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Summary 

 

This thesis investigates the trajectory-tracking performance of a robotic system under 

different control techniques, in particular the computed-torque control technique and 

state feedback linearization. A neural network control approach based on the state 

feedback linearization technique is also proposed and studied. 

A two-link manipulator has highly nonlinear dynamic characteristics which are not 

easily controlled using conventional control approaches. Several model-based control 

approaches are available which compensates for these non-linear dynamics. However, 

the performance of such model-based approaches depends highly upon an accurate 

apriori knowledge of the robot’s dynamic model which, in most cases, is difficult if 

not impossible to obtain.  

Neural networks are used in the control schemes here, and they have been found to be 

able to model the manipulator’s nonlinear dynamics. The advantage of using neural 

networks, when they can be trained using only the measured input-output data from 

the system-under-control, is the elimination of the need for an accurate dynamic 

model for good control performance. 

Performance studies on the computed torque and neuro computed torque control 

schemes were first carried out. The neuro computed torque control scheme was found 

to have extremely good performance, almost matching the computed-torque’s 

theoretically perfect tracking performance.  

A nonlinear state feedback control scheme was then investigated. This control 

approach simplifies the system by compensating for the non-linear dynamics, 

essentially reducing the robot model to a linear system and thus amenable to control 

 v



by known linear control schemes. The traditional linear approximation approach is 

not used here since, using this, reasonable performance is achievable over only a 

small range of state variables. The nonlinear state feedback linearization approach 

used here allows for operation over the entire operational range of the state variables.  

Using simulations, the trajectory-tracking performance of this non-linear state 

feedback linearization approach was compared with that for the computed torque 

control approach. The computed torque control method is conventionally used to 

linearize a certain class of systems. The performance of the designed nonlinear 

feedback law in the present work was found to be comparable to that of the computed 

torque method.  

Based on the non-linear state feedback linearization approach, a neural network 

control approach was developed. In this approach, the neural network controller was 

trained using only measured input-output data, thus eliminating the need for an 

accurate model of the system-under-control for good control performance. The 

performance of this neural network controller was found, through simulation studies, 

to be comparable to the non-linear controller designed assuming a perfect knowledge 

of the robot’s dynamic model. 

The main contribution of this dissertation is the application of the nonlinear state 

feedback controller for the control of a two-link robotic manipulator and the 

development of a neural-network controller based on this model-based approach. In 

this thesis, a nonlinear state feedback control law has been derived mathematically. 

This feedback law is applied to a two link robotic manipulator in order that the robot’s 

closed loop system can be made linear.  The current simulation work using the 

developed feedback law contributes towards the application of linearization techniques 

 vi



on nonlinear multi-link robotic system. Based on mathematical analysis and an 

experimental study, the proposed controller has been shown to give good tracking 

performance and stability.  Simulation studies compare the trajectory-tracking 

performance of this approach to the more developed computed-torque control 

approach and its neural network equivalent.  

 vii
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Chapter 1 Introduction 

 

1.1 Overview 

 

Robotic manipulators are now being used widely, both in industry, for medical care 

and in the home. Accurate trajectory tracking are required in many such applications. 

In this dissertation, the control of a robotic manipulator for trajectory tracking is 

investigated.  

 

The analysis and synthesis of the control system are well established for linear time-

invariant systems [Ogata, 1970].  For a system with slow time-varying property, the 

adaptive control technique has proved to be a sensible solution [Narendra, et al., 

1989].  However, for a non-linear system such as a robotic manipulator, control 

system design is typically handled on a case-by-case basis.  Feedback linearization is 

a popular choice for deterministic system [Sidori, 1989].  However, feedback 

linearization implies a model-based control strategy in which its control performance 

is inherently sensitive to modeling accuracy [Zhu, et al., 1992].  In recent years, 

incorporating neural networks proved to be a popular method for the control of 

systems with significant nonlinearity, especially for the case that the plant 

nonlinearity is unknown [Hunt, et al., 1992].   

 

The problem of controlling robotic manipulators is a challenging one as the dynamics 

of a robotic manipulator is highly non-linear. In addition, unmodeled dynamics, and 

environmental changes and unmeasurable disturbances during operation are just some 
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of the uncertainties that prompt further research into better and more intelligent 

control schemes. Neural networks and feedback linearization techniques are the 

control techniques being investigated and applied in the work presented here. 

Feedback linearization is used to compensate for the non-linearities in the robot’s 

dynamics. The resultant controllers designed are model-based and their control 

performance highly dependent upon an accurate knowledge of the robot’s dynamic 

model. However, the latter is difficult, if not impossible to achieve. Furthermore, the 

dynamic model of the robot may change during operation, an example of which is 

when it picks up a payload thus changing its mass properties. Neural networks, with 

their abilities to be trained to approximate models, are used to avoid the need to have 

apriori knowledge of the plant’s dynamic model. 

 

In the work presented here, the trajectory-tracking performance of the computed 

torque control method, applied to a two-link robotic manipulator is compared with 

that obtained for a designed neural computed torque method. Next, a state feedback 

approach for the linearization of a class of non-affine non-linear systems was 

investigated and the mathematical analysis carried out for application to the same 

two-link robotic manipulator. Based on this linearization approach, a PD 

(proportional plus derivative) controller is designed and the trajectory-tracking 

performance of the controller determined and compared with that obtained for the 

computed torque approach. Based on this non-linear state feedback linearization 

approach, a neural network-based controller, together with the necessary training 

procedure, is designed. The advantage of this neural network controller is that it can 

be implemented using only measured plant input-output data and still achieve good 
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control performance without the need to have any knowledge of the plant’s dynamic 

model. With the neural network controller, an approach utilizing on-line re-training of 

the neural network controller can be implemented. This latter approach will be able to 

adapt and will be able to maintain good control performance in the face of 

environmental, modeling and operational uncertainties and changes during operation.  

 

 

1.2 Thesis contributions 

The main contributions of the work presented here are summarized below: 

 
[1] Simulation work using the developed feedback law contributes towards the 

application of linearization techniques on nonlinear multi-link robotic systems. 

Current research work by others [Taware A, et al., 2003] focuses on development of 

feedback linearization for scalar output functions, for example, a one link robot 

system. Moreover simulation studies for scalar functions are rare in present research 

literature. Hence the motivation here will be to make use of the symbolic capability a 

program such as Matlab to do complex symbolic computations for two link systems. 

The new thing is that the current simulation work is done on vectored output 

functions, as illustrated by a two-link robot system. Accurate tracking results obtained 

illustrate the validity of the developed controller formulations. As the resulting 

controller is based on feedback from positions and speeds of the manipulator link, 

only conventional position and velocity sensors are required. Therefore this controller 

is practically viable. A neuro-feedback linearized controller is also simulated with 

good regression tracking results. 
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[2] Implementation of computed torque and neural computed control for a two-link 

robotic manipulator and simulation studies. The results are used as reference plots for 

the feedback linearization simulations.  

[3] Investigation into a non-linear state feedback approach for the linearization of a class 

of non-affine non-linear systems and its implementation on a two-link robotic 

manipulator. Simulation results show that this control approach has a control 

performance comparable to that obtained by the computed torque approach. 

[4] Development of a neural network control approach based on the non-linear state 

feedback method in (1) above. This neural network approach allows the neural 

network controller to be trained from actual measured plant input-output data. As 

such, an accurate apriori knowledge of the plant’s dynamic model is not necessary 

and, because of the use of actual plant input-output data, the neural network controller 

is assured, assuming proper and adequate training, of being able to map the plant’s 

actual dynamics accurately, thus achieveing good control performance. With on-line 

retraining, this neural control approach can be adaptive to operational changes and 

uncertainties. 

 

 

1.3 Historical development background 

There have been tremendous developments in nonlinear control theory over the last 

few decades. One such important nonlinear control technique is the feedback 

linearization technique [Marino et al., 1995]. Feedback linearization was first 

developed in the 1970s. This technique helps to transform a nonlinear system into a 

controllable linear system by means of static state feedback and nonlinear 
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transformations. The feedback linearization problem was studied and became very 

important because of its potential use in industrial systems. Standard and well-

established linear control theory and controller design approaches can be readily 

employed once a nonlinear system has been feedback linearized. On top of that, 

systems with multiple inputs and multiple outputs can also be linearized and 

decoupled, thereby allowing for the effective use of single loops with linear 

controllers. 

 

 

1.4 The pitfalls of linear control 

The common engineering practice assumes that a system be described by a set of 

linear differential equations  

BuAxx +=&           (1.1) 

where x(t) = state of the system, 

 A, B = time invariant matrices defining the properties of the system, and 

 u(t) = control effort 

Assuming that (1.1) accurately describes the system behaviour, researchers and 

control practitioners can use well-developed techniques and properties derived from 

linear control theory for the analysis of the system and the design of appropriate 

controllers. These properties include 

(i) a unique equilibrium point with a nonsingular matrix A, 

(ii) a stable equilibrium point if the eigenvalues of A have negative real roots, and 

(iii) possible analytic solutions of the linear differential equation. 

The transient response can also be explicitly determined. 
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For cases where the control input u(t) is present, properties include 

(i) superposition, 

(ii) asymptotic stability of the unforced system also ensures bounded input bounded 

output stability of the forced system, and 

(iii) a sinusoidal input leading to a sinusoidal output of the same frequency. 

 

Though linear system properties allows the use of good well-known design and 

analytical tools to achieve good control performance, any significant nonlinear 

characteristics in the system’s behaviour may make approaches based on linear 

system theory inapplicable . Non-linear systems are much more complex and, in 

general, difficult to handle. If the nonlinear behaviours were to be neglected and 

linear system tools are used, the resulting control designs can have significantly 

degraded control performance with unpredictable stability characteristics. These are 

the limitations and pitfalls experienced by linear systems theory as they have 

difficulty encapsulating and compensating for the non-linear effects. 

 

 

1.5 The need for nonlinear control techniques 

All physical systems exhibit non-linear behavior, some more so than others. In a 

nonlinear system, the relationship between controlled and manipulated variables 

depends on the operating conditions. In such systems, linear control techniques may 

be applied in certain situations with satisfactory results where the nonlinearities are 
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mild, or when the operating conditions do not change much. In the latter case, 

linearization around the locality of the operating point works quite well. 

 

For many industrial systems with highly nonlinear behaviour, linear control 

techniques cannot be satisfactorily applied, particularly in cases where the systems 

operate over a wide range of operating conditions. Conventional linear controllers are 

sometimes used to control these highly nonlinear processes, but these controllers need 

to be tuned in a conservative manner in order to avoid unstable behaviour. The 

drawback in such an approach is that control performance can be seriously degraded, 

performing far from optimum conditions. Hence there is a need to use more 

sophisticated control techniques which will use information about the nonlinearities 

of the controlled system to achieve near-optimal control performance over the 

system’s entire operational range. 

 

1.6 Towards nonlinear control 

Traditionally, nonlinear control systems are approached by taking linear 

approximations about equilibrium points that corresponds to constant inputs 

[Marino et al., 1995]. 

eix

iu

Consider the nonlinear state space system described by the following equations 

),( uxfx =&          (1.2) 

)(xhy =           (1.3) 

where x is the system state, u the control effort or input, and y the system’s output. 

The small deviations ,iξ& iξ  and are iv
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eii xx &&& −=ξ ,         (1.4) 

eii xx −=ξ          (1.5) 

and .         (1.6) ii uuv −=

where  is the equilibrium state for a constant control input . , and are 

the known nominal solutions. 

eix iu eix& eix iu

The locally linearized model is given by 

iiiii vGF += ξξ&          (1.7) 

iii Hy ξ=           (1.8) 

The Jacobian matrices evaluated at nominal solutions ,  and  are eix eix& iu

),( ieii ux
x
fF
∂
∂

=          (1.9) 

),( ieii ux
u
fG
∂
∂

=          (1.10) 

and )( eii x
x
hH
∂
∂

= .         (1.11) 

At the equilibrium points, 

0),( =iei uxf                    (1.12) 

0)( =eixh           (1.13) 

This approach faces critical transition problems when one moves from one solution 

point to another. Maintenance of good performance and stability is difficult over wide 

ranges of variations of state variables.  
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1.7 Background of nonlinear control 

During the seventies, nonlinear controllability and observability was initially studied 

using differential geometric tools. These studies led to the development of the 

nonlinear feedback control design theory [Schwarz 2000]. In practice, significant 

nonlinearities such as the centripetal, Coriolis and inertial forces could be exactly 

modeled using well-known physical laws. Engineers can then design nonlinear 

control algorithms that could better meet specifications which could not be met by 

means of linear control techniques. An example of such algorithms is the computed 

torque algorithm for high speed rigid-link robots in 1976. These algorithms mainly 

made use of nonlinear changes of state coordinates and of nonlinear state feedback’s 

nonlinearity cancellation to make the closed loop system linear [Khalil 2003]. 

Nonlinear controls can outperform linear controls designed on the basis of linear 

approximations because nonlinear control algorithms can use all of the information 

contained in nonlinear models. 

 

 

1.8 Model-based control 

The nonlinear system’s dynamic behaviour and information are represented by a set 

of nonlinear differential equations. With the design of the controller or control 

algorithm dependent on the dynamic model of the plant, feedback linearization and 

many other nonlinear control techniques become model-based in nature. If the 

nonlinear plant model can be obtained, a physical-based model will be derived from 

physical principles such as energy, force or momentum balance equations. Such 

models have the advantage of being applicable over the whole range of operating 
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conditions. However, physical-based models are not always available or known, and 

even if so, the determination of accurate values of the parameters are often difficult. 

There are also costs and engineering efforts associated with the determination of these 

models. One solution could be to obtain the empirical dynamic model from measured 

input-output data using system identification techniques. There has been growing 

interest in the development of nonlinear dynamic models from input-output data.  

 

Any model-based control design method will be prone to sensitivities to modelling 

errors. Models used for control system design cannot be infinitely precise and 

significant control performance degradation can result from errors in the model used 

for the design. Hence another possible solution to this problem is to obtain nonlinear 

empirical models from neural networks. Neural models are capable of being trained 

to map nonlinear dynamics, and this makes them a promising tool for nonlinear 

system modelling. 
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Chapter 2 Literature Review 

- A Survey of Tracking Control techniques for Robots 

 
2.1 Introduction 

In the eighties, there were two different approaches to the control of uncertain 

systems. The first approach is that of adaptive control, and the second approach is that 

of robust control [Zhou 1998]. 

 
For the adaptive control approach, the designed controller adapts to the uncertain 

and/or changing parameters of the system. The “best” controller is thus obtained after 

learning or identifying the parameters of the system-under-control. Hence the 

adaptive controller can be applied to a wide range of uncertainties. For the robust 

control approach, the controller adopts a fixed structure. Such control structures give 

acceptable performance for a system with a specified uncertainty set.  But they are 

simpler to implement, and there is no need to spend time on the tuning of the 

controllers. In the nineties, researchers have tried to merge the two approaches so that 

certain adaptive controllers can be robustified. In this way, the good qualities of both 

approaches can be combined. 

 

2.2   Robust control 

The robust control technique was applied to a nonlinear robotic system by Spong 

[Spong 1989, 2002] in 1992. The Lyapunov-based theory of guaranteed stability for 

uncertain systems is used to design the robust controller. The derived controller is 

innovative because the law depends on the inertia parameters of the robot, wheareas 

earlier controllers relied on the reference trajectory, manipulator state vectors and the 
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inertia parameters. The controller was based on the adaptive control algorithm 

developed by Slotine and Li [Slotine, et al., 1998] in 1988. The closed loop system is 

globally convergent with the position tracking errors converging to zero and the 

parameter estimates remaining bounded. During the position tracking simulation, 

errors obtained after two seconds are –2.17E-4 for the first link position, and 2.28E-4 

for the second link position. Such error records are considered small, and it further 

demonstrates that the adaptive controller is able to achieve global convergence. Such 

controllers are useful in robots that involve grinding operations with end-point force 

feedback. This is because in such environments, uncertainty is small, and robustness 

to disturbances and unmodeled dynamics are of importance. 

 

2.3   Adaptive control 

In 1995, Rafizadeh and Perz [Rafizadeh, et al., 1995]] applied robust and adaptive 

control techniques for their simulation studies on trajectory control of the Puma 560 

robot model. Although perfect state convergence is achieved the tuning of Craig’s 

adaptive controller is manual and also very time consuming. The parameters also tend 

to saturate within bounds of 0.01. 

 

Parameter adaptive control is also used by other researchers. They used a gradient 

parameter update law, in addition to a tracking control law, as asymptotic exact 

cancellation of nonlinear terms are needed. Since exact cancellation of nonlinear 

terms is not possible, exactly linearizing control law implementations are difficult. 

The current work on the derivation and implementation on the feedback control law 
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did not involve any use of adaptive parameter update laws. The linearizing feedback 

control law is in itself sufficient to give good tracking results. 

 

2.4   Feedback linearization control 

Design of nonlinear state feedback control began in the early eighties for certain 

simple classes of single-input-single-output nonlinear systems. Feedback linearizable 

and input-output linearizable systems are two common areas studied at that time.  

 

For feedback linearizable systems, the state space equations are made linear in certain 

state coordinates via state feedback. Once the non-linear system has been linearized, 

conventional linear control design methods, such as the pole placement method, can 

be used. 

 

For input-output linearizable systems, the input-output dynamics are linearized using 

state feedback controllers that may make certain dynamics unobservable from the 

output. The zero-pole cancellation technique is used. 

 

Both methods have a reliance on exact cancellation of possible nonlinear terms 

containing uncertain parameters. 

 

Since 1987, feedback linearizable system control design for uncertain parameters was 

done by Sastry and Isidori [Sastry, et al., 1989]. They used parameter adaptation to 

robustify the exact cancellation of nonlinear terms. This is because the two methods 

mentioned above suffered from the assumption that the model dynamics are certain. 
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But if the model is to contain uncertain nonlinear terms, exact cancellation of 

nonlinear terms is not possible. Hence parameter adaptive control filled in the 

weakness of the early methods. 

 

Taware and Gao developed linearized feedback laws for a single-link manipulator 

arm system[Taware, et al., 2003] in 2003. They addressed the control problems 

involved for simple nonlinear system models, and it was noted that simulation work 

was not carried out for the verification of their developed controller laws. They 

proved the asymptotical stability of simple nonlinear systems under their developed 

controller laws.  

 

Simulation was carried for flexible two-link joint robots by Berger [Berger, et 

al.,1992] in 1992. Trajectory tracking results are obtained for parametric errors of up 

to 50%. 

 

In the early twentieth century, the availability of powerful computational 

microprocessors encouraged researchers to carry out simulation and testing of 

innovative nonlinear control algorithms for robotic applications. 

 

2.5   Neural network control 

Neural network controllers for robot manipulators are ‘model-free’. Hence they are a 

good alternative to robust and adaptive control techniques. Such controllers can be 

made to learn on-line the systems that they control. 
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Various robot control schemes have been developed in the literature. Two such 

control schemes will be investigated and their simulation results will be discussed.  

 

Kim and Lewis developed a robust neural network output feedback scheme for closed 

loop output feedback control [Kim, et al.,1999]. Joint velocity measurements are not 

needed for their scheme. The weights of the neural network controller are tuned on-

line, and off-line learning is not required. Exact knowledge of robot dynamics is also 

not required. Simulation results of their proposed scheme showed that their neural 

network controller is capable of overcoming uncertainties. They compared their 

results with a proportional derivative (PD) controller. The PD controller shows that 

there are oscillatory behaviours in the tracking errors. By comparison, the neural 

controller can minimize errors even when the end-effector’s mass has been changed. 

 

Sliding mode neural network (SMNN) controllers are also used for tracking control of 

robots. For the SMNN controller developed by Wai [Wai 2002], the tracking errors 

converge quickly. High precision control is the desired aim, and asymptotic stability 

of the control system is to be guaranteed since the adaptive learning algorithms in the 

SMNN control system are derived from Lyapunov stability analysis. 

 

Flexible link manipulators are also used for position tracking simulations under 

neural network based controllers. Talebi and Patel [Talebi, et al.,2000] developed 

several neural network schemes. These schemes are simulated and tested 

experimentally on a single flexible link test-bed. Their networks are trained online, 
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and offline training is not needed. Their experimental results demonstrate the 

advantages of neural network controllers over model-based PD controllers. 

 

Static neural networks have been used for many research simulations and experiments 

in the literature. It is a challenge to incorporate dynamic neural networks into neural 

controllers for robot tracking control. Sun and Li [Sun, et al., 2002] developed 

dynamic neural network(DNN) adaptive controllers for robot manipulators with 

unknown nonlinear dynamics. Their simulation results show that the performance of 

the DNN controller is better than that of the static neural network(SNN) based 

controller. 

 

Intelligent optimal control techniques can also be combined with neural networks for 

trajectory tracking of robots. Kim solved the algebraic Riccati equations so that 

explicit solutions to the Hamilton-Jacobi-Bellman equation for optimal control of 

robotic systems may be solved [Kim, et al., 1999]. Their proposed neural adaptive 

learning scheme gives satisfactory tracking results. This scheme is robust and can 

adapt to changing system dynamics. 

 

Experimental results by Gupta and Sinha [Gupta, et al., 2000] show that it is 

practically viable to combine neural networks and the PD controller for trajectory 

tracking. Their results also show that a neurocontroller still performs satisfactorily 

when there are uncertainties. Performance of conventional schemes deteriorates 

slightly when there are uncertainties that could not be included in the dynamic model. 
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Patino developed feedback adaptive neurocontrollers for trajectory tracking of robots. 

[Patino, et al., 2002] They combined feedforward neural networks with adaptive and 

robust control techniques. Their simulation studies on a PUMA 560 robot show that 

the control error converges asymptotically to a neighbourhood of zero. This is 

because they used a bank of off-line trained fixed neural networks instead of 

conventional backpropagation networks. 

 

Experimental studies with neural control using conventional backpropagation 

algorithms were done on a PUMA 560 robot by Acosta [Acosta, et al., 1999]. The 

neural network controller was implemented on a computer and analog-to-digital 

(A/D) converters, digital-to-analog (D/A) converters and optical encoders were used 

for the issue and capture of torque values to and from the robot links. The neural 

controller gave better experimental results than the conventional PD controller. 

However, it was reported that the neural controller faced implementation difficulties. 

During startup, the robot exhibited erratic movements since the joint angles took on 

arbitrary initial values. Initial weight assignments were random, but a proposed 

solution was to assign values for the initial weights based on those found from 

previous experiments. 
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Chapter 3 Computed Torque and Neural Computed Torque Control  

 

3.1 Summary  

In this chapter, the theoretical background for two control approaches are discussed 

and developed. These are computed torque control and neuro-computed torque 

control. 

 

Implementation issues in respect of a two-link robotic manipulator are discussed. In a 

subsequent chapter, simulation experiments are discussed and performance results 

presented. 

 

3.2 Robot Dynamic Model 

The dynamic model of a robot can be written as  

ττqGqFqqqVqqM =++++ dm )()(),()( &&&&&      (3. 1) 

where 

)(qM = inertia matrix,  

),( qqV &m = Coriolis/centripetal matrix, 

)(qF & = friction terms, 

)(qG = gravity vector, 

dτ = disturbances, and  

τ = torque control input.   
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Figure 3.1 shows a two-link robot manipulator. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1  Two-link robot manipulator model. 

 

Assuming that the masses are point masses located at the ends of the links, the links 

have neligible masses, and neglecting friction, the dynamic model of the two-link 

manipulator shown in Figure 3.1 can be written as 
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where τ  = Torque, m = mass, q = link angular position, g = gravitational acceleration 

and l = length of link, and the subscripts 1 and 2 refer to Link 1 and Link 2. 

 

3.2.1 Summary of control problem 

Assuming that the whole state ( ) is measured, a control law is needed to 

compute the values of 

2211 ,,, qqqq &&

τ  such that  tracks a desired reference . q )(trq

 

3.3 Neural Networks- Backpropagation 

 

Neural networks has the ability to learn the nonlinearities of a system and is able to 

do function approximation. The neural network is a vector-valued nonlinear function 

that provides a nonlinear mapping process from the input signal vector to the output 

signal vector. Learning by, or training of, a neural network is done by presenting it 

with training pairs of vectors of inputs and the corresponding desired outputs. Based 

on these training pairs, the neural network adjusts its internal weights in such a way 

as to approximate the function represented by the training pairs through a process 

known as back-propagation[Haykins, 1999].  

 

3.3.1 Neural Network Architecture 

A feedforward neural network is used in this work for the neuro-computed torque 

control scheme. Two neural sub-networks are used, one to generate each of the two 

control torques required. The first sub-network is used to generate the control torque 

for Link 1 while the second sub-network is used for that for Link 2. Three processing 
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layers, including two hidden layers, are used for each sub-network with the first layer 

having 10 neurons, the second layer 5 neurons, and the third output layer one neuron. 

 

When neural networks are used, the required nonlinear input-output mapping is 

assumed to have a functional relationship described by )(xfd = , where d is the 

output vector, and x is the input vector. The vector-valued function f(.) is assumed to 

be unknown. A set of labeled examples ( ){ }N
i 1, == ii dxς are given so as to make up for 

the lack of knowledge in the function f(.). is the desired response. This set of 

labeled examples is used to train a neural network as a model of the system. 

id

Figure 3,2 shows the architecture of a multi-layer perceptron, one form of 

feedforward neural network. 
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Figure 3.2 Architectural graph of a multiplayer perceptron with one hidden layer. 

 

 I, J, K are the number of nodes in the input, hidden, and output layer respectively. xi, 

yj, zk are the outputs of the ith, j th and k th nodes of the input, hidden and output 

layers respectively. vji is the weight connecting the ith input node to the j th node in 
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the hidden layer and wkj is the weight connecting the output of the j th node in the 

hidden layer to the input of the k th node in the output layer. 

 

The backpropagation algorithm used for training the neural network in the work 

described here is described as follows. This method is called error backpropagation 

because error signals are first computed at the outputs of the last layer of the network. 

These are then propagated backward through the network to compute the 

corresponding error signals at each of the outputs of the neurons in the hidden layer. 

These error signals are used to compute the necessary adjustments to the connecting 

weights in the neural networks. In this way, the neural network is trained by having 

its connecting weights adjusted. The error backpropagation procedure is described in 

details in the following sections. 

 

A training pair comprises the input vector 

[ T
Ixxx ...21=x ]

]

        (3. 4) 

together with the corresponding desired output value vector 

[ T
Kddd ...21=d         (3. 5) 

 

When presented with the input vector x, the first layer gives the output 

T
Jyyy ][)( 21 K== vxΓy        (3. 6) 

and for the second layer, the output is 

T
Kzzz ][)( 21 K== wyΓz        (3. 7) 
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where v is the weight matrix between the first two layers, and w the weight matrix 

between the second and the third layers. In general, the computed output vector z will 

not be the same as the desired output vector d. The error at the kth neuron in the 

output layer is then given by 

kkk zde −= .         (3. 8) 

 

For a bipolar sigmoid activation function, the error signal vector at the kth neuron in 

the output layer is 

)1)((
2
1 2

kkkzk zzd −−=δ .        (3. 9) 

 

The error signal at the output layer, given by Equation 3.9, is backpropagated to 

produce the error signals at the output of the jth neuron in the hidden layer which is 

given by 

∑
=

−=
K

k
kjzkjyj wy

1

2 )1( δδ         (3. 10) 

 

The weight increments are then given by 

T
zyδw η=∆          (3. 11) 

and 

T
y xδv η=∆ .          (3. 12) 
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The weights are updated with the weight incremental values, and the above described 

algorithm is repeated with a different set of training pair until the error in the output 

decrease to some specified value. 

 

3.4 Computed torque control 

Consider the robot model as given in Equation (3.1). This can be simplified as  

),()( qqHqqMτ &&& += .        (3. 13) 

with dm τqGqFqqqVqqH +++= )()(),(),( &&&&  

 

The control torque is computed as  

),(ˆ)(ˆ qqHuqMτ &+=  (3. 14) 

where  and  represents estimates of  and  respectively. )(ˆ qM ),(ˆ qqH & )(qM ),( qqH &

 

The term u in Equation (3.12) is computed as 

)()( qqqqqu ddd −+−+= pv kk &&&&  (3. 15) 

where ,  and are the desired or reference input values of acceleration, 

velocity and angular positions of the links respectively, and k

dq&& dq& dq

v and kp are constants 

representing derivative and proportional gains of the PD controller. In practice, the 

joint positions are measured very accurately with position encoders. The joint 

velocity is usually measured using a tachogenerator, which may be subject to small 

noise disturbances. 

 

Expansion of (3.15) gives 
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)()( 111 111
qqkqqkqu dpdvd −+−+= &&&&       (3. 16) 

and  

)()( 222 222
qqkqqkqu dpdvd −+−+= &&&&       (3. 17) 

If perfect knowledge of the robot’s dynamic model is available, then  

)()(ˆ qMqM =          (3. 18) 

and 

),(),(ˆ qqHqqH && =         (3. 19) 

 

From Equations (3.13) to (3.17), we obtain the following 

uq =&& .          (3. 20) 

 

Using Equation (3.14) for the two-link manipulator given by Equations (3.2) and 

(3.3) gives 

)q(qgl+m
)(q)glm+(m

q)(qll)mqq(
q)(qllmq

)]u(qllml[m
)]u(qllmlm)lm[(m
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     (3. 21) 

)q(qglm
(qllmq

ulm)]u(qllmlm
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2212
2
1

2
2
2212212

2
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cos
)sin

cos

++
+

++=

&

τ

      (3. 22) 

where  and  are obtained from Equations (3.16) and (3.17). 1u 2u
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Substitution of (3.20) into (3.15) gives 

)()( qqqqqq −+−+= dpdvd kk &&&&&&        (3. 23) 

Rearranging (3.23) gives 

0=++ eee pv kk &&&          (3. 24) 

where  is the trajectory-tracking error.  qqe −= d

We can re-write Equation (3.24) in the form 

02 2 =++ eee nn ωρω &&&         (3. 25) 

in which nω  is the undamped natural frequency and ρ  is the damping factor. 

Comparison of (3.24) with (3.25) gives 

nvk ρω2≡           (3. 26) 

2
npk ω≡           (3. 27) 

 Equation (3.24) is the error equation which states that if the initial error is zero, that 

is,  and e=0, then the error e will be always zero, thereby giving perfect 

tracking. If there is some initial value of error, Equation (3.23) states that the error 

will tend to zero with time as long as k

0=e&

v>0 and . 0>pk

 

Figure 3.3 shows the schematic diagram illustrating the computed torque control 

method. The dotted box represents the regressive part that the neural computed torque 

control method aims to approximate. There is an analogy between the boxed section 

in Figure 3.3 and Figure 3.4. 
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Figure 3.3 Computed torque control. 

 

The algorithm of the discrete form of the computed torque controller, as implemented 

in a computer, is as follows: 

 q 

Robot 

Kv 
Kp 

T

q qd 

e 

u qd 

 

M(q)

H(q)

(i) At sampling instant k, at time t=tk, compute desired trajectory values of ,  and 

. 

dq dq&

dq&&

(ii) Use the q and  output at t=tq& k to compute the acceleration input, u, of Equation 

(3.15) . 

(iii) Compute torque values 1τ  and 2τ  from the dynamic Equations (3.21) and (3.22). 

(iv) These control torques are then applied to the robot. For the simulation studies, 

ordinary differential equation (ODE) solvers are used to solve the nonlinear dynamic 

Equations (3.21) and (3.22). The Matlab™ ode45 solver is used to obtain the next 

time (t=tk+1) step’s q and  from the dynamic Equations  (3.21) and (3.22). q and q  

are initialized to zero as initial conditions for the simulation for t=0. 

q& &

(v) The new values of q and  are then used and step (i) is repeated with t=tq& k+1. 

The loop is terminated once the desired simulation time has been reached. 
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The time response simulation uses the Runge-Kutta ODE integrator to compute the 

state trajectory x(t) by solving for . x&

 

 

3.5    Neural computed torque control 

 

The computed torque control method suffers from the disadvantage that an accurate 

dynamic model of the robot needs to be known to achieve good control performance. 

However, this is not easily accomplished in practice. 

 

In the neuro-computed torque control approach [Li et al, 1995], shown in Figure 3.4, 

a feedforward neural network is used and trained using the robot’s actual input-output 

data. This neural network controller essentially replaces that portion of Figure 3.3 

enclosed by the dotted box. For the neural computed torque controller, the same 

algorithm as described in the previous section can be applied. However, in this case, 

the backpropagation neural network is used to generate the control torques instead of 

Equations (3.21) and (3.22). Hence the trained neural network is used in place of the 

model to predict the motor torque values once input, u, is given to it.  

 

The robot’s model is still needed as target values before the algorithm is applied for 

purposes of training the neural network before the network is being used real-time 

during the algorithm loops of (i) to (v). The neural network uses scaled inputs and 

outputs.  

 28



 

For the first neural subnetwork of link 1, torque values of the first link are obtained 

from the network when the position, velocity and acceleration values of links 1 and 2 

are fed as inputs. (Equation [(3.21)]) For the second neural subnetwork of link 2, 

torque values of the second link are obtained from the network when the position and 

acceleration values of links 1 and 2 are fed as inputs. Velocity values of link 1 are 

also fed as inputs for the second subnetwork (Equation [(3.22)]). 

 

Σ
+

-

Kp Kv

-

Neural
Network

q

q&

Robot

dq

++

++

dq&

dq&& u τ

 

Figure 3.4 Neural computed torque control. 

 

Measured input-output training data from the plant is obtained from experiment as 

shown in Fig. 3.5. An excitation function generator generates a trajectory as input to 

the plant. Both the sequence for the input and the output of the plant, kτ  and  

respectively, are then measured at each sampling instant and these sequences are then 

used to form training sets as given by Eqn. (3.21) and (3.22). Values of  and  

are estimated from values of  using the backward difference. Training of the 

controller is then done with the training data sets obtained. In the work done here, 

both the inputs and outputs to the neural network are scaled so that their values are in 

kq

kq& kq&&

kq
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the approximate range of . This is done for better training and performance of the 

neural network [Haykins, 1999].   

1±

 

Robot

Recorder

Generator •k
τ kq

Figure 3.5. Generating input-output training data. 
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4 Nonlinear Feedback Linearization 

 

4.1Mathematical preliminaries for feedback linearization  

Consider the time-invariant, non-affine non-linear continuous-time system written in 

the state-space form )()( xugxfx +=& , with an open subset , and the control-

value space 

nx ℜ⊆

ℜ=U . 

 

Suppose∑  and ∑
~

 are two systems of the above form and suppose that  and Ο Ο~  are 

open subsets of the state spaces  and x x~  respectively. Then  is feedback 

equivalent to  if there exists a diffeomorphism 

),( O∑

)~,
~

( O∑ OOT ~: → , or T(x), and smooth 

maps ℜ→O:,βα  where 0)( ≠xβ  for all Ox∈ , such that for each Ox∈ , 

 and ))((~))()()()((* xTfxgxxfxT =+α ))((~)()()( * xTgxgxTx =β  where f,g and  

are the vector fields associated with their respective systems [Sontag 1998]. 

gf ~,~

 

Since T is a diffeomorphism,  and x x~  need to have the same dimension. The 

previous equalities  and ))((~))()()()((* xTfxgxxfxT =+α ))((~)()()( * xTgxgxTx =β  

may be expressed in the following equivalent form 

( ) ( ) ( ) ( ))(~)(
)(

1)(~)()(* xTgxu
x

xTfxugxfT α
β

−+=+ mRuOx ∈∀∈ ,  ∀ . 

 

A change of variables ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= )]([

)(
1),(:),(),( xu
x

xTvzux α
β

a  provides a 

diffeomorphism between ℜ×O  and ℜ×W  where the inverse is 
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( ) ( )( )vzTzTzTuxvz )()(),(:),(),( 111 −−− += βαa . 

 

The solutions of )()( xugxfx +=&  are transformed into solutions of 

. These solutions correspond to the input )(~)(~ zgvzfz +=& [ ])(
)(

1 xu
x

v α
β

−= . 

vxxvxku )()(),( βα +==  may be viewed as a feedback law that closes the loop 

about the system with v as the new input. Therefore the closed-loop system 

 transforms into the new system  under the 

change of variables z=T(x). 

)(),()( xgvxkxfx +=& )(~)(~ zgvzfz +=&

 

4.2 Theoretical development results 

The robot model being used here will be the same as the two-link model described in 

Section 3.1. Subscript 1 denotes the inner link, and subscript 2 denotes the outermost 

free link. 

 

The joint variables are q1 and q2. 

Tqq ]  [ 21=q          (4.1) 

 

The torques to the robot’s actuator motors are 1τ  and 2τ . 

T]  [ 21 ττ=τ          (4.2) 

 

The dynamic model of the robot is 
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ττqGqFqqqVqqM =++++ dm )()(),()( &&&&&      (4.3) 

where 

)(qM = inertia matrix,  

),( qqV &m = Coriolis/centripetal matrix, 

)(qF & = friction terms, 

)(qG = gravity vector, 

dτ = disturbances, and  

τ = torque control input.   

 

The robot’s arm dynamic equations are obtained from Lagrange’s equations 

(Appendix A.1). They are re-written in matrix-vector form as follows: 
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   (4.4) 

 

Consolidation of the terms gives the robot dynamic equations in a standard form 

τqGqqVqqM =++ )(),()( &&& .       (4.5) 

with 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
++++

= 2
22212

2
22

2212
2
222212

2
22

2
121

2
cos

coscos2)(
lmqllmlm

qllmlmqllmlmlmm
M(q)   (4.6) 
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⎥
⎦

⎤
⎢
⎣

⎡ +−
=

2
2
1212

2
2
221212

sin
sin)2(

qqllm
qqqqllm

&

&&&
& )qV(q,       (4.7) 

⎥
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=

)cos(
)cos(cos)(

2122

21221121

qqglm
qqglmqglmm

)qG(q, &     (4.8) 

 

Acceleration is made the subject of the standard dynamic equation as follows 

τqGqqVqqM =++ )(),()( &&&  

⇒        (4.9) G(q)])qV(q,τMq −−= − &&& [1

 

The state of the system is defined as 

TTT ]  [ qqx &≡ .         (4.10) 

 

It is chosen that the state terms be 

224

113

22

11

xqx
xqx

qx
qx

&&

&&

==
==

=
=

 .        (4.11) 

 

The robot model system is then expressed in partial state-space form as 

g(x)uf(x)x +=& .         (4.12) 

with 
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LHS:        (4.13) 
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The third and fourth terms of the Equation (4.33) is . This acceleration has its 

derivation origins from the earlier Equation (4.29). This is reflected in the second 

vector row term of Equation (4.34). 

q&&

 

The terms of the state-space form are 

⎥
⎦

⎤
⎢
⎣

⎡
+−

= − G(q)])q(q)[V(q,M
q

f(x) 1 &

&
      (4.15) 

⎥
⎦

⎤
⎢
⎣

⎡
= − (q)M

0
g(x) 1          (4.16) 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

τ
τ

u           (4.17) 

 

The feedback controller formula needs to be derived, and it will have the general 

form 

vxβxαu )()( += .         (4.18) 
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4.3 Results of the derivation of the nonlinear feedback control law  

The nonlinear robot system expressed in partial state space form [Taware A, et al., 

2003] is 

uxgxfx )()( +=&          (4.19) 

h(x)y = .          (4.20) 

 
Some of the mathematical preliminaries of section 4.1 are used in section 4.3.  

 

The output of the system is Ch(x)y = . Since trajectory tracking is the aim here, the 

output of the system is fed as input to the system. Therefore C=I, the identity matrix 

. When C=I, y=Ch(x) gives y=h(x). Hence y=h(x).  ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 

For the present system, x  and  are 4×1 vectors. is a 4×2 matrix, and u is a 

2×1 vector.  h(x) is a 2×1 vector, where  

& )(xf )(xg

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1)(
x
x

xh .         (4.21) 

 

Assume that the system has a starting state  at time . The output and its 

derivatives  needs to be calculated. 

)( 0tx 0t )(ty

)()( tky

)(         
))(()(

0

00

xh
xhy

=
= tt

         (4.22) 
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Differentiating once with respect to time gives 
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)]())(())(([(           

)()1(

ttLtL

ttt

ttt

dt
dt

uxhxh

uxg
x
hxf

x
h

uxgxf
x
h

x
x
hy

gf +=
∂
∂

+
∂
∂

=

+
∂
∂

=

∂
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  .    (4.23) 

 

The mathematical notation used here is the Lie derivative of h(x) along f(x) being 

defined as f(x)
x

h(x)h(x)f .
T

L ⎥⎦
⎤

⎢⎣
⎡
∂

∂
= . 

 

For the present robot model, it has been calculated that 

0))(( =tL xhg  .        (4.24) 

 
The first derivative term is then reduced to 

))(()()1( tLt xhy f=∴  .       (4.25) 

 
The first derivative in Equation (4.25) is further differentiated to give 
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The repeated Lie derivative - first along f(x) and then along g(x) - is defined 

as )x(g
x

))x((
)x(

∂
∂

=
hL

hLL f
fg . 

 

The second derivative equation  is rearranged 

such that u(t) is the subject of the equation. 

)())(())(( )( 2)2( ttLLtLt uxhxhy fgf +=

))((
))(()()(

2)2(

tLL
tLtt

xh
xhyu

fg

f−
=         (4.27) 

 

This controller yields the linear system 

vy =&& .          (4.28) 

The linearized feedback control law, u(t), for the nonlinear robot system is thus 

derived.  

 

The block diagram illustrating the approach is shown in Figure 4.1. Here, state 

feedback transforms the nonlinear robot system into a linear and controllable system. 
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The state x is fed back to generate control u such that there is a linear relationship 

between y and v as represented by Equation 4.28. 

 

 

 

 

 

 

Figure 4.1 State feedback 

 

Substitution of (4.28) into (4.27) gives 

))((
))((

)(
2

tLL
tL

t
xh
xhv

u
fg

f−
=  .       (4.29) 

This feedback law has the initial desired general form of Equation (4.30). 

)()()()( tt vxβxαu +=         (4.30) 

 

With reference to the general form of the control law, the corresponding analogous 

terms are as follows. 

)()( )2( ttv y≡   (Comparing (4.27) and 4.29) )   (4.31) 
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))((
))(()(

2

tLL
tL

xh
xhx

fg

f≡α         (4.33) 

vxβxα )()( + uxgxfx )()( +=&

x 

u y v
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)(xβ  is assumed to be nonzero for all x. 

 

In general, if γ  is the smallest integer such that  for i =0,…, 0≡hfg
iLL 2−γ  and 

, the control law  nxLL ℜ∈∀≠−  01hfg
γ

)(1
1 vhL
hLL

u f
fg

+−= −
γ

γ         (4.34) 

gives  .        (4.35) vy =)(γ

The k-multiple Lie derivative of h(x) along f(x) is defined as the recursive 

relationship )(.)()( 1 xfx
x

x ⎥⎦
⎤

⎢⎣
⎡
∂
∂

= − hLhL k
f

k
f        (4.36) 

with . (Appendix A.2)      (4.37) )()( xx hhLo
f =

 

The derived control law is fed into the robot system equation. 

uxgxfx )()( +=&          (4.38) 

))((
))(()()()(

2)2(

tLL
tLt

xh
xhyxgxfx

fg

f−
+=&        (4.39) 

 

The calculated value of control law, u, is allocated to the torque, τ, of the robot. 

 

The error of the trajectory tracking is defined as 

)()()( ttt xre −= ,         (4.40) 
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where r(t) is the input to the system, and y(t) = x(t) is the output of the system. It is 

the difference between the real output, y(t), and the reference output, r(t). 

 
Differentiating the error once gives 

)()()( ttt xre &&& −=          (4.41) 

 
Input v was chosen as a PD controller The external reference input v is chosen to 
contain proportional integral control tuning parameters. 
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Figure 4.2 The general feedback linearization scheme. 
 

Figure 4.2 illustrates the control of the robot using state feedback linearization. The 

inner state feedback loop is used to linearize the non-linear dynamics of the robot so 

the well-known linear control principles can be used with the outer feedback loop. 

 

Inner Loop:  
State Feedback 
Linearizer 

Dynamics of 
Robot  

Robust Outer Loop 
Control Signal v 

u 

-

qr +

Internally Linearized Loop 

q
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Tracking control here aims to produce an output that converges to the prescribed 

reference function. The reference profile used for simulation in this work is the 

quintic polynomial profile. 

 

The robot dynamic model equations are rearranged such that acceleration is made the 

subject of the Equations (4.54) and (4.55). This is to allow the ordinary differential 

equation (ode) computer routines to integrate on the acceleration term so that velocity 

values can be obtained. The ode routines are based on the Runge-Kutta formulations. 

Two state vectors are passed to the ode routines- the position vector and the velocity 

vector. Other than integrating the acceleration term of Equations (4.54) and (4.55), 

the ode function also integrates the velocity term in the state vector that is being fed 

in so that future position values can be obtained. The future values of the velocity and 

the position vectors obtained after integration are collected and then fed back into the 

controller to generate future values of the control torques. 
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2
2
12122

2
22 sin2 qqllmqlmB &&& +=        (4.50) 

)cos(sin2 21222
2
1212 qqglmqqllmC ++= &       (4.51) 

 

1 1 1 111 CqBqA ++= &&&&τ         (4.52) 

2 2 2 222 CqBqA ++= &&&&τ         (4.53) 

 
Acceleration is made the subject of the equation. 
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Summarized Algorithm (with reference to Figure 4.3): 

For t=0 to 2 sec   

 e(t)=r(t)-y(t)   

   )()()( txtrte &&& −=

  )()()( tektektv pD += &

 u(t)=α(x)+β(x)v(t)  (α,β from symbolic formulas) 

 (t+1)=f(x)+g(x)u(t) (f, g from symbolic formulas) x&

(assume that u(t) does not change between t and t+1) 

 assign u(t) to be the control torque value 
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 x(t) contains q and values. Feed x(t) into function ode45 to get x(t+1) . After 

evaluation of x(t+1), assign y(t+1)=x(t+1) since from y=h(x)) 

q&

 Update the state value x(t) for the next loop 

End 

 

 

 

 

 

 

Figure 4.3  
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4.4 Controller results 

For the present two link robot system, the following formulations are obtained for numerical 

simulation. 
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The novel controller u, is thus obtained for feedback linearization of the robot 

system. 
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4.5 Neuro-Feedback Linearisation 

 

Simulation studies on the same robot model are carried out using the neuro-feedback 

linearization controller. The neural network requires data for training. To get the data 

points for training, a sine wave is used as the reference trajectory input. This sine 

curve has some random noise introduced into it.  The input is then fed into a PD 

controller so as to obtain the torque for the robot. This torque value is then fed into 

the robot plant. The next time step value of the robot’s position and velocity are 

obtained from the plant’s ode function.  This updated position and velocity value is 

fed back to the beginning of the loop to be compared with the reference input’s value. 

The error obtained due to the slight discrepancy between the reference and feedback 

position and velocity values are needed for calculation of the torque from the PD 

controller. Ten thousand data points for each attribute are saved. Six attributes are 

saved for the neural network. They are the position, velocity and torque values of 

both links. During the generation of data points, the output of the PD controller v, is 

taken to be equal to the torque value. 

 

During neural network training, the position, velocity and the external reference input 

v are the inputs to the neural network. The torque output values are provided for as 

teaching values for the training of the neural network. 

 

During simulation, the controller u of (Equations 4.62 to 4.64) is not used. In its 

place, the trained neural network is used in each loop of the simulation to give the 
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output torque value when the input position, velocity and reference input values are 

fed into the network. Hence the neural network serves as a nonlinear function that 

maps the input signal vector consisting of v, q and q , to the output torque signal 

vector τ. 

&
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Chapter 5 Discussion of Simulation Results 

 

5.1   Computed torque and neuro computed torque control 

Simulations studies were performed for the computed torque and the neuro computed 

torque control schemes discussed in Chapter 3. The controlled plant is the two-link 

robotic manipulator as described in Section 3.1. During the computed torque and 

neuro computed torque control simulation, the two links of the robot model were 

controlled to follow a quintic polynomial trajectory for 2 seconds. The task trajectory 

is chosen as 

32
543 )61510()( tt

t
q

t
t
q

t
q

tq
f

f

f

f

f

f
d +−=     (5.1)  

where tf = total move time, qd=desired position, qf=final position and t= time.  

 

Before a robot link can be controlled, the desired path for performing a task needs to 

be known. Such paths are user defined. In the simulations here, the path is chosen to 

be that of the commonly used quintic polynomial. Other paths such as the cubic 

polynomial, sine and cosine curves may also be used. For the motion control problem 

here, the ultimate control objective is to ensure that the robot moves along a 

prescribed desired trajectory. 

 

The developed robot controllers are simulated on a computer to verify the 

effectiveness of the proposed control schemes. Computer simulations help to verify 

the viability of the controller design. The computer-controlled system is assumed to 

behave as a continuous time system if the sampling period is sufficiently small. In the 
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simulations done here, a sampling time of 1 s is used throughout. During simulation, 

the links are made to follow the desired quintic trajectory in 2 seconds over a distance 

of 1rad. Two trajectory tracking control methods, the computed torque control 

method (CTC) and the neuro computed torque control method (NCTC), were applied 

on a robot model. The two method’s simulation performance are compared and 

discussed. 

 

The following parameters for the two-link manipulator were used in the simulation:  

m1=2kg, m2=3kg, l1=1m, l2=1.5m and g=9.81m/s2
. 

 

From Figure 5.1, for the first link, the CTC method gives errors which are smaller 

than that of the NCTC method. The CTC errors hover closely around zero. The 

maximum error of NCTC is a small value of 4.5×10-3rad. 
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NCTC 

CTC

Figure 5.1  Time history of position error of link 1 with neural CTC and CTC 

scheme. 

 

 

CTC

NCTC 

Figure 5.2 Time history of position error of link 2 with neural CTC and CTC scheme. 
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From Figure 5.2, link two’s performance is similar to that of link one’s performance. 

From the plot, it is seen that the CTC method gives smaller errors than errors of the 

NCTC method. The maximum error of NCTC is a small value of 4.5×10-3rad. 

 

In general, tracking error stayed in the range of 10-3 rad for the NCTC method, whilst 

tracking error stayed in the range of 10-6 rad for the CTC method. Theoretically, for a 

continuous system, the CTC should give perfect tracking control, meaning that 

tracking should always stay at zero. In the simulation, the small tracking errors, on 

the order of 10-5, are due to two main factors, round-off errors in computation in the 

digital computer and the introduction of sampling (a sampling period of 0.001 s was 

used) with a zero-order hold for the control torques. The NCTC method also 

performed very well with maximum tracking errors on the order of 10-3. This showed 

that the neural network can accurately map the dynamic model of the robot through 

training.  
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Link 1 

Link 2 

Figure 5.3 Time history of position of links 1,2 with neural-CTC and CTC scheme. 

 

Figure 5.3 shows the quintic polynomial trajectory profiles of both Link 1 and Link 2. 

The actual paths and desired paths closely coincide with one another. The same 

curves are obtained for both neural CTC and CTC schemes as the tracking errors in 

both cases are very small. In both control schemes, it is noted that the desired and 

actual trajectories for both links coincides with each other. 

 

The change in trajectory profiles due to changes in mass is carried out. A weight 

increase of the robot link can indicate a pickup of load by the arm, and a weight 

decrease can also indicate a release of load by the arm. For the simulation here, link 
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one has an increase of mass of 0.5kg (from 2 to 2.5), and link two has a decrease of 

mass of 2kg (from 3 to 1). From figure 5.4, the trajectory profile of the system under 

computed torque controller shows that there was some deviation from the profile to 

be tracked. The deviation seemed to be more obvious during the initial pick or drop 

event. The deviation of the first link is smaller since it only gained 0.5kg. The 

deviation of the first link is more marked as it has lost 2kg. Deviation profiles can be 

seen when figure 5.4 was compared with figure 5.3.  

 

 

Figure 5.4 Time history of both link under CTC scheme with link mass change 
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From figure 5.5, it is seen that error of the first link reached a peak of 0.027 at 0.6 

seconds. The error level then goes down smoothly to a low value of 0.005. It then 

settles at a constant value of 0.01 by 2 seconds. 

 

For the second link, the error reached a peak of 0.09 at 0.6 seconds, as seen from 

figure 5.6. The error level settles at a constant value of 0.065 by the end of two 

seconds. 

 

 

Figure 5.5 Time history of position error of link 1 under CTC scheme with mass 

change 
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Figure 5.6 Time history of position error of link 2 under CTC scheme with mass 

change 

From figure 5.7, the trajectory profile of the system is seen after training on new mass 

change data under the neural computed torque controller. It shows that there is some 

slight deviation from the profile to be tracked. The deviation also seems to be more 

obvious during the initial drop event for the second link. For the first link, the path is 

still well tracked. 
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Figure 5.7 Time history of both link under NCTC scheme with link mass change 

 

From figure 5.8, it is seen that error of the first link has a maximum of 0.005 at the 

end of two seconds. For the second link in figure 5.9, the error level settles at a 

constant value of 0.045 by the end of two seconds. After the neural network is trained 

on the new mass change data, the maximum error values of the NCTC scheme are 

less than the maximum error values of the CTC. 
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Figure 5.8 Time history of position error of link 1 under NCTC scheme with mass 

change 

 

Figure 5.9 Time history of position error of link 2 under NCTC scheme with mass 

change 
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5.2 Simulation results of the designed feedback linearized law.  

 

Simulation studies are carried out using the designed feedback linearized law of 

(4.81-82) on the two-link manipulator. When the feedback linearized law was applied 

to the robot model, the position error profile obtained is seen in Figure 5.10. From 

figure 5.10, the error of both links is acceptably low, the maximum error being at 

most 0.015 rad. The error is cyclic in nature. 

 

Figure 5.10 Time history of position error of link 1 and 2 with feedback 

linearized law. 
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For the first link, the actual path of the robot follows closely to that of the reference 

trajectory path. At about 1.25 seconds, the actual path is seen to coincide with that of 

the reference trajectory’s path. 

 

 

Figure 5.11 Time history of link one’s position with feedback linearized law. 
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For the second link, the actual path of the robot also follows closely to that of the 

reference trajectory path. At about 1.20 seconds, the actual path is seen to coincide 

with that of the reference trajectory’s path. 

 

 

Figure 5.12 Time history of link two’s position with feedback linearized law. 
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5.3 Neuro-Feedback linearisation 

 

 

From figure 5.15, the peak value of error is 0.008 for the first link, and 0.027 for the 

second link. Link 1’s error is more stabilized, and it lies between the range of -0.005 

and -0.008. 

 

 

Figure 5.13 Link 1’s reference points for neural network training. 
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Figure 5.14 Link 2’s reference points for neural network training. 

 
Figure 5.15 Time history of position error of link 1 with neuro-feedback 

linearized law. 
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Figure 5.16 Time history of link one’s position with neuro-feedback linearized 

law. 

 

 

For the first link, the actual path of the robot follows reasonably close to that of the 

reference trajectory path. 
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Figure 5.17 Time history of link two’s position with neuro-feedback linearized 

law. 

 

For the second link, the actual path of the robot follows the reference trajectory path 

with slight deviations after 2 second. Tracking is more accurate before t=2sec. 
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Figure 5.18 Time history of link one’s velocity with neuro-feedback linearized 

law. 

 

Figure 5.19 Time history of link two’s velocity with neuro-feedback linearized 

law. 
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5.4 Conclusion  

 

Performance comparisons are made between the neuro-computed torque control 

method and the conventional computed torque control method. A two-link 

manipulator model has been used for simulation studies. The backpropagation neural 

network in the neural-CTC control method has been found to give excellent tracking 

control results. It is shown that the neural-CTC method can learn a robot’s nonlinear 

dynamic behaviour very well. 

 

The feedback linearization technique is applied to the nonlinear two-link robot model. 

An inner loop control is added so that an inner linearized block of control system can 

be generated. The results of position tracking control are validated by simulation of a 

two-link robot model. Good tracking results are obtained with the feedback linearized 

controller. The tracking performance with the designed linearized feedback law also 

gave results comparable to that of NCTC and CTC methods. The linearized feedback 

law simulation consumes the least amount of computation time, and tracking results 

are still good, though not as good as that of NCTC. The neuro-linearized feedback 

controller tracks the trajectory reasonably well. Since it is a novel controller, there is 

potential in using it experimentally if adaptations to link weight changes are needed. 

The time taken for simulation for NCTC is the longest, but the NCTC gives better 

tracking results, and is model free.  

 

Feedback linearization has the advantage of allowing for the use of linear techniques 

to achieve desired closed loop control specifications for nonlinear full dynamic robot 
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descriptions.  Feedback linearization is also robust to parameter uncertainty. The 

disadvantage of feedback linearization is that when the dynamic model becomes more 

detailed as the number of robot links increases, computational complexity results. 

This limitation may be overcome with the current availability of fast computers. From 

the results of the current work, the proposed feedback linearized controller has been 

shown to have potential for controlling nonlinear multi-linked robotic systems real-

time with good tracking results.  
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Appendix 

A.1 

Lagrange’s equation of motion is 

PK −=L           (A.1) 

where K= kinetic energy and P= potential energy. 

 

The kinetic energy is 

2
1

2
111 2

1 qlmK &=          (A.2) 

and the potential energy is 

1111 sin qglmP = .         (A.3) 

 

The positions are 

)cos(cos 212112 qqlqlx ++=        (A.4) 

)sin(sin 212112 qqlqly ++=  ,      (A.5) 

and the velocities are 

)sin()(sin 212121112 qqqqlqqlx ++−−= &&&&       (A.6) 

)cos()(cos 212121112 qqqqlqqly +++= &&&& .      (A.7) 

 

The square of velocity is 
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The kinetic energy of the second link is 

221
2
1212

2
21

2
22

2
1

2
12

2
222

cos)()(
2
1

2
1      

2
1

qqqqllmqqlmqlm

vmK

&&&&&& ++++=

=
 .  (A.9) 

 

The potential energy of the second link is 
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Combining kinetic and potential energy results in Lagrangian’s equation of motion. 

The Lagrangian is thus 
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Differentiating the Lagrangian, the following equations are obtained.  
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The robot arm dynamics obtained from Lagrange’s equation are 
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and 
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A.2 

During the differentiation of )(1 x
x

hLk
f
−

∂
∂ , the Jacobian matrix (4.58) is used. Let 

=λ(x) where  for each . )(1 xhLk
f
− m)( ℜ∈xλ nℜ∈x
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