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Summary

A detail understanding of the physics of spin transport phenomena is essential to en-

hance the performance of present spintronic devices, as well as in designing new devices

for future applications. This thesis consists of theoretical study and simulation on the

physics of spin transport in spintronic nanodevices. The spin transport phenomenon is

mainly studied based on the i) semi-classical spin-drift-diffusion (SDD) equation, and

the ii) mesoscopic Green’s function (GF) formalism. SDD is a phenomenological model

which describes the electron transport in the presence of spin relaxation in the diffusive

transport regime. GF is a quantum theoretic model of electron transport in complex and

inhomogeneous systems in the mesoscopic size range.

The aim of our simulation is to harness the physics of spin transport to improve

the performance of devices such as the spin valves (SV) and spin-transistors, as well as

to propose new design for these devices. In this thesis, first the effects of various device

parameters on spin transport is analyzed in detail. Focus is given to the understanding of

the fundamental physics of spin transport as well as identifying any anomalous and novel

x
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effects. Once transport physics and the various transport effects are well understood,

then we utilize this understanding to enhance the performance of the devices. We also

explore new methods and device designs in order to further improve the performance.

First [Chapter 2-4] we study the optimization of magnetoresistance (MR) in metal-

lic SV structures by using SDD transport model. We analyze the effects of the material

and structural properties on the device performance. We notice various novel effects

that influence the MR of the SV device, i.e. i) the effect of spin-independent resistiv-

ity on spin-dependent-scattering, ii) an anomalous MR suppression effect due to cou-

pling of resistivity with spin relaxation, iii) complex interplay between spin-dependent-

scattering, spin relaxation and the anomalous MR suppression effect due to increase in

the FM layer thickness, iv) competitive resistance effect due to interfacial resistance or

additional layers, and v) spreading resistance effect due to layer patterning. These ef-

fects were studied in detail and carefully utilized to optimize the MR ratio of the SVs.

Next [Chapter 5], we study the spin transport phenomena in a 2DEG semiconductor

structure, where ballistic transport is assumed. In this structure we notice resonant tun-

neling effect which leads to an oscillatory transport behavior. The transport properties,

such as the transmission probability, the spin injection (SI) efficiency and the MR ra-

tio, all exhibit oscillatory behavior when the electron energy is varied. We utilize this

effect to design a magnetoresistive spin-transistor, whose MR can be varied by gate volt-

age. Then [Chapter 7] we incorporate magnetic gates into this transistor and apply GF

formulation to study the effect of resonant tunneling across magnetic-electric barrier.

Finally[Chapter 8] we integrate the two spin transport models–i) SDD and ii) GF– to

develop a multiscale spin transport theory, which is used to study the effect of interfacial

barrier profile and barrier asymmetry for further enhancement of the SI in a ferromag-
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net/semiconductor(2DEG) interface.

(490 words)
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Chapter 1
Introduction

1.1 Background

1.1.1 Electron Spin

In 1897, Sir J.J. Thompson discovered the electron, an elementary sub-atomic particle

that carries a finite amount of charge. The electron’s charge degree of freedom gives rise

to the conventional electrical current in metals and semiconductors. Electrical current is

produced as a result of electrons interacting with each other and with electromagnetic

fields via Coulomb and Lorentz forces. In 1920s, two successive experimental evidences

suggested an additional property of the electron. These experiments are: 1) investigation

on the fine structure – on closer examination, the spectral lines of the hydrogen spectrum

appears to be closely-spaced doublets, and 2) the Stern-Gerlach experiment – a beam of

silver atoms directed through an inhomogeneous magnetic field splits into two beams.

These experiments suggest that electrons have an intrinsic angular momentum. This

intrinsic property, being classically analogous to a spinning ball of charge, was termed

as electron spin. These two experiments – 1) fine structure and 2) Stern-Gerlach – also

proved that electron spin is quantized into two discrete levels, namely “spin-up” with

3
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the z-component of the spin-angular momentum of Sz = +1
2
~ and “spin-down” with

Sz = −1
2
~.

1.1.2 Spintronics

In conventional electronic devices, the spin property of electrons has not been utilized

for any practical purposes. Spintronics or magnetoelectronics,4–9 is an emerging tech-

nology which exploits the “spin” property of the electrons in addition to the “charge”

property. As as result, spintronics enables us to combine the advantages of both the

features of electronics and magnetism to make new generation of devices.

Historically, spintronics technology emerged from seminal experiments conducted

on spin dependent electron transport in solid state devices in 1980’s. Some of the

milestones that led to the progress in this field are as follows: 1) 1970 : Ferromag-

net/superconductor tunneling experiments pioneered by Meservey and Tedrow,10 2)

1975 : Experiments on magnetic tunnel junctions by Julliere,11 3) 1985 : Observation

of spin-polarized electron injection from a ferromagnetic metal to a normal metal by

Johnson and Silsbee,12 4) 1988 : Discovery of giant magnetoresistance independently

by Albert Fert et al.13 and Peter Grnberg et al.14 (1988), 5) 1990 : Theoretical proposal

of the use of semiconductors for spintronics in a spin field-effect-transistor by Datta and

Das15 in 1990.

The primary requirement of a spintronic device is to have a system to generate

spin polarized current. Spin polarized current refers to the current in which electrons

with one type of spin (majority spin) are significantly more than the other type of spin

(minority spin), hence there is an imbalance between spin-up and spin-down electrons.
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The system that produces spin polarized current is called spin injector/polarizer. The

next requirement is to transport, maintain and manipulate the spin current across the

device. And finally, we need another system which is sensitive to the spin current, such

that we can detect and measure the spin.

The spin property of electron can be technologically utilized in many ways. Some

of the examples are: 1) Electron energy is dependent on the orientation of its spin.

Therefore spin can be utilized in a new kind of binary logic of ones (high energy) and

zeroes (low energy). 2) Similar to the flow of charges, the flow of spins also carry

information. Therefore spin can be used for data transfer with the advantage of easily

being manipulated with externally applied fields. 3) The alignment of spins creates a net

magnetic moment, and therefore spin can be used for non-volatile data storage.

Since spintronics enables us to combine both the features of electron charge and

electron spin, the performance of existing electronic products could be further enhanced

by utilizing the advantages of the spin property of electrons. Electron spins can be ma-

nipulated faster and at lower energy cost compared to charges. Spin also has longer

coherence length compared to electron mean free path, i.e. once spin is created; it main-

tains its state for a longer time, especially in the semiconductors. Hence, by utilizing

the spin properties, it opens the possibility of developing new devices with many poten-

tial advantages such as: 1) non-volatile data storage, 2) higher data processing speed,

3) lesser power consumption and 4) larger integration density, compared to the conven-

tional electronic devices.

Thus, spintronics technology is expected to result in new multifunctional de-

vices15–21 such as spin-field-effect-transistor, spin-light-emitting-diode, spin-resonant-
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Figure 1.1: Density of States (DOS) that are available for electrons in a (a) ferromagnetic (FM)
metal and (b) non-magnetic (NM) metal. In FM there is spin splitting of DOS. This is due to the
magnetic exchange field in FM. E, the electron energy; EF , the Fermi level; Jex, the magnetic
exchange energy; N(E), the DOS.

tunneling-diode, optical switches operating at terahertz frequency, modulators, encoders,

decoders, and quantum bits for quantum computation and communication. Spintronics

also had successfully given rise to devices for memory/data storage application, e.g. spin

valve and Magnetic Random Access Memory (MRAM).

1.2 Spin Transport Phenomena

Although the field of spintronics looks promising, many technical issues have to be re-

solved in order to have successful incorporation of spins into existing technology. These

technical issues can be sub-divided into 4 main areas: 1) generating, 2) transporting, 3)

manipulating, and 4) detecting spin polarized current in solid state devices.

1.2.1 Spin Generation

1.2.1.1 Spin in Ferromagnetic (FM) and Nonmagnetic (NM) Materials

In ferromagnetic (FM) materials22, 23 the simplest spin transport model is the two-channel

model. In the two-channel model, electron transport is described as follows: a) spin-up
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and spin-down electrons are transported in two different channels, b) both the channels

are electrically parallel with each other, and c) both the channels are almost indepen-

dent, i.e. there is rarely any interchange/flipping/mixing of electrons between the two

channels (spin interaction does occur in a very long range. The details of such interac-

tion is explained in Sec. 1.2.2.4). Therefore in FM, the electrical resistivity and mobility

experienced by the spin-up and spin-down electrons are different. This unusual behavior

of asymmetrical electron resistivity (and mobility) for spin-up and spin-down electrons

in FM was first explained by Mott.22, 23

The asymmetry in the electron mobility for different spins is also indirectly caused

by the asymmetry in the electron density-of-state (DOS). In FM material, the DOS is

asymmetrical for spin-up and spin-down electron due to the spin-splitting in the band

structure [see Fig. 1.1]. The spin splitting in the band structure is caused by the magnetic

exchange interaction field–the same field which causes ferromagnetism itself.

Due to these two reasons–1) two-channel transport(asymmetry in electron mobil-

ity) and 2) asymmetric in DOS–, in a FM material, the flux of spin-up and spin-down

electrons are not equal; and thus the current in FM is spin polarized. When current

passes from a FM metal to a nonmagnetic (NM) metal12, 24–26 via an ohmic contact,

spin-polarized current is obtained in the NM due to the mobility asymmetry (indirectly

due to DOS asymmetry) in FM. Similarly, when current passes from FM to NM via an

insulator (tunneling contact), spin-polarized current is obtained in the NM directly due

to the DOS asymmetry in FM. Therefore FM can be used as spin-polarizer in spintronics

circuits.
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1.2.1.2 Spin in Semiconductor (SC)

Although a significant amount of spin polarization arises in FM metals, this is inade-

quate for spin-based applications. Hence, non-equilibrium spin must be introduced in

semiconductor (SC) to make advanced spin-based devices. SC based spintronics4 can

combine the well-known advantages of SC materials (i.e. versatility of charge transport

manipulation and established nanofabrication technology) with the additional function-

ality provided by the spin degree of freedom. Recent experimental demonstrations of

long spin diffusion length27, 28 in SC, and the ability to manipulate spin orientation by

electrical and magnetic means29–32 have brought the possibility of SC-based spintronics

devices for memory, optoelectronic, and spin-field-effect transistor applications15 closer

to realization. The key parameters which need to be optimized in future SC-based spin-

tronic devices is its spin injection (SI) efficiency, i.e. the ability to inject spin polarized

current into semiconductor.20, 33, 34 Initial SC-based devices which utilized direct spin

injection from FM electrodes into the SC layer, had extremely low SI due to the large

conductivity mismatch.35–39 This mismatch problem has been overcome by the incorpo-

ration of tunnel barriers36, 40, 41 and the use of diluted magnetic semiconductors (DMS)

as spin-injectors,41 although the latter suffer from generally low Curie temperature.29, 42

Spin can also be created in SC via optical method,43, 44 i.e, by shining circularly polarized

light to transfer the angular momentum from photon to electron.



1.2 Spin Transport Phenomena 9

λF λSDLλφλMFP
L

T
ra

n
sp

or
t 

R
eg

im
e

conserved scattered
coherent incoherent

coherent incoherent

quantum

atomic/

molecular
mesoscopic classical

quatum

diffusive

classical

diffusive

ballistic diffusive

Momentum
Phase

Spin 

Figure 1.2: λF , λMFP , and λSDL refers to Fermi-wavelength, mean free path (MFP), and spin
diffusion length (SDL), respectively. MFP is the average distance traveled by an electron before
colliding with another particle and thus loosing initial momentum. Diffusive transport, occurs
when λMFP is shorter than the device dimensions, L, i.e. L >> λMFP . Thus in diffusive
transport, electron collides many times, before transported across the device. Diffusive trans-
port is commonly described by the semi-classical Boltzmann model. SDL indicates how far an
electron can travel in a diffusive conductor before its initial spin direction is randomized. For
an electron to maintain its spin coherence, the device dimension should be lesser than λSDL.
Generally in metals λMFP < λSDL, hence two independent diffusive spin channels can be uti-
lized to describe the transport. This gives rise to the two-channel model. In SC SDL is much
larger, implying the importance of injecting spin into SC. Diffusive transport is described by
using spin-drift-diffusive model. Ballistic transport occurs when L < λMFP , where electrons
move without colliding with each other. In ballistic transport, the transport conditions are pre-
determined by reservoirs at the boundaries. Ballistic transport is described by using Landauer
formula. Quantum transport occurs when L < λF . In this regime electrons exhibit wave prop-
erty.

1.2.2 Spin Transport

1.2.2.1 Transport Regime

Spin-polarized electron transport will occur naturally in any material in which there

is a difference in the spin-populations at the Fermi level. In general, spin transport

can be described by the appropriate type of theoretical transport methodology of the

transport regime applicable in the device or in a given experimental system. Compared

to charge transport, in spin transport, spin coherence is maintained for much larger time

(and length) scale. Figure 1.2 shows various electron transport regimes and the physical

phenomena related to these regimes.
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1.2.2.2 Spin Injection (SI)

Spin injection (SI) is the process of transporting spin electrically into a material, usually

SC. The strength of SI can be measured by determining the value of spin-polarization of

current, at the contact from where the electrons are injected. There are various methods

to inject spin into SC:

1. Ohmic SI33, 39– spin polarized current in FM is transferred into the SC via ohmic

FM/SC interface. The resistivity of the SC (ρN ) and of the FM (ρF ) influences

the effectiveness of the SI. For substantial spin to be injected, the condition of

ρF � ρN must be met. But, in practical materials ρF � ρN and hence ohmic SI

into SC is very inefficient.35

2. Tunneling SI41, 45–47 – Unlike ohmic SI, in tunneling SI the resistivities of the elec-

trodes play a minimal role. This is because when the impedance of the barrier is

sufficiently high; the DOS of the two electrodes that are involved in the tunneling

process determines the transport across the interface. As such, the current through

the barrier is very small while the electrodes remain in equilibrium.

3. Ballistic SI48, 49 –Spin is injected across the FM-SC interfaces in the ballistic

regime, whereby the spin-dependant transmission probability of the electron is

determined by the difference between the two spin conduction subbands of the

FM metal and the conduction band of the SC.

1.2.2.3 Spin Accumulation

When a current passes from FM metal to NM metal, it carries with it a net spin angular

momentum and hence magnetization. The magnetization which builds up in the new
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material is known as spin accumulation. The magnitude of spin accumulation is deter-

mined by the equilibrium between the net SI rate at the interface and spin relaxation rate

at the bulk of NM.

1.2.2.4 Spin Relaxation

Due to spin relaxation, spin accumulation decays exponentially from the interface on

a length scale called the spin-diffusion-length (SDL), λSDL. Thus SDL is a very im-

portant parameter in determining the maximum thickness of NM material. The time

scale equivalent to SDL is the spin-relaxation-time – the time that determines how long

electron maintains its spin state in a material. Relatively, electron-spin takes much large

time (and length) to relax compared to electron-momentum, especially in SC. Some of

the common mechanisms50 which causes spin relaxation are: Elliot-Yafet mechanism,51

D’yakonav-Perel’ mechanism,52 Bir-Aranov Pikus mechanism,53 and Hyperfine-interaction.54

1.2.3 Spin Manipulation

Once spin is created or injected in a material, we need to control the spin to obtain

desired outcome. The techniques to change and control the spin state of electrons in de-

vices is referred as spin manipulation. Spin manipulation can be done via various means,

such as: a) electrical field and spin-orbit interactions,55–57 b) g-factor modulation,58 c)

magnetic semiconductor,57, 59 d) magnetic field56, 60, 61 and e) optical56, 62 means.
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1.2.4 Spin Detection

Finally, we need to sense and measure the changes in the signals caused by the presence

of nonequilibrium spin in the spintronic devices. The system which is sensitive to this

signal is called a spin-detector. One of the ways to detect spin in spin-transistors is by

putting a FM filter in front of the device (at the drain of the transistor) such that the

filter will act as a spin sensitive detector.15 Magnetic Force Microscopy is used to image

the spin state of surfaces with high resolution. In semiconductors, spin detection can be

achieved by utilizing the effects of spin accumulation,63 optical emmision,64, 65 Faraday

rotation,66 and band-filling.67 In multilayered devices, magnetoresistive effect can be

utilized to detect the spin (magnetization) state of the layers.

1.3 Magnetoresistive Devices

Since spin is proportional to magnetic moments of the electron, spintronics is also linked

to magnetism. One of the unique characteristic of some of the spintronic devices is the

effect of magnetoresistance (MR). MR refers to the change in the electrical resistance

of a material, when the material is exposed to an external magnetic field. MR devices,

which have the ability to detect magnetic field, are being used as reading heads in mag-

netic hard disks. In this section, we highlight the concept and some of the applications

of magnetoresistive devices in data storage technology.
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Figure 1.3: a) GMR multilayer in CPP configuration. b) GMR multilayer in CIP configuration.
Direction of the arrows inside the layers indicates magnetization of the FM.

1.3.1 Giant Magnetoresistance (GMR)

Giant magnetoresistance (GMR)68–70 refers to the huge change in electrical resistance

that occurs when a strong magnetic field is applied to a multilayer made of alternating

FM and NM metallic layers. GMR was unveiled by applying magnetic field to magnetic

metallic multilayers such as Fe/Cr13, 14, 71 and Co/Cu,72 in which FM layers are separated

by NM spacer layers of few nm thick. Significant reduction in the electrical resistance

was observed in such multilayer. This effect was found to be much larger than other MR

effects that was previously observed in metals and hence termed, “giant-MR”.

There are two configurations in which a MR multilayer device can operate: 1)

current-perpendicular-to-plane (CPP)73–78 and 2) current-in-plane (CIP)78–80[refer Fig. 1.3].

CIP was the first to be discovered as its geometry is easier to be realized compared to

CPP. CPP implementation requires sophisticated nanolithography technology.

When external magnetic field is applied to a GMR multilayer, the applied field

aligns the magnetic moments of the FM layers, and thus the resistance of the multilayer

varies accordingly. When magnetic moments of all the FM layers are aligned (parallel

to each other), spin polarized electrons of one polarity is scattered less than the other

polarity. On the other hand, when magnetic moments in FM layers are anti-aligned,
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Figure 1.4: Resistor model to represent the GMR multilayers. a) GMR multilayer in parallel
(P) configuration. b) GMR multilayer in antiparallel (AP) configuration. The two parallel paths
correspond to the respective spin channels. The direction of the arrows inside the layers indi-
cates magnetization direction. Big (small) box in the resistance circuit indicates large (small)
resistance. c) Sketch of resistance, R and magnetic field, H. RP (AP ) indicates the resistance of
the structure at P (AP) configuration.

electrons of both polarities–spin-up and spin-down– are highly scattered. This causes a

decrease in the electron mean free path (MFP) and hence decreases the resistance of the

multilayer.

Figure 1.4 shows simple resistor models to illustrate the GMR effect in a mul-

tilayer. The resistor models make use of series resistors to represent resistances that

electrons experience as they traversed through the layers. Generally, GMR multiyers

are designed such that with the absence of the magnetic field, the magnetizations of the

FM layers are anti-parallel [Fig. 1.4(b)]. And, by applying appropriate magnetic field,

magnetization of the FM layers are aligned in parallel [Fig. 1.4(a)]. This gives rise to

the changes in resistance as shown in Fig. 1.4c. The MR of the device is defined as

MR = RAP−RP

RAP , where RAP (RP ) is antiparallel (parallel) resistance.
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Figure 1.5: Tunneling in parallel and antiparallel configurations, in a FM/I/FM magnetic tun-
neling junction. Dashed (solid) curved arrows indicates high (low) resistive tunneling.

1.3.2 Magnetic Tunnel Junction (MTJ)

A magnetic tunnel junction (MTJ) consists of two layers of magnetic metals separated by

an ultrathin layer of insulator (I) as shown in Fig. 1.5. The I layer is so thin that electrons

tunnel through the layer if a bias voltage is applied across the two FM electrodes. The

tunneling current depends on the relative orientation of the magnetizations of the two FM

layers, which is varied by external magnetic fields. The variation in tunneling current

gives rise to tunneling-MR(TMR) effect in these MTJ structures.

The TMR effect can be explained by using Julliere’s model,11 which is based

on two assumptions: 1) spin of electrons is conserved in the tunneling process, and 2)

tunneling of up-spin and down-spin electrons are two independent processes. Based on

these assumptions, spin-dependent-tunneling (SDT) – electrons originating from spin-

up(down) state of the first FM layer can only tunnel to the unfilled spin-up(down) states

of the second FM layer – occurs at FM/I/FM interface.

SDT leads to the TMR effect because there is an imbalance in the electric current

carried by spin-up and spin-down electrons tunneling at FM/I/FM interface. The origin
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Figure 1.6: Structure of typical spin valve (SV) device. The active region of a SV device com-
prise of a GMR trilayer. The free layer is magnetically soft (the magnetization is relatively very
sensitive to small fields) while the fixed/pinned layer is magnetically hard (the magnetization is
relatively insensitive to fields of moderate size). The magnetization of the fixed layer is pinned or
exchange-biased in a certain direction by a pinning layer. The pining layer is used as a reference
layer. Depending on the external magnetic fields, the magnetization of the free layer becomes
parallel or anti-parallel to the magnetization of fixed layer. In between the pinned layer and free
layer, there is a thick Cu spacer layer to prevent any magnetic coupling between the layers. There
are also Ta layers which act as a buffer (to provide a good growth surface) and a cap (to avoid
oxidization of the sample in the air). The whole sample is deposited on a piece of Si substrate
which is much thicker than the whole multilayer structure.

of this current imbalance is qualitatively explained by the fact that the electronic bands

of the FM are exchange split, i.e. DOS at the Fermi energy for the spin-up and spin-

down electrons are different. Therefore, the number of electrons that can tunnel through

the barrier and consequently the tunneling resistance are dependent on spin state of the

electrons.

Thus, if the two FM layers are magnetized parallel (antiparallel), the minor-

ity and majority spins tunnel to the minority (majority) and majority (minority) spin

states, respectively. Hence the tunneling resistance is higher in anti-parallel configu-

ration compared to parallel configuration. Referring to Fig. 1.5, TMR is defined as

TMR =
R↑↓−R↑↑
R↑↓

.
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Figure 1.7: Channel paths corresponds to each spin polarized electrons as they traversed through
the layers of a spin valve in a) parallel, and, b) antiparallel configuration. The direction of
the arrows inside the layers indicate magnetization direction of the layers. The resistance that
corresponds to the parallel configuration, RP = 2R↑ ‖ 2R↓ = 2R↑R↓/(R↑ + R↓) and the
resistance that corresponds to the antiparallel configuration, RAP = (R↑ +R↓) ‖ (R↑ +R↓) =
(R↑ +R↓)/2.

1.3.3 Spin Valve (SV)

Spin valve (SV)81, 82 is a magnetic multilayer device that functions based on GMR effect.

SV is being used as the reading head in the magnetic hard disk. Figure 1.6 shows the

structure of a typical SV device and function of various layers in the device.

Referring to Fig. 1.7, in parallel configuration, the spin-up electron passes through

the NM metal without much scattering whereas the spin-down electron is scattered.

Therefore the spin-up electrons are in a low resistance state. In the anti-parallel configu-

ration, both spins–up and down–experience scattering, giving rise to the high resistance

state. By using the simple resistor model as illustrated in Fig. 1.7(a), the resistances that

corresponds to the parallel configuration, RP and antiparallel configuration, RAP are

obtained. Note that RP = 2R↑R↓/(R↑ + R↓) is smaller than RAP = (R↑ + R↓)/2, i.e.

RP < RAP . The difference between RP and RAP leads to the MR effect.
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1.3.4 Magnetoresistive Random Access Memory(MRAM)

Magnetoresistive random access memory (MRAM)83 is a non-volatile memory device,

which stores data bits using magnetic moments instead of conventional electrical charges.

MRAM is built from a grid of MTJ “cells”. MRAM uses the magnetization configura-

tion of the MTJ cells for information storage, e.g. “0” and “1” correspond to parallel

and antiparallel configuration in the MTJ. Data is written by using magnetic hysteresis,

i.e. by changing the magnetization configuration of the MTJ cells. Data is read by using

MR effect, i.e. measuring the electrical resistance of the MTJ cell.

1.4 Motivations and Objectives

Spintronics is a newly emerging technology which is still in its infancy. As far as com-

mercialization is concerned, spintronics has just been recently introduced into data stor-

age and memory technologies. However, since its introduction, spintronics devices have

brought significant improvements in these technologies. In addition to this, spintronics

is also considered to be one of the highly promising technology for the future data stor-

age and memory applications. However, among the obstacles for the future development

of spintronics is the lack of the understanding of the spin transport physics in nanode-

vices. A detail understanding of the physics of spin transport phenomena is essential

to enhance the performance of present spintronics devices, as well as in designing new

devices for future applications.

This thesis aims to model and understand the spin transport in spintronic nanode-

vices, especially in spin valves and spin transistors. Spin transport phenomena will be

mainly studied based on the i) semi-classical spin-drift-diffusion (SDD)25, 26, 36 equation,
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and the ii) mesoscopic Green’s function (GF)84–86 formalism. The focus of our analy-

sis is to harness the physics of spin transport to improve the performance of spintronic

devices (spin valves and spin transistors), as well as to propose new designs for these

devices. The work described in the thesis aims to achieve the following three objectives:

1. To develop mathematical models for diffusive and mesoscopic transport in spin-

tronic devices. These models will be used to describe and study the spin transport

phenomena in the devices.

2. To investigate the effects of material and structural properties on spin transport.

Focus will be given to the fundamental understanding of the physics as well as

identifying any anomalous and novel effects.

3. To utilize the fundamental understanding of the physical phenomena to enhance/optimize

the performance of spintronic devices, i.e. improving spin injection and magne-

toresistance. We would also explore new methods and device designs to further

improve the device performances.

Besides this, the simulation programs that we developed to model the spin transport,

will be helpful in aiding the experimentalists to predict the device performance prior to

conducting experiments.

1.5 Outline

The outline of this thesis is as follows:

Chapter 2: We develop a mathematical model to describe the spin transport in a trilayer-

SV device using the phenomenological SDD equation. Using this model, we perform
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analytical and numerical analysis to study the effect of material and structural properties

on the MR of the SV device. We focus our analysis mainly on understanding the physics

of spin transport in the CPP SV as well as optimizing the material parameters to achieve

high MR ratio. We discover various novel/intersting effects which are further utilized to

enhance the MR ratio.

Chapter 3: We further study the optimization of MR when there are additional resis-

tive components in the trilayer-SV. In a more realistic device the electron scattering at

the interfaces between different layers give rise to additional resistive components. We

analyze the effect of such interfacial resistances (IR) on the MR of the device. We also

propose an alternative method to enhance MR, i.e. by inserting additional layers in the

SV. The effect of such layer insertion is explored in detail. In both of these cases, the

additional resistive components–1) IR and 2) additional layers–give rise to an interesting

effect, whereby each of the individual resistive components competes with each other

in dominating the spin asymmetry of the device. Our results show that this competitive

resistance effect plays a very crucial role in MR optimization. We also analyze the inter-

play between competitive resistance effect and spin-relaxation for further optimization

of the MR.

Chapter 4: After studying this competitive resistance effect, we analyze the spin trans-

port effects due to patterning the layers of SV devices. Patterning of the layers not only

effects the resistance due to areal change, but also gives rise to the current confinement

effect which further causes other phenomenon such as current crowding and spreading

resistance. Therefore, to optimize MR all these effects have to be considered. We have

also shown that by carefully utilizing these effects, and with the knowledge from previ-

ous chapters, the device performance can be further enhanced.
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Chapter 5: In all the previous chapters, we studied the electron and spin transport prop-

erties in a purely diffusive regime. In this following chapter we study electron and spin

transport across a ballistic 2DEG structure. We find that the transport properties of

the device, such as the transmission probability, the SI efficiency and the MR ratio, all

exhibit oscillatory behavior when the electron energy is varied. The basis of these os-

cillations is the resonant transport across the 2DEG. By utilizing this resonant transport

property, we further propose a SC-based gate controlled MR device that could perform

the function of a metallic SV, but with the advantage that its MR can be optimized (post-

fabrication) and its stability enhanced by controlling a gate bias voltage.

Chapter 6: Next we explain the physics of electron transport from microscopic view,

and further develop a theoretical model, based on tight-binding Green’s Function (GF)

method, to describe electron transport in mesoscopic regime.

Chapter 7: We apply this GF model to study the effect of spin transport and optimiza-

tion of SI across a magnetic-electric barrier in a spin transistor device. We proposed a

viable form of spin current transistor which passes electron through a series of magnetic-

electric barriers built into the device. The barriers assume a wavy spatial profile across

the conduction path due to the inevitable broadening of the magnetic fields. Field broad-

ening results in a monotonically increasing magnetic vector potential across the conduc-

tion channel, which increases spin polarization. We have identified that the important

factors for generating high spin polarization and conductance modulation.

Chapter 8: Finally, we integrate the two main spin transport models described in this

thesis, i.e.1) the microscopic GF formalism, and 2) macroscale SDD model, and de-

velop a multiscale spin tunneling theory to study spin transport across the interfaces

of multilayer spintronics. This multiscale approach opens the possible for the detailed
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theoretical studies of interfacial properties (e.g. barrier height, barrier shape and barrier

spin asymmetry) required for achieving high spin injection via tunneling. Based on the

calculated results, the optimal interfacial properties have been identified for possible ex-

perimental verification.

Chapter 9: We conclude this thesis and suggest future works in this area.



Chapter 2
Physics of the Trilayer CPP Structure

In this chapter, we perform analytical and numerical studies of the MR of a CPP SV structure
using the phenomenological spin-drift-diffusion models. We develop a mathematical model to
compute the spin accumulation, current polarization, potential variation and MR in the SV de-
vice. Using this model, we analyze the effect of material and structural properties on the MR of
the device. We focus our analysis mainly on understanding the physics of spin transport in the
CPP SV as well as optimizing the material parameters to achieve high MR ratio. We discover var-
ious novel/intersting effects, i.e. i) the effect of spin-independent resistivity on spin-asymmetry,
ii) an anomalous MR suppression effect due to the coupling of spin relaxation with resistivity
and iii) complex interplay between spin-asymmetry, spin relaxation and the anomalous MR sup-
pression effect due to increase in the FM layer thickness. These effects are further utilized to
enhance the MR ratio.

2.1 Introduction

Giant-magnetoresistance68–70 (GMR) refers to a large fractional change in resistance in-

duced by an applied external magnetic field, which changes the magnetization orienta-

tions of the two FM layers separated by a NM spacer, from the parallel to the anti-parallel

configuration. GMR effects were first reported in the Fe/Cr,13, 14, 71 Co/Cu,87 as well as

Ag/Co72 multilayers, but later devices are based on the SV trilayer structure. For these

SV structures, experiments have demonstrated that the CPP?, 73–77 geometry achieves a

higher MR ratio compared to the CIP geometry. Due to its structural geometry, the

CPP structure also possess the engineering advantages88, 89 of achieving smaller shield-

23
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Material ρ(Ωm) α λ(nm) Material Type
NiFe 1.16× 10−7 0.4 5 FM
CoFe 1.05× 10−7 0.4 15 FM
Cu 1.68× 10−8 0 140 NM

CrO2 5.24× 10−7 0.7 10 HM
Fe2O3 1.99× 10−4 0.7 10 HM

Table 2.1: Materials and typical material parameters1–3 at room temperature. ρ, α, λ, FM, NM,
HM refers to resistivity, intrinsic conduction polarization, spin relaxation length, ferromagnet,
nonmagnet, and half-metal.

to-shield gap, which is crucial in present ultra-high density magnetic recording beyond

1 Tbit/in2. In parallel with the experimental efforts, many theoretical25, 26, 35, 36, 90–92

models, have been developed to investigate the GMR effect in both the CPP and CIP

configurations.

However, the continued increase in the areal density of magnetic recording infor-

mation storage media on magnetic platters poses a heavy demand on increasing the MR

of CPP structure. The present exchange-biased CPP sensors with the experimentally-

realized MR of around 3-4% are inadequate to meet the requirements imposed by ultra-

high density storage of several terabits per square inch.

In this chapter, we perform both analytical and numerical studies of the MR of a

CPP structure using the phenomenological spin-drift-diffusion(SDD) models. For sim-

plicity, our studies are deliberately focused only on the active MR region of a CPP SV.

This active region consists of FM-NM-FM trilayer, as shown in Fig. 2.1. We call our

device as a pseudo-SV (PSV) device. In a real SV device there are other required pas-

sive layers that contribute negatively to the overall MR e.g. the capping and the shield

layers.

First, we develop a mathematical model to compute spin accumulation, current
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Figure 2.1: Schematic illustration of a trilayer CPP spin valve which forms the active region of
a typical CPP spin valve sensor used in the recording heads.

polarization, potential variation and MR of the PSV [Sec. 2.2]. Using this model, we

further analyze the effect of material and structural properties on the MR of the device

[Sec. 2.3]. In our analysis we focus mainly on understanding the physics of spin trans-

port as well as optimizing the material parameters to achieve high MR ratio. Via our

analysis, we notice various novel effects, i.e. i) the effect of spin-independent resistiv-

ity on spin-asymmetry [Sec. 2.3.1], ii) an anomalous MR suppression effect due to the

coupling of spin relaxation with resistivity [Sec. 2.3.3] and iii) complex interplay be-

tween spin-asymmetry, spin relaxation and the anomalous MR suppression effect due

to increase in the FM layer thickness [Sec. 2.3.4]. These effects are further utilized to

enhance the MR ratio.

Unless otherwise stated, the values of material parameter used in our numerical

analysis is shown in Table 2.1.
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2.2 Theory

2.2.1 Boltzmann Spin-Drift-Diffusive (SDD) model

In this section we develop the analytical model to study the spin transport and calculate

the MR in a CPP multilayer device based on the collinear spin-drift-diffusive (SDD)

equations. The SDD method used here is based on the earlier works of van Son,25 Fert-

Valet,26 and Rashba.36

In our model, λ, α, ρ, d, β, j, and µ indicate average spin-diffusion-length (SDL)

of minority and majority spin, intrinsic conductance polarization, resistivity, layer thick-

ness, current polarization, current density, and electrochemical potential, respectively.

Arrow superscript/subscripts ↑(↓) refer to the majority (minority) spin component, and

numerical subscripts i refer to the layer index. The subscript F and N refers to FM and

NM layer, respectively.

In this model, j is kept constant while the electrochemical potential is allowed to

vary across the device. Due to spin-split property of the FM layers, j and ρ split into

their spin-dependent components given by:

j↑ = βj ; j↓ = (1− β)j, (2.1a)

ρ↑ = 2ρ/(1 + α) ; ρ↓ = 2ρ/(1− α), (2.1b)

where ρ↑||ρ↓ = ρ, j↑ + j↓ = j, β = j↑/j, and α = (ρ↑ − ρ↓)/(ρ+ρ↓). The current

density, j = I/A where I is the total current and A is the cross sectional area of the

device.

Based on Ohm’s Law, current density is related to the electrochemical potential
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gradient as follows:

∂µ↑,↓
∂x

= −eρ↑,↓j↑,↓ (2.2)

where, e is the electron charge and x is the spatial position.

The spin diffusion equation describing the relaxation of electron spin is governed

by a second-order equation:

∂2∆µ
∂x2

=
∆µ
λ2

(2.3)

where, ∆µ = µ↑ − µ↓ is the spin-split in the electrochemical potential arising from

spin accumulation. ∆µ decays in metals due to the presence of Elliot-Yafet51, 93 spin

scattering effects.

2.2.2 Spin Accumulation, ∆µ(x)

From (2.3), the general solution for the spin accumulation ∆µi(x) in each layer-i can be

written as:

∆µi(x) = Pi exp(
x

λi
) +Qi exp(− x

λi
) (2.4)

To solve for the coefficients Pi and Qi in (2.4), we need to apply the boundary relations

governing ∆µi(x) at each interface x = xi between layers i and (i+1). Assuming no in-

terfacial resistance, the first set of boundary conditions are obtained from the continuity

of spin-dependent electrochemical potential at each interfaces, x = xi, i.e.

µ(i+1)(xi)↑,↓ = µi(xi)↑,↓ (2.5)

Equation (2.5) can then be expressed in terms of, spin accumulation ∆µi(x), i.e.

∆µ(i+1)(xi) = ∆µi(xi) (2.6)

A second set of boundary conditions can be obtained by considering the spin-current

across the interfaces. From (2.2), we obtain the following relations on the left (2.7a) and
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right-side (2.7b) of the interface at x = xi:

ρi↑ji↑(x)− ρi↓ji↓(x) = − 1
e

∂∆µi(x)
∂x

∣∣∣∣
x = xi

(2.7a)

ρ(i+1)↑j(i+1)↑(x)− ρ(i+1)↓j(i+1)↓(x) = −1
e

∂∆µ(i+1)(x)
∂x

∣∣∣∣
x = xi

⇒ ρ(i+1)↑ji↑(x)− ρ(i+1)↓ji↓(x) = −1
e

∂∆µ(i+1)(x)
∂x

∣∣∣∣
x = xi

(2.7b)

In the second equality of (2.7b), we have assumed conservation of spin components of

current across the interfaces, i.e. no spin-flip scattering occurs at the interfaces, so that

ji↑,↓ = j(i+1)↑,↓. The final boundary conditions are obtained at the terminals, where the

spin-accumulation vanishes, i.e.

∆µ1(0) = 0,∆µ3(x3) = 0 (2.8)

Solving (2.6), (2.7) and (2.8) simultaneously yields the values for the coefficients Pi and

Qi of (2.4), and spin polarization of current β(xi) at the interfaces. Then, from (2.4), the

spatial variation of spin-accumulation, ∆µi(x) for each layer is determined. The spatial

profile of ∆µ(x) under different conditions are illustrated in Fig. 2.2.
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Figure 2.2: Spatial variation of ∆µ. Thin (thick) lines represent parallel (anti-parallel) config-
uration. Solid (dashed) line shows the spatial variation of ∆µ when the spin relaxation effect is
negligible, i.e. λ→∞(spin relaxation effect is significant, i.e. λ→layer thickness).

2.2.3 Spin-dependent Current Density, j↑,↓(x)

To obtain the spatial profile of the j↑,↓(x), we first consider (2.7), at a general x. The

spatial variation of β is then given by

j [ρi↑βi (x)− ρi↓ (1− βi (x))] = −1

e

∂∆µi(x)

∂x

⇒ βi(x) =
1

2
+
αi
2

+
1− αi
4λiρi

[
Qi exp

(
− x
λi

)
− Pi exp

(
x

λi

)]
. (2.9)

From (2.9) and (2.1a), the spatial variation of the ji↑,↓(x) can be obtained. The spatial

variation of current polarization, j↑(x)−j↓(x)

j↑(x)+j↓(x)
= 2β(x)− 1 is illustrated in Fig. 2.3.

2.2.4 Electrochemical Potential, µ(x)

Note that (2.4) allows us to obtain the spin accumulation ∆µ(x) but not the individual

spin-up and spin-down electrochemical potentials µ↑,↓. To obtain µ↑,↓, we integrate

(2.2), i.e.

µi↑,↓(x) = −e
∫
ji↑,↓(x)ρi↑,↓dx (2.10)
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Figure 2.3: Spatial variation of current polarization, 2β−1. Thin (thick) line represents parallel
(anti-parallel) configuration. Solid (dashed) line shows the spatial variation of current polariza-
tion when the spin relaxation effect is negligible, i.e. λ→∞(spin relaxation effect is significant,
i.e. λ→layer thickness)).

and substitute the values of ji↑,↓(x) which have been determined earlier. The constants

of integration in (2.10) are determined by applying the terminal boundary conditions of

µ3(x3)↑ = 0 and µ3(x3)↓ = 0. The general expression for spin-dependent electrochem-

ical potential is obtained as:

µ↑,↓ = µ0 + δµ↑,↓ ≡M +Nx+R↑,↓ exp
(x
λ

)
+ S↑,↓ exp

(
−x
λ

)
, (2.11)

The spatial profile of this potential is a result of electric field distribution across the

device. However, the respective electrochemical potential for each spin channel devi-

ates from the electrostatic potential due to spin accumulation. This deviation constitutes

the non-linear part of the electrochemical potential. The spin-independent/ electrostatic/

ohmic/ linear part of the potential is given by µ0 = M + Nx and the spin-dependent

potential/non-linear part is given by δµ↑,↓ = R↑,↓ exp (x/λ) + S↑,↓ exp (−x/λ). Fig-

ure 2.4 illustrates the spatial variation of µ↑,↓ and µ0.
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Figure 2.4: Spatial variation of electrochemical potential. Thin (thick) line represents parallel
(anti-parallel) configuration. Infinite λ is used. For finite λ, µ↑,↓ varies exponentially, while µ0

remains linear.

2.2.5 Magnetoresistance, MR

In the anti-parallel (AP) configuration, the magnetization orientation of the free FM

layer (layer-3) switches to the opposite direction compared to that of the fixed layer

(layer-1). Therefore, the spin-up electrons will experience the minority spin-resistivity,

ρ↓ in the free layers. Thus, the resistivities experienced by spin-up and spin-down elec-

trons in the free layers in AP configurations are given by ρAP
i(↑,↓) = ρi(↓,↑). The MR ratio

of the device is defined by

MR =
RAP −RP

RAP
(2.12)

where RAP and RP refers to the overall resistance in the anti-parallel(AP) and paral-

lel(P) configurations, respectively. In our analysis, we have i) considered a constant-

current model, i.e. j is constant; ii) assumed zero spin-accumulation at both terminals

[∆µ1(0) = 0,∆µ3(x3) = 0], and iii) set the potential to be ground at µ3(x3)↑,↓ = 0.

Following these assumptions, we have the relation R ∝ µ1(↑,↓) (0). Hence the MR can

be expressed as

MR =
µAP

1↑ (0)− µP
1↑(0)

µAP
1↑ (0)

(2.13)
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From the above derivation, the analytical expression of MR for the device in Fig. 2.1 is

obtained as follows:

MR =
α2

F

(
ρN
ρF

)2
λ2
FλN sinh2

(
dF
λF

)
(
ρN
ρF
λF cosh

(
dN

2λN

)
sinh

(
dF
λF

)
− (1− α2

F )λN cosh
(
dF
λF

)
sinh

(
dN

2λN

))
×

(1− α2
F ) cosh

(
dF
λF

)
cosh

(
dN

2λN

)(
dN
2 λN + dFλN

ρN
ρF

)
+

ρN
ρF
λF sinh

(
dF
λF

)(
α2
FλN cosh

(
dN

2λN

)
+ dN

2 sinh
(
dN

2λN

))
+

dF

(
ρN
ρF

)2
λF sinh

(
dF
λF

)
sinh

(
dN

2λN

)



(2.14)

When spin relaxation effect is neglected, i.e λF,N →∞, (2.14) can be simplified to

MR =

(
2αF

2 + RN
RF

(1− α2
F )

)2

(2.15)

where the areal resistance, RN,F = ρN,FdN,F . This expression is identical to the MR

expression obtained by simple two-channel model.

2.3 Influence of Device Parameters on MR

The most straightforward method to enhance the MR is by optimizing the spin transport

parameters of the PSV. Therefore, detailed understanding of the fundamental physics as

well as the influence of each parameter on MR is essential. In this section we analyze

the effect of: i) resistivity (ρ), ii) intrinsic conduction polarization (α), iii) spin-diffusion

length (λ) and iV) thickness of each layers (d) on the MR of the PSV device in Fig. 2.1.

After analyzing the effects of these parameters, we further study the optimization of

these parameters to enhance the MR. Unless otherwise stated, we use Cu and CoFe for

NM and FM layer(s), respectively.

It is worth mentioning that our results show generally higher MR values than the

experimentally measured MR values of the CPP SV. This is because, for simplicity,
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Figure 2.5: (a) MR variation with increasing FM resistivity. (b) MR variation with increasing
NM resistivity. Thick (thin) lines indicate the MR when the spin diffusion length, λ is finite
(infinite). The circled region, labeled “A” indicates the anomalous MR suppression effect due to
spin relaxation.

our studies are deliberately focused on only the active MR region of a CPP SV. In a

real device there are other required non-magnetic layers that contribute negatively to

the overall MR e.g. the capping and the shield layers, which are not included in our

model. In addition to this, in practical devices, the thin film material quality as well as

the interfacial effects could also have an adverse effect on the MR.

2.3.1 Effects of Resistivity on MR optimization

To analyze the effect of layer resistivities, we study the MR in the absence of spin

relaxation effect, i.e. λ → ∞. Solid lines in Fig. 2.5(a) and (b) show the MR variation

when λ → ∞. The expression for MR at this limit is given by (2.15). Fig. 2.5(a)

shows an increasing MR of the device with increasing resistivity of the FM layer, ρF .

Fig. 2.5(b) shows an increasing MR of the device with decreasing resistivity of of the

NM layer, ρN . As ρF → ∞ or ρN → 0, MR approaches a maximum asymptotic value

of α2
F .
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These results can be explained as follows: Note that FM layer is spin-asymmetric

(αF 6= 0), and NM layer is spin-symmetric (αN = 0). Spin-asymmetry refers to the de-

gree of spin-dependent electron scattering. High α value indicates high spin-asymmetry

of a layer. Overall high spin-asymmetry of a device will cause a large imbalance be-

tween the spin-down and spin-up electron population and hence results in high current

polarization, β and high MR ratio.

Because FM layer is spin-asymmetric (αF 6= 0), increasing the resistivity of FM

layer increases the average spin asymmetry of the entire structure. Since MR is caused

by the asymmetry in spin transport, the increase in FM resistivity increases the MR ratio.

Unlike FM, NM is spin-symmetric (αN = 0). Therefore increasing the resistivity of NM

layer, decreases the average spin asymmetry of the entire structure and thus reduces the

MR ratio.

These results also indicate that the resistivity of a particular layer affects the con-

tribution of the spin-scattering of that layer to the overall spin transport of the device. As

the resistivity of a layer increases, the spin scattering of that layer dominates the overall

spin transport in the device. An increase in the resistivity of the FM (NM) layers will

thus increase (decrease) the overall spin-dependence of electron scattering, and produce

the expected trend of higher (lower) MR with increasing FM (NM) resistivity.

2.3.2 Effects of Conduction Polarization on MR optimization

Increase in αF , increases the spin-asymmetry of FM layer, and thus MR of the device is

enhanced as shown in figures 2.5(a) and (b). Therefore, in general, high spin-asymmetric

materials such as half-metals (HM) are desirable to enhance MR.
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2.3.3 Effects of Spin Diffusion Length (SDL) on MR optimization

The effects of spin relaxation are shown by the thin lines in the figures 2.5(a) and (b). Decrease
in λ, i.e. increase in spin relaxation, causes two effects: 1) reduction in overall MR, and 2) an
anomalous suppress of MR for high (low) FM (NM) resistivity. High spin relaxation reduces
spin polarization and thus decreases the spin-asymmetry of the PSV. Therefore we obtain the
overall reduction in MR [effect-1]. The physics of anomalous MR suppression [effect-2] is
much complicated and it is studied in detail in this section. We represent the spin-dependent
transport across a SV structure as described by the SDD theory by an effective two-channel
model, in which the spin relaxation effects are globally absorbed into the two effective branch
resistances. We found that i) the overall MR is much more sensitive to the spin relaxation effect
in the NM layer, compared to that in the FM layers, and that ii) the effective SDL, λE in the NM
layer is intrinsically linked to the resistivity of the NM and FM layers by λE = λN (ρN/ρF )1/2.
The analytical coupling between spin relaxation and resistivity explains the anomalous high-
resistance suppression of MR when the resistivity ratio η exceeds a certain critical value ηC .

The two-channel (TC) model provides a global model of spin transport in SVs,

that has successfully reproduced many experimentally observed trends. However, the

TC model is valid only in the limit of infinitely long SDL, i.e. λ → ∞. In the pres-

ence of finite λ, the constraint becomes more complicated than simply specifying the

resistance ratio of each spin branch. Given the usefulness of the TC model, there have

been previous attempts94, 95 to retain its basic framework of separate spin branches, while

making modifications to account for the finite λ value. These take the form of introduc-

ing finite spin-flip resistances that connect the two spin branches. The disadvantage of

this approach is that i) the interconnections reduce the globally diffused nature of spin

relaxation to localized spatial positions, and ii) it complicates the TC model and lessens

its usefulness as an analytical tool. We have developed an effective TC model that does

not require spin-flip resistances interconnecting the two spin branches to represent spin

transport, necessarily avoiding the problems associated with artificially localizing the

spin relaxation process.

We applied the SDD method as outlined in Sec. 2.2 to obtain the resistances RP

and RAP, respectively, for the P and AP configurations, in the case of finite λ. How-
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ever, the exact expressions are complex and not useful in elucidating the effect of spin

relaxation on MR, and the relationship between λ and resistivity ρ. Instead, we take

the Taylor expansion in the limit of small λ. This limit is applicable for practical SV

devices, since the SV multilayer thicknesses are, in general, significantly smaller than λ

of the FM or NM layers. We found that the approximate RP and RAP can be mapped

to an equivalent TC circuit model, thus yielding the effective resistances experienced by

the majority and minority spin electrons, in the case of a finite λ.

Unlike previous models,94, 95 our effective TC model incorporates the distributed

effect of spin relaxation across all layers of the PSV as a global influence on the MR of

the SV device. In addition, the model is particularly useful for explaining several physi-

cal phenomena, e.g. why the overall MR is more strongly influenced by spin relaxation

in the NM as opposed to that in the FM layers, and the change in the effective SDL, λE

as a function of the resistivity ratio (η = ρN/ρF ) of the NM and FM layers.

We found that the latter underlies the anomalous suppression of MR96, 97[refer

Fig. 2.5], when the resistivity of the FM layer exceeds a certain critical value. This

effect clearly diverges from the conventional TC model, which predicts a monotonic

increase of MR with FM resistivity, to an asymptotic limit. There have been previous

works, e.g. by Fert et al.,26, 37 which investigated the MR behavior in CPP multilayers

in the presence of λ. However, to our knowledge, none has specifically addressed the

underlying reason for the anomalous MR trend.
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2.3.3.1 Results and Discussion

Applying the SDD derivations in Sec. 2.2 we obtain the expression for RP = µP/j and

RAP = µAP/j as follows:

RP = ρF


η(dN + 2dF η)λF cosh

(
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2λN

)
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(
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F )(dN + 2dF η) cosh
(
dF
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)
+2α2

FλNλF η sinh
(
dF
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)
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(
dN

2λN

)


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RAP = ρF
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(
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sinh

(
dN
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where η = ρF/ρN . Note that the expression for MR= (RAP − RP )/RAP [(2.14)]

is a function of the resistivity ratio η, instead of the individual ρF or ρN values, which

indicates experimental facts that MR of a SV is related to the ratio of the resistive change

to the total resistance.

In order to elucidate the effect of finite λF and λN , we first consider the limiting

case of small spin relaxation i.e. (dF/λF ) << 1 and (dN/λN) << 1. This limit is

usually approached in a practical SV device, due to the small layer thickness of typically

a few nanometers. In this limit,RP andRAP in (2.16) and (2.17) can be approximated by

taking the first-order Taylor’s expansion of the hyperbolic function terms, which yields

RP =
d2
N (1− α2

F
) + 4dNdF η + 4d2

F
η2

dNη(1− α2
F

) + 2dF η2
ρF (2.18a)

RAP =
d2

N
dF η + 2dNd2

F
η2 + 4dF ηλ2

N + 2dNλ2
N (1− α2

F )
2λ2

Nη(1− α2
F ) + dNdF η2

ρF (2.18b)
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Interestingly, in the first-order expansion, RP and RAP and hence MR are independent

of λF . This means that spin relaxation within the NM layer has a much more signifi-

cant effect on the MR compared to that in the FM layers. Additionally, the first-order

approximation of RP is also independent of λN , while RAP approaches the two-current

limit ofRAP =
dN (1−α2

F )+2dF η

η(1−α2
F )

ρF in the limit of vanishing spin relaxation, i.e. λN →∞.

These are important results that will be used later to explain the numerically observed

MR behavior. To map RAP to an equivalent TC model, we reexpressed (2.18b) as a

linear combination of RN , RF ↓ and RF ↑ i.e.

RAP =
1 + g(λN )
1 + f(λN )

RF ↑ +
1

1 + f(λN )
RN↑ +

1 + g(λN )
1 + f(λN )

RF ↓ (2.19)

where RF↑(↓) = dFρF↑(↑) and RN ↑ = dNρN ↑ = 2dNρN are the discrete resistances

in the TC circuit, corresponding to the majority(minority) FM, and NM layer resis-

tances, respectively. The coefficients f(λN) and g(λN) in (2.19) are respectively given

by f(λN) = dNdF

2(λN/
√
η)

2
(1−α2

F )
and g(λN) =

d2N
4λ2

N
+

d2N

2(λN/
√
η)

2 . From (2.19), we can con-

struct a TC circuit in the presence of λF , as represented schematically in Fig. 2.6, where

the resistance seen by the spin-up and down currents are RAP
↑ = RAP

↓ = 2RAP .
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Figure 2.6: Schematic illustration of the spin up and down current in a SV trilayer with anti-
parallel magnetization alignment in the ferromagnetic layers.

In this way, we have transformed the complicated system obtained with SDD
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theory to a simple TC circuit with the global effect of λ absorbed into the effective

branch resistances. Our method avoids the need to localize the effect of spin relaxation

at some arbitrary points, e.g. at the boundary between the FM and NM layers, as was

done previously.94, 95 By examining the forms of f(λN) and g(λN) and (2.19), we can

deduce that an increase in η = ρF/ρN will increase the relative contribution of the

NM layer resistance compared to that of the FM layer, and suppresses the overall MR.

Furthermore in the case of large η (due to small ρN ), both f(λN) and g(λN) become

effectively a function of λE =
(
λN
/√

η
)
. We can thus regard λE as the effective spin

relaxation length, which is dependent on the FM and NM resisitivity. Thus, for the case

of a finite λN , an increase in the FM resistivity (i.e. increase in η) will lead to two

competing effects: i) an increase in the spin-dependence of bulk scattering in the FM

layers, and hence a positive impact on MR, and ii) an amplification of the effect of spin

relaxation within the NM layer, which tends to moderate the increase of MR due to (i).

It is effect (ii) which leads to the numerically observed anomalous suppression of MR

at high FM layer resistivity values.

We will now utilize the earlier analysis leading up to the model, to clarify certain

MR trends obtained from the full SDD theory. We first calculate the MR values as

a function of ρN , for different values of ρF in Fig. 2.7. All the MR curves show the

anomalous behavior, in which the MR ratio reaches a maximum at some critical NM

resistivity ρN . Beyond this critical value, the MR ratio begins to decrease and diverge

from the saturation MR value (as represented by the thin line), as predicted by the TC

limit i.e. for infinitely long λF and λN . Note that the MR curves corresponding to

different ρF values have the same profile, and are merely translated along the x- axis.

This agrees with the MR expression [refer (2.16) and (2.17)], in which the MR ratio
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Figure 2.7: MR vs. ρN for different ρF . Thin (Thick) line shows the results without(with)
spin relaxation effect. ”X” indicates the point where anomalous effect begins, i.e. ρF /ρN ≈ η.
Dotted arrows indicate the region which shows anomalous behavior. αF = 0.4, λF = λN =
200nm.

is dependent only on the resistivity ratio η. Thus, at the points marked as “X”, which

coincide with the onset of the MR decrease, the critical resistivity ratio, ηC ≈ 30 is

found to be constant for all the MR curves.

The critical resistivity ratio ηC is a crucial quantity for studying the performance

of SV devices, since it corresponds to the maximum MR ratio. Hence, we investigate

the dependence of ηC on the spin diffusion lengths λF and λN . Figure 2.8 plots the

calculated MR curves based on the full SDD equations, and shows the change in ηC as

λF and λN are varied. We first vary λF while keeping λN fixed at some large value

(104nm). For small λF (λF is comparable or smaller than dF ), the MR value is small

because spin relaxation within the FM layers reduces the spin polarization of current.

When λF is increased, the MR ratio increases and eventually saturates when λF >

20nm. At these λF values, (dF/λF ) ≈ 0.2, so that the first-order Taylor expansion

[used in deriving (2.18a) and (2.18b)] become reasonably accurate. The MR saturation

at the relatively low value of λF confirms our earlier finding that the MR is to a first-

order approximation, independent of λF . A further indication of the relative insensitivity
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Figure 2.8: MR vs. η obtained with the full SDD equations for different λ. “X” indicates the
point where anomalous effect begins, ρF /ρN ≈ η. αF = 0.4. Inset: MR vs. log η obtained with
the effective model for different λ.

of MR to λF is shown by the fact that ηC does not significantly vary with an increase of

λF .

Next, we analyze the effect of λN on the ηC and the maximum MR ratio. We

fix λF to be infinitely large, and increase λN from 10 to 104nm. Similar to the case

of λF , we find that an increase in λN will improve the maximum MR ratio due to the

reduction in spin relaxation. In addition, the maximum MR value saturates at large

λN � dN . However, there are two differences in the MR dependence on λN compared

to its dependence on λF : i) The maximum MR reaches saturation at a much higher

value of λN i.e. in excess of 100nm, whereas saturation of MR has already occurred

for λF = 20nm; ii) In addition, the critical value of ηC at which the MR starts to

decrease is shifted to progressively higher values as λN is increased, but is insensitive

to an increase in λF . These two differences thus affirm our earlier analysis that spin

relaxation within the NM layer has a much stronger influence on the overall MR. From

practical standpoint, this is a significant result, since it suggest that the effort to enhance

MR via improvement to material quality should be focused on the NM spacer, instead
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of FM layers.

We also observe from Fig. 2.8 that the anomalous decrease in MR at high FM

resistivity (i.e. at high η) occurs for all finite values of λN . Furthermore, the decrease in

MR disappears only when λN →∞, regardless of the value of λF . This shows that it is

the spin relaxation within the NM layer, which is responsible for the anomalous decrease

in MR in a SV trilayer. This behavior can be explained analytically by examining (2.18a)

and (2.18b) , under three scenarios: i) In the absence of any spin relaxation i.e. λN,F →

∞, the MR saturates at α2
F (= 16%) when η →∞. ii) In the case of finite λN value, i.e.

with spin relaxation in the NM layer, the MR falls to zero when η →∞. This decrease

occurs regardless of the λF value, i.e. even at infinite λF . iii) When spin relaxation

is eliminated from the NM layer, i.e. infinite λN , it can be shown that the anomalous

behavior vanishes, i.e. the MR no longer decreases to zero when η →∞. Instead, from

the SDD theory, the MR can be shown to converge to an asymptotic value of

MR =
(e2dF /λF − 1)αFλ

2
F

(e2dF /λF − 1)αFλ2
F − dF (α2

F
− 1)(e2dF /λF + 1)

≈ α2
F −

1

3
α2
F

(
1− α2

F

)(dF
λF

)2

+ O
(
dF
λF

)4
λF→∞→ α2

F , (2.20)

where the approximation is valid for thin layer thickness (dF/λF ) � 1, which is the

limiting case assumed in deriving (2.18a) and (2.18b).

Note that the λF dependence of the asymptotic MR value of (2.20) is only of

the second-order, which agrees with our previous analysis. It’s worth noting here that

we have used the theoretical analysis that led to the construction of the effective model

to explain the underlying physics of the full numerical results of Fig. 2.7 and Fig. 2.8

which give important information to SV device experimentalists. Last, to confirm that
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the effective model approximates the full SDD model, we repeated the numerical studies

of Fig. 2.8 using the effective model. Results (inset of Fig. 2.8) show close approxima-

tion to that of Fig. 2.7, thus confirming that the simplified effective model has indeed

provided the necessary decompositions to accurately explain the many MR behaviors,

including its suppression at high resistance.

2.3.3.2 Conclusion

We have developed an effective TC model that does not require spin-flip resistances

interconnecting the two spin branches to represent spin transport, necessarily avoiding

the problems associated with artificially localizing the spin relaxation process. With

this model, we deduced that an increase in the FM resistivity leads to a positive effect

on MR. However, this trend is counter-acted by the corresponding amplification of spin

relaxation within the NM layer, which depresses MR. The competition between these

two effects underlies the anomalous suppression of MR at high FM layer resistivity

values. A numerical simulation based on the SDD reveals that the decrease in MR

disappears only when λN → ∞, regardless of the value of λF . This is in agreement

with our effective TC model, which shows that i) the branch resistances and hence MR

are dependent (to the first order) on spin relaxation only within the NM layer, and that

ii) the effective spin relaxation varies as λE ∝ η−1/2. In general, the TC model predicts

that MR is much more sensitive to λN compared to λF . This analytical prediction is

further supported by numerical calculations based on the full SDD model which show

that MR saturates at a relatively low value of λF , and that the critical ηC corresponding

to maximum MR does not vary significantly with λF . From a practical standpoint, these

results suggest that efforts to enhance MR via improvement to material quality should
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be focused on the NM spacer for small spin diffusion length.

2.3.4 Layer Thickness

Next, in this section we perform a theoretical study and analysis on the effect of modifying the
layer thicknesses of a PSV on its MR ratio. An increase in the FM layer thickness results in i)
an increase in the spin dependent component of its total resistance, thereby resulting in higher
MR, but also leads to ii) greater spin relaxation in that layer, and iii) an anomalous MR effect in
the high resistance regime, both of which–(ii) and (iii)– suppress the MR ratio. The interplay of
these three effects results in a complex MR dependence on FM thickness, instead of the simple
monotonic MR increase predicted by the TC model. It also explains the existence of an optimum
FM thickness for maximum MR ratio, as evidenced by experimental data. The study of the
combined effects of the FM layer thickness and resistivity, as well as the MR suppression in the
high resistive limit is essential for optimizing the structure and material of a practical CPP SV to
achieve high MR ratio.

In this section, we investigate the effects of varying the FM layer thickness (dF )

on the MR of a CPP device for the following reasons: i) there is room for an increase

in dF even for terabit density storage, since the layer thickness is much smaller than the

lateral dimensions, and ii) there is an optimum value of dF which maximizes the MR ra-

tio, which has not been determined previously. It is well-known within the TC model26

that a larger dF increases the spin-dependent scattering of the conduction electron, and

thus increases the overall MR. However, this increase in MR with dF does not proceed

indefinitely, due to the effect of spin relaxation which is not included in the TC model.

Thus, a larger dF also increases the spatial distance over which the electron spin relaxes,

and thus results in a lower MR. It would thus be of interest to study the competition be-

tween these two effects on the overall MR behavior of a CPP sensor as the FM thickness

dF is varied. In addition, the effect of dF on MR is further complicated by the existence

of the MR suppression behaviors [refer Sec. 2.3.3], which lead to a decrease in MR with

increased FM resistance even when the amount of spin relaxation is kept constant. These

anomalous MR effects become especially significant for higher device resistance. The
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Figure 2.9: MR increases with increasing FM thickness for thickness, dF much smaller than the
λF . For thickness larger than the spin diffusion length, MR decreases due mainly to the effect
of spin relaxation in FM. For very large thickness, MR fall could have been due to both spin
relaxation as well as the anomalous MR behavior.

resultant effects of all the above mentioned factors on the CPP MR would be analyzed

theoretically in this section.

2.3.4.1 Results and Discussion

Figure 2.9 shows the change of MR with increasing FM resistance due to increasing

thickness dF . It is seen that at small FM thickness, the MR scales with increasing

dF . This is because the increased FM thickness implies a greater proportion of spin-

dependent (momentum) scattering in the overall device, and results in a higher MR.

However, at some critical thickness, the MR peaks before decreasing at larger values

of dF . The critical thickness is closely related to the spin relaxation of electrons in the

FM layer. When dF exceeds the λF , the effect of spin relaxation of electrons becomes

increasingly significant. Thus, although the increased travel length for electrons in the

FM increases spin-dependent momentum scattering which favors an MR increase, it

also increases spin relaxation due to the Yafet-Elliot51, 93 effects which favors a decrease

in MR. It can thus be summarized that when dF becomes comparable or larger than
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the λF , a competition between the above two effects occurs. To further illustrate these

competitive effects on MR, we repeated the calculations for larger λF values. Larger λF

values imply weaker spin relaxation effects in the FM layers, and thus delay the onset of

the MR decrease due to spin relaxation. An inspection of Fig. 2.9 shows that increasing

λF indeed shifts MR peaks to the right, thus lending credence that the overall MR trend

is primarily due to the competition between spin-dependent momentum scattering and

spin relaxation effects.

Since an increase in dF leads to a concomitant increase in the FM resistance, it

is thus reasonable to believe that the drop in MR is due not only to the effect of spin

relaxation, but also the anomalous MR trend at high resistance. Thus, it is useful to

separate out the contributions of these two effects in the suppression of MR. To achieve

this, we applied two means of varying the resistance of the FM layers i.e. i) by increas-

ing dF while keeping resistivity ρF of the FM material constant (as before), or ii) by

increasing ρF while keeping dF constant. We found that the two methods of varying

the resistance result in similar trends of MR but significantly different values of critical

resistance where maximum MR occurs, as shown in Fig. 2.10.

The MR suppression effect is clearly manifested in the MR variation due solely to

changing ρF , while keeping dF constant (dotted curves of Fig. 2.10). Since dF is con-

stant, the degree of spin relaxation remains the same, and we thus expect MR to increase

montonically with ρF . However, all the dotted MR curves reach a maximum before de-

creasing to zero at large ρF . Thus, one can surmise that the value corresponding to the

maximum MR marks the point where the anomalous MR suppression becomes strong

enough to offset the gain in MR due to increasing FM resistance. We also observed in
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Fig. 2.10, that the decrease of MR at high resistance RF is more rapid by solely increas-

ing the thickness dF of the FM layer, instead of solely increasing the resistivity ρF . This

is because in the former, MR is suppressed by both the anomalous MR effect and the

spin relaxation within a larger spatial volume, while in the latter, MR is suppressed by

the anomalous effect alone. The large divergence between the two indicates that spin

relaxation is a much stronger effect compared to the anomalous MR effect in suppress-

ing the MR ratio. This is consistent with previous findings [Sec. 2.3.3] which show that

the anomalous MR effect is relatively weak and becomes significant only when the FM

resistance is extremely large. We can thus infer from the results of Fig. 2.9 and Fig. 2.10

that the MR variation under the combined influence of the increase in length dF and

resistance RF of the FM layers falls under three regimes: i) at low dF (and hence low

RF , the increase in spin-dependent momentum scattering dominates and causes an MR

increase with dF ), ii) when dF exceeds the λF , the spin relaxation effect becomes more

dominant and MR peaks and starts to decrease and iii) at very large dF such that the

overall resistance is also very large, the MR decrease is more rapid, due to the combined

spin relaxation and the anomalous resistance effects.

An interesting point to note in Fig. 2.10 is that at small resistanceRF , the increase

in MR due solely to increasing dF almost coincides with that due to ρF increase alone

(i.e. matching between dotted and solid lines). This is expected because at small FM

thickness, the spin relaxation effect is negligible, and so an increase in either dF or

ρF will result in the same effect i.e. increased spin-dependent scattering. The only

exception occurs for the case of extremely short λF of 1nm. This is due to the significant

spin relaxation for the case of constant dF (dotted), since the chosen dF value of 4nm is

significantly larger than the λF .
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Figure 2.10: MR is studied by either varying dF or resistivity ρF Both quantities are labeled
in the different x-axes, as well as the corresponding resistance. The FM polarization is kept
constant at 0.4. The MR falls drastically with dF increases beyond the λF . The MR falls much
more slowly with increasing resistance due solely to increasing resistivity, clearly showing that
anomalous effect is weak and becomes significant only at very high resistance.

To investigate the effect of MR decrease due solely to the spin relaxation effect

without the anomalous resistance effects, it would be necessary to keep the total RF

constant while increasing dF . Figure 2.11 shows MR decreases with increasing dF as

resistivity ρF is decreased correspondingly to keep the areal resistance ( RF ) constant.

For all λF values, the MR is maximum at low dF where there is negligible spin relax-

ation. As expected, the MR begins to decrease when dF is comparable to λF . Comparing

the MR variation of Fig. 2.11 with the solid MR curves of Fig. 2.10, we find that the de-

crease in MR at high RF in both cases to be fairly similar. For instance, for both cases,

the MR ratio is approximately halved at dF ∼ (2λF ). This thus confirms our earlier

observation that spin relaxation is the dominant mechanism for the drop in MR ratio.

2.3.4.2 Conclusion

Based on the SDD equation, we have studied the interplay between spin-dependent bulk

scattering, spin relaxation and the anomalous MR effect on the overall MR. All these
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Figure 2.11: FM thickness is increased as resistivity is lowered accordingly to ensure that RF
is constant. Maintaining RF at a constant value eliminates the anomalous MR effect due to
increase in RF . Thus, the change of MR is due solely to the effect of increasing spatial volume
for spin relaxation.

three effects come into play when the FM layer thickness dF is varied. At small values

of dF , the MR improves with increasing dF due to greater contribution from bulk spin

scattering within the FM layer. But as dF approaches λF , spin relaxation and anomalous

MR effects become increasingly prominent and suppress the MR ratio. Our analysis

thus reveals the need for a careful optimization of the device geometry and material

parameters, in order to achieve the maximum MR ratio.

2.4 Summary

In this chapter, we developed a mathematical model to compute spin accumulation, cur-

rent polarization, potential variation and MR of a PSV device. Using this model, we

analyzed the effect of material parameters on the MR of the device . In our analysis we

focused mainly on understanding the physics of spin transport as well as optimizing the

material parameters to achieve high MR ratio. We noticed various novel effects, i.e. i)

the effect of spin-independent resistivity on spin-asymmetry, ii) an anomalous MR sup-
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pression effect due to the coupling of spin relaxation with resistivity and iii) complex

interplay between spin-asymmetry, spin relaxation and the anomalous MR suppression

effect due to increase in the FM layer thickness. These effects were further utilized to

enhance the MR ratio.



Chapter 3
Resistance Competitive Effect

In the previous chapter we studied the optimization of MR in a simple PSV structure. In this
chapter we will study the optimization of MR when there are additional resistive components
in the device. In a more realistic device the electron scattering at the interfaces between differ-
ent layers give rise to additional resistive components. In the first section of this chapter, we
analyze the effect of such interfacial resistances (IR) unto the MR of the device. In the second
section, we propose an alternative method to enhance MR, i.e. by inserting additional layers in
the PSV. The effect of such insertion is explored in detail. In both cases, the additional resistive
components–IR and additional layers–give rise to an interesting effect, whereby each of the indi-
vidual resistive components competes with each other in dominating the current polarization and
thus the spin asymmetry of the device. The interplay among the different resistive components is
termed as ”resistance competitive effect”. Our results show that this resistance competitive effect
plays a very crucial role in MR optimization. We also analyze the interplay between resistance
competitive effect and spin-relaxation for further optimization of the MR.

3.1 Effect of Interfacial Resistance

Increasing the spin anisotropic interfacial resistance in devices, and hence the spin-

dependent scattering (scattering anisotropy) is an important means of improving MR

in the CPP configurations. This is especially crucial for reduced CPP device sizes, be-

cause as Valet and Fert26 have shown, interfacial scattering contributes to the bulk of the

CPP-MR at small layer thicknesses of a few nanometers. Thus, the MR in the CPP con-

figuration can be improved by increasing the spin selectivity of interfacial resistances

(IR) in the multilayer. A highly spin selective IR also improves the SI efficiency from

51
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FM layers into NM layers, as was predicted theoretically26, 37 and shown experimen-

tally.98–100 Generally, interfacial electron scattering, whether specular or diffusive, arises

naturally in practical devices, due to the presence of e.g. potential steps, crystal defects,

and interfacial roughness between adjacent layers.101 However, in order to utilize the

IRs to improve MR and SI efficiency, we need to systematically engineer IRs with the

required properties. It has been shown both theoretically and experimentally that IRs

may be engineered as either Schottky37 or tunnel barriers,37, 102 or by the introduction of

an ultrathin insulating (nano-oxide) layer.99 For a CPP trilayer, an increase in the resis-

tivity of the FM layers generally results in greater spin-dependent scattering, and hence

higher overall MR. However in the presence of IRs, we conceptualized that increasing

the resistance of either the spin-asymmetric IR or of the FM layers does not necessarily

result in a higher overall MR. In fact, it is reasonable to conjecture that since both IR

and FM provide spin-dependent scattering, a competition effect may arise between these

two elements in their contribution to overall device MR.

To investigate this more complicated effect of IR, we perform analytical and nu-

merical studies of spin transport and the MR effect in a CPP configuration, based on

the phenomenological SDD equations [refer Sec. 2.2]. Our investigations are focused

on the effect of IR on spin transport at the boundaries between the FM and NM layers

of a basic PSV trilayer (FM-NM-FM). Our simulation results show that an increase in

MR with the magnitude of IR or FM resistivity occurs only for a certain range, which is

dependent on parameters such as the spin diffusion length, the intrinsic spin polarization

ratio of the FM and NM materials, and the spin-selectivity of the IR. Here, we present

two models to study the effect IR. In the first model IR is incorporated by considering

potential discontinuities at the interfaces. The limitation of this model is that, spin must



3.1 Effect of Interfacial Resistance 53

be conserved across the interface, i.e. no interfacial spin-flip. In the second model we

further include the effect of interfacial spin-flip by modeling the interfaces as ultra-thin

layers, in the limit of the layer thickness approaching zero.

3.1.1 Model I: Without Interfacial Spin-flip

Here, we present a theoretical analysis of the spin transport and MR of a PSV trilayer device,
taking into account the effects of IR between layers. We show that MR declines with increasing
IR (FM resistivity) when the spin polarization of the IR (FM material) is lower than a critical
value. We derive the critical spin polarization analytically, and explain these effects in terms of
the relative competition between the bulk FM and IR in providing spin-dependent scattering. We
also analyze the interplay between this resistance competitive effect and spin-relaxation in the
layers for further optimization of the MR.

3.1.1.1 Theory
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Figure 3.1: Schematic illustration of the trilayer device, consisting of the pinned and free
(switchable) FM layers separated by a NM metal spacer layer. The position of the two inter-
faces is denoted by x1 and x2. Electrochemical discontinuity at interfaces is also illustrated.

The presence of IR gives rise to a electrochemical potential discontinuity at the

multilayer boundaries as illustrated in Fig. 3.1. This discontinuity is modeled by includ-
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ing potential discontinuity in (2.6) such that

−eji↑(xi)RIi↑ = µ(i+1)↑(xi)− µi↑(xi), (3.1a)

−eji↓(xi)RIi↓ = µ(i+1)↓(xi)− µi↓(xi), (3.1b)

where RIi↑(↓) = ρIi↑(↓)dIi↑(↓) is the areal IR experienced by majority (minority) spin

electrons at interfaces between layers i and (i+ 1). To simplify our analysis, IR is taken

to be spin conserving, i.e. spin flip at the interface is neglected. We would thus like to

emphasize that the effect of IR on MR would be qualitatively different than that due to

any particular layer of finite thickness and specific SDL.

From (3.1), we can then express the boundary relation in terms of ∆µi(x), i.e.

eji↓(xi)RIi↓ − eji↑(xi)RIi↑ = ∆µ(i+1)(xi)−∆µi(xi) (3.2)

The IR at x = x2 (i.e. boundary between layer-2 and layer-3) in AP configuration is

given by RAP
I2↑,↓ = RI2↓,↑. In general the IRs are spin-selective, so that RIi↑ and RIi↓ are

different and can be expressed as follows:

RI↑(↓) =
2RI

1 + (−)γ
(3.3)

where γ = (RI↓ − RI↑)/(RI↓ + RI↑) is the spin selectivity coefficient of the IR and

RI = RI↑||RI↓ refers to the total areal IR. With the IR incorporated as described above,

and following the prescriptions of Sec. 2.2, we derive the MR expression which is used

in our studies of the interfacial resistance effects.

3.1.1.2 Result and Discussion

3.1.1.2.1 Infinite Spin-Relaxation Length We will first investigate the IR effect in

the absence of spin relaxation, i.e. in the limit of SDL approaching infinity. In this limit,
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Figure 3.2: (a) Plot of MR ratio as a function of areal resistanceRF of the FM layers, for a PSV
trilayer with interfacial resistances. The decrease in MR with increasing FM resistance occurs
when αF < αFC . For illustrative purposes, we have calculated the MR versus RF curves for
different αF values of the FM layer. (b) The thick curves show plot of MR ratio as a function
of RF of the FM layers for a PSV trilayer in the presence of finite spin relaxation in the layers
[λCoFe = 15nm, λNiFe = 5nm and λCu = 140nm]. The anomalous decrease in MR with
increasing FM resistivity occurs at high FM resistivity, regardless of whether αF is greater or
smaller than αFC . The thin curves show the corresponding results obtained in the absence of
spin relaxation i.e. λ→∞.

the spin polarization of current is constant within each layer, and the SDD model simpli-

fies to the TC model. By applying the TC model on a simple FM-NM-FM trilayer, it is

clear that an increase in the (spin-asymmetric) resistivity of the FM layers will result in a

monotonic increase in MR. However, our results show that such relationship is no longer

valid when the effects of IR at the FM-NM boundaries are taken into consideration. As

shown in Fig. 3.2(a), the MR ratio can either increase or decrease with increasing FM

resistivity, depending on the properties of the IR. For illustrative purpose, we assume

two different magnitudes of IR, i.e. RI = 0.05mΩµm2 and RI = 0.9mΩµm2, but with

the same spin selectivity of γ = 0.7.

Our numerical calculations reveal that, contrary to general expectation, the MR

ratio decreases monotonically with FM resistivity for RI = 0.05(0.9)mΩµm2 when the
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bulk spin polarization of the FM material αF is less than some critical value αFC =

0.557(0.690). The MR ratio reverts to the normal increasing trend with FM resistivity

when αF exceeds the critical value αFC , which will be derived later.

Another notable feature of Fig. 3.2(a) is that the higher the IR value is, the less sen-

sitive is the overall MR of the device to an increase in the resistanceRF of the FM layers.

For instance, in the case of RI = 0.05mΩµm2, the MR ratio undergoes a steep change

over the RF range of between 0.01 and 1mΩµm2(∆MR/∆RF ≈ 30.3mΩ−1µm−2),

whereas for the case of RI = 0.9mΩµm2, the marked change in MR occurs at a signifi-

cantly higherRF range of between 0.1 to 10mΩµm2(∆MR/∆RF ≈ 1.0−1µm−2). This

is because the greater the IR value is, the greater is the contribution of the spin-selective

scattering at the interfaces to the MR, thus rendering the device less susceptible to the

variation of areal resistance of the FM layers.

The trend of decreasing MR with increasing FM resistivity can be explained in

terms of competition between the FM layer resistance and the IRs in contributing to

the overall MR of the device. For the case of αF > αFC , the FM layers effectively

act as a stronger spin polarizer compared to the IRs. An increase in the resistivity of

the FM layers will thus enhance the overall spin-dependence of electron scattering, and

produce the expected trend of higher MR with increasing FM resistivity. Conversely,

for the case of αF < αFC , the FM layer becomes more weakly polarizing compared

to the IRs. Increasing the FM resistivity will increase the resistive contribution of the

less spin-polarizing layer, and hence depress the overall MR. This results in the trend

of decreasing MR with increasing FM resistivity. If αF = αFC , then both the FM

layers and the IRs have the same effective spin polarizing strength. Hence increasing or
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Figure 3.3: (a) Plot of MR ratio as a function of IR for a PSV trilayer with FM layers consisting
of either CoFe or NiFe alloy. The decrease in MR with increase in IR occurs when γ < γC .
For illustrative purposes, we have calculated the MR versus IR curves for different γ values of
the interfacial resistance. (b)The thick curves show plot of MR ratio as a function of interfacial
resistivity IR, for a PSV trilayer device with NiFe or CoFe as the FM layers, in the presence of
finite spin relaxation in the layers [λCoFe = 15nm, λNiFe = 5nm and λCu = 140nm]. The
decrease in MR with increasing IR occurs at high resistance, regardless of whether γ is greater
or smaller than γc. The thin curves show the corresponding results obtained in the absence of
spin relaxation.

decreasing the FM resistivity, and hence its relative contribution to the overall resistance,

will not alter the MR of the trilayer. Note that, as shall be derived later, the critical αFC

is not necessarily identical to the spin-selectivity γ of the IRs, because one must account

for the additional resistive (but not spin-scattering) contribution of the NM spacer.

In the following, we calculate the MR dependence on the magnitude RI and spin-

selectivity γ of the IRs, the results of which are plotted in Fig. 3.3(a). The MR de-

pendence on RI and spin-selectivity γ is analogous to its dependence on RF and αF

of the FM layers, as depicted by Fig. 3.2(a). Thus, below (above) a critical value of

γ, i.e. γ < (>)γC , we observe a trend of decreasing (increasing) MR with increasing

magnitude RI of the IR, and for γ = γC , the MR becomes independent of RI . When

NiFe (CoFe) is used as the FM material, the corresponding value of γC is 0.390 (0.384),
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which is close to the spin polarization αF of the FM layer (≈ 0.4). Compared to the

critical FM polarization αFC which marks the threshold for the normal trend of increas-

ing MR with FM resistivity, the corresponding critical value for IR spin selectivity γC is

much lower. This is due to the relatively low spin polarization of a typical FM material

of ∼ 0.4, compared to the spin-selectivity of IR of ∼ 0.7 , which makes it easier for

the IR layer to provide a stronger spin-scattering effect to the conduction electrons. One

practical implication of these results is that the MR of the CPP device may be enhanced

more readily by engineering an increase in the areal resistance of the IRs, rather than by

focusing on its spin-selectivity γ , which is already high and hence more difficult to be

improved further.

We have earlier qualitatively explained the origin of the trend of declining MR

with increasing FM resistivity and magnitude of IR, in terms of the competitive contri-

bution of the FM layers and the IRs to the overall spin-scattering of carriers across the

PSV trilayer. By applying the limit of λN,F →∞ , the analytical derivation of the criti-

cal thresholds αFC and γC , as well as their dependence on other transport parameters of

the device can be obtained. The expression for MR when λN,F →∞ is:

MR =

[
2RIγ(α2

F − 1) + αFRF (γ2 − 1)

2RI(α2
F − 1) + (2RF +RN − α2

FRN)(γ2 − 1)

]2

(3.4)

Based on (3.4), we investigate the effect of IR and the FM layer on the MR. First,

we derive the expression for αFC . As shown in Fig. 3.2(a), when αF < αFC , MR

shows a monotonic decreasing trend with increasing RF . Therefore, αF has to fulfill the
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following condition:

dMR

dRF

< 0⇒ αF <
2γR0

2R0 +RN(1− γ2)
≡ αFC (3.5)

Conversely, for the behavior of increasing MR with RF , αF must be larger than αFC .

The critical value of γC for the IR spin selectivity can also be derived in a similar way:

dMR

dR0

< 0⇒ γ <
2αFRF

2RF +RN(1− α2
F )
≡ γC (3.6)

By substituting the assumed transport parameter values for CoFe, NiFe and the

IR, it can readily be shown that (3.5) and (3.6) yield the same numerical values for αFC

and γC as those shown in Fig. 3.2(a) and Fig. 3.3(a).

3.1.1.2.2 Finite Spin-Relaxation Length In the previous section, we have assumed

no spin relaxation via spin-flip of electron during its transport within the trilayer. In this

section, the effect of spin-flip inside the layers (not at the interface). will be incorporated

using the theoretical framework presented in Sec. 3.1.1.1. We will show that in the limit

of bulk spin-diffusion length tending to infinity, i.e. λN,F → ∞, the calculated results

will approach those obtained via the TC model.

The MR dependence on FM resistance is investigated and the results are plotted in

Fig. 3.2(b). In the range of small to moderate FM resistance, i.e. RF ≈ 0 to 100RNiFe,

the MR dependence on RF is similar to that of the TC model of Fig. 3.2(a), i.e. MR

increases (decreases) with increasing FM resistivity when αF > αFC (αF < αFC).

These trends have been explained by the competition effect between the FM layers and

IRs. However, for very high FM areal resistance, we observe that MR decreases to zero
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with increasing FM resistance. Unlike the previous MR behaviour, this trend occurs for

all values of αF , even when αF exceeds the critical value of αFC . When αF > αFC , the

MR initially increases with RF , before saturating at a plateau value and then decreasing

gradually towards zero with a further increase in RF . For the case of αF < αFC , MR

initially decreases with RF , before saturating at a plateau and then resuming its descent

towards zero. Figure 3.3(b) shows the MR dependence on IR in the presence of spin

relaxation. The results are similar to the MR dependence on RF as shown in Fig. 3.2(b).

In this case, MR reduces monotonically to zero when γ < γc, while for γ > γc, MR

initially increases to a plateau before decreasing towards zero for very high RI . The

suppression of MR towards zero at very high FM or IR is clearly due to the presence

of spin relaxation, since it disappears in the limit of λ → ∞. The physics of MR

suppression at high resistance has been studied and explained in Sec. 2.3.3.

3.1.1.3 Conclusion

We investigated the spin transport across a CPP trilayer, with IR considered at the two

FM-NM interfaces. We first considered the case of spin transport in the limit of infinite

spin relaxation length. We found that in the presence of the IRs, the expected trend of

increasing MR with increasing FM or IR resistances occurs only when the intrinsic spin

polarization αF of the FM material or the spin-selectivity γ of the IRs exceeds some

critical value of αFC and γC , respectively. Below these critical values, the MR shows

a declining trend with increasing FM or IR, which may be attributed to the competition

between the FM and the IR resistances in determining the overall MR of the trilayer.

The critical thresholds αFC and γC are analytically derived and their dependence on

transport parameters such as resistivity of the NM spacer is determined, thus providing
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useful knowledge for optimizing the MR of PSV devices. In the presence of spin-flip

(i.e. finite spin relaxation length) in the layers, MR is suppressed at extremely high

IR/FM resistances, irrespective of the intrinsic spin polarization of the IR/FM layers.

Thus, in inserting IRs into a magnetic trilayer in order to improve its MR, one has to

consider the complex interplay between the physics of charge transport (resistivity of

the FM and NM layers) and spin transport (intrinsic polarization of the FM layers and

spin relaxation effect), which gives rise to the two aforementioned trends in MR. The

analysis of these effects could provide a useful guide to practical methods of optimizing

the MR of CPP devices, in which IR cannot be ignored.

3.1.2 Model II: Finite Interfacial Spin-flip

In the previous section, we studied the effect of electron momentum scattering at the interface,
while assuming that there is no spin scattering at the interfaces. In this section we develop a
model to include the effect of spin scattering at the interface. Here we model the interfaces as
ultra-thin layers, in the limit of the layer thickness approaching zero. Our analysis is focused on
three important interfacial parameters, i.e. interfacial resistance (RI ), interfacial spin selectivity
(γ), and interfacial spin-flip parameter (ζ). We compare the relative contribution of bulk scatter-
ing and interfacial scattering to the overall MR. We notice that when γ is greater (smaller) than
a critical value, γC , then MR increases with increasing (decreasing) RI . Larger FM resistivity
results in lower MR if γ > γC . Finally we show the effect of ζ on MR. At high(low) ζ, which
signifies spin coherence at the interface is conserved(depolarized), MR increases (decreases).
We also analyze the competition between γ and ζ in contributing towards overall MR. Our re-
sults show that the negative effect on MR due to interfacial spin flip can be minimized by using
higher RI .

3.1.2.1 Theory

In the previous model (Model I), we have neglected the effect of spin-flip at the inter-

faces. In this model, we include the interfacial spin-flip effect. This is done by modeling

the interfaces as ultra-thin layers, in the limit of the interfacial layer thickness δI ap-

proaching zero, i.e. δI → 0. This is illustrated in Fig. 3.4. “Interfacial resistiviy (ρI)”

and “interfacial spin diffusion length (λI)”, is related to the interfacial resistance (RI)
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Figure 3.4: Schematic illustration of the trilayer device in which interfaces are modeled as
ultra-thin layers

and interfacial spin flip parameter (ζ), respectively, by the following relations:

ρI → RI/δI , (3.7a)

λI → ζδI , (3.7b)

As far as interfacial parameters are concerned, the MR expression obtained in this man-

ner is only dependent onRI , ζ , and γ but independent of other boundary parameters such

as δI . Therefore this expression is suitable for ultra-thin interfaces, i.e. δI → 0. In the

numerical calculations, the bulk SDL is assumed to be much longer than the thickness

of each layer. This enables us to study the effect of spin flip in the interfacial regions

exclusively.

3.1.2.2 Result and Discussion

3.1.2.2.1 Interfacial Momentum Scattering We study the variation of MR as a

function of γ for different values of RI . The calculated results are shown in Fig. 3.5

and Fig. 3.6. The dotted lines in both figures refer to the MR curve when CoFe is re-

placed by a hypothetical FM material with resistivity five times greater than CoFe i.e.
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Figure 3.5: (a) MR as a function of γ, for different RI values, (b) Magnified region of Fig.
2(a) in the range of γ =0.38 to 0.4. The critical values γC corresponding to the different ρF are
indicated. The curved arrows denote increasing RI , which is expressed in units of Ωm2. ζ is set
to∞, i.e. no spin-flipping at the interfaces for both (a) and (b).

ρFM = 5ρCoFe, but having the same intrinsic conductance polarization.

Figure 3.5 shows the effect of γ on the MR of the device, neglecting the effect

of interfacial spin flip, i.e. ζ → ∞. As shown in the figure, the MR variation with

increasing γ is dependent on the value of RI . As indicated by the arrow in Fig. 3.5, if

γ is greater (smaller) than a critical value γC , the MR ratio increases (decreases) with

increasing RI . The derivation of γC is already shown in Sec. 3.1.1 [refer (3.6)].

It is worth noting that γC is equivalent to the effective bulk polarization of the

trilayer with perfect interface, i.e. no interfacial spin flip and no interfacial scattering.

The MR behaviour in Fig. 3.5 can be explained as follows: when RI increases, interfa-

cial scattering becomes more dominant compared to bulk scattering. Therefore, if the

interfacial spin-selectivity is larger than the effective bulk spin polarization, i.e. γC , then

the overall MR will increase with increasing RI . Likewise, a larger FM resistivity can

actually result in a lower MR if γ > γC , which is contrary to general expectation. This
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Figure 3.6: MR versus spin-flip parameter ζ for different RI values, expressed in Ωm2. Curved
arrows denote increasing RI . Spin selectivity γ is fixed at 0.5.

can be seen by comparing the solid and dotted lines of Fig. 3.5.

It can also be noted that for the smaller value of RI considered, i.e. RI = 10−10

Ωm2, the MR ratio is a constant value, independent of the value of γ. On the other hand

when RI is very large i.e. RI =1 Ωm2, then MR ratio is independent of the resistivity

of the FM layer. This is because for very small (large) value of RI , the bulk (interfacial)

spin scattering is the predominant mechanism, such that the other contribution has prac-

tically no effect on MR. Note that although the values of RI considered are relatively

higher than the typical interfacial resistances of clean FM-NM interfaces (∼ 10−15Ωm2

),101 they are comparable to experimental values after incorporation of thin nano-oxide

layers.103 Note that these effects of γ is consistent with the previous model in Sec. 3.1.1.

3.1.2.2.2 Interfacial Spin-Flip Scattering Figure 3.6 shows the effect of interfacial

spin-flip on MR. A higher ζ (i.e. smaller degree of spin flip) will cause an increase in

the MR ratio for any given value of RI . Therefore an interface which preserves spin

coherence (with a high ζ value) enables a high MR value to be attained. Conversely, a



3.1 Effect of Interfacial Resistance 65

strongly depolarizing interface will suppress MR, so that MR→ 0 as ζ → 0.

When ζ → ∞, MR achieves the maximum value corresponding to the MR ratio

when there is no interfacial spin flip, i.e. MR(ζ →∞). A careful examination of Fig. 3.6

shows when RI is high (relative to FM resistivity), MR not only achieves higher value

but also saturates at a smaller ζ value. These results suggest that the negative effect of

interfacial spin flip on MR can be reduced by engineering an interface with higher RI .

However, it should be noted that the increase in RI may result in an overall reduction of

MR if γ < γC , as we have shown in Fig. 3.6. It is therefore important for experimen-

talists to estimate the value of γC , and prepare the sample such that, γ > γC . A crude

approach to ensure that γ > γC , is to choose γ which is much greater than αF . When

this is achieved, effort should be focused on increasing RI so that MR increases sharply

with the reduction of spin flip as well as achieves higher saturation value. Reduction of

interfacial spin flip can be achieved by using clean interfaces especially with respect to

the absence of magnetic impurities or spin orbit coupling effects.

3.1.2.3 Conclusion

We develop a model to include the effect of spin scattering at the interface. Our results

show that proper engineering of the interface is an important factor to enhance the MR

of a CPP SV structure. If the interface has high spin-selectivity, i.e. γ > γC , then higher

RI is preferred. Otherwise, RI should be minimized. Interfaces with high ζ always

results in high MR. The effect of ζ on MR reduction can be minimized by increasing

RI . However, it should be noted that the increase inRI may result in an overall reduction

of MR if γ < γC . Therefore, interfaces with higher γ, i.e. γ > γC and RI is preferable

for enhancing MR as well as reducing the spin flip effect.
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Figure 3.7: Schematic illustration of the penta-layer SV, consisting of a basic spin-valve trilay-
ers with FM2 insertions within the NM layer. The four interfaces of the device are denoted by
x1, x2, x3, and x4.

3.2 Effect of Layer Insertion
In the previous sections we have incorporated the effect of IR in the PSV device. Here, we
propose an alternative method to improve he MR by inserting a thin FM layer into the NM
spacer of a basic SV tri-layer (FM1-NM-FM1), thus creating a pentalayer SV structure (FM1-
NM-FM2-NM-FM1). We investigate the effect of increasing the resistivity (ρF2) of the FM2 on
overall MR. For finite ρF2, the MR profile is dependent on the intrinsic conductance polarization
(αF 2) of FM2. It is found that MR can be doubled by inserting a FM layer with high αF 2, such
as the half-metallic Cr2O. We have numerically calculated MRmax and the corresponding ρF20

values for different αF2 values. Finally we also study the effect of spin relaxation on the MR of
the CPP SV.

3.2.1 Theory

We apply modified SDD model as described in Sec. 2.2 by increasing the number of

layers into five [Fig. 3.7] and applying the boundary conditions at each interfaces. We

study the effect of varying resistivity and conductance polarization of the FM2 layer on

the overall MR of the CPP SV. First we set the FM2 to be a free layer and performed

our calculation in the limit of SDL of all the layers approaching infinity, i.e. λ → ∞.

We analyzed the MR behavior of this device, and then utilize these behaviors to enhance

overall device MR. Following this, we studied the MR when a finite spin relaxation, λ

is taken into consideration.
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Figure 3.8: (a) Plot of MR as a function of resistivity of FM2 layer, for the penta-layer device.
Infinite SDL is assumed. MR shows a monotonic decrease with increasing ρF2 when αF2 <
α2C . When αF2 > α2C MR increases to a maximum before decreasing to zero. The maximum
is marked with a ”red” triangle. (b) Maximum MR, MRmax and corresponding value of FM2
resistivity, ρF20 for varying αF2 is shown.

3.2.2 Results and Discussion

In the limit of λ → ∞, spin flip does not occur. Under this condition, the analytical

expression of MR for the device in Fig. 3.7(a) is given by

MR =
400αF1RF1(αF1RF1(1− α2

F2) + αF2RF2(1− α2
F1))

(2RF1(1− αF2) + (1− α2
F1)(RF2 + 2RN (1− αF2))(2RF1(αF2 + 1)− (1− α2

F1)(RF2 + 2RN (1 + αF2))

(3.8)

The MR curves with increasing ρF 2 for different values of αF 2 are plotted in

Fig. 3.8(a). For highly resistive FM2 layer, i.e. ρF 2 → ∞, MR approaches zero re-

gardless of the value of αF 2. This is because at high ρF 2, the resistance of FM2 layer

becomes dominant compared to the resistance of both FM1 layers. Since FM2 is a single

free magnetic layer, the SV structure effectively becomes a single soft magnetic layer,

where RAP = RP . Therefore there is no MR effect observed in this structure. To the

other extreme, when ρF 2 is zero, MR converges to a finite value, MR0. This finite MR0

is a constant independent of the conductance polarization of FM2 layer. Substituting
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ρF 2 = 0 (or RF 2 = 0) into (3.8), we obtained the expression the basic SV tri-layer

without FM2 insertion, i.e.

MR0 =
100α2

F1R
2
F1

(RF1 +RN − α2
F1RN )2

(3.9)

This is because at zero resistivity of FM2, the contribution of FM2 to overall

MR becomes insignificant. FM1 layers become dominant and thus the pentalayer SV

reduces to a basic trilayer SV with no additional layers.

For a finite ρF 2, MR profile is more complicated and is strongly dependent on the

values of αF 2, due to resistance competitive effect. As shown in Fig. 3.8(a), there is a

critical value for the conductance polarization of FM2 layer i.e. α2C , below which MR

show a monotonic decreasing trend with increasing FM2 resistivity. When αF 2 > α2C ,

then MR increases to a maximum of MRmax, before decreasing to zero at large FM2

resistivity. These results show that insertion of new FM layer can only be effective in

enhancing MR if conductance polarization of that layer is greater than α2C .

The analytical expression of α2C can be derived from (3.8) and (3.9), by equating

MR to MR0. Two values of FM2 resistivities, ρF 2a = 0 and ρF 2b are obtained. MR

is higher than MR0 within the range of ρF 2a < ρF 2 < ρF 2b. Therefore to ensure

MR>MR0, ρF 2b has to be greater than ρF 2a = 0. Thus the critical value, α2C is derived

by setting ρF 2b = ρF 2a = 0.

α2C =
αF1ρF1dF1

ρF1dF1 + ρNdN (1− α2
F1)

(3.10)

By solving dMR(ρF 2)/dρF 2 = 0, MRmax and the corresponding FM2 resistivity,

ρF20 can be obtained. We have verified that the expression of α2C is the same as the ef-

fective conductance polarization of the structure without FM2 insertion. This shows that

an increasing trend of MR can only be obtained when the conductance polarization of
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Figure 3.9: Plot of MR as a function of resistivity of FM2 layer for the SV penta-layer device
with finite λF . MR value is lower when the when λF is shorter.

the FM2 layer exceeds the effective polarization of all other layers combined. Otherwise

increasing ρF 2 results in decreasing MR. It is important to note that α2C is smaller than

αF 1. To relate our theoretical prediction to practical need, we numerically calculated

MRmax and ρF20 values, for different αF2 values. As shown in the Fig. 3.8(b), the range

of ρF20 and αF2 can be readily achieved in halfmetallic FM materials, e.g. CrO2 and

Heusler alloys. It is found that MR can be doubled by inserting a FM layer with high

intrinsic conductance polarization, such as half-metallic Cr2O.

Next based on the same SDD approach, we will consider the effects of spin relax-

ation. Fig. 3.9 shows the MR behavior of the SV penta-layer with finite λF . The sim-

ulation results shows similar trend as in Fig. 3.8(a), with suppression of MR at higher

λF . This is because finite λF causes spin relaxation which reduces the polarization

throughout the SV.

In the above computation we assumed FM2 has a free magnetization (M) that

rotates together with the M of the free layer, which implies it has a low coercivity.
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This greatly limit the scope of material selection for FM2. Alternatively for the SV

pentalayer, FM2 can be a fixed layer. Repeating the above derivation by fixing the M

for the FM2, we obtained the same MR results as in Fig. 3.8 and Fig. 3.9. These results

show that the magnetic switching property of the FM2 material would not affect the MR

behavior of our proposed SV penta-layer.

3.2.2.1 Conclusion

We have inserted FM2 layer in between the NM layer. We investigated the effect of ρF2

on the overall MR. We found that MR can be doubled by inserting a FM layer with high

conductance polarization, such as half-metallic Cr2O. We have also shown that spin

relaxation reduces the MR of the SV device.

3.3 Summary

In this chapter, we studied the optimization of MR by including additional resistive

components–1) IR and 2) additional layers–into a basic PSV device. In both cases,

we found that there is a competition between all the individual resistive components

in dominating the current polarization and thus the spin asymmetry of the device. Our

results show that this resistance competitive effect plays a very crucial role in MR opti-

mization. Due to this effect, an increase in the resistance of a layer/interface results in

higher MR only if the conduction spin polarization of the layer/interface is greater than

a critical value. We also analyzed the interplay between resistance competitive effect

and spin-relaxation for further optimization of the MR.



Chapter 4
Current Confinement Effects

In the previous chapter, we studied the effects of additional resistive components in a SV device.
In this chapter, we continue to study the effect of patterning/engineering the layers in a SV de-
vice. Patterning of layers not only effects the resistance due to areal change, but also gives rise to
the current confinement effect which further causes other phenomenon such as current crowding
and spreading resistance. Therefore, to optimize MR all these effects have to be considered.
We have also shown that by carefully utilizing these effects, device performance can be highly
enhanced.

4.1 Effect of Spreading Resistance on Magnetoresistance
We derive the MR that takes into consideration the effect of spreading resistance (SR) due to
the patterned layer in a SV structure. Our analysis is based on the i) SDD model and ii) finite-
element Poisson (FEP) solver. The SDD model does not take into consideration the effect of
SR due to patterning, whereas FEP includes the effect of SR. This enables us to compare and
analyze the contribution of both patterning and SR to the MR of the device. In a FM-NM-FM
structure, the NM layer was patterned into i) single and ii) multiple cylindrical structures. We
find that the spacer patterning and the resulting SR causes a significant increase (by 50%) of MR
at low area ratio of the patterned layer. Yet, MR of the patterned structure is lower compared
to the MR of the original structure. To overcome this problem, we pattern a FM layer inserted
within the NM spacer [refer Sec. 3.2]. This results in significantly higher MR.

Recently, in order to further enhance its MR ratio, and so maintain the high rate of

growth in the areal storage density of magnetic recording media towards 1 Tbit/in2 and

beyond, intense research are done to modify the basic CPP GMR SV structure. One of

the proposed modifications is a confinement of the current path either across the spacer

layer?, 89 or the FM layer.92 In this section, we analyze the effect of current confine-

71
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Figure 4.1: Schematic diagram of the spreading electric field lines between the NM spacer layer
in the middle and the adjacent FM layers of a spin valve structure. The spacer has been patterned
into (a) single patterning, and (b) multiple (5) patterning

Figure 4.2: Simulated potential drop across the (a)single patterned device, and (b) multiple (5)
patterning.

ment achieved by patterning selected layers of the CPP SV into cylindrical nanopillar

structures. Our analysis includes not only the resistive increase in the patterned layer,

but also the significant spreading resistance (SR) in the adjacent layers, due to the non-

parallel current flow into and out of the nanopillars. In order to determine the optimal

patterning, the effect of SR on the overall MR ratio is investigated for different nanopil-

lar geometry, such as cross-sectional area and packing density.
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4.1.1 Theory

The analytical SDD model [Sec. 2.2] calculates the spin transport through the trilayer

in the presence of spin relaxation. It accounts for the resistance increase due to the

patterning and the resulting current confinement in the spacer layer. However, the SDD

model does not take into consideration the effect of SR arising from the patterning. SR

effect is studied by using the finite-element-poison (FEP) method.

Next we describe the FEP method. The equilibrium current flux and potential

distribution across the device is calculated numerically by solving the Poisson equation,

using the ANSYS finite element (FE) solver. In the FE calculation, the device structure

is first discretized by tetrahedral meshing, and a unit current load is specified on every

FE node on the left boundary of the device, while the voltage is set to be zero at the right

boundary of the device [refer Appendix B].

We apply this FEP method to calculate the effect of SR arising from the patterning

of the spacer layer. The MR of the device is obtained by substituting these conductivity

values into the TC model which gives a good approximation since λ of each of the

three layers is much longer than the layer thicknesses. From the FE model, we obtain

the potential drop corresponding to the different possible spin-dependent channels of

the TC model as shown in Fig. 4.3. Hence we obtain the overall potential drop across

the trilayer for the parallel, V P = V↑↑ + V↓↓) and anti-parallel, V AP = V↓↑ + V↑↓

configurations. The MR ratio is given by MR = (V AP − V P )/V AP .
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Figure 4.3: Four different possible spin-dependent current branches in two current model rela-
tive to the trilayer structure.

4.1.2 Results and Discussion

4.1.2.1 Current Confinement

We first investigate the effect of the patterning of the spacer layer on SR in the FM

layers. Fig. 4.1 shows the calculated electric field lines and spreading flux between

the constrained current paths in the middle spacer layer and the adjacent FM layers. The

spacer layer is patterned either as a (a) single or (b) multiple nanopillar structures, which

are cylindrical in shape. As shown in Fig. 4.1, the patterning of the spacer layer leads

to current crowding near the interfaces, which in turn gives rise to SR in the FM layers,

and thus increases the overall resistance of the FM layers. Fig. 4.2 shows the potential

variation across the device. Due to SR effect we can observe potential invariance in y-

and z- direction near the interfaces.

4.1.2.2 Magnetoresistance and Spreading Resistance

4.1.2.2.1 Trilayer Structure Next we analyze the MR ratio of the trilayer for three

different cases: (i) based on the SDD model, (ii) based on the FEP model but with the

spacer layer patterned into a multi-cylindrical (5-cylinders) structure, and (iii) based on

the FEP model, with the spacer layer patterned into a single cylindrical pillar structure.

In all three cases, the total cross-sectional (conducting) area of the spacer is reduced

to the same ratio AR(< 1) compared to the non-patterned FM layers. Note that the
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Figure 4.4: (a) Solid (dashed) line shows MR (areal resistance, RA) as a function of the normal-
ized patterned area, AR for different types of patterning. (b) Spreading factor, FS as a function
of the AR. Curve (i),(ii), and (iii) represents results from, SDD model, FEP model with multiple
(5) patterning, and FEP model with single patterning, respectively.

SDD model includes only the effect of current confinement within the spacer, but not

SR. Thus MR is only dependent on the patterned area AR but not on the number of

cylindrical nanopillars. However, the results from the FEP model are dependent on the

number of nanopillars, since the effect of the spreading field lines and hence SR will

differ for single and multiple patterning. Fig. 4.4(a) shows the MR dependence on the

normalized spacer area AR for cases (i), (ii), and (iii). The difference in MR of curves

(i), (ii), and (iii) of Fig. 4.4(a) is solely due to the effect of SR. We define a parameter,

spreading factor (Fs) to characterize the SR:

Fs =
V FE − V SDD

V SDD
, (4.1)
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where V FE and V SDD are the potential difference across the patterned trilayer structure

obtained via the FEP and SDD models, respectively. The dependence of Fs on AR in

the AP configuration is plotted in Fig. 4.4(b). As the size of the patterned spacer area

(AR) reduces, the effect of SR increases, and this is reflected by a monotonic increase

of Fs with decreasing AR. The value of Fs is also dependent on the number of patterned

nanopillars. This is especially so for lowAR values, where Fs is almost twice as large for

a single nanopillar patterning compared to multiple nanopillar patterning. The difference

is mainly due to the suppression of SR due to the interference of the spreading field lines

out of adjacent nanopillars. As AR approaches one, i.e. in the limit of no patterning of

the spacer layer, Fs expectedly decreases to zero, indicating the absence of spreading

factor.

From Fig. 4.4(a), we found that the effect of the SR in the FM layers is to cause a

significant increase in the MR ratio (by more than 50%) for a highly constricted spacer

(i.e. low AR). This is especially so when the spacer is patterned as a single cylindrical

nanopillar, for which the MR is about double compared to the MR obtained from the

SDD model, which neglects SR. Yet, patterning of the spacer still results in an overall

lowering of the MR ratio, i.e. the MR ratio of the patterned structures (AR < 1) is

lower compared to that of the original trilayer without any patterning (AR = 1). This is

because patterning causes two opposing effects on the MR ratio: i) lowering of MR due

to the increase of NM layer resistance as a result of its lower cross sectional area, and ii)

increase of MR due to higher FM layer resistance as a result of SR. Thus, as shown in

Fig. 4.4(a), the first effect dominates over the second, leading to an overall decreasing

trend in MR when AR is reduced.
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Figure 4.5: Plots show MR and areal resistance, RA as a function of the normalized patterned
area, AR for a penta-layer spin valve device with patterned FM insertions. Curve (i),(ii), and (iii)
represents results from, SDD model, FEP model with multiple (5) patterning, and FEP model
with single patterning, respectively.

This runs counter to our objective of enhancing MR via patterning and current

confinement. Thus, we propose further modifications to the trilayer SV structure, to

ensure that patterning will have a net positive effect on the MR ratio.

4.1.2.2.2 Pentalayer Structure The first modification is that a thin FM layer is in-

serted within the spacer layer to create a pentalayer structure [similar to the structure

discussed in Sec. 3.2]. The MR behavior of this structure has been studied in Sec. 3.2.

The second modification is that it is the FM layer instead of the NM spacer which is pat-

terned. The thickness of the inserted FM layer is 0.5nm. Fig. 4.5 shows the calculated

MR ratio of the proposed pentalayer as a function of the normalized cross sectional area

AR of the patterned FM insertion. As before, we consider the three different cases of

SDD model with no SR, and SR with single and multiple patterning. Unlike Fig. 4.4(a),

a decrease in AR due to patterning enhances the MR ratio up to a maximum point at

AR of approximately 0.4 to 0.45 for the structure under consideration. Further pat-

terning causes the MR ratio to decrease. Thus, an optimal amount of patterning has
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to be performed to the FM insertion in order to achieve the maximum MR. Unlike the

earlier patterned trilayer structure, patterning the FM insertion into multiple cylindrical

nanopillars yields a higher MR compared to the single nanopillar patterning. To account

for this, we note that patterning of the FM insertion i) increases its resistance due to

lower cross sectional area, and ii) increases the resistance of the adjacent NM layers

due to SR. The first effect enhances the MR while the second effect reduces MR, which

is a reversal of the effects of patterning the NM spacer in the trilayer structure. Since

patterning into multiple nanopillars reduces the second effect, it therefore results in a

higher MR ratio compared to single nanopillar patterning. Thus, in order to utilize the

patterning and current-confining method for MR optimization in a practical SV device,

one can for instance apply the partial oxidation technique, which has previously been

applied to a Cu-Al alloy89 to achieve a multiple nanopillar patterning.

4.1.3 Conclusion

We derived the MR that takes into consideration the effect of SR due to the patterned

layer in a SV structure. In a FM-NM-FM structure, the NM layer was patterned into i)

single and ii) multiple cylindrical structures. We found that the spacer patterning and

the resulting SR causes a significant increase of MR at low area ratio of the patterned

layer. Yet, MR of patterned structure is lower compared to the MR of original structure.

This was overcome by patterning a FM layer inserted within the NM spacer.
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4.2 High Spin injection with nanopillar FM nanostru-

ture
In this section, we report the prediction of a high SI ratio γ into a SC contact, by using a FM,
small-sized, cylindrically patterned nanopillar as the spin injector. The increase in spin scattering
within the FM nanopillar injects spin current into the SC, effectually mitigates the blockage of
SI due to conductance mismatch. To minimize the SR which arises due to areal discontinuity at
FM-SC interface, a thin low resistance metal is inserted at the interface such that SR is contained
within it. With the insertion, we obtained γ of as high as 40%, compared to just 3% without
insertion, and an even lower value of 0.5% without the nanopillar patterning.

Semiconductor (SC) based spintronics4 allows the exploitation of spin as well as

the charge property of the electron for operation in devices. The inherently long SDL27, 28

and the manipulation of spin coherence by electrical and magnetic104, 105 means in semi-

conductors have led to potential spin-based memory, optoelectronic, and spin field-effect

transistor applications.15 A crucial element for the functioning of such devices is the

injection of spin polarized current into semiconductor.20, 33, 34 Previous efforts which

utilize a FM metal layer for direct SI into the semiconductor layer have not proved ef-

fective, mainly as a result of the large conductance mismatch35–39 between FM and SC.

Although SI through a tunnel barrier can potentially achieve a high spin injection ratio,36

the device operation is susceptible to defect and impurity states in the barrier.106

In this section, we propose the use of a FM nanopillar as a spin injector into

a semiconductor layer with a much larger cross sectional area. Additionally, a non-

magnetic metal insertion layer is required between the FM nanopillar and the semicon-

ductor layer, to act as a buffer layer to contain the high, spin-independent spreading

resistance (SR) that arises from the areal mismatch between the nanopillar and the de-

vice. Such SR effect tends to reduce SI if it is not contained within a low-resistivity

metal layer. Here we show that high SI into SC can possibly be achieved with the use
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Figure 4.6: Schematic illustration of the hybrid spin injection device. M1, SC, and FM denote
low resistive metallic conductor, semiconductor, and ferromagnetic metal, respectively. Arrow
shows current direction.

of a FM pillar injector and a Cu insertion layer. Our main discussion will be focused on

the basic working principles of our proposed spin injection device. We have neglected

interfacial effects like trap and defect states, as these do not have direct relevance to the

working principles of the device.

4.2.1 Theory

The structure under investigation is a hybrid FM-SC bilayer with a low resistance non-

magnetic metal (M1) inserted in between the FM and the SC layers, as illustrated in

Fig. 4.6. In our analysis we use NiFe, Cu, and GaAs for the FM, M1, and SC material,

respectively. The following material and transport parameters are assumed throughout

the paper: spin diffusion length, λNiFe = 10nm, λCu = 140nm, λGaAs → 10, 000nm;

intrinsic conductance polarization, αNiFe = 0.4, αCu = αGaAs = 0.0; and resistivity,

ρNiFe = 1.16× 10−7Ωm, ρCu = 1.68× 10−8Ωm, ρGaAs = 10−3Ωm. For comparison,

we first investigate the SI ratio into the SC layer in a FM-SC bilayer structure without

patterning into the pillar structure, and without the M1 buffer insertion [Fig. 4.6(a)]. We

define the SI efficiency into SC layer as:

γ =
I↑(x)− I↓(x)
I↑(x) + I↓(x)

∣∣∣∣
x = xsc

= (2β(x)− 1)|x=xsc
(4.2)
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Figure 4.7: Spin injection vs. ρS for different structures. [triangular] basic FM-SC structure,
[circle] FM injector is patterned into pillars of smaller cross sectional area, AFM = 4πnm2,
[square] an additional M1 layer inserted in between patterned FM and SC. Arrow indicates the
typical resistivity range for GaAs which can be varied by varying doping concentration. Inset (a)
shows the effect of current crowding. Inset (b) shows the non-uniform potential distribution due
to spreading resistance

By applying the SDD equations [refer Sec. 2.2], the SI efficiency can be derived as

follows:

γ =
αFλFρF

λFρF + dSρS
(
1− α2

F

)
coth (dF /λF )

. (4.3)

4.2.2 Results and Discussion

The calculated results are denoted by “triangular” curve in Fig. 4.7. For the typical

resistivity range of the SC layer (as indicated by the arrow in Fig. 4.7), SI efficiency

is extremely low, i.e. γ < 0.001%. The low γ value is expected, due to the presence

of the highly resistive nonmagnetic SC layer compared to the FM metal injector, thus

reducing the overall spin asymmetry of the device. As shown in the graph, a possible

method to improve the SI is by reducing the resistance of the SC material, and hence

the conductivity mismatch between the SC and FM metal. This can be achieved by
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increasing the doping concentration of the SC material. However, doping concentration

in excess of 1020cm−3 is technically difficult to achieve over a large layer depth.

Here we have proposed another method to increase the SI, i.e. by patterning the

FM layer into nanopillars with a small cross sectional area, as shown in Fig. 4.6(b).

After the FM injector is patterned into cylindrical pillars of cross-sectional radius r of

2nm, the resulting SI efficiency γ is plotted as “circle” curve in Fig. 4.7. Patterning

the injector into a pillar structure leads to an enhancement of γ. For instance, at a SC

resistivity of 10−5, γ is increased from 0.5% to 3% due to patterning. However, despite

the improvement in γ, its value is still low (∼ 1− 3%) at the typical SC resistivity.

To explain the relatively low γ value, we note that the large areal discontinuity

between the FM injector and the SC layer results in a current crowding [Sec. 4.1.2.1]

effect in the latter. The arrows in Fig. 4.6 show the schematic illustration of current

direction, hence the current crowding effect in the device due to patterned injector. In

Fig. 4.6(b), the current crowding effect is concentrated at the vicinity of the interface but

rapidly diminishes as we move further into the SC layer away from interfaces [refer the

insets of Fig. 4.7].

The result of the simulation is shown in the inset (a) of Fig. 4.7, where the cur-

rent direction becomes parallel as current propagates away from the interface. Current

crowding is responsible for depressing the γ value, as it results in a large SR in the SC

layer, and thus increases the effective resistance of the SC layer. Inset (b) of Fig. 4.7

shows that the electrochemical potential distribution becomes non-uniform in the SC

layer. Non-uniform potential distribution is due to the abrupt interfaces and gives rise to

SR.



4.2 High Spin injection with nanopillar FM nanostruture 83

The magnitude of the SR can be estimated by considering the analytical SR value

of ρ/4r107 which occurs in the limit of (ASC/AFM)→∞, where ASC and AFM are the

cross-sectional area of the SC and FM layers, respectively. Based on this approximation

the effective resistance of the SC layer is approximately given by:

ρSC,eff = ρsc

( √
π

4
√
AFM

ASC
dSC

+ 1
)

(4.4)

Thus, the patterning of the FM injector results in two competing effects, i.e. 1) an

increase in the resistance of the FM injector and 2) the formation of SR in the SC layer

and hence the increase in the effective resistance of the SC as shown in (4.4). The first

(second) effect increases (reduces) the overall spin asymmetry of the device which in

turn increases (decreases) the γ. From Fig. 4.7 we can see that the first effect is more

dominant and thus improvement in SI is achieved due to patterning of FM injector.

However such SI value is still too low for practical device application. Therefore, to

increase the SI value we need to reduce the effect of SR.

Since SR is directly proportional to the material resistivity, the effect of SR can

be minimized by containing the SR in a low resistivity metal (M1) rather than the high

resistivity SC layer. To this end, we insert a thin Cu layer in between FM and SC, as

illustrated in Fig. 4.6(c). The current flux that is injected from the FM injector initially

radiates in all direction in the M1 layer, but eventually becomes collinear in the perpen-

dicular to plane direction prior to entering the SC layer. Therefore, there would not be

any current crowding and hence no SR effect in the SC layer. As shown by “square”

curve in Fig. 4.7, this insertion results in a very significant increase in γ, i.e. γ increases

from 3% to 37% with the insertion of M1 layer at a typical ρSC = 10−5Ωm.

The M1 layer plays a crucial role in raising SI, thus we need to study the effect
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Figure 4.8: 3-D plot showing the variation of spin injection with ρS and dM1. Spin injection
decreases with the increase of both ρS and dM1.

of the thickness of the inserted M1 buffer layer (dM 1) and the SC resistivity (ρSC) on

SI. The calculated results are shown by the 3-D plot in Fig. 4.8. In the calculations, we

have assumed that the SR is completely contained within the M1 layer. Figure 4.8 shows

that SI decreases monotonically with both increasing SC resistivity and M1 layer thick-

ness. The M1 buffer layer is nonmagnetic, just like the SC layer, and thus increasing

its thickness dM 1 will decrease the overall spin asymmetry of the device. Additionally,

an increase in dM 1 will also result in greater spin-flip probability within the M1 layer,

which further reduces the overall SI. However, as mentioned earlier M1 plays the crucial

role of containing the SR. Therefore, in real device the M1 layer should be of the mini-

mum thickness required to contain the SR. In numerical finite-element calculation of the

current flux, we found that a small thickness of 5 − 6nm is sufficient to accommodate

the current crowding effect.
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4.2.3 Conclusion

We have presented a simple but effective method to enhance SI into SC from a FM

injector, by patterning the injector into a nanopillar, such that its cross-sectional area is

much smaller than that of the SC layer (AFM � ASC). However the areal discontinuity

at the interface gives rise to the SR effect which reduces the γ. To minimize SR effect,

we insert a thin low resistive metallic (M1) layer at the interface and thus contained

the SR within the low resistive M1 layer. By containing SR in M1 layer we manage to

obtain very high γ, i.e. γ = 40% compared to only γ = 3% (without the M1 layer)

and γ = 0.5% (without patterning of the FM injector). Our results could provide useful

guidance to experimentalists intending to use FM material to polarize as well as inject

spin current into semiconductors.

4.3 Summary

We have studied the current confinement effect which rises due to the effect of pattern-

ing the layers in a SV device. The current confinement effect further causes other phe-

nomenon such as current crowding and spreading resistance. To optimize MR all these

effects was considered. We showed that device performance can be highly enhanced by

carefully utilizing these effects.



Chapter 5
Oscillatory MR due to Resonant
Tunneling Effect

In the previous chapters, we studied the electron and spin transport properties in a purely dif-
fusive regime. In this chapter, we study electron and spin transport across a 2DEG structure,
in which ballistic transport is assumed, given the long MFP within the 2DEG. We find that the
transport properties of the device, such as the transmission probability, the SI efficiency and the
MR ratio, all exhibit oscillatory behavior when electron energy is varied. The basis of these
oscillations is the resonant transport across the 2DEG. By utilizing this resonant transport prop-
erty, we further propose a SC-based gate controlled MR device that could perform the function
of a metallic SV, but with the advantage that its MR can be optimized (post-fabrication) and its
stability enhanced by controlling a gate bias voltage.

5.1 Resonant Tunneling in Diffusive-Ballistic-Diffusive

Regime
Here, we investigate the spin polarized resonant transport in a hybrid HEMT structure, with
source and drain electrodes made of FM material, while the channel consists two-dimensional
electron gas (2DEG). The electron transport in the FM layer is modeled using SDD model, while
across the 2DEG layer, ballistic transport is assumed, given the long MFP within the 2DEG.
By solving the two transport models self-consistently, we find that the transport properties of
the device, such as the transmission probability, the SI efficiency and the MR ratio, all exhibit
oscillatory behavior when the 2DEG layer width or the 2DEG Fermi energy is varied. The
basis of these oscillations is the resonant transport across the 2DEG, which is reminiscent of
the spin-polarized resonant tunneling (SPRT), observed recently in magnetic tunnel junctions
(MTJ). The hybrid device has distinct advantages over the metal-based MTJ structures in the
practical utilization of the SPRT effect. This is because the ballistic charge conduction through
the 2DEG enables easy tunability of the MR ratio and SI efficiency, by varying the doping density
and gate bias, while avoiding the exponential suppression of MR with barrier thickness, which
occurs in MTJ devices. Numerically, the hybrid HEMT device is predicted to be capable of
achieving a maximum MR and SI ratios approaching 20% and 40%, respectively, at the crest of

86



5.1 Resonant Tunneling in Diffusive-Ballistic-Diffusive Regime 87

their respective oscillations.

Quantum effects resulting in resonant oscillatory MR behavior, have been ex-

perimentally observed and theoretically predicted in double-barrier structures based on

DMS,21 and hybrid FM-SC materials,108 respectively. Such oscillatory behavior may

potentially be utilized to manipulate and optimize the MR and SI ratios in SC-based

devices, as well as provide additional functionalities, such as spin-dependent resonant

tunneling devices in the coherent tunneling regime. The oscillatory MR behavior was

first observed in MTJ, where a thin NM metal layer is inserted in between the insulat-

ing tunnel barrier and one of the FM metal electrodes.109 The effect is ascribed to the

spin-polarized resonant tunneling (SPRT) effect involving quantum well states, and ex-

hibits TMR oscillations as the NM layer thickness is varied. Theoretically, the SPRT

effect was first modeled by a single band models,110, 111 which demonstrate a nonzero

TMR in the presence of the NM insertion, thus contradicting the classical theory of tun-

neling. Subsequently, Mathon et al.112 provided a more refined theoretical model of

SPRT by incorporating more realistic band structures. Experimentally, various studies

have been conducted to investigate the SPRT effect in metal MTJ structures.109, 113–118

However, the SPRT oscillatory effect is found to be small109, 118, 119 or virtually unob-

servable.113–117 Although, the use of double-MTJ structures120 may enhance some of the

quantum size effects, there are key obstacles to its realization in metal-based MTJs: i)

the TMR ratio decays rapidly (exponentially) with increasing thickness of the NM in-

sertion, ii) the oscillatory frequency is very high with modulation period of only ∼ 1-2

nm, given the large Fermi wave-vector in the NM metal insertion, and iii) there appears

to be only one (rather inconvenient) method to modulate the TMR modulation, i.e. by
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changing the NM thickness.109, 113, 118–120

Thus, to overcome these difficulties, we propose the utilization of a hybrid high-

electron-mobilty-transistor (HEMT) structure, with source and drain made of FM mate-

rial, as shown in Fig. 5.1 to achieve the SPRT effect. The channel of the HEMT structure

consists of a highly-doped n++ AlGaAs-GaAs 2DEG layer. Electron transport in the FM

layer is modeled using SDD model, in which the electron undergoes momentum and spin

scattering while traveling inside the FM layers. In the 2DEG layer, electron transmis-

sion is modeled as ballistic transmission, where the electron is transmitted across the

layer without any scattering. Spin polarization and momentum are preserved during this

transmission. Ballistic transmission in the 2DEG layer is achieved by ensuring that the

thickness of the layer is smaller than the MFP of electron in the layer.

The ballistic transport yields an oscillatory behavior, reminiscent of the SPRT

effect. Utilizing the SPRT effect may provide a potential method of optimizing the

MR ratio of the device, e.g. by setting the lateral dimension of the device to coincide

with one of the resonant MR peaks. The key advantages of this oscillatory MR effect

in SC as opposed to metallic MTJ devices are: i) ballistic transport can occur in the

free conduction instead of tunneling regimes, so that the transmission probability is

not exponential suppressed with the barrier width, ii) the low Fermi wavevector in the

2DEG allows for larger modulation period, and hence obviates the need for precise

optimization of the 2DEG thickness, and iii) the use of the versatile 2DEG material

allows for other avenues of MR modulation. For instance, the MR ratio can be tuned

or controlled externally either by application of a gate bias or by changing the 2DEG

doping level, thus providing an added functionality compared to the usual metallic SV
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Figure 5.1: Schematic illustration of the hybrid SC-FM device based on the HEMT. It consists
of a 2DEG conducting channel between FM source and drain electrodes.

devices.

5.1.1 Theory

5.1.1.1 Spin drift-diffusive transport in the FM electrodes

We first present the spin transport model within the FM source and drain electrodes. w

refers to the width of the 2DEG layer. The subscript and superscript ↑ (↓) represent

the majority (minority) spin component, while the subscript S (F) refers to the semi-

conductor 2DEG (FM) layer. As described in Sec. 2.2, the general solution for the spin

accumulation ∆µi(x) in the FM electrodes (i.e. layers i=1 and 3) can be expressed as:

∆µi(x) = Pi exp
(
x

λi

)
+Qi exp

(
− x
λi

)
. (5.1)
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The coefficients P1, Q1, P3 and Q3 can be solved by applying the following boundary

conditions at the FM-2DEG interfaces (x = 0 and x = w):

ej↑(0)ρ1↑ − ej↓(0)ρ1↓ = − ∂∆µ1(x)

∂x

∣∣∣∣
x=0

, (5.2)

ej↑(w)ρ3↑ − ej↓(w)ρ3↓ = − ∂∆µ3(x)

∂x

∣∣∣∣
x=w

, (5.3)

and at the terminals of the semi-infinite FM contacts (x = ±∞), where spin accumula-

tion vanishes:

∆µ1(x→ −∞) = ∆µ3(x→ +∞) = 0. (5.4)

Additionally, the continuity of the electrochemical potentials dictates that

∆µ3(w)−∆µ1(0) = −(∆U↑2 −∆U↓2 ), (5.5)

where ∆U↓,↑2 refers to the electrochemical potential drop of spin-up (down) current

across the 2DEG layer. Equation (5.2) and (5.3) are derived from (2.2) by consider-

ing the spin current at the interfaces. Due to ballistic transmission, we assume no spin

flip scattering in the 2DEG layer, and thus j↑,↓(0) = j↑,↓(w). Solving the above bound-

ary conditions i.e. (5.2) to (5.5) simultaneously, yields the following expressions for

P1, Q1, P3 and Q3, and the current polarization at the two FM-2DEG interfaces β(0)

and β(w):

P1 =
∆U↑2 −∆U↓2

2
, (5.6a)

Q3 =
ew/λF (∆U↓2 −∆U↑2 )

2
, (5.6b)

Q1 = P3 = 0, (5.6c)

β(0) = β(w) =
(1 + αF )

2

(
(1− αF )(∆U↑2 −∆U↓2 )

4ejFλFρF
+ 1

)
. (5.6d)
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Note that β(0) = β(w) due to the absence of spin flip in the 2DEG layer. From the

above results, the spatial variation of spin accumulation ∆µ in (5.1) can be determined.

Subsequently, the spatial profile of β(x) across FM layers are obtained by considering

(5.2) and (5.3) for an arbitrary position x. The solution βi(x) is then substituted into

(2.2), and after integration, the spatial dependence of the electrochemical potential for

both spins, µ↑,↓(x), is obtained within each FM layer.

To analyze the MR, we let layer-1 be the pinned FM layer with a fixed magnetiza-

tion, while layer-3 is the free FM layer, whose magnetization orientation can be switched

by an external field. The solutions in (5.6a) to (5.6d) apply for the case of P configura-

tion. We repeat the above analysis for the AP configuration, where the magnetization of

layer-3 is in opposite direction to that of layer-1. The spin-dependent resistivity of the

FM layers in the P and AP configurations ρP (AP )
F↑,↓ , are related to one another as follows:

ρF↑,↓ = ρPF↑,↓ = ρAPF↓,↑.

In computing the MR ratio, we consider the electrochemical potential drop be-

tween x = −λF and x = w+λF , i.e. a thickness of λF in each of the FM contacts. This

is because λF is the lengthscale across which the spin dependent resistance changes will

occur.35 The explicit expression for MR is given by:

MR ≡ RAP −RP

RP
=

∆µAP0 −∆µP0
∆µP0

=
αF

(
(1− α2

F )(∆U↑2 −∆U↓2 ) + 4ejFαFλFρF

)
(1− α2

F )
(

(1 + αF )∆U↑2 + (1− αF )∆U↓2 + 4ejFλFρF

) , (5.7)

whereRAP (RP ) refers to the overall resistance in the AP(P) configuration, and ∆µP,AP0 =

µP,AP0 (x = −λF )−∆µP,AP0 (x = w + λF ). µ0 is the linear (ohmic) component of elec-
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Figure 5.2: (a) Schematic diagram showing the energy barrier in the hybrid HEMT structure.
Only spin-up component is shown. (b) Schematic band-diagram of the structure showing the
origin of U2 and Um.

trochemical potential, which is the equilibrium spin-independent component of either

µ↑(x) or µ↓(x).

5.1.1.2 Ballistic transport model within the 2DEG

Next we model the electron transport in the layer-2, i.e. the 2DEG layer. We assume

the electron’s MFP to be longer than the 2DEG layer width, so that electron conduc-

tion can be described by a ballistic spin-dependent transmission model. We consider

the parabolic-band effective-mass approximation, so that (by referring to Fig. 5.2), the
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Schrödinger equation for layers-1 to 3 can respectively, be written as:

− ~2

2mF

∂2Ψ↑,↓1 (x)

∂(x)
+ U↑,↓1 Ψ↑,↓1 (x) = (EFM + δµ↑,↓1 )Ψ↑,↓1 (x), (5.8a)

− ~2

2mS

∂2Ψ↑,↓2 (x)

∂(x)
+

(
U2 −

∆U↑,↓2

w
x

)
Ψ↑,↓2 (x) = (EFM + ∆U↑,↓2 )Ψ↑,↓2 (x),(5.8b)

− ~2

2mF

∂2Ψ↑,↓3 (x)

∂(x)
+ U↑,↓3 Ψ↑,↓3 (x) = (EFM + δµ↑,↓3 )Ψ↑,↓3 (x). (5.8c)

For the FM layers, the above equations [i.e. (5.8a) and (5.8c)] are applicable only at the

interfacial regions (x = 0 and x = w), where ballistic transmission occurs between the

FM and 2DEG layers. Away from the interfaces i.e. within the bulk FM, the electron

transport is more accurately described by the SDD equations of (2.2) and (5.1). The

potential energy in the FM regions in the P configuration are given by U↑1 = 0, U↓1 =

Um, U
↑
3 = −∆U↑2 , and U↓3 = Um − ∆U↓2 , where Um is the energy difference between

majority and minority spins due to the molecular magnetic field within the FM material

(see Sec. 1.2.1.1), and ∆U
↑(↓)
2 is the potential energy drop across the 2DEG for spin up

(down) electrons, respectively.

In the AP configuration, we assume the magnetization of layer-3 is reversed. Thus,

in layer 3, the potential energy terms for the two spin orientations are interchanged, i.e.

UAP↑
3 = Um −∆U↑2 , and UAP↓

3 = −∆U↓2 . As shown in Fig. 5.2(b), U2 in (5.8b) is the

shift in potential energy so as to align the 2DEG Fermi level with the Fermi level of the

FM layers. Thus, U2 = EFM − EFS , where EFM and EFS are the equilibrium Fermi

levels of FM and 2DEG layers, respectively. mF and mS are the effective electron mass

in the FM and 2DEG layers, respectively, while δµ↑,↓1(3) represents the non-linear part

of the electrochemical potential at the left (right) FM-2DEG interface. This non-linear
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component is the deviation of the electrochemical potentials of the two spin channels

µ↑,↓ from the ohmic electrostatic potential, due to spin accumulation at the interface.

The relationship between δµ↑,↓1,3 and the spin accumulation ∆µ1,3 of (5.1) is given by

δµ↑1 + δµ↓1 = ∆µ1(0), and δµ↑3 + δµ↓3 = ∆µ3(w), respectively. Solving the above

Schrödinger equation yields the following electron wave function in each region:

Ψ↑,↓1 (x) = C↑,↓1 exp(ik↑,↓1 ) +D↑,↓1 exp(−ik↑,↓1 ), (5.9a)

Ψ↑,↓2 (x) = C↑,↓2 Ai

(EFM − U2)w + ∆U↑,↓2 x

∆U↑,↓2

(
2mS∆U↑,↓2

w~2

)1/3


+D↑,↓2 Bi

(EFM − U2)w + ∆U↑,↓2 x

∆U↑,↓2

(
2mS∆U↑,↓2

w~2

)1/3
 , (5.9b)

Ψ↑,↓3 (x) = C↑,↓3 exp(ik↑,↓3 ) +D↑,↓3 exp(−ik↑,↓3 ), (5.9c)

where the wave vector at the FM layers interfaces are

k↑,↓1,3 =

√
2
√
mFEFermi

F +mF δµ
↑,↓
1,3 −mFU

↑,↓
1,3

~
. (5.10)

The coefficients C↑,↓1,2,3 and D↑,↓1,2,3 are determined by applying flux and wave function

matching at the FM-2DEG interfaces:

ψ↑,↓1 (0) = ψ↑,↓2 (0), (5.11a)

ψ↑,↓2 (w) = ψ↑,↓3 (w), (5.11b)

1

mF

dψ↑,↓1 (x)

dx

∣∣∣∣∣
x=0

=
1

mS

dψ↑,↓2 (x)

dx

∣∣∣∣∣
x=0

, (5.11c)

1

mS

dψ↑,↓21 (x)

dx

∣∣∣∣∣
x=w

=
1

mF

dψ↑,↓3 (x)

dx

∣∣∣∣∣
x=w

, (5.11d)

D↑,↓3 = 0, (5.11e)
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Equation (5.11a) and (5.11b) are obtained by applying wave function matching at the

interfaces. Equation (5.11c) and (5.11d) are obtained by applying flux matching at the

interfaces. Since there is no reflected wave at the final FM layer (layer-3), (5.11e) de-

notes zero amplitude of the reflected wave there. By solving these equations we obtained

the ratio,
(
C↑,↓3 /C↑,↓1

)
. The ballistic transmission probability across the 2DEG layer is

then given by:

T ↑,↓ =
k↑,↓3

k↑,↓1

∣∣∣∣∣C↑,↓3

C↑,↓1

∣∣∣∣∣ . (5.12)

Assuming perfect ballistic transmission, the (areal) resistance across the 2DEG layer

can be obtained from Landauer’s formula as:

R↑,↓2 =
2π~
e2T ↑,↓

nm ×AF (5.13)

where nm is the number of transverse modes and AF is the cross-sectional area(in y-z

plane) of the device. To simplify our analysis, we restrict our analysis to one transverse

conductance mode only (nm = 1). This may be achieved in practice e.g. by constricting

the FM-SC interface to a narrow channel, so that it acts as a mode filter, which allows

only one transverse mode to pass through. We have also neglected any effects arising

from Schottky barriers at the FM-2DEG interfaces. This is because, the presence of a

Schottky barrier, although it may possibly increase the overall MR ratio,121 is an un-

desirable feature in practical GaAs/AlGaAs 2DEG heterostructures, for which ohmic

contacts are much preferred.122

5.1.1.3 Ballistic-Diffusive Self-consistent approach

To complete the transport calculations, we have to unify the ballistic and diffusive trans-

port within the 2DEG and FM layers, respectively. This is performed based on our
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earlier scheme,123 in which the link between the two transport regimes is established by

considering the spin accumulation component of the potential δµ↑,↓. The values of δµ↑,↓

at the FM-SC interfaces are determined by the SDD relations [i.e. (2.2) and (5.1). These,

in turn, contribute to the kinetic energy of electrons undergoing ballistic transmission at

the FM-2DEG interfaces, and hence affects T ↑,↓ across the 2DEG [from (5.10) and

(5.12)]. Additionally, we assume the conduction electrons are sufficiently equilibrated

after undergoing ballistic transmission across the 2DEG, so that the total potential drop

experienced by the electrons across the 2DEG is given by ∆U↑,↓2 = j↑,↓F R↑,↓2 . For sim-

plicity, we have the neglected the detailed analysis of thermobalistic current in the equi-

libration process.124 Conversely, as can be seen from (5.9a) to (5.9b), and (5.13), T ↑,↓

itself is also a function of ∆U↑,↓2 . Based on the above interdependence, a self-consistency

loop can be established between the ballistic and SDD transport calculations to solve for

T ↑,↓ and hence R↑,↓2 across the 2DEG. The self-consistency calculations are performed

until the values of R↑,↓2 have converged to better than 0.1% accuracy.

In the numerical calculations, we assume the hybrid structure to be composed

of the following materials: FM electrodes of nominally half-metallic Fe3O4, and the

SC conducting layer consisting of a highly-doped n++ AlGaAs-GaAs 2DEG. Unless

otherwise specified, the following parameter values are assumed: EFS = 3.5meV, αF =

0.7, jF = 1A/m2, ρF = 10−4Ωm, AF = 50 nm ×50 nm (in y-z plane), λF = 100 nm,

mF = 1me = 9.1 × 10−31 kg, mS = 0.067me, EFM = 11.10 eV, Um = 0.25 eV and

w = 40 nm.
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Figure 5.3: (a) Thick (Thin) line shows the MR (log10(R2)) variation with change in Fermi
energy of the 2DEG. (b) Thick (Thin) line shows the variation of the SI ratio (T ) with the 2DEG
Fermi energy.

5.1.2 Results and Discussion

Based on the self-consistency transport model described above, we investigated the spin

transport behavior in the hybrid FM-2DEG structure. We focus our analysis on the ef-

fects of varying the following parameters of the 2DEG layer: i) Fermi energy (EFS), and

ii) width (w), on transport properties such as the MR and SI ratios, 2DEG resistance R2,

and the transmission probability T . Since the transmission curves of both spin-up and

down electrons show similar oscillations with respect to EFS and w, we have therefore

considered the mean transmission probability, T = (T ↑+T ↓)/2 across the 2DEG layer.

The mean value of T is also used in calculating the MR ratio, thus indicating that the

oscillatory MR effect originates from both spin channels.

Referring to Fig. 5.3(a), we obtain a general trend of decreasing resistance of

2DEG layer as the electron energy in the Fermi level,EFS is increased. This is due to the
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Figure 5.4: (a) Thick (thin) line shows the MR (log10(R2)) variation with change in SC thick-
ness, w. (b) Thick (thin) line shows the transmission probability, SI (T ) variation with change
in SC thickness, w.

fact that electrons with higher kinetic energy can transmit across the 2DEG layer more

easily, as shown by the dotted curve in Fig. 5.3(b). However, the decrease in R2 is not

monotonic, but exhibits an oscillatory behavior with increasing EFS . This oscillatory

behavior is due to the resonant ballistic transport across the 2DEG layer of finite widthw.

It should be noted that in the ballistic transport, the electron energy is always larger than

the potential barrier height U2 within the 2DEG layer [see Fig. 5.2(a)]. At the resonant

peaks of transmission, T approaches almost perfect transmission of 100%. Noting that

R2 is inversely proportional to electron transmission probability T [see (5.13)], the curve

for R2 in Fig. 5.3(b) thus shows an inverse dependence on EFS compared to that of T .

The MR ratio exhibits an opposite trend, i.e. oscillatory increasing trend with

EFS , compared to R2 [see Fig. 5.3(a)]. This may be explained as follows: when the

resistance R2 of the 2DEG layer is higher, the spin-dependent scattering within the FM

layers becomes relatively less dominant. Since the spin asymmetry of R2 is much lower
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than that in the FM layers, the relative decrease in FM resistivity reduces the overall

spin asymmetry of transport across the FM-2DEG structure, and thus depresses the MR

ratio. The results indicate that we can in general improve the MR ratio by increasing

the doping density of the SC layer, i.e increasing the Fermi level within the 2DEG con-

duction band. More importantly, the strongly oscillatory MR behavior can be exploited

for certain applications. For instance, by changing EFS either by changing the 2DEG

doping level or by applying an external gate bias, one can induce a large increase in MR.

This is especially at for low values of EFS < 20 meV, where the MR changes from a

low of 2% to a high of 17% within ∆EFS ≈ 5 meV.

Next we analyze the effect of increasing 2DEG layer thickness w on the spin-

dependent transport. As before, the resonant ballistic transport across the 2DEG results

in an oscillatory behavior in T and hence R2 with changing w, as shown in Fig. 5.4(a).

We assume the range of w considered to be within the MFP of electrons in the 2DEG.

For the parameter values used, the minimum R2 occurs when the thickness of w = 40

nm, and this minimum value repeats for every ∆w = 40 nm increment in the 2DEG

thickness. Due to the inverse relation between MR and R2, the MR ratio reaches a max-

imum value at the minimum R2, and varies with the same period as R2. The period

of oscillation is significantly larger than the MR oscillations seen in MTJs, where ∆w

is typically ∼1-2 nm.109, 118, 119 Another striking difference is the constancy of the am-

plitude of oscillations in the hybrid FM-2DEG device, as w is varied. By contrast, the

amplitude of oscillations in MTJ devices undergoes a rapid (exponential) decrease with

w.109, 118 This is because in the MTJ devices, the SPRT effect arises charge tunneling

and quantum well states within the NM spacer, while in hybrid FM-2DEG devices, it is

due to the ballistic transmission of free electrons across the 2DEG. The two differences
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result in greater practical convenience to modulate the MR ratio in the hybrid device,

because i) the large ∆w values means that it is unnecessary to achieve high resolution

of within a few Å in optimizing w, and ii) the constant amplitude of MR oscillations

means that w can be varied without incurring an exponential suppression of MR and

conductance.

In addition to the MR ratio, another important parameter for SC-based spintronics

devices is the SI efficiency between the FM and SC layers. The SI ratio is defined as

the spin polarization of current at the FM source electrode-2DEG interface, i.e. SI =

(jF↑ − jF↓)/jF = 2β(x = 0)− 1. SI is calculated in parallel configuration.

The variation of SI as a function of EFS and w is represented by the thick curves

in Fig. 5.3(b) and Fig. 5.4(b), respectively. To explain the SI trend in Fig. 5.3(b), we

note that an increase (decrease) in the 2DEG resistance R2, and concomitant decrease

(increase) in the relative contribution from the FM lead resistances, result in an overall

increase (decrease) of the spin asymmetry of current through the structure. This in turn,

causes a decrease (increase) in the excess majority spin current, ∆j = j↑−j↓, and hence

a reduction (increase) in the SI efficiency into the 2DEG. We thus obtain a variation of

SI with EFS [Fig. 5.3(b)] which is in tandem with that of MR, and in opposing trend

to that of R2. As for the SI trend with the width of the 2DEG layer (w) as plotted in

Fig. 5.4(b), we observe an oscillatory variation of SI with w, which is similar to that of

MR. In general, the SI efficiency is significantly higher than the MR ratio, and attains a

maximum value of 40%, compared to the maximum MR of 16%. This is in agreement

with the general approximation that MR ≈ (SI)2 (see e.g. Ref35).

The ballistic mode of transport through the 2DEG confers the ability to tune the
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SI efficiency by modifying the doping concentration or the width of the 2DEG layer,

similar to the case of the MR. For instance, at low EFS <20 meV, one can effect a

four-fold increase in SI from 10% to almost 40% within ∆EFS ≈5 meV. As for the

case of MR, the ballistic mode of transport through the 2DEG confers the ability to

tune the SI efficiency by modifying the doping concentration or the width of the 2DEG

layer. Ballistic transmission also enables a much higher SI and MR ratios to be attained

compared to hybrid SC-FM devices operated in the diffusive regime. In the latter, direct

SI from a FM metal into a SC material suffers from the conductivity mismatch problem,

thus yielding a SI efficiency of only∼ 0.1% and an even smaller MR ratio of. 10−2%.35

By contrast, our calculations predict that in the presence of resonant ballistic transport, a

maximum SI efficiency approaching 40% is attainable [see Fig. 5.3(b) and Fig. 5.4(b)].

This compares favorably even with hybrid FM-SC structures which utilize tunnel or

Schottky barriers, where SI efficiency of ∼ 32% has been observed.40 In addition, in

the latter structures which are based on tunneling transport, high MR and SI ratios are

usually attained by increasing the tunneling resistance and hence suppressing the device

conductance. They also do not exhibit the tunability of MR and SI ratios by external

means, which is afforded by the resonant ballistic transport in our device, as described

earlier.

5.1.3 Conclusion

We developed a model that combines the semiclassical SDD transport inside the FM

electrodes, with the ballistic transmission of electrons across the 2DEG layer. Based on

a self-consistency scheme, we numerically calculate the spin transport across the hybrid
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FM-2DEG structure. We focus our analysis on the effects of varying the Fermi level

EFS and width w of the 2DEG layer, on transport properties such as the MR and SI

ratios, and T across the 2DEG layer. Our calculations reveal strong oscillatory behavior

in both the MR and SI ratios, owing to the ballistic resonant transport across the 2DEG,

and reminiscent of the SPRT effect, recently observed in metal-based MTJ structures.

Our proposed hybrid HEMT structure has several distinct advantages compared to MTJ

in practical realization of the SPRT effect in future devices. These include the easy

tunability of the MR and SI ratios either by changing the 2DEG doping level or gate

voltage bias (which is not possible in metal-based devices) and the absence of any expo-

nential suppression of MR with barrier thickness. Based on realistic parameter values,

we predict that the hybrid HEMT is capable of achieving a maximum MR and SI ratios

of approximately 20% and 40%, respectively.

5.2 Active MR device
In this section, we further propose a SC-based gate controlled MR device that performs the
function of a metallic SV, but with the advantage that its MR can be optimized (post-fabrication)
and its stability enhanced by controlling a gate bias voltage. Our device is a HEMT structure
with electrical gates fabricated on top of the electron conduction channel. The source and the
drain of the device are made of FM materials. We analyze the MR and SI behavior of this device.
We also investigate the effect of the following parameters on the performance of the device: 1)
channel length, 2) 2DEG and FM material choices, 3) magnetic exchange energy and 4) multiple
gates vs. single gate.

As explained in the previous section, due to long MFP, ballistic transmission can

be achieved in the 2DEG structure. This promises a form of low resistance tunneling

MR device compared to the multilayer TMR spin valve. Another advantage of using a

2DEG structure is the ability to control electron transport by using gate voltage.15, 125–128

This enables us to optimize the MR (post-fabrication) by adjusting the gate bias. Gate
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controlled MR and and spin transport have already been shown experimentally in car-

bon nanotube and graphene.129–131 In this section, we proposed a SC-based MR device

that could perform the function of a metal SV, but with the advantage that its MR can

be optimized (post-fabrication) and its stability enhanced by controlling the gate bias

voltage.

Our device consists of a HEMT structure with electric gates deposited on top of

the 2DEG channel to control the electron transport.125–128 The source and drain elec-

trodes are made of FM materials, in which the density-of-states (DOS) of majority and

minority electron states are not symmetrical. For MR measurement, the source’s mag-

netization is fixed in one direction, while the drain’s magnetization is free to rotate. The

device is considered to be in the P (AP) configuration if the magnetization of both source

and drain electrodes are aligned parallel (anti-parallel) to each other. Due to asymmetry

in DOS, the potential barrier experienced by the electron differs in the P and AP states,

and thus the electron transmission probability (T) as well as the channel resistance is

different for P and AP configurations. In this design, care is taken to ensure that the

electron conduction channel is much shorter than the electron’s MFP in 2DEG, so as to

ensure electron transport is strictly ballistic in the 2DEG.

5.2.1 Theory

To investigate electron transmission (T) across the channel we set the wave function in

each region-i as follows:

Ψi(x) =

(
Ai Bi

) exp(+ikix)

exp(−ikix)

 (5.14)
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Figure 5.5: Device structure for (a) a single-gate device, (b) a triple-gate device. The
band diagram and magnetic exchange energy (h0) for FM materials in P and AP config-
uration are shown in (a).

where Ai and Bi are unknowns that need to be determined. The wave vector ki is

given by: ki =
√

2mi

~2 (En − Ui), where En is the total energy of the electron, mi is

the effective mass of the electron, and Ui is the electric potential experienced by the

electron. To obtain the values ofAi andBi at each region, we set the following boundary

conditions:

Ψi(xi) = Ψi+1(xi) (5.15a)

1

mi

dΨi(x)

dx

∣∣∣∣
x = xi

=
1

mi+1

dΨi+1(x)

dx

∣∣∣∣
x = xi

(5.15b)

Equation (5.15a) shows the continuity of wave function across the device and (5.15b)

shows the continuity of electron flux across the device. The spatial position of the bound-

ary in between region-(i) and (i+ 1) is given by xi. Since there is no electron reflection

in the drain electrode, Bdrain is set to zero. Once Ai and Bi are solved, transmission
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probability, T across the device is obtained as follows:

T =
vdrain

vsource

|Adrain|2

|Asource|2
≡ kdrain/mdrain

ksource/msource

|Adrain|2

|Asource|2
(5.16)

where subscripts “source” and “drain” refers to the left and right FM electrodes, re-

spectively. Actually, a more rigorous calculation should take into consideration the self-

consistent alignment of spin electrochemical potential in the FM contacts with the Fermi

levels of the semiconductors. To simplify calculation, we will only focus on the ballis-

tic spin-dependent transmission across the 2DEG channel in this case, which ultimately

describes the same MR oscillatory behavior.

For a singly gated device, we divide the device into 3 regions, i.e. 1) source

electrode, 2) 2DEG channel, and 3) drain electrode as shown in Fig. 5.5(a). In the P

configuration, minority spin electrons in both the left and right leads will experience a

potential barrier of strength h0 due to the magnetic exchange energy in the FM layers.

In AP configuration, minority spin electron in the left lead, and majority spin electron in

the right lead will experience a potential barrier of strength h0.

In the channel region, the Fermi level of 2DEG (EFS) aligns with the Fermi level

of the FM leads (EFM ). Thus, at zero gate bias, the total energy of an electron through

out in the device, En = EFM . Due to Fermi level alignment, the build in potential

barrier in the channel region is given by, ∆EF = EFM − EFS , where EFS is the Fermi

energy of the 2DEG layer. When a gate bias voltage of Vg is applied in the channel

region, the electrons in the channel region experience a potential energy of Ug which is

caused by the potential barrier due to the Fermi level alignment (∆EF ) and the potential

energy due to gate bias voltage (eVg), i.e. Ug = ∆EF +eVg. For simplicity, in this paper
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we assume Ug to be the effective gate potential, and thus the effective electron (kinetic)

energy in the channel is given by, Eeff = En − Ug = EFM − Ug. Thus the wave vector

in each region is

kP↑(1,2,3) =

√
2m(1,2,3)

~2
En − (0, Ug, 0) (5.17a)

kP↓(1,2,3) =

√
2m(1,2,3)

~2
En − (h0, Ug, h0) (5.17b)

kAP↑(1,2,3) =

√
2m(1,2,3)

~2
En − (0, Ug, h0) (5.17c)

kAP↓(1,2,3) =

√
2m(1,2,3)

~2
En − (h0, Ug, 0) (5.17d)

Region-1,2, and 3 (as indicated by the subscript) refers to source, channel, and drain re-

gions, respectively. Note that the potential barriers in the source and drain regions differ

for different magnetization configuration, i.e. P or AP. Solving the flux and wave func-

tion continuity, we obtained the analytical expression for the transmission probability

across the device as follows,

T =

∣∣∣∣ 4K2

√
K1K3

ei2dk2(K1 −K2)(K3 −K2)− (K1 +K2)(K3 +K2)

∣∣∣∣2 (5.18)

where Ki = kimi, and d is the channel length. By replacing (5.17) into (5.18), we can

obtain T for minority and majority current in both P and AP configurations, i.e. T P↑ , T P↓ ,

TAP↑ , and TAP↓ .

5.2.2 Results and Discussion

Based on simple asymmetrical transmission theory, we will analyze that the resulting

MR and SI of a strictly ballistic lateral device shows interesting oscillatory behavior
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that can have important implications to experimental detections. In this section, we

will investigate the MR and SI variation with applied gate bias voltage for two differ-

ent structures, namely the 1) singly gated [Fig. 5.5(a)], and 2) triply gated [Fig. 5.5(b)]

devices. We also study the effect of material and structural parameters, such as the ef-

fective mass of electron in the 2DEG (m∗2DEG), the magnetic exchange energy (h0), and

the channel length (d) on the performance of this device. For the following simulation,

unless otherwise stated, we use the following parameters: Fermi level in FM electrodes,

EFM = 5eV , h0 = 0.6EFM, d = 25nm, and m∗2DEG = 0.04me (InAs).

Figure 5.6 shows the variation of a)MR and b)SI with Eeff = En−Ug. In varying

Eeff , we set En = EFM and varied Ug. Therefore, Eeff indicates the change in the

applied gate bias. Here we define MR and SI as:

MR = (GP −GAP )/(GP +GAP ) (5.19)

SI = (GP
↑ −GP

↓ )/(GP
↑ +GP

↓ ) (5.20)

where GP,AP
↑,↓ = (q2/h)T P,AP↑,↓ .132 Note that SI was calculated at parallel configuration.

The plot in Fig. 5.6(a) shows an oscillating MR trend with increasing Eeff . In

fact MR oscillates between positive and negative values in the low energy range. In the

higher energy range, i.e, Eeff > 0.5EFM , oscillation occurs mainly within the positive

MR region. The oscillatory behavior we revealed here provides important information to

experimentalists with respect to device optimization. Before device fabrication, channel

length and other device parameters have to be carefully optimized. Once the device has

been optimized during fabrication, gate bias provides the fine tuning of the MR strength

to achieve high MR. At some voltage points, MR can be eliminated completely from the
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Figure 5.6: (a) MR (b) SI variation for a single-gate device. (i), (ii),and (iii) shows the
effects of 2DEG effective mass, channel length and magnetic exchange energy of the FM
material, respectively. (c) Conductance variation for majority and minority current in P
and AP configurations. Unless otherwise indicated on the graph the material parameters
are shown in the box at the right of the figure. SI is computed at P configuration.

device, in which case the device provides only simple functions of biasing and matching;

in electrical term, this device acts as a buffer.

Figure 5.6a(i) shows the MR oscillation when different materials are used for the

2DEG layer. Materials with lower effective mass, e.g. InAs (m∗ = 0.014me) results in

a lower frequency of MR oscillation. Besides, the average MR value is also higher when

the effective mass is lower. The reduction in the MR oscillation frequency also causes

the device to be less sensitive to small changes in gate voltage. This effect is desirable
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as it increases the stability of the device while maintaining the advantage of fine-tuning

MR with gate voltage. Next we analyze the effect of increasing the channel length in

Fig. 5.6a(ii). Our results show that when the channel length is 15nm as opposed to

40nm, MR oscillation reduces its frequency. In the case of shorter channel length with

lower frequency, we also noticed that the MR oscillation shifts to mainly within positive

values at a lower energy value. Thus device with shorter channel length and lower 2DEG

effective mass is more preferred as far as the ease of optimization is concerned. Unlike

effective mass and channel length, results in Fig. 5.6a(iii) show that variation in the

magnetic exchange energy of the FM material has no effect on the frequency of the MR

oscillation. However, the average MR values increases considerably with increasing h0.

This observation is consistent with well-accepted understanding that FM materials with

higher spin-asymmetry in DOS could increase the MR values of SV devices.

The variation of SI with Eeff is plotted in Fig. 5.6(b). The SI vs. Eeff curve also

shows an oscillatory trend with an increasing average magnitude. The effect of h0, d,

andmeff on SI is similar to the effect of these parameters on MR. However the oscillation

frequency of the MR curve is two times greater than the oscillation frequency of the SI

curve. The oscillation of both MR and SI is related the oscillation of the conductance,

G [refer Fig. 5.6(c)]. It can be seen that a peak in MR curve is obtained whenever there

is either a peak or a valley in the G curve. This result is significant as it enables us

to obtain high MR (MR peak) at high conductance (conductance peak). However the

relation between SI and G is different. Each peak (valley) in the SI curve corresponds

to a valley (peak) in the G curve. This result is undesirable because large SI is obtained

when the G is low. Therefore the gate bias should be tuned such that both SI and G are

optimized.
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Figure 5.7: (a) MR and (b) SI variation for a triple-gate device. Unless otherwise indi-
cated on the graph the material parameters are shown inside the box atthe right of the
figure.

We will now study the MR and SI variation in a similar device but with three gates

as shown in Fig. 5.5(b). In this structure, we designed the channel to be of total length

d = 30nm with each gate taking up a length of 10nm. The effective gate potential, Ug1

or Ug0, is applied at the gates in the way shown in Fig. 5.6(b). In Fig. 5.7, we varied Ug0

while fixing the value of Ug1. For extreme values of Ug1 values, i.e. Ug1 = 0EFM and

Ug1 = 1EFM , high average and relatively less oscillatory MR values has been obtained

for a large range of Ug0. This simple simulation shows that the magnitude of MR and

SI as well as the stability of the device can be improved rather significantly by using a

triple gate device structure when optimized with appropriate gate bias values.
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5.2.3 Conclusion

We have designed a semiconductor based MR device that could perform the function

of a metal SV, but with the advantage that its MR can be optimized (post-fabrication)

and its stability enhanced by modulating resonant transmission of electron with gate

bias voltage. We showed that short channel length and low effective mass reduces MR

oscillation frequency, a feature we call stabilization which makes MR optimization easy

to carry out. Our observation of average MR increasing with the magnetic exchange

energy is consistent with general understanding of the role played by spin asymmetry

in FM materials in contributing to MR. Last, we designed a triple-gate ballistic device

that shows even more predictable MR behavior compared to the single-gate structure.

With lateral device feature size approaching sub-10nm in CMOS technology, ballistic

oscillatory MR behavior should be evident in the device we proposed above and should

be investigated in greater depth for possible applications in recoding or low field sensing.

5.3 Summary

We studied electron and spin transport across a 2DEG structure. Across the 2DEG layer,

ballistic transport is assumed, given the long MFP within the 2DEG. We found that the

transport properties of the device, such as the transmission probability, the SI efficiency

and the MR ratio, all exhibit oscillatory behavior when the 2DEG layer width or the

2DEG Fermi energy is varied. The basis of these oscillations is the resonant transport

across the 2DEG. By utilizing this resonant transport property, we further proposed a

SC-based gate controlled MR device that could perform the function of a metallic SV,

but with the advantage that its MR can be optimized (post-fabrication) and its stability
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enhanced by controlling a gate bias voltage.



Chapter 6
Introduction to Green’s Function

6.1 Mesoscopic Transport

Recently, the advancement in nanofabrication has led to the introduction of various

nanostructures such as quantum wire, quantum dots, and molecular devices. The di-

mensions of these structures are so small that electron transport is no longer governed

by classical diffusive equations. In the mesoscopic regime, electron phase is conserved

and electronic transport is highly influenced by the quantum nature of electron. Interest

in quantum transport in mesoscopic regime is increasing enormously. Recently many

researchers have adopted Green’s Function84–86 method for modeling electron transport

at the atomic level. Electron transport in carbon nanotubes,133 metal nanowires,134, 135

atomic/molecular136–138 devices have also been numerically studied using the Green’s

function method.

113
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6.2 Electron Transport

6.2.1 Macrosopic (Top-Down) View

In macroscopic view, the length of a device is long enough such that electron diffuses

along the channel, being scattered many times. According to Ohm’s Law, when there is

a potential difference, V and the resultant current is I , the conductance of the channel,

G = I/V is given byG = σA/L , whereA, L, and σ are cross sectional area, length and

conductivity of the channel, respectively. The conductivity is a function of scattering

time, τ , density of state, n and effective mass, m, i.e. σ = e2nτ/m. However, in

nanoscale transport, this description fails to describe the electron motion. For example

in a ballistic device, there is no scattering and thus τ is undefined. Similarly, in molecular

conductors, m and n are undefined.

6.2.2 Microscopic (Bottom-Up) View

6.2.2.1 Electron as Particle

In this section we will describe the electron transport from a microscopic view. Referring

to Fig. 6.1, when we apply a finite potential bias, Vb across the source (left lead) and

drain (right lead), there will be a finite difference between the electrochemical potential

of the left, µL and right, µR leads, i.e. µL − µR = eVb. At zero temperature, the current

flows through the channel only when there is at least one energy state (filled or empty)

in between µL and µR. Under such condition, the left lead tries to fill up the state and the

right lead tries to empty the state, hence there is steady state electron flow. For energy

states located above (below) µL (µR), both the source and drain will try to fill up (empty)
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Figure 6.1: Electron transmission from source to drain in a nanodevice.

these states. Therefore no current flows across these states. In other words, for current

to flow the Fermi function on the left, fL and right, fR of an existing energy state, E

must be different, i.e. fL(E) 6= fR(E).

Note that the above explanation is valid only when the temperature is 0 K. For

higher temperature Fermi function will broaden and thus there will be current flow in

the vicinity of µ, i.e. slightly above (below) µ1(2).

Next we analytically derive the current, I across the device. The number of elec-

tron on the left (right) contacts are given by,

NL(R) = 2fL(R)(E), (6.1)

where fL(R)(E) = f0(E−µL(R)) and f0(E) = 1
/

(1 + eE/kBT ) is the Fermi distribution

function. We set µL(R) = EF + (−)eVb/2, where EF is the intrinsic Fermi level of the

leads. The factor 2 in (6.1) is due to the fact that each state can be occupied by two

electrons (spin-up and spin-down). Current, IL(IR) from (to) left (right) contact is given
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by

IL = e
γL
~

(NL −N) (6.2a)

IR = e
γR
~

(N −NR) (6.2b)

where N is the total number of electrons at steady state in the channel, and escape rate,

γL(R)/~ [1/time] is the rate at which electron crosses from the lead to the channel. Escape

energy, γ [energy] indicates how easily electron can escape into contacts. In the steady

state, the number of incoming electrons are equal to the number of outgoing electrons,

and hence the steady state current, I = IL = IR. Thus I and N are obtained as follow

N =
γLNL + γRNR

γL + γR
(6.3)

I =
2e

~
γLγR
γL + γR

(fL(ε)− fR(ε)) (6.4)

Note that, as explained earlier, current is finite only when fL(E) 6= fR(E). To simplify

further discussions, we assume γ = γL = γR and obtain a simpler expression for current,

i.e.

I =
e

~
γ (fL(E)− fR(E)) (6.5)

Using Taylor’s expansion under the small bias condition where Vb → 0, we obtain

lim
Vb→0

[fL(E)− fR(E)] = e∆V · FT [E − EF ] (6.6)

where e∆V = µL − µR|Vb→0 → 0 andFT (E) = −df0(E)/dE =
[
4kBT. cosh2(E/2kBT )

]−1.

Substituting this into (6.5), we derive the current at small voltage:∆I = e
~γ·e∆V FT [E−

EF ]. From this equation, the expression for conductance, ∆I/∆V appears to be: (e2/~)γFT [E−
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Figure 6.2: A discrete energy state in a isolated channel broadens when the channel is coupled
with external contacts. This coupling effect lowers the resultant Gmax. The graph in (a) are
plotted assuming no broadening in the energy state when external contacts are connected to the
channel.

EF ]. This expression does not have an upper limit since FT →∞ at temperature T=0K.

However in reality, there is an upper limit for conductance in a ballistic channel.

This upper limit is due to the energy broadening in the channel. When voltage

is applied to the contacts, each sharp discreet state in the channel broadens out and

becomes a continuum of states. The continuum of states formed by one discreet state is

electronically equivalent to one state, i.e. can only accommodate one pair of electrons.

Figure 6.2(b), illustrates how the current curve ”broadens out” due to the broadening of

states. As the state broadens out, some of it will lie within the non-conducting regions,

i.e. much above (below) µ1(µ2). Since there is no current flow in the non-conducting

regions, the total current and maximum conductance is reduced [see Fig. 6.2(a)].

Density of states (DOS) indicates the number of states per unit energy. The broad-

ened DOS,D(E) = γ/π
(E−ε)2+γ2 , where ε is the energy level of the discreet state. The total
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current through all the states is given by

I =

∫ +∞

−∞
dE ·D(E)︸ ︷︷ ︸

total states

· e
~
γ (f1(E)− f2(E))︸ ︷︷ ︸

Current/state

=
e

π~

∫ +∞

−∞
dE · T (E) · (f1(ε)− f2(ε)) (6.7)

where transmission probability T (E) = D(E)πγ. Note that T(E) varies from 0 to 1. At

low temperature FT approaches delta function, i.e. lim
T→0K

FT [ε] = δ(ε). From (6.6) and

(6.7), the total current at small voltage, Vb → 0 and low temperature, T → 0K is given

by

lim
Vb→0

∆I =
e2

π~

∫ +∞

−∞
dE · T (E) ·∆V FT [E − EF ]

lim
Vb→0,T→0K

∆I =
e2

π~

∫ +∞

−∞
dE · T (E) ·∆V δ[E − EF ]

=
e2

π~
T (EF ).∆V (6.8)

The maximum conductance,Gmax occurs when the transmission is maximum, i.e. T(E)=1.

Thus Gmax is given by

Gmax =
δImax

δV
=
q2

π~
T (EF )max =

2q2

h
(1) =

1
12.9

kΩ−1 (6.9)

The maximum conductance is also known as quantum conductance. Quantum conduc-

tance is the maximum conductance of a mesoscopic channel.

6.2.2.2 Electron as wave (Quantum Regime)

6.2.2.2.1 Wave function (WF) In the previous section transport mechanism was

studied in terms of electron density. In quantum regime electrons behave as wave, and
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Figure 6.3: Modeling electron transport in quantum regime.

thus calculations are done in terms of wave function(WF), ψ, where the electron density

is given by, n = ψψ∗. The electron energy of an isolated channel is described by the

following Schrödinger equation

Eψ = εψ ⇒ (E − ε)ψ = 0 (6.10)

ε is the average energy level in the channel. When the isolated channel is connected to

the contacts, the above equation is modified as follows:

[E − ε+ iγL/2 + iγR/2]ψ = 0 (6.11)

where γL and γR are energy terms due to left and right contacts, respectively. This can

be justified by analyzing the time dependent Schrödinger equation (i.e. by replacing

E = −i~d/dt). Equation (6.11) shows that at steady state there are no electrons in the

contacts. This is because we did not include the source term in the above model. Now,

we include an electron source in the left contact (there is no electron coming from right

contact). The Schrödinger equation for the model with only one electron source is given

by

[E − ε+ iγL/2 + iγR/2]ψ = sL (6.12)

where the source term, sL describes the electron that come in from the left contact. The

strength of this source is set to sLs
∗
L = γLfL, such that we obtain results consistent
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with previous calculations. With this substitution we obtain the expressions for WF (ψ),

electron density (nL), and the total number of electron (NL) as follows

ψ(E) =
sL

E − ε+ iγL/2 + iγR/2
(6.13a)

nL(E) = ψ(E)ψ∗(E) =
γLfL

(E − ε)2 + (iγL/2 + iγR/2)2 (6.13b)

N1 =

∫
dE

2π
n1(E) =

γLfL
γL + γR

(6.13c)

The expression for NL is consistent with that we obtained previously [refer (6.3)] .

Until now, we studied the electron transport by considering a single grid point with

an average energy level, ε in the channel region. For a more general model, the channel is

discretized into multiple grid points (MGP), with a series of energy levels–ε1, ε2, ε3, ...–

[refer Fig. 6.3] . In MGP model, all the physical parameters will be replaced with

matrices, and thus the Schrödinger equation is

[EI−H − ΣL − ΣR] {ψ} = {SL} (6.14)

where [I] is an identity matrix, ΣL(R) are self energy matrix due to the contacts, and SL

is the source matrix. H is the Hamiltonian matrix which describes the energy in each

grid point, εi and the coupling energy, t between the points. For a system with n grid

points, the explicit form of ΣL(R) and SL matrix is as follows:

ΣL(R) =



− iγL
2

(
0
)

0 · · · 0

0
...

...
...

...
...

... 0

0 · · · · · · 0
(
− iγR

2

)


;SL =



sL

0

...

0


The explicit form of [H] depends on the Hamiltonian of the system. The matrix version

of γL(R) is given by the broadening matrix, ΓL(R) = i
[
ΣL(R) − Σ†L(R)

]
.
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Till now we have considered only one source term, SL [Fig. 6.3a]. Next, we will

try to incorporate the second source term (from the right contact), SR [Fig. 6.3b]. Note

that SR cannot be simply added to SL, because WFs excited by uncorrelated sources

cannot be added. Such addition will result in incorrect expressions for nL and NL. To

overcome this problem we introduce the concept of correlation Green’s function (GF).

6.2.2.2.2 Non Equilibrium Green’s Function (NEGF) Since we cannot superim-

pose the WF from different source, we define a correlation GF

Gn(≡ −iG<) = ψψ† (6.15)

The diagonal element of Gn indicates the electron density at each point. Next, we define

the retarded GF,

GR = [EI −H − Σ1 − Σ2]−1 (6.16)

GR is the impulse response of the system, i.e. the response obtained when the system is

excited by a unit source. From (6.12) and (6.16), we obtain the WF due to single source,

SL : ψ = GRSL. Referring to (6.15), we express the Gn in terms of the source term

Gn = ψψ† = GRSLS
†
LG

R† = GRΓLfLGA (6.17)

where SLS
†
L = ΓLfL and GA = GR†. GA is known as advanced GF. To add another

source, SR, we can just superimpose the correlation function of the second source and

obtain

Gn = fLG
RΓLGA + fRG

RΓRGA (6.18)

From GF, we can derive other physical parameters as follows:

Spectral Function

A = GRΓLG
A +GRΓRG

A = i
[
GR −GA

]
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Figure 6.4: (a) Schematic illustration of the 2DEG-based field device and the band-diagram
subject to external bias.

Note that spectral function is obtained by setting fL = fR = 1 in Gn [(6.18)].

Transmission Probability

T (E) = Trace(ΓLG
RΓRG

A)

Current(Coherent transport)

I =
q

h

∫
dE T (E) (fR − fL)

Current(general version)

IL(R) =
q

~
Trace

(
ΓL(R)AfL(R) − ΓL(R)G

n
)

6.3 Tight Binding Greens Function formulation for a
mesoscopic system with magnetic and electric bar-
riers

In this section, we will use GF to model the electron transport and compute the current

in a ballistic 2DEG system with applied external magnetic and electric fields spatially



6.3 Tight Binding Greens Function formulation for a mesoscopic system with
magnetic and electric barriers 123

distributed in the x direction.

6.3.1 Matrix Representation of Hamiltonian

First, we obtain the matrix representation of the Hamiltonian operator. The system under

consideration is a 2DEG system having translational invariance along the transverse y

direction, and applied external magnetic and electric fields spatially distributed in the x

direction. For this system the Hamiltonian is described as follows:

H =
[i~∇+ A]2

2m∗
+ US +

g~σBz
4m0

+ Ey (6.19)

where m∗ is the electron effective mass, m0 is the electron mass in vacuum, g is the ef-

fective Land g-factor and US is the total potential energy of the electron in the semicon-

ductor. Bz is the vertical external magnetic field at x, A is the corresponding magnetic

vector potential chosen in the Landau gauge (0, Ay(x), 0), and σ is +1/−1 denotes spin

up/down, respectively and where the spin quantization axis is defined along the vertical

magnetic fields. The electron conduction path in the x direction is discretized into n

lattice points of equal distance a apart, i.e. the discrete points are denoted by xj = ja,

where 1 < j < n .

We can now derive the matrix representation of the Hamiltonian of (6.19) by ap-

plying the finite difference approach, in the limit of small a. If F (x) is the eigenfunction

of the system, which need not be solved analytically, then from (6.19), we have:

HF (x) = − ~2

2m
F ′′ (x) +

i~Ax (x)
m

F ′ (x) +

(
Ax (x)2

2m
+ U (x) +

g~σBz (x)
4m

+ Ey

)
F (x)

(6.20)

For small a, i.e. a → 0, the first and second derivatives of F (x)can be approxi-
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mated as:

F ′(x)|x=ja ≈
Fj+1/2 − Fj−1/2

a
, (6.21)

F ′′(x)|x=ja ≈
Fj+1 − 2Fj + Fj−1

a2
(6.22)

where for compactness, Fj = F (x)|x=ja. With the above approximations, and denoting

Ay (x), U(x), and BZ(x) at x = ja by Aj , Uj , and Bj , respectively, we can rewrite

(6.20) as:

HF (x)|x=ja = − ~2

2m

(
Fj+1 − 2Fj + Fj−1

a2

)
+
i~Aj
m

(
Fj+1/2 − Fj−1/2

a

)
+

(
A2
j

2m
+ Uj +

g~σBj

4m
+ Ey

)
Fj (6.23)

or equivalently,

HFj = (−tj)Fj−1+(−iqj)Fj−1/2+(2tj + ωj + Zj + Uj + Ey)Fj+(iqj)Fj+1/2+(−tj)Fj+1

(6.24)

where t = tj = ~2/2ma2, qj = ~Aj/2ma = (Aja/~) t, ωj = A2
j

/
2m = (Aja/~)2 t,

and Zj = g~σBj/4m0. Taking qjFj+1/2 ≈ qj+1/2Fj+1 and qjFj−1/2 ≈ qj−1/2Fj−1

to simplify calculation, one obtains the difference equation HFj ≡ Q∗jFj−1 + PjFj +

QjFj+1, where Pj = 2tj+ωj+Zj+Uj ,Qj = −tj+iqj+1/2. Note that qj+1/2 is obtained

by evaluating Aj (x) at halfway between xj and xj+1. Equation (6.24) can be written in
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a more compact form: HF (x)|x=ja =
∑
i

H(j, k)Fj , where

H(j, k) =



Q∗j , k = j + 1,

Pj , k = j,

Qj , k = j − 1,

0, otherwise,

(6.25)

Thus in matrix form, the Hamiltonian is given by:

H =



P1 Q∗1 0 · · · 0

Q1 P2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . Pn−1 Q∗n−1

0 · · · 0 Qn−1 Pn


(6.26)

where n is the number of discrete points in the 2DEG.

6.3.2 Green’s Function and Self-Energy

We model our device as a finite-sized conduction path in the 2DEG, which is connected

on either side to semi-infinite leads. Thus, from the discretized Hamiltonian of (6.26),

we can then derive the retarded Green’s function matrix, GR for the 2DEG region, fol-
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lowing standard methods84[refer (6.16)].

GR =

[
EI−H −

(
R∑
L

+
R∑
R

)]−1

=



Ex − P1 −
∑R

L (1, 1) −Q∗1 0 · · · 0

−Q1 Ex − P2
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . Ex − Pn−1 −Q∗n−1

0 · · · 0 −Qn−1 Ex − Pn −
∑R

R (n, n)


(6.27)

whereE represents the total electron energy,Ex is the electron energy in the propagation

(x)-direction, and
∑R

L and
∑R

R are the self-energies of the left and right lead, respec-

tively. Note that GR is independent of the kinetic energy in the transverse direction

Ey =
(
~2k2

y

/
2m∗

)
, due to the cancelation of the Ey component in E and H in (6.27).

Since electron transport is constrained to the x− y plane of the 2DEG, the confinement

in the z-direction will lead to the formation of sub-bands. We would not discuss the de-

tails concerning the sub-bands, and assume that transport occurs only within the lowest

sub-band. The component GR
ij describes the propagation of electron between the points

xi and xj within the 2DEG channel, while the self-energy terms of
∑R =

∑R
L +

∑R
R

represent the perturbative effect of the entire semi-infinite leads on the electron propa-

gation within the channel.
∑R

L,R is related to the surface Green’s function of the isolated

leads, gL,R, and can be expressed as follows:

R∑
L

(j, i) =


tLgLtL, i = j = 0

0, else where

;
R∑
R

(j, i) =


tRgRtR, i = j = n

0, else where

(6.28)
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where tL(R) is the coupling energy between the right (left) edge of the left (right) lead

with the leftmost (rightmost) discrete point of the 2DEG. In the flat-band approximation,

the Green’s function of an isolated semi-infinite lead is given by gL,R = −1
t

exp (ikL,RaL,R),

where aL,R is the unit cell length of the discretized lead, kL(R) =
√

2m
(
E − (E0

CM + UL(R))
)/

~2,

E0
CM is defined to be the bottom conduction energy level of the metallic lead in the ab-

sence of external potential. This energy level is set to zero for convenience. Potential

energy could be imparted to the system by applying bias UL,(R) = +(−)eVb to the left

(right) lead [refer Fig. 7.1].

As explained in Sec. 6.2.2.2, we note that the advanced Green’s functions and self-

energies are given by the complex conjugates of the corresponding retarded functions,

respectively, i.e. GA =
[
GR
]† and

∑A
L.R =

[∑R
L.R

]†
, while the coupling function of

the conductor to the lead can be obtained from the relation ΓL,R = i
(∑R

L,R−
∑A

L,R

)
.

6.3.3 Spin Dependent Transmission Probability and Current

Following Caroli et al. and others,139–143 the spin current expression is given by:

I↑,↓ =
∑
ky

q

h

∫ +∞

−∞
(fL(E)− fR(E))T↑,↓(E)dE (6.29)

where T↑,↓ (E) = trace
[
ΓLG

R
↑,↓ΓRG

A
↑,↓
]
, with GA,R

↑(↓) being the Green’s functions corre-

sponding to σ = +1 (−1).

This expression for current is identical with the expression in (6.29). Recalling

from Sec. 6.2.2, fLR(E) =
[
1 + exp

(
E−µLR

kT

)]−1
is the Fermi-Dirac function of the left

and right leads, taking into account the electrochemical potential at the leads, µL(R) =

EF + (−)eVb/2, with EF being the intrinsic Fermi energy of the lead.
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Considering single-mode transport, i.e. corresponding to a single transverse wave-

vector ky, neglecting the sub-band energies due to confinement in the −direction, the

single-mode spin current is then given by:

IS↑,↓ (ky) =
e

h

∫
(fL (Ex + Ey)− fR (Ex + Ey))T↑,↓ (Ex) dEx

, where the superscript S denotes single-mode transport.

6.3.4 Conductance at zero bias and zero temperature

Equation (6.29) can be simplified under small bias condition, i.e. (µL − µR) = eVb → 0,

where the difference in the Fermi-Dirac functions becomes lim
Vb→0

[fL (E)− fR (E)] =

FT (E − EF ) eVb, with FT (ε) = −dfL,R (ε)/dε. Further simplification occurs in the

limit of low temperature, whereFT (ε) approaches the Dirac delta-function, i.e. lim
T→0

FT (ε) =

δ(ε). In the low bias, low temperature limit, the above simplifies to:

lim
Vb,T→0

∆IS↑,↓ (ky) = Vb
q2

h

∫
δ (Ex + Ey − EF )T↑,↓ (Ex) dEx = Vb

q2

h
T↑,↓ (EF − Ey)

(6.30)

which then leads to the single-mode spin conductance expression of:

GS↑,↓ (ky) = lim
Vb,T→0

∆IS↑,↓ (ky)
Vb

=
q2

h
T↑,↓ (EF − Ey) =

q2

h
T↑,↓

(
EF − ~2k2

y

/
2m
)

(6.31)

One can then obtain the corresponding conductance expression for the case of multi-

mode transport by integrating over ky. For the specific case of zero transverse kinetic

energy (i.e. ky = 0), the conductance is given byGS
↑,↓ (0) = e2

~ T↑,↓ (EF ), which depends

on the transmission function at the Fermi level.



6.4 Summary 129

6.4 Summary

In this chapter we have developed a theoretical model, based on tight-binding GF method,

to describe electron transport in mesoscopic regime. In the following chapters, we will

apply this model to study the microscopic effects affecting spin transport phenomena,

and thus optimize the performance of spintronics devices.



Chapter 7
Ballistic Spin Transport across
Magnetic-Electric Barriers

In this chapter we apply the GF model, which was described in the previous chapter, to study
the effect of spin transport and optimization of SI across a magnetic-electric barrier in a spin
transistor device. We proposed that a viable form of spin current transistor is one to be made
from a single-mode device which passes electron through a series of magnetic-electric barriers
built into the device. The barriers assume a wavy spatial profile across the conduction path due
to the inevitable broadening of the magnetic fields. Field broadening results in a monotonically
increasing magnetic vector potential across the conduction channel, which increases spin polar-
ization. We have identified that the important factors for generating high spin polarization and
conductance modulation are the low source-drain bias, the broadened magnetic fields, and the
high number of FM gates within a fixed channel length.

7.1 Theory

Previous studies126, 144–146 have shown that magnetic and electric barriers could be real-

ized by applying electrostatic potential and edge magnetic fields via a combination of

FM and NM gate structures on top of a 2DEG channel of a HEMT. Conduction elec-

tron will be spin polarized parallel to the edge magnetic fields. Recent experiments147

which show large Zeeman splitting in GaInAs or InAs continue to lend credence to the

viability of such spin current devices. Since external magnetic fields could be applied

and eliminated with relative ease via switching the polarity of the local moment at the

FM gate stripe, these devices hold promise for single transistor programmable logic and

130
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memory.126

In fact the theoretical concept of field-induced spin current has been well accepted.

What is outstanding now is taking the investigation further to include an accurate anal-

ysis of the spin current generation capability of these external field devices, where mag-

netic fields broaden continuously across the conduction channel, in contrast to previous

approximation which considers the magnetic fields to approach the form of a Dirac delta

function. The immediate impact of such broadening on electron transport is the conver-

sion of the step function magnetic vector potential to one that is continuously increasing

with conduction channel length. Living up to reality, it would be necessary to discretize

the now more realistic barrier shape and apply the tight-binding GF approach to cal-

culate spin current. The hitherto commonly used method – the single particle effective

mass approximation with wave function and flux matching at the boundaries [Chap. 5]–

relies on solving for the analytical form of the wave function, which could at times be

formidable depending on the barrier shapes.

In mesoscopic transport, channel length has both physical and practical implica-

tions to device operation, its effect on the spin polarization of electron current would

be crucial to our understanding of how best to use this device either as a constant spin

current source or a tunable one. We will study both the effects of the channel length

and the number of barriers on spin current. Room temperature distorts the ideal Fermi

distribution in energy space, the adverse effect this has on spin current also warrants fur-

ther investigation. The GF approach allows us to incorporate the Fermi level broadening

due to thermal energy, and analyze the effect of temperature on spin current, an aspect

which has been frequently neglected in previous works. Finally, we study the spin trans-
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Figure 7.1: (a) Schematic illustration of the 2DEG-based field device and the band-diagram
subject to external bias. (b) Distribution of magnetic fields and magnetic vector potential across
the conduction channel. Ferromagnetic gates are etched and deposited into some parts of the
gate stripes.

port at finite bias voltages, while previous works148 have largely restricted their transport

analysis to the Fermi level only.

7.2 Theory

Figure 7.1 shows a schematic diagram of the 2DEG system FM gates inserted between

NM metals on top of the conduction channel. The specific periodicity of the FM gates
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defines the types of field-barrier conduction channel that one intends for the electrons.

Each of the FM is magnetized in the perpendicular direction. Application of an electric

potential to the gates induces a change in the electrostatic potential barriers in the 2DEG

channel, Ueff, as shown in Fig. 7.1. Note that the effective potential barrier in the channel,

Ueff = (EFM − EFS) + Ug depends on both the gate bias (Ug) as well as the Fermi

energies of the lead (EFM ) and 2DEG (EFS). The perpendicular magnetization of the

FM gates produces a localized vertical magnetic field Bz (x), which is modeled as a

Lorentzian profile with a peak value of 1T , i.e.

Bz(x) =
B0

1 + (x− x0) /γ
(7.1)

where the peak magnetic field, B0 = 1T and the position of the peak is given by x0. The

spread of the magnetic field is characterized by γ, which is the half-width at the half-

maximum of the distribution function. The corresponding magnetic vector potential is

given by:

A (x) =
∫
Bz (x) dx =

1
2

+B0γ arctan
(
x− x0

γ

)
(7.2)

We apply the tight binding GF method as explained in Sec. 6.3 to compute the spin

current, I↑,↓ and spin dependent conductance, G↑,↓ across the channel of device. The

spin polarization of current is defined by the ratio P =
G↑−G↓
G↑+G↓

=
I↑−I↓
I↑+I↓

. In all our

simulations, we considered a single-mode device, in which transmission occurs only

at ky = 0. Single-mode device15, 149 can be realized by constraining the transverse

motion of electron, such that additional sub-bands corresponding to the y direction are

formed. By considering transport of the lowest y sub-band, the device becomes single-

mode and summation over ky becomes unnecessary. A single-mode device can also be

realized by designing a collector with small diameter into the drain and aligning the one-
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Figure 7.2: (a) Variation of spin polarization, P with increasing Ueff for a) different values of
M at T = 0K, b) different values of d at T = 0K, c) different values of M at T = 300K, and
d) different values of d at T = 300K.

dimensional probe parallel to current conduction path. If the diameter is small enough,

it collects only electrons with ky = 0.

7.3 Results and Discussion

Letting M represent the number of FM gates and d be the total channel length of the

device, we carried out numerical calculations by assuming the following values, unless

otherwise stated: M = 3, d = 20nm, Fermi level of the leads (2DEG), EFM = 5eV

(EFS = 0.005eV ), temperature T = 0K, and source-drain bias, Vb = 0.

7.3.1 Effective Potential Barrier, Ueff

Based on the tight-binding model, we numerically calculate in Fig. 7.2. the spin po-

larization of current (P ) in the 2DEG conduction channel as a function of the effective
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potential barrier Ueff, taking into account the effects of channel length (d) and the num-

ber of barriers within d, i.e. M . Both M and d characterize the spin current conduction

path. Fig. 7.2(a) and (b) show the variation of P with increasing Ueff at T = 0K, for

different values ofM and d. Previously, based on a simpler flux-continuity model which

assumes a δ-function profile for the magnetic fields, it has been found that P is sensitive

to Ueff across the conduction path. GF calculations confirm this oscillatory behavior of

P with Ueff. As shown in Fig. 7.2(a) and (b), the oscillation of P increases in magni-

tude and frequency with increasing Ueff, especially as Ueff approaches the Fermi energy

of the leads. This supports previous notion that this device could be used as a tunable

source of spin current supply, for spin conductance in the device can be modulated by

gate bias. The effect of modulation has been particularly sensitive when Ueff is close to

the Fermi energy where electron transport occurs. This is especially so, given that the

modulation of P exceeds ±10% for all values of M and d considered in Fig. 7.2(a)

and (b), and can be converted to a measurable conductance change by well-established

magneto-resistance techniques. At certain values of Ueff the spin polarization is zero, i.e.

P = 0%. By modulating the gate bias such that P = 0%, the device can be utilized to

function as a basic resistor without any spin polarizing effect.

7.3.2 Number of FM gates, M

It is reasonable to expect that the magnitude of the spin polarization should increase with

the number of magnetic gates M for a fixed channel length d, and indeed, this trend is

reflected in the numerical results of Fig. 7.2(a) where d is fixed at 20nm. When M = 1,

we attain a modulation of P of ±10% over a gate bias range ∆Ueff of 0.95 − 1.00eV ;
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while for M = 3, the modulation in P reaches ±30% over ∆Ueff of 0.95 − 1.00eV .

However the frequency and the shape of the curves look similar with increasing M in

that the zero-crossing P = 0 points for all three curves coincide, leaving only the curves

between the fixed P = 0 points to vary in strength. In fact the region at around zero-

crossing “1” is a useful zone for device operation as varying Ueff about this point changes

P from positive to negative and vice versa.

7.3.3 Conduction channel length, d

The inset in Fig. 7.2 (a) shows the effect of M on the P for device with longer channel

length, i.e. d = 35nm. It is worth noting that the effect of increasing M on the P curves

of a device with d = 35 is similar to that with d = 20nm, except for the presence of

more zero-crossing P points in the case of longer channel length. These results show

that channel length affects the gate operating bias zone for conductance modulation but

has little effect on the conductance modulation itself.

We will now investigate the effect of the conduction channel length d on P more

thoroughly, while keeping the number of gates constant at M = 3. Figure 7.2 (b) shows

the variation P for different channel length. Two major effects are observed with in-

creasing channel length. Firstly, as in the case of increasing M , we notice an increase in

the average magnitude of the P oscillations with increased d. The maximum amplitude

of oscillation increases from P = ±50%, ±95%, to ±100% when d is increased from

d = 20nm, 35nm to 50nm, respectively. Secondly, unlike in the case of increasing M ,

we find a strong dependence of the frequency of the P oscillations on increased chan-

nel length. For instance within the range shown in the Fig. 7.2(b), we can notice one
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peak when d = 20nm, three peaks when d = 35nm and four peaks when d = 50nm.

Higher frequency implies that a small change in the Ueff will cause multiple variations in

P across various zero-crossings. The increase in the number of zero-crossing P points

over Ueff offers a wider range for choosing the proper gate bias operating zone, but

overly crowded zero-crossings within a small Ueff range implies operation instability. A

small fluctuation of Ueff due to thermal of stray fields could cause sufficient unsolicited

conductance modulation, sufficiently to destabilize the device.

In general, the increase in both d and M results in improved performance, in

terms of higher spin polarization strength and/or greater range of zero-crossings for

conductance modulation. However, in practical terms, it is not advantageous to increase

these two parameters indefinitely. As discussed above, although a high frequency of P

oscillations with Ueff is desirable for conductance modulation in a spin transistor, too

high a frequency will be detrimental to device performance, since the device becomes

sensitive to any small fluctuations in the gate bias. Indeed, if the device is to be used as

a constant and not a tunable spin current source, it would be more advantageous for the

gate oscillations in P to be minimal, so that the device can provide a stable supply of spin

current. Besides, a short gate or device length is preferred for device miniaturization.

Furthermore, our model assumes ballistic electron transport in the 2DEG channel, i.e.

the optimal values of d andM would be constrained by the electron’s MFP in the 2DEG.

7.3.4 Temperature T

All the above calculations have been carried out at T = 0K. For a more practical

application we have also shown the results at room temperature, T = 300K. The results
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are plotted in Fig. 7.2(c) and (d). As expected at room temperature the spin polarization

is highly degraded. However, we still obtain significant spin polarization of P > 10%

even at room temperature. The effect of M on P at room temperature [refer Fig. 7.2(c)]

is similar to the effect of M on P at T = 0K. However channel length, d shows a very

significant effect on P at room temperature. Indeed Fig. 7.2(d) shows that device with

longer channel length is more sensitive to temperature change, and thus the performance

degrades more significantly at room temperature. For example, the maximum value of P

for the device with d = 20nm drops only 30% (from P = 50% at T = 0K to P = 20%

at T = 300K), compared to a huge drop of 95% (from P = 100% at T = 0K to

P = 5% at T = 300K) for the device with d = 50nm. This shows that shorter devices

are less susceptible to the detrimental effect of temperature change to P . The reason

for such degradation is obvious as at higher temperature, the thermal broadening of

the lead Fermi energy have a strong degradation effect on spin dependent transmission

across the barriers, necessarily reducing spin current. The useful conclusions we can

draw from these results is that while increasing M and d will increase P , the latter

subjects the device to a more severe temperature degradation. The obvious pointers to

device physicists are, for those who seek to improve P of a spin transistor, engineering

more FM gates within a fixed channel length would be a more effective approach than

increasing the channel length.

The effect of temperature has largely been neglected in previous studies which

focused mainly on the theoretical concept of field-induced spin current. To study the

temperature effect more thoroughly, we investigate the decrease of P with increasing

temperature for different values of Ueff as shown in Fig. 7.3(a). In fact, the suppression

of P due to temperature is also dependent on the applied gate bias. For example at
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Figure 7.3: a) Spin polarization, P as a function of temperature, T at different values of Ueff.
Inset in (a) shows P as a function of Ueff, at different T . b) P as a function of gate bias voltage,
Vb at different values of Ueff. Inset in (b) shows spin polarization, P as a function of Ueff, at
different Vb.

Ueff = 0.99EFM , a very steep decrease in the magnitude of P with increasing temper-

ature is noticed compared with other values of Ueff. The inset in Fig. 7.3(a) shows that

the variation of P vs. Ueff is suppressed as temperature increases, clearly showing the

degradation effect of temperature not only lowers average P but slows its variation with

Ueff, thus lowering conductance modulation.

7.3.5 Bias Voltage Vb

In the above, we have investigated the effects of device geometry on the spin current

in the limit of zero source-drain bias, i.e. Vb → 0. In the following, we will study the

effects of a finite applied bias voltage (Vb) on the spin polarization. To calculate the spin

current for a finite Vb, we recall (6.29) with µL(R) = EF + (−)eVb/2. The dependence

of P on Vb is shown in Fig. 7.3(b). The main function of the source-drain bias, Vb is to

provide a current drive through the device, whilst maintaining the device sensitivity to

the gate bias. Therefore, for device stability, the variation in P with Vb should not be
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too large, since the purpose of Vb is not to modulate the spin current. In the main plot

of Fig. 7.3(b), we found the variation in P with Vb to be minimal for very low Vb, i.e.

Vb < 0.025eV . For medium values of Vb, i.e. 0.025eV < Vb < 0.2eV the variation in P

with Vb is relatively large. For larger source-drain bias, i.e. Vb > 0.2eV , the magnitude

of P decreases to close to zero and its variation with Vb is also low compared to the

region of medium Vb. It is quite clear now that medium Vb region is not suitable for

device operation. Taking a closer look at the low Vb region reveals interestingly that

P changes significantly with Ueff; in fact such trend is also observed in the medium Vb

region. One can thus conclude that the low Vb region is ideal for spin transistor operation

as it provides all the required features, namely high average P , sensitive P modulation

by Ueff, and importantly insensitive P modulation by Vb. However, it is important to

note that in a practical device, Vb has to be large enough to provide sufficient current

drive through the device; optimization would thus be necessary here. In fact the inset in

Fig. 7.3(b) shows non-heuristically that when Vb is low, P as well as its modulation with

Ueff is generally higher. A closer inspection of the inset also shows that as Vb increases,

there is a shift in the maximum value of P . For instance when Vb increases from 0V ,

0.05V , to 0.1V the negative peaks of P shift from Ueff(EFM) = 0.988, 0.992, to 0.997

respectively. It is important to note that although both positive and negative peaks shift,

the zero-crossing remain pretty much fixed to 0.987eV .

7.3.6 Magnetic Barrier Profile

In most of the previous studies of spin polarization under magnetic field, a δ-magnetic

field was utilized. Here, we defined a more realistic barrier with Lorentz distribution.
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Figure 7.4: Spin polarization, P as a function of Ueff . (a) and (c) correspond to an magnetic
field with γ = 100nm and 1nm, respectively. (b) shows P with increasing spread in magnetic
field profile, γ.

In this more realistic distribution, the magnetic field spreads over a distance along x-

axis. Therefore it is worth studying the effect of the spread on polarization of current

in the device. In our simulation, this spread is characterized by a scalar parameter,

γ. Figure 7.4 shows the variation of P for different γ. For all the values of γ’s, the

peak of the magnetic field is fixed at 1T . As shown in the figure the maximum value

of P increases with increasing γ for a fixed gate bias. This result which shows that

spatially broadened field could generate higher spin polarization than focused field is an

interesting finding, since it is more technologically easy to produce a magnetic field that

spreads over a large distance, than producing a concentrated magnetic field.

The P peak also shifts towards the left as the γ increases. Knowing this trend, one

can attempt to capture the P peak by lowering Ueff for higher γ. These results would
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again be useful for device engineers to optimize the performance of a spin transistor at

least for achieving high P .

7.4 Summary

We have applied the GF formulation described in the previous chapter to design a viable

form of spin current transistor which passes electron through a series of wavy magnetic-

electric barriers. We carried out a detailed simulations that take into consideration the

field broadening effect, the anticipated temperature degradation of spin polarization, and

calculated P , P variation with gate bias and source-drain bias, subject to important ge-

ometrical property of channel length as well as the number of FM gates within a fixed

channel length. We concluded that increasing channel length or the number of FM gates

within increases P ; but raising the latter within a fixed channel length should be prefer-

able as it does not exacerbate the temperature degradation of P , and is consistent with

the trend of device minituarization. Another important conclusion of this work is that we

have identified the low Vb region to be suitable for the operation of this spin transistor, as

in this region, the device delivers high P , reasonably sensitive P variation with gate bias,

and relatively insensitive P variation with source-drain bias. Last, results which show

that broadened field is capable of generating higher P than spatially concentrated field

is a rather jubilating finding for imparting broadened field to the device is technologi-

cally easier. In summary, our device could provide useful guidance to experimentalists

or device engineers seeking to device a truly viable form of spin current transistor.



Chapter 8
Multiscale Spin Tunneling Theory

In the previous chapter, we have used GF method to study the spin transport across magnetic and
electric barrier. In this chapter we integrate the two main spin transport models we have described
earlier, i.e. 1) the microscopic GF formalism, and 2) macroscale SDD model, and develop a
multiscale spin tunneling theory across FM/SC interface. This multiscale approach opens the
possible for the detailed theoretical studies of interfacial properties (e.g. height, shape and spin
asymmetry) required for achieving high SI via tunneling. Based on the calculated results, the
optimal interfacial properties have been identified for possible experimental verification.79

8.1 Introduction

Electron propagation through potential barriers, which are induced either by interfacial

roughness between adjacent layers, systematic doping of bulk layers with impurities,

band alignment between different layer materials, or external potential applied locally,

plays a crucial role in multilayer devices, e.g. SV sensors,79, 80, 90, 150, 151 MTJ,152, 153 lat-

eral spintronics devices15, 61, 154, 155 and traditional CMOS transistors. In fact, in semi-

conductor spintronic devices, the presence of tunneling barriers can greatly enhance SI

efficiency from a FM electrode into the SC device.36, 37, 41 Even in conventional ferro-

magnetic metal multilayers, spin-dependent scattering at the layer interfaces as opposed

to scattering in the bulk, provides a significant contribution to the GMR effect.14, 156

Conversely, spin flip at the interfaces can result in a large suppression of MR.157 More

143
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recently, basic understanding of the ballistic tunneling process through barriers,158 and

rapid advances in nanofabrication techniques, have improved the capability of engineer-

ing interfacial barriers with significantly better performance.159

In this chapter, we develop a multiscale spin transport theory for the investigation

of tunneling SI, which is an important phenomenon for spintronic applications. Spin

current due to conduction electrons is a non-conserved quantity, and thus the efficiency

with which it is transmitted from a magnetic source layer to a usually non-magnetic

collector layer, is crucially determined by the physics of the electron propagation and

transmission through the interfacial barrier. Therefore, the SI process warrants a de-

tailed analysis beyond the conventional macroscopic picture. Previous theoretical in-

vestigations of SI across a tunnel barrier are either based on the purely semiclassical

SDD approach [Sec. 2.2] (which treats the barrier as a lump resistance element), or by

focusing on the ballistic tunneling across the barrier region [Chap.6].

Here, we apply the effective mass GF formalism [refer Sec. 6.3] to analyze the

microscopic effects of the tunnel barrier potential on the incident spin-current. At the

same time, the transmitted spin current is also dependent on the spin accumulation and

resulting electrochemical potential at the two adjacent contacts. The spin accumula-

tion on the contacts can be determined by considering the semi-classical SDD transport

[Sec. 2.2] within the bulk of the contacts.25, 35, 36 Thus, the main focus of this chapter is

to 1) introduce a self-consistent approach that combines the microscopic GF formalism

within the nano-scale barrier and the SDD model within the macroscopic contacts, and

2) based on this model, study the effects of barrier properties, e.g. potential profile and

geometry, on the tunneling transport, in order to optimize the tunneling SI for potential
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spintronic applications.

In the self-consistent approach, the nonequilibrium potentials at the leads are cou-

pled to the GF calculation for transport within the barrier. One consequence of this

self-consistent approach is that the effective barrier resistance as seen by the spin-up

and down electrons becomes a dynamical quantity which depends on external factors

such as the applied bias, instead of a static parameter which is solely dependent on the

intrinsic barrier properties. The resulting SI efficiency in the multilayer will be a func-

tion of external parameters, e.g. the applied voltage bias or current density,160, 161 in

agreement with recent experimental observations. Thus, our model can incorporate spin

transport effects that may have been neglected by previous models. The analysis of these

effects such as the increase in spin asymmetry of tunneling conductance with increasing

barrier height and barrier spin asymmetry, may potentially guide experimental efforts to

engineer interfacial barriers for optimal SI.

8.2 Model and Theory

8.2.1 Self-consistent Model

The basic structure under consideration [Fig. 8.1] is a multilayer device comprising a

bulk FM left layer acting as the spin injector, a thin interface, and the bulk SC right layer,

which receives the injected spin current. The interfacial barrier is located within the SC

region. At equilibrium, the Fermi levels of the SC and FM layers are equalized, but

under an applied electrical bias, a non-equilibrium electrochemical profile is obtained,

typically as shown in Fig. 8.1 (top). Note that in both the FM and SC layers, there
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Figure 8.1: (Top) Non-equilibrium distribution of electrochemical potential across the multi-
layer structure under electrical bias. (Bottom) Magnified diagram of the interfacial barrier of
thickness w = 2.5nm, which is spatially discretized into n = 5 planar sections for the GF anal-
ysis. µL(µR) indicates the spin-up electrochemical potential at the boundaries of the barrier, i.e.
at A and B. EFL(EFR) is the equilibrium Fermi level of the left(right) contacts. EC indictaes
the conductacne band of the seiconductor. For clarity, only the spin-up potentials are drawn.

will be a split in the spin-up and down electrochemical potentials in the vicinity of the

interfacial barrier, resulting in spin accumulation.

In most previous works utilizing GF analysis, the electrochemical potentials ad-

jacent to the barrier on both sides are treated as a reservoir constant, i.e. independent of

the nature of electron propagation within the barrier. Whilst in the bulk SDD approach,

electron transport in the magnetic multilayers has been modeled based on purely pas-

sive factors, such as device geometry, resistivity and the different spin diffusion lengths

in its constituent layers. In our self-consistent, multiscale approach, however, the spin-

dependent electrochemical potentials and the tunneling resistance across the barrier are

solved self-consistently by combining the microscopic GF model within the barrier and
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Figure 8.2: Self-consistent calculation scheme for interfacial resistance and current density,
which is iterated until the current density converges.The calculation begins by assuming initial
values of the charge current density (jp = jp + jp) and interface resistance (RI ). Based on the
SDD equations, the spatial distribution of the electrochemical profile within both the FM and
SC leads can be determined. Subsequently, the evaluated electrochemical potential values at
sites immediately adjacent to the barrier are input as variables in the GF calculation of electron
transmission through the barrier. The microscopic model within the barrier constitutes a parallel
scheme to determine the current density (jg) and the interfacial resistance (RF ). The calculation
cycle is repeated until the current densities jp and jg, and hence the corresponding interfacial
resistances RI and RF converge.

the SDD model in the contacts, as illustrated schematically in Fig. 8.2.

In this self-consistent calculation scheme the interfacial resistance and current

density is iterated until the current density converges. In this way, we have unified the

microscopic GF and macroscopic SDD models within and outside the barrier, respec-

tively, and obtain the effective tunneling resistance value which is consistent with both

models. Thus, the nonequilibrium potentials at the leads are coupled to the GF calcula-

tion for transport within the barrier.

8.2.2 Green’s Function (GF) formalism

The interfacial central region of the three-region device of Fig. 8.1, of thickness w = 2.5

nm, is discretized into n planar sections. The number of discrete sections is chosen to

be n = 5 such that the width of each section a = w/n = 0.5nm is smaller than

the Fermi wavevector λF ≈ 1.5nm thus ensuring accuracy of the tight-binding GF
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calculations. The left FM and the right SC regions are both treated as semi-infinite in

width. Throughout this chapter, the superscript R(A) refers to retarded and advance

function, and the subscript L(R) refers to the function at left(right)contact. Following

the tight-binding lattice formalism [Sec. 6.3], the retarded GF matrix for the interfacial

region can be expressed by GR =
(
E −HC − ΣR

L − ΣR
R

)−1, where ΣR
L and ΣR

R are the

(5× 5) self-energy matrices, due to adjacent sites on the contacts to the left and right of

the central region. The explicit form of GR for the present model is given by:

GR =



E −HC1 − tLg0tL t 0 0 0

t E −HC2 t 0 0

0 t E −HC3 t 0

0 0 t E −HC4 t

0 0 0 t E −HC5 − tRg6tR



−1

(8.1)

where HCj = (2t+ Uj) for j = 1, . . . , 5, with Uj being the localized potential at lattice

site j, t = ~2/2ma2 i.e. the energy coupling constant between adjacent discrete sites,

and a is the distance between them. Equation (8.1) is derived from (6.27). Since, in

the present model, there is no external magnetic field, (8.1) is obtained by setting the

magnetic field and vector potential terms in (6.27) to zero.

Before the inverse matrix of (8.1) can be evaluated, we require the explicit ex-

pression for the self-energies of tLg0tL and tRg6tR. In the one-dimensional single mode

form, as an approximation, the flat-potential analytic GF for the semi-infinite left and

right leads is given by g0(6) = − (1/t) exp
(
ikL(R)a

)
, where kL(R) =

√
2m
(
E − VL(R)

)
/~ =√

2m
(
E − µL(R) + EFL(R)

)
/~, withEFL(R) the equilibrium Fermi level of the left(right)

contacts, and µL(R) the non-equilibrium electrochemical potential incident on the left/right
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side of the barrier. VR is the energy quantity as described in Fig. 8.1. To calculate the

current perpendicular to the multilayer plane at a particular site, we consider the ballistic

spin current expression of (8.2) which could be obtained from (6.29),

Jσ =
∑
k//

−e
A~

∫
dE

2π
(fLσ − fRσ)Trace

[
ΓLσGRσ ΓLσGAσ

]
(8.2)

where A is the device cross sectional area, σ is the index for spin up(↑)/down(↓) and

fσL,R = 1/
[
1 + exp

(
E − µσL,R

)
/kT

]
is the Fermi occupation probability. Since the

non-equilibirum GF applies only to the interfacial potential in the SC region, and as-

suming that the SC material has a uniform effective mass over the transverse x-y plane,

T(E) = Trace
[
ΓLσG

R
σΓLσG

A
σ

]
will be independent of k//. Thus current can be calcu-

lated as:

Jσ0 =
−e
~

∫
dk//

4π2

∫
dE

2π
(fσL − fσR) T(E) (8.3)

The final current expression is:

Jσ0 =
−2πmekT

h3

∫ +∞

−∞
dET(E) (F σL − F σR) (8.4)

where F σ
L,R = ln

[
1 + exp

(
µσL,R − E

)
/kT

]
.

8.2.3 Boltzmann spin-drift-diffusive (SDD) model

The GF calculations described in the previous section require the electrochemical po-

tential values of µ0, µ↑ and µ↓ at the left/right boundaries between the central region and

the semi-infinite FM/SC contacts. These have to be determined by evaluating the elec-

trochemical potential profile within the bulk FM and SC leads using the macroscopic

SDD theory [(2.3)]. The potential discontinuity at the interface due to the interfacial

resistance is described by the following equation: −eJσ0 Rσ
I = µσR − µσL, where Rσ

I is the

areal spin dependent interfacial resistance experienced by electrons at interface.
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Figure 8.3: Left axis: Spin-up and down resistances as a function of interfacial barrier height U .
The difference of resistances becomes increasingly more divergent with U . Right axis: Tunnel-
ing spin injection ratio γ increases with U due to the increasingly spin asymmetric resistances.
Inset: Spin-up and down resistances (left axis) and spin injection ratio (right axis) as a function
of spin asymmetry η of barrier potential, with U↑ fixed at 0.2eV .

The electrochemical potential µσR,L at the interfaces andRσ
I are solved self-consistently

by combining the microscopic GF model within the barrier and the Boltzmann SDD

model in the contacts, as illustrated schematically in Fig. 8.2.

8.3 Results and Discussion

Based on the above self-consistent scheme, we calculate the resistances R↑ and R↓ as

experienced by the spin-up and down electrons, respectively, and the SI ratio, defined as

γ = (j↑ − j↓)/(j↑ + j↓) at x = w. Unless otherwise stated, we assume the following

parameter values in our calculations:2, 3, 162, 163 j = 106A/cm2, resistivity (ρFM , ρSC) =

(10−7, 10−4)Ωm, intrinsic spin polarization ratio (αFM , αSC) = (0.4, 0.0), effective

mass (m∗FM ,m
∗
SC) = (1, 0.067)me, and Fermi energy (EFM , EFS) = (10, 0.05)eV .

Figure 8.3 shows that both the magnitude (R↑ +R↓) and spin asymmetry (R↑ −R↓)
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of the interfacial barrier resistance increases with interfacial barrier height U , even when

the barrier height is spin-independent (i.e. η = 0). While the former is a well-established

fact, the latter is a rather unexpected result arising out of the self-consistent, multi-

scale calculations. This is because the semiclassical SDD models predict high SI only

in the presence of spin-asymmetric tunnel barriers.36 The divergence between the R↑

and R↓ with increasing barrier height naturally leads to a higher SI ratio, as by the γ

curve of Fig. 8.3. Additionally, as shown in the inset of Fig. 8.3, the divergence be-

tween the spin-up and down resistances also increases with increasing spin asymmetry

η = (U↓ − U↑)/(U↑ + U↓) of the barrier potential, thus enhancing the SI ratio through

the barrier.

It is worth noting that the increase of SI ratio with increasingly divergent spin

resistance is consistent with previous theoretical results.36 Since it has been previously

predicted that SI efficiency may be improved by increasing the spin asymmetry of the

tunneling barrier potential, considerable experimental efforts have been focused on en-

gineering suitable tunneling barrier with a large spin-split property. Our calculations,

however, suggest that high SI efficiency may also be achieved by engineering a suit-

ably high barrier potential, without necessarily having to enhance its spin-split property,

which is a more challenging proposition in practical tunnel barriers. Thus, the fact that

the spin asymmetry of barrier resistance is sensitive to the barrier height is a useful result

of our work. Further, it is instructive to conduct a systematic study of how the diver-

gence between the spin-up and down resistances is influenced by specific tunnel barrier

profiles and thickness.

We consider three types of barrier potentials: 1) exponentially increasing (in go-



8.3 Results and Discussion 1521.3 Results and Discussion 11

Figure 1.4: Spin injection ratio γ as a function of barrier height U and barrier geometry
as characterized by AR. The barriers considered have zero spin-asymmetry (η = 0) and
the same area under their respective potential curve.

by increasing the spin asymmetry of the tunneling barrier potential, considerable

experimental efforts have been focused on engineering suitable tunneling barrier

with a large spin-split property. Our calculations, however, suggest that high spin

injection efficiency may also be achieved by engineering a suitably high barrier

potential, without necessarily having to enhance its spin-split property, which is a

more challenging proposition in practical tunnel barriers. Thus, the fact that the

spin asymmetry of barrier resistance is sensitive to the barrier height is a useful

result of our work.

Further, it is instructive to conduct a systematic study of how the diver-

gence between the spin-up and down resistances is influenced by specific tunnel

barrier profiles and thickness. We consider three types of barrier potentials: 1)

exponentially increasing (in going from the FM to the SC layer), 2) exponentially

decreasing and 3) square profiles. These barrier profiles are visually depicted in the

inset of Fig. 1.4. For a quantitative description of the barrier profile, we introduce

Figure 8.4: Spin injection ratio γ as a function of barrier height U and barrier geometry as
characterized by AR. The barriers considered have zero spin-asymmetry (η = 0) and the same
area under their respective potential curve.

ing from the FM to the SC layer), 2) exponentially decreasing and 3) square profiles.

These barrier profiles are visually depicted in the inset of Fig. 8.4. For a quantitative

description of the barrier profile, we introduce a variable AR = (U0/U), which is the

ratio of the barrier potential at x = 0 (U0) to the height of an equivalent square barrier

(U). Barriers of the same thickness w can be considered equivalent when the area under

their respective barrier potentials are equal. This is because for barriers with identical

w, the area under the barrier represents the average potential experienced by the tunnel-

ing electron while traversing across the barrier. By keeping the area under the barrier

constant, we thus have AR < 1 (AR > 1)for the exponentially increasing (decreasing)

potentials, and AR = 1 for the square barrier.

We first consider the effect of barrier height for three representative barrier po-

tentials with specific AR values of 0.22, 1.0 and 2.37, respectively. For all three barrier

shapes, the SI ratio increases monotonically with the barrier height U , but to a varying

extent depending on the barrier geometry (Fig. 8.4). Barriers with an exponentially de-
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creasing (increasing) slope exhibit the least (greatest) sensitivity to increase in barrier

height. Next, we analyze the effect of barrier geometry (i.e. AR) on spin injection. As

seen from the inset of Fig. 8.4, there is a substantial decrease in the SI ratio with increas-

ingAR. This is because the effective tunneling resistance of an exponentially decreasing

barrier (i.e. with AR > 1) is lower than that of an exponentially increasing barrier (with

AR < 1). This translates to a lower SI efficiency, since (as shown in Fig. 8.3) SI gen-

erally increases with increasing resistance of the interfacial barrier. While a higher U

improves the SI ratio γ, the rate of increase in γ is suppressed at large AR values. It

should be noted that barriers with AR ≈ 2 have a profile similar to that of a Schottky

barrier. Thus, our analysis indicates that a Schottky effect at a FM/SC interface is detri-

mental to achieving high SI efficiency, compared to the more square-like insulating (e.g.

oxide) barrier potential of the same tunneling resistance.

8.4 Summary

We integrated the two spin transport models that we have described previously – SDD

and GF – and developed a multiscale spin tunneling theory to study the tunneling SI

process through FM/SC interfacial barrier by means of a self-consistent analysis. The

calculated results show that SI efficiency increases with barrier height, as well as bar-

rier asymmetry. The former trend is not obvious and has not been formally predicted

previously. Our model also predicts a strong dependence of the SI ratio on the barrier

profile. In general, an exponentially increasing interfacial barrier between a FM metal

and a SC contact yields a higher ratio compared to a Schottky-like exponentially de-

creasing barrier. This suggests that a pronounced Schottky effect should be avoided in
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order to achieve a high SI ratio. Our calculated results provide a guide to the engineering

(e.g. via doping) and biasing of interfacial barriers in order to obtain the optimal barrier

height and profile for tunneling SI.



Chapter 9
Conclusion

9.1 Conclusion

In this thesis, first, we developed a mathematical model to describe the spin transport

in a PSV device. Using this model, we analyzed the effect of material parameters on

the MR of the PSV. In our analysis we focused mainly on understanding the physics of

spin transport as well as optimizing the material parameters to achieve high MR ratio.

We discover various novel effects which are further utilized to enhance the MR ratio.

Then, we studied the optimization of MR by including additional resistive components–

IR and additional layers–into the basic PSV device. In both cases, we found that there

is a competition between all the individual resistive components in dominating the spin

asymmetry of the device. We also analyzed the interplay between this competitive resis-

tance effect and spin-relaxation for further optimization of the MR. Then, we studied the

current confinement effect which rises due to the effect of patterning the layers in a SV

device. The current confinement effect further complicates the competitive resistance

effect due to other phenomenon such as current crowding and spreading resistance. To

optimize the MR, all these effects were considered. We showed that device performance

155
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can be highly enhanced by carefully utilizing these effects.

Then, we studied electron and spin transport across a ballistic channel in a 2DEG

spin transistor. We found that the transport properties of the device, such as the trans-

mission probability, the SI efficiency and the MR ratio, all exhibit oscillatory behavior

when the electron energy is varied. The basis of these oscillations is the resonant trans-

port across the 2DEG. By utilizing this resonant transport property, we further proposed

a SC-based gate controlled MR device that could perform the function of a metallic SV,

but with the advantage that its MR can be optimized (post-fabrication) and its stability

enhanced by controlling a gate bias voltage. Next, we modified the spin transistor by

designing a viable form of spin transistor in which electron passes through a series of

wavy magnetic-electric barriers. We carried out a detailed simulations that take into con-

sideration the field broadening effect, the temperature degradation of spin polarization,

and calculated SI, SI variation with gate bias and source-drain bias, subject to impor-

tant geometrical property of channel length as well as the number of FM gates within a

fixed channel length. This device provided useful guidance to experimentalists or device

engineers seeking to device a truly viable form of spin current transistor.

Finally, we combined the two main mathematical models that we have developed

in this thesis–SDD and GF–and developed a multiscale theory to study the tunneling SI

process through an interfacial barrier by means of a self-consistent analysis. The calcu-

lated results enable us to carry out MR optimization by utilizing the interfacial properties

such as barrier profile and barrier spin-asymmetry. Based on the calculated results, the

optimal interfacial properties have been identified for possible experimental verification.
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In summary, in this thesis we have successfully achieved the 3 main objectives:

1. We have developed mathematical models to describe the physics of spin transport

in spintronic nanodevices. The two main mathematical models that were devel-

oped in this thesis are, i.e.1) semi-classical SDD model, and 2)the mesoscopic GF

formalism.

2. Using these models, we have studied the effects of various device parameters on

spin transport. Via our studies, we have understood the physics of spin trans-

port, as well as identified various anomalous and novel effects. The spin transport

physics/effect that were noticed and/or studied are:

• The effect of structural and physical parameters.

• The effect of spin-independent resistivity on spin-asymmetry.

• Anomalous MR suppression effect due to the coupling of spin relaxation
with resistivity.

• The complex interplay between spin-asymmetry, spin relaxation and the
anomalous MR suppression effect due to increase in FM layer thickness.

• competitive resistance effect due to interfacial resistance and additional lay-
ers.

• Current confinement, current crowding and spread resistance due to pattern-
ing of layers.

• Resonant spin tunnelling in ballistic regime.

• Gate controlled MR in spin-transistors.

• Ballistic spin tunneling across magnetic-electric barriers.

• Effect of interfacial barrier geometry and shape.

3. By careful utilization of the results and theoretical knowledge obtained from our

analysis, we further explored different means as well as proposed new designs to

enhance the performance of spintronic devices.

Our results, models and the simulation programs that have been developed to model spin

transport are also useful for the experimentalist to predict the device performance prior
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to conducting experiments and practical realization.

9.2 Further work

The GF formulism introduced in this thesis is a very powerful tool to study the quantum

transport phenomena in nanodevices. Thus by using the GF method, we can continue

to study many other spin transport phenomena, which could be useful in optimizing

the performance of spintronic devices. In the future I will use the NEGF method to

study physics of electron transport in 1D materials, especially in graphene nanoribbons

(GNR). The GNR is a quasi-one dimensional system which has attracted various in-

teresting studies on transport,164–166 magnetic,167–173 and optical172, 173 properties. I will

develop a mathematical model based on the pi-orbital tight binding (TB) method [4] to

describe the electron transport in GNR. Using this model, I will investigate the effects of

atomic disorder on the electronic transport in graphene. The effect of applied magnetic

field in a disordered graphene will also be investigated. I will further

1. include other physical phenomena such as spin scattering and phonon scattering
into the existing model;

2. model different structure such as shaped modified GNR and bilayer GNR; and
investigating their effects on the electronic transport.

My aim is to gain a clear understanding of these phenomena and further utilize the

effects in device application, e.g. in magnetoresistive devices.
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41, 164006 (2008)).

[63] Mattana, R., J.-M. George, H. Jaffres, F. Nguyen Van Dau, A. Fert, B. Lepine, A. Guiv-
arch, and G. Jezequel, Phys. Rev. Lett. 90, 16601(2003).

[64] Fiederling, R., M. Kleim, G. Reuscher,W. Ossau, G. Schmidt, A. Waag, and L. W.
Molenkamp, Nature 402, 7877905(1999).

[65] Weisbuch, C., and C. Hermann, Phys. Rev. B 15, 816822 (1977).

[66] Y. Q. Li and D. W. Steuerman and J. Berezovsky and D. S. Seferos and G. C. Bazan and
D. D. Awschalom, Appl. Phys. Lett. 88, 193126 (2006).

[67] D. Yoshizumi, Y. Muraoka, Y. Okamoto, Y. Kiuchi, J. Yamaura, M. Mochizuki, M. Ogata,
and Z. Hiroi, J. Phys. Soc. Jpn. 76, 063705(2007).

[68] A. Barthelemy, A. Fert, and F. Petroff, Handbook of Magnetic Materials(Elsevier, Ams-
terdam, 1999).

[69] E.Y. Tsymbal and D.G. Pettifor, Solid State Phys. 56, 113 (2001).



Bibliography

[70] M.A.M. Gijs and G.E.W. Bauer, Adv. Phys. 46, 285 (1997).

[71] S.S.P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).

[72] J. Barnas, A. Fuss, R. E. Camley, P. Grunberg, and W. Zinn, Phys. Rev. B 42, 8110 (1990).

[73] Y. Seyama, A. Tanaka, and M. Oshiki, IEEE Trans. Magn. 35, 2838 (1999).

[74] H. Yuasa, M. Yoshikawa, Y. Kamiguchi, K. Koi, H. Iwasaki, M. Takagishi and M. Sahashi,
J. Appl. Phys. 92, 2646 (2002).

[75] H. Yuasa, H. Fukuzawa, H. Iwasaki, M. Yoshikawa, M. Takagishi and M. Sahashi, J.
Appl. Phys. 93 (2003), 7915.

[76]

[77] M. Takagishi, K. Koi, M. Yoshikawa, T. Funayama, H. Iwasaki, and M. Sahashi, IEEE
Trans. Magn. 38, 2277 (2002).

[78] P. M. Levy, S. Zhang, T. Ono, and T. Shinjo, Phys. Rev. B 52, 16 049 (1995).

[79] S. F. Lee ,W. P. Pratt Jr., R. Loloee, P. A. Schroeder, and J. Bass, Phys. Rev. B 46,
548(1992).

[80] W. P. Pratt Jr., S. F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder, and J. Bass,Phys.
Rev. Lett. 66, 3060 (1991).

[81] Ed. By H. Ehrenreich And F. Spaepen, Sol. State Phys., vol. 56, pp.113-237, 2001.

[82] E. Yu. Tsymbal and D. G. Pettifor , J. Magn. Magn. Mater, vol. 202, Issue 1, Pages 163-
173 , June 1999.

[83] Tehrani, S., B. Engel, J. M. Slaughter, E. Chen, M. De-Herrera, M. Durlam, P. Naji, R.
Whig, J. Janesky, and J. Calder, IEEE Trans. Magn. 36, 27522757 (2000).

[84] S.Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cam-
bridge, UK, 1995.

[85] S. Nonoyama, A. Orugi, Phys. Rev. B 57, 8797 (1998).

[86] Y. Meyerand and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

[87] S. S. P. Parkin, Z. G. Li, and David J. Smith, Appl. Phys. Lett. 58, 2710 (1991).

[88] M. Takagishi, K. Koi, M. Yoshikawa, T. Funayama, H. Iwasaki, and M. Sahashi, IEEE
Trans. Magn. 38, 2277, (2002).

[89] H. Fukuzawa, H. Yuasa, S. Hashimoto, K. Koi, H. Iwasaki, M. Takagishi, Y. Tanaka, M.
Sahashi, IEEE Trans. Magn. 40, 2236 (2004).

[90] M. A. M. Gijs, S. K. J. Lenczowski, and J. B.Giesberg, Phys. Rev. Lett. 70, 3343 (1993).

[91] S. Agrawal, M. B. A. Jalil, S. G. Tan, K. L. Teo, and T. Liew, Phys. Rev. B 72,
075352(2005).

[92] S. G. Tan, Mansoor B. A. Jalil, J. Guo, Thomas Liew, K. L. Teo, T. C. Chong, J. Magn.
Magn. Mater. 288, 418 (2005).



Bibliography

[93] Y. Yafet, J. Appl. Phys. 42, 1564 (1971).

[94] L. Berger, Phys. Rev. B 72, 100402R (2005).

[95] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, B. I. Halperin, Rev. Mod. Phys. 77, 1375
(2005).

[96] M. B. A. Jalil, S. G. Tan, S. Bala Kumar, Seongtae Bae, Phys. Rev. B 73, 134417 (2006).

[97] S. Bala Kumar, M. B. A. Jalil, S. G. Tan, and K. L. Teo, IEEE Trans. Magn. 42, 2459
(2006).

[98] K. Nagasaka, Y. Seyama, L. Verga, Y. Shimizu and A. Tanaka, J. Appl. Phys. 89 (2001),
6943.

[99] H. Fukuzawa, H. Yuasa, S. Hashimoto, H. Iwasaki, Y. Tanaka, Appl. Phys. Lett. 87,
082507 (2005).

[100] P. Holody, W.C. Chiang, R. Loloee, J. Bass, W.P. Pratt Jr., P.A. Schroeder, Phys. Rev. B
58, 12230 (1998).

[101] M. D. Stiles and D. R. Penn, Phys. Rev. B 61, 3200 (2000).

[102] E. I. Rashba, Eur. Phys. J. B 29, 513-527 (2002).).

[103] M. F. Gillies and A. E. T. Kuiper, J. Appl. Phys. 88, 5894 (2000).

[104] S. G. Tan, M. B. A. Jalil, Bala Kumar, K. L. Teo, and Thomas Liew, J. Appl Phys. 99,
084305 (2006).

[105] S. G. Tan, M. B. A. Jalil, S. Bala Kumar, K. L. Teo, Y. Zheng, and T. Liew, IEEE Trans.
Magn. 42, 2673 (2006).

[106] W. G. Wang, C. Ni, T. Moriyama, J. Wan, E. Nowak, and J. Q. Xiao, Appl. Phys. Lett. 88,
202501 (2006).

[107] Y. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).

[108] J. Peralta-Ramos and A. M. Llois, Phys. Rev. B 73, 214422 (2006).

[109] S. Yuasa, T. Nagahama, and Y. Suzuki, Science 297, 234 (2002).

[110] A. Vedyayev, N. Ryzhanova, C. Lacroix, L. Giacomoni, B. Dieny, Europhys. Lett. 39, 219
(1997).

[111] S. Zhang and P. M. Levy, Phys. Rev. Lett. 81, 5660 (1998).

[112] J. Mathon and A. Umerski, Phys. Rev. B 60, 1117 (1999).).

[113] J. J. Sun and P. P. Freitas, J. Appl. Phys. 85, 5264 (1999).

[114] P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, R. J. M. van de Veedonk, W. J. M. de Jonge,
Phys. Rev. Lett. 84, 2933 (2000).

[115] J. S. Moodera, T. H. Kim, C. Tanaka, C. H. de Groot, Philos. Mag. B 80, 195 (2000).

[116] P. LeClair, J. T. Kohlhepp, H. J. M. Swagten, W. J. M. de Jonge, Phys. Rev. Lett. 86, 1066
(2001).



Bibliography

[117] P. LeClair et al., Phys. Rev. B 64, 100406-1 (2001).

[118] T. Nozaki, Y. Jiang, Y. Kaneko, A. Hirohata, N. Tezuka, S. Sugimoto, and K. Inomata,
Phys. Rev. B 70, 172401 (2004).

[119] J. S. Moodera, et al., Phys. Rev. Lett. 83, 3029 (1999).

[120] T. Nozaki, N. Tezuka, and K. Inomata, Phys. Rev. Lett. 96, 027208 (2006).

[121] T. Hanbicki, O. M. J. van t Erve, R. Magno, G. Kioseoglou, C. H. Li, G. Itskos, R. Mallory,
M. Yasar, and A. Petrou, Appl. Phys. Lett. 82, 4092 (2003).

[122] H. Goronkin, S. Tehrani, T. Remmel, P. L. Fejes and K. J. Johnson, IEEE Trans. Electron
Dev. 36, 281 (1989).

[123] S. Agrawal, M. B. A. Jalil, S. G. Tan, K. L. Teo, and T. Liew, Phys. Rev. B 72, 075352
(2005).

[124] R. Lipperheide and U. Wille, Phys. Rev. B 72, 165322 (2005).

[125] S. G. Tan, M. B. A. Jalil, S. Bala Kumar, K. L. Teo, Y. Zheng, and T. Liew, IEEE Trans.
Magn. 42, 2673 (2006).

[126] S. G. Tan, M. B. A. Jalil, S. Bala Kumar, K. L. Teo, and Thomas Liew, J. Appl Phys. 99,
084305 (2006).

[127] H. D. Lu, L Shao, Y. L. Hou, T. P. Hou, Solid State Commun. 141, 61 (2007).
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Abstract

A detail understanding of the physics of spin transport phenomena is essential to

enhance the performance of present spintronic devices, as well as in designing new de-

vices for future applications. This thesis consists of theoretical study and simulation on

the physics of spin transport in spintronic nanodevices. The aim of our simulation is to

harness the physics of spin transport to improve the performance of devices such as the

spin-valves and spin-transistors, as well as to propose new design for these devices. In

this thesis, first the effects of various device parameters on spin transport is analyzed in

detail. Focus is given to the understanding of the fundamental physics of spin transport

as well as identifying any anomalous and novel effects. Once transport physics and the

various transport effects are well understood, then we utilize this understanding to en-

hance the performance of the devices. We also explore new methods and device designs

in order to further improve the performance.
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