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Summary 
 
 
In this thesis, semantic web technologies such as OWL ontology are explored for the 

purpose of representing knowledge from the field of lipid research.  

 

The first chapter provides a concise background for the field of lipid research, including 

the emerging area of lipidomics and some of the challenges faced by lipid scientists. The 

same chapter also provides background on the development of the specific semantic web 

technologies, followed by a discussion of how these technologies can address some of the 

challenges identified in lipid research.  

 

In the second chapter, the methodology employed to develop ontologies is described. 

Since there are no standardized methodologies for development of ontologies, the general 

development life cycle and broad principles that are adhered during the development of 

ontologies for lipids are discussed extensively in this chapter. 

 

The third chapter begins with the description of the first Lipid Ontology, namely Lipid 

Ontology 1.0. Lipid Ontology 1.0 is a baseline ontology developed to support navigation 

of information through Knowlegator. Knowlegator is a knowledge visualization tool 

developed by I2R, A*STAR that enables visualization, navigation and query of 

knowledge captured in OWL-DL ontologies. This is followed the description of Lipid 

Ontology Reference and Lipid Ontology Ov.  

 



xi 

The fourth chapter deals with the description of the Lipid Classification Ontology (LiCO) 

and Lipid Entity Representation Ontology (LERO). These ontologies are domain oriented 

ontologies that are built for the purpose of representing knowledge formally in OWL-DL 

and sharing the knowledge with the wider community-the OBO Foundry.  

 

The fifth chapter describes an application scenario where the Lipid Ontology is employed 

in conjunction with a prototype ontology centric content delivery platform(Knowlegator) 

developed by Institute of Infocomm Research, A*STAR to facilitate knowledge 

discovery for lipidomics scientists. A preliminary performance analysis of the platform is 

conducted and the platform is subsequently used to facilitate navigation of pathways. 

Lastly, the prototype platform is employed to assess the lipidome of ovarian cancer in the 

literature.   

 

The final chapter contains the concluding remarks for this thesis. A brief summary of the 

ontologies built during the course of the research is given. The adequacy of OWL-DL 

ontologies as medium of knowledge representation for biological knowledge is re-iterated, 

specifically for the use case in the knowledge domain of lipids and lipidomics and can be 

developed into an effective ontology centric application under a platform that is tightly 

integrated to other technological components of semantic web.     
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Chapter I: Background 

1) Lipid 

Lipids are naturally occurring, hydrophobic compounds that are readily soluble in organic 

solvents such as hydrocarbons, chloroform, benzene, ethers and alcohols. A more 

scientific definition classifies lipids as fatty acids and their derivatives, and substances 

related biosynthetically or functionally to these compounds [1]. This definition enables 

scientist to include compounds that are related closely to fatty acid derivatives such as 

prostanoids, aliphatic ethers, alcohols or cholesterols through biosynthetic pathways or by 

their biochemical or functional properties.  

 

LIPID MAPS consortium introduced a new systematic nomenclature for lipids in 2004. 

The consortium defined lipids as hydrophobic or amphipathic small molecules that may 

originate entirely or in part by carbanion-based condensations of thioesters and/or by 

carbocation-based condensations of isoprene units [2]. Under this new nomenclature, 

lipids are divided into 8 major categories, namely the fatty acyls, glycerophospholipids, 

glycerolipids, sphingolipids, sacharrolipids, sterol lipids, prenol lipids and the polyketides.  

 

1.1) Importance of Lipids in Biology or Lipid Biochemistry, Functions in Biology 

Lipids and their metabolites play very important biological and cellular functions in 

living organisms. Lipids are known to be a source of stored metabolic energy and an 

important component in the formation of structural elements such as membranes, lipid 

bodies, transport vesicles in a cell. These structural elements enable subcellular 

partitioning necessary for cellular function and create barriers for diffusion of ions and 
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metabolites so that membrane potentials needed for basic cellular electrophysiological 

function can be maintained. In addition to that, lipid-based structural elements such as 

cell membranes or lipid bodies provide a liquid crystal bilayer medium that facilitates the 

assembly of supramolecular protein complexes required for the transmission of electrical 

and chemical signals in a cellular system. [3]     

 

Lipids play important roles in signaling events of the cell. Lipids are synthesized, 

transported and recognized through coordinated events involving numerous enzymes, 

proteins and receptors. Moreover, lipids are important precursor molecules that act as 

endogenous reservoirs for the biosynthesis of lipid secondary messenger and other 

biologically relevant molecules. Many lipids are bio-active molecules. These lipids, such 

as menaquinones, vitamin E, prostaglandins, phosphatidylinositol phosphate function as 

important coenzymes, antioxidants, intra- and extra-cellular messengers in cellular 

processes. [4] 

 

1.2) Lipid and Important Diseases 

Since lipids are crucial to the biological function of cells and tissues, it is without surprise 

that many diseases such as artherosclerosis, cancer, Alzheimer’s syndrome, tuberculosis 

and dengue viral infection are found associated to abnormality in the lipid metabolism.  

However, the mechanisms through which lipids affect these diseases are still not known. 

Assessment of the lipidome is the first step towards understanding the mechanism of 

these diseases and we have applied the bioinformatics approach described in this thesis to 

assess the lipidome of cancer, specifically ovarian cancer.  
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1.2.1) Cancer 

Cancer is a multi factorial disease caused by genetic mutations of oncogenes or tumor 

suppressor genes that alter downstream signaling transduction pathways, protein 

interaction networks and metabolic processes in such a way that it produces apoptotic 

suppressing, rapid proliferating and invasive metastatic cell phenotype in the affected 

cells. It is increasing evident that lipid metabolites play important roles in cancer 

pathogenesis.  

 

One of the lipids implicated in cancer is cardiolipin. A recent publication had shown that 

abnormal cardiolipin levels are behind the irreversible respiratory injury in tumors and 

link mitochondrial lipid defects to Warburg theory of cancer [5]. The Warburg effect is 

the first metabolic cause established by Otto Warburg as the primary cause of cancer [5, 

6]. The Warburg effect suggests that cancer is caused by irreversible injury to cellular 

respiration where the affected cells become dependent on fermentation or glycolytic 

energy in order to compensate for lost energy from respiration. In a similar light, 

evidence had shown that increased de novo fatty acid synthesis, a metabolic pathway 

functionally related to glycolytic pathway also accompanies cancer pathogenesis [7].          

 

Other examples of lipid implicated in cancer are sphingosine 1- phosphate (S1P) and 

ether lipid. The level of sphingosine 1- phosphate can determine whether a cell would 

undergo apoptosis or proliferation. The accumulation of S1P and subsequent activation of 

S1P receptors cause cells to develop cancerous phenotypes such as cell migration, cell 

proliferation, inhibition of apoptosis, upregulation of adhesion molecules [8].  
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Ether lipids such as 2 acetyl monoalkylglycerols are intermediates that can be hydrolyzed 

by KIAA1363, an uncharacterized enzyme highly elevated in aggressive cancer cells in 

an ether lipid signaling network. Inactivation of KIAA1363 disrupts the ether lipid 

metabolism required by the cancer cells to undergo cell migration and tumor growth [9]. 

 

1.3) Lipidomics 

Lipidomics is a system level analysis that involves full characterization of lipid molecular 

species and their biological roles with respect to the expression of proteins involved in 

lipid metabolism and function, including gene regulation [10]. In Lipidomics, levels and 

dynamic changes of lipids and lipid-derived mediators in cells or subcellular 

compartments are identified and measured quantitatively in the form of lipid profiles. 

These lipid profiles are readouts from mass spectrometer and could be further analyzed to 

yield biological insights. 

 

A mass spectrometer is an instrument capable of measuring the mass of molecules that 

have an electrical charge. A typical mass spectrometric analysis consists of 3 separate 

events: analyte ionization, mass-dependent ion separation and ion detection.  

 

A major limitation of mass spectrometry used for lipidomics is the phenomena of 

suppression of ionization. This limitation can be overcome with the use of 

chromatographic techniques such as liquid chromatography (LC), thin-layer 

chromatography (TLC), gas chromatography (GC) or high-performance liquid 

chromatography (HPLC). Lipid mixtures can be separated by chromatography first 
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before being fed into the mass spectrometer for analysis. MS analyses apply to lipidomics 

are often conducted in conjunction with an upfront chromatography. An example of such 

application is Multiple Reaction Monitoring (MRM) analysis.  

 

1.3.1) Lipidomics and System Biology 

To study the functions of lipids, profiling of lipids using a combination of 

chromatographic and spectrometric techniques is not sufficient. Other techniques such as 

immobilized lipid assays, lipid-protein complex antibody assays, florescence imaging 

techniques have been applied in tandem with lipidomic experiments to study lipid-lipid, 

lipid-protein interactions as well the localisation of lipids. As such, lipidomics generates a 

large volume of heterogeneous experimental data. The analysis of lipidomics data would 

require a scientifically consistent integration of chemical and biochemical data from 

different technologies, with different formats and at various levels of granularity. 

 

System biology is the computational integration of genomic, transcriptomic, proteomic 

and metabolomic data with the purpose of understanding the molecular mechanisms that 

undergirds a cell or a living organism [11]. Lipidomics studies the lipidome, which is a 

sub-fraction of the complete metabolome of a living being and complements other 

approaches in system biology.  

 

Advances in lipidomics methods, coupled with improved data processing software 

solutions, demand the development of comprehensive lipid libraries to allow integration 
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of data from other approaches of system biology in addition to system-level identification, 

discovery and study of lipids [12]. 

 

In this light, Yetukuri et al. highlighted 3 challenges; a database system is needed to 

efficiently link the high volume of data from high throughput lipidomics experiments 

generated from the analytical platform [12]. Secondly, there is not one database that 

covers all possible lipids found in the diversity of organisms, tissue types and cell types. 

A mechanism is needed to integrate all lipid databases together in order to facilitate 

identification as well as discovery of new lipid species from all available data [12]. Lastly, 

the lipid information needs to be connected to other areas of biological organization at the 

correct level of granularity as most biological databases that describe proteins or 

pathways are often limited to the level of generic lipid classes instead the level of details 

produced from lipid MS experiments [12]. 

 

1.4) Lipid Databases 

An interesting area of development is the emergence of many lipid databases (see Table 

1). 2 types of databases are relevant to lipids. The first type is database that acts as 

repository of data for chemical compounds (including non-lipid data). Notable examples 

for this group of databases are PubChem, CHEBI and KEGG COMPOUND. The second 

type of databases is the lipid-dedicated databases. They include databases such as 

LIPIDAT, Lipid Bank and LIPID MAPS’s LMSD. With the exception of LMSD, most of 

them are just repositories of lipid information. While each of these databases has lipids 

that are unique to their collections, large subsets of lipid information in these databases 
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overlap. In addition to that, none of these databases uses the same classification for lipids 

(with the exceptions of KEGG COMPOUND and LMSD). A lipid has many types of 

heterogenous information associated to it. However, most of these databases are not 

designed to handle all the heterogeneous information of lipids and are at most compatible 

to represent some but not all types of data. Lastly, some lipid databases do not make 

distinction between representations of lipid at different level of granularity. For example, 

LMSD has many lipid records that refer to a class of lipid rather than a single individual 

lipid molecule at the same taxonomic level whereas LipidBank and LIPIDAT have 

records for lipid mixtures at the same level as records of lipid. 

 
Database Brief description 
LIPID MAPS 
Structure Database 
(LMSD) 

10,789 lipid records; dedicated to lipidomics; provides lipid 
informatics tools and systematic nomenclature for lipids  
http://www.lipidmaps.org/  

Lipid Bank 7009 lipid records; provides literature references for every lipid 
records; provides lipid profiles for some lipids; contain records for 
lipoproteins and glycolipids 
http://lipidbank.jp/  

LIPIDAT 20,784 lipid records; provides physical and chemical properties of 
lipids 
http://www.lipidat.ul.ie/  

KEGG 
COMPOUND 

metabolome informatics resource; 1298 lipid records; provides 
connectivity to other KEGG databases 
http://www.genome.jp/kegg/compound/  

ChEBI Chemical database; provides ontological support, InCHiKey and 
SMILES 
http://www.ebi.ac.uk/chebi/  

PubChem Chemical database combining all records from all known chemical 
databases inclusive of lipid databases  
http://pubchem.ncbi.nlm.nih.gov/  

 
Table 1: URL and description of services provided in known publicly accessible lipid and 
chemical databases 
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1.4.1) Pubchem, An Integrative Knowledgebase? 

PubChem is an attempt by NCBI to set up a central repository for all chemical 

compounds, inclusive of lipids. It collates lipid records from all known lipid databases. It 

is organized as three linked databases within the NCBI's Entrez information retrieval 

system and provides a fast chemical structure similarity search tool. Unfortunately, it 

does not have a unified classification that could integrate all lipid records in a 

scientifically sensible manner; neither does it provide a universal syntactic format that 

could integrate the heterogeneous lipid data in a comprehensive manner. As a result of 

that, PubChem is filled with many redundant records of the same lipid.   

 

1.5) Importance of Nomenclature/Systematic Classification for Lipidomics/Lipid 

System Biology  

The collection of lipid data via a “system biology” approach requires the development of 

a comprehensive classification, nomenclature and chemical representation system 

capable of representing diverse classes of lipids that exist in nature.  

 

Lipids, unlike their protein counterparts, do not have a systematic classification and 

nomenclature that is widely adopted by biomedical research community.  

To address this problem, IUPAC-IUBMB proposed a systematic nomenclature for lipids 

in 1976 [14]. However, the proposed classification system is unwieldy, complicated and 

had often been applied erroneously by scientists [2]. This led to the generation of many 

unscientific lipid names. In addition to that, due to the lack of adoption, the IUPAC 

naming scheme was not extended and consequently could not adequately represent the 
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large number of novel lipid classes that have been discovered in the last 3 decades and 

because of that, this classification has become obsolete with respect to the current state of 

the arts in lipid research such as lipidomics. 

The lack of a consistent nomenclature that is universally accepted led different lipid 

research groups to develop classification systems of lipids that are usually very narrow 

and only sound for a restricted category of lipid. As a result, a lipid molecule can be 

classified in many different ways, and be placed under different types of classification 

hierarchy. These classification systems are not mutually consistent and hence, create a lot 

of problems for systematic analysis of lipids. For example, Prostaglandin A1 is a lipid 

that can be found in 2 lipid databases, namely LipidBank and LMSD (see Table 2). Both 

databases name lipids differently. The lipid is given the systematic name of 9-oxo-15S-

hydroxy-10Z,13E-prostadienoic acid by LMSD while 2 other systematic names can be 

found in LipidBank(7-[2(R)-(3(S)-Hydroxy-1(E)-octenyl)-5-oxo-3-cyclopenten-1(R)-

yl]heptanoic acid & (8R,12S,13E,15S)-15-Hydroxy-9-oxo-10,13-prostadienoic acid). In 

addition to that, the same lipid is associated to 3 more different names in KEGG 

COMPOUND database, namely (13E)-(15S)-15-Hydroxy-9-oxoprosta-10,13-dienoate, 

Prostaglandin A1, PGA1. In short, a single lipid can be associated with a plethora of 

synonyms. This especially also true for the legacy literature resources as scientific 

publications are filled with broad synonyms, trivial names and instances of synonyms not 

linked to any systematic nomenclature or any chemically sound classification. 

  
Prostaglandin A1 

 

Database 
 

Identifiers 

LMSD LMFA03010005 
LipidBank XPR1000 
KEGG Compound C04685 
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Table 2: Structure of Prostaglandin A1 and corresponding records in LMSD, LipidBank 
and KEGG COMPOUND database 
 
 

LIPID MAPS consortium attempted to resolve this problem by developing a scientifically 

sound and comprehensive classification, nomenclature, and chemical representation 

system that incorporates a consistent nomenclature that followed the IUPAC 

nomenclature closely and yet is able to include new lipids that have yet to be 

systematically named by IUPAC [2]. This classification scheme organizes lipids into 

well-defined categories that cover the major domains of living creatures, namely, the 

archaea, eukaryotes and prokaryotes as well as the synthetic domain. This is a significant 

contribution to lipid research. Despite that, the uptake by the scientific community has 

been gradual. Many research groups are still using synonyms or old names that they are 

familiar with despite the introduction of a new nomenclature. Furthermore, literature 

resources on lipid research are steeped with instances of lipid synonyms that do not 

follow the new nomenclature. While the nomenclature is scientifically robust, it is still 

based on a cumbersome naming scheme. Under LIPIDMAPS scheme, for example, a 

derivative of vitamin D2 was given a systematic but very bulky and un-intuitive name of 

(5Z,7E,22E)-(3S)-26,26,26,27,27,27-hexafluoro-9,10-seco-5,7,10(19),22-ergostatetraene-

3,25-diol.  

 

Therefore, the naming of new lipids requires trained experts; and subsequent acceptance 

of new names by members of the lipid community is slow. In parallel, lipidomics 

technology has enabled the discovery of many novel lipids in a rate that is many folds 
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faster than the acceptance of new lipid names into the nomenclature. Consequently, many 

novel lipids such as mycolic acids do not have a LIPID MAPS systematic name.  

 

1.5.1) Description Logics Based Definition of Lipids 

While LIPID MAPS’s effort contributes to the lipid research community by providing a 

central repository of lipids, where lipid classes are categorized extensively by is-a 

relationships [15], definitions for classes of lipids in LMSD are still implicit and are often 

dependent on a chemical diagram in the form a molecular graphic file that can only be 

accurately classified by a trained lipid expert. There is no rigorous definition for a 

specific lipid class that is independent of a graphical diagram. In addition to that, classes 

of lipids define in LIPID MAPS also suffer from several inadequacies. They are as 

follows: 

a) Lack of explicit textual definitions  

b) Lack of representative instance of lipid for a specific class of lipid(an empty class 

without data records) and hence, not even a graphical definition is available. 

An example of this is the sphingolipid class “Other Acidic glycosphingolipids” 

(SP0600)  

c) The use of arbitrarily named lipid class to contain non-conventional lipid 

instances. 

An example is “Sphingoid base homologs and variants” and “Sphingoid base 

analogs” 
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d) Class name is not compatible with the lipid instances assigned to it where the 

class name is too generic or the class name do not adequately describe the lipid 

instances assigned to the class 

e) Instances of lipid under a class share very little structural similarities 

 

A rigorous definition would involve a minimal necessary and sufficient declaration in 

description logics that could adequately describe a lipid without a molecular structure 

diagram. With description logics, we could define a lipid such as an epoxy fatty acid as a 

molecule that must at least have a carboxylic acid group and an epoxy group. Taking this 

further, we define an epoxy fatty acid as a lipid that can only have epoxy group and 

carboxylic acid group. As a consequence, any molecules that have functional groups 

other than epoxy group and carboxylic acid group cannot be considered as an epoxy fatty 

acid. A graphical definition is not flexible, nor is it extensible. Changes in such a 

definition would mean redrawing a completely new chemical diagram. Subsequently, 

communicating, storing and transferring of such structural definition in the current format 

are inefficient as this system places a lot of emphasis on trained or domain expert of the 

field.   

 

There is therefore a need for lipids to be defined in a manner that is systematic (following 

LIPID MAPS hierarchical structure) and semantically explicit. 
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2) Knowledge Representation in Semantic Web 

 

Semantic web is an extension of the current WWW where information is given well-

defined meaning so that it provides a computer with structured collections of information 

and sets of inference rules to do automated reasoning. While computers can parse web 

pages for layout and routine processing effectively, computers cannot reliably understand 

the semantics of a web page. With semantic web, computers are supplied with additional 

metadata associated to every web page so that computers can comprehend semantic 

documents and understand the meanings of terminology used in every document within 

its supposed frame of context [16]. Knowledge representation in semantic web often 

takes the form of an inter-connected network where pieces of structured and unstructured 

information are linked into commonly shared description logics ontologies.  

 

2.1) 3 Major Components of Semantic Web Technology 

Semantic Web knowledge representation is composed of 3 technological components. 

They are eXtensible Markup Language (XML), Resource Description Framework (RDF) 

and Web Ontology Language (OWL) [16]. XML allows users to create custom tags to 

annotate web pages or sections of text in a page. In short, XML allows users to add 

arbitrary structure into a web document. RDF expresses meaning by encoding semantics 

into sets of triples. A triple is similar to the subject, verb and object of an elementary 

sentence and can be written using XML tags. An RDF document makes assertion that a 

particular thing (subject) has properties (object). Every subject, verb and object expressed 

in RDF has a Universal Resource Identifier (URI). The use of URI ensures that concepts 
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(subject, object, verb) are not just words in a documents but are associated to the unique 

definition or contextual meaning on the web. This allows a computer to resolve the 

meaning of a word that means differently in different contexts. RDF uses XML to define 

a foundation for processing metadata and to provide a standard metadata structure for 

both the web and the enterprise. In addition to XML and RDF, semantic web technology 

also depends a lot on collections of information called ontologies. An ontology differs 

from an XML schema in that it is a knowledge representation, instead of being a message 

format. Ontology can be encoded using OWL. OWL is a semantic markup language for 

publishing and sharing of ontologies on the web that builds upon RDF by assigning a 

specific meaning to a certain RDF triples. (see Table 3) 

 
Components of semantic 
web 

Description Compatible query language 

XML Structured Documents XPath, XQuery 
RDF Data models for objects RDQL, RQL, Versa, Squish 
OWL Semantic data models with 

complex relationships 
nRQL, OWL-QL, JENA 
 

 
Table 3: Basic components of semantic web and compatible query languages 
 

2.2) Ontology 

The word “Ontology” is a term used in the study of philosophy. It describes a theory 

about the nature of existence [17]. The term has since been co-opted by computer 

scientist as a technical term to describe an engineering artifact designed for a purpose, 

which is to enable the modeling and representation of knowledge of a specific domain for 

an information system or application. 
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2.2.1) Ontology in Computer Science/Information Science 

In the field of computer science, an ontology is defined as a formal specification of 

shared conceptualization of a certain field of knowledge and provides a common 

vocabulary for an area of interest where the meaning of the terms and the relations 

between them are defined with different levels of formality [18]. Simply put, an ontology 

is a document or file that formally defines the relationships (verbs) among the terms 

(object and subject) required for an application or a knowledge domain. It defines a set of 

representational primitives with which to model a domain of knowledge. An ontology is  

a semantic level data model as it is implemented by languages such as OWL that are 

closer in expressive power to logical formalisms such as First-Order Logic. This allows 

the ontology designer to state semantic constraints. 

 

2.2.2) Ontology as a Scientific Discipline 

Science is characterized by the existence of a consensus core of established results being 

repeatedly challenge by multiple hypotheses that are less mature and grows cumulatively 

as the consensus core of the discipline absorbs hypotheses that were immature at first but 

could withstood attempts to refute them empirically [19]. Ontology provides a coherent 

and interoperable suite of controlled structured representations of entities and relations to 

describe, at any given stage, the consensus core knowledge of a scientific discipline. In 

addition to that, it also provides a basis for accumulation of scientific data that would lead 

to development of mature, if not new scientific theory [19]. Secondly, similarly to 

empirical science, ontology is required to be tested empirically and possess the identical 

progressive maturation pattern seen in the development of scientific theories [19]. This is 
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achieved when biologists use ontologies to aggressively annotate experimental results, 

including those already reported in literature [19]. Inversely, the annotation process 

generates corrections as well as new content to be added to these ontologies. This process 

is typical of an empirical scientific growth and generates improved annotation resource 

for future work. [19]  

 

2.2.3) Uses of Ontologies 

o Ontology can be treated as a source of words, synonyms, annotation of terms and 

terminologies. This resource allows a knowledge domain to be modeled for a logical 

consistent system such as a database system or a web service. 

o Ontology provides a syntactic and semantic consistent representation for multiple 

data resources. Therefore, it can be used to integrate heterogenous data from multiple 

databases or resources and enables interoperability among these disparate systems.  

o Ontology can also be considered as a specifying interface to independent, knowledge-

based services, where the specification takes the form of definitions of 

representational vocabulary that provides meanings for the vocabulary and formal 

constraint on its coherent use. In short, Ontology specifies a vocabulary with which to 

make assertions, which may be inputs or outputs of knowledge agents, and provides a 

language for communicating with a query agent.  

o Ontology provides a representational mechanism that can be used to instantiate 

domain models in knowledge bases, make queries to knowledge-based services and 

represent the results of calling such services. In this context,  ontology is used in 

semantic web to specify standard conceptual vocabularies in order to exchange data 
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among systems, provide services for answering queries, publish reusable knowledge 

bases and offer services to facilitate interoperability across multiple, heterogenous 

systems , ontologies and databases.    

 

2.3) Web Ontology Language (OWL) 

OWL is a standard ontology language developed from World Wide Web Consortium 

(W3C) [20, 51]. OWL is derived from DAML+OIL Web Ontology language and has a 

rich sets of operators such as and, or, negation. OWL can be used to describe and define 

concepts, including defining complex concepts based on the simpler concepts.   

Furthermore, an OWL ontology is based on a logical model that allows a reasoner to 

check whether or not all the statements and definitions in the ontology are mutually 

consistent and can also recognize which concepts fit under which definitions.    

  

OWL ontology can be divided into 3 classes of sub language, namely, OWL-Lite, OWL-

DL and OWL-Full. These sub languages differ from one another in the degree of their 

expressiveness. 

 OWL-Lite is the least expressive language of the OWL family. It is intended to be 

used in situations where only a simple class hierarchy and simple constraints are 

needed [20].   

 OWL-DL is an extension from OWL-Lite. It is more expressive because it is based 

on description logics. Description logics are a mathematical theory that describes a 

decidable fragment of First-Order Logic and are therefore amenable to automated 

reasoning [20]. 
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 OWL-Full is the most expressive language of the OWL family. It is used in situation 

where the need for high level of expressiveness is more important than the need for 

decidability or computational completeness. An OWL-Full ontology cannot be 

reasoned over [20].   

 

2.3.1) Components of OWL 

OWL ontologies are composed of 3 components (see Figure 1). They are individuals, 

classes and properties. Individuals or instances represent objects in the domain of 

interests. Individuals are encapsulated in OWL classes. OWL classes or concepts are sets 

that contain individuals. They are described using formal descriptions that state precisely 

the requirements for the membership of the class. There are 2 types of classes, namely 

primitive class or defined class. A primitive class is a class with necessary conditions as 

its membership requirement, whereas a defined class is a class with necessary and 

sufficient conditions as its membership requirement. Properties are roles or attributes 

assign to individuals. There are 3 types of properties, namely object properties, datatype 

properties and annotation properties. Object properties are relationships that connect 2 

individuals together. Within the framework of OWL-DL, object properties can be 

asserted in 4 ways, namely inverse, transitive, symmetric and functional properties.   
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2.4) Overview of Bio-Ontologies (see Table 4) 

2.4.1) Open Biomedical Ontologies (OBO) 

OBO repository is a large library of ontologies from the biomedical domain hosted by the 

National Center for Biomedical Ontology (NCBO) [21]. It was first created as a means of 

providing convenient access to the GO and its sister ontologies at a time where a resource 

like NCBO was not available. OBO has since evolved into a wide-base collaborative 

effort within the bio-ontologies community to enhance the quality and interoperability of 

ontologies in life sciences from the point of view of biological content and logical 

structure. Most of the ontologies in OBO are written in OBO flat file format, a simple 

textual syntax designed to be compact, readable by human and easy to parse. In this light, 

OBO foundry provides ontology design principles concerning syntax, unique identifiers, 
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content and documentation to the ontologies as a common agreement between 

users/editors.  

 

2.4.2) OBO Foundry Principles: 

The pricinples of the foundry can be summarized as follows [19, 23]: 

1. The ontology must use a common and shared syntax(OBO or OWL format)  

2. The ontology possesses a unique identifier namespace and has procedures for 

identifiying distinct successive versions 

3. Terms or concepts must be provided with textual definition and, to a certain 

degree, formal definition such DL definitions 

4. Every terms or concepts in the ontology should be provided with a unique 

identifier  

5. Relationships or properties defined in the ontology must be compatible to the 

pattern set forth in the OBO relation ontology(RO) [24] 

6. The ontology must embrace the principle of orthogonality where a specific 

ontology is expected to converge unto a single (upper) ontology that is 

recommended by the OBO community 

7. The ontology should be open and be made available to be used by all without any 

limitations and be subjected to collaborative developmental process involving 

other ontology developers covering the neighboring biology domain 

8. Other informal principles: 

a. The ontology should make distinction between plural concepts and 

singular concepts  
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b. The ontology should be grammatically consistent 

c. The use of “or” and “and” is highly discouraged as it generates 

unnecessary ambiguity in the concepts        

 

2.4.3) Formalized Bio-Ontologies:  

An OBO formatted ontology is made up of a collection of stanzas that describes 

elements of the ontology. These stanzas describe a term that is equivalent to a concept, 

a relationship type or an instance. The OBO formatted syntax also consists of tag 

values associated to the stanza. The tag values have a structure that depends on the 

tag type. The tag type is described in the OBO specification using natural language 

[21]. This type of description is informal and does not make the conceptual structure 

of the OBO language clear [21]. Similarly, the semantics used to describe the natural 

language description for different types of tag-value pairs are also informally defined 

[21]. As a result, a description in OBO can be rather ambiguous and unclear. The DL 

family of ontology languages was developed precisely to address the problem as 

OWL can unambiguously specify the semantic properties of all ontology constructs.  

OWL-DL provides OBO with the much needed formal semantics. 

 
Ontology  Uses 
Gene Ontology provides terminologies for annotation of results of 

biological experiments such as gene expression 
experiments and  bioinfomatics resources 

Disease Ontology provides the controlled vocabulary for the mapping of 
diseases and associated conditions to particular medical 
codes such as ICD9CM, SNOMED  

FungalWeb Ontology integrates information relevant to industrial applications 
of fungal enzymes 

ChEBI Ontology provides structured controlled vocabulary to support 
interoperability between ChEBI and other 
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knowledgebases   
Chemical Ontology provides semantic support for querying chemical 

databases 
Tambis Ontology describes and enable query of bioinformatics databases  
OpenGalen use in medical information management 
EcoCyc describes the whole metabolism of E.coli 
BioPAX describes biological pathways in OWL 
 
Table 4: Examples of bio-ontologies and their respective uses 

 

2.5) Semantic Technologies Applied to Chemical Nomenclature  

There have been other significant developments where semantic technologies were used 

in the domain of chemistry and lipid analysis including of reports of ontologies built 

specifically to describe biologically relevant chemical entities, organic compounds and 

organic reactions [18, 25, 26]. Here we briefly summarize relevant work in the context of 

lipid classification. 

 

2.5.1) ChEBI 

ChEBI (Chemical Entities of Biological Interest) is a project initiated by EBI to provide a 

high-quality controlled vocabulary to promote the correct and consistent use of 

unambiguous biochemical terminology throughout the molecular database in EBI [27]. 

ChEBI is now a database with 14,757 annotated entries of small molecules with an 

ontological structure integrated into it. The ChEBI ontology organizes all terms in the 

database under 4 sub-ontologies (Molecular Structure, Biological Role, Application, 

Subatomic Particle) and uses relationship definitions standardized by the OBO [22] 

community in order to support interoperability between ChEBI and other 
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knowledgebases (inclusive of databases and other biomedical ontologies). As of October 

2007 ChEBI currently has 14 lipid sub-classes.  

 

2.5.2) InChI 

InChI [28] and InCHiKey [29] are non-proprietary identifiers for chemical substances 

that can be used in printed or electronic data sources, thus enabling easier linking of 

diverse data compilations. They encode chemical structures of molecules in a string of 

machine-readable characters unique to the respective molecule (see Figure 2). 

Preliminary work involving InChI in web searches had been very encouraging, given that 

there was 100 % recall and precision [28]. In addition several algorithms had been 

developed to facilitate sub-structure or even textual substring searches of chemical 

molecule information on the web [30, 31]. While chemical structures for individual lipids 

have been published in InChI format there has been, to our knowledge, no hierarchical 

formulation of lipid class definitions described in InChI.   

 

OH

OH
O

 
InChI=1/C76H148O3/c1-3-5-7-9-11-13-15-17-18-19-20-21-22-23-24-27-30-34-42-48-54-60-66-
74(76(78)79)75(77)67-61-55-49-43-35-31-28-25-26-29-33-39-45-51-57-63-71-69-73(71)65-59-
53-47-41-37-36-40-46-52-58-64-72-68-70(72)62-56-50-44-38-32-16-14-12-10-8-6-4-2/h70-
75,77H,3-69H2,1-2H3,(H,78,79) 
 
Figure 2: Structure and InChI of an alpha mycolic acid 
 
 

2.5.3) Chemical Ontology 

The Chemical Ontology [25], CO, is a small molecule ontology that describes organic 

compound on the basis of chemical functional groups. It was initially developed to 
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describe chemical functional groups for the classification of chemical compounds and 

coded in OWL-DL [26] formalism. In the ontology an organic compound is defined 

explicitly by the presence or absence certain functional groups. This classification 

method, specifically with the use of explicit DL semantics, can be applied to lipids 

because functional groups describe the chemical reactivity in terms of atoms and their 

connectivity, and reflect the chemical behavior of a lipid in a biological context. 

Furthermore, current lipid database records often lack such annotations and classification 

often has to be done manually. Therefore, use of the chemical ontology presents a viable 

alternative to address the lack of clarity in lipid nomenclature, not just in providing an 

ontological framework where lipids terminology can be gathered in a single resource but 

it also provides an avenue to describe lipids nomenclature in an open and explicit 

semantics. However, the OWL version of Chemical Ontology is limited as it only 

provides 35 functional groups and that is not sufficient to describe the lipids as classified 

under LIPIDMAPS. At present, the Chemical Ontology had been used to classify only 28 

classes of organic compound. Lipids are more complex biomolecules that can have 

multiple and distinct functional groups in one molecule. For example, Figure 2 shows an 

alpha mycolic acid that has a hydroxyl group and a carboxylic acid group. According to 

the Chemical Ontology, it is both an alcohol and a carboxylic acid. Such a definition is 

semantically ambiguous. In addition the molecule has a functional group that is not 

defined in Chemical Ontology, cyclopropane group.  

 

Consequently, in order to accurately describe lipids, we need more functional groups, 

many of which have not been described in the Chemical Ontology. Moreover, the 
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Chemical Ontology classifies each class of organic compounds with just one functional 

group and it is solely based on the structural aspect of chemical compounds. Such a 

scheme cannot accurately classify lipids as it does not necessarily describe or represent 

the biochemistry of lipids and it is not adequate for the task of classifying lipids based on 

other criteria such as the biological origin of individual molecule. In contrast to Chemical 

Ontology, LIPID MAPS grouped lipids together based on at least the following criteria, 

namely structural similarity, biosynthetic origin and function. Table 5 shows examples of 

lipids taken from the LMSD to illustrate how different lipids classes are classified by 

LIPID MAPS. In Table 5a, LC_Fatty_Acids_and_Conjugates, are classified together as 

lipids that are characterized by a series of methylene groups and would terminate with a 

terminal carboxylic group [2]. In Table 5b, LC_Eicosanoids, are classified as lipids that 

derived from the same biosynthetic precursor Arachidonic acid and are known as 

bioactive molecules that play important role in signaling and inflammatory processes [10]. 

In Table 5c, LC_Octadecanoids, are classified as lipids that derived from the same 

biosynthetic precursor 12 oxo-phytodienoic acid while LC_Docosanoids are lipid that 

derived from the same biosynthetic precursor docosahexaenoic acid [2]. This is a lipid 

biology centric classification and it reflects the way in which lipid scientists classify 

lipids accurately.  

 

 
a.Classification based on structure  
 

OH

O

 
 
3,7,11,15-tetramethyl-2Z-hexadecenoic acid , a methyl fatty acid under 
LC_Fatty_Acids_and_Conjugates. 
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b.Classification based on functional role 
 
HO

OH

O

OH
HO

O

 
 
6-oxo-9S,11R,15S-trihydroxy-13E-prostenoic acid or 6-keto-PGF1α, a prostaglandins under 
LC_Eicosanoids 
 

COOH
S

O

OH

OH

NH2  
 
5S-hydroxy,6R-(S-cysteinyl),7E,9E,11Z,14Z-eicosatetraenoic acid or LTE4, a leukotriene 
under LC_Eicosanoids. 
c.Classification based on biosynthetic origin 
A.LC_Octadecanoids 
 

O

OH

O

 
 
(9R,13R)-12-oxo-phytodienoic acid, a 12 oxophytodienoic acid under LC_Octadecanoids. 
 

OH

O

O
OH

 
 
(1S,2R)-3-oxo-2-(5'-hydroxy-2'Z-pentenyl)-cyclopentaneacetic acid or Tuberonic acid, a 
jasmonic acid under LC_Octadecanoids. 
B.LC_Dosocanoids 
 

OH

O

OH

OH

OH  
 
4S,5,17S-trihydroxy-docosa-6E,8E,10E,13E,15Z,19Z-hexaenoic acid or Resolvin 4, a 
dosocanoids. 
 
Table 5: Structure, systematic name and class of some lipids classify by LIPID MAPS 
using criteria such structure, function and biosynthetic origin 
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2.5.4) Ontology and Text Mining  

Alexopoulou et al. reported the use of automated text mining algorithm to assemble 

domain specific terminologies. These terms were then use to develop  the Lipoprotein 

Metabolism Ontology (LMO) in a semi automated way for the purpose of conducting text 

mining in the field of lipoprotein metabolism [22]. Similarly, Baker et al. reported the use 

of Lipid Ontology to mine for textual information of lipid and lipid biology from 

literature sources and to subsequently make available these to the scientist in a dynamic 

display of knowledge map [32].  

   

3.) Ontologies and Lipids 

Lipids have many features and, likewise, there are many aspects in lipid biology. This is a 

lot of information and complex relationships. Ontology can capture this information-rich 

content and represent them meaningfully in classes/concepts, properties/relations, 

values/instances. Lipids do not have a universally accepted nomenclature. Ontology 

provides a place where a systematic nomenclature can be described and shared with 

everyone in the field so that a consensus can be arrived at. In addition to being able to 

represent a systematic classification of lipid, representation in OWL-DL ontology 

structure forces the chosen lipid nomenclature, that is mostly un-intuitive, to become an 

explicitly defined knowledge. This brings clarity to the knowledge and removes 

ambiguity from the meaning of many lipid terms, especially those from the bibliographic 

domain, that are saturated with many synonyms that are neither a standard nor clearly 

defined. 
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Lastly, due to the lack of a unified classification system and the heterogenous nature of 

data from lipidomics (due to different data formats associated to a wide range of 

technology platforms and granularity of data), integration of lipid data is difficult [12]. 

Here, OWL ontology acts as a standard where lipid knowledge can be made available 

through a common technology platform so that seamless integration of data and recycling 

of metadata can be achieved. 
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Chapter II: Ontology Development Methodology 

Due to the vast and complex nature of biological knowledge, bio-ontologies are 

especially hard to engineer. This is further complicated by the volatility of the knowledge 

in the specific knowledge domain as the biologist’s understanding of a domain is 

constantly changing.  

 

1) Goal and Purpose 

In an ontology development process, the purpose of the ontology is especially important. 

Depending on the intended use of the ontology, the cost and complexity of building a bio-

ontology would vary. Naturally, an ontology designed to provide basic understanding of a 

knowledge domain would be less costly to build than ontology meant for complex 

semantic web applications such as complex query or automated reasoning. Therefore, the 

purpose of a bio-ontology must be decided as it would determine the complexity and 

subsequently the approach to be adopted for ontology development. The purpose of a bio-

ontology can be easily narrowed down by identifying the required scope, possible use 

case scenarios or the type of competency questions that the ontology is meant to answer. 

Our competency questions are as follows:  

Can the ontology be used to tell a story at various degree of granularity?  

Can the ontology represent knowledge more explicitly, more detailed than what a 

database could do? 

Can the ontology represent definition of lipid entity and lipid-centric data? 

Can the ontology substitute or even supersede a database schema driven query 

model?  
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Can the ontology make implicit knowledge explicit? 

 

Ultimately, the choice of methodology depends on the function of the ontology. 

Generally, bio-ontologies can be categorized into 3 major functions.  

 

Task-oriented ontologies- Ontologies designed to perform concrete tasks such as data 

mining, resource integration and semantic reasoning. Task-oriented ontologies specify 

information of a knowledge domain necessary for a task and are designed for use in a 

specific application only. In its extreme form, task-oriented ontologies are highly specific 

and are purely engineering artifacts of specific applications in the industrial environment.  

 

Domain-oriented ontologies- Ontologies that capture knowledge of a field of interest. 

Domain-oriented ontologies are formalized knowledge encoded in a knowledge 

representation language with the purpose to share knowledge with others in the field.  

 

Generic ontologies- Ontologies with very general concepts whose only purpose is to 

integrate different ontologies. 

 

2) Methodology 

There is no standard methodology for building ontology. A methodology would include 

the ontology development life cycle that occurs during the development process, 

guidelines, principles that influence each stage of the life cycle. Castro et al.  reviewed 

some of the methodologies used in industrial environment to build ontologies [33]. 
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Among them are TOVE (Toronto Virtual Enterprise), Methontology, Diligent, Enterprise 

Methodology, Unified Methodology. These methodologies were assessed and were found 

to be very application specific. Most of them had been applied and deployed in highly 

controlled industrial environment in a one-off basis. Furthermore, none of these 

methodologies had been standardized out of their original industrial context long enough 

to impact wider ontology building community, including the bioinformatics or bio-

ontologies community.  

 

3) Ontology Development Lifecycle 

While there is no standard methodology to develop ontologies, the development life 

cycles are common for most ontologies (see Figure 3).  
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3.1) Specification  

A phase where the purpose, scope and granularity of an ontology is determined. This 

phase determines the type and coverage of data sources (databases, bibliographic 

information and reusable ontologies) needed to build an ontology that supports a specific 

purpose, application or task.    

 

The Lipid Ontology is conceived to conceptualize and capture knowledge in the domain 

of lipids through the use of concepts, relations, instances and constraints on concepts. 

This ontology is a resource that provides a common terminology for the lipid domain and 

a basis for interoperability between information systems. It provides a consistent 

semantic and syntactic representation to integrate data from databases as well as other 

ontologies. 

  

Other equally important motivations for Lipid Ontology can be summarized as follows:  

(i) to provide, in a standardized OWL-DL format, a formal framework for the 

organization, processing and description of information in the emerging fields of 

lipidomics and lipid biology; (ii) to specify a data model to manage information on lipid 

molecules, define features and declare appropriate relations to other biochemical entities 

i.e. proteins, diseases, pathways; (iii) to enable the connection of the pre-existing or 

legacy ‘lipid synonyms’ found in literature or other databases to the LIPID MAPS 

classification system; (iv) to serve as an integration and query model for one or more data 

warehouses of lipid information; (v) to serve as a flexible and accessible format for 

building consensus on a current systematic classification of lipids and lipid nomenclature, 

which is particularly relevant to the discovery of new lipids and lipid classes that have yet 
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to be systematically named; (vi) to define lipid classification explicitly with respect to 

LIPID MAPS nomenclature using description logics in OWL-DL language and to 

establish a systematic classification of lipids that supports reasoning tasks such as 

checking ontology consistency, computing inference and realization.  

 

The Lipid Ontology family of ontologies is built on a combination of task-oriented, 

domain-oriented and generic ontologies design principle. This family of ontologies 

consists of a combination of modules that supports reusing other concepts from other 

ontologies. It started of as a baseline ontology with a very specific semantic application 

to support. The baseline ontology was further developed into a reference ontology. 

Specialized ontology was then be modified from the reference ontology to perform a 

function for specific application (Figure 4). Depending on the purpose or application, the 

ontology can be made more comprehensive to support annotation or made simpler just to 

support a specialized computational task.  

 

The first Lipid Ontology (Lipid Ontology 1.0) is specified by a database schema and it 

aims to provide a DL-based knowledge representation to represent and to integrate 

information from multiple databases. In addition to that, the ontology can integrate 

bibliographic information and is build with upper-level concepts to integrate other 

ontologies. In short, Lipid Ontology 1.0 is built to unify diverse bioinformatics data 

sources and literature databases in a consistent semantic and syntactic representation 

using semantic web technologies. Being a vehicle of knowledge representation, it has 

been used to map and represent knowledge in order facilitate intuitive knowledge 
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navigation and discovery by the end user through a visual query application. The 

integration of other bio-ontologies is not carried out until the deployment of Lipid 

Ontology Reference. The Lipid Ontology Reference is the result of integrating databases, 

bibliographic information and other ontologies into a single ontology. It is a reference 

ontology where other more task-oriented ontologies with specific application or domain 

oriented ontologies can be derived from. LiCO and LERO are specialized domain 

oriented ontologies designed to be OBO compliant so that the semantic richness and 

knowledge in LiCO and LERO can be accessed by the wider biomedical research 

community, especially the OBO community. Lastly, Lipid Ontology Ov is an application 

ontology extended from the Lipid Ontology Reference to enable pathway exploration on 

top of the original visual query paradigm applied to Lipid Ontology 1.0. 
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3.2) Knowledge Acquisition 

In the knowledge acquisition phase, domain knowledge is acquired from domain experts, 

database metadata, other ontologies and other re-usable information such text book 

information and research papers. Information can be used in 2 ways. Firstly, they are 

models or examples where the model of knowledge domain of lipids could be based on. 

Secondly, they provide actual data that could be incorporated into the ontology.  

 

Data relevant to biologists such as pathways, chemical compound entries, annotations, 

structures as well as associated disease phenotype, protein information are often stored in 

multiple databases with distinct and incompatible data formats. Other sources of 

information are found in various text, papers and literature resources. A typical 

knowledge acquisition begins with the selection of suitable resources from which data 

can be retrieved. The choice of appropriate resources depends on factors such as the 

quality, accuracy, the speed of update, consistency and reliability of the data. Once the 

resource has been identified, extraction of terms and associated data can be achieved 

manually or with perl script automation. Depending on the quality of the data, manual 

curation may be needed to remove any inconsistency, ambiguity, contradiction or error.  

 

3.2.1) Knowledge Resources 

During the development of Lipid Ontology, we integrate the schema from an existing 

lipid database, LipidDW, together with the lipid content in the form of database 

annotations from entries found in several distributed biological databases, namely LMSD, 
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LipidBank, KEGG COMPOUND databases. In addition to that, other online resources 

relevant to lipids such as Lipid Library and Wikipedia are consulted too. 

 

LipidDW is an in house relational data warehouse system designed to integrate lipid data 

from LMSD, LipidBank, KEGG COMPOUND databases as well as associating them 

with other data such as disease phenotype from OMIM, enzyme from BRENDA [52], 

protein from Swiss-Prot [53] and pathway from KEGG PATHWAY [34].  

 

The LIPID MAPS STRUCTURE DATABASE (LMSD) is the official database of LIPID 

MAPS consortia [15]. To date, the database contains a total of 10,789 entries, including 

2688 Fatty acyls (FA), 3009 Glycerolipids (GL), 1971 Glycerphospholipids (GP), 621 

Sphingolipids (SP), 1745 Sterol lipids (ST), 609 Prenol lipids (PR), 10 Saccharolipids 

(SL), and 136 Polyketides (PK). Lipid entries from the database are connected to 

Wikipedia, LipidBank, KEGG COMPOUND database and PubChem via hyperlinks 

where identical entries are available.  

 

LipidBank is the official database of the Japanese Conference on the Biochemistry of 

Lipids (JCBL) [35]. The database contains 7009 unique molecular structures, their lipid 

names (common name, IUPAC), spectral information (mass, UV, IR, NMR and others), 

and most importantly, literature information. The database lists natural lipids only and is 

annotated with information that is manually curated and approved by experts in lipid 

research.  

 



   37
  

KEGG COMPOUND is a chemical structure database for metabolic compounds and 

other chemical substances that are relevant to biological systems [36]. The compounds 

represented in KEGG COMPOUND include Lipids, Peptides, Polyketides, non-

ribosomal peptides and plant secondary metabolites. It is tightly integrated with KEGG 

BRITE (a collection of hierachical classification to biological entities and systems) and 

KEGG PATHWAY (a collection of pathway maps built from known molecular 

interactions and reaction networks) to enable the inference of higher-order functions for 

the compounds.  

 

Lipid Library is an ISI-recommended online resource for lipids produced by Dr William 

W. Christie, a consultant to Mylnefield Lipid Analysis and is hosted by Scottish Crop 

Research Institute (and MRS Lipid Analysis Unit), Invergowrie, Dundee, Scotland. [1]  

 

Wikipedia is a multilingual, web-based, free-content encyclopedia project [37]. 

Wikipedia's articles provide links to guide the user to related pages with additional 

information. While largely an informal resource, Wikipedia does provide reliable basic 

knowledge in the domain of chemistry and chemical nomenclature. 

 

In addition to that, we consulted published scientific literatures on nomenclature of lipids 

extensively. In particularly, we based our lipid entity hierarchy on the LIPID MAPS 

classification hierarchy recommended by the LIPID MAPS consortium [2]. In addition to 

that, we also consulted literatures published by the IUPAC society on the nomenclature 

of various classes of lipids [14].   
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Other OWL-based ontologies that are openly available through the internet are additional 

information-rich resources that we relied on to build our ontology. Similar to the case 

with databases, ontological resources had been used in 2 ways, firstly as references to 

model our knowledge domain and secondly, as modules where we literally re-use or 

incorporate into our ontology.   

 

BFO, also known as Basic Formal Ontology is a multi-categorical ontology that provides 

very high level upper-ontology framework to help in the organization and integration of   

biomedical information [38]. It is a formal upper ontology and promotes the development 

of orthogonal ontologies that would eventually converge onto its upper ontology. It is 

available in OWL format. 

 

BioTop is a top domain ontology that provides definitions for the most important basic 

entities necessary to describe the phenomena in the domain of biomedical sciences [39]. 

The BioTop ontology provides an upper ontology necessary for low level biomedical 

ontology to connect with BFO (see Figure 5). It is available in OWL format. 

 

ChemTop is an ontology that inherits large amount of definitions from BioTop and aims 

to play the role of BioTop for the domains not cover by BioTop, specifically the chemical 

domain (see Figure 5). It is available in OWL format. 
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FungalWeb Ontology is a large-scale integrated bio-ontology in the field of fungal 

genomics [40]. It provides an integrated accessibility to distributed information across 

multiple databases and ontologies and is the core of a semantic web system. It is available 

in OWL-DL format. 

 

Disease Ontology is a controlled medical vocabulary developed at the Bioinformatics 

Core Facility in collaboration with the NuGene Project at the Center for Genetic 

Medicine [41]. It was designed to facilitate the mapping of diseases and associated 

conditions to particular medical codes such as ICD9CM, SNOMED and others. Disease 

Ontology is implemented as a directed acyclic graph (DAG) and it is stored in the form of 

OBO format.  



   40
  

The NCI Thésaurus is a public domain description logic-based terminology produced by 

the National Cancer Institute to facilitate translational research and to support the 

bioinformatics infrastructure of the Institute [42]. It is deep and complex compared to 

most broad clinical vocabularies and implements rich semantic interrelationships between 

the nodes of its taxonomies. It is available in OWL format.  

 

The Gene Ontology project provides a controlled vocabulary to describe gene and gene 

product attributes in any organism [43]. Gene Ontology can be organized into 3 sub 

ontologies, namely cellular component, biological process and molecular function. Gene 

Ontology terms are used extensively by biologist to annotate gene products. The ontology 

often acts as a semantic integrating system and is one of the most widely used ontology in 

the biomedical research domain. It is available in both OBO format and OWL format.  

 

The Pathway Ontology is a controlled vocabulary for pathways that captures various 

kinds of biological networks, relationships between them and alterations or 

malfunctioning of such networks within a hierarchical structure [44]. The Pathway 

Ontology is developed at Rat Genome Database. It is available in OWL format. 

 

Chemical Ontology is a novel ontology based on chemical functional groups that was 

developed to identify, categorize and make semantic comparison of small molecules [25]. 

This is an application ontology and has been encoded in OBO. A smaller and simpler 

version of the Chemical Ontology is available in OWL-DL format.  
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Molecule Role Ontology is a structured controlled vocabulary of concrete protein names 

and generic protein names built to annotate signal transduction pathway molecules in the 

scientific literature [45]. It is available in OWL format 

 

Lastly, informal interviews with laboratory scientist, lipid experts and text mining experts 

are also a key part of the knowledge acquisition cycle.    

 

3.3) Implementation 

The implementation phase consists of 3 sub phases, namely conceptualization, integration 

and encoding phase. It is a step where the information is built into an ontology via an 

iterative cycle of conceptualization, integration and encoding.     

 

3.3.1) Conceptualization 

Conceptualization is a phase where key concepts with properties associated to other 

concepts as well as properties between the concepts for the knowledge domain are 

identified. The concepts and properties are assigned their natural language terms and 

subsequently organized into an explicit conceptual model such as an is-a subsumption 

hierarchy. We take a DL based conceptualization approach. With DL conceptualization, 

we specify frames or classes as collections of instances where each frame can have a 

collection of slots or attributes that are values or other frames without the problems of 

unclear semantics common to all frame based representation. Unlike frame based 

representation, DL uses clear semantics and defines concepts in terms of descriptions 

using other roles and concepts in such a way that it could be used to derive classification 
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taxonomies. Below is a description of various attributes of the DL conceptualization that 

we have implemented into the Lipid Ontology. 

 

Concepts are sets that contain instances. Concepts describe accurately the requirements 

for membership of the class using formal descriptions. There are 2 types of concepts. 

 

 Defined concepts are concepts with at least one necessary and sufficient condition. 

It means that when an individual has properties that satisfy the membership 

requirement of a defined class, it can be inferred to be a member of the class.  

 

 Primitive concepts are concepts with necessary condition. It means that when an 

individual is assigned to a specific primitive concept. The individual must have 

properties that satisfy the membership requirement of the class. The same cannot 

be inferred from the reverse direction. 

 

Relationships are links that exist between 2 concepts or 2 instances. There are 2 types of 

relationships.  

 Subsumption relationship organizes concepts into a superclass-subclass hierarchy.  

 

 Associative relationship relates individuals of concepts. The object property in OWL 

describes this relationship; an object property links 2 instances together. Theoretically, 

we can also define an associative relationship between 2 concepts specifying all 

instances of a concept are related to at least one instance of another concept. 
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Upper Ontology:  

An upper ontology consists of top-level concepts in an ontology that are defined in very 

generic term and act as superconcepts that subsume other concepts from other ontologies. 

Concepts from other ontologies need be integrated into the hierarchical structure of the 

upper ontology without violating any of the semantic correctness. By maintaining an 

upper ontology in the Lipid Ontology, we enable specific concepts from other ontologies 

to be added into the Lipid Ontology as an independent module. The upper ontology is 

maintained in Lipid Ontology 1.0 and has expedited the development process of Lipid 

Ontology Reference. For LiCO and LERO, we incorporate an upper ontology that is 

compliant to OBO specification because we want to use the ontology to share domain 

knowledge with the wider bio-ontologies community. The same OBO compliance has not 

been applied to Lipid Ontology 1.0, Lipid Ontology Reference and Lipid Ontology Ov as 

these ontologies are application-centric ontologies that need to adhere to a specification 

that is compatible for their intended applications.    

 

Axiomatic Restriction: 

Also known as property constraint and consists of rules for membership requirement of 

classes. Property constraints were applied heavily to define lipid entity in LiCO and 

LERO. 

Closure Axioms:  

When a closure axiom is applied for a concept, it means that a property constraint can 

only be achieved with the use of members of a specific class only. Closure axiom is 

applied heavily to define lipid entity in LiCO and LERO. 
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3.2.2) Integration 

Integration is a phase where data and information acquired from existing databases, 

ontologies and other informal resources are put together into a consistent ontology. 

Information collected from databases, other ontologies as well as the hand-crafted 

baseline ontology are merged into a new ontology. Alternatively, knowledge can be 

integrated without merging ontologies and this can be done by imports. 

 

The Lipid Ontology was integrated at 2 levels, the data level and the semantic level. A 

typical data integration exercise involves identifying overlapping or identical database 

entries and annotations. These entries are subsequently linked up with a series of 

hyperlinks. Integration for ontology differs from database integration in that it 

emphasizes semantic integration on top of the usual data integration.   

 

Data Integration: 

During data integration, data with heterogenous granularities and formats are normalized 

into a consistent syntactic representation. For the Lipid Ontology development scenario, 

data integration occurs when the Lipid Ontology is instantiated into a knowledge base or 

when ontologies are merged together or when ontologies are imported into the Lipid 

Ontology 1.0. 

   

Semantic Integration: 

Semantic integration is done to enable an accurate and consistent mix of data from 

different sources. It involves identifying identical, similar, or overlapping data elements 
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from various resources as well as their semantic relationships with one another so that 

these heterogenous data elements can be mapped into a common frame of reference.  

 Principle of Orthogonality 

o The principle of orthogonality asserts that ontologies from every knowledge 

domain should eventually converge upon a single upper ontology [19]. 

Subsequently, ontologies that are orthogonal are build as interoperable 

modules that could be combined together to give rise to an incrementally 

evolving knowledge network. The principle of orthogonality brings several 

benefits. It ensures that the ontology that was build has been validated, used 

and maintained by the domain experts and that it would work well with other 

ontologies. Ontologies, being orthogonal, would reduce the need to map or 

align ontologies. This is because ontology alignment is very difficult, costly, 

error prone. Moreover, orthogonality ensures mutual consistency of ontologies, 

thereby allowing ontologies to be combined with one another, resulting in the 

accumulation of scientific knowledge. Lastly, orthogonality eliminates 

redundancy as every domain expert can just focus on his area of expertise 

without the need to worry about related fields of knowledge.   

 Challenges in Semantic Integration 

o Language mismatches due to ontologies being written in different ontology 

languages, syntaxes, logical notations, language expressivity and semantics of 

primitives (same name, different meaning).  

o Model-level mismatches due to conceptualization mismatches (differences in 

the way a domain is interpreted, different ontological concepts, different 
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relationships between concepts) and explication mismatches (differences in 

the way the conceptualization is specified) between ontologies. 

o Lack of clear semantics due to inconsistency in the use of certain terms within 

the same ontology, unnecessary proliferation of terms, different levels of 

granularity that are used in the ontology are not explicitly stated, mixed levels 

of granularity and overloading of relationship/property in an ontology.  

 Choice of Reusable Ontologies 

o Reusing ontologies is not just about selecting a section of the source ontology 

and incorporating it into the target ontology. A knowledge engineer needs to 

extrapolate the context from the source ontology to the target ontology. By 

doing so, a knowledge engineer transfers the meaning convey by the concepts 

and semantics from the source ontology to the target. Therefore, exact 

linguistic matches are not crucial and this criteria itself is not sufficient to 

justify reusability of concepts in the source ontology. When identifying 

reusable ontologies, a knowledge engineer needs to focus on what the 

concepts in mind have been use for, how these concepts relate to other 

concepts, how these concepts are incorporated in the relevant processes as 

well as how a domain expert understands them.  

 

In the development of Lipid Ontology, we design our ontology to be as orthogonal as 

possible with other ontologies. We do not embrace the notion of absolute orthogonality 

and we accept that there are many ways to design and build ontologies. Therefore, our 

ontologies are a cross between pragmatism and absolute orthogonality. The Lipid 
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Ontology family of ontologies are designed to be as orthogonal as possible without 

sacrificing functional purposes. Where possible, we provide modified versions of Lipid 

Ontology that are orthogonal to other ontologies in the wider community, specifically the 

OBO community. To this end, Lipid Ontology 1.0, Lipid Ontology Reference and Lipid 

Ontology Ov remain application specific and do not adhere to the general OBO design 

principle. However, smaller, specialized ontologies such as LiCO, LERO that are 

orthogonal to OBO can be crafted out of the Lipid Ontology Reference to provide 

accessibility of formalized knowledge to the wider bio-ontology community.     

 

Methods of Semantic Integration: 

 Syntactic Parsing –Applicable when concept terms in an ontology are made up of 

terms or combination of terms from other ontologies. It is achieved by syntactically 

parsing terms in one ontology in search for terms from another ontology. However, 

syntactic parsing is limited in its applicability as it is not scalable and it does not 

really semantically integrate multiple ontologies [40,46]. 

 Use of a formal knowledge representation language that supports imports from other 

ontologies –An example would be OWL-DL where OWL-DL ontologies can import 

other OWL ontologies, either locally or via HTTP. With this, semantic integration 

and reuse of ontologies are achieved without parsing. 

 Upper level ontologies –Different ontologies are presented as independent modules 

that can be connected via a top level ontology that provide concepts with upper level 

semantics as such that these ontologies can be subsumed under the concepts provided 

by the upper ontology. 
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 Ontology alignment -Alignment is also known as mapping and it involves identifying 

semantically similar concepts between ontologies and relating them via equivalence 

and subsumption properties. It is very costly and difficult as it is largely dependent on 

manual human effort.  

 

The semantic integration is implemented in Lipid Ontology 1.0 to give rise to Lipid 

Ontology Reference. Because Lipid Ontology 1.0 is built with upper ontology concepts 

and is based on OWL-DL language, integration of ontologies is achieved by importing 

parts of other ontologies as independent modules that could be subsumed by the upper 

level concepts in Lipid Ontology 1.0. In addition to that, parts of other ontologies are 

aligned and subsequently made to relate with Lipid Ontology 1.0 via subsumption 

property. The ontology alignment procedure differs from standard alignment procedure in 

that concept terms are transferred without the relationships that these concepts had 

participated in the source ontologies.  

 

3.3.3) Encoding 

Encoding is a phase where the results of conceptualization and integration are represented 

in a formal knowledge representation language.  

The Lipid Ontology family of ontologies is encoded in OWL-DL with Protégé 3.4 beta.  

The choice of knowledge representation language is simple. We are looking for a 

knowledge representation language that could express complex relationship in a way that 

is both intuitive to human and machine. In addition to that, we want the ontology to be 

able to undergo semantic reasoning. OWL-DL is a knowledge representation language 
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that has a high level of expressivity, semantic richness as well as a logical structure that 

supports computational decidability. Another reason for using OWL-DL is because there 

are quite a number of ontologies out there written in OWL-DL. By using OWL-DL, we 

designed the Lipid Ontology family of ontologies to be at least syntactically compatible 

with other OWL ontologies and, as a result of that, we could re-use these ontologies 

easily. In addition to that, it is a W3C-endorsed knowledge representation language for 

semantic web application and we expect widespread adoption of OWL-DL by semantic 

web application developer as well as knowledge representation specialist alike in the near 

future. The use of OWL-DL will ensure that the Lipid Ontology family of ontologies to 

remain compatible and reusable with respect to any future development in semantic web 

technologies.  

 

Protégé 3.4 beta: 

Protégé is an ontology editor and a knowledge-base editor developed at Stanford 

University to allow domain experts to build knowledge-based systems by creating and 

modifying reusable ontologies (Figure 6) [47]. We use Protégé system because it allows 

us to build a frame-based ontology that is capable of executing DL-based reasoning. The 

latest version of Protégé editor is Protégé 4.0. It is still in the early development stage and 

is not necessarily stable. Furthermore, being a new version of Protégé editor, it does not 

have all the plug-ins integrated into it. Protégé 3.4 beta, on the other hand, is an 

established version of protégé editor that is stable and integrated with a full suite of plug-

ins to enhance its functionalities.  
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Protégé Plug-in use in the Lipid Ontology development process: 

 
PROMPT: 
 
The PROMPT plug-in (see Figure 7) is integrated into the Protégé editor to enable the 

management of multiple ontologies in Protégé environment, the PROMPT knowledge 

framework extends the capability of the Protégé editor in the following ways [48]: 

• compare different versions of the same ontology     

• map one ontology to another     

• merge two ontologies into one     

• extract a part of an ontology and add it into another ontology 
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OWL-Viz: 
 
OWLViz (see Figure 8) is a plug-in built to be used in conjunction with Protégé editor. It 

enables class hierarchies in an OWL Ontology to be viewed and incrementally navigated, 

allowing comparison of the asserted class hierarchy and the inferred class hierarchy [49].  
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Jambalaya: 
 
Jambalaya (see Figure 9) is a plug-in created for Protégé editor and it provides an 

integrated environment that utilize SHriMP(Simple Hierarchical Multiple Perspective) to 

visualize the knowledge bases created by the user [50]. SHriMP enables an end user to 

better browse, explore and interact with complex information spaces of an ontology.    
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Chapter III: Representing the World of Lipids, Lipid Biochemistry, 

Lipidomics and Biology in an Integrative Knowledge Framework 

Our goal is to take advantage of the combination of the OWL [20, 51] framework with 

expressive Description Logics (DL) without losing computational completeness and 

decidability of reasoning systems. We use Protégé 3.4 beta [47] as a knowledge 

representation editor. The Ontology is designed with a high level of granularity and is 

implemented in the OWL-DL language. During the knowledge acquisition and data 

integration phase of ontology development, we have consulted lipid content in the form 

of database annotations, texts from the scientific literature, and entries within distributed 

biological databases. 

 

1) Lipid Ontology 1.0 

The Lipid Ontology 1.0 is developed to integrate lipid database entries and the 

bibliographic information associated to it. The ontology is partially specified by the data 

schema of an in-house lipid data-warehouse system, LipidDW [34]. LipidDW is a data 

warehouse system that sought to provide a simple platform where an end user can view 

related information (pathway, enzyme, protein, disease) about a specific lipid entity.  

Lipid Ontology 1.0 is an application ontology designed to work together with a full-text 

literature acquisition pipeline and knowledge visualization platform (Knowlegator) to 

integrate bibliographic information with the existing data from lipid databases and to 

provide an intuitive visual query and navigation of lipid-centric information to end users. 

Knowlegator(Knowledge naviGator) is a tool that allows navigation of A-box instances 
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through an intuitive interface capable of converting a visual query built by a naïve end 

user into the query language syntax that communicates with the knowledgebase 

(instantiated ontology) for relevant information [32]. When fully instantiated, this 

ontology accounts for 10,789 lipids instances from LIPID MAPS (inclusive of 749 

overlapping lipids from KEGG and 2897 overlapping lipids from LipidBank).  

 

1.2) Ontology Description 

1.2.1) Upper Ontology Concepts 

We have incorporated top level, generic concepts into the upper ontology of Lipid 

Ontology 1.0(Figure 10). These concepts enable Lipid Ontology 1.0 to accept ontologies 

from other knowledge domain as orthogonal modules. These are generic concepts 

relevant to lipidomics or lipid biology, namely Diseases, Functional_Category, Processes, 

Isomer, Experimental_Protocol, Specification, Pathways, Biological_Entity(inclusive of 

Cell, Suborganellar_Component, Subcellular_Organelle, Biomolecules)(Table 6). The 

choice of upper ontology concepts enables Lipid Ontology to be built with a high level of 

modularity so as to provide a seamless integration of other biologically relevant 

knowledge domain into Lipid Ontology 1.0.  
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Concept name No. of Concepts 

Biological entity  387 

Data Source   1 

Diseases 28 

Experimental Protocol 41 

Functional category 75 

Isomer 20 

Molecular events 2 

Pathways 3 

Processes 3 

Specification 112 

Total number of Concepts 672 
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Table 6: Current numbers of concepts in Lipid Ontology 1.0 divided across 10 sub-
concepts  

1.2.2) Lipid Concepts 

Information about individual lipid molecules is modeled in the Lipid and Lipid 

Specification concepts. The Lipid concept is a sub-concept of Small_Molecules 

subsumed by the super-concept of Biomolecules. We have included the LIPID MAPS 

systematic classification hierarchy under the Lipid concept (Figure 10). The hierarchy 

consists of 8 major lipid categories and in total has about 352 lipid subclasses. The LIPID 

MAPS systematic name is modeled as an instance of a lipid. This instantiation of lipids is 

further extended to include lipids that are not classified in LIPID MAPS by instantiating 

these lipids with InChI. The use of the LIPID MAPS systematic name connects the 

LIPID MAPS classification system to other lipid associated information found in the 

Lipid_Specification concept and the rest of the ontology. The Lipid_Specification is a 

super-concept representing information about individual lipids (Table 7). The 

Lipid_Specification concept entails the following sub-concepts; Biological_Origin, 

Data_Specification (with a focus on high throughput data from Lipidomics), 

Experimental_Data (mainly mass spectrometry data values of lipids), Properties, 

Structural_Specification and Lipid_Identifier (that carries within it 2 other sub-concepts; 

Lipid_Database_ID and Lipid_Name) (Figure 11).  
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Domain Property Range 

Lipid hasBiological_Origin Biological_Origin 

Lipid hasData_Specification Data_Specification 

Lipid hasExperimental_Data Experimental_Data 

Lipid hasLipid_Identifier Lipid_Identifier 

Lipid hasProperties Properties 

Lipid hasStructural_Specification Structural_Specification 

 
Table 7: Relationship (domain, property and range) between Lipid sub-concept and other 
sub-concepts under Lipid_Specification 
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Provision for Database Integration 

To facilitate data integration each Lipid instance is related to other databases with the 

hasDatabaseIdentifier property (Table 8). The object property hasDatabaseIdentifier 

connects a lipid instance to a database identifier.  Specifically, our lipid ontology is 

designed to capture database information from the following databases: Swiss-prot, 

NCBI OMIM and PubMed, BRENDA and KEGG. Moreover, we have also made 

provisions in the ontology for it to store information from NCBI taxonomy database. The 

database record identifiers from each database are considered as instances of the 

respective database record. Identifier concepts are subsumed by a database specific 

superclass. For example, the Swiss-Prot_ID concept is subsumed by the 

Protein_Identifier super-concept which is in turn subsumed by the Protein_Specification 

super-concept. The presence of a Protein_Specification super-concept is provisional, 

should we decide to enrich the ontology with protein related information.  

 
Domain  Property Range Database source 

Lipid hasSwiss-Prot_ID Swiss-Prot_ID Swiss-Prot 

Lipid hasOMIM_ID OMIM_ID OMIM 

Lipid hasEC_num EC_num BRENDA 

Lipid hasKEGG_ID KEGG_ID KEGG 

Lipid hasPMID PMID PUBMED 

 
Table 8: Relationships (domain, property and range) between Lipid sub-concept and 
other sub-concepts that relates to external databases 
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1.2.4) Lipid-Protein Interactions 

The inclusion of lipid-protein interactions in the ontology, necessitates the existence of 

the concept Protein which is subsumed by Macromolecule and Biomolecule concepts. 

The systematic name of a protein in the Swiss-Prot database serves as an instance of the 

Protein concept. Lipid instance is related to a protein instance by the object property 

InteractsWith_Protein (see Figure 12). 

1.2.5) Lipids and Diseases 

Information about lipids implicated in disease can also be modeled. We have added a 

primitive concept of Disease in the ontology. A disease name is considered as a disease 

instance which is related to a lipid instance by the object property hasRole_in_Disease 

property (see Figure 12).  
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1.2.6) Modelling Lipid Synonyms 

Due to the inattentive use of systematic lipid classifications, a lipid molecule can have 

many synonyms which need to be modeled into the ontology. In our Lipid Ontology, a 

lipid instance is a LIPID MAPS systematic name or an InChI and synonyms include the 

IUPAC names, lipid symbols and other commonly used lipid names (both scientific and 

un-scientific ones). We address the multiple name issue by introducing two sub-concepts, 

Lipid_Systematic_Name and Lipid_Non_Systematic_Name (see Figure 13). These two 

concepts are sub-concepts of Lipid_Identifier, which is subsumed by the super-concept 

Lipid_Specification. For every LIPID MAPS systematic name, there is typically one 
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IUPAC systematic name and one or more non systematic names. Every LIPID MAPS 

systematic name can be related to an IUPAC systematic name via hasIUPAC property 

and to non-systematic names via hasLipid_non-Systematic_Name property. A non-

systematic name is related to an IUPAC name via a hasIUPAC_synonym property. In the 

same way, the IUPAC name is related to non-systematic name via  

hasBroad_Lipid_Synonym and hasExact_Lipid_Synonym properties. Lastly, the non-

systematic name and IUPAC name are related to the LIPID MAPS systematic name via a 

hasLIPIDMAPS_synonym property. The current ontology model does not account for a 

non-systematic name that has other non-systematic names as its synonyms, i.e a direct 

synonym relationship between 2 non-systematic names. In order to identify this type of 

relation we have to deduce such relationship in an indirect manner. Where a non-

systematic name is related to a systematic name, the systematic name can be examined 

for other non-systematic names. As long as there is more than one non-systematic name 

found linked to the systematic name, we can be certain that these non-systematic names 

are synonyms of one another. 
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1.2.6.1) Extending Synonym Modeling 

A broad lipid name is a broad synonym that describes several lipid molecules in one go. 

In our ontology, it is related to the Lipid concept and other name concepts such as 

IUPAC, Exact_Lipid_Name via a hasBroad_Lipid_Synonym property (see Figure 14). 

This means that if a non-systematic name has one or more, IUPAC names/LIPID MAPS 

systematic names/LIPID MAPS identifiers/KEGG compound identifiers/LipidBank 

identifiers, it is actually a broad lipid synonym. On the other hand, an exact lipid name is a 

non-systematic name that describe exactly 1 lipid molecule.  
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1.2.7) Literature Specification 

One of the main applications of Lipid Ontology 1.0 is to provide a knowledge framework 

where effective text-mining of lipid-related information can be carried out. To achieve 

this, we introduce a top level Literature_Specification super concept into the ontology so 

that non-biological units of information can be instantiated. The Literature_Specification 

comprises 10 sub-concepts, namely Author, Document, Issue, Journal, 

Literature_Identifier (with a sub-concept PMID, the PubMedIDentifier), Sentence, Title, 

Volume, Year (see Figure 15). The Document concept captures details of documents 

selected by the end user for subsequent text mining. It is related to multiple concepts 
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within the Literature_Specification hierarchy via several object properties. The Document 

concept also has 3 datatype properties; author_of_Document, journal_of_Document, 

title_of_Document that become instantiated with the author name, journal name and title 

of the article in the form of text strings. In future version we intend to adopt full Dublin 

Core units of document metadata by importing the OWL-DL version of this ontology and 

extend it to include our Sentence concept which is related to the concept Document via 

the occursIn_Document property. Sentence also has a datatype property, 

‘text_of_Sentence’ that is instantiated by a text string from the documents that were 

found to have a lipid name and a protein name occurring in the same sentence. Sentence 

is related to Lipid and Protein concepts via the hasLipid and hasProtein object  properties. 
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2) Lipid Ontology Reference 

A key purpose in lipidomics research is to understand the role of individual lipids or lipid 

classes in the onset and progression of diseases. Therefore, a knowledge representation 

framework capable to representing diseases are crucial to advancing knowledge in the 

study of diseases and is only sufficient if lipids are represented with respect to other 

biological entities such as enzymes, pathways, proteins and cells. In other words, the 

Lipid Ontology needs to make provision so that it can be connected to other ontological 

formalizations that describe concepts such as pathways, cell types, tissue types and 

disease classes. When connecting these ontologies, care must be taken to ensure 

ontologies incorporated are contextually consistent to the main ontology component, 

which in this case, would be Lipid Ontology 1.0.  

 

The Lipid Ontology Reference is an integrative, comprehensive and reusable knowledge 

representation for the knowledge domain of lipids, lipid biology and lipidomics. It 

integrates as much conceptual information from other biological knowledge domain as 

possible and acts as a reference ontology where simpler, specialized application 

ontologies can be built from. At present, it integrates 5 ontologies to represent knowledge 

and relationships for the following knowledge domains, Disease, Pathway, Protein, 

Cellular Component, Cell and Tissue. Although it is a reference ontology, Lipid 

Ontology Reference is not OBO compliant because it needs to support application in the 

Knowlegator [32] visual query application. It is necessary that the ontology’s semantic 

format do not differ too much from Lipid Ontology 1.0 so that application ontologies 

built from it remains compatible to the Knowlegator platform. 



   67
  

2.1) Ontology Description 

2.1.1) Concept Alignment and Integration of Ontologies 

We expect Lipid Ontology Reference to adequately describe the multifaceted information 

of a lipid instance, especially its relationships to other biochemical and biomedical 

related entities such as proteins, diseases, enzymes and pathways. Therefore, sufficient 

knowledge domain components needed to describe the relevant cellular phenomena must 

be built into the ontology.  

 

Several ontologies are examined for suitability and subsequently, selected parts of these 

ontologies are re-used in the building of Lipid Ontology Reference.  

 

Ontologies are either integrated directly into Lipid Ontology Reference via PROMPT 

[48] or imported into Lipid Ontology Reference by as local repositories.  

 

2.1.2) Evaluation of GO for Alignment and Integration into Lipid Ontology 

Reference 

Gene Ontology is a large and widely used ontology in the biomedical research field.  Its 

annotation is very valuable to biomedical research community [43]. GO describes 3 

aspects of biological phenomena, Molecular Function, Biological Process and Cellular 

Component [43]. We include Molecular Function and Biological Process of GO for the 

purpose of annotating the various biological entities in Lipid Ontology while Cellular 

Component of GO is considered as one of the biological entity in Lipid Ontology 

Reference (see Figure 16). Molecular Function and Biological Process are placed under 
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the concept GO_Molecular_Function and GO_Biological_Process, whereas Cellular 

Component of GO is placed under Cellular_Component in Lipid Ontology Reference. In 

principle, they can be considered as orthogonal to the Molecular_Entity_Functional 

_Classification, Processes and Cellular_Component concepts in Lipid Ontology 

Reference respectively.  

 

2.1.2.1) Processes 

Lipid Ontology Reference adopts directly the definition of biological process found in 

NCI terminology for oncology [42], instead of GO’s Biological Process. This is because 

NCI describes the granularity of biological processes with greater degree of resolution. 

NCI defines Biological Process as a super-concept that encapsulates processes at various 

levels of granularity and includes generic concepts such as Cellular, Multicellular, 

Organismal, Population, Pathologic, Subcellular Process and Viral Function. GO does not 

make such distinctions and merely organize the process by their functions.  

 

For example, a cellular process “leukocyte migration”(GO:0050900) and a subcellular 

process “antigen processing and presentation”(GO:0019882) of GO are arranged as 

immediate subclasses of “immune system process”(GO:0002376). “immune system 

process”(GO:0002376) itself has an unclear level of granularity.  Furthermore, this class 

is arranged at the same level with the term “cellular process”(GO:0009987) and “cell 

killing”(GO:0001906), another cellular process.(Table 9)  
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Top level concept Sub-concept Distinction by Lipid 
Ontology Reference 

immune system process 
GO:0002376 

 Unclear 

 leukocyte migration 
GO:0050900 

cellular process 

 antigen processing and 
presentation  
GO:0019882 

subcellular process 

cellular process 
GO:0009987 

 cellular process 

cell killing 
GO:0001906 

 cellular process 

 
Table 9: Examples of concepts from Biological Process of Gene Ontology with unclear 
granularity according to the formalization of Lipid Ontology Reference 
 
 

Under Lipid Ontology Reference’s definition, “leukocyte migration”(GO:0050900), “cell 

killing” (GO:0001906) should be placed under “cellular process”(GO:0009987) while 

“antigen processing and presentation”(GO:0019882) should be placed under subcellular 

process concept. 

 

2.1.2.2) Cellular Component 

Lipid Ontology Reference defines cellular component as components of a cell and it 

makes distinction between cellular components (golgi apparatus, mitochondria, a 

complete organelle found in a cell) and subcellular components (components of a 

complete organelle). Such distinction is described differently in the Cellular Component 

of GO.  

 

In Cellular Component of GO, terms for subcellular component and cellular component 

are all grouped together under the super-concept Cellular Component. For example, 
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terms at different level of granularity in GO such as cell, apical plasma membrane, 

transport vesicle are all classified under the super-concept Cellular Component. In this 

case, the term cell should not be classified as a cellular component because it is not a part 

of a cell according to Lipid Ontology Reference’s definition. Similarly, apical plasma 

membrane is a part of an organelle and should not be classified together with transport 

vesicle, a complete organelle. Apical plasma membrane should be classified as a 

subcellular component according to Lipid Ontology Reference’s definition.  

 

 
 
 

GO handles part of an organelle by dividing a root concept with a term of cellular 

component with <cellular component term> concept and <cellular component term> part 
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concept. In this case, “plasma membrane” (GO: 0005886) would have a “part” 

counterpart of “plasma membrane part” (GO: 0044459). The term “apical plasma 

membrane” (GO: 0016324) is classified under “plasma membrane part” concept. All 

these terms are encapsulated within the upper class Cellular Component. In principle, all 

<cellular component term> part can be considered orthogonal to subcellular component 

in Lipid Ontology Reference (see Figure 17).  

 

 
 
 

In addition to that, GO also includes terms that are not suitable to define as part of an 

organelle such as “virion” (GO: 0019012), “extracellular matrix” (GO: 0031012), 

“synapse” (GO: 0045202), and “membrane-enclosed lumen”(GO: 0031974). As an 
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example, a membrane-enclosed lumen is a region of space between cells/tissues and is 

not necessary a part of an organelle (see Figure 18). It is clear that GO is ideally useful 

for annotation of gene product localization, rather than to describe cellular components as 

according to the formalization in Lipid Ontology Reference. For the time being, terms in 

Cellular Component of GO is placed under the Cellular_Component of Lipid Ontology 

Reference.  
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2.1.3) Evaluation of Molecule Role Ontology for Alignment and Integration into 

Lipid Ontology Reference  

The Protein concept is examined and is directly integrated into Lipid Ontology Reference 

under the Protein_Functional_Classification (see Figure 19). The 

Protein_Functional_Classification supplies concepts of functional role that a particular 

protein instance can play in a biological process.  

 

The Chemical concept is examined and sub-concepts of molecule role irrelevant to lipids 

are removed from the Chemical concept before the Chemical concept was aligned and 

integrated into Lipid Ontology Reference. The Chemical concept is grouped together 

with Toxin and Enzyme_Chemistry (encapsulates enzyme reactants and effectors) under 

the Lipid_Functional_Classification concept where the Lipid_Functional_Classification 

supplies concepts of functional role that a particular lipid instance can play in a biological 

process (see Figure 19).  
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2.1.4) Evaluation of NCI Thesaurus for Alignment and Integration into Lipid 

Ontology Reference  

Cell, Tissue, Organism, Biological Process concepts from NCI Thesaurus are examined 

and are integrated directly into Lipid Ontology Reference as orthogonal modules. 

 

Disease_and_Disorder from NCI Thesaurus is placed under Diseases in Lipid Ontology 

Reference. It is an extensive list of disease terms. We have taken the initiative to simplify 

the list by removing redundant concepts, specifically for the Neoplasms section. NCI 

employs several means of classifying neoplasms, including using morphology, site of 

disease and tissue types. Identical terms are repeated several times due to different 
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approaches applied to classify neoplasms. We retain only the classification of Neoplasms 

by site in this iteration of Lipid Ontology Reference. 

 
Concept aligned 
and integrated to 
LiPrO 

Ontology Equivalent Concepts in Lipid 
Ontology Reference 

Integration 
Methodology 

Biological_Process* Gene Ontology[43] GO_Biological_Process OWL Import 
Cellular_Component Gene Ontology[43] Cellular_Component OWL Import 
Molecular_Function* Gene Ontology[43] GO_Molecular_Function OWL Import 
Disease_and_Disorder NCI Thesaurus[42] Diseases OWL Import 
Cell* NCI Thesaurus[42] Cell Ontology 

alignment 
Tissue* NCI Thesaurus[42] Tissue Ontology 

alignment 
Organism* NCI Thesaurus[42] Organism Ontology 

alignment 
Biological_Process NCI Thesaurus[42] Processes Ontology 

alignment 
Pathway* Pathway Ontology 

(http://purl.org/obo/owl/PW)  
Pathways Ontology 

alignment 
Chemical Molecule Role Ontology 

(http://purl.org/obo/owl/IMR) 
Lipid_Functional_Classification Ontology 

alignment 
Protein Molecule Role Ontology 

(http://purl.org/obo/owl/IMR) 
Protein_Functional_Classification Ontology 

alignment 
* Concepts aligned and integrated into Lipid Ontology Reference with minimal modifications. 
 
Table 10: All concepts aligned and integrated into Lipid Ontology Reference 
 
 

3) Specialized Lipid Ontology for Apoptosis Pathway and Ovarian 

Cancer 

As diseases are composed of multiple processes and interconnected pathways, 

visualization and subsequent guided exploration of pathways are crucial to the 

understanding of relevant medically important diseases. Lipid Ontology Ov is a 

specialized application ontology derived from the Lipid Ontology Reference to integrate 

bibliographic information and facilitate pathway exploration by the end user with the use 

of Knowlegator. Knowlegator provides an interactive query paradigm for pathway 

discovery from full-text scientific papers as well as navigation of annotations across 
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biological systems and data types. The ontology provides a query model to facilitate 

navigation of the pertinent sentences by researchers in specific fields of research, namely 

ovarian cancer, lipid-related pathways and acts as a knowledgebase when it is instantiated.  

 

3.1) Ontology Description 

To facilitate the navigation of pathway information we modify the existing Lipid 

Ontology Reference by incorporating Protein concepts under two newly defined 

superconcepts    

(i) Monomeric_Protein_or_Protein_Complex_Subunit and  

(ii) Multimeric_Protein_Complex.  

 

Multimetic_Protein_Complex is a super-concepts that subsume other concepts polymeric 

protein complexes that are composed of more than one monomeric protein and they are 

asserted with necessary conditions where the membership requirement of these concepts 

is restricted by relevant cardinality and existential axioms.   

 

For example, PP2A is a complex consisting of a common heterodimeric core enzyme, 

composed of a 36 kDa catalytic subunit (subunit C), and a 65 kDa constant regulatory 

subunit (PR65 or subunit A), that associates with a variety of regulatory subunits. 

Proteins that associate with the core dimer include three families of regulatory subunits B. 

 

The concept of PP2A (complex) are defined the following necessary conditions.  

“hasPart some PP2R” (subunit B) 
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 “hasPart exactly 1 PR65” (subunit A) 

 “hasPart exactly 1 PP2C” (subunit C/catalytic subunit) 

The incorporation of protein entities into the Protein concept are achieved either by 

importing protein entities found in Molecule Roles Ontology or by adding the names 

manually.  

 

In total, we have incorporated 111 concepts of protein class under 

Multimetic_Protein_Complex and Monomeric_Protein_or_Protein_Complex _Subunit.  

 

Similar to the scenario reported for lipids, every protein entity is related to instances 

found under concepts subsumed by Protein_Database_Identifier, namely GI_Accession, 

MGI_ID, Uniprot_ID and concepts subsumed by Protein_Name, specifically, 

Protein_Broad_Synonym and Protein_Exact_Synonym. The implementation of instances 

is similar to our previous use case applied to lipids. 

 

The instantiation of these protein concepts brings to the ontology an additional layer of 

annotation that may be relevant to an end user, namely these instances can be interpreted 

as proteins with specific molecule role. Protein entities relate to one another via the 

property "hasProtein_Protein_Interaction_ with". Each protein entity then relates to a 

lipid entity via the property "interactsWith_ Lipid". These extensions facilitate query of 

protein-protein interactions derived from tuples found by the text mining of full text 

documents. In addition to that, a protein entity relates to a gene entity via the 

“isGene_Product” property.  
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Lastly, in the interest of connecting these biomolecules(protein and lipid) to relevant 

disease condition. We connect Protein and Lipid instances to instances of Disease via 

“participates_in_Disease-protein-” and “participates_in_Disease-lipid-” respectively. The 

property “participates_in_Disease-lipid-” is equivalent to “hasRole_in_Disease” in Lipid 

Ontology 1.0. 

 

4) Conclusion 

We describe 3 application ontologies, namely Lipid Ontology 1.0, Lipid Ontology 

Reference and Lipid Ontology Ov. These 3 ontologies are developed to support the 

knowledge visualization platform (Knowlegator) and provide an intuitive visual query 

and navigation of lipid centric information to end users. Lipid Ontology 1.0 is a basic 

application ontology that integrates bibliographic information with the existing data from 

lipid databases and provides a basic query model for the Knowlegator platform. Lipid 

Ontology Reference is built based on the content of Lipid Ontology 1.0 by integrating 

other OWL ontologies into Lipid Ontology 1.0. Lipid Ontology Reference provides a 

content rich reference from which other, simpler, specialized application ontologies can 

be developed. Lipid Ontology Ov is such an application ontology; and it has been applied 

to assess the lipidome of ovarian cancer with respect to apoptosis in the bibliosphere. For 

further discussion on the use of these application ontologies, please refer to Chapter V. 
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Chapter IV: Representing Lipid Entity 

1) Lipid Classification Ontology (LiCO) 

LiCO is a reference ontology created to share formalized definitions of lipid with the 

wider bio-ontology, bioinfomatics and lipidomics community. It is compliant to the 

requirement of OBO and is designed to be as orthogonal to OBO ontologies as possible. 

LiCO provides research communities with DL-based definition of lipids classified 

according the LIPID MAPS nomenclature. It describes lipid classes comprehensively 

with the use of DL axiomatic restriction and covers all 8 major categories of lipids 

classified by the LIPID MAPS consortium.  

 

1.1) Ontology Description 

1.1.1) Upper Ontology Concepts 

LiCO aims to share our knowledge of lipid definition with experts and scientists in the 

wider community. For this purpose, we re-design the Lipid Ontology 1.0 to be as 

orthogonal as possible to other ontologies. We achieve this by incorporating new upper 

ontology concepts, namely, the BFO upper ontology concepts and ChEBI upper ontology 

concepts. 

  

1.1.1.1) BFO Upper Ontology Concepts 

BFO upper ontology concepts are concepts compliant to the requirement of OBO. They 

represent the upper level categories common to domain ontologies developed by 

scientists in different domains and at different levels of granularity in a consistent fashion. 

We have re-used Continuant_Entity, Independent_Continuant_Entity from BFO (see 
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Figure 20). The use of these concepts enables the LiCO to be added on to BFO ontology 

as a module.  

 

 
 

 

1.1.1.2) Upper Ontology Concepts from ChEBI 

These are concepts used in ChEBI. We have re-used only 1 concept from ChEBI, namely 

the concept Polyatomic_Entities. Because ChEBI concepts are not necessarily OBO 

compliant and do not make distinction between the plural and singular forms, we 

modified the concept Polyatomic_Entities from the plural form to singular form, 

Polyatomic_Entity. The use of Polyatomic_Entity positions this concept as a concept that 
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is orthogonal to ChEBI without violating OBO or BFO compliance. This ensures that 

LiCO is orthogonal to ChEBI and can be added into ChEBI as a module.      

 

1.1.2) OBO Compliance Assertion in Lipid Classification Ontology 

The original Lipid Ontology 1.0 uses plural nouns to name lipid classes. This is because 

the lipid class in Lipid Ontology 1.0 is considered as a collection of lipid instances. 

Unfortunately, this representation of lipid is semantically and grammatical inconsistent 

due to how the subsumption hierarchy is specified in OWL-DL. The subsumption 

hierarchy in OWL-DL ontology is an “is_a” subsumption hierarchical relationship and 

the use of plural lipid classes is not compatible with the “is_a” subsumption relation. 

Similarly, the plural lipid classes are not compatible with most of the object properties 

use in the Lipid Ontology 1.0 because these properties were expressed as singular verb 

too. For example, to say that acylglycerols(plural subject) is_a(singular verb) lipids(plural 

predicate) is incorrect. Similarly, to say that acylglycerols(plural subject) 

has_LMID(singular verb and predicate) is also incorrect.  

 

We correct this incorrect expression of English by changing all plurally named classes 

into the singular form. In addition to that, OBO criterion makes distinction between an 

object and a group of object. By re-expressing all classes in Lipid Ontology 1.0 as 

singular nouns, we are ensuring LiCO’s classification is orthogonal to other OBO 

ontologies to a certain degree.   

 



   82
  

In addition to that, OBO community also discourages the inclusion of “and” and “or” in 

the name of a concept. Inclusion of “and” or “or” in a concept name suggests a plural 

subject and introduces unnecessary semantic ambiguities. We address this issue by 

simplifying concept names that carry “and” or  “or” in them.  Lipid classes such as 

Fatty_acids_and_conjugates are simplified to just Fatty_acid, the root chemical term of 

the original concept. In this case, we are saying that all subclasses and instances of 

Fatty_acids_and_conjugates are essentially Fatty_acid. Some lipid classes can not be 

simplified this way because the subclasses or instances are not the same as root chemical 

term of the original concept. An example of this is 

C22_bile_acids_alcohols_and_derivatives. It is re-expressed as C22 

_bile_acid_structural_derivative and 3 subclasses, namely C22_bile_acid_derivative, 

C22_bile_acid_alcohol_derivative and C22_bile_acid are created under this newly named 

class. This is because C22_bile_acid_derivative, C22_bile_acid_alcohol_derivative and 

C22_bile_acid do shared structural similarity with the root chemical, C22_bile_acid but 

are not the same as the root chemical term.  

 

1.1.3) Textual Definition 

Another important principle that underlies an OBO compliant ontology is the provision of 

textual annotation for all terms in the ontology. In LiCO, it is our intention to provide 

textual annotation for all DL-defined lipid classes, except for Polyketide. We are 

currently in the process of supplying LiCO with textual definitions.  
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1.1.4) Concepts Re-used from Chemical Ontology 

Prior to extending the ontology for classification tasks we have reviewed existing 

ontologies for reusable components. We have reviewed the Chemical Ontology for reuse 

of the Organic_Group concept hierarchy and have added 32 organic groups from 

Chemical Ontology into LiCO. This is done manually in the Protégé 3.4 beta editing 

environment. In addition to that, we create 63 new concepts under the Organic_Group 

super-concept. The Organic_Group concept hierarchy is reorganized and is asserted with 

new is-a relationship. In order to describe the lipids with complex chemical moieties, we 

rename the Organic_Group concept into Simple_Organic_Group and position it together 

with newly created Complex_Organic_Group and Chain_Group concepts under a new 

Organic_Group concept. The Simple_Organic_Group subsumes the chemical functional 

group concepts from the former Organic_Group while the Complex_Organic_Group 

subsumes concepts for complex chemical moieties such as Organic_Sugar_Group and 

Amino_Acid. In addition to that, we have also created the new Ring_System concept to 

describe lipids with ring structure.  

 

1.1.5) Axiomatic and Relationship Constraints in LiCO 

In Chemical Ontology, Organic_Compound are concepts with hasPart relationship to 

concepts under Organic_Group. The same property is used in LiCO to relate concepts 

subsumed by Lipid to concepts subsumed by Organic_Group. Inversely, an inverse 

property partOf is used to relate concepts subsumed by Organic_Group with concepts 

subsumed by Lipid.   
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Lipids are very complicated biomolecules and most lipids can only be adequately 

classified with more than one distinct functional group. Lipids are defined by multiple 

sets of organic groups and these definitions are used to restrict the membership of 

individual lipids to specific classes of lipids. Therefore, description logic rules with 

greater complexity than what is used in Chemical Ontology are needed to describe lipids. 

For Lipid Ontology, we use 2 types of concept to define the structure of lipids. They are 

Organic_Group and Ring_System.   

 

The Organic_Group consists of Chain_Group, Simple_Organic_Group and Complex_ 

Organic_Group. Simple_Organic_Group consists of concepts that describe basic 

functional groups whereas complex organic group encapsulates glycans and amino acids. 

Glycans, in particular, are used to classify lipids such as sacharrolipid, and other sugar- 

linked lipids such as sphingolipids. These concepts are used to extensively to define 

lipids in all 8 categories of lipids in LiCO.  

 

The Ring_System consists of Isoprenoid_ring_derivative, Monocyclic_Ring_Group and 

Polycyclic_Ring_System. These concepts are used to define lipids that have at least one 

or more rings. Specifically, they are used mainly for Sterol_Lipid, Prenol_Lipid and other 

lipids with rings. 

 

The Chain_Group consists of Carbon_Chain_Group and Sphingoid_Base_Chain_Group. 

Sphingoid_Base_Chain_Group is used exclusively for Sphingolipid whereas Carbon_ 

Chain_Group is applied to other lipid classes accordingly.   
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These concepts play a very important role as they formed the necessary structural 

description to define the identity of the lipid-based compound.  

 

1.1.6) Hierarchical Classification of Lipids 

Classes of lipids are organized in a hierarchical basis. The classes at the top of the 

hierarchy are restricted by necessary conditions that are more generic in nature. As the 

lipid classification hierarchy becomes deeper, necessary conditions that are more specific 

are used to define the membership requirement for a particular class of lipid. At the end 

of hierarchy, lipid classes are restricted by necessary and sufficient conditions and 

closure axioms.  

 

There are 2 ways to assert greater specificity as we go down hierarchy. 

The first way involves specifying the subclass of the present class to restrict the definition 

of a lipid. Necessary conditions such as “hasPart some 

Carboxylic_Acid_derivative_Group” can be further specified by specifying the subclass 

of Carboxylic_Acid_derivative_Group, which is described in the example below as an 

Aldehyde. 

 

For example, Fatty_Aldehyde is a Fatty_Acyl with at least one Aldehyde. It has the 

following necessary condition. 

“hasPart some Carboxylic_Acid_derivative_Group(inherited from Fatty_Acyl) 

  hasPart some Aldehyde” 
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The second way involves the use of cardinality axiom (see Table 11). 

The Cardinality axiom can be applied to concepts at any level. Once it is declared, the 

cardinality axiom restricts the number of a particular concept to be allowed in a 

restriction. When it is applied to Fatty_Aldehyde, we can declare “hasAldehyde_Group 

exactly 1” in the necessary and sufficient conditions. The same Cardinality axiom has 

been applied to members of Chain_Group as well. This is particularly useful when a lipid 

class can be defined by the number of certain organic group concept or Chain_Group 

concept. 

 

For example, Triacylglycerol is an Acylglycerol with 3 acyl chains. It is restricted with 

the following necessary conditions 

“hasAcyl_Chain exactly 3” 

 
Concepts(Range) Property 
Carbon_Chain_Group hasCarbon_Chain 
Allyl_Ether_Chain hasAllyl_Ether_Chain 
Acyl_Chain hasAcyl_Chain 
Alkyl_Ether_Chain hasAlkyl_Ether_Chain 
Meromycolic_Chain hasMeromycolic_Chain 
Acyl_Ester_Chain hasAcyl_Ester_Chain 
Vinyl_Ether_Chain hasVinyl_Ether_Chain 
Alkyl_Chain hasAlkyl_Chain 
Glycerol hasGlycerol_Group 
Sphingoid_Base_Chain_Group hasSphingoid_Base_Chain 
Dehydrophytosphingosine_Chain hasDehydrophytosphinganine_Chain 
Sphing-4-nine_par_Sphingosine_par_Chain hasSphing-4-enine_Chain 
num4-hydroxysphinganine_par_Phytosphingosine_par_Chain has4-hydroxysphinganine_Chain 
Sphinganine_par_Dihydrosphingosine_par_Chain hasSphinganine_Chain 
Phosphate_Group hasPhosphate_Group 
Prenyl hasPrenyl_Group 
Ether hasEther_Group 
Phytyl hasPhytyl_Group 
*For list of lipid applied with cardinality group (see Appendix C) 
 
Table 11: Concepts (range) and corresponding properties in LiCO that enable definitions 
of lipid with cardinality axioms 
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1.1.7) Closure Axioms 

The closure axiom is applied to a defined concept at the end of a concept hierarchy. 

Superclasses and other primitive concepts are not closed by closure axiom to avoid 

inconsistency among disjointed sibling classes. Closure axioms restrict the type of 

relationship constraints allowed for a lipid class. 

 

1.1.8) Definitions of Fatty_Acyl 

The fatty acyls are a diverse group of molecules synthesized by chain-elongation of an 

acetyl-CoA primer with malonyl-CoA (or methylmalonyl-CoA) groups [2]. We define a 

Fatty_Acyl as a lipid that has at least one Carboxylic_Acid_derivative_Group and at least 

one Acyl_Chain.  

An example of Fatty_Acyl is Docosanoid. Docosanoid is described as a subclass of 

Fatty_Acyl. It inherits from Fatty_Acyl, the Carboxylic_Acid_derivative_Group and the 

Acyl_Chain. This Carboxylic_Acid_derivative_Group is further specified to be a 

Carboxylic_Acid in Docosanoid, whereas the Acyl_Chain of Docosanoid was further 

specified with a cardinality axiom in conjuction with the property hasAcyl_Chain. 

Consequently, Docosanoid is defined to have only 1 Acyl_Chain. Moreover, Docosanoid 

has multiple and distinct functional groups such as Carboxylic_Acid, Alkenyl_Group, 

Alcohol and Cyclopentenone. These functional groups are made to relate with 

Dosocanoid via the property “hasPart” in conjuction with the existential axiom “some”. 

A closure axiom is needed to restrict the type of relationship constraints allowed for a 

lipid class. Closure axiom is applied to Docosanoids so that lipids of this class can only 
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have the following functional groups, namely, Carboxylic_Acid, Alkenyl_Group, 

Alcohol, Cyclopentenone and Acyl_Chain. (see Table 12)  

 
 
 
 

 

Necessary and Sufficient Conditions 
LC_Fatty_Acyl 
(hasPart some Carboxylic_Acid) and (hasPart some Alcohol) and 
(hasPart some Alkenyl_Group) and (hasPart some Cyclopentenone) 
and (hasAcyl_Chain exactly 1) 
hasPart only (Carboxylic_Acid or Alcohol or Alkenyl_Group or 
Cyclopentenone or Acyl_Chain) 
Necessary Conditions inherited from LC_Fatty_Acyl                             
((hasPart some Carboxylic_Acid_derivative_Group) and (hasPart 
some Acyl_Chain)) or (hasPart some Alkyl_Chain) 

 
Table 12: DL definition for docosanoid (closue axiom in italics) 
 
 

1.1.8.1) Axiomatic and Relationship Constraints for Exceptional Lipid Classes in 

Fatty_Acyl 

Although most lipids can be classified by functional groups, certain lipids within the 

LIPID MAPS nomenclature are found in classes even though these lipids do not have the 

required functional groups. This is because the LIPID MAPS nomenclature classifies 

lipids based on their chemical structure or their biosynthetic origin. For example, lipids 

such as Fatty_alcohol, Fatty_Nitrille, Fatty_ether and Hydrocarbon are classified by 

LIPIDMAPS as a member of Fatty_Acyl although they do not have an Acyl_Group. In 

order to reconcile this contradicting decision, we expand the definition of Fatty_Acyl to 

include Alkyl_Chain, a characteristic structure of those exceptional Fatty_Acyl classes. A 

Fatty_alcohol inherits an Alkyl_Chain from Fatty_Acyl and is further defined to have 

only 1 Alkyl_Chain in the necessary and sufficient condition. This necessary and 
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sufficient condition also includes a “hasPart” property that connects Fatty_alcohol to an 

Alcohol concept. Such a definition enables us to include lipids without an Acyl_Group as 

a member of Fatty_Acyl (see Table 13). In addition to that, we create a new lipid class, 

namely Fatty_Acyl_derivative, a subclass of Fatty_Acyl where those exceptional lipids 

are classified as members.  

 

 

Necessary and Sufficient Conditions 
LC_Fatty_acyl_derivative 
(hasPart some Alcohol) and (hasAlkyl_Chain exactly 1) 
hasPart only (Alcohol or Alkyl_Chain) 
Necessary Conditions inherited from LC_Fatty_acyl_derivative            
hasPart some Alkyl_Chain 
Necessary Conditions inherited from LC_Fatty_Acyl                             
((hasPart some Carboxylic_Acid_derivative_Group) and (hasPart 
some Acyl_Chain)) or (hasPart some Alkyl_Chain) 

 
Table 13: DL definition for fatty alcohol 
 
 

1.1.8.2) Extension of Mycolic Acid Class 

Lipidomics primarily uses mass spectrometric analysis to characterize biologically 

important lipids and full structural characterization of lipids is elucidated with NMR. 

Mycolic acid is a family of structurally related lipids that constitute a major component of 

the cell wall of Mycobacterium tubeculosis and several other bacteria. They are medically 

important lipids which have been implicated in some of the most characteristic 

pathogenic features of mycobacterial disease. By 1998, there had been at least 500 known 

chemical structures of related mycolates [54]. By comparison, the LMSD currently 

contains only 3 mycolic acid records. There are therefore many mycolic acids with 

known structure that have yet to be systematically named or classified. Classification of 

these lipids is an important task needed for the system-level analysis of mycobacterial 
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pathogenesis and would contribute significantly to the molecular biology and lipidomics 

studies of mycolates from mycobacteria. Here we illustrate the extension of LiCO to 

include Mycolic_Acid class not found in LMSD and demonstrate the assignment of a real 

example of an alpha mycolate (see Figure 2) to the LiCO.  

 

Based on LIPID MAPS nomenclature, we classify Mycolic_acid as a member of 

Fatty_Acid. We extend the classification of Mycolic_acid by adding 9 defined subclasses, 

Alpha_mycolic_acid, Alpha_prime_mycolic_acid, Alpha_1_mycolic_acid, 

Alpha_2_mycolic_acid, Keto_mycolic_acid, Epoxy_mycolic_acid, Wax_ester_mycolic_ 

acid, Methoxy_mycolic_acid and Omega-1_methoxy_mycolic_acid. These defined 

classes are distributed among 5 primitive classes, namely General_mycolic_acid, 

General_methylated_mycolic_acid, General_alpha_mycolic_acid, Oxygenated_mycolic_ 

acid, General_methoxy_mycolic_acid. (see Table 14)   

 
Structure Class type of Mycolic acid 
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OH

OH
OOCH3

Methoxy_mycolic_acid 

OH

OH
OH3CO

Omega-
1_methoxy_mycolic_acid 

 
Table 14: Known classes of mycolic acid and their classification within LiCO 
 
 

Alpha mycolic acid is a mycolic acid that has the following functional groups; carboxylic 

acid, cyclopropane and an alpha-hydroxyl acid group. The carboxylic acid group is a 

member of the acyl group and it is not an ester group. Therefore, according to the 

classification scheme below, alpha mycolic acid must be a member of Fatty_Acyl.  

 

Among members of Fatty_Acyl, only Octadecanoid, Docosanoid, Eisocsanoid and 

Fatty_Acid have Carboxylic_Acid. Alpha_mycolic_acid does not have a cycloketone 

group and therefore, it cannot be Docosanoid, Eicosanoid or Octadecanoid. Therefore, it 

is a member of Fatty_Acid. Among members of Fatty_Acid, only Mycolic_acid has 

Alpha-Hydroxy_Acid_Group and a Meromycolic_Chain. Therefore, alpha mycolic acid 

is classified under this class of Fatty_Acid. 

Because Alpha_mycolic_acid is the only class that accepts mycolic acid with 

Cyclopropane, the lipid example in Figure 2 is classified as a member of 

Alpha_mycolic_acid. (see Table 15) 
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Necessary and Sufficient Conditions 
LC_General_alpha_mycolic_acid 
hasPart some Cyclopropane 
hasPart only (Alkenyl_Group or Alpha-Hydroxy_Acid_Group or 
Cyclopropane or Carboxylic_Acid or Meromycolic_Chain) 
Necessary Conditions inherited from LC_General_alpha_mycolic_ 
acid                                
hasPart some (Cyclopropane or Alkenyl_Group) 
Necessary Conditions inherited from LC_Mycolic_acid                         
(hasPart some Alpha-Hydroxy_Acid_Group) and 
(hasMeromycolic_Chain exactly 1) 
Necessary Conditions inherited from LC_Fatty_acid 
(hasPart some Carboxylic_Acid) and (hasAcyl_Chain exactly 1) 
Necessary Conditions inherited from LC_Fatty_Acyl                             
((hasPart some Carboxylic_Acid_derivative_Group) and (hasPart 
some Acyl_Chain)) or (hasPart some Alkyl_Chain) 

 
Table 15: DL definition for alpha mycolic acid 
 
 

1.1.9) Definitions of Glycerophospholipid  

Glycerophospholipids are glycerol-containing lipids that also have at least one phosphate 

headgroup. Depending on the biological source, glycerophospholipids may be subdivided 

into distinct classes based on the nature of the polar headgroup at the sn-3 or sn-1 

position of the glycerol backbone [2].  We define Glycerophospholipid as a lipid that has 

at least a Carboxylic_Acid_Ester or Ether, at least a Glycerophosphate_Group and at 

least a carbon chain from the Carbon_Chain_Group. 

An example of Glycerophospholipid is Diacylglycerophosphocholine. 

Diacylglycerophosphocholine is a subclass of Glycerophosphocholine. 

Glycerophosphocholine is a subclass of Glycerophospholipid and has inherited 

Carbon_Chain_Group, Glycerophosphate_Group and either Carboxylic_Acid_Ester or 

Ether from Glycerophospholipid. The Glycerophosphate_Group is further specified to be 
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a Glycerophosphatidylcholine in Glycerophosphocholine. Following that, 

Diacylglycerophosphocholine inherits the functional group concepts from 

Glycerophosphocholine. In addition to that, the Carbon_Chain_Group of the 

Diacylglycerophosphocholine is furthered specified with a cardinality axiom 

“hasAcyl_Chain exactly 2”. A closure axiom is needed to restrict the type of relationship 

constraints allowed for a lipid class. Closure axiom is applied to 

Diacylglycerophosphocholine so that lipids of this class can only have the following 

functional groups, namely, Carboxylic_Acid_Ester, Glycerophosphatidylcholine and 2 

Acyl_Chains. (see Table 16) 

 

 

Necessary and Sufficient Conditions 
LC_Glycerophosphocholine 
hasAcyl_Chain exactly 2 
hasPart only (Glycerophosphatidylcholine or Acyl_Chain or 
Carboxylic_Acid_Ester) 
Necessary Conditions inherited from LC_Glycerophosphocholine         
hasPart some Glycerophosphatidylcholine 
Necessary Conditions inherited from LC_Glycerophospholipid              
(hasPart some (Carboxylic_Acid_Ester or Ether)) and (hasPart some 
Glycerophosphate_Group) and (hasPart some Carbon_Chain_Group) 

 
Table 16: DL definition for diacylglycerophosphocholine 
 
 

1.1.9.1) Use of the Term “phosphatidyl” and “phosphatidic acid” 

Due to the overlap of identical terms use to name concepts use for Lipid classes and 

concepts of Organic_Group, we modify the names of Organic_Group concepts use to 

define Glycerophospholipid. The rationale of applying the modification to the 

Organic_Group concepts instead of Lipid class names is to ensure that the Lipid 

classification hierarchy will remain as identical as possible with LIPID MAPS 
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nomeclature. An example of such a lipid is Glycerophosphocholine (a lipid class), 

defined by Glycerophosphatidylcholine (organic group concept modified from 

Glycerophosphocholine organic group). In another example, Glycerophosphate (a lipid 

class) is defined by Glycerophophatidic_acid(an organic group concept).   

 

1.1.10) Definitions of Glycerolipid 

Glycerolipids encompass all glycerol-containing lipids, with the exception of 

glycerophospholipids. Glycerolipids are dominated by the mono-, di- and tri-substituted 

glycerols, the most well-known being the acylglycerols. Additional subclasses are 

represented by the glycerolglycans, which are characterized by the presence of one or 

more sugar residues attach to glycerol via a glycosidic linkage [2]. We define 

Glycerolipid as a lipid that has at least a Carboxylic_Acid_Ester or Ether, at least a 

Glycerol or Glyceroglycan and at least a carbon chain from the Carbon_Chain_Group. 

An example of Glycerolipid is Triacylglycerol. Triacylglycerol is a subclass of 

Triradylglycerol. Triradylglycerol is a subclass of Glycerolipid and has inherited 

Carbon_Chain_Group, either Glycerol or Glyceroglycan and either 

Carboxylic_Acid_Ester or Ether from Glycerolipid. Triradylglycerol is defined to have 

only Glycerol, Carboxylic_Acid_Ester. In addition to that, Carbon_Chain_Group is 

specified with a cardinality axiom “hasCarbon_Chain exactly 3”. Following that, 

Triacylglycerol inherits all functional group concepts from Triradylglycerol and a 

cardinality axiom “hasAcyl_Chain exactly 3” is applied to Carbon_Chain_Group in 

Triacylglycerol. A closure axiom is needed to restrict the type of relationship constraints 

allowed for a lipid class. Closure axiom is applied to Triacylglycerol so that lipids of this 



   95
  

class can only have the following functional groups, namely, Carboxylic_Acid_Ester, 

Glycerol and 3 Acyl_Chains. (see Table 17) 

 

 

 

Necessary and Sufficient Conditions 
LC_Triradylglycerol 
hasAcyl_Chain exactly 3 
hasPart only (Glycerol or Acyl_Chain or Carboxylic_Acid_Ester) 
Necessary Conditions inherited from LC_Triradylglycerol                     
(hasCarbon_Chain exactly 3) and (hasPart some Glycerol) 
Necessary Conditions inherited from LC_Glycerolipid                          
(hasPart some (Carboxylic_Acid_Ester or Ether)) and (hasPart some 
Carbon_Chain_Group) 

 
Table 17: DL definition of triacylglycerol 
 

1.1.10.1) Differences Between Specifying Cardinality Axiom for Glycerolipid and 

Glycerophospholipid 

LIPID MAPS organizes Glycerolipid by the number of acyl chains whereas 

Glycerophospholipid is organized according to head groups, regardless of the number of 

acyl chains. Cardinality axiom is applied differently to specify the Carbon_Chain_Group 

for these 2 categories of lipids.  

 

Glycerolipid was divided by the number of chains first before the chains were 

specifically specified.  

“hasPart some Carbon_Chain_Group”(inherited from Glycerolipid) 

“hasCarbon_Chain_Group exactly 3” (inherited from Triradylglycerol) 

“hasAcyl_Chain exactly 3” (for Triacylglycerol)” 
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Glycerophospholipid is divided by headgroups first regardless to the type of carbon 

chains or number of chains before the chain was specifically specified. 

“hasPart some Carbon_Chain_Group” (inherited from Glycerophopholipid) 

“hasPart some Glycerophosphatidylcholine” (no Cardinality axiom inherited from 

Glycerophosphocholine. Rather, a headgroup was specified) 

“hasAcyl_Chain exactly 2” (for Diacylglycerophosphocholine) 

 

The rationale behind this implementation is to ensure that the organization of ontology to 

be consistent with respect to the classification found in the LIPID MAPS nomenclature.  

 

1.1.11) Definitions of Saccharolipid 

Saccharolipids are compounds where fatty acids are linked directly to a sugar backbone 

[2]. We define Saccharolipid as a lipid that has at least a Glycan_Group and at least an 

Acyl_Chain. 

An example of Saccharolipid is Triacylaminosugar. Triacylaminosugar is a subclass of 

Acylaminosugar. Acylaminosugar is a subclass of Saccharolipid and has inherited 

Acyl_Chain and Glycan_Group from Saccharolipid. Acylaminosugar is defined to have 

additional Phosphate_Group and Amino_Acid. Moreover, the Glycan_Group of 

Acylaminosugar is further specified to be either a Monomeric_Glycan_Group or a non 

Trehalose Dimeric_Glycan_Group. Following that, Triacylaminosugar inherits the 

functional group concepts from Acylaminosugar. Triacylaminosugar is further defined to 

have Carboxylic_Acid_Amide_Group and Carboxylic_Acid_Ester_Group. The 

Carbon_Chain_Group of Triacylaminosugar is specified by a cardinality axiom 
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“hasAcyl_Chain exactly 2”.  A closure axiom is needed to restrict the type of relationship 

constraints allowed for a lipid class. Closure axiom is applied to Triacylaminosugar so 

that lipids of this class can only have the following functional groups, namely, 

Carboxylic_Acid_Ester_Group, Carboxylic_Acid_Amide_Group, Glycan_Group, 

Phosphate_Group, Amino_Acid and 2 Acyl_Chains. (see Table 18) 

 

 

Necessary and Sufficient Conditions 
LC_Acylaminosugar 
(hasAcyl_Chain exactly 2) and (hasPart some 
Carboxylic_Acid_Ester_Group) and (hasPart some 
Carboxylic_Acid_Amide_Group) and (hasPart some 
Amino_Acid) 
hasPart only (Phosphate_Group or Glycan_Group or 
Carboxylic_Acid_Ester_Group or 
Carboxylic_Acid_Amide_Group or Amino_Acid or 
Acyl_Chain) 
Necessary Conditions inherited from LC_Acylaminosugar   
(hasPart some (Monomeric_Glycan_Group or 
(Dimeric_Glycan_Group and not Trehalose))) and 
(hasPart some Phosphate_Group)  
Necessary Conditions inherited from LC_Saccharolipid       
(hasPart some Acyl_Chain) and (hasPart some 
Glycan_Group) 

 
Table 18: DL definition of triacylaminosugar 
 
 

1.1.12) Definitions of Sphingolipid 

Sphingolipids are compounds that share a common structural feature, a sphingoid base 

backbone that is synthesized de novo from serine and a long-chain fatty acylcoenzyme A, 

that is further converted into ceramides, phosphosphingolipids, glycosphingolipids and 

other chemical species, including protein adducts [2]. We define Sphingolipid as a lipid 

that has at least a Primary_Amine or Carboxylic_Acid_Secondary_Amide, an Alcohol 

and at least a sphingoid base chain from Sphingoid_Base_Chain_Group. 
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An example of Sphingolipid is Acylceramide. Acylceramide is a subclass of Ceramide. 

Ceramide is a subclass of Sphingolipid and has inherited Sphingoid_Base_Chain_Group, 

Alcohol and either a Primary_Amine or Carboxylic_Acid_Secondary_Amide from 

Sphingolipid. The Carboxylic_Acid_Secondary_Amide is subsequently specified in 

Ceramide. Ceramide is further defined to have Carboxylic_Acid_Ester_Group and 

Acyl_Chain. In addition to that, the Sphingoid_Base_Chain_Group is specified with a 

cardinality axiom “hasSphingoid_Base_Chain exactly 1” in Ceramide.  

Acylceramide inherits the functional group concepts from Ceramide. In addition to that, 

the Sphingoid_Base_Chain_Group is specified to be a Sphing-4-ene_Chain with a 

cardinality axiom “hasSphing-4-ene_Chain exactly 1” whereas the Acyl_Chain is 

specified to be an Acyl_Ester_Chain with a cardinality axiom “hasAcyl_Chain exactly 1” 

in Acylceramide. Following that, Acylceramide is further defined with additional 

Alkenyl_Group. A closure axiom is needed to restrict the type of relationship constraints 

allowed for a lipid class. Closure axiom is applied to Acylceramide so that lipids of this 

class can only have the following functional groups, namely, 

Carboxylic_Acid_Ester_Group, Carboxylic_Acid_Secondary_Amide, Alcohol, 1 Sphing-

4-ene_Chain and 1 Acyl_Ester_Chain. (see Table 19) 
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Necessary and Sufficient Conditions 
LC_Ceramide 
(hasPart some Alkenyl_Group) and (hasSphing-4-enine_Chain 
exactly 1) and (hasAcyl_Ester_Chain exactly 1) 
hasPart only (Alkenyl_Group or Sphing-4-
nine_par_Sphingosine_par_Chain or 
Carboxylic_Acid_Secondary_Amide or 
Carboxylic_Acid_Ester_Group or Acyl_Chain or Alcohol) 
Necessary Conditions inherited from LC_Ceramide                        
(hasSphingoid_Base_Chain exactly 1) and (hasPart some 
Acyl_Chain) and (hasPart some 
Carboxylic_Acid_Secondary_Amide) and (hasPart some 
Carboxylic_Acid_Ester_Group) 
Necessary Conditions inherited from LC_Sphingolipid 
(hasPart some Sphingoid_Base_Chain_Group) and (hasPart 
some (Primary_Amine or Carboxylic_Acid_Secondary_Amide)) 
and (hasPart some Alcohol) 

 
Table 19: DL definition of acylceramide 
 
 

1.1.12.1) Unclassified Sphingolipid 

Some Sphingolipid classes are not defined with DL definitions due to the classification 

inadequacy found in LMSD. Some of these inadequacies are as follows: 

f) Lack of explicit textual definitions in LMSD 

g) Lack of representative instance of lipid for a specific class of lipid(an empty 

concept without data entries) 

An example of this is the sphingolipid class “Other Acidic glycosphingolipids” 

(SP0600).  

h) The use of arbitrarily named lipid class to contain non-conventional lipid 

instances 

An example is “Sphingoid base homologs and variants” and “Sphingoid base 

analogs”.  
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Closer examination of the “Sphingoid base homolog and variants” indicates that most 

instances in the lipid class can be classified elsewhere as “Lysosphingomyelins” and 

“Sphingoid base 1- Phosphates” in the LIPID MAPS hierarchy. It is possible that our 

assumed lipid definition of “Lysosphingomyelins” and “Sphingoid base 1-Phosphate” 

may be broader that what LIPID MAPS had originally intended. The “Sphingoid base 

homolog and variants” may include more types of sphingolipids (inclusive of 

lysosphingomyelins and sphingoid base 1-phosphates) that are not covered by the present 

LIPID MAPS nomenclature. We make provision in LiCO for that by renaming 

“Sphingoid base homolog and variants” to Sphingoid_base_homolog_ 

structural_derivative and creating 2 empty subclasses under the concept, namely 

Sphingoid_base_homolog and Sphingoid_base_homolog_variant.  

 

We handle the unclassified sphingolipids either by excluding the lipid class from the 

hierarchy in the Ontology or by creating an equivalent empty lipid class that is not 

equipped with any DL constraints. 

 

1.1.13) Definitions of Prenol_Lipid 

Prenol lipids are synthesized from the 5-carbon precursors isopentenyl diphosphate and 

dimethylallyl diphosphate that are produced mainly via the mevalonic acid (MVA) 

pathway [2]. Prenol_Lipid is defined as a lipid that has either Phytyl or Prenyl. 

An example of Prenol Lipid is Ubiquinone. Ubiquinone is a subclass of Quinone. 

Quinone is a subclass of Prenol_Lipid and inherited either Prenyl or Phytyl from 

Prenol_Lipid. In addition to that, Quinone is defined with at least a 
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Quinone_Ring_System. Following that, Prenyl is specified in Ubiquinone with minimum 

cardinality axiom and maximum cardinality axiom that restrict Ubiquinone to have only 3 

to 10 Prenyl(“hasPrenyl_Group min 3 and hasPrenyl_Group max 10”). Ubiquinone is 

further defined with Ubiquinone_ring, Alkenyl_Group, Ketone, Ether and 

Isoprene_Chain. A closure axiom is needed to restrict the type of relationship constraints 

allowed for a lipid class. Closure axiom is applied to Ubiquinone so that lipids of this 

class can only have the following functional groups, namely, Ubiquinone_ring, 

Isoprene_Chain, Alkenyl_Group, Ketone, Ether and Prenyl. (see Table 20) 

 

 

Necessary and Sufficient Conditions  
LC_Quinonr_par_inclusive_of_hydroquinone_par_ 
(hasPart some Isoprene_Chain) and (hasPrenyl_Group min 3) and 
(hasPrenyl_Group max 10) 
(hasPart some Ubiquinone) and (hasPart some Alkenyl_Group) and 
(hasPart some Ketone) and (hasPart some Ether) 
hasPart only (Isoprene_Chain or Ubiquinone_ring or Prenyl or 
Alkenyl_Group or Ketone or Ether) 
Necessary Conditions inherited from LC_Quinone_par_inclusive_ 
of_hydroquinone_par_                           
hasPart some Quinone_ring_system 
Necessary Conditions inherited from LC_Prenol_Lipid 
hasPart some (Prenyl or Phytyl) 

 
Table 20: DL definition of ubiquinone 
 
 

1.1.14) Definitions of Sterol_Lipid 

Sterol lipids share a common biosynthetic pathway via polymerization of dimethylallyl 

pyrophosphate/isopentenyl pyrophosphate with prenol lipids but have obvious differences 

in terms of their eventual structure and function [2]. Sterol_Lipid is defined as lipid that 

is composed of Cyclopenta-a-Phenanthrene_Ring_System.  
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An example of Sterol_Lipid is Cholesterol_structural_derivative. 

Cholesterol_structural_derivative is a subclass of Sterol, which in turns inherits 

Cyclopenta-a-Phenanthrene_Ring_System from Sterol_Lipid. The Cyclopenta-a-

Phenanthrene_Ring_System is further specified as Cyclopenta-a-Phenanthrene_Ring in 

Sterol.  Following that, this Cyclopenta-a-Phananthrene_Ring is further specified as 

Cholestane in Cholesterol_structural_derivative. Cholesterol_structural_derivative is 

further defined with an Iso-Octyl_Derivative and either Alcohol or Epoxy or Ketone or 

Alkenyl_Group. A closure axiom is needed to restrict the type of relationship constraints 

allowed for a lipid class. Closure axiom is applied to Cholesterol so that lipids of this 

class can only have the following functional groups, namely, Cholestane, Alcohol, 

Alkenyl_Group, Epoxy, Ketone and Iso-Octyl_Derivative. (see Table 21) 

 

 

Necessary and Sufficient Conditions 
LC_Sterol 
(hasPart some Cholestane) and (hasPart some Iso-
Octyl_Derivative) and (hasPart some (Alcohol or Ketone or 
Alkenyl_Group or Epoxy)) 
hasPart only (Cholestane or Iso-Octyl_Derivative or Alcohol or 
Ketone or Alkenyl_Group or Epoxy) 
Necessary Conditions inherited from LC_Sterol                   
hasPart some Cyclopenta-a-Phenanthrene_Ring 
Necessary Conditions inherited from LC_Sterol_Lipid 
hasPart some Cyclopenta-a-Phenanthrene_Ring_System 

 
Table 21: DL definition of cholesterol structural derivative 
 
 
1.1.14.1) The Use of Alkyl_derivative Chain and the Use of Fissile Variant 

Most sterol lipids are lipids that have a tetracyclic nucleus that is a cyclopenta-a-

phenanthrene structure. Sterol lipid such as Cholesterol is well known as a lipid that is 

composed of the tetracyclic nucleus with an Iso-Octyl Chain at carbon-17. However, as 
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we examine LIPID MAPS, we encounter many lipid instances under the “Cholesterol and 

derivatives” class that vary in the Iso-Octyl chain that protrude from the tetracyclic 

nucleus (see Table 22). Basically, these are lipid derivatives of cholesterol where the Iso-

Octyl chain has been modified biochemically. Because there can be an almost unlimited 

possibility to the type and number of modification to the iso-octyl chain, we introduce a 

new class of carbon chain, namely, Iso-Octyl_Derivative. The generic form of Iso-

Octyl_Derivative, Alkyl_Derivative_Chain specifies biochemically modified alkyl chain 

that are too numerous to be specify. Currently, we specify 14 Alkyl_Chain_Derivative in 

LiCO based on what is needed to define lipid classes from LMSD. Similar approach has 

been applied to Organic_Group concepts use to define prenol lipid, specifically the 

Isoprenoid_derivative.  

 
Sterol with Iso-Octyl Chain Sterols with Iso-Octyl 

derivative  
Class type of Sterol 
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Propyl-Iso-Octyl 

C24-
propyl_sterol_structura
l_derivative 

 
Table 22: Examples of sterols with iso-octyl chain derivative compare to sterol with iso-
octyl chain  
 
 
In addition to that, in order to define the non-conventional sterol lipid (basically lipids 

that do not have the Cyclopenta-a-Phenanthrene_Ring) such as the secosteroid, we 

introduce concepts of fissile variants of tetracyclic nucleus (Cyclopenta-a-

Phenanthrene_fissile_variant) to define these lipids.(Table 23) 

 
Sterols with cyclopenta-a-
Phenanthrene ring structure 

Sterols with cyclopenta-a-
Phenanthrene ring fissile 
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Table 23: Examples of sterol with ring fissile variants with comparison to sterol with 
normal tetracyclic ring  
 
 

1.1.14.2) Use of Taurine 
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In order to classify Steroid_conjugate, specifically Taurine_conjugate, we introduce the 

concept of organic group Taurine. Taurine or 2-aminoethanesulfonic acid, is an organic 

acid. It is a major constituent of bile and can be found in the lower intestine and in small 

amounts in the tissues of many animals and in humans as well [37]. Taurine is a 

derivative of the sulfur-containing (sulfhydryl) amino acid, cysteine. It is one of the few 

known naturally occurring sulfonic acids. In LiCO, we classify Taurine as a unique 

functional group that can be both classified as Organic Sulfur group and as well as amino 

acid. 

 

2) Lipid Entity Representation Ontology 

Lipid Entity Representation Ontology (LERO) is an OBO compliant application ontology 

created to represent and to address the nomenclature issues in lipids. Besides what has 

been described in LiCO, LERO includes additional concepts for lipid database identifiers, 

lipid synonyms, as well as other properties needed to further describe lipids. LERO is an 

ontology equivalent of a lipid database schema and can be used to provide semantic 

meaning and annotation for a lipid database. 

 

2.1) Ontology Description:     

The entities in LERO can be divided into 2 major types: they are either Independent_ 

Continuant_Entity or Dependent_Continuant_Entity. Lipid is a subclass of Independent_ 

Continuant_Entity. Similar to LiCO, lipids in LERO are defined by Organic_Group and 

Ring_System. Both Organic_Group and Ring_System are also sub-concepts of 

Independent_Continuant_Entity.  
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2.1.2) Lipid Specification 

In LERO, we include concepts under the Lipid_Specification concept to specify other 

properties of Lipid. These properties are dependent on the identity of the lipid and are 

subsumed under the concept of Dependent_Continuant_Entity.     

 

Information about individual lipid molecules is modeled in the Lipid and Lipid 

Specification concepts according to the method employed in Lipid Ontology 1.0. In 

addition to the 10 concepts modeled in Lipid Ontology 1.0, we expand on these concepts 

by adding new sub-concepts (see Figure 21). 

 

 
 
Figure 21- Immediate subclasses of Lipid_Specification concept 
 
 
 
 
2.1.2.1) Biological Origin 

We add Cellular_Product_Origin and Organismal_Origin under the concept 

Biological_Origin. Biological origin describes the biological source of a lipid molecule.  

 

2.1.2.2) Data Specification 

The Data_Specification is used to annotate the mass spectromentry data found under the 

Experimental_Data concept. It provides the Ion_Mode necessary to annotate the mass 

spectromentry data. The Ion_Mode is a concept that covers 13 instances that could be 
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used to annotate actual m/z values or the mass spectrometry readings from the instrument. 

(see Figure 22) 

 

 
 
 

2.1.2.3) Experimental Data 

Experimental_Data is expanded to include concepts that specify mass spectrometry data 

of a lipidomics experiment, specifically the tandem MS MS values. 

A mass spectrometry measurement for lipidomics comes in 2 forms; the Precursor/Parent 

Ion m/z value and the Product/Daughter Ion m/z values. The Daughter Ions can be further 

classified into Head m/z value(typically useful for lipids with distinct headgroups such as 

Glycerophopholipid, Sphingolipid) and Tail m/z value(relevant for lipids with acyl or 
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other types of tail/chain). The Others m/z value is meant for MS measurements of non-

tail or non-headgroup fragment of lipids. (see Figure 23) 

 

2.1.2.4) Lipid Identifier 

Lipid_Identifier remains the same as Lipid Ontology 1.0 with 3 database sub-concepts, 

KEGG_Compound_ID, LIPIDBANK_ID, LIPIDMAPS_ID and the lipid name concepts. 

At this point of time, we make provisions in LERO to integrate lipid information from 3 

databases only, namely KEGG COMPOUND database, LIPIDBANK and LMSD (see 

Figure 24). Please refer Figure 12 for description of name concepts. Future development 

of LERO will make provision to add LIPIDAT into the knowledgebase.  

2.1.2.5) Property 

Property is expanded from Color, Physicochemical properties and Stability properties to 

include specific concepts for biophysical properties such as pH, Boiling_Pt(point), 

Melting_Pt(point), (physical)State)_at_room_temp(temperature), Maximum_Stable_pH, 

Minimum_Stable_pH, Maximum_Temperature_Pt(point), Minimum_Temperature_Pt 

(point). (see Figure 23) 
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The inclusion of relevant biophysical properties for lipids is important as we provide 

LERO with necessary concepts to adequately integrate and represent the data and 

knowledge from LIPIDAT, a high quality, hand curated database of lipid with a focus on 

the biophysical properties of lipids.  

  

2.1.2.5) Structural Specification 

Structural_Specification provides concepts needed to specify structural properties of 

lipids. With these concepts, we could specify the stereochemical state of the organic 

groups, the ring junctions and double bonds. In addition to that, we could specify the 

position of carbon chain, organic group and ring junction as well as the length of the 

carbon chain and its degree of unsaturation. (see Figure 24) 
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The inclusion of structural specification enables a lipid entity in LERO to be equipped 

with the necessary metadata to describe structural properties in greater chemical details. 

With the instantiation of a lipid entity along with the specification of organic group, ring 

system and associated structural specifications, a lipid entity can be easily translated into 

the LIPID MAPS abbreviated format that is widely use in LIPID MAPS consortia. 

Inversely, we could also convert the lipid information found LIPID MAPS abbreviated 

format into respective instances in LERO. (see Figure 25) 
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LIPID MAPS abbreviated format is a generalized lipid abbreviation format that was 

developed to enable structures, systematic names and relevant lipid ontological 

information (a form of standard controlled vocabularies) to be generated automatically 

from a single source format. The LIPID MAPS abbreviated format consists of 4 parts: i) 

carbon chain length with any degree of unsaturation ii)position and stereo-geometry of 

double and triple bond iii)position, type and stereochemistry of substituents iv)position of 

carbocyclic ring junction and stereochemistry.  

 

An automated mechanism is available in LIPID MAPS database to generate lipid 

structures as well as their associated “ontological” information from just the LIPID 

MAPS abbreviation format. A populated LERO acts as a repository for lipidomics data 
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and associated lipid metadata and is a data source where LIPID MAPS compatible data 

format can be generated and be subsequently used to generate lipid structure 

automatically. The availability of lipid structure would allow us to generate unique InChI 

for every lipid entity instantiated in LERO.  

 

3) Discussion 

The current version of LiCO provides DL definitions for classification of lipid instances 

to 7 categories of Lipids in LIPID MAPS. Future versions of LiCO will extend the 

support for classification to the Polyketide category of LIPID MAPS.  

 

3.1) Breadth of Classification 

The definition of lipids can specify in 3 levels of coverage, specifically: 

1) Class membership that satisfy strict, narrow adherence to the known nomenclature 

2) Class membership to include lipids that are known to exist biologically or 

biosynthetically in the real world 

3) Class membership to include hypothetical lipids 

 

For example, Cholesterol is well known as lipid that is composed of a 4 rings or 

tetracyclic cyclopenta[a]phenanthrene structure. The four rings have trans-ring junctions, 

an Iso-Octyl side chain and two Methyl_Group. This is the strict definition of Cholesterol. 

Cholesterol is classified as Cholesterol and derivatives under LIPID MAPS nomenclature. 

It is renamed as Cholesterol_structural_derivative concept in LiCO.  
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Lipid instances under the Cholesterol_structural_derivative class vary due to different 

biochemical modifications in the Iso-Octyl chains and in the tetracyclic 

cyclopenta[a]phenanthrene structure. Examples of such cholesterol derivatives are 

cholest-(25R)-5-en-3β,26-diol, cholest-22E-en-3β-ol, Cucurbitacin B (see Table 24). As 

the result of that, the Cholesterol_structural_derivative class has a much broader 

definition than the strict nomenclature definition. A strict nomenclature definition is not 

sufficient but if we consider hypothetical lipids, there could be infinitely many more 

derivatives of cholesterol. 

 
Structure LIPID MAPS Identifier LIPID MAPS 

Systematic name 
LMST01010088 cholest-(25R)-5-en-

3β,26-diol 
 

 

LMST01010099 cholest-22E-en-3β-ol 
 

LMST01010104 Cucurbitacin B* 
 

*a common name as no systematic name provided by LIPID MAPS 
 
Table 24: Examples of lipids from Cholesterol_structural_derivative  
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Fatty acid is another good example. A basic fatty acid consists of an Acyl_Chain and a 

Carboxylic_Acid. Theoretically, a fatty acid can have an Acyl_Chain of infinite carbon 

length. For each carbon length, there can be many permutations where an Alkenyl_Group 

can be inserted into the Acyl_Chain. In addition to that, the Acyl_Chain can also undergo 

many biosynthetic modifications where other chemical and functional groups are added 

into the Acyl_Chain. If we consider hypothetical lipids, there could be infinitely many 

more instances of Fatty_acid. 

 

For our lipid classification exercise, we adopt the second option where a lipid class 

membership would include lipids that are known to exist biologically or biosynthetically 

in the real world. In this case, we define lipids based on the instances made available in 

LMSD. Our approach to this is one that is between pragmatism and absolute correctness. 

We do not support the use of strict, narrow adherence to the traditional nomenclature as 

that would exclude many real lipids whereas the option of considering definition for 

hypothetical lipids is too broad and is too unrealistic to be implemented in our case. 

Furthermore, adoption of definition for hypothetical lipids would make certain classes of 

lipids so generic such that a restrictive DL definition can not be applied to it. 

 

3.2) Limitations of Present DL Definitions: Overlap of Ring_System, Chain_Group 

and Organic_Group 

A lipid definition in LiCO includes members from Chain_Group, 

Complex_Organic_Group, Simple_Organic_Group and Ring_System. Unlike concepts of 

Lipid, DL and textual definitions are not implemented for them. A quick examination of 
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these concepts indicates that structurally, Monocyclic_Ring_Group, Chain_Group, 

Complex_Organic_Group and some members of Simple_Organic_Group such as 

Glycerol_derivative_Group are composed of several members of Simple_Organic_Group. 

Similar observation could be made of Polycyclic_Ring_System(composed of 

Monocyclic_Ring_Group).  When a Chain_Group is specified in a DL definition of lipid, 

the concept would have also specified the functional group that is found in the 

Chain_Group. However, because DL definitions were not implemented for Chain_Group, 

Complex_Organic_Group, Simple_Organic_Group and Ring_System, we cannot make 

this assumption. As a result of that, in the current version of LiCO, when we specify 

Chain_Group, Complex_Organic_Group, and Ring_System, we still have to specify the 

Simple_Organic_Group found in these concepts in order to account for them.  

    

For example, Fatty_Aldehyde has an Acyl_Chain. The Acyl_Chain of a Fatty_Aldehyde 

contains an Aldehyde_Group, a subclass of an Acyl_Group.  Without assuming the 

structurally overlapping nature of the Acyl_Chain and Aldehyde_Group, the DL 

definition of a Fatty_Aldehyde is given as the following necessary and sufficient 

conditions: 

(hasPart some Aldehyde) and (hasAcyl_Chain exactly 1) 

hasPart only (Aldehyde or Acyl_Chain) 

However, if we are to eliminate the overlapping Organic_Group, we only need to specify 

the Acyl_Chain in the necessary and sufficient conditions as Aldehyde, an acyl group that 

should have been accounted in the Acyl_Chain.  

(hasAcyl_Chain exactly 1) 



   118
  

hasPart only (Acyl_Chain) 

This simpler and more intuitively correct solution has not been implemented in LiCO as 

the provision of systematic DL definitions for Chain_Group, Complex_Organic_Group 

and Ring_System is beyond the research scope of this thesis.   

 

3.3) Reclassification of Lipid Classes by Automatic Structural Inference 

One of the benefits of using OWL-DL is to be able to automatically compute class 

hierarchy. The use of a reasoner to compute subclass-superclass relationships between 

classes is vital for the automatic maintenance of large ontology. In addition to that, 

automatic computation of subclass-superclass relationships could lead to inference of 

new relationships between the classes. Automatic inference could be used to infer new 

relationship between the different classes of lipid and to re-classify lipid nomenclature in 

a way that is logically consistent and computationally systematic. Currently, lipids are 

hand-classify in most databases and the use of automatic inference could minimize 

human errors that are inherent in maintaining and generating large, possibly multiple 

inheritance, classification hierarchy for lipid. A cursory examination of the current LIPID 

MAPS classification indicates that the following lipids may benefit from an automatic 

inference exercise.  

 

Glycerolipids and Glycerophospholipids are essentially lipids that have at least a glycerol 

moiety. Glycerophospholipids are biosynthetically derived from glycerolipids [2].  
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Fatty acyl and Polyketide are lipids that are synthesized by enzymes that shared the same 

mechanistic features. Polyketides are synthesized by polyketide synthases, which are 

modular, multi-enzyme complexes that sequentially condense simple carboxylic acid 

derivative. Interestingly, many fatty acyls are either end products or derivation of the end 

products from the Polyketide pathway [2]. 

 

Prenol lipid and Sterol lipid share a common biosynthetic pathway via the polymerization 

of the dimethylallyl pyrophosphate/isopentenyl pyrophosphate [2]. 

At some point of the biosynthesis, these 3 groups of lipids have shared a common 

structural or precursor form and this may serve as basis for classifying them together.    

 

Future work for LiCO could focus on developing fundamental structural definition for 

lipid classes that could account for the biosynthetic origin of the lipids. Automated 

classification using ontological reasoning had been successfully applied to protein 

classification [55] through the coordination of protein domain analysis of sequence data, 

ontology, an instance store, and DL reasoning. OWL-DL Ontology can drive 

technological development in automated classification for biological entities. With the 

addition of precisely defined DL-axioms to the LiCO, it is possible to apply this type of 

automated classification in our future work.  

 

3.4) Lack of DL Definitions for Lipoproteins and Glycolipids 

The current version of LiCO does not have DL definitions for lipoproteins and 

glycolipids. This is because the lipid classification hierarchy in LiCO is derived from 
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LIPID MAPS systematic nomenclature. LIPID MAPS systematic nomenclature does not 

consider lipoproteins as lipids and therefore, make not provisions for lipoproteins in the 

hierarchy. As for glycolipids, LIPID MAPS avoided the term “glycolipids” intentionally 

to maintain a focus on lipid structure. All eight categories of lipids in LIPID MAPS 

include important glycan derivatives, thus making an additional glycolipid class 

unnecessary and incompatible with the overall goal of lipid characterization.     

 

3.5) The Choice of Using Object Property over Datatype Property 

LERO build on LiCO’s DL definition of lipids by adding additional concepts into the 

ontology to describe lipids in a more complete manner. This includes describing lipids 

with respect to their records in known lipid or chemical databases, their synonyms as well 

as their experimental properties such physicochemical properties and M/Z values from 

lipidomics experiments. Many of these attributes of lipids are numeric values. OWL-DL 

provides datatype properties where these numeric attributes can be assigned as range to 

relevant concepts in the ontology. However, as with the case of LERO, we do not use 

datatype property extensively. All properties in LERO are object properties.   

 

An object property is a property that connects 2 objects to one another. It allows an 

attribute of an object to be specified through a relationship to another object.  For an 

object property, both domain and range are classes or instances of classes. A datatype 

property is a property that connects an object to a value. For a datatype property, the 

domain is a class or an instance and the range is a value. The datatype property is used 
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for classes with numeric or string type attributes. It is a simpler way to representing 

values and is less resource consuming.  

 

Despite this advantage, we do not use a datatype property in LERO. This is because 

many concepts that could have a datatype property such as Mass_Spectra_Data_Value 

need to be annotated by another object (see Figure 26).   

   

 
 

One of the advantages of OWL-DL knowledge representation is the ability to define a 

concept with complex, axiomatic constraints. The use of datatype property to define an 

attribute for objects greatly limits this advantage because complex axiomatic constraints 

cannot be specify for concepts whose range is a datatype, rather than an object.  
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3.6) Potential applications of LiCO and LERO 

LiCO is a reference ontology that aims to share formalized DL definitions of lipids 

organized according to LIPID MAPS systematic classification with the wider 

bioinformatics and biological research community. It contains minimal definitions 

require to describe lipid entity formally. LERO extends the content of LiCO to describe 

lipid entity in a more comprehensive manner. While LERO can function as a reference 

ontology for complete representation of lipid entity, it is also capable of acting as 

application ontology for the purpose of integrating and uniting all lipid-related resources 

under a logically consistent, formalized knowledge representation framework for lipids. 

LERO provides a uniform, semantic web compliant, syntactic and semantic format to 

integrate lipid data from multiple databases, ontologies and other related resources. When 

lipid data is instantiated in LERO according to the formalized knowledge representation 

specify in the ontology, nomenclature inconsistencies found across multiple databases are 

resolved as every lipid records are normalized against the LIPID MAPS systematic 

classification hierarchy. LERO connects synonyms of lipids, experimental data and other 

data of lipids associated to the records from the databases to the systematic nomenclature 

proposed by LIPID MAPS. This unified, instantiated ontology then represents knowledge 

in a logical consistent manner to any information systems, inclusive of bioinformatics 

application as well as other semantic web related applications. One of these possible 

application of LERO is an integrative lipid knowledgebase that could connect large 

volume of experimental data generated from the analytical platform of lipidomics to a 

database system that contains information from all known resources of lipids in order to 
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facilitate rapid identification and discovery of new lipid species from the biological 

sample. 

 

LERO is compliant to OBO specification and it provides an avenue for the LIPID MAPS 

classification system to be shared and to participate in the work of the wider 

bioinformatics and bio-ontology community (see Figure 27). In addition to that, LERO, 

written in OWL, a w3c-endorsed knowledge representation language to support 

interoperability of multiple, disparate information systems as well as sharing of 

formalized knowledge in the semantic web, is well placed as a lipid-centric ontology that 

can be combined with ontologies and knowledgebase from other biological domains in 

novel bioinformatics applications.  These developments shall facilitate the uptake of the 

nomenclature by the biological research community and shall help establish the LIPID 

MAPS systematic nomenclature as a standard nomenclature for the lipid research 

community. There are already a number of databases, such as ChEBI and Uniprot, which 

are supported by OWL-DL-based semantic framework. As semantic web technologies 

mature, we should expect to see many of these knowledgebases from various biological 

domains converging unto a single knowledge representation information system and 

drive high-throughput, multi-dimensional, system-level bioinformatics analysis at various 

levels of granularities.      

 



   124
  

 
 
 

4) Conclusion 

We describe 2 reference ontologies, namely Lipid Classification Ontology(LiCO) and 

Lipid Entity Representation Ontology(LERO). These ontologies are developed to share 

formalized knowledge with the wider biological research community. LiCO contains 

formalized DL definitions of lipids whereas LERO extends from LiCO to include other 

lipid-related informations such as synonyms and database identifiers. These 2 ontologies 

provide an avenue for establishing standardized lipid nomenclature and resolving 

nomenclature confusion that is prevalent in lipid research. In addition to that, LERO also 

provides a standard knowledge representation framework that supports interoperability 

between disparate information systems. The development of these ontologies will pave 
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the way for a bioinformatic analysis system capable of processing the large volume of 

heterogeneous data generated from the “system biology” approach.  
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Chapter V: Application scenario 

A key motivation in developing the Lipid Ontology is to support an ontology-centric 

content delivery platform that provides unrestricted accessibility of lipid information in 

the scientific literature to a lipidomics researcher. A typical lipidomics researcher is 

interested in the identity of lipids found in his or her experimental work and wants find 

out all other informations associated to these lipids. In a post experiment analysis, a user 

needs to visit several databases, websites and read 5-6 papers to get the information that 

he wants. Even then, the information obtain may still be incomplete and fragmented. 

Here we describe a prototype ontology centric content delivery platform develop in 

conjunction with Institute of Infocomm Research, A*STAR to facilitate knowledge 

discovery for lipidomics scientists.  

 

1) Literature Driven Ontology Centric Knowledge Navigation for 

Lipidomics 

The platform comprises of a content acquisition engine that drives the delivery and 

conversion of literature (full text papers) to a custom format ready for text mining.  A 

series of natural language processing algorithms that identifies target concepts or 

keywords and tags individual sentences according to the terms they contain. A custom- 

designed java program that instantiates sentences and relations to instances of each target 

concept found in the sentence into the ontology (specifically the Lipid_Specification and 

Lipid, Protein, Disease). A visual query and navigation interface, Knowlegator, facilitates 

query navigation over instantiated object properties and datatype properties in the 
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instantiated ontology through the reasoning engine RACER and the A-box query 

language nRQL. (see Figure 28) 

 

 

 
 
 

1.1) Knowledge Acquisition Pipeline 

The knowledge acquisition pipeline consists of a custom perl script that takes keywords 

and acquires full-text documents from Pubmed search. The acquired full-text papers, in 

the form of pdfs are converted in ascii text format before being processed by NLP 

algorithms.    
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1.2) Natural Language Processing and Text-Mining 

Text-mining and NLP are carried out using a text mining toolkit called BioText Suite that 

performs text processing tasks such as tokenization, part of speech tagging, named entity 

recognition, grounding and relation mining. See Figure 29 for detailed description of the 

text mining processes. 

  

The text mining machinery uses a gazetteer that processes retrieved abstracts and full-text 

documents. It recognizes entities by matching term dictionaries against tokens of 

processed text. The lipid name dictionary is generated from Lipid DataWarehouse that 

contains lipid names from LipidBank, LMSD, KEGG, including associated IUPAC 

names, broad and exact synonyms. To resolve the problem of multiple synonyms in lipid 

nomenclature, we assemble a list of synonyms for lipids that can be found in the LMSD. 

These synonyms came from records of KEGG and LipidBank databases that have an 

equivalent record found in LMSD. Essentially, synonyms are taken from KEGG and 

LipidBank databases to enrich the lipid name list from LMSD. These synonyms are 

subsequently grounded to their equivalent name in LMSD and manually curated against any 

inconsistencies. At present, the list has 41,531 names, that covers 10,087 LIPID MAPS 

systematic names, 8,468 IUPAC names, 22,976 non-systematic names. The protein name 

dictionary comes from the manually curated UniProtKB database. The disease name list 

is created from the Disease Ontology of Centre for Genetic Medicine. Relationships 

between protein, lipid and disease are detected by a constraint-based association mining 

approach where the 2 entities are considered related if they co-occur in a sentence and 

satisfy a set of specified rules. 
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Figure 29 shows the steps in the textmining procedure: At step 1, the downloaded 

document content is converted from its original format, mostly pdf into ascii text file. 

Following this step, each document is broken down to many distinct sentences. At step 3, 

sentences that have lipid terms, proteins term and an interaction term are identified. After 

that, lipid terms found in the sentence are identified and are assigned to an appropriate 

lipid class. At step 5, abbreviations of lipid name are normalized and lipid synonyms 

were grounded to LIPID MAPS systematic name. The relevant sentences are then tagged 

according to correct term categories (protein, lipid, disease, interaction). These tagged 

sentences are then classified according to formalized knowledge framework in the 

ontology. Once that is done, sentences are instantiated into the Lipid Ontology, along 
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with the corresponding relation between concepts (disease, protein, LIPID MAPS ID, 

document PMID).  

 

1.3) Ontology Instantiation 

A custom java based script written using the JENA API (http://jena.sourceforge.net/) 

carries out the instantiation of grounded entities as class instances into the respective 

ontology classes and the instantiation of relations detected as Object Property instances. 

Sentences and provenance information such as PMID are instantiated as Datatype 

property instances.   

 

1.4) Visual Query and Reasoning through Knowlegator 

Knowlegator(Knowledge naviGator) is a tool that allows navigation of A-box instances 

through an intuitive interface capable of converting a visual query built by a naïve end 

user into the query language syntax that communicates with the knowledgebase 

(instantiated ontology) for relevant information (see Figure 30). Knowlegator receives 

OWL-DL ontologies as inputs and passes them to RACER and issues a series of 

instructions to query the ontology for visual representation in the component panel. The 

component panel lays out the content of the ontology as tree structures of concepts, roles 

(property) and instances. This panel allows user to build visual query on the query canvas 

via a “drag and drop” feature. When an item is dropped into the query canvas, an 

associated nRQL query is automatically generated. The resulting nRQL syntax is used to 

query the knowledgebase for information. Information retrieves from the process will be 

presented in the results panel. As the numbers of object (concepts, property, instance) 
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drop into the query canvas increase, the complexity of the query also increases 

incrementally. With this tool, an end user can formulate deep and complex query to 

extract the relevant information from the knowledgebase.  

 

 

 
 
 
1.5) Preliminary Performance Analysis 

Content acquisition engine identifies 495 search results for the time period July 2005 to 

April 2007 with search phrase “lipid interact* protein”. Of the 495 articles, 262 full-text 

papers are successfully downloaded.  Named entity recognition and relation detection 

remove 121 documents that have no lipid-protein relations. Ontology instantiation is 

carried out with the remaining 141 documents. Initial named entity recognition (NER) 
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component detects 92 LIPIDMAPS systematic names, 52 IUPAC names, 412 exact 

synonyms, 6 broad synonyms, 319 protein names. 92 LIPIDMAPS names are instantiated 

into 35 unique classes under the Lipid name hierarchy, at an average of about 2.6 lipids 

per class. Cross-links to 59 Lipidbank entries and 41 KEGG entries are also established. 

Brute-force co-occurrence detection and subsequent relation word filtering yield over 683 

sentences. The ontology instantiation process took 22 seconds overall. The experiments 

have been done on a 3.6 Ghz Xeon Linux workstation with 4 processors and 8GB RAM. 

(see Figure 31) 
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2) Ontology Centric Navigation of Pathways  

Disease processes such as cancer formation is a multi-step process caused by genetic 

alterations that change a normal cell to a cancerous cell. Molecular events such as genetic 

mutations, translocations, amplifications, deletions and viral gene insertions can affect 

signal transduction pathways critical to the prevention of the growth of malignant cell 

types. For example, inactivation of pro-apoptotic proteins or up-regulation of anti-

apoptotic proteins lead to unchecked growth of cells and ultimately to cancer. Analysis of 

relevant biological pathways is key to understanding medically important diseases such 

as these.  

     

The initial application of the content delivery platform is aimed at detecting binary 

relationship between concepts such as disease, protein and lipid. This is insufficient to 

provide useful analysis at a pathway level. Consequently, we extend from the system to 

enable the navigation of biological pathway.  

 

Here, we extend the prior work with lipid-protein, lipid-disease interaction by adding a 

generic pathway discovery algorithm to the platform. The algorithm will support tacit 

knowledge discovery across biological systems such as proteins, lipids and diseases as 

well as mining for pathway segments that can interactively be re-annotated with relations 

to other biological entities that can be recognized in the full text documents.  

 

2.1) Pathway Navigation Algorithm 
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A generic pathway discovery algorithm is implemented to mine all object properties in 

the ontology in order to discover transitive relationships between 2 entities(Figure 30). 

Given 2 concept instances Csource and Ctarget, the algorithm seeks to compute a 

pathway between them in the following steps:  

 

1.The algorithm lists all object property instance triples in which the domain matches 

Csource. 

2.Every listed instance is treated as the source concept instance and the related object 

property instances are explored. This process is repeated recursively until Ctarget is 

reached or if no object property instances are found.  

3.All resulting transitive paths are output in the ascending order of path length.  

 

We further restrict the generic pathways to protein-protein interaction pathway by adding 

2 simple constraints to the generic algorithm:  

1. the source and domain concepts are restricted to proteins    

2. only object property instances of hasProtein-Protein_Interaction_With are included 

 

To evaluate the performance of the named entity/concept recognition and the 

effectiveness of the pathway navigation algorithm, we extend the ontology by 

incorporating 48 protein class entities from a simplified apoptosis pathway into the 

Monomeric_Protein_or_Protein_Complex_Subunit and Multimeric_Protein_Complex 

either by importing it from Molecule Roles Ontology or by manually adding them. In 

addition to that, we construct a gold standard corpus of 10 full-texts papers related to 
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apoptosis pathway. Our text mining procedure is able to identify 119 sentences and tag 

these sentences with associated Protein name or Disease name (specifically cancer). 

These sentences are re-annotated manually for all accurate mentions of the disease and 

protein concepts. The system is later evaluated in terms of precision and recall. Precision 

is defined as the fraction of correct concepts recognized over the total number of concepts 

output and recall is defined as the fraction of concepts recognized among all correct 

concepts. See Table 25 for evaluation results. Evaluation shows that the NER achieves 

performance comparable to state of the art dictionary based approaches.  

 

  
Named Entities Mentions Precision Recall 

Target Returned 
Disease 32 37 0.54 0.62 
Lipid  58 25 0.96 0.47 
Protein 269 181 0.76 0.51 
Micro Average   0.75 0.51 
 
Table 25: Precision and recall of name entity recognition 
 
 

2.2) Navigating Pathways with Knowlegator 

Knowlegator permits user to drag 2 proteins into the query canvas and then invoke a 

search for relation between these 2 concepts (see Figure 32). The results are returned as a 

list of possible pathways that can be rendered as a chain of labeled concepts and instances 

illustrating the linkage between 2 starting entities. The path covers a variety of 

relationships and data types, namely, protein, lipid, disease and provenance data such as 

sentences or document identifiers. An end user only needs to select a desired path to be 

viewed on the query canvas (see Figure 32). In addition to that, consistent with our 

interest in lipids, an additional algorithm is introduced into the knowlegator so that user 
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can apply specific constraint on existing pathway to discover lipid-protein interaction 

relevant to the existing pathway.  This method overlays new material on top of existing 

knowledge that is being displayed and it allows the user to control the amount of new 

knowledge that will be presented and increase it incrementally to facilitate knowledge 

discovery.  

 

 
 
 

3) Mining for the Lipidome of Ovarian Cancer    

Ovarian cancer is one of the most common gynecological cancers in developed countries 

and is the fifth leading cause of all cancer-related death afflicting women. It is one of the 

least understood cancers. If it is detected early, the chances of a patient surviving death 
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due to ovarian cancer improve to 95%. Lipids are known to play an integral part in the 

genesis, progression and metastasis stages of the disease.  Many researchers hope to 

discover an effective biomarker, be it lipid or lipid-related protein that is capable of 

diagnosing the disease at its onset.  

 

Identification of diagnostic biomarkers depends on the understanding of the complex 

interplays of biomolecules (lipid and protein) that have been reported in the literature. A 

comprehensive assessment of the lipidome of ovarian cancer from the literature is yet to 

be available.   

 

We apply ontology-centric knowledge integration platform to address the lack of explicit 

knowledge in the subject. As described earlier, the platform is a combination of several 

semantic web technologies such as text mining, OWL-DL ontology and knowledge 

representation, ontology population and visual query technologies designed to aggregate 

knowledge from the scientific bibliosphere. Here, we deploy the integrated text mining 

and semantic navigation infrastructure to explore the role of lipid-protein interactions in 

ovarian cancer processes with respect to the apoptosis pathway.   

 

7498 PubMed abstracts are identified by manual curation to be relevant to the subject of 

ovarian cancer. Out of these, 683 abstracts are identified to contain lipid names. We 

manage to download 241 full text documents. These documents are then subjected to the 

text conversion and standard text mining procedure employed in our knowledge 
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integration platform; specifically they are mined for terms related to ovarian cancer, 

apoptosis, lipids, hormones and proteins.  

 

3.1) Gold Standard Apoptosis Pathway 

A gold standard apoptosis pathway is constructed by manual consultation from literature 

sources. The pathway consists of 71 proteins and is enriched with additional metadata 

such as Canonical Protein name, Alternative name, Gene name, Sequence Length, 

Uniprot ID, GO Component, GO Function and GO Process from corresponding Uniprot 

information.  

 

3.2) Assembling of Additional Term Lists for Text Mining 

In addition to the lipid, protein and disease dictionary, we assemble a hormone name list 

from UMLS. A list of proteins associated to ovarian cancer and apoptosis is manually 

created from PubMed abstracts. The proteins are provided along with provenance data 

such as Canonical Protein name, Alternative name, Gene name, Sequence Length, 

Uniprot ID, GO Component, GO Function and GO Process.  

 

3.4) Mining Relationships  

We seek to detect 10 types of relationship pairs. They are Protein(OC)-Protein(OC), 

Protein(OC)-Protein(Apoptosis), Protein(OC)-Protein(Apoptosis), Lipid-Protein 

(Apoptosis), Lipid-Protein(OC), Lipid-Lipid, Lipid-Hormone, Hormone-Hormone, 

Protein(OC)-Hormone and Protein(Apoptosis)-Hormone.  As describe before, every 

relation pair is instantiated as Object Property instances whereas the exact interaction 
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sentences and relevant provenance information are instantiated as Datatype Propety 

instances.  

 

3.5) Interaction in the Ovarian Cancer-Apoptosis-Lipidome 

A cursory examination of the result indicates interaction among the proteins far out-

numbered interaction of other entity pairs. Since our interest is in lipidome, we examine 

the result for Lipid-related interactions. For complete detail of the mining result, please 

refer to Table 26.  

 
 
Interaction Type 

Abstract 
(7498) 

Full Paper (241) 

   
OC-AP 505 195 
AP-Lipid 10 8 
Protein Hormone 9 2 
OC-Lipid 11 14 
OC-Hormone 8 1 
Lipid Hormone 2 18 
AP-AP 113 59 
OC-OC  223 13 
Lipid-Lipid 3 23 
Hormone-Hormone 2 6 

Table 26: Interactions mined from the ovarian cancer bibliome  

 

Discussion of the biological significance of our finding is beyond the scope of this thesis, 

but in order to illustrate the effectiveness of knowledge integration platform, we will 

discuss briefly the lipidome revolving around one of the protein, Akt(Protein Kinase B). 

Akt is a protein that plays an important role in protein lipidome interaction in ovarian. It 

is known to affect 2 biological pathways in ovarian cancer, namely the anti-apoptosis and 

cell metastasis pathways. Our results are able to show that its interaction either directly or 

indirectly with several lipids. For instance, we identify LPA (lysophosphatidic acid) that 
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could bind to LPA receptors to initiate a signaling cascade that would end up with 

activation of Akt. In addition to that, we also discover that phosphatidic acid, a precursor 

to LPA and Phorbol, a known inhibitor of LPAR/LPA binding associates to the Akt on 

the graph depicting the text mining results.  These lipid compounds may point to 

additional potential drug targets other than to conventionally presumed PI3K. For full 

details of the graphical network of the interactions, please see figure.  

 

4) Discussion 

Through the coordination of distributed literature resources, natural language processing, 

ontology development, automated ontology instantiation, visual query guided reasoning 

over OWL-DL A-boxes, we address the problem of navigating  large volumes of 

complex biological knowledge or data in the field of Lipidomics,  with a focus on 

knowledge found in legacy unstructured full text of scientific publications.  

 

4.1) Role of Ontology in Query 

The Lipid Ontology, a knowledge representation in OWL-DL, is both a data structure for 

a knowledgebase and a query model compatible to semantic web technologies such as 

nRQL and RACER reasoner. This, couple with an interface that is capable of bridging the 

ontology and the reasoning engine, we present to end user several query paradigms that 

greatly improve usability and effectiveness of knowledgebase system.  

   

4.2) Query Paradigms of Knowlegator 
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An OWL-DL ontology models specific domain knowledge and represents the domain in 

a fashion that is consistent to the knowledge framework in mind of an end user. In 

addition to that, the ontology provides additional DL capability for reasoning purposes. 

When such an ontology is loaded into Knowlegator, the visual query interface presents a 

visual query model/system that is highly intuitive and interactive to end users.  This 

ontology-centric visual query paradigm allows end users to build complex and deep 

query with minimal learning curve and without the need to understand query syntax of 

SQL or nRQL. The additional semantic richness of an OWL-DL ontology allows direct 

access to provenance information (such as sentences, identifiers, titles) related to the 

concepts that are being queried. Lastly, visual query paradigm provides ease of 

navigation for end user when navigating large graphs of pathways as demonstrated in our 

application scenario. 

 

To further comment on the capability of the visual query paradigm, we compare the 

visual query model with using the same query, specifically “lipids that interact with 

proteins, which occur in a particular sentence of a particular document that are at the 

same time related to a particular disease” against a relational database (see Figure 33).  

The same query can be easily constructed from the relationships in the ontology via 

visual query compared to the relational database. For the database scenario, in order to 

process this query, each concept needs to be modeled into separate tables and each 

relationship needs to be modeled into additional connection tables to reduce redundancies. 

An SQL query statement for the query above would require 8 table joins. Such a SQL 

query is not intuitive to a user without prior knowledge of the database. Moreover, the 
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type of queries that a user can make is more or less restricted in a relational database. To 

enable new query, database query model and structure would need to change. This is not 

so for the ontology-centric visual query paradigm, as an OWL-DL ontology is built in 

with many relationships and concepts to formulate complex query with greater flexibility 

while remaining consistent to the knowledge in the mind of an end user.  

 

The implementation knowledge navigation algorithm further improves then usability of 

the platform by enabling tacit knowledge discovery between 2 concepts (with or without 

constraint on the types of concept). This allows users to generate cross discipline paths or 

stepwise extensions to existing know paths by adding additional annotations or alternate 

paths such as overlaying lipids on top on an existing protein-protein interaction pathway.    

 



   143
  

 

5) Conclusion 

We build a Lipid Ontology in the Web Ontology Language (OWL) to represent the 

knowledge of lipids and their relationship to other biological entities such as protein, 

pathway and disease. The ontology model resolves nomenclature inconsistencies by 

grounding lipid synonyms to individual lipid names.  We report a document delivery 

system that in conjunction with a lipid specific text mining platform instantiates lipid 

sentences into the Lipid Ontology. Navigation of lipid literature is then facilitated using a 

drag ‘n’ drop visual query composer which poses description logic queries to the OWL-

DL ontology. In addition to that, we also develop a pathway navigation algorithm that 

enable tacit knowledge discovery between 2 concepts. We apply this content delivery and 

knowledge navigation platform successfully to assess the lipidome of ovarian cancer with 



   144
  

respect to apoptosis pathway. Future direction of this work involves scaling up the 

coverage of this platform and employing more effective text mining techniques.  
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Chapter VI: Conclusion 
 
We describe 5 ontologies, namely Lipid Ontology 1.0, Lipid Ontology Reference, Lipid 

Ontology Ov, Lipid Classification Ontology (LiCO) and Lipid Entity Representation 

Ontology (LERO). Lipid Ontology 1.0 is a basic application ontology that integrates 

bibliographic information with the existing data from lipid databases and provides a basic 

query model for the Knowlegator platform while Lipid Ontology Reference provides a 

content rich reference from which other, simpler, specialized application ontologies can 

be developed. Lipid Ontology Ov is a specific application ontology that has been applied 

to assess the lipidome of ovarian cancer with respect to apoptosis in the bibliosphere. 

LiCO contains formalized DL definitions of lipids whereas LERO extends from LiCO to 

include other lipid-related informations such as synonyms and database identifiers. 

Together, these ontologies have been used to represent knowledge of lipids for various 

purposes. These ontologies, while embryonic in their nature have demonstrated that 

OWL-DL ontologies are adequate for the task of representing knowledge from the 

biological domain and subsequent be applied in a way that would benefit scientific 

research through coordinated efforts involving other semantic web technologies.    

 
We have demonstrated the usefulness of ontologies in a content acquiring, text-mining, 

NLP, intuitive query and information navigation application applied to the field of 

lipidomics. Future work in this area includes scaling up the coverage of this platform, 

employing more effective text mining techniques and using more rigorously defined 

ontologies.   
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