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Summary 

The generation and manipulation of digital images is made simple by widely available 

digital cameras and image processing software. As a consequence, we can no longer take the 

authenticity of a digital image for granted. This thesis investigates the problem of protecting 

the trustworthiness of digital images. 

Image authentication aims to verify the authenticity of a digital image. General 

solution of image authentication is based on digital signature or watermarking. A lot of 

studies have been conducted for image authentication, but thus far there has been no 

solution that could be robust enough to transmission errors during images transmission over 

lossy channels. On the other hand, digital image forensics is an emerging topic for passively 

assessing image authenticity, which works in the absence of any digital watermark or 

signature. This thesis focuses on how to assess the authenticity images when there is 

uncorrectable transmission errors, or when there is no digital signature or watermark 

available. 

We present two error resilient image authentication approaches. The first one is 

designed for block-coded JPEG images based on digital signature and watermarking. Pre-

processing, error correct coding, and block shuffling techniques are adopted to stabilize the 

features used in this approach. This approach is only suitable for JPEG images. The second 

approach consists of a more generalized framework, integrated with a new feature distance 

measure based on image statistical and spatial properties. It is robust to transmission errors 

for both JPEG and JPEG2000 images. Error concealment techniques for JPEG and 

JPEG2000 images are also proposed to improve the image quality and authenticity. Many 

acceptable manipulations, which were incorrectly detected as malicious modifications by 

the previous schemes, were correctly classified by the proposed schemes in our experiments. 



 
 

VI

We also present an image forensics technique to detect digital image forgeries, which 

works in the absence of any embedded watermark or available signature. Although a forged 

image often leaves no visual clues of having been tampered with, the tampering operations 

may disturb its intrinsic quality consistency. Under this assumption, we propose an image 

forensics technique that could quantify and detect image quality inconsistencies found in 

tampered images by measuring blocking artifacts or sharpness. To measure the quality 

inconsistencies, we propose to measure the blocking artifacts caused by JPEG compression 

based on quantization table estimation, and to measure the image sharpness based on the 

normalized Lipschitz exponent of wavelet modulus local maxima. 
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Chapter 1   

Introduction 

 

We are living in a world where seeing is no longer believing. The increasing popularity of 

digital cameras, scanners and camera-equipped cellular phones makes it easy to acquire 

digital images. These images spread widely through various channels, such the Internet and 

Wireless networks. They can be manipulated and forged quickly and inexpensively with the 

help of sophisticated photo-editing software packages on powerful computers which have 

become affordable and widely available. As a result, a digital image no longer holds the 

unique stature as a definitive recording of scenes, and we can no longer take the integrity or 

authenticity of it for granted. Therefore, image authentication has become an important issue 

to ensure the trustworthiness of digital images in sensitive application areas such as 

government, finance and health care.  

Image authentication is the process of verifying the authenticity and integrity of an 

image. Integrity means the state or quality of being complete, unchanged from its source, 

and not maliciously modified. This definition of integrity is synonymous with the term of 

authenticity. Authenticity is defined [1] as “the quality or condition of being authentic, 

trustworthy, or genuine”. Authentic means “having a claimed and verifiable origin or 

authorship; not counterfeit or copied” [1]. However, when used together with integrity in 

this thesis, authenticity is restricted in the meaning of quality of being authentic that verified 

entity is indeed the one claimed to be.  
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1.1 Motivations 

The image trustworthiness is especially important in sensitive applications such as finance 

and health care, where it is critical and often a requirement for recipients to ensure that the 

image is authentic without any malicious tampering. Applications of image authentication 

also include courtroom evidence, insurance claims, journalistic photography, and so on. For 

instance, in applications of the courtroom evidence, when an image is provided as evidence, 

it is desirable to be sure that this image has not been tampered with. In electronic commerce, 

when we purchase multimedia data from the Internet, we need to know whether it comes 

from the alleged producer and must be assured that no one has tampered with the content. 

That is to say, the trustworthiness of an image is required for the image to be digital 

evidence or a certified product.  

Image authentication differs from other generic data authentication in its unique 

requirements of integrity. An image can be represented equivalently in different formats, 

which may have exactly the same visual information but totally different data 

representations. Images differ from other generic data in their high information redundancy 

and strong correlations. Images are often compressed to reduce its redundancy which may 

not change its visual content. Therefore, robust image authentication is often desired to 

authenticate the content instead of the specific binary representation, i.e., to pass the image 

as authentic when the semantic meaning of it remains unchanged. In many applications, 

image authentication is required to be robust to acceptable manipulations which do not 

modify the semantic meaning of the image (such as contrast adjustment, histogram 

equalization, lossy compression and lossy transmission), whereas be sensitive to malicious 

content modifications (such as object removal or insertion). 

The rapid growth of the Internet and Wireless communications has led to an increasing 

interest towards the authentication of images damaged by transmission errors, where the 

conventional image authentication would usually fail. During lossy transmission, there is no 
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guarantee that every bit of the received images is correct. Moreover, compressed images are 

very sensitive to errors, since compression techniques such as variable length coding lead to 

error propagations. As a result, image authentication would be required to be robust to 

transmission errors, but sensitive to malicious modifications at the same time. Previous 

image authentication approaches may fail in being robust to these errors. Therefore, error 

resilient image authentication is desired, which is the image authentication technique which 

is robust enough to transmission errors under some levels. 

Approaches of image authentication are mainly based on watermarking or digital 

signatures. This direction is often referred as active image authentication, a class of 

authentication techniques that uses a known authentication code embedded into the image or 

sent with it for assessing the authenticity and integrity at the receiver. However, this 

category of approaches requires that a signature or watermark must be generated at precisely 

the time of recording or sending, which would limit these approaches to specially equipped 

digital devices. It is a fact that the overwhelming majority of images today do not contain a 

digital watermark or signature, and this situation is likely to continue for the foreseeable 

future. Therefore, in the absence of widespread adoption of digital watermark or signature, 

there is a strong need for developing techniques that can help us make statements about the 

integrity and authenticity of digital images.  

Passive image authentication is a class of authentication techniques that uses the 

received image itself only for assessing its authenticity or integrity, without any side 

information (signature or watermark) of the original image from the sender. It is an 

alternative solution for image authentication in the absence of any active digital watermark 

or signature. As a passive image authentication approach, digital image forensics is a class 

of techniques for detecting traces of digital tampering without any watermark or signature. It 

works on the assumption that although digital forgeries may leave no visual clues of having 

been tampered with, they may, nevertheless, disturb the underlying statistics property or 

quality consistency of a natural scene image.  
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1.2 Research Objectives 

The overall purpose of this thesis is to develop new authentication techniques to protect the 

trustworthiness of digital images. The techniques developed can be put into two research 

topics: error resilient image authentication and image forensics based on image quality 

inconsistencies. 

 

1.2.1 Error Resilient Image Authentication 

Image transmission over lossy channels is usually affected by transmission errors due to 

environmental noises, fading, multi-path transmission and Doppler frequency shift in 

wireless channel [2], or packet loss due to congestion in packet-switched network. Normally 

errors under a certain level in images would be tolerable and acceptable. Therefore, it is 

desirable to check image authenticity and integrity even if there are some uncorrectable but 

acceptable errors. For example, in electronic commerce over mobile devices, it is important 

for recipients to ensure that the received product photo is not maliciously modified. That is, 

image authentication should be robust to acceptable transmission errors besides other 

acceptable image manipulations such as smoothing, brightness adjusting, compressing or 

noises, and be sensitive to malicious content modifications such as object addition, removal, 

or position modification. 

A straightforward way of image authentication is to treat images as data, so that data 

authentication techniques can be used for image authentication. Several approaches to 

authenticate data stream damaged by transmission errors have been proposed. Perrig et al. 

proposed an approach based on efficient multi-chained stream signature (EMMS) [3]. The 

basic idea is that the hash of each packet is stored in multiple locations, so that the packet 

can be verified as long as not all these hashes are lost. However, in this approach there 

would be large transmission payload due to multiple hashes for one packet. Furthermore, the 
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computing overhead would be very large if this approach is applied directly to image 

authentication, since the size of an image is always very large compared with the size of a 

packet. Golle et al. proposed to use an augmented hash chain of packets [4] instead of 

Perrig’s multiple signatures for one packet. This approach may reduce the communication 

payload, but very large computing payload can still be expected. In summary, treating 

images as data stream during authentication does not take advantage of the fact that images 

are tolerable to certain degree of errors, and the computing payload would be very large. 

Therefore, it is not suitable for these data approaches to be applied directly to image 

authentication. 

An image can be represented equivalently in different formats, which have exactly the 

same visual information but totally with different data representation. Image authentication 

is desirable to authenticate the image content instead of its specific binary representation, 

which passes the image as authentic when its semantic meaning remains unchanged [5, 6]. 

Some distortions which do not change the meaning of images are tolerable. It is desirable to 

be robust to acceptable manipulations which do not modify the semantic meaning of the 

image (such as contrast adjustment, histogram equalizing, compression, and lossy 

transmission), while be able to detect malicious content modifications (such as object 

removed, added or modified). In order to be robust to acceptable manipulations, several 

robust image authentication algorithms were proposed, such as signature-based approaches 

[7, 8, 9] and watermarking based approaches [10, 11].  

Content-based image authentication, the main robust authentication technique, 

typically uses a feature vector to represent the content of an image, and the signature of this 

image is calculated based on this feature vector instead of the whole image. However, 

content-based authentication typically measures feature distortion in some metrics, so 

authenticity fuzziness would be introduced in these approaches which may even make the 

authentication result useless. Furthermore, transmission errors would damage the encrypted 
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signatures or embedded watermarks. Therefore, previous techniques would fail if the image 

is damaged by transmission errors.  

Although many studies have been done on robust image authentication and error 

resilient data authentication, no literature is available on error resilient image authentication. 

Transmission errors affect the image authentication in three ways. Firstly, many of the 

standard signature techniques at present require that all received bits are correct. As a result, 

there would be significant overhead due to retransmission and redundancy in applying 

standard signature techniques to image data, which lead to the unavoidable increase of 

transmission payload [12]. Secondly, by requiring all bits received correctly, this system 

cannot verify the received image if there are errors during transmission. In this case, this 

system cannot take advantage of the fact that multimedia applications are tolerable to some 

errors in bitstreams, which can be achieved by error concealment techniques. Finally, 

transmission errors can damage embedded watermarks, removing them from the image or 

reducing the robustness. Therefore, there is an emergent need of authenticating images 

degraded during lossy transmission. The first problem this thesis focuses on is how to 

authenticate images transmitted through lossy channels when there are some uncorrectable 

transmission errors.  

Accordingly, the first purpose of this thesis is to develop techniques for authenticating 

images received through lossy transmission when there are some uncorrectable transmission 

errors. It aims to distinguish the images damaged by causal transmission errors from the 

images modified by the malicious users. It focuses on the development of error resilient 

image authentication schemes incorporated with error correcting code, image feature 

extraction, transmission error statistics, error concealment, and perceptual distance measure 

for image authentication.  

We propose error resilient image authentication techniques which can authenticate 

images correctly even if there uncorrectable transmission errors. An image feature distance 
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measure is also proposed to improve image authentication system performance. The 

proposed perceptual distance measure is quite general that it is able to be used in many 

content-based authentication schemes which use features containing spatial information, 

such as edge [7, 13], block DCT coefficients based features [8, 14, 15], highly compressed 

version of the original image [9], block intensity histogram [16]. The proposed perceptual 

distance measure, when used as the feature distance function in image authenticity 

verification stage, will improve the system discrimination ability. Many acceptable 

manipulations, which were detected as malicious modifications in the previous schemes, can 

be bypassed in the proposed scheme. The proposed feature distance measure can be 

incorporated in a generic semi-fragile image authentication framework [15] to make it able 

to distinguish images distorted by transmission errors from maliciously tampered ones. 

Cryptography and digital signature techniques are beyond the scope of this thesis, since 

they have been well studied in the data security area, and are not the key techniques that 

make our research different from others. The authentication techniques proposed in this 

thesis can produce good robustness against transmission errors and some acceptable 

manipulations, and can be sensitive to malicious modifications. Moreover, the perceptual 

distance measure proposed for image authentication would improve the system performance 

of content-based image authentication schemes. 

 

1.2.2 Passive Image Authentication based on Image Quality 

Inconsistencies 

A requirement of active image authentication is that a signature or watermark must be 

generated and attached to the image. However, at present the overwhelming majority of 

images do not contain digital watermark or signature. Therefore, in the absence of 

widespread adoption of digital watermark or signature, there is a strong need for developing 
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techniques that can help us make statements about the integrity and authenticity of digital 

images. Passive image authentication is a class of authentication techniques that uses the 

image itself for assessing the authenticity of the image, without any active authentication 

code of the original image. Therefore, the second problem this paper focuses on is how to 

passively authenticate images without any active side information from signature or 

watermark. 

Accordingly, the second purpose of this thesis is to develop methods for authenticating 

images passively by evaluating image quality inconsistencies. The rationale is to use image 

quality inconsistencies found in a given image to justify whether the image has been 

maliciously tampered with.  

One approach of passive image authentication is to detect specific operations as the 

traces of image modifications. Several specific operations have been used, such as copy-

move forgery [17], color filter array interpolation [18], and so on. Another approach is 

based on statistical properties of natural image [ 19 , 20 ], with the assumption that 

modifications may disrupt these properties. However, these approaches may be effective 

only in some aspects and may not always be reliable. They may neglect the fact that the 

quality consistencies introduced during the whole chain of image acquiring and processing 

would be disrupted by digital forgery creation operations. Few studies have been done based 

on detection of these image quality inconsistencies.  

We propose to use content independent image quality inconsistencies in the image to 

detect the tampering. Images from different imaging systems in different environments 

would be of different qualities. When creating digital forgery, there are often parts from 

different sources of images. If the image is a composite from two different sources, there 

would be quality inconsistencies found in it, which can be as a proof of its having been 

tampered with. A general framework for digital image forensics is proposed in this thesis to 

detect digital forgery by detecting inconsistencies of the image using JPEG blocking 
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artifacts and image sharpness measures. For a given source of digital image, the distortions 

introduced during image acquisition and manipulation can be served as a “natural 

authentication code”, which are useful to identify the source of image or detect digital 

tampering. The developed digital image forensics technique would be useful in assisting the 

human experts for investigation of image authenticity.  

The assumption that the digital forgery creation operations will disrupt image quality 

consistency is adopted in this thesis. Therefore, our work focuses on the discovery of quality 

consistency introduced in the whole chain of digital image creation and modification, and its 

use in detecting digital forgeries. The results of this thesis may provide a passive way to 

protect the trustworthiness of digital images by distinguishing authentic images from digital 

forgeries. Moreover, the results of our image forensics technique may lead to a better 

understanding of the role of quality consistencies introduced in digital imaging chain for 

detecting digital forgeries. 

In summary, the objective of our thesis is to develop image authentication techniques 

to verify the authenticity and integrity of a digital image, when the image is damaged by 

transmission errors during transmission or there is no side information available from digital 

signature or watermark. Our approaches make use of techniques from various areas of 

research, such as computer vision, machine learning, statistics analysis, pattern 

classification, feature extraction, digital cryptography, digital watermarking, and image 

analysis. 

 

1.3 Thesis Organization  

This thesis is organized as follows. In Chapter 2, a review of state-of-the-art related work is 

presented, including active image authentication and image forensics techniques. The 

proposed error resilient image authentication scheme is present in Chapter 3. In Chapter 4, 
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we describe the feature distance measure for content-based image authentication and its 

application in error resilient image authentication. Image forensics based on image quality 

inconsistencies is present in Chapter 5. Chapter 6 concludes this thesis with some comments 

on future work in image authentication. 
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Chapter 2   

Related Work 

 

Image authentication, an important technique for protecting the trustworthiness of digital 

images, is mainly based on active approaches using digital signature or watermarking. The 

rapid growth of Internet and Wireless communications has led to the increasing interest 

towards authentication of images damaged by transmission errors. On the other hand, today 

most digital images do not contain any digital watermark or signature, so there is an 

emerging research interest towards passive image authentication techniques. 

This chapter examines previous works on active and passive image authentication that 

are relevant to this thesis. In Section 2.1, we review active image authentication techniques, 

including discussions on the differences between image authentication and data 

authentication, robustness and sensitivity requirements of image authentication, content-

based image authentication, error resilient data authentication, and digital signature or 

watermarking based approaches. In Section 2.2, we review the image forensics techniques, 

including the analysis of the distortions introduced during the digital image generation and 

manipulation, image forensics based on the detection of specific manipulation, image 

forensics based on passive integrity checking, and image quality measures for image 

forensics. This chapter sets up the context of our research topics of error resilient image 

authentication and passive image authentication using image quality measures. 
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2.1 Active Image Authentication 

Active image authentication uses a known authentication code during image acquiring or 

sending, which is embedded into the image or sent along with it for assessing its authenticity 

or integrity at receiver side. It is different from classic data authentication. Robustness and 

sensitivity are the two main requirements of active image authentication. The main 

approaches of active image authentication are based on digital watermarking and digital 

signatures.  

 

2.1.1 Preliminaries of Active Image Authentication  

It is useful to discover the differences between image authentication and data authentication 

in order to exploit data authentication techniques for image authentication or to develop 

particular image authentication techniques. Robustness, which is a key requirement of 

image authentication, makes image authentication different from general data 

authentication. Based on different level of robustness, image authentication can be classified 

into complete authentication and soft authentication. Content-based image authentication is 

a main approach of soft authentication.  

 

Differences between Image Authentication and Data Authentication 

The main difference between image authentication and data authentication would be that 

image authentication is generally required to be robust to some level of manipulation, and 

data authentication technique would not accept any modification. General data 

authentication has been well studied in cryptography [21]. A digital signature, which is 

usually in an encrypted form of the hash of the entire data stream, is generated from the 

original data or the originating entity. The classic data authentication can generate only a 
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binary output (tampered or authentic) for the whole data, irrespective of whether the 

manipulation is minor or severe. Even if one bit changed in the data, the verification will fail 

due to the properties of the hashing function [22]. On the contrary, image authentication is 

desirable to be based on the image content so that an authenticator remains valid across 

different representations of the image as long as the underlying content has not changed.  

Authentication methods developed for general digital data could be applied to image 

authentication. Friedman [23] discussed its application to create a “trustworthy camera” by 

computing a cryptographic signature that is generated from the bits of an image. However, 

unlike other digital data, image signals are often in a large volume and contain high 

redundancy and irrelevancy. Some image processing techniques, such as compression, are 

usually required to be applied to image signals without affecting the authenticity. Most 

digital images are now stored or distributed in compressed forms, and would be transcoded 

during transmission which would change the pixel values but not the content. Due to the 

characters of image signals, manipulations on the bitstreams without changing the meaning 

of content are considered as acceptable in some applications, such as compression and 

transcoding. Classical data authentication algorithms will reject these manipulations because 

the exact representation of the signal has been changed. In fact, classical data authentication 

can only authenticate the binary representation of digital image instead of its content. For 

example, in [23], if the image is subsequently converted to another format or compressed, 

the image will fail the authentication. 

In summary, due to the difference between image authentication and data 

authentication, it is not suitable to directly apply general data authentication techniques to 

image authentication. The reason would be that the conventional data authentication 

techniques are not capable of handling distortions that would change the image 

representation but not the semantic meaning of the content. In addition, long computation 

time and heavy computation load are expected since the size of an image could be very 

large. 
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Robustness and Sensitivity of Image Authentication 

The requirement on a certain level of authentication robustness is the main difference 

between data authentication and image authentication. An image authentication system 

would be evaluated based on the following requirements with variable significances in 

different applications:  

• Robustness: The authentication scheme should be robust to acceptable 

manipulations such as lossy compression, lossy transmission, or other content-

preserving manipulations.  

• Sensitivity: The authentication scheme should be sensitive to malicious 

modifications such as object insertion or deletion.  

• Security: The image cannot be accepted as authentic if it has been forged or 

maliciously manipulated. Only authorized users can correctly verify the 

authenticity of the received image. 

 In image authentication, these requirements highly depend on the definitions of 

acceptable manipulations and malicious modifications. Commonly, manipulations on 

images can be classified into two categories as follows: 

• Acceptable manipulations: Acceptable (or incidental) manipulations are the ones 

which do not change the semantic meaning of content and are acceptable by an 

authentication system. Common acceptable manipulations include format 

conversions, lossless and high-quality lossy compression, resampling, etc. 

• Malicious manipulations: Malicious manipulations are the ones that change the 

semantic meaning, and should be rejected. Common malicious manipulations 

include cropping, inserting, replacing, reordering perceptual objects in images, 

etc. 
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Note that different applications may have different criteria of classifying 

manipulations. The manipulation considered as acceptable in one application could be 

considered as malicious in another application. For example, JPEG image compression is 

generally considered as acceptable in most applications, but may be rejected for medical 

images since loss of details during lossy compression may render a medical image useless.  

 

Complete Image authentication and Soft authentication 

Based on the robustness level of authentication and the distortions introduced into the 

content during image signing, image authentication techniques can be classified into two 

categories: complete (or hard) authentication and soft authentication. Complete 

authentication refers to techniques that consider the whole image data, and do not allow any 

manipulations or transformation. Soft authentication passes certain acceptable 

manipulations and rejects all the rest malicious manipulations. Soft authentication can be 

further divided into quality-based authentication, which rejects any manipulations that 

makes the perceptual quality decrease below an acceptable level, and content-based 

authentication, which rejects any manipulations that change the semantic meaning of the 

image. 

Early works on image authentication are mostly complete authentication. If images are 

treated as data bitstreams, many previous data signature techniques can be directly applied 

to image authentication. Then, manipulations will be detected because the hash values of the 

altered message bits will not match the information in the digital signature. In practice, 

fragile watermarks or traditional digital signatures may be used for complete authentication. 

On the contrary, normally distortions in images under a certain level would be 

tolerable and acceptable in many applications. Therefore, it is desirable that image 
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authentication should be robust to these acceptable image manipulations. These 

requirements motivate the development of soft authentication techniques.  

 

Content-based Image Authentication 

An efficient soft image authentication approach could be content-based authentication, 

which passes images as authentic if the image content remains unchanged [5]. It typically 

uses a feature vector to represent image content, and the authentication code of this image is 

calculated based on this feature vector instead of the whole bit-stream representation. 

Content-based authentication uses soft decision to judge the authenticity [5], which typically 

measure authenticity in terms of the distance between a feature vector of the received image 

and its corresponding vector of the original image, and compares the distance with a preset 

threshold to make a decision.   

Several content-based authentication schemes have been proposed [24, 7, 8, 13, 14, 

and 10], which could pass certain acceptable manipulations, and reject all the rest. The main 

difference between these schemes is what kind of feature is used. Moment is used as the 

feature in [7], edge in [7, 13], DCT coefficients in [8, 14], and Wavelet coefficients in [10]. 

These content-based authentication schemes have a common problem that there is 

typically no sharp boundary between authentic images and unauthentic images [14]. This 

intrinsic fuzziness makes challenges to these authentication schemes. A fuzzy region exists 

between the surely authentic and unauthentic images in [14], where the authenticity of the 

images is difficult to ascertain. A solution to do with this problem is to introduce human 

intervention [25], in which a human is required to distinguish acceptable manipulations 

from malicious modifications. 

Furthermore, it is difficult for these techniques to survive network transmissions and 

error concealment during transmission over lossy networks. Typically the best-effort 

networks have no guarantee on the correctness of every received bit of images. 
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Transmission errors are inevitable in lossy networks such as wireless channel 

(environmental noises fading, multipath and Doppler frequency shift [2]), or the Internet 

(packet loss due to congestion when using UDP over IP protocol). In this paper, both the 

packet loss in Internet and noises in wireless network are referred to as transmission errors.  

 

Error Resilient Authentication for Data Stream over Lossy Channels 

Authenticating data stream over lossy channels has been studied in cryptography field, such 

as signature-based data streaming authentication schemes [3, 4]. In these schemes, a data 

stream of packets is divided into a number of blocks. Within each block, the hash of each 

packet is appended to some other packets which in turn generate new hashes appended to 

other packets. This hash-and-concatenate process continues until it reaches the last packet, 

which is the only packet in this block signed by the signature algorithm. In these schemes 

the verification of each packet is not guaranteed in the presence of loss, but instead it is 

assured that this can be done with a certain probability.  

The main difference between these hash-chaining schemes [3, 4] is how to construct 

the hash chaining topology, that is, in what way the packets should be linked. Perrig et al. 

proposed an Efficient Multi-chained Stream Signature (EMSS) scheme [4] which is robust 

against packet losses by storing the hash of each packet in multiple locations and appends 

multiple hashes in the signature packet. The basic idea this scheme is that when a packet is 

lost, its hash will be found in other packets unless total packet loss of a segment exceeds a 

threshold. Golle and Modadugu [3] proposed an Augmented Chain Stream Signature 

(ACSS) scheme in which a systematic method of inserting hashes in strategic locations so 

that the chain of packets formed by the hashes will be resistant to a burst loss.  

These hash-chaining based schemes would not be suitable to be directly applied to 

image authentication, because directly applying these schemes to image authentication has 
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several drawbacks: (1) long computation time and heavy computation load are required. The 

reason is that the size of an image is still tremendously huge even if it has been compressed; 

(2) the direct application of digital signatures to an image is vulnerable to image processing 

such as compression or contrast adjustment which are commonly considered to be 

acceptable; (3) with the increase of Bit Error Rate (BER) and the need of time 

synchronization, the transmission overhead will be unavoidably large; (4) in image 

transmission, the importance and the size of packets vary in different environments. It may 

not be practical to generate hash functions from pre-defined fixed boundaries; (5) treating an 

image as data bit stream, it does not taking advantage of the fact that image is tolerable to 

certain degree of errors.  

 

2.1.2 Approaches of Active Image Authentication  

The main approaches of active image authentication are based on digital watermarking or 

digital signatures, as well as some combinatory methods that use both of them. 

 

Image Authentication based on Digital Signature 

A digital signature is an external authentication code generated from the original message, 

which is usually an encrypted form of some kind of hash values [24]. The signature includes 

the encrypted authentication code that is to be authenticated, as well as some other 

information such as the issuer, the owner, and the validity period of the public key. A public 

key certificate is a digitally signed message consisting of two parts which can be used for 

authentication using a public key.  

Digital signature standard (DSS) is a typical technology for data authentication, which 

consists of two phases – signature generation and signature verification [21]. Given a 
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message of arbitrary length, a short fixed-length digest is obtained by a secure hash 

function. The signature is generated using the sender’s private key to sign on the hashed 

digest. The original message associated with its signature is then sent to the intended 

recipients. Later on, the recipient can verify whether the received message has been altered, 

and whether the message were really from the sender, by using the sender’s public key to 

authenticate the validity of the attached signature. The final authentication result is drawn 

from a bit-bit comparison between two hash codes (one is decrypted from the signature and 

the other is obtained by re-hashing the received message). Even one bit difference existing 

in the received message will be deemed unauthentic. 

Due to its great success in data authentication, DSS could be also employed in image 

authentication [7, 26, 27, 28, 29]. In this type of image authentication, the sender’s private 

key is used to sign the feature of the original image to generate a digital signature. During 

verification, a public key is used to decrypt to get the original feature, and compared with a 

feature extracted from the received image to determine the image authenticity.  

 

Image Authentication based on Digital Watermarking 

Image authentication is classically handled through digital signature by cryptography. 

However, digital signature can only work when an authentication message is transmitted 

with the media. In signature-based authentication, the digital signature is stored either in the 

header of format or in a separate file. Therefore, the risk of losing the signature is always a 

major concern. It does not protect against unauthorized copying after the message has been 

successfully received and decrypted. Furthermore, although complex cryptographic 

techniques generally make the cracking of the system difficult, they are also expensive to 

implement.  
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Digital watermarking is an effective way to protect copyright of image data even after 

transmission and decryption. It is a concept of embedding a special pattern (watermark) into 

a host signal so that a given piece of information, such as the owner’s or authorized 

consumer’s identity, is indissolubly tied to the data. This information can later be used to 

prove ownership, identify a misappropriating person, trace the marked document’s 

dissemination through the network, or simply inform users about the rights-holder or the 

permitted use of the data. 

Compared with digital signature, digital watermarking takes advantage of the fact that 

all images contain a small amount of data that does not usually have a discernible effect on 

their appearances. These data are often treated as “noise” because they are random and 

usually nonsensical. Digital watermarking creates a message that mimics the noise data and 

embeds it as a digital watermark. In addition, digital watermarks are very durable. A robust 

digital watermark can survive many kinds of image manipulations (including blur, rotate, 

cut, paste, crop, and color separation), data compression, and multiple generations of 

reproduction across a variety of digital and print media. Watermarking has many 

applications, such as broadcast monitoring, owner identification, proof of ownership, 

authentication, transactional watermarks, copy control and covert communication [30].  

All digital watermarking techniques consist of two phases: watermark embedding and 

watermark detection. In watermark embedding, the cover message and the secret key are 

combined to produce a stego object, which consists of the cover object with a watermark 

embedded in it. Then, to determine either authenticity or copyright ownership of the stego 

object, the secret key and the stego object are combined in the process of watermark 

extraction, which recovers and/or verifies the watermark. Digital watermarking can be 

divided into various categories in various ways. Generally it can be classified into three 

types: pixel domain (least significant bit replacement) and frequency domain techniques.  
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The most straight-forward method of watermark embedding, would be to embed the 

watermark into the least-significant-bits (LSB) of the cover object, e.g., to insert watermark 

bits into the least significant bits of an image. LSB substitution is simple, but also brings a 

host of drawbacks. Although it may survive transformations such as cropping, any addition 

of noise or lossy compression is likely to alleviate the watermark. In a word, LSB 

modification proves to be a simple and fairly powerful tool for stenography, but lacks the 

basic robustness that watermarking applications require. Yeung et al. [31] proposed an 

fragile scheme that a binary watermark is embedded into the original image in pixel domain, 

and a key dependent binary look-up-table (LUT) is employed as a watermark extraction 

function to extract watermark pixel-by-pixel. A similar LUT is used in [32], in which 

watermarking is performed in the DCT domain. Another improved LUT based scheme was 

proposed in [33], in which the key dependent LUT for a single pixel is replaced by an 

encryption map. 

There are some more robust watermarking methods which are analogous to spread 

spectrum communications techniques. Modulators and demodulators of classical spread 

spectrum communications systems are identical to the watermark embedding and extraction 

process. The noisy transmission is analogous to the distribution and distortion of 

watermarked data. The communication channel is viewed as the frequency domain of the 

data signal to be watermarked. The narrowband signal transmitted over this wideband 

channel represents the watermark. I. Cox et al proposed a spread spectrum-watermarking 

method [ 34 ]. They place the watermark in a perceptually most significant frequency 

sequence. The watermark in their system is not a binary identification word but the pseudo-

noise itself, i.e., a sequence of small pseudo-random numbers. 

In frequency domains, discrete cosine transform (DCT) domain is classic and popular 

for image processing, which allows an image to be broken up into different frequency 

bands, making it much easier to embed watermarking information into the middle frequency 

bands of an image. The middle frequency bands are chosen such that they avoid altering the 
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most visual important parts of the image (low frequencies) without over-exposing 

themselves to removal through compression and noise attacks (high frequencies) [ 35]. 

Another possible domain for watermark embedding is wavelet transform domain [36, 37]. 

The Discrete Wavelet Transform (DWT) separates an image into a lower resolution 

approximation image (LL) as well as horizontal (HL), vertical (LH) and diagonal (HH) 

detail components. One of the many advantages of wavelet transform is that it is believed to 

be able to model the Humana Visual System (HVS) more accurately, as compared with the 

FFT or DCT. This allows us to use higher energy watermarks in regions that the HVS is 

known to be less sensitive to, such as the high resolution detail bands (LH, HL, and HH). 

Embedding watermarks in these regions allow us to increase the robustness of our 

watermark, at a little or no additional impact on image quality.  

 

Image Authentication based on Hybrid Digital Signature and Watermark 

Digital signature or watermarking based technologies can be independently used for image 

authentication; moreover, it is possible to implement both of them in the same 

authentication application, providing a multiple-layer security. The content may have been 

watermarked after signature generation. The sending party encrypts the watermarked 

content to provide the second layer of protection. At the receiving end, the signature is 

decrypted before watermark detection takes place.  

A preferable solution is to embed the signature directly into the image using digital 

watermarking. It inserts an imperceptible watermark into the image at the time of recording. 

It eliminates the problem of having to ensure that the signature stays with the image. It also 

opens up the possibility that we can learn more about what kind of tampering has occurred, 

since any changes made to the image will also be made to the watermark. With the 

assumption that tampering will alter a watermark, an image can be authenticated by 

verifying that the extracted watermark is the same as that which was inserted. Thus, the 
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authentication system can indicate the rough location of changes that have been made to the 

image. The major drawback of this approach is that a watermark must be inserted at the time 

of recording or sending, which would limit this approach to specially equipped digital 

cameras. This method also relies on the assumption that the watermark cannot be easily 

removed and reinserted. 

In summary, the advantages of hybrid digital signature or watermarking scheme 

include: 

• Additional level of security: The hacker will have to attack both the encryption 

algorithm and watermarking algorithm.  

• Multiple uses: The embedded activating share can be a multi-purpose watermark, 

representing both the key data and copyright or copy control information. 

A robust watermarking protocol for key-based video watermarking are proposed in 

[38]. This protocol generates keys that are both very secure and content dependent using a 

cryptographically strong state machine. It is robust against many types of video 

watermarking attacks and supports many kinds of embedding and detection schemes.  

However, some applications demand the same security solution on a semi-fragile level, 

i.e., some manipulations on the content will be considered acceptable (e.g. lossy 

compression) while some are not allowable (e.g. content modifications). At the semi-fragile 

level, watermarking-based approaches only work well in protecting the integrity of the 

content [39], but are unable to identify the source if without other associated solutions. This 

is because watermarking makes use of a symmetric key for watermark embedding and 

extracting. Once the key or watermark is compromised, attackers can use the key or 

watermark to fake other images as authentic. Signature based approaches can work on both 

the integrity protection of the content and the repudiation prevention of the owner. 

However, a shortcoming exists that the generated signature is unavoidably large because its 

size is usually proportional to the image size.  
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A hybrid digital signature or watermarking system as present in [15] generates short 

and robust digital signatures based on the invariant message authentication codes (MACs). 

These MACs are obtained from the quantized original frequency-domain coefficients and 

ECC-like embedded watermarks. The invariance of MACs is theoretically guaranteed if the 

images are under lossy compression or other acceptable minor manipulations such as 

smoothing, brightness change, etc. The whole MACs generated from the signing end have to 

be preserved in the receiving end. Thus, the size of digital signature is proportional to the 

image size. The MACs are generated strictly invariant in the signing end and the receiving 

end, so the hash function can be applied to significantly reduce the size of digital signature 

[40]. This scheme is robust to transmission errors by using error correction concepts, and is 

secure by adopting crypto signature. 

 

2.2 Passive Image Authentication 

The major drawback of active image authentication based on digital signature or 

watermarking is that a signature or watermark must be available for authenticity 

verification, which would limit this approach to special imaging equipments. Passive image 

authentication is an alternative solution to active authentication when there is no active side 

information provided by digital signature or watermark. It is a class of authentication 

techniques that uses the image itself for assessing the authenticity or integrity of the image, 

without any side information available from the image or the original reference image.  

Digital forensics has been defined by the Digital Forensic Research Workshop 

(DFRWS) as “the use of scientifically derived and proven methods towards the 

preservation, collection, validation, identification, analysis, interpretation and presentation 

of digital evidence derived from digital sources for the purpose of facilitating or furthering 

the reconstruction of events found to be criminal or helping to anticipate the unauthorized 
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actions shown to be disruptive to planned operations” [41]. We use the phrase of digital 

image forensics as a passive image authentication technique for the purpose of evaluation of 

the image authenticity or integrity. Image forensics, in this context, is to examine the 

characteristics of content or to detect the traces of some underlying forgery creation 

operation trails in the image for detecting forgery.  

For image authentication based on digital signature or watermarking, there is a 

authenticaiton code (side information) embedded in the image or sent with it. For image 

forensics, there is no such side information available at the receiver. In order to check of 

image authenticity, it works in a passive blind way, in a very different way compared with 

active image authentication. It is often based on some prior knowledge about image 

acquiring, image statistics, and traces of forgery creation operations.  

A typical authentication decision is based on the comparison between a preset 

threshold and the distance of the pattern vector extracted (Pt) from the test image and the 

original pattern (Po) from the original image. The main differences between active and 

passive authentication schemes are:  

• For image authentication based on digital signature, the original vector Po is from 

a feature vector extracted from the image or the source entity, followed by an 

optional data-reduction stage and another optional lossless compression to reduce 

amount of data in the feature vector. And this pattern vector is stored as side 

information along with the image.  

• For image authentication based on watermarking, the original vector Po is from a 

feature vector extracted from the image or a predefined pattern. And this pattern 

vector is embedded into the image to be extracted from it in the stage of 

verification.  
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• For passive authentication, both the vectors Po and Pt come from pattern learning 

stage or prior knowledge of some operations during image acquiring, processing 

and transmission. 

Therefore, prior knowledge of digital imaging system is useful for digital image 

forensics. Knowledge from traditional forensics experts would also be useful or incentive 

for image forensics. Tampered analog photos can be detected by forensic experts in several 

levels [ 42]: (1) At the highest level, one may analyze what are inside the image, the 

relationship between the objects, and so on. Even very advanced information may be used, 

such as George Washington cannot take photos with George Bush [43]; (2) At the middle 

level, one may check the image consistency, such as consistency in object sizes, color 

temperature, shading, shadow, occlusion, and sharpness; (3) At the low level, local features 

may be extracted for analysis, such as the quality of edge fusion, noise level, and 

watermark.  

Human is very good at high level and middle level analysis and has some ability in low 

level analysis. On the contrary, computers now still have difficulties in high level analysis, 

but can be very helpful in middle level and low level analysis, as complement of human 

examination. Therefore, general approaches of passive digital image authentication could be 

based on distortion ballistics (detection of the trace of distortions caused by some specific 

manipulation), image statistics or pattern classification. Image quality measures would also 

be useful in image forensics. 

 

2.2.1 Image Forensics based on Detection of the Trace of 

Specific Operation 

Although there may be an uncountable number of ways to tamper with digital images, the 

most common forgery creation operations are: 
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• Compositing: Two or more digital images are spliced together to create a 

composite image. It is one of the most common forms of digital forgery creation;  

• Resampling, rotating, or stretching portions of the images;  

• Brightness, contrast, or color adjustment, such as white balance and gamma 

correction; 

• Filtering or introducing noise to conceal evidence of tampering;  

• Compressing or reformatting the result image. 

Recently, some digital image forensics approaches have been proposed to detect the 

traces of specific manipulation applied to the image using statistical techniques, such as 

detecting the resampling [44], copy-paste [17], JPEG recompression [18], and color filter 

array interpolation [45, 46, 47, 48].  

Most digital cameras are equipped with a single charge-coupled device (CCD) or 

complementary metal oxide semiconductor (CMOS) sensor, and capture color images using 

an array of color filters. At each pixel location, only a single color sample is captured. The 

missing color samples are then inferred from neighboring values. This process, known as 

color filter array (CFA) interpolation or demosaicking, introduces specific correlations 

between the samples of a color image. These correlations are typically destroyed when a 

CFA interpolated image is tampered with, and can be employed to uncover traces of 

tampering. Using an approach similar to the resampling detection [44], the authors in [45] 

employed the expectation/maximization (EM) algorithm to detect if the CFA interpolation 

correlations are missing in any portion of an image. An advantage approach over EM 

algorithm was proposed in [49], which first assumes a CFA pattern, thereby discriminates 

between the interpolated and un-interpolated pixel locations and values, and estimates the 

interpolation filter coefficients corresponding to that pattern for each of three clusters. 

In [20], the authors proposed to detect photomontage by a passive-blind approach 

using improved bi-coherence features (mean of magnitude and negative phase entropy). 
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Photomontage refers to a paste-up produced by sticking together photographic images. 

Creation of photomontages always involves image splicing, which refers to a simple putting 

together of separate image regions, without further post-processing steps. Among all 

operations involved in image photomontage, image splicing can be considered the most 

fundamental and essential operation. The block level detection results can be combined in 

different ways to make global decision about the authenticity of a whole image or its sub-

regions 

When tampering with an image, a typical pattern is to load the image into some 

software (e.g., Adobe Photoshop), do some processing, and resave the tampered image. If 

JPEG format is used to store the images, the resulting tampered image would be double 

compressed. Double JPEG compression introduces specific correlations between the 

discrete cosine transform (DCT) coefficients of image blocks. These correlations can be 

detected and quantified by examining the histograms of the DCT coefficients. While double 

JPEG compression of an image does not necessarily prove malicious modifications, it raises 

suspicions that the image may not be authentic. If these histograms of the DCT coefficients 

contain periodic patterns, then the image is very likely to have been double compressed 

[18].  

 

2.2.2 Image Forensics based on Feature Inconsistency 

The second approach of image forensics is based on statistic properties of the natural images 

[20, 50, 51, 52, 53], linear filter estimation by blind de-convolution [54], or inconsistencies 

based on scene lighting direction [55] and camera response normality [43, 56, 57], with the 

assumption that image forgery creation perturbs the natural images statistics or introduce 

inconsistent lighting directions. Pattern noise can be used as the other way to detect the 

origin of image acquired by digital cameras [18]. The pattern noise of a camera can be 
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considered as a high-frequency spread spectrum watermark to identify the camera from a 

given image, whose presence in the image is established using a correlation detector.  

In [58], a statistical model based on Benford’s law for the probability distribution of 

the first digits of the JPEG coefficients is used to estimate the JPEG quantization factor. In 

[19] the authors propose a method which could reliably discriminate between tampered 

images from the original ones. The basic idea is that a doctored image would have 

undergone some image manipulations like rescaling, rotation, brightness adjustment, etc. 

They designed classifiers that can distinguish between images that have and have not been 

processed using these basic operations. Then equipped with these classifiers they applied 

them successively to a suspicious sub-image of a target image and classify the target as 

doctored if a sub-image classifies differently from the rest of the image. Natural scene 

statistics [59, 60] are also used in this scheme. In [19] the authors present a technique for 

capturing image features that, under some assumptions, are independent of the original 

image content and hence better represent the image manipulations. They employed several 

image quality metrics as the underlying features of the classifier. The features are selected 

as two first-order moments of the angular correlation and two first-order moments of the 

Czenakowski measure. 

If the light source can be estimated for different objects/people in an image, 

inconsistencies in the lighting direction can be used as evidence of digital tampering. 

Lighting inconsistencies are applied for revealing traces of digital tampering in [55]. The 

authors proposed a technique for estimating the light source direction from a single image. 

The light direction estimation requires the localization of an occluding boundary. These 

boundaries are extracted by manually selecting points in the image along an occluding 

boundary. This rough estimate of the position of the boundary is used to define its spatial 

extent. The boundary is then partitioned into approximately eight small patches. Three 

points near the occluding boundary are manually selected for each patch, and fit with a 

quadratic curve. The surface normalcy along each patch is then estimated analytically from 
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the resulting quadratic fit. The intensity at the boundary is then determined by evaluating 

intensity profile function, and repeated for each point along the occluding boundary. 

The problems faced in image forensics are extremely difficult. A basic problem is to 

determine the model of the digital camera that was used to capture the image. An approach 

based on feature extraction and classification is proposed for the camera source 

identification problem by identifying a list of candidate features [61]. A vector of numerical 

features is extracted from the image and then presented to a classifier built from a training 

set of features obtained from images taken by different cameras. Then a multi-class support 

vector machine (SVM) was used to classify data from all of the different camera models. 

The feature vector is constructed from average pixel values, correlation of RGB pairs, center 

of mass of neighbor distribution, RGB pairs energy ratio, and it also exploits some small 

scale and large scale dependencies in the image expressed numerically using a wavelet 

decomposition previously used for image steganalysis [62]. 

Fridrich et al. proposed to use the sensor’s pattern noise for digital camera 

identification from images [63, 64]. Instead of measuring the noise, they used a wavelet-

based denoising filter described in [65] to extract the pattern noise from the images. For 

each camera under investigation, they first determine its reference pattern, which serves as a 

unique identification fingerprint. To identify the camera from a given image, they consider 

the reference pattern noise as a high-frequency spread spectrum watermark, whose presence 

in the image is established using a correlation detector. 

 

2.2.3 Image Quality Measures 

Digital images are subject to a wide variety of distortions during acquisition, processing, 

compression, and transmission, any of which may result in a degradation of the visual 

quality. Image quality measures are figures of merit used for the evaluation of imaging 
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systems, image coding, and processing techniques. The image acquiring and post-processing 

operations will introduce some pattern distortions which would result a quality consistency 

in the final image. Malicious modifications of the image would disrupt this quality 

consistency.  Therefore, if the image qualities of regions are inconsistent with each other, 

then the image may be a forgery.  

 

Digital Image forensics based on Image Quality Measure 

Image quality measure is generally based on some specific distortions. Using quality 

measure for digital image forensic analysis is actually to measure the distortion. There are 

many sources of distortions introduced in the whole chain of digital imaging and processing, 

as shown in Figure 2.1. Several stages exist in this chain. In a typical consumer digital 

camera, the light from the photographed scene passes through the camera lens, and then it is 

converted to digital signal by the sensors. In the third stage, the signal is then processed by 

digital imaging processor such as Canon DIGIC chips. Interpolation, color correction, white 

balance adjustment, and gamma correction are the usual operations by the processor. 

Finally, the raw data may be compressed, and saved to the camera memory [66]. All these 

stages will introduce some distortions or correlations into the final image, such as optical 

distortion by lens, noises introduced by the sensor, and artifacts by compression.  

In each stage, the distortions introduce a kind of quality consistency, which can be 

served as an “authentication code”. On the other hand, the image forgery creation operations 

usually involve decompression, transformation, composition of the image fragments, and 

retouching of the final image. These manipulations may disturb the intrinsic quality 

consistency of the image.  
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Figure 2.1: Distortions of digital imaging and manipulations 

Our idea is to check the quality consistency of different regions of the whole image. 

For each region, a quality measure is calculated. Then the variance of these measures can be 

served as the authenticity of the image. The assumption is that if the image is authentic, then 

different regions of it should be quality consistent. Therefore, if the image qualities of 

regions are abnormal or inconsistent with each other, then the image may be a forgery. 

 

Image Quality Measures 

Many quality measures have been proposed in different research areas such as image 

coding, image processing, camera design and visual psychology. In practice, subjective 

evaluation is usually too inconvenient, time-consuming and expensive, therefore objective 

quality measure becomes important in many applications. A good objective quality measure 

should reflect the distortion on the image well due to, for example, blurring, noise, 

compression, and sensor inadequacy. An objective image quality measure could be 

instrumental in predicting the performance of vision-based algorithms such as feature 

extraction, image-based measurements, detection, tracking, and segmentation, etc., tasks. It 

can be used to dynamically monitor and adjust image quality, optimize algorithms and 

parameter settings of image processing systems, and benchmark image processing systems 

and algorithms. 
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Image quality depends on many factors, such as the initial capture system and its image 

processing, compression, and transmission. There are two key aspects of image quality. 

• Factors intrinsic to the imaging system, such as cameras, lenses, or printers: 

Sharpness, noise, dynamic range, color accuracy, color gamut, etc. 

• Factors affected by post-processing, such as contrast adjustment, compression 

and transmission: Contrast, color balance, color saturation, lossy transmission, 

etc.  

In the image coding and computer vision literature, the raw error measures based on 

deviations between the original and the coded images are overwhelmingly used [67], with 

MSE or PSNR varieties being the most common measures. The reason for their widespread 

choice is their mathematical tractability and that it is often easy to design systems that 

minimize the MSE. Raw error measures such as MSE may quantify the error in 

mathematical terms, and they are at their best with additive noise contamination. However, 

they do not necessarily correspond to all aspects of the observer’s visual perception of the 

errors [7, 8], nor do they correctly reflect structural coding artifacts. 

In order to quantify the similarity between the test and the reference images in a 

perceptually meaningful manner, researchers have explored measuring error strength after 

processing the test and the reference images with HVS models [68, 69]. The underlying 

premise is that the sensitivities of the HVS are different for different aspects of the visual 

signal that it perceives, such as brightness, contrast, frequency content, and the interaction 

between different signal components, and it makes sense to compute the strength of the 

error between the test and the reference signals once the different sensitivities of the HVS 

have been accurately accounted for. Methods of this type are useful at determining whether 

the distortions are below or beyond the threshold of visual detection.  

Different from traditional error-sensitivity based approach, structural similarity based 

image quality assessment has been recently proposed [70]. This approach is based on the 
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following philosophy: the main function of the human visual system is to extract structural 

information from the viewing field, and the human visual system is highly adapted for this 

purpose. Models of this group, i.e. the structural similarity index [70], are based on a 

measurement of structural information loss. 

This error sensitivity paradigm is a bottom-up approach in which researchers model the 

low-level features of the HVS to achieve consistent quality predictions. Although such 

methods have met with good success, there are many questions that arise in their design 

[70]. Some researchers have therefore explored arbitrary signal fidelity criteria that are not 

affected by assumptions about HVS models, but are motivated instead by the need to 

capture the loss of visual structure in the signal that the HVS hypothetically extracts for 

cognitive understanding. Such top-down methods have also met with good success [70]. 

For image applications with very low bit rate coding, quality measures based on human 

perception are being more frequently used [9, 10, 11, 12, 13, 14]. Since a human observer is 

the end user in image applications, an image quality measure that is based on a human 

vision model seems to be more appropriate for predicting user acceptance and for system 

optimization. This class of distortion measures gives in general a numerical value that will 

quantify the dissatisfaction of the viewer in observing the reproduced image in place of the 

original (though Daly’s VPD map [13] is a counter example to this). The alternative is the 

subjective tests where the subjects view a series of reproduced images and rate them based 

on the visibility of artifacts [15, 16]. Subjective tests are tedious and time consuming and 

the results would depend on various factors such as observer’s background, motivation, etc., 

and furthermore actually only the displayed quality is being assessed. Therefore an objective 

measure that accurately predicts the subjective rating would be a useful guide when 

optimizing image compression algorithms. 

Quality measures can be classified into the following categories: 
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• Full-reference (FR) measures perform a direct comparison between the image or 

video under test and a reference or “original”, such as MSE and PSNR belong to 

this class as well. 

• No-reference (NR) measures only look at the image or video under test and have 

no need of reference information. Our proposed blocking artifacts and sharpness 

measures belong to this class. It is also called blind quality measure. 

• Reduced-reference (RR) measures lie between these two extremes. They extract a 

number of features from the reference image. The quality measure is then based 

only on those features. 

Only NR measures could be exploited for image forensics, where the reference image 

is unavailable. NR measures work with the assumption that all images and videos are 

perfect unless distorted during acquisition, processing or reproduction. Hence, the task of 

blind quality measurement simplifies into blindly measuring the distortion that has possibly 

been introduced during the stages of acquisition, processing or reproduction. The reference 

for measuring this distortion would be the statistics of natural images and videos, measured 

with respect to a model that best suits a given distortion type or application. For example, 

natural images do not contain blocking artifacts, and any presence of periodic edge 

discontinuity at the boundaries of blocks, is probably a distortion introduced by block-DCT 

based compression techniques.  

The following quality measures would be the most important no-reference measures to 

be exploited in image forensics.  

• Blocking artifacts: Blocking artifacts refers to a block pattern (discontinuities at 

the boundaries of adjacent blocks) in the compressed image or video. It is due to 

the independent quantization of individual blocks during block-DCT based JPEG 

compression. Due to the regularity and extent of the resulting pattern, the 

blocking effect is easily noticeable. 
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• Sharpness/blurriness: One of the most important quality factors is sharpness, 

which determines the amount of detail an image can convey. Blurriness, which is 

measured by the same way as sharpness, manifests itself as a loss of spatial detail 

and a reduction of edge sharpness due to the attenuation of the high spatial 

frequencies during filtering or visual data compression. 

• Ringing artifacts: Ringing in an image is caused by the quantization or truncation 

of the high frequency transform coefficients resulting from DCT- or wavelet-

based coding. In the spatial domain this causes ripples or oscillations around 

sharp edges or contours in the image. This is also known as the Gibbs 

phenomenon. 

• Noise: Noise is a random variation of image density, visible as grain in film and 

pixel level variations in digital images. It is a key image quality factor. Noise can 

get ugly in compact digital cameras with small pixels, especially at high ISO 

speeds. There are many sources of noise in images obtained using CCD arrays, 

such as dark current, shot noise, circuit noise, fixed pattern noise, etc. In most 

cases noise is perceived as the degradation of quality. The factors that affect noise 

of a digital image are: pixel size of the sensor, sensor characters, ISO, exposure 

time, digital processing in camera (noise reduction and sharpening, etc.).  

• Color bleeding: It is the smearing of the color between areas of strongly differing 

chrominance. It results from the suppression of high-frequency coefficients of the 

chroma components by compression due to chroma subsampling, or by CCD 

color filter array interpolation. Color bleeding is also considered as a loss of 

colorfulness.  
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2.3 Summary 

Although many studies have been done on robust image authentication and error resilient 

data authentication, no literature of others is available on error resilient image 

authentication. Therefore, there is an emergent need of authenticating images degraded by 

lossy compression or transmission. The first purpose of this thesis is to authenticate images 

received through lossy transmission when there are some uncorrectable transmission errors. 

On the other hand, image forensics is an emerging research topic. Several passive 

authentication approaches have been proposed, which are effective in some aspects but are 

by no means always reliable or form a complete solution. Therefore, the second aim of this 

thesis is to authenticate images passively by evaluating image quality inconsistencies 

through detecting the traces of forgery creation operations.  
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Chapter 3   

Error Resilient Image Authentication for 

JPEG Images 

 

With the pervasive use of digital images over the Internet and wireless channel, there is an 

emergent need of authenticating degraded images despite lossy transmission. When 

transmission errors exist, the digital signature or watermark used in authentication schemes 

would be damaged or even made unusable. This situation motivates us to design an image 

authentication scheme that allows two parties to exchange images while guaranteeing 

content integrity and source identity, even if there are errors during transmission. The 

problem this chapter focuses on is how to assess the authenticity of an image when there are 

uncorrectable transmission errors during transmission over lossy channels.  

This chapter presents a content-based error resilient image authentication combining 

watermark embedding and feature hashing: embedding a good amount of side information 

for robust feature extraction in presence of unrecoverable errors during image transmission; 

robust image features are converted to cryptographically secure hash of small size for 

integrity verification. The proposed scheme integrates feature extraction, quantization-based 

watermarking, error correction coding, error concealment, cryptographic hashing, and 

digital signature into a unified framework. We first discuss the role of error concealment in 

this scheme. The proposed error resilient authentication scheme is then present with details. 

Experimental results are present at the last of this chapter to support the proposed scheme. 
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3.1 Introduction 

Watermark-based authentication approaches usually work for protecting the integrity of the 

image but not for preventing sender’s repudiation [39]. On the contrary, signature-based 

approaches can work on both the integrity protection of the image and the repudiation 

prevention of the sender, but the signature could be easily removed and no protection 

remains then. Furthermore, previous robust digital signature is unavoidably very large 

because its size is usually proportional to the image size [71, 29].  

In order to solve these problems, this chapter presents a hybrid digital signature or 

watermarking scheme. It generates short and robust digital signatures based on the invariant 

message authentication codes (MACs). These MACs are obtained from the quantized 

original DCT coefficients, Error Correction Coding (ECC) coded, and embedded into the 

image using quantization based watermarking. Similar approaches based on MACs for 

robust digital signature generation were proposed in [71, 72]. The invariance of MACs is 

theoretically guaranteed if images are under lossy compression or other acceptable minor 

manipulations such as smoothing, and brightness adjustment. However, the MACs in [71] 

are only weakly invariant, which has some exceptional ambiguous cases when two 

coefficients are the same after manipulations. Because of these ambiguous cases, the whole 

MACs generated from the signing end have to be preserved in the receiving end. 

Furthermore, the size of these MACs is proportional to the image size. In this chapter, we 

propose a method to generate the MACs that are strictly invariant in the signing end and the 

receiving end. Thus, hashing function can be applied to significantly reduce the size of 

digital signature. We use watermarks to store ECC check information and localize attacks. 

The Public Key Infrastructure (PKI) [21] is incorporated to address the authentication 

problems over various networks. 
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3.2 Feature-based Adaptive Error Concealment for 

JPEG Images 

It is efficient and advisable to apply error concealment before image authentication since the 

feature of the error-concealed image would be much closer to the original one than that of 

the damaged image [77]. As a result, the content authenticity of the error concealed image is 

higher than that of the damaged image, which was validated in our experiments in 

Section 3.4.  

Error resilient techniques have been developed for image and video transmission over 

lossy networks, which can be classified into three categories: source coding, such as error 

control coding (ECC) and data embedding for error concealment [73]; joint source-channel 

coding, which aims at lossless recovery, such as Forward Error Correction (FEC), and 

automatic re-transmission request (ARQ) [74]; and error concealment which strive to obtain 

a close approximation of the original or attempt to make the output least objectionable to 

human eyes, such as error concealment using residual coefficient correlations [75, 76]. 

Error concealment is an important technique, since there are always uncorrectable errors in 

the final received multimedia signals even after applying the other two kinds of error 

resilient techniques. Error concealment techniques are usually applied by either using 

contextual relationship of adjacent blocks [77,78], or through embedded watermarking 

information [79, 80].  

Various image (spatial) error concealment algorithms have been proposed, which 

makes use of the smoothness assumption through a minimization approach. For JPEG 

images, transmission errors can be concealed by exploring the contextual relationship 

between the damaged image blocks and their non-damaged neighboring blocks, which is a 

common solution in image transmission [74]. One approach recovers a lost block by 

minimizing the sum of squared differences between the boundary pixels of the lost block 
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and its surrounding blocks [78]. This smoothness measure often leads to blurred edges in the 

recovered image. The other approaches proposed to minimize variations along edge 

directions or local geometric structures [81, 82]. They require accurate detection of image 

structures, and mistakes can yield annoying artifacts. A classification was proposed in [83] 

to takes advantage of various concealment algorithms by adaptively selecting the suitable 

algorithm for each damaged image area. 

This section presents a content-based adaptive error concealment algorithm to improve 

image quality after lossy transmission. The procedure of our proposed algorithm is 

illustrated in Figure 3. Firstly, we use some features extracted from the neighboring blocks 

of the damaged block to classify this damaged block into three types: smooth block, texture 

block and edge block. Five eigenvalues obtained from statistical measures of its neighboring 

blocks are selected as features and a Minimum Distance Weighted Linear Classification 

(MDWLC) algorithm is adopted for block classification. Different error concealment 

methods are then applied to each type of blocks: Linear Interpolation method is used for 

smooth blocks, DCT Coefficient Prediction [ 84 ] for textural blocks, and Directional 

Interpolation [85] for edge blocks. 
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Figure 3.1: Adaptive error concealment 

 

3.2.1 Error Block Classification 

Roughly the areas of natural images could be characterized into three types: 

• Smooth Area: where the pixel values usually vary slowly and within a small 

range. Both mean and variance of the gradients are small. 

• Texture Area: where the pixel values usually vary in a periodical way. Both mean 

and variance of the gradients are quite large.  

• Edge Area: where the pixel values usually vary significantly and within a large 

range. The mean value of the gradients is between that of type 1 and 2 while its 

variance value is the biggest among these three types. 

Five measures are calculated for block classification. They are: Pixel Variance (PV), 

Range of Pixel Variance (RPV), the Gradient Mean (GM), the Gradients Variance (GV), and 

the Number of Pixels whose gradient values are within some range (PN).  After error 
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detection, the correctly received neighboring blocks (N) of the damaged block (M) are used 

to extract the PV and RPV of M, by: 
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where Mean(M) is the pixel mean of M estimated from N. Num(M) is the element number 

of N. 

We use the Sobel Operator to calculate the gradient (G) of the N, and then calculate the 

GM, GD and PN by: 
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A feature vector (F) is composed of these five features and the MDWLC is used to 

classify the damaged block, which is shown below. 

5 2
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( ) ( ) ( 1,2,3)k i i ki

i
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=
= − =∑M  (3.3) 

In the above equation, fi is the i-th value of the feature vector F(M), uki is the i-th value 

of the cluster center (Uk), and λi is the weighted value corresponsive. The cluster center 

value (Uk) and weight value (λi) are both from training with a set of standard test image, and 

dk(M) is the distance between M and Uk. 
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3.2.2 Error Concealment Methods for Different Block Types 

In view of the properties of smooth block, texture block or edge block, different error 

concealment approaches are selected for different types of blocks: linear interpolation 

method for smooth blocks, DCT Coefficient Prediction for textural blocks, and directional 

interpolation for edge blocks. 

Linear interpolation is used to conceal every erroneous smooth blocks. It recovers the 

damaged block through interpolation from pixels in adjacent correctly received blocks, as 

shown in Figure 3.2. M is the damaged block, and N is its neighboring block set. f(x,y) is the 

pixel waiting to be recovered. A, B, C and D are the nearest pixel in M’s neighboring blocks 

respectively. dx, 8- dx, dy and 8-dy are the distance respectively to point f(x,y). Then we get: 

(8 ) (8 )
f( , )

16
x A x B y C y Dd f d f d f d f

x y
+ − + + −

=   (3.4) 

This method uses the smoothness property of the image, so it can achieve good result 

for concealing the smooth blocks. 
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Figure 3.2: Spatial linear interpolation 

DCT Coefficient Prediction estimates the DCT coefficients of the lost blocks using the 

adjacent error-free blocks. The DC coefficients and the first 5 low frequency AC 

coefficients (DC and AC1-AC5 from the zigzag like order of the 64 DCT frequencies) of the 

lost 8×8 blocks can be estimated using the adjacent error-free blocks’ DC coefficients [84]: 
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This method can reproduce the areas of high details with high accuracy, so it is 

appropriate to recover texture blocks. 

Directional interpolation [85] utilizes spatially corrected edge information from a large 

scale neighborhood of the damaged block and performs multi-directional interpolation to 

restore the damaged block. The edge direction of the damaged block is determined by 

convoluting the neighborhood pixels with a set of directional masks and then finding the top 

three maximum directions. For each selected direction, one-dimensional interpolation is 

carried out along this direction to obtain one version of restored the damaged block. A block 

mixing scheme is performed to extract the strong characteristic features of two or more 

image, and merge them into one image.  This procedure [85] can be explained as Figure 3.3. 

This method can greatly restore the edges of the damaged block, so it is appropriate to 

recover the edge block. 
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Figure 3.3: Directional interpolation 

The aim of image mixing is to extract the strong characteristic features sensitive to 

human eyes, such as the contrast of the mixed image. According to the histogram of each 

image, the pixels can be classified into three types: background, bright foreground and dark 

foreground. Pixels with values within the range of one variance distance to the mean may be 

considered as the background ones. Any pixels out of this range are considered as 

foreground, in which the ones greater than the mean are considered as bright foreground and 

the left are dark foreground.  
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3.3 Error Resilient Image Authentication Scheme for 

JPEG Images 

 

3.3.1 Feature Generation and Watermark Embedding 

Our proposed content-based error resilient image authentication uses combined watermark 

embedding and feature hashing. An amount of side information is embedded for robust 

feature extraction in presence of unrecoverable errors during image transmission, and image 

features are converted to cryptographically secure hash of small size for integrity 

verification. It is possible to design a robust feature without using side information for an 

embedding-only approach. Fox example, the adopted feature is first ECC coded to improve 

its robustness, and then embedded into the image. However, the proposed approach using 

both hashing and embedding would not only improve the feature robustness, but also 

provide a multiple-layer security: the hacker will have to attack both the hashing algorithm 

and watermarking algorithm. Furthermore, the embedded watermarks can also be used to 

detect the rough location of changes may would be made to the image.   

The proposed authentication scheme uses DCT coefficients to generate content-based 

message authentication codes (MACs), and stores some auxiliary ECC information of 

MACs in the image using watermarking. A robust digital signature of image is generated as 

follows. The original image is partitioned into 8×8 blocks. Those blocks are further labelled 

as either T block or E block. We choose T blocks for extracting content-based features 

(MACs) and E blocks for watermarking.  

All E blocks are shuffled by a random number seed RGN.  One example of partitioning 

blocks into E and T is shown in Figure 3.4. The final bit-stream is assembled in this shuffled 

block order before transmission. The reasons doing so are as follows. Firstly we want to 

ensure that most damaged blocks caused by packet loss are isolated. Such techniques have 
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already been adopted in [74, 86] to achieve a better result of error concealment. Secondly 

such shuffling makes the watermarks from those smooth blocks remain embeddable.   

E E E

E E

E E E

T

 

Figure 3.4: Example of partitioning image blocks into T and E 

For each T block, we pick up its DC and 3 AC to generate MACs. These 4 coefficients 

are quantized by the preset authentication strength matrix Qa. The quantization process is 

shown as follows. Assume the original value is D, the quantization step size specified in the 

quantization table is Q, and the output of the quantizer is quotient F (integer rounding) and 

remainder R, respectively: /D Q F= , and % *D Q R D F Q= = − . Suppose the incidental 

distortion introduced by acceptable manipulations on the original coefficient D can be 

modeled as noise whose maximum absolute magnitude is denoted as N.  

 

Figure 3.5: Illustration on the concept of error correction 

Refer to Figure 3.5, assuming a pre-determined Q>4N is known at both the signing end 

and the receiving end. If the original value D is located at the point nQ, then no matter how 

this value is corrupted, if the distortion is in the acceptable bounds, the distorted value will 

still be in the range ((n-0.5)Q, (n+0.5)Q), and the quantized value with step Q will remain 

unchanged as nQ before and after noise addition [87]. However, if the original value D 

drops into the range of ((n-0.5)Q, nQ) (Point P in Figure 3.5), its quantized value (with step 

Q) is still nQ before adding noise, but there is also a possibility that the noisy value could 
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drop at the range((n-1)Q, (n-0.5)Q) and will be quantized as (n-1)Q, not nQ, after adding 

noise. Thus the noise causes a different quantization result.  

To avoid such a case, we propose an ECC-like procedure to record the sign of R. ECC 

codes are stored as watermarks (in other blocks) and can be retrieved by the authenticator. 

We record an ECC bit ‘0’ if the original value D drops between ((n-0.5)Q, nQ) (i.e., 0<R ). 

In the authentication procedure, if this value D was corrupted, the following steps will be 

adopted. If we retrieve a 0 bit (i.e. R<0), we add the value 0.25Q from the corrupted value. 

Then, using the quantization step Q, we can obtain the same quantized value as nQ, which is 

the same as the original quantized value. Similar process is applied to the case when the 

original value D is in (nQ, (n+0.5)Q). Based on such an error correction procedure, all 

quantized values can be used to form MACs that will stay unaltered before and after 

distortion. These MACs can then be hashed and encrypted to form crypto signature, which 

is short, fix-length and robust to signal distortion with acceptable manipulation bounds. 

Here the original value D could be in the DCT domain, wavelet domain or pixel domain, as 

long as the acceptable manipulation constraint is predictable. As discussed in [8], several 

HVS models can be used to determine the setting of such constraints. 

For each T block, the 4 bits of each ECC-like codewords are then watermarked into its 

corresponding E blocks. Assuming Qa is used for generating features and watermarking 

while Qc is for actual JPEG compression. In [88], the authors have proved that as long as Qc 

is less than or equal to Qa, the robustness of generated features as well as embedded 

watermarks is guaranteed. Based on this principle, we embed the watermark of T block by 

directly modifying some AC coefficients in E. A typical ratio of T and E blocks is 1:8. 

Among 8 E blocks of a T block, we only embed the watermark into those 3 blocks with 

highest AC energy (i.e., the most 3 textual blocks).  
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3.3.2 Signature Generation and Watermark Embedding 

The image signing procedure is shown in Figure 3.6. Given an image, the user generates a 

crypto signature by performing the following signing process on the image sequentially: (1) 

perform block-based pre-processing; (2) extract the DCT features and generate the 

watermarks; (3) shuffle image blocks and select the blocks for watermarking; (4) embed the 

watermarks and obtain the watermarked image; (5) cryptographically hash the extracted 

features, generate the crypto signature by the image sender’s private key; (6) send the 

watermarked image and its associated crypto signature to the recipients.  

 

Figure 3.6: Diagram of image signing 

During the image signing procedure, it is impossible to know which blocks will be 

damaged in advance (i.e., which packets will be lost during the transmission is unknown). 

However, only two cases exist: either T is damaged or E is damaged. If it is an E block, it 

will affect the correctness of watermark extraction. If it is a T block, it will affect the 

stability of MAC extraction because T has to be reconstructed at the receiver end by the 

error concealment methods. Usually such reconstruction is just a roughly approximated 

version of original T and eventually affects either system robustness or system security 

because a large Q has to be set for feature extraction in order to tolerate a large N. Therefore 

some preprocessing is required. Assuming T is lost during transmission and is reconstructed 

as T' by our error concealment algorithm [77]. We check the distortion between T and T'. If 

it is greater than our preset N, we then recursively modify T with decreasing difference 
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values on randomly selected coefficients until the modified coefficients can generates the 

same MACs as in T'. In the worst situation this recursive method results in worse visible 

quality than that of T', but the system can choose to make T equal to T' at the signing end.  

A one-way crypto hash function such as SHA-1 is applied to the MACs concatenated 

from all T blocks. In addition to these hash values, other auxiliary information includes the 

size of image, and the authentication strength matrix (Qa) is combined together and is 

encrypted using the image sender’s private key to obtain the crypto signature. 

 

3.3.3 Image Authenticity Verification 

The image authentication procedure is shown in Figure 3.7. Given the degraded image and 

its associated digital signature, the proposed solution authenticates both the integrity and the 

source of the received image by performing the following process on the image 

sequentially: (1) perform content-adaptive error concealment, if some blocks are damaged; 

(2) extract message authentication codes and watermark respectively; (3) correct the 

perturbations in the extracted feature set by the extracted watermark based on the ECC 

concept; (4) cryptographically hash the corrected feature set, obtain a short and fixed-length 

bit stream A; (5) decrypt the signature by using the sender’s public key and obtain another 

bit string B; (6) bit-by-bit compare A and B; Deem the image authentic if they are the same; 

Otherwise (7) locate the possible attacks by correlating the extracted feature and the 

watermark.  
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Figure 3.7: Diagram of image authentication 

Error concealment technique proposed in [77] is used, with an additional block 

shuffling method in order to evenly distribute the corrupted blocks. The preprocessing 

process guarantees the invariance of the reconstructed images message authentication codes.  

If the image is verified as unauthentic, the attacked locations may be detected by 

correlating between the extracted watermarks and the remainders of DCT features quantized 

by Qa. This advantage could help in further convincing the authentication results. Note that 

some false alarms may exist because of other incidental distortions. This may be acceptable 

because the major system performances are system robustness and system security. Such 

false alarms can be further reduced by removing isolated detected blocks. 

 

3.4 Experimental Results and Discussions 

The proposed error concealment algorithm has been evaluated on a number of standard test 

images. We implemented our error detection and adaptive error concealment to the damaged 

images received from the simulated wireless fading channel. The Bit Error Rate (BER) is 

3×10-4. The PSNRs of test results are shown in Figure 3.8. We can see that for different 

images, the error concealment achieved different improvements, depending on the image 

content. For example, image Barbara contains much richer texture and details than Lena, so 

it can achieve better improvement than Lena. 
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Figure 3.8: PSNR (dB) results of images restored by proposed algorithm (AEC) and 

linear interpolation (LI) 

Figure 3.9 shows the error concealment results of JPEG test image Barbara. We can 

observe that the proposed algorithm can achieve better results than the linear interpolation 

on the texture areas and edge areas, such as the back of chair, trousers and tablecloth. The 

PSNR gain of this proposed algorithm is better than the conventional algorithms mentioned 

in [78, 85]. The algorithms in paper [78, 85] can achieve about 1 dB better than linear 

interpolation. The proposed algorithm can achieve about 3 dB better than the linear 

interpolation. 
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(a) error-free Image       (b) damaged Image (BER=3×10-4) 

      
(c) restored Image by LI       (d) restored Image by AEC 

Figure 3.9: Error concealment results of the image Barbara 

Figure 3.10 shows the merits of using block shuffling before image transmission on the 

stability of extracted features (MACs), by comparing the DCT value difference between the 

original and the concealed. Figure 3.10(c) is the histogram without block shuffling (the 

corrupted image is shown in Figure 3.10(a) and Figure 3.10(d) is with block shuffling (the 

corrupted image is shown in Figure 3.11(c). The number of DCT coefficients having small 

difference in Figure 3.10(d) is much smaller than that in Figure 3.10(c). Such improvement 

allows us to choose smaller Qa given the same Qc, which consequently improves system 

security with fewer false negative on missing manipulations. Furthermore, block shuffling 

also make the burst packet loss distributed evenly in the image (Figure 3.11), which improve 

the error concealment performance and authentication feature robustness. 
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(a) corrupted image without block shuffling   (b) image with block shuffling   

     

(c) MAC differences without shuffling  (d) MAC differences with shuffling 

Figure 3.10: MAC differences between reconstruction without and with shuffling 

Figure 3.11(a) shows the original image. Figure 3.11(b) is the watermarked image 

compressed with JPEG quality factor 8 in Adobe Photoshop, the robustness of 

authentication and watermarking is set to JPEG quality factor 7. Figure 3.11(c) is the 

damaged image due to packet loss (The BER is 3x10-4). We have tested that the corrupted 

image below the BER of 3x10-3 can still pass the authentication after error concealment. 

Note that some damaged blocks may not be detected and therefore can escape from being 

concealed. However, such misses did not affect the authentication. Fox example, Figure 

3.11(d) is the attacked image on the damaged image (window removed). Figure 3.11(e) is 

the recovered image and Figure 3.11(f) shows the detected attacked location.  
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 (a) original      (b) watermarked image 

  
 (c) damaged image     (d) attacked image 

  
 (e) recovered image     (f) detected attack areas 

Figure 3.11: Image authentication results 

The image quality is also measured in terms of objective quality measure PSNR, as 

shown in Figure 3.12. We see that the quality of the damaged images recovered by our error 

concealment method is very close to the original watermarked image. 
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Figure 3.12: Image quality evaluation in terms of PSNR 

 

3.5 Summary 

An error resilient image authentication scheme is present in this chapter, which is robust to 

transmission errors in JPEG images. Pre-processing and block shuffling techniques are 

adopted to stabilize the features for signature generation. The experimental results indicate 

that the proposed scheme successfully creates a signature redundancy in the selected block 

and its neighbourhoods, which is exploited for verification when uncorrectable errors exist 

in the received image. Furthermore, the proposed error resilient scheme can improve the 

trustworthiness of digital images damaged by transmission errors by providing a way to 

distinguish them from digital forgeries. Limitations of the proposed scheme are that it is 

suitable only for JPEG images and that it may not be robust to some acceptable image 

manipulations. For example, the authentication failed when auto contrast adjustment was 

done on the watermarked image Figure 3.11(b). In the next chapter we will present a feature 

distance measure to improve the performance of error resilient image authentication to make 

it also suitable for wavelet-based images (JPEG2000 format), and robust to some other 

acceptable manipulations.  
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Chapter 4   

Feature Distance Measure for Content-

based Image Authentication 

 

Content-based image authentication typically assesses authenticity based on a feature 

distance measure between the test image and the original image. Commonly employed 

distance measures such as the Minkowski measures (including Hamming and Euclidean 

distances) may not be adequate for content-based image authentication since they do not 

exploit statistical and spatial properties of features.  

This chapter presents a feature distance measure for content-based image 

authentication, which is based on statistical and spatial properties of the feature differences. 

This statistics- and spatiality-based measure (SSM) is motivated by the observation that 

most malicious manipulations are localized whereas acceptable manipulations result in 

global distortions. Based on SSM, an error resilient image authentication scheme is then 

presented, which is an improvement of the scheme present in the previous chapter. The 

experimental results have confirmed that our proposed measure is better than the previous 

measures in distinguishing malicious manipulations from acceptable ones, and can improve 

the performance of content-based image authentication. 

 

4.1 Introduction 

Content-based image authentication is a main robust authentication technique, which 

accepts an image as authentic if its semantic meaning remains unchanged [5, 6]. The main 
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requirement for content-based image authentication is that minor modifications which do 

not alter the content preserve the authenticity of the image, whereas modifications which do 

modify the content render the image not authentic. In order to be robust to acceptable 

manipulations, several content-based image authentication schemes have been proposed 

[7, 9, 10]. These schemes may be robust to one or several specific manipulations, however, 

they would classify the image damaged by transmission errors as unauthentic [89].  

General image authentication may evaluate authenticity and integrity of images via a 

hypothesis test: 

• Authentic (H0): the image is authentic, not maliciously modified; 

• Unauthentic (H1): the image is not authentic with some malicious modifications. 

A typical authentication decision is based on the comparison between a preset 

threshold (T) and the distance of the pattern vector extracted (Pt) from the test image and the 

original pattern (Po) from the original image: 

1

0

( , )
H

H
t od P P T>

<  (4.1) 

Content-based image authentication typically measures the authenticity in terms of the 

distance between a feature vector from the received image and its corresponding vector 

from the original image, and compares the distance with a preset threshold to make a 

decision [14, 16, 40]. Commonly employed distance measures, such as the Minkowski 

metrics [90] (including Hamming and Euclidean distances), may not be suitable for robust 

image authentication. The reason is that even if these measures are the same (e.g., we cannot 

tell whether the question image is authentic or not), the feature differences under typical 

acceptable modifications or malicious ones may still be distinguishable (feature differences 

are differences between the feature extracted from the original image and the feature 

extracted from the test image). That is to say, these measures do not properly exploit 

statistical or spatial properties of image features. For example, the Hamming distance 
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measures of Figure 4.1(b) and Figure 4.1(d) are almost the same, but yet, one could argue 

that Figure 4.1(b) is probably distorted by malicious tampering since the feature differences 

concentrate on the eyes. 

 

4.2 Statistics- and Spatiality-based Feature Distance 

Measure  

Content-based image authentication generally verifies authenticity by comparing the 

distance between the feature vector extracted from the test image and the original with some 

preset thresholds. Various feature distance functions, such as Minkowski metrics [90] and 

Figure of Merit (FoM) ([91]), have been used to measure similarity between the feature 

vectors representing images. Minkowski metric d(X, Y) [90] is defined as: 

1/

1

( , ) ( | | )
N

r r
i i

i

d X Y x y
=

= −∑   (4.2) 

where X, Y are two N dimensional feature vectors, and r is a Minkowski factor. Note that 

when r is set as 2, it is actually Euclidean distance; when r is 1, Manhattan distance (or 

Hamming distance for binary vectors).  

FoM is commonly used at measuring image similarity based on edge feature, which is 

defined [91] by: 

( ) 2
1

1 1FoM
max , 1

CN

iiO CN N dλ=
=

+ ×∑   (4.3)  

where NC and NO are the number of detected and original edge pixels, respectively. The di is 

the Euclidean distance between the detected edge pixel and the nearest original edge pixel, 

and λ is a constant typically set to 0.1. 
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(a) original image 

    
(b) tampered image    (c) feature difference of (b) 

    
(d) blurred image (by Gaussian 3×3 filter)  (e) feature difference of (d) 

Figure 4.1: Discernable patterns of edge feature differences caused by acceptable 

image manipulation and malicious modification 
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Unfortunately, these measures do not exploit spatial information of feature or the 

statistics property of the distortion patterns, so they are not adequate for content-based 

image authentication scheme. Therefore, the image authentication scheme based on 

Minkowski metric or FoM may not be suitable to distinguish the tampered images (e.g., 

small local objects removed or modified) from the images by acceptable manipulations such 

as lossy compression. On the other hand, we found that even if the Minkowski metric 

distances are the same, the feature difference under typical acceptable manipulations and 

malicious ones are still distinguishable especially in the case that the feature contains spatial 

information such as edges or block DCT coefficients. Therefore, the Minkowski metric is 

not a proper measure for content-based image authentication. 

A new feature distance measure based on the distinguishable difference patterns is 

proposed to differentiate distortions caused by acceptable and malicious image 

manipulations. Essentially, under this distance measure, spatially clustered differences are 

less likely to be authentic compared to scattered differences. This measure is quite general 

and can be incorporated into many existing content-based image authentication schemes. 

 

4.2.1 Main Observations of Image Feature Differences 

Many features used in content-based image authentication are composed of localized 

information about the image such as edge [7, 13], block DCT coefficients based features 

[8, 14, 15], highly compressed version of the original image [9], and block intensity 

histogram [16]. To facilitate discussions, we let xi be the feature value at spatial location i, 

and X be an N-dimension feature vector, for example, N=W×H when using edge feature (W 

and H are the width and height of the image). We define the feature difference vector δ as 

the difference between feature vector X of the test image and feature vector Y of the original 

image: 
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| |i i ix yδ = −  (4.4) 

where δi is the difference of features at spatial location i.  

After examining many discernable feature difference patterns from various image 

manipulations, we could draw three observations on feature differences: 

(1) The feature differences by most acceptable operations are evenly distributed 

spatially, whereas the differences by malicious operations are locally concentrated. 

(2) The maximum connected component size of the feature differences caused by 

acceptable manipulations is usually small, whereas the one by malicious operations 

is large. 

(3) Even if the maximum connected component size is fairly small, the image could 

have also been tampered with if those small components are spatially concentrated. 

These observations are supported by our intensive experiments and other literature 

mentioned previously [7, 89]. Image contents are typically represented by objects and each 

object is usually represented by spatially clustered image pixels. Therefore, the feature to 

represent the content of the image would inherit some spatial relations.  

A malicious manipulation of an image is usually concentrated on modifying objects in 

image, changing the image to a new one which carries different visual meaning to the 

observers. If the contents of an image are modified, the features around the objects may also 

have been changed, and the affected feature points tend to be connected with each other. 

Therefore, the feature differences introduced by a meaningful tampering would typically be 

spatially concentrated.  

On the contrary, acceptable image manipulations such as image compression, contrast 

adjustment, and histogram equalization introduce distortions globally into the image. The 

feature differences may likely to cluster around all objects in the image, therefore they are 

not as concentrated locally as those by malicious manipulations. In addition, many objects 

may spread out spatially in the image, thus the feature differences are likely to be evenly 
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distributed with little connectedness. The distortion introduced by transmission errors would 

also be evenly distributed since the transmission errors are randomly introduced into the 

image [99].  

The above observations not only prove the unsuitability of Minkowski metric to be 

used in image authentication, but also provide some hints on how a good distance function 

would work: it should exploit both the statistical and spatial properties of feature 

differences. These observations further lead us to design a new feature distance measure for 

content-based image authentication. 
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Figure 4.2: Edge distribution probability density estimation 

As shown in Figure 4.1, the distortion of the attacked image is concentrated on some 

objects (eyes and eyebrows in this example), and the distortion from transmission errors are 

much more randomly and evenly distributed. The reason is that the distribution of edge 

prorogation in one block is somewhat Gaussian distributed (Figure 4.2). The edge distortion 

of the acceptable manipulations can be considered as the subtraction of two independent 

Gaussian variables, thus it is a new Gaussian distribution. On the contrary, the malicious 

attacked image has strong localized relations with the original image, so the distortion 

distribution cannot be treated as subtraction of two independent distributions.  
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(a) Histograms of edge differences 

 

(b) Probability density estimation 

Figure 4.3: Edge distortion patterns comparisons 

 Figure 4.3 shows the histogram of edge difference and their respective probability 

density estimates of noisy, error concealed, damaged and maliciously tampered images. 

Binary edge detected by [100] is selected as feature in our evaluations. We can find that the 
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distribution of feature differences between maliciously tampered image and the original 

image have a much longer tail than that of the error-concealed image. The damaged, error-

concealed and noisy images all have smaller right tails. The maliciously tampered image has 

a different distortion pattern from those of the acceptable manipulations. This difference can 

be exploited to distinguish malicious modifications from acceptable operations. These 

results support our observations that the maliciously tampered image has a different pattern 

of feature differences from that of the acceptable manipulations.  

 

4.2.2 Feature Distance Measure for Content-based Image 

Authentication 

Natural images exhibit strong dependencies, especially when they are spatially proximate, 

and these dependencies carry important information about the image content. Therefore, the 

feature used in image authentication will inherit some spatial dependencies or statistics 

properties. The motivation of our proposed measure is to find a way to exploit the spatial 

and statistical information in the feature differences between the test and the original image.  

Based on the observations and rules discussed so far, a feature distance measure is 

proposed in this section for image authentication. The distance measure is based on the 

differences of the two feature vectors from the test image and from the original image. Two 

measures are used to exploit statistical and spatial properties of feature differences, 

including the kurtosis (kurt) of feature difference distribution and the maximum connected 

component size (mccs) in the feature difference map. Observation (1) motivates the use of 

the kurtosis measure, and observation (2) motivates the use of the mccs measure. They are 

combined together since any one of the above alone is still insufficient, as stated in 

observation (3).  



 
 

67

The proposed Statistics- and Spatiality-based Measure (SSM) is calculated by sigmoid 

membership function based on both mccs and kurt. Given two feature vectors X and Y, the 

proposed feature distance measure SSM(X, Y) is defined as follows: 

2( )
SSM( , )

1
1 mccs kurt

X Y
e α θ β−⋅ ⋅ −

=
+

 (4.5) 

The measure SSM(X,Y) is derived from the feature difference vector δ defined in 

Equation(4.4). The mccs and kurt are obtained from δ, and their details are given in the next 

few paragraphs. θ is a normalizing factor.  

The parameter α controls the changing speed especially at the point mccs·kurt·θ-2 =β. β 

is the average mccs·kurt·θ-2 value obtained by calculating from a set of malicious attacked 

images and acceptable manipulated images. In this thesis, the acceptable manipulations are 

defined as the contrast adjustment, noise addition, blurring, sharpening, compression and 

lossy transmission (with error concealment); the malicious tampering operations are object 

replacement, addition or removal. During authentication, if the measure SSM(X, Y) of an 

image is smaller than 0.5 (that is, mccs·kurt·θ-2<β), the image is identified as authentic, 

otherwise it is unauthentic. 

 

Kurtosis 

Kurtosis describes the shape of a random variable’s probability distribution based on the 

size of the distribution's tails. It is a statistical measure used to describe the concentration of 

data around the mean. A high kurtosis portrays a distribution with fat tails and a low even 

distribution, whereas a low kurtosis portrays a distribution with skinny tails and a 

distribution concentrated towards the mean. 

Two distributions may have the same variance, but differ markedly in kurtosis. For 

example, the variance of feature differences of Figure 4.1(b) and Figure 4.1(d) are almost 
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the same, but the kurtosis of Figure 4.1(b) is much larger than that of Figure 4.1(d). 

Therefore, kurtosis is particularly helpful to distinguish feature difference distribution of the 

malicious manipulations from that of the acceptable manipulations.  

Let us partition the spatial locations of the image into neighborhoods, and let Ni be the 

i-th neighborhood. That is, Ni is a set of locations that are in the same neighborhood. For 

example, by dividing the image into blocks of 8×8, we have a total of WH/64 

neighborhoods, and each neighborhood contains 64 locations. Let Di be the total feature 

distortion in the i-th neighborhood Ni: 

i

i j
j N

D δ
∈

= ∑  (4.6) 

We can view Di as a sample of a distribution D. The kurt in the Equation (4.5) is the 

kurtosis of the distribution D. It can be estimated by: 
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 (4.7) 

where Num is the total number of all samples used for estimation. μ and σ is the estimated 

mean and standard deviation of D, respectively. 

 

Maximum Connected Component Size 

Connected component is a set of points in which every point is connected to all others. Its 

size is defined as the total number of points in this set. The maximum connected component 

size (mccs) is usually calculated by morphological operators. The isolated points in the 

feature difference map are first removed and then broken segments are joined by 

morphological dilation. The maximum connected component size (mccs) is then calculated 

by using connected components labelling on the feature map based on 8-connected 

neighbourhood. Details can be found in [92, 93].  
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Normalizing Factor 

Since natural scene images may contain different number of objects, details as well as 

dimensions, normalization is needed. Instead of using traditional normalization (i.e., the 

ratios of the number of extracted feature points to image dimension), we employ a new 

normalizing factor θ to make the proposed measure more suitable for natural scene images, 

which is defined as: 

 
W H

μθ =  (4.8) 

where W and H are the width and height of the image, respectively. μ is the estimated mean 

of D, same as that in Equation(4.7).  

It is worth noting that the two measures mccs and kurt should be combined together to 

handle different malicious tampering. Usually tampering results in three cases in terms of 

the values of mccs and kurt: (1) the most general case is that tampered areas are with large 

maximum connected size and distributed locally (Figure 4.1b). In this case, both kurt and 

mccs are large; (2) small local object is modified such as a small spot added in face (Figure 

4.4a). In this case, the mccs is usually very small, but kurt is large; (3) tampered areas are 

with large maximum connected size but these areas are evenly distributed within the whole 

image (Figure 4.4c). In this case, the mccs is usually large, but kurt is small. Therefore, it is 

necessary for SSM to combine these two measures so that SSM could detect all these cases 

of malicious modifications.  
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(a) small object tampered (kurt: large; mccs: small);  (b) feature differences of (a) 

  
(c) object tampered with global distortions (kurt: small; mccs: large); (d) feature 

differences of (c) 

Figure 4.4: Cases that required both mccs and kurt to work together to successfully 

detect malicious modifications  

 

4.2.3 Feature Distance Measure Evaluation 

The proposed SSM has been evaluated by experiments, compared with Minkowski metrics 

and FoM. Edge detected by [100] was selected as the feature in our evaluations. Figure 4.3 

shows the histogram of edge difference and their respective probability density estimates of 

noisy, error concealed, damaged and maliciously tampered images. We can find that the 
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distribution of the feature differences between malicious tampered image and the original 

image have a much longer tail than that of the error-concealed image. The damaged, error-

concealed and noisy images all have smaller right tails. These results support our 

observations that a maliciously tampered image has a different pattern of feature differences 

compared to that of the acceptable manipulations.  

Some acceptable distortions and malicious attacks were introduced into the original 

images for robustness evaluation. The proposed SSM was compared with Hamming 

(Minkowski Metric with r=1 for binary feature) as shown in Figure 4.5. Pratt’s Figure of 

Merit (FoM) [91] was also used for comparison since it is commonly used at measuring 

image similarity based on edges. Figure 4.5(a) shows the experimental results of the 

proposed SSM for image Lena after JPEG compression, and Figure 4.5(b) shows the 

experimental results for Gaussian noisy images. These figures show that the Hamming and 

FoM distances are almost linear to the compression level or Gaussian noise strength. On the 

contrary, there were some sharper changes (such as the circled points in Figure 4.5) in SSM 

curves which may be good choices for authenticity threshold. As an image can be 

considered as points in a continuous space, it is typically difficult to set up a sharp boundary 

between authentic and unauthentic images [14]. This intrinsic fuzziness makes the content-

based authentication design challenging and, likely, ad hoc in most cases [14]. Therefore, 

the sharper change of authenticity based on the proposed measure around threshold may 

lead to a sharper boundary between the surely authentic and unauthentic images, which is 

desirable for image authentication. 
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(a) JPEG compressions 

 

(b) Gaussian noises 

Figure 4.5: Distance measures comparison  
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(a) results of image Lena; 

Bike
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(b) results of image Bike 

Figure 4.6: Comparison of distinguishing ability of different distance measures: only 

the proposed measure can successfully distinguish malicious manipulations from 

acceptable ones  
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Figure 4.6 shows the comparison results of different distance measures in terms of 

their discernable abilities. In Figure 4.6(a), the last three columns are images maliciously 

tampered from the original portrait image Lena, by enlarging the eyes, modifying multiple 

objects in the image, and adding a small spot on the face. The others are images from 

acceptable manipulations including Gaussian noise addition, auto contrast adjustment, 

sharpening, and lossy transmission (with error concealment). Figure 4.6(b) shows results of 

image Bike with much stronger edges than image Lena. The last three columns of Figure 

4.6(b) are images tampered by deleting the saddle, modifying multiple objects (changing 

logo at the left top, modifying the display of the clock at right top, and deleting the saddle), 

and adding a small spot in the center of the right circle. Note that the SSMs were all below 

0.5 for acceptable manipulations and all above 0.5 for maliciously attacked images. On the 

contrary, the Hamming and Figure of Merit (FoM) measures of maliciously attacked images 

were among the range of acceptable manipulations especially the measures of the attacked 

image in which there was a small local object changed (last column). The results show that 

the proposed SSM was able to distinguish the malicious manipulations from acceptable 

ones, i.e., identify lossy transmission as acceptable, and was sensitive to malicious 

manipulations. On the contrary, the Hamming and FoM measures were not sensitive to 

small localized object modification. The results indicate that the proposed SSM is more 

suitable for content-based image authentication than the Hamming and FoM measures. 

 

4.3 Error Concealment using Edge Directed Filter for 

Wavelet-based Images 

As discussion in the previous chapter, error concealment would be applied before image 

authentication if the image has been damaged by transmission errors. Error concealment 

technique for JPEG images has been discussed in the previous chapter. Given an image to 

be verified, the first step is to conceal the errors if some transmission errors are detected. As 
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a result, the content authenticity of the error concealed image is higher than that of the 

damaged image, which is validated in our experiments of the error resilient image 

authentication. This section presents an error concealment technique for wavelet-based 

images.  

The effects of errors in wavelet-based images depend on which parts of wavelet 

coefficients are corrupted. Errors in JPEG2000 bitstreams would result in the loss of a 

bitplane of the wavelet coefficients of the affected subband. The LL subband can be 

considered as a subsampled version of the original image, so errors in the LL coefficients 

are similar to the lost blocks in JPEG images. Therefore, recovery of LL coefficients can be 

achieved by some error concealment techniques developed for block-based image [74]. 

There, we only focus on concealing the errors of the high frequency coefficients.  

  

(a) Wavelet decomposition;   (b) High frequency errors 

Figure 4.7: Wavelet-based image (Bike) error pattern 

 In the wavelet domain, the energies of high frequency coefficients are mainly 

concentrated around edges in image (Figure 4.7a). When errors occur in these subbands, 

errors have effects like ring or ripple artifact around edges (Figure 4.7b) in the damaged 

image. However, edges in a natural image have important effects on the subjective visual 

quality, since edges are always associated with the boundary of an object, or with marks on 
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the object. An image with blurred edges is always annoying to the spectator. Our proposed 

algorithm aims to remove the noises around edges and then to improve the image quality. 

 

4.3.1 Edge Directed Filter based Error Concealment 

The proposed algorithm is inspired by how experts repair damaged images, which involves 

determining the areas to be corrected, examining the boundary of these regions, continuing 

lines into these regions, gradually filling in, and painting small details [94, 95]. However, it 

cannot be applied to conceal errors in JPEG2000 images directly, because the errors in 

JPEG2000 images do not result in lost blocks. Based on the idea of how experts repair 

damaged images, we propose an error concealment scheme based on a new edge directed 

filter for wavelet-based images. It makes use of the redundancy residuals in spatial domain 

combined with those in wavelet domain. The process of proposed error concealment scheme 

can be summarized as:  

( )1 1W C W Fn nI  I+ −= o o o   (4.9) 

where In+1 is the recovered image after the n+1 iterations, and I0 is the received image. “°” is 

concatenation operation of two functions. Function F is the edge directed filtering in the 

spatial domain to remove artifacts around edges. Function W is the wavelet transform, and 

function W-1 is the inverse wavelet transform. C is a function that rectifies the recovered 

results, taking in information regarding which bit-planes are lost, as well as I0 as the input.   

In other words, the damaged image is firstly filtered using edge directed filter F, and 

then transformed into WT domain (W). The recovered WT coefficients are then constrained 

to their statistical characteristics in the WT domain by using function C. These recovered 

wavelet coefficients are then transformed into the image domain again (W-1) to get a valid 

image In+1. The constraint function C comprises the known WT coefficient values constraint 

function C1 and the WT statistical characteristics constraint function C2. That is, C = C1 ° C2. 
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Let ψ be the set of images comprised by those which satisfy the two WT constraints 

discussed in Subsection 2.4. The above algorithm can be viewed as an attempt to find a 

recovered image I in ψ that minimizes the distortion between I and the image F(I0), that is, 

find I which: 

( )( )0min F

. .
cI

I I

s t I

−

∈ψ
 (4.10) 

 

4.3.2 Edge Directed Filter 

Based on the error pattern of the wavelet-based images, we can construct an edge directed 

filter to remove the noises around edges caused by errors in the damaged images. 

Anisotropic diffusion techniques have been widely used in image processing for its 

efficiency of smoothing the noisy images while preserving the sharp edges [96]. When some 

proper function is constructed in anisotropic diffusion, it can form direction diffusion or 

edge directed filter to remove the ring or ripple artifacts around edges of damaged images 

caused by errors in high frequency subbands. An edge directed filter using a new diffusion 

function is proposed in this section. 

The original anisotropic diffusion equation is presented by Perona and Malik [97], 

which can be written as a Partial Differential Equation (PDE): 

( )( )
( ) 00

I div f I I
t

I t I

∂⎧ = ∇ ∇⎪ ∂⎨
⎪ = =⎩

  (4.11) 

where I0 is the initial image, and ∇  is the gradient operator: 

I II x y
x y

∂ ∂
∇ = +

∂ ∂
r r   (4.12) 

The gradient magnitude is used to detect an image edge or boundary as a step 

discontinuity in intensity. In our scheme, Sobel operator is adopted to generate the gradient 
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for the damaged image. The div is the divergence operator and f(x) is a decreasing positive 

diffusion function. Perona and Malik suggested two diffusion functions: 

( )
( )2

1
1 /

f x
x K

=
+

 (4.13) 

( ) ( )( )2exp /f x x K= −   (4.14)  

where K is a constant with fixed value. The scale-spaces generated by these two functions 

are different: the function (4.13) privileges wider regions over smaller ones, while the 

function (4.14) privileges high-contrast edges over low-contrast ones [97].  

We adopt the anisotropic diffusion as a direction diffusion operation, and design a new 

diffusion function for error concealment. Since we only aim to construct edge directed filter 

to remove the ring or ripple artifacts caused by errors, in our solution the diffusion function 

f(x) is: 

( ) ( )
( )

( )

exp
max exp( ), 1

max PP

k I Mf I
I I

M I
∈

− ∇⎧ ∇ =⎪ Δ + ∇⎨
⎪ = ∇
⎩ Γ

  (4.15) 

where Γ is the N×N pixels blocks where the damaged pixel belongs to (N=16 and k=1 in 

this chapter), and I∇  is the magnitude of I∇ . IΔ  is the Laplacian of image I, a second 

order derivative of I, defined as: 

( )
2 2

2 2

I II I
x y

∂ ∂
Δ = ∇ ∇ = +

∂ ∂
  (4.16) 

If ∇I  is close to M, ( )f I∇ is approximate to the minimum, and we have the direction 

filter along with the direction of edges. If ∇I  is very small, ( )f I∇  is approximate to the 

maximum, and now we could achieve isotropic diffusion (like Gaussian filter).  

M and IΔ are used to make that the conduction coefficients of the ring or ripple 

artifacts are small, because the errors are concentrated around edges and the gradient values 
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are always smaller than those of edges. Thus the artifacts are made to be filtered smoothly, 

but edges are kept sharp.   

A discrete form of Equation (4.16) is given by: 

( )1

1

N
n n n n

i i
i

tI I f I I
N

+

=

Δ
= + ∇ ⋅∇∑  (4.17) 

This process constructs edge directed filter served as edge directed filter F in 

Equation(4.9).  

 

4.3.3 Wavelet Domain Constraint Functions  

Two WT domain constraint functions are applied in wavelet domain: known-value 

constraint function C1, and WT statistical constraint function C2 to rectify the recovered 

coefficients.  

After the damaged image is filtered by edge directed filter, the lost WT coefficients are 

recovered. However, the correctly received WT coefficients (denoted as Ф) may also be 

altered at the same time. We should discard these changes, with known-value constraint 

function:  

0
1

, if
C ( )

, else
x x

x
x

∈⎧= ⎨
⎩

Φ
 (4.18) 

where x0 is the original wavelet coefficients of x before edge directed filtering.  

Furthermore, although WT almost decorrelates WT coefficients, the distribution of one 

coefficient conditioned on its parent P usually is a linear function of P [8]. It means that the 

coefficients are still statistically dependent. For high-amplitude coefficients, if the parent is 

less than some threshold (e.g., one standard deviation) then the child is also most likely to 

be less than the threshold [8]. Moreover, wavelet coefficients also show their statistical 

dependency across their neighborhoods in spatial domain. After using the function C1, such 
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characteristics may not be kept anymore. Thus, the image set Ω within statistical 

characteristics is used to construct a function to discard the recovered wavelet coefficients 

which violate these statistical characteristics constraint function:  

2

, if
C ( )

0, else
x x

x
∈⎧= ⎨

⎩

Ω
  (4.19) 

Then we get ψ (ψ = Ω ∩ Ф), and C (C = C1 ° C2.). 

 

4.3.4 Error Concealment Evaluation 

In our experimental evaluation, the error detection can be done by the error resilience tools 

issued in JPEG2000 [98]. We use five-level wavelet decomposition.  

The details of improvement of the damaged image Monarch by our proposed algorithm 

is shown in Figure 4.8. We can see that the annoying noises around edges have been almost 

removed. And the recovered areas have high continuity, which visually makes the spectators 

much comfortable. The cost is the decrease in the contrast. But such change is not easily 

caught by human eyes.  

The PSNR results are listed in Table 4.1. The bit error rate (BER) is set to 10-4. In 

terms of PSNR, the improvement on the quality of the damaged images is significant, 

though the improvement varies from image to image. For example, image Monarch contains 

much more clear edges and in stronger contrast than Lake, so it can achieve better result 

than Lake. 

Considering that the criterion of PSNR does not always provide an accurate measure of 

the visual quality for natural images. To evaluate the performances on edge preservation of 

the proposed algorithm, we further use Figure of Merit (FoM). The FoM values of the 

results are also listed in Table 4.1. We used Canny edge detector, and the standard deviation 

of the Gaussian kernel in the Canny detector is set to 0.4. We can see that the FoM values of 
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the recovered images are close to 1, which shows high edge preserving ratios are achieved 

by the proposed error concealment algorithm. 

The efficiency of our proposed diffusion function (Equation (4.15)) is illustrated 

in Figure 4.9, compared with the classic Laplacian edge enhancement filter (detailed in 

[10]), and the two anisotropic diffusion functions proposed by Perona and Malik (Equation 

(4.13) and (4.14), K = 25). These filters are all used in the same error concealment scheme 

defined by Equation (4.11). 

     

(a) original image;        (b) damaged image; 

 

(c) recovered image 

Figure 4.8: Edges enhanced by the proposed error concealment (Monarch) 
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Table 4.1: Image quality evaluation of error concealment 

Image Quality Actor Bike Chart Fruits Hotel Lake Lena Monarch Peppers Average

Damaged 
Images 

PSNR (dB) 30.76 30.34 33.85 33.63 33.83 31.37 33.31 29.49 33.05 32.18 
FoM (%) 88.5 88.0 91.3 88.7 88.0 89.1 89.0 89.2 87.3 88.8 

Recovered 
Images 

PSNR (dB) 38.24 38.55 40.13 39.21 41.79 38.37 40.02 39.57 40.77 39.63 
FoM (%) 94.5 95.2 96.3 94.2 95.5 93.9 93.7 94.2 91.2 94.3 

 

 

Figure 4.9: Comparison of diffusion functions (Lena) 

Figure 4.9 shows the progressive visual results of image Lena, done by our proposed 

error concealment algorithm. We can see that after a few iterations (5 to 10 times), the 

noises around edges are almost removed. 

 

4.4 Application of SSM in Error Resilient Wavelet-

based Image Authentication 

The proposed feature distance measure SSM is quite general that it is able to be used in 

many content-based authentication schemes which use features containing spatial 

information. When used as the feature distance function in image authenticity verification 

stage, it would improve the system discrimination ability between acceptable and malicious 
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manipulations. Many acceptable manipulations, which were detected as malicious 

modifications in the previous schemes, can be bypassed in the scheme using SSM. 

JPEG2000, an emerging wavelet-based image compression standard, can operate at 

higher compression ratios without generating the typical blocking artifacts of the previous 

DCT-based JPEG standard. It also allows more sophisticated progressive downloads. The 

error resilient image authentication scheme present in the previous chapter is only suitable 

for JPEG images. It is not suitable for wavelet-based images. This section presents an 

improved error resilient image authentication scheme which is applicable to both JPEG and 

JPEG2000 images.  

The improved error resilient scheme exploits the proposed feature distance measure 

SSM in a generic semi-fragile image authentication framework [15] to distinguish images 

distorted by transmission errors from maliciously modified ones. The experimental results 

support that the proposed feature distance measure can improve the performance of the 

previous scheme in terms of robustness and sensitivity. The results of this error resilient 

authentication scheme validate that the proposed SSM can improve the authentication 

performance.  

 

4.4.1 Feature Extraction 

One basic requirement for selecting feature for content-based image authentication is that 

the feature should be sensitive to malicious attacks on the image content. Edge-based 

features would be a good choice because usually malicious tampering will incur the changes 

on edges. Furthermore, edge may also be robust to some distortions. For instances, the 

results in [99] show that high edge preserving ratios can be achieved even if there are 

uncorrectable transmission errors. Therefore, the remaining issue is to make the edge more 

robust to the defined acceptable manipulations. Note that this is main reason why we 
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employ the normalization in Equation (4.8) to suppress those “acceptable” distortions 

around edges.  

In [100], a method based on fuzzy reasoning is proposed to classify each pixel of a 

gray-value image into a shaped, textured, or smooth feature point. We adopt their fuzzy 

reasoning based detector because of its good robustness.  

 

4.4.2 Signature Generation and Watermark Embedding  

The image signing procedure is outlined in Figure 4.10. Binary edge of the original image is 

extracted using the fuzzy reasoning based edge detection method [100]. Then, the edge 

feature is divided into 8×8 blocks, and edge point number in each block is encoded by error 

correcting code (ECC) [10]. BCH(7,4,1) is used to generate one parity check bit (PCB) for 

ECC codeword (edge point number) for every 8×8 block. The signature is generated by 

hashing and encrypting the concatenated ECC codewords using a private key. Finally, the 

PCB bits are embedded into the DCT coefficients of the image. In our implementation, the 

PCB bits are embedded into the middle-low frequency DCT coefficients using the same 

quantization based watermarking as present in [15].  

Original 
Image

DCT  
Transform

Watermarked 
Image

Feature 
Extraction

ECC 
coding

Watermark

Embedding

PCB Bits

Hashing and 
Encrypting

Codewords Image

Signature

Private Key

 
Figure 4.10: Signing process of the proposed error resilient image authentication 

scheme 

Let the total selected DCT coefficients form a set P. For each coefficient c  in P, it is 

replaced with cw which is calculated by: 
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( )( )
round( / ), if LSB( round( / ))

round( / ) sgn round( / ) ,  elsew

Q c Q c Q w
c

Q c Q c Q c Q

=⎧⎪= ⎨ + −⎪⎩
 (4.20) 

where w (0 or 1) is the bit to be embedded. Function round(x) returns the nearest integrate of 

x, sgn(x) returns the sign of x, and LSB(x) returns the least significant bit of x. Equation 

(4.20) makes sure that the LSB of the coefficient is the same as the watermark bit. 

The watermarking procedure would introduce some distortions into the image, which 

makes the re-extracted features different from those of the original image. Therefore, the 

embedding procedure should not affect the feature extracted. In order to exclude the effect 

of watermarking from feature extraction, a compensation operator Cw is adopted before 

feature extraction and watermarking:  

( )
( )

c w

w e c

I C I
I f I

=⎧
⎨ =⎩

 (4.21) 

( ){ }( ) IDCT IntQuan ,2 ,w iC I d Q= P  (4.22) 

where di is the i-th DCT coefficient of I, and IDCT is inverse DCT transform. fe(I) is the 

watermarking function, and Iw is the final watermarked image. The IntQuan(c, P, Q) 

function is defined as: 

( ) , if 
IntQuan , ,

round( / ), else
c c

c Q
Q c Q

∉⎧
= ⎨

⎩

P
P  (4.23) 

Cw is designed according to the watermarking algorithm, which uses 2Q to pre-

quantize the DCT coefficients before feature extraction and watermarking. That is, from 

Equation (4.20), (4.22) and (4.23), we can get Cw(Iw) = Cw(I), thus fe(Iw) = fe(I), i.e., the 

feature extracted from the original image I is the same as the one from the watermarked 

image Iw. This compensation operator ensures that watermarking does not affect the 

extracted feature. 
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4.4.3 Image Authenticity Verification 

The image verification procedure, shown in Figure 4.11, can be viewed as an inverse 

procedure of image signing. Firstly, error concealment is carried out if transmission errors 

are detected. The feature of the image is extracted using the same method as used in image 

signing procedure. Watermarks are then extracted. If there are no uncorrectable errors in the 

ECC codewords, the authentication is based on bit-wise comparison between the decrypted 

hashed feature and the hashed feature extracted from the image [10]. Otherwise, image 

authenticity is calculated by the SSM based on differences between the PCB bits of the re-

extracted feature and the extracted watermark. Finally, if the image is identified as 

unauthentic, the attacked areas are then detected.  

Received
Image

Signature 
Decryption

Watermark

Extraction

ECC 
Decoding

Feature 
Extraction

Error Detection

and Concealment

Authentic 
Yes/No

Public Key

Image 
Signature

No

SSM 
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Yes

PCBW

Feature  
Comparison

Errors? 

 

Figure 4.11: Image authentication process of the proposed error resilient image 

authentication scheme 

 

Image Authenticity Verification 

Image authenticity is calculated based on the binary difference map which is created by 

comparing the PCB bits decoded from extracted watermark and the recalculated PCB bits 

from feature extracted from the image to be evaluated. The PCB bits of the image feature 
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are recalculated using the same method as used in image signing procedure. The difference 

map is obtained by differentiating these two PCB vectors.  

Given an image to be verified, we repeat feature extraction described in image signing 

procedure. The corresponding PCB bits (PCBW) of all 8×8 blocks (one bit/block) of the 

image are extracted from the embedded watermarks. Then the feature set extracted from the 

image is combined with the corresponding PCB bits to form ECC codewords. If all 

codewords are correctable, we concatenate all codewords and cryptographically hash the 

result sequence. The final authentication result is then concluded by bit-by-bit comparison 

between these two hashed sets. If there are uncorrectable errors in ECC codewords, image 

authenticity is calculated based on the proposed distance measure. The two feature vectors 

in the proposed measure are PCBW from watermarks and the recalculated PCB bits (PCBF) 

from ECC coding of the re-extracted image feature set. If the distance measure between 

PCBW and PCBF is smaller than 0.5 (SSM(PCBW, PCBF)<0.5), the image is deemed 

authentic. Otherwise, the image is deemed unauthentic.   

 

Feature Aided Attack Location 

If the image is verified as unauthentic, the tampered areas could be detected. Attack location 

is an important part of the authentication result since the detected attacked areas give the 

users a clear figure where the image has possibly been tampered with. The diagram of our 

feature aided attack location algorithm is shown in Figure 4.12. The attack areas are 

detected using information from watermarks and image feature. The difference map 

between PCBW and PCBF is calculated, and then morphological operations are used to 

compute the connected areas, with isolated pixels and small connected areas removed. After 

these operations, the difference map is masked with the union of the watermark and the 

feature. The masking operation can refine the detected areas by concentrating them on the 

objects in the tampered image or in the original image. The areas in the difference map 
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which do not belong to any object (defined by edge feature) are removed, which may be a 

false alarm of some noises. 

Recalculated  
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Extracted
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Tampered 
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Morphological 

Operations
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Figure 4.12: The diagram of feature aided attack localization 

It is worth noting that the authentication result of our scheme is friendly to users. Since 

human perceptivity treats image as a combination of objects, some objects may be the 

region of interest (ROI) to users. If the image fails to pass the authentication, our scheme 

provides possible attacked areas which concentrate on objects. If these detected areas are not 

the user’s ROI, further decision can be made by the user on a case by case basis. Finally, 

this scheme can also provide a degree of authenticity (by SSM measure) to the user which 

gives the user a confidence on the trustiness of the image. 

 

4.5 Experimental Results and Discussions 

To support our solutions, experimental results have been collected on the proposed error 

concealment, feature distance measure, and error resilient image authentication. In our 

experiments, JPEG and JPEG2000 images were used. Test images include Actor, Barbara, 

Bike, Airplane, Fruits, Girl, GoldenHill, Lena, Mandrill, Monarch, Pepper, Woman, and so 

on. The dimensions of these images include 512×512, 640×512, 640×800, and 720×576. 

Daubechies 9/7 wavelet filter is used for the wavelet transform (which is also applied in the 

JPEG2000 standard [101]). The parameters α and β in Equation(4.5) were set to 0.5 and 

48.0, respectively. 
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4.5.1 SSM-based Error Resilient Image Authentication 

Scheme Evaluation 

Robustness to Transmission Errors and other Acceptable 

Manipulations 

The transmission errors in wireless networks were simulated based on the Rayleigh model 

[102] which is commonly used for wireless networks. Figure 4.13(b) is an example of 

wavelet-based images damaged by transmission errors, and Figure 4.13(c) is its error-

concealed result. Figure 4.13(d) is a DCT-based image damaged by transmission errors, 

and Figure 4.13(e) is its error concealed result. The SSM values of image Figure 4.13(c) 

and Figure 4.13(e) are 0.134 and 0.250, i.e., the error-concealed images are both authentic.  

With the set of images produced, the average peak signal-to-noise ratio (defined by 

PSNR) of our watermarked images is 44.46 dB (Table 4.2), which is above the usually 

tolerated degradation level of 40 dB [103] and much higher than the average 33.45dB in 

[15]. It is also better than the 42.47 dB obtained by the paper [103]. The quantization table 

used in these experiments is JPEG recommended quantization table of Q50. These results 

indicate the embedding procedure did not introduce visual artifacts in the images. 
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(a) original image 

   
 (b) damaged image (wavelet based)  (c) error concealed image of (b) 

   
(d) damaged image (DCT based)  (e) error concealed image of (c) 

Figure 4.13: Robustness against transmission errors 
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Table 4.2 shows the evaluation results of the system robustness of the proposed error 

resilient image authentication scheme based on the proposed SSM. PSNR and SSM 

measures of the images damaged by transmission errors with different bit error rate of the 

transmitted images (BER) 10-4 and 2×10-4. The corresponding PSNR and SSM of the error-

concealed images are also listed in this table. 60% of the damaged images at BER 10-4 and 

100% at BER 2×10-4 in our experiments were verified as unauthentic. On the contrary, all 

error-concealed images were verified as authentic. These results indicate that our proposed 

scheme could obtain a good robustness to transmission errors. Note that on the contrary, the 

authentication scheme [103] was not robust to transmission errors. These results further 

confirm that it is effective and advisable for error concealment to be applied before image 

authentication. The reason why the authenticities of the recovered images were better than 

those of the damaged images may be the image quality improvement by using error 

concealment on the damaged images [99, 77]. For example, the recovered image had much 

better objective qualities than the damaged images (evaluated by PSNR). This quality 

improvement made features of the error-concealed images closer to those of the original 

images than damaged images, so that the image authenticities (evaluated by SSM) of the 

error-concealed images were much larger than the damaged images. 

 

Table 4.2: Comparison of objective quality reduction introduced by watermarking: 

PSNR(dB) of watermarked images 

PSNR  Barbara Bike Airplane Girl Goldhill Lena Mandrill Monarch Pepper Woman
Proposed 44.17 44.40 44.56 44.39 44.32 44.60 44.14 44.75 44.46 44.79 
Ref. [15] 32.90 29.91 32.01 34.20 34.07 36.11 32.38 30.43 35.53 36.98 

Ref. [103] 42.72 / 43.15 / / / / / / / 
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Table 4.3: Authentication performance improved by error concealment:  

PSNR (dB) and SSM of damaged images and error-concealed images  

(BER1:10-4; BER2:2×10-4) 

Images Actor Bike Chart Flight Fruits Hotel Lake Lena Pepper Woman

Damaged 
PSNR 

BER1 30.78 31.26 33.95 32.41 33.68 33.87 31.39 33.31 33.07 35.50 
BER2 25.87 25.76 28.51 26.05 27.81 26.71 25.68 30.34 27.74 30.72 

Damaged 
SSM 

BER1 0.948 0.939 0.707 0.297 0.794 0.365 0.143 0.391 0.729 0.989 
BER2 0.812 0.999 0.987 0.951 0.942 0.568 0.883 0.638 0.865 0.955 

Recovered 
PSNR 

BER1 38.03 41.76 41.11 41.03 39.90 42.40 38.54 40.21 41.25 42.96 
BER2 32.06 34.99 34.74 34.06 31.68 33.26 31.64 36.03 33.85 36.84 

Recovered 
SSM 

BER1 0.158 0.134 0.141 0.035 0.204 0.067 0.057 0.345 0.089 0.329 
BER2 0.220 0.099 0.446 0.072 0.406 0.045 0.280 0.059 0.182 0.015 

 

Our scheme was also tested on other acceptable manipulations such as image contrast 

adjustment, histogram equalization, compression and noises addition. The results are shown 

in Table 4.4, with the parameter for each manipulation. The SSM values of these images 

were all less than 0.5, i.e., all these images can pass the authentication. These results 

validate that the proposed scheme is not only designed to be robust to transmission errors, 

but also robust to general acceptable manipulations.  

Table 4.4:  Robustness against acceptable image manipulations 

Manipulations Histogram 
Normalizing 

Brightness 
Adjustment

Contrast 
Adjustment

JPEG 
Compression 

JPEG2000 
Compression

Parameter Auto -40 Auto 10:1 1bpp 
SSM 0.159 0.159 0.262 0.017 0.057 
 

Sensitivity to Malicious Content Tampering 

An important aspect of our SSM-based authentication scheme is that it is sensitive to the 

malicious content tampering. For that reason, we tampered the previous watermarked Bike 

and Lena images and tested the ability of our system to detect and highlight the attacked 

areas. All the attacked images were detected and the possibly attacked areas were located. 

The attack location results are shown in Figure 4.14.  
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These results indicate that the ability of our system to detect tampering is good even in 

the presence of multiple tampered areas (Figure 4.14e), or noises (Figure 4.14a), or very 

small area modified (Figure 4.14c). Furthermore, the attack detection result of our scheme is 

friendly to the users. If the image fails to pass the authentication, our scheme provides 

detected attacked areas which concentrate on the objects. Further authentication decision 

can be made by the user with the aid of the attack location results. 
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(a) Noisy tampered image Lena (0.995) (b) Attacked areas detected of (a) 

   
(c) Lena with mole added (0.569) (d) Attacked areas detected of (c) 

  
(e) Attacked image Bike (0.995)  (f) Attacked areas detected of (e) 

Figure 4.14: Detected possible attacked locations  
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4.5.2  System Security Analysis 

The security of our scheme can be justified by the false acceptance rate (FAR) and false 

rejection rate (FRR). For an image authentication system, FAR represents the rate that an 

image is actually modified by a malicious modifications but some tampered areas are not 

detected. On the other hand, FRR is the rate that an image is detected to be maliciously 

tampered but in fact it is not. A practical signature system should ensure that both FAR and 

FRR are reasonably small.  

The image authenticity verification of our scheme is based on the SSM, which is 

calculated using two statistical parameters (mccs and kurt) of the edge difference map. 

Referring to Figure 4.3, the longer the tail of the distribution of the difference map is, the 

larger the kurt is. Since malicious attack concentrates on image objects, the difference pixels 

are more likely to be connected (thus larger mccs) than acceptable manipulations. These two 

observations are combined to achieve good performance in our scheme. 

Let λ be the probability of connection with neighboring pixels in the feature difference 

map. From the region size model stated above, the FAR and FRR of our scheme can be 

approximated as: 
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For acceptable manipulations, the kurta is small because its difference map is evenly 

distributed and concentrated on its average. Therefore, FRR is accumulated from large 
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initial (α/kurta), and p(mccsa = s) is also accumulated from large initial far away from the 

high density center of the distribution, i.e. Csk is very small. Furthermore, the connection 

factor λa is also small because the difference pixels are not likely to be connected, thus (λa) is 

close to zero.  

On the contrary, for malicious modifications, the kurtm is large due to the object-

concentrated modification. Therefore, FAR is accumulated from 0 to small end (α/kurtm). 

The probability for mccsm equal to s is also accumulated from large initial far away from the 

high density center of the distribution, i.e. Csk  is very small, and λm is also large.  

The tradeoff between FAR and FRR can be adjusted by the parameter α. Since 

nonlinear perceptual distance is used, the probabilities in the equations above are difficult to 

calculate. However, it is a reasonable conclusion from discussions above that both FAR and 

FRR will be very low. 

 

4.6 Summary 

An error resilient image authentication scheme using statistics and spatiality based measure 

(SSM) is presented in this chapter, which is robust to transmission errors in JPEG and 

JPEG2000 images. Many acceptable manipulations, which were incorrectly detected as 

malicious modifications by the previous schemes, were correctly classified by the proposed 

scheme in our experiments. These results support the observation that the feature difference 

patterns under typical acceptable image modifications or malicious ones is distinguishable. 

The results may indicate that the statistical and spatial properties of the image feature are 

helpful and useful in distinguishing acceptable image manipulations from malicious ones. 

The proposed SSM would improve system performance for content-based authentication 

schemes which use features containing spatial information, such as edge [7, 13], block DCT 

coefficients based features [8, 14, 15], highly compressed version of the original image [9], 
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or block intensity histogram [16]. Furthermore, the proposed error resilient scheme based on 

SSM can improve the trustworthiness of digital images damaged by transmission errors by 

providing a way to distinguish them from digital forgeries.  

A limitation of the proposed measure is that it is suitable only for schemes using 

features containing spatial information since it is based on the statistical and spatial 

properties of feature differences. Further work would be needed to expand the use of the 

proposed measure by exploiting new discernable patterns in feature differences when the 

features contain no spatial information. 
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Chapter 5   

Image Forensics based on Image Quality 

Inconsistency Measure 

 

Digital watermarking and signature are main tools for active image authentication. 

However, most images captured today do not contain any digital watermark or signature, 

which motivate us to design techniques for passively checking the integrity of digital 

images. During digital forgery creation processing, there are always different sources of 

images spliced to create the final forgery. If the forgery is a composite image, it is hard to 

make various quality measures of the different parts consistent. Therefore, quality 

inconsistencies found in an image can serve as a proof for the existence of tampering.  

This chapter presents a digital image forensics technique based on image quality 

inconsistencies to detect the traces of image tampering. It is a passive image authentication 

approach, which checks image integrity in the absence of any active authentication code. 

For a given digital image, the distortions introduced during image acquisition are used as a 

“natural authentication code” to detect image integrity. A general framework of digital 

image forensics is proposed which is based on measuring the image quality inconsistencies 

of JPEG blocking artifacts and sharpness. To measure the quality inconsistencies, we 

propose to estimate blocking artifacts caused by JPEG compression based on quantization 

table estimation, and to measure the image sharpness based on the normalized Lipschitz 

exponent of wavelet modulus local maxima. Discovery of more quality measures related to 

distortions by image acquiring and operations may also be useful for image forensics. 

Experimental results have shown the effectiveness of the proposed measures in detecting 

quality inconsistencies for exposing digital forgeries.  
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5.1 Detecting Digital Forgeries by Measuring Image 

Quality Inconsistency 

Digital image forensics is an alternative solution to the active image authentication based on 

signature or watermark. Several statistical techniques have been proposed to detect the 

traces of specific manipulation applied to the image, such as detecting the resampling [44], 

copy-paste [17], JPEG recompression [18], and color filter array interpolation [45, 47]. 

Image forensics can also be based on the natural scene statistics [52], lighting direction 

inconsistencies [55], or camera response normality [43]. All these approaches are effective 

in some aspects, but new approaches are still desirable for practical applications. 

We propose to detect forgeries by measuring the image quality inconsistencies based 

on distortions introduced during image acquisition and processing. Digital images would 

bear the characteristics of their acquisition devices. The image acquisition and processing 

would introduce some pattern distortions into the images, which can be used as an intrinsic 

authentication code for detecting image integrity. Therefore, measures of these distortions 

are potentially useful for image forensics.  

There are many sources of distortions in the whole chain of images acquisition and 

manipulation, such as the distortion introduced by the lens, sensor noise, postprocessing 

distortions, and compression artifacts. General pipeline of digital imaging has been 

discussed in Chapter 2.2.3. The whole distortion introduced to an image can be summarized 

as: 

k
k

I S D= + ∑  (5.1) 

where Dk is the distortion introduced by the k-th operation during image acquiring and 

processing. I and S are the test image and the scene radiance, respectively. 
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Digital forgeries may be created in various ways, but in general, the image forgery 

creation process involves selection, transformation, composition of the image fragments, 

and retouching of the final image. Although these manipulations are often imperceptible to 

the human eye, they may disturb the intrinsic image quality consistencies, which can be 

used as the evidence of existence of digital tampering. A digital forgery composed using 

different sources of images will inherit different image qualities, which deduces quality 

inconsistencies within different parts of the image. The quality inconsistencies in the image 

would be a good hint that it is a forgery. 

Our assumption is that if the image is authentic, then different regions of it should be 

consistent. Therefore, if the image qualities of some regions are abnormal or inconsistent 

with the others, then the image may be a forgery. Given two regions R1 and R2 in the image, 

if they come from two different sources, they will have different type of distortions D1(k) 

and D2(k): 

1 1

2 2

1k
k

2k
k

R S D

R S D

⎧ = +
⎪
⎨

= +⎪
⎩

∑

∑
 (5.2) 

The quality differences could be detected by eliminating the image content (S1 and S2, 

respectively). Then the difference between these two regions can be calculated by the 

distance of the distortions:  

1 2( , ) ( , )1k 2k
k k

diff R R d D D= ∑ ∑  (5.3) 

Image quality measures are figures of merit used for the evaluation of imaging systems 

or coding/processing techniques. We consider several image quality metrics and study their 

statistical behavior when measuring various distortions. A good objective quality measure 

should well reflect the distortions on the image.  

Detecting image quality inconsistencies requires appropriate models of distortions 

introduced in the whole chain starting from acquisition to the final representation of the 
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image. However, the total effect of the distortions during image acquisition and processing 

includes various sources, and would interfere with each other. For example, if Gaussian 

noises are added into a JPEG compressed image, the compression artifacts of the image 

would change a lot and cannot be detected correctly. On the other hand, perfect detection of 

every distortion is very difficult, if it is not impossible, without the original scene S. 

However, it is still possible and feasible to extract some features from each distortion based 

on the prior knowledge of the processing characteristics.  

After the distortions from image regions are measured, the distance of them can be 

used to determine the image authenticity. A typical authenticity verification decision rule is 

made by: 

1

0

1 2( , )
H

H

diff R R T>
<  (5.4) 

To check the integrity of an image, we segment it into areas and then check the quality 

consistency of these segments. Suspicious area is selected as R1 for evaluation, and other 

areas are grouped as R2. If quality inconsistencies are detected, the image is deemed 

suspicious. By detecting the inconsistency of the segments, we could possibly tell whether 

or not the image is from one simple shot of one camera. For example, if the image contains 

a segment with high level of blocking artifacts, but others contains no or low level of 

blocking artifacts, then the image has high probability of being a forgery. Tools for 

detecting specific manipulations can be applied to each segments for detect quality measure. 

We have used blocking artifacts and sharpness as the measure to check the image quality 

consistency for image authentication. Other distortions can also be exploited, such as CCD 

noise, ringing artifacts caused by JPEG2000 compression, non-linear distortion caused by 

the lens, and color distortions caused by color array interpolation. 
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5.2 Detecting Image Quality Inconsistencies based 

on Blocking Artifacts 

JPEG image format is popularly used in most digital cameras and image processing 

software. Usually JPEG compression would introduce blocking artifacts. Manufacturers of 

digital cameras and image processing software typically use different JPEG quantization 

table to balance compression ratio and image quality. Such differences will also cause 

different blocking artifacts in the images acquired. When creating a digital forgery, the 

resulted tampered image may inherit different kind of blocking artifacts from different 

sources. These inconsistencies, when detected and measured, are used to check image 

integrity. Besides, forgeries creation process would also change the blocking artifacts, 

because the blocking artifacts of the affected blocks will change a lot by tampering 

operations such as image splicing, resampling, and local object operation such as skin 

optimization. Therefore, the blocking artifact inconsistencies found in a given image may 

tell the history of the processing the image has undergone.  

We present a passive way of detecting digital image forgery by measuring its quality 

inconsistency based on JPEG blocking artifacts. A new quantization table estimation based 

on power spectrum of the histogram of the DCT coefficients is firstly introduced, and the 

blocking artifact measure is calculated based on the estimated table. The inconsistencies of 

the JPEG blocking artifacts are then checked as a trace of image forgery. Our proposed 

approach is able to detect spliced image forgeries using different quantization table, or 

forgeries which would result in the blocking artifact inconsistencies in the whole images, 

such as block mismatching and object retouching. In addition, our proposed quantization 

table estimation algorithm is much faster than maximum likelihood based methods 

[104, 105]. 
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5.2.1 Blocking Artifacts Caused by Lossy JPEG 

Compression 

JPEG compression is a block DCT-based image compression technology. A simplified 

pipeline of JPEG compression is illustrated in Figure 5.1. The image is firstly converted 

from RGB into a different colour space YCbCr. The Y component represents the brightness 

of a pixel. The Cb and Cr components together represent the chrominance. Then chroma 

subsampling (or called downsampling) is carried out to reduce the Cb and Cr components. 

Each component (Y, Cb, Cr) of the image is partitioned into blocks of eight by eight pixels 

each, then each block is converted to frequency space using discrete cosine transform. 

Quantization is done by simply dividing each component in the frequency domain by a 

constant for that component, and then rounding to the nearest integer. Finally, entropy 

coding is used to compress the DCT coefficients.  

 
Figure 5.1: Diagram of JPEG compression 

Digital cameras from different brands may use different JPEG quantization 

tables. Table 5.1 lists the default table of the finest quality setting of three brands cameras. 

The different tables used in JPGE compression brings with different quantization artifacts in 

the output images taken by the cameras. This intrinsic difference in the digital cameras 

provides us a “natural” authentication code for forensic analysis. 

From the JPEG compression pipeline, we can find that the main lossy operation in 

JPEG compression is the quantization process. In order to achieve low bit rates, quantization 

is normally used to compress the transform coefficients. Since the quantization process is 

lossy, the compressed image exhibit blocking artifacts, which are the visual artifacts found 
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at block boundaries of DCT-based compressed images. The blocking artifacts are caused by 

amplified differences between the boundary pixel values of neighboring blocks, or by 

undesirable high frequency components. The degradation is a result of a coarse quantization 

of the DCT coefficients of each image block without taking the inter-block correlations into 

account. 

Table 5.1: Quantization table of the finest settings for different cameras 

(a) Nikon Coolpix5400 (b) Canon Ixus500  (c) Sony P10  

1 1 1 1 1 2 2 2  1 1 1 2 3 6 8 10  1 1 1 1 1 2 3 3
1 1 1 1 1 2 2 2  1 1 2 3 4 8 9 8  1 1 1 1 1 3 3 3
1 1 1 1 2 2 3 2  2 2 2 3 6 8 10 8  1 1 1 1 2 3 3 3
1 1 1 1 2 3 3 2  2 2 3 4 7 12 11 9  1 1 1 1 3 4 4 3
1 1 1 2 3 4 4 3  3 3 8 11 10 16 15 11  1 1 2 3 3 5 5 4
1 1 2 3 3 4 5 4  3 5 8 10 12 15 16 13  1 2 3 3 4 5 6 5
2 3 3 3 4 5 5 4  7 10 11 12 15 17 17 14  2 3 4 4 5 6 6 5
3 4 4 4 4 4 4 4  14 13 13 15 15 14 14 14  4 5 5 5 6 5 5 5

 
JPEG compression introduces specific correlations in the form of blocking artifacts. 

When creating a digital forgery, a typical pattern is to load images into an image processing 

software such as Adobe Photoshop, splice them together, and then save the composite 

image. If the forgery comes from different JPEG compressed images, it would inherit 

different kind of blocking artifacts.  

Digital tampering will also change the blocking artifacts. For example, the blocking 

artifacts of the affected blocks would be changed a lot by image splicing, resampling, and 

some other special manipulations such as skin optimization for portrait images. The 

inconsistencies of the JPEG compression artifacts would also be caused by block 

misaligning, which may be usual during the creation of digital forgery. 
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5.2.2 Blocking Artifact Measure based on Quantization Table 

Estimation 

Blocking artifact measure plays an important role in the areas of image and video processing 

such as optimal bit allocation and post-processing [106]. Here we explore it to detect the 

image forgeries. As discussed above, the blocking artifacts are caused mainly by 

quantization. Therefore, the quantization table used during JPEG compression is useful for 

precise estimation of the blocking artifacts.  

Blocking artifact for each block is estimated via: 

64

1

( )( ) | ( ) ( ) ( ) |
( )k

D kB i D k Q k round
Q k=

= −∑  (5.5) 

where B(i) is the estimated blocking artifact measure for the testing block i, and D(k) is the 

DCT coefficient at position k. Q(1:64) is the estimated DCT quantization table. The 

blocking artifact measure (BAM) for the whole image is then calculated based on the 

blocking artifacts of all blocks: 

1 ( )
i

BAM B i
N

= ∑  (5.6) 

where N is the total number of image blocks. 

JPEG quantization table estimation has been useful for JPEG artifact removal [107], 

image enhancement or JPEG re-compression. To estimate the JPEG quantization table, a 

method called maximum likelihood estimation (MLE) is proposed in [104, 105] based on 

the total estimated blocking artifact at DCT frequency i given an estimated step Q(i). In 

[58], a statistical model based on Benford’s law for the probability distribution of the first 

digits of the JPEG coefficients is used to estimate the JPEG quantization factor. For a given 

candidate Q(i), a complicated maximum likelihood estimation based on quantization 

artifacts of the whole coefficients must be computed. Therefore, these methods are very 

time consuming since they are all based on exhaustive searching for estimation. In the next 
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sub-section, we present a faster quantization table estimation algorithm based on histogram 

power spectrum of DCT coefficients. 

We propose to use the power spectrum of the DCT coefficient histogram of each 

portion to estimate the quantization step of it. It is observed that if the histogram of DCT 

coefficients contain periodic patterns, then the coefficients are very likely to have been 

quantized with a step of this period [104]. These periodic artifacts are particularly visible in 

the Fourier domain as strong peaks in the mid and high frequencies. Therefore, the 

derivatives of the histogram power spectrum of DCT coefficients could be used to estimate 

the quantization table. 

We firstly calculate the histogram (H) of the DCT coefficients at position i, and then 

calculate the histogram power spectrum (P) using the Fast Fourier Transform (FFT). The 

second order derivative (S) of P is then low-pass filtered. Finally, the number of negative 

local minimum of S is found to be (Q(i)-1). Suppose f(x) is a function of x that is twice 

differentiable at a stationary point x. A stationary point may be a local minimum, maximum, 

or inflection point. If f '(x)=0 and f "(x)<0, then has a relative maximum at x. For this aim, 

we filter S to get a more clear pattern for calculating Q(i), by eliminating the positive values 

and low pass filtering. 
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(a) Histogram of AC Coefficient (q=4) 

 

(b) Histogram of AC Coefficient (q= 1) 

Figure 5.2: Histogram of DCT coefficients  

Figure 5.2 shows the DCT coefficient histograms for a JPEG compressed image and 

the original uncompressed image. The histogram was calculated for the coefficients at DCT 

frequency Q(6) (the fifth AC component). We can see that these two histograms are very 

similar, except that for JPEG compressed image (Figure 5.2a) there are some peaks at the 

positions of multiple of q (here q=4). Note also that this type of period is not present in the 

uncompressed image (Figure 5.2b).  
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The periodic peaks in the histogram are particularly visible in its power spectrum as 

strong peaks (Figure 5.3). In Figure 5.3, we show the power spectrum of the histograms of 

an uncompressed image and the JPEG compressed image. The histogram (H) of the DCT 

coefficients at position i is firstly calculated, and then the histogram power spectrum (P) is 

achieved using the Fast Fourier Transform.  

   

(a) Power Spectrum of Histogram (q=4) (b) Power Spectrum of Histogram (q= 1) 

    

(c) 2nd order Difference of Power Spectrum (q=4)  (d) Filtered 2nd order Difference 

(q=4) 

Figure 5.3: Power spectrum of DCT coefficient histogram 

The estimated power spectra of the two images are shown in Figure 5.3(a) and Figure 

5.3(b), respectively. A combined view of those peaks provides us with a clear view of the 

quantization step used. The second order derivative (S) of P is then low-pass filtered, and 

the positive values are eliminated. The reason is that if there is a local maximum f(x) at x, 

then the derivatives f '(x)=0,  f "(x)<0, and f "(x) is a local minimum. The number of negative 
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local minimum of S is found to be equal to (Q(i)-1). The second differentiable S and its 

filtered version are shown in Figure 5.3(c) and Figure 5.3(d), respectively. 

We use the whole image to estimate quantization table. The procedure of the 

quantization table estimation is: (1) Calculate DCT coefficients of each 8×8 image block; 

(2) Calculate the power spectrum (P) of the histogram of DCT coefficients for each of the 

64 frequencies; (3) Calculate the second derivative of P, and then low-pass filtering it; (4) 

Calculate the local minimum number (Num) of the filtered second derivative of P; (4) the 

estimated quantization step of the DCT frequency is estimated as Num+1.  

Our proposed blocking artifact estimation algorithm is faster than that of 

[104, 105, 58]. The reason is that for a DCT coefficient at a given position, the algorithm 

proposed in [104, 105] need to calculate the blocking artifact for every possible Q based on 

the DCT coefficients of the whole image. On the contrary, our algorithm only computes 

once. Furthermore, our algorithm can estimate arbitrary quantization table which is often 

adopted in different brand of digital camera, whereas the algorithm proposed in [58] can 

only detect a standard compression factor, since it re-compress the image by a sequence of 

preset Q-factors. This step also makes the algorithm in [58] slower than our proposed one. 

 

5.2.3 Detection of Quality Inconsistencies based on Blocking 

Artifact Measure 

Given a digital image, the blocking artifacts introduced during image compression could be 

used as a “natural authentication code” to check its integrity. We observed that when an 

adversary forges an image, JPEG images from different sources such as different digital 

cameras or by different manipulations are usually used. Such forgery usually makes the 

blocking artifact measurements inconsistent. Therefore, image forgeries could be done by 

finding the inconsistencies of blocking artifacts.  
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To check the integrity of an image, we first segment it into areas and then check the 

blocking artifact consistency of these segments. Suspicious areas are selected for evaluation, 

the other areas are used to estimate the quantization table, and the BAM of the image is 

calculated based on the estimated table. If the blocking artifact inconsistencies are detected, 

the image is deemed suspicious. By detecting the inconsistency of the segments, we could 

possibly tell whether or not the image is from one simple shot of one camera. 

 

5.2.4 Experimental Results and Discussions 

Our test images are photos taken by digital cameras including Nikon Coolpix5400, Canon 

Ixus500, Sony P10, and Canon A85, which are all commercially available cameras, with 4 

or 5 mega-pixels CCD, and 3× or 4× optical lens. All photos are saved in JPEG format. The 

test images were taken in different time under various environments. 

First of all we evaluate the DCT statistics of the digital images and also the differences 

within images by different cameras, as shown in Table 5.1. The quantization tables used by 

cameras of different brands are different.  

Our proposed quantization table estimation algorithm is much faster than that of 

[104, 105, and 58]. Table 5.2 shows the results of quantization table estimation of our 

proposed method, compared with the optimization based method used in [104, 105]. The 

test image is Lena with dimension 512×512, quantized with JPEG factor from 100 to 50. 

These results were generated with program compiled by Visual C++ 6.0 on Dell Dimension 

8250 PC (3060 MHz CPU, 512MB memory, and Windows XP operation system). From the 

results we can see that our method is much faster. The reason would be that for each given 

DCT coefficient, the algorithms in [104, 105] need to calculate blocking artifact for every 

possible Q(i) based on the DCT coefficients of the whole image. On the contrary, our 

algorithm only computes CGNLE once. Furthermore, our algorithm can estimate arbitrary 
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quantization table which is often adopted in different brand of digital cameras, whereas the 

algorithm proposed in [58] can only detect a standard compression factor, since it re-

compress the image by a sequence of preset Q-factors. This step also makes the algorithm in 

[58] slower than our proposed one. On the other hand, the estimation errors of 64 

quantization steps grow when quantization factor decreases. The reason would be that the 

high frequency DCT coefficients would be all zero when quantized by large step size. 

Therefore, we only use the first 32 DCT frequencies in blocking artifact estimation. 

Table 5.2: Quantization table estimation time (ms)  

Quality factor 100 90 80 70 60 50 
MLE based method 15091 14957 14893 14950 14828 14737 
Proposed method 241 227 228 225 222 228 

 

We evaluated the inconsistencies of the JPEG blocking artifacts to detect the digital 

tampering in the image. A portrait taken from JPEG2000 test image Woman is extracted 

using Adobe Photoshop and spliced into a landscape taken by Canon Ixus500. There is 

typical inconsistencies in this composed forgery (Figure 5.4a). We detected blocking artifact 

measures for all blocks of the image (Figure 5.4b).  Figure 5.4(b) shows there are actually 

two different types of artifacts in different areas of the image, which may denote the 

inconsistent areas.  

We also evaluated the inconsistencies of the JPEG compression blocking artifacts due 

to resampling and misaligned blocks. Figure 5.5 shows a forgery photo, which was 

composed by two photos taken by the same cameras under the same conditions. Due to 

resampling and misaligning, the DCT coefficients of the spliced regions are shuffled, and no 

period bumps occur in the histogram power spectrum any more.  

Some other tampering operations during composing forgery will also render some 

inconsistencies. Figure 5.6 shows a typical face skin optimization operation widely used by 

photographers. The face is polished using Photoshop blur tool. The forgery shown in Figure 
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5.6(b) can be detected by our technique, with a blocking artifact measure of 45.419, but only 

5.854 for the original untouched photo. 

 
(a) tampered image 

 

(b) blocking artifact detected 

Figure 5.4: Forgery from two images by different sources (spliced from JPEG2000 

image and photo by Canon Ixus500) 
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(a) tampered Image (a pile of stones added) 

 

 (b) blocking Artifact Detected 

Figure 5.5: Forgery from two images by the same camera (Nikon Coolpix5400) 
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(a) Original image Cropped;  (b) Face skin optimized; 

 

(c) Blocking artifact detected 

Figure 5.6: Face skin optimized detection 

We also test our algorithm with various photos, 400 taken from Nikon Coolpix 5400, 

and 100 from Sony P10. We generate a tampered photo by randomly selecting another 

photo and splicing it into to the original one. The detected artifact measures are shown 

in Figure 5.7. For untouched photos, the artifact measures are all smaller than those of the 

spliced images.  
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Figure 5.7: Measures for tampered or authentic images 

As a passive way of image authentication, in some cases, quality based image forensics 

would fail to detect the forgeries. When the quality of the tampered image is very low (for 

example, the image has been highly compressed or reduced to small dimension), it is 

difficult for image forensics to detect the trace of the tampering based on image quality. For 

example, in Figure 5.8(a), we reduced the dimension of the tampered image shown in Figure 

5.4(a) from 2592×1944 to 400×300, and compressed it with JPEG compression factor 20. 

The blocking artifacts in Figure 5.8(a) can be found easily, especially on the high contrast 

areas. Figure 5.8(b) shows the detected blocking artifacts, in which there are no clear areas 

identified with different class of blocking artifact measures. That is to say, in this case, 

blocking artifact based image forensics would fail. The reason may be that the low image 

quality has concealed the traces, the inconsistencies of blocking artifacts, of the tampering. 

For low quality images, new forensics techniques may be required, such as image forensics 

based on high level content consistency analysis. 
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(a) tampered image with low quality (downsampled and highly compressed) 

 
(b) detected blocking artifact measure 

Figure 5.8: Failure example: tampered image with low quality 
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5.3 Sharpness Measure for Detecting Image Quality 

Inconsistencies 

Sharpness is a very important photographic image quality factor. It is defined by the 

boundaries between zones of different tones or colors. Sharpness is affected by:  

•  Lens: design and manufacturing quality, focal length, aperture, and distance from 

the image center; 

• Sensor: pixel count and anti-aliasing filter; 

• Shooting variances: camera shaking, focus accuracy, lighting, and atmosphere 

disturbances (thermal effects and aerosols). 

One way to measure sharpness is in pixel domain, including analysis of statistical 

properties and correlation between pixels. In addition, techniques based on image gradient 

and Laplacian, and which detect the slope of the edges in an image, for example, the 

perceptual blur metric [108]. It detects edge first, and then scans each row of the image to 

locate edge pixels. The start and end positions of the edge are defined as the locations of 

local maxima closest to edge. The edge width is calculated as the distance between the end 

and start position. The overall metric is calculated as the average of the edge widths or the 

local blur values over all edges found. The relative contrast at a given spatial frequency 

(output contrast/input contrast) is called the Modulation Transfer Function (MTF) or Spatial 

Frequency Response (SFR). MTF is widely used by photographers to evaluate the camera 

sharpness. However, the calculation of MTF requires an image of variously sized bar 

patterns of the camera, or manually select the similar pattern from the image. It is not 

suitable for no-reference image sharpness assessment. In addition, these pixel based 

approaches is sensitive to noise, and the required edge selection is complicated, and usually 

done in a manual way.  
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To get around these problems, the measurements in the frequency domain can be used 

[ 109]. An approach based on the occurrence histogram of non-zero DCT coefficients 

through all 8×8 blocks of the image is proposed in [109]. The assumption is that sharper 

edges increase the high frequency components. The blurriness metric is estimated by 

examining the number of coefficients that are almost always zero by counting the number of 

zeroes in the histogram. Note that the metric is higher for sharper images. However, 

sharpness metrics that use the whole frequency spectrum of the image cannot separate the 

sharpness information from the scene content. The sharpness metrics that use spatial 

gradients of the edges work only for comparisons among images of the same scene. 

Therefore, a content independent, no-reference sharpness metric is desirable. A sharpness 

measure based on Gaussian lines and edges is proposed in [110]. It locates these lines and 

edges in the image, and then the sharpness of these lines and edges is determined by fitting a 

Gaussian line or edge profile to the Gaussian derivative signature. Another feasible measure 

is the sharpness metric based on local kurtosis, edge and energy information [111], which is 

based on averaged edge profile kurtosis. This algorithm is a combination of the spatial 

domain edge profile acutance, and the kurtosis of the frequency spectrum algorithms. 

A combined pixel domain and frequency domain approach based on edge and kurtosis 

of DCT has been proposed [111]. An edge profile is detected by detecting edge pixels and 

enclosing them with 8×8 pixel blocks. For each block, sharpness using Kurtosis of the DCT 

is computed. The final metric is the average sharpness of the blocks in the edge profile.  

In this section, we propose to use wavelet transform based sharpness measure for 

sharpness inconsistency detection. The proposed measure is based on normalized Lipschitz 

exponent of wavelet as well as relation with module maxima, which is robust to noise 

without need of manual edge selection. 
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5.3.1 Lipschitz Exponents of Wavelet 

Wavelet domain is a better choice than DCT as the frequency domain for the purpose of 

sharpness assessment. The reason is that the wavelet transform has the characteristic of the 

multi-resolution and can describe the local features of the signal both in the time and 

frequency domain, thus it can get the detail of the signal at the different scales [112]. 

Wavelet can detect local signal singularity, which is good for edge detection. Multiscale 

statistics of wavelet can give theoretic explanation why wavelet can measure sharpness well. 

For example, the effectiveness of edge detection based on multiscale wavelet modulus 

maxima is validated in [100]. 

One signal sharp variation produces wavelet modulus maxima at different scales. The 

value of a wavelet modulus maximum at a scale s measures the derivative of the signal 

smoothed at the scale, but it is not clear how to combine these different values to 

characterize the signal variation. The wavelet theory gives an answer to this question by 

showing that the modulus maximum of each scale of the wavelet transform depends on the 

local Lipschitz regularity of the signal.  

Edge is a significant feature for image on human vision. Image edges are counterpart to 

image gray singularity, and different types of edge have different singularities. A parameter 

that depicts singularity is Lipschitz exponent. In mathematics theory, the singularity of the 

signal as the sharp variation of the signal can be expressed precisely by the Lipschitz 

exponent.  

Definition: A function f (t) is said to be Lipschitz α at t0, if and only if there exists two 

constants K and h0>0, and a polynomial of order n (n is a positive integer), Pn(t), such that 

for h<h0: 

0 0( ) ( ) | |nf t h P t K h α+ − ≤  (5.7) 
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The value K gives the amplitude of the sharp variation. Mallat proved [112] that 

if ( , )f x y  is Lipschitz α at (x0, y0), then there exists a constant K such that for all point (x, y) 

in a neighborhood of (x0, y0) and any scale s: 

( , )sW f x y Ksα≤  (5.8) 

which is equivalent to: 

log ( , ) log logsW f x y K sα≤ +  (5.9) 

where Ws ( , )f x y is the wavelet transform of ( , )f x y at scale s. ( , )sW f x y represents the 

modulus of Ws ( , )f x y at scale s. The Lipschitz regularity is given by the maximum slope of 

log ( , )sW f x y  as a function of log s  along the lines of modulus maxima that converge 

towards point ( , )x y . In the wavelet domain, it is possible to calculate the Lipschitz exponent 

in a certain point in the image from the evolution of the modulus maxima of the wavelet 

coefficients corresponding to that point through successive scales. 

 

5.3.2 Normalized Lipschitz Exponent (NLE) 

Lipschitz exponent has been used to estimate the blurness in an image [113], but Lipschitz 

exponent alone is not adequate. The reason may be that Lipschitz exponent only describes 

the singularity of the signal. For sharpness evaluation, the amplitude of the sharp variation 

should also be considered. For example, the signal in Figure 5.9(a) with different Delta and 

Step settings will have a unique Lipschitz exponent 1. However, for sharpness evaluation, 

different setting of Delta and Step would cause different sharpness effect. From the wavelet 

values of different Delta or Step (Figure 5.9c and Figure 5.9d), we can find that the local 

maxima change linearly with Delta or Step. Therefore, for sharpness evaluation, the 

amplitude of the wavelet coefficients should be used together with Lipschitz exponents.  
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(a) ideal signal that is differentiable once (b) different scale wavelet transform 
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Figure 5.9: Multiscale wavelet modulus maxima for different sharp edges 

Therefore, we propose to use normalized Lipschitz exponent (NLE) as a measure of 

how sharp the image is at a certain point. The NLE is defined as / log Kα , and then Equation  

(5.9) becomes: 

log ( , )
1 log 1 log

log log
sW f x y

s NLE s
K K

α
≤ + = +  (5.10) 

 Our method for sharpness estimation is based on estimating the NLEs of the sharpest 

edges in the image. To analyze the edges in the image, we calculate the NLE in all points 

where a change in intensity is found either in the horizontal or vertical direction. In the 

wavelet domain, it is possible to calculate the NLE in a certain point in the image from the 

evolution of the modulus maxima of the wavelet coefficients corresponding to that point 

through successive scales. 
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5.3.3 Wavelet NLE based Sharpness Measure  

The procedure of the proposed sharpness measure can be described as follows: (1) The 

wavelet decomposition of the image is calculated; (2) the modulus maxima of the wavelet 

coefficients corresponding to a certain point in the image through different resolution scales 

are detected; (3) the normalized Lipschitz exponent in that point is calculated by nonlinear 

fitting an exponential curve to the modulus maxima versus the scale; (4) from the Lipschitz 

exponents found along the significant edges in the image, a histogram is achieved; (5) the 

center of gravity (CG) of the histogram is related to the sharpness of the image. The 

sharpness measure is calculated based on the estimated CG of the NLEs with sigmoid 

function. 

 

Continuous Wavelet Transform 

We use 2-dimensional Gaussian function θ (x, y) for wavelet function generation:  

2 2

21( , )
2

x y

x y eθ
π

+
−

=  (5.11) 

θ s (x, y), the θ (x, y) at scale s, is defined as:  

( , ) ( , )s
x yx y
s s

θ θ=  (5.12) 

The first differentiation of θ (x, y) in the x, y direction is used to be two wavelet 

functions: 

2 2

2(1) 2( , )( , )
2

x y
s s

s
x y xx y e
x s

θ
ϕ

π

+
−∂

= = −
∂

 (5.13) 

2 2

2(2) 2( , )( , )
2

x y
s s

s
x y yx y e
y s

θ
ϕ

π

+
−∂

= = −
∂

 (5.14) 
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Therefore, for a 2-dimensional function, in the scale s, its two fractions of the wavelet 

transform are: 

(1) (1)( , ) ( , ) * ( , )s sW f x y f x y x yϕ=  (5.15) 

(2) (2)( , ) ( , )* ( , )s sW f x y f x y x yϕ=  (5.16) 

where * represents convolution function. The modulus of the wavelet transform is: 

(1) 2 (2) 2( , ) | ( , ) | | ( , ) |s s sW f x y W f x y W f x y= +  (5.17) 

 

Local Maxima Detection 

The former computation is provided for the edge point of the image signal. The first step is 

to find the edge of the image. From Equation(5.15) and Equation(5.16), we know that the x 

and y fractions of the wavelet transform are the image’s gradients, and that the modulus 

maximum of the wavelet transform is the image’s edge point. Considering the very 

smoothing area of the image will also produce the modulus maximum point with small 

value which will result in computational error easily. Therefore, a template of edge is used 

to remove those false edges. Those points are selected as edge points, which are larger than 

half of the local maxima and larger than the average wavelet modulus at every scale. 

Because we restrict the Lipschitz exponents to those corresponding to transitions with large 

amplitude, we already selected the sharpest transitions with large amplitudes in the image. 

 

Normalized Lipschitz Exponent Estimation 

In actual computation, the edge points’ smoothing factors are different, thus the statistical 

histogram method is used. Four scales (1, 2, 3 and 4) of wavelet transform are used, since 

the first 4 scales of wavelet transform carry enough information about the character of local 

maxima which can be validated by experiments. The normalized Lipschitz exponents 
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(NLEs) of the selected local maxima are estimated by linear least-squares data fitting. The 

number of the histogram bins is 100, and the Centre of Gravity (CG) of the histogram is 

related to the sharpness of the image. 

 

Sharpness Measure 

The final sharpness measure is then calculated with the sigmoid function based on the 

estimated CG of the NLEs (CGNLE): 

( )sigmf ( ;[  ])
1 NLENLE b CG c

aspn a CG b c
e− −= =

+
 (5.18) 

In our experiments, the parameters [a  b c] are set to [2 -2 0.26] empirically.  

 
 

5.3.4 Experimental Results and Discussions 

In order to evaluate the proposed sharpness measure, an image of step signal (Figure 5.10a) 

is used for testing. Its Lipschitz exponent is 0. The modulus maximum of the wavelet 

transform of the original and its blurred image are in the four apexes of the rectangle. We 

did the continuous wavelet transform with the scale from 1 to 8, obtaining the corresponding 

modulus maxima. The results are shown in Figure 5.11(a). The normalized wavelet modulus 

maxima corresponding NLE are shown in Figure 5.11(b).   
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  (a) image Step    (b) blurred image with σ=1    (c) blurred image with σ=2    (d) 

blurred image with σ=3 

Figure 5.10: Test image and its blurred versions 

 
(a) wavelet modulus maxima of different scale 

 
(b) normalized wavelet transform modulus maxima  

Figure 5.11: Wavelet transform modulus maxima and its normalized versions 
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The variance of the Gaussian variance can be estimated by the following equations 

[112]:  

0
0

( , )s
sW g x y K s
s

α≤  (5.19) 

2 2
0s s σ= +  (5.20) 

The normalized wavelet transform modulus is useful in sharpness estimation. The 

Gaussian variances are estimated with non-linear least-squares data fitting by the Gauss-

Newton method. The results for image Step are shown in Figure 5.12(a) and (b). The results 

for real image Lena are shown in Figure 5.13 (c) and (d). From Figure 5.13 we can find that 

the model defined by Equation (5.19) and Equation (5.20) is perfect for ideal step signal, but 

not so well for real image Lena. The reason may be the blurness inherent in the real images 

which could not be modeled as Gaussian.  

In Figure 5.14 we show the results of the performance of the proposed NLE, compared 

with the original approach using Lipschitz exponent only. The histograms of the Lipschitz 

exponent α, K and NLE of image Lena and its blurred versions (with variance σ equal to 1, 2 

and 3) are shown in Figure 5.14 (a), (b) and (c), respectively. The histograms of α of 

different blurred images have different shapes. The blurred image with larger σ has a 

smaller K on average than that with smaller σ. After normalization, the histograms of NLE 

are much more regular than those of α. Therefore, NLE is better in distinguishing different 

blurred images than Lipschitz exponent α. 
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(a) curve fitting for image Step 

 

(b) blur estimation of image Step 

Figure 5.12: Results of Gaussian blur estimation for ideal step signal 
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(a) curve fitting for image Lena 

 

(b) blur estimation of image Lena 

Figure 5.13: Results of Gaussian blur estimation for real image Lena 
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(a) histograms of estimated Lipschitz α 

 
(b) histograms of estimated K  

  
(c) histograms of estimated NLE 

Figure 5.14: Histogram of Lipschitz α and K for image Bike with different blurs  
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(a) CG of Lipschitz exponent and NLE of blurred images 

 

(b) Sharpness estimation for blurred images  

Figure 5.15: Comparisons of α and NLE 

We further tested our algorithm with larger σ of Gaussian blurring, ranging from 0 to 

14. The detected CG of Lipschitz exponent and that of NLE are shown in Figure 5.15(a). 

When input σ increases, the CG of α increase nearly linearly when is σ small. But when σ 

gets larger and larger, the increasing rate of α becomes smaller. Therefore, the whole curve 

of estimated α is not linear. On the contrary, the curve of the estimated NLE is almost linear. 



 
 

131

The estimated sharpness measures by Equation (5.18) are shown in Figure 5.15(b). 

Similarly, the curve of sharpness based on NLE is much more linear than that based on the 

Lipschitz exponent. These results validate that NLE is more suitable in evaluation of image 

sharpness than Lipschitz exponent. 

 

5.4 Summary 

The proposed passive approach to detect digital forgery by checking image quality 

inconsistencies is able to distinguish digital forgeries from authentic images in the absence 

of any digital watermark or signature. Image quality inconsistencies based on JPEG 

blocking artifacts and image sharpness are successfully detected as possible evidences that 

the image had been tampered with. The results support the hypothesis that image quality 

inconsistencies could serve as a useful intrinsic signature for revealing traces of digital 

tampering. This is attributed to the observation that a digital forgery composed of different 

sources of images usually contains quality inconsistencies introduced by forgery creation 

operations. The proposed image quality inconsistency based image forensics technique 

provides a passive approach for image authentication, and its development may help provide 

a better understanding of the role of image quality for detecting digital forgeries. A 

limitation of the proposed approach is that it is not suitable for low quality images. Further 

work would be needed to develop forensics techniques to check image content consistency 

of low quality images, or to discover more quality measures for detecting digital forgeries. 
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Chapter 6   

Conclusions and Further Work 

 

6.1 Conclusions 

The main purpose of the work presented in this thesis is to protect the trustworthiness of 

digital images, either actively when the received image is damaged by transmission errors or 

passively when there is no side information available. The purpose was achieved by 

exploiting the statistical and spatial properties of features to authenticate damaged images, 

and by measuring image quality inconsistencies to detect digital image forgeries passively. 

This chapter concludes the results of the research work present in the previous chapters, and 

some areas of future work are suggested. 

 

6.1.1 Error Resilient Image Authentication 

An error resilient image authentication scheme has been developed for JPEG images, which 

incorporates watermarking, ECC, and error concealment into traditional crypto signature 

scheme to enhance the system robustness. Pre-processing and block shuffling techniques are 

adopted to stabilize the features for signature generation and verification. This scheme 

correctly could distinguish JPEG images damaged by lossy transmission from malicious 

forgeries, which has been validated by our experimental results. It is only designed for 

images using small block-based coding (8×8 DCT transform in JPEG images). Therefore, 

an improved scheme using a feature distance measure named statistics and spatiality based 

measure (SSM) has also then developed. This improved scheme is robust to transmission 
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errors in images received by lossy transmission. It is not constrained to block-based coded 

images, and then it is suitable for both JPEG and JPEG2000 images. 

 The proposed error resilient schemes improve the trustworthiness of the images 

damaged by transmission errors, by providing solutions to verify their authenticity even if 

there are uncorrectable errors. Many acceptable manipulations, which were incorrectly 

detected as malicious modifications by other schemes, were correctly verified by our 

scheme in our experiments. These results support the observation that the feature difference 

patterns under typical acceptable image modifications or malicious ones is distinguishable. 

The results may indicate that the statistical and spatial properties of the image feature are 

useful in distinguishing acceptable image manipulations from malicious content 

modifications.  

The proposed SSM would improve system performance for content-based 

authentication schemes which use features containing spatial information, such as edge 

[7, 13], block DCT coefficients based features [8, 14, 15], highly compressed version of the 

original image [9], or block intensity histogram [16]. Furthermore, the proposed error 

resilient scheme based on SSM can improve the trustworthiness of digital images damaged 

by transmission errors by providing a way to distinguish them from digital forgeries. The 

images damaged by transmission error can be well error-concealed by the proposed error 

concealment algorithms, and can be verified by the proposed schemes. Therefore, the 

damaged images can now be with good quality, and those images that pass the verification 

are believable. Moreover, the results would lead to a better understanding of the role of 

image feature statistics and spatial properties for detecting digital forgeries. 
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6.1.2 Image Forensics based on Image Quality 

Inconsistencies 

Detection of digital forgery without assistance of signature or watermarking is an emerging 

research task. In this thesis, an image forensics technique has been proposed to detect digital 

forgeries by checking image quality inconsistencies. It aims to distinguish digital forgeries 

from authentic images in the absence of any digital watermark or signature. This scheme is 

based on image inconsistencies using blocking artifact measure and sharpness measure. It 

can detect digital forgeries if the forgery image is a composite from different sources, or 

there is resampling, sharpness related operations during forgery construction. In our 

experiments, image quality inconsistencies based on JPEG compression blocking artifacts 

and sharpness measures were successfully detected as possible evidences when the image 

had been tampered with.  

 The proposed image forensics technique provides an approach for passive image 

authentication, which makes digital images more trustworthy. Its development may help 

provide a better understanding of the role of image quality in digital image forensics. The 

experimental results support the hypothesis that image quality inconsistencies could serve as 

a useful signature for revealing traces of digital tampering. This may be attributed to the 

observation that a digital forgery composed of different sources of images usually contains 

quality inconsistencies introduced by forgery creation operations.  

 

6.2 Summary of Contributions 

We describe active and passive approaches for image authentication to protect digital image 

trustworthiness. These approaches work in active way based on hybrid digital watermark 

and signature, or in the complete absence of any digital watermark or signature. They 
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provide a solution of error resilient image authentication and image forensics by exploring 

the role of image properties or quality measures in detecting digital forgeries. All these 

techniques have been validated by our experimental results. In summary, the work described 

in this thesis made the following contributions: 

• Unique error resilient image authentication schemes for images transmission over 

lossy channels. These schemes can authenticate images correctly even if there 

uncorrectable transmission errors. That is, these schemes can distinguish those 

images damaged by transmission errors or distorted by some acceptable 

manipulations from forged images. (Chapter 3 and 4) 

• Feature distance measure for content-based image authentication that can 

improve the performance of image authentication by improve it robustness. This 

measure is based on statistical and spatial properties of the image feature. 

(Chapter 4) 

• Error concealment techniques for JPEG and JPEG2000 images. They can 

improve qualities of those images damaged by acceptable errors, which can 

improve their authenticities and make them more distinguishable from forgeries. 

(Chapter 3 and 4) 

• Image forensics scheme based on measuring quality inconsistencies. It provides a 

passive way to check the integrity of digital images, and can be extended by using 

more no-reference quality measures. (Chapter 5) 

• Blind measure of blocking artifacts caused by JPEG compression and image 

sharpness measure based on wavelet Lipschitz. These no-reference measures are 

useful in detecting quality inconsistencies for image forensics. (Chapter 5) 
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6.3 Future Work 

Seeing may be believing again in the future with the well-developed image authentication 

techniques. In order to achieve this vision, a lot of works are still required to be done in the 

future. Possible directions would include robust image authentication that can distinguish 

acceptable manipulations from malicious contend modification, and passive image forensics 

tools based on other image quality measure or natural scene statistics. 

A limitation of the proposed feature distance measure for content based image 

authentication is that it is suitable only for schemes using features containing spatial 

information since it is based on statistical and spatial properties of the feature differences. 

Further work would be needed to expand the use of the proposed measure by exploiting new 

discernable patterns of feature differences when the features contain no spatial information. 

Furthermore, many active image authentication schemes reject manipulations that may 

preserve better perceptual quality or semantic meaning than acceptable manipulations. Lack 

of a clear-cut distinction between acceptable and malicious modifications make it difficult to 

accurately distinguish acceptable manipulations from malicious ones. To be robust to 

acceptable modifications yet sensitive to malicious content modifications, additional work 

could be done to extract features that adequately describe the perceptual content of the 

image signal, or to design feature distance measure that exploits statistics or perceptual 

properties of image signals.  

On the other hand, the proposed image quality based passive image authentication 

supports our idea of assessing image authenticity by checking quality inconsistencies. This 

thesis has proposed blocking artifact and sharpness measures to detect image quality 

inconsistencies for forensic analysis. Discovery of more quality measures related to 

distortions by image acquiring and operations is then a promising direction of further work 

of the image forensics. The consistencies related to pattern noise of digital imaging devices 

or natural scene statistics will be useful for detection of any tampering. The reason is that 
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the process of creating a forgery is complicated, which would damage the intrinsic quality 

consistencies of digital images. Further work on careful evaluation of how the image is 

acquired or tampered with would be required to discover more reliable quality inconsistency 

measure for image forensics.  

The possible image quality measures for image forensics to be explored in future could 

be based on pattern noise of imaging system. There are many sources of noise in images 

obtained by imaging sensor, such as dark current noise, shot noise, circuit noise, and fixed 

pattern noise [114]. Digital images contain an inherent amount of noise that is largely 

uniformly distributed across an entire image. Statistical properties of the pattern noise, such 

as variance and kurtosis of noise distribution, may serve as an intrinsic watermark to verify 

image authenticity. The reason may be that the detected inconsistencies of the pattern noise 

would indicate that the image may be a faked image. On the other hand, when creating 

digital forgeries, it is common to add small amounts of localized noise to tampered regions 

in order to conceal traces of tampering (e.g., at a splice boundary). As a result, local noise 

levels across the image may become inconsistent.  

Noise estimation is useful to detect forgery image regions from different ISO setting or 

light environment. An image is split into a number of blocks and select smooth blocks that 

are classified by the standard deviation of intensity of a block, where the standard deviation 

(σ) is computed from the difference of the selected block images between the noisy input 

image and its filtered image: 

ˆ( ) ( ( ))std N std I F Iσ = = −  (6.1) 

where N̂ is the estimated noise, std( N̂ ) is the standard deviation of N̂ , and F(I) is a 

filtering function of image I. Several denoising filters [115, 116, 117, 118] can be used for 

feature extraction. Further works can be done on the selection denoising filter. 

The image quality used in this thesis can be called as natural-imaging quality, which 

captures that the characteristics of images due to the imaging acquisition process, which for 
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the case of CCD camera consists of low-pass filtering, lens-distortion, color filter array 

interpolation, white-balancing, quantization, and non-linear transformation [66]. On the 

other hand, Natural Scene Statistics (NSS) studies aims to observe, discover and explain the 

statistical regularities in natural images [119]. NSS, being a form of natural image model, 

has found application in texture synthesis, image compression, image classification and 

image denoising. Researchers have developed sophisticated models to characterize NSS 

[120, 121, 122].  

Image manipulations would perturb the natural images statistical properties. Images of 

the visual environment captured using high quality capture devices operating in the visual 

spectrum are broadly classified as natural scenes. Images of the three dimensional visual 

environment come from a common class: the class of natural scenes. Natural scenes form a 

tiny subspace in the space of all possible signals, and researchers have developed 

sophisticated models to characterize these statistics [120]. The malicious modifications will 

disturb these natural scene statistics, and introduce some inconsistencies into images. 

Discovery of how the malicious modifications disturb natural scene statistics may be useful 

to detect maliciously modifications. To discovery how the malicious modifications disturb 

the natural scene statistics is another possible solution for detect digital forgeries.  

With the rapid development of digital technologies in video application, deliberate 

attack on valuable video is becoming easier. It is also possible to extend some techniques 

developed in this thesis to video authentication. In fact, some image authentication solutions 

can be directly employed in the frame-based video authentication if a video sequence is 

considered as a series of image frames [ 123]. Fox example, the hybrid signature and 

watermark authentication scheme may be useful in video authentication. The feature 

distance function proposed in this thesis would be helpful to improve video authentication 

performance. The idea of detecting digital forgeries by quality inconsistencies may also 

deduce possible passive video authentication techniques. 
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