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ABSTRACT

Flexibility is a widely applicable concept in many business areas to help a

company to deal with the demanding task of matching supply and demand

in uncertain situations, without incurring much cost. Many companies in

manufacturing, transportation and service industries have adopted flexibil-

ity as a key competitive tool. Flexibility practices, properly incorporated,

could increase service levels, decrease response times without requiring addi-

tional capacity investment. The challenge is to effectively design a flexibility

structure with a good performance, but with small implementation cost.

We first introduce the concept of “graph expander”, which is widely

used in graph theory, computer science and communication network design

areas. We propose that a good flexibility structure possesses the properties

of graph expander. Estimation on the performance of an expander flexibility

structure is also proposed under the assumption of balanced and identical

demands/supplies. We further examine the connections between the popu-

lar “chaining” structures and our expander structures, and propose that a

“chain” is just the special case of an expander structure. The concept of

“expander” can be further utilized to build an index to calibrate structures

in terms of flexibility.

We then extend our analysis to a generalized unbalanced and non-
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identical demands/supplies case. Another approach called “constraint sam-

pling” is applied to analyze the problem. The analysis also shows that a

well designed sparse flexibility structure provides comparable performance

to the full flexibility structure even when demands/supplies are unbalanced

and non-identical.

We propose two heuristics to design good sparse flexibility structures

based on the “graph expander” and “constraint sampling” concept. Both

heuristics are simple and effective. These heuristics can be applied to a broad

range of applications, such as process flexibility, transshipment, and cutting

stock problems. We use real data from the Food-From-The-Heart (FFTH)

program to support our conclusion. The theoretical results developed in our

study are applied to fix the problem of their food-delivery operational system

and enhance the operational performance. The result shows that by adding

a little flexibility to the original dedicated system using our approach, the

daily wastage of FFTH program can be reduced from more than 15 kilograms

to only 2.808 kilograms. This result strongly supports the merits of our

theoretical analysis.
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1. INTRODUCTION

With the evolvement of technology and the wave of globalization around

the world, the operational environments for many manufacturing and service

companies have become much more competitive and complicated. The com-

plex environment and heightened customer expectation have brought vast

uncertainties for all players in the supply chain. The ability to deal with the

uncertainties effectively turns out to be the key issue of achieving a successful

business in the fiercely competitive market. Uncertainties come from both

internal situations in the company and external factors out in the market.

Internal uncertainties are caused by incidents such as unexpected machine

break-down, and could be tackled through well designed work schedule and

frequent maintenance. The external uncertainties, on the other hand, come

from the uncertainty of the demand and the supply sources: customers’ or-

der changes quickly and suppliers may fail to deliver raw materials on time.

These external uncertainties are very hard to handle and usually out of the

managers’ control. Therefore, how to deal with the external uncertainties,

especially the unexpected changes of demand and supply, is the greatest

challenge faced by managers.

Some companies have adopted quick response strategies to enhance their

competitive advantages. Zara, for instance, a ready-to-wear fashion garment
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maker and distributor, expanded quickly in the past several years. The main

reason for Zara’s success is its quick response strategy: they deliver new

designs to their outlets twice-weekly and design customers’ specific orders in

just a few days. The quick response strategy is implemented by making its

design and production process more flexible [57].

Besides Zara, more and more companies in a wide range of industries

are beginning to treat flexibility as an important strategy to make their

businesses successful. In the automobile industry, for example, companies are

moving from focused factories to flexible factories. Ford Motor Company, for

instance, invested $485 million in two Canadian engine plants to renovate and

retool them with flexible system. It also has launched a plan for equipping

most of its 30-odd engine and transmission plants all over the world with

flexible systems.

“...‘The initial investment is slightly higher, but long-term costs are

lower in multiplies,’said Chris Bolen, manager of Ford’s Windsor en-

gine plant, which uses the flexible system to machine new three-valve-

per-cylinder heads for Ford’s 5.4-liter V8 engine...Ford says the sys-

tem will help it meet changes in demand. ‘If our business was hit

by a significant downsizing from V8s to V6s or V6s to (four-cylinder

engines) or diesels in North America, we’ll be able to react to that

without years of turnaround,’ said Kevin Bennett, Ford director of

power train manufacturing. ’It’s essential we be able to react to the

market more rapidly than in the past.’... ”
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— Mark Phelan, “Ford Speeds Changeovers in Engine Production”

Knight Ridder Tribune Business News. Washington: Nov 6, 2002.

Similar initiatives to make plants more flexible have also been accepted,

and are viewed as a strategic weapon in the automobile industry in the

increasingly competitive global environment. A survey of North-American

automobile industry conducted in 2004 shows that the plants of major au-

tomobile manufacturers, such as Ford and General Motor, are more flexible

than those 20 years ago [55]. The survey showed that these flexible plants

can produce much more types of cars to meet the rapidly changing customer

demands while their capacities did not change very much. This kind of

flexibility is called “process flexibility”, one of the widely adopted flexibility

strategies.

To enhance our understanding of the studies in flexibility, we briefly

review the various classes of flexibility strategies in section 1.1.

1.1 Flexibility

Flexibility, the ability of a system to respond or react to changes in external

environments with little penalty in time, effort, or cost [54], is a general con-

cept, which may have different interpretation in different settings. Sethi and

Sethi [48] provided an extensive survey on the applications of flexibility in

different areas. They categorized eleven types of flexibility, such as “machine

flexility”, “product flexibility”, “routing flexibility”, “resource flexibility”,

and etc. A recent survey conducted by Kara and Kayis [37] lists the factors
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causing the needs of flexibility, including both internal factors such as ma-

chine breakdown, workforce variations and etc, and external factors such as

demand variations, customizations, short product life cycles and etc. This

survey further describes 14 different types of flexibilities dealing with inter-

nal and external factors. Besides dealing with these traditional uncertainty

factors, flexibility tools also begin to be implemented in e-business areas with

the development of internet and IT technology. Shi and Daniels [49] reviewed

the process flexibility literatures that deals with e-business issues and defined

a new concept, “e-business flexibility”, in their paper.

There are by now a vast literature on flexibility. One group of study fo-

cuses on how to measure and suitably implement these flexibility strategies.

Das and Patel [17] suggested an “auditing” process to help a company iden-

tify its flexibility needs, and implementing the suitable flexibility strategies

gradually. Anand and Ward [4] conduct an empirical study on the impacts of

different types of flexibilities (“range” and “mobility”) on the market shares

and sales growths of companies under different environments (i.e. “unpre-

dictable” and “volatility”), based on the data collected from 101 manufac-

turing firms. Their statistical results suggest that environment factors play

important roles in determining suitable flexibility strategies. Jack and Ra-

turi [34] identified the resources which might help companies to increase the

volume flexibility based on case studies. Their study also showed positive

correlations between volume flexibility and company’s performances. They

[35] used four metrics to measure the volume flexibility in the capital good

industry. They tested 550 firms using 20 years worth of data, and indicated

that higher volume flexibility may not lead to better financial performance
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since the implementation cost might be too high. These studies all focus on

identifying the suitable flexibility tools for different companies at the strate-

gic level, but do not consider how to design and implement flexibility at the

operational level.

Another group of study focuses on identifying the guidelines to design

effective flexibility structures which are cheap and easy to be implemented in

daily operations. One widely adopted operational flexibility strategy is pro-

cess flexibility. Process flexibility is an effective tool to enhance the flexibility

of the operational process of a manufacturer or a service company. In section

1.2, we briefly describe the properties of process flexibility and thoroughly

review the literature in this area.

1.2 Process Flexibility

Process flexibility can be defined as the ability of a system which enables a

production facility to produce different types of products at the same time

with little penalty in operational cost [36]. Process flexibility is an effective

strategy that manufacturers can use to match fixed capacities with random

demands for different products. Indeed it is common to find a plant employ-

ing the technique of process flexibility in automobile industries these days

[55]. Process flexibility strategy is also widely used in services industries,

where process flexibility is achieved by equipping a system with multi-skill

agents [32].

To show why process flexibility can be used as an effective strategy to

deal with uncertainties in different applications, we need to understand its
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Product Plant
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Fig. 1.1: The Mechanism of Process Flexibility

mechanism first. Figure 1.1 is a simple example illustrating the mechanism

of process flexibility. There are two systems in Figure 1.1. Each system

has three plants and three products. The demands of products are random

and the capacities of plants are fixed. Figure 1.1-a is a traditional dedicated

production system: product 1, 2 and 3 can only be produced in factory 1,

2 and 3 respectively. When demand of product 1 is more than the capacity

of plant 1 and demand of product 2 is less than the capacity of plant 2 in

the same time, this system fails to satisfy all the demand of product 1 while

the capacity of plant 2 is not fully utilized. However, this situation is nicely

handled in a flexible system (see Figure 1.1-b). In this flexible system, every

product can be produced in 2 plants. The excessive demand of product 1 will

be partially (or evenly fully) satisfied using the spare capacity of plant 2. This

is the basic reason why the flexible system deals with demand uncertainties

more effectively. In fact, the contribution of process flexibility partly stem

from the fact that the capacities of different production facilities are partially

pooled in the process flexibility structure.
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Obviously, the flexibility structure is not unique. The number of pos-

sible flexibility structures for a n-product-m-plant system could be up to

(2m − 1)n 1. Among these structures, the “full flexibility structure” (see Fig-

ure 1.2-A) attains the best performance, since each product can be produced

in all plants. The full flexibility structure, on the other hand, has the high-

est implementation cost and management requirement. Other structures are

known as “partial flexibility structure”, in which each product is only con-

nected to a few plants. A partial flexibility structure usually underperforms

full flexibility structure, but the implementation cost could be significantly

lower than full flexibility structure. Thus the trade-off between flexibility and

implementation cost is an interesting and challenging problem in flexibility

system design.

Among partial flexibility structures, “Chaining” is a widely accepted

partial flexibility structure. A chain is a path connecting different products

and products. Figure 1.2-B shows an example of a chaining structure with

degree two (i.e. each node is connected with two links). Many studies (cf.

[36], [29], [33]) have shown that chaining structures can achieve the perfor-

mance close to full flexibility structure, and are much cheaper and easier to

be implemented. To enhance our understanding of the advantage of chain-

ing structure and the results and limitations of previous studies, a thorough

1 We consider the choices for a single product first. The product could be produced
in a single plant(choose 1 plant from the m plants), or could be produced in two plants
(choose 2 plants from the m plants), and so on. The total number of possible options for
the product is

m∑
i=1

(
m
i

)
= 2m − 1.

For the system with n products, the number of optional structures is (2m − 1)n.



1. Introduction 8

A: Full Flexibility

Product Plant

A: Full Flexibility

Product Plant

A: Full FlexibilityA: Full Flexibility

Product Plant

B: Partial Flexibility

(A chain)

Product Plant

B: Partial Flexibility

(A chain)

Product Plant

B: Partial Flexibility

(A chain)

B: Partial Flexibility

(A chain)

Product Plant

Fig. 1.2: An Example of Full Flexibility Structure and Partial Flexibility Structure

literature review on flexibility structure design is provided in section 1.2.1.

1.2.1 Literature Review on Process Flexibility

Process Flexibility stems from a very hot topic “Flexible Manufacturing Sys-

tem” (cf. [50], [11]) in the 1980’s. The focus of Flexible Manufacturing

system (FMS) is the trade-off of investing on dedicated and flexible capac-

ities (cf. [21], [56]). However, these early studies only consider full flexi-

ble resource, i.e. a plant can produce all types of products. The classical

study about designing a partial flexibility structure was conducted by Jor-

dan and Graves [36]. Their findings were based on the simulation study of a

General Motor’s production network. In this study, they calibrated the per-

formance of sparse partial flexibility structures by comparing full flexibility

structure and partial flexibility structures in an intensive simulation. The

results showed that a partial flexibility structure, if well designed, could cap-
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ture almost all the contribution of the full flexibility structure. They further

proposed a chaining structure as the guideline for designing a good partial

flexibility structure.

Jordan and Graves’ study partially answers the question: how much

flexibility is enough? This problem has puzzled many researchers and man-

agers for a long time. Hence, the partial flexibility and chaining strategy

has been applied and examined in various areas such as supply chain ([29],

[10]), queuing ([8], [30]), revenue management ([23]), transshipment distri-

bution network design ([40], [60]), manufacturing planning ([39]) and flexible

work force scheduling ([18], [32], [59], [12]). For instance, Graves and Tom-

lin [29] extended the study to multi-stage supply chain problems and found

out that “chaining” structures also work robustly well. Hopp et al. [32] ob-

served similar results in their study of a work force scheduling problem in a

ConWIP (constant work-in-process) queuing system. By comparing the per-

formances of “cherry picking” and “skill-chaining” cross-training strategies,

they observed that “skill-chaining”, which is indeed a kind of the “chaining”

strategy, outperforms others. They also showed that a chain with a low de-

gree (the number of tasks a worker can handle) is able to capture the bulk

of the contribution of a chain with high degree. That means the marginal

contribution of the additional flexibility will decrease when the degree of

flexibility increases.

Some studies address the side effects of implementing flexibility tools.

Muriel et al. [42] showed that a surgery planning system (e.g. a hospi-

tal) with a limited flexibility structure could lead to a great increase in the

variability of rescheduling and operation when the system need to meet an
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unexpected surge in emergency operation requirement. Bish et al. [9] also

indicated that in the make-to-order environment, flexibility could introduce

variability in the upstream of the supply chain, thus leading to higher inven-

tory cost, greater production variability and more complicated management

requirement.

All these studies show that partial flexibility is a cost-effective strat-

egy: a well designed partial structures can capture most of the benefits of

a full flexibility, but requires much less investment in fixed cost. However,

there are very few analytical results on the performance of partial flexibility

structures. One such study is conducted by Aksin and Karaesmen [3]. They

applied network theories to the study of flexible structure. They argued that

the flexibility of a structure is determined by the maximum network flow

through products’ demand to the plants. Unfortunately, this paper did not

provide any guideline on the design of flexible structure. Instead, it focused

on deriving the concavity of certain fixed process structure, as a function of

the degree of each production nodes. Thus, it is still unclear how to exactly

estimate the gap between a partial flexibility structure and a full flexibil-

ity structure. Furthermore, a theoretical justification of the existence of a

well-performing sparse partial flexibility structure is also an open question.

Another problem arising from these studies is how to find the “well de-

signed” partial flexibility structure. Chaining structure is widely accepted.

A system with a long chain and a small degree is usually considered a good

flexible system [36]. However this guideline is still not enough to identify and

generate good partial flexibility structure. As shown in Figure 1.3, there are
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6 different chains for a 3-product-3-plant. It is hard to determine which one

Plants Demands

Configuration 2

DemandsPlants

Configuration 1

Plants Demands

Configuration 3

DemandsPlants

Configuration 4

Plants Demands

Configuration 5

Plants Demands

Configuration 6

Fig. 1.3: Different Chaining Structures with the Same Degree and Length

is the best based on the current guideline. Actually, not all chains work well.

For example, when the means of demands are nonidentical and the supplies

are identical and fixed, a sparse structure with more arcs connected to the

large demand node may outperform a chaining structure with same number

of arcs. Furthermore, the benefit of chaining structures might be limited

under certain conditions. Chou et al. [15], for instance, re-evaluated regular

chaining structures with primary production and secondary production op-

tions, and the production cost for secondary production is expensive. Their

results show that the profit increase by introducing a chaining structure to a

dedicated system is no more than about 70% of the full flexibility structure

when the secondary production cost is quite expensive and demand follows

normal distributions. This observation is quite contrary to the belief that

chaining structure could achieve almost all benefit of full flexibility in many
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simulation results (cf. [36], [32]). Therefore, further study is still needed to

investigate the property of chaining structures, and to develop an effective

flexibility structure design method.

Another important issue is to propose effective indices to measure the per-

formance of flexibility structures (cf. [36], [29] and [33]). Jordan and Graves

[36], for instance, used the performance of full flexibility structure as the

benchmark, and developed a probabilistic index. The index focuses on the

probability that the unsatisfied demand from a subset of product nodes of

a flexibility structure would excess that of the full flexibility structure. The

largest probability among all subsets is deemed as the index. A good flexi-

bility structure thus should have a low index. The index comes directly from

the function of flexibility: a more flexible structure should deal with demand

uncertainty more effectively, and thus the unfilled demand of the structure

should be same as the full flexibility structure most of the time. However,

this index is usually very hard to compute if demands are not normally dis-

tributed or/and correlated.

The limitations of Jordan and Graves’ index is partly overcome by an-

other set of indices. These indices were proposed by Iravani et al [33] based

on an extension to the study of the ConWIP flexibility system [32]. In this

study, a suitably defined “structural flexibility matrix” (SF Matrix) M was

proposed to calibrate a system in terms of flexibility. An entry (i, j) in M

represents the non-overlapping routes from demand node i to supply node j,

and (i, i) is the degree of arcs connected to the demand node i. The largest

eigenvalue and mean of the SF matrix M are used as the indices to deter-
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mine the flexibility of a structure. SF indices are much easier to compute and

work very well in some simulation examples [33]. However, the SF indices

were built based on the assumption of “fit”, i.e. the demand of each product

could be satisfied on average, which limits the application of SF indices in

the situation that total capacity is greater than the average total demand.

In addition, the SF matrix do not reflect the impacts of variance and co-

variance. SF indices therefore may not work well when demands have large

variances. Hence, a simple but effective index that works robustly well in a

more general situation is needed.

1.3 Research Objectives

The objectives of this thesis are:

• To examine the existence of a sparse partial flexibility structure, with

a small number of links on average, and capturing almost all the ben-

efit of full flexibility. We first show the intimate connection between

flexibility structures and graph expander (a group of graphs with small

number of arcs but well connected). Based on the graph expander the-

ories, we propose a mathematically concise statement about the gap

between the performances of the full flexibility structure and a “well

defined” sparse partial flexibility structure when demands and supplies

are balanced and identical. we further extend our study to the case

when demands and supplies are non-identical and unbalanced, using

constraint sampling approach.
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• To present an efficient method to generate a good sparse flexibility

structure whose performance is close to full flexibility structure. We

build two different heuristics, based on the analysis using“graph ex-

pander” and “constraint sampling”. Both methods are quite simple

and effective, comparing to the traditional extensive simulation ap-

proach.

• To propose an effective but simple index to calibrate structures in re-

spect of flexibility. Since flexibility is intimately related to graph ex-

pander, we introduce an index measuring the connectivity of graphs in

graph theory. This index can be easily adjusted to measure flexibility

of structures. This index is also easy to compute and can be widely

used in various environments.

• To extend our structural design concept to a broader area. It is well

known that a well designed sparse partial flexibility structure can cap-

ture the most benefit of full flexibility. We believe that this phe-

nomenon may also exist in other areas, such as transshipment network

design and cutting stock problems. We examine whether a good sparse

structure exists in these two cases.

• To apply insights and results of our theoretical study to real business

applications. The operational system of a non-profit organization in

Singapore, “Food From The Heart”, is studied, and the problems in the

food-delivery operation is raised. We successfully reduce the wastage

of current dedicated routing system by developing a flexible routing

system via our expansion heuristic.
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1.4 Research Contributions

In this study, we provide a theoretical justification to the existence of good

sparse flexibility structures. A concept, “graph expander”, from graph theory

is introduced to analyze the flexibility structures. The relationship between

graph expander and flexibility structures is thoroughly investigated, provid-

ing a clearer understanding of partial flexibility structures. The expansion

concept may also be adjusted to calibrate structures in terms of flexibility.

The sampling approach not only supports the existence of a good sparse

structure in a general demand/supply settings, but also could be used to

generate good structures for various applications.

Our theoretical results and observations also have important practical

contributions. The expansion heuristic and sampling heuristic are quite easy

to use and can be applied to different applications such as transshipment

structure design and cutting stock problems. The expansion heuristic is quite

robust and requires minimal information of demand/supply: only the mean

of each demand/supply is needed. Our heuristics also have an impressive

performance in real applications such as “Food From The Heart” problem.

1.5 Structure of Thesis

The remaining sections of the study are organized as follows. To provide a

clear understanding of flexibility structures, the assumptions and issues in

most flexibility studies are discussed in chapter 2. Two basic models, max-

imum flow model and minimum excess flow model, are also introduced in
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chapter 2. Chapter 3 will investigate the flexibility structure design prob-

lem using “graph expander” approach, and provide a theoretical justification

to the existence of good sparse flexibility structures. A simple and effec-

tive heuristic to construct flexibility structures and a good index to measure

structures in terms of flexibility will also be proposed in Chapter 3. Chapter

4 will study the problem using “constraint sampling” method in the situa-

tion when supplies/demands are non-identical and unbalanced. A sampling

heuristic obtained from the insights of the analysis will be introduced as well.

Chapter 5 will apply the theoretical results and heuristics to various appli-

cations, such as production planning problem, transshipment network design

problem, and cutting stock problem. Chapter 6 is the case study of “Food

From The Heart”(FFTH) program. Our heuristic will be applied in the real

case to fix the operational problem in the program. Chapter 7 will conclude

the study by summarizing the results and contributions, and listing some

directions for future research.



2. MODELS AND ASSUMPTIONS

2.1 Flexibility Models

Network flow models and queuing models are the most widely used models in

the studies of flexibility structures. Network flow models consider the system

as a bipartite graph and allocate the flow of commodity in the network struc-

ture to optimally match the demand and supply. These models are usually

used in production planning problems with multiple plants and products in

a single-stage supply chain (e.g. [36], [3] and [29]). Queuing models are more

suitable for a single-product line production system with several sequential

tasks, and workers in the production line have different service/production

rates. The flexibility structures are used to define the cross-training scheme

to balance the different service rates of the tasks (e.g. [32] and [33]). Though

the two modeling approaches are quite different, the design strategies and

flexibility structures obtained by both approaches are indeed the same. In

this study, we focus on the network flow models.

2.1.1 Maximum Network Flow Model

A flexibility structure can be represented by a bipartite graph G = (A
⋃

B,F ).

The left-hand-side vertices A denote the (random) demands of products. The
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right-hand-side vertices B denote the (constant) capacities of plants. The arc

e ∈ F connects a node (say a) in A to a node (say b) in B, and means that

the product a can be produced in plant b.

The purpose of this study is to design a good partial flexibility system

with only a small number of arcs which can match the supply to the demand

almost as well as a full flexibility system. To be more specific, we want to

design a set F in the bipartite graph G with relatively small |F | which can

match supply to demand almost as well as A×B, the full flexibility system.

To evaluate how well a set F can match the supply to the demand, we con-

sider the following formulation: Consider any given set F , we let D1, . . . , Dm

denote any realized random demand of products in A, and S1, . . . , Sn de-

note the fixed capacities of the plants in B. Let xij denote the amount of

product i produced by plant j. Obviously, xij = 0 for all (i, j) /∈ F . To

measure how well F can match the realized demand to the fixed capacity, we

define zm(F ), the maximum flow amount when F is in place and all products

are produced by one or more plants through the arcs in F , by solving the

following optimization problem:

zm(F ) = max
n∑

j=1

∑
i:(i,j)∈F

xij

s.t.
∑

j:(i,j)∈F

xij ≤ Di ∀ i = 1, . . . ,m;

∑
i:(i,j)∈F

xij ≤ Sj ∀ j = 1, . . . , n;

xij ≥ 0 ∀ (i, j) ∈ F

Obviously, we seek F with large zm(F ). It is easy to see that for any
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realization of demands and supplies, zm(F ) is the largest when |F | = A×B,

i.e. when F is full flexibility structure.

2.1.2 Minimum Excess Flow Model

On the other hand, a flexibility model can also be measured by the unsatisfied

demand ze(F ), which is the minimum excess flow of F . Specifically, Ze(F )

can be obtained by solving the following optimization problem.

ze(F ) = min
n∑

j=1

( ∑
i:(i,j)∈F

xij − Sj

)+

s.t.
∑

j:(i,j)∈F

xij = Di ∀ i = 1, . . . ,m;

xij ≥ 0 ∀ (i, j) ∈ F,

where (·)+ stands for the positive part of (·).

We seek F with small ze(F ), which is just opposite to the direction of

max-flow criterion.

2.1.3 Relationships

Since the total demand is
∑m

i=1 Di, it is easy to see that zm(F ) and ze(F )

satisfy the following relationship:

zm(F ) + ze(F ) =
m∑

i=1

Di.

The equation holds because of the network flow conservation axiom.

This relationship shows that the excess flow model (ze(F )) is essentially a
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re-statement of the classical maximum flow model (zm(F )) - a structure min-

imizing the expected excess flow will simultaneously maximize the total flow

through the network.

This relationship also helps to derive the following proposition which is

useful in our subsequent analysis.

Proposition 1: Given any bipartite graph G = (A ∪ B,F ),

ze(F ) = max

(
0, max

S:S⊆A

{∑
i∈S

Di −
∑

j∈N(S)

Sj

})
,

where N(S) = {j ∈ B : (i, j) ∈ F, i ∈ S} represents the neighbors of set S

in G.

Proof: The above proposition is an easy consequence of the max-flow-min-cut

theorem: the arc between A and B has infinite capacity, and hence

zm(F ) = min
S⊆A

(∑
i/∈S

Di +
∑

j∈N(S)

Sj

)
.

Since ze(F ) =
∑m

i=1 Di − zm(F ), the proposition follows.

2.2 Chaining Strategy

One of the most well known concept in the area of flexibility structure design

is the chaining strategy pioneered by Jordan and Graves (1995). Although
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chaining strategy arguably captures a key feature of good process flexibility

structure, the way the capabilities are chained together also plays an im-

portant role in the performance, as demonstrated in the following example.
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Fig. 2.1: Full Flexibility Structure and a Cycled Chain Partial Flexibility Struc-
ture.

Consider two flexibility structures as shown in Figure 2.1, where there are

n plant vertices and n product vertices. We assume that each plant has

a fixed capacity µ while the product’s demand follows a distribution with

a finite support, and with mean µ and standard deviation σ. It is clear

that the expected total demand equals to the total supply. Full flexibility

structure (2.1-A) and the cycling chain structure (2.1-B) are compared

in terms of excess flow and maximum flow. We focus our comparisons on

the difference between structure A and B as n increases.
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Consider the case when each demand follows a uniform distribution from

0 to 200 and each plant has a fixed capacity of 100. We conduct a sim-

ulation by sampling 200 scenarios for each demand node, and compare

the expected excess flow of the regular chains with degree k (k = 2 . . . 5)

and the full flexibility structure. As shown in Figure 2.2, the expected

excess flow of full flexibility structure and chaining structures are quite

close when n is small, say 50. However, the gaps between regular graphs

(i.e. chaining structures) and full flexibility increase quickly as n increase,

and regular graphs no longer can capture most benefit of full flexibility

in this case.
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Fig. 2.2: The Performance Gaps Between Full Flexibility Structure and Regular
chains.
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This special case indicates that chaining strategy might greatly underperform

in certain conditions. We can further provide a mathematical estimation to

the expected excess flow of the chaining structures (Figure 2.1-B)

In the fully flexible system described in Figure 2.1-A, it is easy to see

that the expected excess flow equals E[(
∑n

i=1 Di −
∑n

j=1 Sj)
+]. We can use

the following lemma to obtain the upper bound for the excess flow of full

flexibility (A).

Lemma 1: For a random variable x following an arbitrary distribution with

standard deviation σx, the mean of the positive part (x+) has the following

property:

E(x+) ≤ 1

2

(
E(x) +

√
(E(x))2 + σ2

x

)
,

Proof. Since for any real number x, we know that

x = x+ − x−

|x| = x+ + x−,
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it is easy to get

E(x+) =
E(x) + E(|x|)

2

=
E(x) +

√
(E(|x|))2

2

≤
E(x) +

√
E(|x|2)

2

=
E(x) +

√
E(x2)

2

=
E(x) +

√
(E(x))2 + σ2

x

2

In this example, we know that the expected demand is the same as the

fixed capacity, and each demand is assumed to be independent, thus the

mean of
∑n

i=1 Di −
∑n

j=1 Sj is 0 and variance is
∑n

i=1 σ2. Therefore, the

expected excess flow of structure A is

E

(
ze(A)

)
= E

( n∑
i=1

Di −
n∑

j=1

Sj

)+

≤ 1

2

(
0 +

√√√√0 +
n∑

i=1

σ2

)

=

√
nσ

2

∼ O(
√

n)

To analyze the expected excess flow in the cycling chain structure (B)

described in Figure 2.1-B, we first observe that every product node is con-
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nected to k plant nodes in a regular way: product i is connected to plant

i, i + 1, . . ., i + k − 1 if i ≤ n − k + 1; otherwise, node i is linked to

plant i, i + 1, . . ., n, 1, 2, . . ., i − (n − k + 1). As such, each group of

consecutive (k − 1)2 products is connected to exactly (k − 1)2 + (k − 1)

plants, which implies a total capacity of (k2 − k)µ. WLOG, we assume that

n/(k− 1)2 is an integer and divide the product nodes into n/(k − 1)2 groups

of consecutive (k − 1)2 nodes. We observe that for each subgroup, the ex-

pected excess flow is at least E

[∑(k−1)2

i=1 Di − (k2−k)µ

]+

. We might assume∑(k−1)2

i=1 Di ∼ N

(
(k−1)2µ, (k−1)σ

)
for suitably large k. By the central limit

theorem, the expected excess flow E(ze(B)) for the whole system satisfies

E(Ze(B)) ≥ E

[
n

(k − 1)2

((k−1)2∑
i=1

Di − (k2 − k)µ

)+]
=

n

(k − 1)2

∫ ∞

(k2−k)µ

[
x − (k2 − k)µ

]
fN((k−1)2µ,(k−1)σ)(x)dx

=
n

(k − 1)2
(k − 1)σ∫ ∞

(k2−k)µ

[
x − (k − 1)2µ

(k − 1)σ
− (k − 1)µ

(k − 1)σ

]
fN((k−1)2µ,(k−1)σ)(x)dx

=
nσ

k − 1

∫ ∞

µ/σ

(x − µ

σ
)φ(x)dx

∼ Ω(n),

where φ(·) is the density function of a standard normal variate. Therefore, for

fixed k and large n, the above chaining strategy may lead to a performance

far inferior to that of full flexibility structure.

Therefore, as n increases the excess flow of the cycling chain structure

will be far greater than full flexibility structure. This observation indicates
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that the effectiveness of the above chaining strategy is limited in a system

with large n when the management focuses on the excess flow criterion(e.g.

unsatisfied demand).

We will show in chapters 3 and 4 that it is possible to chain the process

together in a suitable manner so that the above deficiency in the partial

flexible structure will disappear. To be more specific, for fixed k and suitably

large n, there is a way to chain the process together which allows us to accrue

benefits close to the fully flexible system!

2.3 Structural Flexibility Matrix

Another inspiring study on flexibility was recently done by Iravani, Van Oyen

and Sims (2005). They proposed a “structural flexibility” method to explore

flexibility systems such as cross-training workers, flexible machine planning,

etc. They defined a “structural flexibility matrix” (SF matrix) M to represent

the flexibility of a system.

The SF matrix (Mij)
n
i,j=1 advances the chaining concept in several ways.

On one hand, it makes the notion of chaining concrete by explicitly measuring

the number of non-overlapping routes between node i and node j, represented

by Mij (Mii represents the number of arcs that are connected to node i). It

also reduces the difficult problem of evaluating the expected value of zm(F )

(or ze(F )) to a simpler problem of computing the SF indices such as the

mean of the entries in the SF matrix M or the dominant eigenvalue of M . In

their study, in order to have a fair analysis in capturing the characteristics

of a good flexibility structure, they required the structure to be “fit”. In
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our context, fitness of a process structure means that, on average, we can

allocate all fluctuating demands to the dedicated capacities in the system in

such a way that no excess flow would occur under such a structure.

Iravani, Oyen and Sims (2005) demonstrated through extensive simu-

lation analysis that a flexibility structure with higher SF indices will attain

better performance. More importantly, they also proved that a D-skill chain-

ing structure (a cycled chaining structure with degree D for each node) has

the highest SF indices among all structures with N demand nodes, N supply

nodes and ND arcs, assuming that all supplies and demands are identical.

This lent credible evidence to the usefulness of the SF approach, and the

effectiveness of the D-skill chaining concept.

While the SF matrix and the chaining concept have so far been proven

useful and effective in numerous situations when examining the process flex-

ibility issues, we need to caution the readers that these approaches may not

reveal the right insight all the time. We use the following example to illus-

trate the potential pitfall of such approaches.

Consider two flexibility structures as shown in Figure 2.3. We assume

that each plant has a capacity of 10 while the demands are uneven and

random as specified in the following: the demand of product 1 is either 30

or 10, with equal probability; the demand of product 2 and 3 are either

10 or 0 with equal probability. Obviously, the mean of the total demand

is 30, which is equal to the total capacity. Figure 2.3-A shows a simple

chaining structure (i.e. a 2-skill chain) and the corresponding expected

excess/maximum flow is 6.25/23.75.1 Figure 2.3-B shows a flexible de-

1 With prob. 0.5, the demand at node 1 is 30, leading to excess flow of at least 10.
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B: A non-regular Chain

Fig. 2.3: Flexibility Structures in an Unbalanced System

sign without any regular chains. However, the corresponding expected

excess/maximum flow is 5/25, 2 which indicates that the chaining strat-

egy under-performs in this example.

In addition, it is easy to see that both process structures are fit and

the SF indices of structure A are higher than those of structure B. As

such, the fact that the expected excess/maximum flow of structure A is

higher/lower than that of structure B also contradicts SF theory.

In this case, with prob. 0.25, node 2 and 3 will together contribute an excess of 10, if
their demands are 10 each. This leads to excess flow of 0.5(10 + 0.25× 10) = 6.25. The
expected maximum flow is 23.75, which is just the mean of total demand (30) minus the
excess flow (6.25).

2 There is excess flow only when the demand at node 1 is 30. This happens with
probability 0.5. The expected excess flow is thus 0.5(0.5× 10 + 0.25× 20) = 5, and the
expected maximum flow is 30 − 5 = 25.
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2.4 Variance and Covariance

To the best of our knowledge, there are very few studies which take into ac-

count the impact of the variance and correlational structure of the uncertain

parameters. If the variance can be arbitrarily large, then it is conceivable

that a sparse process flexibility structure may be much less effective than a

fully flexible structure, as demonstrated by the following example.

Consider a system with n demand nodes and n supply nodes, where

Di = n with probability 1/n; 0 otherwise for i = 1, . . . , n, and Sj = 1 for

j = 1 . . . , n. Furthermore, the demands are correlated in such a way that∑n
i=1 Di = n for all realizations, i.e., exactly one supply node has a value

of n and all other n − 1 supply nodes are with values 0.

It is easy to see that there will not be any excess flow in the fully flexible

system. On the other hand, in any partial flexible system with degree of

flexibility bounded by some fixed k (i.e., each supply node has at most

k neighbors), the excess flow is at least n − k, which is very large for a

sparse process flexibility structure.

This result also holds in terms of the maximum flow. It is obvious that

the flow for the full flexible system is n and for a partial flexible system

with its degree bounded by k is at most k. As the number of demand

node increases, the gap n − k would be too large.

Note that the variance of the supply in the above example is n − 1, a term

which grows with the size of the network. To rule out such extreme cases,
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we make the following assumption throughout the rest of this study:

Assumption 1: For each i = 1, . . . ,m, Di < λE(Di) almost surely, for some

constant λ > 0.

Note that we make no assumption on the relationship between different

demands, except that the demands are within certain multiple of their means

all the time. Moreover, this assumption can be easily adjusted to a system

with random supplies and fixed demands, or random supplies and random

demands.

We will show that partial flexibility is still a powerful tool to cope with

uncertainty when system’s variation is not very large in the following chap-

ters. However, as shown in Example 2.3 in which the supplies/demands

are not correlated, the chaining structure is not always the best choice. As

a matter of fact, the chaining structure might still not be the best choice

when the supplies/demands are correlated. We illustrate this observation by

slightly modifying Example 2.3 in the following way. Suppose supplies are

now correlated. Let us discuss the following 2 cases:

• Demands are negatively correlated.

Suppose D2 = D3 = 15 − D1

2
and D1 could be 30 or 10 with equal

probability. Obviously, D2 and D3 are negatively correlated to D1

and there are only two possible scenarios of supplies with equal prob-

ability: (30, 0, 0) and (10, 10, 10). It is easy to see that the expected

excess/maximum flow of structure A is 5/25.3 and the expected ex-

3 Expected excess flow = 0.5×0+0.5×10 = 5. Expected maximum flow = 30−5 = 25.
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cess/maximum flow of structure B is 0/30. Therefore, structure B

outperforms the chaining structure A in this case.

• Demands are positively correlated.

Suppose D2 = D3 = D1

2
− 5 and D1 could be 30 or 10 with equal

probability. Obviously, D2 and D3 are positively correlated to D1 and

there are only two possible scenarios of supplies with equal probability:

(30, 10, 10) and (10, 0, 0). It is clear that the expected excess/maximum

flow under both structure A and B is equal to 10/20. The result is not

surprising, because the system variance is larger when demands are

positively correlated. In fact, the expected excess/maximum flow under

fully flexible structure is also equal to 10/20. Therefore, structure B is

not worse than A when supplies are positively correlated.

As illustrated in Example 2.3 and the above two cases, it is clear that

the performance of structure B is quite robust no matter supplies are inde-

pendent or correlated. This is no coincidence at all. Indeed, such a robust

structure can be derived by applying graph expander theories, as we will

explain in chapter 3. However, as demonstrated in Example 2.4, flexibility

structure as a tool to cope with uncertainty still has its limit: it only works

well when fluctuation is not very large, that is, when Assumption 1 holds.

Therefore, when the variation of the system is medium, managers could count

on good flexibility structure design to cope with uncertainty. However, when

the variation is high, managers should also consider implementing other ap-

proaches such as increasing the system’s capacity, or to actively engage in

variability reduction program.



3. FLEXIBILITY STRUCTURES AND GRAPH

EXPANDER

In this chapter, we introduce a concept “graph expander” to analyze partial

flexibility structures. “Graph expander” is a well known concept and tech-

nique in areas of graph theory, communication network design, computer

science and etc. We thoroughly explore the intimate relationship between

graph expander and flexibility structures in a balanced and identical system,

i.e. the system has n products and n plants, the mean of each product’s

demand is equal to the fixed capacity of a plant. The insights obtained

from this study can be used to design good flexibility structures in a general

unbalanced and non-identical system.

3.1 Graph Expander Review

The study of expander graphs has been a rapidly developing subject in the

area of mathematics and theoretical computer science. The concept of “ex-

pander” was first introduced by Bassalygo and Pinsker [6] in the study of

communication networks. Over the past three decades, graph expander has

been developed into a powerful tool with wide applications in many areas.

Among their applications are “the design of explicit super efficient commu-
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nication networks, constructions of error-correcting codes with very efficient

encoding and decoding algorithms, derandomization of random algorithms,

and analysis of algorithms in computational group theory.” See Sarnak [46]

for an entertaining account of this subject.

Jordan and Graves [36] Pinsker [43]

Graphs with small number
of arcs are almost as flexible
as Complete Graphs.

There exists a sparse graph
with almost the same expan-
sion as a complete graph.

Iravani et. al [33] Tanner [53]

Flexibility can be captured
by the largest eigenvalue of
an associated matrix.

Graph expansion is
bounded by the spec-
tral gap of the adjacency
matrix.

Tab. 3.1: The Connections Between Graph Expander and Process Flexibility.

Many important results in the literature on graph expander are quite

similar to the findings in the process flexibility area. Table 3.1 lists some

examples. One example is about the similar performances of a good sparse

structure and the complete graph. Pinsker [43] stated that there exists a

sparse structure with O(n) arcs that is almost as expansion as a complete

graph in his study on concentration networks. Similarly, Jordan and Graves

[36] suggested that a “well-designed” sparse structure with a small number

of arcs is almost as flexible as the full flexibility structure, which is indeed a

complete graph. Another example is about the similar measures of expansion

and flexibility. Tanner [53] mentioned that the graph expansion of a graph

is bounded by the spectral gap (the difference between the largest eigenvalue

and the second largest eigenvalue of its adjacency matrix) in his study on

applying graph expander theories to construct a long error-correcting codes
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from short error-correcting codes. Similarly, Iravani et. al [33] proposed that

the flexibility of a structure can be measured by the largest eigenvalue of its

SF matrix. These examples indicate that the concept of flexibility and graph

expansion are intimately related. Motivated by these examples, we next use

the notion of graph expander to analyze the process flexibility problem in

this section.

Definition 1: A bipartite graph G = (A ∪ B,F ),with partite sets A and B,

and edge set F , is a (α, λ, ∆)-expander if deg(v)≤ ∆ for every v ∈ A, and

for all S ⊂ A, with |S| ≤ α|A|, then

|N(S)| ≥ λ|S|,

where N(S) = {j ∈ B : (i, j) ∈ F, for some i ∈ S}.

WLOG, we assume |B| = |A| = n. It is clear then that αλ ≤ 1. Intu-

itively, a (bipartite) graph expander is a graph with high connectivity - the

neighborhood of small subsets in A is expanded by a factor λ > 1. In order

for these graphs to be interesting, we also impose that they have low degree,

i.e., the degree of each node is constrained by ∆. It is remarkable indeed

that these graphs exist at all. However, a line of work initiated by Pinsker

[43] culminating in recent work of Friedman [22] showed using probabilistic

argument that in fact randomly selected graphs enjoy this property with high

probability.
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Theorem 1: [[5]] For any n, λ ≥ 1, and α < 1 with αλ < 1, there exists a

(α, λ, ∆) expander, for any

∆ ≥ 1 + log2 λ + (λ + 1) log2 e

− log2(αλ)
+ λ + 1.

This result is by now folklore in the graph expander community. Note that

the lower bound for ∆ is independent of n. For completeness, we provide

a proof of the above (adopted from Asratian [5]), using the probabilistic

argument.

Proof. Consider the following probabilistic method to generate a flexibility

structure: For each node in A, pick ∆ neighbors in B randomly. For each set

U with |U | = z ≤ αn, probability that all neighbors are contained in a set

V with |V | = λz is given by (λz/n)z∆. There are

 n

z

 and

 n

λz

 ways

to choose U and V respectively. Hence the probability that there exists such

set U and V is at most

gz =

 n

z


 n

λz

 (λz/n)z∆ ≤ (
ne

z
)z(

ne

λz
)λz(λz/n)z∆,

using the inequality

 n

k

 ≤ (ne/k)k. Re-arranging the terms, and using

the fact that z ≤ αn, we have

gz ≤
[
n1+λ−∆e1+λλ∆−λz∆−λ−1

]z

≤
[
e1+λλ(αλ)∆−λ−1

]z

.
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By picking ∆ at least as large as the lowerbound as shown in the theorem,

we can ensure that gz ≤ (1/2)z. Note that αλ < 1 is crucial for this to

hold. Hence the probability that there exists some set U with |U | ≤ αn,

with |N(U)| ≤ λ|U |, is at most

αn∑
z=1

gz < 1.

Hence (α, λ, ∆)-expander exists.

The existence of graph expanders can be established easily using prob-

abilistic method. Explicit construction of graph expanders was proved to be

much more difficult and requires a lot of sophisticated tools from number

theory and graph theory. Initial attempts to construct good expanders ex-

ploited the connection between the expansion ratio and the second largest

eigenvalue of the associated adjacency matrix of the underlying (regular)

graph (see Lubotzky for the best possible graphs, aptly named Ramanujun

graphs, that can be constructed this way using algebraic method). Reingold

[44] used combinatorial graph product operation (zig-zag product) to pro-

duce large graph with near optimal expansion property. We refer the readers

to the numerous surveys and articles for details on this subject.

3.2 An Expander is a Good Flexibility Structure

We can use theorem 1 to derive a few important insights for the process

flexibility problem. Consider the case when there are n products and n plant
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nodes in the flexibility problem. All products have demand Di (i = 1 . . . n)

with mean µ and all plants have capacity Sj (j = 1 . . . n). By the assumption

1, there exists λ > 1 such that P (Di ≥ λµ) = 0. Under the full flexibility

model, we expect the average excess to be

E

[ n∑
i=1

Di −
n∑

j=1

Sj

]+

= E

[ n∑
i=1

Di − nµ

]+

.

For a partial flexibility model, let N(S) denote the set of plants S (S ⊆ A)

is linked to. By proposition 1, the average excess is

E

[
max
S⊆A

{∑
i∈S

Di −
∑

j∈N(S)

Sj

}]+

.

Let

D∗
i =

 Di if
∑n

i=1 Di ≤ nµ

Di

(
nµ

Pn
i=1 Di

)
if

∑n
i=1 Di > nµ

It is easy to see that
∑n

i=1 D∗
i ≤ nµ. Furthermore, if

∑n
i=1 Di ≤ nµ, then

n∑
i=1

Di =
n∑

i=1

D∗
i .
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For each subset S,

∑
i∈S

Di −
∑

j∈N(S)

Sj =
[∑

i∈S

Di −
∑
i∈S

D∗
i

]
+

[∑
i∈S

D∗
i −

∑
j∈N(S)

Sj

]
=

[∑
i∈S

Di −
∑
i∈S

D∗
i

]
χ(

n∑
i=1

Di > nµ) +
[∑

i∈S

D∗
i −

∑
j∈N(S)

Sj

]

where χ(·) denote the indicator function.

If the process structure corresponds to an expander graph (α, λ, ∆), then

we have

∑
i∈S

D∗
i −

∑
j∈N(S)

Sj

 ≤
∑

i∈S D∗
i − λ|S|µ, if |S| ≤ αn;

≤
∑

i∈S D∗
i − λαnµ, if |S| > αn;

since N(S) must contain at least λ min(|S|, αn) plants, each with capacity

µ. By our assumption on the demand distribution,
∑

i∈S D∗
i < λ|S|µ almost

surely. Furthermore, since
∑n

i=1 D∗
i ≤ nµ, we have

∑
i∈S

D∗
i − λαnµ ≤ (1 − αλ)nµ.

Thus

∑
i∈S

Di −
∑

j∈N(S)

Sj ≤
[∑

i∈S

Di −
∑
i∈S

D∗
i

]
χ
( n∑

i=1

Di > nµ
)

+ (1 − αλ)nµ

Hence
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E

[
max
S⊆A

{∑
i∈S

Di −
∑

j∈N(S)

Sj

}]+

≤ E

[
max
S⊆A

{
(
∑
i∈S

Di −
∑
i∈S

D∗
i )χ

( n∑
i=1

Di > nµ
)

+ (1 − αλ)nµ

}]+

≤ E

[
max
S⊆A

(
∑
i∈S

Di −
∑
i∈S

D∗
i )χ

( n∑
i=1

Di > nµ
)]+

+ (1 − αλ)nµ

= E

[
max
S⊆A

{
(
∑
i∈S

Di −
∑
i∈S

Di
nµ∑n
i=1 Di

)χ
( n∑

i=1

Di > nµ
)}]+

+ (1 − αλ)nµ

= E

[
max
S⊆A

{∑
i∈S

Di

(
1 − nµ∑n

i=1 Di

)
χ
( n∑

i=1

Di > nµ
)}]+

+ (1 − αλ)nµ

=

(
0 + (1 − αλ)nµ

)
P

( n∑
i=1

Di ≤ nµ

)
+E

[ n∑
i=1

Di − nµ + (1 − αλ)nµ

∣∣∣∣ n∑
i=1

Di > nµ

]
P

( n∑
i=1

Di > nµ

)
= E

[ n∑
i=1

Di − nµ

]+

+ (1 − αλ)nµ

Hence the expander graph obtains an average excess flow which is (1 −

αλ)nµ above the full flexibility model. Note that the expander graph has n∆

links, whereas the full flexibility model has n2 links. We have thus obtained

the following theorem:

Theorem 2: In a flexibility system with n products (with random demand Di)

and n plants (each with capacity Sj), if (i) P (Di > λµ) = 0, (ii) E(Di) = µ

for all i, and (iii) Sj = µ for all j, then there is a partial flexible structure F ,

with |F | ≤ n∆, which attains nearly the benefits of the full flexibility model.
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i.e.,

E[ze(F )] ≤ E[ze(A × B)] + εnµ

for any ε > 0, and for all suitably large n.

Note that the above result holds for arbitrarily correlated demand distribu-

tion. Using the relationship zm(F ) =
∑m

i=1 Di − ze(F ), we also have the

following corollary:

Corollary 1: In a flexibility system with n products (with random demand

Di) and n plants (each with capacity Sj), if (i) P (Di > λµ) = 0, (ii) E(Di) =

µ for all i, and (iii) Sj = µ for all j, then there is a partial flexible structure

F , with |F | ≤ n∆, which attains nearly the benefits of the full flexibility

model. i.e.,

E[zm(F )] ≥ E[zm(A × B)] − εnµ

for any ε > 0, and for all suitably large n.

3.3 Numerical Test

We have shown that an expander structure could capture almost all the ben-

efit of the full flexibility structure theoretically. On the other hand, the merit

of cycled chaining strategies have been supported by many simulation stud-

ies. Though chaining structures may have good expansion properties, they

are still different from expanders. To determine which structure is better,
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we conduct numerical studies to evaluate the performances of expanders and

chaining structures (i.e. regular graph).

We evaluate a flexibility structure in two measures: the average perfor-

mance and the worst case performance. The former is widely used in practice

and theoretical analysis. The latter is also needed to examine the robustness

of a structure. A good structure should still perform robustly in the worst

case.

As shown in Figure 3.1, we will compare two different flexibility struc-

tures with 27 product nodes and 27 plant nodes. One is a regular graph

with degree 3, which is a commonly used example of a chaining structures

with degree 3 (see Figure 3.1-B). The other one is called as “Levi graph” (see

Figure 3.1-A), which is an incidence graph of a generic configuration ([2]). A

Levi graph is known to have a high graph expansion.

The Levi graph and regular graph in Figure 3.1 share many common

properties: same number of arcs, same out-degree for each node, same num-

ber of demand and supply nodes, and similar configurations (they both con-

tain a long chain visiting all supply and demand nodes). The only difference

is that the Levi graph does not seem as regular as the regular graph and has

better expansion property.

To compare the performances of these two structures, we assume, WLOG,

that the supply is 2 for each supply node and the average total demand in

the system is 54, which ensures balanced supply and demand. We consider

independent demands and correlated demands.

Independent demand.
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A: A levi graph B: A regular graph

Fig. 3.1: A Levi Graph and a Regular Graph with Degree 3.

We assume the demand of a node is either 1 with probability 2/3 or 4 with

probability 1/3. Thus, the average total demand is 54. This binomial distri-

bution is used instead of common distributions such as normal distribution

because binomial distribution easily sketches out the extreme points of the

uncertainty set containing all distributions with a support in [1,4]. We then

generate 100 scenarios of demands {(Sk
A, . . . , Sk

AA) : k = 1, . . . , 100} and
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evaluate the performances of these two structures.

To effectively evaluate the impact of different structures, we eliminate

the simulated scenarios in which the total demand is far less than the total

supply. This is because when total demand is too small, whether the structure

is able to handle uncertainties well has very little impact on the performance.

As such, we only consider the simulated scenarios in which the total demand

is no less than 45.

Performance comparisons of different structures when supplies are independent

A: Full flexibility v.s. Levi graph v.s. Regular graph
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Fig. 3.2: Comparisons between Levi Graph and Regular Graph when Demands are
Independent.

As shown in Figure 3.2-A, the average max flow in Levi graph (51.67)

is higher than the regular graph (49.7). Moreover, in the worst case, the

maximum flow in Levi graph (45) is much higher than the regular graph

(40). Figure 3.2-B shows the difference between the satisfied demand in Levi

graph and the regular graph for each scenario. Interestingly, Levi graph
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outperforms the regular graph all the time. As a matter of fact, Figure 3.2-

C shows that Levi graph has the same performance as the full flexibility

structure in most scenarios, which implies that Levi graph is almost as flexi-

ble as a complete graph when demand and supply are identical and balanced.

Correlated demand.

To study the case with correlated demand, we still fix each supply at 2, but

generate the demand using the following equation:

Dk
i = 54 ∗ ui∑

j uj

, ∀ i, and k = 1, . . . , 100,

where ui is a random variable with either value 1 or 4. This generator ensures

that the mean of each demand is 2 and the total demand is 54. 100 scenarios

of supplies are generated and the performances of different structures are

shown in Figure 3.3.

The max flow in Levi graph (53) is still higher than the regular graph

(49.9) on average. In the worst case, the max flow in Levi graph (49.2) is

much higher than the regular graph (44.9). From Figure 3.3-B, we see that

Levi graph outperforms the regular graph all the time. Moreover, as shown

in Figure 3.3-C and D, the performance of Levi graph is very close to the full

flexibility structure while the gap between the performances of the regular

graph and the full flexibility structure is quite large.

In summary, no matter demands are independent or correlated, Levi

graph has good and robust performances. Table 3.2 summarizes the perfor-
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Performance comparisons on different structures when supplies are correlated
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Fig. 3.3: Comparisons between Levi Graph and Regular Graph When Demands
are Correlated.

mances of Levi graph against the regular graph. It is clear that Levi graph,

which has a better graph connectivity, is more flexible than the regular graph.

Further, its performance is very close to the full flexibility structure. There-

fore, graph expansion provides important information in designing a robust

flexibility structure.

Independent Correlated

Average Levi ≥ Regular
√ √

performance Levi ≈ Full
√ √

Worst case Levi ≥ Regular
√ √

performance Levi ≈ Full
√

Tab. 3.2: Summary on the Performances of the Levi Graph and the Regular Graph.
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3.4 Expander Heuristic

We have, for the case when the demand and supply nodes have the same

mean and when total supply and total demand are balanced, established

a connection between the subject of graph expander and process flexibility

structure. For the case with non-identical supply and demand, We use the

notion of “constraint sampling” method to prove in the next chapter that

a similar theorem stating that a well designed sparse flexibility structure

can capture almost all the benefit of a full flexibility structure. However,

the analysis using constraint sampling establishes the existence of such a

structure, but does not provide any guideline on the characteristics of good

process flexibility structures. In this section, we build on the understanding

of graph expansion concept to provide valuable insights that can be readily

exploited for the design of good process flexibility structure.

Since our ultimate goal is to build a sparse process structure with high

flexibility, we will use a greedy approach to build as much “flexibility” as

possible into the system by adding one link at a time. Note that Ghosh and

Boyd [25] have also recently proposed a heuristic to design graph with high

connectivity, for the case of identical supply and demand. Our heuristic, on

the other hand, works well in the case of non-identical supply and demand.

Definition 2: We define the node-expansion ratio for demand node i in a

flexibility structure F to be

δi =

∑
j:(i,j)∈F Sj

µi

.
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Similarly, the node-expansion ratio for supply node j in the flexibility struc-

ture F is defined as

δj =

∑
i:(i,j)∈F µi

Sj

.

Definition 3: The expansion vector of a flexibility structure F is defined as:

ρ(F ) =

(
min
i∈A

δi, min
j∈B

δj

)
.

From Theorem 2 and Corollary 1, we know that an expander graph will

provide a good flexibility structure. We also note that if F is an expander,

ρ(F ) will have large entries. Therefore, to obtain a sparse yet flexible struc-

ture, we aim to increase the expansion vector ρ(F ) while keeping the number

of links low, which provides the basic logic of our heuristic.

Figure 3.4 briefly describes the steps of our heuristic. There are two

main phases in this heuristic: getting a good base assignment (step 1) and

incrementally adding arcs into the base assignment (step 2 to the end).

Phase 1: Base Assignment Selection

To construct a flexible routing structure, we start with finding a good base

(dedicated) assignment. In some cases (e.g. [36]), the currently used (dedi-

cated) assignment is well designed and can be used as the base assignment.

However, in practice, many currently adopted dedicated operational system

is far from optimal. Therefore, we formulate the following stochastic integer

programming problem to solve for the optimal dedicated system, in which
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a

Fig. 3.4: Steps of Expander Heuristic.

each product will be produced in exactly one plant and each plant will pro-
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duce at least one product:

IPD = min E

[ n∑
j=1

( m∑
i=1

Dixij − Sj

)+]

s.t.
m∑

i=1

xij ≥ 1 ∀j

n∑
j=1

xij = 1 ∀ i

xij ∈ {0, 1} ∀ i, j

We use the standard sampling average approach to solve IPD approx-

imately - sample M scenarios {(Dk
1 , . . . , D

k
m) : k = 1, . . . ,M} (for some

suitably large M), from the joint distribution of the supplies, and solve the

following integer programming problem:

SIPD = min
1

M

{ M∑
k=1

( n∑
j=1

( m∑
i=1

Dk
i xij − Sj

)+)}

s.t.
m∑

i=1

xij ≥ 1 ∀j

n∑
j=1

xij = 1 ∀ i

xij ∈ {0, 1} ∀ i, j

The function
(∑m

i=1 Dk
i xij − Sj

)+
is piecewise linear convex and hence the

above can be turned into a linear integer programming problem.

Phase 2: Incremental Improvement

We then incrementally add arcs into the base assignment to improve its
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expansion vector, terminating when we reach the upper limit N of the number

of links allowed. We calculate the expansion ratios for all supply/demand

nodes and identify the demand and supply node with the smallest expansion

ratio. We then add an arc connecting these two nodes. In the case when

these two nodes have already been connected, we select an arc which connects

a demand node with the next smallest expansion ratio and the supply node

with the smallest expansion ratio.

There are several advantages of this heuristic. Firstly, we can control the

graph density by imposing the maximum number of arcs that can be added

to the optimal dedicated network. It can be seen as the budget of investment

on flexibility. Secondly, this heuristic is simple and effective. We do not need

to go through intensive simulation for testing out the performances of various

flexibility structures. Instead, our heuristic keeps improving the expansion

vector with each added arc, which ensures a well-connected structure in the

end.

3.5 Measure Flexibility via Expansion Index

Besides designing a good partial flexibility structure, another issue pertaining

to the study of flexibility structures is how to measure flexibility. Good

flexibility measures would help a manager to evaluate the flexibility of current

operating system, or/and to select a suitable flexibility system from many

candidate structures.

A good flexibility index should possess the following three properties:

(i) easy to compute, (ii) minimal and accessible input requirement, and (iii)
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applicable to various situations. The prevailing flexibility indices, however,

hardly have all the properties. For example, the Jordan and Graves’ index

[36], the probability that the unfilled demand for any subset of demand nodes

is more than that of the full flexibility structure, hardly possesses property

(i) and (ii) due to the demanding computational requirement (it is usually

hard to compute the joint probability except for the situation that demands

(or supplies) follow independent normal distributions) and the requirement

for exact demand/supply distribution of each product/plant as inputs. An-

other widely-used indices, SF indices [33], is easy to compute and requires

little information of demand/supply, but cannot be applied to a system with

disconnected sub-graphes.

In this section, we developed a new index possessing all the three prop-

erties, based on the concept of graph expansion.

For a bipartite graph G = (A∪B,F ), the incidence matrix T is defined

in the following way: Each column of T , say Tl, represents an edge l ∈ F

with Tli = 1, Tlj = −1 and Tlk = 0, ∀k 6= i, j, if the edge l connects node

i ∈ A to j ∈ B. The Laplacian matrix L = T T ′ is a positive semidefinite

matrix. The connectivity of the graph G can be measured by the second

smallest eigenvalue λ2(L) of L, also known as the algebraic connectivity of

G.

The relationship between λ2(L) and the connectivity property of G is

well-knwon (cf. [20, 25] and the literature therein). For instance, λ2(L) >

0 if and only if G is connected. Furthermore, for any two graphs G1 =

(A ∪ B,F1) and G2 = (A ∪ B,F2), if F1 ⊆ F2, then λ2(L1) ≤ λ2(L2).

These properties suggest that λ2(L) can be used as an index to rank process
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flexibility structures - in general, a graph with more links are more flexible,

and connected graphs are generally more flexible than disconnected graphs.

The above discussion is based on the assumption that supply and de-

mand are balanced and identical. We can easily extend the notion of λ2(L)

to a weighted graph by letting Tli =
√

µiSj and Tli = −
√

µiSj in the gener-

alized unbalance and non-identical situation.

Definition 4: The expansion index for a structure F is defined as λ2(F ),

which is the second smallest eigenvalue of L, where L = T T ′.

The expansion index possesses all the three desired properties of a good

index. It is easy to compute, only requires the demand/supply mean for each

node as input, and can be applied to a general system with different number

of supply nodes and demand nodes and unbalance supply and demand. Table

3.3 compares the Jordan and Graves index, SF indices and expansion index

in respect of the three properties, and indicates that the expansion index is

very practical.

We next use two numerical experiments to examine the power of the

expansion index. The first experiment is a comparison between the Levi

graph and regular graph discussed in chapter 3.3, and the second experiment

evaluates the expansion index and SF indices via the examples used by Iravani

et al [33].

We compare our expansion index with SF indices for evaluation. Re-

member the SF indices are simple tractable measures which can be used to

“rank” the process structures. Consider the SF matrix (Mij)
n
i,j=1, where Mij

(i 6= j) represents the number of non-overlapping routes from supply node
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Index Attributes
Computational load Input info. Applicable areas

Jordan
& Graves
Index

Need to compute the
joint probability of
multiple variables.
Only tractable when
demands/supplies
follow independent
normal distribution.

The probability
density func-
tion of each
demand/supply
node is needed.

The index’s
computation re-
strictions limits
its application.
The index may
only be suitable
to systems with
a few number of
supply/demand
nodes.

SF
indices

Can use a simple
max-flow model
to compute the
total number of
non-overlap routes
between demand
node i and j.

The structure
should “fits”
the environ-
ment, i.e. the
demand of each
product should
be satisfied on
average.

Cannot be ap-
plied to a discon-
nected structure.

Expansion
Index

Easiest to compute. The mean of each
demand/supply
node is needed.

Suitable to a non-
identical and un-
balanced general-
ized system.

Tab. 3.3: Comparisons among Difference Flexibility Indices

i to j, and Mii represents the number of arcs connected to node i. The SF

indices can be defined in terms of (i) the mean of the entries in M ; or (ii) the

dominated eigenvalue (i.e. largest eigenvalue) of M . A process structure with

higher SF indices would be more flexible. Note the Jordan and Graves’ index

is not applicable here because the demand distribution is assumed unknown

for both experiments.

• Levi graph and regular graph.

This experiment tests the power of the expansion index using the ex-
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ample discussed in section 3.3. As shown in Table 3.4, λ2(Levi) (0.55)

is much higher than λ2(Regular) (0.05), which is consistent with our

simulation analysis. On the other hand, SF indices will give the highest

rank to the regular graph among all structures with the same number

of arcs.

• Structural Flexibility examples.

To compare our index with SF indices, several numerical examples used

by Iravani et al [33] are re-examined here. The purpose of the compar-

ison is to check whether our index will get the same results as SF in-

dices. We select two representative examples from the study of Iravani

et al [33]. One example is a group of structures with random demand

µ = (1.5, 1, 0.5, 0.5, 1, 1.5) and fixed capacity S = (1, 1, 1, 1, 1, 1) as

shown in Figure 3.5, which represents the non-identical demand/supply

situation. The other one is a group of structures with random demand

µ = (1, 1, 1, 1, 1, 1, 1, 1) and fixed capacity S = (1, 1, 1, 1, 1, 1, 1, 1) as

shown in Figure 3.6, which represents the identical demand situation.
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Fig. 3.6: SF Group 2: Structures with Demand µ = (1, 1, 1, 1, 1, 1, 1, 1)

We obtain estimate for E(ze(F )), the expected excess flow of structure

F , to be used as the benchmark to evaluate the power of the expansion

index and SF index. E(ze(F )) is obtained from sampling 200 scenarios

of demand, assuming uniformly distributed in (0, 2µi).

In both cases, the ranks obtained from the expansion index are consis-

tent with the rank given by E(ze(F )). The ranks given by SF index, on

the other hand, are slightly different from the expansion index. Since

the difference in performance, among different structures, are quite
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small due to the symmetric demand/supply settings provided in the

example, it is hard to tell whether the expansion index outperforms

the SF index or not. Nevertheless, the simulation result indeed suggest

that our expansion index could be at least as good as SF indices.
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4. FLEXIBILITY STRUCTURES AND CONSTRAINT

SAMPLING

We have proven the existence of a good sparse flexibility structure in the

balanced and identical situation using the graph expander concept. In this

chapter, we extend our study to the general unbalanced and non-identical

situation. To avoid the difficulty and complexity of graph theory techniques,

we use a different tool, constraint sampling, to study the flexibility models.

We start from the max-flow model of full flexibility structure.

(MF ) : zm(A × B) = max
m∑

i=1

n∑
j=1

xij

s.t.
n∑

j=1

xij ≤ Di ∀ i = 1, . . . ,m;

m∑
i=1

xij ≤ Sj ∀ j = 1, . . . , n;

xij ≥ 0 ∀ i = 1, . . .m, j = 1, . . . , n.

This max-flow model has m×n decision variables and m+n constraints

1. If Di and Sj are constant for all i = 1, . . . ,m and j = 1, . . . , n, it is

1 We ignore the nonnegative constraint here because the nonnegative parameters Sj and
Di in the max-flow model ensure the nonnegativity of decision variables.
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well known that there exists an optimal solution x∗ with support in no more

than m + n decision variables. There is no loss of optimality if the other

variables are discarded. Since xij represents the network flow in arc ij of

the full flexibility structure, removing a non-supportive variable xij is the

same as removing arc ij from the full flexibility structure. Hence, it is not

hard to tell that the non-zero optimal solution x∗ represents a good sparse

flexibility structure with at most m + n arcs, and this structure has exactly

the same performance as the full flexibility structure. In this chapter, we

further investigate this phenomenon when Di and Sj are random. Our goal

is to identify a good sparse structure F capturing almost all benefit of full

flexibility structure. More specifically, F satisifies

ED,S

(
zm(F )

)
≥ (1 − ε)ED,S

(
zm(A × B)

)
.

and

|F | ≈ O(m + n) << mn.

We will use a simple and effective probabilistic constraint sampling

method to analyze the problem. This method is based on a recent elegant

result obtained by Calafiore and Campi [13] (see also de Farias and Van Roy

[18]). To provide a good understanding of the constraint sampling approach,

we will briefly review the result in the following section.
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4.1 Constraint Sampling Review

Ever since the seminar paper by Dantzig [16] on linear programming under

uncertainty, there have been a flurry of activities in the area of optimization

under uncertainty(cf. [7] [41] and [14] for recent progress in this area ).

This area of work focuses on finding a good solution to optimization problem

with uncertainty in the data. The key idea is to represent the inherent

uncertainty in the data using an “uncertainty set” to ensure tractability of

the new optimization model, while maintaining a good approximation of the

underlying uncertainty in the problem parameters. The robust optimization

approach, for instance, can also be potentially used in a two stage stochastic

integer programming framework to design a good support set for our problem,

although it is not clear how the sparsity of the support set can be derived

this way. We used instead a recent elegant constraint sampling approach by

Calafiore and Campi [13] for our analysis.

The idea of constraint sampling is also independently developed by de

Farias and Van Roy [18] in their study of the approximate dynamic pro-

gramming method. In fact, they are more interested in estimating the error

from constraint sampling, in the approximation for the cost-to-go function.

Their approach and analysis, although couched in a different context, uses

sampling distribution based on optimal policy to the original problem, and

is very similar to the key idea used here. However, we take a small step

further, and identify a condition on the behavior of the optimal solution to

ensure that the error (loss of optimality) introduced in the constraint sam-

pling approach will be small. More importantly, we show that this approach
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can be used to analyze various flexibility design problems in the operations

management literature.

The problem addressed by Calafiore and Campi [13] can be formulated

as follows:

UCP :

{
min cT x : f(x, δ) ≤ 0, δ ∈ ∆, x ∈ Ψ ⊆ Rn

}
,

where x is the decision variable, Ψ is a convex and closed region, δ is the

random parameter in set ∆ (∆ ⊂ Rl), and f(x, δ) is continuous and convex

in x for all δ.

UCP problem is a difficult computational optimization problem since it

involves infinitely many constraints, as the set ∆ may already be uncount-

able. Instead, Calafiore and Campi [13] proposed the “randomized constraint

sampling” approach to construct “ε-robust” feasible solution (i.e., the proba-

bility that the solution obtained will violate a random constraint is less than

ε). They generated N constraints by sampling the uncertain parameter from

∆, and solved instead the following problem:

UCPN :

{
min cT x : f(x, δk) ≤ 0, k = 1, . . . , N, x ∈ Ψ ⊆ Rn

}
,

where δk’s are the parameters sampled.

They showed that the solution of the new problem will only violate a

tiny portion of the original constraints if N is large enough. Specifically,

if N ≥ n
εβ

− 1, the probability that optimal solution of UCPN (say x̂N) is

ε-robust feasible is more than 1 − β. Here, n is the dimension of x and
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ε, β ∈ (0, 1].

It is obvious that Calafiore and Campi’s result is also valid for Uncer-

tain Linear Programming (ULP) problems (cf. [18]), where the constraints

f(x, δ) ≤ 0 are linear. We will briefly describe the intuition of the proof

in this case, as it applies to our problem. Note that in our approach, the

non-negative constraints x ≥ 0 are always included in the subproblems, and

we only sample from the other constraints in ∆.

Their proof is based on the following idea: Let z(1), . . . , z(N+1) represent

N + 1 independent random variable with same distribution in ∆. Construct

the following N+1 problem:

ULP k
N : min

{
cT x : x ≥ 0, f(x, z(i)) ≤ 0, i = 1, . . . , k−1, k+1, . . . , N +1

}
,

where k = 1, 2, . . . , N + 1.

Let x̂k
N denote an optimal solution of ULP k

N . In the case of multiple

optimal solutions, we choose one which is lexicographically maximal. In

addition, define a problem ULPN+1 consisting of all N + 1 constraints:

ULPN+1 : min

{
cT x : x ≥ 0, f(x, z(i)) ≤ 0, i = 1, . . . , N + 1,

}

and denote x̂N+1 as the optimal solution of ULPN+1.

Note that ULPN+1 and ULP k
N differ in just one constraint - f(x, z(k)) ≤

0. In the event that this constraint is not tight at the optimal solution for
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ULPN+1, we have x̂N+1 = x̂k
N , and hence

f(x̂k
N , z(k)) ≤ 0.

As there are relatively fewer tight constraints than total number of con-

straints, if N is sufficiently large, the event f(x̂k
N , z(k)) ≤ 0 holds with very

high probability.

Proposition 2: [13] The probability that x̂k
N will violate the kth (sampled)

constraint f(x, z(k)) ≤ 0 is bounded above by n/(N + 1), i.e.,

P

(
f(x̂k

N , z(k)) > 0

)
≤ n

N + 1
,

where n is the dimension of decision variable x.

Note that for each k, the random variable x̂k
N has the same distribution

as x̂N , the solution obtained by solving ULPN with N independently and

randomly generated constraints. If the jth constraint in ∆ is sampled with

probability qj in the experiment, the proposition ensures that

∑
j∈∆

qjP

(
f(x̂k

N , z(k)) > 0|z(k) = zj

)
=

∑
j∈∆

qjP

(
f(x̂N , zj) > 0

)
≤ n

N + 1
.

(4.1)

Note that the above results hold as long as z(k)’s are sampled in identical

manner, using the probability distribution endowed on the space of random

parameters ∆.
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4.2 Identifying Sparse Support Set

It is not difficult to fit the max-flow model (MF) into a general LP model as

following.

(P ) : zm(A × B) = max

{ ñ∑
i=1

cixi : Ax ≤ b, xi ≥ 0, i = 1, . . . , ñ

}
,

where A is a m̃ × ñ matrix, and b is random. (MF ) is just the special case

of (P ) by letting b = (D1, . . . , Dm, S1, . . . , Sn)T and A be the corresponding

coefficient matrix with ñ = mn and m̃ = m + n. The following analysis will

focus on the general model (P ).

The dual (D) can be formulated as

zm(A × B) = min

{ m̃∑
j=1

bjyj : AT y ≥ c, yj ≥ 0, j = 1, . . . , m̃

}
.

(D) is a linear programming problem with m̃ variables and ñ constraints. We

can easily construct a structure F with N links by sampling N constraints

from (D), and obtain the corresponding primal model

(D(F )) : zm(F ) = min

{ m̃∑
j=1

bjyj : AT
F y ≥ cF , yj ≥ 0, j = 1, . . . , m̃

}
.

and the dual model for F

(P (F )) : zm(F ) = max

{∑
i∈F

cixi : ASxF ≤ b, xi ≥ 0, i ∈ F

}
.
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Note that unlike the uncertain convex programming problem, we do not

have an endowed distribution for the set of constraints. The selection of the

sampling distribution plays a key role in our analysis. We discuss next how

the sampling distribution can be obtained.

Let x∗ denote an optimal solution in zm(A × B). Note that since b is

random, x∗ is also a random vector. We assume that problem (P ) has an

optimal solution x∗ with the following property:

(Property A): x∗
i ≤ λE(x∗

i ) almost surely for some constant λ > 0

independent of ñ, and for all i = 1, . . . , ñ.

The above property essentially states that the optimal primal solution

x∗, as a function of the random b, should not be too far above its mean

value. This property indeed holds for serval important classes of optimization

problem. We will show in the next section that this property holds for the

flexibility problem.

Theorem 1: Suppose Property A holds for (P ). Then there exists a set F

with cardinality N = O(λm̃
ε

), such that

Eb(zm(F )) ≥ (1 − ε)Eb(zm(A × B)).

We prove the above result via constraint sampling. We sample N con-

straints in (D) with replacement. The ith constraint in problem (D) is
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selected with probability

ciE(x∗
i )∑ñ

i=1 ciE(x∗
i )

.

We denote the set of constraints obtained by F .

Proof. For fixed b, let x∗ and y∗ denote the corresponding optimal primal

and dual solution in (P ) and (D) respectively. Similarly, let x∗(F ) and y∗(F )

denote the corresponding optimal primal and dual solution in (P (F )) and

(D(F )) respectively.

zm(F ) =
m̃∑

j=1

bjy
∗
j (F )

=
m̃∑

j=1

bjy
∗
j (F ) + zm(A × B) −

ñ∑
i=1

cix
∗
i

≥ zm(A × B) +
m̃∑

j=1

y∗
j (F )

( n∑
i=1

Ajix
∗
i

)
−

ñ∑
i=1

cix
∗
i

= zm(A × B) +
ñ∑

1=1

x∗
i

( m̃∑
j=1

Ajiy
∗
j (F )

)
−

ñ∑
i=1

cix
∗
i

= zm(A × B) +
ñ∑

i=1

( m̃∑
j=1

Ajiy
∗
j (F ) − ci

)
x∗

i .

Note that ( m̃∑
j=1

Ajiy
∗
j (F ) − ci

)
x∗

i ≥ −cix
∗
i

for all y∗(F ), but when the constraint
∑m̃

j=1 Ajiyj ≥ ci holds for y∗(F ), then

( m̃∑
j=1

Ajiy
∗
j (F ) − ci

)
x∗

i ≥ 0.
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Hence

EF (zm(F )) ≥ zm(A × B) + EF

[ ñ∑
i=1

( m̃∑
j=1

Ajiy
∗
j (F ) − ci

)
x∗

i

]

≥ zm(A × B) − EF

[ ñ∑
i=1

cix
∗
i

∣∣∣∣ m̃∑
j=1

Ajiy
∗
j (F ) < ci

]
P

( m̃∑
j=1

Ajiy
∗
j (F ) < ci

)

≥ zm(A × B) −
[ ñ∑

i=1

ciλEF (x∗
i )P

( m̃∑
j=1

Ajiy
∗
j (F ) < ci

)]
[by Property A]

= zm(A × B) − λ

( ñ∑
j=1

cjEF (x∗
j)

)[ ñ∑
i=1

ciEF (x∗
i )∑ñ

k=1 ckEF (x∗
k)

P

( m̃∑
j=1

Ajiy
∗
j (F ) < ci

)]

≥ zm(A × B) − λm̃

N + 1

( ñ∑
j=1

cjEF (x∗
j)

)
[from (4.1)]

Since
∑ñ

i=1 ciEF (x∗
i ) = EF (zm(A × B)),

Eb,F (zm(F )) ≥ (1 − ε)Eb(zm(A × B)).

Hence there exists a sparse support set F with cardinality N = O(λm̃
ε

) (in-

dependent of ñ) such that Eb(zm(F )) ≥ (1 − ε)Eb(zm(A × B)).

4.3 Sparse Flexibility Structure

From section 4.2, we know that a good sparse structure can be obtained by

sampling the constraints of model (D) using certain sampling probability,

assuming that x∗ ≤ λE(x∗). In this section, we will study how to find a

proper x∗ for the max-flow model (MF ) and identify the conditions satisfying
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x∗ ≤ λE(x∗).

The following simple structural result on the maximum flow will be

useful for our analysis:

Lemma 2: For a realization (D1, . . . , Dm) of demand and (S1, . . . , Sn) of sup-

ply, an optimal solution of (P) is

x∗
ij =

DiSj

max

{∑m
i=1 Di,

∑n
j=1 Sj

} , ∀i = 1, . . . ,m, j = 1, . . . , n,

and

zm(A × B) = min

{ m∑
i=1

Di,
n∑

j=1

Sj

}
.

Proof. For full flexibility structure A × B, it is easy to see that the op-

timal max flow through the structure is the minimum of the inflow (to-

tal demand) and the outflow (total capacity). Therefore zm(A × B) =

min

{∑m
i=1 Di,

∑n
j=1 Sj

}
. We can also show that

x∗
ij =

DiSj

max

{∑m
i=1 Di,

∑n
j=1 Sj

}
=

(
Di∑m
i=1 Di

)(
Sj∑n
j=1 Sj

)
min

{ m∑
i=1

Di,
n∑

j=1

Sj

}
=

(
Di∑m
i=1 Di

)(
Sj∑n
j=1 Sj

)
zm(A × B)



4. Flexibility Structures and Constraint Sampling 69

x∗ is a feasible solution of the primal problem (PF ), because

n∑
j=1

x∗
ij ≤ Di, ∀i = 1, . . . ,m;

and
m∑

i=1

x∗
ij ≤ Sj, ∀j = 1, . . . , n.

Since

m∑
i=1

m∑
j=1

x∗
ij =

m∑
i=1

(
Di∑m
i=1 Di

) n∑
j=1

(
Sj∑n
j=1 Sj

)
zm(A × B) = zm(A × B),

x∗ is the optimal solution for (PF) of full flexibility structure.

This result has numerous implications for the process flexibility problem.

For instance, suppose m = n, demand Di is bounded between a(> 0) and

b(≥ a) for all i = 1, . . . , n. Similarly, supply Sj is also within the range [a, b]

for all j = 1, . . . , n. Clearly

• x∗
ij ≤ b2

na
;

• E(x∗
ij(D)) ≥ a2

nb
.

In this case,

x∗
ij ≤

(
b

a

)3

E(x∗
ij)

Using λ = b3/a3 in Theorem 1, we obtain the existence of a (1 − ε) optimal

solution with support at only O(2b3n/a3ε) variables. Note that each variable

xij corresponds to a link in the process flexibility structure. A sparse support
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set here translates to a sparse flexibility structure for the problem (PF ).

Hence our approach provides an analytical explanation to the often observed

empirical phenomenon: a small number of process capabilities is enough to

reap the bulk of the benefits from process flexibility enhancement.

We note that in the manufacturing flexibility literature(c.f. [36]), de-

mand is normally assumed to follow a truncated normal distribution at

[µ−kσ, µ+kσ], with k < 3, and µ > 3σ. Here, µ and σ denote the mean and

standard deviation of the demand distribution. The distribution generated,

properly scaled, can be seen to follow the above assumptions on the demands.

Hence our approach provides an analytical explanation to the often observed

empirical phenomenon: a small number of process capabilities is enough to

reap the bulk of the benefits from process flexibility enhancement.

4.3.1 Supply Chain Flexibility

Jordan and Graves [36] investigated how to design process flexibility struc-

ture in a single stage, multi-product and multi-plant supply chain. Graves

and Tomlin [29] extended Jordan and Grave’s work to multi-product, multi-

stage supply chains, where each product need to be processed in every stage.

They proposed a supply chain flexibility measure g, where higher g indicates

higher flexibility. Unfortunately, they did not show how to design a flexible

supply chain network structure. In this section, we will show that sparse

partial flexibility structures can also work very well in multi-stage supply

chain system.

Consider the following supply chain design problem (see Figure 4.1):
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There are n1 products, n2 plants, and n3 suppliers. In the full flexibility

scenario, each product can be produced at any plant, using material sources

from any supplier. We assume that each unit of product consumes a unit

of material from each supplier and occupies a unit capacity of a plant. We

assume further that production capacity at the plants are Ci, i = 1, . . . , n1,

and the suppliers have limited amount of materials, at capacity Bi, i =

1, . . . , n3. The demand for the products are random and denoted by the

random variable Di, i = 1, . . . , n1.

3

.
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.

.

.

.

.

.

.

21
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Fig. 4.1: A Supply Chain Flexibility Structure.

In the full flexibility scenario, it is easy to see that the expected amount

of the total demand that can be satisfied in the supply chain is

ED

[
min

( n1∑
i=1

Di,

n2∑
i=1

Ci,

n3∑
i=1

Bi

)]
.

The above problem can be formulated as the following set packing prob-
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lem:

zm(A × B × C) = max

n1∑
i=1

n2∑
j=1

n3∑
k=1

xijk

s.t.

n2∑
j=1

n3∑
k=1

xijk ≤ Di ∀i = 1, 2, . . . n1;

n1∑
i=1

n3∑
k=1

xijk ≤ Cj ∀j = 1, 2, . . . n2;

n1∑
i=1

n2∑
j=1

xijk ≤ Bk ∀k = 1, 2, . . . n3;

xijk ≥ 0 ∀ i, j, k.

For each realization of demand Di, it is easy to see that there is an

optimal solution given by

x∗
ijk =

DiCjBk

max

{∑n1

i=1 Di ×
∑n2

j=1 Cj,
∑n1

i=1 Di ×
∑n3

k=1 Bk,
∑n2

j=1 Cj ×
∑n3

k=1 Bk

} .

With this result, we can show the existence of a sparse supply chain

network in a very general settings for this problem. For instance, suppose

Di, Cj, Bk follow any distribution with support [a, b], where 0 < a ≤ b, and

n1 = n2 = n3 = n. The expected optimal solution

E(xijk) ≥
a3

(nb)2
∀i, j, k = 1, . . . n
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and the corresponding optimal solution

xijk ≤ b3

(na)2

=
b5

a5

a3

n2b2

≤ b5

a5
E(xijk).

Let λ = b5/a5 so that Property A holds for this case. In fact, this result

can be easily modified for a more general situation with bounded positive

demand, capacity and supply.

Theorem 2: Suppose the optimal solution xijk satisfies

x∗
ijk =

DiCjBk

max

{∑n1

i=1 Di ×
∑n2

j=1 Cj,
∑n1

i=1 Di ×
∑n3

k=1 Bk,
∑n2

j=1 Cj ×
∑n3

k=1 Bk

}
≤ λE

[
DiCjBk

max

{∑n1

i=1 Di ×
∑n2

j=1 Cj,
∑n1

i=1 Di ×
∑n3

k=1 Bk,
∑n2

j=1 Cj ×
∑n3

k=1 Bk

}]
,

for some λ > 0, then there exists a sparse supply chain configuration S with

cardinality |S| = O(λ(n1 + n2 + n3)/ε), such that the expected demand met

by the sparse supply chain system is at least (1 − ε)E(Z∗(D)).
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4.4 Sampling Heuristic: Designing a Sparse Flexibility

Structure

The study above has shown the existence of a good flexibility structure in

most practical cases. We can also modify the constraint sampling method

to build a sampling heuristic to design a good sparse flexibility structure.

The basic idea, as shown in Figure 4.2, is to sample a group of different

structures with N links using the estimated sampling probability and select

the best one. Note the number of links N required is controlled explicitly

by managers, depending on flexibility requirements and budget constraints.

Adding more links in a structure would provide more flexibility but may

increase the cost of implementation.

Fig. 4.2: Sampling Heuristic

The detailed steps to construct a flexibility structure with m demand

node and n supply nodes are described as following. It can be easily modified

and applied to many different applications, including flexibility structure
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design, transshipment network design, supply chain design, and etc. These

applications will be discussed in Chapter 5.

[Phase 1: Estimate Sampling Probabilities via a Monte-Carlo Sim-

ulation.]

1. For each retailer, generate 100 realizations of demand and supply based

on a specific demand distribution.

2. Estimate E(x∗
ij) using

E(x∗
ij) =

100∑
k=1

(
Dk

i S
k
j

max{
∑m

i=1 Dk
i ,

∑n
j=1 Sk

j }

)
/100,

where Dk and Sk is the demand and supply generated in kth instance.

3. Estimate pij using

pij =
E(x∗

ij)∑m
i=1

∑n
j=1 E(x∗

ij)
.

We next sample the arcs using the estimated probabilities {pij}. How-

ever, to ensure that no node will be disconnected from the rest of the network,

we first generate an arc into each node. Furthermore, to avoid sampling an

arc twice, we remove the arc from the sampling experiment once it has been

selected. We do this by normalizing the corresponding sampling probability

to zero. The procedure is described next.

[Phase 2: Sampling Arcs.]
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1. For k = 1, . . . ,m, generate a random number Uk ∈ (0, 1). If

l−1∑
j=0

pkj∑n
j=1 pkj

< Uk ≤
l∑

j=0

pkj∑n
j=1 pkj

, for some l = 1, . . . , n,

add arc (k, l) to the structure and let pkl = 0.

2. Order the arcs in lexicographical order, and let p̂n(i−1)+j = pij.

3. Generate a random number Uk ∈ (0,
∑mn

i=1 p̂i). If

l−1∑
i=1

p̂i < U ≤
l∑

i=1

p̂i,

l = 1, 2, . . . ,mn, let p̂l = 0 and add arc l to the network.

4. Repeat Step 3 until the number of arcs sampled reaches N .

We can generate several structures with N links by repeating step 2.

Here, 100 structures are sampled, and the best-performing one could be

selected in the next evaluation step.

[Phase 3: Evaluation Approaches]

The sampled structures are evaluated in this phase and the most flexible one

will be selected. Two different approaches can be adopted to measure the

structures in terms of flexibility.

One approach is Monte-Carlo simulation. Another set of demand and

supply instances are generated, and each structure are tested using the new

set of data. The structure with highest expected max-flow (or lowest ex-

pected excess flow) will be selected. This simulation approach can precisely
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estimate the performance of structures, especially when a huge number of

demand/supply scenarios are simulated. The disadvantage of the approach,

on the other hand, is that the simulation could be very time-consuming.

Another approach is to use flexibility indices to measure the structures.

We can use the expansion index discussed in chapter 3, or the SF indices

[33]. The structure with highest rank indicated by the indices should be

selected. The advantage of this approach is that the indices are usually easy

to compute and effective. The disadvantage is that indices might be biased

and some indices can only be used in limited structures.



5. APPLICATIONS

The results obtained in chapter 3 and 4 can be applied to many different

problems. In this chapter, we will use the expansion heuristic and sam-

pling heuristic to design sparse structures in production planning problem,

transshipment network design and cutting stock patterns selection problem.

The purpose of the study is to test the effectiveness of graph expansion and

sampling method in different business applications. Furthermore, the obser-

vation that a sparse structure could be almost as good as a complicated fully

connected structure is also examined in the various situations.

5.1 Production Planning Problem

Manufacturers are the pioneers in adopting and developing flexibility tools

to help them make flexible production plans and effectively match random

demand and supply. Many simulation studies have investigated the flexi-

ble production planning problem, and showed that a good flexible structure

could greatly enhance the manufacturer’s ability of matching (random) de-

mand and supply. Most good structures, however, are generated via time-

consuming intensive simulations, and might not be applicable in many situ-

ations.
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In this section, we use the expansion heuristic discussed in chapter 3

to construct good flexible structures. We adopt the General Motor’s pro-

duction planning problem studied by Jordan and Graves [36] to examine

the effectiveness of our heuristic. The basic settings of the example can be

briefly described as follows. Consider a system containing 16 products and 8

plants. Products have normally distributed demands, Plants have constant

capacities. The expected demand and capacity are shown in Figure 5.1. The

standard deviation of each demand is 40% of its mean. The products are di-

vided into three groups: product A to F are in group 1, G to M are in group

2, and N to P are in group 3. The demands of products in the same group

are pairwise correlated with correlation coefficient ρ = 0.3, and demands of

products in different groups are independent.

We use our heuristic to construct another flexibility structure (see Figure

5.1-D) by adding 6 more arcs into the base assignment. We then conduct

a simulation study to compare the performances of our heuristic structure

and the JG’s (Jordan and Graves’) structures. The JG’s structures (Figure

5.1-B and C) are obtained from a simulation study ([36]) and have very good

performances, close to full flexibility.

To test the robustness of the structures under consideration, we generate

supplies from 8 different distributions: four for independent supplies and four

for correlated normally-distributed supplies.

Independent Supplies.

As shown in Table 5.1, the four independent distributions are binomial, uni-

form, normal with a small standard deviation and normal with a big standard

deviation. We simulate 100 scenarios of supplies from each distribution and
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C: JG’s Assignment 2
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D: Huerisitc Assignment

A

1

B

C

2

D

E

3

F

G

4

H

I

5

J

K

6

L

M

7

N

O

8

P

320

150

270

110

220

110

120

80

140

160

60

35

40

35

30

180

380

230

250

230

240

230

230

240

Products Plants
Expected 

Demand
Capacity

Fig. 5.1: Different Flexibility Structures for the GM Problem.

compare the average performance, the worst case performance, and the per-

formance differences among the heuristic structure and JG’s structures. In

some cases, the max flow of a structure is quite low merely because the total

supply in the system is low, not because the structure lacks flexibility. To ad-

dress this issue, we measure the performance by the ratio of the max flow in

a structure to the max flow in the full flexibility structure, which eliminates

the impact of supply fluctuations and reflects how close the performance of

a structure is to the full flexibility structure.

The results are shown in Figure 5.2, 5.3, 5.4 and 5.5. Except for com-

parison 3, our heuristic structure has better average performances than at
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Performances of different structures when supplies are binomial distributed

A: The average performances
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D: Performances differences between heuristic and JG 1
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Fig. 5.2: GM Comparison 1: Demand Follows Independent Binomial Distribution.

least one of JG’s structures, and better worst case performances than both

JG’s structures. The heuristic structure also outperforms JG 1 in most sce-

narios in comparison 1, 2 and 4, and outperforms JG 2 in most scenarios in

comparison 4.

Note that JG’s structures are designed based on simulation study which

assumes the supplies are normally distributed with σi = 0.4µi. Therefore,

it is not surprising that, in comparison 3 where supplies are normally dis-

tributed with σi = 0.4µi, our heuristic structure performance is not as good

as JG’s structures in some scenarios. As a matter of fact, when the standard

deviation increases from 0.4µi to 0.6µi, the performances of JG’s structures

are not as good as our heuristic structure, as shown in comparison 4. Note

that JG’s simulation also assumes correlations among supplies, which we will

further analyze in the correlated supplies case.
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Performances of different structures when supplies are uniformly distributed

A: The average performances
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D: The performance differences between

heuristic and JG 2
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Fig. 5.3: GM Comparison 2: Demand Follows Independent Uniform Distribution.

Correlated Supplies.

Following Jordan and Graves example [36], we divide the supply nodes into

three groups: group one from node A to F, group two from node G to M,

and group three from node N to P. Supplies in the same group are pair-wise

correlated, but are independent with supplies in other groups. We consider

four correlated normal distributions: N(µi, 0.4µi) with correlation coefficient

ρ = 0.3, N(µi, 0.4µi) with ρ = 0.5, N(µi, 0.6µi) with ρ = 0.3, and N(µi, 0.6µi)

with ρ = 0.5. Note that the distribution used in comparison 5 is exactly the

distribution used in the simulation study on designing JG’s structures ([36]).

The results of different structures’ performances are shown in Figure 5.6,

5.7, 5.8 and 5.9. The heuristic structure has better average performances

than JG 1 in all 4 comparisons, and better worst case performances than

JG 1 in comparison 5, 7 and 8. The heuristic structure also beats JG 2

when the standard deviations of supplies do not follow σi = 0.4µi, which was
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A: The average performances
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Fig. 5.4: GM Comparison 3: Demand Follows Independent Normal Distribution
with σi = 0.4µi.

assumed when JG 2 was designed. Indeed, it has better average and worst

performances than JG 2 in comparison 7 and 8.

We note that when supply variance increases, the performances of all

structures become worse. However, the performances of our heuristic struc-

ture seem to be more stable than JG’s structures, and even more so when

correlations are high. This suggests that our structure is robust in the worst

situation (high variances and high correlations).

Table 5.1 summarizes the comparisons among different structures in all

eight cases. Our heuristic structure outperforms JG’s structures in most

cases. It only slightly under-performs JG’s structures when supplies follow

independent/correlated normal distribution with σi = 0.4µi, which is still

acceptable because JG’s structures are selected from an extensive simulation

study assuming supplies follow normal distribution with σi = 0.4µi and JG’s
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Performances of different structures when supplies are normally distributed with SD=0.6

A: The average performances

0.9319

0.9275

0.9298

0.925

0.926

0.927

0.928

0.929

0.930

0.931

0.932

0.933

Heuristic JG 1 JG 2

B: The worst case performances

0.6939 0.6939

0.6408

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

Heuristic JG 1 JG 2

C: The performance differences between

heuristic and JG 1

-300

-200

-100

0

100

200

300

400

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Scenario

D
if

fe
re

n
c
e

D: The performance differences between

heuristic and JG 2
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Fig. 5.5: GM Comparison 4: Demand Follows Independent Normal Distribution
with σi = 0.6µi.

structures perform almost as well as the full flexibility structure.

It is important to note that our structure is obtained from a simple

heuristic, yet performs robustly well in most cases. It is also computationally

efficient. This illustrates the importance of using expansion information in

designing a flexible structure.
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Performances of different structures when supplies are normally distributed with SD=0.4  and =0.3
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Fig. 5.6: GM Comparison 5: Demand Follows Normal Distribution with σi = 0.4µi

and ρ = 0.3.
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Fig. 5.7: GM Comparison 6: Demand Follows Normal Distribution with σi = 0.4µi

and ρ = 0.5.
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Performances of different structures when supplies are normally distributed with SD=0.6  and =0.3
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and ρ = 0.3.
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5.2 Transshipment Problem

Transshipment is a widely used inventory management strategy to cope with

demand uncertainties and to effectively increase service levels. Consider n

retailers, each facing a random demand of Di, i = 1, . . . , n for a common

product. Retailer i has Qi units of the product. In the event that Qi > Di,

the retailers would wish to have options to transship the excess product to

another retailer who may need it.

There is a huge literature on this problem. Studies on transshipment

focus mainly on how to decide optimal inventory policy and optimal order

quantity Q∗
i for each retailer. They either deal with problems with two

retailers (cf. [52]) or many identical retailers (cf. [38], [45] and [31]), with

the assumption of complete pooling (i.e. a retailer could tranship its products

to any other retailers).

Only a few papers discuss how to design a good transshipment net-

works. Lien et al [40] studied the impacts of the transshipment network

structure. They compared the performances of different network configures:

no transshipment, complete pooling, partial grouping, unidirectional chain

and bidirectional chain (See Figure 5.10). They showed similar results to the

findings of Jordan and Graves [36]: sparse transshipment network structures

can capture almost all the benefit of complete pooling. They also indicated

that the chaining structure, which is a kind of sparse structure, would out-

perform other sparse structures. In this section, we will show the existence

of a good sparse transshipment network by sampling approach.

The transshipment structure design problem can be reduced to a variant
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Fig. 5.10: Different Types of Transshipment Network Structures.

of the process flexibility problem, where there are n plants and n products.

Each plant i has capacity (Qi − Di)
+ (the left over at retailer i), which

can be used to meet demand for other products. Each product has demand

(Di − Qi)
+ (unfilled demand at retailer i). Note that in this case, both

capacity and demand are random parameters in our problem, and (Qi −

Di)
+ × (Di − Qi)

+ = 0.

From the analysis of sampling approach in chapter 4, the existence of a

sparse support structure for the transshipment problem is guaranteed by the
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following condition:

x∗
ij =

(Di − Qi)
+(Qj − Dj)

+

max

{∑n
i=1(Di − Qi)+,

∑n
j=1(Qj − Dj)+

}
≤ λE

[
(Di − Qi)

+(Qj − Dj)
+

max

{∑n
i=1(Di − Qi)+,

∑n
j=1(Qj − Dj)+

}]

almost surely for some λ > 1, and for all i, j.

When Di are identical and independent random variables and take values

in {0, 2} with equal probability, Qi = 1 for all i = 1, . . . , n, then (Di−Qi)
+

and (Qi − Di)
+ are Bernoulli variable with equal probability. Note that

E((Di − Qi)
+) = E((Qi − Di)

+) =
1

2
.

Furthermore,

n∑
i=1

(Di − Qi)
+ +

n∑
j=1

(Qj − Dj)
+ =

n∑
i=1

|Di − Qi| = n.
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Hence

x∗
ij(D) =

(Di − Qi)
+(Qj − Dj)

+

max

{∑n
i=1(Di − Qi)+,

∑n
j=1(Qj − Dj)+

} (5.1)

≤ 2

n
(Di − Qi)

+(Qj − Dj)
+

≤ 8

n
E

[
(Di − Qi)

+(Qj − Dj)
+

]
≤ 8E

[
(Di − Qi)

+(Qj − Dj)
+

max

{∑n
i=1(Di − Qi)+,

∑n
j=1(Qj − Dj)+

} .

]

Property A holds for this example.

Remark 1: In the general case when Di (∀i = 1, . . . , n) has support in a

continuous set, the event that both
∑n

i=1(Di − Qi)
+ and

∑n
j=1(Qj − Dj)

+

are both zeros happen with measure zero. Therefore, we need not consider

the case that the denominator in equation 5.1 is zero.

Remark 2: The sampling approach in our analysis uses the value

ED

[
(Di − Qi)

+(Qj − Dj)
+

max

{∑n
i=1(Di − Qi)+,

∑n
j=1(Qj − Dj)+

}]

to obtain the variable sampling probability. This approach can gainfully

employ the additional information on the covariance structure of Di and Dj,

and the total excess and unfilled demand distribution
∑n

i=1(Di − Qi)
+ and∑n

j=1(Qj − Dj)
+ to obtain reliable sampling probabilities.
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We state a combinatorial analogue of the above observation as a formal the-

orem. Suppose we distribute n red and n blue points randomly on a graph G

with 2n nodes, with each node covered by exactly one color. Let c(i) denote

the color assigned to node i. Let e(G) denote the edge set in G. We say that

M ⊂ e(G) is a colored matching if it is a matching in G with

M = {(i, j) : c(i) 6= c(j), (i, j) ∈ e(G)}.

Let m(G) denote the cardinality of a maximum colored matching in G. Note

that m(G) ≤ n for all realizations of the color distribution, and E(m(G)) = n

when e(G) = K(2n), the complete graph on 2n nodes. Note that the graph

K(2n) has O(n2) edges. Theorem 1 and Property A shows that cardinality

of the edge set e(G) can be reduced much further, while sacrificing only a

little in value of E(m(G)).

Theorem 3: For all ε > 0, there exists n(ε) > 0 such that for all n ≥ n(ε),

there exists a graph Gn with 2n nodes and O(n) edges, such that

n ≥ E(m(Gn)) ≥ (1 − ε)n.
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5.2.1 Numerical Example

We adopted the data provided by Jordan and Graves [36] to build our exam-

ple for the transshipment network design problem. Consider a retail network

containing 16 retailers. Demand for each retailer is uncertain and normally

distributed. Expected demands are shown in Figure 5.11. The standard de-

viation is 40% of the expected demand. The retailers can be divided into

3 subgroups, retailer 1 to 6, 7 to 13 and 14 to 16. Demands of retailers in

the same subgroup are correlated. The correlation coefficients are 0.3 pair-

wise for retailers within same subgroup. However, there are no correlations

between demands of retailers in different subgroups.

We consider a single period decision. All unsold items will be abandoned

and unmet demand will be lost. Note that in the case with transshipment, the

optimal ordering quantity Q∗ will depend on the transshipment structure, the

demand distribution, transportation, holding and shortage cost parameters.

It is in general difficult to determine the optimal order-up-to quantity for

this general problem. We assume instead a fixed ordering quantity, and

focus instead on the design of the transshipment structure to facilitate the

transshipment operations. For convenience, the order quantity (Q∗) for each

retailer is set to be the mean of its demand.

We focus on how the transshipment network support structure can be

suitably designed. Here we only consider the unidirectional transshipment

structure. See Figure 5.11, where retailers are connected with directed arcs.

An arc from retailer i to j means that retailer i can send its unsold products

to retailer j. However retailer j cannot send its products to i unless there is
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another arc (j, i) connecting them.

It is obvious that the complete pooling network (where a retailer can

tranship to any other retailer) will achieve the maximum savings. How-

ever, it would increase the complexity of the transshipment operations, as

more transportation linkages between the retailers have to be pre-arranged.

Therefore, a sparse network structure is preferred.

The proof to Theorem 4.2 indicates that in our sampling approach, we

should set the probability of selecting arc (i, j) to be

pij =
ED(x∗

ij)∑
(i,j):i,j∈A ED(x∗

ij)
, (5.2)

where A represents the set containing all retailers. Note that

ED(x∗
ij) = ED

[
(Q∗

i − Di)
+(Dj − Q∗

j)
+

max

{∑16
i=1(Q

∗
i − Di),

∑16
j=1(Dj − Q∗

j)

}]
. (5.3)

We apply the sampling heuristic discussed in chapter 4 to design a good

transshipment network.

We first generate 100 sets of demand scenarios to estimate ED(x∗
ij) and

calculate the sampling probability pij of link (i, j) for all i, j = 1, . . . 16.

For any given N , i.e. the number of links needed, We sample 100 different

structures and select the best one among them using one of the following

evaluation approaches.

Two evaluation approaches could be used to select a structures. One

approach is simulation: another set of demand scenarios is sampled and the
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expected transshipment flow of each structure is calculated, the structure

with highest flow will be selected. Another approach is to use the expansion

index discussed in section 3.5. The structure with highest expansion index

will be selected. This method has minimal computational requirement, while

it may select a different structure from the simulation method due to the

sensitivity and precision of the index.

Simulation Evaluation.

Another 100 sets of demand scenarios are generated to evaluate performance

of transshipment networks. The network with highest expected transship-

ment flow will be selected. Figure 5.11, for instance, is a network we ob-

tained from this sampling based approach, using only 32 transshipment links.

The network obtained exhibits characteristics of good transshipment network

structure: (i) The retailers with higher average demand should ideally be

linked with more other nodes, since they would probably face oversupply or

undersupply situation with a larger quantity. Moreover, (ii) retailers within

the same group are positively correlated and hence ideally there should only

be a small number of transshipment arcs within them, whereas retailers in

different groups are more connected (i.e. more arcs linking them) because

their demands are independent.

Figure 5.12 plots the performances of the networks obtained (in terms

of average transshipped quantity) as the number of arcs increases. For each

N , we plot the performance attained by the best network structure, the

worst network structure, and the average performance of all 100 sampled

structures. As shown in Figure 5.12, the performance gap among these three
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Fig. 5.11: Sampled Transshipment Network with 32 Arcs.

cases is very small, and quickly converges to zero as the number of links

N increases. This suggests that the sampling heuristic is quite stable and

robust,and the performance of any sampled network is acceptable as long as

N is sufficiently large. The scheme of sampling 100 networks and selecting

the best among them can be used to improve the transshipment network

design when N is small.

Another observation from Figure 5.12 is that as the number of links

increases, the marginal contribution of additional links diminishes for all

three cases - the best, the worst, and the average case. For the best case with

16 links, for instance, the expected transshipment quantity is only 46.7% of

the complete pooling network. After increasing the number of arcs to 96,
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however, the transshipment quantity is already close to 98.5% the complete

pooling network. Note that the complete pooling network has up to 240

arcs. Since the transshipment network obtained using the sampling approach

gives a lower bound to the performance of the optimal transshipment network

structure, it is expected that the optimal performance-flexibility curve should

be even steeper. Nevertheless, our results further validate the fact that a

sparse transshipment network structure can achieve the performance close to

the complete pooling system.
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Fig. 5.12: Expected Transshipment Quantity as Flexibility Increase.

Index Evaluation.

The expansion index is used instead to measure the sampled structures in

terms of flexibility, and the structure with highest index will be selected.

To benchmark the effectiveness of the indexing method, the average trans-
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shipment quantity of the selected structure is also estimated using the set of

demand scenarios generated in the previous simulation method part.

N Index Performance N Index Performance
16 0.00 84.8617 144 703.55 196.8300
32 0.00 116.9658 160 796.59 197.1596
48 106.27 161.9175 176 1019.05 197.1596
64 184.68 174.3876 192 1086.75 197.1596
80 316.26 187.3700 208 1226.70 197.1596
96 415.34 194.8472 224 1326.29 197.1596
112 489.26 194.8267 240 1342.83 197.1596
128 632.63 196.4987 256 1367.8 197.1596

Tab. 5.2: Expansion Index and Average Transshipment Quantity for Different N .

Table 5.2 shows the expansion index and the expected performance of the

selected structures for each N . A network with better performance and more

links usually has higher expansion index, which suggests the effectiveness of

the indexing method. It is also important to notice that expansion index

is just a ranking measure: a structure with higher index indicates it would

be more flexible, but the performance of a structure is not proportionally

related to its expansion index.

Another observation from Table 5.2 is that the expansion index increases

as the number of links in the network increases. It is consistent with the

intuition: a structure with more arcs would be more flexible. This could

also explain the interesting finding that the structures with links more than

160 have the same performances but the index still increases as N becomes

larger.

Figure 5.13 shows the comparison of the indexing method and simula-

tion method. Certainly the simulation method will always select the best-
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Fig. 5.13: Evaluation of the Networks Selected via Indexing Method

performing structure since the simulation approach is a more time consum-

ing manner to evaluate structures. The indexing method can select a good

network without conducting the time-consuming simulation. As shown in

Figure 5.13, the performances of the structures selected via indexing method

are above the average line almost all the time. This result suggests that the

indexing method is both effective and efficient in practice.

5.3 Cutting Stock Problems

Cutting stock problems arise from many industrial applications. A typical

cutting stock problem considers how to minimize the cost involved in the

trim losses when cutting rolls of paper, metal slab and textiles, etc, while
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satisfying customer demand at the same time.

Cutting stock problem was first studied by Eisemann [19]. He discov-

ered the trim losses phenomenon in cutting rolls of papers, textiles, etc and

formulated a relaxed linear programming model which included all possible

cutting patterns. However, he did not further his research to study how to

effectively solve the integer programming problem. A mathematical analysis

and a linear programming approach to solving the IP problem was proposed

by Gilmore and Gomory (1961, 1963 and 1965). In these studies, Gilmore

and Gomory proposed a column generation method, which generates knap-

sack sub-problems to add cutting patterns to the basis and can solve the

large- scale cutting stock problems effectively. This method is, now, widely

accepted as the standard approach to solving cutting stock problems.

The studies of Eisemann [19] and Gilmore and Gomory [26] have mo-

tivated numerous further studies extending on the fundamental ideas from

the trim loss problem. These studies include multi-dimensional cutting stock

problems ([28], [47]), online cutting decision problems ([51], [24]), and sev-

eral business applications in the wood product industry, steel industry, paper

industry and etc ([24], [58]). Vonderembse [58], for instance, studied an in-

teresting cutting problem in the steel industry, in which the master steel

rolls can be stretched or squeezed for a limited range, that is, the master

roll width could be changed in a small range. Their results suggested that

a longer master roll will obtain a lower total cost, because the number of

optional patterns will increase. The increase in cutting patterns, however,

would also increase the computational time required to gauge the optimal

cutting patterns and exacerbate management complexity.



5. Applications 101

A typical cutting stock problem [19] can be described using the following

example. As shown in Figure 5.14, a factory produces large master rolls with

width W , and sells rolls with smaller width to customers. Customers may

order final rolls with any width smaller than W . Obviously, a master roll

could be cut by different combinations of final rolls. For instance, Figure 5.14

shows a cutting pattern (one roll 1, one roll 2 and one roll3). The factory

thus need to decide how to cut the master rolls to satisfy the demand and

minimize the number of master rolls cut.

Cutting Pattern

2 31

Fig. 5.14: A Cutting Stock Problem

This problem can be formulated as [[26]]:

(P ) : min Z(D) =
n∑

j=1

xj

s.t. aijxj ≥ Di ∀i = 1, . . . ,m

xj ∈ Z+ ∀j = 1, . . . , n,
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where m is the number of different final rolls, n is the number of patterns in

the model, xj is the number of master rolls cut by pattern j (j = 1 . . . n), Di

is the demand for final roll i (i = 1 . . .m), and aij is the number of final roll

i produced using pattern j. Obviously, each column of the coefficient matrix

represents a feasible cutting pattern. The feasible cutting patterns are in the

convex hull

(CH) :

{
y :

m∑
i=1

wiyi ≤ W, y ≥ 0, y ∈ Zm

}
.

The optimal solution for a cutting stock problem can be obtained from (P )

containing all the possible cutting patterns of a master roll. This problem is

not easy to solve because of the integer constraints and possibly exponential

number of feasible cutting patterns, that is, n >> m when m is sufficient

large.

For a relaxed (P ), however, there exists an optimal fractional solution

x∗ with no more than m supporting variables when D is constant. There

is no loss of optimality if the other decision variables are discarded. Based

on this interesting observation, Gilmore and Gomory [26] proposed a column

generation method to effectively solve (P ). The basic idea of the method

is to first identify the cutting patterns for a relaxed (P ), and then solve

the integer problem containing only these particular cutting patterns it has

identified. In most applications, this method has proved to be very effective

and accurate approximation to (P ). Therefore, for a cutting stock problem

with a deterministic demand, a minimum cutting cost can be achieved by

using a few selected cutting patterns. In this paper, we will consider the case

when D is random and examine whether this property still exists.
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Let

(P (F )) : min Z(F,D) =
∑
j∈F

xj

s.t. AF xF ≥ D

xj ∈ Z+, ∀j ∈ F

where F denotes a subset of the set containing all cutting patterns, and AF

denotes the columns (cutting patterns) indexed by the subset of variables in

F . Our goal is to identify a subset F (|F | ≈ O(m) << n) so that

ED

(
Z(F,D)

)
≤ (1 + ε)ED

(
Z(D)

)
.

5.4 Identify the Supporting Cutting Patterns

In this section, we will conduct a few numerical experiments to test whether

there exists a small number of cutting patterns that are able to capture the

maximum benefits from using all cutting patterns.

5.4.1 Study 1: identify the supporting patterns for a small-size example.

We first test on a small problem with five different final rolls, which is pro-

vided by ILOG CPLEX 9.1 Users Manual. The width of the master roll is

110. The final roll width and expected demand µ are shown in Table 5.3.

The corresponding IP problem (P ) for this small example is not difficult

to solve as we can obtain all feasible cutting patterns by enumerating the



5. Applications 104

Final Roll 1 2 3 4 5
Final Roll Width (wi) 20 45 50 55 75
Expected Demand (µi) 48 35 24 10 8

Tab. 5.3: Problem Settings of the Small-size example.

extreme point of the corresponding convex hull (CH). Table 5.4 lists all the

11 feasible cutting patterns.

Pattern Roll 1 Roll 2 Roll 3 Roll 4 Roll 5
1 0 0 0 2 0
2 0 0 1 1 0
3 0 0 2 0 0
4 0 1 0 1 0
5 0 1 1 0 0
6 1 0 0 0 1
7 1 2 0 0 0
8 2 0 0 1 0
9 3 0 1 0 0
10 3 1 0 0 0
11 5 0 0 0 0

Tab. 5.4: Cutting Patterns.

A simulation study can be conducted to assess whether all patterns play

the same role in the cutting stock problem for different demand scenarios.

To do so, we first consider two types of demand distributions: uniform dis-

tribution and normal distribution.

Uniform distribution

Suppose the demand for each final roll follows a uniform distribution from 0

to 2µi, for all i = 1, . . . 5. We generate 500 scenarios of customer demands

({(dk
1, . . . , d

k
5) : k = 1, . . . , 500}), and solve the IP problem (P ) with 11

different patterns using ILOG CPLEX 9.1. The frequency that a pattern j

is active in the simulation, that is, the corresponding optimal solution x∗
j is
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nonzero, is recorded for all j = 1, . . . , n. As shown in Figure 5.15, only a few

patterns are frequently active in the simulation, while many patterns appear

only occasionally in the simulation. A pattern with a higher frequency is more

likely to be used in a cutting process, and thus more likely to be selected as

a supportive pattern. We select the patterns with a frequency greater than

200 to build the small support set F , and F contains five patterns: pattern

1, 3, 6, 7, 9.
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Fig. 5.15: The Frequencies of Patterns

Another 500 scenarios of demands are then generated to test the per-

formance of the small pattern set F . As shown in Figure 5.16, the expected

cutting cost of using the small cutting pattern set F , E[Z(F,D)] (41.082) is

greater than the expected cutting cost for the optimal solution with all pat-

terns, E[Z(D)] (40.234), by 2.1%. Figure 5.16 also shows the performance

difference between F and the complete pattern set in the first 100 simulation

scenarios (Z(F,Dk)−Z(Dk)/Z(Dk), k = 1, . . . , 100). The result shows F has
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the same cutting cost as the complete set in 42 scenarios, the gap between F

and the complete set is less than 5% in 43 scenarios, while the gap is larger

than 10% in only 7 scenarios. In summary, we can conclude that this small

set F captures nearly all the benefits of all the patterns considered. Through

this simulation, we have been able to identify a sparse pattern set F that

satisfies
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Fig. 5.16: Gaps Between F and the Complete Set in the First 100 Scenarios

Normal distribution.

The above observation is not only valid when customer demands for final

rolls are uniformly distributed, but also true when customer demands follow

normal distributions. Figure 5.17 shows the simulation results when each de-

mand follows an independent normal distribution with mean µi and standard

deviation 0.4µi, i = 1, . . . , 5.
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Fig. 5.17: Test on Normal Distributions.

Interestingly, the distribution of demand seems to have little impact

on the IP activeness of patterns. As shown in Figure 5.17-a, the patterns’

frequencies of being active are quite similar to the frequencies when demands

are uniformly distributed. The patterns with frequencies greater than 200

(pattern 1, 3, 6, 7 and 9) are also the same as those identified in the uniform

simulation. Therefore, we identify the same sparse set F as the one tested

when the customer demands are uniformly distributed.

Again, we generate another 500 demand scenarios to test the perfor-

mance of F . As shown in Figure 5.17-b, the difference between the num-

ber of master rolls cut by F and by the complete set in the first 100 sce-
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narios are quite small. Most of these differences are no more than 5% of

Z(Dk), k = 1, . . . 100. On average, the number of master rolls used by F

(47.632) is only 1.3% higher than the optimal quantity (47.016) cut by the

complete set. Hence, we can also observe that a small set of cut patterns

can achieve almost the full benefits of the large complete pattern set in this

experiment.

Impact of Variances.

The previous examples have shown us that the patterns’ behavior is not de-

pendant on the demand distribution types. Next, we will examine whether

the variance of demand is a critical factor in selecting patterns and construct-

ing the sparse set F .

We compare 6 different cases: (i)Di ∼ U [0.8µi, 1.2µi], (ii) Di ∼ U [0.4µi, 1.6µi],

(iii)Di ∼ U [0, 2µi] , (iv) Di ∼ N(µi, 0.2µi), (v) Di ∼ N(µi, 0.4µi), (vi)

Di ∼ N(µi, 0.6µi), for all i = 1, . . . , 5. Note that case (iii) and case (v) which

we tested earlier are included for the purpose of comparison.

Pattern
Distribution 1 2 3 4 5 6 7 8 9 10 11

U [0.8µi, 1.2µi] 500 86 500 16 0 500 500 19 500 72 0
U [0.4µi, 1.6µi] 500 127 463 36 0 500 500 23 415 69 19

U [0, 2µi] 454 118 383 39 17 473 487 44 362 88 93
N(µi, 0.2µi) 500 136 499 20 0 500 500 24 489 71 0
N(µi, 0.4µi) 489 133 456 34 5 496 496 20 417 74 34
N(µi, 0.6µi) 467 114 393 40 11 464 478 32 371 72 88

Tab. 5.5: Frequencies of Patterns under Different Distributions

Table 5.5 shows the patterns’ frequencies when they are active in the

6 different distributions. Each pattern’s frequencies for all distributions are

quite close. Thus the sparse set (F ) constructed is the same in each case.
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This result suggests that the demand variance may not play a significant role

in selecting active patterns.

The demand variance could, nevertheless, affect the performance of the

sparse set F in terms of the worse case performance. As shown in Table 5.6,

the maximum gap between the number of master rolls cut by set F (Z(F,D))

and by complete set (Z(D)) increases quickly as the demand’s standard de-

viation increases. The average gap, however, increases only slightly as the

demand variance increases.

Complete F Gap (%)
mean max mean max mean max

U [0.8µi, 1.2µi] 46.836 54 47.222 54 0.83% 2.56%
U [0.4µi, 1.6µi] 47.892 68 48.368 68 1.04% 6.67%

U [0, 2µi] 46.28 81 47.39 82 2.88% 38.89 %
N(µi, 0.2µi) 47.03 61 47.442 61 0.88% 2.86%
N(µi, 0.4µi) 47.016 73 47.632 74 1.41% 35.48%
N(µi, 0.6µi) 48.698 92 49.524 93 1.93% 26.19%

Tab. 5.6: F ’s Performances Under Different Demand Distributions

5.4.2 Study 2: identify the supporting patterns for a large-scale problem

We adopt the example studied by Gilmore and Gomory [27]. The example

considers a master roll with width 218 which results in 23 different final rolls

with width and expected demand shown in Table 5.7.

(P ), under the large-scale problem settings, is no longer easy to solve,

because it contains an exponentially large number of patterns. The integer

property of the decision variable x also makes the problem even harder to

solve. Therefore, our study will focus on not only examining whether a good

small supporting pattern set exists, but also how to find these patterns easily.
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No. Final width Mean No. Final width Mean
1 81 4415 13 49 133
2 70 291 14 46 529
3 68 4765 15 45 185
4 67 4827 16 44 94
5 66 781 17 41 393
6 64 263 18 38 142
7 63 274 19 35 411
8 60 390 20 33 309
9 56 802 21 32 56
10 52 824 22 31 171
11 51 2948 23 21 140
12 50 720

Tab. 5.7: Problem Settings of the Large-scale Example.

To test the existence of a good small set of cutting patterns, we con-

duct another simulation by generating a new set of 500 scenarios of demands

following the uniform distribution U [0, 2µi] (i = 1 . . . 23), and identify the

small number of patterns that play an important role in efficiently fulfill-

ing customer demands. We solve (P ) using the column generation method

employed by Gilmore and Gomory [27] and record all generated and active

patterns. 367 different active patterns are recorded during the simulation.

It is evident that these patterns have significantly different frequencies. As

shown in Figure 5.18, 60% of the patterns appear to be active less than 10

times, while a smaller portion of patterns (4%) are active more than 200

times. This strongly confirms the deduction that only a few patterns are

pivotal in the cutting process as the majority of the patterns have very little

effect.

Pattern generation heuristic.

For the large-scale problem, it is not suitable to count the frequency of pat-
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Fig. 5.18: The Percentage of Patterns with Different Frequencies

terns in a simulation to identify the supporting patterns, because the column

generation method is very time consuming and the number of candidate pat-

terns is very huge. Instead, we propose a simple heuristic to generate good

patterns.

The idea of the heuristics is similar to searching over the extreme point

in the simplex method. Initially, we use patterns which focus only on cutting

final rolls of a specific size, so that if the demand of this final roll increases,

the additional master rolls needed (i.e., the increase of the objective of (P )) is

minimal. In addition, to reduce the trim loss, the left-over part after cutting

the final roll, could be used to cutting other smaller rolls wherever possible.

Figure 5.19 shows the steps of the pattern generation heuristic generating N

patterns for m final rolls.

We then use the heuristic to generate 34 cutting patterns for the large-

size problem. We first create a priority list by ordering the final rolls with
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Fig. 5.19: Pattern Generation Heuristic.

decreasing order of expected demand. The first 23 cutting patterns can be

generated iteratively using the following method. The ith pattern first cuts

as many as possible pieces of the ith final roll in the priority list, that is,

bW/w(i)c , and then uses the left-over part to cut as many as possible pieces

of the i + 1th final roll, and goes on until the left-over cannot be cut into

rolls any more.
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If more patterns are needed, they can be generated by slightly adjusting

the previous step. For example, patterns 24 to 46 can be generated iteratively

as following. The ith pattern first cuts bW/w(i− 23)c − 1 pieces of final roll

i − 23 in the priority list, then uses the left-over part to cut as many as

possible pieces of the next final roll in the priority list, and moves on until

the left-over cannot be cut any further.

Table 5.8 shows a small set F containing 34 patterns generated by the

heuristic. This set of patterns is quite small compared to the 367 active

patterns found in the column generation simulation. We next conduct sim-

ulations to examine the effectiveness of the heuristic.

Simulation tests.

We conduct two groups of simulations to examine the effectiveness of the

heuristic. The first group is to evaluate the performance of F generated for

this large-scale example under different demand distributions. The second

group is using our heuristic to generate cutting patterns for several variations

of the original large-scale example and measure the performances of these

patterns in simulations.

Test 1. F ’s performance in different demand distributions.

We evaluate the performance of F using six different distributions: (i)Di ∼

U [0.8µi, 1.2µi], (ii) Di ∼ U [0.4µi, 1.6µi], (iii)Di ∼ U [0, 2µi] , (iv) Di ∼

N(µi, 0.2µi), (v) Di ∼ N(µi, 0.4µi), (vi) Di ∼ N(µi, 0.6µi), for all i =

1, . . . , 23. The average and worst case performance of (P ) solved by column

generation method will be used as the benchmark for evaluation.

As shown in Table 5.9, F performs well in all six situations. The average
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performance gap between complete set and F is no more than 4% in all cases.

This result effectively insinuates that our pattern generation heuristic can be

used in fact to find good cutting patterns. It also validates that a small set

of patterns can provide almost all benefits of the complete cutting pattern

set.

The impact of variance in the width of the final roll in the cutting process

seems to be similar to the results shown in the small-size example earlier.

As the variance in the roll width increases, the maximum gap between the

performance of complete set and F also increases quickly. Conversely, this

increase of variance only causes a very slight rise in the average performance

gap. Then, it is possibly true that variance plays a minor role when choosing

and deciding on a cutting pattern.

Test 2. F ’s performance in different variations of the original prob-

lem.

We consider 5 variations of the original problem: (i) only final roll 1, 3, 5,

. . . , 23 are needed; (ii) only final roll 1-6, 18-23 are needed; (iii) only final

roll 1-12 are needed; (iv) only final roll 7-18 are needed; (v) only final roll

12-23 are needed. For each variation, a small set F with 17 cutting patterns

is generated using the heuristic.

A simulation is then conducted to evaluate the performance of F . 500

scenarios of demand data are generated following the uniform distribution

U [0, 2µi]. Table 5.10 lists the performance of our heuristic in different vari-

ations. The expected number of master rolls cut using the small set F is

very close to the result obtained by column generation method (within 7%).



5. Applications 115

The worst case performance gap between our heuristic and column genera-

tion method is around 15% in most cases, with is also consistent with the

results in test 1. Hence, the simulation results would strongly support the

effectiveness of the pattern generation heuristic.
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Final roll
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0
12 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0
14 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
21 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1
24 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0
27 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0
30 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 1

Tab. 5.8: Generated Cutting Patterns
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Column Generation F Gap (%)
Distribution mean max mean max mean max
U [0.8µi, 1.2µi] 6937.52 7760 7150.05 8002 3.07% 7.51%
U [0.4µi, 1.6µi] 6982.21 9263 7202.90 9511 3.20% 22.80%
U [0, 2µi] 6999.35 11162 7260.98 11491 3.79% 15.1 %
N(µi, 0.2µi) 7004.32 8347 7215.81 8573 3.03% 3.72%
N(µi, 0.4µi) 6966.78 8614 7183.09 8840 3.08% 11.42%
N(µi, 0.6µi) 7235.36 11156 7491.15 11406 3.65% 13.7%

Tab. 5.9: F ’s Performances Under Different Demand Distributions

Column Generation F Gap (%)
Variation mean max mean max mean max
Roll 1,2,. . . 23 4636.32 8104 4748.93 8187 2.43% 17.15%
Roll 1-6, 18-23 5158.20 9017 5468.52 9720 6.02% 18.31%
Roll 1-12 6619.48 10773 6851.58 11114 3.5% 19.47 %
Roll 7-18 1820.47 2855 1888.02 2946 3.7% 16.9%
Roll 12-23 628.15 1029 652 1081 3.8% 8.8%

Tab. 5.10: F ’s Performances in Different Variations.



6. CASE STUDY: FOOD FROM THE HEART

6.1 Food From The Heart

The “Food from the Heart” Program (FFTH) [1] was initiated by Henry

and Christine Laimer, a couple from Vienna who have lived in Singapore

since 1996. They were keen to start a charity project in Singapore after they

were struck by a news report on bakeries throwing away unsold bread1. This

provided the needed inspiration to launch FFTH, with the mission to ensure

that unsold bread and pastries previously thrown away by bakeries go instead

to the less fortunate.

Through their persistent lobbying, sound business plan, and support

from the media, well known bakery chains in Singapore2 have now pledged

their support to this innovative program. The couple’s experience in the lo-

gistics field provided adequate credibility for other corporate sponsors to be

forthcoming for the program. For example, Fujitsu Asia provided the anchor

for administering the delivery system while other firms like ACRS Automo-

bile Centre and Omega Fusion assisted in cash or kind. The program also

1 The Sunday Times in November 24, 2002 quoted that large quantities of unsold bread
are dumped by bakeries daily.

2 These bakeries include Prima Deli, Four Leaves, NTUC, Bakery’s Corner, Sunshine,
Delifrance, Hieotaud (Swiss Gourmet bakery), and Blossoms Cake House.
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depended on the kind support from national organizations like the Central

Singapore Community Development Council (CDC) and the National Vol-

unteer Centre (NVC) for guidance3.

To ensure that this program will not falter away like other attempts

in the past, meticulous efforts have been put into the design of the delivery

operations to address the concerns of the donors. Legal, security and hygiene

concerns from the bakeries are painstakingly addressed by specially designed

delivery operations and procedure. For instance, welfare homes have to sign

a form of indemnity, absolving the bakeries from all legal duties should there

be a case of food poisoning; Volunteers can only handle the breads in sealed

bags or with gloves; The amount donated by each bakery is recorded and

tallied every week for accountability. The volunteers will have to SMS the

amount of bread donated to a central system before they deliver the breads.

The homes will have to ensure that the breads are properly refrigerated, and

were instructed not to consume stale breads.

With strong media support, Christine and Henry have recruited more

than 1000 volunteers since 2002. These volunteers take turns to make the

collection and delivery routines nightly, either using their own cars or public

transport. The logistical concept used in the delivery operation is amazingly

simple. The entire planning and monitoring system runs on a “Food-Trek”

system, donated by Fujitsu Asia. An administrator for FFTH will select

routes (bakery-home assignment) and assign a volunteer (based on the ad-

dress of the volunteers, and mode of transport) to each route. The staff at

3 For details on other organization aspects of this innovative program, we refer the
readers to Lee (2004).
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FFTH reacts to situations when certain volunteers are not able to fulfill their

delivery responsibility. When such cases arise, FFTH has to instantly find

volunteer replacements to cover the routes on the spot.

To reduce the burden on the volunteers, who normally volunteer one or

two nights each week to deliver for FFTH, the administrator usually assigns

to each volunteer a fixed route4 and schedule, i.e., to deliver from the same

bakery to the same home at the same days of each week. Furthermore, unless

the supply from a bakery is exceptionally large, the administrator normally

assigns only one volunteer to each bakery each night to avoid job overlap and

complication on the ground.

6.2 Issues Arising from FFTH

While the assignment principles adopted by FFTH significantly reduce the

complexity of the operations, the embedded rigidity inevitably introduces an

un-intended problem in the operations - the mismatch between the supply,

i.e., the amount of donated breads, and the demand, i.e., the amount required

at each home. This problem is exacerbated by the fact that the supply from

each bakery at each night is random since it depends on the amount of breads

produced and sold at the bakery. Figure 6.1 shows the supply (amount

of unsold breads) profile of a typical bakery. We can see that the supply

fluctuates from day to day. This makes it even more difficult to match the

supplies from the bakeries to the demands from the homes even though the

demand at each home is fixed. It is ironical, as pointed out by one volunteer,

4 So that each volunteer only needs to be familiar with one route, i.e., from a bakery to
a home.
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that a program on a mission to save food will end up with the donated

breads being thrown away, especially when a large amount of leftover breads

is brought to a home with only small demand while other homes could have

used more breads.
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Fig. 6.1: Daily Supply of a Bakery (30 days)

Note that the rigidity of the current operations comes from the belief

that each volunteer can only deliver from one bakery to one home each night.

However, many volunteers are actually willing to visit reasonably more homes

to reduce food wastage. This motivates us to look into how much better we

can match the fluctuating supply from each bakery to the fixed demand at

each home if we assign some volunteers to visit more than one home. It is

obvious that a ”full flexibility system” which requires each volunteer to visit

all homes will best match the supply and the demand. But such a system

is also expensive to operate. Therefore, we aim to design a good “partial

flexibility system” which only requires each volunteer to visit a small number

of homes but can match the supply to the demand almost as well as a full

flexibility system.
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6.3 Flexible Routing System

In this section, we apply our expansion heuristic to the “Food from the

Heart” delivery problem. We singled out 9 homes with similar delivery char-

acteristics such as delivery frequency and delivery time. For convenience,

the homes are ordered in descending order of their demands. 18 bakeries

have been assigned to send foods to these 9 homes by FFTH program. The

18 bakeries’s daily supplies are recorded for 66 days from July to Septem-

ber 2003. The quantity of leftover breads collected during this time period

showed wide fluctuation. The homes’ demands are constant. The demands

of homes, means and standard deviations of leftover foods in bakeries are

shown in Figure 6.2. The units are in kilograms.

The current routes in use are not optimal, because they were designed

by the staff of FFTH program in an ad hoc manner. We first replace the

current routes by the optimal dedicated routes constructed from phase 1

of our heuristic. The advantage of this improvement is that the delivery

operations will essentially remains intact, except that now the volunteers

deliver breads to different locations. We obtained the optimal dedicated

routes (Figure 6.2-A) by generating 100 different scenarios of daily supply

profiles from the historical data and find the optimal dedicated routes using

ILOG CPLEX 9.1. We use the performance of the optimal dedicated routing

system as a more rational and stricter benchmark to assess the performance

of flexible system designed by phase 2 of our heuristic.

Figure 6.2-B shows the new flexible routing system obtained by our

heuristic. The newly added arcs help forming many long chains in this new
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Fig. 6.2: The Different Routing Systems for FFTH Problem.

flexible system. A long chain that visits 9 homes and 9 bakeries is shown in

Figure 6.2-C for illustration. Among the 18 arcs in the chain, 11 arcs are

newly added by our heuristic. This result suggests that our heuristic is very

effective to construct a flexibility structure which contains long chains.

We conduct simulation analysis to evaluate this flexible system. Note

that it is reasonable to assume that the supply of each bakery is statisti-

cally independent. Hence, in our simulation analysis, a bakery’s supply is
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generated by randomly selecting a number from its historical data. Daily

supplies of 100 days are simulated. We use the expected daily excess as the

measure to evaluate this system because the purpose of this case study is to

test the effectiveness of our heuristic in real world problem. In this case, the

effectiveness of our heuristic is to show how much we could help to decrease

the food wastage in the FFTH program. Therefore, the expected daily over-

supply, which is also widely accepted as a measure of a flexibility structure’s

performance in practice, is preferred to evaluate the flexible system in this

case study.
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Fig. 6.3: Average Daily Excess.

Figure 6.3 shows the average daily excess in full flexibility system, the

heuristic flexibility system and the optimal dedicated system. By adding

18 arcs to the optimal dedicated system, the average daily excess decreases

significantly from 15.407 kilograms to 2.809 kilograms. It is only 20% of

the optimal dedicated system’s excess. Moreover, it is only 0.377 kilograms

greater than the excess of the fully flexible system. On average, the food

savings through the flexible routing system each day (148.64 kg5) is 99.7%

5 The average daily food savings for the heuristic flexibility system=the average daily
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of the foods sent by full flexibility system (149.02 kg 6). This result not

only suggests our heuristic works quite well in practice but also strongly

supports that the exapnder flexible system, which has high expansion ratios

and contains long chains, is the desired flexible structure.

Dedicated

system

Fig. 6.4: Marginal Contribution of Each Arc.

Another interested finding in this case study is that the contributions of

the added arcs decrease very quickly if they are added in a certain sequence.

Figure 6.4 shows that the marginal contributions of arcs diminish very quickly

if they are added in the sequence shown in x axis. This result is consistent

with the finding of Jordan and Graves[36]. It would also support that a

sparse flexibility structure can capture the benefit of full flexibility structure.

Therefore, the number of arcs we need to add to a base assignment is small.

leftover foods - the average daily oversupply of the heuristic= 151.45kg-2.809kg = 148.64
kg.

6 The average daily food savings=151.45kg-2.432kg=149.02kg
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In practice, people only need to design a structure with a small number of

arcs to deal with uncertainties.



7. CONCLUSIONS

7.1 Summary of Results

The purpose of this study is to provide a clear understanding of flexibility

structures and find an effective way to design and analyze different flexibility

structures in various applications.

In this study, the concept of graph expander is first introduced to inves-

tigate the performance of flexibility structures. We point out the connection

between graph expansion and flexibility structure, and show that good ex-

panders give rise to good process flexibility structures, in the case of identical

mean supply and demand. We further analytically prove that there exists a

sparse flexible network that has almost the same capability of a fully flexible

system. This proof also provides an upper bound for the performance of

any expander flexibility structure. This observation has numerous implica-

tions. First, The expander concept can be adjusted to construct a practical

expansion heuristic to design a sparse flexibility structure under a general-

ized condition that demand and supply could be random. Secondly, a simple

and effective expansion index can be developed to effectively calibrate the

structures in terms of flexibility.

The “constraint sampling” method is then introduced to further sup-
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port the existence of a good sparse flexibility structure under the generalized

condition that demand and supply could be non-identical and unbalanced.

Another design approach, the sampling method, is also proposed to construct

a flexible sparse structure.

The observation that a well-designed sparse structure could be almost

as flexible as full flexibility structure can be applied to various areas. In this

study, we investigate manufacturing production planning problem, transship-

ment network design problem, and cutting stock patterns design problem.

The expansion heuristic and sampling heuristic are also applied to these ap-

plications to design a good sparse structure. Furthermore, these approaches

have been applied to solve a real bread delivery problem in a charity organi-

zation “Food From The Heart” [1] in Singapore.

7.2 Research Contributions

The theoretical contribution of our study is that we provide an analytical

support to the observation that a well-designed sparse structure could be

a good support to the completely connected flexibility structure, which is

already indicated by numerous computational studies (c.f. [29] [32] [33] and

[36]). More importantly, our study discover the relationship between a good

sparse flexibility structure and an expander. Our results strongly suggest

that a good flexibility structure is an expander with a large expansion ratio.

Our study has very important practical contributions. We propose two

effective heuristics to design good sparse flexibility structures. These heuris-

tics can be easily adjusted to build good sparse structures in different appli-
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cations such as transshipment networks, supply chain flexibility structures,

and etc. In practice, both heuristics are quite effective and robust. The

expansion heuristic requires minimum demand and supply information: only

mean of random demand/supply is needed. This heuristic would be quite

helpful under the situation that the flexibility capacity investment should

be decided before the exact demand/supply distribution is known, or the

demand/supply is quite unstable and specific distribution cannot be used

to model them. The sampling heuristic requires the full distribution of the

random demand supply, and can be applied to a broad area such like cutting

stock problem, transshipment network design and etc.

7.3 Future Studies

A basic assumption we made in this study is that the capacities allocated for

products should be decided based on complete information, i.e. the demands

and supplies are all known. This assumption is also widely used in many

other studies (c.f. [36],[32],[29] and [33]). However, in the FFTH problem,

bakeries’ closing time are different, and the food should be delivered shortly

after the closing time. Thus it is difficult to get all the information of bakeries’

supplies in the system before a coordinator assigns a volunteer a delivery

route. Though an expander structure still works well in this case, the online

features of the FFTH problem limit the power of the expander. Therefore,

the design of an online flexibility structure should be carefully studied in

future research. One possible way is using the dynamic approach to remodel

the FFTH problem and examine the performance of the new structure in the
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online situations.

Our results already showed that a good sparse flexibility structure should

be an expander. However, it is not easy to find this expander. We propose a

heuristic instead to solve the design problem. Hence, further research is still

needed to find a better way to such structure. One possible way is to find a

strong LP relaxation to the expander problem, which can significantly reduce

the computational time. Another way is to introduce an efficient index to

measure flexibility and combine this index with current sampling algorithm

to build a more efficient sampling method.
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