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incompleteness of our knowledge.

Benedict Spinoza, (1632-1677 ), Dutch philosopher





Summary

Advances in sensor technologies have generated increasing research and development in-

terests in structural health monitoring. An important branch of this field is system

identification, which inherently falls into the categories of inverse problem. The focus of

this study is to characterize a structural system in physical domain using the measure-

ments of input and output. Under the assumption of unique mapping between the known

measurement and unknown system parameters, the system is regarded as identified if the

candidate parameters generate the same output as measurements within the convergence

criterion. The identification can be interpreted as an optimization process, incorporating

a forward analysis of evaluating the fitness function and a backward analysis of searching

in the solution domain. The major difficulties in extending the research towards more

complex and large systems include: (1) substantial computational effort is involved in

the forward analysis, and (2) efficient convergence is not easy to achieve in the backward

analysis. The objective of this study is to develop a system identification procedure that

will make significant improvements in both the forward and backward analysis.

The identification strategy proposed in the thesis is based on a good understanding

of system identification in an optimization perspective. It is observed that the global peak

shifts with decrease in amplitude as a result of measurement noise, and new local optima

are seldom produced. This phenomenon is referred to as the “peak shifting”. This useful

observation helps to understand the improvements made in the past literatures. More

importantly, it leads to a more advanced optimization strategy, i.e., improved search

space reduction method (iSSRM) via uniform samples plus gradient search. The iSSRM



aims to overcome the local optima far away from the global peak while the gradient search

is to fine tuning for the global peak. It is a two-layer method with the outer layer to

define search range by Hammersley sequence samples and the inner layer to implement

population-to-population search via a modified GA based on migration and artificial

selection (MGAMAS). Besides, perturbation and jump-back procedures are proposed if

any deviation away from the real solution domain is detected. Followed by the iSSRM

exploration, the gradient search is conducted by the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method due to the efficient backtracking line search and super linear convergence.

In addition to contribution to more efficient backward analysis, improvement is made

on the forward analysis by substructural method in frequency domain and time domain.

The frequency domain substructural method, i.e., F-Sub, is extended to application un-

der random excitation, by incorporating the exponential window method. By virtue of

imposing exponential window to the input signals and the system, the influence of ini-

tial conditions to the output response can be damped out within arbitrarily chosen data

length. Therefore the periodic requirement by discrete Fourier transform is maintained

without lengthy zero padding. The frequency domain substructural method originally

formulated for harmonic excitation is extended to random excitation. The proposed op-

timization method is also verified in the time domain substurcural method, i.e., T-Sub.

The strength in identifying unknown mass system makes the method outstanding in

substructural identification.

The performance of the proposed identification strategy is illustrated by not only nu-

merical simulation study but also experimental model tests of a 7-storey steel frame. The

identified results are generally excellent in terms of accuracy and efficiency. Compared

to SSRM in recent research, computer time is reduced to 50% or less by iSSRM method,

10% by iSSRM with gradient search, and an impressive 4% by applying in substructural

identification. Small damage by cutting, strengthening by welding as well as multiple

stiffness changes in different magnitudes are successfully identified on the 7-storey steel



vii

frame in the experimental study. Engineering implications in applying the substructural

method are also discussed with reference to incomplete measurement and substructure

size selection.
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CHAPTER 1

Introduction

Health monitoring and safety evaluation of large structures have always been an im-

portant topic that draws significant governmental concerns and engineering interests.

Early detection of damage will help to avoid catastrophic loss in properties and lives.

Technically, structural health monitoring (SHM) is understood as an inverse problem

in structural dynamics. The purpose is to determine the residual strength of structural

resistance to known/unknown disturbance. Recognitions of SHM emerged in the early

1970s when a large number of observations of the 1971 San Fernando earthquake in Cali-

fornia were recorded (Beck and Jennings, 1980). These observations provided knowledge

of global stiffness by fitting the recorded response of a building to the response of a

synthesized linear model subjected to the recorded base acceleration.

The developments in SHM are characterized by representative technical transitions

from visual inspection to local non-destructive techniques, and then to structural iden-

tification methods. While visual inspection is widely used, especially in early days, it is

often incomplete as it cannot investigate damage of inaccessible structural members. Lo-

cal non-destructive techniques (NDT) such as ultrasound detection and acoustic emission

method are suitable for individual structural components. But they are not suitable for

large and complex structures, e.g. buildings, bridges and dams. Nevertheless, the rapid

development of sensing systems and computer technology makes it possible to acquire
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and analyze vibration signals in a more robust way than ever. Therefore, structural

health monitoring of large systems is possible by measuring and analyzing the input and

output signals, i.e., strain, displacement, or acceleration. To monitor structural health,

system identification methods are the most extensively explored nowadays.

As an important branch of structural health monitoring, structural identification is

the process of determining unknown parameters of a structural system based on observed

input and output (I/O) of the system. Through the identified parameters, the structural

state is to be monitored as well as non-destructively assessed. A common assumption

made in structural system identification is that a mathematical model is available to ac-

curately represent the physical system. Furthermore, good correlation is also assumed to

be possible between the mathematical model and real observations such that damage will

not introduce any violations to the baseline model. The subsequent section will elaborate

typical mathematical models for structural response to external loadings. As models for

response representation closely relate to the method used for structural identification,

the immediately followed section will cover the classification of structural identification

methods.

1.1 Mathematical Models on Structural Dynamics

The first important step in structural identification lies in the selection of a mathematical

model for the structural system considered. Then the parameters of the chosen model

will be estimated from the observed measurement. The models are usually expressed as

second-order equations of motion or first-order state space equations.

1.1.1 Second-Order Model

For equilibrium of a dynamic system, three resisting forces resulting from the motion,

i.e., the inertial force, the damping force and the spring force, counteract the external
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force. The equilibrium can be formulated from the finite element perspective to achieve

the ease of numerical implementation. If the corresponding mass, damping and stiff-

ness distribution of an n degree-of-freedom (DOF) system are represented by M, C,

and K matrices separately, the equations of motion are usually written as second-order

differential equations.

Mü + Cu̇ + Ku = Bf (1.1)

where u, u̇ and ü represent n × 1 vectors of nodal displacements, velocities, and accel-

erations, respectively. The n ×m matrix B defines the force locations. The vector f of

dimension m×1 is the input vector acting on the system. In Eq. (1.1), the representation

of damping is crucial. If classical normal modes, referred otherwise to undamped modes,

are assumed in damped linear dynamic system, the damping force could be described an-

alytically (Caughey, 1960). As a particular form of Caughey damping, Rayleigh damping

proves to be useful to describe the dynamic response in a light damped system (Bathe,

1996). The system response can be computed to acceptable accuracy by the step-by-step

integration method in time domain. Alternatively, this dynamic response can also be

obtained by frequency domain method for linear systems, i.e., via mode displacement

superstition or discrete Fourier Transform (DFT).

The second-order model is a good representation of a vibrating structure and able

to account for linear as well as nonlinear behaviors of structures. However, this physical

model is not established from the perspective of system identification, as it needs assump-

tions of damping and misses the modeling of noise in the I/O signals. The advantage

of this second-order formulation lies in the ease of extracting the physical parameters

directly relating to the structural stiffness.

1.1.2 First-Order Model

Different from the second-order model, the first-order state space model is originated from

the classical control theory and extended to system identification. Within the framework
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of control theory, state-space representation of system is widely used in electrical, me-

chanical and aerospace engineering. The representation is formulated by the following

equations for a linear time invariant system.

ẋ(t) = Ax(t) + Bf(t) (1.2a)

y(t) = Dx(t) (1.2b)

where x is an n-dimensional vector of state variables, f an m-dimensional vector of in-

puts to the system, and y a p-dimensional vector of outputs or measurements. Matrices

A, B and D describes the behavior of the system and are named, respectively, transi-

tion matrix, input matrix, and output matrix. The transition matrix A characterizes

the dynamics of the system, i.e., a representation of mass, stiffness, and damping prop-

erties. The problem of system identification can be then stated as follows. Given the

measurements y(t), construct constant matrices [A, B, D] such that the functions y are

reproduced by the state space equations.

The second order differential equations can be converted to the state space equations

by defining a state vector x1

x1 = [ u u̇ ]T (1.3)

Then Eq. (1.1) can be transformed to a state space representation as

ẋ1(t) = A1x1(t) + B1f(t) (1.4a)

y(t) = C1x1(t) (1.4b)

where

A1 =
[

0 I
−M−1K −M−1C

]
;B1 =

[
0

M−1B

]
;C1 = [ Cp 0 ]

The modal parameters of the state space equations can be obtained by defining a mea-

surement vector y

y = [ Cpu Cvu̇ Caü ]T (1.5)
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Eq. (1.4a) can be alternatively written as follows

[
C M
M 0

]
ẋ1 +

[
K 0
0 −M

]
x1 =

[
B
0

]
f (1.6)

with the measurement vector as

y = [ Cp 0 ]x1 (1.7)

where y includes any combination of nodal displacements, velocities, and/or accelera-

tions. The matrix [ CT
p CT

v CT
a ]T is of dimension p × n, representing the output

matrix that may incorporate position, velocity, and acceleration measurements, with p

denoting the total number of outputs.

The advantage of rewriting Eq. (1.4a) into (1.6) is that the associated eigenvalue

problems is kept symmetric and can be written in a matrix form as

[
C M
M 0

] [
Φ

ΦΛ

]
Λ =

[
−K 0
0 M

] [
Φ

ΦΛ

]
(1.8)

where Φ = [ Φ1 Φ2 · · · Φ2n ] and the diagonal matrix Λ are of dimension n × 2n

and 2n× 2n, respectively. The eigenvectors and eigenvalues are obtained by solving the

following complex eigenvalue equation.

(λi
2M + λiC + K)Φi = 0 (1.9)

In this way, state-space representation provides a direct mapping between coordinates

associated with measured inputs and outputs. More importantly, the representation

is relevant to modal testing because the first-order form encompasses all linear system

behavior, including damped structural system. The dynamic characteristics of a damped

structure can be obtained by evaluating the complex roots, the intrinsic eigen pairs to

the damped system, of a first-order system of equations.

The first-order representation provides a way to describe a dynamic system without

assumptions on damping and allows more general mass, damping and stiffness properties
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than normally applied. Therefore the identified complex mode shapes are directly em-

ployed in the system response predictions, especially if the damping matrix couples the

modal equations. Furthermore, identification methods based on control algorithms such

as observer/kalman filter identification (OKID) can be used to evaluate the response,

since those methods will directly relate an input to an output. However, the physical

parameters cannot be directly determined from the first-order representation. To relate

the measurement to physical properties, the state space based system models has to be

transformed to an equivalent second-order realizations (Bernal, 2000; De Angelis et al.,

2002; Lus et al., 2003a,b).

1.2 Overview of Structural Identification Methods

Structural identification methods can be categorized in several different ways, e.g., fre-

quency domain and time domain methods, parametric and nonparametric models, and

deterministic and stochastic methods. Comprehensive literature reviews on system iden-

tification methods have also been given in Juang (1993), Ghanem and Shinozuka (1995),

Ljung (1999), Ewins (2000), and Maia and Silva (2001). In this study, the identification

methods will be classified into classical and non-classical methods.

1.2.1 Classical Methods

Classical methods often have sound mathematical basis. They are used to extract modal

characteristics or physical properties through system identification. Based on the identi-

fied system, structural health can be monitored via detecting the potential damages by

comparing a state of concern and the baseline/reference state.

1.2.1.1 Eigensystem Realization Algorithm (ERA)

Based on minimum realization and singular value decomposition (SVD), the ERA method

constructs a discrete state-space model of minimal order that fits measured impulse re-
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sponse functions (Juang and Pappa, 1985, 1986). The method reduces significantly the

number of estimated modes that have to be considered. At the same time the method

maintains the smallest state space dimension among the realized systems that has the

same input-output relations. More importantly, the ERA method is an output-only

time-domain modal identification technique using free vibration response signals. Closely

spaced eigenvalues can be efficiently identified using data from more than one test (Juang

and Pappa, 1985). Since its first appearance in 1985, ERA has been recognized as a suc-

cessful modal identification method, and has achieved extensive engineering applications

(Juang and Suzuki, 1988; Lus et al., 1999; Qin et al., 2001; Lus et al., 2004; Siringoringo

and Fujino, 2006; Nayeri et al., 2007; De Callafon et al., 2008; Majji and Junkins, 2008).

However, one disadvantage is that this approach requires time-consuming computation

in full singular value decomposition of the full rank Hankel matrix. In addition, the noise

level of response data has significant effects on the identification accuracy.

1.2.1.2 Natural Excitation Technique (NExT)

Under the assumption that the system is excited by stationary white noise, the corre-

lation functions between the response signals could be expressed as a sum of decaying

sinusoids. Each decaying sinusoid has a damped natural frequency and damping ratio

that are identical to those of a structural mode. Hence, the output correlation functions

can be processed as the impulse response function of the system in order to extract modal

parameters. This technique is generally referred to as NExT (James et al., 1993, 1995),

standing for Natural Excitation Technique. The method is basically a four-step process:

acquisition of response data, calculation of auto- and cross-correlation functions from the

measured time histories, time domain modal identification, i.e., using ERA to identify

modal frequencies and damping ratios, and finally, extraction of the mode shape informa-

tion. This approach does not require knowledge of the excitation. Thus it is applicable

to the identifications subjected to ambient excitation. Extended to the harmonic excita-
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tion, the NExT method has been used with least squares complex exponential method to

extract modal parameters (Mohanty and Rixen, 2003). The NExT method has also been

used in combination with ERA method for modal identification (Caicedo et al., 2004;

Yang et al., 2006; Nayeri et al., 2007; Qian et al., 2007; Siringoringo and Fujino, 2008;

Yun et al., 2008). However, NExT fails to extract the modal parameters when closely

spaced modes are present in the system (James et al., 1993).

1.2.1.3 Random Decrement Technique (RDT)

Inspired by physical intuition instead of any mathematical development, Cole (1973)

originally introduced the random decrement technique to detect damage in aerospace

structures using single measurement. Based on the assumption of zero-mean, stationary

random excitations, a random response of a structure is hypothesized to be composed of

deterministic and random part. The idea is to obtain the deterministic response through

sufficient samples of pre-selected segments of random response signals to average out the

random part. A rigorous mathematical proof was given by Vandiver et al. (1982) on

the equivalence between the random signals of a system through the RDT and the free

decayed responses of the system. Nevertheless, it has been pointed out that the RD sig-

nature cannot be equal to the system free vibration curve if the random excitation is not

white (Spanos and Zeldin, 1998). The RDT method is very attractive for system identi-

fication and damage detection when only the response data under random excitations is

available. It was used to estimate modal parameters under ambient vibration in order to

get the stiffness matrix (Feng et al., 1998) and also adopted to extract modal parameters

for damage detection using a neural network (Lee et al., 2002). Owing to its efficiency,

simplicity in processing vibration measurements and the lack of requirement for input

excitation measurements, this method has been used extensively for damping estima-

tion in offshore platform (Yang et al., 1983), to study the effectiveness of tuned liquid

dampers. It has been used for assessment of ship transverse stability, as RDT requires
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no measurement of wave height (Haddara et al., 1994). RDT was a versatile technique

for characterization of random signal in the time domain, but it was not recommended

for estimating cross-correlateion function for stochastic processes with low natural corre-

lation (Brincker et al., 1991). The method also produced biased modal estimates when

subjected to forced excitation (Ku et al., 2007).

1.2.1.4 Ibrahim Time Domain (ITD) Method

The Ibrahim Time Domain (ITD) method (Ibrahim and Mikulcik, 1977) used a set of

free decay vibration measurements in a single analysis to simultaneously identify all

parameters of the excited modes, i.e., the natural frequencies, modal damping ratios,

and mode shapes. It was studied extensively in identifying dynamic characteristics of

engineering structures. Using the data from a free vibration test, the ITD method was

studied to identify the modal parameters of a highway bridge (Huang et al., 1999) and

a steel truss bridge (Rodrigues, 2002). Due to the effectiveness of identifying the closely

spaced modes, the ITD method was also adopted to study the non-stationary ambient

vibration data (Chiang and Lin, 2008). However, ITD technique is only applicable when

free response data is presented, and also it favors the identification of modal frequencies

and damping ratios. To obtain the complete mode shapes using ITD, a mode shape

interpolation method was needed (Ueng et al., 2000; Lin et al., 2001). As the ITD

method can only cope with free vibration data, it is usually used in combination with

RDT method (Fujino et al., 2000; Garibaldi et al., 2003; Lin et al., 2005; Siringoringo

and Fujino, 2008).

1.2.1.5 Stochastic Subspace Identification

The methods of stochastic subspace identification have been comprehensively introduced

in Van Overschee and De Moor (1996). The bulk of subspace methods have been matched

by least squares method with applications in state space model (Ljung and McKelvey,
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1996). They are established in the stochastic state space, the dynamic characteristics

as natural frequencies, modal damping ratios and modal shapes of a structure can be

extracted from the coefficient matrices of a state-space model. The SSI method does

not require any preprocessing of the data to calculate auto/crosscorrelation functions or

auto/cross-spectra of output data. Therefore, SSI method has been applied extensively

in modal identification. By setting the reference sensors, the SSI method was validated

with real ambient vibration data from a steel mast excited by wind load (Peeters and

De Roeck, 1999). A subspace approach with an instrumental variable concept (Huang

and Lin, 2001) was validated on a five-storey steel frame via ambient vibration, free

vibration, and earthquake response data. The subspace identification method was also

studied on a 15-story steel moment-resisting frame (Skolnik et al., 2006). In the study,

modal parameters were identified for the first nine modes using low-amplitude earthquake

and ambient vibration data. The frequencies and mode shapes identified were then

used to update a three-dimensional model to improve correlation between analytical and

identified model for damage assessment. The SSI method was also applied to modal

identification of steel arch bridge (Ren et al., 2004), damage detection of a base-isolated

building (Yoshimoto et al., 2005), and health assessment of a 50-year old concrete bridge

(Reynders et al., 2007). However, the modal damping ratios were reported to be not

identified reliably in the laboratory (Ndambi et al., 2000) and field testing (He et al.,

2009). Another drawback was the stochastic subspace identification usually required

large computational effort, although the good accuracy was achieved (Yi and Yun, 2004).

1.2.1.6 Time-Frequency Methods

The time-frequency methods are originally mathematical and signal processing tools.

Compared to the traditional waveform or spectrum analysis by Fourier Transform, these

methods have the advantage of revealing the event-related time and frequency domain

information simultaneously. They are thus especially applicable for non-stationary signals
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for which traditional Fourier analysis is limited. Typical time-frequency representation

includes wavelet analysis (Mallat, 1999) and Hilbert-Huang Transform (HHT) (Huang

et al., 1998; Huang and Shen, 2005). Comparison of these two methods was studied by

Kijewski-Correa and Kareem (2006) . Although they are essentially indirect structural

identification methods, successful identification can be achieved by means of their fruitful

resolution of the observations.

As a representative time-frequency method, wavelet has received increasing attention

in the field of structural identification. To avoid ill-conditioning due to experimentally

measured acceleration, Doyle (1997) applied wavelet deconvolution method for impact

force identification. Wavelet transform was also used to extract impulse response func-

tion in linear systems, and the impulse response function was then utilized to identify the

linear system via the realized state space models (Robertson et al., 1998). By wavelet

transformation, the equation of motion was translated into an algebraic equation of accel-

eration. The stiffness and damping matrices then can be identified by directly measuring

acceleration (Sone et al., 2004). By virtue of the time-invariance and filtering ability of

the transform, wavelet transform was also used in modal identification (Huang et al.,

2005; Chakraborty et al., 2006; Yang et al., 2007a). Without modal identification, dam-

age can be quantified directly as well by detecting the irregularity of wavelet coefficients

observed near the location of the crack (Sun and Chang, 2004). Practical aspects of

wavelet transform in damage detection such as sampling rate, filter frequency and length

of signal were discussed by Quek et al. (2001). A good survey of wavelet based methods

in the field of damage detection was given by Kim and Melhem (2004). However, wavelet

analysis is an adaptive window Fourier analysis, and thus can deal with non-stationary

but not nonlinear data. Thus its use makes sense only for linear systems (Huang and

Shen, 2005).

Another commonly used time-frequency method, HHT, has been covered extensively

in modal identification and damage detection. The feasibility of HHT was illustrated by
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Quek et al. (2003) for locating an anomaly based on physically acquired propagating wave

signals. Damage time instants, locations and natural frequencies as well as damping ratios

were identified via HHT method (Yang et al., 2004). The natural frequency and damping

ratio of linear systems were identified by Yang et al. (2003a,b) via a single measurement

of free response. Besides, mode shapes, physical mass, damping and stiffness matrices can

also be identified if complete measurements were available. The advantage of the method

has been illustrated by identifying closely spaced modes where the wavelet method is

limited (Yang et al., 2003a). By incorporating the RDT method, the identification is

extended to identify in situ tall buildings using ambient wind vibration data from the

only acceleration sensor (Yang et al., 2004).

To sum up, modal identification methods have been considerably developed over the

past decades. Through the measurements of response time history, modal parameters can

be extracted with confidence (Juang, 1993; Ewins, 2000; Maia and Silva, 2001). These

classical methods, including ERA, NExT, RDT, ITD, and SSI, are typically capable of

extracting the modal parameters under operational conditions. They are attractive when

only response data are measurable and the actual loading conditions are unknown. The

time-frequency methods are fundamentally efficient signal processing tools and applica-

ble for modal identification. However, modal parameters are extracted generally the first

several modes, but the results are usually not reliable in higher modes due to the low sig-

nal to noise ratio. With only lower modes identified, however, the detectable damage by

means of identified modal parameters usually has to be very large. In the field of struc-

tural health monitoring, it is important to detect the damage event in the early stage to

provide warning and take remedial action. On the other hand, physical parameters such

as stiffness have much more direct interpretation of structural health than modal param-

eters. Attempts have been made to extract physical properties from modal identification

or state-space formulations, but they generally involve complicated mathematical opera-

tions (Alvin et al., 1995; Chen et al., 1996; De Angelis et al., 2002; Ko and Hung, 2002;
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Lus et al., 2003a; Shi et al., 2007). Determining physical parameter directly by using

the measured acceleration time history has better potential of application. Recently, it is

shown experimentally that very small damage, i.e., 4% can be detected using incomplete

measurement, via physical domain system identification (Koh and Perry, 2007). Among

all the 45 tested combinations, 89% of them successfully identified very small damage of

4% over the maximum false damage.

While modal identification aims to extract modal parameters from the observations,

typical identification in the physical domain is posed as an optimization problem. The

objective function is usually defined using the output signals from a mathematical model

and real measurement. The mathematical model can be represented by a first-order

state-space model or a second-order dynamic model. Physical parameters to be esti-

mated can be stiffness, mass or damping coefficient. Because the relationship between

model response and parameters is nonlinear generally, even if the model itself is linear

in the state and linear in the parameters (Eykhoff, 1974), the unknown physical param-

eters cannot be explicitly expressed in terms of the objective function. Therefore the

unknown parameters cannot be obtained directly by solving algebra equations. Through

the optimization procedure, the parameters are deemed to be identified when the model

estimated responses are in good agreement with the observations. Classical methods

to solve this optimization problem in physical domain can be classified into four ma-

jor groups: filtering methods, least squares method, the Bayesian method, and gradient

search methods.

1.2.1.7 Filtering Methods

These methods are based on state estimation theory, and minimization is achieved by

implicitly solving an initial value problem (Beck, 1979). A common feature of these

methods is that they process the data sequentially and produce sequential estimates

of both the parameters and the state. A typical drawback is that they give only an
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approximation to the optimal estimates. The most popular filtering method used in

system identification is Extended Kalman Filter (EKF), a general method applied in the

field of modern control engineering. In the mathematical model, system dynamic motion

is expressed as the first-order state space equation. State and observation equations

are formulated and solved by the method of Extended Kalman Filter (EKF), and it is

applicable in system identification by incorporating the system parameters to be identified

as part of an augmented state vector. If the measured data at a number of locations are

given and used in the observation vector, the EKF method can be applied to estimate

the physical parameters of real systems as well as provide for uncertainty in the system

model. Two main steps in EKF method are the update of state variables in time on basis

of the system equations and the update of state variables based on measurements.

Application of EKF method for structural identification has attracted considerable

interest in the civil engineering community. Yun and Shinozuka (1980) employed two

filtering algorithms, namely the Extended Kalman Filter (EKF) and the iterated linear

filter-smoother, to identify the hydrodynamic coefficient matrices of an offshore structure

subjected to wave forces. To obtain stable and convergent solutions, Hoshiya and Saito

(1984) incorporated a weighted global iteration (WGI) procedure to EKF for identifying

dynamic systems. By means of the EKF-WGI method, Loh and Tsaur (1988) identified

an equivalent linear system, a bilinear hysteretic restoring system and a system with

stiffness degradation effect. Koh et al. (1991) formulated state and observation equations

in a substructural approach, and solved them by EKF-WGI method. Nevertheless, the

initial guess has to be within the vicinity of actual solution in order to get fast and

stable convergence. The EKF method was also found to produce inaccurate estimations

when nonlinear events dealt with, such as degrading strength or softening in materials

(Corigliano and Mariani, 2004).

To deal with the non-stationary and nonlinear process, the filtering methods devel-

oped in system identification also include Monte Carlo Filter (MCF), H-infinity filter,
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and particle filter. The MCF method was first proposed by Kitagawa (1996). It was

to recursively identify the conditional distribution function of the state variable when

observations up to the present time step are given. Several applications of the method

have been reported. Sato et al. (2000) adopted MCF method to identify dynamic char-

acteristics of structure systems. Yoshida and Sato (2002) applied MCF to identify the

stiffness and damping ratio of a 5-DOF system. However, as the number of DOFs in-

creases, the computer time increases drastically. Tanaka and Sato (2004) improved the

classical MCF by developing a relaxation procedure in the filtering process to reduce the

computational effort. Besides the Monte Carlo filter, an adaptive H-infinite filter was

proposed to identify structural system with non-stationary dynamic characteristics (Sato

and Qi, 1998). In addition, a particle filter was developed as well to estimate the param-

eters and Bayesian state via highly nonlinear models with non-Gaussian uncertainties

(Ching et al., 2006).

1.2.1.8 Least Squares Method

Least squares method is a classical strategy to find solutions for over-determined sys-

tems, usually interpreted as a method of fitting data. Evaluating the residual difference

between the observed measurement and the value given by the model, the best candidate

is estimated as the sum of squared residuals reaches the least value. In the application

in structural identification, as long as enough measurement is available, the equation of

motion can be transformed into an algebraic equation. The unknown damping and stiff-

ness coefficients are identified by solving the algebraic equation. Due to the conciseness

and ease of formulation, it has been applied often to identify physical structural systems.

Caravani et al. (1977) developed a recursive least squares method in time domain iden-

tification, with an assumption that the number of acceleration measurements is equal

to the number of DOFs. Agbabian et al. (1991) developed a least squares formulation

to detect structural change by the identified stiffness and damping coefficient. Wang
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and Haldar (1997) adopted the least squares and EKF method to identify structural

parameters with unknown excitations. Loh et al. (2000) used a recursive least squares

formulation to identify time-variant structures. Yang and Huang (2007) developed a se-

quential nonlinear least squares method to detect structure damage with unknown input

and unknown output. However, the least squares method usually demands good initial

guess and large computational burden in matrix inversion.

1.2.1.9 Bayesian Method

A general Bayesian statistical framework for system identification was presented by Beck

and Katafygiotis (1998). Within the framework, probability models were established

accounting for the parameter uncertainty and prediction uncertainty. Formulating the

weighted probability models in the form of the initial predictive probability density func-

tion (PDF), Bayes’ theorem was then applied to update the predictive PDF. However,

the initial predictive PDF for the system output was usually a multidimensional integral

which cannot be evaluated analytically or numerically. This difficulty was overcome by

an asymptotic approximation. Globally maximizing the asymptotic approximation of the

probability integral, the optimal structural parameter was then determined if the system

was globally identifiable.

A significant characteristic of system identification using Bayesian statistical frame-

work is that it can handle uncertainties such as modeling errors and non-uniqueness.

Owing to these advantages, it has been implemented extensively in structural damage

detection as well as structural health monitoring. Sohn and Law (2000) applied Bayesian

approach to predict the location of plastic hinge deformation on a bridge column via

dynamic experimental data. Vanik et al. (2000) simulated an on-line monitoring by a

sequence of identified modal parameter to compute the updated probability of damage

of structures. Yuen and Katafygiotis (2001) estimated the modal parameters and their

uncertainties using only one set of ambient data. Yuen et al. (2004) combined the modal



1.2: Overview of Structural Identification Methods 17

identification and Bayesian system identification in a two-stage approach in damage de-

tection of benchmark problem. It enabled the estimation of stiffness parameters as well

as the probability that damage in any structural members that exceeded some specified

threshold expressed in terms of a fractional stiffness loss. However, the application of

Bayesian philosophy is confined to small scale identification problems. There were at-

tempts by substructure concept to carry out on large scale identification, and the results

were encouraging in terms of 5% measurement noise (Yuen and Katafygiotis, 2006).

1.2.1.10 Gradient Search Method

Some researchers have tried to tackle structural identification problems by gradient search

methods, i.e., Gauss-Newton least squares (Bicanic and Chen, 1997; Chen and Bicanic,

2000) and Newton’s method (Liu and Chen, 2002; Lee, 2009). However, they were often

proved to be unsuccessful in the presence of noise (Liu and Chen, 2002), and also have

other drawbacks such as requiring good initial guess and additional gradient information.

More importantly, these classical methods commonly lack global search capability and

tend to converge prematurely to local optima.

1.2.2 Non-classical Methods

Non-classical methods do not have rigorous mathematical formulations and are usually

optimization methods established on heuristic rules such as natural evolution and self-

organization. Typical strength of non-classical methods in structural identification is that

they are more robust in achieving global optimum than classical methods. Furthermore

they do not require good initial guess unlike many classical methods. The application

of non-classical methods in structural identification is increasingly favored due to the

rapid advancement in computer power. Owing to extensive applications in the inverse

problems, two most commonly used non-classical methods are covered here, namely ar-

tificial neural network (ANN) and genetic algorithm (GA). Recently, other non-classical
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methods have also been studied but marginal progresses have also been reported. For

example, evolutionary strategy was studied to identify 3-DOF and 10-DOF lumped sys-

tems (Franco et al., 2004). Simulated annealing was combined with genetic algorithm to

detect damage of beam structures via static displacement and natural frequencies (He

and Hwang, 2006). Particle swarm optimization (PSO) was used for structural identifi-

cation due to its simple concept and quick convergence (Tang et al., 2007). PSO coupled

with simplex algorithm was found to perform better than simulated annealing and basic

PSO in damage identification using frequency domain data (Begambre and Laier, 2009).

The differential evolution strategy was investigated for identifying physical parameters

in time domain (Tang et al., 2008).

1.2.2.1 Artificial Neural Network

The working principle of neural network applied to computational structure is derived

from the study of biological neurons (Haykin, 1994; Bishop, 1995). Fundamental ele-

ments in neural network are the linear/nonlinear neurons. They have multiple inputs

and a single output. Neurons in different layers are connected through weighted links.

A key characteristics of neural networks is the capability of self-organization or knowl-

edge “learning”. The capability allows automatic determination of the weights from the

data containing the knowledge to be extracted. The process is often called training and

implemented by adjusting the network neuron weights until output of network matches

the target output within a provided tolerance. In the context of structural identification,

the “learning” property of neural network makes it possible by avoiding comprehensive

inverse analysis, where unknown parameters or damaged region can be recognized from

given measurements by self-organization. Several properties of neural networks make

them attractive to practical application. The algorithm can remain robust in the pres-

ence of noise and even complex nonlinearity. More importantly, no specific mathematical

models are involved to define the relationship of input and output. This marvelous
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capacity can even produce a sensible response from previously unseen data.

In the light of the above-mentioned advantages, many researches have applied artifi-

cial neural networks in civil engineering. Good review can be found in Flood and Kartam

(1994a,b) and Adeli (2001). In structural identification, neural network was applied to

process the non-parametric identification so that the responses are predicted by this

unique mapping capacity instead of the physical model of the system (Chassiakos and

Masri, 1996). Static load identification was carried out on aircraft wings using 11 inputs

of strain responses and 11 outputs of concentrated load in each pattern and a total of 13

patterns were included (Cao et al., 1998). Damage was identified by an iterative neural

network with the introduction of orthogonal arrays (OA) to reduce the training data

(Chang et al., 2000). By initially establishing an emulator neural network to forecast the

dynamic response in the forward analysis, a parametric evaluation neural network was

used to identify a 5-degree of freedom lumped mass system. The 288 training patterns

were chosen selectively from 0.6 to 1.0 times of the parameter to be identified (Xu et al.,

2004). In fact, artificial neural networks were anticipated to be more powerful to emulate

higher level cognitive process rather than present simple I/O vector mapping problems in

engineering (Flood, 2006). However, the sophisticated mapping capacity would be degen-

erated drastically as the number of unknowns increases in system identification. Much

improvement is needed to handle the problems such as network size, network topology,

selection of representative training patterns, as well as tedious training computation.

1.2.2.2 Genetic Algorithm

Genetic algorithm is known as an efficient global optimization method (Holland, 1975;

Goldberg, 1989; Michalewicz, 1992). Based on the principle of “survival of the fittest”,

it imitates biological evolution by natural selection/reproduction, random crossover and

mutation. The algorithm starts with an initial set of solutions, i.e., randomly generated

population. In the population, each individual is termed as chromosome, representing a
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set of trial parameters that define a possible solution to the problem. The priority of the

chromosomes to breed is determined by their fitness from the objective function. Those

with better fitness among the population are favored in the selection process. Employing

specific selection criteria, such as roulette wheel, tournament, or rank selection, better

chromosomes are given higher probabilities to be selected than worse chromosomes to

reproduce new offspring through mutation and crossover.

Given its relative insensitivity to noise and initial guess, GA has good potential for

solving inverse problems as structural identification. The procedure typically incorpo-

rates a forward analysis to evaluate fitness function and a backward analysis to search

new possibilities. Generally, the mean-square error between the measured data and es-

timated response based on the mathematical model is used to define a fitness function.

The best estimate for parameters is obtained when the error is minimized. Significant

effort has been invested in the field of structural identification. The impact location of

single load was identified using GA and the correlation of force reconstructions from the

responses was defined as the fitness function (Doyle, 1994). The location and quantifica-

tion of the extent of damage was performed by GA with the fitness function established

in the forms of residual force vector (Mares and Surace, 1996). A GA-based structural

damage detection strategy was proposed to identify the changes of characteristic prop-

erties in the structural member (Chou and Ghaboussi, 2001). GA was also used in the

identification of moving masses on a multi-span beam by minimizing the errors between

the measured and reconstructed accelerations (Jiang et al., 2003).

However, most of the abovementioned references are concerned with simple struc-

tures with few degrees of freedom or few unknowns. Although using GA in structural

identification is computationally intensive, particularly in the case of structures involv-

ing large numbers of DOFs or unknowns, it is still attractive as compared to many other

methods because it allows the involvement of additional information or constraints as

well as the use of parallel processing due to its high concurrency.
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With the use of finite element methods in the forward analysis, increasing attention

has been placed on identifying more complex and practical structures. To solve large

scale problems, an efficient way is to use a divide-and-conquer method in the forward

analysis. The computer time could be reduced in the forward analysis by conducting

GA search in a much smaller modal domain instead of the usual physical domain (Koh

et al., 2000). Alternatively, by dividing the whole structure into smaller substructures,

a novel concept of substructural identification was devised in the time domain (Koh et

al., 2003b). Subsequently a frequency domain substructure method was also developed

under harmonic excitation (Koh and Shankar, 2003a,b).

Besides trying to reduce the computation cost in the forward analysis, it is imperative

to improve the search capability of GA in the backward analysis. Recently considerable

effort has been spent on the enhancement of identification strategies. It was proved that

large time saving was possible by using distributed computing (Koh et al., 2002). In

a sequential programming, a search space reduction method (SSRM) was developed to

accurately and reliably identify the structural systems (Perry et al., 2006). The strategy

adaptively adjusts the search space to expedite the search and incorporates a modified

GA based on migration and artificial selection (MGAMAS). The SSRM method was

applied successfully into the identification of the system as well as the input force using

only limited output observations (Perry and Koh, 2008).

In addition to the modification of original GA architecture, research works in local

searches also provide a promising way. The accuracy and robustness were greatly im-

proved by embedding GA-compatible local searchers (Koh et al., 2003a). However, they

are in the inner loop of a general GA. The accuracy was achieved at the cost of computa-

tional time. Recently a Levenberg-Marquardt (LM) method local searcher was reported

(Kishore Kumar et al., 2007) to have good performance in identifying a 3-DOF nonlinear

spring-damper system. It was shown that good accuracy was achieved by providing the

initial guess using simple GA (SGA) runs. However, it might not be suitable for large
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system identification because LM has to store the approximate Hessian matrix with n×n

dimension and its expensive inversion has to be repeated. Besides, considerable prelimi-

nary SGA runs are needed to provide sufficiently good initial guess, especially for system

with a large number of unknowns.

1.3 Objective and Scope

Substantial efforts have recently been devoted to the subject of structural health monitor-

ing among researchers and practising engineers. The development of structural identifi-

cation and damage detection gives birth to numerous classical and non-classical methods

on this subject. Modal domain identification methods under the classical category have

achieved significant advancement in the past decades. However, they do not work well in

identifying small damages in local components of a complex system where robust iden-

tification of higher modes is required. while many time-domain classical methods, e.g.

EKF, least squares method and gradient search methods, are sensitive to subtle changes

in structures and used in identifying physical parameters via optimization, they unfortu-

nately often suffer from the requirement of good initial guess and tend to have premature

convergence due to the lack of global optimization capability.

In this study, to identify structural system physically, a non-classical method based

on genetic algorithm is selected. The reasons are that GA inherently possesses global

optimization capability and fairly loose requirement on initial guess, and is thus suitable

for problems involving a large number of unknowns. More importantly, besides the

potential in distributed computing, GA accommodates flexible modifications to achieve

remarkable improvements in sequential programming. These strengths are unparalleled

in many other methods.

Based on the literature review, key challenges in physical domain structural identi-

fication include: (1) better understanding of structural identification as an optimization
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problem; (2) improvement on optimization method for identifying complex structures

with large number of unknowns; (3) improvement on forward analysis for frequency do-

main substrucutral identification; and (4) experimental verification to verify the proposed

identification strategy in presence of small damage and multiple damage with different

magnitudes.

In view of the above key challenges, the main objective of this study is to develop a

robust and efficient identification strategy for large-scale structural systems. To achieve

this, research endeavor is taken in improving the convergence capability and reducing

computer cost in both the backward analysis and forward analysis of the identification

procedure. More specifically, the study covers the following scope:

(1) research on the characteristics of system identification when it is treated as an

optimization problem;

(2) develop more efficient numerical optimization methods than recent published rep-

resentative strategies in the backward analysis, based on the findings obtained in

(1);

(3) investigate the performance of the proposed methods of (2) in substructural iden-

tification in both frequency domain and time domain; and

(4) validate the proposed methods of (2) and (3) in structural damage detection using

experimental data.

It is hoped that the findings of this study will provide better understanding of

structural identification as an optimization process. By virtue of these understanding,

improvements on identification strategy will be intensively concentrated on sequential

computing philosophy, allowing further extension to parallel computing for potential im-

provement. In this way, structural health monitoring can be carried out by structural

identifications on practical engineering structures.
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1.4 Organization of Thesis

The chapters of this study are arranged according to the development and application of

the identification strategies.

In the first chapter, the mathematical models for dynamic system are summarized.

After these representations for mathematical models, methods on structural identification

are extensively presented in the literature review. They include classical and non-classical

methods as well as their applications in modal domain and physical domain.

In Chapter 2, an improved search space reduction method (iSSRM) via sampling

test is proposed. The method comprises an outer layer of sampling test and an inner

layer of MGAMAS search. The sampling test is to determine a rough search space based

on the first several samples. The MGAMAS search then finds the best candidate in the

defined search space within limited evaluations. The search space is progressively scaled

in the sampling test and a relaxation procedure. In addition, perturbation and jump-

back procedures are developed to restore the search space from any possible deviation

out of the real solution domain. Parametric study is carried out to propose suitable GA

parameter for practical application.

Chapter 3 discovers the characteristics of structural identification as an optimization

problem, leading to an efficient optimization strategy as uniformly sampled GA (namely,

iSSRM) with gradient search. This chapter is motivated by the findings in Chapter

2 that an increasing fitness over generation does not necessarily indicate an improved

identification. Therefore a fitness surface study is carried out on lower-order dynamic

systems with concerns on the effect of measurement noise, data length and number of

load cases. A noise induced “peak-shifting” is typically observed. That is, there is only

one global peak which is surrounded by several local optima. The increase in noise level

will introduce shifting and decrease of the global peak while local optima will seldom

be produced. The observation results in the development of a uniformly sampled GA
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with gradient search. Through the studies on the numerical examples, the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method is recommended over the conjugate gradient

(CG) method and simulated annealing (SA) method. The switch point between the

global search and local search is given based on the studies on Chapter 2. The proposed

identification strategy is then tested in the subsequent chapters.

In Chapter 4, the frequency domain substructural method (F-Sub) is extended to

accommodate random excitation. Through introducing the exponential window method,

the effect of initial condition is damped out within arbitrary data length. Therefore

despite of the periodic assumption of discrete Fourier transform, the steady state for-

mulation can be applied to non-periodic loading. An obvious advantage of using the

exponential window is that it results in great reductions in computer time especially for

lightly damped system, over the traditional strategy of zero padding.

In Chapter 5, the proposed hybrid identification strategy is studied at a substructural

level in time domain, i.e., T-Sub method. The purpose is to verify the proposed strategy

on the known mass identification as well as the unknown mass identification, which is

rarely studied by other researchers.

Chapter 6 presents the performance of the proposed identification strategy using

experimental data. The laboratory experiment is carried out statically and dynamically

on a 7-level steel frame. Baseline identification is implemented using the iSSRM method,

iSSRM with BFGS method in global identification, and T-Sub with iSSRM plus BFGS

in substructural identification. The subsequent investigation embraces the damage from

cut as well as stiffness increase due to welding. In the detection phrase, the T-Sub, F-Sub

and global identification will be studied. Results will be compared to the recent studies.

The study is concluded in Chapter 7 with highlight of main findings and recommen-

dations. The detailed results for Chapter 2 and 6 are provided in Appendices A and B,

respectively.





CHAPTER 2

Uniformly Sampled Genetic
Algorithms: An Improved SSRM

The identification strategy proposed in this chapter is a search space reduction method

via Hammersley sequence sampling (Hammersley, 1960). It is a two-layer system identi-

fication strategy based on genetic algorithm. At the inner layer, candidates are explored

within a search limit using MGAMAS, a modified GA based on migration and artificial

selection (Perry et al., 2006). At the outer layer, the search limit is defined by a set

of Hammerley sequence samples. A relaxation procedure is incorporated to make the

sampling driven search space reasonable. In addition, perturbation and jump-back pro-

cedures are also invoked when necessary to restore possible deviation from the real search

limit.

To formulate the proposed identification strategy, the essential ideas of simple GA

(SGA) and search space reduction method (SSRM) (Perry et al., 2006) will be introduced.

An improved SSRM (iSSRM) based on sampling test is then proposed. The purpose of

sampling test is to obtain a rough contour of the fitness surface before GA search so

as to define an appropriate search limit. Usually a uniform sampling is desired to have

unbiased samples in the multi-dimensional solution space. Thus four possible sampling

methods will be investigated, incorporating random uniform distribution, Latin hyper-

cube, orthogonal array (OA), and Hammersley sequence. To compare these sampling
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methods in conjunction with the iSSRM tests, stiffness identification is implemented nu-

merically on 10-DOF and 20-DOF lumped mass systems. Based on this comparison, the

sampling test that performs best in terms of robustness and accuracy of identification will

be recommended. Finally, a comprehensive parametric study is carried out to study the

trade off between exploration and exploitation, e.g. to determine the sizes of samples for

sampling test, and generations, populations, as well as total runs for MGAMAS search.

2.1 System Identification Using Genetic Algorithms

Treating the identification of physical parameters as an optimization problem, tradition-

ally referred as output-error issue (Bekey, 1970; Bowles and Straeter, 1972), the statement

of problem can be written typically in terms of maximization as

maxϕ(x) subject to x ∈ S,

where S =
{
x ∈ ℜk|ai ≤ xi ≤ bi,∀i = 1, 2, · · · k

} (2.1)

Here ϕ is scalar-valued functions of the variables x to be identified, and S is the search

space. The value of ai and bi are the lower bound and upper bound of the individual

parameters set from an engineering viewpoint. In terms of global optimization, GA is a

good candidate owing to its strengths in robustness with respect to measurement noise

and initial guess, ease of adding constraints of optimization, and high concurrency for

distributed computing. Using GA in structural identification, the idea can be illustrated

in a block diagram in Fig. 2.1.

To control the computational cost, the convergence criterion is typically set as the

achievement of maximum number of fitness evaluations. The fitness function is defined

by the errors between the measured acceleration üm and estimated response üe from the

mathematical model. They are responses collected from p measurements with q data

length. In the literature, there are different definitions of fitness function on the basis of

response errors. Nevertheless, the present study follows the simplest formulation as in
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Eq. (2.2).

ϕ =
1

c+
p∑

i=1

q∑
j=1

(üm
ij − üe

ij)
2

(2.2)

In Eq. (2.2), c is a constant that plays an important role in measuring fitness. It helps

to set clear upper boundary in the best fitness on one hand and avoids a potential zero

denominator on the other hand. The value of c is better chosen to have the similar

magnitude as the error term. As the constant c will take 0.001 in this study, the best

fitness is then 1,000 within the limit of computer tolerance. The system is deemed as

identified when the estimated output üe agrees with the measured response üm, resulting

in the best estimate of parameters that maximizes the fitness function within the total

evaluations.

The identifiability of the system is implicitly based on the assumption that unique

mapping is available between the measurement and the unknown parameters. Although

few researchers provide rigorous proof on the identification uniqueness, it is reasonable to

avoid non-uniqueness by putting the measurement location as sufficient and distributed as

possible, based on the available results of limited research works (Udwadia and Sharma,

1978; Udwadia, 1985; Franco et al., 2006). In the present study, the second assumption

is that the mathematical model used in the forward analysis can capture the physical

behavior of the structures. Thus the modeling error is neglected. This means that good

understanding and modeling of the structural behavior is important.

In the following sections, the original idea of GA will be introduced. Focusing on

the GA application in structural identification, a recent research on the improvement of

GA, i.e., the SSRM method will be reviewed. Then a more advanced version of SSRM,

iSSRM, will be presented on the basis of uniform sampling tests.



30 CHAPTER 2. Uniformly Sampled Genetic Algorithms: An Improved SSRM

2.2 Simple GA

The beginning of genetic algorithms can be traced back to the early 1950s when several

biologists and computer scientists used computers for simulations of biological systems.

Nevertheless, the work of developing evolution-inspired algorithms in 1950s drew lim-

ited attentions that evolutionary computation, i.e., evolution strategies, evolutionary

programming, and genetic algorithms, has ever seen (Box, 1957; Friedman, 1959). In

the 1960s, the field of evolutionary computation remained an active area of research.

Rechenberg (1965) introduced “evolution strategies” to optimize real-valued parameters

for devices such as airfoils. The program structure was fixed and primarily search oper-

ator such as mutation and selection allowed the solution to evolve. Fogel et al. (1966)

developed “evolutionary programming”, where the evolutionary computing was imple-

mented with no fixed structure. Candidate solutions to given tasks were represented as

finite-state machines and the evolutionary operators are selection and mutation. Further-

more, the work done in late 1960s and early 1970s at the University of Michigan under the

direction of John Holland led to GAs as they are known today. A genetic algorithm is an

adaptation procedure based on the mechanics of natural genetics and natural selection,

including two fundamental components as survival-of-the-fittest and variation (Holland,

1975; Goldberg, 1989). However, Holland was the first to attempt to put computational

evolution on a firm theoretical basis (Mitchell, 1996). More importantly, Holland’s intro-

duction of a population-based algorithm with crossover, inversion, and mutation provided

better variation than Rechenberg’s evolutionary strategies (Rechenberg, 1965) and Fogel,

Owens, and Walsh’s evolutionary programming (Fogel et al., 1966) .

The classical concept of GA is well established in a simple genetic algorithm (SGA).

In SGA, the initial population is randomly generated, with each chromosome represent-

ing a possible solution to the target optimization problem. Based on a user-defined

fitness function, the performance of each chromosome is evaluated in the population.
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Subsequently, a set of simple operations inspired by biological evolution are repetitively

implemented to generate a new population for the next generation. The main operations

of SGA include reproduction, crossover and mutation. In the evolution of a generation

level, user-defined criterion of reproduction allows the fitter chromosomes in the pop-

ulation higher chance to produce new offspring. Crossover by recombination makes it

possible for the heuristically offspring to inherit the strengths of ”fitter” chromosomes in

the past generations. Furthermore, mutation facilitates the achievement of population

diversity through generating offspring with distinct characteristics. The probability of

crossover and mutation operations in a population depends on the crossover and mutation

rates, which are defined as the ratios of the chosen chromosomes out of the population

size. These three SGA operations are repeated in the old population until a new pop-

ulation of the same size of np is formulated. By this generic way, the solution space is

explored generation after generation. After some sufficient number of generations or when

no significant improvement is observed, the best chromosome is deemed to represent the

optimal solution.

Without any loss of generality, the heuristic procedure of SGA can be explained

by a maximization problem. Suppose we wish to maximize a function of k variables,

ϕ(x1, · · ·xk) : ℜk → ℜ. Suppose further that each variable xi can take values from a

domain Si = [ai, bi] ⊆ ℜ, and ϕ(x1, · · ·xk) > 0 for all xi ∈ Si. Now, one element in

each chromosome is represented by a real number, for example, xi ∈ [ai, bi]. To initialize

a population, a total number of np chromosomes are randomly set before standard GA

operations. The critical stages of the algorithm are reproduction, crossover and mutation.

2.2.1 Reproduction

Reproduction, also referred to as selection, is an operator to simulate the natural selec-

tion. Through this process, individual strings are copied according to their fitness. The

chromosomes with higher fitness have a higher probability of contributing one or more
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offspring in the next generation. Once selected, the chromosome is then entered into a

”breeding” pool which is a tentative new population for further genetic operator action.

The reproduction can be carried out in a number of ways. A simple way for SGA is to

carry out reproduction by a roulette wheel method. The selection process is explained

in the following steps.

• Calculate the fitness value for each chromosome vi(x1, x2, · · ·xk) where i = 1, · · · , np

assuming the fitness values are positive. The value np determines the population

size. The fitness for a chromosome is ϕ(vi).

• Find the total fitness of the population Fsum

Fsum =
np∑
i=1

ϕ(vi) (2.3)

• Calculate the probability of a selection pi for each chromosome vi(i = 1, · · · , np)

pi = ϕ(vi)/Fsum (2.4)

• Calculate a cumulative probability qi for each chromosome vi(i = 1, · · · , np)

qi =
i∑

j=1

pj (2.5)

• Generate a random (float) number r from the range [0,1]

• If r < q1, then select the first chromosome v1; otherwise select the i-th chromosome

vi(2 ≤ i ≤ np) such that qi−1 < r ≤ qi

The procedure of roulette wheel selection shows that each individual is assigned a se-

lection probability proportional to its fitness. The selection is made with replacement

until the new population is full. Through this procedure, multiple selections of fitter

individuals are encouraged while the weakest individuals are filtered out.
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2.2.2 Crossover

Crossover is to exchange information or to cause the juxtaposition of different chromo-

somes that have good performance in the past generations. In the operation, new off-

spring are produced by recombination of the selected parents from the tentatively formed

new population by reproduction. Strengths of the past are thus transferred through this

heuristic swapping. Therefore crossover is a one of the most critical GA operations to

exploit the solution space.

A simple crossover is used in SGA to facilitate the recombination operation. By

the principle of simple crossover, the information before and after a randomly selected

breakpoint of a parent pair are swapped. To carry out crossover operation in SGA,

one of the critical parameters in a genetic system needed is probability of crossover pc.

This probability gives the expected number pc × np of chromosomes which undergo the

crossover operation in the new population. The procedure can be demonstrated as below.

• Generate a random (float) number r from the range [0,1]

• If r < pc, select the given chromosome for crossover, an integer position j along the

string is then selected uniformly at random between 1 and the string length minus

one, i.e., [1, l − 1]. Two new chromosomes are created by swapping all elements

before and after the split point j . For example, consider chromosomes v1 and v2,

the new resulting offspring after simple crossover are v1
′
, and v2

′

v1 = (x1, x2, · · ·xj−1, xj , xj+1, · · ·xk)

v2 = (y1, y2, · · · yj−1, yj , yj+1, · · · yk)
→

v1
′
= (x1, x2, · · ·xj−1, xj , yj+1, · · · yk)

v2
′
= (y1, y2, · · · yj−1, yj , xj+1, · · ·xk)

(2.6)

2.2.3 Mutation

Although crossover effectively searches via exploiting the extant best strings, they may

lose some potentially useful genetic material in exploring the solution space. The reason is
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that crossover operator simply recombines information which already exists, while cannot

explore the solution space that are not covered by the current population. To introduce

diversity and avoid a prematurely homogeneous population, mutation is necessary in

the artificial genetics to protect against such an irrecoverable loss. This operator, in

fact, plays a secondary role in the operation of genetic algorithms. Once a chromosome

is chosen to mutate, the mutation operator in SGA is simply implemented by random

alteration of the value in a string position.

In order to mutate in the mating pool, another parameter of the genetic system,

probability of mutation pm, gives the expected number pm × np of chromosomes which

undergo the mutation operation in the new population. The mutation in SGA is given

as follows.

• Generate a random (float) number r from the range [0, 1]

• If r < pm, mutate the chromosomes: In SGA, mutation works to change a specific

variable by random walking throughout the whole string. If the original string is

marked as v, the mutated one will be processed to be v
′
as below.

v = (x1, x2, · · ·xj−1, xj , xj+1, · · ·xk)→ v
′
= (x1, x2, · · ·xj−1, x

′
j , xj+1, · · ·xk) (2.7)

Each element within the chromosome has the same chance of undergoing the muta-

tive process. The mutated element xj
′

is actually a random value from the domain of

the corresponding parameter domain [aj , bj ]. After selection, crossover, and mutation,

a new population is ready for the next evaluation. This evaluation is used to build the

probability distribution for the next selection process. The rest of the evaluation is cyclic

repetition of the above steps. To sum up the philosophy of SGA, a flowchart is shown in

Fig. 2.2.

It is obvious that the occurrence of crossover and mutation is dependent on the

ratios as pc and pm. They determine the so-called “EE” tradeoff between exploitation
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and exploration in GAs. For example, small values of these breeding ratios lead to small

scale exploration around the current solution and tend to protect the heuristics from being

destroyed. Large values of these ratios produce larger scatter of new solutions and explore

more new areas are searched but at the expense of possibly losing the good strength

from the past generations. Nevertheless, a good performance in SGA is attainable by

adopting a high crossover probability prevailing in the space search, an occasionally active

mutation with small probability. At the same time, the population size should be kept

in a moderate scale. By this guideline of choosing GA parameters (Goldberg, 1989),

the diversity and convergence in the evolution can be reasonably optimized in the “EE”

tradeoff.

Besides the crucial operators demonstrated above, representation of the chromo-

somes is another key issue in genetic algorithm. The representation scheme can severely

limit the window by which the system observes its world. There are many ways of en-

coding in GAs such as binary encoding, tree encoding, including the real representations

adopted in this study (Mitchell, 1996). The success of some coding is largely problem

dependent. For example, a problem involving simple on/off control is ideally suited to

binary coding. When applying to real world, the binary string may have inherent prob-

lems as “hamming cliffs” that will have difficulties in continuously representing the real

numbers. For example, the value of 15 is represented as 01111 in binary encoding, but

for GA operation to have a value of 16 requires change of all the bits to achieve the string

as 10000. For this reason, real representation is preferred in this study as it can represent

the parameters itself directly and is applicable to meet general purposes.

Many variants of GA can be formulated for a given problem. Such variants may

differ in many ways, i.e., methods for creating an initial population, genetic operators

for transforming individuals, and parameters such as population size, breeding ratios

(possibilities of applying different operators). However, they share a common principle:

a population of individuals undergoes some transformations, and during this evolution
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process the individuals strive for survival. Good review of the transformation mecha-

nisms as mutation and crossover, the balance of exploration and exploitation, as well as

application can be found in Goldberg (1989) and Michalewicz (1992).

2.3 Search Space Reduction for Genetic Algorithm

The application of GA in structural identification began in early 1990s for relatively

simple problems (Yao et al., 1993; Doyle, 1994). It was introduced in identifying phys-

ical parameters, i.e., stiffness, damping, and mass of larger structural systems, in 2000s

(Koh et al., 2000, 2002, 2003a; Perry et al., 2006; Koh and Htun, 2004). In these re-

search works, GA has been investigated in direct application, distributed computing,

GA-compatible local searcher, architectural modification, and GA-associated identifica-

tion uncertainty. To tap the full potential and versatility of GAs in large-scale structural

health monitoring, the major task is to improve the search capability. The most recent

improvement of sequential GA in physical domain identification is the SSRM method,

with versatile applications in structural identification, damage detection, and offshore

applications (Perry, 2006). The success of SSRM motivates its concept demonstration in

this section and further advancement in the following section.

Treating the physical domain identification as optimization problems, the solution

space is substantially huge and incorporates local optima and global optima. For stochas-

tic optimization methods like GA, there is no specifically defined search direction unlike

in gradient-based methods. The operation mechanisms have to be specially devised for

exploiting good solutions available and exploring in the search space for new solutions.

In SGA, this tradeoff is expected to reach a balance within each generation by selecting

suitable crossover rate and mutation rate. However, the solution space explored in one

run is limited since there is only one set of such probability based ratios in SGA. To

explore as much as possible in the solution domain, the evolution via single population in

SGA is improved by using MGAMAS algorithm (Perry et al., 2006). The basic concept is
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to use multiple species instead of only a single of them. One of the species is used mainly

to keep the best solutions while the others are used to search for new solutions. Different

mutation and crossover strategies are used in the breeding species in order to enhance

the search diversity. Furthermore, it is desirable that the computational effort could be

adaptively focused on more new dimensions in the exploration process when some of the

parameters have converged. This is achieved by an outer SSRM loop. Through several

preliminary MGAMAS runs, the mean µh
i and standard deviation σh

i of the identified

parameters were computed. Therefore the new search space is defined, i.e., Eq. (2.8){
⌢
a

h
i = µh

i − w × σh
i

⌢

b
h

i = µh
i + w × σh

i

(i = 1, 2 · · · k) (2.8)

where ⌢
a

h
i and

⌢

b
h

i are the lower and upper boundaries of the current SSRM search limit.

The value w defines the window size, k is the number of variables and h represents the

present run. The ideas of MGAMAS and SSRM are illustrated as Fig. 2.3 and Fig. 2.4,

respectively. Convergence history is traced by the mean µh
i and standard deviation σh

i of

the parameters. At the later runs of SSRM, the standard deviation tends to decrease as

the corresponding parameter is in convergence. Then the search limit of the parameter

reduces accordingly. The scale of search limit reduction is governed by the window size

w (Perry et al., 2006). To sum up, SSRM works by reducing the search space for those

parameters that converge quickly. Computer time will not then be spent on exploring the

area far away from the optimal solution. Instead, the computational effort is expected

to be saved by attempting to focus on the more promising solution space.

2.4 Improved SSRM by Sampling Test

A drawback of SSRM is that the search space reduction is not activated right from the

beginning. Several initial MGAMAS runs are necessary to make the means and standard

deviation statistically meaningful. Hence, using SSRM too early may result in “jump

out”, i.e., the scaled search space is out of the real solution domain. Nevertheless, these
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initial MGAMAS runs cost up to 30% to 40% of total fitness evaluations (Perry et al.,

2006). Furthermore, the initial population may not cover the search space as uniform

as it could, for example, by some sampling method. In this section, an enhanced way is

proposed to sample in the search space and the search limits are then defined according to

the fitness of the samples. At the same time, the original way of defining search space by

SSRM is retained as a fall back, in case that sampling method provides an inappropriate

search limit. The following sections present a rational way to take samples in the search

space.

2.4.1 Sampling Methods

As a multi-dimensional optimization problem, the identification of multi-DOF (MDOF)

system involves a huge solution space. Sampling in a grid manner is impractical as

computational effort will increase exponentially with the identification dimensions. For

example, with k parameters and s points per parameter, a total of sk fitness evaluations

are required. An increase in grid density will of course provide more information of fitness

surface. However, it will also pose an expensive demand on computer time. Therefore,

an economical way to take samples is desired, as it is better to conduct small scale

logical sampling experiments for hyper plane search. These samples could be much more

sparse than the sk sampling manner, but remains as uniform as well in the solution

space. In the present study, four sampling methods will be investigated, incorporating

orthogonal arrays (OA) (Hedayat et al., 1999), randomly uniform distribution, Latin

hypercube (McKay et al., 1979), and Hammersley sequence (Hammersley, 1960). Typical

distributions of these four sampling methods are given in Fig. 2.5 for comparison, and

289 samples are considered herein.
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2.4.1.1 Random Uniform Distribution

Within the search limit, it is possible to make trials in the solution space by uniform

samples. If originally sampled between 0 and 1, an element of the j-th trial sample

(x1, · · · , xi, · · · , xk)j , (j = 1, 2, · · ·n) in the new search space is

xi = ⌢
a

h
i + U(0, 1)× (

⌢

b
h

i −
⌢
a

h
i ) (2.9)

where U(0, 1) stands for uniform probability distribution. The samples are randomly

generated using pseudo random numbers. They can be shown to pass standard statistical

tests for randomness like a Kolmogorov-Smirnov test.

2.4.1.2 Latin Hypercube

Latin hypercube was introduced by McKay et al. (1979) to study the output distribu-

tion of computer program by selecting random input variables. This technique is often

applied in uncertainty analysis. Through Latin hypercube sampling, one will find that

there is only one sample in each row and each column of a square grid. The idea is

that Latin hypercube sampling subdivides the unit cube into N intervals along each

dimension. Then the samples are chosen randomly such that each interval contains ex-

actly one point. Latin hypercube sampling is generally not quasi-random in the sense

of minimizing discrepancy as the Hammersley sequence later. This could be attributed

to the restrictions to the placement of Latin hypercube samples. However, the stratified

random sampling procedure by Latin Hypercube can also reproduce the uniformity via

sparse samples, instead of in an sk sampling manner. Thus it is a cost-effective way to

exploring the solution space by Latin Hypercube sampling based on Eq. (2.9).

2.4.1.3 Orthogonal Array (OA)

Orthogonal arrays were originally proposed in statistics (Rao, 1947). They are now

often referred to as Taguchi method (Taguchi et al., 2004), widely applied in medicine,
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manufacturing and quality engineering in the planning of experiments. The purpose is

to examine that how changes in the levels of various factors affect a response variable of

interest. This is a typical issue of k factor with s levels, conventionally solved through

a full factorial experimental design. OA samples are essentially selected out of these

full factorial combinations, but OA reduces the experimental trials drastically. For an

experiment with k variables at s different settings, a full factorial experiment would

require sk experiments. By OA, this number reduces to k(s− 1)+ r(s− 1)(s− 1)+1 and

r is the number of potential interaction among the variables (Besterfield et al., 1995).

Actually orthogonal array is a type of experiment, by which the independent variables

are statistically “orthogonal”. The samples generated by OAs will be uncorrelated to

one another in a statistical manner.

Typically OA is represented as OA(n, k, s, t). The number of rows n is the array size

and measures the number of samples. The value of k defines the number of factors or vari-

ables. The value of s actually represents the number of levels that has been evenly divided

along one variable dimension of a solution. The value t is the strength of OAs, which is

the number of columns that all the paired possibilities can be seen an equal number of

times. When OAs are applied to sample in the search space for system identification, n

represents the total number of samples and k is the number of unknown parameters to be

identified. Thus, a typical variable xi in the sample (x1, · · · , xi, · · · , xk)j , j = 1, 2, · · ·n

in terms of OA is expressed in Eq. (2.10), where mOA is one of the items in a row of OAs.

xi = ⌢
a

h
i +

mOA − 1
s− 1

× (
⌢

b
h

i −
⌢
a

h
i ) i = 1, 2, · · · k; mOA ∈ [1, s] (2.10)

Specific values of n, k, s, and t are not continuously varied by themselves as they depend

on the way to construct OAs. There are a number of techniques for constructing OAs

(Hedayat et al., 1999). Generally, the larger the desired strength, the harder it is to

construct the array. It may not be easy to find exact OAs suitable for a particular

identification. However, the following property of OAs (Hedayat et al., 1999) makes the

application more flexible: any n × k′ subarray of an OA(n, k, s, t) is an OA(n, k′, s, t′),
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where t′ = min(k′, t). The significance of OAs is to have as much as information of fitness

surface but uses the smallest number of samples. Therefore, the computational cost of

sampling is reduced.

2.4.1.4 Hammerley Sequence

Hammersley sequence sampling can also provide uniform samples of search space. It is

part of the quasi-Monte Carlo methods or low-discrepancy sampling family, which are

originally used to calculate multi-dimensional integrals without a closed-form solution.

“Quasi” here means a sampling approach that employs a strictly deterministic algorithm

to generate samples in an n-dimensional space. “Discrepancy” refers to a quantitative

measure of how much the distribution of samples deviates from an ideal uniform distribu-

tion. Unlike the pseudo random sequences, quasi-random sequences fail many statistical

tests for randomness. However, these random number generators seek to produce highly

uniform samples of the unit hypercube. With new interpretation of U(0, 1) in a Hammer-

sley manner, Eq. (2.9) is applicable for sampling test via Hammersley sequence samples.

The definition of Hammersley sequence, together with the way to establish the uniformity

of points, is shown as follows. An arbitrary integer n can be written in radix-R notation

n ≡ nmnm−1 · · ·n2n1n0·0 = n0 + n1R+ n2R
2 + · · ·nmR

m (2.11)

where m = [logR(n)] = [ln(n)/ ln(R)], the square brakets [ ] extracts the integer part of

the numbers inside. Then an inverse radix number, a unique fraction between 0 and 1,

can be constructed by reversing the order of the digits of n. It is

ψR(n) = 0·n0n1n2 · · ·nm = n0R
−1 + n1R

−2 + n2R
−3 + · · ·+ nmR

−m−1 (2.12)

The Hammersley points on a k-dimensional cube are

xk(n) = [ n/N, ψR1(n), ψR2(n), · · · ψRk−1
(n) ] (2.13)

where n = 0,1, 2, · · · , N −1 and the values for R1, R2, · · · , Rk−1 are the first k−1 prime

numbers. For quasi-randomness, the integers Ri must be mutually prime. Because of
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the way in which quasi-random sequences are generated, they may contain undesirable

correlation for the higher coordinates of the sequence. This is significant in their initial

segments and in the case of higher dimensions. In that case, the uniformity is strongly

affected as the samples cannot uniformly cover the hyper plane any more. To alleviate this

problem, leaping is adopted in this study (Kocis and Whiten, 1997). Setting a leap value

to the next prime number larger than the largest prime base can help maintain uniformity

when generating sample sets for high dimensions (Robinson and Atcitty, 1999).

The significance of these four sampling methods lies in that they can generate highly

uniform samples in exploring the multi-dimensional solution space. This uniformity of

samples, however, is achieved at a drastically reduced cost of fitness evaluations from the

exponential manner of sk to only a productive manner of sk. In summary, uniform sam-

ples can be randomly generated by random uniform distribution and Latin hypercube,

while these samples can be produced as well in determinate ways by OA and Hammers-

ley sequence. Furthermore, the number of variables via OA in Eq. (2.10) is limited, i.e.,

only 33 by OA(512, 33, 16, 2) with level s above 3 (Hedayat et al., 1999). The limita-

tion, however, is not applicable for the other three sampling methods, as which have no

construction difficulty like OA.

2.4.2 Relaxation, Perturbation and Jump-back: Treatment after Sam-
pling

The philosophy of using sampling test to reduce search space is shown in Fig. 2.6. Sam-

pling in the new search range, each variable limit is resized by the minimums and maxi-

mums of the first nb best samples. However, convergence will be compromised if too large

a value is selected for nb. In this study, a rather small value, i.e., 5, is found to work well

for the present investigation. To make the search limit defined by samples more efficient,

relaxation, perturbation and jump-back procedures are necessarily constructed.

The purpose of relaxation is to revise the sampling-defined search space, and ensure
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that the next exploration will start from the neighborhood of the present best solution.

As sampling test will work before each MGAMAS run, the search space may be over

reduced such that the rescaled space does not contain the real solution space. In order to

alleviate this problem, the relaxation procedure is necessary to adjust the search space

defined by the nb samples. It requires that the newly found best solutions via MGAMAS

should be covered by the larger radius of the present search range [ah
i , b

h
i ], but should not

exceed the most originally defined search range [a0
i , b

0
i ]. This is expressed as


ah+1

i = max[xh
i − |xh

i − bhi |, a0
i ],

bh+1
i = min[xh

i + |xh
i − ah

i |, b0i ],

if

if

|xh
i − ah

i | < |xh
i − bhi |

|xh
i − ah

i | > |xh
i − bhi |

(i = 1, 2 · · · k)

(2.14)

where h represents the current number of runs, xh
i is one of the variables in the current

best solution (xh
1 , · · · , xh

i , · · · , xh
k). [ah+1

i , bh+1
i ] is the search space for the next sampling.

Using this relaxation procedure, the balance is considerably improved between reducing

the search space and ensuring the solution is within the new space.

On the other hand, if the mean fitness of nb best samples is not improved, the search

space defined by samples may risk overshooting and missing the proper search space.

Therefore a restoring mechanism is expected to recover the search limit, which leads to

the proposed perturbation procedure and jump-back procedure.

The purpose of perturbation is to discover the best candidate by a decoupled SSRM

search. This automatic correction of search limits is essential in exploring the parameter

space. The perturbation procedure requires running the current MGAMAS loop in an

independent search limit defined by SSRM rather than those defined by samples. The

search space is described in Eq. (2.8). The mean and variance are based on all the best

chromosomes up to the present run. In fact, the SSRM is able to restore the search range

to a reasonable limit, even if misled by the search limit defined by sampling test. The

reason is that SSRM-defined search space provides a robust alternative by tracing the

mean and standard deviation of the best parameter in each run. The standard deviation
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provides an indication of the convergence uncertainty of the identified parameter and the

search space can be adjusted accordingly. If sufficient runs are carried out, the statisti-

cally defined search limit will become significant as it can always suggest a promising area

containing optimal solution. More importantly, this SSRM-defined search space requires

no additional evaluation of fitness function.

If perturbation is activated, a jump-back procedure is then followed to make the

next run start from one of the previous search ranges. The historical search range of

each run has been recorded as the program goes. This is shown in Fig. 2.6. Because the

best candidate explored by SSRM in the perturbation procedure suppose to be inside

the search limit, the current range will keep jumping back until it covers the newly found

best solution. Finally, the jump back procedure will keep the search range as [ah−l
i , bh−l

i ],

which satisfies

xh
i ∈ [ah−l

i , bh−l
i ] (i = 1, 2 · · · k) (2.15)

where l ∈ [1, h], denotes the number of runs that has jumped back to satisfy Eq. (2.15).

When the jump-back is finished, it will step into the usual relaxation procedure. Then a

new search space is modified by Eq. (2.14) on basis of the jumped search range [ah−l
i , bh−l

i ].

That is


ah+1

i = max[xh
i − |xh

i − b
h−l
i |, a0

i ],

bh+1
i = min[xh

i + |xh
i − a

h−l
i |, b0i ],

if

if

|xh
i − a

h−l
i | < |xh

i − b
h−l
i |

|xh
i − a

h−l
i | > |xh

i − b
h−l
i |

(i = 1, 2 · · · k)

(2.16)

It is noted that the search space will be reset in three cases including sampling test,

relaxation and jump-back procedures. The relaxation will be active regardless of the

activation of perturbation procedure, and helps much if over-reduction is discovered by

the samples. However, jump-back will not work if there is no perturbation, as the search

space defined by the samples proves to be capable of producing progressive improvement

with better solutions. Using these search space resizing processes, the balance could be

considerably improved between the reduction of search space and ensuring a new search
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space that incorporates the optima.

In summary, the proposed iSSRM method with sampling test carries out an inner

MGAMAS loop and an outer sampling exploration. The inner MGAMAS is to find the

best solution in each run, which is set as the center of new search limit. The outer

sampling test is to define a radius of the search limit for the next run. Whether a new

search limit defined in this way contains the real solution is judged by the improvement of

the measure of mean fitness value of the first nb samples. If the measure is not improved

compared to the previous sampling run, a wrong search limit is implied. In order to

restore the search limit, changes are proposed to conduct in redefining the center and

radius of search in this study. The center, i.e., the best solution, is to be determined

by a perturbation procedure via SSRM search. The radius is, however, enlarged by the

jump-back and relaxation procedures.

2.5 Numerical Examples

To test the four sampling methods for the proposed sampling based SSRM, two exam-

ples are investigated including lumped mass systems (Perry et al., 2006) of 10 degree-of-

freedom (DOF) and 20-DOF. As a result of random excitations, accelerations are gener-

ated by constant-average-acceleration Newmark method. Rayleigh damping of 2% is set

equally for the first two modes. The search space is typically set as from 0.5 to 2.0. That

is, the lower and upper bounds are set to be half and twice of the actual values. In the

identification, the mass distribution of the structures is assumed as known while the stiff-

ness distribution and two Rayleigh damping coefficient are to be identified. Both the in-

put and output are assumed to be contaminated by Gaussian white noise with zero mean

and variance of one. The noise levels considered are 0%, 5%, and 10%. GA parameters

recommended by Perry (2006) will be used both for SSRM and iSSRM methods herein,

which are given in Tables 2.1 and 2.2. These parameters will be studied for iSSRM until

the best sampling method is suggested from this investigation. The sample size adopted
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in this study differs with examples. To comply with the ease of constructing, especially

OAs, we use 289 samples for 10-DOF system and 512 samples for 20-DOF system. Espe-

cially, orthogonal arrays used in this study are OA(289, 12, 17, 2) and OA(512, 22, 16, 2),

respectively. They are extracted from OA(289, 18, 17, 2) and OA(512, 33, 16, 2). To avoid

possible bias reporting, the input forces and noise pattern are freshly generated for each

run. The results reported in the following sections are the average from 25 runs, except

for Fig. 2.10 which is a typical result from one run. Total fitness evaluations are 5,000

for 10-DOF system with 12 unknowns and 10,000 for 20-DOF with 22 unknowns.

As shown in Fig. 2.7 and 2.8 which are free of noise, convergence histories of fitness

and mean error consistently prove that the iSSRM via sampling test is much better

that original SSRM and SGA. For a given 5,000 fitness evaluations, the identified results

by iSSRM via sampling provides the highest fitness. It identifies almost exact values,

corresponding to fitness equals to 1,000 in the 10-DOF system. In the mean error plot,

the sudden drop around 0.4 normalized evaluation of SSRM is reasonable, as 4 out of

total 10 runs are used for calculating mean and standard deviation in Eq. (2.8). The

mean error plot also shows that SGA converges rather slowly in almost 80% evaluations.

The reason is that GA has to search new possibilities in the same [0.5, 2.0] range in each

generation. However, both SSRM and iSSRM reduce the search space in each run. The

fitness evaluations are then strategically allocated for the most worthy solution space.

Typically, the mean errors of identified stiffness by iSSRM via sampling test are less than

1% at the end of 5,000 fitness evaluations.

Fig. 2.9 illustrates that consistent improvements are achieved by the iSSRM methods

in the presence of 0%, 5%, and 10% noise. It is noted that the present comparison is

based on the recommended parameters for SSRM. As the sampling test is introduced

in iSSRM, balanced exploration and exploitation in original SSRM are necessary to be

re-examined for iSSRM via a parametric study. Before an extensive parametric study for

GA parameters, however, a scalable sampling method has to be suggested for iSSRM.
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This is different from a previous study (Zhang et al., 2009), where parametric study is

restricted due to the limit of OA construction. For example, the maximum number of

unknowns with more than 3 levels allowed by OA is 33 presently via OA(512, 33, 16, 2)

(Hedayat et al., 1999).

To recommend a better sampling method for iSSRM, a comparison study is per-

formed. Without loss of generality, a simple statistical study is carried on those 25

runs for the noise free case. The CPU time reported is based on a workstation with two

3.0GHz-CPUs. The results are summarized in Table 2.3 and 2.4 for 10-DOF and 20-DOF

lumped mass systems. A further study on 20-DOF system is included, as it allows more

extensive investigation of the consistency of the proposed methods on a more unknowns

involved case. Compared to OA and Hammersley sequence, random uniform distribu-

tion and Latin hypercube provide a less robust identification, since the corresponding

standard deviations in the identification error, i.e., in Table 2.3 and 2.4, are consistently

greater than OAs and Hammersley sequence. However, Hammersley sequence is recom-

mended not only because it can provide equally good results with OA, but it is much

more flexible to construct than OA.

There is no perturbation found in the study of this section, although its performance

has been reported (Zhang et al., 2009). This indicates the sampling defined search limit

for the current problem happens to be successful in balanced exploration and exploita-

tion such that the optima are accurately bracketed for each run. More importantly, an

iSSRM run without activating the perturbation and jump-back procedures implies that

additional computer time in the fitness evaluation is avoided for restoring the search

limit.
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2.6 Parametric Study

The comparison study of four sampling methods suggests that Hammersley sequence is

the best candidate for iSSRM based on consideration of sampling uniformity, accuracy

and scalability. It shows that the quasi-random sequence provides uniform samples in the

solution space. The Hammersley sequence is much more flexible to construct than OA,

as well as gives much more robust and accurate results than random uniform distribu-

tion and Latin hypercube. Compared to a recent work on improving GA, the proposed

sampling based GA achieves significantly better accuracy based on the same number of

fitness evaluations. In the comparison of sampling methods, however, GA parameters

adopted are based on the best performance of SSRM, which may not be equally suit-

able for iSSRM. Due to the involvement of sampling test, trade off of exploitation-and-

exploration has to be re-examined. The reason is that the original balanced exploration

and exploitation pattern will be affected with additional allocation of total evaluations

on the sampling tests. This trade off investigation is readily carried out by virtue of

the scalability in quasi-random sequences construction, i.e. Hammersley sequence in this

study.

To achieve better performance of iSSRM, parametric study is conducted in this sec-

tion. Without loss of generality, this study is investigated based on noise-free measure-

ments. The purpose is to find suitable GA parameters for the best iSSRM performance.

The criterion used herein is to compare the accuracy that can be achieved in a given

number of fitness evaluations. Total fitness evaluations are determined by the size of

population, generation, sampling, and runs. It can be expressed as

TotalEval = (PopSize×GenSize× 3 + SampleSize)×Runs (2.17)

The present parametric study considers only typical combinations, and thus the param-

eters of interest will vary while other parameters will be fixed. It is an efficient way to

study the effect of different parameters. In this way, huge computer time is avoided by
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only considering typical parameter combinations. For example, if 3 different values are

considered for each of 10 parameters of concerns, there will be 59,049 combinations in

total.

The current parametric study is focused on the allocations of total evaluations into

outer sampling test and inner MGAMAS search, with special considerations in the size of

samples as well as populations, generations, and the number of MGAMAS runs. The test

on parameters will comprise two sections. First, the main test will be carried out for the

evaluation allocation into sampling and MGAMAS exploring. The GA parameters such as

crossover ratio, mutation ratio, migration ratio, etc, will be fixed, using the recommended

values (Perry et al., 2006). The size effect of MGAMAS exploration will be studied by

three typical values for samples, population, and runs. The number of generations will be

given via Eq. (2.17). This will introduce totally 27 cases for each investigation. Second,

additional test will further tune the sampling size and also determine the nb value, which

governs the convergence performance. The value of nb is investigated with two other

possibilities, i.e., 4 and 7. Sample size is further tuned by reducing or increasing 2 times

the number of unknowns Nu. When the main test is finished, additional test will continue

by fixing the other parameters and only vary nb and sample size. Both identifications on

known mass systems and unknown mass are conducted in the parametric study.

2.6.1 Known Mass System

In the first part, known mass case is considered for 5-DOF, 10-DOF, 20-DOF, and 50-

DOF lumped mass system. The “total evaluations” refers to the number of times to

evaluate the fitness function, as defined in Eq. (2.2). It is set to be 5,000, 10,000, 40,000,

and 250,000 for the four different systems, respectively. On a two-CPU 3.0-GHz work-

station, the computational time is approximately 0.8s, 3s, 26s, and 419s for 5, 10, 20 and

50-DOF systems, respectively. The total evaluations are chosen such that the mean error

for iSSRM by Hammersley sequence, using some basic GA parameters, is about 2% al-
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lowing for further fine tuning of GA parameters. The 50-DOF system will be investigated

after the 10-DOF and 20-DOF systems, as the 50-DOF system involves more unknowns

and thus will be time-consuming in parametric studies. Better understanding of 10-DOF

and 20-DOF system from the parametric study will be helpful to choose more suitable

parameter for examining the 50-DOF system. The fixed parameters for iSSRM are in

Table 2.5. The parameters to be varied and their trial values are listed in Table 2.6.

2.6.2 Unknown Mass System

In the second part of parametric study, unknown mass is considered for 5-DOF, 10-DOF

and 20-DOF systems. This is a more challenging problem which might introduce more

local optima. The reason is that different combinations of mass and stiffness can possibly

produce the same eigenpairs, thus resulting in ridges in the fitness contour. Using the

formulation Eq. (2.2), there will be regions producing the same fitness. On the other

hand, the 50-DOF system is not involved in this part of the study, since huge computer

time will be incurred for a total of 27 cases in 50-DOF system. While the identification is

more difficult for unknown mass problem, the total evaluations are increased to 40,000,

80,000 and 600,000 for the 5-DOF, 10-DOF and 20-DOF systems, respectively. The

computer times are approximately 15s, 65s and 1,029s. The various values for three

parameters, i.e., the size of population, samples, and total number of MGAMAS runs,

are chosen based on the results of known mass cases. Similar to the previous known mass

problem, a total of 27 cases are carried out in this part of the parametric study. The

fixed parameters are listed in Table 2.7 and the investigated GA parameters in Table 2.8.

2.6.3 Recommended GA Parameters

After an elaborate study, the best parameters are summarized in Table 2.9 with some

brief comparison. In the case of known-mass identification, iSSRM yields much better

accuracy than SSRM and this is achieved at half of the total evaluations of SSRM. The
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relative computational effort is presented as the evaluation ratio equal to the total eval-

uations by iSSRM over that by SSRM (Perry et al., 2006). Typically, only 0.07% and

0.15% mean error lies in identified stiffness for 10-DOF and 20-DOF system, whereas

the corresponding errors are 0.43% and 0.52% reported by Perry et al. (2006). In the

unknown mass case, the results listed in Table 2.9 are based on 10% noise in the mea-

surements. The mean errors of identified stiffness and mass are consistently better than

those reported by Perry et al. (2006). The global performance of the iSSRM method can

be observed from Table 2.10, where identifications are reported in presence of different

levels of noise. Typical identification of 20-DOF lumped mass system under 10% noise

is shown in Fig. 2.10.

Full results of parametric tests conducted on the known-mass and unknown-mass

cases are presented in Appendix A. From the main test on the size effect of population,

samples, and runs, the following sets of parameters performs best out of 27 cases. In

the known-mass case, 0.3
√
NE/30NU/15, i.e., “BCB” in Table A.3 of Appendix A, are

suggested for 5-DOF system where NE is the total number of fitness evaluations and

NU is the total number of unkowns to be identified. 0.15
√
NE/30NU/15, i.e., “ACB”

in Table A.4 and Table A.5 of Appendix A, are recommended for 10-DOF and 20-

DOF lumped mass system. 0.15
√
NE/45NU/20, i.e., “ACB” in Table A.6, are better for

50-DOF system. In unknown-mass case, 0.15
√
NE/18NU/25, i.e., “AAC” in Table A.8

and A.9 of Appendix A, are recommended for 10-DOF and 20-DOF lumped mass system.

The additional test on nb value and sample size gives marginal benefits. Typically,

0.15
√
NE/32NU/15, i.e., in additional test of Table A.8 and A.9, may be better for 10-

DOF and 20-DOF system. However, the parameters recommended in the main tests are

remained as “ABB” for consistency consideration. The value of nb is recommended to

be 5 throughout this study, as it performs better than 4 or 7 in the present parametric

study of all the cases.

To apply iSSRM method in different number of unknowns, GA parameters can be
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interpolated based on the current study. For even larger systems, several recommen-

dations would be beneficial for good identification. Small population, i.e., 0.15
√
NE is

favored regardless of whether mass is known or not. For stiffness identification, more

computational effort should put in sampling test than in MGAMAS. In simultaneously

identifying mass and stiffness parameters, however, more intensive effort should be put

on MGAMAS rather than the outer sampling test. As it will be implied in the next

chapter that the unknown mass case often introduce more local optima and ridges than

the known mass case, finer sampling meshes in the solution space tend to define a smaller

search limit and thus risk more in overshooting the global optima.

When studying the iSSRM method, two interesting phenomena are observed as

shown in Fig. 2.11. First, convergence of fitness value is progressively improved, especially

in the first half of total evaluations. The corresponding convergence of mean error is,

however, not as smooth as that of fitness. This indicates the existence of local optima

in the first half the history as greater fitness does not necessarily mean better candidate.

Besides, the uneven curves lie typically more in the earlier part than the later part.

Second, the convergence rate by the earlier 50% evaluations achieves better performance

than the subsequent 50% evaluations, in terms of mean error in identified parameters. It

implies that the later 50% evaluations might be spent in fine tuning for the global peak,

since marginal improvement is found on the identification errors, and the errors are as

small as only 5% in the presence of 10% noise.

2.7 Conclusions

In this study, an iSSRM method is presented for system identification. By taking samples

in the search space, it allows the inner MGAMAS search intensively with focus on the

most promising solution possibilities. The Hammersley sequence out of the four sampling

methods considered is recommended. Numerical investigation gives consistent identifi-

cation on the stiffness values of 10-DOF and 20-DOF lumped mass systems. It shows
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that quasi-random sequence is able to provide acceptably uniform samples in the solution

space. They are much easier to construct than OA, and gives much more robust and ac-

curate results than random uniform distribution and Latin hypercube. In comparison to

the recent similar work on improving GA, the iSSRM method could achieve remarkably

better accuracy using slightly more than half of evaluations of SSRM (Perry et al., 2006).

Besides, the present study can be readily extended to other quasi-random sequences if

necessary, e.g. Holton and Sobol sequences, which is not covered in this study. For more

general applications in structural identification, the GA parameters can be interpolated

through the values listed in Table 2.11.
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Table 2.1: GA parameters for iSSRM with sampling test: 10-DOF system

GA parameters
10-DOF lumped mass system

SGA SSRM SSRMRand SSRMLatin SSRMOA SSRMHam

Population size 57 5 × 3 5 × 3 5 × 3 5 × 3 5 × 3

Generations 90 34 14 14 14 14

Sample size - - 289 289 289 289

Total runs - 10 10 10 10 10

Crossover rate 0.95 0.8 0.8 0.8 0.8 0.8

Mutation rate 0.05 0.2 0.2 0.2 0.2 0.2

Migration rate - 0.05 0.05 0.05 0.05 0.05

Regenerations - 2 2 2 2 2

Reintroductions - 30 10 10 10 10

Window width - 4 4 4 4 4

Total evaluations 5,130 5,100 4,990 4,990 4,990 4,990

Table 2.2: GA parameters for iSSRM with sampling test: 20-DOF system

GA parameters
20-DOF lumped mass system

SGA SSRM SSRMRand SSRMLatin SSRMOA SSRMHam

Population size 80 7 × 3 7 × 3 7 × 3 7 × 3 7 × 3

Generations 126 48 23 23 23 23

Sample size - - 512 512 512 512

Total runs - 10 10 10 10 10

Crossover rate 0.95 0.8 0.8 0.8 0.8 0.8

Mutation rate 0.05 0.1 0.1 0.1 0.1 0.1

Migration rate - 0.05 0.05 0.05 0.05 0.05

Regenerations - 3 3 3 3 3

Reintroductions - 40 20 20 20 20

Window width - 4 4 4 4 4

Total evaluations 10,080 10,080 9,950 9,950 9,950 9,950
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Table 2.3: Comparison of sampling methods: 10-DOF lumped mass system with 0%
noise

Test
Fitness Stiffness Error (%) CPU Time Evaluations Perturb-

Mean SDa Median Mean SDa (sec) ation

SGA 17 (2) 12 11.48 (0.68) 1 5,130 -

SSRM 431 (33) 412 2.01 (0.22) 1 5,100 -

SSRMRandb 806 (43) 890 0.89 (0.20) 1 4,990 0

SSRMLatinb 856 (41) 953 0.80 (0.19) 1 4,990 0

SSRMOAb 856 (21) 887 0.66 (0.09) 1 4,990 0

SSRMHamb 869 (33) 947 0.54 (0.10) 1 4,990 0

a SD=standard deviation

b SSRMRand, SSRMLatin, SSRMOA, and SSRMHam are the iSSRM method sampled by random

uniformly, Latin hypercube, orthogonal arrays, and Hammersley sequence, respectively.

Table 2.4: Comparison of sampling methods: 20-DOF lumped mass system with 0%
noise

Test
Fitness Stiffness Error (%) CPU Time Evaluations Perturb-

Mean SDa Median Mean SDa (sec) ation

SGA 2 (0) 1 18.91 (0.93) 6 10,080 -

SSRM 199 (18) 191 3.70 (0.34) 6 10,080 -

SSRMRandb 441 (34) 456 2.56 (0.36) 6 9,950 0

SSRMLatinb 551 (48) 556 2.06 (0.36) 6 9,950 0

SSRMOAb 502 (29) 502 1.79 (0.19) 6 9,950 0

SSRMHamb 595 (30) 580 1.61 (0.15) 6 9,950 0

a SD=standard deviation

b SSRMRand, SSRMLatin, SSRMOA, and SSRMHam are the iSSRM method sampled by random

uniformly, Latin hypercube, orthogonal arrays, and Hammersley sequence, respectively.
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Table 2.5: GA parameter test values for known mass
system: fixed parameters

Fixed parameters
Lumped mass systems

5-DOF 10-DOF 20-DOF 50-DOF

Total evaluations 5,000 10,000 40,000 250,000

Crossover rate 0.8 0.8 0.8 0.8

Mutation rate 0.2 0.2 0.2 0.2

Migration rate 0.05 0.05 0.05 0.05

Regeneration 2 2 3 3

Reintroduction 5 20 50 100

Window width 4 4 4 4

Table 2.6: GA parameter test values for known mass system:
investigated parameters

Parameters
Cases

A B C

Main test

Population size 0.15
√

NE 0.3
√

NE 0.5
√

NE

Sample size 10NU
a/18NU

b 18NU
a/30NU

b 30NU
a/45NU

b

Number of runs 9a/15b 15a/20b 20a/25b

Additional test

nb trails 4 5c 7

Sample size -2NU +2NU

a Parameters are considered in 10- and 20-DOF cases.

b Parameters are used in 50-DOF case.

c Default value in main test
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Table 2.7: GA parameter test values for un-
known mass system: fixed parameter

Fixed parameters
Lumped mass systems

5-DOF 10-DOF 20-DOF

Total evaluations 40,000 80,000 600,000

Crossover rate 0.4 0.4 0.4

Mutation rate 0.2 0.2 0.1

Migration rate 0.05 0.05 0.05

Regeneration 3 3 3

Reintroduction 50 50 100

Window width 4 4 4

Table 2.8: GA parameter test values for un-
known mass system: investigated parameters

Parameters
Cases

A B C

Main test

Population size 0.15
√

NE 0.3
√

NE 0.5
√

NE

Sample size 18NU 30NU 45NU

Number of runs 15 20 25

Additional test

nb trails 4 5a 7

Sample size -2NU +2NU

a default value in main test
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Table 2.9: Performance comparison for SSRM and iSSRM methods

Results
Known mass systems Unknown mass systems

10-DOF 20-DOF 50-DOF 10-DOF 20-DOF

Time (h:m:s) 00:00:03 00:00:26 00:06:59 00:01:05 00:17:18

Evaluation ratioa 0.5 0.5 - 0.08 0.3

Mean error - k (%) 0.07(0.43)b 0.15(0.52) 0.87 2.05(2.98) 2.43(2.78)

Max error - k (%) 0.19(1.21) 0.38(1.60) 3.12 5.08(6.62) 6.78(8.64)

Mean error - m (%) - - - 1.98(3.00) 2.60(3.00)

Max error - m (%) - - - 4.69(6.81) 7.54(10.40)

a Evaluation ratio is obtained by current total evaluations divided by total

evaluations by Perry et al. (2006).

b Data in the brackets are by Perry et al. (2006): 0% noise for known mass system

and 10% noise for unknown mass case.

Table 2.10: Identification of lumped mass systems via iSSRM method

Results
Known mass systems Unknown mass systems

10-DOF 20-DOF 50-DOF 10-DOF 20-DOF

0% Noise

CPU time (h:m:s) 00:00:03 00:00:26 00:06:59 00:01:05 00:17:18

Mean error - k (%) 0.07 0.15 0.87 0.11 0.07

Max error - k (%) 0.19 0.38 3.12 0.26 0.28

Mean error - m (%) - - - 0.11 0.08

Max error - m (%) - - - 0.30 0.26

5% Noise

CPU time (h:m:s) 00:00:03 00:00:26 00:06:59 00:01:05 00:17:18

Mean error - k (%) 1.65 1.97 4.28 1.11 1.17

Max error - k (%) 4.16 4.91 18.76 2.63 3.19

Mean error - m (%) - - - 1.04 1.31

Max error - m (%) - - - 2.04 3.77

10% Noise

CPU time (h:m:s) 00:00:03 00:00:26 00:06:59 00:01:05 00:17:18

Mean error - k (%) 2.78 4.17 7.85 2.05 2.43

Max error - k (%) 7.0 10.84 34.38 5.08 6.78

Mean error - m (%) - - - 1.98 2.60

Max error - m (%) - - - 4.69 7.54
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Table 2.11: Recommended GA parameters for iSSRM method

Parameters
Known mass systems Unknown mass systems

5-DOF 10-DOF 20-DOF 50-DOF 5-DOF 10-DOF 20-DOF

Total Evaluations 5,000 10,000 40,000 250,000 40,000 80,000 600,000

Population size 7 5 10 25 10 14 39

Generations 6 20 67 135 55 80 246

Sample size 7a/210b 12a/360b 22a/660b 52a/2340b 12a/360b 22a/660b 42a/1260b

Number of runs 15 15 15 20 20 20 20

nb value 5 5 5 5 5 5 5

Crossover rate 0.8 0.8 0.8 0.8 0.4 0.4 0.4

Mutation rate 0.2 0.2 0.1 0.1 0.2 0.2 0.2

Migration rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Regeneration 2 2 3 3 3 3 3

Reintroduction 5 10 30 50 20 40 100

Window width 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Time (m:s) 00:0.78 00:03 00:26 06:59 00:15 01:05 17:18

a the number of unknowns

b the number of samples





CHAPTER 3

Improved SSRM with Gradient

Search

Structural identification in physical domain is usually posed as an optimization problem.

By adopting some heuristic rules to maximize a prescribed fitness function, genetic al-

gorithms (GA) have proved to be a relatively robust method in identifying the unknown

system. In Chapter 2, improved search space reduction method (iSSRM) via uniform

samples makes it possible to achieve more accurate results with about half of computer

time by Perry et al. (2006). However, the reasons on why GA with reduced search space

can work are not well established. An interesting finding on the convergence history

of 20-DOF system in Chapter 2 indicates the significance of having knowledge on the

contour of fitness surface. Although traditionally treated as an optimization process, the

information on the fitness surface of structural identification has not been investigated in

the past literatures. With better understanding of the fitness surface, the computational

efficiency is expected to improve further with more advanced optimization strategies.

In this chapter a “peak shifting” observation is reported on the fitness surface. It

implies that there is only one global peak surrounded by various local optima in the

fitness contour. In the presence of measurement noise, the global peak will shift and its
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magnitude decreases. At the same time, new local optima are seldom produced even as

the noise level increases. The observation of peak shifting strongly suggests the use of

hybrid optimization for system identification. Within a reasonable search range, iSSRM

is presented to overcome the local optima away from the global peak. As the solution

gets sufficiently close to the vicinity of the global peak, peak finding is then investigated

by local search. The local search is investigated using gradient based and non-gradient

based methods, including conjugate gradient (CG) method, Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method, as well as simulated annealing (SA) method. Based on the

knowledge of parametric study in Chapter 2, reasonable switch point for iSSRM search

and local search is recommended in this chapter. The efficiency of the proposed hybrid

optimization strategy is demonstrated by three numerical examples, i.e., a lumped mass

system, a plate structure, and a truss model. Supported by “peak shifting”, even better

results are obtained with further reduction of computational effort.

3.1 Characteristics of Structural Identification as an Opti-

mization Problem

In the field of numerical optimization, it is well recognized that there is no single best

algorithm for general application. However, good knowledge on the shape of fitness sur-

face will help to choose a problem-suitable strategy. Practical identification of structural

system is usually associated with a large number of variables. This poses considerable

difficulties to make the fitness surface visible though two- or three-dimensional plots.

However, through small scale testing, i.e., variables equal to or less than 2, the nature of

structural identification can be discovered in an optimization perspective. To gain some

insight, the investigation of fitness surface will be conducted for single DOF and 2-DOF

lumped mass system. In this study, fitness function is evaluated on basis of Eq. (2.2),
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which is recalled here as

ϕ =
1

0.001 +
p∑

i=1

q∑
j=1

(üm
ij − üe

ij)
2

(3.1)

To investigate the fitness surface, each unknown parameter will result in an independent

solution dimension. As the contour of fitness surface is unknown in advance, the search

domain will be meshed evenly in a grid manner. The method is to evaluate the fitness

function at each point on the regular grid of parameters. It is usually called an s-level

problem if s possibilities of each variable are tried along its search space. Obviously the

accuracy of resultant surface inevitably depends on the grid density. As more parameters

are included in the model, the number of evaluations can be excessive. In the present

investigation, examples of only one and two unknowns will be examined with sufficiently

fine grid mesh. Nevertheless, this will provide good understanding to the optimization

for structural identification, especially the effect due to measurement noise, recorded

data length, and the use of multiple load cases. It should be noted that, based on the

assumptions in Section 2.1, modeling error is negligible and thus is assumed to have no

effect on the fitness surface.

The investigation will cover the known mass case and unknown mass case in the

generally defined [0.5− 2.0] search space. The effect of measurement noise, data length,

and number of load cases will be examined. In the known mass case, 1-DOF and 2-DOF

system will be studied for checking the observation consistency. Sampling in a uniform

grid, 10,000 points are evenly taken in the K1 space for 1-DOF system and 100 points

are taken along each parameter of K1 and K2 for 2-DOF system. In the unknown mass

case, 1-DOF system will be considered with 100 points extracted evenly in the K1 and

M1 dimension. The resolutions of sampling mesh are taken in the above way so that the

fitness surface can be representatively described without unnecessarily additional fitness

evaluations. In addition, a further 10 times finer meshes for these systems is found to

make no difference in the shape of fitness function.
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3.1.1 Effect of Measurement Noise

The 1-DOF known mass system is considered with 500 kg mass and a damping ratio of

1%. The system is excited by a random force at the top. The acceleration is measured

at the only mass point. The stiffness K1 of 600 kN/m, normalized as one in the figures,

is to be identified. Fig. 3.1 gives the distribution of fitness under a 10,000 grid mesh.

In the noise free case, there is one extremely high peak surrounded by several local

optima within the search range of 0.5 to 2.0. It is found that, with the increase of

noise level, the peak of fitness function decreases and shifts as well. However, noise in

the measurements induces no additional local optima. In this study, this observation

is referred to as “peak shifting”. The observation of peak shifting in fact substantiates

the idea of applying reduced search space strategy in optimizations. The reason is that

SSRM cannot work efficiently in the case of more than one global peak or when there is

no significant difference in fitness height between global peak and local optima.

To further investigate the problem, a 2-DOF system of known mass is analyzed in

the same way. The stiffness and mass are 600 kN/m and 500 kg for the first level, and

350 kN/m and 300 kg for the second level. Rayleigh damping of 1% is considered in

both modes. Similar observations are shown in Figs. 3.2 to 3.7 for noise levels of 0%,

5%, and 10%. The contour line of fitness peak supports the peak shifting hypothesis.

Of great importance is that the extension (or flattening) of “peak ridge” indicates that

noise in the measurement will have more influence to the lower-level stiffness K1 than

the upper-level stiffness K2. This observation concurs with the previous finding (Koh et

al., 2003b). That is, it is usually more difficult to identify the stiffness at lower-level of

a lumped mass system. The reason is that the response excited is usually smaller at the

lower level than at the upper level. Statistical analysis of 10,000 cases of peak shifting

under 0%, 5%, and 10% levels of noise, i.e., Figs. 3.8 to 3.10, reveals that the peak tends

to move roughly in a -45◦ direction on the K1-K2 contour plot. This means that the

identified values for K1 and K2 are equally affected by the increase of noise level.
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The noise effect on the fitness surface is also of interest for unknown mass systems,

because a model of unknown mass allows more flexibility in calibrating the physical

parameters but the identification becomes more challenging. The reason lies not only in

the increase in search dimensions due to doubling the number of unknowns, but also in

the fact that the simultaneously changed stiffness and mass parameters are possible to

produce the same eigenpairs. An insight to the lower-dimension fitness shape of unknown

mass case will be constructive to understand the physical meaning of higher-dimension

identification. To this end, the 1-DOF system is again investigated but assuming that

both the stiffness and mass are unknown.

As observed from Figs. 3.11 to 3.19, the shape of fitness function is strongly affected

by the additional involvement of the unknown mass to the unknown stiffness. Besides the

noise-induced peak shifting, a rather long ridge is discovered along the direction of 45◦

in the K1-M1 domain while the slope in the perpendicular direction is rather steep. This

is because eigen values and eigen modes will not be affected by simultaneously scaling

the stiffness and mass by the same factor. The fitness surface analysis shows that more

local optima and ridges are in the fitness surface than the known mass case.

Of great importance is that peak shifting is a significant optimization characteristic

of the global peak. The observation of peak shifting has nothing to do with specific

formulation of the fitness function. The essential use of fitness function is to evaluate

the performance of individual solution candidate. Therefore, using different fitness func-

tions might change the relative magnitude between the global peak and local optima,

the distribution of local optima away from the global peak, and the sensitivity of indi-

vidual variables to be identified. The sensitivity can be expressed as first-order fitness

derivatives, i.e., gradients, or second-order fitness derivatives, i.e., Hessian matrix. Never-

theless, these three affected items will not have influence on the location and magnitude

of global peak. Under the practical measurement noise, the observation will be valid

as long as the mathematical model can capture the physical behavior of the structures.
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In fact, this assumption on modeling error has been made in Section 2.1 and can be

reasonably satisfied in reality.

3.1.2 Effect of Data Length and Number of Load Cases

The effects of measured data length and the number of load cases are studied herein in

the absence of measurement noise. Fig. 3.20 shows that in the noise free case, the shorter

the data length, the fewer the local optima. From the frequency domain viewpoint,

a longer time history provides finer frequency resolution. Thus it is easier to capture

the resonance between the system and external forces than using a shorter time history.

Hence, by using longer data length in the measurement, more local optimum due to the

resonance will be found within the search limit. Nevertheless, the shorter the data length,

the more negative influence due to noise will be present in the identification. The signal

will be adversely affected as the relative peak height decreases with shorter data length.

Besides, it should be noted that the peaks of all the three data-length cases are coincident

at the global peak, i.e., the point with fitness value 1,000. The coincident peaks indicate

that the unknown 1-D system will be unique in the noise free case, regardless of the

length of measurement.

Fig. 3.21 illustrates that there will be fewer local optima if data are collected from

more load cases. This is reasonable because the length of response data is the same

for multiple load cases so that the contribution on the dominant frequencies tends to

be superimposed but canceled out at other frequencies. Because the number of local

optima tends to be smoothed out when combining the measurements from the white noise

excited system. However, if multiple load cases will be used in structural identification,

the recommended number of load cases is between 5 and 10, as more load cases make the

global peak sharper and taller but this actually makes the identification tougher through

optimization.
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The fitness surface is also investigated for one-element and two-element plates. As

the one-element plate plots show not much difference compared to SDOF lumped mass

system, only the two-element plate results are shown from Figs. 3.22 to 3.24. Consistent

“peak shifting” is observed again. It should be noted that the shape of fitness surface

and the magnitude of peak shifting depend on the formulation of fitness function, i.e.,

Eq. (3.1), and thus on the location of measurements as well as data length. This is

because the layout of sensor network will determine the richness of modal information

contained in the measurements. Since modal participation will reflect the stiffness and

mass distribution, identification of structures will be accordingly affected by measuring

the accelerations from different parts of the structures. Nevertheless, of great importance

is that peak shifting observed in lower dimension makes it possible to devise a novel and

efficient hybrid optimization strategy as explained below.

3.2 Gradient and Non-Gradient Local Search

The fitness surface analysis indicates that local search methods will be beneficial for

fine tuning near the peak. In this region, the gradient-based methods usually have

better performance than GA. This is because new candidates in GA are estimated by

random variation, i.e., mutation and crossover, in the breeding process. It is easy for

GA to overcome local optima and reach the vicinity of the global optimal peak, but it is

rather inefficient to find the exact peak through trying randomly varied candidates. The

computation will be intensive for species evolution to cover the solution neighborhood

and converge to the peak.

In this connection, a hybrid optimization strategy is proposed to improve the conver-

gence of identification as well as to verify the “peak shifting” observation. The essential

concept is shown in Fig. 3.25. This algorithm embraces a preliminary iSSRM search

and a local search for fine tuning. The local searchers considered herein include gradi-
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ent based conjugate gradient method, Broyden-Fletcher-Goldfarb-Shannon method, and

non-gradient based simulated annealing method. As a result, the identification by non-

gradient local searcher will serve as a reference to check whether the peak found by

gradient based methods is the global peak, by judging the achievement of the same iden-

tification accuracy. This is because simulated annealing starts a random search from

the neighborhood of best estimates, and thus has better chance for locating the global

peak than GA, which carry out species evolution within the whole search range. More

importantly, simulated annealing is much better in capturing the global peak than the

other two local searchers, i.e., CG and BFGS, as they are based on the gradients and

easily converge to local optima. For the purpose of discussion and ease of reference, the

fundamental concepts of these algorithms are briefly outlined in the subsequent sections.

3.2.1 Simulated Annealing

The idea of simulated annealing (SA) is inspired from annealing in metallurgy, especially

in the way that liquids freeze and crystallize, or metals cool and anneal. At high temper-

atures, heat causes atoms to become active from their initial positions and move freely

and randomly through states of higher energy. If it cools slowly, the atoms will have more

chances of finding configurations with lower energy than the initial state. Analogizing

with this physical process, simulated annealing was firstly presented as an optimization

algorithm to locate a good approximation of the global optima (Kirkpatrick et al., 1983).

Starting from an initial configuration, SA identifies the initial value of fitness function

as a local optima. The initial configuration is then perturbed in the neighbourhood by

taking a finite step away from it. The local optima will be updated if a better candi-

date is found within this neighbourhood. When an optimization problem is treated as a

minimization problem, any downhill step is accepted and the process repeats from this

new point. By allowing an uphill step selectively, it helps to escape from getting trapped

in local optima. Therefore, the uphill or downhill decision and annealing scheme play
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important roles in SA.

The uphill implementation is based on the “Metropolis algorithm” (Nicholas et al.,

1953). It accepts the uphill possibilities on a statistical basis. The algorithm is as follows.

Algorithm 1 Metropolis algorithm

If ∆f = f(x)− f(x0) ≤ 0 Then

accept the good new point: x = xnew

Else

accept the bad new point with probability:

P(∆f) = exp

−∆f

Th

 > a random number between (0, 1)

End if

The probability depends on a global temperature and differences between the ener-

gies, e.g. ∆f . The global temperature Th is gradually decreased during the process. In

fact the system sometimes goes uphill as well as downhill. But the lower the temperature,

the less likely the uphill movement is activated. These uphill and downhill movements

allow the solver to escape from local optima and then explore more possible solution

space.

Each of uphill and downhill processes at a certain temperature is called a “sweep”.

The system will be in equilibrium at a low temperature and frozen into a global energy

minimum after prescribed sweeps or another convergence criterion is satisfied. In each

sweep, there will be Nt times of adjusting the search neighborhood. At one neighborhood,

Ns cycles are used to accept enough uphill and downhill candidates through perturbing

each unknown parameter in turn. Therefore, if n is the number of unknown variables, a

total of n×Ns evaluations of objective function are incorporated before the next neigh-

borhood is explored. After Nt times of such iterations, namely n×Ns ×Nt evaluations,

are accomplished in a complete sweep at one temperature, the temperature will be low-
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ered by a ratio. Then the annealing will continue including such an iterative sweeping

and temperature reduction process. In this study, if the tolerance of four successive tem-

peratures is satisfied by a convergence criterion or a fixed number of evaluations are met,

the system is considered frozen and hence annealing stops.

Besides making uphill or downhill decision by Metropolis algorithm, it is important

to select an efficient annealing or cooling schedule, which is to lower the temperature

T over time. An annealing schedule includes the starting temperature T0, the rate of

cooling, and the amount of time to spend at each temperature. Considering the trade off

between efficiency and ease of implementation, the annealing schedule chosen herein is

the exponential cooling strategy. The system is to start at a high temperature and then

cool exponentially

Th+1 = rTTh (3.2)

The ratio rT is typically chosen from 0.7 to 0.9, because rapid cooling will result in a

system frozen into a meta-stable state far from the optimal configuration.

In addition to uphill decision and annealing schedule, it is necessary to search in

the neighborhood that only valid configurations are generated without spending more

computer time than necessary in attempting the unknown solution space. To fulfill this

purpose, Corana’s method is adopted to define the neighborhood for simulated annealing

algorithm (Corana et al., 1987). In this regard, the neighborhood range is adjusted to

keep the acceptance rate of 0.5 for Metropolis criteria. The generation of a new solution

is in principle random, but in the following way as

xnew = xold + rm (3.3)

where xold is the current solution vector, and r is a uniform random scalar within the

interval [−1, 1]. The neighborhood range is governed by the step length m (Corana et

al., 1987). The step length m is varied according to the acceptance rate p, e.g. 0.5. The

acceptance ratio can be calculated from the number of acceptance n within the period
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Ns, as n/Ns.

Algorithm 2 Simulated annealing

Select an initial temperature

Start from an initial configuration x0, and set it as current optimum, i.e., xopt = x0

Sweeps: While not converge

Do Nt times

Cycles: Do Ns times

Do n times

Perturb the current configuration via Corana’s method to get the

possibilities

Besides those downhill points, accept uphill points based on the

Metropolis criteria (Algorithm 1)

End Do

End Do: Cycles

Adjust the search length m by Corana’s method

End Do

If convergence criteria are met, then

Stop

Else

Restart from the current best optimum x = xopt

Adjust temperature by cooling rule T = rT × T

End If

End While: Sweeps

Thus as the temperature declines, downhill movements are less likely to be accepted

and the percentage of rejections rise. Given the scheme for the selection for the step

length vector m, it will fall also. Finally the reduction of temperature will make m

smaller, and then SA focuses on the most promising area for optimization. The initial

value of m is not very important as it will be reset quickly from the initials by Corana’s

method. Nevertheless, the initial system temperature T0 is crucial for the success of SA
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method. For a small T0, the step length m may be too small and leads to insufficient

evaluations of objective function to find the global optima. However, the relationship be-

tween the initial temperature and the step length m is problem dependent. In summary,

the complete process of simulated annealing is given by the Algorithm 2 which is used in

this study. As a result of Corana’s method, new candidates are generally explored in its

local neighborhood. However, a global optimum is guaranteed by virtue of Metropolis

algorithm, as both uphill and downhill choices are considered whereas uphill movements,

i.e., worse solution, are rejected in most optimization algorithms.

3.2.2 Conjugate Gradient Method

Generally gradient search methods begin from some initial guess x0, and then the initial

guess is updated in stages with predefined search direction and step length. The process

is often expressed in this formulation.

xh+1 = xh + αhph (3.4)

where vector ph represents a search direction, and scalar αh determines the length of

the step. The search direction could be selected to minimize the objective function with

respect to αh at each run.

Unlike the traditional steepest descent method, the search direction defined in CG

methods is a conjugate direction instead. The conjugate property is defined in the man-

ner that if a set of nonzero vectors {p0, p1, · · · pn} is conjugate, it suffices the following

relationship with respect to the symmetric positive definite matrix H.

pT
i Hpj = 0 , for all i ̸= j (3.5)

For a function approximated as a quadratic form, H is the Hessian matrix. In this

regards, the search direction will be conjugate to the previous directions. The conjugate

property is maintained from ph−1 to ph by choosing each ph to be a linear combination
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of the steepest descent direction −∇fh and the previous direction ph−1 (Nocedal and

Wright, 1999). It can be simplified to iterations of the form

ph = −∇fh + βhph−1 (3.6)

where βh is a scalar to be defined by requiring that ph−1 and ph must be conjugate with

respect to H. In generating a set of conjugate vectors, the new vector ph is computed

using only the previous vector ph−1. This remarkable property implies that the method

requires little storage and computation.

After determining the search direction ph, the following section is to evaluate the

step length of searching as αh. In computing the step length αh, a trade-off is needed.

The selection of αh will give a substantial reduction of the objective function, but with

a rather economical computational effort. The generally recognized belief is that αh

should be chosen to solve the one-dimensional minimization problem accurately, which is

normally referred to as a line search or line minimization algorithm (Dennis and Schnabel,

1996). The line search is to determine the step length in one direction by minimizing

a function of one variable without calculation of the derivative. In conjugate gradient

method, a standard subroutine of Brent’s method (Press et al., 1992) is adopted herein

to conduct line minimization.

Considering the nonlinear relations between stiffness, damping parameters and the

objective function, only nonlinear variants of conjugate gradient method are covered here.

Nonlinear CG methods differ from each other mainly in the choice of the parameter βh.

However, equivalent results will be produced for quadratic functions whichever βh is

chosen. Among these variants, the most commonly used one is proposed by Polak and

Ribire (1969); Nocedal and Wright (1999). In their formulation, this parameter is defined

as

βh+1 =
∇fT

h+1(∇fh+1 −∇fh)
∇fh · ∇fh

(3.7)

Normally, the first search direction p0 is chosen as the steepest descent direction at the
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initial point x0. As in the general CG methods, we perform successive one-dimensional

minimizations to determine a suitable step length along the conjugate search directions.

Therefore a complete CG algorithm of Polak-Ribire version adopted in this study is

formally as in Algorithm 3.

Algorithm 3 Conjugate gradient method

Given x0, convergence tolerance ϵ

Evaluate f0 = f(x0), ∇f0 = ∇f(x0)

Set initial search direction p0 = −∇f0

k ← 0

While ∥∇fh∥ > ϵ

Compute the step length αh through 1D line minimization

Set xh+1 = xh + αhph

Evaluate ∇fh+1

βh+1 ←
∇fT

h+1(∇fh+1 −∇fh)

∇fh · ∇fh
ph+1 ← −∇fh+1 + βh+1ph

h← h+ 1

End While

Obviously in each run of the local search in system identification, the above CG

method requires the evaluation of the objective function and its gradient. However, no

matrix operations are performed unlike in classical Newton’s method. It is observed that

only a few vectors of storage are required in the CG method.

3.2.3 BFGS Method

The Broyden-Fletcher-Goldfarb-Shanno method is one of the most popular Quasi-Newton

algorithms (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Nocedal and

Wright, 1999). Before introducing the method, we consider finding a minimum through
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Newton’s method. It is based on the second-order Taylor series:

f(xh+1) = f(xh + ∆xh) ≈ f(xh) +∇fT (xh)∆xh +
1
2
∆xh

THh∆xh (3.8)

In this quadratic model, Hh is an n × n symmetric positive definite Hessian matrix.

It will be revised or updated at every iteration. The underlying principle of Newton’s

method is to determine the stationary point of this quadratic approximation. Therefore

it satisfies

∇f(xh) + Hh∆xh = 0 (3.9)

where ∆xh = xh+1 − xh = αhph , it is defined by the product of the step size and the

vector of search direction. Hence Newton’s method leads to

xh+1 = xh − αhH−1
h ∇f(xh) (3.10)

Normally Newton’s method only converges if the initial point is sufficiently close to the

solution. In each loop the inverse of Hessian matrix H−1
h has to be computed and stored,

and this is prohibitively expensive in storage even for moderate systems. By introducing

the idea of Quasi-Newton, however, the inverse Hessian matrix is iteratively approximated

instead. That is

lim
i→∞

Ai = H−1 = (∇2f)−1 (3.11)

Without computing the Hessian matrix at every iteration, this inverse Hessian approx-

imation A is used instead to achieve a more economical computational effort. Hence

Eq. (3.10) is rewritten as

xh+1 = xh − αhAh+1∇f(xh) (3.12)

The difference of various Quasi-Newton methods lies in the Hessian approximation matrix

H. If the change in gradients g is

gh = ∇fh+1 −∇fh (3.13)
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then in the most popular Quasi-Newton method, i.e., BFGS, this Hessian approximation

is defined as

Ah+1 =

(
I −

∆xhgh
T

gh
T ∆xh

)
Ah

(
I −

gh∆xh
T

gh
T ∆xh

)
+

∆xh∆xh
T

gh
T ∆xh

(3.14)

The Hessian approximation matrix A updates through combining the most recently

observed information about the objective function with the existing knowledge within

the current Hessian approximation. It is observed that Quasi-Newton methods require

only the gradient of the objective function to be supplied at each iteration. By measuring

the changes in gradients, a model of the objective function can be constructed that is good

enough to produce super linear convergence (Nocedal and Wright, 1999). For practical

implementation the complete loop of BFGS is shown in Algorithm 4.

Algorithm 4 BFGS method

Given x0, convergence tolerance ϵ

Set inverse Hessian approximation A0

k ← 0

While ∥∇fh∥ > ϵ

Compute search direction ph = −Ah∇fh

Compute the step length αh through 1D line minimization

Set xh+1 = xh + αhph

Compute Ah+1

h← h+ 1

End While

In the above procedure, the initial approximation A0 is generally set to be the iden-

tity matrix. One dimensional minimization for choosing αh is implemented by standard

backtracking line search subroutine (Press et al., 1992). Quasi-Newton methods are often

more efficient than Newton’s method as the second derivatives are not required. Com-

pared to BFGS method, Newton’s method converges quadratically and more rapidly than

the super linear convergence of BFGS, but the cost per iteration is much higher. As for
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quasi-Newton methods and CG, the former is usually efficient in small problems than the

latter. But for large problems the CG is believed to be more powerful in efficiency, since

CG uses only function and gradient information in minimizing a function. A superior

strength is that CG does not store any approximation to the second-derivative matrix.

3.3 Formulation of Objective Function, Gradient, and Con-

vergence Criteria

To implement the hybrid optimization strategy, namely iSSRM with local search, the

formulation of fitness function, the gradient and convergence criteria are derived in this

section. The objective function and its derivatives will have significant influence on the

numerical convergence, and they have to be defined specifically for the two parts of

search. In this study, the formulation by Koh et al. (2003a) is used for the preliminary

iSSRM search. The strength lies in the incorporation of an equivalent influence factor for

all measurements. By construction, measurement locations that have smaller response

magnitude can contribute equally to the fitness function. The formulation is given as

ϕ =
1

0.001 + ε
(3.15)

where ε =
1
p

p∑
i=1

wiεi; εi =
1
q

q∑
j=1

(üm
ij − üe

ij)
2; µ =

√√√√1
q

(
q∑

j=1
(üm

ij )
2

)
; µ̄ =

p∑
i=1

µi

p
; wi =

µ̄i

µi

These data are collected from p measurements with the data length of q. Error εi

is weighted based on the root mean square of each measurement. On the other hand,

among the three proposed local searchers, two of them, i.e., BFGS and CG are gradient

based search relying heavily on the derivatives of objective function. These two methods

will be inefficient if the objective function produces a considerably sharp peak in fitness

surface, as the step length has to be adjusted frequently to approach the peak. Therefore

in the second part of the hybrid strategy, the fitness function is modified to conduct
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minimization via objective function ϑ defined in

ϑ = − ln(ϕ) (3.16)

Based on the idea of peak shifting, a “ln” function will beneficial to reduce the relative

magnitudes of fitness peaks. The CG and BFGS local searchers will then be easier to

locate the global peak. The reason is that, for the gradient based search methods, too

sharp a global peak will induce expensive iterations to progressively adjust the search

direction and step length.

In the local search, both BFGS and CG methods require that the gradient or the

first partial derivatives of fitness function can be computed at arbitrary points. Rigor-

ously speaking, these methods require analytical expression of the derivatives. They are

therefore applicable only to differentiable functions. In the present problem, however,

the objective function cannot be explicitly expressed as a function of unknowns. The

gradient at the trial point would not be evaluated exactly. Therefore if a set of solution

x is expressed as x = {x1, x2 · · ·xk}, representing stiffness, damping and/or mass, the

gradient of fitness function has to take the form as numerical approximation, for example,

in a forward-difference expression as

∇ϑ(x) =
[
∂ϑh

∂x1

∂ϑh

∂x2
· · ·

∂ϑh

∂xk

]T

(3.17)

where
∂ϑh

∂xi
≈

1
δ

[
ϑ(xh

1 , x
h
2 · · ·xh

i + δ · · ·xh
k)− ϑ(xh

1 , x
h
2 · · ·xh

i · · ·xh
k)
]
, δ is the step length.

In the present study, damping ratios are treated as unknown together with the stiff-

ness parameters. However, the damping parameters are of drastically different orders

in magnitudes from the stiffness parameters. It will pose significant numerical difficulty

for gradient based local searchers as CG and BFGS. Consider the gradient approxima-

tion defined in Eq. (3.17), change in one direction can induce much larger variations in

the fitness function than that in another direction. The gradient will therefore differ

substantially from one to another, as the sensitivity of parameters varies considerably.
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Consequently the algorithms will end up with a set of exaggerated derivatives such that

the parameters with relatively smaller magnitudes will not be sensitive at all to reflect the

rational evolution. A diagonal scaling procedure (Dennis and Schnabel, 1996) is adopted

to transform all the unknowns into a new set of variables, which will be within an order

of magnitude of one. Therefore the variance in the gradient will be more balanced.

The convergence of the proposed hybrid optimization strategy is determined in two

steps. For the global search by iSSRM, the convergence is set as a fixed number of

fitness evaluations. Because the iSSRM method is used for preliminary search and it

is not required to ensure convergence. For local search, two convergence criteria are

established. One is based on the relative changes in successive values of x

|xi
h+1 − xi

h|
max{|xi

h+1|, typ(x)}
≤ ϵx , (1 ≤ i ≤ n) (3.18)

and the other is to use the relative gradients

max
1≤i≤n

∇ϑ(xi
h)max{|xi

h+1|, typ(x)}
max{|ϑ(xi

h+1)|, typ(ϑ)}
≤ ϵg (3.19)

where typ(x) and typ(ϑ) are the user-defined typical magnitudes of the variables x and

the value of ϑ, respectively. Setting typical magnitudes of variables and objective func-

tion values here is to avoid numerical difficulties of measuring relative change when the

argument is near zero (Dennis and Schnabel, 1996). For example, a good trial start for

these two values could be 1.0 which would only be unsatisfactory when the magnitudes

of the variable and objective function are always much smaller than 1.0. ϵx and ϵg are

the predefined tolerances for the variables and gradients. The local search is considered

to have converged when any one of the convergence criteria is satisfied.

3.4 Parametric Study for Balanced Global and Local Search

Parametric study on the hybrid strategy is necessary in order to have an allocation of

total evaluation effort in a balanced iSSRM search and local search. The investigation
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here includes the determination of the “switch point” between the global iSSRM search

and the local search. As for the GA parameters in iSSRM method, the parameters

recommended in Chapter 2 cannot be used directly herein since they are obtained by

testing iSSRM itself under fixed evaluations for certain problems. If the number of

evaluations changes, the trade-off by the recommended set of exact iSSRM parameter

will be changed accordingly. Nevertheless, it is reasonable to assume that the allocation

of total evaluations into different iSSRM component search is scalable to the number

of total evaluations. To be specific, the ratios of evaluations used for outer sampling

test and inner MGAMAS of iSSRM are constant regardless of the total evaluations for

different problems.

To avoid tedious computations herein, the investigation in this section will take

advantage of the available experience based on the previous chapter. First, the total

evaluations follow those used in Chapter 2, i.e., Table 2.11. Second, the effort in sampling

test will be simplified by using the same sampling ratio for the corresponding system.

The sampling ratio is defined by the evaluations in sampling test divided by total iSSRM

evaluations, which can be derived from Table 2.11 of Chapter 2. For example, the ratio

is taken as 0.63, 0.54 and 0.248, for 5-DOF, 10-DOF, and 20-DOF systems, respectively,

in the known mass case. The ratio is taken 0.18, 0.165, and 0.042 for these systems in the

unknown mass case. With known total evaluation and sampling ratio, the evaluations

used for sampling test and MGAMAS are then fixed.

The allocation of total evaluations to MGAMAS search will not be repeated with

further considerations in the sampling size, population size, generation size, and total

number of runs. They are considered in a much simplified way herein. Following the

recommendations in Chapter 2 to keep population size small , the population size is taken

as 0.15
√
NE , where NE is the number of total evaluations. Furthermore, the number of

total runs will follow those obtained in Chapter 2. Therefore, if the evaluations used for

iSSRM is determined, the size of generation can be established, i.e., by Eq. (2.17), with



3.4: Parametric Study for Balanced Global and Local Search 89

given sample size, population size, and number of total runs.

The final task is to select the switch point for iSSRM search and local search in the

enhanced strategy. Instead of concluding a switch point from time consuming parametric

studies, a reasonable switch point will be determined from the convergence history by

using merely iSSRM method. It should be noted that the identification reported herein is

performed in the absence of noise, since measurement noise will not introduce local optima

and thus makes not much difference for the convergence behavior to be investigated. From

the identification of different systems, Figs. 3.26 and 3.27 show a consistent performance

of iSSRM method based on average over 25 runs. Using merely iSSRM method, the

convergence speed is much faster in the first half than the rest of the whole history. This

indicates that the switch point could be in the first half of the whole history.

Therefore the switch from iSSRM to local search will be determined by comparing

the following five cases, i.e., 10%, 20%, 30%, 40%, and 50% of total evaluations based

on using merely iSSRM search. The present investigation is implemented on a 20-DOF

system with noise-free measurement and known mass. The BFGS method is considered as

local searcher. According to the results presented in Table 2.11, the total evaluations are

40,000 for 20-DOF known mass system. Therefore the evaluations used for “10%”, “20%”,

“30%”, “40%”, and “50%” initial iSSRM search of the enhanced strategy are 4,000, 8,000,

12,000, 16,000, and 20,000, respectively. The results are given in details in Table 3.1.

The corresponding performance of iSSRM and gradient search are shown in Fig. 3.30.

The results conservatively suggest 20% of total evaluations should be recommended for

the switch point for the enhanced identification strategy. The reason is that 10% of total

evaluations, i.e., 4,000 for ”Case I”, will give identification error of 5.79% and 20% of

total evaluations will significantly reduce the identification error to 2.77%. Further more

evaluations out of the total evaluations allocated for iSSRM will only make marginal

reduction of the identification error.
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Besides the considerations in convergence speed, it has to be ensured as well that

there will be no more local optima after switching to local search, especially gradient

search. The mean identification errors in Figs. 3.26 and 3.27 show fairly uneven curves

in convergence in the first 20% of the whole history, particularly for the unknown mass

systems. These results suggest that a closer investigation is necessary for representative

convergence histories. Therefore typical convergence histories of 20-DOF system are

presented in known and unknown cases, i.e., Figs. 3.28 and 3.29. The stepped jump in

the fitness history with uneven improvement in the identification error history indicates

that at least the first 20% of the whole history should focus on iSSRM search to overcome

local optima far away from the global peak. Furthermore, similar conclusions can be

drawn from identifying the 20-DOF system under 10% noise, i.e., Fig. 2.11. In addition,

if there is a tight requirement on limiting the number of total evaluations, the 10% case

is also possible for known mass identification as it reduces identification error with an

acceptable computational cost.

3.5 Numerical Examples

To verify the “peak shifting” hypothesis and the proposed hybrid optimization strat-

egy, three examples are investigated. They are a 10-DOF lumped mass system, a plate

structure and a truss model, shown in Figs. 3.31, 3.32, and 3.33. The search space is

typically set from 0.5 to 2.0. That is, the lower and upper bounds are half and twice of

the actual values. In the identification, mass distribution of the structures is assumed as

known while the stiffness and two damping coefficient are to be identified. Due to ran-

dom excitations, accelerations are generated by constant-average-acceleration Newmark

method. Both the input and output are assumed to be contaminated by Gaussian white

noise with zero mean and variance of one. The noise level is considered at 0%, 5%, and

10%. The parametric study has been carried out for the proposed iSSRM and the local

search methods, leading to the values used in this study. Considering the random nature
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of iSSRM, the results reported in the following are the average from 25 runs. Computer

time is reported on basis of a two-processor workstation with 3.0-GHz CPU.

3.5.1 Lumped Mass System of 10 DOFs

In order to compare the performance of proposed identification strategy, a 10-DOF

lumped mass system is used Koh et al. (2003a). The structure is a plane shear building

modelled as a 10-DOF lumped mass system. As shown in Fig. 3.31, the input random

forces are applied at the 10th level, and accelerations are instrumented at levels 2, 4, 6,

8, and 10. The actual damping is set to be 5% to the first two modes.

In the hybrid optimization strategy, i.e., iSSRM method with local search, the con-

vergence tolerance is set to be 10−6 and the step length δ in Eq. (3.17) is taken as 10−6

for numerical evaluation of the gradients. For SA method, the ratio of annealing is set

to be 0.9, the starting temperature is 3.0. The iteration will exit when the convergence

limit of 10−6 or the maximum evaluations of 20,000 is reached. By adopting Corana’s

method (Corana et al., 1987) to define the neighbourhood, the initial step length vector

is 1.0 and the adjustment vector of step length is 2.0. A comprehensive comparison with

published methods (Perry et al., 2006) and results (Koh et al., 2003a) is presented in

Table 3.4 with the parameter setting in Table 3.3. As shown, improvements by the local

searchers are so significant that almost the exact value can be identified in the absence

of noise. The maximum errors in these cases are found to be practically zero for gradient

based CG and BFGS, which are better than non-gradient based SA. The result implies

that the global peak is captured by three local searchers in all runs.

In the presence of 10% noise, the accuracy of the results is similar to that reported

in Koh et al. (2003a). Nevertheless, the total evaluations by iSSRM with BFGS are 2,590

evaluations which are much faster than the reported result of 30,000 evaluations used in

Koh et al. (2003a). The global peak is believed to be identified since the result by BFGS
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and CG local search can reach the same accuracy as that by the non-gradient based SA.

Furthermore, the gradient based local searchers CG and BFGS are rational to be more

efficient than non-gradient based SA in locating the sharp peak. As shown in Table 3.4,

the total evaluations are 2,590 for BFGS, 2,766 for CG, and 21,980 for SA in the case

of 10% noise. Besides, it is also observed in Table 3.4 that the number of evaluations

required by CG is larger than that of BFGS. The reason is that the line minimization

adopted by BFGS is more efficient than CG.

3.5.2 Cantilever Plate of 16 Elements and 168 DOFs

To investigate the proposed method in a different structure, a 1-cm thick aluminum plate

with a dimension 0.8 m long and 0.6 m wide is considered, i.e., Fig. 3.32. The plate is

supported rigidly along a single edge. At one of free corners of the plate, a random force

with white noise distribution is applied as external excitation. The plate is modeled

as a 4 × 4 mesh via 8-node Mindlin plate element, with selective integration to avoid

spurious modes (Hinton and Owen, 1984). Therefore a total number of 168 DOFs are

involved. Out of them only 6 translational accelerations are measured for identifying the

whole plate. The accelerations are measured within 500 time steps of a sampling rate

of 40 kHz. The very high sampling rate is to ensure that the higher frequencies of the

structure can be accurately captured. Damping ratio of 1% is equally set for the 1st and

2nd modes of the whole plate.

Compared to the previous example, the following modifications are found to be

constructive to carry out the hybrid optimization strategy. For SA local search, the ratio

of annealing is set to be 0.85, the initial temperature is 5.0 and the maximum evaluations

are 20,000. All the other settings remain the same as the previous example of lumped

mass system. Results in Table 3.6 show that the global peak is accurately identified by

the local searchers in noise free case. The mean and maximum errors are found to be

zero for all three local searchers. This indicates that there is only one global fitness peak
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for present identification in the noise free case. An interesting phenomenon in Table 3.6

is that total number of evaluations and computer time decrease significantly for CG in

10% noise case. The identification accuracy reached is still of the same magnitude as SA.

This tendency in the results reasonably reflects the effect of “peak-shifting”. As noise

level increases, the global extreme of fitness function will reduce and shift simultaneously.

Brent’s method of line minimization is used in CG, where a parabolic interpolation is

used to determine the step length without information of gradients. When the shape of

objective function is as smooth as a parabola, this algorithm will be efficient to determine

the step length by using the approximated minimum of the fitted parabolic function.

Therefore it will be easier for CG local searcher to locate the global peak in the noise

case than the noise free case. Nevertheless, the superiority of BFGS local search is found

to outperform over CG and SA. It can accomplish the identification with good accuracy

as well as reduce the computational time significantly.

3.5.3 Truss of 29 Elements and 28 DOFs

The proposed method is now tested for in a more challenging structure. Measurements

available in this truss example are much less than the previous two examples in relation to

the number of unknown stiffness parameters, i.e., higher ratio of unknown parameters to

measurements available. The present structure is a model of steel truss bridge. Young’s

modulus of the material is 200 GPa, and density is 7800 kg/m3. The outer diameter of

the steel tube is 1.55 cm and the inner diameter is 1.09 cm, resulting in a sectional area

of 0.9538×10−4 m2. The structure is excited by two random forces and accelerations are

measured at 5 locations, as illustrated in Fig. 3.33. Proportional damping ratio of 2% is

assumed for the first two modes. To identify this structure, parameters of the proposed

algorithm are listed in Table 3.7.

The results in Table 3.8 show that the performance for the proposed hybrid op-

timization strategy is consistently excellent in the noise free case. The global peak is



94 CHAPTER 3. Improved SSRM with Gradient Search

believed to be found by CG and BFGS with and without noise, because their accuracy

of the identification results are similar to those by SA. It is also noted that the mean

identification error by iSSRM with BFGS is as small as 3.23% under 10% noise. At the

same time, the computer time is only around 3 minutes and almost a quarter of that

is used by SSRM. Local search by CG will generally use more fitness evaluations, and

accordingly cost more time than BFGS. Most of the computer time is found to be used

in line search procedure. Most of the computer time is found to be used in line search

procedure. As mentioned before, the line minimization implemented in CG is of less

efficiency than in BFGS, because much less function evaluations are carried out to find

an acceptable step length.

3.6 Conclusions

In this study, noise induced peak shifting is observed for optimization oriented structural

identification. This observation leads to a more efficient hybrid solver for system iden-

tification. The hybrid identification strategy involves an improved SSRM via sampling

and local search. The method of iSSRM facilitates adaptively rescaling of search limit

by an initial sampling test. It is used to deal with local optima and provides a starting

point for local search. As an efficient local searcher, BFGS is recommended over CG and

SA methods in this study. Numerical investigation includes a 10-DOF lumped mass sys-

tem, a 168-DOF plate structure and a 28-DOF steel truss model. The proposed hybrid

optimization strategy has been successfully applied in the identification of the structural

stiffness distribution. The conclusions and recommendations could be drawn as follows.

(1) Treated as an optimization problem, measurement noise makes the peak of fitness

function shift and decrease. An increase in the noise level seldom produces new

local optima in the vicinity of the original extreme peak.

(2) Among the three local searchers, the BFGS method is more efficient than the CG
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and SA methods in achieving good accuracy. In fact, this method can be readily

extended to larger system identification problems by using limited-memory BFGS

(L-BFGS) method (Liu and Nocedal, 1989). However, it may be impractical to

use other methods including Gauss-Newton or Levenberg-Marquardt algorithms,

which require evaluating and storing a modified Jacobian matrix in every step.
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Figure 3.1: Typical peak shifting of 1-DOF known mass system



Figures 97

Figure 3.2: Typical peak shifting of 2-DOF known mass system under 0% noise: 3D
view

Figure 3.3: Typical peak shifting of 2-DOF known mass system under 0% noise: contour
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Figure 3.4: Typical peak shifting of 2-DOF known mass system under 5% noise: 3D
view

Figure 3.5: Typical peak shifting of 2-DOF known mass system under 5% noise: contour
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Figure 3.6: Typical peak shifting of 2-DOF known mass system under 10% noise: 3D
view

Figure 3.7: Typical peak shifting of 2-DOF system under 10% noise: contour
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Figure 3.8: Peak shifting of 2-DOF known mass system under 10,000 cases: 0% noise

Figure 3.9: Peak shifting of 2-DOF known mass system under 10,000 cases: 5% noise
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Figure 3.10: Peak shifting of 2-DOF known mass system under 10,000 cases: 10% noise

Figure 3.11: Typical peak shifting of 1-DOF unknown mass system under 0% noise: 3D
view
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Figure 3.12: Typical peak shifting of 1-DOF unknown mass system under 0% noise:
contour 1

Figure 3.13: Typical peak shifting of 1-DOF unknown mass system under 5% noise: 3D
view
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Figure 3.14: Typical peak shifting of 1-DOF unknown mass system under 5% noise:
contour 1

Figure 3.15: Typical peak shifting of 1-DOF unknown mass system under 10% noise:
3D view
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Figure 3.16: Typical peak shifting of 1-DOF unknown mass system under 10% noise:
contour 1

Figure 3.17: Typical peak shifting of 1-DOF unknown mass system under 0% noise:
contour 2
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Figure 3.18: Typical peak shifting of 1-DOF unknown mass system under 5% noise:
contour 2

Figure 3.19: Typical peak shifting of 1-DOF unknown mass system under 10% noise:
contour 2
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Figure 3.31: Numerical example 1: 10-DOF lumped mass system

Figure 3.32: Numerical example 2: 16-element plate
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1 2

Figure 3.33: Numerical example 3: 29-element truss
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Table 3.1: Allocations of total evaluation to iSSRM and local search in the enhanced
optimization strategy: based on a 20-DOF known mass system

Switch pointa Case I: 10% Case II: 20% Case III: 30% Case IV: 40% Case V: 50%

Allocation by
4,000/1,505 8,000/1,133 12,000/1,067 15,970/987 19,910/861

global/local search

Mean error - k (%) 5.79/0.00 2.77/0.00 2.31/0.00 1.03/0.00 0.73/0.00

Fitness valueb 117/1,000 377/1,000 504/1,000 773/1,000 861/1,000

Time (s:ms) 02:844/01:226 05:417/00:815 08:217/00:793 10:937/00:727 13:552/00:709

a Based on the total evaluations concluded in Table 2.11, the percentage means the effort used for

iSSRM as a initial global search in the enhanced optimization strategy over the effort by merely

iSSRM method. For example, “10%” means 4,000/40,000 for 20-DOF known mass system.

b Fitness is measured by Eq. (3.1).

Table 3.2: Recommended parameters for iSSRM in the enhanced opti-
mization strategy

GA parameters
Known mass systems Unknown mass systems

5-DOF 10-DOF 20-DOF 5-DOF 10-DOF 20-DOF

Total evaluations 1,000 2,000 8,000 8,000 16,000 120,000

Population size 3 × 3 3 × 3 5 × 3 5 × 3 7 × 3 17 × 3

Generations 4 10 40 29 42 150

Sample size 63 108 200 96 176 336

Sampling ratioa 0.630 0.540 0.248 0.180 0.165 0.042

Number of runs 10 10 10 15 15 15

nb value 5 5 5 5 5 5

Crossover rate 0.8 0.8 0.8 0.4 0.4 0.4

Mutation rate 0.2 0.2 0.1 0.2 0.2 0.1

Migration rate 0.05 0.05 0.05 0.05 0.05 0.05

Regeneration 2 2 3 3 3 3

Reintroduction 3 10 20 20 30 100

Window width 4.0 4.0 4.0 4.0 4.0 4.0

Data length 200 200 200 500 500 500

a Sampling ratio is defined as the evaluations used for sampling test divided by

the total evaluations.
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Table 3.3: GA parameters for numerical example 1: 10-DOF lumped mass
system

GA parameters

10-DOF lumped mass system

SGAa SSRM
Hybrida Hybrida iSSRM iSSRM iSSRM

GA-SW GA-MV -BFGS -CG -SA

Initial evaluations - - - - 1,980 1,980 1,980

Population size 50 12 × 3 50 50 3 × 3 3 × 3 3 × 3

Generations 600 83 100 100 10 10 10

Sample size - - - - 108 108 108

Number of runs - 10 - - 10 10 10

Crossover rate 0.6 0.8 0.6 0.6 0.8 0.8 0.8

Mutation rate 0.001 0.2 0.001 0.001 0.2 0.2 0.2

Migration rate - 0.05 - - 0.05 0.05 0.05

Regeneration - 3 - - 2 2 2

Reintroduction - 40 - - 5 5 5

Window width - 4.0 - - 4.0 4.0 4.0

Data length 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Time step (sec) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

a Results by Koh et al. (2003a)

Table 3.4: Results for numerical example 1: 10-DOF lumped mass system

Results

10-DOF lumped mass system

SGAa SSRM
Hybrida Hybrida iSSRM iSSRM iSSRM

GA-SW GA-MV -BFGS -CG -SA

0% Noise

Total evaluations 30,000 30,000 30,000 30,000 2,295 2,951 21,980

CPU time (h:m:s) - 00:00:52 - - 00:00:04 00:00:05 00:00:34

Mean error - k (%) 2.90 0.58 0.40 0.20 0.00 0.00 0.06

Max error - k (%) 7.80 2.13 1.20 1.00 0.00 0.00 0.17

10% Noise

Total evaluations 30,000 30,000 30,000 30,000 2,590 2,766 21,980

CPU time (h:m:s) - 00:00:52 - - 00:00:04 00:00:05 00:00:34

Mean error - k (%) 5.10 5.37 2.70 3.00 2.90 2.79 3.40

Max error - k (%) 15.00 14.26 12.20 7.60 7.63 7.03 9.20

a Results by Koh et al. (2003a)
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Table 3.5: GA parameters for numerical example 2: 16-element plate

GA parameters
16-element plate

SGA SSRM iSSRM-BFGS iSSRM-CG iSSRM-SA

Initial evaluations - - 3,020 3,020 3,020

Population size 140 12 × 3 4 × 3 4 × 3 4 × 3

Generations 214 83 16 16 16

Sample size - - 110 110 110

Number of runs - 10 10 10 10

Crossover rate 0.8 0.8 0.8 0.8 0.8

Mutation rate 0.05 0.1 0.1 0.1 0.1

Migration rate - 0.05 0.05 0.05 0.05

Regeneration - 3 3 3 3

Reintroduction - 40 10 10 10

Window width - 4.0 4.0 4.0 4.0

Data length 500 500 500 500 500

Time step (sec) 2.5 × 10−5 2.5 × 10−5 2.5 × 10−5 2.5 × 10−5 2.5 × 10−5

Table 3.6: Results for numerical example 2: 16-element plate

GA parameters
16-element plate

SGA SSRM iSSRM-BFGS iSSRM-CG iSSRM-SA

0% Noise

Total evaluations 30,000 30,000 4,548 18,565 23,020

CPU time (h:m:s) 04:04:52 04:13:13 00:39:12 02:29:29 02:57:43

Mean error - Da (%) 11.94 3.02 0.00 0.00 0.00

Max error - Da (%) 35.86 9.71 0.00 0.00 0.02

10% Noise

Total evaluations 30,000 30,000 4,972 6,373 23,020

CPU time (h:m:s) 04:05:19 04:14:18 00:41:41 00:55:58 02:55:44

Mean error - Da (%) 15.84 5.81 4.72 4.77 5.73

Max error - Da (%) 42.87 16.68 13.17 13.03 15.67

a D=flexural rigidity
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Table 3.7: GA parameters for numerical example 3: 29-element truss

GA parameters
29-element truss

SGA SSRM iSSRM-BFGS iSSRM-CG iSSRM-SA

Initial evaluations - - 5,960 5,960 5,960

Population size 196 16 × 3 4 × 3 4 × 3 4 × 3

Generations 306 125 38 38 38

Sample size - 280 140 140 140

Number of runs - 10 10 10 10

Crossover rate 0.9 0.8 0.8 0.8 0.8

Mutation rate 0.05 0.1 0.1 0.1 0.1

Migration rate - 0.05 0.05 0.05 0.05

Regeneration - 3 3 3 3

Reintroduction - 50 10 10 10

Window width - 4.0 4.0 4.0 4.0

Data length 500 500 500 500 500

Time step (sec) 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2

Table 3.8: Results for numerical example 3: 29-element truss

GA parameters
29-element truss

SGA SSRM iSSRM-BFGS iSSRM-CG iSSRM-SA

0% Noise

Total evaluations 60,000 60,000 10,780 110,169 25,960

CPU time (h:m:s) 00:14:07 00:13:25 00:02:42 00:24:19 00:05:55

Mean error - EA (%) 18.84 2.91 0.00 0.00 0.76

Max error - EA (%) 49.96 11.32 0.00 0.02 5.08

10% Noise

Total evaluations 60,000 60,000 12,619 54,324 25,960

CPU time (h:m:s) 00:14:21 00:14:01 00:02:55 00:11:54 00:06:00

Mean error - EA (%) 20.87 3.63 3.23 3.22 4.15

Max error - EA (%) 54.81 14.60 15.69 16.13 20.93





CHAPTER 4

Frequency Domain Substructural

Identification under Random

Excitation

In Chapter 3 we examine the nature of structural identification as an optimization prob-

lem, leading to a uniformly sampled genetic algorithm and gradient search method. Com-

pared to similar research efforts recently (Koh et al., 2003a; Perry et al., 2006), equally

good accuracy is achieved with around only one-tenth of computer time. This result is

definitely very encouraging, making it possible to identify even larger systems on today’s

personal computer platform.

For better numerical performance, it is not a good idea to identify the target struc-

tures as a whole using the enhanced optimization strategy, or, for that matter, any other

strategy. The reason is two-fold: the identification of a whole structural system usually

comes with a large number of unknowns and also a large number of DOFs in the finite

element model. The large number of unknowns will result in a huge search space for

identification using the optimization strategy, posing a formidable challenge for conver-

gence. The large number of DOFs will require extensive computer time for evaluating

the objective function in the forward analysis. These two problems can be addressed
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by reducing the size of the structural system to be identified, for example, by means of

substructuring. To this end, a frequency domain substructural method is investigated

in this chapter. The original idea of substructuring is that the measured responses are

divided into base points and check points (Koh and Shankar, 2003a,b). The base points

are used to calculate the unknown force of interfaces and the check points are then used

to compare with the estimated response and formulate the objective function. However,

this idea was presented on the basis of steady-state dynamics in the forward analysis,

confining to sinusoidal excitations. This is not applicable to more general random exci-

tations.

To extend the current sine wave excitation to random forced vibration, the merely

use of Discrete Fourier transform (DFT) is insufficient. As the assumption of DFT is that

the basic function has to be periodic in the integral domain. This is, however, usually

not achievable in reality. A traditional way is to assume the whole data length as one

period, and zero padding is needed to ensure that the response dies out at the end of the

period, meeting the necessary causality condition. Zero padding guarantees the periodic

requirement for Fourier transform on one hand but results in a long time history on

the other hand. This is particularly so for lightly damped dynamic systems. Therefore,

zero padding is obviously a disadvantage for structural identification using optimization

strategies, as the long time history will substantially increase the computer time. The

need for arbitrary data length in the measurements is expected.

To overcome the above-mentioned problem, the substructural method is extended

in this chapter to random excitations, by introducing the exponential window method.

With the exponential window, the response can be guaranteed to disappear within one

period even for lightly damped dynamic systems. The measured data length can be

arbitrary as no zero padding is involved. The steady state formulation is then applicable

to non-periodic loading. For comparison purpose, two numerical examples (Tee et al.,

2005) will be presented on the extended substrucural method in the forward analysis. The
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proposed optimization strategy of Chapter 3 will be considered in the inverse analysis.

The first example is a 12-DOF lumped mass system to test the performance of the

proposed method in structural identification and damage detection. The second 50-DOF

system is investigated to verify the consistency of the method in a much larger system.

4.1 Frequency Response Function

In the forward analysis, the steady state response is obtained by transfer function, which

is usually referred to as frequency response function (FRF). The formulation is readily

derived based on the harmonic excitation. For a multi-DOF dynamic system, the motion

is characterized by the following second order differential equation.

Mü + Cu̇ + Ku = f (4.1)

where M, C and K are the mass, damping and stiffness matrix of the system. f is

the external excitation. ü, u̇ and u represent the acceleration, velocity, displacement,

respectively. If the structure is excited harmonically by a set of forces all at the same

frequency ω, but with their respective amplitudes and phases. Then

f = F(ω)eiωt (4.2)

and at the same time, the response exists in the form of

u = U(ω)eiωt (4.3)

where F(ω) and U(ω) are n× 1 vectors of time-independent complex amplitudes.

The equation of motion then becomes

(K− ω2M + iωC)U(ω)eiωt = F(ω)eiωt (4.4)

Rearranging for the response

U(ω) = H(ω)F(ω) (4.5)



122
CHAPTER 4. Frequency Domain Substructural Identification under Random

Excitation

where H(ω) is the n× n receptance Frequency Response Function (FRF) matrix for the

system and is given by

H(ω) = (K− ω2M + iωC)−1 (4.6)

In fact, this is a common analysis method in the frequency domain, especially when

using a transfer function approach. As shown in Eq. (4.5), it is based on the simple

relationship, that exists for linear, time-invariant systems between the Fourier transform

of the input, F(ω) and U(ω). These transforms are related through the complex-valued

transfer function, H(ω). This relationship assumes zero initial conditions for the input

and output and implies that their full time histories are used in calculating F(ω) and

U(ω). In practice, they are calculated at discrete frequencies from finite records, using

a fast Fourier transform (FFT) algorithm. The formulation of Eq. (4.5) represents the

steady-state response to a periodic extension of the excitation.

The general element in the receptance FRF matrix is defined as follows:

Hpq(ω) =
Up

Fq
(4.7)

It is clearly possible to determine values for the elements of H(ω) at any frequency of in-

terest simply by substituting the appropriate values into Eq. (4.6). However, this involves

the inversion of a system matrix at each frequency and this has several disadvantages.

First, it becomes costly for large order systems where n is fairly large. Second, it is

inefficient if only a few of the individual FRF expressions are required. Third, it provides

no insight into the form of the various FRF properties.

For these reasons, an alternative means of deriving the various FRF parameters is

to make use of the modal properties for the system in lieu of the spatial properties.

Returning to Eqs. (4.5) and (4.6), we can write

(K− ω2M + iωC) = H(ω)−1 (4.8)

Premultiply both sides by φT and postmultiply both sides by φ to obtain

φT (K− ω2M + iωC)φ = φTH(ω)−1φ (4.9)
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If

Kn = φTKφ;Mn = φTMφ;Cn = φTCφ (4.10)

Then

(Kn − ω2Mn + iωCn) = φTH(ω)−1φ (4.11)

we have

Mn(ω2
r − ω2 + iωMn

−1Cn) = φTH(ω)−1φ (4.12)

where ωr is angular frequency associated with the r-th mode. Eq. (4.12) leads to

H(ω) = φMn(ω2
r − ω2 + iω · 2ωrξr)−1φT (4.13)

where ξr is the damping ratio associated with the r-th mode. It is clear from this equation

that the recepetance matrix H(ω) is symmetric, and this is recognized as the principle

of reciprocity which applies to many structural characteristics. Its implication in this

situation is that:

Hpq(ω) =
Up

Fq
= Hqp(ω) =

Uq

Fp
(4.14)

Eqs. (4.13) and (4.14) permit us to compute any individual FRF parameter Hpq(ω) using

the following formula

Hpq(ω) =
n∑

r=1

φprφqr

ω2
r − ω2 + i · 2ωωrξr

(4.15)

Note that the resulting expression is delivered by multiplying the p-th row of φ by the

diagonal frequency matrix by the q-th column of φT . In fact, this is very much simpler

and more informative than the use of direct inverse as given in Eq. (4.6).

If the response is acceleration instead of displacement, the corresponding frequency

domain FRF functions are called accelerance Apq(ω) relating the output acceleration

spectrum ap(ω) at location p to input excitation frequency spectrum Fq(ω) at location

q. Therefore, the accelerance is given as follows.

Apq(ω) = −ω2Hpq(ω) =
n∑

r=1

− ω2φprφqr

ω2
r − ω2 + i · 2ωωrξr

(4.16)



124
CHAPTER 4. Frequency Domain Substructural Identification under Random

Excitation

4.2 Frequency Domain Substructural Method under Har-

monic Excitation

Based on the concept of divide-and-conquer, the response of part or whole structure

can be obtained individually from each substructure. As established in the original

formulation (Koh and Shankar, 2003a), the response of the substructure is given by

U = H∗
EFE + H∗

IFI (4.17)

where FE is the excitation force applied inside the substructures. FI is the unknown

interface force vector, and H∗, including FE and FI, represents the receptance of a “free-

free” substructure. The receptance can be directly measured using Eq. (4.14) or evaluated

by Eq. (4.6) or Eq. (4.15) within a substructure. It should be noted that, substructures are

“free-free” components that are unconstrained at the interface except those supported at

physical boundaries. Thus rigid body modes, if any, of the substructures with zero natural

frequency should be counted in when Eq. (4.15) is used to calculate the receptance. If

the excitation force is applied outside of the substructure, the FE terms vanish, leading

to output-only identification.

In the present substructure method, the response measurements embrace “base

points” and “check points”. “Base points” represent the substructurally selected points

that used to calculate the unknown interface force. If the “free-free” substructure has s

interface forces, the number of “base points” has to be s, and the unknown interface can

be obtained by solving the following equation.

FI = H∗
I
−1(Ub −H∗

EFE) (4.18)

where H∗
I is a matrix with a dimension of ni × nDOF . The number ni represents the

total number of nodes at the interface, and nDOF is the total number of DOFs per node.

Obviously, s is at least the product of ni and nDOF so that the number of equations

will be sufficient to solve for the unknowns in Eq. (4.18). Therefore the substructure of
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interest has to be large enough to contain sufficient number of available measurements

for the sum of “base points” and the subsequent “check points”.

“Check points” are to provide additional measurements used to check whether the

candidate system can generate the same output as the measured responses. In this

way, the objective function formulated by the estimated and measured “check point”

response, i.e., Eq. (4.17), is able to identify the system. Theoretically, only one check

point is required to identify the unknown system, but more check points can reduce

the sensitivity of identification result to the chosen check point and thus improve the

numerical accuracy.

To illustrate the philosophy of substructuring, a lumped mass system shown in

Fig. 4.1 is studied for example. Typically, a and b represent two interfaces, p and q

are two base points, c is the check point and e is the location of internal force (if any).

The interface forces are represented by Fa and Fb. The two unknown interface forces can

be solved from two measurements within the substructure.

FI =
{
Fa

Fb

}
=
[
H∗(p, a) H∗(p, b)
H∗(q, a) H∗(q, b)

]−1 [{
up

uq

}
−
{
H∗(p, e)
H∗(q, e)

}
FE

]
(4.19)

Once the interface force FI is solved, it is substituted back into Eq. (4.17) to compute

the response at the check point

uc = H∗(c, e)FE +H∗(c, a)Fa +H∗(c, b)Fb (4.20)

The above example of one dimensional structure implies that the size of the H∗
I matrix

is determined by the number of the interface unknowns, i.e., 4 by 4 for the Euler beam

case and even larger for plates and shells. Furthermore, the size of this matrix is also

determined by the number and type element used and the connectivity mechanism from

the substructure to the whole structure.
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4.3 Frequency Domain Substructural Method under Ran-

dom Excitation

The previous section presents the frequency domain substructure concept for periodic ex-

citation. Under a harmonic force, the response is readily evaluated by applying Eq. (4.5)

to a specific excitation frequency ω. This formulation gives the response under the as-

sumption that the system is initially at rest and the forcing function is periodic. Using

Fourier transform, a periodic forcing function is thus expressed as a linear combination of

harmonics of different frequencies, amplitudes and phase angles, and the total response

is the superposition of component frequency response.

To extend the substructure method from harmonic loading to random excitations,

the key issue is to make Eq. (4.5) applicable for non-periodic forcing functions. It is

then necessary to recall the continuous representation of Eq. (4.5), which is essentially

applicable for arbitrary excitations. The response is estimated by the convolution of the

forcing function and the unit impulse response function. The formulation is summarized

in the following expressions.

u(t) =
1
2π

∫ ∞

−∞
H(ω)F(ω)eiωtdω (4.21)

where

H(ω) =
∫ ∞

−∞
h(t)e−iωtdt

F(ω) =
∫ ∞

−∞
f(t)e−iωtdt

Basically, H(ω) and F(ω) are the Fourier transforms of h(t) and f(t). In the contin-

uous formulation, i.e., Eq. (4.21), the response due to a non-periodic loading can be

theoretically integrated in time from −∞ to +∞ in the Fourier transform integral. In

numerical implementation, the use of discrete Fourier transform (DFT) prevails instead.

Sampled at regular intervals, the infinite integration domain is decretized and the con-

tinuous Fourier integral is then replaced by summation over one period. An important
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difference between the continuous and discrete Fourier transforms is that, the continuous

FT provides a true representation of the given function while the discrete FT represents

only a periodic version of the function. These two versions of Fourier transform will not

become similar unless the original function happens to be periodic with the whole data

length. The problem now is to convert the non-periodic forcing function f(t) and the

unit impulse response function h(t) into periodic forms.

As a result of the periodic assumption for DFT, the causality is required in the

signals such that the initial condition achieved at the start of the next cycle will be the

same as the initial condition attained at the beginning of the present cycle. With the

assumption of zero initial condition, the resulting response has to be “quiet” at the end

of the period. Otherwise, it cannot ensure the zero initial condition for the next cycle.

Traditionally, a quiet ending in the response of a damped system is achieved by adding

sufficient length of zeros to the original forcing function. The length of trailing zeros is

dependent on fundamental period of the system and the damping of the system. The

damping, however, plays an important role in the free vibration section where zeros has

been padded additionally to the original time history. Through sufficiently long period

and large enough damping, the impulse response h(t), corresponding to the digitally

sampled complex response function H(ω), can then practically be silent towards the end

of the period (Humar, 1990). Otherwise the initial conditions in the periodic response

by DFT are not identical to the true initial condition.

However, zero padding incurs extensive computer time particularly for lightly damped

and undamped systems. First, increasing the length of zero-padding augments the num-

ber of data points in the time history, decreases the step length of frequency increment,

and increases the frequency resolutions in DFT. These changes will eventually increase

the computational effort in calculating the associated F(ω) and H(ω), which will be

considerably significant for multi-DOF systems. Second, the response will be incorrectly

estimated if damping is not large enough in the system. Typically, for a lightly damped
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system, i.e., 5% damping ratio, the errors in responses are substantial even when the data

length of padded zeros is increased to be 10 times of the original length of excitations

(Veletsos and Ventura, 1985). If not resolved, these problems tend to compromise the

advantages of the proposed strategy than other substructuring ideas in the identification.

4.3.1 Exponential Window Method

As explained in the previous section, the use of DFT may introduce spurious initial

conditions in the response due to the preceding periods of the exciting force. The calcu-

lated response by the steady state formulation may be in significant error unless enough

damping and sufficient long time history of padded zeros are ensured. Instead of adding

long zeros to maintain the causality, a more promising way is to adopt an Exponential

Window (EW) method (Kausel and Roesset, 1992) to introduce an artificial damping to

damp out this spurious initial condition. To compensate the error caused by the spurious

initial conditions, the EW method is superior to supposition of corrective force impulse

(Veletsos and Ventura, 1984) and fast convolution method (Humar, 1990), which are not

readily extended to general multi-DOF systems or continuous systems.

Sound mathematical derivation can be found from Kausel and Roesset (1992). The

use of exponential window herein, rather than other window methods like cosine bell

window in signal processing, gives a clear physical interpretation as well as a concise

numerical implementation. The problem here is to deal with transient signals and thus

emphasis is placed on the effect of initial conditions. Therefore the capacity on minimizing

“leakage” dominates the selection of windows. A properly applied exponential window

will cause the impulse response to be completely contained within the sampling window;

thus leakage will be reduced to a minimum in its spectrum. More importantly, the

exponential window is one of the few windows whose effects can be removed by post-

processing. While processing the transient signals, the exponential window adds artificial

damping to all of the modes of the structure in a known manner. As this artificial
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damping is known, it is very easy to restore the original signals by compensating an

inverse exponential window.

Using the EW method, both the forcing function and the unit impulse response

function will be scaled such that the functions die rapidly toward the end of a selected

period, so that the causality is maintained in their convolution. Let the forcing function

be f(t) and impulse function be h(t). Through the EW, the histories of f(t) and h(t)

are scaled by an EW function as f̄(t) and h̄(t) as follows

f̄(t) = e−ηtf(t) and h̄(t) = e−ηth(t) where η > 0 (4.22)

The Fourier transform then gives

F̄(ω) = F(ω − iη) =
∫ ∞

−∞
[e−ηtf(t)]e−iωtdt (4.23)

and

H̄(ω) = H(ω − iη) =
∫ ∞

−∞
[e−ηth(t)]e−iωtdt (4.24)

Scaled with EW, the total response is given by inverse Fourier transform as

ū(t) =
1
2π

∫ ∞

−∞
U(ω − iη)eiωtdω =

1
2π

∫ ∞

−∞
H(ω − iη)F(ω − iη)eiωtdω (4.25)

By taking the inverse EW, the expected response is given by

u(t) = eηtū(t) (4.26)

To achieve sufficient attenuation of EW without loss of numerical precision, the window

size factor η is given by

η =
2π
T

(4.27)

which corresponds to a 54.6 dB attenuation of exponential window and produces good

enough results (Kausel and Roesset, 1992).

To carry out the algorithm numerically, the corresponding discrete formulation is

ū(t) =
1
2π

N−1∑
n=0

H(n∆ω − iη)F(n∆ω − iη)ei(2πkn/N)∆ω, k = 0, 1, · · · (N − 1) (4.28)
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The folding frequency is π/∆t. H(ωj− iη) of π/∆t to 2π/∆t is the complex conjugate of

those located symmetrically between 0 and π/∆t. Only the first half before the folding

frequency is physically meaningful. Then the time domain response is

u(k∆t) = eη·k∆tū(k∆t) (4.29)

4.3.2 Frequency Domain Substructural Identification Using Steady State

Formulation

Using the EW method, Eq. (4.5) is now applicable for non-periodic loadings. For sub-

structural analysis under random excitations, Eq. (4.18) is used to get the unknown

interface force, and to calculate the check point response. In the case of random exci-

tation FE, the response of an arbitrary point at each frequency component is evaluated

through Eq. (4.17), i.e.

u(ωk − iη) = H∗
E(ωk − iη)FE(ωk − iη) + H∗

I(ωk − iη)FI(ωk − iη) (4.30)

The total response in time domain is then the summation of all the contributions from

individual harmonic components as

u(t) = eη·k∆t 1
2π

N−1∑
n=0

u(ωk − iη)ei(2πkn/N)∆ω (4.31)

where the frequency component ωk =
2πk
N∆t

, and k = 0, 1, · · · (N − 1). It should be

borne in mind that the resulting folding frequency has to be high enough to incorporate

the highest modes of interest. The implementation of frequency domain substructural

identification (F-Sub) is illustrated in Fig. 4.2.

In practice, acceleration is preferred in measurement to displacement. In that case,

Eqs. (4.30) and (4.31) which correspond to displacement response can be reformulated

for acceleration as follows.

ü(ωk − iη) = A∗
E(ωk − iη)FE(ωk − iη) + A∗

I(ωk − iη)FI(ωk − iη) (4.32)
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where the accelerance is given by Eq. (4.16), and

ü(t) = eη·k∆t 1
2π

N−1∑
n=0

ü(ωk − iη)ei(2πkn/N)∆ω (4.33)

4.4 Substructural Efficiency: A Measure of Divide-and-

Conquer Methods

For the ease of quantifying and comparing the performance of different divide-and-

conquer methods for system identification, a measure called “substructural efficiency”

is proposed in this study to compare the computer times used by a substructural identifi-

cation and by global identification. Suppose a whole structure is divided into n substruc-

tures of similar sizes for identification, and suppose further the computer times used for

identifying the i-th substructure and the whole structure are ti and tg, respectively, then

the substructrual efficiency γ is defined, based on the equal number of fitness evaluations

used by n substructures and by global identification, as

γ = 1−

n∑
i=1

ti

tg
(4.34)

The total evaluations for substructural and global identification are chosen in such a

manner that both of the methods achieve the best of their performance and the final

identification errors are at the same level, i.e., approaching zero in the noise free case.

Obviously, this ratio should be within the range from 0 to 1. The closer the value of γ

comes to 1, the better the efficiency of dividing-and-conquering. Of course, a negative γ

is possible and indicates that the substructural method takes longer time than the global

identification. In such a case, the substructural method may be suitable to identify

part of a structure but cannot be efficiently applied to identify a whole structure by

substructuring.



132
CHAPTER 4. Frequency Domain Substructural Identification under Random

Excitation

4.5 Numerical Examples

Two numerical examples are presented in the present section. The proposed frequency-

domain substructural identification under random excitation, “F-Sub” in short from here

onwards, is firstly tested on a 12-DOF system to check the applicability. Then the method

will be investigated on a larger 50-DOF system to test the consistency. For these two

systems, both system identification and damage detection will be carried out using the

iSSRM with gradient search strategy in Chapter 3. The input excitation and the mass

properties are assumed to be known. For both structures, the system identification is

carried out using the whole structure and F-Sub method. The total fitness evaluation

is expected to be 3,800 for 12-DOF system and 12,000 for 50-DOF system. The GA

parameters to be used in the identification strategy are given in Table 4.1. The results of

the present research will be compared with the previous study by Tee et al. (2005). Only

the result by Sub-SOMI-RR method, i.e., substructural second-order model identification

with relative response, of Tee et al. (2005) is covered, as it is the mostly recommended

method in the paper. As concluded in the paper, the Sub-SOMI-RR method was more

practical than the Sub-FOMI method, i.e., substructural first-order model identification,

in requiring no collocated acuators and sensors at all the interface DOFs as well as

avoiding numerical difficulties by converting the first-order model to the second-order

model at the substructural level. Furthermore, the Sub-SOMI-RR method was better

than the Sub-SOMI-AR method, i.e., with absolute response, in demanding less velocities

and displacements at the interface DOFs. It should be noted that the computer time is

measured by the same 450-MHz Pentium III CPU as used by Tee et al. (2005).

4.5.1 Stiffness Identification of A 12-DOF System

In the stiffness identification, the structure is divided into three substructures: S1 =

[1− 4], S2 = [3− 8], and S3 = [7− 12]. Two random forces with white noise distribution
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are imposed at level 3 and level 7. The structure to be identified is illustrated in Fig. 4.3.

Based on substructural identification with overlap, the identified element in the common

part will be reported by the averaged value. Full measurement of accelerations is assumed

in the first stage to compare with the performance with the algorithm, Sub-SOMI-RR by

Tee et al. (2005). For the dynamic system, Rayleigh damping is assumed to be 1.5% for

the first two modes. In the second phase of identification, 50% measurement availability

is investigated. The location of the incomplete measurement are at levels 1, 2, 4, 6, 8,

and 10.

The result in the case of no noise is not presented as the exact values are achieved by

both F-Sub and Sub-SOMI-RR methods. Results under measurement noise are presented

in Table 4.2. Using complete measurement, the results are demonstrated in Figs. 4.4

and 4.5 under measurement noise of 5% and 10%, respectively. It is clear that the

identification using the proposed optimization strategy are consistently better than those

in the reference Tee et al. (2005). In the case of 10% measurement noise, identifying the

12-DOF system as a whole, the mean error/maximum error/computer time by Tee et

al. (2005) are 8.8%/9.9%/50min while the corresponding values are 1.15%/2.73%/63min

in the current research by F-Sub. The results in substructural level by Sub-SOMI-RR

and F-Sub are fairly encouraging. The mean error/maximum error is 6.4%/9.1%/35min

for Sub-SOMI-RR, and 1.37%/4.39%/7min for F-Sub. Besides great improvement in

accuracy, the substructural efficiency by Eq. (4.34) is 0.9 for F-Sub while the efficiency

is only 0.3 for Tee et al. (2005). In the presence of 5% measurement noise, the computer

time is unaltered and the mean error/maximum error are 5.7%/9.0% for Sub-SOMI-RR

(Tee et al., 2005), and 0.66%/1.86% for F-Sub. The results show good performance of

F-Sub over Sub-SOMI-RR by considerably improved accuracy and time reduction. In the

case of incomplete measurement, the superior performance is still maintained as shown

in Fig. 4.6. The mean error/maximum error are 0.92%/2.58% for 5% noise case and

2.50%/6.04% for 10% noise.
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4.5.2 Damage Detection of A 12-DOF System

In the numerical simulation, damage is measured in terms of stiffness reduction and

quantified by a scalar index called the stiffness integrity index. The stiffness integrity

index is defined as the ratio of the stiffness identified in the damage state divided by that

in the reference state. In this section the reference state is taken as the intact state. Two

damage scenarios are studied. Damage scenario 1 involves single damage occurring in

S1 with 30% stiffness reduction in level 4. Damage scenario 2 embraces two damages in

S2: 20% stiffness reduction in level 2 and the other is 40% in level 5. The results listed

in Fig. 4.7 and 4.8 are the two scenarios for the noise level of 10%. The identification of

damage indices in the whole structure use F-Sub method yields mean/ maximum errors

of 2.01%/5.47% for damage scenario 1 and 1.72%/4.12% for scenario 2. In the reference

Tee et al. (2005) for comparison, the corresponding errors are 3.3%/5.1% and 3.7%/6.9%

for Sub-SOMI-RR method. The identification result by F-Sub is very encouraging as the

accuracy is achieved at the cost of only around 7 min compared to 35 min by Tee et al.

(2005).

4.5.3 Stiffness Identification of A 50-DOF System

In the example of 12-DOF system, the proposed F-Sub method incorporating the use

of improved identification strategy exhibit superior performance to the Sub-SOMI-RR

recommended by Tee et al. (2005). A much larger 50-DOF system Tee et al. (2005) is

studied here to check the robustness and consistency of the proposed method. The whole

structure is divided into 5 substructures, within each of which there is a force applied at

the corresponding top level, i.e., levels 10, 20, 30, 40, and 50 as illustrated in Fig. 4.9. The

5 substructures are defined as S1 = [1− 10], S2 = [9− 20], S3 = [19− 30], S4 = [29− 40],

and S5 = [39 − 50]. Rayleigh damping with ratio of 1.5% is set equally to the first two

modes of the global structure. Full accelerations are assumed available in the first phase
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of identification. In the second phase of identification, only 36% measurement availability

is assumed. The locations of incomplete measurement are at levels 1, 2, 3, 5, 8, and 10

in each substructure.

The identification results are summarized in Table 4.3. Based on complete mea-

surement, the identification results are given in Fig. 4.10. The accuracy is consistently

better than that presented by Tee et al. (2005). When identifying the 50-DOF sys-

tem as a whole in presence of 5% noise, the mean/maximum error/computer time are

23.5%/53.1%/190min was given by Tee et al. (2005), and 0.85%/4.16%/1,740min using

the proposed iSSRM with gradient search. A point to note is that the CPU time is mea-

sured by a 450-MHz Pentium III CPU. It is clear that the improvement on efficiency is not

as good as the improvement on accuracy. However, this disadvantage is overcome by a

substructural identification. The use of F-Sub method gives mean/maximum error/time

as 1.63%/6.88%/65min for 5 substructures combined. However, the corresponding val-

ues are worse, i.e., 11.0%/18.3%/210min, for Sub-SOMI-RR method. Based on the same

number of fitness evaluations as in Table 4.1, the substructural efficiency by Eq. (4.34) is

0.963 for F-Sub method while that is -0.11 for Sub-SOMI-RR method. Obviously, F-Sub

method shows an excellent efficiency over Sub-SOMI-RR method, as negative substruc-

tural efficiency implies that the method is inefficient for identifying a whole substructure

by substructuring. In case of 10% measurement noise, the mean/maximum errors are

2.81%/9.90% for F-Sub method and 1.84%/7.44% for identification as a whole. Although

the accuracy can be achieved in the same level, the computer time is reduced to around

4% only by using F-Sub method. Typically, it will cost 13 minutes to identify one of the

5 substructures of a 50-DOF system.

The comparison of complete measurement to incomplete measurement is presented

in Fig. 4.11 and Table 4.3. With 36% measurement availability by F-Sub identification,

the mean/maximum errors are 4.79%/20.94% for 5% noise and 9.63%/42.93% for 10%

noise. Such an increase in identification error from complete measurement to incomplete



136
CHAPTER 4. Frequency Domain Substructural Identification under Random

Excitation

measurement is expected. The reason is the incomplete measurement will significantly

affect the number of higher modes that can be captured in a substructure level. With

less information on higher modes, it will be more difficult to identify local stiffness of the

whole structure.

4.5.4 Damage Detection of A 50-DOF System

Two damage scenarios are investigated in this section. The damage is identified at

substructure level. The first damage occurs in a substructure SDS1 = [25 − 30] with

15% stiffness reduction in level 28 and 25% reduction in level 30. The second damage

scenario is a multiple-damage case in substructure SDS2 = [19 − 30], involving 20%

stiffness reduction in level 21, 15% reduction in level 25 and 25% reduction in level 26.

The incomplete measurements of damage scenario 1 are located at levels 24, 25, 28 and

30. For damage scenario 2, the measurements are available at levels 18, 20, 25, 28 and

30.

In the case of 5% noise with complete measurement, the results of two damage

scenarios are shown in Fig. 4.12 and 4.13. The identification of stiffness integrity in-

dex achieves mean/maximum errors of 1.55%/2.81% for the first damage scenario with

5% noise, and 1.29%/3.41% for the second damage scenario. In the presence of 10%

measurement noise (refer to Fig. 4.14 and 4.15), the errors increase to 4.11%/7.38% for

damage scenario 1 and 3.24%/6.84% for damage scenario 2. With incomplete measure-

ment, the mean/maximum errors are 6.05%/11.27% for damage scenario 1 in 10% noise,

and 10.10%/30.39% for damage scenario 2 in 10% noise. It is observed that the influence

of incomplete measurement is considerably large, even using the proposed identification

strategy in the two damage scenarios. Therefore it is strongly recommended that suf-

ficient measurement should be presented especially in the case of multiple-damage in a

substructure.
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4.6 Conclusions

A substructural identification method in frequency domain, i.e., F-Sub, has been pre-

sented in this chapter, which is applicable to random excitations. The extension of

F-Sub method from harmonic loading to random excitation is achieved in preserving

the periodic assumption of DFT, through the use of the exponential window method.

Therefore the requirement of causality is maintained within arbitrarily chosen length of

response time histories.

The proposed identification strategies consist of the proposed F-Sub method in the

forward analysis and the optimization strategy of Chapter 3 in the backward analysis.

The strategies are then tested on 12-DOF and 50-DOF lumped mass systems in system

identification and damage detection. Results are definitely very encouraging compared

to the recent research by Tee et al. (2005). Besides much better identification accuracy is

achieved by the use of F-Sub method than the Sub-SOMI-RR method (Tee et al., 2005),

i.e., less than 2% versus 11% in mean identification error, impressive efficiency of F-Sub

method in substructuring is reported by investigating a 50-DOF lumped mass system

under 5% noise. Based on Eq. (4.34), a significant substructural efficiency is reached as

0.963 for the F-Sub method while that is of -0.110 by the Sub-SOMI-RR method (Tee

et al., 2005). This finding indicates as well that the merely use of F-Sub method in

identification will reduce the computer time to around 4% over global identification, via

adopting 5 substructures in a 50-DOF system.

With incomplete measurement, the identification error reasonably increases. Engi-

neering implication arising from the results is that, sufficient measurements have to be

available within the substructure of interest if a substructural method in identification.

This is to capture as many higher modes as possible for better identification.
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Figure 4.2: Frequency domain substructural identification under random excitation
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Figure 4.4: Stiffness identification of 12-DOF system under 5% noise: complete measure-
ment
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Figure 4.5: Stiffness identification of 12-DOF system under 10% noise: complete mea-
surement
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Figure 4.7: Identified stiffness integrity indices for damage scenario 1: 10% noise
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Figure 4.8: Identified stiffness integrity indices for damage scenario 2: 10% noise
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Figure 4.10: Stiffness identification of 50-DOF system under 5% noise: complete mea-
surement
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Figure 4.12: Identified stiffness integrity indices for damage scenario 1: 5% noise
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Figure 4.13: Identified stiffness integrity indices for damage scenario 2: 5% noise
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Figure 4.14: Identified stiffness integrity indices for damage scenario 1: 10% noise
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Figure 4.15: Identified stiffness integrity indices for damage scenario 2: 10% noise
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Table 4.1: GA parameters for system identification and damage detection in
numerical studies

GA parameters
12-DOF system 50-DOF system

F-Sub (3Sa) Global structure F-Sub (5Sa) Global structure

Total Evaluations 1,250 3,800 2,400 12,000

Population size 3 × 3 3 × 3 3 × 3 5 × 3

Generations 4 15 10 50

Sample size 63 162 108 248

Number of runs 10 10 10 10

nb value 5 5 5 5

Crossover rate 0.8 0.8 0.8 0.8

Mutation rate 0.2 0.2 0.2 0.2

Migration rate 0.05 0.05 0.05 0.05

Regeneration 2 2 2 2

Reintroduction 3 5 5 20

Window width 4.0 4.0 4.0 4.0

a S=substructure
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CHAPTER 5

Time Domain Substructual

Identification

As shown in the previous chapter, the proposed identification strategy, the iSSRM with

gradient search and the F-Sub method, offers considerable ease in convergence and signif-

icant time cost reduction in computation. The success attributes not only to the concep-

tion of the enhanced optimization strategy, but also to the philosophy of substructuring

in frequency domain. The use of efficient optimization with a robust divide-and-conquer

method is very attractive and of great engineering significance for identifying large scale

structures. It is found that, however, F-Sub method requires that the size of substructure

has to be large enough to provide sufficient measurement for base points and check points.

This requirement will compromise slightly the advantages as a divide-and-conquer strat-

egy. Another disadvantage is that the F-Sub confronts non-uniqueness when identifying

stiffness, mass, and damping with known input.

Divide-and-conquer strategies in structural identification have achieved good devel-

opments since 1990s. A substructural identification method in time domain were pre-

sented using extended Kalman filter to estimate the stiffness and damping coefficient

(Koh et al., 1991). The measurement of displacement, velocity and acceleration at the
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interface were required. Later this time domain substructural method was improved,

referred to as T-Sub method in this study, in identification using GA (Koh et al., 2003b).

The enhancement lies in that only the acceleration measurement is needed. A modal do-

main identification was conducted with GA (Koh et al., 2000), allowing the identification

to be carried out in a much smaller domain than physical domain. The component mode

synthesis method (Craig and Bampton, 1968) was adopted in substructural damage quan-

tification. The identification was carried out by neural networks with natural frequencies

and mode shapes as input and damage cases as output (Yun and Bahng, 2000). Besides,

a substructural identification framework is proposed to avoid directly measuring rota-

tions via the strain and translational measurements (Reich and Park, 2001). Recently,

a Bayesian based probabilistic approach was also proposed to identify the location and

probable level damage in a substructure level (Yuen and Katafygiotis, 2006). Among

these research works, the paper by Koh et al. (2003b) demonstrated the T-Sub method

in maintaining two-fold benefits in convergence and computational efficiency as a gen-

eral divide-and-conquer method, as well as simultaneously identifying stiffness, mass and

damping.

The research in this chapter is to study the feasibility of the proposed iSSRM with

gradient search method in identifying substructures in time domain. Specifically, the

purpose is to explore an alternative divide-and-conquer identification strategy to F-Sub

in the following cases: (1) to identify part of a whole structure and identify the whole

structure by substructuring, and (2) to identify stiffness and damping when mass is

unknown. Therefore, the first step of the study will investigate the applicability of the

enhanced optimization strategy and the T-Sub method in known mass case, including

local identification of part of a whole structure and identification of a full structure via

progressive substructuring. The second step is then to examine the identification strategy

with unknown mass.
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5.1 Substructural Method in Time Domain

The motion equation of a multiple degree of freedom dynamic systems can be described

as

Mü + Cu̇ + Ku = f (5.1)

where M, C and K are the mass, damping and stiffness matrix of the structural system,

respectively. ü, u̇ and u represent the acceleration, velocity and displacement response

when the structure is excited by input force f .

In this study, Rayleigh damping is used. That is, the damping is assumed to be

proportional to a combination of the mass and the stiffness matrices and given as

C = a0M + a1K (5.2)

It is evident that this proportional damping leads to the following relation between damp-

ing ratio ξn and frequency ωn of the n-th mode. Through this relation, the associated

coefficient a0 and a1 could be determined.

ξn =
a0

2ωn
+
a1ωn

2
(5.3)

As the identification procedure involves computing the dynamic response repeatedly,

identification of the whole structure would be inevitably time consuming. Instead of

solving Eq. (5.1) as a whole, the measured response at the interface can be used to “zoom

in” on a given part of the structure, thereby significantly reducing the computational

effort and number of parameters leading to improved performance. The equation of

motion for a substructure can be written as

[
Mrj Mrr

]{ üj

ür

}
+
[

Crj Crr

]{ u̇j

u̇r

}
+
[

Krj Krr

]{ uj

ur

}
= fr (5.4)

where, subscript ‘r’ denotes internal DOFs of the substructure while subscript ‘j’ rep-

resents the interface DOFs. Treating interface responses as ‘input’ for the substructure

concerned, the above Eq. (5.4) can be rearranged as,

Mrrür + Crru̇r + Krrur = fr −Mrjüj −Crju̇j −Krjuj (5.5)
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The kinematic responses in the substructural level, ür, u̇r, and ur are considered to

be composed by a quasi-static component and a relative dynamic component. Taking

the displacement for example, the internal displacement can be expressed as the sum of

quasi-static displacement us
r and relative dynamic displacement u∗

r . That is

ur = us
r + u∗

r (5.6)

where quasi-static part is the response of structures ignoring all inertial effects and damp-

ing, the relative dynamic part is simply the difference between the total response and

the quasi-static response. Neglecting the time-derivatives in Eq. (5.5), the quasi-static

displacements can then be obtained as

Krrus
r = −Krjuj (5.7)

or alternatively,

us
r = −Krr

−1Krjuj = ruj (5.8)

Based on the concept of “quasi-static displacement” vector (Koh et al., 2003b), we have

u̇s
r = −Krr

−1Krju̇j = ru̇j (5.9)

and

üs
r = −Krr

−1Krjüj = rüj (5.10)

where r = −Krr
−1Krj , referred to as the influence coefficient matrix and used to relate

the internal DOFs to interface DOFs under the quasi-static condition.

Substituting Eq. (5.8), (5.9), and (5.10) into Eq. (5.6), and rearranging Eq. (5.5),

we have

Mrrü∗
r + Crru̇∗

r + Krru∗
r = fr − (Mrj + Mrrr)üj − (Crj + Crrr)u̇j (5.11)

Eq. (5.11) shows the relative motion, i.e., ü∗
r , u̇∗

r and u∗
r , actually defines the dynamic

motion, i.e., it can take into consideration of inertial and damping effects. As the damping
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term is usually small in comparison to the others, the above equation can be simplified

as

Mrrü∗
r + Crru̇∗

r + Krru∗
r = fr − (Mrj + Mrrr)üj (5.12)

This actually means that the forces induced by the quasi-static damping are much smaller

than the forces arising from the quasi-static inertia effects. Furthermore, if there is no

force applied within the substructure, fr vanishes and the response of internal DOFs are

determined by the motion of interface nodes induced force. Therefore,

Mrrü∗
r + Crru̇∗

r + Krru∗
r = −(Mrj + Mrrr)üj (5.13)

Obviously, the T-Sub method needs to solve the internal response on the left hand side

while treating the other on the right hand side of equation of motion as interfaces.

5.2 Numerical Examples

In order to verify the applicability of the proposed hybrid strategy in a time domain

substructural identification, the same three numerical examples as used by Koh et al.

(2003b) are studied: a two-span truss structure, a 50-DOF system with known mass

distribution, and a 50-DOF system with unknown mass distribution. As concluded by

Koh et al. (2003b), T-Sub without overlap is recommended for identifying only part of a

structure while another version of T-Sub, known as the progressive substrucutral identifi-

cation (PSI), is good for identification of the whole structure by adaptive substructuring.

Therefore, the first two examples are to investigate feasibility of the hybrid optimization

strategy in known-mass identification, including identifying a part of the structure by

T-Sub without overlap and as a whole by PSI. The third example is to illustrate the

PSI method in identifying large systems when the stiffness, mass, and damping are not

known a priori.

For each of these three systems considered, Rayleigh damping is adopted with damp-

ing ratio of 5% for the first two modes. Treating the two damping coefficients as un-
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knowns, the total numbers of parameters to be identified are thus 13, 52, and 102 for

the three examples. The input forces are assumed to comply with Gaussian white noise

distribution, and known for all the cases, except that they are outside the substructures

of concern. In the identification, a data length of 2-second time histories is collected

at a sampling rate of 500 Hz. The measurement noise is defined as the ratio of stan-

dard deviation of the zero-mean white Gaussian noise to the root-mean-square value of

the unpolluted signals. The GA parameters of the identification strategy are given in

Table 5.1.

5.2.1 A Two-Span Truss Structure

The two-span truss is composed of 57 elements, out of which, an 11-element substructure

illustrated in Fig. 5.1 is to be identified. Typical length of the structural members is 4

m. For each member, Young’s modulus and sectional area are 200 GPa and 0.0015 m2,

respectively. The axial rigidity EA is identified through T-Sub method without overlap.

In the global structure, eight random forces in total are imposed while only four of them

are within the substructure of interest. The accelerations are assumed to be available in

11 locations. As illustrated in Fig. 5.1, 3 of the measurements are inside the substructure

and the rest of them are at the interfaces. The identification results are very good in

the case of 5% and 10% noise levels are summarized in Table 5.2. In identifying the 11-

element truss substructure, the mean/maximum errors are 0.85%/2.60% in the presence

of 5% noise and 1.37%/4.07% for 10% noise. The results are significantly better than the

earlier results by Koh et al. (2003b), which give errors 8.99%/18.90% for 10% noise.

5.2.2 A 50-DOF System with Known Mass

The purpose is to identify the stiffness distribution with assumed mass properties but

unknown damping ratios. Exact parameters of the 50-DOF system are K1 = K2 = · · ·

= K50 = 700 kN/m, and M1 = 600 kg, M2 = M3 = · · · = M50 = 300 kg. External



5.2: Numerical Examples 157

forces are applied at the respective 3rd, 6th, 9th nodes of every 10 levels. Accelerations

are measured at the 3rd, 5th, 8th, and 10th node of each 10 levels and the interested

substructural interfaces. For the SSI method with overlap, the whole structure is divided

into 10 substructures: S1 = [45− 50), S2 = [40− 50), S3 = [35− 50), · · · , S10 = [0− 50).

A square bracket “[” means that the acceleration at the level indicated is required as

interface and used as input whereas a parenthesis “)” indicates the measurement at that

level is optional. The search limit is set from 0.5 to 2.0 times of real values. Using

the proposed identification strategy, the total evaluations are 12,000 for both complete

structural identification (CSI) and PSI so that a fair comparison of accuracy can be done.

Typical identification results of the present investigation at 5% noise are illustrated in

Fig. 5.2. The results give a consistent picture that the proposed identification strategy is

much better than the previous T-Sub method by Koh et al. (2003b) for both CSI and PSI.

In terms of identified-to-exact ratios, the mean absolute error of 7.3% for CSI and 3.1% for

PSI in the identified stiffness parameters were reported in Koh et al. (2003b). The saving

in computational time was 37% for PSI compared to CSI. With the proposed identification

strategy, the mean/maximum absolute error/time are reduced to 0.75%/2.48%/12min for

CSI and 1.32%/4.73%/5min for PSI. The computer time achieves a 42% reduction for

PSI as compared to CSI. When the noise level of measurement goes up to 10%, the

mean/maximum absolute error are 1.36%/5.15% for CSI and 2.84%/11.04% for PSI.

However, the results in the case of 10% noise were not reported in the reference Koh et

al. (2003b), and thus comparison cannot be made.

5.2.3 A 50-DOF System with Unknown Mass

The third example will further illustrate the outstanding feature of T-Sub, that is identi-

fying stiffness and damping without knowledge of mass distribution. It is obviously more

challenging as the stiffness, mass and damping are to be identified simultaneously. To

illustrate the point, the same 50-DOF system is investigated again with unknown mass.
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The whole structure is to be identified via 25 substructures which are S1 = [48 − 50),

S2 = [46 − 50), S3 = [44 − 50), · · · S25 = [0 − 50). Considering the increased number

of unknowns and thus a much bigger search space, 50,000 evaluations are adopted for

fair comparison with the work by Koh et al. (2003b). For each substructure by PSI,

2,000 evaluations will be computed to find the candidate sub-system. The force locations

are maintained the same as in Example 2. However, the accelerations taken herein are

at the 2nd, 4th, 6th, 8th, and 10th level of each substructure. For the first substructure

S1 = [48− 50), an additional measurement is taken at the 49th level. The reason is that

the size of the first substructure is too small to be identified through the lower modes

contributions. If the first substructure is not accurately identified, the error will propa-

gate to subsequent substructural identification as S1 will be then treated as known but

inaccurate.

The results are excellent in the sense that both stiffness and mass are fairly well

identified, as summarized in Table 5.3. The T-Sub method is associated with negligible

modeling error in the formulation. The error originates from ignoring the time-derivative

forces in the interface. It is reflected in Table 5.3 in the identification of noise free case.

By CSI method, both the mean and maximum absolute errors are found to be zero.

However, the errors do not vanish but are small for PSI method.

The comparison of results with previous research (Koh et al., 2003b) is presented in

Fig. 5.3 and 5.4. In Koh et al. (2003b), the mean errors of identified stiffness are 5.1%

and 21.0% for PSI and CSI, respectively, in the case of 5% noise, while the corresponding

errors are 1.46% and 1.17% in the present study. Reduction in computer time for PSI

compared to CSI is 37% in the present study, and this is quite close to the 40% reduction

reported in Koh et al. (2003b). This finding actually highlights the success of substruc-

turing in reducing the forward analysis time. As the total evaluations are fixed equally,

the time spent on the iterations on a substructure is of course much less than using the

whole structure. The identification of a 50-DOF system with unknown mass takes only
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19 min by the PSI method, using a two-processor workstation with each processor having

quad-core CPU at 3.00 GHz.

It is discovered in the two examples on 50-DOF system, however, that the CSI

method yields slightly better identification accuracy than the PSI method. The observa-

tion is predominant especially in the case of incomplete measurement. This is reasonable

in that, for the same type of sensor distribution, the modal information picked up in

the global structure will always be richer than in a substructural level. The contribution

from the lower modes is reflected as rigid body response in a substructural level. Only

deformable modes will exhibit the participation from component stiffness.

5.3 Conclusions

It has been verified in this chapter that the proposed uniformly sampled genetic algorithm

plus gradient search is applicable in time domain substructural identification (T-Sub).

Through the numerical investigation of different type of structures, several remarks can

be given as

(1) The PSI method was recommended (Koh et al., 2003b) to be a successful variant

of T-Sub method for identifying a whole structure by dividing and conquering. It

is discovered in the two examples on 50-DOF system, however, the CSI method

yields slightly better identification over that by PSI method. The reason is that,

for the same layout of sensors, more modal information will be collected in a global

level than a substructural level, although more unknowns are involved in a global

identification. The engineering implication of this finding is that it is better to

have more measurements in a substructure of interest, especially for the first several

substructures for PSI identification.

(2) By completing the same number of total evaluations, it is discovered in this study

that the substructural efficiency achieved by the PSI method over the CSI method
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is not sensitive to the optimization method used in the backward analysis, although

the enhanced optimization strategy can help to reduce computer time by either CSI

or PSI method. However, the substructural efficiency will vary with the substruc-

tural size and the structural type that to be identified. It is of confidence to expect

that the substructural ratio will reduce further when the number of DOFs increases.

(3) Based on the studies of the 50-DOF system (Tee et al., 2005), F-Sub method is

recommended over T-Sub and Sub-SOMI-RR (Tee et al., 2005) for large structural

identification in terms of accuracy and efficiency. The results are shown in Fig. 5.5.
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Figure 5.1: Two-span truss structure and substructure
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Figure 5.2: Ratio of identified stiffness to exact value for 50-DOF known-mass system
under 5% noise
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Figure 5.3: Ratio of identified stiffness to exact value for 50-DOF unknown-mass system
under 5% noise
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Figure 5.4: Ratio of identified mass to exact value for 50-DOF unknown-mass system
under 5% noise
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Table 5.1: GA parameters for system identification in numerical examples

GA parameters Truss
50-DOF system: known mass 50-DOF system: unknown mass

CSI PSI (10Sa) CSI PSI (25Sa)

Total Evaluations 2,400 12,000 1,200 2,400 12,000

Population size 3 × 3 5 × 3 3 × 3 10 × 3 3 × 3

Generations 10 48 4 128 16

Sample size 108 238 63 168 34

Number of runs 10 10 10 10 10

nb value 5 5 5 5 5

Crossover rate 0.8 0.8 0.8 0.4 0.4

Mutation rate 0.2 0.2 0.2 0.2 0.2

Migration rate 0.05 0.05 0.05 0.05 0.05

Regeneration 2 3 2 3 3

Reintroduction 5 20 3 50 5

Window width 4.0 4.0 4.0 4.0 4.0

a S=substructure

Table 5.2: Identification of truss substructure by SSI without overlap

Member number Exact EA (MN)
Estimated EA

5% noise 10% noise
10% noise

(Koh et al., 2003b)

1 300 299.70 290.60 338.27

2 300 304.00 297.00 289.00

3 300 296.50 304.30 326.54

4 300 300.60 298.30 285.19

5 300 300.10 305.00 243.26

6 300 298.80 298.70 315.98

7 300 302.30 294.70 319.50

8 300 298.60 302.60 305.13

9 300 299.40 299.50 251.76

10 300 306.40 300.00 316.57

11 300 307.80 287.80 256.15

Mean absolute error (%) 0.85 1.37 8.99

Maximum absolute error (%) 2.60 4.07 18.90
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Table 5.3: Identification of 50-DOF lumped mass system with unknown
mass

Methods Identification error
Noise level for stiffness Noise level for mass

0% 5% 10% 0% 5% 10%

CSI
Mean error (%) 0.00 1.17 2.43 0.00 1.12 2.27

Maximum error (%) 0.00 3.65 7.74 0.00 3.45 7.99

PSI
Mean error (%) 0.58 1.46 3.05 0.53 1.34 2.89

Maximum error (%) 2.24 4.89 10.11 2.20 4.77 9.69





CHAPTER 6

Identification of Structural

Changes: Experiment Study

In Chapters 2 and 3, a uniformly sampled genetic algorithm, i.e., iSSRM, with gradient

search is proposed for identifying large structural systems. Extensive parametric studies

have been carried out to reach a balanced optimization in the initial non-gradient search

and the latter gradient search. In Chapter 4, the proposed identification strategy is in-

vestigated in an extended frequency domain substructural identification (F-Sub). The

original substructural method under sinusoidal excitation is improved to accommodate

random excitation (Koh and Shankar, 2003a). The identification strategy is also applied

in Chapter 5 for time domain substructural identification (T-Sub). These two chapters

have served to test the validity of “peak-shifting” in a substructural level, paving the

way to identifying even larger systems with much less computer cost. It has been shown

numerically in the global identification that the proposed strategy is able to achieve

equally good result with an impressive 90% reduction in computer time, when compared

to recent similar works (Koh et al., 2003a; Perry et al., 2006). With the aid of substruc-

tural method, the proposed identification strategy has the potential to identify a 50-DOF

structure (Koh et al., 2003b) with only 4% computer time. It should be noted that this

is done without parallel computing, although the proposed identification strategy can
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readily be parallelized due to its high concurrency.

Nevertheless, such good numerical results as demonstrated in the previous chapters

should be supported by experimental evidence. To investigate the performance of the

proposed strategies in global/substructural identification, the experiment conducted by

Koh and Perry (2007) is considered. The experiment is also extended in order to identify

the stiffness change associated with welding, which serves to model the effect of structural

strengthening, for example, by means of retrofitting. Together with the cut-induced

damage data, new data are used to test the proposed methods in a more challenging way,

where the stiffness increased by welding is to be determined in the presence of initial

damage.

In the first part of this chapter, static test will be implemented to serve as as-built

for dynamic test by different methods. The second part will cover vibration testing setup,

data processing, and dynamic baseline state identification. The third part will then be

on the arrangement of damage and strengthening scenarios. The last part will present

the damage identification results based on post analysis of the experimental data. To

this end, it is important to bear in mind that subsequent identifications are carried out

based on known mass properties, which are taken from the baseline identification using

the dynamic test data.

6.1 Static Testing for Baseline Quantification

The original model used by Koh and Perry (2007) was a 7-storey steel frame. The six

columns were made of steel plates with 25 × 4.6 mm rectangular cross section. At each

level, a rigid frame of a width to length ratio 1:2 was fabricated by a 25× 25× 3.0 mm

square hollow section. With symmetrically distributed flexible columns around a rather

rigid floor, the structure can be simplified as a shear building with a single translation

at each level. For ease of load application, the model was erected horizontally to a rigid
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vertical supporting frame, as shown in Fig. 6.1.

Static experiment was carried out as a supplement to dynamic testing. By hanging

weights at each level, the static displacements were recorded from transducers. Two

10-mm displacement transducers (Tokyo Sokki Kenkyuio) were used to measure the left-

hand side and right-hand side deflection at each loaded level. This was illustrated in

Fig. 6.2. The average of two displacements was taken as the deflection di for each storey.

The weight hanging test was conducted storey by storey, and every 5 kg is added until a

maximum of 25 kg was reached. This procedure was repeated from the supporting end

level 1 to the free end level 7. Therefore five data points were obtained for each level,

from which a linear force-displacement line can be obtained by linear regression. The

total stiffness from level 1 to an arbitrary level i can be expressed as

Ki = ℓ

(
Fi

di

)
(i = 1, 2, · · · 7) (6.1)

where ℓ (·) denotes the linear regression obtained from the load-displacement data points.

Then the stiffness of each level ki can be obtained accordingly by Eq. (6.2)

ki =


K1

(K−1
i −K−1

i−1)
−1 (i = 2, 3, . . . 7)

(6.2)

6.2 Dynamic Testing

Dynamic experiment is the main focus of the chapter, to identify stiffness change of

the tested frame in each damage/strengenthening phase. Three methods, i.e., global

identification, T-Sub method, and F-Sub method were used to carry out identification

on the basis of dynamic testing data. Among these three methods, global identification

and T-Sub method would be used to identify the baseline model of unknown mass. Then

the baseline mass by different methods would be used to identify the stiffness change

via the corresponding methods. As the F-Sub method cannot be used to identify the

unknown mass case, the required baseline mass was obtained by T-Sub method.
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6.2.1 Vibration Testing Setup

In vibration testing, dynamic force was applied through a function generator (Signa-

metrics function generator, model SM-1020), where the force history was converted into

voltage time signal. By a power amplifier, the signal was adjusted to the workable level

and to produce sufficient movement for an electromagnetic shaker (model Labworks ET-

126B). The shaker was clamped to a rigid base. As illustrated in Fig. 6.3, force generated

by the shaker was transferred to the frame by a connecting rod and a bolted connection.

The output force of shaker was captured by a force sensor, which was attached up to

the connecting rod through an aluminum plate and fastened down to the shaker via a

threaded stainless steel stringer. Detailed connection of shaker, force sensor and the

tested frame was shown in Fig. 6.4 and 6.5.

The dynamic response was measured at each level of the frame using three types of

accelerometers. Performance specifications of the seven accelerometers used are given in

Table 6.1. These accelerometers were mounted at the center column of the upper side in

each level. To avoid inducing external damping due to mounting, thin double sided tape

and thin layer epoxy were adopted. The excitation was measured through a force sensor.

The sensitivity, force range, and frequency range of the force sensor were 11.16 mV/N,

445 N, and 36 kHz.

With battery-powered signal conditioner, signals from the accelerometers and force

sensor were transmitted to a 16-channel high-speed digital oscilloscope (Yokogawa model

DL716E). In the experiment, eight channels were used for data acquisition. The data was

recorded at a sampling rate of 5 kS/s. The record length was taken as 10k, i.e., 10,000

points were recorded for each signal during the vibration test.
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6.2.2 Data Processing

Noise is inevitable in the measured response and excitation signals. There are two ma-

jor sources of noise in vibration test: electrical noise of the measurement system and

background noise. The electrical noise is undesired electromagnetic interference in a

transmission cable or device. It comes from (1) a coupling between circuits in the mea-

surement system with power circuits, (2) vibration-sensitive elements other than the

sensor, e.g. cable, and (3) improper selection/setting of system components such that

achievable signal-to-noise ratio is not attained (Harris and Piersol, 2001). Background or

ambient noise, on the other hand, is mainly caused by the unknown background vibration

sources, for instance, occasional heavy equipment operating in the laboratory.

Therefore data processing comprises two steps of noise filtering. The first step is to

remove the non-zero mean offset caused by electrical noise. In the study, the mean of the

first 500 points of the whole 10K-event is computed, accounting for the potential offset

before the force application. Then the first step of de-noising is done by subtracting

the computed mean value from the whole data record. The second step is to remove

the response due to higher frequency inputs which exceeded the bandwidth of the tested

structure. The measured 7th frequency of the intact seven level frame is 123 Hz (Perry,

2006). Hence, a low-pass filter is designed with a cut-off frequency of 256 Hz. The ripples

at the pass band and stop band are set to be 3 dB and 60 dB.

6.3 Baseline Identification

The baseline of stiffness change would be established via vibration data in this section.

As the stiffness changes would cover cut-induced damage and structural strengthening

by welding, the baseline of these two cases had to be identified in advance. The intact

state would be considered as baseline for cut-induced damage case whereas the final sce-

nario of cut-induced damage would be used for baseline for strengthening case. Baseline
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identification is to map the experimental model into the mathematical model used, i.e.,

a shear building which can have lateral motion in one direction at each level.

The following sections identify the baseline model using system identification meth-

ods that are applicable without the knowledge of mass, stiffness, and damping properties.

For comparison, the proposed iSSRM with gradient search as well as the companion meth-

ods SSRM and iSSRM are used in the backward analysis. Both global identification and

T-Sub method are considered in the forward analysis. Substructural identification is ex-

amined by PSI method recommended in the case of unknown mass (Koh et al., 2003b).

Two substructuring arrangements are adopted, while maintaining the same number of to-

tal evaluations. The first arrangement is to use 2 substructures, for instance, S1 = [4−7]

and S2 = [1 − 7]. The second is to use 4 substructures, i.e., S1 = [6 − 7]; S2 = [4 − 7];

S3 = [2− 7]; S4 = [1− 7]. For the 7-level model, the PSI is carried out step by step. For

example, the outer substructures, away from the supporting end, are identified first and

the identified stiffness values are treated as known in successive identifications. Exper-

imental data from previous static testing would serve as a good reference for dynamic

testing. Once the two baseline states of damage and strengthening are established using

global/substructural identification, the identified mass properties are taken as known in

the corresponding method for further damage/strengthening detection.

To carry out baseline identification and the subsequent detection of stiffness change,

total evaluations have to be determined for the identification strategies. The numerical

examples presented in Chapter 2 and 3 have demonstrated that using iSSRM method

would reduce the fitness evaluations by half compared to the original SSRM method,

and using iSSRM with BFGS will reduce the evaluations further to only 10% for global

identification. In addition, the use of PSI substructuring typically achieves a further re-

duction of computer time to 40% compared to the same number of total evaluations with

global identification. With this knowledge of reduction in total evaluations, typical GA

parameters for baseline state identification as well as subsequent damage and strength-
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ening detection are given in Table 6.2 and 6.3. In these tables, the total evaluations

by T-Sub and F-Sub method are only 40% of the total evaluations by global identifica-

tion. In Table 6.2, 80% of the total evaluations are expected to spend on iSSRM global

search and 20% for gradient local search. For substructural identification, GA parameters

used for each substructure are given in Table 6.2. This evaluation allocation is adopted

throughout the present chapter.

6.4 Scenarios of Structural Change Identification

This section describes various scenarios of structural changes, including damage induced

by physical cut and strengthening by welding. In the cut-induced damage detection, the

original experimental data of 6 basic damage cases and 3 additional damage cases by

Perry (2006), as shown in Tables 6.4 and 6.5, are used. The intact state before any cut of

frame is taken as the baseline for cut-induced damage detection. As an extension of the

experiment, strengthening by welding is considered in 5 basic scenarios and 3 additional

scenarios, i.e., Tables 6.6 and 6.7. The 6th damage scenario D6, involving large damage

in levels 3, 4 and 6, will be considered as the baseline for quantifying the strengthening

effect due to welding.

These tests are all conducted using specified input of random forces A, B, C, D and

E. For each input, three tests are carried out at a sampling rate of 5 kS/s. Note that the

large damage in level 3 remained unaltered in all the strengthening case, i.e., Fig. 6.6.

Cut-induced damages in levels 4 and 6 were repaired by welding progressively from level

4 to level 6, as illustrated in Fig. 6.7. This led to increase in stiffness which is to be

identified. It should be noted that small, moderate and large damage or strengthening

are short for “S”, “M”, and “L”, respectively, in the tables and figures of this chapter.

Illustrations of the magnitudes in cut-induced damage and strengthening are given in

Figs. 6.8 and 6.9, respectively.
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6.5 Analysis of Experimental Data

The main purpose of this section is to investigate the stiffness change using the proposed

identification strategies. Based on the parameter setting in baseline identification, i.e.,

Table 6.2, the GA parameters used for identifying cut-induced damage and structural

strengthening are given in Table 6.3. Damping parameters are treated as unknown and

mass is assumed to be known and remain unaltered as the reference state. For consistency

and better identification, the same method will be used for stiffness change detection if

it is used in the reference state identification. An exceptional case is the F-Sub method,

which is not applicable in the unknown mass case. Thus the T-Sub method will be

adopted instead in the reference state identification for the F-Sub method.

To have a comprehensive investigation on the proposed strategies, the success of

identification should account for potential uncertainties in the identified stiffness change.

The uncertainties may arise from modeling error, measurement noise, incompleteness in

the forward analysis, as well as the identification strategy in the backward analysis.

First, modeling error is unavoidable in structural identification (Koh and See, 1994;

Beck and Katafygiotis, 1998). In the forward analysis, an adequate mathematical model

is needed to represent the physical system. The mathematical model should be as gen-

eral as possible, and be capable of capturing the main physical behavior of the structure.

However, differences exist between a mathematical model and real physics, due to vari-

ations of material properties inexact modeling of constitutive behavior and boundary

conditions, and insufficient spatial discretization of the distributed structural system. As

a result, there will be uncertainty in accuracy in the predicted response.

Second, measurement noise would introduce uncertainties for identification (Koh and

See, 1994; Beck and Katafygiotis, 1998; Xia et al., 2002). Using classical identification

methods, input/output noise would pose great challenge for numerical convergence of

identified parameters. From an optimization angle, measurement noise of input and
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output will induce peak shifting and decreasing as reported in Chapter 3. Therefore, the

final identification will be accordingly affected. Another source of uncertainty is due to

measurement incompleteness. In practice, the set of observed DOFs is usually a smaller

subset of the whole model DOFs. Because of incomplete measurement, the richness of

collected modal information is limited and thus the sensitivities of unknown parameters

in optimization are affected accordingly.

Third, identification uncertainty may originate from the stochastic characteristics of

the optimization method (Htun, 2004; Koh and Htun, 2004). Due to the random choices

or probabilistic operations incorporated, these methods produce different best estimates

in different runs.

Existence of these uncertainties may cause difficulty in identifying less pronounced

damage, while reporting false damage on intact structural elements. To access the effect

of these uncertainties, final identification would be reported on a statistical basis in this

study. The database of statistics is established on a combination of load cases. For

instance, each damage/strengthening scenarios was tested using five different forces A,

B, C, D, and E. For each force, three tests were carried out. In total there were fifteen

sets of data for each scenario. In the identification, force is assumed to be the same

in the reference state identification and damage/strengthening detection. For example,

if force A is used in the three tests of undamaged case D0, the same force A will be

used in damaged case D1 for the other three tests. Thus in the identification by force

A, nine combinations are studied. Eventually, for each damage/strengthening scenario,

45 combinations are studied as 5 different forces are used. Final identification of each

damage/strengthening scenario is presented in terms of success rate, in Tables 6.8 to 6.10.

Representative stiffness change scenarios would be reported by the average of total 45

combinations, i.e., from Fig. 6.10 to Fig. 6.17.

The success of identification is reported as “1x”, if the smallest real change (dam-
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age/strengthening) in the investigated scenarios is greater than maximum false change.

In particular, if there are two or more small changes in the scenario, the one close to

the supporting end would be taken as the success reference, because it is often difficult

to identify small change near the fixed end. For example, in the basic damage case D4

(Table 6.4), 4.1% small damage occurs in both level 3 and 6 with 16.7% large damage

in level 4, the “1x” success would be reported when the maximum false damage is less

than 4.1%. In order to provide as much damage information as possible, success rate is

reported up to “4x” in the Appendix B, indicating that the identified change is 4 times as

large as the maximum false change. Collecting all the success cases in each investigated

scenario, the final success is recorded as a percentage over a total of 45 cases. The max-

imum false change is reported not only in magnitude but also its location. The details

are presented in Appendix B. For concise reporting in this chapter, the results on the

effect of incomplete measurement and the effect of substructural size are summarized in

Tables 6.8, 6.9, and 6.10, and are discussed below.

6.5.1 Effect of Incomplete Measurement

The fitness evaluations required for global and substructural identification using the pro-

posed strategy reduced to only 10% and 4% of the evaluations, respectively, by Koh

and Perry (2007). With the knowledge of time reduction in computational effort, the

results presented in Table 6.8, and 6.9 are excellent for complete measurement. For

global structural identification, the “1x” success rates obtained by Koh and Perry (2007)

are 100%/47%/31%/100% for D2/D3/D4/D6 scenarios. Using the proposed strategy

herein, the corresponding success rates are 100%/78%/64%/100% for global identifi-

cation, 100%/98%/89%/100% for T-Sub method and 96%/60%/69%/93% for F-Sub

method. Recalling the basic damage scenarios from Table 6.4, the results herein show

that using the enhanced identification method iSSRM with BFGS search, the global iden-

tification as well as substructural identification via F-Sub and T-Sub method can achieve
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equally good identification success in single and multiple large damages, i.e., D2 and D6.

More importantly, the results in this study are much better than that by Koh and Perry

(2007) in the case of multiple damages with different magnitudes, i.e., D3 and D4, which

include a small damage of only 4% in multiple damages.

The locations of maximum false change reported are mostly in the lower levels, i.e.,

levels 1, 2 and 3. Using 2 substructures for the 7-level frame, F-Sub method gives accept-

able identification while global identification and T-Sub method performs even better. To

have knowledge on the overall performance of the proposed methods, the average results

of total 45 combinations are reported on the global identification and F-Sub method

in Fig. 6.10 to Fig. 6.17, as these two methods produce a lower identification success

than T-Sub method. The results are excellent and robust as both single change of small

magnitude and multiple changes of different magnitudes can be accurately identified.

Incomplete measurement would compromise the identification accuracy as expected.

To maintain a consistent investigation based on incomplete measurement, the acceler-

ations are obtained from levels 1, 3, 5 and 7. The original results by Koh and Perry

(2007) gave 100%/64%/27%/100% “1x” success for D2/D3/D4/D6 cases. Using the pro-

posed strategy, the success rates decrease compared to complete measurement although

still acceptable. The success rates are 100%/80%/60%/100% for global identification,

100%/73%/71%/100% for T-Sub method and 96%/44%/58%/87% for F-Sub method us-

ing 2 substructures. These results show that the decrease of the success rate is much

larger in T-Sub and F-Sub than that in global identification, especially in D3 and D4

cases (Table 6.4) where the 4% small damage is involved in multiple damage cases. In

addition, the maximum false damage is often associated with lower levels or the levels

close to the damage. For strengthening cases, the maximum false events are also found in

level 3, where a cut-induced damage was remained. As a conclusion, incomplete measure-

ment has more influence on substructural method than global identification, as reducing

equally the number of measurement will affect much less in richness of modal information



178 CHAPTER 6. Identification of Structural Changes: Experiment Study

in a global level than in a substructural level.

6.5.2 Effect of Substructure Size

This section studies the effect of selection of substructure size. It is important because

the dynamic characteristics captured by a substructure will be different to its size. As

recommended by the previous research (Koh et al., 2003b), PSI will be used in this study

rather than substructure with/without overlap. To focus on the effect of substructure

size, the identification herein is based on complete measurement. Two different sizes are

studied since there are only 7 levels in the tested frame, which included 2 substructures

with S1 = [4 − 7] and S2 = [1 − 7], as well as 4 substructures with S1 = [6 − 7];

S2 = [4 − 7]; S3 = [2 − 7]; S4 = [1 − 7]. The results are summarized in Table 6.10.

In general, identification with 2 substructures achieves consistently better result than

that by 4 substructures, regardless of using T-Sub or F-Sub method. This is reasonable

as smaller substructures would be more difficult to identify unless the higher modes

are picked up by the sensor arrays. In the case of 4 substructures, S4 at the free end

with only 2 elements is usually not well identified. In the next round to identify S3,

error propagates when S4 is treated as known in PSI. Finally, the identification using 4

substructures would consistently degrade. Typically, the maximum false strengthening

in Table 6.10 is as large as around 20% for all the strengthening case via T-Sub and

F-Sub method.

6.6 Conclusions

This chapter has presented a comprehensive experimental study based on a 7-storey steel

frame, incorporating baseline identification as well as detection of changes due to cut

and welding. The study investigates the proposed uniformly sampled GA with gradient

search, as well as its application into global identification and substructural identification
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i.e., T-Sub and F-Sub method, by progressive substructuring (PSI).

Compared with the previous study by Perry (2006), the enhanced optimization strat-

egy makes it possible to achieve similar accuracy using only 10% of evaluations in global

identification and 4% of evaluations in T-Sub and F-Sub method. More importantly, the

results on identification are consistently superior to the original work. Besides equally

good performance in identifying large changes in stiffness, the proposed identification

strategies are able to quantify multi-damage of different magnitudes and small dam-

age/strengthening over false change.

Further experimental investigation on the effect due to incomplete measurement and

substructure size yields engineering meaningful observations. In the case of incomplete

measurement, the identification results are better than that by original SSRM with much

less computer time. However, incomplete measurement brings more performance degra-

dation in T-Sub and F-Sub than global identification. In addition, a suitable substructure

size should be selected for substructural identification. For instance, the identification

via 2 substructures produces consistently better results than via 4 substructures in the

experimental study considered. This is observed in the substructural identification for

both T-Sub and F-Sub methods.
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Figure 6.1: Experimental model of frame building
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Figure 6.4: Shaker used to excite the frame model
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(a) Threaded (b) Double sided tape (c) Force sensor

Figure 6.5: Mounting of accelerometer and force sensor

          
Welding 

Figure 6.6: Welding at level 4, 6, and cut remained at level 3

Figure 6.7: Progressive strengthening at one level by welding: strengthening baseline
(left), moderate strengthening (middle), large strengthening (right)
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Figure 6.9: Strengthening by welding

(Small strengthening = Large strengthening - Moderate strengthening)
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Figure 6.10: Damage case D2 (4L) with complete measurement: large damage (16.7%)
at level 4
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Figure 6.11: Damage case D3 (4L6S) with complete measurement: large damage (16.7%)
at level 4 and small damage (4.1%) damage at level 6
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Figure 6.12: Damage case D4 (4L3S6S) with complete measurement: large damage
(16.7%) at level 4 and small damage (4.1%) at levels 3 and 6



Figures CHAPTER 6. Identification of Structural Changes: Experiment Study

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

Level Number 

D
a
m

a
g
e

 

 Global
 F-Sub

1 2 3 4 5 6 7

 

Figure 6.13: Damage case D6 (3L4L6L) with complete measurement: large damage
(16.7%) at levels 3, 4 and 6
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Figure 6.14: Strengthening case S1 (4M) with complete measurement: moderate
strengthening at level 4
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Figure 6.15: Strengthening case S4 (4L6L) with complete measurement: large strength-
ening at levels 4 and 6
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Figure 6.16: Strengthening case S5 (4S6M) with complete measurement: small strength-
ening at level 4 and moderate strengthening at level 6



Figures CHAPTER 6. Identification of Structural Changes: Experiment Study

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%
S

tr
u
c
tu

ra
l 
R

e
tr

o
fi
tt
in

g
 b

y
 W

e
ld

in
g

Level Number

 Global
 F-Sub

1 2 3 4 5 6 7

 

Figure 6.17: Strengthening case S7 (6S) with complete measurement: small strengthen-
ing at level 6
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Table 6.1: Accelerometer specification

Level Model Serial no. Range Sensitivity Frequency range

1 Kristler-8636C50 2028814 ±50g 102.2mV/g 1-6000Hz

2 PCB-352C34 91468 ±50g 98.7mV/g 1-10000Hz

3 PCB353B33 83737 ±50g 99.1mV/g 1-4000Hz

4 PCB-321A 6532 ±50g 92.6mV/g 1-2000Hz

5 PCB-321A 6533 ±50g 88.6mV/g 1-2000Hz

6 Dytran-3055B2 4042 ±50g 100.5mV/g 1-10000Hz

7 Dytran-3055B4 3878 ±100g 51.7mV/g 1-10000Hz

Load cell PCB-208C02 17983 - 113.7mV/g 0.001-36000Hz

Table 6.2: GA parameters for baseline identification

GA parameters
Global SIa,b via Global SIb via Global SIb T-Sub (2Sc) T-Sub (4Sc)

SSRM iSSRM via iSSRM with BFGS

Total Evaluations 2,400,000 1,200,000 240,000 48,000 24,000

Population size 50 × 3 55 × 3 22 × 3 10 × 3 7 × 3

Generations 800 359 117 73 51

Sample size - 720 2280 488 252

Number of runs 20 20 15 15 15

nb value 5 5 5 5 5

Crossover rate 0.4 0.4 0.4 0.4 0.4

Mutation rate 0.2 0.2 0.2 0.2 0.2

Migration rate 0.05 0.05 0.05 0.05 0.05

Regeneration 3 3 3 3 3

Reintroduction 200 100 50 30 20

Window width 4.0 4.0 4.0 4.0 4.0

Data length 500 500 500 500 500

Time step (sec) 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4

a Results by Koh and Perry (2007)

b SI=system identification

c S=substructure
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Table 6.3: GA parameters for identifying stiffness change due to cut and
welding

GA parameters
Global SIa,b via Global SIb T-Sub (2S;4Sc) F-Sub (2S;4Sc)

SSRM via iSSRM with BFGS

Total evaluations 108,000 10,800 1,080; 2,160 1,080; 2,160

Population size 20 × 3 5 × 3 4 × 3; 3 × 3 4 × 3; 3 × 3

Generations 120 23 5;3 5;3

Sample size - 516 112; 60 112; 60

Number of runs 15 10 10 10

nb value 5 5 5 5

Crossover rate 0.8 0.8 0.8 0.8

Mutation rate 0.2 0.2 0.2 0.2

Migration rate 0.05 0.05 0.05 0.05

Regeneration 3 2 2 2

Reintroduction 200 10 2 2

Window width 4.0 4.0 4.0 4.0

Data length 500 500 500 500

Time step (sec) 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4

a Results by Koh and Perry (2007)

b SI=system identification

c S=substructure
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Table 6.4: Basic damage scenarios

Scenarios Small damage Large damage

D0 - -

D1 Level 4 -

D2 - Level 4

D3 Level 6 Level 4

D4 Levels 3 and 6 Level 4

D5 Level 3 Levels 4 and 6

D6 - Levels 3, 4 and 6

Table 6.5: Additional damage scenarios

Scenarios Undamaged case Damaged case Resulting small damage

D7 D2 D3 Level 6

D8 D3 D4 Level 3

D9 D2 D4 Levels 3 and 6

Table 6.6: Basic strengthening scenarios with stiffness in-
crease

Scenarios Small increase Moderate increase Large increase

S0 - - -

S1 - Level 4 -

S2 - - Level 4

S3 - Level 6 Level 4

S4 - - level 4 and 6

Table 6.7: Additional strengthening scenarios

Scenarios Small increase Moderate increase Resulting increase

S5 S1 S3 Level 4 small, and level 6 moderate

S6 S2 S3 Level 6 moderate

S7 S3 S4 Level 6 small
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CHAPTER 7

Conclusions and

Recommendations

The primary objective of this thesis is to develop a robust and efficient algorithm for

structural identification. Through a series of numerical and experimental verification, as

well as comparison with five recent research papers, the main contributions of the thesis

are made in the following aspects and they are summarized in Table 7.1:

(1) Investigation of measurement noise induced peak-shifting which has formed the

basis of the proposed identification strategy

(2) Formulation and implementation of a uniformly sampled genetic algorithm with

gradient search, that has shown to improve the optimization process substantially

(3) Extension of F-Sub method to accommodate random excitation, that has achieved

a impressive substructural efficiency (see Eq. (4.34)) as high as 0.96 based on the

50-DOF system (Tee et al., 2005)

(4) Verification of T-Sub method with the proposed identification strategy, that has

achieved a very good substructural efficiency of 0.89 based on the 50-DOF system

(Tee et al., 2005)
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(5) Experimental verification of the proposed identification strategy in identifying small

stiffness changes caused by cut and welding

7.1 Conclusions

The main findings for (1) to (5) above are highlighted in this section. The nature of system

identification is firstly investigated from an optimization perspective, via fitness surface

analysis of small scale systems. In the noise free case, it is observed that there is only one

global peak within the search range, surrounded by several local optima. Increasing the

noise level, the global peak decreases in the magnitude and shifts in location accordingly.

However, no further local optima are introduced. In this study, this is referred to as “peak

shifting”. The investigation also reveals a finding consistent with Koh et al. (2003a) in

that the lower-level stiffness of a lumped mass system is usually more difficult to identify.

Based on these findings, an efficient hybrid optimization strategy is proposed. This

strategy comprises an improved SSRM method via sampling and gradient based local

searcher. The former is to overcome the local optima far away from the global peak, and

the latter is then to accomplish fine tuning for the global peak.

Firstly, the SSRM is improved by sampling test. Instead of reducing the search space

via initial MGAMAS runs in the original SSRM, samples will be obtained in the solution

domain to define the promising subdomains. Four sampling methods are tested on 10-

DOF and 20-DOF systems, including random uniform distribution, Latin hypercube,

orthogonal arrays (OA), and Hammersley sequence. Based on the comparison study,

Hammersley sequence is recommended for iSSRM method. The reason is Hammersley

sequence can generate uniform samples in a deterministic way, yielding more reliable

results than random uniform distribution and Latin hypercube. Although equally good

result is achieved by OA, the Hammersley sequence outperforms OA because it has no

restrictive requirements on orthogonality and is thus more flexible to construct uniform
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samples of arbitrary size. Furthermore, extensive parametric studies are carried out on

selecting the generation size, population size, runs, and sample size. The purpose is to

provide a reasonably balanced exploration and exploitation for identification at different

scale .

Secondly, local searchers are investigated for fine tuning in the proposed strategy.

Both gradient based methods, i.e., CG and BFGS, and non-gradient based method, i.e.,

SA, are considered. The presence of non-gradient local search is to provide a reference

of identification and ensure that the gradient local search is not trapped in local optima.

This is judged by comparing the mean absolute errors via the three local searchers. The

BFGS method is recommended in the study because of the efficient backtracking line

search.

Through the numerical studies, the “peak-shifting” is reflected in high dimensional

identification although the observation is directly visualized in low dimensional fitness

surface analysis. In Chapter 3, the gradient based BFGS and CG method have success-

fully identified the exact peak in the absence of measurement noise. The “peak-shifting”

effect is partially validated by the CG local search. The global peak decreases and ap-

proaches a shape of parabolic function in the presence of noise. This change of global

peak becomes more traceable by the Brent line search in CG, as parabolic interpolation

is used in each step of line search. Therefore a significant time reduction is achieved for

identification with measurement noise.

The application of the proposed strategy is investigated at a substructural level.

The frequency domain substructural method, referred to as F-Sub method, is extended

to random excitation. The key is to make the steady state formulation possible for non-

periodic loading. To maintain the periodic requirement of discrete Fourier transform,

exponential window is adopted to ensure a quiet ending in the response histories. With

this improvement, traditional lengthy time histories due to zero padding can be replaced
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by an arbitrary length of response. The reduction in time history in identification will

significantly benefit in saving computational effort. The application of the proposed

strategy is also examined in time domain substructural identification, i.e., T-Sub method.

The findings of this study are compared with five recent research works to show the

impressive enhancement achieved herein. The numerical comparison includes identifica-

tion algorithms in the backward analysis (Koh et al., 2003a; Perry et al., 2006) and the

divide-and-conquer strategies in the forward analysis (Koh et al., 2003b; Tee et al., 2005).

Besides, the experimental study are compared with Koh and Perry (2007). Typically,

for the identification algorithm, the proposed iSSRM method achieves consistently better

results, i.e., about 2% mean identification error under 10% noise, over SSRM (Perry et

al., 2006), but uses only 50% computer time for known mass case and less than 30%

computer time in unknown mass case. The iSSRM with gradient search is able to reach

the same level of accuracy, i.e., about 3% mean error under 10% noise, similar to that

by Koh et al. (2003a), but uses only 8.6% computer time.

The efficiency of divide-and-conquer strategies is compared based on the platform of

the proposed iSSRM with gradient search. By introducing a substructural efficiency, i.e.,

computer time by substructural method over global identification when approaching the

same level of accuracy, the comparison suggests F-Sub is the best over T-Sub (Koh et

al., 2003b) and Sub-SOMI-RR (Tee et al., 2005) in terms of efficiency. The substructural

efficiency is an impressive 0.96 for F-Sub in identifying a 50-DOF system under 5% noise,

and 0.89 for T-Sub, but it was -0.11 for Sub-SOMI-RR which means more computer time

than the global identification. At the same time, the corresponding mean errors are

1.63%, 2.19%, and 11%. The substructural efficiency is expected to be even less in case

of a system with a large number of DOFs. Besides, the T-Sub method is shown to

have better performance in unknown mass case since F-Sub and Sub-SOMI-RR are not

applicable in this case.
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Eventually, the comparison with Koh and Perry (2007) shows good results with a

time reduction of 90% by iSSRM with gradient search and a further 90% reduction by

introducing divide-and-conquer strategies in the backward analysis. In addition to the

efficiency of proposed identification strategy, the accuracy and robustness is also verified

through experimental study. For example, when there is damage of 4% only in levels

3 and 4, and 17% damage in level 6, the identification success rate achieved by Koh

and Perry (2007) is 31% while the results by this study are 64%/69%/89% for global

identification, F-Sub and T-Sub method, respectively.

7.2 Recommendations for Further Study

It is the observation of “peak-shifting” that leads to the proposed iSSRM with gradient

search in the study. The use of this method brings about a series of excellent results in

terms of accuracy and efficiency, through both numerical simulation and experimental

studies. To tap the full potential and versatility of GAs and divide-and-conquer methods

in large-scale structural health monitoring, it is believed that this study has contributed

to the advancement in GA based structural identification and more can be done to extend

the work.

In short, the present study paves the way for further research on parallel computing

to accelerate the uniformly sampled GA with gradient search, substructural identification

of plates and shells, special problems in parameter identification of dynamic models, and

uncertainty quantification of structural identification. Specifically, these potential topics

could be extended as follows.

A promising advancement of the proposed methodology will be in the parallel com-

puting. It should be noted that all the results achieved in the study are based on serial

coding, which has already shown remarkable saving in computer time. By virtue of the

parallel philosophy, computer time of the proposed identification strategy is expected to
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have a further reduction.

With more advanced identification, it is then possible to investigate problems in

large-scale structural health monitoring. In that case, divide-and-conquer strategies are

suggested in the forward analysis. Possible issues then arise as the unknown rotational

measurement for identifying plate and shell structures. Traditional ways to cope with this

problem are to treat them as unknowns and solve for them through available measure-

ment (Reich and Park, 2001; Koh and Shankar, 2003a), i.e., translational measurements.

A trade-off to consider is the selection of substructure size and maintaining sufficient

measurements within it.

Besides the applications in backward analysis and forward analysis, further study

should also focus on the special problems associated with the mathematical model of

structural dynamics, for example, identification with unknown initial conditions. This

problem originates from the first/second-order mathematical model for structural dy-

namics. Some related publications are identification with unknown input (Wang and

Haldar, 1994; Yang et al., 2003b; Perry and Koh, 2008), and with unknown mass (Koh

et al., 2003b).

Another area to explore is research in identification uncertainties (Koh and See,

1994). The uncertainty may be attributed to the modeling error in the forward analysis

and uncertainty associated with the identification strategy (Htun, 2004; Koh and Htun,

2004), or due to measurement noise and incomplete measurement (Beck and Katafygiotis,

1998). Further investigation will help to gain confidence in the success of identification.
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Appendix A

Sampling Test and Parametric
Study on iSSRM Method

The results listed here correspond to the content discussed in Chapter 2. Tables A.1

and A.2 show the comparison of sampling methods in order to recommend a suitable

one for iSSRM. They are conducted on 10-DOF and 20-DOF lumped mass systems and

are supplemental to Tables 2.3 and 2.4, respectively. Tables A.3 to A.6 demonstrate on

the parametric study for known mass systems, including 5 DOFs, 10 DOFs, 20 DOFs,

and 50 DOFs, in support of Section 2.6.1. Tables A.7 to A.9 show the parametric study

for unknown mass systems, including 5 DOFs, 10 DOFs, and 20 DOFs, in support of

Section 2.6.2.
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Table A.1: Sampling method comparison via 10-DOF known mass system

Results
10-DOF lumped mass system

SGA SSRM SSRMRanda SSRMLatina SSRMOAa SSRMHama

0% Noise

Perturbation - - 0 0 0 0

CPU time (h:m:s) 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01

Mean error - k (%) 11.48 2.01 0.89 0.80 0.66 0.54

Max error - k (%) 32.94 5.31 2.21 2.58 1.88 1.44

5% Noise

Perturbation - - 0 0 0 0

CPU time (h:m:s) 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01

Mean error - k (%) 12.19 2.68 1.86 1.76 1.57 1.51

Max error - k (%) 35.31 7.37 4.47 4.98 3.82 3.47

10% Noise

Perturbation - - 0 0 0 0

CPU time (h:m:s) 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01

Mean error - k (%) 12.69 3.49 3.13 3.12 2.65 2.52

Max error - k (%) 30.48 9.38 8.07 7.96 5.84 6.26

a SSRMRand, SSRMLatin, SSRMOA, and SSRMHam are the iSSRM method sampled by random

uniformly, Latin hypercube, orthogonal arrays, and Hammersley sequence, respectively.
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Table A.2: Sampling method comparison via 20-DOF known mass system

Results
20-DOF lumped mass system

SGA SSRM SSRMRanda SSRMLatina SSRMOAa SSRMHama

0% Noise

Perturbation - - 0 0 0 0

CPU time (h:m:s) 00:00:06 00:00:06 00:00:06 00:00:06 00:00:06 00:00:06

Mean error - k (%) 18.91 3.70 2.56 2.06 1.79 1.61

Max error - k (%) 56.81 12.49 9.96 7.09 7.13 6.87

5% Noise

Perturbation - - 0 0 0 0

CPU time (h:m:s) 00:00:06 00:00:06 00:00:06 00:00:06 00:00:06 00:00:06

Mean error - k (%) 20.65 3.94 3.49 2.59 2.61 2.07

Max error - k (%) 56.83 12.01 12.68 9.21 8.27 7.86

10% Noise

Perturbation - - 0 0 0 0

CPU time (h:m:s) 00:00:06 00:00:06 00:00:06 00:00:06 00:00:06 00:00:06

Mean error - k (%) 21.60 4.65 4.52 4.16 4.04 3.92

Max error - k (%) 64.41 15.11 14.51 14.54 15.20 12.48

a SSRMRand, SSRMLatin, SSRMOA, and SSRMHam are the iSSRM method sampled by random

uniformly, Latin hypercube, orthogonal arrays, and Hammersley sequence, respectively.
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Table A.3: Known mass system - Test on iSSRM method: 5-DOF

Test
Fitness Stiffness Error (%) CPU Time Evaluations Perturb-

Mean SDa Median Mean SDa (h:m:s) ation

01AAA 843 (43) 906 0.67 (0.24) 00:00:00:777 5,004 0

02AAB 956 (27) 997 0.14 (0.04) 00:00:00:769 4,965 0

03AAC 960 (35) 1000 0.09 (0.05) 00:00:00:780 5,000 0

04ABA 960 (13) 988 0.22 (0.04) 00:00:00:795 5,022 0

05ABB 999 (0) 1000 0.02 (0.00) 00:00:00:784 4,995 0

06ABC 958 (38) 1000 0.24 (0.21) 00:00:00:795 5,040 0

07ACA 992 (2) 994 0.09 (0.01) 00:00:00:787 4,968 0

08ACB 993 (7) 1000 0.02 (0.01) 00:00:00:804 5,040 0

09ACC 979 (17) 1000 0.06 (0.02) 00:00:00:768 4,920 0

10BAA 866 (39) 955 0.38 (0.07) 00:00:00:778 4,977 0

11BAB 991 (4) 998 0.08 (0.02) 00:00:00:796 5,145 0

12BAC 999 (0) 1000 0.03 (0.01) 00:00:00:801 5,180 0

13BBA 970 (7) 980 0.19 (0.04) 00:00:00:780 4,914 0

14BBB 999 (0) 1000 0.02 (0.00) 00:00:00:775 5,040 0

15BBC 977 (22) 1000 0.03 (0.02) 00:00:00:794 5,040 0

16BCA 992 (2) 996 0.10 (0.01) 00:00:00:756 4,914 0

17BCB 1000 (0) 1000 0.01 (0.00) 00:00:00:780 5,040 0

18BCC 993 ( 5) 1000 0.04 (0.03) 00:00:00:781 5,040 0

19CAA 843 (45) 965 0.42 (0.09) 00:00:00:800 5,166 0

20CAB 946 (25) 989 0.21 (0.06) 00:00:00:751 4,830 0

21CAC 936 (34) 999 0.28 (0.15) 00:00:02:002 5,000 0

22CBA 975 (7) 993 0.14 (0.02) 00:00:00:773 5,022 0

23CBB 921 (53) 999 0.52 (0.33) 00:00:00:802 5,130 1

24CBC 992 (6) 1000 0.05 (0.02) 00:00:00:734 4,680 0

25CCA 984 (4) 992 0.12 (0.02) 00:00:00:786 5,130 0

26CCB 986 (13) 1000 0.06 (0.04) 00:00:00:731 4,770 0

27CCC 971 (19) 1000 0.11 (0.05) 00:00:00:804 4,920 0

Additional test on Nb

4 922 (36) 1000 0.13 (0.06) 00:00:00:799 5040 0

7 981 (9) 998 0.10 (0.03) 00:00:00:791 5040 0

Additional test on sample size

Sb − 5NU 955 (25) 1000 0.08 (0.04) 00:00:00:801 5,145 0

Sb − 2NU 986 (14) 1000 0.04 (0.02) 00:00:00:803 5,145 0

Sb + 2NU 1000 (0) 1000 0.01 (0.00) 00:00:00:775 4,935 0

Sb + 5NU 994 (6) 1000 0.05 (0.03) 00:00:00:768 4,935 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.6.



Appendix A Sampling Test and Parametric Study on iSSRM Method 225

Table A.4: Known mass system - Test on iSSRM method: 10-DOF

Test
Fitness Stiffness Error (%) CPU Time Evaluations Perturb-

Mean SDa Median Mean SDa (h:m:s) ation

01AAA 941 (16) 965 0.33 (0.05) 0:00:03 9,990 0

02AAB 978 (15) 997 0.14 (0.03) 0:00:03 9,900 0

03AAC 987 (8) 1000 0.11 (0.03) 0:00:03 9,900 0

04ABA 956 (12) 975 0.32 (0.07) 0:00:03 10,044 0

05ABB 993 (7) 1000 0.09 (0.05) 0:00:03 9,990 0

06ABC 979 (11) 1000 0.15 (0.08) 0:00:03 10,020 0

07ACA 975 (7) 986 0.22 (0.02) 0:00:03 9,990 0

08ACB 993 (3) 1000 0.07 (0.02) 0:00:03 9,900 0

09ACC 895 (43) 994 0.54 (0.23) 0:00:03 9,900 0

10BAA 966 (5) 971 0.28 (0.03) 0:00:03 10,071 0

11BAB 992 (3) 997 0.10 (0.02) 0:00:03 9,900 0

12BAC 990 (7) 1000 0.05 (0.02) 0:00:03 9,960 0

13BBA 949 (24) 975 0.27 (0.03) 0:00:03 9,963 0

14BBB 969 (25) 1000 0.14 (0.06) 0:00:03 10,125 0

15BBC 922 (41) 1000 0.35 (0.21) 0:00:03 10,260 0

16BCA 975 (9) 990 0.27 (0.05) 0:00:03 10,044 0

17BCB 985 (10) 1000 0.09 (0.03) 0:00:03 9,855 0

18BCC 989 (4) 1000 0.06 (0.01) 0:00:03 9,900 0

19CAA 941 (7) 942 0.37 (0.04) 0:00:03 9,801 0

20CAB 995 (1) 997 0.10 (0.01) 0:00:03 10,215 0

21CAC 969 (30) 1000 0.11 (0.06) 0:00:03 9,540 0

22CBA 952 (8) 966 0.35 (0.05) 0:00:03 10,206 0

23CBB 957 (21) 998 0.21 (0.09) 0:00:03 10,125 0

24CBC 968 (13) 1000 0.16 (0.06) 0:00:03 10,440 0

25CCA 952 (20) 983 0.29 (0.06) 0:00:03 10,125 0

26CCB 939 (27) 999 0.22 (0.07) 0:00:03 9,990 0

27CCC 874 (56) 993 0.66 (0.27) 0:00:03 10,260 0

Additional test on Nb

4 927 (30) 989 0.44 (0.14) 00:00:03 9,900 0

7 985 (3) 990 0.20 (0.03) 00:00:03 9,900 0

Additional test on sample size

Sb − 5NU 979 (20) 1000 0.11 (0.07) 00:00:03 9,900 0

Sb − 2NU 987 (10) 1000 0.07 (0.03) 00:00:03 9,990 0

Sb + 2NU 998 (1) 1000 0.06 (0.02) 00:00:03 10,035 0

Sb + 5NU 958 (36) 1000 0.41 (0.32) 00:00:03 9,900 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.6.
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Table A.5: Known mass system - Test on iSSRM method: 20-DOF

Test
Fitness Stiffness Error (%) CPU Time Evaluations Perturb-

Mean SDa Median Mean SDa (h:m:s) ation

01AAA 790 (34) 829 1.60 (0.26) 0:00:26 40,050 0

02AAB 924 (22) 949 0.87 (0.19) 0:00:26 40,200 0

03AAC 954 (28) 996 0.34 (0.09) 0:00:26 39,800 0

04ABA 880 (20) 905 0.96 (0.14) 0:00:26 40,014 0

05ABB 973 (6) 987 0.43 (0.07) 0:00:26 40,140 0

06ABC 996 (1) 999 0.18 (0.04) 0:00:26 39,720 0

07ACA 947 (12) 969 0.67 (0.09) 0:00:26 39,960 0

08ACB 997 (1) 998 0.15 (0.02) 0:00:26 40,050 0

09ACC 993 (7) 1000 0.10 (0.06) 0:00:26 40,200 0

10BAA 789 (33) 832 1.63 (0.27) 0:00:26 39,942 0

11BAB 940 (17) 984 0.69 (0.14) 0:00:26 40,065 0

12BAC 966 (12) 993 0.46 (0.13) 0:00:26 39,740 0

13BBA 886 (17) 907 0.84 (0.10) 0:00:26 39,987 0

14BBB 979 (6) 989 0.34 (0.05) 0:00:26 40,140 0

15BBC 986 (5) 998 0.23 (0.05) 0:00:26 39,840 0

16BCA 953 (8) 970 0.56 (0.08) 0:00:26 39,798 0

17BCB 997 (1) 998 0.13 (0.02) 0:00:26 39,825 0

18BCC 979 (14) 1000 0.16 (0.05) 0:00:27 40,560 0

19CAA 700 (40) 751 2.27 (0.37) 0:00:26 40,293 0

20CAB 897 (33) 957 1.11 (0.31) 0:00:27 40,425 0

21CAC 953 (18) 991 0.46 (0.13) 0:00:26 40,040 0

22CBA 841 (19) 869 1.31 (0.16) 0:00:26 40,095 0

23CBB 975 (4) 983 0.42 (0.05) 0:00:26 40,095 0

24CBC 970 (9) 990 0.34 (0.06) 0:00:26 39,600 0

25CCA 907 (18) 937 0.81 (0.11) 0:00:26 39,798 0

26CCB 959 (22) 996 0.30 (0.08) 0:00:29 39,600 0

27CCC 993 (5) 999 0.17 (0.07) 0:00:30 40,920 0

Additional test on Nb

4 913 (163) 996 0.31 (0.36) 00:00:26 40,050 0

7 983 ( 56) 998 0.21 (0.50) 00:00:25 40,050 0

Additional test on sample size

Sb − 5NU 978 ( 15) 998 0.18 (0.03) 00:00:26 40,200 0

Sb − 2NU 981 ( 16) 998 0.17 (0.03) 00:00:25 39,840 0

Sb + 2NU 997 ( 1) 999 0.12 (0.02) 00:00:25 39,810 0

Sb + 5NU 993 ( 4) 998 0.15 (0.03) 00:00:25 39,900 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.6.
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Table A.6: Known mass system - Test on iSSRM method: 50-DOF

Test
Fitness Stiffness Error (%) CPU Time Evaluations Perturb-

Mean SDa Median Mean SDa (h:m:s) ation

01AAA 962 (6) 973 1.45 (0.12) 00:07:08 250,290 0

02AAB 979 (3) 982 1.08 (0.07) 00:13:15 249,720 0

03AAC 970 (13) 986 1.15 (0.16) 00:07:09 250,275 0

04ABA 967 (4) 978 1.46 (0.10) 00:13:12 249,525 0

05ABB 979 (4) 986 1.14 (0.13) 00:07:01 250,200 0

06ABC 958 (18) 988 1.10 (0.13) 00:07:02 250,875 0

07ACA 969 (5) 979 1.22 (0.12) 00:07:01 249,975 0

08ACB 986 (2) 988 0.87 (0.11) 00:06:59 249,300 0

09ACC 982 (5) 992 0.94 (0.12) 00:06:59 249,750 0

10BAA 955 (5) 961 1.69 (0.12) 00:07:01 250,290 0

11BAB 973 (3) 974 1.49 (0.10) 00:06:57 249,720 0

12BAC 978 (3) 984 1.23 (0.11) 00:06:56 248,400 0

13BBA 952 (10) 965 1.52 (0.12) 00:07:00 250,650 0

14BBB 980 (3) 982 1.20 (0.11) 00:07:00 250,200 0

15BBC 978 (6) 985 1.19 (0.15) 00:06:59 249,000 0

16BCA 958 (8) 976 1.61 (0.17) 00:07:03 251,100 0

17BCB 969 (8) 987 1.23 (0.16) 00:07:02 250,800 0

18BCC 969 (5) 982 1.36 (0.13) 00:07:00 249,750 0

19CAA 937 (9) 944 1.91 (0.15) 00:07:08 249,345 0

20CAB 959 (7) 969 1.72 (0.15) 00:07:03 247,800 0

21CAC 918 (24) 961 1.93 (0.19) 00:07:04 247,500 0

22CBA 936 (10) 949 1.97 (0.17) 00:07:03 251,235 0

23CBB 917 (21) 950 1.98 (0.20) 00:07:00 250,320 0

24CBC 939 (15) 961 1.78 (0.18) 00:07:01 250,650 0

25CCA 961 (6) 968 1.46 (0.12) 00:07:06 251,730 0

26CCB 931 (26) 972 1.57 (0.16) 00:07:02 250,980 0

27CCC 931 (13) 961 1.85 (0.19) 00:07:04 251,475 0

Additional test on Nb

4 574 (67) 737 3.49 (0.30) 00:06:49 249,300 0

7 989 (2) 991 0.86 (0.11) 00:06:48 249,300 0

Additional test on sample size

Sb − 2NU 984 (2) 985 1.04 (0.10) 00:06:57 250,220 0

Sb + 2NU 976 (6) 986 1.18 (0.13) 00:06:59 249,880 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.6.
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Table A.7: Unknown mass system - Test on iSSRM method: 5-DOF

Test
Fitness Stiffness Error (%) Mass Error (%) CPU Time Evalu- Perturb-

Mean SDa Median Mean SDa Mean SDa (h:m:s) ations ation

01AAA 628 (58) 660 1.22 (0.24) 1.23 (0.28) 00:00:15 40,140 0

02AAB 746 (69) 931 0.95 (0.31) 0.98 (0.38) 00:00:15 39,720 2

03AAC 747 (66) 897 1.20 (0.46) 1.21 (0.41) 00:00:15 39,900 0

04ABA 845 (47) 962 0.61 (0.30) 0.48 (0.17) 00:00:14 40,050 0

05ABB 910 (35) 981 0.33 (0.11) 0.24 (0.07) 00:00:15 40,200 0

06ABC 745 (74) 920 1.39 (0.47) 1.26 (0.43) 00:00:14 39,750 1

07ACA 582 (76) 709 1.86 (0.52) 1.06 (0.22) 00:00:15 40,050 0

08ACB 541 (69) 506 1.90 (0.48) 1.17 (0.24) 00:00:15 40,200 0

09ACC 553 (65) 521 1.82 (0.36) 1.04 (0.16) 00:00:15 39,750 0

10BAA 600 (42) 690 1.14 (0.14) 1.09 (0.14) 00:00:15 40,140 0

11BAB 745 (60) 889 1.01 (0.28) 1.15 (0.39) 00:00:15 40,320 0

12BAC 657 (70) 765 1.11 (0.30) 1.39 (0.46) 00:00:14 39,900 0

13BBA 700 (72) 926 1.31 (0.50) 1.04 (0.29) 00:00:38 39,600 1

14BBB 741 (64) 847 0.82 (0.21) 0.83 (0.24) 00:00:15 39,600 0

15BBC 654 (69) 749 1.70 (0.58) 1.45 (0.52) 00:00:15 40,500 0

16BCA 703 (61) 796 1.00 (0.22) 0.69 (0.13) 00:00:15 39,600 0

17BCB 597 (74) 581 1.77 (0.41) 1.22 (0.28) 00:00:15 39,600 0

18BCC 470 (69) 464 2.11 (0.38) 1.64 (0.32) 00:00:38 40,500 0

19CAA 631 (51) 678 1.35 (0.50) 1.17 (0.39) 00:00:15 40,365 0

20CAB 568 (67) 599 2.19 (0.62) 2.47 (0.85) 00:00:15 39,960 0

21CAC 660 (73) 861 2.11 (0.93) 2.25 (1.01) 00:00:15 40,050 1

22CBA 695 (62) 776 1.60 (0.78) 1.20 (0.46) 00:00:14 39,555 0

23CBB 529 (74) 490 2.76 (0.71) 1.83 (0.49) 00:00:15 40,860 1

24CBC 625 (71) 724 2.07 (0.82) 1.65 (0.51) 00:00:15 41,175 1

25CCA 548 (72) 470 1.77 (0.39) 1.36 (0.28) 00:00:14 39,285 0

26CCB 461 (72) 376 2.25 (0.42) 1.72 (0.32) 00:00:15 40,500 0

27CCC 306 (67) 178 4.07 (0.68) 3.09 (0.51) 00:00:16 40,725 0

Additional test on Nb

4 721 (68) 944 1.02 (0.32) 0.97 (0.28) 00:00:15 40,200 0

7 857 (52) 938 0.95 (0.53) 0.72 (0.38) 00:00:15 40,200 0

Additional test on sample size

Sb − 2NU 769 (59) 900 1.02 (0.34) 0.74 (0.24) 00:00:15 40,320 0

Sb + 2NU 750 (56) 870 0.88 (0.25) 0.69 (0.21) 00:00:15 40,080 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.8.
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Table A.8: Unknown mass system - Test on iSSRM method: 10-DOF

Test
Fitness Stiffness Error (%) Mass Error (%) CPU Time Evalu- Perturb-

Mean SDa Median Mean SDa Mean SDa (h:m:s) ations ation

01AAA 884 (34) 943 0.31 (0.09) 0.29 (0.07) 00:01:05 80,280 0

02AAB 935 (27) 988 0.18 (0.05) 0.17 (0.05) 00:01:06 80,160 0

03AAC 956 (24) 995 0.12 (0.03) 0.11 (0.03) 00:01:05 80,250 0

04ABA 840 (56) 982 0.33 (0.10) 0.33 (0.10) 00:01:05 79,830 0

05ABB 968 (23) 997 0.11 (0.04) 0.11 (0.04) 00:01:05 80,400 0

06ABC 954 (20) 999 0.13 (0.04) 0.13 (0.04) 00:01:05 79,500 0

07ACA 861 (43) 968 0.43 (0.13) 0.40 (0.12) 00:01:04 79,740 0

08ACB 871 (34) 946 0.40 (0.09) 0.38 (0.08) 00:01:05 80,280 0

09ACC 727 (67) 912 0.74 (0.20) 0.69 (0.18) 00:01:05 80,400 0

10BAA 786 (45) 895 0.38 (0.06) 0.36 (0.06) 00:01:05 80,280 0

11BAB 901 (35) 962 0.30 (0.06) 0.27 (0.05) 00:01:04 80,160 0

12BAC 830 (49) 945 0.34 (0.07) 0.34 (0.07) 00:01:03 79,200 0

13BBA 857 (43) 951 0.40 (0.09) 0.37 (0.09) 00:01:03 80,460 0

14BBB 925 (33) 990 0.27 (0.10) 0.23 (0.09) 00:01:04 80,400 0

15BBC 902 (43) 998 0.27 (0.09) 0.26 (0.09) 00:01:04 79,500 0

16BCA 839 (31) 892 0.45 (0.07) 0.44 (0.06) 00:01:04 80,370 0

17BCB 781 (54) 956 0.56 (0.13) 0.53 (0.12) 00:01:04 80,280 0

18BCC 482 (71) 360 1.67 (0.32) 1.59 (0.30) 00:01:04 79,350 0

19CAA 723 (48) 813 0.61 (0.13) 0.58 (0.12) 00:01:04 79,965 0

20CAB 768 (60) 941 0.49 (0.11) 0.47 (0.10) 00:01:05 81,240 0

21CAC 833 (51) 987 0.31 (0.08) 0.31 (0.08) 00:01:04 80,400 0

22CBA 813 (42) 890 0.50 (0.10) 0.48 (0.10) 00:01:04 79,695 0

23CBB 888 (36) 976 0.32 (0.08) 0.30 (0.07) 00:01:04 80,880 0

24CBC 737 (61) 881 0.72 (0.18) 0.71 (0.18) 00:01:05 79,950 0

25CCA 734 (45) 788 0.71 (0.12) 0.66 (0.11) 00:01:05 80,415 0

26CCB 429 (62) 482 2.31 (0.59) 2.16 (0.56) 00:01:03 79,020 0

27CCC 444 (55) 389 1.41 (0.17) 1.38 (0.17) 00:01:05 81,150 0

Additional test on Nb

4 510 (65) 442 1.05 (0.22) 1.04 (0.22) 00:01:03 80,250 0

7 913 (38) 960 0.36 (0.18) 0.35 (0.17) 00:01:03 80,250 0

Additional test on sample size

Sb − 2NU 909 (37) 990 0.17 (0.04) 0.17 (0.04) 00:01:02 80,200 0

Sb + 2NU 827 (59) 994 0.47 (0.24) 0.38 (0.18) 00:01:02 80,300 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.8.
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Table A.9: Unknown mass system - Test on iSSRM method: 20-DOF

Test
Fitness Stiffness Error (%) Mass Error (%) CPU Time Evalu- Perturb-

Mean SDa Median Mean SDa Mean SDa (h:m:s) ations ation

01AAA 844 (25) 904 0.23 (0.02) 0.34 (0.05) 00:17:01 599,265 0

02AAB 921 (21) 969 0.14 (0.02) 0.18 (0.03) 00:17:13 600,120 0

03AAC 973 (15) 997 0.05 (0.01) 0.09 (0.03) 00:17:09 600,975 0

04ABA 884 (32) 922 0.21 (0.04) 0.26 (0.04) 00:17:03 599,805 0

05ABB 973 ( 9) 994 0.07 (0.01) 0.08 (0.01) 00:17:04 600,840 0

06ABC 952 (36) 999 0.08 (0.04) 0.09 (0.05) 00:16:33 598,950 0

07ACA 872 (37) 943 0.16 (0.02) 0.26 (0.04) 00:17:11 600,480 0

08ACB 949 (33) 995 0.07 (0.02) 0.10 (0.03) 00:17:40 599,400 0

09ACC 927 (42) 998 0.07 (0.03) 0.09 (0.03) 00:17:05 600,075 0

10BAA 808 (22) 815 0.27 (0.02) 0.36 (0.03) 00:17:13 600,390 0

11BAB 944 (15) 974 0.12 (0.02) 0.18 (0.03) 00:17:28 601,860 0

12BAC 933 (30) 995 0.10 (0.03) 0.18 (0.05) 00:16:54 602,175 0

13BBA 844 (39) 906 0.28 (0.08) 0.26 (0.04) 00:16:59 601,020 0

14BBB 914 (47) 990 0.15 (0.07) 0.16 (0.05) 00:16:51 598,080 0

15BBC 956 (34) 998 0.09 (0.06) 0.08 (0.04) 00:16:48 597,450 0

16BCA 859 (31) 921 0.19 (0.02) 0.27 (0.03) 00:16:02 600,075 0

17BCB 914 (35) 987 0.10 (0.02) 0.19 (0.05) 00:16:56 601,440 0

18BCC 922 (48) 998 0.09 (0.05) 0.12 (0.04) 00:17:15 601,650 0

19CAA 743 (28) 767 0.33 (0.02) 0.42 (0.05) 00:16:30 597,645 0

20CAB 872 (44) 933 0.24 (0.08) 0.34 (0.11) 00:17:15 603,360 0

21CAC 871 (47) 985 0.19 (0.07) 0.27 (0.11) 00:16:59 599,400 0

22CBA 849 (26) 890 0.24 (0.03) 0.25 (0.03) 00:16:41 599,400 0

23CBB 898 (39) 976 0.14 (0.03) 0.18 (0.03) 00:16:42 597,960 0

24CBC 846 (58) 992 0.18 (0.06) 0.22 (0.07) 00:16:39 602,325 0

25CCA 811 (37) 869 0.26 (0.04) 0.33 (0.04) 00:16:31 597,240 0

26CCB 888 (45) 973 0.19 (0.08) 0.22 (0.07) 00:16:40 602,820 0

27CCC 859 (59) 993 0.16 (0.06) 0.27 (0.13) 00:16:33 598,725 0

Additional test on Nb

4 489 (68) 387 0.78 (0.20) 1.07 (0.25) 00:16:50 600,975 0

7 973 ( 4) 979 0.09 (0.01) 0.11 (0.01) 00:16:51 600,975 0

Additional test on sample size

Sb − 2NU 910 (43) 997 0.12 (0.05) 0.17 (0.07) 00:16:14 598,875 0

Sb + 2NU 948 (36) 996 0.08 (0.03) 0.10 (0.04) 00:16:48 599,325 0

a SD=standard deviation

b “S” represents the recommended sample size from the main test of Table 2.8.



Appendix B

Identification of Structural

Change via Experimental Data

The results listed here correspond to the content discussed in Chapter 6. In total, the

identification of structural changes consist of four cut-induced damage cases, i.e., D2,

D3, D4, and D6 from Tables 6.4 and 6.5, and four strengthening cases, i.e. S1, S4, S5,

and S7 from Tables 6.6 and 6.7. The purpose is to verify experimentally the proposed

identification strategies taking into considerations the effects of incomplete measurement

and substructural size. The incomplete measurement cases use the measurement from

levels 1, 3, 5, and 7. To identify these eight structural change cases, three strategies are

considered, with GA parameters listed in Table 6.3, as follows.

(1) Global identification using iSSRM with BFGS. Tables B.1 to B.8 show the identifi-

cations via complete measurement while Tables B.9 to B.16 are based on incomplete

measurement.

(2) F-Sub using iSSRM with BFGS. Tables B.17 to B.24 give the identifications via

complete measurement with 2 substructures. Tables B.25 to B.32 are via incomplete

measurement with 2 substructures. Tables B.33 to B.40 are based on complete

measurement with 4 substructures.
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(3) T-Sub using iSSRM with BFGS. Tables B.41 to B.48 demostrate the identifications

via complete measurement with 2 substructures. Tables B.49 to B.56 are based on

incomplete measurement with 2 substructures. Tables B.57 to B.64 are the basis

of complete measurement with 4 substructures.

Some typical results of these 64 identifications are extracted and shown in Tables 6.8, 6.9,

and 6.10.
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Table B.1: D2-Global identification: 17% damage at level 4 via complete measurement

Force

Average damage (%) Successa Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -20.15 -1.32 9/9 9/9 9/9 1 0 8 0 0 0 0

B -17.59 -3.21 9/9 9/9 9/9 7 0 2 0 0 0 0

C -15.66 -5.33 9/9 9/9 1/9 9 0 0 0 0 0 0

D -18.18 -3.63 9/9 9/9 9/9 9 0 0 0 0 0 0

E -16.22 -3.25 9/9 9/9 7/9 1 0 7 0 0 1 0

-17.56b -3.35b 45/45 45/45 35/45

(1.77)c (1.43)c 100% 100% 78% 60% 0% 38% 0% 0% 2% 0%

a Identification success is defined by “1x”, “2x”, and “4x” herein. For instance, if the identified

damage is one times larger than the maximum false damage, then the success is marked as “2x”.

b Mean value of the corresponding column

c Standard deviation of the corresponding column

Table B.2: D3-Global identification: 17% damage at level 4 and 4% damage at level 6 via
complete measurement

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -19.76 -3.14 -1.15 9/9 9/9 1/9 2 0 7 0 0 0 0

B -17.03 -4.41 -3.06 9/9 0/9 0/9 6 0 3 0 0 0 0

C -16.44 -3.75 -3.98 5/9 0/9 0/9 9 0 0 0 0 0 0

D -18.34 -3.76 -4.06 3/9 0/9 0/9 9 0 0 0 0 0 0

E -18.44 -5.76 -2.12 9/9 7/9 2/9 2 1 6 0 0 0 0

-18.00 -4.17 -2.88 35/45 16/45 3/45

(1.30) (1.00) (1.25) 78% 36% 7% 62% 2% 36% 0% 0% 0% 0%
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Table B.5: S1-Global identification: moderate strengthening at level 4 via complete
measurement

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 16.37 5.62 9/9 6/9 6/9 9 0 0 0 0 0 0

B 20.48 3.82 9/9 9/9 6/9 0 0 8 0 0 1 0

C 20.89 3.50 9/9 9/9 9/9 0 0 9 0 0 0 0

D 20.31 1.32 9/9 9/9 9/9 3 0 3 0 0 0 3

E 21.62 5.12 9/9 9/9 6/9 0 0 9 0 0 0 0

19.93 3.88 45/45 42/45 36/45

(2.06) (1.68) 100% 93% 80% 27% 0% 64% 0% 0% 2% 7%

Table B.6: S4-Global identification: large strengthening at levels 4 and 6 via complete mea-
surement

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 22.94 33.94 7.53 9/9 6/9 3/9 3 0 6 0 0 0 0

B 27.54 31.83 8.04 9/9 9/9 5/9 8 0 0 0 1 0 0

C 30.22 26.45 11.08 9/9 6/9 3/9 3 0 6 0 0 0 0

D 25.84 35.37 2.83 9/9 9/9 9/9 0 0 9 0 0 0 0

E 31.51 25.42 12.47 9/9 7/9 1/9 9 0 0 0 0 0 0

27.61 30.60 8.39 45/45 37/45 21/45

(3.43) (4.46) (3.73) 100% 82% 47% 51% 0% 47% 0% 2% 0% 0%
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Table B.7: S5-Global identification: small strengthening at level 4 and moderate strengthening
at level 6 via complete measurement

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 5.38 20.10 3.50 9/9 4/9 0/9 0 0 6 0 3 0 0

B 3.98 18.28 14.79 0/9 0/9 0/9 9 0 0 0 0 0 0

C 8.82 21.99 3.29 9/9 9/9 0/9 0 0 9 0 0 0 0

D 2.15 28.77 5.03 4/9 1/9 0/9 3 0 2 0 4 0 0

E 6.59 19.24 2.84 7/9 6/9 5/9 4 0 5 0 0 0 0

5.38 21.68 5.89 29/45 20/45 5/45

(2.53) (4.19) (5.04) 64% 44% 11% 36% 0% 49% 0% 16% 0% 0%

Table B.8: S7-Global identification: small strengthening at level 6 via complete mea-
surement

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 11.48 6.12 7/9 6/9 0/9 0 0 5 0 4 0 0

B 9.92 5.68 7/9 4/9 2/9 0 3 0 4 0 0 2

C 4.56 10.30 6/9 6/9 6/9 3 0 4 2 0 0 0

D 6.07 3.05 6/9 6/9 3/9 0 0 4 5 0 0 0

E 4.63 6.75 6/9 2/9 0/9 7 0 0 2 0 0 0

7.32 6.38 32/45 24/45 11/45

(3.18) (2.60) 71% 53% 24% 22% 7% 29% 29% 9% 0% 4%
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Table B.9: D2-Global identification: 17% damage at level 4 via incomplete measurement

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -21.38 -1.49 9/9 9/9 9/9 0 0 6 0 0 0 3

B -17.65 -4.33 9/9 9/9 4/9 9 0 0 0 0 0 0

C -16.02 -5.55 9/9 7/9 2/9 9 0 0 0 0 0 0

D -19.58 -2.37 9/9 9/9 9/9 9 0 0 0 0 0 0

E -15.84 -4.20 9/9 9/9 3/9 1 0 6 0 0 2 0

-18.09 -3.59 45/45 43/45 27/45

(2.38) (1.63) 100% 96% 60% 62% 0% 27% 0% 0% 4% 7%

Table B.10: D3-Global identification: 17% damage at level 4 and 4% damage at level 6 via
incomplete measurement

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -21.06 -3.57 -1.43 9/9 7/9 1/9 0 0 8 0 0 0 1

B -15.92 -5.07 -4.22 7/9 0/9 0/9 7 0 2 0 0 0 0

C -16.94 -4.28 -4.17 3/9 0/9 0/9 9 0 0 0 0 0 0

D -19.42 -4.70 -2.92 8/9 2/9 0/9 9 0 0 0 0 0 0

E -17.48 -6.30 -2.68 9/9 3/9 3/9 2 1 6 0 0 0 0

-18.17 -4.78 -3.08 36/45 12/45 4/45

(2.06) (1.02) (1.16) 80% 27% 9% 60% 2% 36% 0% 0% 0% 2%
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Table B.13: S1-Global identification: moderate strengthening at level 4 via incomplete
measurement

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 15.14 3.16 9/9 9/9 6/9 0 0 8 0 0 1 0

B 16.45 4.76 9/9 7/9 5/9 0 0 6 0 0 3 0

C 19.37 2.03 9/9 9/9 9/9 7 0 0 0 0 0 2

D 19.33 2.34 9/9 9/9 8/9 0 0 6 0 0 0 3

E 20.04 4.20 9/9 9/9 9/9 0 0 9 0 0 0 0

18.06 3.30 45/45 43/45 37/45

(2.14) (1.17) 100% 96% 82% 16% 0% 64% 0% 0% 9% 11%

Table B.14: S4-Global identification: large strengthening at levels 4 and 6 via incomplete
measurement

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 22.55 36.69 6.73 9/9 6/9 3/9 0 0 9 0 0 0 0

B 24.45 29.68 9.45 9/9 6/9 3/9 7 0 2 0 0 0 0

C 27.03 27.11 12.86 6/9 6/9 6/9 3 0 6 0 0 0 0

D 26.07 37.04 2.15 9/9 9/9 9/9 0 0 9 0 0 0 0

E 30.91 25.35 4.21 9/9 9/9 7/9 2 0 6 0 0 0 1

26.20 31.17 7.08 42/45 36/45 28/45

(3.14) (5.42) (4.23) 93% 80% 62% 27% 0% 71% 0% 0% 0% 2%
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Table B.15: S5-Global identification: small strengthening at level 4 and moderate strength-
ening at level 6 via incomplete measurement

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 5.94 21.36 2.88 9/9 5/9 1/9 0 3 1 0 4 0 1

B 4.52 18.07 12.08 0/9 0/9 0/9 9 0 0 0 0 0 0

C 8.11 22.84 4.63 9/9 1/9 0/9 0 0 9 0 0 0 0

D 3.48 28.79 6.05 4/9 2/9 0/9 3 0 1 0 2 0 3

E 5.85 20.13 3.01 6/9 6/9 1/9 3 0 6 0 0 0 0

5.58 22.24 5.73 28/45 14/45 2/45

(1.74) (4.06) (3.78) 62% 31% 4% 33% 7% 38% 0% 13% 0% 9%

Table B.16: S7-Global identification: small strengthening at level 6 via incomplete
measurement

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 11.27 5.61 7/9 6/9 1/9 0 0 5 0 4 0 0

B 8.65 5.52 6/9 5/9 2/9 2 1 1 3 0 0 2

C 5.11 13.93 6/9 6/9 6/9 3 2 3 1 0 0 0

D 5.91 3.04 6/9 6/9 2/9 0 0 3 6 0 0 0

E 3.33 9.17 2/9 0/9 0/9 7 0 0 2 0 0 0

6.86 7.46 27/45 2/45 1/45

(3.13) (4.23) 60% 51% 24% 27% 7% 27% 27% 9% 0% 4%
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Table B.17: D2-“F-Sub” identification: 17% damage at level 4 via complete measurement
and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -19.79 -10.00 7/9 6/9 4/9 7 0 2 0 0 0 0

B -15.70 -2.98 9/9 9/9 8/9 0 7 2 0 0 0 0

C -19.91 -2.73 9/9 9/9 7/9 0 5 1 0 3 0 0

D -21.26 -2.03 9/9 9/9 9/9 0 1 8 0 0 0 0

E -18.75 -11.63 9/9 3/9 1/9 4 0 5 0 0 0 0

-19.08 -5.87 43/45 36/45 29/45

(2.09) (4.56) 96% 80% 64% 24% 29% 40% 0% 7% 0% 0%

Table B.18: D3-“F-Sub” identification: 17% damage at level 4 and 4% damage at level 6 via
complete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -20.59 -3.57 -6.33 3/9 0/9 0/9 2 0 7 0 0 0 0

B -14.71 -5.86 -3.95 7/9 4/9 0/9 1 4 4 0 0 0 0

C -19.91 -3.72 -4.42 4/9 2/9 0/9 0 6 1 0 2 0 0

D -21.38 -3.55 -1.88 8/9 4/9 1/9 0 2 7 0 0 0 0

E -20.08 -5.24 -5.83 5/9 1/9 1/9 2 2 5 0 0 0 0

-19.33 -4.39 -4.48 27/45 11/45 2/45

(2.65) (1.09) (1.75) 60% 24% 4% 11% 31% 53% 0% 4% 0% 0%
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Table B.21: S1-“F-Sub” identification: moderate strengthening at level 4 via complete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 19.77 10.25 9/9 3/9 0/9 9 0 0 0 0 0 0

B 22.09 5.88 9/9 8/9 5/9 1 0 6 0 1 0 1

C 22.71 2.38 9/9 9/9 9/9 0 0 6 0 0 0 3

D 20.99 3.66 9/9 9/9 6/9 6 0 0 0 1 0 2

E 21.89 7.29 9/9 6/9 5/9 9 0 0 0 0 0 0

21.49 5.89 45/45 35/45 25/45

(1.141) (3.09) 100% 78% 56% 56% 0% 27% 0% 4% 0% 13%

Table B.22: S4-“F-Sub” identification: large strengthening at levels 4 and 6 via complete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 30.65 31.58 6.87 9/9 9/9 6/9 6 0 3 0 0 0 0

B 27.30 35.21 4.75 9/9 8/9 6/9 3 0 2 0 3 0 1

C 27.97 26.34 9.91 9/9 9/9 0/9 0 0 9 0 0 0 0

D 26.47 37.32 2.69 9/9 9/9 9/9 8 0 1 0 0 0 0

E 25.90 26.43 7.14 7/9 6/9 6/9 7 0 0 0 2 0 0

27.66 31.38 6.27 43/45 41/45 27/45

(1.85) (5.00) (2.72) 96% 91% 60% 53% 0% 33% 0% 11% 0% 2%
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Table B.23: S5-“F-Sub” identification: small strengthening at level 4 and moderate strength-
ening at level 6 via complete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 6.74 20.75 4.07 6/9 4/9 4/9 1 0 2 0 6 0 0

B 4.42 19.95 11.88 3/9 3/9 0/9 7 0 2 0 0 0 0

C 5.21 21.88 2.61 9/9 4/9 0/9 0 0 6 0 3 0 0

D 4.88 25.38 10.46 4/9 0/9 0/9 2 0 3 0 4 0 0

E 7.34 21.92 3.04 9/9 6/9 3/9 0 0 9 0 0 0 0

5.72 21.98 6.41 31/45 17/45 7/45

(1.26) (2.07) (4.41) 69% 38% 16% 22% 0% 49% 0% 29% 0% 0%

Table B.24: S7-“F-Sub” identification: small strengthening at level 6 via complete mea-
surement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 9.62 6.11 7/9 4/9 0/9 2 0 4 3 0 0 0

B 11.94 9.01 8/9 1/9 0/9 4 2 1 2 0 0 0

C 5.30 5.68 6/9 0/9 0/9 0 0 9 0 0 0 0

D 9.48 8.55 6/9 6/9 4/9 5 1 3 0 0 0 0

E 5.38 6.58 6/9 4/9 0/9 6 3 0 0 0 0 0

8.34 7.19 33/45 15/45 4/45

(2.91) (1.50) 73% 33% 9% 38% 13% 38% 11% 0% 0% 0%
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Table B.25: D2-“F-Sub” identification: 17% damage at level 4 via incomplete measure-
ment and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -19.21 -10.98 7/9 6/9 4/9 7 0 2 0 0 0 0

B -16.36 -3.09 9/9 9/9 8/9 1 0 3 0 0 2 3

C -19.62 -2.58 9/9 9/9 8/9 1 2 0 0 5 1 0

D -21.28 -3.22 9/9 9/9 8/9 1 0 7 0 0 1 0

E -17.09 -9.15 9/9 5/9 0/9 6 0 1 0 2 0 0

-18.71 -5.81 43/45 38/45 28/45

(1.99) (3.95) 96% 84% 62% 36% 4% 29% 0% 16% 9% 7%

Table B.26: D3-“F-Sub” identification: 17% damage at level 4 and 4% damage at level 6 via
incomplete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -20.62 -2.48 -7.39 1/9 0/9 0/9 2 0 6 0 0 0 1

B -17.12 -3.73 -3.12 5/9 3/9 2/9 0 0 5 0 0 0 4

C -19.99 -3.57 -3.76 5/9 1/9 0/9 1 5 0 0 3 0 0

D -21.38 -3.49 -2.37 6/9 4/9 1/9 0 0 9 0 0 0 0

E -17.65 -6.22 -6.27 3/9 1/9 0/9 1 0 6 0 2 0 0

-19.35 -3.90 -4.58 20/45 9/45 3/45

(1.88) (1.39) (2.15) 44% 20% 7% 9% 11% 58% 0% 11% 0% 11%
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Table B.29: S1-“F-Sub” identification: moderate strengthening at level 4 via incomplete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 18.88 5.46 9/9 6/9 6/9 0 6 3 0 0 0 0

B 21.24 6.08 8/9 8/9 5/9 0 4 4 0 0 1 0

C 22.59 1.70 9/9 9/9 9/9 0 0 0 0 0 0 9

D 19.17 6.23 9/9 9/9 0/9 0 3 6 0 0 0 0

E 22.50 3.00 9/9 9/9 9/9 0 0 6 0 0 0 3

20.88 4.50 44/45 41/45 29/45

(1.78) (2.03) 98% 91% 64% 0% 29% 42% 0% 0% 2% 27%

Table B.30: S4-“F-Sub” identification: large strengthening at levels 4 and 6 via incomplete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 29.96 31.12 8.19 9/9 7/9 6/9 0 6 0 0 3 0 0

B 25.09 38.61 8.50 8/9 5/9 4/9 5 0 0 0 2 0 2

C 27.93 26.02 5.03 9/9 9/9 6/9 0 0 3 0 0 0 6

D 18.27 47.94 21.03 3/9 0/9 0/9 0 0 9 0 0 0 0

E 23.25 25.46 3.37 9/9 9/9 6/9 3 6 0 0 0 0 0

24.88 33.83 9.22 38/45 30/45 22/45

(4.52) (9.49) (6.94) 84% 67% 49% 18% 27% 27% 0% 11% 0% 18%
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Table B.31: S5-“F-Sub” identification: small strengthening at level 4 and moderate strength-
ening at level 6 via incomplete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 6.56 21.49 4.62 5/9 3/9 2/9 2 3 3 0 1 0 0

B 2.33 23.16 7.69 3/9 0/9 0/9 3 0 5 0 1 0 0

C 5.00 21.86 3.16 9/9 2/9 0/9 8 0 0 0 1 0 0

D 4.05 27.98 13.19 2/9 1/9 0/9 1 0 7 0 1 0 0

E 6.01 22.39 8.05 2/9 0/9 0/9 0 0 9 0 0 0 0

4.79 23.38 7.34 21/45 6/45 2/45

(1.68) (2.65) (3.86) 47% 13% 4% 31% 7% 53% 0% 9% 0% 0%

Table B.32: S7-“F-Sub” identification: small strengthening at level 6 via incomplete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 8.76 5.60 7/9 4/9 1/9 0 2 1 4 2 0 0

B 12.14 14.68 4/9 1/9 0/9 6 1 0 1 0 0 1

C 5.15 10.98 6/9 0/9 0/9 0 0 9 0 0 0 0

D 15.34 17.94 6/9 0/9 0/9 3 0 6 0 0 0 0

E 4.03 18.79 0/9 0/9 0/9 8 1 0 0 0 0 0

9.09 13.60 23/45 5/45 1/45

(4.73) (5.43) 51% 11% 2% 38% 9% 36% 11% 4% 0% 2%
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Table B.33: D2-“F-Sub” identification: 17% damage at level 4 via complete measurement
and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -20.18 -8.80 9/9 6/9 0/9 0 0 9 0 0 0 0

B -18.15 -9.10 6/9 6/9 4/9 7 0 2 0 0 0 0

C -18.95 -4.34 9/9 9/9 7/9 0 6 0 0 3 0 0

D -20.67 -3.70 9/9 9/9 9/9 0 7 1 0 0 1 0

E -17.64 -7.22 8/9 7/9 4/9 2 0 7 0 0 0 0

-19.12 -6.63 41/45 37/45 24/45

(1.29) (2.50) 91% 82% 53% 20% 29% 42% 0% 7% 2% 0%

Table B.34: D3-“F-Sub” identification: 17% damage at level 4 and 4% damage at level 6 via
complete measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -20.34 -6.18 -7.92 4/9 0/9 0/9 0 2 7 0 0 0 0

B -16.75 -2.62 -15.88 0/9 0/9 0/9 9 0 0 0 0 0 0

C -18.68 -2.85 -5.60 0/9 0/9 0/9 0 7 0 0 2 0 0

D -19.66 -4.40 -3.95 5/9 1/9 0/9 0 9 0 0 0 0 0

E -20.02 0.63 -8.65 0/9 0/9 0/9 0 0 5 0 4 0 0

-19.09 -3.09 -8.40 9/45 1/45 0/45

(1.45) (2.52) (4.58) 20% 2% 0% 20% 40% 27% 0% 13% 0% 0%
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Table B.37: S1-“F-Sub” identification: moderate strengthening at level 4 via complete
measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 21.75 44.08 0/9 0/9 0/9 9 0 0 0 0 0 0

B 24.49 15.53 7/9 5/9 2/9 3 5 0 0 1 0 0

C 24.52 9.81 9/9 9/9 0/9 0 9 0 0 0 0 0

D 20.52 23.50 3/9 3/9 3/9 6 0 3 0 0 0 0

E 22.34 12.55 9/9 2/9 0/9 0 9 0 0 0 0 0

22.73 21.09 28/45 19/45 5/45

(1.75) (13.84) 62% 42% 11% 40% 51% 7% 0% 2% 0% 0%

Table B.38: S4-“F-Sub” identification: large strengthening at levels 4 and 6 via complete
measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 33.02 30.65 35.64 6/9 3/9 0/9 9 0 0 0 0 0 0

B 35.19 34.60 16.67 9/9 4/9 3/9 6 2 0 0 1 0 0

C 28.88 30.99 19.79 9/9 0/9 0/9 0 6 3 0 0 0 0

D 31.49 31.61 39.85 0/9 0/9 0/9 9 0 0 0 0 0 0

E 21.78 24.14 18.05 6/9 0/9 0/9 0 6 3 0 0 0 0

30.07 30.40 26.00 30/45 7/45 3/45

(5.18) (3.83) (10.88) 67% 16% 7% 53% 31% 13% 0% 2% 0% 0%
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Table B.39: S5-“F-Sub” identification: small strengthening at level 4 and moderate strength-
ening at level 6 via complete measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 1.95 24.90 9.41 4/9 3/9 1/9 0 5 3 0 0 0 1

B 3.96 25.12 33.12 0/9 0/9 0/9 6 3 0 0 0 0 0

C 5.45 21.44 10.16 0/9 0/9 0/9 0 0 9 0 0 0 0

D 5.13 28.56 15.38 2/9 0/9 0/9 2 3 0 0 4 0 0

E 4.63 23.69 4.34 6/9 1/9 0/9 0 9 0 0 0 0 0

4.23 24.74 14.48 12/45 4/45 1/45

(1.39) (2.59) (11.13) 27% 9% 2% 18% 44% 27% 0% 9% 0% 2%

Table B.40: S7-“F-Sub” identification: small strengthening at level 6 via complete
measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 5.74 18.26 2/9 1/9 0/9 6 0 0 3 0 0 0

B 5.71 21.47 0/9 0/9 0/9 6 3 0 0 0 0 0

C 7.90 18.68 6/9 4/9 0/9 3 0 6 0 0 0 0

D 4.11 19.44 2/9 0/9 0/9 9 0 0 0 0 0 0

E 1.28 11.69 6/9 4/9 3/9 3 5 0 0 0 0 1

4.95 17.91 16/45 9/45 3/45

(2.46) (3.69) 36% 20% 7% 60% 18% 13% 7% 0% 0% 2%
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Table B.41: D2-“T-Sub” identification: 17% damage at level 4 via complete measurement
and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -19.82 -1.32 9/9 9/9 9/9 0 0 3 0 6 0 0

B -15.09 -4.41 9/9 9/9 2/9 7 0 2 0 0 0 0

C -19.97 -1.25 9/9 9/9 9/9 0 4 0 0 5 0 0

D -21.30 -2.02 9/9 9/9 9/9 0 0 9 0 0 0 0

E -18.67 -1.80 9/9 9/9 9/9 0 0 6 0 0 3 0

-18.97 -2.16 45/45 45/45 38/45

(2.36) (1.30) 100% 100% 84% 16% 9% 44% 0% 24% 7% 0%

Table B.42: D3-“T-Sub” identification: 17% damage at level 4 and 4% damage at level 6 via
complete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -20.68 -3.53 -1.29 9/9 9/9 1/9 0 0 5 0 4 0 0

B -14.28 -6.14 -4.72 8/9 0/9 0/9 4 0 5 0 0 0 0

C -19.99 -3.65 -2.16 9/9 3/9 0/9 0 6 0 0 3 0 0

D -21.49 -3.48 -1.86 9/9 4/9 0/9 0 0 9 0 0 0 0

E -20.10 -5.22 -1.42 9/9 9/9 4/9 0 2 6 0 1 0 0

-19.31 -4.40 -2.28 44/45 25/45 5/45

(2.87) (1.21) (1.40) 98% 56% 11% 9% 18% 56% 0% 18% 0% 0%
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Table B.45: S1-“T-Sub” identification: moderate strengthening at level 4 via complete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 20.73 5.09 9/9 9/9 5/9 6 3 0 0 0 0 0

B 21.34 3.63 9/9 7/9 6/9 0 0 4 0 3 2 0

C 22.94 3.10 9/9 9/9 9/9 0 0 9 0 0 0 0

D 21.37 1.40 9/9 9/9 9/9 0 2 6 0 0 0 1

E 22.16 5.37 9/9 9/9 3/9 9 0 0 0 0 0 0

21.71 3.72 45/45 43/45 32/45

(0.86) (1.61) 100% 96% 71% 33% 11% 42% 0% 7% 4% 2%

Table B.46: S4-“T-Sub” identification: large strengthening at levels 4 and 6 via complete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 31.63 30.88 6.98 9 9 6 3 0 6 0 0 0 0

B 27.21 34.91 3.13 9 9 8 4 0 1 0 3 0 1

C 28.43 26.51 8.16 9 9 3 0 0 6 0 0 0 3

D 26.75 36.73 6.63 9 9 6 0 0 9 0 0 0 0

E 27.49 26.50 6.09 9 7 6 0 0 9 0 0 0 0

28.30 31.11 6.19 45 43 29

(1.96) (4.70) (1.87) 100% 96% 64% 16% 0% 69% 0% 7% 0% 9%
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Table B.47: S5-“T-Sub” identification: small strengthening at level 4 and moderate strength-
ening at level 6 via complete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 6.77 20.03 5.88 4/9 4/9 4/9 2 2 5 0 0 0 0

B 3.83 19.92 11.62 2/9 0/9 0/9 9 0 0 0 0 0 0

C 5.18 21.93 5.09 5/9 0/9 0/9 0 0 9 0 0 0 0

D 5.04 24.84 6.16 5/9 0/9 0/9 3 0 2 0 4 0 0

E 7.60 22.06 2.13 9/9 9/9 3/9 3 0 6 0 0 0 0

5.69 21.76 6.18 25/45 13/45 7/45

(1.50) (2.00) (3.44) 56% 29% 16% 38% 4% 49% 0% 9% 0% 0%

Table B.48: S7-“T-Sub” identification: small strengthening at level 6 via complete mea-
surement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 9.88 7.25 6/9 3/9 0/9 1 2 4 2 0 0 0

B 11.88 5.63 8/9 4/9 3/9 2 3 0 4 0 0 0

C 5.31 7.93 6/9 6/9 4/9 3 0 6 0 0 0 0

D 9.83 3.90 9/9 7/9 0/9 0 0 6 0 3 0 0

E 5.52 2.61 6/9 6/9 3/9 0 0 3 6 0 0 0

8.48 5.46 35/45 26/45 10/45

(2.92) (2.23) 78% 58% 22% 13% 11% 42% 27% 7% 0% 0%
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Table B.49: D2-“T-Sub” identification: 17% damage at level 4 via incomplete measurement
and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -19.33 -2.00 9/9 9/9 9/9 0 0 3 0 1 0 5

B -15.74 -6.10 9/9 6/9 0/9 4 0 5 0 0 0 0

C -19.63 -2.02 9/9 9/9 9/9 0 3 0 0 6 0 0

D -21.36 -1.23 9/9 9/9 9/9 1 0 7 0 0 1 0

E -17.16 -6.67 9/9 9/9 0/9 1 2 0 0 6 0 0

-18.65 -3.60 45/45 42/45 27/45

(2.21) (2.57) 100% 93% 60% 13% 11% 33% 0% 29% 2% 11%

Table B.50: D3-“T-Sub” identification: 17% damage at level 4 and 4% damage at level 6 via
incomplete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -20.76 -2.52 -2.12 6/9 1/9 0/9 0 0 5 0 1 0 3

B -16.17 -4.17 -4.21 6/9 0/9 0/9 6 0 2 0 0 0 1

C -19.92 -3.51 -2.82 7/9 1/9 0/9 0 5 0 0 4 0 0

D -21.51 -3.47 -1.09 9/9 7/9 3/9 0 0 6 0 2 0 1

E -17.79 -5.95 -6.24 5/9 0/9 0/9 3 0 0 0 6 0 0

-19.23 -3.92 -3.30 33/45 9/45 3/45

(2.20) (1.27) (2.00) 73% 20% 7% 20% 11% 29% 0% 29% 0% 11%
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Table B.53: S1-“T-Sub” identification: moderate strengthening at level 4 via incomplete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 19.96 1.39 9/9 9/9 9/9 6 0 0 0 0 0 3

B 20.83 4.63 9/9 7/9 5/9 0 0 2 0 3 3 1

C 22.64 2.40 9/9 9/9 9/9 6 0 0 0 0 0 3

D 20.84 3.35 9/9 9/9 7/9 0 3 1 0 0 5 0

E 23.55 2.33 9/9 9/9 9/9 0 0 9 0 0 0 0

21.57 2.82 45/45 43/45 39/45

(1.48) (1.23) 100% 96% 87% 27% 7% 27% 0% 7% 18% 16%

Table B.54: S4-“T-Sub” identification: large strengthening at levels 4 and 6 via incomplete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 30.81 30.14 4.28 9/9 9/9 8/9 0 0 6 0 3 0 0

B 26.93 36.81 4.78 9/9 9/9 6/9 1 0 2 0 2 0 4

C 28.17 25.96 12.07 9/9 3/9 3/9 0 0 6 0 0 0 3

D 16.20 49.93 17.78 3/9 0/9 0/9 0 0 9 0 0 0 0

E 25.17 25.61 10.22 7/9 6/9 2/9 0 0 9 0 0 0 0

25.46 33.69 9.83 37/45 27/45 19/45

(5.57) (10.14) (5.58) 82% 60% 42% 2% 0% 71% 0% 11% 0% 16%
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Table B.55: S5-“T-Sub” identification: small strengthening at level 4 and moderate strength-
ening at level 6 via incomplete measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 6.32 21.07 6.91 6/9 4/9 2/9 3 3 3 0 0 0 0

B 2.52 23.25 11.50 1/9 0/9 0/9 5 0 4 0 0 0 0

C 5.01 21.89 21.34 0/9 0/9 0/9 0 0 9 0 0 0 0

D 2.48 27.97 14.64 0/9 0/9 0/9 3 4 2 0 0 0 0

E 5.75 22.38 4.09 7/9 1/9 0/9 0 0 9 0 0 0 0

4.42 23.31 11.70 14/45 5/45 2/45

(1.81) (2.72) (6.76) 31% 11% 4% 24% 16% 60% 0% 0% 0% 0%

Table B.56: S7-“T-Sub” identification: small strengthening at level 6 via incomplete
measurement and 2 substructures

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 8.93 4.61 9/9 4/9 1/9 0 0 2 3 4 0 0

B 10.76 6.07 8/9 4/9 0/9 2 1 0 4 1 0 1

C 5.12 12.40 6/9 6/9 6/9 3 0 6 0 0 0 0

D 16.59 12.78 9/9 1/9 0/9 0 3 6 0 0 0 0

E 4.22 3.61 6/9 6/9 6/9 0 0 7 2 0 0 0

9.12 7.90 38/45 21/45 13/45

(4.96) (4.38) 84% 47% 29% 11% 9% 47% 20% 11% 0% 2%
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Table B.57: D2-“T-Sub” identification: 17% damage at level 4 via complete measurement
and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A -20.150 -9.057 9/9 6/9 0/9 0 0 9 0 0 0 0

B -18.205 -11.680 6/9 6/9 2/9 6 0 3 0 0 0 0

C -18.930 -4.473 9/9 9/9 7/9 0 6 0 0 3 0 0

D -20.820 -4.313 9/9 9/9 7/9 0 7 1 0 0 1 0

E -17.650 -4.845 9/9 9/9 5/9 1 0 8 0 0 0 0

-19.151 -6.874 42/45 39/45 21/45

(1.321) (3.328) 93% 87% 47% 16% 29% 47% 0% 7% 2% 0%

Table B.58: D3-“T-Sub” identification: 17% damage at level 4 and 4% damage at level 6
via complete measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A -20.42 -5.74 -8.19 3/9 0/9 0/9 0 2 7 0 0 0 0

B -16.41 -2.70 -17.11 0/9 0/9 0/9 9 0 0 0 0 0 0

C -18.78 -2.86 -5.89 0/9 0/9 0/9 0 8 0 0 1 0 0

D -19.79 -4.25 -4.34 4/9 1/9 0/9 0 9 0 0 0 0 0

E -20.07 0.913 -9.29 0/9 0/9 0/9 0 0 6 0 3 0 0

-19.09 -2.93 -8.96 7/45 1/45 0/45

(1.62) (2.47) (4.95) 16% 2% 0% 20% 42% 29% 0% 9% 0% 0%
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Table B.61: S1-“T-Sub” identification: moderate strengthening at level 4 via complete
measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 22.09 30.14 0/9 0/9 0/9 9 0 0 0 0 0 0

B 24.19 14.90 7/9 5/9 3/9 2 5 0 0 2 0 0

C 24.47 8.97 9/9 9/9 0/9 0 9 0 0 0 0 0

D 20.26 19.58 3/9 3/9 1/9 6 0 3 0 0 0 0

E 22.89 12.93 9/9 3/9 0/9 0 9 0 0 0 0 0

22.78 17.30 28/45 20/45 4/45

(1.71) (8.13) 62% 44% 9% 38% 51% 7% 0% 4% 0% 0%

Table B.62: S4-“T-Sub” identification: large strengthening at levels 4 and 6 via complete
measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 32.96 31.35 22.51 8/9 3/9 3/9 9 0 0 0 0 0 0

B 35.26 35.03 17.09 7/9 4/9 4/9 5 2 0 0 1 0 1

C 29.21 31.72 19.04 9/9 0/9 0/9 0 6 3 0 0 0 0

D 31.53 31.87 37.38 0/9 0/9 0/9 9 0 0 0 0 0 0

E 23.37 25.23 18.26 7/9 0/9 0/9 0 6 3 0 0 0 0

30.46 31.04 22.86 31/45 7/45 7/45

(4.54) (3.57) (8.37) 69% 16% 16% 51% 31% 13% 0% 2% 0% 2%
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Table B.63: S5-“T-Sub” identification: small strengthening at level 4 and moderate
strengthening at level 6 via complete measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

4th 6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor floor change

A 1.56 24.89 10.80 3/9 1/9 0/9 0 6 3 0 0 0 0

B 3.84 25.27 40.87 0/9 0/9 0/9 6 3 0 0 0 0 0

C 5.42 21.87 11.09 0/9 0/9 0/9 0 0 9 0 0 0 0

D 5.30 29.12 18.69 0/9 0/9 0/9 3 2 0 0 4 0 0

E 4.68 23.50 4.50 6/9 0/9 0/9 0 9 0 0 0 0 0

4.16 24.93 17.19 9/45 1/45 0/45

(1.59) (2.70) (14.16) 20% 2% 0% 20% 44% 27% 0% 9% 0% 0%

Table B.64: S7-“T-Sub” identification: small strengthening at level 6 via complete
measurement and 4 substructures

Force

Average damage (%) Success Location of maximum false change

6th Max. false
1x 2x 4x 1 2 3 4 5 6 7

floor change

A 5.97 14.30 1/9 0/9 0/9 6 0 0 3 0 0 0

B 6.08 18.75 0/9 0/9 0/9 6 3 0 0 0 0 0

C 8.20 24.58 6/9 5/9 0/9 3 0 6 0 0 0 0

D 4.27 21.23 1/9 0/9 0/9 9 0 0 0 0 0 0

E 2.17 16.38 6/9 2/9 1/9 5 4 0 0 0 0 0

5.34 19.05 14/45 7/45 1/45

(2.26) (4.03) 31% 16% 2% 64% 16% 13% 7% 0% 0% 0%


