
Neuro Feedback Linearization in the Control of Robotic

Manipulators

Ngoo May Jin

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Neuro Feedback Linearization in the Control of Robotic

Manipulators

Ngoo May Jin

(B.Eng.(Hons), M.Sc.)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

Acknowledgement

I thankfully express my gratitude to Prof Poo Aun Neow and Prof Chen Chao Yu Peter for

supervising my dissertation.

 i

Table of Contents

 Pages

Acknowledgements (i)

Table of Contents (ii)

Summary (v)

List of Figures (viii)

Chapters

1. Introduction 1

1.1 Overview 1

1.2 Thesis contribution 3

1.3 Historical development background 4

1.4 The pitfalls of linear control 5

1.5 How the need for nonlinear control techniques arises 6

1.6 Towards nonlinear control 7

1.7 Background of nonlinear control 9

1.8 Model-based control 9

2. Literature Review - A Survey of Tracking Control techniques for Robots 11

 2.1 Introduction 11

2.2 Robust control 11

2.3 Adaptive control 12

2.4 Feedback linearization control 13

 ii

2.5 Neural network control 14

3. Computed Torque and Neural Computed Torque Control 18

3.1 Summary 18

3.2 Robot dynamic model 18

3.2.1 Summary of control problem 20

3.3 Neural networks- Backpropagation 20

3.3.1 Neural network architecture 20

3.4 Computed torque control 24

3.5 Neural computed torque control 28

4. Nonlinear Feedback Linearization 31

4.1 Mathematical preliminaries for feedback linearization 31

4.2 Theoretical development results 32

4.3 Results of the derivation of the nonlinear feedback control law 36

4.4 Controller results 45

4.5 Neurofeedback Linearisation 48

5 Discussion of Simulation Results 50

5.1 Computed torque and neuro computed torque control simulation results 50

5.2 Simulation results of the designed feedback linearized law 60

5.3 Neuro-Feedback linearization 63

5.4 Conclusions 68

 iii

6 References 70

7 Appendix 84

 iv

Summary

This thesis investigates the trajectory-tracking performance of a robotic system under

different control techniques, in particular the computed-torque control technique and

state feedback linearization. A neural network control approach based on the state

feedback linearization technique is also proposed and studied.

A two-link manipulator has highly nonlinear dynamic characteristics which are not

easily controlled using conventional control approaches. Several model-based control

approaches are available which compensates for these non-linear dynamics. However,

the performance of such model-based approaches depends highly upon an accurate

apriori knowledge of the robot’s dynamic model which, in most cases, is difficult if

not impossible to obtain.

Neural networks are used in the control schemes here, and they have been found to be

able to model the manipulator’s nonlinear dynamics. The advantage of using neural

networks, when they can be trained using only the measured input-output data from

the system-under-control, is the elimination of the need for an accurate dynamic

model for good control performance.

Performance studies on the computed torque and neuro computed torque control

schemes were first carried out. The neuro computed torque control scheme was found

to have extremely good performance, almost matching the computed-torque’s

theoretically perfect tracking performance.

A nonlinear state feedback control scheme was then investigated. This control

approach simplifies the system by compensating for the non-linear dynamics,

essentially reducing the robot model to a linear system and thus amenable to control

 v

by known linear control schemes. The traditional linear approximation approach is

not used here since, using this, reasonable performance is achievable over only a

small range of state variables. The nonlinear state feedback linearization approach

used here allows for operation over the entire operational range of the state variables.

Using simulations, the trajectory-tracking performance of this non-linear state

feedback linearization approach was compared with that for the computed torque

control approach. The computed torque control method is conventionally used to

linearize a certain class of systems. The performance of the designed nonlinear

feedback law in the present work was found to be comparable to that of the computed

torque method.

Based on the non-linear state feedback linearization approach, a neural network

control approach was developed. In this approach, the neural network controller was

trained using only measured input-output data, thus eliminating the need for an

accurate model of the system-under-control for good control performance. The

performance of this neural network controller was found, through simulation studies,

to be comparable to the non-linear controller designed assuming a perfect knowledge

of the robot’s dynamic model.

The main contribution of this dissertation is the application of the nonlinear state

feedback controller for the control of a two-link robotic manipulator and the

development of a neural-network controller based on this model-based approach. In

this thesis, a nonlinear state feedback control law has been derived mathematically.

This feedback law is applied to a two link robotic manipulator in order that the robot’s

closed loop system can be made linear. The current simulation work using the

developed feedback law contributes towards the application of linearization techniques

 vi

on nonlinear multi-link robotic system. Based on mathematical analysis and an

experimental study, the proposed controller has been shown to give good tracking

performance and stability. Simulation studies compare the trajectory-tracking

performance of this approach to the more developed computed-torque control

approach and its neural network equivalent.

 vii

List of Figures

 Pg

Figure 3.1 Two link robot manipulator model. 19

Figure 3.2 Architectural graph of a multiplayer perceptron with one

hidden layer. 21

Figure 3.3 Computed torque control. 27

Figure 3.4 Neural computed torque control. 29

Figure 3.5 Generating input-output training data. 30

Figure 4.1 State feedback. 39

Figure 4.2 The general feedback linearization scheme. 41

Figure 4.3 Algorithm Flowchart. 44

Figure 5.1 Time history of position error of link 1 with neural CTC

and CTC scheme. 52

Figure 5.2 Time history of position error of link 2 with neural CTC

and CTC scheme. 52

Figure 5.3 Time history of position of links 1,2 with neural-CTC and

 CTC scheme. 54

Figure 5.4 Time history of both link under CTC scheme with link

 mass change. 55

Figure 5.5 Time history of position error of link 1 under CTC scheme

 with mass change. 56

Figure 5.6 Time history of position error of link 2 under CTC scheme

 with mass change. 57

 viii

Figure 5.7 Time history of both link under NCTC scheme with link

 mass change. 58

Figure 5.8 Time history of position error of link 1 under NCTC

 scheme with mass change. 59

Figure 5.9 Time history of position error of link 2 under NCTC

 scheme with mass change. 59

Figure 5.10 Time history of position error of link 1 and 2

 with feedback linearized law. 60

Figure 5.11 Time history of link one’s position with feedback

\ linearized law. 61

Figure 5.12 Time history of link two’s position with feedback

 linearized law. 62

Figure 5.13 Link 1’s reference points for neural network training. 63

Figure 5.14 Link 2’s reference points for neural network training. 64

Figure 5.15 Time history of position error of link 1 with

 neuro-feedback linearize law. 64

Figure 5.16 Time history of link one’s position with neuro-feedback

 linearized law. 65

Figure 5.17 Time history of link two’s position with neuro-feedback

 linearized law. 66

Figure 5.18 Time history of link one’s velocity with neuro-feedback

 linearized law. 67

Figure 5.19 Time history of link two’s velocity with neuro-feedback

 linearized law. 67

 2

Chapter 1 Introduction

1.1 Overview

Robotic manipulators are now being used widely, both in industry, for medical care

and in the home. Accurate trajectory tracking are required in many such applications.

In this dissertation, the control of a robotic manipulator for trajectory tracking is

investigated.

The analysis and synthesis of the control system are well established for linear time-

invariant systems [Ogata, 1970]. For a system with slow time-varying property, the

adaptive control technique has proved to be a sensible solution [Narendra, et al.,

1989]. However, for a non-linear system such as a robotic manipulator, control

system design is typically handled on a case-by-case basis. Feedback linearization is

a popular choice for deterministic system [Sidori, 1989]. However, feedback

linearization implies a model-based control strategy in which its control performance

is inherently sensitive to modeling accuracy [Zhu, et al., 1992]. In recent years,

incorporating neural networks proved to be a popular method for the control of

systems with significant nonlinearity, especially for the case that the plant

nonlinearity is unknown [Hunt, et al., 1992].

The problem of controlling robotic manipulators is a challenging one as the dynamics

of a robotic manipulator is highly non-linear. In addition, unmodeled dynamics, and

environmental changes and unmeasurable disturbances during operation are just some

 1

of the uncertainties that prompt further research into better and more intelligent

control schemes. Neural networks and feedback linearization techniques are the

control techniques being investigated and applied in the work presented here.

Feedback linearization is used to compensate for the non-linearities in the robot’s

dynamics. The resultant controllers designed are model-based and their control

performance highly dependent upon an accurate knowledge of the robot’s dynamic

model. However, the latter is difficult, if not impossible to achieve. Furthermore, the

dynamic model of the robot may change during operation, an example of which is

when it picks up a payload thus changing its mass properties. Neural networks, with

their abilities to be trained to approximate models, are used to avoid the need to have

apriori knowledge of the plant’s dynamic model.

In the work presented here, the trajectory-tracking performance of the computed

torque control method, applied to a two-link robotic manipulator is compared with

that obtained for a designed neural computed torque method. Next, a state feedback

approach for the linearization of a class of non-affine non-linear systems was

investigated and the mathematical analysis carried out for application to the same

two-link robotic manipulator. Based on this linearization approach, a PD

(proportional plus derivative) controller is designed and the trajectory-tracking

performance of the controller determined and compared with that obtained for the

computed torque approach. Based on this non-linear state feedback linearization

approach, a neural network-based controller, together with the necessary training

procedure, is designed. The advantage of this neural network controller is that it can

be implemented using only measured plant input-output data and still achieve good

 2

control performance without the need to have any knowledge of the plant’s dynamic

model. With the neural network controller, an approach utilizing on-line re-training of

the neural network controller can be implemented. This latter approach will be able to

adapt and will be able to maintain good control performance in the face of

environmental, modeling and operational uncertainties and changes during operation.

1.2 Thesis contributions

The main contributions of the work presented here are summarized below:

[1] Simulation work using the developed feedback law contributes towards the

application of linearization techniques on nonlinear multi-link robotic systems.

Current research work by others [Taware A, et al., 2003] focuses on development of

feedback linearization for scalar output functions, for example, a one link robot

system. Moreover simulation studies for scalar functions are rare in present research

literature. Hence the motivation here will be to make use of the symbolic capability a

program such as Matlab to do complex symbolic computations for two link systems.

The new thing is that the current simulation work is done on vectored output

functions, as illustrated by a two-link robot system. Accurate tracking results obtained

illustrate the validity of the developed controller formulations. As the resulting

controller is based on feedback from positions and speeds of the manipulator link,

only conventional position and velocity sensors are required. Therefore this controller

is practically viable. A neuro-feedback linearized controller is also simulated with

good regression tracking results.

 3

[2] Implementation of computed torque and neural computed control for a two-link

robotic manipulator and simulation studies. The results are used as reference plots for

the feedback linearization simulations.

[3] Investigation into a non-linear state feedback approach for the linearization of a class

of non-affine non-linear systems and its implementation on a two-link robotic

manipulator. Simulation results show that this control approach has a control

performance comparable to that obtained by the computed torque approach.

[4] Development of a neural network control approach based on the non-linear state

feedback method in (1) above. This neural network approach allows the neural

network controller to be trained from actual measured plant input-output data. As

such, an accurate apriori knowledge of the plant’s dynamic model is not necessary

and, because of the use of actual plant input-output data, the neural network controller

is assured, assuming proper and adequate training, of being able to map the plant’s

actual dynamics accurately, thus achieveing good control performance. With on-line

retraining, this neural control approach can be adaptive to operational changes and

uncertainties.

1.3 Historical development background

There have been tremendous developments in nonlinear control theory over the last

few decades. One such important nonlinear control technique is the feedback

linearization technique [Marino et al., 1995]. Feedback linearization was first

developed in the 1970s. This technique helps to transform a nonlinear system into a

controllable linear system by means of static state feedback and nonlinear

 4

transformations. The feedback linearization problem was studied and became very

important because of its potential use in industrial systems. Standard and well-

established linear control theory and controller design approaches can be readily

employed once a nonlinear system has been feedback linearized. On top of that,

systems with multiple inputs and multiple outputs can also be linearized and

decoupled, thereby allowing for the effective use of single loops with linear

controllers.

1.4 The pitfalls of linear control

The common engineering practice assumes that a system be described by a set of

linear differential equations

BuAxx +=& (1.1)

where x(t) = state of the system,

 A, B = time invariant matrices defining the properties of the system, and

 u(t) = control effort

Assuming that (1.1) accurately describes the system behaviour, researchers and

control practitioners can use well-developed techniques and properties derived from

linear control theory for the analysis of the system and the design of appropriate

controllers. These properties include

(i) a unique equilibrium point with a nonsingular matrix A,

(ii) a stable equilibrium point if the eigenvalues of A have negative real roots, and

(iii) possible analytic solutions of the linear differential equation.

The transient response can also be explicitly determined.

 5

For cases where the control input u(t) is present, properties include

(i) superposition,

(ii) asymptotic stability of the unforced system also ensures bounded input bounded

output stability of the forced system, and

(iii) a sinusoidal input leading to a sinusoidal output of the same frequency.

Though linear system properties allows the use of good well-known design and

analytical tools to achieve good control performance, any significant nonlinear

characteristics in the system’s behaviour may make approaches based on linear

system theory inapplicable . Non-linear systems are much more complex and, in

general, difficult to handle. If the nonlinear behaviours were to be neglected and

linear system tools are used, the resulting control designs can have significantly

degraded control performance with unpredictable stability characteristics. These are

the limitations and pitfalls experienced by linear systems theory as they have

difficulty encapsulating and compensating for the non-linear effects.

1.5 The need for nonlinear control techniques

All physical systems exhibit non-linear behavior, some more so than others. In a

nonlinear system, the relationship between controlled and manipulated variables

depends on the operating conditions. In such systems, linear control techniques may

be applied in certain situations with satisfactory results where the nonlinearities are

 6

mild, or when the operating conditions do not change much. In the latter case,

linearization around the locality of the operating point works quite well.

For many industrial systems with highly nonlinear behaviour, linear control

techniques cannot be satisfactorily applied, particularly in cases where the systems

operate over a wide range of operating conditions. Conventional linear controllers are

sometimes used to control these highly nonlinear processes, but these controllers need

to be tuned in a conservative manner in order to avoid unstable behaviour. The

drawback in such an approach is that control performance can be seriously degraded,

performing far from optimum conditions. Hence there is a need to use more

sophisticated control techniques which will use information about the nonlinearities

of the controlled system to achieve near-optimal control performance over the

system’s entire operational range.

1.6 Towards nonlinear control

Traditionally, nonlinear control systems are approached by taking linear

approximations about equilibrium points that corresponds to constant inputs

[Marino et al., 1995].

eix

iu

Consider the nonlinear state space system described by the following equations

),(uxfx =& (1.2)

)(xhy = (1.3)

where x is the system state, u the control effort or input, and y the system’s output.

The small deviations ,iξ& iξ and are iv

 7

eii xx &&& −=ξ , (1.4)

eii xx −=ξ (1.5)

and . (1.6) ii uuv −=

where is the equilibrium state for a constant control input . , and are

the known nominal solutions.

eix iu eix& eix iu

The locally linearized model is given by

iiiii vGF += ξξ& (1.7)

iii Hy ξ= (1.8)

The Jacobian matrices evaluated at nominal solutions , and are eix eix& iu

),(ieii ux
x
fF
∂
∂

= (1.9)

),(ieii ux
u
fG
∂
∂

= (1.10)

and)(eii x
x
hH
∂
∂

= . (1.11)

At the equilibrium points,

0),(=iei uxf (1.12)

0)(=eixh (1.13)

This approach faces critical transition problems when one moves from one solution

point to another. Maintenance of good performance and stability is difficult over wide

ranges of variations of state variables.

 8

1.7 Background of nonlinear control

During the seventies, nonlinear controllability and observability was initially studied

using differential geometric tools. These studies led to the development of the

nonlinear feedback control design theory [Schwarz 2000]. In practice, significant

nonlinearities such as the centripetal, Coriolis and inertial forces could be exactly

modeled using well-known physical laws. Engineers can then design nonlinear

control algorithms that could better meet specifications which could not be met by

means of linear control techniques. An example of such algorithms is the computed

torque algorithm for high speed rigid-link robots in 1976. These algorithms mainly

made use of nonlinear changes of state coordinates and of nonlinear state feedback’s

nonlinearity cancellation to make the closed loop system linear [Khalil 2003].

Nonlinear controls can outperform linear controls designed on the basis of linear

approximations because nonlinear control algorithms can use all of the information

contained in nonlinear models.

1.8 Model-based control

The nonlinear system’s dynamic behaviour and information are represented by a set

of nonlinear differential equations. With the design of the controller or control

algorithm dependent on the dynamic model of the plant, feedback linearization and

many other nonlinear control techniques become model-based in nature. If the

nonlinear plant model can be obtained, a physical-based model will be derived from

physical principles such as energy, force or momentum balance equations. Such

models have the advantage of being applicable over the whole range of operating

 9

conditions. However, physical-based models are not always available or known, and

even if so, the determination of accurate values of the parameters are often difficult.

There are also costs and engineering efforts associated with the determination of these

models. One solution could be to obtain the empirical dynamic model from measured

input-output data using system identification techniques. There has been growing

interest in the development of nonlinear dynamic models from input-output data.

Any model-based control design method will be prone to sensitivities to modelling

errors. Models used for control system design cannot be infinitely precise and

significant control performance degradation can result from errors in the model used

for the design. Hence another possible solution to this problem is to obtain nonlinear

empirical models from neural networks. Neural models are capable of being trained

to map nonlinear dynamics, and this makes them a promising tool for nonlinear

system modelling.

 10

Chapter 2 Literature Review

- A Survey of Tracking Control techniques for Robots

2.1 Introduction

In the eighties, there were two different approaches to the control of uncertain

systems. The first approach is that of adaptive control, and the second approach is that

of robust control [Zhou 1998].

For the adaptive control approach, the designed controller adapts to the uncertain

and/or changing parameters of the system. The “best” controller is thus obtained after

learning or identifying the parameters of the system-under-control. Hence the

adaptive controller can be applied to a wide range of uncertainties. For the robust

control approach, the controller adopts a fixed structure. Such control structures give

acceptable performance for a system with a specified uncertainty set. But they are

simpler to implement, and there is no need to spend time on the tuning of the

controllers. In the nineties, researchers have tried to merge the two approaches so that

certain adaptive controllers can be robustified. In this way, the good qualities of both

approaches can be combined.

2.2 Robust control

The robust control technique was applied to a nonlinear robotic system by Spong

[Spong 1989, 2002] in 1992. The Lyapunov-based theory of guaranteed stability for

uncertain systems is used to design the robust controller. The derived controller is

innovative because the law depends on the inertia parameters of the robot, wheareas

earlier controllers relied on the reference trajectory, manipulator state vectors and the

 11

inertia parameters. The controller was based on the adaptive control algorithm

developed by Slotine and Li [Slotine, et al., 1998] in 1988. The closed loop system is

globally convergent with the position tracking errors converging to zero and the

parameter estimates remaining bounded. During the position tracking simulation,

errors obtained after two seconds are –2.17E-4 for the first link position, and 2.28E-4

for the second link position. Such error records are considered small, and it further

demonstrates that the adaptive controller is able to achieve global convergence. Such

controllers are useful in robots that involve grinding operations with end-point force

feedback. This is because in such environments, uncertainty is small, and robustness

to disturbances and unmodeled dynamics are of importance.

2.3 Adaptive control

In 1995, Rafizadeh and Perz [Rafizadeh, et al., 1995]] applied robust and adaptive

control techniques for their simulation studies on trajectory control of the Puma 560

robot model. Although perfect state convergence is achieved the tuning of Craig’s

adaptive controller is manual and also very time consuming. The parameters also tend

to saturate within bounds of 0.01.

Parameter adaptive control is also used by other researchers. They used a gradient

parameter update law, in addition to a tracking control law, as asymptotic exact

cancellation of nonlinear terms are needed. Since exact cancellation of nonlinear

terms is not possible, exactly linearizing control law implementations are difficult.

The current work on the derivation and implementation on the feedback control law

 12

did not involve any use of adaptive parameter update laws. The linearizing feedback

control law is in itself sufficient to give good tracking results.

2.4 Feedback linearization control

Design of nonlinear state feedback control began in the early eighties for certain

simple classes of single-input-single-output nonlinear systems. Feedback linearizable

and input-output linearizable systems are two common areas studied at that time.

For feedback linearizable systems, the state space equations are made linear in certain

state coordinates via state feedback. Once the non-linear system has been linearized,

conventional linear control design methods, such as the pole placement method, can

be used.

For input-output linearizable systems, the input-output dynamics are linearized using

state feedback controllers that may make certain dynamics unobservable from the

output. The zero-pole cancellation technique is used.

Both methods have a reliance on exact cancellation of possible nonlinear terms

containing uncertain parameters.

Since 1987, feedback linearizable system control design for uncertain parameters was

done by Sastry and Isidori [Sastry, et al., 1989]. They used parameter adaptation to

robustify the exact cancellation of nonlinear terms. This is because the two methods

mentioned above suffered from the assumption that the model dynamics are certain.

 13

But if the model is to contain uncertain nonlinear terms, exact cancellation of

nonlinear terms is not possible. Hence parameter adaptive control filled in the

weakness of the early methods.

Taware and Gao developed linearized feedback laws for a single-link manipulator

arm system[Taware, et al., 2003] in 2003. They addressed the control problems

involved for simple nonlinear system models, and it was noted that simulation work

was not carried out for the verification of their developed controller laws. They

proved the asymptotical stability of simple nonlinear systems under their developed

controller laws.

Simulation was carried for flexible two-link joint robots by Berger [Berger, et

al.,1992] in 1992. Trajectory tracking results are obtained for parametric errors of up

to 50%.

In the early twentieth century, the availability of powerful computational

microprocessors encouraged researchers to carry out simulation and testing of

innovative nonlinear control algorithms for robotic applications.

2.5 Neural network control

Neural network controllers for robot manipulators are ‘model-free’. Hence they are a

good alternative to robust and adaptive control techniques. Such controllers can be

made to learn on-line the systems that they control.

 14

Various robot control schemes have been developed in the literature. Two such

control schemes will be investigated and their simulation results will be discussed.

Kim and Lewis developed a robust neural network output feedback scheme for closed

loop output feedback control [Kim, et al.,1999]. Joint velocity measurements are not

needed for their scheme. The weights of the neural network controller are tuned on-

line, and off-line learning is not required. Exact knowledge of robot dynamics is also

not required. Simulation results of their proposed scheme showed that their neural

network controller is capable of overcoming uncertainties. They compared their

results with a proportional derivative (PD) controller. The PD controller shows that

there are oscillatory behaviours in the tracking errors. By comparison, the neural

controller can minimize errors even when the end-effector’s mass has been changed.

Sliding mode neural network (SMNN) controllers are also used for tracking control of

robots. For the SMNN controller developed by Wai [Wai 2002], the tracking errors

converge quickly. High precision control is the desired aim, and asymptotic stability

of the control system is to be guaranteed since the adaptive learning algorithms in the

SMNN control system are derived from Lyapunov stability analysis.

Flexible link manipulators are also used for position tracking simulations under

neural network based controllers. Talebi and Patel [Talebi, et al.,2000] developed

several neural network schemes. These schemes are simulated and tested

experimentally on a single flexible link test-bed. Their networks are trained online,

 15

and offline training is not needed. Their experimental results demonstrate the

advantages of neural network controllers over model-based PD controllers.

Static neural networks have been used for many research simulations and experiments

in the literature. It is a challenge to incorporate dynamic neural networks into neural

controllers for robot tracking control. Sun and Li [Sun, et al., 2002] developed

dynamic neural network(DNN) adaptive controllers for robot manipulators with

unknown nonlinear dynamics. Their simulation results show that the performance of

the DNN controller is better than that of the static neural network(SNN) based

controller.

Intelligent optimal control techniques can also be combined with neural networks for

trajectory tracking of robots. Kim solved the algebraic Riccati equations so that

explicit solutions to the Hamilton-Jacobi-Bellman equation for optimal control of

robotic systems may be solved [Kim, et al., 1999]. Their proposed neural adaptive

learning scheme gives satisfactory tracking results. This scheme is robust and can

adapt to changing system dynamics.

Experimental results by Gupta and Sinha [Gupta, et al., 2000] show that it is

practically viable to combine neural networks and the PD controller for trajectory

tracking. Their results also show that a neurocontroller still performs satisfactorily

when there are uncertainties. Performance of conventional schemes deteriorates

slightly when there are uncertainties that could not be included in the dynamic model.

 16

Patino developed feedback adaptive neurocontrollers for trajectory tracking of robots.

[Patino, et al., 2002] They combined feedforward neural networks with adaptive and

robust control techniques. Their simulation studies on a PUMA 560 robot show that

the control error converges asymptotically to a neighbourhood of zero. This is

because they used a bank of off-line trained fixed neural networks instead of

conventional backpropagation networks.

Experimental studies with neural control using conventional backpropagation

algorithms were done on a PUMA 560 robot by Acosta [Acosta, et al., 1999]. The

neural network controller was implemented on a computer and analog-to-digital

(A/D) converters, digital-to-analog (D/A) converters and optical encoders were used

for the issue and capture of torque values to and from the robot links. The neural

controller gave better experimental results than the conventional PD controller.

However, it was reported that the neural controller faced implementation difficulties.

During startup, the robot exhibited erratic movements since the joint angles took on

arbitrary initial values. Initial weight assignments were random, but a proposed

solution was to assign values for the initial weights based on those found from

previous experiments.

 17

Chapter 3 Computed Torque and Neural Computed Torque Control

3.1 Summary

In this chapter, the theoretical background for two control approaches are discussed

and developed. These are computed torque control and neuro-computed torque

control.

Implementation issues in respect of a two-link robotic manipulator are discussed. In a

subsequent chapter, simulation experiments are discussed and performance results

presented.

3.2 Robot Dynamic Model

The dynamic model of a robot can be written as

ττqGqFqqqVqqM =++++ dm)()(),()(&&&&& (3. 1)

where

)(qM = inertia matrix,

),(qqV &m = Coriolis/centripetal matrix,

)(qF & = friction terms,

)(qG = gravity vector,

dτ = disturbances, and

τ = torque control input.

 18

Figure 3.1 shows a two-link robot manipulator.

Figure 3. 1 Two-link robot manipulator model.

Assuming that the masses are point masses located at the ends of the links, the links

have neligible masses, and neglecting friction, the dynamic model of the two-link

manipulator shown in Figure 3.1 can be written as

)q(qgl+m
)(q)glm+(m

q)(qll)mqq(
q)(qllmq

q)](qllml[m
q)](qllmlm)lm[(m

2122

1121

2221221

122122

22212
2
22

12212
2
22

2
1211

cos
cos

sin
sin

cos
cos2

+
+
+−

−
++

+++=

&&&

&&

&&

&&τ

 (3. 2)

)q(qglm
(qllmq

qlmq)](qllmlm

2122

2212
2
1

2
2
2212212

2
222

cos
)sin

cos

++
+

++=

&

&&&&τ

 (3. 3)

y

x

L1

L2

g

q1

q2

m2

m1

19

where τ = Torque, m = mass, q = link angular position, g = gravitational acceleration

and l = length of link, and the subscripts 1 and 2 refer to Link 1 and Link 2.

3.2.1 Summary of control problem

Assuming that the whole state () is measured, a control law is needed to

compute the values of

2211 ,,, qqqq &&

τ such that tracks a desired reference . q)(trq

3.3 Neural Networks- Backpropagation

Neural networks has the ability to learn the nonlinearities of a system and is able to

do function approximation. The neural network is a vector-valued nonlinear function

that provides a nonlinear mapping process from the input signal vector to the output

signal vector. Learning by, or training of, a neural network is done by presenting it

with training pairs of vectors of inputs and the corresponding desired outputs. Based

on these training pairs, the neural network adjusts its internal weights in such a way

as to approximate the function represented by the training pairs through a process

known as back-propagation[Haykins, 1999].

3.3.1 Neural Network Architecture

A feedforward neural network is used in this work for the neuro-computed torque

control scheme. Two neural sub-networks are used, one to generate each of the two

control torques required. The first sub-network is used to generate the control torque

for Link 1 while the second sub-network is used for that for Link 2. Three processing

 20

layers, including two hidden layers, are used for each sub-network with the first layer

having 10 neurons, the second layer 5 neurons, and the third output layer one neuron.

When neural networks are used, the required nonlinear input-output mapping is

assumed to have a functional relationship described by)(xfd = , where d is the

output vector, and x is the input vector. The vector-valued function f(.) is assumed to

be unknown. A set of labeled examples (){ }N
i 1, == ii dxς are given so as to make up for

the lack of knowledge in the function f(.). is the desired response. This set of

labeled examples is used to train a neural network as a model of the system.

id

Figure 3,2 shows the architecture of a multi-layer perceptron, one form of

feedforward neural network.

x1

xi

xI

y1

yj

yJ

z1

zk

zK

w11

w j1

v11

v ji wkj

wKJvJI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.2 Architectural graph of a multiplayer perceptron with one hidden layer.

 I, J, K are the number of nodes in the input, hidden, and output layer respectively. xi,

yj, zk are the outputs of the ith, j th and k th nodes of the input, hidden and output

layers respectively. vji is the weight connecting the ith input node to the j th node in

 21

the hidden layer and wkj is the weight connecting the output of the j th node in the

hidden layer to the input of the k th node in the output layer.

The backpropagation algorithm used for training the neural network in the work

described here is described as follows. This method is called error backpropagation

because error signals are first computed at the outputs of the last layer of the network.

These are then propagated backward through the network to compute the

corresponding error signals at each of the outputs of the neurons in the hidden layer.

These error signals are used to compute the necessary adjustments to the connecting

weights in the neural networks. In this way, the neural network is trained by having

its connecting weights adjusted. The error backpropagation procedure is described in

details in the following sections.

A training pair comprises the input vector

[T
Ixxx ...21=x]

]

 (3. 4)

together with the corresponding desired output value vector

[T
Kddd ...21=d (3. 5)

When presented with the input vector x, the first layer gives the output

T
Jyyy][)(21 K== vxΓy (3. 6)

and for the second layer, the output is

T
Kzzz][)(21 K== wyΓz (3. 7)

 22

where v is the weight matrix between the first two layers, and w the weight matrix

between the second and the third layers. In general, the computed output vector z will

not be the same as the desired output vector d. The error at the kth neuron in the

output layer is then given by

kkk zde −= . (3. 8)

For a bipolar sigmoid activation function, the error signal vector at the kth neuron in

the output layer is

)1)((
2
1 2

kkkzk zzd −−=δ . (3. 9)

The error signal at the output layer, given by Equation 3.9, is backpropagated to

produce the error signals at the output of the jth neuron in the hidden layer which is

given by

∑
=

−=
K

k
kjzkjyj wy

1

2)1(δδ (3. 10)

The weight increments are then given by

T
zyδw η=∆ (3. 11)

and

T
y xδv η=∆ . (3. 12)

 23

The weights are updated with the weight incremental values, and the above described

algorithm is repeated with a different set of training pair until the error in the output

decrease to some specified value.

3.4 Computed torque control

Consider the robot model as given in Equation (3.1). This can be simplified as

),()(qqHqqMτ &&& += . (3. 13)

with dm τqGqFqqqVqqH +++=)()(),(),(&&&&

The control torque is computed as

),(ˆ)(ˆ qqHuqMτ &+= (3. 14)

where and represents estimates of and respectively.)(ˆ qM),(ˆ qqH &)(qM),(qqH &

The term u in Equation (3.12) is computed as

)()(qqqqqu ddd −+−+= pv kk &&&& (3. 15)

where , and are the desired or reference input values of acceleration,

velocity and angular positions of the links respectively, and k

dq&& dq& dq

v and kp are constants

representing derivative and proportional gains of the PD controller. In practice, the

joint positions are measured very accurately with position encoders. The joint

velocity is usually measured using a tachogenerator, which may be subject to small

noise disturbances.

Expansion of (3.15) gives

 24

)()(111 111
qqkqqkqu dpdvd −+−+= &&&& (3. 16)

and

)()(222 222
qqkqqkqu dpdvd −+−+= &&&& (3. 17)

If perfect knowledge of the robot’s dynamic model is available, then

)()(ˆ qMqM = (3. 18)

and

),(),(ˆ qqHqqH && = (3. 19)

From Equations (3.13) to (3.17), we obtain the following

uq =&& . (3. 20)

Using Equation (3.14) for the two-link manipulator given by Equations (3.2) and

(3.3) gives

)q(qgl+m
)(q)glm+(m

q)(qll)mqq(
q)(qllmq

)]u(qllml[m
)]u(qllmlm)lm[(m

2122

1121

2221221

122122

22212
2
22

12212
2
22

2
1211

cos
cos

sin
sin

cos
cos2

+
+
+−

−
++

+++=

&&&

&&

τ

 (3. 21)

)q(qglm
(qllmq

ulm)]u(qllmlm

2122

2212
2
1

2
2
2212212

2
222

cos
)sin

cos

++
+

++=

&

τ

 (3. 22)

where and are obtained from Equations (3.16) and (3.17). 1u 2u

 25

Substitution of (3.20) into (3.15) gives

)()(qqqqqq −+−+= dpdvd kk &&&&&& (3. 23)

Rearranging (3.23) gives

0=++ eee pv kk &&& (3. 24)

where is the trajectory-tracking error. qqe −= d

We can re-write Equation (3.24) in the form

02 2 =++ eee nn ωρω &&& (3. 25)

in which nω is the undamped natural frequency and ρ is the damping factor.

Comparison of (3.24) with (3.25) gives

nvk ρω2≡ (3. 26)

2
npk ω≡ (3. 27)

 Equation (3.24) is the error equation which states that if the initial error is zero, that

is, and e=0, then the error e will be always zero, thereby giving perfect

tracking. If there is some initial value of error, Equation (3.23) states that the error

will tend to zero with time as long as k

0=e&

v>0 and . 0>pk

Figure 3.3 shows the schematic diagram illustrating the computed torque control

method. The dotted box represents the regressive part that the neural computed torque

control method aims to approximate. There is an analogy between the boxed section

in Figure 3.3 and Figure 3.4.

 26

Figure 3.3 Computed torque control.

The algorithm of the discrete form of the computed torque controller, as implemented

in a computer, is as follows:

 q

Robot

Kv
Kp

T

q qd

e

u qd

M(q)

H(q)

(i) At sampling instant k, at time t=tk, compute desired trajectory values of , and

.

dq dq&

dq&&

(ii) Use the q and output at t=tq& k to compute the acceleration input, u, of Equation

(3.15) .

(iii) Compute torque values 1τ and 2τ from the dynamic Equations (3.21) and (3.22).

(iv) These control torques are then applied to the robot. For the simulation studies,

ordinary differential equation (ODE) solvers are used to solve the nonlinear dynamic

Equations (3.21) and (3.22). The Matlab™ ode45 solver is used to obtain the next

time (t=tk+1) step’s q and from the dynamic Equations (3.21) and (3.22). q and q

are initialized to zero as initial conditions for the simulation for t=0.

q& &

(v) The new values of q and are then used and step (i) is repeated with t=tq& k+1.

The loop is terminated once the desired simulation time has been reached.

 27

The time response simulation uses the Runge-Kutta ODE integrator to compute the

state trajectory x(t) by solving for . x&

3.5 Neural computed torque control

The computed torque control method suffers from the disadvantage that an accurate

dynamic model of the robot needs to be known to achieve good control performance.

However, this is not easily accomplished in practice.

In the neuro-computed torque control approach [Li et al, 1995], shown in Figure 3.4,

a feedforward neural network is used and trained using the robot’s actual input-output

data. This neural network controller essentially replaces that portion of Figure 3.3

enclosed by the dotted box. For the neural computed torque controller, the same

algorithm as described in the previous section can be applied. However, in this case,

the backpropagation neural network is used to generate the control torques instead of

Equations (3.21) and (3.22). Hence the trained neural network is used in place of the

model to predict the motor torque values once input, u, is given to it.

The robot’s model is still needed as target values before the algorithm is applied for

purposes of training the neural network before the network is being used real-time

during the algorithm loops of (i) to (v). The neural network uses scaled inputs and

outputs.

 28

For the first neural subnetwork of link 1, torque values of the first link are obtained

from the network when the position, velocity and acceleration values of links 1 and 2

are fed as inputs. (Equation [(3.21)]) For the second neural subnetwork of link 2,

torque values of the second link are obtained from the network when the position and

acceleration values of links 1 and 2 are fed as inputs. Velocity values of link 1 are

also fed as inputs for the second subnetwork (Equation [(3.22)]).

Σ
+

-

Kp Kv

-

Neural
Network

q

q&

Robot

dq

++

++

dq&

dq&& u τ

Figure 3.4 Neural computed torque control.

Measured input-output training data from the plant is obtained from experiment as

shown in Fig. 3.5. An excitation function generator generates a trajectory as input to

the plant. Both the sequence for the input and the output of the plant, kτ and

respectively, are then measured at each sampling instant and these sequences are then

used to form training sets as given by Eqn. (3.21) and (3.22). Values of and

are estimated from values of using the backward difference. Training of the

controller is then done with the training data sets obtained. In the work done here,

both the inputs and outputs to the neural network are scaled so that their values are in

kq

kq& kq&&

kq

 29

the approximate range of . This is done for better training and performance of the

neural network [Haykins, 1999].

1±

Robot

Recorder

Generator •k
τ kq

Figure 3.5. Generating input-output training data.

 30

4 Nonlinear Feedback Linearization

4.1Mathematical preliminaries for feedback linearization

Consider the time-invariant, non-affine non-linear continuous-time system written in

the state-space form)()(xugxfx +=& , with an open subset , and the control-

value space

nx ℜ⊆

ℜ=U .

Suppose∑ and ∑
~

 are two systems of the above form and suppose that and Ο Ο~ are

open subsets of the state spaces and x x~ respectively. Then is feedback

equivalent to if there exists a diffeomorphism

),(O∑

)~,
~

(O∑ OOT ~: → , or T(x), and smooth

maps ℜ→O:,βα where 0)(≠xβ for all Ox∈ , such that for each Ox∈ ,

 and))((~))()()()((* xTfxgxxfxT =+α))((~)()()(* xTgxgxTx =β where f,g and

are the vector fields associated with their respective systems [Sontag 1998].

gf ~,~

Since T is a diffeomorphism, and x x~ need to have the same dimension. The

previous equalities and))((~))()()()((* xTfxgxxfxT =+α))((~)()()(* xTgxgxTx =β

may be expressed in the following equivalent form

() () () ())(~)(
)(

1)(~)()(* xTgxu
x

xTfxugxfT α
β

−+=+ mRuOx ∈∀∈ , ∀ .

A change of variables ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=)]([

)(
1),(:),(),(xu
x

xTvzux α
β

a provides a

diffeomorphism between ℜ×O and ℜ×W where the inverse is

 31

() ()()vzTzTzTuxvz)()(),(:),(),(111 −−− += βαa .

The solutions of)()(xugxfx +=& are transformed into solutions of

. These solutions correspond to the input)(~)(~ zgvzfz +=& [])(
)(

1 xu
x

v α
β

−= .

vxxvxku)()(),(βα +== may be viewed as a feedback law that closes the loop

about the system with v as the new input. Therefore the closed-loop system

 transforms into the new system under the

change of variables z=T(x).

)(),()(xgvxkxfx +=&)(~)(~ zgvzfz +=&

4.2 Theoretical development results

The robot model being used here will be the same as the two-link model described in

Section 3.1. Subscript 1 denotes the inner link, and subscript 2 denotes the outermost

free link.

The joint variables are q1 and q2.

Tqq] [21=q (4.1)

The torques to the robot’s actuator motors are 1τ and 2τ .

T] [21 ττ=τ (4.2)

The dynamic model of the robot is

 32

ττqGqFqqqVqqM =++++ dm)()(),()(&&&&& (4.3)

where

)(qM = inertia matrix,

),(qqV &m = Coriolis/centripetal matrix,

)(qF & = friction terms,

)(qG = gravity vector,

dτ = disturbances, and

τ = torque control input.

The robot’s arm dynamic equations are obtained from Lagrange’s equations

(Appendix A.1). They are re-written in matrix-vector form as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+

+++
+

⎥
⎦

⎤
⎢
⎣

⎡ +−
+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

+
++++

2

1

2122

21221121

2
2
1212

2
2
221212

2

1
2

22212
2
22

2212
2
222212

2
22

2
121

)cos(
)cos(cos)(

sin
sin)2(

cos
coscos2)(

2

τ
τ

qqglm
qqglmqglmm

qqllm
qqqqllm

q
q

lmqllmlm
qllmlmqllmlmlmm

&

&&&

&&

&&

 (4.4)

Consolidation of the terms gives the robot dynamic equations in a standard form

τqGqqVqqM =++)(),()(&&& . (4.5)

with

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
++++

= 2
22212

2
22

2212
2
222212

2
22

2
121

2
cos

coscos2)(
lmqllmlm

qllmlmqllmlmlmm
M(q) (4.6)

 33

⎥
⎦

⎤
⎢
⎣

⎡ +−
=

2
2
1212

2
2
221212

sin
sin)2(

qqllm
qqqqllm

&

&&&
&)qV(q, (4.7)

⎥
⎦

⎤
⎢
⎣

⎡
+

+++
=

)cos(
)cos(cos)(

2122

21221121

qqglm
qqglmqglmm

)qG(q, & (4.8)

Acceleration is made the subject of the standard dynamic equation as follows

τqGqqVqqM =++)(),()(&&&

⇒ (4.9) G(q)])qV(q,τMq −−= − &&& [1

The state of the system is defined as

TTT] [qqx &≡ . (4.10)

It is chosen that the state terms be

224

113

22

11

xqx
xqx

qx
qx

&&

&&

==
==

=
=

 . (4.11)

The robot model system is then expressed in partial state-space form as

g(x)uf(x)x +=& . (4.12)

with

 34

LHS: (4.13)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

2

1

4

3

2

1

q
q
q
q

x
x
x
x

&&

&&

&

&

&

&

&

&

&x

RHS: (4.14) τ
qM

0
qGqqVqM

q
x ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+−

= −−)()](),()[(11 &

&
&

The third and fourth terms of the Equation (4.33) is . This acceleration has its

derivation origins from the earlier Equation (4.29). This is reflected in the second

vector row term of Equation (4.34).

q&&

The terms of the state-space form are

⎥
⎦

⎤
⎢
⎣

⎡
+−

= − G(q)])q(q)[V(q,M
q

f(x) 1 &

&
 (4.15)

⎥
⎦

⎤
⎢
⎣

⎡
= − (q)M

0
g(x) 1 (4.16)

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

τ
τ

u (4.17)

The feedback controller formula needs to be derived, and it will have the general

form

vxβxαu)()(+= . (4.18)

 35

4.3 Results of the derivation of the nonlinear feedback control law

The nonlinear robot system expressed in partial state space form [Taware A, et al.,

2003] is

uxgxfx)()(+=& (4.19)

h(x)y = . (4.20)

Some of the mathematical preliminaries of section 4.1 are used in section 4.3.

The output of the system is Ch(x)y = . Since trajectory tracking is the aim here, the

output of the system is fed as input to the system. Therefore C=I, the identity matrix

. When C=I, y=Ch(x) gives y=h(x). Hence y=h(x). ⎥
⎦

⎤
⎢
⎣

⎡
10
01

For the present system, x and are 4×1 vectors. is a 4×2 matrix, and u is a

2×1 vector. h(x) is a 2×1 vector, where

&)(xf)(xg

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1)(
x
x

xh . (4.21)

Assume that the system has a starting state at time . The output and its

derivatives needs to be calculated.

)(0tx 0t)(ty

)()(tky

)(
))(()(

0

00

xh
xhy

=
= tt

 (4.22)

 36

Differentiating once with respect to time gives

)())(())((

)())(())(((

)]())(())(([(

)()1(

ttLtL

ttt

ttt

dt
dt

uxhxh

uxg
x
hxf

x
h

uxgxf
x
h

x
x
hy

gf +=
∂
∂

+
∂
∂

=

+
∂
∂

=

∂
∂

=

 . (4.23)

The mathematical notation used here is the Lie derivative of h(x) along f(x) being

defined as f(x)
x

h(x)h(x)f .
T

L ⎥⎦
⎤

⎢⎣
⎡
∂

∂
= .

For the present robot model, it has been calculated that

0))((=tL xhg . (4.24)

The first derivative term is then reduced to

))(()()1(tLt xhy f=∴ . (4.25)

The first derivative in Equation (4.25) is further differentiated to give

 37

)())(())((

)()))((())(((

)())((.))(())((.))((

)]())(())((.[))((

.))(()(

2

)2(

ttLLtL

ttLLtLL

tttLttL

ttttL
dt
dtLt

uxhxh

uxhxh

uxg
x
xhxf

x
xh

uxgxf
x
xh

x
x
xhy

fgf

fgff

ff

f

f

+=

+=
∂

∂
+

∂
∂

=

+
∂

∂
=

∂
∂

=

 (4.26)

The repeated Lie derivative - first along f(x) and then along g(x) - is defined

as)x(g
x

))x((
)x(

∂
∂

=
hL

hLL f
fg .

The second derivative equation is rearranged

such that u(t) is the subject of the equation.

)())(())(()(2)2(ttLLtLt uxhxhy fgf +=

))((
))(()()(

2)2(

tLL
tLtt

xh
xhyu

fg

f−
= (4.27)

This controller yields the linear system

vy =&& . (4.28)

The linearized feedback control law, u(t), for the nonlinear robot system is thus

derived.

The block diagram illustrating the approach is shown in Figure 4.1. Here, state

feedback transforms the nonlinear robot system into a linear and controllable system.

 38

The state x is fed back to generate control u such that there is a linear relationship

between y and v as represented by Equation 4.28.

Figure 4.1 State feedback

Substitution of (4.28) into (4.27) gives

))((
))((

)(
2

tLL
tL

t
xh
xhv

u
fg

f−
= . (4.29)

This feedback law has the initial desired general form of Equation (4.30).

)()()()(tt vxβxαu += (4.30)

With reference to the general form of the control law, the corresponding analogous

terms are as follows.

)()()2(ttv y≡ (Comparing (4.27) and 4.29)) (4.31)

))((
1)(

tLL xh
x

fg

≡β (4.32)

))((
))(()(

2

tLL
tL

xh
xhx

fg

f≡α (4.33)

vxβxα)()(+ uxgxfx)()(+=&

x

u y v

 39

)(xβ is assumed to be nonzero for all x.

In general, if γ is the smallest integer such that for i =0,…, 0≡hfg
iLL 2−γ and

, the control law nxLL ℜ∈∀≠− 01hfg
γ

)(1
1 vhL
hLL

u f
fg

+−= −
γ

γ (4.34)

gives . (4.35) vy =)(γ

The k-multiple Lie derivative of h(x) along f(x) is defined as the recursive

relationship)(.)()(1 xfx
x

x ⎥⎦
⎤

⎢⎣
⎡
∂
∂

= − hLhL k
f

k
f (4.36)

with . (Appendix A.2) (4.37))()(xx hhLo
f =

The derived control law is fed into the robot system equation.

uxgxfx)()(+=& (4.38)

))((
))(()()()(

2)2(

tLL
tLt

xh
xhyxgxfx

fg

f−
+=& (4.39)

The calculated value of control law, u, is allocated to the torque, τ, of the robot.

The error of the trajectory tracking is defined as

)()()(ttt xre −= , (4.40)

 40

where r(t) is the input to the system, and y(t) = x(t) is the output of the system. It is

the difference between the real output, y(t), and the reference output, r(t).

Differentiating the error once gives

)()()(ttt xre &&& −= (4.41)

Input v was chosen as a PD controller The external reference input v is chosen to
contain proportional integral control tuning parameters.

)()()(tktkt pD eev += & (4.42)

))((
))(()()()(

2

tLL
tLt

xh
xhvxgxfx

fg

f−
+=& (4.43)

Figure 4.2 The general feedback linearization scheme.

Figure 4.2 illustrates the control of the robot using state feedback linearization. The

inner state feedback loop is used to linearize the non-linear dynamics of the robot so

the well-known linear control principles can be used with the outer feedback loop.

Inner Loop:
State Feedback
Linearizer

Dynamics of
Robot

Robust Outer Loop
Control Signal v

u

-

qr +

Internally Linearized Loop

q

 41

Tracking control here aims to produce an output that converges to the prescribed

reference function. The reference profile used for simulation in this work is the

quintic polynomial profile.

The robot dynamic model equations are rearranged such that acceleration is made the

subject of the Equations (4.54) and (4.55). This is to allow the ordinary differential

equation (ode) computer routines to integrate on the acceleration term so that velocity

values can be obtained. The ode routines are based on the Runge-Kutta formulations.

Two state vectors are passed to the ode routines- the position vector and the velocity

vector. Other than integrating the acceleration term of Equations (4.54) and (4.55),

the ode function also integrates the velocity term in the state vector that is being fed

in so that future position values can be obtained. The future values of the velocity and

the position vectors obtained after integration are collected and then fed back into the

controller to generate future values of the control torques.

)cos(cos)(sin)2(

]cos[]cos2)[(

212211212
2
221212

22212
2
2212212

2
22

2
1211

qqglmqglmmqqqqllm

qqllmlmqqllmlmlmm

+++++−

+++++=

&&&

&&&&τ
 (4.44)

)cos(sin]cos[21222
2
12122

2
2212212

2
222 qqglmqqllmqlmqqllmlm +++++= &&&&&τ (4.45)

]cos2)[(1 2212
2
22

2
121 qllmlmlmmA +++= (4.46)

]cos[1 2212
2
22 qllmlmB += (4.47)

)cos(cos)(sin)2(1 212211212
2
221212 qqglmqglmmqqqqllmC +++++−= &&& (4.48)

]cos[2 2212
2
22 qllmlmA += (4.49)

 42

2
2
12122

2
22 sin2 qqllmqlmB &&& += (4.50)

)cos(sin2 21222
2
1212 qqglmqqllmC ++= & (4.51)

1 1 1 111 CqBqA ++= &&&&τ (4.52)

2 2 2 222 CqBqA ++= &&&&τ (4.53)

Acceleration is made the subject of the equation.

2*121
)121221(12

1 ABBA
BCCBBBq

+×−
×+×−×+×−−

=
ττ

&& (4.54)

2121
212112 21

2 ABBA
ACCAAAq

×+×−
×−×+×−×

=
ττ

&& (4.55)

Summarized Algorithm (with reference to Figure 4.3):

For t=0 to 2 sec

 e(t)=r(t)-y(t)

)()()(txtrte &&& −=

)()()(tektektv pD += &

 u(t)=α(x)+β(x)v(t) (α,β from symbolic formulas)

 (t+1)=f(x)+g(x)u(t) (f, g from symbolic formulas) x&

(assume that u(t) does not change between t and t+1)

 assign u(t) to be the control torque value

 43

 x(t) contains q and values. Feed x(t) into function ode45 to get x(t+1) . After

evaluation of x(t+1), assign y(t+1)=x(t+1) since from y=h(x))

q&

 Update the state value x(t) for the next loop

End

Figure 4.3

KD +ke& p e α+βν x& =f(x)+g(x)u;
y=h(x)

r
y

v

PD control w

(N)1(+tx

x

u

)(),(txt&
-+
ode) from step, ext time
ith state feedback linearization

44

4.4 Controller results

For the present two link robot system, the following formulations are obtained for numerical

simulation.

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

hLg (4.56)

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

q
q

hLf &

&
 (4.57)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−
+++

+−−
+−

+−−
+

+−−
=

)cos(
cos2

)cos(
cos

)cos(
)cos(

)cos(
1

2
2

221
2
1

2
22

2212
2
222

2
11

2
1

2
2

221
2
12

212

2
2

221
2
12

212

2
2

221
2
1

qmmmllm
qllmlmmlml

qmmmll
qll

qmmmll
qll

qmmmlhLL fg (4.58)

 45

)1(2 hLf =

)cos(
)cos(cos)(sin)2(

2
2

221
2
1

212211212
2
221212

qmmml
qqglmqglmmqqqqllm

+−−
+++++− &&&

)cos(

)cos(sin)(cos(

2
2

221
2
12

21222
2
1212212

qmmmll
qqglmqqllmqll

+−−
+++

−
&

 (4.59)

=)2(2 hL f

()())cos(cos)(sin2(
)cos(

cos
212211212

2
221212

2
2

221
2
12

212 qqglmqglmmqqqqllm
qmmmll

qll
+++++−×

+−−
+−

&&&

()21222
2
1212

2
2

221
2
1

2
22

2212
2
222

2
11

2
1 cos(sin

)cos(
cos2 qqglmqqllm
qmmmllm

qllmlmmlml
++×

+−−
+++

+ &

 (4.60)

⎥
⎦

⎤
⎢
⎣

⎡
=

)2(
)1(

2

2
2

hL
hL

hL
f

f
f (4.61)

 46

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−−
+++

+

+−−
+++++−

−

−−−−=

)cos(
)cos(sin)(cos(

)cos(
)cos(cos)(sin)2(

)cos2()1(

2
2

221
2
12

21222
2
1212212

2
2

221
2
1

212211212
2
221212

1

2212
2
222

2
11

2
1

qmmmll
qqglmqqllmqll

qmmml
qqglmqglmmqqqqllm

v
qllmlmmlmlu &

&&&

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−
+++++

−
+−−

+++++−+
+

+−

)cos(
)cos(sin)(cos2(

)cos(
)cos(cos)(sin)2()cos(

)cos(

2
2

221
2
1

2
22

21222
2
12122212

2
222

2
11

2
1

2
2

221
2
12

212211212
2
221212212

2

22122

qmmmllm
qqglmqqllmqllmlmmlml

qmmmll
qqglmqglmmqqqqllmqllv

mqlll
&

&&&

 (4.62)

)cos(
)cos(cos)(sin)2(()cos()2(

2
2

221
2
1

212211212
2
221212

122122 qmmml
qqglmqglmmqqqqllmvmqlllu

+−−
+++++−

−+−=
&&&

 ()
)cos(

)cos(sincos

2
2

221
2
12

21222
2
1212212

qmmmll
qqglmqqllmqll

+−−
+++

+
&

()
)cos(

cos(cos)(sin)2()cos((
2

2
221

2
12

212211212
2
221212212

2
2
22 qmmmll

qqglmqglmmqqqqllmqllvlm
+−−

++++++
+−

&&&

)
)cos(

)cos(sin)(cos2(

2
2

21
2
1

2
22

21222
2
12122212

2
222

2
11

2
1

qmmllm
qqglmqqllmqllmlmmlml

−−
+++++

−
&

 (4.63)

⎥
⎦

⎤
⎢
⎣

⎡
=

)2(
)1(

u
u

u (4.64)

The novel controller u, is thus obtained for feedback linearization of the robot

system.

 47

4.5 Neuro-Feedback Linearisation

Simulation studies on the same robot model are carried out using the neuro-feedback

linearization controller. The neural network requires data for training. To get the data

points for training, a sine wave is used as the reference trajectory input. This sine

curve has some random noise introduced into it. The input is then fed into a PD

controller so as to obtain the torque for the robot. This torque value is then fed into

the robot plant. The next time step value of the robot’s position and velocity are

obtained from the plant’s ode function. This updated position and velocity value is

fed back to the beginning of the loop to be compared with the reference input’s value.

The error obtained due to the slight discrepancy between the reference and feedback

position and velocity values are needed for calculation of the torque from the PD

controller. Ten thousand data points for each attribute are saved. Six attributes are

saved for the neural network. They are the position, velocity and torque values of

both links. During the generation of data points, the output of the PD controller v, is

taken to be equal to the torque value.

During neural network training, the position, velocity and the external reference input

v are the inputs to the neural network. The torque output values are provided for as

teaching values for the training of the neural network.

During simulation, the controller u of (Equations 4.62 to 4.64) is not used. In its

place, the trained neural network is used in each loop of the simulation to give the

 48

output torque value when the input position, velocity and reference input values are

fed into the network. Hence the neural network serves as a nonlinear function that

maps the input signal vector consisting of v, q and q , to the output torque signal

vector τ.

&

 49

Chapter 5 Discussion of Simulation Results

5.1 Computed torque and neuro computed torque control

Simulations studies were performed for the computed torque and the neuro computed

torque control schemes discussed in Chapter 3. The controlled plant is the two-link

robotic manipulator as described in Section 3.1. During the computed torque and

neuro computed torque control simulation, the two links of the robot model were

controlled to follow a quintic polynomial trajectory for 2 seconds. The task trajectory

is chosen as

32
543)61510()(tt

t
q

t
t
q

t
q

tq
f

f

f

f

f

f
d +−= (5.1)

where tf = total move time, qd=desired position, qf=final position and t= time.

Before a robot link can be controlled, the desired path for performing a task needs to

be known. Such paths are user defined. In the simulations here, the path is chosen to

be that of the commonly used quintic polynomial. Other paths such as the cubic

polynomial, sine and cosine curves may also be used. For the motion control problem

here, the ultimate control objective is to ensure that the robot moves along a

prescribed desired trajectory.

The developed robot controllers are simulated on a computer to verify the

effectiveness of the proposed control schemes. Computer simulations help to verify

the viability of the controller design. The computer-controlled system is assumed to

behave as a continuous time system if the sampling period is sufficiently small. In the

 50

simulations done here, a sampling time of 1 s is used throughout. During simulation,

the links are made to follow the desired quintic trajectory in 2 seconds over a distance

of 1rad. Two trajectory tracking control methods, the computed torque control

method (CTC) and the neuro computed torque control method (NCTC), were applied

on a robot model. The two method’s simulation performance are compared and

discussed.

The following parameters for the two-link manipulator were used in the simulation:

m1=2kg, m2=3kg, l1=1m, l2=1.5m and g=9.81m/s2
.

From Figure 5.1, for the first link, the CTC method gives errors which are smaller

than that of the NCTC method. The CTC errors hover closely around zero. The

maximum error of NCTC is a small value of 4.5×10-3rad.

 51

NCTC

CTC

Figure 5.1 Time history of position error of link 1 with neural CTC and CTC

scheme.

CTC

NCTC

Figure 5.2 Time history of position error of link 2 with neural CTC and CTC scheme.

 52

From Figure 5.2, link two’s performance is similar to that of link one’s performance.

From the plot, it is seen that the CTC method gives smaller errors than errors of the

NCTC method. The maximum error of NCTC is a small value of 4.5×10-3rad.

In general, tracking error stayed in the range of 10-3 rad for the NCTC method, whilst

tracking error stayed in the range of 10-6 rad for the CTC method. Theoretically, for a

continuous system, the CTC should give perfect tracking control, meaning that

tracking should always stay at zero. In the simulation, the small tracking errors, on

the order of 10-5, are due to two main factors, round-off errors in computation in the

digital computer and the introduction of sampling (a sampling period of 0.001 s was

used) with a zero-order hold for the control torques. The NCTC method also

performed very well with maximum tracking errors on the order of 10-3. This showed

that the neural network can accurately map the dynamic model of the robot through

training.

 53

Link 1

Link 2

Figure 5.3 Time history of position of links 1,2 with neural-CTC and CTC scheme.

Figure 5.3 shows the quintic polynomial trajectory profiles of both Link 1 and Link 2.

The actual paths and desired paths closely coincide with one another. The same

curves are obtained for both neural CTC and CTC schemes as the tracking errors in

both cases are very small. In both control schemes, it is noted that the desired and

actual trajectories for both links coincides with each other.

The change in trajectory profiles due to changes in mass is carried out. A weight

increase of the robot link can indicate a pickup of load by the arm, and a weight

decrease can also indicate a release of load by the arm. For the simulation here, link

 54

one has an increase of mass of 0.5kg (from 2 to 2.5), and link two has a decrease of

mass of 2kg (from 3 to 1). From figure 5.4, the trajectory profile of the system under

computed torque controller shows that there was some deviation from the profile to

be tracked. The deviation seemed to be more obvious during the initial pick or drop

event. The deviation of the first link is smaller since it only gained 0.5kg. The

deviation of the first link is more marked as it has lost 2kg. Deviation profiles can be

seen when figure 5.4 was compared with figure 5.3.

Figure 5.4 Time history of both link under CTC scheme with link mass change

 55

From figure 5.5, it is seen that error of the first link reached a peak of 0.027 at 0.6

seconds. The error level then goes down smoothly to a low value of 0.005. It then

settles at a constant value of 0.01 by 2 seconds.

For the second link, the error reached a peak of 0.09 at 0.6 seconds, as seen from

figure 5.6. The error level settles at a constant value of 0.065 by the end of two

seconds.

Figure 5.5 Time history of position error of link 1 under CTC scheme with mass

change

 56

Figure 5.6 Time history of position error of link 2 under CTC scheme with mass

change

From figure 5.7, the trajectory profile of the system is seen after training on new mass

change data under the neural computed torque controller. It shows that there is some

slight deviation from the profile to be tracked. The deviation also seems to be more

obvious during the initial drop event for the second link. For the first link, the path is

still well tracked.

 57

Figure 5.7 Time history of both link under NCTC scheme with link mass change

From figure 5.8, it is seen that error of the first link has a maximum of 0.005 at the

end of two seconds. For the second link in figure 5.9, the error level settles at a

constant value of 0.045 by the end of two seconds. After the neural network is trained

on the new mass change data, the maximum error values of the NCTC scheme are

less than the maximum error values of the CTC.

 58

Figure 5.8 Time history of position error of link 1 under NCTC scheme with mass

change

Figure 5.9 Time history of position error of link 2 under NCTC scheme with mass

change

 59

5.2 Simulation results of the designed feedback linearized law.

Simulation studies are carried out using the designed feedback linearized law of

(4.81-82) on the two-link manipulator. When the feedback linearized law was applied

to the robot model, the position error profile obtained is seen in Figure 5.10. From

figure 5.10, the error of both links is acceptably low, the maximum error being at

most 0.015 rad. The error is cyclic in nature.

Figure 5.10 Time history of position error of link 1 and 2 with feedback

linearized law.

 60

For the first link, the actual path of the robot follows closely to that of the reference

trajectory path. At about 1.25 seconds, the actual path is seen to coincide with that of

the reference trajectory’s path.

Figure 5.11 Time history of link one’s position with feedback linearized law.

 61

For the second link, the actual path of the robot also follows closely to that of the

reference trajectory path. At about 1.20 seconds, the actual path is seen to coincide

with that of the reference trajectory’s path.

Figure 5.12 Time history of link two’s position with feedback linearized law.

 62

5.3 Neuro-Feedback linearisation

From figure 5.15, the peak value of error is 0.008 for the first link, and 0.027 for the

second link. Link 1’s error is more stabilized, and it lies between the range of -0.005

and -0.008.

Figure 5.13 Link 1’s reference points for neural network training.

 63

Figure 5.14 Link 2’s reference points for neural network training.

Figure 5.15 Time history of position error of link 1 with neuro-feedback

linearized law.

 64

Figure 5.16 Time history of link one’s position with neuro-feedback linearized

law.

For the first link, the actual path of the robot follows reasonably close to that of the

reference trajectory path.

 65

Figure 5.17 Time history of link two’s position with neuro-feedback linearized

law.

For the second link, the actual path of the robot follows the reference trajectory path

with slight deviations after 2 second. Tracking is more accurate before t=2sec.

 66

Figure 5.18 Time history of link one’s velocity with neuro-feedback linearized

law.

Figure 5.19 Time history of link two’s velocity with neuro-feedback linearized

law.

 67

5.4 Conclusion

Performance comparisons are made between the neuro-computed torque control

method and the conventional computed torque control method. A two-link

manipulator model has been used for simulation studies. The backpropagation neural

network in the neural-CTC control method has been found to give excellent tracking

control results. It is shown that the neural-CTC method can learn a robot’s nonlinear

dynamic behaviour very well.

The feedback linearization technique is applied to the nonlinear two-link robot model.

An inner loop control is added so that an inner linearized block of control system can

be generated. The results of position tracking control are validated by simulation of a

two-link robot model. Good tracking results are obtained with the feedback linearized

controller. The tracking performance with the designed linearized feedback law also

gave results comparable to that of NCTC and CTC methods. The linearized feedback

law simulation consumes the least amount of computation time, and tracking results

are still good, though not as good as that of NCTC. The neuro-linearized feedback

controller tracks the trajectory reasonably well. Since it is a novel controller, there is

potential in using it experimentally if adaptations to link weight changes are needed.

The time taken for simulation for NCTC is the longest, but the NCTC gives better

tracking results, and is model free.

Feedback linearization has the advantage of allowing for the use of linear techniques

to achieve desired closed loop control specifications for nonlinear full dynamic robot

 68

descriptions. Feedback linearization is also robust to parameter uncertainty. The

disadvantage of feedback linearization is that when the dynamic model becomes more

detailed as the number of robot links increases, computational complexity results.

This limitation may be overcome with the current availability of fast computers. From

the results of the current work, the proposed feedback linearized controller has been

shown to have potential for controlling nonlinear multi-linked robotic systems real-

time with good tracking results.

 69

6 References

[1] Abdallah C, Dawson D., Dorato P. and Jamshidi M. Survey of Robust Control for Rigid

Robots. IEEE Control Systems, pp. 24-30. 1991.

[2] Abdelhameed M. M. Adaptive Neural Network Based Controller for Robots.

Mechatronics, Vol. 9, pp. 147-162. 1999.

[3] Acosta L., Marichal G. N., Moreno L., Rodrigo J. J., Hamilton A. and Mendez J. A. A

Robotic System based on Neural Network Controllers. Artificial Intelligence in

Engineering, Vol. 13, pp. 393-398. 1999.

[4] Astrom K. J. and Wittenmark B. Computer-Controlled Systems: Theory and Design.

3rd Ed. Prentice Hall. 1997.

[5] Astrom K.J. and Hagglund T. PID Controller: Theory, Design, and Tuning. Research

Triangle Park, NC, USA. 1995.

[6] Astrom K.J. and Wittenmark B. Adaptive Control. New York: Addison-Wesley. 1995.

[7] Barambones O., Etxebarria V. Robust Neural Control for Robotic Manipulators.

Automatica, Vol. 38, pp. 235-242. 2002.

[8] Berger R. M. and Elmaraghy H. A. Feedback Linearization Control of Flexible Joint

Robots. Robotics and Computer Integrated Manufacturing, Vol. 9, No. 3, pp. 239-

246, 1992.

[9] Berghuis H. and Nijmeijer H. A Passivity Approach to Controller-Observer Design for

Robots. IEEE Transactions on Robotics and Automation, Vol. 9, No. 6, pp. 740-754,

December 1993.

[10] Berghuis H., Nijmeijer H., Lohnberg P. An Addendum on ‘Robust Control of Robots by

the Computed Torque Method. Systems and Control Letters, Vol. 18, pp. 403-407.

1992.

 70

[11] Cabrera J. B. D and Narendra K. S. Issues in the Application of Neural Networks for

Tracking Based on Inverse Control. IEEE Transactions on Automatic Control, Vol.

44, No. 11, pp. 2007-2027. November 1999.

[12] Caccavale F, Natale C., Siciliano B. and Villani L. Resolved-Acceleration Control of

Robot Manipulators: A Critical Review with Experiments. Robotica, Vol. 16, pp. 565-

573, 1998.

[13] Canudas C. D. W. and Slotine J. J. E. Sliding Observers for Robotic Manipulators.

Automatica, Vol. 27, No. 5, pp. 859-864. 1991.

[14] Canudas C. d. W., Siciliano B. and Bastin G. Theory of Robot Control. Springer. 1996.

[15] Cavallo A., Setola R. and Vasca F. Using Matlab: Simulink and Control System

Toolbox: A Practical Approach. Europe: Prentice Hall. 1996.

[16] Chang, C.-C., & Lin, C.-J. LIBSVM: Introduction and benchmarks (Tech. Rep.).

Taipei, Taiwan: Department of Computer Science and Information Engineering,

National Taiwan University, 2000.

[17] Chang, C.-C., & Lin, C.-J. LIBSVM: A library for support vector machines [Computer

Software]. Available on-line: http://www.csie.ntu.edu.tw/~cjlin/libsvm , 2001.

[18] Chang, C.-C., & Lin, C.-J. Training ν-support vector classifiers: Theory and

algorithms. Neural Computation, 13(9), 2119–2147, , 2001.

[19] Cheng X. P. and Patel R. V. Neural Network Based Tracking Control of a Flexible

Macro-micro Manipulator System. Neural Networks, Vol. 16, pp. 271-286. 2003.

[20] Chiavarini S., Siciliano B. and Villani L. An Adaptive Force/Position Control Scheme

for Robot Manipulators. Applied Mathematics and Computer Science, Vol. 7, No. 2,

pp. 293-303, 1997.

 71

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[21] Colbaugh R., Glass K., and Seraji H. Adaptive Tracking Control of Manipulators:

Theory and Experiments. Robotics and Computer-Integrated Manufacturing, Vol. 12,

No. 3, pp. 209-216. 1996.

[22] Corke P. A Robotics Toolbox for Matlab. IEEE Robotics and Automation Magazine,

pp. 24-32. March 1996

[23] Efe M. O. and Kaynak O. A Comparative Study of Neural Network Structures in

Identification of Nonlinear Systems. Mechatronics, Vol. 9, pp. 287-300. 1999.

[24] Ertugrul M., Kaynak O. Neuro Sliding Mode Control of Robotic Manipulators.

Mechatronics. Vol. 10, pp. 239-263, 2000.

[25] Fu K. S., Gonzalez R. C. and Lee C. S. G. Robotics: Control, Sensing, Vision and

Intelligence. McGraw Hill. 1987.

[26] Ge S. S., Hang C. C., Lee T. H. and Zhang T. Stable Adaptive Neural Network Control.

Kluwer Academic Publishers. 2002.

[27] Ge S. S., Huang L. and Lee T. H. Model-Based and Neural-Network-based Adaptive

Control of two Robotic Arms Manipulating an Object with Relative Motion.

International Journal of Systems Science, Vol. 32, No. 1, pp. 9-23. 2001.

[28] Ge S. S., Lee T. H. and Harris C. J. Adaptive Neural Network Control of Robotic

Manipulators. World Scientific Series in Robotics and Intelligent Systems- Vol. 19.

1998.

[29] Goodwin G. C. and Sin K. S. Adaptive Filtering Prediction and Control. Prentice Hall.

1984.

[30] Gupta M. M., Jin L. and Homma N. Static and Dynamic Neural Networks: From

Fundamentals to Advanced Theory. New Jersey: John Wiley & Sons. 2003.

 72

[31] Gupta P. and Sinha N. K. Intelligent Control of Robotic Manipulators: Experimental

Study using Neural Networks. Mechatronics, Vol. 10, pp. 289-305, 2000.

[32] Gutierrez L.B., Lewis F.L. and Lowe J.A. Implementation of a neural network tracking

controller for a single flexible link: comparison with PD and PID controller. IEEE

Trans. Ind. Electron, Vol 45, p. 307. 1998.

[33] Hagan M. T. and Demuth H. B. Neural Networks for Control. Proceedings of the

American Control Conference, June 1999, San Diego, California, pp. 1642-1656.

[34] Hagan M. T., Demuth H. B. and Beale M. Neural Network Design. PWS Publishing

Company. 1996.

[35] Hagan M. T., Orlando D. J., Schultz R. Training Recurrent Networks for Filtering and

Control. In Recurrent Neural Networks: Design and Applications. Pp. 325-354,

Chapter 12, New York: CRC Press, 2001

[36] Haykins S. Neural Networks: A Comprehensive Foundation. 2nd Ed. USA: Prentice

Hall. 1999.

[37] Holt K. and Desrochers A. A. Disturbance Rejection for Space-Based Manipulators.

Journal of Robotic Systems, 16(5), pp. 285-299. 1999.

[38] Huijberts H. J. C. Dynamic Feedback in Nonlinear Synthesis Problems. Netherlands:

Centrum voor Wiskunde en Informatica CWI Tract, Stichting Mathematische

Centrum Amsterdam. 1994

[39] Hunt, K. J., Sbarbaro, D., Zbikowski, R. and Gawthrop, P. J. Neural networks for

control systems ⎯ a survey Automatica, 1992, 28, (6), pp. 1083-1112, 1992.

[40] Isidori A. and Byrnes C. Output Regulation of Nonlinear Systems. IEEE Transactions

on Automatic Control, Vol. 35, No. 2, pp. 131-140, February 1990.

 73

[41] Isidori A. Krener A. J., Giorgi C. G. and Monaco S. Nonlinear Decoupling via

Feedback: A Differential Geometric Approach. IEEE Transactions on Automatic

Control, Vol. AC-26, No. 2, pp. 331-345. April 1981.

[42] Isidori A. Nonlinear Control Systems. London: Springer, Third Ed., 1995.

[43] Johansson R., Robertsson A., Nilsson K., Verhaegen M. State-Space System

Identification of Robot Manipulator Dynamics, Mechatronics, Vol. 10, pp. 403-418.

2000.

[44] Jungbeck M. and Cerqueira J. J. F. Comments on “Intelligent Optimal Control of

Robotica Manipulator using Neural Networks. Automatica, Vol. 38, pp. 745, 2002.

[45] Karlik B., Aydin S. An Improved Approach to the Solution of Inverse Kinematics

Problems for Robot Manipulators. Engineering Applications of Artificial

Intelligence, 13, pp. 159-164, 2000.

[46] Khalil H. K. Nonlinear Systems. Prentice Hall 2002.

[47] Khalil H. K. Adaptive Output Feedback Control of Nonlinear Systems Represented by

Input-Output Models. IEEE Transactions on Automatic Control, Vol. 41, No. 2, pp.

177-188, February 1996.

[48] Khalil W. and Dombre E. Modeling, Identification and Control of Robots. London:

Hermes Penton. 2002.

[49] Kim Y. H. and Lewis F. L. Neural Network Output Feedback Control of Robot

Manipulators. IEEE Transactions on Robotics and Automation, Vol. 15, No. 2, pp.

301-309. April 1999.

[50] Kim Y. H. and Lewis. High-Level Feedback Control with Neural Networks. World

Scientific Series in Robotics and Intelligent Systems- Vol. 21, Singapore: World

Scientific. 1998.

 74

[51] Kim Y. H., Lewis F. L., Dawson D. M. Intelligent Optimal Control of Robotic

Manipulators using Neural Networks. Automatica, Vol. 36, pp. 1355-1364. 2000.

[52] Koivo A.J. Fundamentals for Control of Robotic Manipulators. New York: Wiley.

1989.

[53] Kuschewski J. G, Hui S. and Zak S. H. Application of Feedforward Neural Networks to

Dynamical System Identification and Control. IEEE Transactions on Control Systems

Technology, Vol. 1., No. 1, pp. 37-49. March 1993.

[54] Kwatney H. F. and Blankenship G. L. Nonlinear Control and Analytical Mechanics: A

Computatinal Approach. Berlin: Birkhauser. 2001.

[55] Levin A. U. and Narendra K. S. Control of Nonlinear Dynamical Systems Using

Neural Networks- Part 2: Observability, Identification, and Control. IEEE

Transactions on Neural Networks, Vol. 7, No. 1, pp. 30-42. January 1996.

[56] Levin A. U. and Narendra K. S. Identification of Nonlinear Dynamical Systems Using

Neural Networks. In Neural Systems for Control, ed by Omidvar O. and Elliott D. L.,

Chapter 6, pp.129-159. Academic Press. 1997.

[57] Lewis F. L. Intelligent Control: Neural Network Control of Robot Manipulators. IEEE

Expert, pp. 64-75. 1996.

[58] Lewis F. L., Jagannathan S. and Yesildirek A. Neural Network Control of Robot Arms

and Nonlinear Systems. In Neural Systems for Control, ed by Omidvar O. and Elliott

D. L.,Chapter 7, pp.161-211. Academic Press. 1997.

[59] Lewis F. L., Jagannathan S. and Yesildirek A. Neural Network Control of Robot

Manipulators and Nonlinear Systems. London: Taylor and Francis. 1999.

 75

[60] Lewis F. L., Yesildirek A. and Liu K. Multilayer Neural-Net Robot Controller with

Guaranteed Tracking Performance. IEEE Transactions on Neural Networks, Vol. 7,

No. 2, pp. 388-399. March 1996.

[61] Lewis F.L., Abdallah C.T. and Dawson D.M. Control of Robot Manipulators. New

York: Macmillan. 1993.

[62] Li Q., Poo A. N. and Ang M. An Enhanced Computed-Torque Control Scheme for

Robot Manipulators with a Neuro-Compensator. Proceeding of the IEEE

International Conference on Systems, Man & Cybernetics, 22-25 October 1995,

Vancouver, Canada.

[63] Lin, C.-J. Formulations of support vector machines: A note from an optimization point

of view. Neural Computation, 13(2), 307–317, 2001.

[64] Lucibello P. Some Notes on Output Regulation of Nonlinear Systems. In Proceedings of

the 32nd Conference on Decision and Control, San Antonio, Texas, pp. 3556-3561,

December 1993.

[65] Marino R. Adaptive Control of Nonlinear Systems: Basic Results and Applications. A.

Rev. Control, Vol. 21, pp. 55-66. 1997.

[66] Marino R. and Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust.

UK: Prentice Hall. 1995.

[67] Marino R. and Tomei P. Nonlinear Output Feedback Tracking with Almost

Disturbance Decoupling. IEEE Transactions on Automatic Control, Vol. 44, No. 1,

pp.18-28. 1999.

[68] Marino R., Tomei P., Kanellakopoulos I. And Kokotovic P. V. Adaptive Tracking for a

Class of Feedback Linearizable Systems. Vol. 39, No. 6, pp. 1314-1319, June 1994.

 76

[69] Miller W. T., Sutton R. S. and Werbos P. J. (Eds.) Neural Networks for Control and

Systems. Peter Peregrinus Ltd. 1992.

[70] Moallem M., Khorasani K., Patel R. V. An Integral Manifold Approach for Tip-

Position Tracking of Flexible Multi-Link Manipulators. IEEE Transactions on

Robotics and Automation, Vol. 13, No. 6, pp. 823-836, 1997.

[71] Moallem M., Patel R. V. and Khorasani K. Experimental Results for Nonlinear

Decoupling Control of Flexible Multi-Link Manipulators. In Proceedings of the 1997

IEEE International Conference on Robotics and Automation, Albuquerque, New

Mexico, April 1997, pp. 3142-3147.

[72] Moallem M., Patel R. V., Khorasani K. An Observer-Based Inverse Dynamics Control

Strategy for Flexible Multi-Link Manipulators. In Proceedings of the 35th Conference

on Decision and Control Kobe, Japan, December 1996, pp. 4112-4117.

[73] Moallem M., Patel R. V., Khorasani K. Nonlinear Tip-Position Tracking Control of a

Flexible-Link Manipulator: Theory and Experiments. Automatica, Vol. 37, pp. 1825-

1834. 2001.

[74] Moya M. M. Robot Control Systems: A Survey. Robotics, Vol. 3, pp. 329-351. 1987.

[75] N. Cristianini and J. Shawe-Taylor. An introduction to support vector machinesn (and

other kernel-based learning methods). Cambridge University Press, 2000.

[76] Narendra K. S. and Annaswamy A. M. Stable Adaptive Systems. Prentice Hall. 1989.

[77] Narendra K. S. and Parthasarathy K. Identification and Control of Dynamical Systems

using Neural Networks. IEEE Transactions on Neural Networks. Vol. 1, No. 1, pp. 4-

27. March 1990.

 77

[78] Narendra, K. S. and Mukhopadhyay S. Adaptive Control Using Neural Networks and

Approximate Models. IEEE Transactions on Neural Networks, Vol. 8, No. 3, pp. 475-

485. May 1997.

[79] Nguyen D. H. and Widrow B. Neural Networks for Self-Learning Control Systems.

IEEE Control Systems Magazine, pp. 18-23. 1990.

[80] Ogata, K. Modern Control Engineering, Prentice-Hall, Englewood Cliffs, N. J., 1970.

[81] Ortega R. and Spong M. W. Adaptive Motion Control of Rigid Robots: A Tutorial.

Automatica, Vol. 25, No. 6, pp.877-888. 1989.

[82] Patarinski S. P. and Botev R. G. Robot Force Control: A Review. Mechatronics, Vol. 3,

No. 4, pp. 377-398. 1993.

[83] Patino H. D., Carelli R. and Kuchen B. R. Neural Networks for Advanced Control of

Robot Manipulators. IEEE Transactions on Neural Networks, Vol. 13, No. 2, pp.

343-354. March 2002.

[84] Poo A. N., Hong G. S., Xi W. Y and Chan K. Experimental Studies on a Neural-

network Based Controller for a single rigid link manipulator. In International

Symposium on Intelligent Automation and Control, May 1998, Alaska, USA.

[85] Poznyak A., Sanchez E. N. and Yu W. Differential Neural Networks for Robust

Nonlinear Control: Identification, State Estimation and Trajectory Tracking.

Singapore: World Scientific. 2001

[86] Qu Z. H., Dawson D. M. and Dorsey J. F. Exponentially Stable Trajectory Following

of Robotic Manipulators Under a Class of Adaptive Controls. Automatica, Vol. 28,

No. 3, pp. 579-586. 1992.

[87] Qu Z. H., Dorsey J. F., Zhang X. F. and Dawson D. M. Robust Control of Robots by

the Computed Torque Law. Systems and Control Letters, Vol. 16, pp. 25-32. 1991.

 78

[88] Rafizadeh H. and Perez R. Comparison of Adaptive Controllers Applied to the Robotic

Manipulators. Journal of the Franklin Institute, Vol. 332B, No. 4, pp. 403-417. 1995.

[89] Ramirez J. A., Cervantes I. and Kelly R. PID Regulation of Robot Manipulators:

Stability and Performance. Systems and Control Letters, Vol. 41, pp. 73-83. 2000.

[90] Saad D. On-Line Learning in Neural Networks. Publications of the Newton Institute,

Cambridge University Press. 1998.

[91] Sastry S. and Bodson. Adaptive Control of a Class of Nonlinear Systems. In Adaptive

Control: Stability, Convergence, and Robustness. Chapter 7, pp. 294-323, Prentice-

Hall. 1994.

[92] Sastry S. S. and Isidori A. Adaptive Control of Linearizable Systems. IEEE

Transactions on Automatic Control, Vol. 34, No. 11, pp. 1123-1131. November 1989.

[93] Schilling R.J. Fundamentals of Robotics: Analysis and Control. Prentice-Hall,

Englewood Cliffs, NJ. 1998.

[94] Schölkopf, B. Support vector learning. Doctoral dissertation, Munich: R. Oldenbourg

Verlag, 1997.

[95] Schölkopf, B., Burges, C. J. C., & Smola, A. J. Advances in kernel methods—Support

vector learning. Cambridge, MA: MIT Press, 1999.

[96] Schölkopf, B., Smola, A. J. Learning with Kernels- Support Vector Machines,

Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.

[97] Schölkopf, B., Smola, A. J., & Williamson, R. Shrinking the tube: A new support

vector regression algorithm. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.),

Advances in neural information processing systems, 11. Cambridge, MA: MIT Press,

1999.

 79

[98] Schölkopf, B., Smola, A., Williamson, R. C., & Bartlett, P. L. New support vector

algorithms. Neural Computation, 12, 1207–1245, 2000.

[99] Schwartz C. A. and Mareels I. M. Y. Comments on “Adaptive Control of Linearizable

Systems”. IEEE Transactions on Automatic Control, Vol. 37, No. 5, pp. 698-701,

May 1992.

[100] Schwarz H. Systems Theory of Nonlinear Control-An Introduction. Germany: Shaker

Verlag, 2000.

[101] Sciavicco L. and Sciliano B. Modeling and Control of Robot Manipulators. 2nd Ed.,

Springer, 2002.

[102] Shampine L. F. and Reichelt M. W. The Matlab ODE Suite. SIAM J. Sci. Comput.,

Vol. 18, No. 1, pp. 1-22. January 1997.

[103] Shampine L. F., Reichelt M. W. and Kierzenka J. A. Solving Index-I DAEs in Matlab

and Simulink. SIAM Review, Vol. 41, No. 3, pp. 538-552. 1999.

[104] Siciliano B. Robot Control. In Perspectives in Control Engineering: Technologies,

Applications and New Directions, ed by Samad R., pp. 442-461. IEEE Press,

Piscataway, NJ. 2000.

[105] Slotine J.J.E. and Li W. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs,

NJ. 1991.

[106] Slotine J.J.E. and Li W.P. Adaptive Manipulator Control: A Case Study. IEEE

Transactions on Automatic Control, Vol. 33, No. 11. pp. 995-1003. November 1988.

[107] Smola, A. J. Regression Estimation with Support Vector Learning Machines.

Diplomingenieur der Physik Dissertation, Technische Universität, 1996

[108] Smola, A. J. Learning with kernels. Doctoral dissertation, Technische Universität

Berlin. Also: GMD Research Series No. 25, Birlinghoven, Germany, 1998

 80

[109] Smola, A. J., Schölkopf, B. A tutorial on Support Vector Regression. NeuroCOLT2

Technical Report Series NC2-TR-1998-030, 1998.

[110] Sontag E. D. Mathematical Control Theory: Deterministic Finite Dimensional

Systems. 2nd Ed., New York: Springer. 1998.

[111] Spong M. W. Adaptive Control of Flexible Joint Manipulators, Systems & Control

Letters, Vol. 13, pp. 15-21. 1989.

[112] Spong M. W. On Feedback Linearization of Robot Manipulators and Riemannian

Curvature. In Essays on Mathematical Robotics. The IMA Volumes in Mathematics

and its Applications, Vol. 104, Baillieul J., Sastry S. S. and Sussmann H. J. (eds.),

pp.185-202, New York: Springer-Verlag, 1998.

[113] Spong M. W. On Robust Control of Robot Manipulators. IEEE Transactions on

Automatic Control, Vol. 37, No. 11, pp. 1782-1786. November 1992.

[114] Spong M. W., Ortega R. and Kelly R. Comments on “Adaptive Manipulator Control:

A Case Study.” IEEE Transactions on Automatic Control, Vol. 3. No. 6, pp. 761-762.

June 1990.

[115] Sun F. C., Li H. X. and Li L. Robot Discrete Adaptive Control based on Dynamic

Inversion using Dynamical Neural networks. Automatica, Vol. 38, pp. 1977-1983.

2002.

[116] Sun F. C., Sun Z. Q. and Woo P. Y. N. Neural Network-Based Adaptive Controller

Design of Robotic Manipulators with an Observer. IEEE Transactions on Neural

Networks, Vol. 12, No. 1, January 2001.

[117] Talebi H. A., Khorasani K. and Patel R. V. Neural Network based Control Schemes

for Flexible-link Manipulators: Simulations and Experiments. Neural Networks, Vol.

11, pp. 1357-1377. 1998.

 81

[118] Talebi H. A., Patel R. V. and Asmer H. Neural Network Based Dynamic Modeling of

Flexible-Link Manipulators with application to the SSRMS. Journal of Robotic

Systems, 17(7), pp. 385-401. 2000.

[119] Taware A. and Tao G. Control of Sandwich Nonlinear Systems. Lecture Notes in

Control and Information Sciences, Vol. 288, Heidelberg, Berlin: Springer-Verlag.

2003.

[120] Terra M. H. and Tinos R. Fault Detection and Isolation in Robotic Manipulators via

Neural Networks: A Comparison among three Architectures for Residual Analysis.

Journal of Robotic Systems, 18(7), pp. 357-374. 2001.

[121] Tomei P. Tracking Control of Flexible Joint Robots with Uncertain Parameters and

Disturbances. IEEE Transactions on Automatic Control Vol. 39, No. 5, pp. 1067-

1072. 1994.

[122] Vapnik, V. Statistical learning theory. New York: Wiley, 1998.

[123] Villani L., Natale C., Siciliano B., Canudas C. d. W. An Experimental Study of

Adaptive Force/ Position Control Algorithms for an Industrial Robot. IEEE

Transactions on Control Systems Technology, Vol. 8, pp. 777-786, September 2000.

[124] Wai R. J. Tracking Control based on Neural Network strategy for Robot

Manipulator. Neurocomputing, Vol. 51, pp. 425-445, April 2002.

[125] Widrow B. and Lehr M. A. 30 Years of Adaptive Neural Networks: Perceptron,

Madaline, and Backpropagation. Proceedings of the IEEE, Vol. 78, No. 9, pp. 1415-

1442. September 1990.

[126] Wilkie J., Johnson M. and Katebi R. Control Engineering: An Introductory Course.

Palgrave. 2002.

 82

[127] Xi W. Y., Poo A. N. and Ang M. On the Generation of Suitable Data Sets for the

Off-line Training of Neural-network Controllers Using Actual Plant Data.

International Symposium on Intelligent Automation and Control, May 1998, Alaska,

USA.

[128] Yu J. S., Quick G., Paulicks W., Muller P. C. and Berteit W. Transputer-based Robot

Control System for six-joint Robot Manipulators. Robotics and Computer-Integrated

Manufacturing, Vol. 14, pp. 111-119, 1998.

[129] Zhou K. and Doyle J. C. Essentials of Robust Control. USA: Prentice Hall. 1998.

[130] Zhu, H. A., Teo, C. L., Hong, G. S., and Poo, A. N An enhanced scheme for the

model-based control of robot manipulators. International Journal of Control, 56, (6),

pp. 1243-1261, 1992.

 83

Appendix

A.1

Lagrange’s equation of motion is

PK −=L (A.1)

where K= kinetic energy and P= potential energy.

The kinetic energy is

2
1

2
111 2

1 qlmK &= (A.2)

and the potential energy is

1111 sin qglmP = . (A.3)

The positions are

)cos(cos 212112 qqlqlx ++= (A.4)

)sin(sin 212112 qqlqly ++= , (A.5)

and the velocities are

)sin()(sin 212121112 qqqqlqqlx ++−−= &&&& (A.6)

)cos()(cos 212121112 qqqqlqqly +++= &&&& . (A.7)

The square of velocity is

 84

221
2
121

2
21

2
2

2
1

2
1

2
2

2
2

2
2

cos)(2)(qqqqllqqlql

yxv
&&&&&&

&&

++++=

+=
. (A.8)

The kinetic energy of the second link is

221
2
1212

2
21

2
22

2
1

2
12

2
222

cos)()(
2
1

2
1

2
1

qqqqllmqqlmqlm

vmK

&&&&&& ++++=

=
 . (A.9)

The potential energy of the second link is

)sin(sin[212112

222

qqaqagm
gymP

++=
=

 (A.10)

Combining kinetic and potential energy results in Lagrangian’s equation of motion.

The Lagrangian is thus

)sin(sin)(

cos)()(
2
1)(

2
1

21221121

221
2
1212

2
21

2
22

22
121

2121

qqglmqglmm

qqqqllmqqlmqlmm

PPKK
L

+−+−

+++++=

−−+=
−=

&&&&&&

PK

. (A.11)

Differentiating the Lagrangian, the following equations are obtained.

τ
qq
=

∂
∂

−
∂
∂ LL

dt
d

&
 (A.12)

22121221
2
221

2
121

1

cos)2()()(qqqllmqqlmqlmm
q
L

&&&&&
&

+++++=
∂
∂

 (A.13)

 85

2
2
22121222121221

2
221

2
121

1

sin)2(cos)2()()(qqqqllmqqqllmqqlmqlmm
q
L

dt
d

&&&&&&&&&&&&&
&

+−+++++=
∂
∂

 (A.14)

)cos(cos)(21221121
1

qqglmqglmm
q
L

+−+−=
∂
∂

 (A.15)

2121221
2
22

2

cos)(qqllmqqlm
q
L

&&&
&

++=
∂
∂

 (A.16)

2212122121221
2
22

2

sincos)(qqqllmqqllmqqlm
q
L

dt
d

&&&&&&&&
&

−++=
∂
∂

 (A.17)

)cos(sin)(2122221
2
1212

2

qqglmqqqqllm
q
L

−+−=
∂
∂

&&& (A.18)

The robot arm dynamics obtained from Lagrange’s equation are

)cos(cos)(sin)2(

]cos[]cos2)[(

212211212
2
221212

22212
2
2212212

2
22

2
1211

qqglmqglmmqqqqllm

qqllmlmqqllmlmlmm

+++++−

+++++=

&&&

&&&&τ
 (A.19)

and

)cos(sin]cos[21222
2
12122

2
2212212

2
222 qqglmqqllmqlmqqllmlm +++++= &&&&&τ . (A.20)

A.2

During the differentiation of)(1 x
x

hLk
f
−

∂
∂ , the Jacobian matrix (4.58) is used. Let

=λ(x) where for each .)(1 xhLk
f
− m)(ℜ∈xλ nℜ∈x

 86

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
∂

=

m
n

mm

n

n

xxx

xxx

xxx

)(

λλλ

λλλ

λλλ

λ

L

LLLL

L

L

21

22
2

2
1

11
2

1
1

)(x
x

xλx

. (A.21)

 87

	Acknowledgement
	Table of Contents
	List of Figures
	A Survey of Tracking Control techniques for Robots

	2.1 Introduction
	In the eighties, there were two different approaches to the
	2.2 Robust control
	2.3 Adaptive control
	2.4 Feedback linearization control
	4.4 Controller results

	5.4 Conclusion
	6 References

