Table 5-4 Differences in Definitions of ComplexDataTypes between Tiger version 2.0 SOM and FATS SOM
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Although some of the differences can be handled with the enhanced Matching 

Algorithm, the rest of them cannot be ignored. As a result, we cannot build a FOM 

based on the RPR FOM with the existing models in the library. More models and 

investigation are needed to finish this FOM case study. 

5.2. Feasibility 

This work attempted for an alternative way to develop the HLA federation 

automatically. It further facilitated the reusability and interoperability of the HLA 

federates/federations and saved time and efforts. The MCE produced real FOMs 

based on the HLA OMT. This system has several advantages such as: 

•  Robustness and Reliability: The composing SOMs were carefully examined 

and checked through the Matching Algorithm; the compatibility of the 

resulting FOM was ensured, at least in HLA OMT syntax; 

•  Friendliness: The user interface was designed in a user friendly layout, 

which facilitated the ease of operation; 

•  Platform Independence: The MCE was designed with minimal system 

requirements from the user, and all that the user needs is just a web browser 

that supports java applet; 

•  World Wide Accessibility: By sharing the models online, this work promoted 

the world wide accessibility of the simulation models. With more and more 

model builders/developers sharing their FOM/SOMs through the Internet, 

the building process for FOM will be easier and quicker. 
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The enhanced Matching Algorithm is proved to be able to provide more reusability 

of the models. The first case study is an good example of the advantage of the 

enhancement with AFF concepts. 

5.2.1. DoD 1.3 vs IEEE 1516 

Currently all the FOM/SOMs used in this work are based on the U.S. Department of 

Defense HLA OMT Specification Version 1.3 (DoD 1.3). However, in September 

2000, the Institute for Electrical and Electronic Engineers (IEEE) approved a new 

standard for HLA, the IEEE 1516 standard [29] based on the DoD 1.3. To make the 

MCE more useful and adaptive to the new IEEE 1516 standard, we compare the two 

OMT standards here. 

Most parts of the IEEE 1516 standard, such as the form, the functionality and the 

contents, are generally similar to the DoD 1.3. But, several changes to the Data 

Distribution Management (DDM) services were made [30]. These changes include: 

•  Removal of Routing Spaces: In IEEE 1516, there is only one routing space 

in which all the dimensions exist. This change facilitates the information 

publication/subscription and more importantly, it eliminates the risk of 

misunderstanding in Routing Space definition. 

•  Replacement of Extents and Regions: Because the concepts of extents and 

regions are a little bit confusing, IEEE 1516 also replaced the extents with 

regions and the regions with region sets. 

•  Addition of Default Regions: IEEE 1516 defined the default region as 
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having one range for all dimensions found in the FOM. 

Besides, to implement those changes, part of the OMT is also modified. The Routing 

Space Table is replaced by the Dimension Table; each object attribute and the 

interaction are now associated with a set of dimensions instead of routing space. This 

set is the available dimensions that are used during information publication and 

subscription. 

We can upgrade our matching algorithm from the current DoD 1.3 to IEEE 1516 by 

modifying the Routing Space Check. Since there is no routing space definition in the 

IEEE 1516 standard, we should check for the Dimension definitions instead of the 

Routing Space definitions. This could be done similarly as the Routing Space Check. 

During the Object/Interaction Match process, we should replace the matches of the 

routing spaces between the object attributes/interactions to that of the dimensions. 

5.3. Limitations of the OMT 

The interoperability and compatibility of the object models in this work were defined 

following the HLA OMT. Generally, a FOM built from the MCE could be a 

representation for a concrete federation. Although for most of the cases this scheme 

works properly, the limitation of the HLA OMT would still cause some problems. 

5.3.1. Substantive Interoperability Problems 

The substantive interoperability was defined in section 2.3 as the capability of 

federates to provide adequate, accurate and consistent simulated representations and 
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address the mission objectives. The current OMT specification does not provide 

sufficient information to test all of the criteria for substantive interoperability. 

First of all, the representational anomaly would occur since the real world is more 

complicated than people think. There would be some events or states that are ignored 

by the model designer. Sometimes the order of the events would be different from 

what in the real world. All these can cause representational anomalies. 

Secondly, the FOM/SOM does not provide details about the functional dependencies 

among models and functions. If one or more of the federates in a federation has 

stringent timing requirements such as real-time requirements, the federation might 

have timing incompatibility problems. 

Furthermore, the manifold representations may not provide information that is either 

publishable or subscribable and thus would not be specified in the FOM/SOMs at all. 

Hiding these details reduces the complexity of federation construction, while it 

brings more complexity in detecting substantive interoperability problems in the 

federation. 

5.3.2. Non-exchange Data Problems 

The objective of the HLA OMT is to provide users with means and structure to 

represent the data that are exchanged during simulation execution. However, the 

structure is quite limited. For example, objects can only be structured as collections 

of attributes with no characterization of the properties of the functions that use or 

change those attributes. The properties of attributes are also limited. The OMT does 
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not intend to help users to define some properties for object/attribute that are not 

related to the data exchange. 

Meanwhile, simulations are based on assumptions. Different federates may use 

different assumptions, which is definitely not related to data exchange. Thus, these 

assumptions are always ignored in the FOM/SOMs. The critical difference in 

assumptions may even lead to risky situation. 

A good example would be the electricity outlet [31]. In different countries, the shape 

of the electric outlet is different. It might be the 2-way or the 3-way outlets as 

illustrated in Figure 5-1. 

 

Figure 5-1 The 2-Way and 3-Way Outlets 

Even 3-way outlets are not always the same; their shapes would vary from country to 

country. Figure 5-2 shows some different 3-way outlets. 

 

Figure 5-2 Different 3-Way Outlets 
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And even if the electric outlet is the same, there is still an assumption, the voltage 

supplied in the outlet. Different countries may operate on different voltages. 

These information (shape of outlet and voltage) are often not documented in the 

FOM/SOM. Although model developer may try to record these information, e.g. 

define them as Enumerated DataTypes, the actual value of them can not be 

represented in the object/attribute. So, if people want to form a federation with some 

federates from different countries, the federation can not work in spite of a 

successful match result. Without noticing the critical differences of the assumptions 

among the federates, the implementation of the model we built can even cause 

damage in the real life. 

5.4. Summary 

This chapter examined the feasibility of the MCE with two actual case studies. A 

combat federation is developed based on the Matching Algorithm and the federation 

could be a practical implementation of CGF. It was also found that the enhanced 

Matching Algorithm can provide more compatibility for FOM/SOMs. Currently the 

OMT version IEEE 1516 is not supported in the MCE. 

The OMT itself has some limitations in documenting and describing the models. 

Basically these limitations include the substantive interoperability problems and 

non-exchange data problems. 
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Chapter 6 Extensible Elements 

By recognizing the deficiency of the HLA OMT, the Modeling and Simulation 

industry has developed different schemes to strengthen the models’ representation 

accuracy and validate them. Some of the schemes use additional documents together 

with the DIF to better document and shape the models, while others provide standard 

libraries to ensure the model’s credibility. These schemes are discussed in this 

chapter. 

However, these schemes cannot fit in the MCE because the MCE aims to check the 

model compatibility and build new models automatically. Thus, we propose an 

Extensible Element scheme to be embedded in the DIF. The elements are 

documented with priority level and detailed description to help users to recognize the 

functions and features of the elements in which it was embedded. This Extensible 

Element scheme is introduced in this chapter and we believe that it can improve the 

semantics of the current HLA DIF. 

6.1. Widely Used Schemes 

There are some widely used schemes which aim at improving the semantics of the 

current HLA OMT. Some of them use additional documents besides the HLA OMT 

DIF to better document and shaped the simulation models. Other schemes use 

standard ways to develop simulation models. Some of the widely used schemes are 

introduced below. 
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6.1.1. Simulation Conceptual Model 

The Simulation Conceptual Model was initiated in 1999 by the Defense Modeling 

and Simulation Office (DMSO) to help achieve an agreement of the details of the 

model between the design and implementation sides [32]. It is widely used in 

simulation verification (determination that the simulation satisfies its specification) 

and simulation validation (determination that the simulation is adequate for its 

intended application). 

It has been recommended that the simulation model documentation should include 

the nine items [31, 32] listed below: 

•  Conceptual Model Portion Identification; 

•  Principal Simulation Developer Point(s) of Contact (POCs) for the 

Conceptual Model (or part of it); 

•  Requirements and Purpose; 

•  Overview; 

•  General Assumptions; 

•  Identification of Possible States, Tasks, Actions, and Behaviors, 

Relationships and Interactions, Events, and parameters and Factors for 

Entities and Processes being described; 

•  Identification of Algorithms; 

•  Simulation Development Plans; 
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•  Summary and Synopsis. 

During federation construction, the Simulation Conceptual Model can provide the 

characteristics and compatibility requirements for choosing federates. Thus, defining 

a standardized conceptual model framework would greatly help to avoid substantive 

interoperability problems from the beginning. However, the Simulation Conceptual 

Model cannot be used in the MCE which tries to test the compatibility of models 

automatically. It is not practicable to analyze and compare the different definitions 

and descriptions of the Simulation Conceptual Model. 

6.1.2. SEDRIS Model 

The Synthetic Environment Data Representation and Interchange Specification 

(SEDRIS) project is sponsored by DMSO aimed at providing ways to represent 

environmental data and promote the unambiguous interchange of environmental data 

[33]. 

One of the main challenges of the SEDRIS model is to integrate all the different 

definitions of environmental data. This is achieved by providing an architecture that 

relates different representations to each other and attributes them in some categories. 

The SEDRIS Data Representation Model (DRM) and Data Coding Standard (DCS) 

are also defined to help unify the representations of environmental data. 

The SEDRIS DRM provides not only a specific notation to depict the data (objects) 

with their attributes but also a graphic representation of the relationship between the 

data. It gives a means to ensure that the system’s data are defined with a complete 
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and unambiguous definition as well as their relationships with other data in the 

system. For example, Figure 6-1 illustrates the “is-a” relationship in the DRM. 

 

Figure 6-1 Class B and Class C are both Child Classes of Class A 

The SEDRIS DCS provides a mechanism to specify the environmental data which a 

particular data model is intended to represent. There are three types of codes used in 

the DCS: 

•  Classification Codes: Address what the object is. For example, “AL015” 

represents a building, “BH140” represents for a river/stream. 

•  Attribute Codes: Represent the additional clarifying characters. Codes are 

generally assigned based on mnemonic abbreviations, for example, “BFC” for 

Building Function Category. 

•  State Codes: Represent the status of the object. For example, “DGEN” for 

Damage, General. 

Working together, these three DCS components support the unambiguous description 

of the environmental data. More information on SEDRIS and its DRM and DCS can 

also be found at the SEDRIS website [33]. 

Class A 

Class B Class C 
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Although the SEDRIS model can help to define the relationship between simulation 

data, we cannot find a way to integrate it in the MCE. As previously claimed, all that 

need to be compared in the MCE is one single model description or document. The 

SEDRIS model is only useful when we build simulation models following the 

standard FEDEP processes which are time consuming. 

6.1.3. OML & OMDDS 

Another trend is to unify the definition of object models. The Object Model Library 

(OML) was introduced by the DMSO in October 1997 to set up tools for object 

model development in FEDEP [34]. It provides a central library of reusable HLA 

object models, as well as tools to identify HLA object models of interest. It also 

supports browse and search functions so that the users can find appropriate SOMs to 

form new federations. 

The Object Model Data Dictionary System (OMDDS) was introduced in March 

1998 as a resource to assist in the construction of FOMs and SOMs [35]. It specifies 

the components with details to construct FOM or SOM. These components include:  

•  Object classes; 

•  Interaction classes; 

•  Generic elements (attributes and parameters); 

•  Complex data types; 

•  Enumerated data types.  
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By restrictively using the products and models built from the OML or the OMDDS, 

we can ensure the DMSO standard definitions of (components of) object models 

among the models. However, the capacity and the completeness of the OML or 

OMDDS might be a problem, since we cannot expect them to cover all the models 

we want. Some scheme still needs to be taken to strengthen the capability of the 

HLA OMT itself, but not the way we use and implement it. 

6.2. Extensible Elements 

The current efforts to help achieve a common understanding among the simulation 

models could not be used in our work. Thus, we propose a new Extensible Element 

scheme to extend the OMT DIF. 

6.2.1. Definition 

As the OMT DIF is inefficient in representing the models and their assumptions, an 

easy solution is to facilitate an Extensible Element scheme of the OMT DIF. Just like 

the concept of the Extensible Markup Language (XML), the Extensible Element 

scheme provides the users with maximum variability in documenting the models. 

The Extensible Element scheme is defined as a complement of the OMT DIF. The 

elements can appear where the model builder thinks appropriate. It can address the 

characteristics of the model component or some assumptions that are made. Because 

the elements are also used in the MCE, they are documented in XML format too. 

An example of the Extensible Elements is illustrated in Figure 6-2. The element 
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begins with a <Extensible_Element> tag while ends with a </Extensible_Element> 

tag. As one can see from the figure, there are one Shape element in the Outlet_Shape 

attribute and one Voltage element in the Electric Outlet class. 

<Class>

<ID>1</ID>

<Name>Electric Outlet</Name>

<MOMClass>true</MOMClass>

<PSCapabilities>PS</PSCapabilities>

<Description>An example to illustrate the extensible

elements</Description>

<Attribute>

<Name>Outlet_Shape</Name>

<Extensible_Element>

<Name>Shape</Name>

<Content>3-way</Content>

<Priority>Medium</Priority>

<Description>The shape of the outlet</Description>

</Extensible_Element>

...

</Attribute>

<Extensible_Element>

<Name>Voltage</Name>

<Priority>High</Priority>

<Content>220</Content>

<Description>The voltage of the outlet that is operating

on</Description>

</Extensible_Element>

</Class>

Figure 6-2 An Example of Extensible Elements 



85 

The details of the Extensible Elements are introduced in the sub sections below: 

6.2.2. Priority Level 

In order to manage different Extensible Elements and distinguish the significance of 

them, we define the priority level of the elements. The Priority Level is documented 

between the <Priority> and </Priority> tags. There are three levels of priority for the 

elements: 

•  High: High level priority elements are used to represent those critical factors 

that cannot be ignored; 

•  Medium: Medium level priority elements are used to represent the important 

factors that can be easily fixed; 

•  Low: Low level priority elements are used to represent the unimportant 

factors that are suggested only. These factors are rather preferences than 

requirements. 

If we go back to the electricity outlet example in section 5.2.2, the Extensible 

Element that are involved with the voltage information should be given high level 

priority because it is a critical factor in the simulation; the element for the shapes of 

the outlet should be give medium level priority, since the possible problem could be 

fixed easily with an adaptor. And such information as “my favorite computer brand 

is DELL” could be documented as a low level priority element. 



86 

6.2.3. Description 

In embedding the Extensible Element in the DIF, some description of the element is 

also encouraged. The description information should describe the definition, 

meaning or possible values of the element, which could be helpful for the users to 

recognize and select during the FOM construction. The description is documented 

between the <Description> and </Description> tags. 

6.2.4. Match 

The Extensible Elements defined in the FOM/SOMs have to be covered in the 

Matching Algorithm. The algorithm should work as we defined in chapter 4 until it 

meets the Extensible Element. Different actions would be taken when the priority 

level of the elements are different. It does not matter in which of the four 

consecutive processes the elements could exist, but for the reason of clarity, we 

assume the Extensible Element we are matching exists in a publishable object. When 

the priority level of the element is: 

•  High: The subscriber object should have the same definition of this 

extensible element. The element name and value should exactly match the 

one in the subscriber object. 

•  Medium: The subscriber object should at least have the definition of this 

extensible element. The element name should be the same as the one in the 

subscriber object, but the values might be different. 
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•  Low: No action needs to be taken. 

The high level priority elements should be exactly matched during the Matching 

Algorithm, because those elements are critical factors that cannot be ignored. 

However, the medium priority elements should appear in both sides of the matching 

objects only since those factors represented by the elements could be easily fixed. As 

long as both sides are aware of the factors, it would be no problem. For those low 

level elements, we could ignore them since they are just some preference. 

6.3. Summary 

This chapter first reviewed several means used in the M&S to strengthen the 

semantics of the models. Unfortunately, the schemes that were explored cannot 

contribute to the MCE. Thus, an Extensible Element scheme was proposed and used 

in the MCE. Using the scheme, the FOM/SOM developer can address non-exchange 

data in the model. 

There are several advantages of the Extensible Element scheme. Firstly, it is an 

efficient complement of the OMT defined elements. The user could address more 

about the characteristics of the model and record important assumptions that would 

be easily ignored by people other than the model builder. The description can help 

the user to better understand the element as well. Secondly, the Extensible Elements 

could appear in any place of the OMT DIF. The freeness of this scheme makes it 

possible to better shape every part of the components in the model. Thirdly, it is 

covered in the Matching Algorithm, too. Thus, the compatibility among different 
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models can be ensured. 

As the XML can improve the variety and effects of the HTML (Hyper-Text Markup 

Language), we believe the extensible OMT DIF can provide more liveliness and 

accuracy than the original one. Meanwhile, it is a useful complement for the OMT 

DIF in this work. It helps to achieve a common definition and description of the 

simulation models. By suggesting a standard way to use and define the Extensible 

Element, we could expect to gain more from the scheme. 
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Chapter 7 Conclusion 

This chapter concludes the thesis work. Some aspects for future work are also 

suggested in this chapter. 

7.1. Summary 

This thesis work argued for an alternative method to build HLA FOMs with existing 

HLA SOMs automatically, which further facilitated the reusability of HLA federates 

and interoperability among them. 

The Model Construction Environment (MCE) was built and introduced in this thesis. 

It provided the user with an interface to select some existing models to construct the 

new models. A DIF-XML converter was built to transform the HLA OMT DIF 

format models to XML format files. For the reason of easy operation, the models can 

be viewed in both tree-node style or in XML file format. Besides, the models are 

editable in the MCE. To help the selection, a key-word search function was also 

provided. If the result is a mismatch, users can either replace the incompatible model 

with a new model or modify the model. However, if the result is not a mismatch, the 

MCE offered a file server running on the server side to save the new models for 

future reuse. By publishing it on the web, the MCE could be a useful tool for model 

development world wide. 

The Matching Algorithm was defined to check the compatibility among the selected 

SOMs based on the OMT DIF. It consisted of four consecutive processes, namely, 
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the DataType Check, the Routing Space Check, the Object Match and the Interaction 

Match. These four processes of the algorithm were illustrated in this thesis. The 

algorithm could ensure the compatibility and interoperability of the models in the 

OMT DIF syntax. However, sometimes a SOM may be reused in different FOMs. To 

strengthen the agility of the SOM, the Matching Algorithm was enhanced with some 

concepts from the Agile FOM Framework. The FOM development process can make 

use of data analyzed in the Matching Algorithm. The process was also introduced in 

this thesis. 

Two case studies were investigated in this study. The combat Federation case study 

selected two military models in the library and built a FOM with the enhanced 

Matching Algorithm. This FOM could be a practical implementation of CGF. The 

RPR FOM case study tried to build a RPR related FOM, but it failed to find 

appropriate composing sub-models. With more models available in the model library, 

it is believed that the FOM case study can be finished. 

For most of the cases the MCE with the Matching Algorithm worked fine. However, 

because of the natural limitation of the HLA OMT, some substantive interoperability 

problems and non-exchange data problems might occur. The additional documents 

such as the Simulation Conceptual Model and the SEDRIS model could not help in 

this situation since we were trying to build a new simulation model automatically 

with single document/description of the model. The OML and OMDDS scheme 

which unify the definition of object models were not appropriate either, since the 

capacity and completeness of them is limited. 
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To solve the problem, the concept of Extensible Elements for the OMT DIF was 

introduced in this thesis. The element was embedded in the current DIF models. It 

was documented with priority level and detailed description to help users to 

recognize better the functions and features of the elements in which it is embedded. 

The Extensible Element was covered in the Matching Algorithm too. This scheme 

was helpful to strengthen the identity and accuracy of the object models based on 

OMT DIF. 

This thesis work can be contributive to more cost-efficient methodologies for 

automatic development of simulation models and codes. It also brought forward 

some suggestions to the augmentation of the current HLA OMT standard. 

7.2. Future Work 

This thesis work proposed the SOM compatibility check and FOM development 

process through the Matching Algorithm and the MCE. It also illustrated the 

feasibility of the scheme and provided an Extensible Element to strengthen the 

semantics of the models. However, there is still some interesting future work that 

worth doing research on based on this work. 

Firstly, more case studies can be investigated to test the scheme. Not many FOMs 

are generated successfully from the MCE, which means the MCE by now is not as 

contributing as it should be. And, there are only 10 FOM/SOMs available in the 

model library currently. The number is rather small to find out other possible 

problems. With more models are available in the library, the feasibility study of the 
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scheme can be enhanced. 

Secondly, it would also be interesting to support models based on the IEEE 1516 

standard. Although many FOM/SOMs are stored in both DoD 1.3 and IEEE 1516 

format, some of them only support one format. Thus, enhancing the MCE to support 

both of the formats will be a good future work. 

Thirdly, the Extensible Element scheme is still widely open for research. It could be 

improved in a more systematic way. It is also possible to suggest the scheme to the 

M&S industry and even establish a standard. 

Fourthly, there exist some open source products that can convert XML files to Java 

classes, e.g. the Digester component under Apache Jakarta project [36]. Some 

research can be done to investigate how these ideas can be used and whether the 

ideas can improve performance in the MCE. 
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