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Abstract

We propose the DISCO algorithm for graph realization in R
d, given

sparse and noisy short-range inter-vertex distances as inputs. Our divide-

and-conquer algorithm works as follows. When a group has a sufficiently

small number of vertices, the basis step is to form a graph realization by

solving a semidefinite program. The recursive step is to break a large

group of vertices into two smaller groups with overlapping vertices. These

two groups are solved recursively, and the sub-configurations are stitched

together, using the overlapping atoms, to form a configurations for the

larger group. At intermediate stages, the configurations are improved by

gradient descent refinement. The algorithm is applied to the problem of

determining protein molecule structure. Tests are performed on molecules

taken from the Protein Data Bank database. Given 20–30% of the inter-

atom distances less than 6 Å that are corrupted by a high level of noise,

DISCO is able to reliably and efficiently reconstruct the conformation of

large molecules. In particular, given 30% of distances with 20% multi-

plicative noise, a 13000-atom conformation problem is solved within an

hour with an RMSD of 1.6 Å.
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1 Introduction

The field of distance geometry is the study of sets of points based on only pairwise

distances between points. One of the particular problems in distance geometry is

the graph realization problem—to assign coordinates to vertices in a graph, with

the restriction that distances between certain pairs of vertices are specified to lie

in given intervals. Two practical instances of the graph realization problem are

the molecular conformation problem and the sensor network localization problem.

The molecular conformation problem is to determine the structure of a pro-

tein molecule based on pairwise distances between atoms. Determining protein

conformations is central to biology, because knowledge of the protein structure

aids in the understanding of protein functions, which would lead to further appli-

cations in pharaceuticals and medicine. In this problem, the distance constraints

are obtained from knowledge of the sequence of constituent amino acids; mini-

mum separation distances (MSDs) derived from van der Waals interactions; and

nuclear magnetic resonance (NMR) spectroscopy experiments. We take note of

two important characteristics of molecular problems: the number of atoms may

number in the tens of thousands, and the distance data may be very sparse and

highly noisy.

The sensor network localization problem is to determine the location of wire-

less sensors in a network. In this problem, there are two classes of objects: anchors

(whose locations are known a priori) and sensors (whose locations are unknown

and to be determined). In practical situations, the anchors and sensors are able

to communicate with one another, if they are not too far apart (say within radio

range), and obtain an estimate of the distance between them.

While the two problems are very similar, the key difference between molecular

conformation and sensor network localization is that the former is anchor-free,

whereas in the latter the positions of the anchor nodes are known a priori.

Recently, semidefinite programming (SDP) relaxation techniques have been

applied to the sensor network localization problem [1]. While this approach was

successful for moderately-size problems with sensors in the order of a few hun-

dreds, it was unable to solve problems with more sensors, due to limitations in

SDP algorithms, software and hardware. A distributed SDP-based algorithm for

sensor network localization was proposed in [3], with the objective of localizing

larger networks. One critical assumption required for the algorithm to work well

is that there exist anchor nodes distributed uniformly throughout the physical

space. The algorithm relies on the anchor nodes to divide the sensors into clus-

ters, and solves each cluster separately using an SDP relaxation. In general, a
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divide-and-conquer algorithm must address the issue of combining the solutions

of smaller subproblems into a solution for the larger subproblem. This is not an

issue in the sensor network localization problem, because the solutions to the clus-

ters automatically form a global configuration, as the anchors endow the sensors

with global coordinates.

A natural question arises as to whether the distributed method proposed

in [3] can be applied to molecular conformation. Unfortunately, it does not, as

the assumption of uniformly distributed anchor nodes does not hold in the case

of molecules.

The authors of [3] proposed a distributed SDP-based algorithm (the DAFGL

algorithm) for the molecular problem [2]. The results of the DAFGL algorithm are

satisfactory when given 50% of pairwise distances less than 6 Å that are corrupted

by 5% multiplicative noise. The main objective of this paper is to design a robust

and efiicient distributed algorithm that can handle the challenging situation [25]

when 30% of short-range pairwise distances are given, and are corrupted with

10–20% multiplicative noise.

In this paper, we describe a new distributed approach, the DISCO (for DIS-

tributed COnformation) algorithm, for the anchorless graph realization problem.

By applying the algorithm to molecular conformation problems, we demonstrate

its reliability and efficiency. In particular, for a 13000-atom protein molecule, we

were able to estimate the positions to an RMSD of 1.6 Å given only 30% of the

pairwise distances (corrupted by 20% multiplicative noise) less than 6 Å.

The remainder of the paper is organized as follows: Section 2 describes ex-

isting molecular conformation algorithms; Section 3 details the mathematical

models for molecular conformation; Section 4 explains the design of DISCO; Sec-

tion 5 contains the experiment setup and numerical results; Section 6 gives the

conclusion.

The DISCO webpage [12] contains additional material, including the DISCO

code, and a video of how DISCO solves the 1534-atom molecule 1F39.

In this paper, we adopt the following notational conventions. Lower case

letters, such as n, are used to represent scalars. Lower case letters in bold font,

such as s, are used to represent vectors. Upper case letters, such as X, are used

to represent matrices. Upper case letters in calligraphic font, such as D, are used

to represent sets. Cell arrays will be prefixed by a letter “c” and be in the math

italic font, such as cAest. Cell arrays will be indexed by curly braces {}.
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2 Related Work

In this section, we give a brief tour of select existing works. Besides presenting the

algorithms, we would like to highlight that each algorithm was tested on different

types of input data. For instance, some inputs were exact distances, while others

were distances corrupted by low levels of noise, yet others were distances cor-

rupted with high levels of noise; some inputs consist of all the pairwise distances

less than a certain cut-off distance, while others give only a proportion of the

pairwise distances less than a certain cut-off distance. It is also the case that not

all the authors used the same error measure. Although the accuracy of a molec-

ular conformation is most commonly measured by the RMSD (root mean square

deviation), some of the authors did not provide the RMSD error, but only the

maximum violation of lower or upper bounds for pairwise inter-atom distances.

(We present more details about the RMSD measure in Section 5.) Finally, be-

cause we aim to design an algorithm which is able to scale to large molecules, we

make a note of the largest molecule which each algorithm was able to solve in the

tests done by the authors. We summarize this information in Table 1.

2.1 Methods Using the Inner Product Matrix

It is known from the theory of distance geometry that there is a natural cor-

respondance between inner product matrices and distance matrices [21, 22, 23].

Thus, one approach to the molecular conformation problem is to use a distance

matrix to generate an inner product matrix, which can then be factorized to re-

cover the atom coordinates. The methods we present in §2.1 differ in how they

construct the inner product matrix, but use the same procedure to compute the

atom coordinates; we describe this procedure in detail below. If we denote the

atom coordinates by columns xi, and let X = [x1 . . .xn], then the inner product

matrix Y is given by Y = XT X. We can recover approximate coordinates X̃

from a noisy Ỹ by taking the best rank-3 approximation Ỹ ≈ X̃T X̃, based on

the eigenvalue decomposition of Ỹ .

The EMBED algorithm [9] was developed by Havel, Kuntz and Crippen in

1983. Given lower and upper bounds on some of the pairwise distances as input,

EMBED attempts to find a feasible conformation as follows. Initially, we only

have bounds on some of the distance pairs. EMBED begins by using the triangle

and tetrangle inequalities to compute distance bounds for all pairs of points.

EMBED then chooses random numbers within the bounds to form an estimated

distance matrix D̃, and checks if D̃ is close to a valid dimension-three Euclidean
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distance matrix by considering the three largest absolute-value eigenvalues of Ỹ ,

the inner product matrix corresponding to D̃. In the fortunate case, the three

eigenvalues are positive, and are much larger than the rest. This would indicate

that the estimated distance matrix D̃ is close to a true distance matrix, and

the coordinates obtained from the inner product matrix are likely to be fairly

accurate. In the unfortunate case where at least one of the three eigenvalues is

negative, the estimated distance matrix D̃ is far from a valid distance matrix.

In this case, EMBED repeats the step of choosing an estimated distance matrix

until it obtains one that is close to a valid distance matrix. As a postprocessing

step, the coordinates are improved by applying local optimization methods.

The DISGEO package [10], was developed by Havel and Wüthrich in 1984,

so as to solve larger conformation problems. The EMBED algorithm is unable

to compute a conformation of the whole protein structure, due to the high di-

mensionality of the problem. DISGEO works around this limitation by using two

passes of EMBED. In the first pass, coordinates are computed for a subset of

atoms subject to constraints inherited from the whole structure. This step forms

a “skeleton” for the structure. The second pass of EMBED computes coordinates

for the remaining of the atoms, building upon the skeleton computed in the first

pass. As Havel and Wüthrich are biologists, their desired to design an algorithm

that can compute protein structures based on realistic input data. They tested

the performance of DISGEO on the BPTI protein, which has 454 atoms. The

input consists of distance (3290) and chirality (450) constraints needed to fix the

covalent structure, and bounds (508) for distances between hydrogen atoms less

than 4 Å apart and in different amino acide residues, to simulate the distance

constraints available from a NOESY experiment. Using a pseudostructure repre-

sentation, they were able to solve for 666 geometric points1 given 3798 distance

and 450 chirality constraints, with three computed structures having an average

RMSD of 2.08 Å from the known crystal structure. Havel’s DG-II package [8],

published in 1991, improves upon DISGEO by producing from the same input

as DISGEO five structures having an average RMSD of 1.76 Å from the crystal

structure.

The alternating projections algorithm (APA) for molecular conformation was

developed in 1990 [5, 16]. As in EMBED, APA begins by using the triangle

inequality to compute distance bounds for all pairs of points. We can think of the

lower and upper bounds as forming a rectangular parallepiped, which the authors

1In NMR experiments, certain protons may not be stereospecifically assigned. For such pairs
of protons, the upper bounds are modified via the creation of “pseudoatoms”, as is the standard
practice in NOE experiments.
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refer to as a data box. Next, a random dissimilarity matrix ∆ in the data box

is chosen. (The dissimilarity matrix serves the same function as the estimated

distance matrix in EMBED.) The dissimilarity matrix is smoothed by column

metrization, so that it adheres to the triangle inequality. Next, ∆ is projected onto

the cone of matrices that are negative semidefinite on the orthogonal complement

of e = (1, 1, . . . , 1)T , then back onto the data box. The alternating projections

are repeated five times. The theoretical basis of this procedure is that as the

number of projection steps goes to infinity, the resultant matrix converges to a

distance matrix that satisfies the lower and upper bounds [16]. Finally, the atom

coordinates are obtained from the inner product matrix, which is computed from

the last dissimilarity matrix. The postprocessing step involves performing stress

minimization on the resultant structure. In [16], APA was applied to the BPTI

protein to compare its performance to DISGEO and DG-II. Under the exact same

inputs as DISGEO and DG-II, the five best structures out of thirty produced by

APA had an average RMSD of 2.39 Å compared with the crystal structure.

Classical multidimensional scaling (MDS) is a collection of techniques for con-

structing configurations of points from pairwise distances. Trosset has applied

MDS to the molecular conformation problem [21, 22, 23] since 1998. Again, the

first step is to use the triangle inequality to compute distance bounds for all pairs

of points. Trosset’s approach is to solve the problem of finding the squared dis-

similarity matrix that minimizes the distances to the cone of symmetric positive

semidefinite matrices of rank less than d, while satisfying the squared lower and

upper bounds. The problem is solved by applying a local optimization method,

namely a limited memory approximate Hessian method. The coordinates can

be extracted from an inner product matrix that is computed from the squared

dissimilarity matrix. In [23], MDS is applied to five molecules with less than 700

atoms. For points with pairwise distances dij less than 7 Å, lower and upper

bounds of the form (dij − 0.01Å, dij + 0.01Å) are given; for pairwise distances

greated than 7 Å, a lower bound of 7 Å is specified. The method was able to

produce estimated configurations that had a maximum bound violation of less

than 0.1 Å. The author did not report the RMSD of the computed configurations,

but mentioned that the configurations are “quite acceptable by the standards of

computational chemistry”.

More recently, in 2006, Trosset with coauthors Grooms and Lewis did work on

a dissimilarity parameterized approach [6]. The authors advocate using a dissimi-

larity parametrization rather than a coordinate-based parametrization. Although

the latter has fewer independent variables, the former seems to have converge to
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“better” minimizers. Their method is named StrainMin because of its origins in

the strain criterion of classical MDS. They formulate the problem as that of min-

imizing an objective which is the sum of the fit of the dissimilarity matrix to the

data and the distance of the dissimilarity matrix to the space of rank d positive

semidefinite matrices (the strain). By analyzing the properties of the objective

function, they developed an efficient local optimization method that makes use of

second-order information. The approach was tested on input data that consists

of exact distances between atoms less than 6 Å apart, and a 2.5 Å lower bound as

a representative van der Waal radii for atoms whose distance is unknown. They

were able to satisfy the distance bounds with a maximum violation of 0.2 Å, for

an ensemble of 6 PDB molecules. However, the RMSD errors were not reported.

The DAFGL algorithm of Biswas, Toh and Ye in 2008 [2] is a “parent” of

this work. DAFGL differs from the previous methods in that it applies SDP

relaxation methods to obtain the inner product matrix. Due to limitations in SDP

algorithms, software and hardware, the largest SDP problems that can be solved

are of the order of a few hundred atoms. In order to solve larger problems, DAFGL

employs a distributed approach. It applies the symmetric reverse Cuthill-Mckee

matrix permutation to divide the atoms into smaller groups with overlapping

atoms. Each group is solved using SDP, and the overlapping groups are used to

align the local solutions to form a global solution. Tests were performed on 14

molecules with number of atoms ranging from 400–5600. The input data consists

of 70% of the distances dij below 6 Å, given as lying in intervals [dij, dij] where

dij = max
(

0, (1− 0.05|Zij|)dij

)

, dij = (1 + 0.05|Zij |)dij,

and Z ij , Z ij are standard normal random variables with zero mean and unit

variance. Given such input, DAFGL is able to produce a conformation for most

molecules with an RMSD of 2–3 Å.

2.2 Buildup Methods

The ABBIE program [11] was developed by Hendrickson in 1995, to solve molec-

ular conformation problems given exact distance data. As embedding prob-

lems in one dimension are strongly NP-complete, and in two and higher spa-

tial dimensions are NP-hard [17], ABBIE uses a divide-and-conquer approach to

make the computation more tractable. ABBIE aims to divide the problem into

smaller pieces by identifying uniquely realizable subgraphs—subgraphs that per-

mit a unique realization. The first step is to use graph algorithms to divide the
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atoms into maximally uniquely realizable subgraphs. If at the end of this step,

a subgraph is too large to be solved directly, then ABBIE continues by using

small vertex separators to break a subgraph into smaller pieces, and recurse on

the pieces. ABBIE proceeds to use heuristics to group vertices into chunks—

subsets of vertices whose relative positions to one another are fixed. This step is

important because combinatorial methods are faster than optimization methods.

Finally, ABBIE uses an optimization routine to combine chunks and vertices to-

gether. Hendrickson tested ABBIE on the protein molecule with PDB ID 7RSA.

After discarding end chains, the molecule had 1849 atoms. The input data in-

cluded the exact distances between all pairs of atoms in the same amino acid

(13879), and 1167 additional distances between H atoms less than 3.5 Å apart.

This made for a total of 15046 edges so that the mean degree of a vertex is 16.3.

Although it was not explicitly mentioned in the paper, we presume he was able

to get the exact solution up to roundoff error.

Dong and Wu [4, 26], presented their geometric buildup algorithm in 2003,

which also relies on having exact distances. The essential idea of this algorithm

is that if four atoms form a four-clique—four atoms with distances between all

pairs known—the atom positions are fixed relative to one another. The algorithm

starts by finding a four-clique and fixing the coordinates of the four atoms. The

other atom positions are determined atom-by-atom; when the distance of an

atom to four atoms with determined coordinates is known, that atom position

can be uniquely determined. The authors conducted numerical experiments on

ten protein molecules, the largest of which has 4200 atoms. When given all the

distances less than 8 Å, the geometric buildup algorithm is able to accurately

estimate all atoms; when given all the distances less than 5 Å, the geometric

buildup algorithm is able to accurately estimate nine of the ten atoms.

2.3 Global Optimization Methods

For an introduction to optimization-based methods for molecular conformation,

see [13]. Here we describe briefly two such methods.

The DGSOL code [14, 15] by Moré and Wu in 1999 treats the molecular

conformation problem as a large nonlinear least squares problem. As the objective

function has many local minima, they apply Gaussian smoothing to the objective

function to increase the likelihood of finding the global minima. They applied

DGSOL to two protein fragments consisting of 100 and 200 atoms respectively.

Distances were specified for atoms in the same or neighboring residues, and given

as lower bounds dij = 0.84dij and upper bounds dij = 1.16dij, where dij denotes
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the true distance between atoms i and j. DGSOL was able to compute structures

with a minimum and average RMSD of 0.37 Å and 1.0 Å respectively for 100

atoms and a minimum and average RMSD of 0.7 Å and 2.9 Å respectively for

200 atoms.

The GNOMAD algorithm [25] by Williams, Dugan and Altman in 2001 at-

tempts to satisfy the input distance constraints as well as MSD constraints. Their

algorithm applies to the situation when we are given sparse but exact distances.

The knowledge of MSD constraints is useful in limiting the search space, but

if they are not applied intelligently, then they may keep the algorithm stuck

in an unsatisfactory local minimum. Since it is difficult to optimize all of the

atom positions simultaneously, because of the high dimensionality of the system,

GNOMAD updates the positions of the atoms one atom at a time. The reduced

dimensionality allows GNOMAD to more easily satisfy the input data and MSD

constraints. The authors tested GNOMAD on the protein molecule with PDB

ID 1TIM, which has 1870 atoms. Given all the convalent distances and distances

between atoms that share covalent bonds to the same atom, as well as 30% of

short-range distances less than 6 Å, they were able to compute estimated positions

with an RMSD of 1.07 Å(but see footnote2).

We end this section by noting that while the GNOMAD algorithm would

increasing get stuck in an unsatisfactory local minimum with more stringent MSD

constraints, the addition of such lower bound constraints are highly beneficial for

DISCO.

3 Mathematics of Molecular Conformation

We begin this section with the SDP models for sensor network localization in

§3.1. These are closely related to the SDP models for molecular conformation,

which we present next in §3.2. We then introduce the gradient descent method

for improving sensor positions in §3.3. Finally, we present the alignment problem

in §3.4.

3.1 SDP Models for Sensor Network Localization

The setting of the sensor network localization problem is as follows. We are given

a set of na anchor nodes with known coordinates ai ∈ R
d, i = 1, . . . , na, and we

wish to determine the coordinates of ns sensor nodes si ∈ R
d, i = 1, . . . , ns. The

2 The number reported in Figure 11 in [25] is inconsistent with that appearing in Figure 8.
It seems that the correct RMSD should be about 2–3 Å.
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information that is available is measured distances or distance bounds for some

of the pairwise distances ‖ai − sj‖ for (i, j) ∈ N a and ‖si − sj‖ for (i, j) ∈ N s.

In the “measured distances” model, we have measured distances for certain pairs

of nodes,

d̃a
ij ≈ ‖ai − sj‖ (i, j) ∈ N a,

d̃s
ij ≈ ‖si − sj‖ (i, j) ∈ N s.

(1)

In this model, the unknown positions {si}ns

i=1 is the best fit to the measured

distances, obtained by solving the following nonconvex minimization problem:

min

{

∑

(i,j)∈N s

∣

∣‖si − sj‖2 − (d̃s
ij)

2
∣

∣ +
∑

(i,j)∈N a

∣

∣‖ai − sj‖2 − (d̃a
ij)

2
∣

∣

}

. (2)

We denote the measured anchor-sensor and sensor-sensor distance matrices by D̃a

and D̃s respectively. In the “distance bounds” model, we have lower and upper

bounds on the distances between certain pairs of nodes,

da
ij ≤ ‖ai − sj‖ ≤ d

a

ij (i, j) ∈ N a,

ds
ij ≤ ‖si − sj‖ ≤ d

s

ij (i, j) ∈ N s.
(3)

In this model, the unknown positions {si}ns

i=1 is the best fit to the measured

distances, obtained by solving the following nonconvex minimization problem:

min

{

∑

(i,j)∈N s

(

‖si − sj‖2 − (ds
ij)

2
)

−
+

(

‖si − sj‖2 − (d
s

ij)
2
)

+

+
∑

(i,j)∈N a

(

‖ai − sj‖2 − (da
ij)

2
)

−
+

(

‖ai − sj‖2 − (d
a

ij)
2
)

+

}

,

(4)

where α+ = max{0, α}, α− = max{0,−α}. We denote the lower and upper

bound anchor-sensor and sensor-sensor distance matrices by Da, D
a

and Ds, D
s

respectively.

In order to proceed to the SDP relaxation of the problem, we need to consider

the matrix

Z =

[

Y XT

X Id

]

where Y = XT X, X = [s1 . . . sn]. (5)

By denoting the i-th unit vector in R
ns by ei, and denoting eij = ei−ej , we note
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that

‖ai − sj‖2 = [ej ;−ai]
T Z[ej;−ai],

‖si − sj‖2 = [eij ; 0d]
T Z[eij ; 0d].

We can therefore conveniently express the constraints (1) as

(d̃a
ij)

2 ≈ [ej;−ai]
T Z[ej ;−ai] (i, j) ∈ N a,

(d̃s
ij)

2 ≈ [eij; 0d]
T Z[eij; 0d] (i, j) ∈ N s;

and (3) as

(da
ij)

2 ≤ [ej ;−ai]Z[ej ;−ai]
T ≤ (d

a

ij)
2 (i, j) ∈ N a,

(ds
ij)

2 ≤ [eij ; 0d]Z[eij ; 0d]
T ≤ (d

s

ij)
2 (i, j) ∈ N s.

The SDP relaxation is then rather straightforward, to relax the constraint (5)

into the constraints

Z =

[

Y XT

X Id

]

where Y < XT X, X = [s1 . . . sn]. (6)

By a Schur’s complement argument, we have Y < XT X if and only if Z < 0, and

thus (6) is equivalent to the following

Z =

[

Y XT

X Id

]

< 0. (7)

We can now express the measured distances model (2) as

min
∑

(i,j)∈N a t+ij + t−ij +
∑

(i,j)∈N s u+
ij + u−

ij

s.t.

[ej ;−ai]
T Z[ej ;−ai] + t+ij − t−ij = (d̃a

ij)
2 (i, j) ∈ N a,

[eij ; 0d]
T Z[eij ; 0d] + u+

ij − u−
ij = (d̃s

ij)
2 (i, j) ∈ N s,

Z(ns + 1 : d, ns + 1 : d) = Id,

Z < 0.

(8)
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Similarly we can express the distance bounds model as

Find Z

s.t.

(da
ij)

2 ≤ [ej;−ai]
T Z[ej ;−ai]≤ (d

a

ij)
2 (i, j) ∈ N a,

(ds
ij)

2 ≤ [eij ; 0d]
T Z[eij ; 0d] ≤ (d

s

ij)
2 (i, j) ∈ N s,

Z(ns + 1 : d, ns + 1 : d) = Id,

Z < 0.

(9)

We recover the estimated sensor positions X = [s1 . . . sns
] from Z as follows.

If there are less than d + 1 anchors, then X is obtained from the best rank-d

approximation of the (1, 1)-block of Z; otherwise, X is set to be equal to the

(2, 1)-block of Z.

So and Ye [18] have shown that if the distance data is uniquely localizable, then

the SDP relaxation (8) or (9) is able to produce the exact sensor coordinates up

to rounding errors. We are not going to define rigorously the concept “uniquely

localizable”. Intuitively, it means that there is only one configuration in R
d

(perhaps up to translation, rotation, reflection) that satisfies all the distance

constraints. The result of So and Ye gives us a degree of confidence that the SDP

relaxation technique is a strong relaxation. We can therefore hope that applying

SDP relaxation to sparse and noisy problems will be successful.

We now discuss what happens when the distance data is sparse and/or noisy,

so that there is no unique realization. In such a situation, it is not possible to

compute the exact coordinates. Further, the X and Y extracted from the solution

Z of the SDP will not satisfy Y = XT X, and Y will be of dimension greater than

d. We present an intuitive explanation for this phenomenon. Suppose we have

points in the plane, and certain pairs of points are constrained so that the distance

between them is fixed. If the distances are perturbed slightly, then some of the

points may be forced out of the plane in order to satisfy the distance constraints.

Therefore, under noise, Y will tend to have a rank higher than d. Another reason

for Y having a higher rank is that if there are multiple solutions, the interior-point

methods used by many SDP solvers converge to max-rank solutions [7].

This situation presents us with potential problems. If Y has a higher rank

than X, then the solution X extracted from Z is likely not to be an accurate

solution. To ameliorate this situation, we add the following regularization term

into the objective function

−γ〈I − aaT , Z〉, (10)
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with a = [ê; â], â =
∑na

i=1 ai/
√

na + ns, ê = e/
√

na + ns, and γ a positive

regularization parameter. This term spreads the sensors further apart and induces

them to exist in a lower-dimensional space. We refer interested readers to [1] for

details on the derivation of the regularization term. Thus the measured distances

model (8) becomes

min
∑

(i,j)∈N a t+ij + t−ij +
∑

(i,j)∈N s u+
ij + u−

ij − γ〈I − aaT , Z〉

s.t.

[ej ;−ai]
T Z[ej ;−ai] + t+ij − t−ij = (d̃a

ij)
2 (i, j) ∈ N a,

[eij ; 0d]
T Z[eij ; 0d] + u+

ij − u−
ij = (d̃s

ij)
2 (i, j) ∈ N s,

Z(ns + 1 : d, ns + 1 : d) = Id,

Z < 0.

(11)

and the distance bounds model (9) becomes

min −〈I − aaT , Z〉

s.t.

(da
ij)

2 ≤ [ej ;−ai]
T Z[ej;−ai]≤ (d

a

ij)
2 (i, j) ∈ N a,

(ds
ij)

2 ≤ [eij ; 0d]
T Z[eij; 0d] ≤ (d

s

ij)
2 (i, j) ∈ N s,

Z(ns + 1 : d, ns + 1 : d) = Id,

Z < 0.

(12)

3.2 SDP Models for Molecular Conformation

The setting of the molecular conformation problem is as follows. We wish to

determine the coordinates of n atoms si ∈ R
d, i = 1, . . . , ns, given measured

distances or distance bounds for some of the pairwise distances ‖si − sj‖ for

(i, j) ∈ N . One can observe that the molecular conformation problem can be

viewed as a sensor network localization problem without anchors. Since the

molecular conformation problem is a special class of sensor network localization

problems, we can apply simplifications to the SDP formulations which we have

derived previously. For reasons of clarity and convenience, we shall borrow the

notation and terminology of the sensor network localization in this section. We

shall henceforth refer to atoms as sensors.

In this problem, there are no anchors, so the (2, 2)-block of Z no longer serves

any purpose. Instead, we only need to consider the smaller matrix Y to express

12



the distance between sensors,

‖si − sj‖2 = eT
ijY eij .

The constraint that Z < 0 is correspondingly replaced by the constraint Y < 0.

The regularization term (10) is replaced by

−γ〈I − êêT , Y 〉

where γ is a positive regularization parameter and ê = e/
√

ns. Since anchors are

absent, the sensors have translational, rotational and reflective freedom. This can

cause numerical difficulties when solving the SDP relaxation of the problem. The

situation is improved when we remove the translational freedom, by introducing

a constraint that mimics setting the center of mass to be the origin,

〈Y, E〉 = 0,

where E is the matrix of all ones. Finally, as before, the estimated sensor positions

X = [s1 . . . sns
] are obtained from the best rank-d approximation of Y .

Putting all this together, we have the measured distances model

min
∑

(i,j)∈N s u+
ij + u−

ij − γ〈I − aaT , Z〉

s.t.

eT
ijY eij + u+

ij − u−
ij = (d̃s

ij)
2 (i, j) ∈ N s,

〈Y, E〉 = 0,

Y < 0, u+, u− ≥ 0,

(13)

and the distance bounds model

min −〈I − aaT , Z〉

s.t.

(ds
ij)

2 ≤ eT
ijY eij ≤ (d

s

ij)
2 (i, j) ∈ N s,

〈Y, E〉 = 0,

Y < 0.

(14)
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3.3 Coordinate Refinement via Gradient Descent

If we are given measured pairwise distances d̃ij, then the sensor coordinates can

be computed as the minimizer of

min f(X) :=
∑

(i,j)∈N a

(

‖ai − sj‖ − d̃a
ij

)2
+

∑

(i,j)∈N s

(

‖si − sj‖ − d̃s
ij

)2
. (15)

Note that this formulation is different from (2). Similarly, if we are given bounds

for pairwise distances dij and dij, then the configuration can be computed as the

solution of

min f(X) :=

[

∑

(i,j)∈N a

(

‖ai − sj‖ − da
ij

)2

−
+

(

‖ai − sj‖ − d
a

ij

)2

+

]

+

[

∑

(i,j)∈N s

(

‖si − sj‖ − ds
ij

)2

−
+

(

‖si − sj‖ − d
s

ij

)2

+

]

.

(16)

Again, note that this formulation is different from (4). We can solve (15) or

(16) by applying local optimization methods. For simplicity, we choose to use

a gradient descent method with backtracking line search. The implemmentation

of this method is rather straightforward. It is a simple exercise in calculus to

compute the gradient of f with respect to the sensor coordinate si, and so the

gradient of f is easy to obtain.

The problems (15) and (16) are highly nonconvex problems with many local

minimizers. If the initial iterate X0 is not close to a good solution, then it is

extremely unlikely that the X obtained from a local optimization method will be

a good solution. In our case however, when we set X0 to be the conformation

produced from solving the SDP relaxation, local optimization methods are often

able to produce an X with higher accuracy than the original X0.

3.4 Alignment of Configurations

The molecular conformation problem is anchor-free. so that a configuration has

translational, rotational, and reflective freedom. Nevertheless, we need to be able

to compare two configurations, to determine how similar they are. In particular,

we need to compare a computed configuration to the true configuration. In order

to perform a comparision of two configurations, it is necessary to align them in

a common coordinate system. We can define the “best” alignment as the affine
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transformation T that minimizes

min

{ n
∑

i=1

‖T (ai)− bi‖ : T (x) = Qx + c, Q ∈ R
d×d, Q is orthogonal

}

. (17)

The constraint on the form of T restricts T to be a combination of translation,

rotation and reflection. In the special case when A and B are centered at the

origin, (17) reduces to an orthogonal procrustes problem

min
{

‖QA−B‖F : Q ∈ R
d×d, Q is orthogonal

}

.

It is well known that the optimal Q can be computed from the singular value

decomposition of ABT .

4 The DISCO Algorithm

Here we present the DISCO algorithm (for DIStributed COnformation). In §4.1,

we explain the essential ideas that are incorporated into the design of DISCO.

We present the procedures for the recursive and basis cases in §4.2 and §4.3

respectively.

4.1 The Basic Ideas of DISCO

Prior to this work, it was known that the SDP relaxation technique and gradient

descent are able to accurately localize moderately sized problems (say the number

of atoms is less than 500). However, many protein molecules have more than

10000 atoms. In this work, we develop techniques to solve large-scale problems.

A natural idea is to employ a divide-and-conquer approach, which will follow

the general framework: If the number of atoms is not too large, then solve the

atom positions via SDP, and utilize gradient descent refinement to compute im-

proved coordinates; Otherwise break the atoms into two subgroups, solve each

subgroup recursively, and align and combine them together, again postprocessing

the coordinates by applying gradient descent refinement.

How should we divide an atom group into two subgroups? We would wish

to minimize the number of edges between the two subgroups. This is because

when we attempt to localize the first subgroup of atoms, the edges with atoms

in the second subgroup are lost. On the other hand, we wish to maximize the

number of edges within a subgroup. The more edges within a subgroup, the more

constraints on the atoms, and the more likely that the subgroup is localizable.
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How should we join the two localized subgroups together to localize the atom

group? Our strategy is for the two subgroups to have overlapping atoms. If

the overlapping atoms are accurately localized in the estimated configurations,

then they can be used to align the two subgroup configurations. If the overlapping

atoms are not accurately localized, it would be disasterous to use them in aligning

the two subgroup configurations. Therefore, DISCO incorporates a criterion for

determining when the overlapping atoms are accurately localized.

It is important to realize that not all the atoms in a group may be localizable,

for instance, some atoms may have fewer than four neighbors in that group. This

must be taken into account when we are aligning two subgroup configurations

together. If a significant number of the overlapping atoms are not localizable in

either of the subgroups, the alignment may be highly errornous (see Figure 4).

This problem could be avoided if we identify and discard the unlocalizable atoms

in a group A heuristic algorithm is used by DISCO to identify atoms which are

likely to be unlocalizable.

The pseudocode of the DISCO algorithm is presented in Algorithm 1. We

illustrate how the DISCO algorithm solves a small molecule in Figure 1.

4.2 Recursive Case: How to Split and Combine

4.2.1 Partitioning into Subgroups

Before we discuss DISCO’s partitioning procedure, we briefly describe the proce-

dure used by DISCO’s parent, the DAFGL algorithm [2]. The DAFGL algorithm

partitions the set of atoms into consecutive subgroups, such that consecutive sub-

groups have overlapping atoms (see Figure 2). It then solves each subgroup sep-

arately, and combines the solutions together. Partitioning in DAFGL is done by

repeatedly applying the symmetric reverse Cuthill-McKee (RCM) matrix permu-

tation to submatrices of the distance matrix. The RCM permutation is specially

designed to cluster the nonzero entries of a matrix (which in this case are the

known distances) towards the diagonal. We observe in Figure 2 that many of the

edges are not available to any subgroup, as they lie outside all the pink squares.

We believe that DAFGL’s partitioning procedure loses too many edges, and this

is the reason why DAFGL performs poorly when the given distances are sparse,

say less than 50% of pairwise distances less than 6 Å.

We hope that the above discussion has helped us to learn from our parents’

mistakes; namely, in the design of DISCO’s partitioning method, to make an

extra effort to keep as many edges as possible.
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Algorithm 1 The DISCO algorithm

procedure Disco(L, U)
if number of atoms < basis size then

[cAest, cI] ← DiscoBasis(L, U)
else

[cAest, cI] ← DiscoRecursive(L, U)
end if

return cAest, cI
end procedure

procedure DiscoBasis(L, U)
cI ← LikelyLocalizableComponents(L, U)
for i = 1, . . . ,Length(cI) do

cAest{i} ← SdpLocalize(cI{i}, L, U)
cAest{i} ← Refine(cAest{i}, cI{i}, L, U)

end for

return cAest, cI
end procedure

procedure DiscoRecursive(L, U)
[L1, U1, L2, U2] ← Partition(L, U)
[cAest1, cI1] ← Disco(L1, U1)
[cAest2, cI2] ← Disco(L2, U2)
cAest ← [cAest1, cAest2]
cI ← [cI1, cI2]
repeat

[cAest, cI] ← CombineChunks(cAest, cI)
[cAest, cI] ← Refine(cAest, cI, L, U)

until no change
return cAest, cI

end procedure
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Figure 1: (top left and right) Since the number of atoms is too large (n = 402 >
basis size = 300), we divide the atoms into two subgroups. (middle left and
right) We solve the subgroups independently. (bottom left) The subgroups have
overlapping atoms, which are colored in green. (bottom right) The overlapping
atoms allow us to align the two subgroups to form a realization of the molecule.
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Figure 2: This permutation of the distance matrix illustrates DAFGL’s par-
titioning strategy. The blue dots represent the known distances, and the pink
squares represent the subgroups.

Suppose we wish to localize the set of atoms A, but there are too many

atoms in A for us to apply an SDP relaxation. We therefore divide A into two

nonoverlapping subgroups A1 and A2. The two objectives in this division are

that the number of edges between subgroups is approximately minimized, to

maximize the chance that each subgroup will be localizable; and the subgroups

are approximately equal in size, so that the recursive procedure will be fast.

However, it is not apparent, after localizing A1 and A2, how to combine them

to form a configuration for A. Our method is to make use of overlapping atoms

between the subgroups. If the overlapping atoms are localized in both groups,

then the two configurations can be aligned via a combination of translation, rota-

tion, and refection. Of course, A1 andA2 were constructed to have no overlapping

atoms. Thus we need to enlarge them to subgroups B1 ⊃ A1,B2 ⊃ A2 which have

overlapping atoms. We construct Bi, i = 1, 2, by adding some atoms Ãi⊕1 ⊂ Ai⊕1

to Ai. (We define ⊕ by 1 ⊕ 1 = 2, 2 ⊕ 1 = 1.) The set of atoms Ã1, Ã2 are

auxilliary atoms added to A1 and A2 to create overlap. While A1 and A2 were

constructed so as to minimize the number of edges (i, j) ∈ N with i ∈ A1, j ∈ A2;

Ã1 and Ã2 are constructed so as to maximize the number of edges (i, j) ∈ N with

i ∈ A1, j ∈ Ã2, and (i, j) ∈ N with i ∈ Ã1, j ∈ A2. The reason for this is that

we want the set of atoms Bi = Ai ∪ Ãi⊕1, i = 1, 2 to be localizable, so we want as

many edges within B1 and B2 as possible.
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We can succintly describe the partitioning as splitting A into two localizable

groups A1 and A2, then growing A1 into B1 and A2 into B2 so that B1 and

B2 are both likely to be localizable. The splitting step should minimize inter-

group edges, to maximize the likelihood that A1 and A2 are localizable; while

the growing step should maximize inter-group edges, to maximize the likelihood

that Ã2 and Ã1 are localizable in B1 and B2.

To make our description more concrete, we give the pseudocode of the parti-

tion algorithm as Algorithm 2. The operation of the algorithm is also illustrated

in Figure 3. We elaborate on the details of the pseudocode below. The Parti-

tion method consists of three stages: Split, Refine and Overlap.

Figure 3: (top left) An RCM permutation gives us a balanced cut, with few
cross-edges (number of cross-edges = 317). (top right) Refining the split reduces
the number of cross-edges (number of cross-edges = 266). (bottom) Expanding
the nonoverlapping subgroups A1,A2 into the overlapping subgroups B1,B2.

In the Split method, we use compute the RCM permutation p of the rows

and columns of the distance matrix D, that approximately minimizes the band-

width of the matrix D(p, p). This is conveniently implemmented as the symrcm
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command in MATLAB. The RCM permutation has the effect of clustering the

edges towards the main diagonal, so that if we split the matrix with a vertical

cut and horizontal cut through the center of the matrix, then the majority of the

edges are in the (1,1) and (2,2) blocks, and only a few of the edges are in the (1,2)

and (2,1) blocks. Thus if we select A1 = p(1 : ⌊n/2⌋) and A2 = p(⌊n/2⌋+ 1 : n),

this approximately minimizes the number of edges from A1 to A2 (see Figure 3,

top left).

In the Refine method, we can reduce the number of inter-group edges as

follows: If an atom a ∈ A1 is “closer” to A2 than A1, then switch it over to A2.

An atom is “closer” to group A1 rather than group A2 if one of the two conditions

hold:

1. it has more neighbors in group A1;

2. it has the same number of neighbors in groups A1 and A2, and its closest

neighbor is in A1.

In the Overlap method, we compute B1 and B2. We begin by setting Bi to

Ai, then add to Bi the atom a not in Bi that is closest to Bi, repeating until Bi

is of the desired number of atoms.

4.2.2 Alignment of Atom Groups

Here we describe how to combine the computed configurations for B1 and B2 to

form a configuration forA. We shall adopt the following notation to facillitate our

discussion. Let B1, B2 be the cooordinates for the atoms in B1,B2 respectively,

and let C1, C2 be the coordinates for the overlapping atoms in B1,B2 respectively.

If a is an atom in A, then let a denote its coordinates in the configuration for

A. If a ∈ B1 (resp. a ∈ B2), then let b1 (resp. b2) denote its coordinates in the

configuration B1 (resp. B2).

The first method we used to produce a configuration for A was to consider the

composition of translation, rotation and reflection T that best aligns C2 to C1. If a

is in B1 but not in B2, then we set a = b1; if a is not in B1 but is in B2, then we set

a = T (b2); if a is in both B1 and B2, then we set a = (b1 +T (b2))/2, the average

of b1 and T (b2). While this method is simple, it suffers from the disadvantage

that a few outliers can have a high degree of influence on the alignment. If a

significant number of the overlapping atoms are poorly localized, the alignment

may be destroyed.

The method used by DISCO is slightly more sophisticated, so as to be more

robust. Our strategy is to use an iterative alignment process. If we again let T
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Algorithm 2 The partition algorithm

procedure Partition(D)
[A1,A2] ← Split(D)
[A1,A2] ← Refine(D,A1,A2)
[B1,B2] ← Overlap(D,A1,A2)
return B1,B2

end procedure

procedure Split(D)
P ← SymRcm(D)
A1 ← p(1 : ⌊n

2
⌋), A2 ← p(⌊n

2
⌋+ 1 : n)

return A1,A2

end procedure

procedure Refine(D,A1,A2)
for i = 1, 2 do

while exists a ∈ Ai closer to Ai⊕1 do

Ai ← Ai \ {a}
Ai⊕1 ← Ai⊕1 ∪ {a}

end while

end for

end procedure

procedure Overlap(D,A1,A2)
for i = 1, 2 do

repeat

a ← the closest point to Ai that is not in Ai

Ai ← Ai ∪ {a}
until Ai is of desired size

end for

end procedure
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be the composition of translation, rotation and reflection that best aligns C2 to

C1, we find the overlapping point a such that the distance between its position

in the two configurations ‖b1− T (b2)‖ is greatest. If it is greater than two times

the mean distance over all overlapping points, then it is likely that this point is

not accurately localized in either of the two configurations, so that we remove

this outlier point, and repeat the process; if the distance is less than two times

the mean distance over all overlapping points, then we conclude that this point is

not an outlier, and we this T may give us a good alignment. By discarding points

whose coordinates do not agree, it is hoped that our alignment only uses points

that are well-localized in both groups. The T obtained from discarding outlier

points goes through a second test. If the alignment of the remaining overlapping

points has high error, that is if the RMSD is greater than a certain threshold,

this indicates that it is not possible to accurately align B1 and B2 together; if the

RMSD is not too great, then we will proceed to align B1 and B2.

4.3 Basis Case: Localizing An Atom Group

4.3.1 When DISCO Fails

A prototype of DISCO was able to accurately localize certain molecules, but

would produce high-error structures for other molecules. Usually, the root of

the problem was that the configuration for one particular subgroup had high

error. Unfortunately, aligning a good configuration and a bad configuration often

produces a bad configuration, so that the error propogates up to the complete

protein configuration (see Figure 4).

What are the reasons for some atom groups to be badly localized? The first

reason is rather obvious—some of the atoms may only have three or fewer neigh-

bors and so are not uniquely localizable in general. The second reason is more

subtle. When we plotted the estimated positions against the true positions, we

noticed that the badly localized groups often consisted of two subgroups; each

subgroup was well localized relative to itself, but there were not many edges be-

tween subgroups, so that the subgroups were not well-positioned relative to each

other.

4.3.2 Identifying a Likely-localizable Core

If one subgroup is poorly localized, the complete protein configuration could be

destroyed. Thus we must make an extra effort to ensure that we are able to

accurately localize each subgroup.
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Here we make a slight digression to a related result. In the case when exact

distances are given, Hendrickson [11] established sufficient conditions for unique

localizability. These conditions are not of great import to us, and so we give only

a flavor of the conditions: (1) vertex 4-connectivity, (2) redundant rigidity—the

graph is rigid after the removal of any edge, (3) stress testing—the null space of

the so-called “stress matrix” has dimension 4.

Unfortunately, Hendrickson’s results, while interesting, are not applicable to

our situation. Imagine a conformation that is kept rigid by a set of edges, which

are constrained to be of specified distances. If the specified distances are relaxed

to distance bounds, it is possible that the conformation will have freedom to flex

or bend into a shape that is drastically different from the original. The lesson

from this exercise of our imagination is that to get a good localization with noisy

distances requires stricter conditions than to get a good localization with exact

distances.

To ensure that we can get a good localization of a group, we may have to

discard some of the atoms, or split the group into several subgroups (see §4.3.1).

Atoms with fewer than 4 neighbors should be removed, because we have no hope

of localizing them accurately. We should also check if it is possible to split

the atoms into two subgroups, both larger than the MinSplitSize3, which have

fewer than MinCrossEdges edges between them. If this were the case, it may

not be possible to localize both subgroups together accurately, but if we split the

subgroups, it may be possible to localize them accurately. The exact choice of

these parameters are a matter of personal taste, but we have found that the value

of 20 for MinSplitSize and 50 for MinCrossEdges seems to work well in practice.

With regard to our choice for MinCrossEdges, in the case of exact distances, in

general 6 edges are needed to align two rigid subgroups. However, in our case the

distance data may be very noisy, so we may need many more edges to align the

two groups well. This is why the rather conservative value of 50 is chosen.

How should we split the atoms into two subgroups, both subgroups with at

least MinSplitSize atoms, so that there are as few edges between them as pos-

sible? This problem is familiar to us, because it is similar to the partitioning

problem that has been discussed in §4.2.1. Of course, in the partitioning prob-

lem, we would like the two subgroups to have approximately the same size; while

here we would like both subgroups to have at least MinSplitSize atoms. Nev-

ertheless, the similarity of the two problems suggests that we could learn from

3We are looking for two rigid subgroups, which have few edges between them. The rigid
subgroups should not be a very small group of atoms.
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the partitioning approach. DISCO find the approximate minimum split by first

applying the RCM permutation to permute the rows and columns of the distance

matrix and cluster the nonzero entries towards the diagonal. It then tries values

of p from MinSplitSize to n − MinSplitSize + 1, to see which is the cut such

that the number of edges between atoms 1 : p and (p + 1) : n is minimized (see

Figure 5).

Again, to make our ideas more concrete, we present the pseudocode of DISCO’s

localizable components algorithm in Algorithm 3.

Algorithm 3 Computing the likely-localizable core

procedure LocalizableComponents(A)
Remove atoms with fewer than 4 neighbors from A
[nCrossEdges,A1,A2] ← MinSplit(A)
if nCrossEdges < MinCrossEdges then

cI1 ← LocalizableComponents(A1)
cI2 ← LocalizableComponents(A2)
return [cI1, cI2]

else

return A
end if

end procedure

procedure MinSplit(A)
p ← SymRcm(D)
for i = MinSplitSize, . . . , n− MinSplitSize − 1 do

nCrossEdges{i} ← nCrossEdges(D, p(1 : i), p(i + 1 : n))
end for

i ← MinIndex(nCrossEdges)
nCrossEdges← nCrossEdges{i}
A1 ← A(1 : i)
A2 ← A(i + 1 : n)

end procedure

5 Numerical Experiments

In §5.1, we explain computational issues in the DISCO algorithm. In §5.2, we

present the experimental setup. In §5.3, we discuss the numerical results.
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5.1 Computational Issues

5.1.1 SDP Localization

In Section 3, we presented the “measured distances” and “distance bounds” SDP

models for the graph realization problem. We now have to decide which model is

more suitable for DISCO. In particular, we will compare the two models in terms

of the running time and the accuracy of the computed configuration.

We decided to use the “measured distances” model for DISCO, because the

running time is superior, while the accuracy is comparable to that of the “distance

bounds” model. With regards to the running time, DISCO uses the software

SDPT3 to solve the SDPs arising from the graph realization problems. The

running time of SDPT3 is of the order of O(mn3) + O(m2n2) + Θ(m3) + Θ(n3),

where m is the number of constraints and n is the dimension of the SDP matrix.

In our case, m corresponds to the number of distances/bounds, and n corresponds

to the number of atoms. The “distance bounds” model has (roughly) twice as

many constraints as the “measured distances” model, and in practice, it may be

3–8 times slower on the same input.

In the “measured distances” model, the regularization parameter γ has to be

chosen judiciously. The regularization paramter affects the configuration in the

following way: the larger the regularization parameter, the more separated the

computed configuration. In the extreme case when the regularization parameter

is very large, the regularization term will dominate the distance error term to the

extent that the objective value goes to minus infinity because the atoms move as

far apart as possible rather than fitting the distance constraints.

We have found that the value γ = γ̄ := m/25n seems to work well in practice.

We present our intuition for choosing such a value in the following. It is expected

that if the value of the distance terms

∑

(i,j)∈N s

u+
ij + u−

ij

and the value of the separation term

γ〈I − E/n, Y 〉

in (13) are balanced, the computed configuration will neither be too compact nor

too separated. Note that

〈I − E/n, Y 〉 ≈ 〈I, Y 〉,
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since one of the constraints in (13) is that 〈E, Y 〉 = 0. If we let r denote the

half-diameter of the chunk, and we make the very crude estimates

u+
ij + u−

ij ≈ r2/25, Yii ≈ r2,

then this gives rise to the choice of γ = m/25n. The factor m/n comes from that

there are m edges and n diagonal terms. In our numerical experiments, we have

found that values γ ∈ (1
4
γ̄, 4γ̄) seem to work well in practice, so the SDP model

works well for a reasonably wide range of γ.

It would be useful to be able to quantify how “separated” an estimated con-

figuration is, compared to the true configuration. We thus define the separation

of a computed configuration as

σ(X) =
1

|N s|
∑

(i,j)∈N s

‖si − sj‖
‖strue

i − strue
j ‖

.

Note that computing the separation requires us to know the true configuration.

However, we would not normally have the true configuration available. It is more

appropriate then to use the approximate separation of a computed configuration

τ(X) =
1

|N s|
∑

(i,j)∈N s

‖si − sj‖
(d̃s

ij)
2

. (18)

The approximate separation of the computed configuration may indicate that

the SDP should be resolved with a different regularization parameter. If the

approximate separation indicates that the computed solution is “too compact”

(τ(X) < 0.8), then resolving the SDP with a larger γ (doubling γ) may produce a

“more separated” configuration that is closer to the true configuration. Similarly,

if the computed solution is “too separated” (τ(X) > 1.1), then resolving the SDP

with a smaller γ (halving γ) may produce a more accurate configuration.

The inclusion of minimum separation distance (MSD) constraints can also

help us to compute a better configuration from the SDP model. Due to physical

reasons, there is an MSD between any two atoms i and j, which we shall denote

by αij . After solving the SDP (13), we check to see if the minimum separation

condition

‖si − sj‖2 ≈ Yii + Yjj − 2Yij ≥ α2
ij

is satisfied for all pairs (i, j). If this is not true, then we let E be the set of pairs

(i, j) which violate the condition. We then resolve the SDP, with the additional
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constraints

Yii + Yjj − 2Yij ≥ α2
ij, ∀(i, j) ∈ E .

We observed that imposing the minimum separation constraint improves the qual-

ity of the SDP solution. While it was reported in [25, p. 526] that the minimum

separation constraints pose a significant global optimization challenge for molecu-

lar structure determination, we believe that the minimum separation constraints

may in fact be advantageous for finding a lower rank SDP solution from (13).

In this paper, we set the minimum separation distance αij to 1 Åuniformly,

regardless of the types of the i-th and j-th atoms. In a more realistic setting, it

is desirable to set αij as the sum of the van der Waals radii of atoms i, j if they

are not covalently bonded.

5.1.2 Gradient Descent

We have found that a regularized gradient descent refinement performs better

than the nonregularized counterpart. Recall that the atom coordinates obtained

via SDP localization are obtained by projecting Y onto the space of rank-d matri-

ces. This tends to give rise to a configuration that is “too compact”, because the

discarded dimensions may make significant contributions to some of the pairwise

distances. Introducing a separation term in the objective function may induce

the atoms to spread out appropriately.

Here we describe the regularized gradient descent. Let us denote the initial

iterate by X0 = [s0
1, . . . , s

0
n], which we will assume is centered at the origin. The

regularized objective function is

min f(X) :=
∑

(i,j)∈N s

(

‖si − sj‖ − d̃s
ij

)2 − µ

n
∑

i=1

‖si‖2, (19)

where µ > 0 is a regularization parameter. Typically, a choice of

µ =

∑

(i,j)∈N s

(

‖s0
i − s0

j‖ − d̃s
ij

)2

10
∑n

i=1‖s0
i ‖2

works well in practice.

We remark that choosing a suitable maximum number of iterations and tol-

erance level to terminate the gradient descent can significantly reduce the com-

putational time of the gradient descent component of DISCO.
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5.2 Experimental Setup

The DISCO source code was written in MATLAB, and is freely available from

the DISCO website [12]. DISCO uses the SDPT3 software package of Toh, Todd

and Tütüncü [20, 24, 19] to solve SDPs arising from graph realization.

Our experimental platform was a dual-processor machine (2.40GHz Intel Core2

Duo processor) with 4GB RAM, running MATLAB version 7.3, which only runs

on one core.

We tested DISCO using input data obtained from a set of 12 molecules taken

from the Protein Data Bank (PDB). The conformation of these molecules is

already known, so that our computed conformation can be compared with the

true conformation.

The sparsity of the inter-atom distances was modeled by choosing at random

a proportion of the short-range inter-atom edges, subject to the condition that

the distance graph is connected4. It is important to note that the degree of some

atoms may be less than 4, so that they are not localizable, but we do not discard

these atoms. We have chosen to define short-range inter-atom distances as those

less than 6 Å. The “magic number” of 6 Å was selected because NMR techniques

are able to give us information about the distance between some pairs of atoms

if they are less than approximately 6 Å apart. We have adopted this particular

input data model because it is simple and fairly realistic [25, 2].

In realistic molecular conformation problems the exact inter-atom distances

are not given, but only lower and upper bounds on the inter-atom distances

are known. Thus after selecting a certain proportion of short-range inter-atom

distances, we add noise to the distances to give us lower and upper bounds. In

this paper, we have experimented with “normal” and “uniform” noise. The noise

level is specified by a parameter ν, which indicates the expected value of the noise.

When we say we have a noise level of 20%, what that means is that ν = 0.2. In

the normal noise model, the bounds are specified by

dij = max
(

1, (1− |Z ij|)dij

)

, dij = (1 + |Z ij|)dij,

where Z ij, Z ij are independent normal random variables with zero mean and

standard deviation ν
√

π/2. In the uniform noise model, the bounds are specified

by

dij = max
(

1, (1− |Z ij|)dij

)

, dij = (1 + |Z ij|)dij,

where Z ij, Z ij are independent uniform random variables in the interval [0, 2ν].

4The interested reader may refer to the code for the details of how the selection is done.
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We have defined the normal and uniform noise models in such a way that for

both noise models, the expected value of |Zij |, |Zij| is ν.

In addition to the lower and upper bounds, which are available for only some

pairwise distances, we have minimum separation distances (MSDs) between all

pairs of atoms. Due to physical reasons, two atoms i and j must be separated

by an MSD αij , which depends on particular details such as the type of the pair

of atoms (e.g. C-N, N-O), whether they are covalently bonded, etc. The MSD

gives a lower bound for the distance between the two atoms. As mentioned in

the previous subsection, for simplicity, we set the minimum separation distance

to be uniformly 1 Å, regardless of the types of atoms.

The error of the computed configuration is measured by the root mean square

deviation (RMSD). If the computed configuration X is optimally aligned to the

true configuration X∗, using the procedure of §3.4, then the RMSD is defined by

the following formula

RMSD =
1√
n

( n
∑

i=1

‖xi − x∗
i ‖2

)

.

The RMSD basically measures the “average” deviation of the computed atom

positions to the true atom positions.

5.3 Results and Discussion

To help the reader to appreciate the difficulty of the molecular conformation

problem, under the setup we have just described, we solved two of the smaller

molecules using sparse but exact distances. This information is presented in

Table 2. Even if we solve a molecular problem in a centralized fashion, due to

the sparsity of the distance data, the problem is not localizable, we can only get

an approximate solution.

The performance of DISCO is listed in Tables 3 and 4, for the case when teh

initial random number seed is set to zero, i.e.

randn(’state’,0); rand(’state’,0);

The RMSD plots across the molecules, with 10 runs given different initial random

number seeds, is shown in Figure 6.

When given 30% of the short-range distances, corrupted by 20% noise, DISCO

is able to compute an accurate structure. we have a final structure (core structure)

with an RMSD of 0.9–1.6 Å (0.6–1.6 Å). The core structure is the union of the
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likely-localizable components. Typically, the core structure is solved to a slightly

higher accuracy, though there are a few exceptions to this.

We believe these are the best numbers which we could hope for, and we present

an intuitive explanation of why this is so. For simplicity, let us assume that the

mean distance of any given edge is 3 Å. This is reasonable because the maximum

given distance is about 6 Å. Given 20% noise, we give a bound of about 2.4–3.6

Å for that edge. Thus each atom can move about 1.2 Å. The RMSD should

therefore be approximately 1.2 Å.

When given 20% of the short-range distances, the conformation problems be-

come more difficult, due to the sparsity of available distances. For each problem,

the mean degree of each atom is 7.4–8.6, so the data is highly sparse. We set

a lower level of 10% noise for these experiments. Even under such challenging

input, DISCO is still able to produce a fairly accurate structure (≈ 2 Å) for all

the molecules except 1RGS and 1I7W (≈ 3.5 Å).

In Figure 6, we plot the RMSDs for different random inputs of the same

molecule. The graphs indicate that DISCO is able to produce an accurate con-

formation (< 3 Å) for most of the molecules over different random inputs. DISCO

does not perform so well on the two molecules 1RGS and 1I7W, which have less

regular geometries, Although we have designed DISCO with safeguards, DISCO

will nevertheless occasionally make mistakes in aligning sub-configurations.

6 Conclusion and Future Work

We have proposed a novel divide-and-conquer, SDP-based algorithm for the

molecular conformation problem. Our numerical experiments demonstrate that

DISCO is able to solve very sparse and highly noisy problems accurately, in a

short amount of time. The largest molecule with more than 13000 atoms was

solved in about one hour to an RMSD of 1.6 Å, given only 30% of pairwise

distances less than 6 Å and corrupted by 20% multiplicative noise.

We hope that with the new tools and ideas developed in this paper, we will

be able to tackle molecular conformation problems with realistic input data, as

was done in [10].
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Algorithm(s) Largest
molecule
(No. of
atoms)

Inputs Output

EMBED (83),
DISGEO (84),
DG-II (91),
APA (99)

454 All distance and chirality constraints needed
to fix the covalent structure are given exactly.
Some or all of the distances between hydro-
gen atoms less than 4 Å apart and in different
amino acid residues given as bounds.

RMSD
2.08 Å

DGSOL (99) 200 All distances between atoms in successive
residues given as lying in [0.84dij , 1.16dij].

RMSD 0.7
Å

GNOMAD (01) 1870 All distances between atoms that are cova-
lently bonded given exactly;
all distances between atoms that share cova-
lent bonds with the same atom given exactly;
additional distances given exactly, so that 30%
of the distances less than 6 Å are given;
physically inviolable minimum separation dis-
tance constraints given as lower bounds.

RMSD
1.07 Å(*)

MDS (02) 700 All distances less than 7 Å were given as lying
in [dij − 0.01Å, dij + 0.01Å].

violations
< 0.01 Å

StrainMin (06) 5147 All distances less than 6 Å are given exactly,
a representative lower bound of 2.5 Å is given
for other pairs of atoms.

violations
< 0.1 Å

ABBIE (95) 1849 All of distances between atoms in the same
amino acid given exactly. All distances corre-
sponding to pairs of hydrogen atoms less than
3.5 Å apart from each other, given exactly.

Exact

Geometric
build-up (07)

4200 All distances between atoms less than 5 Å
apart from each other given exactly.

Exact

DAFGL (07) 5681 70% of the distances less than 6 Å were given
as lying in [dij , dij ], where dij = max(0, (1 −
0.05|Zij |)dij), dij = (1 + 0.05|Zij |)dij , and

Zij , Zij are standard normal random variables
with zero mean and unit variance.

RMSD
3.16 Å

Table 1: A summary of molecular conformation algorithms. (*) The RMSD
reported by GNOMAD may be incorrect, and the true value should be about
2–3 Å. The number reported in Figure 11 of [25] does not agree with that which
appears in Figure 8.
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Figure 4: In each atom plot, a circle represents a true atom position, the red dot
represents an estimated atom position, and the blue line joins the corresponding
true and estimated atom positions. In this figure, we show how two subgroup
configurations (the arrow tails) are aligned to produce a configuration for a larger
group (where the arrow heads point). In this example, because one subgroup
configuration is poorly localized, the resulting configurations formed from this
poorly localized configuration are also unsatisfactory.
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Figure 5: Finding the cut that minimizes the number of edges between subgroups.

Input data: exact distances ≤ 6 Å

Molecule n 30% distances 20% distances
RMSD (Å) ℓ RMSD (Å) ℓ

1GM2 166 0.10 0 0.83 10
1PTQ 402 0.39 9 1.16 38

Table 2: The molecular problem with sparse but exact distance data cannot
always be solved exactly. We have denoted by n the number of atoms in the
molecule and by ℓ the number of atoms with degree less than 4.
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Input data: 30% distances ≤ 6 Å, corrupted by 20% noise

Molecule n ℓ RMSD (Å) Time (h:m:s)
Normal Uniform Normal Uniform

1GM2 166 0 0.92 (0.94) 0.74 (0.76) 00:00:08 00:00:13
1PTQ 402 9 1.08 (0.96) 1.00 (0.85) 00:00:23 00:00:18
1PHT 814 15 1.45 (0.69) 1.15 (0.56) 00:01:22 00:01:00
1AX8 1003 16 1.35 (1.17) 1.00 (0.80) 00:01:31 00:01:07
1TIM 1870 45 1.23 (1.03) 0.94 (0.80) 00:04:18 00:03:28
1RGS 2015 37 1.52 (1.36) 1.51 (1.41) 00:05:25 00:03:53
1KDH 2923 48 1.38 (1.16) 1.21 (0.89) 00:07:57 00:05:30
1BPM 3672 36 1.10 (1.03) 0.79 (0.73) 00:11:24 00:08:08
1TOA 4292 62 1.15 (1.07) 0.89 (0.78) 00:13:25 00:09:06
1MQQ 5681 46 0.92 (0.86) 0.82 (0.74) 00:23:56 00:17:24
1I7W 8629 134 2.45 (2.34) 1.51 (1.40) 00:40:39 00:31:26
1YGP 13488 87 1.92 (1.93) 1.50 (1.52) 01:20:35 01:00:55

Table 3: We have denoted by ℓ the number of atoms with degree less than 4.
The mean degree of an atom is 10.8–12.6. The approximate core of the structure
consists typically of 94–97% of the total number of atoms. For large molecules,
the SDP localization consumes about 70% of the running time, while the gradient
descent consumes about 20% of the running time.

Input data: 20% distances ≤ 6 Å, corrupted by 10% noise

Molecule n ℓ RMSD (Å) Time (h:m:s)
Normal Uniform Normal Uniform

1GM2 166 7 1.44 (1.25) 0.92 (0.77) 00:00:04 00:00:04
1PTQ 402 46 1.49 (1.17) 1.48 (1.14) 00:00:14 00:00:10
1PHT 814 53 1.53 (1.13) 1.40 (0.97) 00:01:02 00:00:54
1AX8 1003 78 1.69 (1.40) 1.52 (1.17) 00:01:00 00:00:55
1TIM 1870 143 1.77 (1.41) 1.84 (1.50) 00:02:43 00:02:33
1RGS 2015 189 9.82 (9.51) 1.83 (1.39) 00:03:32 00:03:14
1KDH 2923 210 1.74 (1.31) 1.63 (1.13) 00:04:28 00:04:45
1BPM 3672 187 1.46 (1.14) 1.31 (0.91) 00:06:52 00:06:33
1TOA 4292 251 1.67 (1.26) 1.58 (1.16) 00:08:39 00:08:49
1MQQ 5681 275 1.17 (0.95) 1.17 (0.92) 00:14:31 00:14:21
1I7W 8629 516 4.04 (3.69) 3.87 (3.52) 00:26:52 00:26:04
1YGP 13488 570 1.83 (1.63) 1.70 (1.46) 01:01:21 00:57:31

Table 4: We have denoted by ℓ the number of atoms with degree less than 4.
The mean degree of an atom is 7.4–8.6. The approximate core of the structure
consists typically of 88–92% of the total number of atoms. For large molecules,
the SDP localization consumes about 60% of the running time, while the gradient
descent consumes about 30% of the running time.
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Figure 6: For each molecule, ten random inputs were generated with different
initial random number seeds. We plot the the RMSDs of the ten structures
produced by DISCO against the molecule number. (top left) 30% short-range
distances, 20% normal noise (top right) 30% short-range distances, 20% uniform
noise (bottom left) 20% short-range distances, 10% normal noise (bottom right)
20% short-range distances, 10% uniform noise
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