
RESOURCE AWARE

LOAD DISTRIBUTION STRATEGIES

FOR SCHEDULING DIVISIBLE LOADS ON

LARGE-SCALE DATA INTENSIVE

COMPUTATIONAL GRID SYSTEMS

SIVAKUMAR VISWANATHAN

(M.Sc., National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgments

It is a pleasure to thank the people who contributed in some way to this thesis.

First, I would like to express my sincere gratitude to my supervisor, Assoc. Prof.

Bharadwaj Veeravalli. He inspired me with his enthusiasm and helped me to

understand the nuances of divisible load scheduling. Throughout my candidature,

he provided constant encouragement, sound advices, and lots of good ideas to

pursue on. At times, when I felt lost in the woods he guided me to read the stars

in the sky and explore my way. I would probably have been lost without him and

his style of guidance.

I am grateful to Prof. Thomas G. Robertazzi of Stony Brook University and Dr.

Dantong Yu of Brookhaven National Laboratory (BNL) for their valuable guidance

and comments on my research work.

I would like to express my gratitude to my employers Institute for Infocomm

Research (I2R) for supporting me during this part-time study. I am grateful to

Dr. Michael Li Ming, who convinced me to pursue Ph.D. degree, Prof. Wong

Wai Choong Lawrence, Prof. Lye Kin Mun, Mr. Cheah Kok Beng, and Mr.

ii

Ashok Kumar Marath for their continuous encouragement and support during

this pursuit.

I would like to thank Mr. T.V. Karthikeyan, my first project manager at Indira

Gandhi Centre for Atomic Research (IGCAR), India, who initiated me to the world

of designing scheduling strategies.

I wish to thank Mr. Jean-Luc Lebrun who helped to horn my technical writing

skills.

I am indebted to my fellow student colleagues Dr. Zeng Zeng, Mr. Jia Jingxi, Mr.

Steven He, Mr. Liu Yanhong and Mr. Goh Lee Kee for the stimulating discussions

and also their help in working with LATEX.

I would like to thank Ms. Suzanne Koh and Ms. Indrani Kaliyaperumal, secretaries

in Department of Electrical and Computer Engineering, NUS for assisting me in

the adminstrative matters during my candidature.

I wish to thank my brother, sisters, in-laws and their families for providing me an

environment of love and understanding.

Finally, I would like to thank my parents, Viswanathan and Prema, for their sup-

port, teachings, love, and encouragement all through these years; my wife Lalitha

and kids Bavadharini and Varun, for their understanding, support, patience, and

sacrifices, which gave me the width required to make this possible. It is to them,

I dedicate this thesis.

iii

Contents

Acknowledgments i

Summary vii

List of Tables x

List of Figures xii

List of Symbols xvi

1 Introduction 1

1.1 Computational Grid Systems . 5

1.2 Divisible Load Scheduling . 6

1.3 Scheduling Divisible Loads on Computational Grids 9

1.4 Our Contributions . 10

iv

2 System Modeling and Problem Formulation 14

2.1 Scheduling within Cluster Systems 15

2.2 Scheduling across Cluster Systems 19

3 Load Distribution Strategies 22

3.1 Systems with no Communication Delays 23

3.2 Systems with Communication Delays 26

3.2.1 Sequential Distribution . 28

3.2.2 Parallel Distribution . 32

4 Scheduling Strategies for Non-time Critical Loads 37

4.1 Dynamic IBS Algorithms . 38

4.1.1 Time-invariant Buffer Environments 41

4.1.2 Predictable Time-varying Buffer Environments 46

4.2 Adaptive IBS Algorithm . 54

4.2.1 Buffer Estimation Strategy 60

5 Scheduling Strategies for Time Critical Loads 70

5.1 Resource Aware Dynamic Incremental Scheduling Strategies 71

5.1.1 Non-interleaved Scheduling Strategy 80

v

5.1.2 Earliest Deadline First Scheduling Strategy 80

5.1.3 Progressive Scheduling Strategy 81

5.2 Complexity of RADIS Strategies . 93

5.3 Performance Evaluation . 97

5.3.1 Metrics of Interest . 98

5.3.2 Discussion of the Results . 101

6 Strategies for Scheduling across Cluster Systems 108

6.1 Spanning Tree Construction Strategies 110

6.2 Resource Aware Sequential Load Distribution Strategy 113

6.3 Resource Aware Parallel Load Distribution Strategy 115

6.4 Performance Evaluation . 123

6.4.1 Metrics of Interest . 124

6.4.2 Effect of Network Scalability 132

6.4.3 Effect of Network Connectivity 133

6.5 Complexity and Performance Comparison 134

7 Conclusions and Future Work 137

7.1 Scheduling within Cluster Systems 138

vi

7.2 Scheduling across Cluster Systems 143

7.3 Future Work . 145

Bibliography 147

Author’s Publications 158

vii

Summary

Complex scientific problems, as in the large volume of data that are being generated

in the high energy nuclear physics experiments, bio-informatics, astronomical com-

putations etc, demand new strategies for how the data is to be collected, shared,

transferred and analyzed. Also, the technologies are continuously improving and

over the years, the computing power, data storage and networking technologies are

seen to grow exponentially. Grid computing paradigm evolved because of these ex-

panding collaborations, data analysis requirements and increasing computational

and networking capabilities. Grid is generally viewed as a repository of resources

that can be availed by careful scheduling.

In this thesis, we design and analyze several polynomial-time complex, resource

aware scheduling strategies for handling computationally intensive arbitrarily di-

visible loads in a computational Grid system comprising of clusters of computing

systems interconnected by high speed links. Computational Grid systems require

a hierarchy of scheduling strategies, since the communication delay is considered

to be insignificant within clusters while it is significant across clusters because of

viii

their geographical distribution. The design of our proposed strategies adopt the

divisible load paradigm, referred to as divisible load theory (DLT), which is shown

to be efficient in handling large volume arbitrarily divisible loads.

We propose several strategies, namely

• Dynamic IBS algorithms

• Adaptive IBS algorithm, and

• Resource aware dynamic incremental scheduling algorithm (RADIS) with

non-interleaved, earliest deadline first and progressive interleaved scheduling

strategies

for distributing the loads within clusters, involving multiple sources (with loads

to be processed) and sinks (the processing nodes). We assume a multi-port

communication model and devise “pull-based” (the sinks request load from the

sources) strategies. All our strategies utilize buffer reclamation approach to sched-

ule the processing of loads. We consider real-life scenario wherein there are finite

buffer constraints at the sinks and the loads have deadlines. We propose efficient

scheduling strategies with admission control policy that ensures that the admit-

ted loads are processed satisfying their deadline requirements. We demonstrate

detailed workings of the proposed algorithms via a simulation study using real-life

parameters obtained from a major physics experiment.

We also propose

ix

• Resource aware sequential load distribution strategy (RASLD) and

• Resource aware parallel load distribution strategy (RAPLD)

for scheduling across heterogeneous cluster nodes interconnected by heterogeneous

links in an arbitrary manner, assuming a uni-port communication model. We

apply various spanning tree construction strategies such as

• Minimum spanning tree (MST)

• Shortest path spanning tree (SPT)

• Fewest hops spanning tree (FHT)

• Robust spanning tree (RST), and

• Minimum network equivalence spanning tree (EST)

with our distribution strategies following the optimal sequencing theorem pre-

sented in the literature. We evaluate the performance of the proposed strategies

over a wide range of arbitrary dense graphs with varying connectivity (link) and

node densities. We also study the effect of network scalability and recommend dis-

tribution strategies that provide a better trade-off between complexity and time

performance under various scenarios.

All the proposed scheduling strategies are scalable, relevant in real-life situations

and are shown to be useful under different scenarios.

x

List of Tables

4.1 Sink and Source node parameters. 43

4.2 Load fraction and buffer utilization values. 45

4.3 Sink and Source node parameters. 50

4.4 Load fraction and buffer utilization values. 52

4.5 Sink and Source node parameters. 62

4.6 Buffer utilization values. 63

4.7 Load fraction values. 64

5.1 Sink and Source node parameters. 84

5.2 Load fraction and buffer utilization values. 85

5.3 Sink and Source node parameters. 89

5.4 Load fraction and buffer utilization values. 90

5.5 Comparison of complexity of RADIS strategies. 93

LIST OF TABLES xi

5.6 Simulation parameters and their range of values. 99

6.1 Load distribution values. 119

6.2 Simulation parameters and their range of values. 125

6.3 Comparison of complexity and performance of RASLD and RAPLD

strategies. 135

7.1 Summary of scheduling strategies. 141

xii

List of Figures

1.1 Grid infrastructure. 4

1.2 A computational Grid system. 5

1.3 Scope of the thesis. 12

2.1 Abstract view of a cluster node in a Grid system. 16

2.2 Abstract view of the backbone network of a Grid system. 19

3.1 Timing diagram for the load distribution strategy within clusters. . 24

3.2 A spanning tree for the backbone network of a Grid system. 27

3.3 Reducing a multi-level tree to a single-level tree for sequential load

distribution on a spanning tree. 29

3.4 Processor equivalence for a single-level tree of the entire network. . 30

3.5 Timing diagram for the sequential load distribution strategy across

clusters. 31

LIST OF FIGURES xiii

3.6 Reducing a multi-level tree to a single-level tree for parallel load

distribution on a spanning tree. 32

3.7 Processor equivalence for a single-level sub-tree. 33

3.8 Timing diagram for the parallel load distribution strategy across

clusters. 35

4.1 Pseudo code for the Dynamic IBS algorithm for time-invariant buffer

environment at the coordinator node. 42

4.2 Pseudo code for the Dynamic IBS algorithm for time-invariant buffer

environment at the sink nodes. 42

4.3 Performance of Dynamic IBS algorithm in time-invariant buffer en-

vironment. 44

4.4 Pseudo code for the Dynamic IBS algorithm for predictable time-

varying buffer environment at the coordinator node. 48

4.5 Pseudo code for the Dynamic IBS algorithm for predictable time-

varying buffer environment at the sink nodes. 49

4.6 Performance of Dynamic IBS algorithm in predictable time-varying

buffer environment. 51

4.7 Flowchart for the Adaptive IBS algorithm at the coordinator node. 56

4.8 Flowchart for the Adaptive IBS algorithm at the sink nodes. 57

LIST OF FIGURES xiv

4.9 Pseudo code for the Adaptive IBS algorithm at the coordinator node. 58

4.10 Pseudo code for the Adaptive IBS algorithm at the sink nodes. . . . 59

4.11 The estimated and actual values for the load fractions and the buffer

availabilities. 65

4.12 Performance of Adaptive IBS algorithm. 67

5.1 Flowchart for the RADIS scheduler at the coordinator node. 74

5.2 Flowchart for admission control at the coordinator node. 75

5.3 Flowchart for the RADIS scheduler at the sink nodes. 78

5.4 Performance of Progressive scheduling strategy in time-invariant

buffer environment. 86

5.5 Performance of Progressive scheduling strategy in predictable time-

varying buffer environment. 91

5.6 Pseudo code for the RADIS scheduler at the coordinator node. . . . 94

5.7 Pseudo code for the admission control procedure at the coordinator

node. 95

5.8 Pseudo code for the RADIS scheduler at the sink nodes. 96

5.9 Simulation results for RADIS strategies in a 64-node cluster system. 102

5.10 Simulation results for RADIS strategies in a 128-node cluster system.104

LIST OF FIGURES xv

5.11 Simulation results for RADIS strategies in a 256-node cluster system.105

6.1 Resource aware sequential load distribution algorithm (RASLD). . . 114

6.2 Resource aware parallel load distribution algorithm (RAPLD). . . . 116

6.3 An arbitrary graph network, spanning trees and load distribution

order on the spanning trees. 118

6.4 Timing diagram for the RASLD strategy. 120

6.5 Timing diagram for the RAPLD strategy. 121

6.6 Timing diagram for the RAOLD-OS strategy. 122

6.7 Network eccentricity results for a network with low and high speed

links. 127

6.8 Optimal processing time results for a network with low speed links. 128

6.9 Optimal processing time results for a network with high speed links. 129

6.10 Normalized optimal processing time results for a network with low

speed links. 130

6.11 Normalized optimal processing time results for a network with high

speed links. 131

xvi

List of Symbols

G An arbitrary topology graph network.

C The master (coordinator) nodes in a graph network.

E The communication links in a graph network.

Scheduling within Clusters :

αi,j Amount of load sink Kj shall request from source Si in an
iteration.

αj Fraction of the total load L that sink Kj shall consider in
an iteration.

β Acceptance ratio, defined as the ratio of number of loads
accepted to the number of loads arrived at a system.

B
(q)
j (B̂

(q)
j) Available (Estimated) buffer space in sink Kj in the qth

iteration.

Bj,t Available buffer space in Kj at time t.

B̂
(t)
j Time averaged buffer space availability at sink Kj, esti-

mated based on historical data.

Continued on Next Page. . .

LIST OF SYMBOLS xvii

χ The ratio of the average buffer utilization in the time-
varying buffer scenario (ζTVB) to the average buffer utiliza-
tion in the time-invariant buffer scenario (ζTIB).

η The ratio of acceptance ratio in the time-varying buffer sce-
nario (βTVB) to the acceptance ratio in the time-invariant
buffer scenario (βTIB).

γ Throughput of the system, defined as the ratio of number of
loads processed to the number of loads accepted in a system
(at the end of the simulation period).

λ Load arrival rate, i.e. number of load arrivals per second.

Li Load at source Si such that the total load in the system,
L =

∑N
i=1 Li.

Lj Difference between the estimated and actual amount of load
processed at sink Kj in an iteration.

M Total number of sinks in the system, with each sink denoted
by Kj, j = 1, ...M .

N Total number of sources in the system, with each source
denoted by Si, i = 1, ...N .

Φ The number of loads accepted in the time-varying buffer
scenario.

p The confidence level of the buffer estimator, i.e. the prob-
ability that the estimated buffer size will be available at a
sink at the next iteration.

Pall (Pnow) Set of sinks (with buffer space available for processing in an
iteration) in the system.

q Iteration index.

s Window size used for estimating the buffer availability based
on historical data.

Continued on Next Page. . .

LIST OF SYMBOLS xviii

tnext (tprev) Time at which the buffer space at Kj changes again
(changed earlier).

T Current time in the system.

T̂ Estimated processing time for the admitted loads in the
system.

T (q) Time taken to process the loads in the qth iteration.

Tcp (Tcm) Computing (Communication) intensity constant. Time
taken to process (communicate) a unit load by a standard
node (link).

Tdi
Deadline requirement of the source Si.

Topt Optimal computation time for the loads in the system.

Tul Time required to process a unit load.

wj Inverse of the computing speed of the sink Kj.

Xnew Set of sources that arrive at the system when the system is
idle or busy processing for some sources.

Xnow (Xlater) Set of sources that are being processed in an iteration (shall
be processed in a later iteration).

Y Fraction of the load L that should be taken into considera-
tion in an iteration of installment, where Y ≤ 1.

zi,j Inverse of the speed of the link li,j between node Si and Kj.

ζ Average buffer utilization in an iteration at a sink node.

Znow (Zlater) Set of sources that are being considered (shall be processed
later) during the admissibility testing.

Continued on Next Page. . .

LIST OF SYMBOLS xix

Scheduling across Clusters :

α This is defined as a N -tuple and refers to a load distribution,
i.e., α = (α0, α0,1, ..., α0,m0 , ..., αx,i, ..., αg,1, αg,2, ..., αg,mg),
where αx,i is the fraction of load assigned to Cx,i such that
0 ≤ αx,i ≤ 1 and sum of all the above load fractions amounts
to the total load to be processed. Note that m0, ...,mg re-
flect the degree of connectivity for each sub-tree.

αx,eq(i) Load fraction given to the equivalent node Cx,eq(i) for pro-
cessing. Note that for Ceq(0) and its equivalent network
Σ(0,m + 1), we denote this value as αeq(0) = 1.

αx,i The optimal load fraction assigned to node Cx,i in
Σ(x, i, m + 1). Similarly, for child node Ci,k, we denote this
value as αi,k.

Cs Node s in the given graph G.

Cx,eq(i) An equivalent node of the single-level tree network
Σ(x, i, m + 1). That is, we replace the sub-tree rooted at
node i with its equivalent node. Note that, node x now be-
comes the parent of both node i as well as this equivalent
node. We denote the respective speed parameter (inverse of
the speed) of this equivalent node as wx,eq(i). Similarly, the
equivalent node of Σ(0,m + 1) is denoted as Ceq(0).

Cx,i This denotes node i in a spanning tree whose parent is node
x. For the root node of a spanning tree, we simply denote
it as C0.

δ The normalized optimal processing time, defined as the ratio
of the optimal processing time (T ∗(α∗)) for RAPLD and
RASLD strategies.

ε The network eccentricity, defined as the distance in number
of hops from the root node to the farthest leaf node in a
spanning tree.

lCs,Ct Communication link connecting nodes s and t in the graph
G.

Continued on Next Page. . .

LIST OF SYMBOLS xx

lCx,i,Cy,j
Communication link connecting processors Cx,i and Cy,j in
a spanning tree.

lx,eq(i) An equivalent link which is equivalent to the communication
capability of a set of links in Σ(x, i,m + 1). The respective
speed parameter of this equivalent link is denoted by zx,eq(i).

L The total amount of load originating at a node for process-
ing.

Lx,i This is defined as the total amount of load assigned to Cx,i

in a spanning tree.

PLink The degree of connectivity in a network or the link density.

Σ(x, i, m + 1) This is a single-level tree network (sub-tree) defined
in a spanning tree, consisting of m child nodes
Ci,1, ..., Ci,k, ..., Ci,m, with root node Cx,i. Further, since ev-
ery child node has the same parent in this sub-tree, we can
conveniently denote the communication link lCx,i,Ci,k

, k ∈
(1, ..., m), connecting Cx,i with Ci,k simply as li,k. Note that
for the single-level tree with root node C0, we denote it as
Σ(0,m + 1).

T (α) The total processing time of the entire load under the dis-
tribution α. Note that T (α) = max{Tx,i(α)} where the
maximization is over all the nodes in the network.

T (Σ(x, i,m + 1)) This is defined as the optimal processing time of the assigned
load fraction αx,eq(i) to Σ(x, i, m+1). Note that for Σ(0,m+
1), we denote the optimal processing time as T (Σ(0,m+1)),
which is indeed the processing time of the entire load L.

T ∗(α∗) The optimal processing time of a load, which is the mini-
mum processing time to finish the processing of the entire
load, using an optimal load distribution α∗.

Tx,i(α) The time instant by which processor Cx,i stops its compu-
tation under the distribution α.

Continued on Next Page. . .

LIST OF SYMBOLS xxi

wx,i A constant that is inversely proportional to the speed of
node Cx,i. Note that, wi,k is the inverse of the speed of node
Ci,k in Σ(x, i, m + 1).

zx,i A constant that is inversely proportional to the speed of link
lx,i. Note that, zi,k is the inverse of the speed of link li,k in
Σ(x, i, m + 1).

1

Chapter 1

Introduction

Complex scientific problems rely heavily on the computation and data analysis

capabilities offered by the technologies. Even though the computing power, data

storage, and communication technologies continue to improve and grow exponen-

tially, computational resources are failing to keep up with the demands from the

scientific community. Over the years, the speed of networks, storage capacity, and

computing power are seen to double in about 9, 12, and 18 months, respectively [1].

Here, it is pertinent to note that the network speeds quadruple while the computing

power doubles in about the same period. To exploit this bandwidth bounty, new

ways of collaborative working that are communication intensive, such as pooling

computational resources, streaming large amounts of data between instruments

and computing systems, and networking sensors and computing resources are es-

sential. Thus, the expanding collaborations and intensive data analysis coupled

with increasing computational and networking capabilities stimulated a new era

Chapter 1 Introduction 2

of service oriented computing, called “Grid computing” [2].

The major characteristics of Grid computing environments are the large-scale co-

ordinated resource sharing, innovative applications, and high-performance com-

putations. Grid computing enables flexible, secure, coordinated resource sharing

among dynamic collection of individuals, institutions, and resources. It creates

middleware and standards to function between computers and networks to allow

full resource sharing among individuals, research institutes, and organizations and

to dynamically allocate the idle computing capability to the needed users at remote

sites. Generally, resource sharing is conditional: owners make resources available,

subject to constraints on when, where, and what can be done with them.

In Grid environments, authentication, authorization, resource discovery, and re-

source access/scheduling are some of the key challenges. There are ongoing re-

search and development efforts focusing on designing protocols, services, and tools

to address the challenges in building scalable virtual organizations for the Grid.

These include security solutions aiding credential and policy management for com-

putations spanning across institutions; query mechanisms for sharing information

on resources, supported services etc; protocols for secure remote access of resources;

and data management services enabling data transfer between storage systems and

applications [3].

New Grid infrastructures are being designed and deployed and the middleware is

being constantly improved. Grids are being deployed for providing various types

of services, such as

Chapter 1 Introduction 3

• computational services: providing secure services for task execution on dis-

tributed computational resources [4, 5]

• data services: providing access to and management of distributed data [6,7]

• application services: providing transparent access to remote software libraries

and utilities [8]

• information services: enabling extraction and presentation of data utilizing

all the above mentioned services, and

• knowledge services: supporting acquiring, storing, retrieving, publishing, and

maintaining knowledge.

With the advent of groups with different requirements and objectives into the

Grid community, there are research activities focusing on orchestrating workflows

in a service-based environment enabling dispatching jobs with assurances on work

completion time, performance, cost etc that are negotiated as part of some Service

Level Agreements [9]. These address the query “How to best schedule a given job

onto the available resources in a Grid, given that each job has an agreed set of

constraints, so as to meet as many constraints as possible?”

Scheduling in Grid environment is a significant problem in fairly allocating the

available resources. Quality of service constraints allow one to submit jobs/tasks

with reliable guarantees that they will be processed by certain times. This is a

critical function for applications involving real time deadlines (time critical appli-

cations), mission critical computing and also lays a foundation for market based

Chapter 1 Introduction 4

Internet

SD

Profess ional Works tation 6000

PRO

Figure 1.1: Grid infrastructure.

meta-computing. Grid systems operate in dynamic environments and are subject

to various unforeseen and unplanned events that can happen at short notice. Such

events include sudden failure of computing resources, arrival of new jobs, processing

time variations of jobs, resource availabilities etc. The performance of a schedule

is very sensitive to these disturbances, and hence it is difficult to execute a pre-

dictive schedule generated in advance. These real-time events not only interrupt

system operation but also upset the schedules that were previously established.

Consequently, the resulting schedule may neither be feasible nor optimal anymore.

Recently, memory constrained problem formulation for Grid systems are being

considered. Ming and Xian-He [10] studied memory conscious task scheduling for

Grid systems. Korkhov et al [11] have proposed a hybrid resource management

approach for efficient parallel distributed computing on the Grid, operating on

both application and system levels. Kim and Weissman [12] have presented a

genetic algorithm approach for decomposable data processing on large scale data

Grids. Ruchir et al [13] have proposed job migration algorithms that consider job

Chapter 1 Introduction 5

C1C2 C3

C4 C5

Figure 1.2: A computational Grid system.

transfer cost, resource and network heterogeneity, for load balancing in large and

small scale heterogeneous Grid environments.

1.1 Computational Grid Systems

A generic Grid infrastructure comprises of network of supercomputers and/or clus-

ters of computers having different storage, computing and communication capa-

bilities that are inter-connected as shown in Fig. 1.1. The computational Grid

systems (CGS) are constructed by using clusters or traditional parallel systems as

their nodes as shown in Fig. 1.2. For example,

• the World-Wide Grid, being used for evaluating the Gridbus technologies

and applications [14], has many cluster nodes that are located far apart

(AIST-Japan, N*Grid Korea, University of Melbourne, and NRC Canada).

• the Dutch Distributed Advanced School for Computing and Imaging (ASCI)

Chapter 1 Introduction 6

Supercomputer 2 (DAS-2) [15], a Grid infrastructure in the Netherlands

located at five Dutch Universities (Vrije Universiteit, University of Amster-

dam, Delft University of Technology, Leiden University, and University of

Utrecht), built out of clusters of workstations interconnected by Myrinet (a

multi-Gigabit LAN used for local communication) and SurfNet (an Internet

backbone for wide-area communication).

• the NSF TeraGrid [5] in the United States of America (USA).

1.2 Divisible Load Scheduling

Divisible loads are a class of loads that require homogeneous processing and can

be partitioned into arbitrary smaller fractions. These load portions, that bear no

dependence relationships among themselves, can then be assigned to individual

nodes for processing. Research since 1988 has established that optimal alloca-

tion/scheduling of divisible load to nodes and links can be solved through the use

of a very tractable linear model formulation, referred to as Divisible Load Theory

(DLT). DLT paradigm is proven to be a very useful tool for handling large scale

arbitrarily partitionable loads in networked computing environments [16].

DLT can model a wide variety of approaches. For instance, one can distribute

the load either sequentially or concurrently. Under sequential load distribution, in

most of the literature to date [16–20], the policy used is that a node will distribute

load to one of its children at a time. This results in saturating speedup as network

Chapter 1 Introduction 7

size is increased. One could improve performance by distributing load from a node

to children in periodic installments but performance still saturates as the number

of installments is increased as shown in [21]. A superior performance results, if load

is distributed concurrently. That is, a node distributes load simultaneously to all of

its children. Kim [22] has proposed a mathematical model in which simultaneous

communication to several nodes is carried out. Juim et al [23] have shown that

such concurrent load distribution is scalable for a single level tree when the number

of children nodes increases (i.e. linear growth in speedup as the number of children

nodes increases).

Other scheduling features that can be modeled are store and forward and virtual

cut through switching and the presence or absence of front end processors. Front

end processors allow a node to both communicate and compute simultaneously

by assuming communication duties. There exists literature of some sixty journal

papers on DLT. In addition to the monograph [16], two introductory up-to-date

surveys have been published recently [24,25]. The DLT theory has been proven to

be remarkably flexible in the sense that the model allows analytical tractability to

derive a rich set of results regarding several important properties of the proposed

strategies and to analyze their performance. Agrawal and Jagadish [26] have pre-

sented a study on optimal solutions for scheduling “large-grained” computations on

loosely coupled processor systems focusing on single-level tree architecture whereas

Cheng and Robertazzi [27] considered bus network systems. Real-time optimiza-

tion of distributed loads originating at various sites of a bus network has also been

Chapter 1 Introduction 8

studied by Haddad [28]. Marchal et al [29] have considered scheduling divisible

loads for generic large scale platforms. In a recent paper Yao and Bharadwaj [30]

have proposed strategies for scheduling divisible loads on arbitrary graph networks.

Lin et al [31] have studied on providing performance guarantees to divisible load

applications in a cluster environment. Another study that may be useful in cluster

systems context is by Ghose et al [32] where in time-varying speeds of links and

processors in the network are considered in the modeling to evolve an adaptive

load distribution strategy.

Scheduling loads under time-varying processor and link speeds have been studied

in [33]. An Incremental Balancing Strategy (IBS) has been proposed in [34] for

systems with buffer constraints at processing nodes. The IBS algorithm produces

a minimum time solution given pre-specified buffer constraints and it also ex-

hibits finite convergence. However, it does not consider scheduling under dynamic

environments and buffer capacity variations at processing nodes. Issues such as

processor release times coupled with buffer capacity constraints are studied in [35].

In [36] Ghose et al have used a completely novel approach to estimate the speeds

of the processors in the network. This study is particularly useful when processor

speeds are not known a priori. The solution time (time at which the processed

loads/solution is made known at the originator) is discussed in [37]. A completely

different objective of minimizing the monetary cost of processing divisible loads is

addressed in [38]. In [39] Beaumont et al have discussed some open ended problems

and issues pertaining to divisible load scheduling.

Chapter 1 Introduction 9

DLT has been applied to many real-life applications, including large-scale matrix-

vector products [40, 41], large-scale database search problems [42], database ap-

plication [43, 44], parallel video encoding [45], image processing [46, 47], biologi-

cal computations [48], optimal pricing study [49], scheduling under system buffer

constraints [50], etc. The usefulness of DLT has also been exemplified in the arti-

cle [24].

DLT paradigm is rich in features, such as, ease of computation, a schematic lan-

guage, equivalent network element modeling, results for infinite sized networks and

numerous applications. This linear model formulation usually produces optimal

solutions through linear equation solution or, in simpler models, through recursive

algebra. Optimality here involving solution time and speedup is defined in the con-

text of a specific scheduling policy and interconnection topology. The model can

take into account heterogeneous node and communication link speeds as well as

relative computation and communication intensity. The linear theory formulation

opens up striking modeling possibilities for systems incorporating computation

and communication issues, as in parallel, distributed and Grid computing.

1.3 Scheduling Divisible Loads on Computational

Grids

Computational Grid systems are built on high-speed networks for remote resource

usage and thus are well suited for processing large volume arbitrarily divisible data

Chapter 1 Introduction 10

like those being generated in the high energy and nuclear physics experiments [51],

bio-informatics [52], astronomical computations [53], weather prediction etc. The

unprecedented volume of data being generated in these applications demand new

strategies for how the data is to be collected, shared, transferred and analyzed. For

example, the Solenoidal Tracker at RHIC (STAR) experiment at Brookhaven Na-

tional Laboratories (BNL) is collecting data at the rate of over a Tera-Bytes/day.

After the Relativistic Heavy-Ion Collider (RHIC) experiments at BNL came on-line

in 1999, STAR began data taking and concurrent data analysis that will last about

ten years. STAR performs data acquisition and analyzes over approximately 250

tera-bytes of raw data, 1 peta-bytes of derived and reconstructed data per year.

Details on data acquisition and hardware of STAR can be found in [51]. The vol-

ume of data is expected to increase by a factor of 10 in the next five years. The

STAR collaboration is a large international collaboration of about 400 high energy

and nuclear physicists located at 40 institutions in the USA, France, Russia, Ger-

many, Israel, Poland, and so on. These experiments require effective analysis of

large amounts of arbitrarily divisible data by widely distributed researchers who

must work closely together.

1.4 Our Contributions

The large number and diverse nature of the computing resources and their users

in CGS pose a significant challenge to efficiently schedule the loads and utilize

Chapter 1 Introduction 11

the resources. The motivation for our work stems from the challenges in manag-

ing and utilizing computing resources in Grids as efficiently as possible. To-date

there has been little or no work on designing resource aware dynamic strategies

for scheduling large volume computationally intensive divisible loads with dead-

line requirements (time critical loads) in a computational Grid environment. In a

typical CGS, nodes with in Clusters are co-located and connected by high speed

local networks while the Cluster themselves are geographically distributed and are

interconnected through wide area networks. Hence, while scheduling large volume

computationally intensive arbitrarily divisible loads on the CGS, the communica-

tion delay could be ignored while scheduling within Clusters, and it needs to be

considered while scheduling across Clusters. Thus, scheduling divisible loads in

CGS require multi-level or hierarchy of scheduling strategies.

The main emphasis or the scope of this thesis lies in designing efficient strategies

for scheduling large volume computationally intensive divisible loads on CGS and

analyzing their performance. We assume the communication delay between the

nodes in the system to be contributed by the load transmission time, which is

proportional to the size of the load, ignoring the constant propagation delays

and the stochastic queuing delays. We also assume a multi-port communication

model for scheduling with in clusters (since communication delay is negligible) and

design strategies taking into account the influence of heterogeneity in processing

capabilities, buffer size variations at the nodes and dynamic arrival of time critical

as well as non-critical loads. We employ both interleaving and non-interleaving

Chapter 1 Introduction 12

Non-interleavedscheduling InterleavedschedulingEarliest deadlinefirst schedulingPredictablevariations Dynamicvariations Timeinvariantbuffers TimevaryingbuffersTimeinvariantbuffers Timevaryingbuffers
Load distributionacross clustersLoad distributionwithin clusters Load distributionstrategies for Computational Grids

Non-timecritical loads Timecritical loads Sequentialdistribution Paralleldistribution
Figure 1.3: Scope of the thesis.

multi-installment strategies to process tasks (jobs) that are admitted into a cluster

system, discuss their usefulness and derive important conditions based on which

admission control shall be carried out. As communication delays dominate across

clusters, we consider them and propose several distribution strategies for inter

cluster scheduling assuming a uni-port communication model and quantify their

performance. Resource reclaiming strategies are utilized in the design of all our

proposed algorithms. In summary, as illustrated in the Fig. 1.3 we propose

• Dynamic iterative strategies for scheduling several non-time critical divisible

(partitionable) loads within clusters where there are finite buffer capacity

constraints at the processing nodes.

• Resource aware iterative strategies for scheduling several deadline driven

Chapter 1 Introduction 13

loads within clusters, while adapting to the finite buffer capacity constraints

at the processing nodes.

• Load distribution strategies for best scheduling divisible loads on intercon-

nected clusters which forms the backbone network of CGS.

Detailed analysis of the proposed algorithms and their performance are demon-

strated using simulation studies with real-life parameters derived from high energy

nuclear physics experiments discussed in [51]. The analytical flexibility offered by

Divisible Load Theory (DLT) is thoroughly exploited to design resource conscious

algorithms that make best use of the available resources.

Since, this study is one of its first kind to address all the above mentioned issues

collectively, we propose suite of strategies and analyze their performance by simu-

lation studies. Our systematic design clearly elicits the advantages offered by our

strategies. Experimenting on actual Grids is beyond the scope of this thesis and

is a challenge in itself.

This thesis is organized as follows: The scheduling problem in CGS is formalized

in Chapter 2. The load distribution strategies that are utilized in our scheduling

algorithms are described in Chapter 3. Strategies for scheduling non-time critical

and time critical loads within a cluster environment are presented in Chapters 4

and 5 respectively. Strategies for scheduling across clusters are explored in Chapter

6 and the conclusions and possible future extensions are in Chapter 7.

14

Chapter 2

System Modeling and Problem

Formulation

In this chapter, we shall describe our system model; introduce the terminology,

definition, and notations that are used throughout this thesis.

A computational Grid system (CGS) to be considered here comprises of clusters

of computing systems interconnected to form a Grid as shown in Fig. 1.2. We

consider the problem of scheduling large volume loads (divisible loads) in such a

Grid infrastructure assuming all nodes have front ends. We envisage the cluster

system as a cluster node comprising a set of computing nodes. Communication

delay is assumed to be negligible within a cluster node while it is considered for

inter-cluster communications. For network locality, nodes form clusters and each

cluster provides a master node, denoted as ‘Cs’ in Fig. 1.2. All the master nodes

Chapter 2 System Modeling and Problem Formulation 15

serve as the focal point for their cluster and form the backbone network for inter-

cluster communication.

2.1 Scheduling within Cluster Systems

The underlying computing system within a cluster comprising of N control pro-

cessors, referred to as sources, that have load to be processed and M computing

elements, referred to as sinks, for processing loads, can be modeled as a fully

connected bi-partite graph (as in Fig. 2.1): a set of graph vertices could be de-

composed into two disjoint sets such that no two graph vertices within the same set

are adjacent, while any pair of two graph vertices from these two sets is adjacent.

This represents the fact that each source can schedule its load on all the sinks.

All the nodes in the system, in addition to participating in processing the divisible

loads from other nodes, also have local tasks to handle. The local tasks needs

be processed at the respective nodes. In some systems, the nodes have dedicated

buffer spaces for processing divisible loads from other nodes. Such systems are

termed as Systems with time-invariant buffer space availabilities. Where as in

some systems, the nodes share the buffer spaces for processing both local tasks

and the divisible loads from other nodes. In such systems, if the local task arrivals

and their memory requirements are known a priori, they are termed as Systems with

predictable buffer space availabilities. If the local task arrivals and their memory

requirements vary, the buffer availability at a node also varies over time. Such

Chapter 2 System Modeling and Problem Formulation 16

Cs

S1 S2 SN

K1 K2 K3 KM

Figure 2.1: Abstract view of a cluster comprising sources & sinks with a coordi-
nator node (Cs) in a Grid system.

systems are termed as Systems with time-varying buffer space availabilities.

In real-life situations, one of the practical constraints is in satisfying the deadline

requirements of the loads (arriving in real-time from multiple source nodes) to

be processed while taking into account the availability of the buffer (memory)

resources at the sink nodes, since, the memory available at the processing nodes to

store the received load and process them is limited. We consider these combined

influences in our proposed algorithms for scheduling with in a cluster. We employ

“pull-based” approach in the design of our scheduling strategy wherein the sinks

schedule the competing sources depending on the availability of the resources for

processing with in a cluster.

The problem that we address shall be formally defined as follows: We consider a

cluster node in a Grid system comprising N source nodes denoted as S1, S2, ..., SN

and M sink nodes denoted as K1, K2, ..., KM . Each source Si has a load Li to be

processed. In our model, all the nodes in the clusters are assumed to have front-

ends. This means that all the nodes can compute and communicate with other

Chapter 2 System Modeling and Problem Formulation 17

nodes simultaneously. A master node is assumed to coordinate the activities within

a cluster. The master node estimates the load distribution and does admission

control for the sources. We refer to this master node simply as a coordinator node

(Cs), and without loss of generality, we assume that any node within a cluster can

be elected as the coordinator node based on leader election algorithms [54].

As shown in Fig. 2.1, there are direct links (may be virtual) from all source and sink

nodes with in a cluster to Cs. We adopt a simultaneous load distribution model

proposed in [55] in which all sources (sinks) can send (receive) load fractions to all

the sinks (from all the sources) simultaneously. Also, following Kim’s model [22],

we assume that the communication time delay is insignificant compared to the

time taken for computing, owing to high speed links within clusters, so that no

sink starves for load and that all sinks could start computing as they receive the

loads from the sources.

The objective here is to schedule and process the loads among M sink nodes, ren-

dering finite buffer capacities, such that their processing time, defined as the time

instant when all the M sinks complete processing the loads, is a minimum. As with

the real-life situation, we consider the availability of buffer space as a time-varying

quantity in our formulation and propose multi-installment based scheduling strate-

gies. Also, our objective is to minimize the scheduling related communication

overheads in the system. At the start of every iteration, the coordinator node

obtains the information about the available memory capacities and computing

speeds from the sinks, and the size and deadline requirements of the loads from

Chapter 2 System Modeling and Problem Formulation 18

the sources. The coordinator node then computes the parameters required by the

sinks for scheduling and broadcasts them to all of the sinks. The sink nodes deter-

mine the amount of load fractions to be received from the source nodes based on

the scheduling parameters received from the coordinator node. The sources, upon

receiving the requests from the sinks shall send their load to all sinks concurrently.

This process is repeated by the coordinator, sink and source nodes in the system

until all the entire loads at the source nodes are processed. Thus, all the proposed

schemes for scheduling within clusters in this thesis are distributed strategies and

the loads get processed in multiple installments.

In Chapter 3, we describe the load distribution strategy for this multi-source multi-

sink environment. In Chapter 4, we propose and analyze Dynamic and Adaptive

IBS algorithms, for non-time critical loads with finite buffer constraints at the

processing nodes. These algorithms are a generalization of the Modified IBS al-

gorithm [56], tuned to consider dynamic arrival of loads. Then, in Chapter 5,

we extend it to design Resource Aware Dynamic Incremental Scheduling (RADIS)

strategies that consider loads with deadlines. Admissibility criteria to handle loads

with deadlines are also proposed. Detailed analysis of the proposed algorithms and

their performance are demonstrated using a simulation study with real-life param-

eters derived from high energy nuclear physics experiments discussed in [51].

Chapter 2 System Modeling and Problem Formulation 19

C1

C2 C3

C4 C5

E1,5

E2,3

E1,4

E2,5 E3,4

E4,5

E2,4

Figure 2.2: Abstract view of the backbone network of a Grid system in Fig. 1.2
(comprising of master cluster nodes alone).

2.2 Scheduling across Cluster Systems

The backbone network, in the computational Grid system, comprising of the mas-

ter nodes of the clusters, form an arbitrary topology/graph G = 〈C,E〉, where C

denotes the number of master nodes interconnected via E communication links,

as illustrated in the Fig. 2.2. The master nodes and the links are assumed to be

heterogeneous, that is, their respective speeds may not be identical. Thus, the

edges have weights corresponding to the speeds of the links. We assume a uni-port

communication model and that all the master nodes in the system have front-ends.

This means that each master node can compute and communicate with another

master node (to which it is connected directly via a link), simultaneously. We

consider the load to originate at any node in the network and obtain a load dis-

tribution that minimizes the total processing time of the load. Without loss of

Chapter 2 System Modeling and Problem Formulation 20

generality, we shall assume that all nodes in the system are capable of processing

the load, that is, the required application to process the load is assumed to be

available at all the nodes.

Wong et al [57] have proposed scheduling strategies for multiple divisible loads

on linear daisy chain networks. Jingxi et al [58] have studied adaptive load dis-

tribution strategies for divisible load scheduling on resource unaware multi-level

tree networks. England et al [59] have proven that the optimal solution to single-

installment based divisible load scheduling problem on a arbitrary graph indeed

occurs on a spanning tree of the graph, a multi-level tree. Yao and Bharadwaj [30]

have studied the problem of scheduling divisible loads on arbitrary graphs assum-

ing uni-port communication model. Their parallel distribution approach comprises

of two stages. They first identify a minimum spanning tree (MST) for the network,

and then dispatch the load on the MST. They propose two strategies namely, the

resource-aware optimal load distribution (RAOLD) and RAOLD with optimal se-

quencing (RAOLD-OS). RAOLD uses the rule A in the literature [16] to obtain

a reduced optimal tree, while RAOLD-OS uses the optimal sequencing [16] to de-

termine the distribution sequence. Both algorithms guarantee optimal load distri-

bution with RAOLD-OS always providing the minimum processing time. Further,

Byrnes et al [60] have proved that finding the optimal spanning tree (the spanning

tree that generates minimum total processing time) on the arbitrary network is

NP-hard.

Therefore, one immediate question to address is which distribution strategy or

Chapter 2 System Modeling and Problem Formulation 21

spanning tree(s) deliver efficient solutions for scheduling across cluster systems in a

Grid environment. However, in the literature, there is no systematic comparative

study of the performance of different spanning tree construction strategies for

divisible load scheduling in a Grid environment. In Chapter 3, we present the

distribution strategies for distributing divisible load across clusters in a CGS and in

Chapter 6, we propose Resource Aware Sequential and Parallel Load Distribution

(RASLD and RAPLD) strategies and compare their performance as well as those

of spanning tree construction strategies.

22

Chapter 3

Load Distribution Strategies

The system model for a computational Grid system (CGS) was presented in the

last chapter. In this chapter, we shall describe the load distribution strategies used

in our algorithms for scheduling within as well as across clusters in a CGS. Com-

munication delay is assumed to be negligible within clusters and the distribution

strategy for such a system is described in Section 3.1 and the communication de-

lay is considered for scheduling across clusters and the corresponding distribution

strategies are detailed in Section 3.2.

In the DLT literature [16], in order to derive an optimal solution it was mentioned

that it is necessary and sufficient that all the sinks that participate in the compu-

tation must stop at the same time instant; otherwise, load could be redistributed

to improve the processing time. We use this optimality principle in the design of

all our load distribution strategies for CGS.

Chapter 3 Load Distribution Strategies 23

3.1 Systems with no Communication Delays

The system model for scheduling within clusters, assuming a multi-port communi-

cation model, was described in Chapter 2. The timing diagram for load distribution

in such a system is shown in Fig. 3.1, where there are N source and M sink nodes.

The timing diagram represents the communication and computation times of the

sources and sinks within the system, with the x-axis representing the time. From

the timing diagram, we see that,

N∑

i=1

αi,jwjTcp =
N∑

i=1

αi,j+1wj+1Tcp, j = 1, ..., M − 1 (3.1)

As our objective is to determine a unique solution for the optimal fractions αi,j,

we impose the following condition in our strategy. Let

αi,j = αjLi , i = 1, ..., N , j = 1, .., M (3.2)

This condition essentially assumes that each sink requests a load fraction that is

proportional to the size of the load at the source. Moreover, each sink requests

the same load fraction (percentage of total load) from each source. Without this

condition, it may be noted that the system of equations is under-constrained and

additional constraints are needed to obtain a unique solution. With this condition

Chapter 3 Load Distribution Strategies 24

K
M

K
2

K
1

S
N

S
1

α
1,1

z
1,1

T
cm

S2

(α
1,2

 + α
2,2

 + ... + α
N,2

)ω
2
T

cp

(α
1,1

 + α
2,1

 + ... + α
N,1

)ω
1
T

cp

(α1,M + α2,M + ... + αN,M)ωMTcp

α
1,2

z
1,2

T
cm

α
1,3

z
1,3

T
cm

α
1,M

z
1,M

T
cm

α
2,1

z
2,1

T
cm

α
2,2

z
2,2

T
cm

α
2,3

z
2,3

T
cm

α
2,M

z
2,M

T
cm

α
N,1

z
N,1

T
cm

α
N,2

z
N,2

T
cm

α
N,3

z
N,3

T
cm

α
N,M

z
N,M

T
cm

T(M)

time

communication

computation

Figure 3.1: Timing diagram for the load distribution strategy with N sources and
M sinks in an iteration within clusters.

Chapter 3 Load Distribution Strategies 25

(3.1) simplifies to

N∑

i=1

αjLiwj =
N∑

i=1

αj+1Liwj+1 , j = 1, ..., M − 1 (3.3)

Using (3.3) together with the fact that
M∑

i=1

αi = 1, we have

αj =
1

wj(
∑M

x=1
1

wx
)

, j = 1, ..., M (3.4)

Hence, the fraction of load that Kj should request from Si is derived as

αi,j =
1

wj(
∑M

x=1
1

wx
)
Li (3.5)

In real-life situations, there is always a limit to the amount of buffer space that a

sink could render. Further, in a real-life environment, each node may be running

multiple tasks such that it is required to share the available resources, hence there

may be only a limited amount of buffer space that is allocated for processing

particular loads at a given time. As a result, we are naturally confronted with the

problem of scheduling divisible loads under buffer capacity constraints. Hence, if

there is sufficient load in the system to completely consume a buffer at one of the

sink nodes, the load fractions αi,j that a sink Kj shall request from a source Si has

to be reduced by a factor Y , given by

Y = min

{
Bj

(αjL)

}
(3.6)

Chapter 3 Load Distribution Strategies 26

Proposition 1: The factor Y defined in (3.6) ensures that at each iteration all

the sinks that participate in processing the loads complete processing at the same

time instant.

Similar load distribution strategy is also used in [56] for off-line scheduling. But,

in our strategy, we utilize the IBS algorithm in every iteration and attempt to fill

up one or more sinks’ buffer space. This load distribution strategy forms the basis

of our schedulers for distributions within clusters. In every iteration we attempt

to fill up one or more sinks’ buffer space. If in an iteration, the remaining load is

not enough to completely consume the buffer at a participating sink node, we use

the distribution suggested by (3.5). In our strategies, when multiple sinks have

identical buffer capacities, the buffer at the fastest sinks will be fully utilized.

3.2 Systems with Communication Delays

In this section, we propose load distribution strategies for scheduling across clusters

assuming a uni-port communication model. The system model for such systems

are detailed in Chapter 2. As with the distribution strategy for scheduling within

clusters, here too all the processing nodes are assumed to start computing imme-

diately upon receiving the load portions assigned to them. As mentioned earlier,

England et al [59] have proven that the optimal solution to single-installment based

divisible load scheduling problem on a arbitrary graph indeed occurs on a spanning

tree of the graph, a multi-level tree. Hence, given an arbitrary graph, we shall first

Chapter 3 Load Distribution Strategies 27

C1

C2 C3

C4 C5

αααα1l1,4 l1,5l4,2 l4,3

Figure 3.2: A spanning tree for the backbone network of a Grid system in Fig. 2.2
with a load (α1) at the node C1.

generate a spanning tree for it as detailed later in Chapter 6. Fig. 3.2 illustrates

a spanning tree for the abstract Grid System in Fig. 2.2. Here, we assume that

a spanning tree is generated for the given network, and propose two distribution

strategies, namely sequential and parallel load distributions for distributing the

load on that multi-level tree network. In the case of sequential distribution, the

given spanning tree is reduced to a single-level tree by adding up the link delays

from the root node to the processing nodes and in the case of parallel distribution

it is achieved by recursively reducing the multi-level tree to a single-level tree.

The optimal sequencing theorem for a single-level tree network presented in [16]

is applied at each single-level tree to determine the optimal sequence at that level.

The optimal sequencing theorem states that

Theorem 1 (Optimal sequence): In a single-level tree network
∑

(x, i, m + 1), in

order to achieve minimum processing time, the sequence of load distribution by the

parent node Cx,i should follow the order in which the link speeds (1
zi,k

, k = 1, 2, ...m)

Chapter 3 Load Distribution Strategies 28

decrease.

This theorem provides a necessary and sufficient condition for a sequence of load

distribution to be optimal. Thus, for an optimal solution, the load is distributed

first through the fastest link, then through the next fastest link, and so on until

the slowest link is assigned the last load fraction.

The sequential and parallel load distribution strategies are described in the follow-

ing sections.

3.2.1 Sequential Distribution

In this section, we propose sequential load distribution strategy for distributing the

divisible loads from the load originating node (root node) to other cluster coordi-

nator (master) nodes in the system. In this strategy, the root node shall distribute

the load to other master nodes in the system sequentially, after reducing the multi-

level tree to a single-level tree systematically as follows. We shall consider all the

nodes in a spanning tree network, compute the sum of link delays (communication

delays) along the path from the root node to them, and derive a single-level tree

with the computed sum as the link delay value for the link between the root node

and that node, as shown in Fig. 3.3, arrange the nodes following the optimal

sequence (Theorem 1) and determine the distribution. Then, when the root node

distributes the load to other nodes, it shall sequentially distribute the load por-

tions assigned to them also following the optimal sequence order, as illustrated in

Chapter 3 Load Distribution Strategies 29

C1

C2 C3

C4 C5

αααα1l1,4
l1,5l4,2 l4,3

C2 C3

C4 C5

C1

αααα1l1,4

(l1,4+ l4,2)

l1,5

(l1,4+ l4,3)

Figure 3.3: Reducing a multi-level tree to a single-level tree for sequential load
distribution on the spanning tree in Fig. 3.2.

the timing diagram (Fig. 3.5). The timing diagram represents the communication

and computation times of the root node and other cluster coordinator nodes in a

CGS, with the x-axis representing the time.

In [16], the equivalent processor and link speeds for a single-level tree network in

Fig. 3.4 is derived as

w0,(k+1,...,k+r) =

(
1

1 + Σk+r
u=k+2Π

k+r
v=ufv

)
w0,(k+r) (3.7)

and

z0,(k+1,...,k+r) =
Σk+r

u=k+2{(Πk+r
v=u)z0,(u−1)}+ z0,(k+r)

1 + Σk+r
u=k+2Π

k+r
v=ufv

(3.8)

where

fv =
w0,v + z0,v(Tcm/Tcp)

w0,(v−1)

(3.9)

Chapter 3 Load Distribution Strategies 30

Ceq(0)

αeq(0)ΣΣΣΣ(0, m+1):

C0,k

C0,2 C0,m-1

C0,1 C0,m

C0l0,1l0,2 l0,k

l0,ml0,m-1

αeq(0)

Figure 3.4: Processor equivalence for a single-level tree of the entire network.

From these, the processing time for the single-level tree network is derived as

T (Σ(0,m + 1)) = α0,iw0,iTcp

=

(
Πm

v=1fv

1 + Σm
u=1Π

m
v=ufv

)
w0,iTcp

= weq(0) · Tcp (3.10)

where

weq(0) =

(
Πm

v=1fv

1 + Σm
u=1Π

m
v=ufv

)
w0,i (3.11)

Thus, as shown in Fig. 3.4, given a single-level tree network, the entire network

could be replaced by a equivalent node Ceq(0) whose processing speed is given by

(3.11). The optimal load fractions that shall be distributed to the participating

nodes is given by

α0,k = α0,m Πm
v=k+1 fv , k = 0, 1, ..., m− 1 (3.12)

Chapter 3 Load Distribution Strategies 31

α1,2z4,2Tcm α1,3z4,3Tcm

α1,4w4Tcp

C4

α1,5w5Tcp

C5

α1,4z1,4Tcm α1,2z1,4Tcm α1,3z1,4Tcm

α1,1w1Tcp

C1

communication

computation

time
α1,5z1,5Tcm

T (α1)

α1,3w3Tcp

C3

C2 α1,2w2Tcp

α14w4Tcp

Figure 3.5: Timing diagram for the sequential load distribution strategy across
cluster coordinator nodes.

where

α0,m =
αeq(0)

1 + Σm
u=1Π

m
v=ufv

(3.13)

and fv is as defined in (3.9).

From the timing diagram (Fig. 3.5), we see that, at any given time, there is only

one communication happening in the entire network. That is, even when there

are load to be distributed and its front end is not utilized for any communication,

the root node waits for the communications happening in the entire network to

be completed. Hence, we call this strategy as sequential distribution strategy. Our

parallel distribution strategy described in the next section, attempts to leverage

on such idle periods to optimize the processing time.

Chapter 3 Load Distribution Strategies 32

C1

C5

αααα1l1,4
l1,5

C2 C3

C4l4,2 l4,3

Ceq(4)

C4 C5

C1

αααα1l1,4 l1,4

l1,5

Figure 3.6: Reducing a multi-level tree to a single-level tree for parallel load dis-
tribution on the spanning tree in Fig. 3.2.

3.2.2 Parallel Distribution

In this section, we propose parallel load distribution strategy for distributing the

divisible loads from the load originating node (root node) to other cluster coor-

dinator nodes in the system. Here, we let the root and other parent nodes (the

nodes that have child nodes) to distribute the loads to their children in a parallel

manner as described below. We consider all the nodes in a spanning tree network;

systematically reduce the given multi-level tree to a single-level tree by replacing

the sub-trees with their equivalent node as in Fig. 3.6, arrange the nodes following

the optimal sequence (Theorem 1) and determine the distribution. The parent

node, while distributing the load to its children, shall distribute to its child node

first and then to the sub-tree for which that child is a parent, and then proceed

distributing to its next child and so on, also following the optimal sequence order

as illustrated in the timing diagram (Fig. 3.8). The timing diagram represents

Chapter 3 Load Distribution Strategies 33

Ceq(i)

αx, eq(i)ΣΣΣΣ(x, i, m+1):

Ci,k

Ci,2 Ci,m-1

Ci,1 Ci,m

Cx,ili,1li,2 li,k

li,mli,m-1

αx, eq(i)

Figure 3.7: Processor equivalence for a single-level sub-tree.

the communication and computation times of the root node and other cluster

coordinator nodes in a CGS, with the x-axis representing the time.

From Fig. 3.6, it shall be noted that C4 acts as a control node for the com-

munications between the root node C1 and leaf nodes C2 and C3, relaying the

loads assigned to them by the root node. Hence, this sub-tree is equivalent to a

single-level tree network with a control node C4.

In [16], the optimal processing time for a bus network with control processor (or

control node) has been derived. A bus network is a special case of a single-level

tree network where all the link delays (zi,j) are identical. We generalize and extend

the optimal processing time expression derived for the bus network to a single-level

tree network in Fig. 3.7 as

T (αx,eq(i)) = (zi,1 Tcm + wi,1 Tcp) αi,1 (3.14)

Chapter 3 Load Distribution Strategies 34

where

αi,1 = 1 , m = 1

=
1

1 + Σm−1
i=1 Πi

j=1(kj)
, m ≥ 2 (3.15)

and

kj =
wi,j Tcp

zi,(j+1) Tcm + wi,(j+1) Tcp

, 1 ≤ j ≤ m− 1 (3.16)

The equivalent processing capability value for the sub-tree could be computed

using (3.14) as

wx,eq(i) =
T (αx,eq(i))

Tcp

(3.17)

Thus, nodes in a sub-tree whose parent is Cx,i could be replaced with an equivalent

node Cx,eq(i) with a link to the parent node Cx with a delay value zx,i as shown in

Fig. 3.7.

Given a multi-level tree we shall begin at the lowest level, arrange the nodes in an

optimal sequence and recursively replace sub-trees with their equivalent nodes as

computed in (3.17) till we reach the single-level tree with root node as the parent

node, upon which we shall use (3.11), and determine the load distribution. While

distributing the load to the children, the parent node shall follow the optimal

sequencing order, inflate the equivalent nodes (if any) and optimally distribute the

load assigned among the nodes that formed that equivalent node, as given by the

Chapter 3 Load Distribution Strategies 35

α1,2w2Tcp

C2

α1,5w5Tcp

C5

α1,4z1,4Tcm α1,5z1,5Tcm

α1,1w1Tcp

C1

communication

computation

time

T (α1)

(α1,2 + α1,3)z1,4Tcm

α1,3w3Tcp

C3

α1,2z4,2Tcm α1,3z4,3Tcm

α1,4w4Tcp

C4

Figure 3.8: Timing diagram for the parallel load distribution strategy across cluster
coordinator nodes.

following equations:

αi,k = αi,m Πm
v=k+1 fv , k = 0, 1, ..., m− 1 (3.18)

where

αi,m =
αx,eq(i)

1 + Σm
u=1Π

m
v=ufv

(3.19)

and fv is as defined in (3.9) and αx,eq(i) is the load assigned to Cx,eq(i) by its parent

node.

From the timing diagram (Fig. 3.8), we see that, in this distribution strategy,

the root node C1 first distributes the load assigned to C4 as well as its sub-tree

Chapter 3 Load Distribution Strategies 36

(nodes C2 and C3) before proceeding to distribute to its other child C5. Then,

while the node C4 is distributing the load to its children C2 and C3, the root

node C1 distributes the load to its other child C5. Thus, in this strategy the

parent nodes in the system distribute the load to their children concurrently after

receiving the load portions from their parent nodes. Hence, we call this strategy

as parallel distribution strategy. Also, C4 starts computing as soon as it received

its load portion from C1, while continuing to receive the load portions assigned to

its children from its parent node.

37

Chapter 4

Scheduling Strategies for

Non-time Critical Loads

Strategies for distributing the loads both within and across cluster nodes are de-

tailed in the last chapter. In this chapter, we shall propose dynamic and adaptive

scheduling strategies for systems having non-time critical loads and finite buffer

capacity constrained sink nodes within clusters. We consider two environments,

where the buffer availability at sink nodes

• remain constant over time

• vary over time

and propose suitable strategies for them following the distribution strategies pre-

sented in Chapter 3. However, under deadline driven processing requirements, the

Chapter 4 Scheduling Strategies for Non-time Critical Loads 38

number of loads that can be admitted by the system needs to be restricted and it

is discussed in Chapter 5.

Here, we consider scheduling when the loads arrive at arbitrary times to the cluster

system for processing as well as when the total amount of loads to be processed

exceeds the currently available buffer capacities. In a real-life system, the number

of loads to be processed may vary over time and also demand for processing may

arise at any time. Thus, it will be difficult to estimate a priori the maximum

amount of load that may be in the system at any time. Under such conditions,

a feasible schedule may not exist unless the sink nodes allow their buffers to be

reclaimed after a given load is processed. This means that, after processing a given

load, the sinks shall make their buffer available for subsequent processing. Thus in

order to handle the situation wherein sources demand processing at various time

instants, dynamic scheduling strategies needs to be designed in such a way that

sinks continue to render their available buffers to the sources.

4.1 Dynamic IBS Algorithms

In the DLT literature [25], it was mentioned that for an optimal scheduling solution,

it is necessary and sufficient if all the sinks that participate in the computation

stops at the same time instant, else the loads could be redistributed to improve the

processing time. The optimality principle stated in the DLT literature was used

and load fractions that a sink Kj shall receive from the source Si was derived in

Chapter 4 Scheduling Strategies for Non-time Critical Loads 39

the modified IBS algorithm [56] for systems with pre-specified buffer constraints.

The modified IBS algorithm recursively invokes IBS algorithm [34] and employs

a “push-based” strategy. In this scheme, a source node identifies potential sinks

(with knowledge about the available resources at the sinks), computes the schedule

and communicates it to other source nodes. Upon receiving this schedule infor-

mation, all the source nodes send their load portions to the respective sink nodes.

Although this algorithm recursively attempts to fill up one or more sinks’ buffer

space at every iteration, it is basically an offline algorithm. In this scheme, when

a sink’s buffer is completely filled up, that sink is not considered for scheduling in

the subsequent iterations.

The modified IBS algorithm exhibits finite convergence. But, it does not consider

real life situations, where the buffer capacities at sink nodes vary over time and

the loads to be processed may arrive at arbitrary times to the system.

For scheduling in dynamic environments, optimal load fractions must be recom-

puted at the completion of every iteration based on the total load in the system.

This process shall continue until all of the loads are processed. Thus, the load re-

questing by the sinks and processing are on-line in the sense that the IBS algorithm

is invoked to recompute the load distribution depending on the number of sources

and their respective load sizes, after the sinks complete processing the loads re-

quested by them earlier. Further, it shall be noted that the buffer space availability

(depending on workload characteristics) in sinks does not have an affinity towards

any source. Thus, if no other sources demand processing, then the entire buffer is

Chapter 4 Scheduling Strategies for Non-time Critical Loads 40

allocated to the demanding source. Since the IBS strategy is invoked for recom-

puting the loads at the end of every iteration and dynamic arrival of loads are also

considered, we refer to this algorithm as the Dynamic IBS algorithm hereafter.

The Dynamic IBS algorithm ensures that at any iteration all the sinks stop com-

puting at the same time instant. Hence, the optimal processing time for the qth

iteration is given by,

T (q) =
N∑

i=1

αi,jwjTcp (4.1)

where the values for αi,j are the values for that iteration. The total load processed

in an iteration is given by

N∑

i=1

M∑

j=1

αi,j (4.2)

Hence, the time taken to process a unit load is given by

Tul =

∑N
i=1 αi,jwjTcp∑N
i=1

∑M
j=1 αi,j

(4.3)

The optimal processing time for the existing load in the system is given by

Topt = Tul ·
N∑

i=1

Li , ∀Si ∈ Xnow (4.4)

and the optimal processing time for the total load in the system including the newly

arrived sources that are being considered is given by (4.4) with Si ∈ {Xnow∪Xnew}.

It may be noted that the optimal processing time given by (4.4) is governed by

the product of the total load in the system and the optimal time taken to process

Chapter 4 Scheduling Strategies for Non-time Critical Loads 41

a unit load. From (4.4), it is seen that as long as there are no new sinks and all

sinks allow their declared buffer sizes to be reclaimed, the total processing time is

directly proportional to the total load. So, if the total load increases the processing

time also increases proportionately.

The new set of loads and the unprocessed loads from the existing sources are

considered together for scheduling at the end of every iteration, that is, after the

current processing is completed. In the absence of any new sources, the optimal

time for processing the existing sources in the system approaches the distribution

derived in the Modified IBS algorithm described in [56].

4.1.1 Time-invariant Buffer Environments

Here, we assume that neither the buffer sizes declared by the sinks vary over time

nor any new sinks are added to the system. Dynamic IBS algorithm for time-

invariant buffer environments at the coordinator and the sink nodes are presented

in Fig. 4.1 and 4.2 respectively. Since, there are M sinks in the system, the

complexity of this algorithm is O(M).

Example 4.1 clarifies the working principle of the Dynamic IBS algorithm for time-

invariant buffer environment. The sink speed (1
wj

) parameters for this example are

derived from the STAR experiments conducted at BNL [51].

Example 4.1:

Let us consider a system with four sources and four sinks, with parameters w1 =

Chapter 4 Scheduling Strategies for Non-time Critical Loads 42

Initial state:
I = {1, 2, ...N} , J = {1, 2, ...M} , q = 0 , T (0) = 0

{ B
(0)
j = Bj ; αj = 1/(wj

∑M
x=1

1
wx

) } , ∀Kj , j ∈ J

Broadcast (αj) values to all the Sink nodes.

Step 1: Determine T (q+1):
If (Xnew 6= ∅) { Xnow = Xnow ∪Xnew ; Xnew = ∅ }
If (Xnow 6= ∅) {

L =
∑N

i=1 Li , ∀Si ∈ Xnow , i ∈ I

Y = min{Bj/(αjL) , ∀Kj , j ∈ J}
If (Y > 1) {Y = 1}
T (q+1) = Y αjL wj Tcp , for any Kj , j ∈ J

Broadcast the schedule information (Y , (T + T (q+1)), (Li,∀Si ∈ Xnow, i ∈ I)) to
all the Sink nodes.

Step 2: Update the amount of load remaining to be processed:
Wait till (T + T (q)).
q = q + 1

Li = Li − Y α
(q)
j Li, ∀Si ∈ Xnow, i ∈ I

{ If (Li = 0) {Xnow = Xnow − {Si}} }, ∀Si ∈ Xnow , i ∈ I }
Go to Step 1.

Figure 4.1: Pseudo code describing the workings of the Dynamic IBS algorithm
for time-invariant buffer environment at the coordinator node Cs.

Initial state:
q = 0 , T (0) = 0
Receive (αj) value from the Coordinator node.

Step 1: Wait till the previous iteration is completed:
Wait till (T + T (q)).

Step 2: Compute Load amounts to be processed:
Receive the schedule information (Y , (T + T (q+1)), (Li, ∀Si ∈ Xnow, i ∈ I)) from

the Coordinator node.
q = q + 1

α
(q)
i,j = Y αjLi , ∀Si ∈ Xnow , i ∈ I

Step 3: Schedule the loads from Source Nodes:

Request, receive and process the load fractions (α(q)
i,j) from the Source Nodes Si ∈ Xnow.

Go to Step 1.

Figure 4.2: Pseudo code describing the workings of the Dynamic IBS algorithm
for time-invariant buffer environment at the sink nodes.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 43

Table 4.1: Sink and Source node parameters for Example 4.1.

Sink nodes

Parameter

Inverse of computing speed (wj) Buffer capacity (Bj)

Sink node 1 (K1) 1.11× 10−9 6

Sink node 2 (K2) 6.25× 10−10 5

Sink node 3 (K3) 5.00× 10−10 2

Sink node 4 (K4) 3.57× 10−10 3

Source nodes

Parameter

Load Size (Li) Load arrival time

Source node 1 (S1) 5 0 sec

Source node 2 (S2) 2 0 sec

Source node 3 (S3) 3 0 sec

Source node 4 (S4) 9 4× 103 sec

1.11 × 10−9, w2 = 6.25 × 10−10, w3 = 5.00 × 10−10, w4 = 3.57 × 10−10, and

Tcp = 6.52 × 1012sec/load. We let the sources have loads L1 = 5, L2 = 2, L3 = 3

and L4 = 9 units, respectively. We let the sinks having buffer capacities B1 = 6,

B2 = 5, B3 = 2, and B4 = 3, respectively. We assume that the loads L1, L2, and

L3 arrives at t = 0 seconds and L4 arrives at t = 4 × 103 seconds. The sink and

source node parameters are summarized in the Table 4.1.

Using the algorithm presented in Fig. 4.1 and 4.2, we have the values for α
(q)
i,j as

shown in Table 4.2. The unutilized buffer space in all the iterations are shown

in the last column of Table 4.2. From, these results, we observe that the buffer

of K3 is fully consumed at the first and second iterations. At the final iteration,

the remaining load is insufficient to completely fill up the buffer of any of the

Chapter 4 Scheduling Strategies for Non-time Critical Loads 44

Iteration 1 [T = 0 sec]

0
0.5

1
1.5

2
2.5

3

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Iteration 2 [T = 6.52 x 103 sec]

0
0.5

1
1.5

2
2.5

3

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Iteration 3 [T = 13.04 x 103 sec]

0

0.5

1

1.5

2

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Load Fraction from Source Node 1

Load Fraction from Source Node 3

Load Fraction from Source Node 2

Load Fraction from Source Node 4

Figure 4.3: Performance of Dynamic IBS algorithm in time-invariant buffer envi-
ronment.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 45

Table 4.2: Load fraction and buffer utilization values for Example 4.1.

q = 1 S1 S2 S3
∑

α
(1)
i,j B

(1)
j

K1 0.45 0.18 0.27 0.90 5.10

K2 0.80 0.32 0.48 1.60 3.40

K3 1.00 0.40 0.60 2.00 0.00

K4 1.40 0.56 0.84 2.80 0.20

q = 2 S1 S2 S3 S4
∑

α
(2)
i,j B

(2)
j

K1 0.10 0.04 0.06 0.70 0.90 5.10

K2 0.18 0.07 0.11 1.24 1.60 3.40

K3 0.23 0.09 0.14 1.54 2.00 0.00

K4 0.32 0.13 0.19 2.16 2.80 0.20

q = 3 S1 S2 S3 S4
∑

α
(3)
i,j B

(3)
j

K1 0.06 0.02 0.04 0.41 0.53 5.47

K2 0.11 0.05 0.06 0.74 0.96 4.04

K3 0.14 0.06 0.08 0.92 1.20 0.80

K4 0.21 0.08 0.13 1.29 1.71 1.29

Chapter 4 Scheduling Strategies for Non-time Critical Loads 46

sinks. The distribution suggested by the values αi,j in the Table 4.2 are used

by the sinks. The values of αi,j for the three iterations are computed at t =

0, 6.52 × 103, and 13.04 × 103 seconds, respectively. The total processing time

for processing all the four loads is t = 17.02 × 103 seconds. The load fractions

requested (from the source nodes) and processed by the sink nodes at various

iterations are shown in Fig. 4.3. It is seen that, because of the new source S4, the

processing time for the other sources in the system is stretched from t = 8.93×103

seconds to t = 17.02× 103 seconds. The above raise in the overall processing time

is acceptable if the submitted loads are not driven by any deadline requirements.

4.1.2 Predictable Time-varying Buffer Environments

The algorithm presented in the Section 4.1.1 is suitable for systems wherein there

are dynamic load arrivals and the buffer capacities available at sink nodes are time-

invariant. But, in certain real-life situations, the buffer space availability at sink

nodes may also vary over time and these variations may be known a priori. We

consider such systems in this section and propose a dynamic scheduler for them.

The scheduling strategy is such that the coordinating node shall first obtain the

information about the available buffer capacities at other sinks at various time

instants, their computing speeds, and the size of the loads from the sources. The

coordinating node shall then compute and notify each sink on the optimum load

fractions that are to be requested from each source. These information can be easily

communicated using any of the standard or customized communication protocols

Chapter 4 Scheduling Strategies for Non-time Critical Loads 47

without incurring any significant communication overhead. The sources, upon

knowing the amount of loads that they should give to each sink, shall send their

loads to all sinks simultaneously and the sinks shall start processing as they receive

the loads from the sources.

In the algorithm proposed, in this section, for systems where the buffer spaces

available at sinks vary over time, we assume that the buffer space variation over

time at sinks is known a priori. If the time t at which the buffer sizes vary at any

of the sink node is earlier than the iteration completion time (T (q)), then the load

fractions αi,j that the sinks should request from a source Si shall be computed as

αi,j = αi,j ∗ t

T (q)
(4.5)

to ensure that buffer sizes at sink nodes do not change during an iteration. If

the buffer spaces do not vary at the end of an iteration, then they are allowed to

be reclaimed fully after processing is completed, so as to enable scheduling more

amount of loads. The optimal load fractions are recomputed at the completion

of every iteration, based on the total load in the system. The algorithm for the

coordinator and the sink nodes are presented in Fig. 4.4 and 4.5 respectively.

Since, there are M sinks in the system, the complexity of this algorithm is O(M).

Example 4.2 clarifies the working principle of the Dynamic IBS algorithm for

predictable time-varying buffer environment. The sink speed (1
wj

) parameters for

this example are derived from the STAR experiments conducted at BNL [51].

Chapter 4 Scheduling Strategies for Non-time Critical Loads 48

Initial state:
I = {1, 2, ...N} , J = {1, 2, ...M} , q = 0 , t = 0 , T (0) = 0

Step 1: Determine α
(q+1)
j & T (q+1):

If (Xnew 6= ∅) { Xnow = Xnow ∪Xnew ; Xnew = ∅ }
If (Xnow 6= ∅) {

If (T = t) { Pnow = Pall

Bj = Bj,t , ∀Kj , j ∈ J

{ If (Bj = 0) Pnow = Pnow − Kj } , ∀Kj , j ∈ J

αj = 1/(wj

∑M
x=1

1
wx

) , ∀Kj ∈ Pnow, j ∈ J

t = tnext }
L =

∑N
i=1 Li , ∀Si ∈ Xnow , i ∈ I

Y = min{Bj/(αjL) , ∀Kj ∈ Pnow , j ∈ J}
If (Y > 1) {Y = 1}
T (q+1) = Y αjL wj Tcp , for any Kj , j ∈ J

Broadcast the schedule information (Y , αj , (T + T (q+1)), (Li, ∀Si ∈ Xnow, i ∈ I)) to
all the Sink nodes.

Step 2: Update the amount of load remaining to be processed:
Wait till (T + T (q)).
q = q + 1
Li = Li − Y αjLi , ∀Si ∈ Xnow , i ∈ I

{ If (Li = 0) {Xnow = Xnow − {Si}} }, ∀Si ∈ Xnow , i ∈ I }
Go to Step 1.

Figure 4.4: Pseudo code describing the workings of the Dynamic IBS algorithm
for predictable time-varying buffer environment at the coordinator node Cs.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 49

Initial state:
q = 0 , T (0) = 0

Step 1: Wait till the previous iteration is completed:
Wait till (T + T (q)).

Step 2: Compute Load amounts to be processed:
Receive the schedule information (Y , αj , (T + T (q+1)), (Li,∀Si ∈ Xnow, i ∈ I)) from

the Coordinator node.
q = q + 1

α
(q)
i,j = Y αjLi , ∀Si ∈ Xnow , i ∈ I

Step 3: Schedule the loads from Source Nodes:

Request, receive and process the load fractions (α(q)
i,j) from the Source Nodes Si ∈ Xnow.

Go to Step 1.

Figure 4.5: Pseudo code describing the workings of the Dynamic IBS algorithm
for predictable time-varying buffer environment at the sink nodes.

Example 4.2:

Let us suppose that there are four sources with loads to be processed and there

are four sinks that can process these loads. Let the speed parameters be w1 =

1.11×10−9, w2 = 6.25×10−10, w3 = 5.00×10−10 and w4 = 3.57×10−10, respectively.

Let Tcp = 6.52 × 1012sec/load. Let the buffer capacities at sinks at time t = 0

seconds be B1 = 6, B2 = 5, B3 = 0, and B4 = 3; at time t = 5 × 103 seconds be

B1 = 2, B2 = 3, B3 = 2, and B4 = 3; and at time t = 1× 104 seconds be B1 = 0,

B2 = 1, B3 = 1, and B4 = 1 respectively. We let the four sources to have loads

L1 = 5, L2 = 2, L3 = 3 and L4 = 4 units, respectively. Let loads L1 to L3 arrive

at t = 0 seconds, and load L4 arrive at t = 8× 103 seconds. The sink and source

node parameters are summarized in the Table 4.3.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 50

Table 4.3: Sink and Source node parameters for Example 4.2.

Sink nodes

Parameter

Inverse of computing speed (wj) Buffer capacity (Bj)

Sink node 1 (K1) 1.11× 10−9 6 [at 0 sec]

2 [at 5× 103 sec]

0 [at 10× 103 sec]

Sink node 2 (K2) 6.25× 10−10 5 [at 0 sec]

3 [at 5× 103 sec]

1 [at 10× 103 sec]

Sink node 3 (K3) 5.00× 10−10 0 [at 0 sec]

2 [at 5× 103 sec]

1 [at 10× 103 sec]

Sink node 4 (K4) 3.57× 10−10 3 [at 0 sec]

3 [at 5× 103 sec]

1 [at 10× 103 sec]

Source nodes

Parameter

Load Size (Li) Load arrival time

Source node 1 (S1) 5 0 sec

Source node 2 (S2) 2 0 sec

Source node 3 (S3) 3 0 sec

Source node 4 (S4) 4 8× 103 sec

Chapter 4 Scheduling Strategies for Non-time Critical Loads 51

Iteration 1 [T = 0 sec]

0

0.5

1

1.5

2

2.5

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Iteration 2 [T = 5 x 103 sec]

0

0.5

1

1.5

2

2.5

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Iteration 3 [T = 10 x 103 sec]

0
0.2
0.4
0.6
0.8

1
1.2

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Iteration 4 [T = 12.33 x 103 sec]

0

0.2

0.4

0.6

0.8

1

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

to
 b

e
P

ro
ce

ss
ed

Load Fraction from Source Node 1

Load Fraction from Source Node 3

Load Fraction from Source Node 2

Load Fraction from Source Node 4

Figure 4.6: Performance of Dynamic IBS algorithm in predictable time-varying
buffer environment.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 52

Table 4.4: Load fraction and buffer utilization values for Example 4.2.

q = 1 S1 S2 S3
∑

α
(1)
i,j B

(1)
j

K1 0.345 0.138 0.207 0.69 5.31

K2 0.615 0.246 0.369 1.23 3.77

K4 1.075 0.430 0.645 2.15 0.85

q = 2 S1 S2 S3
∑

α
(2)
i,j B

(2)
j

K1 0.345 0.138 0.207 0.69 1.31

K2 0.615 0.246 0.369 1.23 1.77

K3 0.765 0.306 0.459 1.53 0.47

K4 1.075 0.430 0.645 2.15 0.85

q = 3 S1 S2 S3 S4
∑

α
(3)
i,j B

(3)
j

K2 0.022 0.009 0.013 0.526 0.57 0.43

K3 0.027 0.011 0.016 0.666 0.72 0.28

K4 0.038 0.015 0.023 0.924 1.00 0.00

q = 4 S1 S2 S3 S4
∑

α
(4)
i,j B

(4)
j

K2 0.020 0.008 0.012 0.471 0.51 0.49

K3 0.024 0.010 0.014 0.591 0.64 0.36

K4 0.034 0.013 0.021 0.822 0.89 0.11

Chapter 4 Scheduling Strategies for Non-time Critical Loads 53

Using the algorithm in Fig. 4.4 and 4.5, we have the values for α
(q)
i,j as shown in

Table 4.4. The unutilized buffer space in all the iterations are shown in the last

column of Table 4.4. From these results, we observe that none of the buffers are

fully utilized in iterations 1 and 2, because of buffer space variations at sinks over

time. At iteration 3, a new source S4 is accepted for processing. Note that this

source is considered at t = 1 × 104 seconds, although it arrived at t = 8 × 103

seconds. Also, in this iteration, buffer of K4 is fully utilized and at the final

iteration, the remaining load is insufficient to completely fill up the buffer at any

of the sinks. The distribution suggested by the values αi,j in the Table 4.4 shall

be used by the sinks. The values of αi,j for iteration 1 to 4 are computed at

t = 0, 5×103, 10×103, and 12.33×103 seconds, respectively. The total processing

time for processing all the four loads is t = 14.4×103 seconds. From this example,

it is seen that, because of the new source S4 and the buffer space variations at

the sinks, the processing time for the other sources in the system is stretched to

t = 14.4× 103 seconds. The load fractions requested (from the source nodes) and

processed by the sink nodes at various iterations are shown in Fig. 4.6. The above

increase in overall processing time is acceptable if the submitted loads are not

driven by any time critical requirements.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 54

4.2 Adaptive IBS Algorithm

Dynamic IBS algorithms that consider dynamic load arrivals in time-invariant and

predictable time-varying buffer environments were presented in the previous sec-

tion. In this section, we propose an Adaptive IBS algorithm for real-life scenarios,

wherein the actual buffer variations at sink nodes are not known a priori. Under

such conditions, we propose that the sinks estimate the amount of buffer space that

it could offer for scheduling in the next iteration and communicate it to the coor-

dinator node and that during an iteration (while processing the received loads) the

buffer spaces available at the sink nodes do not vary. A buffer estimation strategy

is described in the Section 4.2.1. With this information, the coordinator node shall

generate an initial schedule satisfying the resource constraints.

In the proposed algorithm, the load fractions are calculated based on the estimated

buffer availabilities at the sinks. But, at the start of the next iteration, the actual

buffer availabilities at the sinks may be different from the estimated values. As

long as the load fractions assigned to each sink node by the coordinator node Cs

is less than or equal to the actual buffer availabilities at those sink nodes, the sink

nodes can request for the load fractions assigned to them from the sources. But,

if the buffer available at a sink is less than the load fraction assigned to it, then it

could not process the excess load that has been assigned to it. Hence, those sinks

Chapter 4 Scheduling Strategies for Non-time Critical Loads 55

shall recompute the load fraction to be received from the sources as

αi,j = α̂i,j ∗ Bj∑N
i=1 α̂i,j

(4.6)

In addition to requesting these load fractions from the sources, the sink node also

has to communicate the actual amount of load that it has received from the sources

to the coordinator node. This ensures that the coordinator node will take into

consideration the actual amount of loads that remain at the sources for processing,

while computing the load fractions for the next iteration. This information can be

piggy backed along with the estimated buffer availability at the sink nodes that all

sink nodes communicate to the coordinator node. In the proposed strategy, all the

sink nodes in the system (irrespective of whether it completes processing earlier

or does not participate in that iteration) waits for all the sink nodes to complete

their processing in an iteration (that is, for the time T (q)) before requesting the

loads from the sources again.

The optimal load fractions for the (q + 1)th iteration shall be estimated by the

coordinator node while the sinks process the load for the qth iteration, based on the

total amount of load that remains to be processed. This process shall continue until

all of the loads are processed. Flowchart for the scheduler at the coordinator and

the sink nodes are presented in Fig. 4.7 and 4.8 respectively. The pseudo code for

the coordinator and the sink nodes are presented in Fig. 4.9 and 4.10 respectively.

Since, there are M sinks in the system, the complexity of this algorithm is O(M).

Chapter 4 Scheduling Strategies for Non-time Critical Loads 56

Increment the iteration counter

Wait for all Sinks to complete their
current iteration

Initialize iteration counter

Start

Notify the scheduling
parameters to all the Sinks

Receive estimated buffer
availability for the next iteration and

difference between the estimated and
the actual amount of load processed

from all the Sinks

Compute the scheduling
parameters for the next iteration

Figure 4.7: Flowchart for the workings of the Adaptive IBS algorithm at the
coordinator node.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 57

Estimated buffer
availability for the next

iteration = 0?

Increment the iteration counter

Yes

No

Wait for all Sinks to complete their
current iteration

Receive the scheduling parameters for the next
iteration from the Coordinator Node

Initialize iteration counter

Start

Estimate buffer
availability for

the next
iteration

and notify the
Coordinator Node

Request the computed amount of load fractions
from the Sources and process them

Compute the difference between the estimated
and the actual amount of load processed

Communicate the difference between the
estimated and the actual amount of

load processed to the Coordinator Node

Compute the load fractions to be requested
from the Sources

Figure 4.8: Flowchart for the workings of the Adaptive IBS algorithm at the sink
nodes.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 58

Initial state:
I = {1, 2, ...N} , J = {1, 2, ...M} , q = 0 , T (0) = 0

Step 1: Determine the buffer availability at Sink nodes:
If (Xnew 6= ∅) { Xnow = Xnow ∪Xnew ; Xnew = ∅ }
If (Xnow 6= ∅) { Pnow = Pall

Receive (B̂(q+1)
j) from all Sink nodes.

If (B̂(q+1)
j = 0) Pnow = Pnow − Kj , ∀Kj , j ∈ J

Step 2: Determine α
(q+1)
j & T (q+1):

α
(q+1)
j = 1/(wj

∑M
x=1

1
wx

) , ∀Kj ∈ Pnow, j ∈ J

L =
∑N

i=1 Li , ∀Si ∈ Xnow , i ∈ I

Y = min{B̂(q+1)
j /(α(q+1)

j L) , ∀Kj ∈ Pnow , j ∈ J}
If (Y > 1) {Y = 1}
T (q+1) = Y α

(q+1)
j L wj Tcp , for any Kj , j ∈ J

Broadcast the schedule information (Y , α
(q+1)
j , L, (T + T (q+1)), (Li, ∀Si ∈ Xnow, i ∈ I))

to all the Sink nodes.

Step 3: Update the amount of load remaining to be processed:
Wait till (T + T (q)) & Receive (Lj) from all the Sink nodes.
q = q + 1
Li = Li · (1− Y + ((

∑M
j=1 Lj)/L)) , ∀Si ∈ Xnow , i ∈ I

{ If (Li = 0) {Xnow = Xnow − {Si}}}, ∀Si ∈ Xnow , i ∈ I }
Go to Step 1.

Figure 4.9: Pseudo code describing the workings of the Adaptive IBS algorithm
at the coordinator node Cs.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 59

Initial state:
q = 0 , T (0) = 0 , p = 0.95

Step 1: Buffer availability estimation for next iteration:

B̂
(q+1)
j = ((

∑(s−1)
k=0 ((s− k) · B

(q−k)
j)) / (

∑(s−1)
k=0 k)) ∗ p

Send (B̂(q+1)
j) to the Coordinator node.

Step 2: Wait till the previous iteration is completed:
Wait till (T + T (q)).

Step 3: Compute Load amounts to be processed:

Receive the schedule information (Y , α
(q+1)
j , L, (T + T (q+1)), (Li, ∀Si ∈ Xnow, i ∈ I)) from

the Coordinator node.
q = q + 1

If (B̂(q)
j 6= 0) {

If ((Y α
(q)
j L) > B

(q)
j) { B

(q)
j = 0

Lj = (Y α
(q)
j L)−B

(q)
j

α
(q)
i,j = Li · B

(q)
j

L , ∀Si ∈ Xnow , i ∈ I }
Else { Lj = 0

B
(q)
j = B

(q)
j − (Y α

(q)
j L)

α
(q)
i,j = Y α

(q)
j Li , ∀Si ∈ Xnow , i ∈ I }

Send (Lj) to the Coordinator node.

Step 4: Schedule the loads from Source Nodes:

Request, receive and process the load fractions (α(q)
i,j) from the Source Nodes Si ∈ Xnow.

}
Go to Step 1.

Figure 4.10: Pseudo code describing the workings of the Adaptive IBS algorithm
at the sink nodes.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 60

4.2.1 Buffer Estimation Strategy

We propose a distributed buffer estimation strategy based on weighted average

calculations of buffer availability in the previous “s” iterations. The weights for

computing the estimates are based on the iteration indices until the current iter-

ation. We refer to this estimator as Iteration Index based Buffer estimator (IIB).

Our IIB algorithm shall be executed at all sink nodes. A sink node, after estimat-

ing the buffer space to render in the next iteration, shall communicate it to the

coordinator node so that it could determine the scheduling parameters required

for the sink nodes.

For estimating the buffer availability at a sink, each sink Kj needs to keep track of

the actual buffer sizes Bj from its previous “s” iterations. In an iteration q, each

sink node shall estimate the buffer size that will be available for the next iteration

(q + 1) as

B̂
(q+1)
j =

∑(s−1)
k=0 ((s− k) ·B(q−k)

j)
∑(s−1)

k=0 k

 · p (4.7)

and declare it to the coordinator node. In (4.7), p is the probability that the

estimated buffer size will be available at a sink at the next iteration. The value of

p can be chosen based on the confidence level of the buffer estimator. For practical

purposes we shall assume that p equals 0.95. This guarantees that the expected

buffer sizes will be available at the sinks, with a confidence level of 95%, for the

next iteration.

Example 4.3 clarifies the working principle of the Adaptive IBS algorithm. The sink

Chapter 4 Scheduling Strategies for Non-time Critical Loads 61

speed (1
wj

) parameters for this example are derived from the STAR experiments

conducted at BNL [51]. The time at which the buffer capacity at the sink nodes

vary are chosen so as to illustrate the finer details of the algorithm.

Example 4.3:

Let us suppose that there are three sources with loads to be processed and there

are four sinks that can process these loads. Let the speed parameter of sinks be

w1 = 1.11 × 10−9, w2 = 6.25 × 10−10, w3 = 5.00 × 10−10 and w4 = 3.57 × 10−10,

respectively. Let Tcp = 6.52 × 1012sec/load. Let the buffer capacities at sinks at

time t = 0 seconds be B1 = 6, B2 = 5, B3 = 0, and B4 = 2; at time t = 4.655×103

seconds be B1 = 4, B2 = 3, B3 = 1, and B4 = 1; at time t = 8.607× 103 seconds

be B1 = 2, B2 = 0, B3 = 2, and B4 = 1; and at time t = 10.67 × 103 seconds be

B1 = 1, B2 = 1, B3 = 3, and B4 = 1 units respectively. These values are generated

randomly using a uniform probability distribution in the range [0, 7]. We let the

three sources to have loads L1 = 5, L2 = 2 and L3 = 3 unit loads, respectively.

Let loads L1 and L2 arrive at t = 0 seconds, and load L3 arrive at t = 5 × 103

seconds. The sink and source node parameters are summarized in the Table 4.5.

Using the algorithm in Fig. 4.9 and 4.10, we have the values for α
(q)
i,j as shown in

Tables 4.6 and 4.7. The estimated and actual values for the load fractions to be

processed and the buffer availabilities at the sink nodes at various iterations are

shown in Table 4.6 and Fig. 4.11. The unutilized buffer space in all the iterations

Chapter 4 Scheduling Strategies for Non-time Critical Loads 62

Table 4.5: Sink and Source node parameters for Example 4.3.

Sink nodes

Parameter

Inverse of computing speed (wj) Buffer capacity (Bj)

Sink node 1 (K1) 1.11× 10−9 6 [at 0 sec]

4 [at 4.655× 103 sec]

2 [at 8.607× 103 sec]

1 [at 10.67× 103 sec]

Sink node 2 (K2) 6.25× 10−10 5 [at 0 sec]

3 [at 4.655× 103 sec]

0 [at 8.607× 103 sec]

1 [at 10.67× 103 sec]

Sink node 3 (K3) 5.00× 10−10 0 [at 0 sec]

1 [at 4.655× 103 sec]

2 [at 8.607× 103 sec]

3 [at 10.67× 103 sec]

Sink node 4 (K4) 3.57× 10−10 2 [at 0 sec]

1 [at 4.655× 103 sec]

1 [at 8.607× 103 sec]

1 [at 10.67× 103 sec]

Source nodes

Parameter

Load Size (Li) Load arrival time

Source node 1 (S1) 5 0 sec

Source node 2 (S2) 2 0 sec

Source node 3 (S3) 3 5× 103 sec

Chapter 4 Scheduling Strategies for Non-time Critical Loads 63

Table 4.6: Buffer utilization values for Example 4.3.

q = 1
∑

α̂
(1)
i,j

∑
α

(1)
i,j B̂

(1)
j B

(1)
j

K1 0.643 0.643 6.000 5.357

K2 1.143 1.143 5.000 3.857

K3 0.000 0.000 0.000 0.000

K4 2.000 2.000 2.000 0.000

q = 2
∑

α̂
(2)
i,j

∑
α

(2)
i,j B̂

(2)
j B

(2)
j

K1 0.546 0.546 5.700 3.454

K2 0.970 0.970 4.750 2.030

K3 0.000 0.000 0.000 1.000

K4 1.698 1.000 1.900 0.000

q = 3
∑

α̂
(3)
i,j

∑
α

(3)
i,j B̂

(3)
j B

(3)
j

K1 0.284 0.284 4.433 1.716

K2 0.506 0.000 3.483 0.000

K3 0.633 0.633 0.633 1.367

K4 0.886 0.886 1.267 0.114

q = 4
∑

α̂
(4)
i,j

∑
α

(4)
i,j B̂

(4)
j B

(4)
j

K1 0.235 0.235 3.167 0.765

K2 0.415 0.415 1.742 0.585

K3 0.518 0.518 1.267 2.482

K4 0.727 0.727 1.108 0.273

Chapter 4 Scheduling Strategies for Non-time Critical Loads 64

Table 4.7: Load fraction values for Example 4.3.

q = 1 S1 S2
∑

α
(1)
i,j

K1 0.459 0.184 0.643

K2 0.817 0.326 1.143

K3 0.000 0.000 0.000

K4 1.429 0.571 2.000

q = 2 S1 S2
∑

α
(2)
i,j

K1 0.390 0.156 0.546

K2 0.693 0.277 0.970

K3 0.000 0.000 0.000

K4 0.714 0.286 1.000

q = 3 S1 S2 S3
∑

α
(3)
i,j

K1 0.038 0.015 0.231 0.284

K2 0.000 0.000 0.000 0.000

K3 0.085 0.034 0.514 0.633

K4 0.119 0.048 0.719 0.886

q = 4 S1 S2 S3
∑

α
(4)
i,j

K1 0.032 0.013 0.190 0.235

K2 0.056 0.022 0.337 0.415

K3 0.070 0.028 0.420 0.518

K4 0.098 0.040 0.589 0.727

Chapter 4 Scheduling Strategies for Non-time Critical Loads 65

Iteration 1 [T = 0 sec]

0
1
2
3
4
5
6
7

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

/ B
uf

fe
r

A
va

ila
bi

lit
y

Iteration 2 [T = 4.655 x 103 sec]

0
1
2
3
4
5
6

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

/ B
uf

fe
r

A
va

ila
bi

lit
y

Iteration 3 [T = 8.607 x 103 sec]

0

1

2

3

4

5

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

/ B
uf

fe
r

A
va

ila
bi

lit
y

Iteration 4 [T = 10.67 x 103 sec]

0
0.5

1
1.5

2
2.5

3
3.5

K1 K2 K3 K4

Sink Nodes

L
oa

d
F

ra
ct

io
n

/ B
uf

fe
r

A
va

ila
bi

lit
y

Estimated Load Fraction to be Processed

Actual Load Fraction to be Processed

Estimated Buffer Availability

Actual Buffer Availabiliity

Figure 4.11: The estimated and actual values for the load fractions to be processed
and the buffer availabilities at the sink nodes at various iterations.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 66

is given in the last column of Table 4.6. From, these results, we observe that

buffer of K4 is fully utilized in iterations 1 and 2, whereas the available buffer

at K3 is not at all utilized in iteration 2 (because estimated buffer size is 0 for

that iteration). For iteration 3, buffer of K3 is estimated to be less than the

actual value and hence buffers of all the available sinks are under utilized in that

iteration. At the final iteration, the remaining load is insufficient to completely

fill up the buffer at any of the sinks. The distribution suggested by the values

αi,j in the Table 4.7 are used by the sinks. Iteration 1 to 4 are scheduled at time

t = 0, 4.655× 103, 8.607× 103, and 10.67× 103 seconds, respectively. The total

processing time for processing all the three loads is t = 12.36× 103 seconds. The

estimated and actual load fractions from the source nodes to be processed and the

total load in the system at various iterations are as shown in Fig. 4.12. From this

example, it is seen that, because of the buffer space variations at the sink K3, the

processing for the sources S1 and S2 could not be completed in the iteration 2.

And, because of the arrival of new source S3, the processing time for the other

sources in the system (S1 and S2) are stretched to t = 12.36× 103 seconds.

The impact of IIB is as follows. In Table 4.6 the estimated as well as the actual

loads requested by the sinks are presented. Further we also project the estimated

buffer values. In iteration 1, the estimated and the actual loads being same, the

buffer rendered is adequate to handle the estimated load. However, in iteration

2, we observe that at K4, the estimated load being more than the actual buffer

rendered, the actual load that is to be requested is tailored to adapt to the available

Chapter 4 Scheduling Strategies for Non-time Critical Loads 67

Iteration 1 [T = 0 sec]

0

2

4

6

8

Estimated Load
Fraction to be

Processed

Actual Load
Fraction to be

Processed

Total
Unprocessed
Load in the

System

L
oa

d
Si

ze

Iteration 2 [T = 4.655 x 103 sec]

0

1

2

3

4

Estimated Load
Fraction to be

Processed

Actual Load
Fraction to be

Processed

Total
Unprocessed
Load in the

System

L
oa

d
Si

ze

Iteration 3 [T = 8.607 x 103 sec]

0

1

2

3

4

Estimated Load
Fraction to be

Processed

Actual Load
Fraction to be

Processed

Total
Unprocessed
Load in the

System

L
oa

d
Si

ze

Iteration 4 [T = 10.67 x 103 sec]

0

1

2

Estimated Load
Fraction to be

Processed

Actual Load
Fraction to be

Processed

Total
Unprocessed
Load in the

System

L
oa

d
Si

ze

Load Fraction for Sink Node 1

Load Fraction for Sink Node 3

Load Fraction for Sink Node 2

Load Fraction for Sink Node 4

Figure 4.12: Performance of Adaptive IBS algorithm.

Chapter 4 Scheduling Strategies for Non-time Critical Loads 68

space. It may also be observed that in iteration 2, the estimated buffers take into

account the actual buffers rendered in the past iteration. This will be cumulatively

done in each iteration, which is indeed the essence of our design. Further, in

iteration 2, the actual buffer available at K3 is unutilized, as the estimated value

is 0. This is a natural behavior that is captured in our design. Another important

observation comes from the fact that in iteration 2, if the estimated load sizes have

been requested by all the sinks then the processing for sources S1 and S2 could have

been completed in this iteration itself. However since K4 could not accommodate

the estimated load, S1 and S2 are forced to be considered for scheduling in the

future iterations as well.

Also, note that although S3 becomes available for processing after iteration 2 starts,

it is considered for processing in iteration 3 onwards. Note that in iteration 3, the

estimated buffer at K3 is observed to be less than the actual buffer available. Thus,

the scheduler considers a load based on a minimum of the actual or estimated buffer

space. In this case, it turns out to be the estimated buffer value. Now, when the

estimated total load to be processed is less than or equal to the available buffer

spaces, then all the loads could be scheduled and processed at this iteration itself.

This happens at the final iteration.

The proposed IIB strategy works as long as the buffer variations are not drastic.

Further, if new loads arrive to the system before the loads being processed are

completed, then the processing of existing loads will be stretched. Thus, when

loads to be processed are not time critical this strategy is highly recommended,

Chapter 4 Scheduling Strategies for Non-time Critical Loads 69

since it adapts to buffer variations at sinks as well.

70

Chapter 5

Scheduling Strategies for Time

Critical Loads

In all the algorithms described in the last chapter, it was shown that as and when

new sources are added to the system, the processing time of all the other sources

already in the system are stretched or extended. Hence, they become a natural

choice for cluster systems that process loads that are not time and/or mission

critical. However, for real-time processing of loads, which are indeed bound to

guarantee the completion of processing on or before a specified deadline, otherwise

referred to as deadline requirements hereafter, the algorithms may be forced to

consider only a limited set of loads for processing.

In this chapter, we shall propose our resource aware dynamic incremental scheduling

strategies for cluster systems having time and mission critical loads and sink nodes

Chapter 5 Scheduling Strategies for Time Critical Loads 71

having finite buffer capacity constraints.

5.1 Resource Aware Dynamic Incremental

Scheduling Strategies

We now describe our Resource Aware Dynamic Incremental Scheduling (RADIS)

strategies for scheduling within cluster systems. Similar to the Dynamic and

Adaptive IBS algorithms presented in the last chapter, here too we assume that

the coordinator node Cs computes the parameters required by the sink nodes to

determine a schedule satisfying the resource constraints. We consider three dif-

ferent scheduling strategies, namely Non-interleaved Scheduling Scheme, Earliest

Deadlines First Scheme (EDF) [61], and Progressive Scheduling Scheme for dy-

namic environments, depending on how the set of loads are to be processed. All

our strategies work in an incremental fashion, consuming several iterations for

scheduling the loads. Each iteration refers to a time period in which a set of sinks

are to be scheduled for processing the loads by the node Cs.

Below we will describe the workings of our scheduler in the coordinator and sink

nodes in a systematic fashion. Flow-charts shown in Fig. 5.1, 5.2, and 5.3, and

the pseudo-codes in Fig. 5.6, 5.7 and 5.8 describe the workings of the coordinator

node, the admission control procedure and the sink nodes respectively.

In our strategies, in every iteration, after the admissibility testing for the newly

Chapter 5 Scheduling Strategies for Time Critical Loads 72

arrived sources, the scheduler at the Cs first determines the loads to be scheduled

and sinks that will participate. Based on the estimated buffer availabilities at the

sink nodes, Cs computes an estimate of the amount of load to be scheduled at a sink

node and the finish time for the next iteration. It then broadcasts this schedule

information to all the sink nodes. A sink node upon receiving this information will

wait for the current iteration to be completed and determines the actual buffer

availability for the next iteration. Based on the estimate received from the Cs

and its actual buffer availability, it computes the amount of load it can process

in the next iteration and requests that load from the respective sources. It also

communicates the difference between the estimated and the actual amount of load

to the Cs.

We shall first consider handling the time-varying buffer availabilities at the sink

nodes and then the dynamic arrival of loads. As described in Chapter 4, for

dynamic environments, a feasible schedule may not exist unless the sink nodes

allow their available buffers to be reused after a given load is processed. Hence,

here again, we assume that the sink nodes allow their available buffer spaces to

be reused after processing is completed in an iteration so as to enable scheduling

more amounts of loads and incrementally process the loads. As in the Adaptive

IBS algorithm presented in Chapter 4, our RADIS strategies also take into account

that the buffer space variations at sinks may not be known a priori.

In our strategies, the sinks estimate the amount of buffer space that they could offer

for scheduling in the next iteration as described in Chapter 4, and communicate it

Chapter 5 Scheduling Strategies for Time Critical Loads 73

to the coordinator node Cs. With this information, Cs determines the participating

sink nodes for the next iteration, computes the required parameters to schedule

the loads in an incremental fashion and communicates them to all the sink nodes.

The sink nodes receive the information from Cs and waits till the processing is

completed by all the sink nodes. Then, if at a sink, the actual buffer availability

is not sufficient to accommodate the estimated amount of load, then that sink

node computes the load fractions to be requested from the source nodes as given

in (4.6).

If the buffer availability at a sink node is more or enough to accommodate the

estimated load fraction, the sink node computes the load fraction to be requested

from the source node Si in the iteration q as

α
(q)
i,j = Y α

(q)
j Li (5.1)

The sink nodes communicate to Cs the difference between the amount of load that

they estimated to process and the actual amount of load that they are processing.

All the sinks request from sources these load fractions and process them. Following

our model described in Chapter 2, all the sinks start computing the load fractions

as they start receiving them from the sources.

The coordinator node Cs receives the information on the difference between the

amount of load estimated to be processed and the actual amount of load processed

Chapter 5 Scheduling Strategies for Time Critical Loads 74

Move the Sources
that are at the risk
of missing their
deadlines to Xnow

Request & Receive from
all Sinks the estimated
buffer availability until

time (t), where ‘t’ is the
maximum of deadline
requirements of all the

admitted Sources

Compute the time
required to process a
unit load & also the
loads from all the

Sources

B

Progressive
Scheduler

Move the
Sources with

earliest
deadlines to Xnow

EDF
Scheduler

B

Move the
new Source

to Xnow

Non-interleaved
Scheduler

B

A

Admission
Control

Procedure

Start

A

EDF
Scheduler

Scheduling
scheme?

Non-interleaved
Scheduler

No

Yes

Wait for all Sinks
to complete their
current iteration

Compute the amount
of load remaining to

be processed
at the Sources

C

C

Processing
for all the

Sources in
Xnow

completed?

B

Yes

No

No

Yes

Are there
Sources to
process?

Admissible
new

Sources?

Progressive
Scheduler

Initialize iteration counter

Increment the
iteration counter

Receive the difference
between the estimated

and the actual amount of
load processed in the
iteration (q+1) from all

the Sinks

Notify scheduling
parameters to all

the Sinks

Compute the scheduling
parameters for the next

Iteration

Receive estimated buffer
availability for the next

iteration from all the Sinks

Figure 5.1: Flowchart for the workings of the RADIS scheduler at the coordinator
node Cs.

Chapter 5 Scheduling Strategies for Time Critical Loads 75

Yes

No

Return

Start

New
Sources?

Consider the Source with highest priority (Si)
among the new Sources, together with

all the admitted Sources
(Znow = Xnow U Xlater U Si)

Request & Receive from all Sinks the estimated
buffer availability until time (t), where ‘t’ is the
maximum of deadline requirements of all the

Sources in Znow

Deadline requirements
of all the Sources in Znow

could be satisfied?

Reject the new Source Si

Accept the new Source Si

(Xlater = Xlater U Si)

No

Yes

Estimate the time required to process
the loads from all the Sources in Znow

Compute the time required to process a unit load

Figure 5.2: Flowchart for the workings of the admission control procedure at the
coordinator node Cs.

Chapter 5 Scheduling Strategies for Time Critical Loads 76

at the participating sink nodes, computes the remaining amount of load in the

system and waits till the processing is completed by all the sink nodes for that

iteration. It may be noted that, since, buffer availability is a function of time, the

guarantees given to the sources (to complete processing within their deadlines)

may be met only when the buffer estimation strategy utilized is conservative.

In RADIS, the total load processed in the qth iteration is given by

M∑

j=1

α
(q)
j =

N∑

i=1

M∑

j=1

α
(q)
i,j (5.2)

Hence, the time taken to process a unit load in the qth iteration is given by

Tul =
T (q)

∑N
i=1

∑M
j=1 α

(q)
i,j

(5.3)

RADIS attempts to completely fill at least one of the sink’s buffers in every itera-

tion, depending on the processing speed and the size of the buffer available at the

sinks. Since, in our strategy all the sinks are forced to stop processing at the same

time, the product of buffer utilization and the inverse of computing speed for each

sink node will be the same. From this the maximum buffer utilization, or in other

words, the total load that could be processed at each sink in an iteration could be

derived as,

N∑

i=1

αi,j =
Bi∗wi∗

wj

, where i∗ = argmin {Bj

αj

} (5.4)

In (5.4), the “argmin” term identifies a sink whose buffer is completely filled. The

Chapter 5 Scheduling Strategies for Time Critical Loads 77

buffer utilization at other sink nodes, and hence, the total amount of buffer utilized

for optimal processing by the system, or in other words, the total load that could

be processed by the system in an iteration is computed as,

N∑

i=1

M∑

j=1

αi,j =
M∑

j=1

Bi∗wi∗

wj

(5.5)

Substituting (4.1), (5.4), and (5.5) into (5.3), the time taken to process a unit load

is computed as

Tul =
Tcp∑M

j=1 { 1
wj
} (5.6)

Hence, the estimated time taken to process the loads in the system is given by

T̂ = Tul ·
N∑

i=1

Li (5.7)

Thus, the time taken to process the loads from the sources that are being consid-

ered are estimated in RADIS strategies.

Now, we shall discuss on how our strategies consider the dynamic arrival of loads.

In RADIS, in every iteration, if there are new sources, Cs considers them in their

priority order. It then requests the sink nodes to estimate their buffer availabilities

until the farthest deadline requirement time of all the sources that were accepted

earlier and also the new source that is being considered. The sinks estimate their

buffer availability by calculating the time average of their historical data as given

Chapter 5 Scheduling Strategies for Time Critical Loads 78

Initialize iteration counter

Start

Estimate buffer
availability for

the next
iteration

Receive the request
for the buffer availability

until time ‘t’

Wait for all Sinks to complete their
current iteration

Receive the scheduling parameters for the next
iteration from the Coordinator Node

Estimated buffer
availability for the next

iteration = 0?

Increment the iteration counter

Yes

No

Request the computed amount of load fractions
from the Sources and process them

Compute the difference between the estimated
and the actual amount of load processed

Communicate difference between the estimated
and the actual amount of load processed to

the Coordinator Node

Compute the load fractions to be
requested from the Sources

Notify the
buffer availability to

the Coordinator Node

Estimate the buffer
availability until time ‘t’

Notify the
buffer availability to

the Coordinator Node

Figure 5.3: Flowchart for the workings of the RADIS scheduler at the sink nodes.

Chapter 5 Scheduling Strategies for Time Critical Loads 79

by

B̂t
j =

1

treq

∫ t=T

t=(T−treq)
Bj(t) dt (5.8)

where treq = (max{Tdi
} − T), (T − treq) ≥ 0 and max{Tdi

} is the farthest

deadline requirement time of all the sources, and communicates it to Cs. Then,

Cs decides on the set of sources to be scheduled in that iteration, based on the

deadline requirements and estimated buffer availabilities.

The estimation requests could be further minimized, if Cs requests the sink nodes

to estimate the buffer variations considering the deadline requirements of all the

new sources in every iteration. This approach has an inherent advantage of min-

imizing the communication required for estimating the buffer for admissibility

testing, especially when the source arrival rates are higher.

In RADIS, the set of loads that are scheduled in an iteration and the admission

criteria for the sources vary for different scheduling schemes and are discussed in

Section 5.1.1, 5.1.2, and 5.1.3 for Non-interleaved, EDF, and Progressive scheduling

strategies respectively. The new set of loads and the unprocessed loads from the

existing sources are considered together for scheduling at the start of every itera-

tion. This process is continued until all the loads are processed.

The proposed admissibility criterion together with the conservative buffer estima-

tion strategy guarantees that deadlines for all the loads that are accepted will

always be satisfied. It may be noted that in RADIS the priorities of the sources

are used only to resolve conflicts that may arise while admitting multiple sources.

Chapter 5 Scheduling Strategies for Time Critical Loads 80

If multiple sources have identical priorities set, schemes such as FIFO or other

possible heuristics can be adopted to resolve the conflict.

A simulation study presented in the Section 5.3 clarifies the workings of RADIS

in detail.

5.1.1 Non-interleaved Scheduling Strategy

In the Non-interleaved scheduling strategy,

• in every iteration all the sources that were admitted into the system are

scheduled for processing, and,

• during admissibility testing, the algorithm admits the new source only if the

deadline requirement of all the sources that were admitted earlier and also

that of the new source could be satisfied when they all are scheduled together

in every iterations, or else the new source is not admitted into the system.

5.1.2 Earliest Deadline First Scheduling Strategy

In the EDF strategy,

• in every iteration among the sources that are admitted into the system, the

sources with earliest deadlines are considered for processing, and

• during admissibility testing, the algorithm checks the deadline requirement

Chapter 5 Scheduling Strategies for Time Critical Loads 81

of all the sources that were admitted earlier and also the new source against

the processing time required to process them, considering the sources with

earliest deadline first. The process is repeated until the deadline requirements

of all of the sources are found to be satisfied, in which case the new source

shall be admitted, or the deadline requirement of some of the sources is

violated, in which case the new source shall not be admitted into the system.

5.1.3 Progressive Scheduling Strategy

In the Progressive scheduling strategy, in every iteration the loads from the sources

that are at the risk of missing their deadlines are processed. Here in, there are

three possibilities and the actions taken under such situations are as follows:

(a) Deadline requirements for all sources considered are later than T̂ : Since, the

deadline requirements of all the sources in the system could be satisfied, the

set of sources that were considered previously are scheduled.

(b) Deadline requirements for all sources considered are earlier than T̂ : Here,

there is a chance that the deadline requirements of a set of sources that

were considered previously may not be satisfied. Hence, those sources are

scheduled immediately.

(c) Deadline requirements for some of the sources are earlier and some are later

than T̂ : Since the deadline requirements of some of the sources are earlier

than T̂ , we reiterate considering only those sources.

Chapter 5 Scheduling Strategies for Time Critical Loads 82

Similarly, there exists three possibilities during the admissibility testing for a new

source, and different actions are taken for them as follows:

(a) Deadline requirements for all sources considered are later than T̂ : Since, the

deadline requirements of all the sources could be satisfied, the new source

that is considered can be accepted.

(b) Deadline requirements for all sources considered are earlier than T̂ : Here,

the new source that is considered cannot be accepted. Note that the priority

of a source could depend on its processing requirements.

(c) Deadline requirements for some of the sources are earlier and some are later

than T̂ : Under this condition, we reiterate considering only those sources

whose deadlines are earlier than T̂ .

This interleaving scheme works in a style contrary to most of the conventional

schedulers that uses priority as the criteria for scheduling the loads. In this scheme,

some of the sources that are processed in an iteration could be suspended and

some other sources could be scheduled in the following iteration, so as to satisfy

the deadline requirements of the admitted sources.

Example 5.1 and 5.2 clarifies the working principle of the Progressive scheduling

strategy in time-invariant and predictable time-varying buffer environment respec-

tively. The sink speed (1
wj

) parameters for this example are derived from the STAR

experiments conducted at BNL [51].

Chapter 5 Scheduling Strategies for Time Critical Loads 83

Example 5.1:

Let us consider a four sink node system with the speed parameters w1 = 1.11×10−9,

w2 = 6.25 × 10−10, w3 = 5.00 × 10−10 and w4 = 3.57 × 10−10 respectively. Let

Tcp = 6.52 × 1012sec/load. Let the buffer capacities at sinks be B1 = 6, B2 = 5,

B3 = 2, and B4 = 3 respectively. We let the nine sources to have loads L1 = 5,

L2 = 3, L3 = 9, L4 = 6, L5 = 4, L6 = 3, L7 = 3, L8 = 5 and L9 = 1 units.

The values for loads and buffer capacities are generated randomly using a uniform

probability distribution in the range [0, 9]. Let load arrival times in the units of

×103 seconds be L1 to L3 = 0, L4 = 2, L5 = 4, L6 = 9, L7 = 10, L8 = 12 and L9

= 13 respectively. Let the firm deadlines demanded by the sources S1 to S9 in the

units of ×103 seconds be 5, 3, 20, 8, 20, 15, 15, 20 and 20 respectively. Let the

priorities of the sources S1 to S9 be 5, 2, 0, 4, 3, 2, 1, 3 and 2 respectively, where

0 is the lowest and 5 is the highest priority. The sink and source node parameters

are summarized in the Table 5.1.

The results are summarized in Table 5.2. K4 is the fastest sink in the system.

But, our scheduler tries to use the buffer of K3 to the fullest, since it considers

the combined effect of the speed and the buffer availability at the sinks while

determining it. From the table, we observe that the buffer of K3 is fully consumed

only at the iteration 2, when the total load in the system is more than the optimal

buffer size of the system. At the other iterations, the load considered for processing

is insufficient to completely fill up the buffer of any of the sinks. The values of αi,j

Chapter 5 Scheduling Strategies for Time Critical Loads 84

Table 5.1: Sink and Source node parameters for Example 5.1.

Sink nodes

Parameter

Inverse of computing speed (wj) Buffer capacity (Bj)

Sink node 1 (K1) 1.11× 10−9 6

Sink node 2 (K2) 6.25× 10−10 5

Sink node 3 (K3) 5.00× 10−10 2

Sink node 4 (K4) 3.57× 10−10 3

Source nodes

Parameter

Load Size (Li) Load arrival time Deadline Priority

Source node 1 (S1) 5 0 sec 5× 103 sec 5

Source node 2 (S2) 3 0 sec 3× 103 sec 2

Source node 3 (S3) 9 0 sec 20× 103 sec 0

Source node 4 (S4) 6 2× 103 sec 8× 103 sec 4

Source node 5 (S5) 4 4× 103 sec 20× 103 sec 3

Source node 6 (S6) 3 9× 103 sec 15× 103 sec 2

Source node 7 (S7) 3 10× 103 sec 15× 103 sec 1

Source node 8 (S8) 5 12× 103 sec 20× 103 sec 3

Source node 9 (S9) 1 13× 103 sec 20× 103 sec 2

Chapter 5 Scheduling Strategies for Time Critical Loads 85

Table 5.2: Load fraction and buffer utilization values for Example 5.1.

q = 1 S1 S2 S3
∑

α
(1)
i,j B

(1)
j

K1 0.6170 0.00 0.00 0.6170 5.3830

K2 1.0955 0.00 0.00 1.0955 3.9045

K3 1.3695 0.00 0.00 1.3695 0.6305

K4 1.9180 0.00 0.00 1.9180 1.0820

q = 2 S3 S4 S5
∑

α
(2)
i,j B

(2)
j

K1 0.62 0.00 0.28 0.90 5.10

K2 1.11 0.00 0.49 1.60 3.40

K3 1.38 0.00 0.62 2.00 0.00

K4 1.94 0.00 0.86 2.80 0.20

q = 3 S3 S5 S6 S7
∑

α
(3)
i,j B

(3)
j

K1 0.00 0.00 0.3702 0.00 0.3702 5.6298

K2 0.00 0.00 0.6573 0.00 0.6573 4.3427

K3 0.00 0.00 0.8217 0.00 0.8217 1.1783

K4 0.00 0.00 1.1508 0.00 1.1508 1.8492

q = 4 S3 S5 S8 S9
∑

α
(4)
i,j B

(4)
j

K1 0.487 0.216 0.00 0.123 0.826 5.174

K2 0.865 0.383 0.00 0.219 1.467 3.533

K3 1.082 0.479 0.00 0.274 1.835 0.165

K4 1.516 0.672 0.00 0.384 2.572 0.428

Chapter 5 Scheduling Strategies for Time Critical Loads 86

Iteration 1 [T = 0 sec]

0

5

10

15

20

25

S1 S2 S3

Source Nodes

P
ro

ce
ss

in
g

T
im

e

�� Iteration 2 [T = 4.465 x 103 sec]

0

5

10

15

20

25

S3 S4 S5

Source Nodes

P
ro

ce
ss

in
g

T
im

e

�
Iteration 3 [T = 10.984 x 103 sec]

0

5

10

15

20

25

S3 S5 S6 S7

Source Nodes

P
ro

ce
ss

in
g

T
im

e

� � Iteration 4 [T = 13.663 x 103 sec]

0

5

10

15

20

25

S3 S5 S8 S9

Source Nodes

P
ro

ce
ss

in
g

T
im

e

��
� �

Time spent processing the loads from the admitted sources

Time required to process the load from the source that is being considered

Time required to process the remaining loads form admitted sources

Deadline requirement of the source� Admitted source

Rejected source�
Figure 5.4: Performance of Progressive scheduling strategy in time-invariant buffer
environment.

Chapter 5 Scheduling Strategies for Time Critical Loads 87

for the four iterations are computed at time instants t = 0, 4.465× 103, 10.984×

103 and 13.663×103 seconds respectively. The total processing time is t = 19.646×

103 seconds. The processing time and deadline requirements of the source nodes

at various iterations are as shown in Fig. 5.4 and are given in ×103 seconds.

Example 5.2:

Let us consider a four sink node system with the speed parameters w1 = 1.11×10−9,

w2 = 6.25 × 10−10, w3 = 5.00 × 10−10 and w4 = 3.57 × 10−10 respectively. Let

Tcp = 6.52 × 1012sec/load. Let the estimated buffer capacities at sinks at time

t = 0 seconds be B1 = 6, B2 = 2, B3 = 0, and B4 = 3; at time t = 10 × 103

seconds be B1 = 2, B2 = 3, B3 = 2, and B4 = 3; and at time t = 20× 103 seconds

be B1 = 0, B2 = 1, B3 = 1, and B4 = 1, respectively. We let the 9 sources to

have loads L1 = 3, L2 = 4, L3 = 3, L4 = 2, L5 = 5, L6 = 2, L7 = 2, L8 = 5

and L9 = 1 units. The values for loads and buffer capacities are also generated

randomly using a uniform probability distribution in the range [0, 7]. It shall be

noted that a value zero for buffer capacity corresponds to a situation wherein a

sink will not participate, thus reflecting a real-life situation. Let load arrival times

in the units of ×103 seconds be L1 to L3 = 0, L4 = 2, L5 = 3, L6 = 9, L7 = 8 and

L8 and L9 = 11 respectively. Let the firm deadlines demanded by the sources S1

to S9 in the units of ×103 seconds be 6, 8, 16, 5, 16, 14, 15, 13 and 16 respectively.

Let the priorities of the sources S1 to S9 be 5, 4, 2, 3, 0, 4, 1, 3 and 2 respectively,

where 0 is the lowest and 5 is the highest priority. The sink and source node

parameters are summarized in the Table 5.3.

Chapter 5 Scheduling Strategies for Time Critical Loads 88

The results are summarized in Table 5.4. From the table, we observe that none

of the buffers in the system are fully consumed at any of the iterations, since the

load considered for processing during the iterations 1, 3 and 4 are insufficient to

completely fill up the buffer of any of the sinks. Also, iteration 2 is forced to

end early because of buffer space variations at sinks nodes. The values for αi,j

in Table 5.4 shall be used by the sinks to request loads from the sources. The

values of αi,j at iterations 1 to 4 are computed at time instants t = 0, 3.689 ×

103, 10 × 103 and 11.786 × 103 seconds, respectively. The total processing time

is t = 15.24× 103 seconds. The processing time and deadline requirements of the

source nodes are as shown in Fig. 5.5 and are given in ×103 seconds.

From Fig. 5.4 and 5.5, we make some interesting observations as follows.

Iteration 1: The load from the highest priority source S1 is admitted into the

system as its deadline could be satisfied. Having admitted S1, the deadline re-

quirements of S1 and S2 together could not be satisfied, and hence, the lower

priority source S2 is not admitted into the system. Then, S3 is admitted into the

system since the deadlines of S1 and S3 could be satisfied, provided S1 is exclu-

sively scheduled in this iteration. S1 alone is scheduled in this iteration, since

it has an earlier deadline requirement than S3. At the end of this iteration, the

processing for S1 is completed.

Iteration 2: Though the source S4 arrived at the system earlier, it is considered

for processing only at the end of iteration 1. Since, its deadline could not be

satisfied now, it is not admitted into the system. The source S5 is admitted into

Chapter 5 Scheduling Strategies for Time Critical Loads 89

Table 5.3: Sink and Source node parameters for Example 5.2.

Sink nodes

Parameter

Inverse of computing speed (wj) Buffer capacity (Bj)

Sink node 1 (K1) 1.11× 10−9 6 [at 0 sec]

2 [at 10× 103 sec]

0 [at 20× 103 sec]

Sink node 2 (K2) 6.25× 10−10 2 [at 0 sec]

3 [at 10× 103 sec]

1 [at 20× 103 sec]

Sink node 3 (K3) 5.00× 10−10 0 [at 0 sec]

2 [at 10× 103 sec]

1 [at 20× 103 sec]

Sink node 4 (K4) 3.57× 10−10 3 [at 0 sec]

1 [at 20× 103 sec]

Source nodes

Parameter

Load Size (Li) Load arrival time Deadline Priority

Source node 1 (S1) 3 0 sec 6× 103 sec 5

Source node 2 (S2) 4 0 sec 8× 103 sec 4

Source node 3 (S3) 3 0 sec 16× 103 sec 2

Source node 4 (S4) 2 2× 103 sec 5× 103 sec 3

Source node 5 (S5) 5 3× 103 sec 16× 103 sec 0

Source node 6 (S6) 2 9× 103 sec 14× 103 sec 4

Source node 7 (S7) 2 8× 103 sec 15× 103 sec 1

Source node 8 (S8) 5 11× 103 sec 13× 103 sec 3

Source node 9 (S9) 1 11× 103 sec 16× 103 sec 2

Chapter 5 Scheduling Strategies for Time Critical Loads 90

Table 5.4: Load fraction and buffer utilization values for Example 5.2.

q = 1 S1 S3
∑

α
(1)
i,j B

(1)
j

K1 0.5100 0.00 0.5100 5.4900

K2 0.9050 0.00 0.9050 1.0950

K4 1.5850 0.00 1.5850 1.4150

q = 2 S3 S5
∑

α
(2)
i,j B

(2)
j

K1 0.3270 0.5450 0.8720 5.1280

K2 0.5807 0.9678 1.5485 0.4515

K4 1.0168 1.6947 2.7115 0.2885

q = 3 S3 S5 S6
∑

α
(3)
i,j B

(3)
j

K1 0.00 0.00 0.2468 0.2468 1.7532

K2 0.00 0.00 0.4382 0.4382 2.5618

K3 0.00 0.00 0.5478 0.5478 1.4522

K4 0.00 0.00 0.7672 0.7672 2.2328

q = 4 S3 S5 S9
∑

α
(4)
i,j B

(4)
j

K1 0.1327 0.2212 0.1234 0.4773 1.5227

K2 0.2356 0.3927 0.2191 0.8474 2.1526

K3 0.2946 0.4910 0.2739 1.0595 0.9405

K4 0.4126 0.6876 0.3836 1.4838 1.5162

Chapter 5 Scheduling Strategies for Time Critical Loads 91

Iteration 1 [T = 0 sec]

0

5

10

15

20

25

S1 S2 S3

Source Nodes

P
ro

ce
ss

in
g

T
im

e

�� Iteration 2 [T = 3.689 x 103 sec]

0

5

10

15

20

25

S3 S4 S5

Source Nodes

P
ro

ce
ss

in
g

T
im

e

�
Iteration 3 [T = 10 x 103 sec]

0

5

10

15

20

25

S3 S5 S6 S7

Source Nodes

P
ro

ce
ss

in
g

T
im

e

� � Iteration 4 [T = 11.786 x 103 sec]

0

5

10

15

20

25

S3 S5 S8 S9

Source Nodes

P
ro

ce
ss

in
g

T
im

e

��
� �

Time spent processing the loads from the admitted sources

Time required to process the load from the source that is being considered

Time required to process the remaining loads form admitted sources

Deadline requirement of the source� Admitted source

Rejected source�
Figure 5.5: Performance of Progressive scheduling strategy in predictable time-
varying buffer environment.

Chapter 5 Scheduling Strategies for Time Critical Loads 92

the system, since deadline of both S3 (admitted in the previous iteration) and S5

could be satisfied. Both these sources are scheduled for processing in this iteration,

since their deadline requirements are the same.

Iteration 3: The source S6 is admitted, since the system could satisfy the deadline

requirements of the sources S3, S5 and S6 together. The source S7 is not admitted

by the system, since having accepted S3, S5 and S6 (which has higher priority than

S7), the deadline requirement of S7 could not be satisfied by the system. In this

iteration, processing of S3 and S5 are suspended and S6 is scheduled exclusively

since it has an earlier deadline than them. At the end of this iteration, the process-

ing for S6 is completed. It shall be noted that this does not violate the deadline

requirements of S3 and S5.

Iteration 4: The source S8 becomes inadmissible, since having accepted S3 and S5,

the deadline requirement of S8 could not be satisfied by the system. The source

S9 is admitted since the deadline requirements of S3, S5 and S9 could be satisfied.

All these sources are scheduled in this iteration, since they have the same deadline

requirements. At the end of this iteration, the processing for S3, S5 and S9 are all

completed.

Thus, the Progressive scheduling scheme allows for temporarily suspending the

processing of accepted loads, in order to completely process newly arrived loads

with earlier deadlines. It considers the newly arrived load together with the loads

that are already admitted into the system at the start of every iteration. This way

of interleaving is one of the key characteristics of this approach as it ensures that

Chapter 5 Scheduling Strategies for Time Critical Loads 93

Table 5.5: Comparison of complexity of Resource aware distributed incremental
scheduling (RADIS) strategies.

RADIS strategy Complexity

Non-interleaved scheduling O(M + N)

Earliest deadline first scheduling O(M + N2)

Progressive scheduling O(M + N2)

the loads admitted into the system are completely processed, irrespective of the

priorities of the loads that arrive later. This technique also improves the system

performance by admitting more sources. This can be realized by noting that in

iteration 3, the source S6 is admitted into the system and processed immediately.

Here, S3 and S5, which are admitted into the system earlier, are temporarily

suspended to allow resources to be utilized by S6 to catch up its deadline. Another

instance at which this can be realized is when the source S3 is considered for

admission in iteration 1. In this case, the source S3 is admitted into the system

only due to the fact that interleaving technique allows to schedule the source S1

exclusively first.

5.2 Complexity of RADIS Strategies

The complexity for checking the feasibility for admitting new sources is O(N2)

for EDF and Progressive scheduling strategies, and O(N) for Non-interleaved

Chapter 5 Scheduling Strategies for Time Critical Loads 94

Initial state:
I = {1, 2, ...N} , J = {1, 2, ...M} , q = 0 , T (0) = 0

Step 1: Determine the sources to be scheduled:
If (Xnew 6= ∅) { Check Feasibility for New Sources }
If ((Xnow = ∅) & (Xlater 6= ∅)) {
Step 1a: Non-interleaved Scheduling Scheme:

Xnow = Xlater , Xlater = ∅
Step 1b: Earliest Deadline First Scheduling Scheme:

Xnow = Source(s) with Earliest Deadline in {Xlater} , Xlater = Xlater −Xnow

Step 1c: Progressive Scheduling Scheme:
Znow = Xnow ∪Xlater , Z

′
later = ∅

Request & Receive the buffer availability estimation B̂t
j from all the Sink nodes for

the time max{(Tdi
− T), Si ∈ Znow}.

Tul = Tcp / ({ ∑M
j=1

1
wj

, ∀Kj , where B̂t
j 6= 0 , j ∈ J})

Step 1c(i): Zlater = ∅
T̂ = Tul ·

∑N
i=1 Li , ∀Si ∈ Znow , i ∈ I

{ If (Tdi
> T̂) {Zlater = Zlater ∪ Si, Znow = Znow − {Si} } } , ∀Si ∈ Znow , i ∈ I

If (Znow = ∅) { Xnow = Zlater , Xlater = Z
′
later}

Else If (Zlater = ∅) {Xnow = Znow, Xlater = Z
′
later }

Else { Z
′
later = Z

′
later ∪ Zlater , Go to Step 1c(i). } }

Step 2: Determine the buffer availability at Sink nodes:
If (Xnow 6= ∅) { Pnow = Pall

Receive (B̂(q+1)
j) from all Sink nodes.

If (B̂(q+1)
j = 0) Pnow = Pnow − Kj , ∀Kj , j ∈ J

Step 3: Determine α
(q+1)
j & T (q+1):

α
(q+1)
j = 1/(wj

∑M
x=1

1
wx

) , ∀Kj ∈ Pnow, j ∈ J

L =
∑N

i=1 Li , ∀Si ∈ Xnow , i ∈ I

Y = min{B̂(q+1)
j /(α(q+1)

j L) , ∀Kj ∈ Pnow , j ∈ J}
If (Y > 1) {Y = 1}
T (q+1) = Y α

(q+1)
j L wj Tcp , for any Kj , j ∈ J

Broadcast the schedule information (Y , α
(q+1)
j , L, (T + T (q+1)),

(Li , ∀Si ∈ Xnow , i ∈ I)) to all the Sink nodes.

Step 4: Update the amount of load remaining to be processed:
Wait till (T + T (q)) & Receive (Lj) from all the Sink nodes.
q = q + 1
Li = Li · (1− Y + ((

∑M
j=1 Lj)/L)) , ∀Si ∈ Xnow , i ∈ I

{ If (Li = 0) {Xnow = Xnow − {Si}}}, ∀Si ∈ Xnow , i ∈ I }
Go to Step 1.

Figure 5.6: Pseudo code describing the workings of the RADIS scheduler at the
coordinator node Cs.

Chapter 5 Scheduling Strategies for Time Critical Loads 95

Check Feasibility for New Sources
{
Step 1: Initialization:
Si = Highest priority source in {Xnew}.
Xnew = Xnew − {Si} , Znow = Xnow ∪Xlater ∪ Si

Request & Receive the buffer availability estimation B̂t
j from all the Sink nodes for

the time (max{Tdi
− T}, Si ∈ Znow).

Tul = Tcp / ({ ∑M
j=1

1
wj

, ∀Kj , where B̂t
j 6= 0 , j ∈ J})

Step 2: Non-interleaved Scheduling Scheme:
T̂ = Tul ·

∑N
i=1 Li , ∀Si ∈ Znow , i ∈ I

{ If (Tdi
> T̂) { Znow = Znow − {Si} } } , ∀Si ∈ Znow , i ∈ I

Step 2a: Admit the new source:
If (Znow = ∅) { Xlater = Xnow ∪ Si , Xnow = ∅}
Step 2b: Reject the new source:
Else { Message “No feasible solution for Si.” }

Step 3: Earliest Deadline First Scheduling Scheme:
While (Znow 6= ∅) {

Si = Earliest Deadline Source in {Znow}.
T̂ = T̂ + Tul · Li

If (Tdi
> T̂) { Znow = Znow − {Si} }

Else { break; } }
Step 3a: Admit the new source:
If (Znow = ∅) { Xlater = Xnow ∪Xlater ∪ Si , Xnow = ∅}
Step 3b: Reject the new source:
Else { Message “No feasible solution for Si.” }

Step 4: Progressive Scheduling Scheme:
T̂ = Tul ·

∑N
i=1 Li , ∀Si ∈ Znow , i ∈ I

Zlater = ∅
{ If (Tdi

> T̂) { Zlater = Zlater ∪ Si, Znow = Znow − {Si} } } , ∀Si ∈ Znow , i ∈ I

Step 4a: Admit the new source:
If (Znow = ∅) { Xlater = Xnow ∪Xlater ∪ Si , Xnow = ∅}
Step 4b: Reject the new source:
Else If (Zlater = ∅) { Message “No feasible solution for Si.” }
Step 4c: Consider the sources in Znow and re-iterate:
Else Go to Step 4.

}

Figure 5.7: Pseudo code describing the workings of the admission control procedure
at the coordinator node Cs.

Chapter 5 Scheduling Strategies for Time Critical Loads 96

Initial state:
q = 0 , T (0) = 0 , p = 0.95

Step 1: Buffer availability estimation for next iteration:

B̂
(q+1)
j = ((

∑(s−1)
k=0 ((s− k) · B

(q−k)
j)) / (

∑(s−1)
k=0 k)) ∗ p

Send (B̂(q+1)
j) to the Coordinator node.

Step 2: Wait till the previous iteration is completed:
Wait till (T + T (q)).

Step 3a: Compute Load amounts to be processed:

Receive the schedule information (Y , α
(q+1)
j , L, (T + T (q+1)), (Li, ∀Si ∈ Xnow, i ∈ I)) from

the Coordinator node.
q = q + 1

If (B̂(q)
j 6= 0) {

If ((Y α
(q)
j L) > B

(q)
j) { B

(q)
j = 0

Lj = (Y α
(q)
j L)−B

(q)
j

α
(q)
i,j = Li · B

(q)
j

L , ∀Si ∈ Xnow , i ∈ I }
Else { Lj = 0

B
(q)
j = B

(q)
j − (Y α

(q)
j L)

α
(q)
i,j = Y α

(q)
j Li , ∀Si ∈ Xnow , i ∈ I }

Send (Lj) to the Coordinator node.

Step 3a(i): Schedule the loads from Source Nodes:

Request, receive and process the load fractions (α(q)
i,j) from the Source Nodes Si ∈ Xnow.

}
Go to Step 1.

Step 3b: Buffer availability estimation for the time treq:
Receive the buffer availability estimation request from the Coordinator node for

the time treq.

B̂t
j = 1

treq

∫ t=T

t=(T−treq)
Bj(t) dt , where (T − treq) ≥ 0

Send (B̂t
j) to the Coordinator node.

Go to Step 2.

Figure 5.8: Pseudo code describing the workings of the RADIS scheduler at the
sink nodes.

Chapter 5 Scheduling Strategies for Time Critical Loads 97

scheduling strategy. The complexity for determining the sources to be sched-

uled in an iteration is O(N2) for EDF and Progressive scheduling strategies and

O(1) for Non-interleaving scheduling strategy. The complexity for the calcula-

tion of scheduling information per iteration is O(M) for all the scheduling strate-

gies. Hence, the complexity of RADIS with Non-interleaving scheduling strategy

is O(M +N), and the complexity of RADIS with EDF and Progressive scheduling

strategies is O(M+N2). The complexity comparisons are summarized in the Table

5.5.

5.3 Performance Evaluation

Now, we shall describe our experimental platform and list certain parameters that

influence the performance of the methodologies. In our study, we simulated 64,

128 and 256 node (sink) systems. The sink speed (1
wj

) parameters are derived from

the STAR experiments conducted at BNL [51]. The speed parameter is assigned

to the sink nodes based on uniform probability distribution.

We allow the buffer availabilities at the sinks to vary randomly over time (referred

to as Time-varying Buffer (TVB) scenario), and, we also observe the best case per-

formance when the buffer sizes are time-invariant (referred to as Time-invariant

Buffer (TIB) scenario). The TIB scenario results are important as they provide the

upper bounds for the performance of the strategies. Also, all possible variations

(for priority of loads and available buffer sizes) ranging from small to large fluctu-

Chapter 5 Scheduling Strategies for Time Critical Loads 98

ations and the frequency of buffer availability fluctuations are captured. These are

varied randomly following uniform probability distributions while the load arrival

rates follow Poisson distribution. In our simulations, we consider three different

sets of loads. Set 1 consists of 10% Type I and 90% Type II load sizes (see Table

5.6). Set 2 consists of 50% Type I and 50% Type II load sizes. Set 3 consists

of 90% Type I and 10% Type II load sizes. All the above mentioned simulation

parameters and their respective ranges, are given in Table 5.6.

In our experiments, the number of sinks participating in every iteration is also

allowed to vary simulating the nodes leaving the system / participating in the

computation in a random fashion. Thus we attempt to capture the behavior of

the strategies close to a real-life environment. Further, our schemes guarantee

that the deadlines for all the loads that are accepted will be satisfied, since in

our experiments the buffer sizes follow uniform probability distribution and our

schemes utilize time averaged buffer estimation strategy for admissibility testing.

5.3.1 Metrics of Interest

We consider the following performance metrics that are of direct relevance to

this study. The number of loads accepted in the TVB scenario (Φ) has higher

significance, since one of our aim is to maximize the number of loads that are

accepted. We also define the acceptance ratio (β), and the ratio of acceptance

Chapter 5 Scheduling Strategies for Time Critical Loads 99

Table 5.6: Simulation parameters and their range of values.

Parameter Range of values

Simulation period [seconds] 50, 000

Load arrival rates (λ) [arrivals/second] 0.001− 1.0

Number of Sinks (M) 64, 128, and 256

Window size for
Buffer Estimation Strategy (s)

8

Inverse of Sink Speeds (wj)
1.11×10−9, 6.25×10−10, 5.00×10−10

and 3.57× 10−10

Computing Intensity Constant (Tcp) 6.52× 1010

Load Sizes (Type I \ Type II) (50− 70)\(170− 190)

Load Deadlines
(Type I \ Type II) [seconds]

(500− 750)\(6000− 7000)

Priority of Sources 0− 10

Buffer Sizes (Small\Medium\Large) (0, 0.5)\(0, 0.75)\(0, 0.5, 1.0)

Buffer Size Variations
(Slow\Medium\Fast)

(3000−3500)\(2000−2500)\(1000−
1500)

Chapter 5 Scheduling Strategies for Time Critical Loads 100

ratios (η) as,

β =
Number of loads accepted

Number of loads arrived

η =
βTVB

βTIB

(5.9)

where βTVB and βTIB are the acceptance ratios of TVB and TIB scenarios respec-

tively.

Secondly, for the TVB scenario, we define a metric (γ) that quantifies the through-

put of the system as,

γ =
Number of loads processed

Number of loads accepted
(5.10)

Finally, we define the average buffer utilization in an iteration at a sink node (ζ),

and the ratio of the average buffer utilization (χ) as,

ζ =

∑M
1

((
∑q

i=1

min{Y α
(i)
j L, B

(i)
j }

B
(i)
j

)
/ q

)

M

χ =
ζTVB

ζTIB

(5.11)

where q is the number of iterations that the sink node has participated and ζTVB

and ζTIB are the average buffer utilization in an iteration at a sink node in TVB

and TIB scenarios respectively.

Chapter 5 Scheduling Strategies for Time Critical Loads 101

5.3.2 Discussion of the Results

The behavior of Φ , βTVB , η , γ and χ when we employ RADIS in a system with

64, 128 and 256 sinks with respect to the load arrival rates for two different deadline

types as given in the Table 5.6 are plotted in Fig. 5.9, 5.10, and 5.11 respectively.

In these plots, we denote the Non-interleaved Scheduling Scheme with Load Sets

1, 2 and 3 as NS1, NS2 and NS3, the Earliest Deadline First Scheme with Load

Sets 1, 2 and 3 as ES1, ES2 and ES3, and the Progressive Scheme with Load

Sets 1, 2 and 3 as PS1, PS2 and PS3 respectively. Here, we analyze based on the

simulation results for the 64 node system shown in Fig. 5.9, since all our strategies

exhibit similar trend for all the performance metrics considered irrespective of the

number of sinks in the system.

From the Fig. 5.9, it is observed that at low arrival rates (less than 0.006) there

is little difference in Φ for the various scheduling schemes. As the arrival rate

increases, irrespective of the scheduling schemes and the Deadline Type of the

loads, the number of loads accepted for Load Set 3 is higher than that for Load Set

2, which in turn is higher than that for Load Set 1. It is also interesting to observe

that a better performance is shown by the Progressive Scheduling Scheme in the

case of loads with Type I deadlines where as by the EDF Scheduling Scheme for the

loads with Type II deadlines. Also, the performance improvement at higher arrival

rates for loads with Type II deadlines is significantly higher for the EDF scheme

when compared with other schemes. But, the improvement is of less significance

for arrival rates higher than 0.3, since the βTVB is closer to 0 at these rates (See

Chapter 5 Scheduling Strategies for Time Critical Loads 102

32
0.6

0.7

0.8

0.9

1

0.001 0.1

Load Arrival Rate (λλλλ)

χχχχ
PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.6

0.7

0.8

0.9

1

0.001 0.1

Load Arrival Rate (λλλλ)

χχχχ PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.9

1

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

γγγγ

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

0.7

0.8

0.9

1

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

γγγγ

PS1 ES1 NS1 PS2 ES2
NS2 PS3 ES3 NS3

0.3

0.5

0.7

0.9

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

ηηηη

PS1 ES1 NS1
PS2 ES2 NS2

PS3 ES3 NS3

0.3

0.5

0.7

0.9

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

ηηηη

PS1 ES1 NS1
PS2 ES2 NS2

PS3 ES3 NS3

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.1

Load Arrival Rate (λλλλ)

ββββTVB

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.1

Load Arrival Rate (λλλλ)

ββββTVB

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

Deadline Type II

0

200

400

600

800

1000

0.001 0.1

Load Arrival Rate (λλλλ)

ΦΦΦΦ

PS1 ES1 NS1 PS2 ES2
NS2 PS3 ES3 NS3

Deadline Type I

0

200

400

600

800

1000

0.001 0.1

Load Arrival Rate (λλλλ)

ΦΦΦΦ

PS1 ES1 NS1 PS2 ES2
NS2 PS3 ES3 NS3

AA

Figure 5.9: Simulation results for the number of loads accepted (Φ) and the load
acceptance ratio (βTVB) in the time-varying buffer (TVB) scenario; the ratio of
acceptance ratios (η) and the ratio of the average buffer utilization (χ) in TVB
and time-invariant buffer (TIB) scenarios; and throughput of the system (γ) for
the non-interleaved, earliest deadline first, and progressive interleaved scheduling
RADIS schemes for load sets 1, 2, and 3 and deadline types I and II in a 64-node
cluster system.

Chapter 5 Scheduling Strategies for Time Critical Loads 103

plot of βTVB in Fig. 5.9).

Initially, all the arriving loads get accepted by the system (the acceptance ratio is

close to 1) and as the arrival rate increases further, it starts falling steeply (the

zone represented as ‘A’ in the plot of βTVB in Fig. 5.9). This is due to the fact that

the scheduler can no longer continue to accept the newly arrived loads unless the

deadline requirements of already accepted loads together with the new load being

considered could be satisfied. Hence, the admissibility testing starts rejecting some

of the newly arrived loads. As the arrival rate further increases, the acceptance

ratio βTVB moves closer to 0.

From the plot of η in Fig. 5.9, it is observed that at arrival rates lower than 0.03

for all Load Sets and Deadline Types, η is almost similar for both the EDF and

Progressive schemes of RADIS, because the acceptance ratios (β) of these schemes

are almost identical. At these arrival rates for loads with Type I deadlines, the

η values for both the EDF and Progressive schemes of RADIS are higher than

that for the Non-interleaved Scheduling Scheme. At higher arrival rates, for all

load sets with Type I deadlines, η tends to saturate close to a value of 0.6 for the

EDF and Non-interleaved schemes and about 0.4−0.5 for the Progressive Scheme,

where as, for all load sets with Type II deadlines, η tends to saturate close to a

value of 0.65 for the EDF Scheme, 0.5 for the Non-interleaved Scheme and around

0.3− 0.4 for the Progressive Scheme.

It is also observed that the system throughput γ value is closer to 1 for loads with

Type I deadline requirements irrespective of the load arrival rates, where as it

Chapter 5 Scheduling Strategies for Time Critical Loads 104

32
0.5

0.6

0.7

0.8

0.9

1

0.001 0.1

Load Arrival Rate (λλλλ)

χχχχ
PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.5

0.6

0.7

0.8

0.9

1

0.001 0.1

Load Arrival Rate (λλλλ)

χχχχ
PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.9

1

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

γγγγ

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

0.7

0.8

0.9

1

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

γγγγ
PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

0.3

0.5

0.7

0.9

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

ηηηη

PS1 ES1 NS1
PS2 ES2 NS2

PS3 ES3 NS3

0.3

0.5

0.7

0.9

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

ηηηη

PS1 ES1 NS1
PS2 ES2 NS2

PS3 ES3 NS3

0

0.4

0.8

1.2

0.001 0.1

Load Arrival Rate (λλλλ)

ββββTVB

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

0

0.4

0.8

1.2

0.001 0.1

Load Arrival Rate (λλλλ)

ββββTVB

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

Deadline Type II

0

400

800

1200

1600

2000

0.001 0.1

Load Arrival Rate (λλλλ)

ΦΦΦΦ

PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

Deadline Type I

0

400

800

1200

1600

2000

0.001 0.1

Load Arrival Rate (λλλλ)

ΦΦΦΦ

PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

Figure 5.10: Simulation results for the number of loads accepted (Φ) and the load
acceptance ratio (βTVB) in the time-varying buffer (TVB) scenario; the ratio of
acceptance ratios (η) and the ratio of the average buffer utilization (χ) in TVB
and time-invariant buffer (TIB) scenarios; and throughput of the system (γ) for
the non-interleaved, earliest deadline first, and progressive interleaved scheduling
RADIS schemes for load sets 1, 2, and 3 and deadline types I and II in a 128-node
cluster system.

Chapter 5 Scheduling Strategies for Time Critical Loads 105

32
0.3

0.4

0.5

0.6

0.7

0.8

0.001 0.1

Load Arrival Rate (λλλλ)

χχχχ
PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.3

0.4

0.5

0.6

0.7

0.8

0.001 0.1

Load Arrival Rate (λλλλ)

χχχχ
PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.9

1

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

γγγγ

PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3

0.7

0.8

0.9

1

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

γγγγ
PS1 ES1 NS1
PS2 ES2 NS2
PS3 ES3 NS3

0.3

0.5

0.7

0.9

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

ηηηη
PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

0.3

0.5

0.7

0.9

1.1

0.001 0.1

Load Arrival Rate (λλλλ)

ηηηη
PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

0

0.4

0.8

1.2

0.001 0.1

Load Arrival Rate (λλλλ)

ββββTVB PS1 ES1 NS1

PS2 ES2 NS2

PS3 ES3 NS3
0

0.4

0.8

1.2

0.001 0.1

Load Arrival Rate (λλλλ)

ββββTVB

PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

Deadline Type II

0

800

1600

2400

3200

4000

0.001 0.1

Load Arrival Rate (λλλλ)

ΦΦΦΦ

PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

Deadline Type I

0

800

1600

2400

3200

4000

0.001 0.1

Load Arrival Rate (λλλλ)

ΦΦΦΦ

PS1 ES1
NS1 PS2
ES2 NS2
PS3 ES3
NS3

Figure 5.11: Simulation results for the number of loads accepted (Φ) and the load
acceptance ratio (βTVB) in the time-varying buffer (TVB) scenario; the ratio of
acceptance ratios (η) and the ratio of the average buffer utilization (χ) in TVB
and time-invariant buffer (TIB) scenarios; and throughput of the system (γ) for
the non-interleaved, earliest deadline first, and progressive interleaved scheduling
RADIS schemes for load sets 1, 2, and 3 and deadline types I and II in a 256-node
cluster system.

Chapter 5 Scheduling Strategies for Time Critical Loads 106

decreases with increasing arrival rates for loads with Type II deadline requirements

for all the load sets and schemes. In the case of the EDF Scheme, though the

system throughput decreases with the increase in load arrival rates for loads with

Type II deadlines, it is seen to be more robust, since the variations in the system

throughput are lesser compared with other schemes (Refer to the plot of γ in Fig.

5.9).

The plot of χ in Fig. 5.9 shows that at arrival rates lower than 0.03 for both Type

I and Type II deadline requirements of the loads, the average buffer utilization for

all the schemes are almost identical and the utilization of Load Set 1 is higher than

that of Load Set 2 and the utilization of Load Set 2 is higher than that of Load Set

3. For arrival rates higher than 0.03, for the both the deadline types and all the

load sets the utilization saturates at a value of around 0.8 in the case of both the

EDF and Non-interleaved Scheduling schemes, where as, the trend reverses in the

case of the Progressive Scheme and then on the utilization of Load Set 3 is higher

than that of Load Set 2 and the utilization of Load Set 2 is higher than that of

Load Set 1 and the values saturate between 0.85− 0.95 at higher arrival rates.

It is to be noted that at arrival rates lower than 0.006, the number of loads accepted

for all the schemes are almost the same and at higher arrival rates although the

acceptance ratios of all the schemes are almost similar, for loads with Type I

deadlines, the average buffer utilization is higher and the number of loads that are

accepted are also higher in the case of the Progressive scheme, where as for loads

with Type II deadlines, the average buffer utilization is lower and the number of

Chapter 5 Scheduling Strategies for Time Critical Loads 107

loads that are accepted are higher in the case of the EDF scheme.

In an actual system we propose to have a decision making mechanism that mon-

itors the load arrival patterns and their deadline requirement at the coordinator

node Cs and dynamically choose the appropriate scheduling scheme. Hence, irre-

spective of type of loads and their deadline requirements, when the load arrival

rate is lower, we propose to utilize the simpler Non-interleaved Scheduling Scheme.

When the load arrival rate increases further, depending up on the type of deadline

requirements of the loads, we propose to utilize either the Progressive or the EDF

Scheduling schemes. However, when the load arrival rate increases further and the

acceptance ratio (βTVB) is closer to 0 (when λ > 0.3, in the 64 node cluster sys-

tem), we propose to utilize the simpler Non-interleaved Scheduling Scheme. Thus,

all the proposed schemes are very useful for real-life systems.

108

Chapter 6

Strategies for Scheduling across

Cluster Systems

Computational Grid systems comprise of interconnected clusters. In the previous

chapters, strategies for scheduling with in clusters are presented. In this chapter,

we shall propose and analyze load distribution strategies for scheduling across

clusters that are interconnected to form a backbone network.

The backbone network in a computational Grid system comprises of the master

nodes of the clusters forming an arbitrary topology/graph G = 〈C, E〉, where C

denotes the number of master nodes interconnected via E communication links.

We assume a uni-port communication model and that all the nodes in this back-

bone system have front-ends. We consider scheduling when the loads with deadline

requirements arrive at arbitrary times to a dynamic system wherein the nodes are

Chapter 6 Strategies for Scheduling across Cluster Systems 109

allowed to join or leave the system. Our strategies assume that the nodes partic-

ipating in computation for an accepted load, shall not leave the system until the

processing is completed for the load portions assigned to it as well as the sub-tree

for which it is a parent, else the guarantees given to the loads while admitting may

not be fulfilled. We also assume that all the processing nodes shall allow their

buffers to be reclaimed for multi-installment distribution until the processing for

the accepted load portions are completed.

In a real life system, there shall be multiple source nodes in the system at a given

time and also the loads may arrive at them dynamically. Hence, we shall consider

the source nodes based on their priority order and choose one of them as the

root node. At this chosen root node, our proposed distribution strategies shall

be executed to determine the load fractions to be distributed to the processing

nodes. If there are multiple load arrivals at the root node, it shall also consider

them based on their (load’s) priority order.

England et al [59] have proven that the optimal solution to single-installment

based divisible load scheduling problem on a arbitrary graph indeed occurs on a

spanning tree of the graph, a multi-level tree. Though our strategies distribute load

in multiple installments for a given load, we first compute the optimal fractions

based on single installment and then distribute the load in multi-installments based

on the buffer availability at the processing nodes, and also assume that the system

parameters (buffer availability at nodes, number of participating nodes etc) do not

change until the processing is completed for the accepted load. Hence, the solution

Chapter 6 Strategies for Scheduling across Cluster Systems 110

for our problem shall also occur on a spanning tree.

For an arbitrary graph network G of the backbone network of a Grid system, we

shall first generate a spanning tree. For an arbitrary graph, there normally exist

many spanning trees. Also, Byrnes et al [60] have proved that finding the optimal

spanning tree (the spanning tree that generates minimum total processing time) on

the arbitrary network is NP-hard. Therefore, one immediate question to address is

which spanning tree(s) deliver efficient solution for the load distribution strategies

described in Chapter 2. We present the spanning tree construction strategies in

the Section 6.1, and our Resource Aware Sequential Load Distribution (RASLD)

and Resource Aware Parallel Load Distribution (RAPLD) strategies are described

in Section 6.2 and 6.3 respectively.

6.1 Spanning Tree Construction Strategies

In this section, we present the various spanning tree construction strategies that

we shall apply with our distribution strategies and their characteristics in brief.

Minimum spanning tree (MST): In MST, the total link weight (the link

weights depend on the link delays) is the minimum among all the spanning trees.

Since MST always tends to incorporate the link with small weight without con-

sidering its hop count to the root, normally MSTs are very deep and “skinny”.

Kruskal’s or Prim’s algorithm [62] are used to construct such a spanning tree.

Chapter 6 Strategies for Scheduling across Cluster Systems 111

Shortest path spanning tree (SPT): In SPT, each node has the shortest path

(in terms of link weights) to the root. To construct such a spanning tree, either

the efficient Dijkstra’s or Bellman-Ford’s algorithm [62] could be used. The shape

of the tree depends on the distribution of the link weights. The SPT trees are

generally deeper and have smaller node degrees than FHT trees.

Fewest hops spanning tree (FHT): In FHT, each node’s hop count to the root

is the minimum. The breadth-first search (BFS) algorithm [63] could be used to

construct the FHT. FHTs tend to be shallow and “fat”.

Robust spanning tree (RST): RST [59] is designed to seek a trade-off between

link weight and hop count. Such a tree is immune to data loss when nodes or links

fail and yet provides good performance. RST minimizes each node’s combined

cost of link weight and hop count as follows.

λ ∗ hop count + (1− λ) ∗ link weight (6.1)

The weight λ is actually a function of a node’s depth in the tree, which falls into

the range [0, 1) When an edge (i, j) is being considered for inclusion in the tree,

then

λi = 1− hi

ε1

(6.2)

where i is the new vertex not already in the tree, hi is the hop count of node i

from the root and ε1 is the depth of the deepest leaf in the shortest path spanning

tree (SPT) or in other words it is the deepest of the shortest paths from the root

Chapter 6 Strategies for Scheduling across Cluster Systems 112

node to all other nodes in the network, and this gives the relative importance of

hop count versus link weights. RST strives for a balance between SPT and FHT.

All these spanning tree construction strategies consider either the link delays (link

weights) or hop counts where as our load distribution strategies in Chapter 3

consider both processing speed of the nodes as well as link delays. Hence, here

in we propose a spanning tree construction strategy that considers both these

parameters and thereby strives to provide a minimum optimal processing time for

the given network.

Minimum network equivalence spanning tree (EST): Our EST strategy

assumes optimal sequencing load distribution and maximizes the equivalent com-

putation power of the spanning tree by considering both processor and the link

weights (or speeds) while constructing the spanning tree. The EST spanning tree

construction algorithm uses the equivalent processor model described in Chapter

3. Given an arbitrary network (G) containing nodes (N) and links (E), it first

adds the root node to the spanning tree and then, considers all the links originat-

ing from this spanning tree, one by one, and adds the (E, N) pair that provides

minimum effective equivalent processor value (weq(0)) (as detailed in the Chapter

3) to it and continues until all the nodes in G are added. The shape of this span-

ning tree depends on the distribution of the link speed as well as processing speed

of the nodes.

Chapter 6 Strategies for Scheduling across Cluster Systems 113

6.2 Resource Aware Sequential Load

Distribution Strategy

In this section, we shall present our RASLD strategy, that follows the load distri-

bution strategy described in Chapter 3. For sequential distribution, sum of link

delays (communication delays) along the path from the root node to processing

nodes is computed, and a single-level tree is derived with the computed sum as

the link delay value for the link between the root node and that processing node.

In SPT, each node has the shortest path (in terms of link weights) to the root.

Hence, it can be deduced that SPT will provide the best solution for sequential

load distribution. Hence, our RASLD strategy utilizes SPT algorithm and com-

putes the load distribution following the optimal sequencing [16] as explained in

Fig. 6.1.

It shall be noted that RASLD strategy adapts to the real life scenario where

in the nodes in the system (including the load originating or root node) may

or may not participate in processing the load but could communicate or relay

the load portions to their child nodes for processing. The RASLD strategy also

adapts to scenarios where in there are time critical loads and also finite buffer

capacity constraints at the processing nodes. When there are time critical loads,

admissibility testing shall be performed based on the deadline requirements of

the load and the computed optimal processing time by the RASLD algorithm and

decide on whether to accept or reject it. If the buffer available at a processing node

Chapter 6 Strategies for Scheduling across Cluster Systems 114

Step 1: Select the nodes for load distribution:
Given an arbitrary network G and a root node, say C0, drop the isolated nodes (nodes that
could not be communicated with).

Step 2: Spanning tree construction:
Construct the Shortest path spanning tree GSPT from the root node to the selected nodes
in the arbitrary network G.

Step 3: Reduce the multi-level tree to a single-level tree:
For all the nodes in GSPT, determine the sum of link delays from the root node to each of
them and “Replace” GSPT with a single-level tree with root node as C0 and all the other
nodes, that could process the load, connected to it with links having delays equivalent to
the sum of the link delays thus determined for them. Note that this ensures that the load
will not be assigned to the child nodes that could only communicate.

Step 4: Reduce the single-level tree to a single equivalent node:
For the single-level tree network Σ(0, (m + 1)), apply Theorem 1 and identify the optimal
sequence for load distribution.

If C0 could process the load as well as communicate with other nodes, determine the
equivalent speed parameter weq(0) using (3.11) for the equivalent node Ceq(0) and
“Replace” the single-level tree with the equivalent node Ceq(0).

Else if C0 could only communicate with other nodes, determine the equivalent speed
parameter weq(0) using (3.17) for the equivalent node Ceq(0) and “Replace” the single-level
tree with the equivalent node Ceq(0).

Step 5: Load distribution with optimal sequence:
Inflate Ceq(0) to obtain the single-level tree Σ(0, m + 1) and determine α∗0,i, using (3.12) if
C0 could process the load, or (3.18) if C0 could only communicate with other nodes, and
distribute the load to all the nodes in this tree following the optimal sequence.

Optimal Load Fractions: L∗x,i = α∗0,i · L;

Optimal Processing Time: T ∗(α∗) = T (Σ(0, m + 1)) = T ∗x,i(α
∗) , ∀ Cx,i ∈ GSPT.

Figure 6.1: Resource aware sequential load distribution algorithm (RASLD).

Chapter 6 Strategies for Scheduling across Cluster Systems 115

is insufficient to accommodate the computed single installment load fractions for

that node, the load shall be distributed in multiple installments. As in the case

of load distribution within clusters described in Chapter 4 and 5, here again the

load that shall be distributed in each installment to every processing node shall be

computed based on the computed load fractions and the buffer availability among

all the processing nodes as given by (3.6) and (5.1).

6.3 Resource Aware Parallel Load

Distribution Strategy

In this section, we propose our RAPLD strategy that follows the load distribution

strategy described in Chapter 3. Given an arbitrary graph network G with root

node, say C0, our strategy drops the isolated nodes in G thus selecting the nodes

that shall participate in the computation and generates a spanning tree for it

based on the chosen construction strategy (Section 6.1). Then the multi-level tree

is systematically reduced to a single-level tree by replacing the sub-trees with their

equivalent nodes and compute the load distribution following the optimal sequence

theorem [16] as explained in Fig. 6.2.

The RAPLD strategy also adapts to the real life scenario where in the nodes in the

system (including the load originating or root node) may or may not participate

in processing the load but could communicate or relay the load portions to their

child nodes for processing. Like RASLD strategy, it also adapts to scenarios where

Chapter 6 Strategies for Scheduling across Cluster Systems 116

Step 1: Select the nodes for load distribution:
Given an arbitrary network G and a root node, say C0, drop the isolated nodes (nodes that
could not be communicated with).

Step 2: Spanning tree construction:
Construct a spanning tree GTree from the root node to the selected nodes in the arbitrary
network G. Drop the leaf nodes (nodes with no children) that could only communicate in
GTree.

Step 3: Reduce the multi-level tree to a single-level tree:
for (j = Q; j > 1; j −−) { // Q is the total number of levels in GTree

for (r = 1; r ≤ R; r + +) { // R is the total number of sub-trees at level j

In this single-level sub-tree with, say Cx,i, as parent node, apply Theorem 1 and
identify the optimal sequence for load distribution and determine the equivalent speed
parameter wx,eq(i) using (3.17) for the equivalent node Cx,eq(i) of this sub-tree.

If Cx,i could process the load as well as communicate with other nodes, “Replace” the
single-level sub-tree with two nodes, the node Cx,i and the equivalent node Cx,eq(i),
both connected to the parent of Cx,i with link delay values of zx,i. The two nodes shall
be arranged in such an order that, while distributing the loads to them, their parent
node distributes the load to first Cx,i and then to Cx,eq(i).

Else if Cx,i could only communicate with other nodes, “Replace” the single-level
sub-tree with only one node, the equivalent node Cx,eq(i), connected to the parent of
Cx,i with a link delay value of zx,i.

}
}
Step 4: Reduce the single-level tree to a single equivalent node:
For the single-level tree network Σ(0, (m + 1)), apply Theorem 1 and identify the optimal
sequence for load distribution.

If C0 could process the load as well as communicate with other nodes, determine the
equivalent speed parameter weq(0) using (3.11) for the equivalent node Ceq(0) and “Replace”
the single-level tree with the equivalent node Ceq(0).

Else if C0 could only communicate with other nodes, determine the equivalent speed
parameter weq(0) using (3.17) for the equivalent node Ceq(0) and “Replace” the single-level
tree with the equivalent node Ceq(0).

Step 5: Load distribution with optimal sequence:
Inflate Ceq(0) to obtain the single-level tree Σ(0, m + 1) and determine α∗0,i, using (3.12) if
C0 could process the load, or (3.18) if C0 could only communicate with other nodes, and
distribute the load to all the nodes in this tree following the optimal sequence.

For every node in a level j, j = 1, 2, ..., Q, determine α∗x,i, using (3.18) and assign it to
them. Inflate every equivalent node Ceq(i), in this level j, and distribute the load assigned
to Ceq(i), following an optimal sequence among the nodes that formed Ceq(i) using (3.18).

Optimal Load Fractions: L∗x,i = α∗x,i · L;

Optimal Processing Time: T ∗(α∗) = T (Σ(0,m + 1)) = T ∗x,i(α
∗) , ∀ Cx,i ∈ GTree.

Figure 6.2: Resource aware parallel load distribution algorithm (RAPLD).

Chapter 6 Strategies for Scheduling across Cluster Systems 117

in there are time critical loads and also finite buffer capacity constraints at the

processing nodes. When there are time critical loads, admissibility testing shall be

performed based on the deadline requirements of the load and the computed opti-

mal processing time for it by the RAPLD algorithm and the decision be made to

accept or reject it. If the buffer available at a processing node is insufficient to ac-

commodate the computed single installment load fractions for that node, the load

shall be distributed in multiple installments. As with all the strategies proposed

in this thesis, here again the load that shall be distributed in each installment to

every processing node is computed based on the computed load fractions and the

buffer availability among all the processing nodes as given by (3.6) and (5.1).

The numerical example 6.1 illustrates the workings of the RASLD and RAPLD

strategies with the various spanning tree construction algorithms. The parameters

for this example are adapted from [30], so as to compare the results with the

resource aware optimal load distribution with optimal sequencing (RAOLD-OS)

strategy presented in [30], which is also a parallel distribution strategy.

Example 6.1:

Consider an arbitrary graph network G with nine nodes interconnected via 17

communication links, as shown in Fig. 6.3(a). Let the node processing speed

parameters be w1 = 2.0, w2 = 3.0, w3 = 1.5, w4 = 1.2, w5 = 1.5, w6 = 1.0,

w7 = 2.0, w8 = 1.0, w9 = 1.0, and the link delay parameters be as marked in the

Fig. 6.3(a). We let Tcp = Tcm = 1, and let the load L = 100 to originate at node

C9 in the given graph G.

Chapter 6 Strategies for Scheduling across Cluster Systems 118

Figure 6.3: An arbitrary graph network and spanning trees and load distribution
order on the spanning trees for Example 6.1. (Number on the links denote the link
delay parameter (zi,j) and the number near the nodes denote the processor speed
parameter (wi,j)). The load distribution order at every level on the spanning trees
illustrated shall be from left to right; that is the order in which the link speeds
(1

zi,j
) decrease. (a) An arbitrary graph network G with 9 nodes interconnected via

17 communication links; (b) Minimum spanning tree (GMST); (c) Shortest path
spanning tree (GSPT); (d) Fewest hops spanning tree (GFHT); (e) Robust spanning
tree (GRST); (f) Minimum network equivalence spanning tree (GEST); and (g) GSPT

for Resource aware sequential load distribution (RASLD).

Chapter 6 Strategies for Scheduling across Cluster Systems 119

Table 6.1: Load distribution values with Resource aware sequential load distribu-
tion (RASLD), Resource aware parallel load distribution with minimum spanning
tree (RAPLD(GMST)), shortest path spanning tree (RAPLD(GSPT)), fewest hops
spanning tree (RAPLD(GFHT)), robust spanning tree (RAPLD(GRST)), and min-
imum network equivalence spanning tree (RAPLD(GEST)), and Resource aware
optimal load distribution with optimal sequencing (RAOLD-OS) [30] strategies
for Example 6.1.

Strategy α9,1 α9,2 α9,3 α9,4 α9,5 α9,6 α9,7 α9,8 α9,9 T ∗(α∗)

RASLD 2.01 2.68 0.30 0.11 12.07 1.34 6.04 30.18 45.27 45.27

RAPLD(GMST) 1.91 4.36 1.09 0.51 8.72 3.83 8.72 28.34 42.51 42.51

RAPLD(GSPT) 1.91 4.36 1.09 0.51 8.72 3.83 8.72 28.34 42.51 42.51

RAPLD(GFHT) 2.12 0.28 1.21 0.57 9.64 4.23 9.64 28.93 43.39 43.39

RAPLD(GRST) 2.05 3.10 2.34 1.10 7.75 6.20 7.75 27.89 41.84 41.84

RAPLD(GEST) 1.84 3.56 1.05 3.85 8.08 3.69 8.08 27.94 41.91 41.91

RAOLD-OS 2.58 4.90 1.47 0.69 6.87 5.15 9.79 24.48 44.07 44.07

The spanning trees (GMST, GSPT, GFHT, GRST, GEST) generated by the MST,

SPT, FHT, RST and EST construction strategies are shown in Fig. 6.3 (b), (c),

(d), (e), and (f) respectively, and the spanning tree (GSPT) for RASLD strategy is

shown in Fig. 6.3(g). As seen from Fig. 6.3 the resultant spanning tree structures

need not necessarily be different for each of the construction strategies. In this

example, the MST and SPT generate identical spanning tree structures (GMST and

GSPT). The load distributions and the optimal processing time obtained by the

various strategies are tabulated in Table 6.1.

From the optimal processing time results in Table 6.1 it shall be noted that for this

example RAPLD(GRST) and not the RAPLD(GEST) strategy provides the mini-

Chapter 6 Strategies for Scheduling across Cluster Systems 120

30.18 x 0.5
C9

C1

C5

C4

C3

C6

C8

C2 2.68 x 3

C7

45.27

time

communication
computation

12.07 x 1

6.04 x 0.5

6.04 x 0.5

2.68 x 0.5

2.68 x 1

2.01 x 2

1.34 x 1

0.3 x 1

0.11 x 1

1.34 x 1

0.3 x 2

0.11 x 2

1.34 x 1

0.3 x 1.5

0.11 x 1.2

45.27 x 1

12.07 x 1.5

30.18 x 1

6.04 x 2

2.01 x 2

Figure 6.4: Timing diagram for the Resource aware sequential load distribution
(RASLD) strategy (Example 6.1).

Chapter 6 Strategies for Scheduling across Cluster Systems 121

28.34 x 0.5
C9

1.91 x 2
C1

3.83 x 1
C5

C4

C3

3.83 x 1
C6

8.72 x 0.5
C8

4.36 x 3
C2

8.72 x 2
C7

(8.72 + 4.36) x 0.5

4.36 x 1

8.72 x 1

(3.83 + 1.09 + 0.51) x 1

1.91 x 2

1.09 x 2

1.09 x 1.5

0.51 x 1.2

0.51 x 2

42.51

time

communication
computation

42.51 x 1

8.72 x 1.5

28.34 x 1

Figure 6.5: Timing diagram for the Resource aware parallel load distribution
(RAPLD(GSPT)) strategy (Example 6.1).

mum value. It shall be noted that the EST algorithm do not provide global optimal

tree. Though the EST algorithm takes into consideration both the processor and

link speeds for spanning tree construction, the decision to add a node-link pair to

the spanning tree is made at every step. Hence, the resultant spanning tree may

not always provide the global optimal results.

The timing diagrams for the RASLD, RAPLD(GSPT) and RAOLD-OS strategies

are presented in Fig. 6.4, 6.5 and 6.6 for comparison purposes. These timing

diagrams illustrate how and when the load fractions are to be communicated and

Chapter 6 Strategies for Scheduling across Cluster Systems 122

(24.48 + 9.79 + 4.90) x 0.5
C9

2.58 x 2
C1

5.15 x 1
C5

C4

C3

5.15 x 1
C6

9.79 x 0.5
C8

4.90 x 3
C2

9.79 x 2
C7

4.90 x 1

(6.87 + 5.15 + 1.47 + 0.69) x 1 2.58 x 2

1.47 x 2

1.47 x 1.5

0.69 x 1.2

0.69 x 2

44.07

time

communication
computation

44.07 x 1

6.87 x 1.5

24.48 x 1

Figure 6.6: Timing diagram for the Resource aware optimal load distribution with
optimal scheduling (RAOLD-OS) strategy [30] (Example 6.1).

Chapter 6 Strategies for Scheduling across Cluster Systems 123

computed by the nodes in the network. From the Fig. 6.6, it is seen that in the

RAOLD-OS distribution strategy, the intermediate parent nodes receive the loads

meant for them as well as their children, before start processing the load portions

assigned to them. But, in our RAPLD strategy (Fig. 6.5), the intermediate par-

ent nodes start processing the load portions assigned to them immediately upon

receiving it from their parents. Hence, our RAPLD strategy always obtains min-

imum optimal processing time solution for a given spanning tree when compared

with the RAOLD-OS strategy.

6.4 Performance Evaluation

In this section, we shall describe the simulation platform setup and analyze the

performance of the proposed RASLD and RAPLD strategies with the various

spanning tree construction strategies for several scenarios through extensive sim-

ulations. We also highlight and discuss all the important simulation results.

We now describe how the arbitrary graph networks and other required parameters

for our performance evaluation are generated. The graph generation procedure is

made to generate random graphs so as to reflect the real-life situations. We set the

node C0 in the network as the root node. The parameter PLink denote the degree

of connectivity, or link density. By varying the number of processing nodes and

the link density parameter PLink in our simulations, we generate various types of

networks. This allows us to generate networks having very small number of nodes

Chapter 6 Strategies for Scheduling across Cluster Systems 124

with high connectivity as well as networks having large numbers of nodes with low

or sparse connectivity, reflecting real-life scenarios.

In our study, we vary PLink from 30% to 100% in steps of 10%, and generate various

types of networks and for each type of network, we vary the number of processing

nodes from 10 (very small-size network) to 300 (large-size network). This enables

us to study the effects of network size scalability and network connectivity. It shall

be noted that in order to guarantee the generated graph is a connected graph, the

value of PLink cannot be close to zero and when the value of PLink is 100%, we

have a fully connected network where in all the nodes are connected to each other

by direct links. The speed parameters for the processing nodes and the links

are chosen based on a uniform probability distribution in the range [0.01, 3.34]

for low, and [6.67, 10.0] for high values. In all our studies, we let L = 108,

Tcm = Tcp = 1.0, and vary the number of nodes in the network, processor and link

speeds and PLink values and analyze the performance. The simulation parameters

and their respective ranges are given in Table 6.2.

6.4.1 Metrics of Interest

The metrics that are of significance to our study are the optimal processing time

(T ∗(α∗)) and the network eccentricity, which we define as the distance from the

root node to the farthest leaf node in the spanning tree. In addition to the optimal

processing time, we consider network eccentricity in our study, since it provides an

Chapter 6 Strategies for Scheduling across Cluster Systems 125

Table 6.2: Simulation parameters and their range of values.

Parameter Range of values

Number of nodes (N) 10, 100, 200, and 300

Link Density (PLink) 30%− 100%

Processing speed (Low \ High) (0.01− 3.34) \ (6.67− 10.0)

Link speed (Low \ High) (0.01− 3.34) \ (6.67− 10.0)

Communication Intensity Constant (Tcm) 1

Computing Intensity Constant (Tcp) 1

Load Size (L) 108

indication on how far the nodes are from the root node in a spanning tree. This

metric also gives a measure of robustness of the network, since, farther the nodes

are from the root node, more pronounced will be the effect of network disruptions

on the performance because of data loss [59].

To compare the optimal processing time of various strategies we define a metric,

normalized optimal processing time (δ) as

δ =
T ∗(α∗)RAPLD

T ∗(α∗)RASLD

(6.3)

where T ∗(α∗)RAPLD and T ∗(α∗)RASLD are the optimal processing time for RAPLD

and RASLD strategies respectively.

Chapter 6 Strategies for Scheduling across Cluster Systems 126

We also define network eccentricity (ε) as

ε = Max(Number of hops from root node) ∀ nodes ∈ GTree (6.4)

which is the distance in number of hops from the root node to the farthest leaf

node in the spanning tree.

The network eccentricity (ε) results are plotted in the Fig. 6.7. In Fig. 6.7,

we denote the ε results for minimum spanning tree, shortest path spanning tree,

fewest hops spanning tree, robust spanning tree and minimum network equivalence

spanning tree as MST, SPT, FHT, RST, and EST respectively. Since the EST

construction depends on both processor and link speeds, its ε value vary when

the network has high and low processing speed nodes. Hence, they are plotted

separately as EST(H) and EST(L) respectively.

The optimal processing time (T ∗(α∗)) results are plotted in Fig. 6.8 and 6.9

and normalized optimal processing time (δ) results are plotted in Fig. 6.10 and

6.11 for low and high link speed values respectively. In Fig. 6.8, 6.9, 6.10, and

6.11, we denote the results for RAPLD strategy with minimum spanning tree

(RAPLD(GMST)), shortest path spanning tree (RAPLD(GSPT)), fewest hops span-

ning tree (RAPLD(GFHT)), robust spanning tree (RAPLD(GRST)), and minimum

network equivalence spanning tree (RAPLD(GEST)) as MST, SPT, FHT, RST,

and EST respectively and that of RASLD strategy (with SPT) as RASLD.

Chapter 6 Strategies for Scheduling across Cluster Systems 127

Low Speed Links - 10 Nodes

0

5

10

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT
FHT RST
EST(H) EST(L)

High Speed Links - 10 Nodes

0

5

10

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT
FHT RST
EST(H) EST(L)

Low Speed Links - 100 Nodes

0

5

10

15

20

25

30

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT FHT
RST EST(H) EST(L)

High Speed Links - 100 Nodes

0

5

10

15

20

25

30

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT FHT
RST EST(H) EST(L)

Low Speed Links - 200 Nodes

0

5

10

15

20

25

30

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT FHT
RST EST(H) EST(L)

High Speed Links - 200 Nodes

0

5

10

15

20

25

30

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT FHT
RST EST(H) EST(L)

Low Speed Links - 300 Nodes

0

10

20

30

40

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT
FHT RST
EST(H) EST(L)

High Speed Links - 300 Nodes

0

10

20

30

40

30% 50% 70% 90%
Link Density (P Link)

εεεε

MST SPT
FHT RST
EST(H) EST(L)

Figure 6.7: Network eccentricity (ε) results for minimum spanning tree (MST),
shortest path spanning tree (SPT), fewest hops spanning tree (FHT), robust span-
ning tree (RST), and minimum network equivalence spanning tree (EST) construc-
tion strategies for 10, 100, 200, and 300 nodes in a network with low and high speed
links.
Note : Since, the ε value for EST vary when the network has high and low process-
ing speed nodes, they are plotted separately as EST(H) and EST(L) respectively.

Chapter 6 Strategies for Scheduling across Cluster Systems 128

10 Low Speed Nodes

350

400

450

500

30% 50% 70% 90%
Link Density (P Link)

 T
*

(αα αα
*)

 [
x

10
6 s

]
RASLD MST
SPT FHT
RST EST

10 High Speed Nodes

51

52

53

54

30% 50% 70% 90%
Link Density (P Link)

 T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

100 Low Speed Nodes

340

360

380

400

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

100 High Speed Nodes

51

52

53

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

200 Low Speed Nodes

340

360

380

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

] RASLD MST
SPT FHT
RST EST

200 High Speed Nodes

51

52

53

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

300 Low Speed Nodes

340

360

380

400

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

] RASLD
MST
SPT
FHT

300 High Speed Nodes

51

52

53

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

Figure 6.8: Optimal processing time (T ∗(α∗)) results for Resource aware sequen-
tial load distribution (RASLD) and Resource aware parallel load distribution
(RAPLD) with minimum spanning tree (MST), shortest path spanning tree (SPT),
fewest hops spanning tree (FHT), robust spanning tree (RST), and minimum net-
work equivalence spanning tree (EST) construction strategies for 10, 100, 200, and
300 nodes with low and high processing speeds in a network with low speed links.

Chapter 6 Strategies for Scheduling across Cluster Systems 129

10 Low Speed Nodes

90

110

130

150

170

190

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]
RASLD MST
SPT FHT
RST EST

10 High Speed Nodes

20

25

30

35

40

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

100 Low Speed Nodes

10

20

30

40

50

60

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

100 High Speed Nodes

4

9

14

19

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

200 Low Speed Nodes

5

15

25

35

45

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

200 High Speed Nodes

2

6

10

14

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

300 Low Speed Nodes

4

14

24

34

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

300 High Speed Nodes

2

4

6

8

10

12

30% 50% 70% 90%
Link Density (P Link)

T
*

(αα αα
*

)
[x

 1
06 s

]

RASLD MST
SPT FHT
RST EST

Figure 6.9: Optimal processing time (T ∗(α∗)) results for Resource aware sequen-
tial load distribution (RASLD) and Resource aware parallel load distribution with
minimum spanning tree (MST), shortest path spanning tree (SPT), fewest hops
spanning tree (FHT), robust spanning tree (RST), and minimum network equiv-
alence spanning tree (EST) construction strategies for 10, 100, 200, and 300 nodes
with low and high processing speeds in a network with high speed links.

Chapter 6 Strategies for Scheduling across Cluster Systems 130

10 Low Speed Nodes

0.95

1.00

1.05

1.10

1.15

1.20

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

10 High Speed Nodes

0.997

1.002

1.007

1.012

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

100 Low Speed Nodes

0.98

1.03

1.08

1.13

1.18

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

100 High Speed Nodes

0.999

1.004

1.009

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

200 Low Speed Nodes

0.99

1.04

1.09

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

200 High Speed Nodes

0.999

1.000

1.001

1.002

1.003

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

300 Low Speed Nodes

0.99

1.04

1.09

1.14

1.19

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

300 High Speed Nodes

0.999

1.004

1.009

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

Figure 6.10: Normalized optimal processing time (δ) results for Resource aware se-
quential load distribution (RASLD) and Resource aware parallel load distribution
with minimum spanning tree (MST), shortest path spanning tree (SPT), fewest
hops spanning tree (FHT), robust spanning tree (RST), and minimum network
equivalence spanning tree (EST) construction strategies for 10, 100, 200, and 300
nodes with low and high processing speeds in a network with low speed links.

Chapter 6 Strategies for Scheduling across Cluster Systems 131

10 Low Speed Nodes

0.9

1.0

1.1

1.2

1.3

30% 50% 70% 90%
Link Denslity (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

10 High Speed Nodes

0.9

1.0

1.1

1.2

1.3

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

100 Low Speed Nodes

0.5

1.0

1.5

2.0

2.5

3.0

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

100 High Speed Nodes

0.5

1.0

1.5

2.0

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

200 Low Speed Nodes

0.3

0.8

1.3

1.8

2.3

2.8

3.3

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

200 High Speed Nodes

0.3

0.8

1.3

1.8

2.3

2.8

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

300 Low Speed Nodes

0.3

0.8

1.3

1.8

2.3

2.8

3.3

3.8

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

300 High Speed Nodes

0.3

0.8

1.3

1.8

2.3

30% 50% 70% 90%
Link Density (P Link)

δδδδ

RASLD MST
SPT FHT
RST EST

Figure 6.11: Normalized optimal processing time (δ) results for Resource aware se-
quential load distribution (RASLD) and Resource aware parallel load distribution
with minimum spanning tree (MST), shortest path spanning tree (SPT), fewest
hops spanning tree (FHT), robust spanning tree (RST), and minimum network
equivalence spanning tree (EST) construction strategies for 10, 100, 200, and 300
nodes with low and high processing speeds in a network with high speed links.

Chapter 6 Strategies for Scheduling across Cluster Systems 132

6.4.2 Effect of Network Scalability

We first study the effect of network scalability by comparing the performance of

our proposed strategies for various processing node configurations for a given link

density value. When the number of nodes in a network is increased while keeping

the link density value constant, the number of links in the network proportionately

increases with the number of nodes. Hence, it does not result in the increase of

alternative routes available for the spanning tree algorithms.

From the Fig. 6.7, it is observed that the MST provides the upper bound and FHT

provides the lower bound for the ε values and their values remain identical in both

low and high link speed networks. For MST, the ε increases as the number of nodes

in the network increases, whereas it almost remains unchanged in the case FHT.

Both in the low and high link speed networks, the ε values for SPT, FHT, RST,

and EST remain almost identical as the number of nodes in the network increases

beyond 100, however the ε values for SPT and EST are generally higher for high

link speed networks when compared with those for low link speed networks.

From the simulation results in Fig. 6.8 and 6.9, it is observed that the optimal

processing time values decrease when the processing speed of node or the number

of processing nodes in a network increases. It is also observed that the reduction

in the processing time is not significant beyond a certain network size in terms

of number of processing nodes for all strategies except RAPLD(GMST). For ex-

ample, in low link speed networks when the network size increases beyond 100

Chapter 6 Strategies for Scheduling across Cluster Systems 133

nodes and in high link speed networks when it increases beyond 200 nodes, no

significant reduction in the processing time is observed for all strategies except

RAPLD(GMST). In low link speed networks, RAPLD(GMST) and RAPLD(GEST)

are observed to produce upper and lower bounds respectively for the optimal pro-

cessing time value, where as in the high link speed networks (except for the very

sparse network with just 10 nodes) RAPLD(GFHT) and RAPLD(GEST) are ob-

served to produce the upper and lower bounds. From the Fig. 6.10, it is observed

that in the case of low link speed networks, beyond 100 nodes, the performance of

all strategies except RAPLD(GMST) are almost identical. From the Fig. 6.11, it

is observed that beyond 10 nodes, RAPLD(GSPT) and RAPLD(GEST) strategies

provide superior performance than all other strategies.

6.4.3 Effect of Network Connectivity

In order to analyze the effect of network connectivity, we compare the performance

of the proposed distribution strategies by varying the link density value for a given

number of processing nodes. When the link density value (PLink) is increased for

a given network, there are more links between processing nodes and hence there

are more options available for the spanning tree algorithms.

From the Fig. 6.7, it is observed that the eccentricity values for SPT, RST, EST,

and FHT tend to decrease slightly, and those for MST vary significantly as the

PLink increases in both low and high link speed networks.

Chapter 6 Strategies for Scheduling across Cluster Systems 134

Our simulations (Fig. 6.8, 6.9, 6.10, and 6.11) show that in low link speed networks

with more than 100 nodes and in high speed networks with more than 200 nodes,

irrespective of the processing speed of the nodes, there are only minor variations

in the processing time value for RAPLD(GSPT) and RAPLD(GEST) construction

strategies as PLink increases. Also, the processing time values in the low link speed

networks for all strategies except RAPLD(GMST) are almost identical beyond 100

nodes. It is also observed that the optimal processing time value for RAPLD(GRST)

strategy is closer to those for RAPLD(GSPT) strategy for low PLink values and tends

to move closer to the values for RAPLD(GFHT) strategy as PLink increases.

6.5 Complexity and Performance Comparison

Given an arbitrary graph G = 〈N, E〉, using Fibonacci heap, an MST and SPT

could be constructed in O(E +NlogN) steps. The complexity of BFS to construct

FHT is O(|E| + |N |). The complexity of constructing RST is O(E2). Assuming

that there are m processing nodes in every sub-tree and that there are R sub-

trees in every level, with a total number of Q levels in the entire tree network,

the complexity to compute an equivalent processor speed value for the sub-tree

and determining an optimal distribution is given by O(RQ + RQlog(m)). Hence,

the construction of EST takes about O(NERQ + NERQlog(m)) steps. Since,

m ≤ N , R ≤ N , Q ≤ N , N ≤ NlogN , and RQ ≤ RQlog(m), the total complexity

of RAPLD(GMST), RAPLD(GSPT), and RAPLD(GFHT) shall be approximated as

Chapter 6 Strategies for Scheduling across Cluster Systems 135

Table 6.3: Comparison of complexity and performance of Resource aware se-
quential load distribution (RASLD) and Resource aware parallel load distri-
bution with minimum spanning tree (RAPLD(GMST)), shortest path spanning
tree (RAPLD(GSPT)), fewest hops spanning tree (RAPLD(GFHT)), robust span-
ning tree (RAPLD(GRST)), and minimum network equivalence spanning tree
(RAPLD(GEST)) strategies for divisible load scheduling.

Strategy Complexity

Performance

Optimal processing time (T ∗(α∗))
Eccentricity (ε)

Low speed links High speed links

RASLD O(NlogN) Low Medium Medium

RAPLD(GMST) O(N2logN) Highest Medium Highest

RAPLD(GSPT) O(N2logN) Low Lowest Medium

RAPLD(GFHT) O(N2logN) Low Highest Lowest

RAPLD(GRST) O(E2 + N2logN) Low Medium Low

RAPLD(GEST) O(E ·N3logN) Low Lowest Medium

O(N2logN). Similarly, the total complexity of RAPLD(GRST) and RAPLD(GEST)

shall be approximated as O(E2 + N2logN) and O(E · N3logN) respectively. For

RASLD strategy, the SPT construction provides the necessary information for

computing the optimal distribution. Hence, its complexity shall be approximated

as O(NlogN).

The complexity and optimal processing time performance comparisons are sum-

marized in the Table 6.3. In general, it is seen that RAPLD(GEST) provides the

lowest processing time among all the strategies. However its complexity increases

with number of nodes as well as number of links in a network. On the other hand,

RAPLD(GSPT) provides comparable performance while having far less complexity.

Chapter 6 Strategies for Scheduling across Cluster Systems 136

The time performance of RAPLD(GRST) lies between that of RAPLD(GSPT) and

RAPLD(GFHT) strategies, and it provides robustness when there are link failures.

RAPLD(GMST) seems to be the last option for divisible load scheduling in both

low and high link speed networks. It is also seen that the eccentricity of FHT is

the lowest and RST is comparable to that of FHT. The eccentricity of SPT and

EST are slightly higher than FHT but much lower than that of MST.

In the case of low link speed networks, the optimal processing time performance of

RASLD and RAPLD with all the spanning tree construction strategies are similar.

Hence, the simpler RASLD is a better strategy for divisible load scheduling in low

link speed networks.

In the case of high link speed networks, RAPLD(GEST) and RAPLD(GSPT) strate-

gies seem to provide a better performance in terms of optimal processing time; and

their trees are neither as “skinny” as MST nor as “fat” as FHT or RST. Hence,

RAPLD(GSPT) strategy is a better strategy for divisible load scheduling in high

link speed networks.

However, the performance degradation of RAPLD(GRST) is minimal for large net-

work sizes as long as the link densities are moderate. Hence, if robustness against

link failure is desired, then RAPLD(GRST) strategy shall be considered in both

low and high link speed networks.

137

Chapter 7

Conclusions and Future Work

In this chapter, we conclude comparing the performances of the load distribution

strategies described in the earlier chapters in this thesis and provide some thoughts

on further extensions.

The computational and data analysis capabilities offered by technologies are be-

ing extensively utilized for solving complex scientific problems. The expanding

collaborations, data analysis requirements and increasing computational and net-

working capabilities led to the evolvement of Grid computing paradigm. Grid is

always viewed as a repository of resources that can be availed by careful scheduling.

Computational Grid systems (CGS) comprising of clusters of computers intercon-

nected by high speed links are well suited for processing the unprecedented large

volume divisible loads (data) that are being generated in various scientific do-

mains like those in high energy nuclear physics experiments, bio-informatics etc.

Chapter 7 Conclusions and Future Work 138

Over the years, the divisible load theory (DLT) paradigm has been proven to be a

very useful tool for handling large volume divisible loads in networked computing

environments.

The contributions in this thesis has focused primarily on designing and analyzing

polynomial-time complex scheduling strategies using the DLT paradigm for han-

dling large volume divisible loads both within as well as across clusters in CGS.

The work presented here is a first of its kind to consider real-time arrivals of di-

visible loads with firm deadlines and finite buffer constraints in a heterogeneous

Grid environment.

7.1 Scheduling within Cluster Systems

We have proposed dynamic scheduling strategies for load distribution within clus-

ters, utilizing the IBS algorithm proposed in the literature for off-line scheduling.

Since our primary focus is to design strategies for scheduling loads, implicit to

this problem are some real-life constraints such as availability of the nodes for

processing, the amount of resources they can render, speeds with which the nodes

and links can respond etc. Also, as in the case of any networked system, here too,

we can follow a “pull-based” (processing nodes demand loads from the sources) or

“push-based” (sources seek processing nodes and schedule the load for processing)

approaches. In our strategies, we considered a pull-based strategy. We consid-

ered a real-life situation where in the sinks (processing nodes) have finite sized

Chapter 7 Conclusions and Future Work 139

buffer and hence it has to be shared in an optimal manner among the competing

sources. Also, we assumed that every sink attempts to request loads from all the

participating sources for processing.

Since the loads are submitted to the system at random times, the amount of

buffer that a sink may render to each source also varies over time. The basis for

the latter part of the above statement lies in the fact that the amount of buffer

that can be rendered to the sources depends on the total load at that time. Thus,

while designing algorithms for such dynamic situations, we considered tuning the

IBS algorithm to handle random arrivals of the sources. Further, when the arrival

rate is very high, the system may not be able to respond and hence may decide

to drop some of the loads. While this is true with any practical system, the

performance can be enhanced significantly by allowing buffer reclamation. This

means that when the sinks allow certain amount of their buffer to be reclaimed

by the scheduler, the number of loads that can be accommodated can be vastly

improved.

We have also proposed distributed scheduling strategies for processing several time

critical divisible loads (loads with deadline requirements). As in real-life situations,

we have considered the dynamic arrival of loads, buffer capacity constraints at the

sink nodes and the deadline requirement of the loads to be processed. We have

proposed three schemes of RADIS and have rigorously analyzed and evaluated

their performance. In our simulations for all the schemes, the number of sinks

that participate in processing in an iteration are allowed to vary which is reflective

Chapter 7 Conclusions and Future Work 140

of real life situations. The impact of load sizes, load deadlines and buffer size

variations are also captured in our simulation study.

In the RADIS schemes, the coordinator node performs the admissibility test, de-

termines the loads to be processed and the sinks that participate in an iteration,

computes the scheduling parameters required for the sink nodes for determining

the schedule and communicates them to the sink nodes. The sink nodes perform

the buffer estimation, estimate the amount of load fractions to be processed based

on the scheduling parameters received from the coordinator node, determine the

amount of load fractions to be requested from the source nodes based on the ac-

tual buffer availability at the start of an iteration and communicates the difference

between the estimated and the actual amount of load processed in an iteration

to the coordinator node. The sink nodes also request and process the amount

of load fractions thus determined. In our schemes, the scheduling is done in a

distributed manner (the load fractions are computed at the sink nodes) and only

(4 + r) variables (where r is the number of sources that are scheduled in an itera-

tion) are communicated from the coordinator node to the sink nodes. Hence, the

effectiveness of our schemes is more pronounced in larger systems. The proposed

strategies are summarized in the Table 7.1. These strategies are well suited for

scheduling within a cluster node in CGS.

Chapter 7 Conclusions and Future Work 141

Table 7.1: Summary of proposed scheduling strategies.

System Assumptions Algorithm

Scheduling within clusters:

Nodes are geographically
co-located within an organization
and there are high speed links
between them.

There are dedicated buffers for
processing divisible loads from
other nodes in the network.

All nodes have front ends.

Communication delay between
nodes are negligible.

Multi-port communication
model.

Dynamic arrival of loads.

All sink nodes allow buffer
reclamation.

Divisible loads do not have
deadline requirements:

Dynamic IBS algorithm for
time-invariant buffer
environments.

Divisible loads have deadline
requirements:

RADIS algorithm with
Non-interleaved or EDF or
Progressive scheduler for
time-invariant buffer environments
based on load arrival rates and
deadline requirements of the loads.

Scheduling within clusters:

Nodes are geographically
co-located within an organization
and there are high speed links
between them.

There are local tasks to be
processed at the respective nodes
in addition to processing the
divisible loads from other nodes in
the network.

The buffer available at the nodes
needs to be shared by the local
tasks and the divisible loads from
other nodes in the network.

The time at which the local tasks
arrive and their memory
requirements are known a priori.

All nodes have front ends.

Communication delay between
nodes are negligible.

Multi-port communication
model.

Dynamic arrival of loads.

All sink nodes allow buffer
reclamation.

Divisible loads do not have
deadline requirements:

Dynamic IBS algorithm for
predictable time-varying buffer
environments.

Divisible loads have deadline
requirements:

RADIS algorithm with
Non-interleaved or EDF or
Progressive scheduler for
predictable time-varying buffer
environments based on load arrival
rates and deadline requirements of
the loads.

Continued on Next Page. . .

Chapter 7 Conclusions and Future Work 142

Table 7.1: Summary of proposed scheduling strategies. – Continued

System Assumptions Algorithm

Scheduling within clusters:

Nodes are geographically
co-located within an organization
and there are high speed links
between them.

There are local tasks to be
processed at the respective nodes
in addition to processing the
divisible loads from other nodes in
the network.

The buffer available at the nodes
needs to be shared by the local
tasks and the divisible loads from
other nodes in the network.

The time at which the local tasks
arrive and their memory
requirements are not known.

All nodes have front ends.

Communication delay between
nodes are negligible.

Multi-port communication
model.

Dynamic arrival of loads.

All sink nodes allow buffer
reclamation.

Divisible loads do not have
deadline requirements:

Adaptive IBS algorithm.

Divisible loads have deadline
requirements:

RADIS algorithm with
Non-interleaved or EDF or
Progressive scheduler for
time-varying buffer environments
based on load arrival rates and
deadline requirements of the loads.

Scheduling across clusters:

Clusters are geographically
distributed across organizations.

There are local tasks to be
processed at clusters in addition to
processing the divisible loads from
other clusters.

The buffer available at the clusters
needs to be shared by the local
tasks and the divisible loads from
other clusters.

Divisible loads do not have
deadline requirements.

All nodes have front ends.

Communication delay between
clusters are not negligible.

Uni-port communication model.

Dynamic arrival of loads.

At each cluster, there will be
sufficient buffer space available
to buffer/store the load portion
allocated to it.

Resource aware sequential load
distribution strategy (for networks
with low link speeds).

Resource aware parallel load
distribution strategy with shortest
path routing (RAPLD(GSPT))
(for networks with high link
speeds).

Resource aware parallel load
distribution strategy with robust
spanning tree routing
(RAPLD(GRST)) (for large
networks with both low and high
speed links and moderate link
densitites).

In summary, we infer and observe the following based on our work presented in

this thesis.

• The DLT paradigm has been proven to be a valid tool for handling large

scale computational loads on Cluster/Grid systems.

Chapter 7 Conclusions and Future Work 143

• Though our algorithms for scheduling are shown to provide best effort sched-

ules, the under-estimation of buffer availability at the processing nodes shall

enable all our schemes not to miss the deadlines for the accepted loads.

• All the proposed scheduling strategies are scalable, relevant in real-life situ-

ations and are shown to be useful under different scenarios.

• Although we have proposed a scheme for buffer estimation at sink nodes, it

may be noted that the design of buffer estimation strategy is a topic in itself

and other strategies such as the use of a fading memory could also be used

with proposed strategies.

• For scheduling across clusters, there are lots of possible distribution strate-

gies. The choice of the strategy depends on the adopted network communi-

cation model and speed of the links and processing nodes.

7.2 Scheduling across Cluster Systems

We have investigated the performance of sequential as well as parallel load distri-

bution strategies in arbitrary network systems with communication delays between

processing nodes (clusters). For the arbitrary graph network, a multi-level tree is

constructed using spanning tree construction algorithms. Then, the multi-level

tree is reduced to a single-level tree based on either the total communication delay

along the path from the source node to the individual sink nodes (in the case of se-

quential distribution strategy) or recursively calculated equivalent processor speed

Chapter 7 Conclusions and Future Work 144

values (in the case of parallel distribution strategy). The optimal sequencing theo-

rem proposed in the literature for single-level tree is then applied to derive solution

for each of the strategies. Since, the shortest path spanning tree provides the least

delay path between the root and the processing nodes, with optimal sequencing it

provides an optimal performance for sequential distribution.

The strategies proposed are well suited for dynamic scenarios, where in there are

dynamic load arrivals, finite buffer capacity constraints at the processing nodes,

some of the nodes may or may not participate in processing of loads (based on

their buffer availability), and some of the nodes may or may not communicate

the loads to their children. Our proposed strategies considered load from one

source at a time, so that admissibility testing could be performed for time critical

loads. Our strategies assume that the nodes participating in computation for an

accepted load, shall not leave the system until the processing is completed for the

load portions assigned to it as well as the sub-tree for which it is the parent, else

the guarantees given to the loads while admitting may not be fulfilled.

The performance of all the proposed strategies have been evaluated for wide range

of arbitrary graphs with varying connectivity and node densities. Our simula-

tions study shows that the simpler RASLD strategy shall be employed in case of

systems with low speed links irrespective of the processing speed of the nodes.

In the case of systems with high speed links, the RAPLD strategy is seen to

provide better time performance. In such systems, the RAPLD(GSPT) strategy

provides a better trade-off between time complexity and performance while the

Chapter 7 Conclusions and Future Work 145

RAPLD(GRST) strategy renders better trade-off between performance and robust-

ness. RAPLD(GEST) strategy, on the other hand, is seen to deliver the best per-

formance, however with large time complexities. The proposed strategies are sum-

marized in the Table 7.1.

7.3 Future Work

In the schemes presented for scheduling time critical loads, admissibility testing

is being performed by the coordinator node. Hence, there is a chance for single

point failure. However, one could implement a distributed approach using leader

election like algorithms [54] to make it more fault tolerant.

We have considered uni-port communication model and the link delays alone while

proposing strategies for scheduling across clusters. However, in Grid systems with

high speed links and nodes with multi-core processors, concurrent communication

in different links is certainly a viable model for handling large scale computa-

tional loads such as the one addressed in this thesis. Hence, strategies adopting

concurrent communications in different links, and absorbing link and processor

availability factors into the cost function for overall processing time minimization

shall be explored.

Also, we have presented solutions that consider load from one source at a time.

However, since, our strategies reduce the multi-level tree to a single-level tree, the

schemes proposed in the literature for concurrently scheduling loads from multiple

Chapter 7 Conclusions and Future Work 146

sources on single-level tree networks, like those presented by Moges et al [64] or

Xiaolin et al [65] could be considered and extended for handling time critical loads

and other real life scenarios like buffer capacity variations at the processing nodes.

In some of the computational Grids, the number of interconnected clusters and also

the total number of nodes in the system could be less, in which case, instead of

multi-level hierarchical strategies, an all-to-all strategy could be designed consid-

ering both the communication delays between nodes and buffer capacity variations

at the nodes to handle time critical loads.

In this thesis, efficient strategies have been designed and their performance have

been analyzed with simulation studies. However, while applying these strategies

onto a real Grid system, several other factors such as monetary cost charged for

the utilization of the resources, storage requirements etc shall also be considered.

Scheduling approaches with emphasis on fault tolerance considering random node

and link failures in a Grid system is also a green field for future research activities.

147

Bibliography

[1] Foster, I., “The Grid: A New Infrastructure for 21st Century Science,” Physics

Today , vol. 55, no. 2, pp. 42-47, Feb 2002.

[2] Foster, I., and Kesselman, C., “The Grid: Blueprint for a New Computing

Infrastructure,” Morgan Kaufman, 1999.

[3] Foster, I., Kesselman, C., and Tuecke, S., “The Anatomy of the Grid: En-

abling Scalable Virtual Organizations,” Int’l Journal of Supercomputer Ap-

plications , vol. 15, no. 3, pp. 200-222, 2001.

[4] Johnston, W., Gannon, D., and Nitzberg, B., “Grids as production computing

environments: The engineering aspects of NASAs information power grid,”

8th IEEE Int’l Symposium on High Performance Distributed Computing , pp.

197-204, Aug 1999.

[5] “NSF Tera-Grid,” http://www.teraGrid.org/.

[6] Vieira, G.E., Hermann, J.W., and Lin, E., “Rescheduling manufacturing sys-

tems: a framework of strategies, policies and methods,” Journal of Scheduling ,

BIBLIOGRAPHY 148

vol. 6, no. 1, pp. 36-92, Jan 2003.

[7] Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., and Stockinger,

K., “Data management in an international data Grid project,” 1st IEEE/ACM

Int’l Workshop on Grid Computing (Grid2000), pp. 77-90, Dec 2000.

[8] “W3C: World Wide Web Consortium,” http://www.w3.org/.

[9] Baker, M., Buyya, R., and Laforenza, D., “Grids and Grid technologies for

wide-area distributed computing,” Software - Practice and Experience, vol.

32, no. 15, pp. 1437-1466, Dec 2002.

[10] Ming, W., and Xian-He, S., “Memory Conscious Task Partition and

Scheduling in Grid Environments,” Proc. of 5th IEEE/ACM Int’l Workshop

on Grid Computing , pp. 138-145, Nov 2004.

[11] Korkhov, V.V., Moscicki, J.T., and Krzhizhanovskaya, V.V., “Dynamic work-

load balancing of parallel applications with user-level scheduling on the Grid,”

to appear in Future Generation Computer Systems , Elsevier B.V., 2008.

[12] Kim, S., and Weissman, J.B., “A Genetic Algorithm Based Approach for

Scheduling Decomposable Data Grid Applications,” Int’l Conf. on Parallel

Processing (ICPP) 2004 , vol. 1, pp. 406-413, Aug 2004.

[13] Ruchir, S., Bhardwaj, V., and Misra, M., “On the Design of Adaptive and

Decentralized Load Balancing Algorithms with Load Estimation for Computa-

tional Grid Environments,” IEEE Trans. on Parallel and Distributed Systems ,

vol. 18, no. 12, pp. 1675-1686, Dec 2007.

BIBLIOGRAPHY 149

[14] Foster, I., “Globus Toolkit Version 4: Software for Service-Oriented Systems,”

Journal of Computer Science and Technology , vol. 21, no. 4, pp. 513-520, Jul

2006.

[15] “The Dutch Distributed Advanced School for Computing and Imaging (ASCI)

Supercomputer 2 (DAS-2),” http://www.cs.vu.nl/das2/.

[16] Veeravalli, B., Ghose, D., Mani, V., and Robertazzi, T.G., “Scheduling Di-

visible Loads in Parallel and Distributed Systems,” IEEE Computer Society

Press , Sep 1996.

[17] Cheng, Y.C., and Robertazzi, T.G., “Distributed Computation for a Tree Net-

work with Communication Delays,” IEEE Trans. on Aerospace and Electronic

Systems , vol. 26, no. 3, pp. 511-516, May 1990.

[18] Blazewicz, J., and Drozdowski, M., “Scheduling Divisible Jobs on Hyper-

cubes,” Parallel Computing , vol. 21, pp. 1945-1956, 1995.

[19] Kim, H.J., Jee, G.I., and Lee, J.G., “Optimal Load Distribution for Tree

Network Processors,” IEEE Trans. on Aerospace and Electronic Systems , vol.

32, no. 2, pp. 607-612, Apr 1996.

[20] Drozdowski, M., and Glazek, W., “Scheduling Divisible Loads in a Three-

Dimensional Mesh of Processors,” Parallel Computing , vol. 25, no. 4, pp.

381-404, Apr 1999.

BIBLIOGRAPHY 150

[21] Veeravalli, B., Ghose, D., and Mani, V., “Multi-installment Load Distribu-

tion in Tree Networks with Delays,” IEEE Trans. on Aerospace & Electronic

Systems , vol. 31, no. 2, pp. 555-567, Apr 1995.

[22] Kim, H.J., “A Novel Optimal Load Distribution Algorithm for Divisible

Loads,” Special issue of Cluster Computing on Divisible Load Scheduling , vol.

6, no. 1, pp. 41-46, Jan 2003.

[23] Juim, T.H., Kim, H.J., and Robertazzi, T.G., “Scalable scheduling in parallel

processors,” Proc. of Conf. on Information Sciences and Systems , Mar 2002.

[24] Robertazzi, T.G., “Ten Reasons to Use Divisible Load Theory,” Computer ,

vol. 36, no. 5, pp. 63-68, May 2003.

[25] Veeravalli, B., Ghose, D., and Robertazzi, T.G., “Divisible Load Theory: A

New Paradigm for Load Scheduling in Distributed Systems,” Special issue of

Cluster Computing on Divisible Load Scheduling , vol. 6, no. 1, pp. 7-18, Jan

2003.

[26] Agrawal, R., and Jagadish, H.V., “Partitioning Techniques for Large-Grained

Parallelism,” IEEE Trans. On Computers , vol. 37, no. 12, pp. 1627-1634, Dec

1988.

[27] Cheng, Y.C., and Robertazzi, T.G., “Distributed Computation with Commu-

nication Delays,” IEEE Trans. on Aerospace and Electronic Systems , vol. 24,

no. 6, pp. 700-712, Nov 1988.

BIBLIOGRAPHY 151

[28] Haddad, E., “Real-time optimization of distributed load balancing,” Proc. of

the 2nd Workshop on Parallel and Distributed Real-Time Systems , pp. 52-57,

Apr 1994.

[29] Marchal, L., Yang, Y., Casanova, H., and Robert, Y., “A Realistic Net-

work/Application Model for Scheduling Divisible Loads on Large-Scale Plat-

forms,” Int’l Parallel and Distributed Processing Symposium (IPDPS) 2005 ,

pp. 48b-48b, Apr 2005.

[30] Yao, J., and Veeravalli, B., “Design and Performance Analysis of Divisible

Load Scheduling Strategies on Arbitrary Graphs,” Cluster Computing , vol. 7,

no. 2, pp. 841-865, 2004.

[31] Lin, X., Lu, Y., Deogun, J., and Godard, S., “Real-Time Divisible Load

Scheduing for Cluster Computing,” 13th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS’07), pp. 303-314, Apr 2007.

[32] Ghose, D., Kim, H.J., and Kim, T.H., “Adaptive Divisible Load Scheduling

Strategies for Workstation Clusters with Unknown Network Resources,” IEEE

Trans. on Parallel and Distributed Systems , vol. 16, no. 10, pp. 897-907, Oct

2005.

[33] Sohn, J., and Robertazzi, T.G., “An Optimal Load Sharing Strategy for Di-

visible Jobs with Time-varying Processor Speeds,” IEEE Trans. on Aerospace

and Electronic Systems , vol. 34, no.3, pp. 907923, Jul 1998.

BIBLIOGRAPHY 152

[34] Li, X., Veeravalli, B., and Ko, C.C., “Divisible Load Scheduling on Single

Level Tree Networks with Buffer Constraints,” IEEE Trans. on Aerospace

and Electronic Systems , vol. 36, no. 4, pp. 1298-1308, Oct 2000.

[35] Veeravalli, B., and Barlas, G., “Scheduling Divisible Loads with Processor

Release Times and Finite Size Buffer Capacity Constraints,” Special issue of

Cluster Computing on Divisible Load Scheduling , vol. 6, no. 1, pp. 63-74, Jan

2003.

[36] Ghose, D., “A Feedback Strategy for Load Allocation in Workstation Clus-

ters with Unknown Network Resource Capabilities using the DLT Paradigm,”

Proc. of the Int’l Conf. on Parallel and Distributed Processing Techniques and

Applications (PDPTA’02), vol. 1, pp. 425-428, Jun 2002.

[37] Rosenberg, A.L., “Sharing Partitionable Workload in Heterogeneous NOWs:

Greedier is Not Better,” Proc. of IEEE Int’l Conf. on Cluster Computing , pp.

124-131, 2001.

[38] Sohn, J., Robertazzi, T.G., and Luryi, S., “Optimizing Computing Costs using

Divisible Load Analysis,” IEEE Trans. on Parallel and Distributed Systems ,

vol. 9, no. 3, pp. 225-234, Mar 1998.

[39] Beaumont, O., Casanova, H., Legrand, A., Robert, Y., and Yang, Y.,

“Scheduling divisible loads on star and tree networks: results and open prob-

lems,” IEEE Trans. on Parallel and Distributed Systems , vol. 16, no. 3, pp.

207-218, Mar 2005.

BIBLIOGRAPHY 153

[40] Ghose, D., and Kim, H.J., “Computing BLAS level-2 operations on worksta-

tion clusters using the divisible load paradigm,” Mathematical and Computer

Modelling , vol. 41, no. 1, pp. 49-70, Jan 2005.

[41] Chan, S.K., Veeravalli, B., and Ghose, D., “Large Matrix-vector Products

on Distributed Bus Networks with Communication Delays using the Divisible

Load Paradigm: Performance Analysis and Simulation,” Mathematics and

Computers in Simulation, vol. 58, pp. 71-79, 2001.

[42] Blazewicz, J., Drozdowski, M., and Markiewicz, M., “Divisible Task

Scheduling - Concept and Verification,” Parallel Computing , vol. 25, no. 1,

pp. 87-98, Jan 1999.

[43] Drozdowski, M., and Wolniewicz, P., “Experiments with Scheduling Divisi-

ble Tasks in Clusters of Workstations,” EURO-Par-2000, Lecture Notes in

Computer Science, Springer-Verlag , no. 1900, pp. 311-319, 2000.

[44] Blazewicz, J., Ecker, K., Plateau, B., and Trystram, D., “Hand-book on Par-

allel and Distributed Processing,” Springer , 2000.

[45] Li, P., Veeravalli, B., and Kassim, A.A., “Design and Implementation of Par-

allel Video Encoding Strategies using Divisible Load Analysis,” IEEE Trans.

on Circuits and Systems for Video technology (CSVT), vol. 15, no. 9, pp.

1098-1112, Sep 2005.

[46] Bharadwaj, V., and Ranganath, S., “Theoretical and Experimental Study on

Large Size Image Processing Applications using Divisible Load Paradigm on

BIBLIOGRAPHY 154

Distributed Bus Networks,” Image and Vision Computing, Elsevier Publish-

ers, USA, vol. 20, issues 13-14, pp. 917-936, Dec 2002.

[47] Li, X., Veeravalli, B., and Ko, C.C., “Experimental study on processing divis-

ible loads for large size image processing applications using PVM clusters,”

Int’l Journal of Computers and Applications , Jul 2001.

[48] Wong, H.M., and Bharadwaj, V., “Aligning Biological Sequences on Dis-

tributed Bus Networks: A Divisible Load Scheduling Approach,” IEEE Trans.

on Information Technology in BioMedicine, vol. 9, no. 4, pp. 489-501, Dec

2005.

[49] Charcranoon, S., Robertazzi, T.G., and Luryi, S., “Parallel Processor Config-

uration Design with Processing/Transmission Costs,” IEEE Trans. on Com-

puters , vol. 40, no. 9, pp. 987-991, Sep 2000.

[50] Drozdowski, M., and Wolniewicz, P., “Performance Limits of Divisible Load

Processing in Systems with Limited Communication Buffers,” Journal of Par-

allel and Distributed Computing , vol. 64, no. 8, pp. 960-973, 2004.

[51] Yu, D., and Robertazzi, T.G., “Divisible Load Scheduling for Grid Comput-

ing,” IASTED International Conference on Parallel and Distributed Comput-

ing and Systems 2003 , pp. 1-6, Nov 2003.

[52] Aaron, E.D., Lucas, C., and Wu-chun, F., “The Design, Implementation, and

Evalulation of mpiBLAST,” Proc. of 4th Int’l Conf. on Linux Clusters: The

HPC Revolution 2003 , Jun 2003.

BIBLIOGRAPHY 155

[53] Naotaka, Y., Osamu, T., and Satoshi, S., “Parallel and Distributed Astro-

nomical Data Analysis on Grid Datafarm grid,” Proc. of 5th IEEE/ACM Int’l

Workshop on Grid Computing , pp. 461-466, Nov 2004.

[54] Attiya, H., and Welch, J., Distributed Computing: Fundamentals, Simula-

tions, and Advanced Topics , USA: McGraw Hill Publishers, 1998.

[55] Piriyakumar, D.A.L., and Murthy, C.S.R., “Distributed computation for a

hypercube network of sensor-driven processors with communication delays

including setup time,” IEEE Trans. on Systems, Man, and Cybernetic Part

A, vol. 28, no. 2, pp. 245-251, Mar 1998.

[56] Wong, H.M., Yu, D., Veeravalli, B., and Robertazzi, T.G., “Data Intensive

Grid Scheduling: Multiple Sources with Capacity Constraints,” IASTED Int’l

Conf. on Parallel and Distributed Computing and Systems 2003 , pp. 7-11, Nov

2003.

[57] Wong, H.M., Bharadwaj, V., and Barlas, G., “Design and Performance Eval-

uation of Load Distribution Strategies for Multiple Divisible Loads on Hetero-

geneous Linear Daisy Chain Networks”, Journal of Parallel and Distributed

Computing , vol. 65, no. 12, pp. 1558-1577, Dec 2005.

[58] Jingxi, J., Veeravalli, B., and Ghose, D., “Adaptive Load Distribution Strate-

gies for Divisible Load Processing on Resource Unaware Multilevel Tree Net-

works,” IEEE Trans. on Computers , vol. 56, no. 7, pp. 999-1005, Jul 2007.

BIBLIOGRAPHY 156

[59] England, D., Veeravalli, B., and Weissman, J.B., “A Robust Spanning Tree

Topology for Data Collection and Dissemination in Distributed Environ-

ments,” IEEE Trans. on Parallel and Distributed Systems , vol. 18, no. 5,

pp. 608-620, May 2007.

[60] Byrnes, P., and Miller, L.A., “Divisible load scheduling in distributed comput-

ing environments: complexity and algorithms,” Technical Report MN-ISYE-

TR-06-006 , University of Minnesota Graduate Program in Industrial and

Systems Eng., 2006.

[61] Stankovic, J.A., Spuri, M., Ramamritham K., and Buttazzo G.C., “Deadline

scheduling for real-time systems : EDF and related algorithms,” Springer ,

1998.

[62] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein, “Introduction to Algorithms, Second Edition,” MIT Press and

McGraw-Hill, 2001.

[63] Knuth, D.E., “The Art of Computer Programming,” vol. 1, Addison-Wesley ,

Boston, 1997.

[64] Moges, M.A., Yu, D., and Robertazzi, T.G., “Grid Scheduling Divisible Loads

from Multiple Sources via Linear Programming,” Int’l Conf. on Parallel and

Distributed Computing and Systems (PDCS) 2004 , pp. 423-428, Nov 2004.

BIBLIOGRAPHY 157

[65] Li, X., and Veeravalli, B., “A Processor-set Partitioning and Data Distribution

Algorithm for Handling Divisible Loads from Multiple Sites in Single-Level

Tree Networks,” to appear in Cluster Computing .

158

Author’s Publications

[1] Sivakumar, V., Bharadwaj, V., Yu, D., and Robertazzi, T.G., “Design and

Analysis of a Dynamic Scheduling Strategy with Resource Estimation for

Large-Scale Grid Systems,” in Proc. of 5th IEEE/ACM Int’l Workshop on

Grid Computing (Grid 2004), Pittsburgh, USA, pp. 163-170, Nov 2004.

[2] Sivakumar, V., Bharadwaj, V., and Robertazzi, T.G., “Resource Aware

Distributed Scheduling Strategies for Large-Scale Computational Grid Sys-

tems,” in IEEE Trans. on Parallel and Distributed Systems, vol. 18, no. 10,

pp. 1450-61, Oct 2007.

[3] Sivakumar, V., Bharadwaj, V., and Jingxi, J., “Spanning Tree Routing

Strategies for Divisible Load Scheduling on Arbitrary Graphs - a Compara-

tive Performance Analysis,” to appear in IEEE Int’l Conf. on High Perfor-

mance Computing (HiPC 2009), Kochi, India, Dec 2009.

[4] Sivakumar, V., and Bharadwaj, V., “Design and Analysis of Distribution

Strategies for Divisible Loads on interconnected clusters of Large-Scale Com-

putational Grid Systems,” submitted to Journal of Parallel and Distributed

159

Computing.

