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SUMMARY 
 
 
 Supply chain efficiency measurement is a very difficult and challenging task. It 

needs to take into account multiple performance measures related to the supply chain 

members and it also requires huge and intensive data collection. In addition, the nature 

of the data which are highly uncertain rendered many existing tools inoperable and 

unable to provide an accurate efficiency score. Realizing the challenges in measuring 

supply chain efficiency, this thesis focuses on some key methodological issues related 

to applying data envelopment analysis (DEA) to measure supply chain efficiency in 

stochastic environment. 

 This thesis is divided into three parts. In the first part, we present a relatively 

comprehensive literature review of DEA and supply chain efficiency measurement, 

which justifies the significance of the research work presented in this thesis. In the 

second part, we focus on the development of a tool based on DEA and Monte Carlo to 

measure supply chain efficiency in the stochastic environment. We develop a tentative 

DEA supply chain model to address the efficiency measurement of the entire value 

chain. Then, we enhance the model with Monte Carlo method to cater for efficiency 

measurement in stochastic environment. The Monte Carlo DEA method is able to find 

the distributions of the efficiency and tell where the true efficiency lies most of the 

time. The information obtained is more meaningful and insightful for managers in 

making decision compared to a discrete value of the efficiency.  

 In the third part of the thesis, we examine how to get a better estimate of the 

efficiency score through budget allocation in data collection. The reason of addressing 

the research problem within the context of the data collection is due to the fact that in 
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reality the users need to collect data in order to calculate the efficiency score. In order 

to solve the research problem, we develop two new methods which are the two-phase 

gradient technique and the GA based technique.  The GA and the two-phase gradient 

techniques are effective and efficient in solving the budget allocation problem. In 

addition, the second phase of the gradient technique, the GIS (Gradient Improvement 

Stage) is flexible and can be incorporated with other existing techniques to further 

improve the solutions. 

 The contributions of this research are three-folds. First, we provide an 

alternative way to measure efficiency in stochastic environment, which is Monte Carlo 

DEA. To show the usefulness of this method, we conduct an application study in 

supply chain. Second, in the context where data collection is needed and expensive, we 

provide a way on how to intelligently allocate the resources in data collection in order 

to get a better estimation of the efficiency score. Third, we develop two new 

techniques to solve this difficult problem.  

 This thesis provides the insights that it is important to conduct the data 

collection intelligently (i.e. by using the two sophisticated techniques) in order to get a 

better estimate of the efficiency and to achieve greater savings in the budget. Finally, 

this thesis provides a potential methodological contribution in the operational research 

field.  It incorporates the use of simulation optimization techniques with DEA to obtain 

a better and more meaningful result in efficiency measurement. Last but not least, the 

methodology suggested in this research is widely applicable to other fields as well 

other than supply chain in the area of efficiency measurement. 
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Chapter 1 

INTRODUCTION 
 

 

This thesis contributes to some methodologies issues in applying simulation 

optimization techniques and data envelopment analysis (DEA) to measure supply 

chain performance, which could be helpful to analysts and decision makers in dealing 

with stochastic environment. In this introductory chapter, some background 

information is first provided, which is followed by the scope and objective of our 

study. Finally, a summary of the contents of this thesis and its structure are presented.  

  

1.1 Background Information 
 

 Supply chain management has become one of the most frequently discussed 

topics in the business literature. According to Simchi-Levi (2003), supply chain 

management is a set of approaches utilized to efficiently integrate suppliers, 

manufacturers, warehouses, and stores, so that merchandise is produced and 

distributed at the right quantities, to the right locations, and at the right time, in order 

to minimize system wide costs while satisfying service level requirements. Supply 

chain is defined as a combinatorial system consisting of four processes namely plan, 

source, make and deliver,  whose constituent parts include material suppliers, 

production facilities, distribution services and customers linked together via the feed 

forward flow of materials and the feedback flow of information (Stevens, 1989; 
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Christopher, 1998).  Effective management of an organization’s supply chains has 

proven to be a very effective mechanism for providing prompt and reliable delivery of 

high-quality products and services at the least cost. This is an essential corner stone for 

the organizations to develop a sustainable competitive advantage and to remain at the 

fore front of excellence in a level playing market field.  To achieve an efficient supply 

chain, performance evaluation of the entire supply chain is extremely important. This 

means utilizing the combined resources of the supply chain members in the most 

efficient way possible to provide competitive and cost-effective products and services. 

Supply chain performance measurement needs to take into account the multiple 

performance measures related to the supply chain members, the complex relationship 

among the measures as well as the integration and coordination of the performances of 

those members (Simchi-Levi, 2003). In addition, it requires huge and intensive data 

collection, which is often not trivial.  As such, measuring supply chain efficiency is a 

very difficult and challenging task.   

 Ross (1998) mentioned that, even within large corporations such as Sears and 

General Motors which had large supply chain systems, the supply chain performance 

measurement systems were not in existence.  Rao (2006) and Chou et al. (2005) 

further highlighted that in view of the current level of complexity in performance 

measurement, it requires more sophisticated tools to measure efficiency. The absence 

of the performance measurement tool in supply chain is mainly due to the difficulties 

in measuring the supply chain efficiency.  

 

 



Chapter 1: Introduction 
 

3 
 

1.2 Difficulties in measuring supply chain efficiency 
 

Traditionally, the supply chain is usually managed as a series of simple, 

compartmentalized business functions. The traditional supply chain was normally 

driven by manufacturers who managed and controlled the pace at which products were 

developed, manufactured and distributed (Steward, 1997). At such, measuring supply 

chain efficiency during traditional times could be carried out fairly easily in a simple 

manner. Generally, the efficiency is measured by taking the ratio of revenue over the 

total supply chain operational costs. However, in recent years, new trends have 

emerged in the efficiency measurement, where, customers have forced increasing 

demands on manufacturers for quick order fulfilment and fast delivery. This has made 

the supply chain efficiency difficult to be measured (Stewart, 1997). In addition to the 

usual financial measures used to measure efficiency, the supply chain performance 

now also needs to take into consideration other specific indicators such as the delivery 

rate and percentage of order fulfilment. This measurement is further complicated by 

the influence of manufacturing capacity and other influential operational constraints.  

In view of the increasing performance measures in supply chain, not many 

companies will know how to gauge the performance of their supply chain.  The rise of 

multiple performance measures has rendered the efficiency measurement task difficult 

and unchallenging.  In addition, supply chain efficiency measurement requires 

knowing the performance of the overall chain rather than simply the performance of 

the individual supply chain members. Each supply chain member has its own strategy 

to achieve efficiency. However, what is best for one member may not work in favour 

of another member. Sometimes, because of the possible conflicts between supply 

chain members, one member’s inefficiency may be caused by another’s efficient 
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operations. For example, the supplier may increase its raw material price to enhance its 

revenue and to achieve an efficient performance. This increased revenue means 

increased cost to the manufacturer. Consequently, the manufacturer may become 

inefficient unless it adjusts its current operating policy. Hence, measuring supply chain 

performance needs to deal with the multiple performance measures related to the 

supply chain members, and to integrate and coordinate the performance of those 

members.   

The measurement of supply chain efficiency is also greatly hampered by the 

difficulties in obtaining a full set of accurate data. Supply chain performance 

measurement requires data collection from the entire value chain which encompasses 

the suppliers’ suppliers until the direct customer. Due to limited resources and time 

availability, accurate data is difficult to be obtained. Most of the time, the data are 

either incomplete or not accurate. The natures of these data which are highly uncertain 

at present in many organizations render many existing tools inoperable and unsuitable 

to be used for efficiency measurement. The uncertainties in the data could jeopardize 

the results of the efficiency measurement and hence, the inaccurate efficiency score 

obtained will not be useful to managers. 

Hence, a tool to effectively measure the supply chain efficiency is greatly 

needed. This is further supported by Yee and Tan (2004) who mentioned that in view 

of the current level of complexity to address the supply chain problem, it involves 

more sophisticated tools. Though, the measurement tool only serves as a stepping 

stone for companies to achieve more strings of successes in the long term, the 

foundation of measurement has to be laid out robustly by firstly developing a suitable 

and useful tool for supply chain performance measurement.  This tool will not only 
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perform the quantitative reasoning but will also provide insights to manager in the 

qualitative perspective of strategic decision making.   

1.3 Research scope and objectives 

There are two main objectives of this thesis. First, it aims to address the 

problem mentioned in supply chain performance measurement. It will provide an 

analytical framework to measure the supply chain efficiency by considering the entire 

value chain in the stochastic environment. This thesis develops a simple and efficient 

tool, Monte Carlo Data Envelopment Analysis (DEA) to measure the supply chain 

efficiency. This new tool will be able to find out the distribution as well as the 

confidence interval for the true efficiency. These information are more meaningful and 

insightful for managers in making decision compared to a discrete value of the 

efficiency. 

Secondly, this thesis aims to further examine how to get a better estimate of the 

efficiency score when there are variations in the data. Existing stochastic DEA 

method, which only provides a single mean value in the stochastic case, will not be 

able to tell accurately where the true efficiency lies.  This study will address this 

problem within the context of data collection in the supply chain efficiency 

measurement. The reason of addressing data collection is due to the fact that in real 

industry, users would have to collect data in order to calculate the efficiency score.   

Data collection is extremely difficult to be carried out in supply chain as it requires the 

data from the entire value chain which encompasses from the suppliers until the direct 

customers. Hence, this greatly suits the purpose to address how to collect the data 

effectively. The prominent research question that will be addressed in this part of the 

study is: 
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‘Given that the users have to collect data within a restricted budget to calculate the 

efficiency score, what is the best way to allocate the budget for data collection so that 

he/she can get a good estimate of the efficiency score?’ 

As there is no explicit model to address this question, this thesis will introduce few 

methods based on the optimization simulation technique to solve the problem. 

 

1.4 Structure and Organization of the Thesis 

This thesis focuses on the development of the methodology using DEA to 

measure the supply chain efficiency when there are uncertainties in the data and to 

improve the prediction of the efficiency through budget allocation for effective data 

collection. In consists of eight chapters.  

Chapter 2 presents a literature review in the supply chain efficiency 

measurement, performance measures in supply chain, traditional methods used to 

measure supply chain efficiency, DEA and its application in supply chain studies, 

issues in DEA, and a brief review of other concepts or techniques which are applied in 

this research. Chapter 3 presents the Monte-Carlo DEA based approach to measure the 

supply chain efficiency. This approach serves as the basis for the second part of the 

thesis. 

Chapter 4 to 7 address the second part of the thesis which is to provide an 

approach on determining how to collect data effectively so as to have a better 

prediction of the efficiency score. Chapter 4 discusses some underlying concepts of 

efficiency measurement in DEA, which path the way for the formulation of the 

problem statement and the mathematical model of the research problem. Chapter 5-6 
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discusses the methodology on how to solve the model.  The methodology comprised 

of two main methods, which are the Two-Phase Gradient technique and the GA 

technique. Chapter 5 discusses on the Two-Phase Gradient Technique, while Chapter 6 

discusses on the GA technique and the combinations of the techniques with other 

existing heuristic algorithms.  Chapter 7 presents the results of the numerical 

experiments. Finally, Chapter 8 summarizes the conclusions of this thesis and provides 

suggestions for future research. 
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Chapter 2 

LITERATURE REVIEW1 
 

2.1 Introduction 
 

This chapter discusses the literature review on the efficiency measurement of 

supply chain, performance measures in supply chain, traditional methods used to 

measure supply chain efficiency, DEA and its application in supply chain, issues in 

DEA and other miscellaneous concepts which will be used in the research.  

 

2.2 Literature survey of supply chain efficiency 
measurement 
  

 From the literature survey of supply chain efficiency measurement, we found 

that the works can be mainly categorized into two types of studies, which are practical 

and theoretical. The theoretical category covers the elements of measurement in 

supply chain, which are namely the performance measures, concept and trends. On the 

other hand, the practical aspect encompasses the modelling framework and empirical 

case studies on supply chain. This classification is chosen based on the underlying 

intention which is to address the distinctiveness between supply chains efficiency 

measurement from other fields, and to identify potential research focus in this area 

                                                 
1 The work presented in this chapter has been published as Wong et al. (2008). 
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through analyzing the imbalances in the past literature.  In addition, the classification 

used in this thesis has not been used in any of the past studies. Past surveys of supply 

chain efficiency measurement have either focused on one particular attributes or 

aspects for instance, purely on the performance measures, or emphasized mainly on a 

particular type of industry.  

 Earlier efficiency studies in supply chain management covered types of 

performance measures or practices and comparison of achievable performance levels. 

Bogan and Callahan (2001) emphasized on internal performance metrics. Boyson et al. 

(1999), Gilmour (1999) and Stewart (1995) stressed on the qualitative as well as the 

quantitative performance measures in supply chain.  Stewart (1997) and Lapide (2000) 

addressed the needs to consider internal and external metrics in performance 

improvement assessments. The concepts and trends in supply chain efficiency study 

have also been largely explored since the late 19th century. Simatupang (2004) 

highlighted the needs for an integrated supply chain performance measurement 

system. Bowersox (1997) and Cox (1997) discussed the requirement of a novel type of 

efficiency measurement system in supply chain due to the holistic approach of the 

supply chain management. Gunasekaran (2001) highlighted that a novel type of 

performance measurement system is needed for supply chain collaboration because the 

chain members are concerned with both performance drivers and targets.  

Mathematical and non mathematical approaches had been analyzed by 

researchers to model supply chain efficiency, however the numbers are limited. Davis 

(1993) and Arntzen et al. (1995) called for more research in the area of mathematical 

modelling of the supply chain efficiency. Seiford (1999) highlighted that mathematical 



Chapter 2: Literature Review 

 

10 

 

programming and associated statistical techniques to aid decision-making in supply 

chain benchmarking is still lacking and more work can be carried out in this area.  

Chopra and Meindl (2001) mentioned that the linkages of the mathematical models to 

the strategic level of supply chain management is still lacking. Geary and Zonnenberg 

(2000), Poirier (1999), Polese (2002), Simatupang (2004) addressed the modelling 

frameworks for supply chain efficiency measurement. Basnet (2003) illustrated a case 

study of efficiency measurement on supply chain practices in New Zealand 

companies. Past literature indicates that empirical studies of supply chain efficiency 

measurement and benchmarking are scarce. Table 2.1 depicts the contribution of 

various researchers in each respective categories namely theoretical aspects (i.e., 

performance measure and integration of supply chain) and practical aspects (i.e., 

model, framework and case study) in supply chain efficiency studies. 

 

Table 2.1: Classification of supply chain efficiency study literature 

Period Authors Contribution 
1995-1997 Boyson, Stewart, Gilmour Performance measure 
Late 90s Bowersox, Simatupang, 

Boyson, Kopcak, Stank, 
Christopher, Ramdan, 
Mentzer, Poirier 

Integration supply chain / 
interorganizational level 

2001~2004 Van Landghen, Geary and 
Zonnenberg, Poirier, 
Polese, Simatupang 

Model/ framework 

2004 Basnet Case study 
 

Figure 2.1 provides the statistics of the publications in supply chain benchmarking. As 

can be seen in Figure 2.1, 60% of the publications deal with the theoretical aspects, 

while 40% explain the practical aspects of supply chain efficiency studies.  



Chapter 2: Literature Review 

 

11 

 

Performance 
measure, 15%

Integration , 45%

Case study, 10%

Model/framework
, 30%

Performance measure

Integration 

Model/framework

Case study

 

Figure 2.1: Proportion of publications 

 

Appendix A  (Table A.1-A.4) shows the summary of the literature on supply chain 

efficiency studies, with details of the objectives of each study. The tables are 

categorized according to the classification mentioned previously.  

Past publications showed that supply chain efficiency study initiated from the 

aspects of addressing performance measures and later moved into applying efficiency 

measurement in an integrated perspective. Hence, this shows the growing trends in 

supply chain efficiency studies. The present review of literature in this section has 

identified certain issues which have not been satisfactorily addressed. These issues can 

be regarded as inadequacies and they offer scope for further research and exploration. 

Some of the issues identified are as follows: 

1. Research in modelling and application of case study is scarce. Past researchers 

developed theoretical frameworks to address integrated supply chain. 

Mathematical modelling in supply chain efficiency study can be explored. The 
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use of mathematical models can help to better gauge the performance and 

provide clearer representation of the frameworks. 

2. Tools used in supply chain efficiency measurement – Literature addressing the 

sufficiency of the tools are lacking. The suitability of the tools in addressing 

supply chain efficiency measurement in an integrated perspective needs to be 

explored. 

 

2.3 Performance measures in Supply Chain  
 

 One important issue to address in supply chain efficiency study is to define 

what are the performances measures because they drive the actions of managers and 

the correct metrics are critical elements of a company’s performance.  Performance 

measures differ from field to field. Hence, this is one of the features that distinguish 

supply chain efficiency study from general study.  

 Earlier conceptual developments of performance measurements in supply chain 

have focused on cost-based performance measures because the cost metric is easily 

understood and routinely welcomed by management (Ellram, 2002; Ballou et al., 

2000). Gradually, more researchers and practitioners seem to understand the shortfalls 

of having just a unidimesional measure which is rather inflexible and lacks integration 

with strategic focus. Hence, from the “cost” perspective, researchers began to put in 

other quantitative as well as qualitative measures in supply chain efficiency 

measurement. Beamon (1999) identified three types of measure, namely resources, 

output and flexibility. Extending from this foundation, a framework for measuring the 
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strategic, tactical and operational level of performance in supply chain was developed 

(Gunasekaran, 2001).  

 The first universal performance measures that were used in supply chain 

performance measurement were generated by Pittiglio, Rabin, Todd and McGrath, 

widely known as the PRTM. It is a comprehensive set of fact-based performance 

measures that were used to accurately describe a world-class supply chain of planning, 

sourcing, making and delivering activities (Stewart, 1995). The measurement scheme 

covers four areas of performance metrics which are identified as the keys to unlocking 

supply chain excellence. They are delivery performance, flexibility and 

responsiveness, logistics cost and asset management. This is the first known study that 

objectively links best practices employed with relative quantitative performance 

achievements. The PRTM’s concept of supply chain efficiency 

measurement/benchmarking has been extended to become the supply chain operations 

reference (SCOR) model by the Supply Chain Council (Stewart, 1997). The SCOR 

then became the first cross-industry framework for evaluating and improving 

enterprise-wide supply chain performance and management (integrated SCM).  SCOR 

is structured into four levels, based on a plan, source, make and deliver framework. 

The model integrates the well-known concepts of business process re-engineering, 

benchmarking and process measurement into a cross-functional framework, which 

contains: 

• Standard descriptions/terminology/definitions of management processes; 

• A framework of relationships among the standard processes; 

• Standard metrics to measure process performance; 
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• Management practices that produce best in class performance and 

• Standard alignment to software features and functionality. 

  

Having all these features, SCOR provides a standard format to facilitate 

communication and enable companies to benchmark against others which will then 

influence future improvement efforts to ensure real progress. The metrics used include 

key areas such as delivery performance, order fulfilment, production flexibility, and 

cash-to-cash cycle time. The usefulness of SCOR has been verified. Geary and 

Zonnenberg (2000) reported that in the benchmarking study conducted by the 

Performance Measurement Group (PMG), the best-in-class supply chain performers 

were gaining considerable financial and operating advantages compared to their peers 

by using the SCOR model. 

 

2.4 Traditional methods to measure supply chain 
efficiency 
 

Tools used in measuring supply chain efficiency have received numerous 

attentions. Basically, there are two types of measurements: parametric and non-

parametric. The tools use to evaluate these two categories of measurement differ. In 

the context of parametric analysis, efficiency measurement normally uses gap analysis 

based techniques for performance measurement. Some of the popular gap analysis 

based techniques are the “spider” or “radar” diagram and the “Z” chart. These tools are 

very graphical in nature.  Advantages of these tools are the graphical approaches made 
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them easy to be understood and they are capable of showing multiple dimensions 

simultaneously. However their disadvantage is it causes inconveniences to the analysts 

since analysts have to integrate all the elements into a complete picture.   

Another well known method used is the ratio.  It computes the relative 

efficiencies of the output versus the inputs and is easily computed. However, a 

problem with comparison via ratios is that different ratios give a different picture and 

it is difficult to combine the entire set of ratios into a single judgement. Analytic 

hierarchy process maturity matrix (Eyrich, 1991; Kleinhans et al., 1995) is another 

alternative technique used in the performance measurement.  This technique utilizes a 

weighted score in the analysis of various benchmarks and provides a single score using 

perceptual values set forth by decision makers.  This is a multi-attribute utility 

technique. Although this method helps to quantify measure and provide managerial 

input, it is subjugated to a high degree of subjectivity. In addition, the rank-reversal 

problem in AHP reduces its usefulness.  

Statistical methods (i.e. regression and various descriptive statistics) are also 

used to analyze data in supply chain efficiency (Blumberg, 1994; Schefczyk, 1993; 

Moseng, 1995). These are parametric measures. Even though the strong theoretical 

foundation of statistical tools such as multiple regressions is able to provide 

meaningful interpretation of the data, a limitation occurs in the number of 

simultaneous inputs and outputs that needs to be considered. Regression equations can 

only analyze one single output at a time and one must repeat the regression analysis as 

often as the number of criteria included. In addition, regression analysis can only 

determine average values, which probably do not actually occur in any of the units 



Chapter 2: Literature Review 

 

16 

 

examined. The results therefore can hardly serve as benchmarks because they neither 

represent “best practice” nor do they exist in the real world. Similarly, regression 

analysis inherits the assumption that all observed firms combine their input factors in 

the same way. However in practice, production technology typically varies (Atkinson 

and Stiglitz, 1969; Freeman, 1994; Imai and Yamazaki, 1992; Vromen, 1995).   

Moving to the non-parametric methods, one of the commonly used tools in 

performance measurement is the Balanced Scorecard (BSC). BSC provides a 

comprehensive framework that translates a company’s strategic objectives into a 

coherent set of performance measures. Much more than a measurement exercise, the 

balanced scorecard is a management system that can motivate breakthrough 

improvements in critical areas such as product, process, customer and market 

development (Kaplan, 1993). The scorecard basically covers four different 

perspectives from which to choose performance measures. It complements traditional 

financial indicators with measures of performance for customers, internal 

business/processes and innovation and learning activities (Kaplan, 1996). In this way, 

BSC is distinguished by being able to link the company’s strategic objectives to the 

long-term trend analysis for planning and performance evaluation. However, BSC 

specifies neither any mathematical-logical relationships among the individual 

scorecard criteria nor a unitary, objective weighting scheme for them. Hence, it is 

difficult to make comparisons within and across firms on the basis of BSC.  In 

addition, the inefficient use of resources may go unrecognized and one normally turns 

to parametric methods in order to arrive at some judgments about the efficiency of 

resource usage (Rickards, 2003). 
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2.5 DEA  

Data envelopment analysis (DEA) was first introduced by Charnes et al. (1978) 

as a linear programming (LP)-based methodology for performing analysis of how 

efficiently a company operates. Its analyzed units are denoted as ‘DMU’, which stands 

for decision making units. It is a nonparametric programming approach to frontier 

estimation (Farrell, 1957). In the sections that follow, we shall first introduce the basic 

DEA methodology. Next, we present a survey on the publication of DEA studies and 

the findings from these studies. Lastly, we discuss the application of DEA in supply 

chain. 

 

2.5.1 Basic DEA methodology  

Build upon the earlier work of Farrell (1957), data envelopment analysis 

(DEA) is a mathematical programming technique that calculates the relative 

efficiencies of multiple decision-making units (DMUs) based on multiple inputs and 

outputs.  A main advantage of DEA is that is does not require any prior assumptions 

on the underlying functional relationships between the inputs and outputs (Seiford and 

Thrall, 1990).   

Since the work by Charnes et al. (1978), DEA has rapidly grown into an 

exciting and fruitful field, in which operations research and management science 

researchers, economist and experts from various application areas have played their 

respective roles. For DEA beginners, Ramanathan (2003) and Coelli et al. (2005) 

provided excellent introductory materials. The more comprehensive DEA expositions 
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can be found in Cooper et al. (2006). In the sections that follow, we shall briefly 

introduce the basic DEA methodology.  

 Assume S to be the set of inputs and R the set of outputs.  J is the set of DMUs. 

Further assume that DMUj consumes xsj 0≥   of input s to produce yrj 0≥  of output r 

and each DMU has at least one positive input and one positive output (Fare et al., 

1994; Cooper et al., 2004). Based on the efficiency concept in engineering, the 

efficiency of a DMU, says DMU j0 (j0∈J), can be estimated by the ratio of its virtual 

output (weighted combination of outputs) to its virtual input (weighted combination of 

inputs).  

To avoid the arbitrariness in assigning the weights for inputs and outputs, 

Charnes et al. (1978) developed an optimization model known as the CCR model in 

ratio form to determine the optimal weight for DMUj0 by maximizing its ratio of 

virtual output to virtual input while keeping the ratios for all the DMUs not more than 

one. The fractional form of a DEA mathematical programming model is given as 

follows:  
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where ur and vs are the weights for the output r and input s respectively. 
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The objective function of Model (2.1) seeks to maximize the efficiency score 

of a DMUj0 by choosing a set of weights for all inputs and outputs. The first constraint 

ensures that, under the set of chosen weights, the efficiency score of the observed 

DMU is not greater than 1. The last constraint ensures that the weights are greater than 

0 in order to consider all inputs and outputs in the model. A DMUj0 is considered 

efficient if the objective function of the associated Model (2.1) results in efficiency 

score of 1, otherwise it is considered inefficient. 

Using the Charnes-Cooper transformation, this problem can be further 

transformed into an equivalent “output maximization” linear programming problem as 

follows: 
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Model (2.2) is known as the CCR model in multiplier form. If the objective function 

value of (2.2) is equal to 1, it implies that the DMU concerned is relatively efficient 

since we can find a weight combination to make its efficiency score to be equal to one. 

Despite the linear form of (2.2), efficiency score is usually calculated based on its dual 

problem:  
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Model (2.3) is known as the input-oriented CCR in envelopment form or the Farrell 

model, which attempts to proportionally contract DMUj0’s inputs as much as possible 

while not decreasing its current level of outputs. The λj’s are the weights (decision 

variables) of the inputs/outputs that optimize the efficiency score of DMU j0. These 

weights provide measure of the relative contribution of the input/output to the overall 

value of the efficiency score.. The efficiency score will be equal to one if a DMU is 

efficient and less than one if a DMU is inefficient. The efficiency score also represents 

the proportion by which all inputs must be reduced in order to become efficient.  In a 

similar way, we can also derive the output-oriented CCR in envelopment form if 

efficiency is initially specified as the ratio of virtual input to virtual output. A large 

number of extensions to basic DEA models have appeared in the literature as describe 

by Ramanathan (2003) and Cooper et al. (2006). We shall limit our discussion to this 

basic model as this is sufficient to lead us to the formulation of the research model 

which will presented in the later chapters.   

 

2.5.2 Main features and findings of past studies 

A total of 200 studies from the period of the inception of DEA until the year 

2007 are reviewed and classified in terms of types of research, application schemes 
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and several other relevant attributes.  The list is shown in Table A.5 in Appendix A.  

These studies have been collected primarily from main OR journals as well as 

economics and other journals. The classification of journals and the notations used are 

as follows:  

a) Mainline OR Journals (M): Annals of Operations Research, Computers and 

Operations Research, European Journal of Operational Research, Journal of the 

Operational Research Society, Management Science, OMEGA, Operations 

Research and Operations Research Letters. 

b) Economics Journal (E): International Journal of Production Economics, Journal 

of Econometrics, Journal of Productivity Analysis, Socio-Economic Planning 

Science 

c) Other Journals (O): These are the journals which do not fall into category a) or 

b). For instances, Journal of Banking and Finance, Transportation Research, 

IEEE Transactions on Engineering Management and etc. 

We will discuss the findings in general as well as study the effects of changes over 

time. Hence, we will separate it into temporal and non-temporal effects. 

 
 

 

2.5.2.1 Non‐temporal effects 
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Figure 2.2: Breakdown of publications by types of journal 

 

Figure 2.2 shows that mainline OR journals are the most preferred choice for 

publication of DEA articles. The reason is clearly that DEA theory and many DEA 

applications fall within the fields of operations research and management science, 

exactly the arenas covered by these journals. The economic and other journals have 

almost equal shares of publications.  From the breakdown, one may conclude that the 

area of DEA is truly multidisciplinary. 

 In addition, we further classified the studies into ‘source of publication’, which 

are journal articles and non-journal publications such as conference papers and book 

chapters. Our statistics indicate that 89% of the publications are in the form of journal 

articles, while 11% appearing as book chapters or proceedings, conference papers as 

well as books themselves.  

 In the following sections, we categorize the studies in terms of types of 

research, which refers to the nature of the articles or research strategy.  The following 

categorizations are used.   
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a. Theoretical developments within DEA 

b. Bridging with other theoretic disciplines 

c. Real world sectors where an application of DEA can be shown to be useful. 

We denote (a) as ‘T’, (b) as ‘B’ and (c) and ‘A’. Due to fact that the DEA literature 

has a uniquely high frequency of articles dedicated to theoretical development while 

simultaneously showing an application of these developments to real-world problems, 

hence, we also add one additional category which is theory and application type paper, 

which is denoted by ‘T/A’. 

 

Figure 2.3: Breakdown of publications by research types 

 

Figure 2.3 shows that application types of research comprised the highest percentage 

of DEA publications. This shows that the application of DEA has been extensive.   

 The theoretical development types of research in DEA as well as with the real 

world application have also been largely explored. As can be seen from Figure 2.4, the 

sum of both types of research accumulated to almost 50% of the total publications. 
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Some of the significant past works in the theoretical field of DEA are such as Banker 

et al. (1984), Deprins et al.(1984) and  Petersen(1990) who extended and refined the 

standard DEA model to include variable returns-to-scale properties. Charnes et al. 

(1994) addressed the non-linear input substitutability and output transformability of 

the DEA model. Banker and Morey (1986) explored the use of categorical input-

output variables, while Cook et al. (1996) addressed how to handle ordinal input-

output variables in the DEA model.  

Though the research on the bridging of DEA with other theoretic discipline 

comprised of only 7.5% out of the total publications, it is beginning to become an 

important research area. Some of distinguished works in this area are such as Kao 

(2000) who incorporated fuzzy approach in DEA. Yang and Kuo (2003) proposed a 

hierarchical analytic hierarchy process (AHP) and data envelopment analysis (DEA) 

approach to solve a plant layout design problem. O’Donnell et al. (2005) adopted the 

Bayesian approach in finding the frontier in DEA. Van De Meer (2005) incorporated 

the use of regression analysis with DEA to model the performance of UK coastguard 

centres. 

 Due to the large number of DEA publications in application types of research, 

we further break down the application type of DEA articles into various application 

schemes. Application scheme refers to the main application studied. The following 

seven application areas are specified, with the notation given in brackets:  Education 

(E), Public sector(P), Healthcare (H), Banking/finance (B), Industry (I) (i.e. 

agriculture, manufacturing, airline, telecommunications etc),  Utilities (U) (i.e. power, 

electricity, water etc),  and others (O) which  cannot be categorized into any of the 



Chapter 2: Literature Review 

 

25 

 

above six sectors (i.e. computing, R&D, sports, neural network, ERP  etc). These 

schemes are chosen based on the observations from past studies that DEA is mostly 

applied in these areas. 

 

Figure 2.4: Breakdown of publications by application scheme 

Banking/finance sector comprised the largest area in the application of DEA. 

Some examples of the studies in banking are Giokas (1991), Oral et al.(1992), Al-

Faraj et al. (1993),  Barr et al. (1993), Sherman and Ladino (1995), and 

Athanassopoulos (1997). In industry sector, DEA has been applied to various assorted 

activities. For instances, Weber and Desai (1996) employed DEA to construct an index 

of relative supplier performance. Clarke and Gourdin (1991) applied DEA to the 

vehicle maintenance activities of 17 separate maintenance shops of large-scale, non-

profit logistics systems. Metzger (1993) used DEA to conduct a longitudinal study to 

measure the effects of appraisal and prevention costs on productivity. Kleinsorge et al. 

(1991) utilized DEA to conduct a longitudinal monitoring process of one carrier in an 

effort to assess expected performance improvements over time. Easton et al. (2002) 
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utilized DEA as a management tool to compare the purchasing efficiency of firms in 

the petroleum industry.   

 Other works also includes airline operations (Chan and Sueyoshi, 1991; 

Schefczyk, 1993);  brewing (Day et al., 1995);  defense-industrial base (Bowlin, 

1995);  education (Beasley, 1995); manufacturing (Ray and Kim, 1995; Shafer and 

Bradford, 1995); retail organizations (Athanassopoulos, 1995);  transportation and 

logistics (Clarke and Gourdin, 1991; Chu and Fielding, 1992) and  vehicle 

maintenance (Clarke, 1992). 

Below are some examples of the works for other sectors. Utilities e.g. 

electricity generation (Charnes et al., 1989; Miliotis, 1992); Health care (Banker et al., 

1986; Borden, 1988); non-profit organizations (Charnes et al., 1981; Pina and Torres, 

1992); and others e.g. pay equity in professional baseball (Howard and Miller, 1993). 

For a comprehensive qualitative survey of DEA, please refer to Seiford (1996).  As a 

complement to the qualitative aspect, a quantitative/statistical review of the entire life 

cycle of DEA is provided by Gattoufi et al. (2004). 

  

2.5.2.2 Temporal effects 

To study possible changes over time, we divide the time frame into three 10-

year period, 1978-1987, 1988-1997 and 1998-2007. As shown in Figure 2.5, the total 

number of publications has increased significantly, from 10 in 1978-1987 to  123 in 

1998-2007. 
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Figure 2.5: Trend of number of studies in DEA. 

 

Figure 2.6:  Breakdown of publications by source of publication over time 

Figure 2.6 shows the breakdown of publications by source of publication over time. It 

was found that there is a shift in the preferred outlet of publication in the period of 

1988-1997. There is a marked increase of publication in other journals from 14.3% in 

1978-1987 to 41.8% in 1988-1997. This trend might show the changes in the preferred 

outlets for researchers that could be influenced by the launch of several new journals 
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in the late 1980s. Also, it could be the result of wider penetration of DEA to different 

application area. 

 

 

Figure 2.7: Breakdown of publications by type of research over time 

 

Figure 2.7 shows the breakdown of publications by type of research over time. It was 

found that, the shares taken up by the ‘theoretical and application’ aspects of DEA 

increased markedly from 16.7% in 1978-1987 to 20.7% in 1988-1997. This should 

attribute to the flexibility and ability of DEA in allowing for its application in varying 

situations. Since various application studies have their individual characteristics, 

practitioners and researchers may have to present new DEA versions for their use. 

Another possible reason is that such popular software packages as EXCEL and 

MATLAB offer researchers huge flexibility to construct and apply their own models. 

There is also a growing interest in the research area in bridging DEA with other OR 
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disciplines. The shares of publication for this type of research has increased from 3.7%  

in 1978-1987 to 7.4% in 1988-1997 and finally reaches 13.5% in 1998-2007. 

Correspondingly, the shares of publication for the theoretical development in DEA 

reduced from 46.3% in 1978-1987 to 30.4% in 1988-1997 and further decreased to 

23.9% in 1998-2007. This marks a saturation level in this type of research. Most 

researchers focus their works on the theoretical development in DEA during the 

inception period, hence, the number of publications reached its peak in this period. 

Since then, researchers gradually started to divert their attention from purely 

theoretical to other research strategy such as combination of theoretical and 

application and incorporation of DEA with other OR disciplines. As for the pure 

application type of research, the breakdown did not change much from 1978-1988 to 

1998-2007. This area still remains a popular strategy in research, which proves the 

vast application of DEA.  

 

Figure 2.8:  Breakdown of publications by application area over time 
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Figure 2.8 shows the breakdown of the 200 studies by application scheme over the 

three periods of years. Since the inception of DEA in year 1978, it has gradually 

become a popular tool for studying the efficiency in various application. Prior to 1988, 

it was found that the use of DEA in public sector has the highest proportion of 

publications.  The studies are such as Lewin(1984), Miller(1985) and Macmillan 

(1987). The numbers of studies in this area were exremely huge that it reached 

saturation level, as later, we can see that there is a significant drop in the number of 

publications in this field from 37.5% in the period 1978-1987 to 8.6% in 1988-1997 

and further reduced to almost 0% in 1998-2007. Other application schemes which 

exhibit almost similar trends  are education and utilities. Temporally, the shares taken 

up by the studies on industry has increased from 12.5% in 1978-1987 to 34.3% in 

1988-1997. This could be explained by the expansion that have occured in the industry 

since the late 1980s, More types of different indusries have emerged, hence these 

provided more outlets for the researchers to apply DEA. This proportion does not 

change much in 1998-2007. Similarly, a  growing interest in the application of DEA in 

banking and financial sectors can be observed by the increment of shares from 0% in 

1978-1987 to 17.3% in 1998-2007. This may be largely due to the revolution in the 

banking industry which provides more opportunities for studies to be conducted in this 

area. Lately, in the period 1998-2007, there is a marked increase in the study of DEA 

in other areas. These other areas include rather unique and specialized areas which 

could not be categorized in any of the above six areas. The reason for this increase is  

the study scope of DEA has expanded to novel applications. Examples of such studies 

include bankruptcy (Cielen et al., 2004), neural networks (Vaninsky, 2004). Enterprise 

Resource Planning (ERP) (Maber et al., 2006) and sports (Lozano et al., 2004).  As for 
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the application of DEA in healthcare, there is not much changes in the shares of 

publication over the three periods. The ever growing development in medical and 

healthcare studies has simultaneously provided the avenues for DEA application, 

hence, research interest still remains intact in this field.  

 

2.5.2.3 Other features and findings 

We found that a majority of past studies dealt with the input-oriented DEA 

models. To a large extent, it should be attributed to the characteristic of the industry 

which widely applies DEA. i.e. public sector. Higher priority has often been given to 

the goal of meeting demand (Färe et al., 1994a). As a result, input conservation for 

given outputs seems to be a reasonable logic. Another possible reason is that in many 

empirical studies, particularly at the macro level, there is only one output such as 

‘profit’  but multiple inputs are often used.  

In addition, we also have found that many OR/MS researchers favour DEA 

models in the multiplier form while economists favour DEA models in the 

envelopment form. This is likely due to the interdisciplinary nature of DEA and its 

historical diffusion patterns (F∅rsund and Sarafoglou, 2005). 

Lastly, the approach used in our study is different from the past studies. Past 

surveys of DEA have mainly focused on the compilation of the full bibliographies of 

DEA (Emrouznejad et al. 2008; Gattoufi, 2004). The analysis carried out in this study 

is different in terms of attributes used to categorize the studies. In this thesis, we 

categorize the studies following the applications schemes, publications, and types of 
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research.  Past survey focused on the number of publications per authors and keywords 

used. The next section will discuss the literature of DEA in supply chain. 

 

2.5.3 DEA in supply chain studies 

The application of DEA in supply chain studies is still largely unexplored as 

the numbers of past studies are limited.  The reason may be due to the unawareness of 

the suitability of DEA as a tool to measure supply chain efficiency. In this section, 

first, we present a brief review on the motivations of using DEA in supply chain, 

followed by some past studies of DEA in works related to supply chain. 

 

2.5.3.1 Motivations of using DEA in supply chain  

DEA is suitable to be used in measuring supply chain efficiency because it can 

handle multiple inputs and outputs and it does not require prior unrealistic assumptions 

on the variables which are inherent in typical supply chain optimization models (i.e. 

known demand rate, lead time etc). These advantages of DEA enable managers to 

evaluate any measures efficiently as they do not need to find any relationship that 

relates them. Wong et al. (2008) discussed the motivations of using DEA as a supply 

chain performance measurement tool, by  giving ample evidences, literature supports 

and reasons on the suitability of DEA as a decision making tool in supply chain 

management.  Some of the distinguished features of DEA that worth mentioned here 

are as follows:  
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a) DEA is able to address the complexity arises from the lack of a common scale of 

measurement. DEA inherits the feature that permits the inclusion of quantitative 

measures as well as qualitative data in performance analysis. Furthermore, it 

allows management to analyze simultaneously a relatively large number of inputs 

and outputs measured on different scales.  

b) In DEA, one does not need to assume a priori the existence of a particular 

production function for weighting and aggregating inputs or outputs. Hence, they 

are solely dependent on the empirical observations. This fact gives the DEA 

method a decisive advantage over ordinary optimization procedures.  

c) DEA is highly flexible and able to mold with other analytical methods easily to 

create a more meaningful and efficient way of evaluating performances. Many 

researchers have studied the extensions of DEA models in evaluating 

performances, for examples combining with statistical analysis, and other multi 

criteria decision making techniques (Zhu, 2004;  Golany, 1988; Spronk, 1999). 

 

2.5.3.2 Past studies of DEA in supply chain  

The application of DEA within the context of supply chain has been scarce. 

Only a limited number of literature surveys have been reported.  These literature are 

within the context of an individual supply chain member and not the overall supply 

chain system. For example, Weber and Desai (1996) applied DEA to construct an 

index of relative supplier performance. Cheung and Hansman (2000) measured the 

performance of supply chain members based upon single performance measure. 

Easton et al. (2002) suggested a DEA model to compare the purchasing efficiency of 
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firms in the petroleum industry. Forker et al. (1997) studied the impact of supply chain 

performance evaluations on management practices.  All these models only considered 

the performance of the individual supply chain members and no attempts have been 

made to identify best practice in the case of supply chains. 

As mentioned earlier, one of the difficulties in measuring supply chain 

efficiency is the need to consider multiple performance measures related to multiple 

supply chain members. In addressing the problem of multiple stages/members in the 

supply chain, several other researchers had developed some methods within the DEA 

context, which have the potential to be used in supply chain efficiency evaluation. 

Seiford and Zhu (1999) and Chen and Zhu (2004) provided two approaches in 

modelling supply chain efficiency as a two-stage process using data envelopment 

analysis (DEA). Fare and Grosskopf (2000) developed the network DEA approach to 

model general multi-stage processes with intermediate inputs and outputs. Golany et 

al. (2006) provided an efficiency measurement framework for systems composed of 

two subsystems arranged in series that simultaneously compute the efficiency of the 

aggregate system and each subsystem. Troutt et al. (2001) determined the optimal 

throughput between the stages in a serial linkage of processes using DEA. Castelli et 

al. (2004) investigated a two-level hierarchical structure of the DMU composed of 

consecutive stages of parallel subunits. Chen et al. (2006) developed the DEA-game 

theory approach to address how to integrate the seller’s and buyer’s efficiency scores 

and obtain an efficiency score for the supply chain. 
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 The following section will discuss the issues in DEA followed by a brief 

review on other miscellaneous concept or disciplines which will be used in this 

research.  

2.6 Issues in DEA 

DEA is a data-driven approach where it requires the estimation of the 

inputs/outputs data.  An early criticism of DEA is that the data has to be deterministic. 

In response to this criticism, a number of methods incorporating stochastic variations 

in data have been proposed. One of the earliest efforts involved the development of 

chance-constrained formulations of the mathematical programs in DEA in order to 

accommodate stochastic variations in data (Charnes and Cooper, 1963).  The chance 

constraint approach addresses measurement error by relaxing the constraints so that 

they are not always binding. Hence, this provides a more conservative estimate of 

efficiency resulting from a shift in the frontier. In most cases, the efficiency calculated 

using this way is the minimum efficiency or the worst case efficiency.  

Extensive study using Chance Constrained Programming (CCP) has been 

carried out by Sengupta (1982, 1987, 1988, 1989, 1995).  One prominent feature of his 

studies is to incorporate the stochastic variables into the DEA model and then 

reformulate the stochastic model into a deterministic equivalent. Similar models based 

on CCP have also been developed by Desai and Schinnar (1987), Peterson and Olesen 

(1989), Olesen and Thore (1990), Land et al. (1988), Cooper et al. (1996, 1998) and 

Sueyoshi (2000). While there exists a broad consensus about the merits of the CCP 

method which offers a way to breakout from the ‘deterministic’ mold, the severe data 

requirements such as the necessity to supply information on expected values for all 
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variables, variance-covariance matrices for all variables, and probability levels at 

which feasibility constraints are to be satisfied, impedes the development of these 

models to their full potential.   In addition, the efficiency measured using the CCP 

way, which is the minimum efficiency, may not be a fair comparison for the 

organization’s performance as it does not truly reflect the true value of the efficiency 

score. This may not give a meaningful interpretation to the performance of the 

organization.  

In a parallel strand in the stochastic literature, the treatment of data variations 

in DEA has also been studied by integrating its nonparametric feature with the 

parametric approach of the stochastic frontier. This is in line with the effort to bridge 

the conceptual and philosophical gap between DEA and econometric approaches to 

frontier estimation.  Banker (1993) conceptualized a convex and monotonic 

nonparametric frontier with a one-sided disturbance term and showed that the DEA 

estimator converges in distribution to the maximum likelihood estimators. He also 

specified F tests for hypothesis testing. Subsequently, Banker and Maindiratta (1992) 

introduced an additional two-sided component in the composite error term and 

proposed an estimation procedure of the nonparametric frontier by DEA.  Other 

different approaches of stochastic DEA has also been studied by Varian (1985), Simar 

and Wilson (2000), Ferrier and Hirschberg (1997), Gstach (1998), Fried et al. (2002), 

Triantis and Girod (1998), Park and Simar (1994) and Kniep and Simar (1996).  For a 

selective survey of various stochastic approaches to DEA, see Grosskopf (1996).  Past 

literature indicates that the research on the theoretical development of DEA in the 

stochastic case has been widely explored. While the earlier researches do offer 

interesting discussions of DEA in the presence of variations in the data, no study on 
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how to get a good estimate of the efficiency has so far been reported. This area offers 

scope for further research and exploration. 

 

2.7 Other miscellaneous 

This section presents a brief review on other concepts or disciplines which are 

used in this research. They are the Monte Carlo method, Bayesian framework, OCBA 

(Optimal Computing Budget Allocation) and IPA (Infinitesimal Perturbation 

Analysis). 

2.7.1 Monte Carlo method 

Monte Carlo methods are a class of computational algorithms that rely on 

repeated random sampling to compute the results (Fishman, 1995). Monte Carlo 

methods are often used when simulating physical and mathematical systems or when it 

is infeasible or impossible to compute an exact result with a deterministic algorithm. 

(Rubinstein and Kroese, 2007). The term Monte Carlo was coined in the 1940s by 

physicists working on nuclear weapon projects in the Los Alamos National Laboratory 

(Metropolis and Ulam, 1949).  Monte Carlo is nonparametric and easily implemented 

for any systems.   In contrast to the simplicity of the approach, the information 

generated by the Monte Carlo method is very rich. The greater information content 

and flexibility of the approach are significant advantages in providing statistical 

information about the precision of the results. Further, the method is more 

straightforward from a statistical viewpoint, requiring nothing more complicated than 

a basic ability to generate random numbers from known statistical distribution, a 
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function available in nearly all of statistical and econometrics software packages on 

the market today (Gentle, 2003). Monte Carlo method has been widely applied in 

many areas such as finance, risk analysis in investment proposals, reliability 

engineering, computer science, physical chemistry and in probabilistic design for 

simulating and understanding the effects of variability (Fishman, 1995).  Preliminary 

analysis of the application of Monte Carlo in DEA had been explored by Zhang and 

Bartels (1998). They used Monte Carlo to examine the effect of sample size on the 

mean efficiency in an application study of electricity distribution.  Yu (1998) 

conducted a Monte Carlo study to compare the stochastic frontier method and the data 

envelopment analysis (DEA) in measuring efficiency in situations where firms are 

subject to the effects of factors which are beyond managerial control.   

 

2.7.2 Bayesian framework 

The Bayesian framework is build on the foundation of Bayesian theory which 

used the concept of probability to infer or update the degree of belief that a proposition 

is true in light of new information (Berger, 1999).  The central theme in the Bayesian 

framework involves the need to specify initial uncertainty about unknown parameters 

by specifying prior distributions for unknown quantities (i.e. unknown outputs or 

unknown input parameters); followed by the specification of likelihood models to 

relate unknown parameters to observable data, and finally, the update of the beliefs 

about unknown quantities as data becomes available using Bayes’ rule to obtain 

posterior distributions for unknown quantities (Winkler, 1972; Carlin and Louis, 

2008).  Bayesian methods are useful in the simulation context if they are considered to 
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be an analytical tool that informs decisions. They provide a convenient and useful way 

to represent uncertainty about alternatives (i.e manufacturing system designs, service 

operations, or other simulation applications) in a way that quantifies uncertainty about 

the performance of systems, or about inputs parameters of those systems.   Bayesian 

methods for simulation input and output uncertainty have been increasingly applied 

and developed in recent years (Glynn, 1986; Cooke, 1994; Chen and Schmeiser, 1995; 

Chen, 1996; Scott, 1996; Andradottir and Bier, 1997; Chick, 1997; Nelson et al., 1997; 

Chen et al., 1999; Cheng, 1999; Chick and Inoue, 2001a and 2001b). Chick (2001) 

provided a tutorial on Bayesian methods for simulations. His studies described how 

Bayesian statistics can help a simulation analyst to deal with issues that arise in the 

decision-making process, where he discussed the input distribution selection, 

sensitivity analysis and the selection of the best of several alternative systems. Chick 

(2006) provide a literature review on the development of theoretical techniques for 

Bayesian methods in simulation experiments; for applications  of those tools (to 

scheduling, insurance, finance, traffic modelling, public health, water-way safety, 

supply chain and other areas), the relationship of Bayesian methods to deterministic 

simulations; and to subjective probability and Bayesian statistics in general. Excellent 

references to various aspects of Bayesian methods, subjective probability and decision 

analysis in general can be found in DeGroot (1970), Lindley (1972), Savage (1972), 

Winkler (1972) , Berger (1999), de Finetti (1990) and Bernardo and Smith (1994).   
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2.7.3 OCBA (Optimal Computing Budget Allocation) 

Simulation, being a popular tool for designing large, complex, stochastic, or 

any systems where the closed-form analytical solution do not exist, generally requires 

a huge amount of runs  in order to simulate the alternative designs and replicate the 

stochastic behaviors in the systems. Though the computational power has been 

dramatically increased with the advancement of new technology, the key issue remains 

on how to improve the simulation efficiency and to reduce the total computation time.  

OCBA (Optimal Computing Budget Allocation) is a new control-theoretic simulation 

technique developed by Chen (1995).  The OCBA approach can intelligently 

determine the most efficient simulation replication numbers or simulation lengths for 

all simulated alternatives. The basic idea of OCBA is to optimally choose the number 

of simulation samples for all designs to maximize simulation efficiency with a given 

computing budget or to attain a desired simulation decision quality using a minimum 

computing budget. OCBA is ideal for stochastic simulation optimization. Due to the 

stochastic nature of the objective function, in order to achieve the best computational 

efficiency, one needs to determine the tradeoff between devoting computational effort 

for exploration  (which refers to searching of the space for new candidate solutions)  

versus exploitation (which refers to getting more accurate estimates of the objective 

function at currently promising solutions). In procedure, OCBA sequentially 

determines which design alternatives need more simulation and how many additional 

replications are needed. Overall simulation efficiency is improved as less 

computational effort is spent on simulating non-critical alternatives and more is spent 

on critical alternatives. Some earlier development of OCBA can be found in Chen 
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(1996) and Chen et al. (1997). For detail theoretical foundation and derivation of 

OCBA, readers may refer to Chen et al. (2000) and Chen and Yucesan (2005).  

Subsequent and related works on OCBA includes Fu et al. (2007), who used OCBA to 

select the best alternatives when the samples are correlated. Lee et al. (2004) used a 

sequential procedure called the multi-objective computing budget allocation 

(MOCBA), which aims to minimize Type I and Type II errors of the solutions within 

the Pareto sets. Chen et al. (2007) and Shi and Chen (2000) used OCBA for simulation 

and optimization problems. Literature on the application of OCBA techniques in real 

industry can be found in Hsieh et al. (2007), Romero et al. (2006), Chen and He 

(2005), Chen et al. (2003), Hsieh et al. (2001) and Chen et al. (1999).  

 

2.7.4 IPA (Infinitesimal Perturbation Analysis) 

Perturbation Analysis (PA) is a technique for estimating the gradient of a 

system performance measure. Its distinct feature is that derivatives with respect to 

multiple parameters can be calculated from a single simulation run. IPA (Infinitesimal 

Perturbation Analysis) is the earliest form of PA and is the well-developed technique.   

It has been widely adapted in the discrete event dynamic systems (DEDS) such as 

single-server queues (Suri & Zazanis, 1988) and queuing networks (Ho & Cao, 1983).  

Suri (1987) and Cao (1985) provided the theoretical foundations for IPA in proving 

the consistency of the sample gradient estimates for the systems.  The assumptions 

used in IPA are the parameters have to be continuous and the interchangebility 
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conditions2 in the order of expectation and differentiation (Ho and Cao, 1983). More 

detailed explanations of the IPA technique and theory can be found in Ho and Li 

(1988) and Gong and Ho (1987). They showed how to overcome some of the 

difficulties in IPA. Zazanis (1986b) also provided a comprehensive theoretical work in 

IPA. As a summary, he proves strong consistency and unbiasedness for the gradient of 

the system with respect to a parameter. He also demonstrated how strongly consistent 

the second and higher order derivative estimates can be obtained from a single sample 

path and  also introduced the single-run optimization method utilizing IPA in a 

preliminary experimental study.  

 

2.8 Concluding comments  

In this chapter, we have presented the literature survey on supply chain 

efficiency measurement which encompasses the performance measures of supply 

chain and traditional methods used to measure supply chain efficiency. We also 

presented a literature survey on DEA, its application in supply chain studies, its issues 

and other miscellaneous techniques which are used in this thesis.   

                                                 
2 The IPA estimator is simply the sample path derivative of the quantity of interest, defined by  
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The literature endorses the fact that there has been much work done up to 

present regarding supply chain efficiency measurement. However, the works 

addressing the supply chain model and the sufficiency of the tools used in measuring 

the supply chain efficiency is lacking. The analysis from the review of DEA shows 

that, it has enjoyed a high number and a high incidence of real-world applications. The 

theoretical development within DEA has also been extensively explored. An area 

which is increasingly getting the interests from researchers is the bridging of DEA 

with other theoretical concepts.  This area offers much scope for further research and 

exploration.  

 Considering the importance of efficiency study and the ability of DEA in 

handling multiple factors and multistage chain members, it justifies the usefulness of 

DEA as a tool to measure supply chain efficiency. Therefore, it is reasonable to 

believe that DEA would play a more important role in supply chain efficiency studies 

in future. In view of the potential of this area, it is therefore worthwhile to extend our 

study in the later chapters, whereby, we will address how to measure the supply chain 

efficiency using DEA as well as address the literature gap in DEA in which we will 

incorporate other theoretical disciplines with DEA in our objective to get a better 

estimation for the efficiency.  
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Chapter 3 

MEASURING SUPPLY CHAIN EFFICIENCY IN 
STOCHASTIC ENVIRONMENT1 

 

3.1 Introduction 

In this chapter, we introduce the methodology used to measure supply chain 

efficiency in stochastic environment. The DEA supply chain model will be constructed 

to measure supply chain efficiency. Then, this model will be enhanced with Monte 

Carlo technique to cater for efficiency analysis in stochastic environment. The DEA 

supply chain model is developed based on the conventional DEA CCR model.   

 

3.2 Background 

Based on the conventional DEA CCR model (3.1), one way to measure supply chain 

efficiency is by treating the efficiency of each member or channel separately and then 

take the average of the efficiencies.  
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1 The work presented in this chapter has been published as Wong et al. (2008). 
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Note that all the notations in (3.1) have been previously defined in Section 2.5.1. That 

is there will be four models, one for each channel (supplier, manufacturer, distributor 

and retailer) and the supply chain efficiency is assumed to be equivalent to the average 

efficiency of the four models. The limitation of measuring the supply chain efficiency 

this way is that it does not capture the efficiency of the entire value chain.   What is 

best for one member may not work in favour of another member. That is, the best 

practice of one channel does not mean that it fits the other channel. One member’s 

inefficiency may be caused by another’s efficient operations. In the following section, 

we will discuss why the DEA CCR model cannot be directly applied to supply chain 

and provide a tentative solution on measuring supply chain efficiency.  

 

3.3 Programming model for measuring supply chain 

efficiency 

Consider a simple chain relationship (e.g. supplier – manufacturer) as described in 

Figure 3.1, where XA is the input of the supplier, and YA is the supplier’s output. YA is 

also an input of the manufacturer along with XB with YB being the manufacturer’s 

output.  Note that one example of YA is ontime delivery; it indicates the performance 

of the supplier in delivering its products and also as a cost measure to the manufacturer 

which associated with inventory holding cost.   

 

 

   Figure 3.1:  A simple chain relationship 

     Supplier      
Manufacturer 

XA YA YB 

XB 
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Suppose J as the set of supply chain and each chain in the set is such as depicted 

above. The DEA CCR model (3.1) only considers the inputs and outputs of the supply 

chain system and ignores measures YA associated with supply chain members; hence, 

it does not characterize the performance of supply chains correctly.  If YA are treated 

as both input and output measures in the model, all the supply chains will become 

efficient. This does not necessarily indicate efficient performance in individual supply 

chain members. Consequently, improvement to the best-practice can be distorted i.e., 

the performance improvement of one supply chain member affects the efficiency 

status of the other, because of the presence of intermediate measures (i.e. YA).  

 Alternatively, we may consider the effect of the intermediates measures. In our 

propose model, we will separate the measures into two groups, i.e. ‘direct’ and 

‘indirect’ (intermediate). We define ‘direct’ measures as associated with a single 

channel or supply chain member only and intermediate (indirect) measures as 

associated with two or more members/channels. We will now elaborate how will the 

supply chain efficiency be characterized if we take into consideration the intermediate 

(indirect) measures compared to without considering them. 

Let’s use a simple scenario; for example, there are two supply chains, i.e. 

DMU A and DMU B, and each of them is a dual-channel (supplier-manufacturer) 

system. Let’s say the manufacturer of A and B are the same. Also, let’s assume that 

supplier A is very efficient while supplier B is less efficient compared to A.  Note that 

the efficiency of the individual supply chain member can be obtained using the DEA 

CCR model as explained earlier. Recall that the best practice of one channel does not 

mean that it fits the other channel. In this case, the impact from the performance of the 

supplier may affect the efficiency status of the manufacturer in such a way that the 

manufacturer A may seem to be less efficient compared to the manufacturer B;  by 
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right, they should be equally good because they are the same manufacturer. This 

shows that member’s inefficiency may be caused by another’s efficient operations. 

Therefore, the efficiency approach (i.e. DEA CCR model) will not characterize the 

supply chain efficiency correctly.   

In order to better characterize the supply chain, we have to ‘discount’ or 

remove the impact of the performance improvement of one supply chain member that 

affects the efficiency status of the other. We will illustrate how this discounting 

concept can be realized using the intermediate (indirect) measures that we introduce in 

our model. From the basic DEA model in fractional (ratio) form, let’s denote IS as the 

set of intermediate inputs, DS as the set of direct inputs, tjx as the tth intermediate input 

of DMU j and 
0tjx  as the tth intermediate input for observed DMU j0. Note that 

SISDS =∪ . 
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                  (3.2) 

where tv  is the weight for the intermediate variables. All the other notations used have 

been previously defined in Section 2.5.1. Note that the weight for the intermediate 

variables may be zero, but for the direct variables, the weights must always be 

positive. Note also that the difference between (3.2) and (2.1) is the subtraction of the 

intermediates term. This term represents the performance of one supply chain member 
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(e.g. the upstream channel) that feeds into other supply chain member (e.g. the 

downstream channel). By subtracting the intermediate term in such a way is analogous 

to ‘discounting’ the impact of one’s performance that affects the other. From the 

model (3.2), it is obvious that the impact of the indirect factor is removed; and the efficiency 

obtained in this model will be the best case efficiency.  Though the ‘discounting’ concept may 

not have fully addressed all the issues in supply chain, it can serve as a tentative solution to 

measure the supply chain efficiency. 

 Model (3.2) can be further transformed into its equivalent linear form as shown in 

Model (3.3) (the primal model) and Model (3.4) (the dual model) as below. 

CCR multiplier model 
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CCR envelopment model 

 

 

 

                     (3.4) 
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Note that all the notations used have been previously defined in the above section.  We 

will name Model (3.4) as the DEA supply chain model.  The model is an input 

oriented model whereby it aims to reduce the inputs as much as possible while not 

decrease the level of the output.  Note that the third constraint (i.e. for the outputs) can 

actually be separated into two constraints (i.e. one for direct and another for indirect 

terms). Since the indirect term for the output will not affect the objective function, 

therefore, we did not explicitly write it into two separate constraints; for conciseness 

purpose of the model, we combined them into one constraint. 

 Given Model (3.4), one way to evaluate the entire value chain efficiency which 

generally comprised of four channels i.e. supplier, manufacturer, distributor and 

retailer, is to estimate the efficiency, Ω as the normalized (weighted) efficiency of all 

the channels. That is,  

RDMS

RRDDMMSS

wwww
wwww

+++
Ω+Ω+Ω+Ω

=Ω
****

*                (3.5) 

where  Ω* is the optimal efficiency score of the supply chain or value chain, *aΩ , a ∈ 

{S, M, D, R}, is the optimal efficiency score for a specific supply chain member 

(channel) and wa
, a∈{S,M,D,R} is the weight reflecting the extent of each channel 

contributing to the evaluation of the entire value chain efficiency. These weights can 

be estimated using various methods such as AHP (Analytic Hierarchical Process), 

expert’s judgement, pareto analysis and etc.  In this research, we consider all channels 

have equal contribution to the value chain performance. As the indirect effect (i.e. the 

performance improvement of one channel affecting another channel) has already been 

removed/discounted from the model (3.4), the weight measures proposed in such way 

would be reasonable and the ‘double counting’ effect on the performance of the entire 

supply chain will not be very significant. Note that in the study we set w = 1. 
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 From Model (3.4), a supply chain is efficient if 1=Ω* .  Note that it is possible 

among all DMUs, the highest value of Ω* is < 1. In this case, it means that none of the 

DMUs is efficient. Comparing Model (3.4) to (3.1), as the values of Ω*  and  θ* have to 

be greater than 0 and less than or equal to 1,  and as Model (3.4) has less restriction on 

the intermediate inputs, the value of Ω* from Model (3.4) will always be less than or 

equals to the value of θ* from Model (3.1) i.e. ** θ≤Ω .    

Proposition 1. The efficiency score,  Ω*  of (3.4) for any DMU j0 is less than or equal 

to the corresponding efficiency score from θ* (3.1). 

To prove this proposition, we note first that θ* ≤ 1 in optimal solution of (3.1) because 

DMU j0 is itself one of the j0∈J referent observations. By comparing the constraint 

sets in the two linear programs, we see that any optimal solution to (3.1) is a feasible 

solution for (3.4); hence, ** θ≤Ω . 

  Model (3.4) yields the target values on the performance measures for an 

inefficient supply chain to reach the best practice by using its slack information. The 

model assumes that the inputs could be reduced while maintaining all the outputs at 

the same level. The target values are obtained as follows. We denote *
osjx  and *

otjx as 

the direct and indirect input targets  i.e., −−Ω=
ooo sjsj

a
sj sxx **   and −−=

otjotjotj exx*  

where −
osjs and  −

otje are the direct and indirect input slacks respectively.  
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3.4 Efficiency measurement in stochastic environment 

In this section, we are going to discuss how to measure the efficiency in 

stochastic environment. First, we explain what is the common approach that the users 

used when applying the DEA model in stochastic environment. Then, we discuss the 

limitation of using this way. Next, we will show how to overcome this problem by 

introducing an alternative method which is called the Monte Carlo DEA.  

 

3.4.1 Common approach when applying DEA model in stochastic 

environment  

In the deterministic DEA model, the users only use a single value or single data 

for each input/output and calculate the efficiency score as a discrete value. In other 

words, the true values of the input/output are known or deterministic. In actual 

application, that is when the environment is stochastic, the true values maybe 

unknown. Without loss of generality, if the inputs/outputs values that the users 

interested in are the true mean of the data, then in order to use the same DEA model to 

estimate the efficiency, the users have to collect some data and then use the sample 

mean to replace the true mean. For instances, for cycle time, where its true value is 

very difficult to be determined precisely, users have to collect a few data and use the 

sample mean to represent its true mean. By using this way, the efficiency score 

remains as a single value.  The limitation of this method is that the sample mean is the 

true mean unless we have collected infinite amount of data; if there are only a few data 

collected, the sample means may be very different from the true mean, hence the 

efficiency score will not be accurate.  
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An alternative way to tackle this issue is based on the data collected, we derive 

the belief (distribution) for the true mean for the stochastic inputs/outputs variables 

using Bayesian framework. Then, using the distribution of these inputs/outputs, we 

can estimate the distribution of the efficiency scores. Next, we will explain the Monte 

Carlo DEA method which is based on the Bayesian approach. 

 

3.4.2 Monte Carlo DEA 

The main concept of Monte Carlo DEA is to use Monte Carlo method to 

sample data from the distributions (belief) that represent the unknown true mean of the 

input/output variables and then use these samples to estimate the distribution of the 

efficiency.  Without loss of generality, in this study we assume the belief follow a 

normal distribution with given mean and variance. Note that we want to find a 

conjugate family where we can derive the posterior distribution, and we are interested 

in expected value; therefore, normal can be a good approximation. We use Monte 

Carlo method to randomly generate N sets of data for these unknown variables. Then, 

for each set of data, we solve the LP model (Model (3.4)) to obtain the efficiency; 

hence, we can get N efficiency data.  We set N to a large number so that it is big 

enough to get the distribution of the efficiency. Note that in the experiment, we set N 

to 500. We used linear programming optimization solver to calculate the efficiency 

scores for each set of data. The efficiency scores are then tabulated and statistical 

inferences are conducted. To summarize, the Monte Carlo DEA technique with 

reference to Model (3.4) can be carried out in the general steps below.  

a. Generate N sets of input/output data, where the data follow the given 

distribution.  
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b. For each set of data, solve the LP Model (3.4) to obtain the efficiency score 

(Ω*) and other parameters values i.e. ,, *a
j

*a λΩ  { }R,D,M,Sa∈ .  

c. Estimate the distribution of the efficiency for each DMU.  

In order to facilitate the discussion in the later chapters which will be based on the 

Monte Carlo DEA method, we simplify the representation of the model where the 

inputs/outputs are grouped together as a single term called ‘data’.  To start with, let’s 

revisit Model (2.3). Let S be the set of inputs and R the set of outputs, where S and R 

are disjoint sets (S ∩ R =  ∅).  We denote K as the set of combined inputs/outputs i.e., 

K = S ∪ R.   J is the set of DMUs. Let XD = (xkj)k ∈ K; j ∈ J, where xkj represents k-th 

input/output for DMU j.  If k ∈ S, then xkj is an input; otherwise if k ∈ R, then xkj is an 

output. We define θ(XD) as efficiency score for DMU j0. Hence, Model (2.3) can be 

written as Model (3.6) below:  

 

 θ(XD) = min  θ 

  s.t. 
oj sj sj

j J

x x s Sλ θ
∈

≤ ∈∑  

oj rj rj
j J

x x r Rλ
∈
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 0,j j Jλ ≥ ∈                 (3.6) 

 

Note that θ* is the optimal solution obtained by the model. The explanation of the 

variables and the details of the model are similar to Section 2.5.1.  Similarly, Model 

(3.4) (DEA supply chain model) can be simplified and written as Model (3.7) below. 

Let S be the set of inputs and R the set of outputs, where S and R are disjoint sets (S ∩ 
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R =  ∅).  K is the set of combined inputs/outputs i.e., K = S ∪ R. Let DS be the set of 

direct inputs, IS the set of indirect inputs and both DS and IS are disjoint sets.  Note 

that DS ∪ IS = S. J is the set of DMUs. Let XD = (xkj)k ∈ K; j ∈ J, where xkj represents k-th 

input/output for DMU j.  If k ∈ DS, then xkj is a direct input; if k ∈ IS, then xkj is an 

indirect input; otherwise if k ∈ R, then xkj is an output. Note that we do not particularly 

segregate the output into direct or indirect because the indirect term for output does 

not enter into the objective function; hence it does not affect the model. We define 

Ω(XD) as the supply chain efficiency score for DMU j0. The optimal solution obtained 

by the model is given by Ω*. 
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The explanation of the variables and the details of the model are similar to Model 

(3.4).  Model (3.6) and (3.7) will be used in the second part of the thesis. Next, we 
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we use to measure supply chain efficiency. Then, it will be followed by a description 
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 3.5 An application study 

In this section, we discuss an application study on supply chain efficiency 

measurement. First, we explain the overall conceptual model for measuring the supply 

chain efficiency, the variables and data used for the study. Then, it will be followed by 

setup of the experiments and finally results discussion. 

 

3.5.1The overall conceptual model for measuring supply chain 

efficiency 

 

 

 

 

 

 

   

 

Figure 3.1: Conceptual model for measuring supply chain efficiency in stochastic 
environment 

 

Figure 3.1 shows the conceptual model for measuring supply chain efficiency. The 

input, output and intermediate variables used are categorized according to the 

performance metrics listed in the SCOR (Supply Chain Operations Reference). SCOR 

Input variables 
√ Suppliers’ cost 
√ Manufacturing cost 
√ Manufacturing time 
√ Distributors’ cost 
√ Retailers’ cost 
√ Customer Response Time 

Output variable 
√ Revenue 

DEA Supply 
Chain model  
& Monte 
Carlo  

Statistical 
measure of 

Supply Chain 

Intermediate variables 
√ Suppliers’ revenue 
√ Fill rate 
√ On time delivery 
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is chosen because it is the first cross-industry framework for evaluating and improving 

enterprise-wide supply chain performance and management (Stewart, 1997) and it is 

the most common standard used by industry to measure supply chain performance 

today. The metrics used in SCOR include key areas such as financial measures and 

operational measures. The operational measures can be further broken down into 

specific measures which are delivery performance, order fulfilment and production 

flexibility. 

The DEA supply chain model is used as a tool to analyze these variables. The 

evaluation of the supply chain efficiency needs to consider some “intermediate” 

variables. The categorization of these intermediate measures is determined through the 

coordination among related supply chain members (Parlar and Weng, 1997; Thomas 

and Griffin, 1996).  Table 3.3 illustrates the input, output and intermediate variables. 

The input and output variables are defined following the standard definition used by 

analysts in supply chain management.  

 

Table 3.1: Variables used in the DEA supply chain model 

Measures Output 
variables 

Intermediate variables Input variables 

Financial measures Revenue Supplier’s revenue Each supply chain 
member’s cost 

Supply Chain 
Operational 
measures  

- Fill rate, 
On-time delivery 

Manufacturing time, 
Customer response time 

 

Table 3.2: Breakdown of the variables according to supply chain member. 

Echelons Supplier Manufacturer Distributor Retailer 
Inputs Supplier’s 

cost 
*Supplier’s 
revenue 
Manufacturing 
cost 

Distributor’s cost 
Customer response 
time 
*Fill rate 

Retailer’s cost 
*On-time 
delivery 
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Manufacturing 
time 

Outputs *Supplier’s 
revenue 

*Fill rate 
*On-time delivery 

*On-time delivery Retailer’s 
revenue 

*Note: Supplier’s revenue, fill rate and on-time delivery are also the intermediate variables 
 

The definitions for each measure are given below: 

1. Financial measures: 

a. Revenue - This is a common measure of efficiency in various profit-

oriented organizations. 

b. Cost - This is the performance attribute for supply chain costs, i.e. the 

costs associated with operating the supply chain. 

2. Operational measures: 

a. Fill rate – This is a performance attribute for supply chain reliability. In 

the broadest sense, fill rate refers to the service level between two 

parties. It is usually a measure of shipping performance expressed as 

percentage. In this paper, fill rate is treated as a cost measure to the 

distributor, which is associated with inventory holding cost and the 

amount of products required from the manufacturer.   

b. On-time delivery rate - This is a common performance attribute for 

‘supply chain delivery reliability’. It refers to the performance of the 

supply chain in delivering the correct product, to the correct place, at 

the correct time, in the correct condition and packaging, in the correct 

quantity, and with the correct documentation to the correct customer. 

c. Customer response time - It is the performance attribute for ‘supply 

chain responsiveness’. It refers to the velocity at which a supply chain 

provides products to the customers.  
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d. Manufacturing time - This is the performance attribute for ‘production 

flexibility’. It refers to the agility of a supply chain in responding to 

marketplace changes to gain or maintain competitive advantage.  

In this study, the subject measure for fill rate will be referred from the 

manufacturer to the distributor (not from manufacturer to retailer, or from distributor 

directly to retailer). We assume that fill rate is associated with the amount of products 

required from the manufacturer. The distributor will always try to meet the needs of its 

customer while setting an appropriate level of fill rate. A high fill rate incurs additional 

storage and holding cost to the distributor, while a low fill rate may not be able to 

satisfy customers demand. An optimal level of fill rate is usually determined from the 

tradeoff between rate of customer order fulfilment and inventory level. As such, we 

assume that the fill rate between manufacturer to distributor has more significant 

impact on the supply chain efficiency compared to the fill rate between the 

manufacturer to retailer and from distributor to retailer.  

Table 3.2 shows the breakdown of the inputs, outputs and intermediate 

variables according to each supply chain members. For the supplier, we use operating 

cost as direct inputs and revenue as the output. This revenue becomes an intermediate 

input to the manufacturer. The revenue from the supplier can affect the manufacturer  

performance in such way e.g. assume that the purchasing cost of the manufacturer can 

be increased or reduced; when the supplier increases its selling price to enhance its 

revenue, this increased revenue means increased cost to the manufacturer and 

consequently, the manufacturer may become inefficient. Alternatively, if the supplier 

reduces its selling price as part of revenue sharing contract with the manufacturer, this 

in turn will reduce the purchasing cost of the manufacturer and the manufacturer will 

subsequently become efficient. For the manufacturer, we use manufacturing cost and 
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manufacturing lead time as two direct inputs, in addition to the intermediate input i.e. 

supplier’s revenue. For the distributor, we use distribution cost and customer response 

time as two direct inputs in addition to the intermediate input (fill rate) linked with the 

manufacturer. For the retailer, in addition to the intermediate input from the distributor 

which is on-time delivery, we have one direct input of number of backorders and one 

output of profit.  Backorders are retailer’s cost while profit is equivalent to revenue.  

3.5.2 Data used for the study 

To make matters more concrete in the use of the proposed supply chain 

efficiency model, a survey was designed to collect inputs and outputs variables data 

from various companies. The companies from the semiconductor sector were selected. 

The sampling source for the companies was obtained from the Penang Development 

Corporation (PDC), Malaysia. These companies have their manufacturing plants 

located in the Penang Free Trade Zone. There are about 50 semiconductor companies 

listed in the PDC database and all these companies are selected for this study. These 

companies have similar logistic distribution network and operating in the similar 

businesses. As we are using DEA to measure the efficiency, that is the relative 

performance of decision making units (DMUs) are measured on the basis of the 

observed operating practice in a sample of comparable DMUs ( i.e., homogenous 

units), therefore it is a fair comparison.  

Data collection of the input and output variables was done via different 

methods. First of all, revenue and supply chain cost were obtained from the 

companies’ financial reports. Note that, the revenue figures may include revenue 

generated from other businesses; however, due to the fact the companies which we 

selected operate in the same business, the effect of revenue generated from other 
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businesses would be minimal. Secondly, fill rate, cycle time and on time delivery rate 

were collected from the questionnaires which were mailed to the supply chain 

managers. Thirdly, site interviews and telephone calls were made to follow up on the 

questionnaires and to validate their answers. We received responses from 30 

companies resulting in a response rate of 60 percent. Of these responses, 10 had all 

items completed and were usable for this study. Since the data are used to compute the 

rankings of relative efficiency, the low response rate does not affect the accuracy of 

the DEA outcomes. These data were then used in the DEA supply chain model and the 

solutions were obtained using Excel and its linear optimization solver. A total number 

of 10 DMUs was analyzed in this study. 

 

3.5.3 Setup of the experiments 

The first part of the study addresses the model from the deterministic 

perspective. Table 3.5 shows the data of the 10 DMUs.  

Table 3.3: Supply chain data 

DMU Unit 1 2 3 4 5 6 7 8 9 10 
Supplier-cost  Million 

USD 
130 150 165 170 200 185 135 190 185 190 

Supplier-revenue Million 
USD 

20 21 23 24 27 25 24 30 28 25 

Manufacturing cost Million 
USD 

125 120 110 150 146 115 105 100 135 120 

Manufacturing 
time 

Days 3 2 3 4 2 3 2 2 4 3 

Distributor cost Million 
USD 

90 100 80 70 85 77 78 90 78 68 

Customer response 
time 

Days 3 3 2 4 2 2 1 3 2 1 

Fill rate % 70 90 78 88 73 95 89 87 95 90 
On-time delivery % 96 95 97 89 99 89 93 88 99 83 
Retailer cost Million 

USD 
100 110 130 125 140 135 125 155 135 130 

Retailer revenue Million 
USD 

310 220 300 230 320 240 350 370 325 355 
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In the second part of the study, we will address the stochastic case.  We 

generate some stochasticity in the data, following the steps mentioned in Section 3.4. 

We choose retailer’s revenue and manufacturing time (cycle time) as the random 

variables because they have the most significant impact on the efficiency in Model 

(3.4) compared to other variables. Furthermore, in reality, revenue and cycle time data 

are difficult to be obtained precisely. Hence, by choosing these variables as random 

variables, it can validate the accuracy of the proposed model.  We assume that the 

revenue and cycle time data follow a normal distribution. The mean and variance of 

the random variables used in the study for each DMU is listed in Table 3. below. Note 

that the values of the mean and variance for the stochastic variables are determined 

through an analysis carried out on the data collected from the survey. In addition, we 

also seek some advice from the users on the appropriate values to be used. Next 

section will discuss on the results obtained. 

 

Table 3.4: Distribution of the random variables 

Cycle time,  Unit : Days Retailer's revenue, Unit: Million (USD) 
DMU Mean Variance Standard deviation Mean Variance Standard deviation 

1 3.08 0.9293 0.96 318 1406.25 37.5 
2 2.09 0.8391 0.92 220 625.00 25.0 
3 2.81 0.8118 0.90 301 1135.69 33.7 
4 3.90 0.8874 0.94 226 761.76 27.6 
5 1.91 1.1664 1.08 318 1346.89 36.7 
6 3.08 1.0404 1.02 232 761.76 27.6 
7 2.44 0.1444 0.38 350 1840.41 42.9 
8 1.98 0.8464 0.92 366 2070.25 45.5 
9 3.99 0.9409 0.97 324 1797.76 42.4 

10 2.85 1.0404 1.02 359 1632.16 40.4 
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3.5.4 Results and discussions 

Table 3. shows the efficiency score for each individual member as well as the overall 

supply chain.   

Table 3.5: Deterministic efficiency score 

 

To compare whether Model (3.1) or Model (3.4) is better, we evaluate the supply 

efficiency using both models. The values of θ are obtained by solving Model (3.1) 

separately for each member with respective to every DMU. The average value for each 

DMU (column 6) is then calculated by averaging out the entire member’s efficiency. 

Meanwhile, the values of Ω* and Ωa* are obtained by using Model (3.4). From the 

analysis, only one supply chain which is DMU 7, is efficient (Ω* = 1). This means that 

DMU 7 represents the best practice of the supply chain system and in its case, all its 

supply chain members are efficient (ΩS*=ΩM*=ΩD*=ΩR*=1) as well as 

(θS*=θM*=θD*=θR*=1). Recall that θa* is the individual member’s efficiency score for 

supply chain member a obtained from Model (3.1).  The results show that the average 

supply chain member efficiency score (column 6) which is obtained from Model (3.1) 

Member Efficiency (Model 3.1) 
 

Supply Chain Efficiency (Model 3.4) 

Supplier Manufacturer Distributor Retailer Average Supply 
Chain Supplier Manufacturer Distributor Retailer DMU 

θS* θM* θD* θR* θ* Ω* ΩS* ΩM* ΩD* ΩR* 

1 0.865 1 1 1 0.966 0.933 0.918 0.970 0.843 1 

2 0.881 1 0.880 0.673 0.859 0.601 0.600 0.625 0.465 0.714 

3 0.964 1 1 0.810 0.944 0.791 0.720 0.747 0.747 0.948 

4 0.870 0.856 1 0.754 0.870 0.576 0.503 0.447 0.690 0.663 

5 0.895 1 1 0.820 0.929 0.795 0.688 0.768 0.768 0.954 

6 0.937 0.999 1 0.673 0.902 0.613 0.529 0.579 0.625 0.717 

7 1 1 1 1 1.000 1 1 1 1 1 

8 1 1 0.811 1 0.953 0.943 1 1 0.770 1 

9 0.994 0.904 1 0.856 0.938 0.907 0.994 0.849 1 0.784 

10 1 0.986 1 1 0.997 0.992 1 0.968 1 1 
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is always greater than or equals to the supply chain efficiency score (column 7) which 

is obtained from Model (3.4).  

Table 3.6: Target values for inputs, outputs and intermediate variables for DMU 1. 

DMU 1 
Original 

value Target value % Change
Supplier-cost 130 119.37 -8.18
Supplier-revenue 20 21.22 6.11
Manufacturing cost 125 121.26 -2.99
Manufacturing time 3 2.91 -2.99
Distributor cost 90 75.91 -15.65
Customer response time 3 2.53 -15.65
Fill rate 0.7 0.91 29.92
On time delivery 0.96 0.96 0.00
Retailer cost 100 100 0

 

For example, for DMU 1 its average supply chain member efficiency score θ* is 0.966 

and the supply chain efficiency score Ω* is 0.933. Note that the reduction of the supply 

chain efficiency score is due to the removing of the indirect measures from Model 

(3.4). The value of ΩR*= 1 for DMU 1 (from Table 3.5) indicates that the retailer is 

efficient; hence no adjustments for measures related to the retailer are required. 

However, in order to reach the best practice, the supplier, the manufacturer and the 

distributor could reduce their inputs while maintaining the same level of outputs 

(based upon ΩS*, ΩM* and ΩD*, which are less than 1). In the case of DMU 1, all its 

direct input slacks have zero values. Thus, the supplier could reduce its cost to 119.4 

(based on ΩS* = 0.918); the manufacturer could reduce its cost to 121.26 and 

manufacturing time to 2.91 and the distributor could reduce its cost to 75.9 and 

customer response time to 2.53 while maintaining all the other outputs at the same 

level. All these target values are listed in Table 3.6. In addition, the supplier and the 

manufacturer could reach an agreement on the selling price of raw materials to 

increase the supplier’s revenue by 6.11% [(21.2-20)/20]. The distributor’s fill rate 
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could be increased to 91% from the current rate of 70%. This solution indicates that 

based upon the best practice, the distributor could be able to maintain the fill rate of 

91% while cutting down costs and cycle time. All these are the potential input savings 

that the supply chain could achieve. Similarly, the adjustment for other DMUs and 

their input savings could be interpreted using the same way. Note that if we use Model 

(3.1) to measure the efficiency, all these savings will not be significant. Thus, Model 

(3.4) is better than Model (3.1) for supply chain efficiency measurement. Appendix B 

(Table B.1) lists the target measure adjustments for each DMU.  

 

Table 3.7: Target benchmark for each DMU 

DMU Supplier (λS) Manufacturer (λM ) Distributor (λD ) Retailer (λR ) 
1 7  2  1  3, 9  
2 8, 9 2, 5, 7 7  3, 9  
3 8, 10  3  7, 8  3  
4 7, 8  2, 3  7, 10  3, 9  
5 8, 10 5 8, 10  5 
6 8, 10  3,  7 7, 8  3, 9  
7 7  7 7  7  
8 8  8  8  4, 9  
9 8, 10 3  7, 10  3  

10 10  2, 3, 7  10  10  
 

Addition managerial information could be obtained from Model (3.4), whereby the non-zero 

values of *D
j

*M
j

*S
j ,, λλλ  and *R

jλ  will indicate on which DMUs are to be used as benchmarks. 

For example, when DMU 8 is under evaluation using Model (3.4), in the retailer column, we 

have non zero values for *R
4λ   and *R

9λ  , hence this indicates that DMU 4 and 9 are used as 

benchmarks. Similarly for DMU 1, its benchmark for supplier is DMU 7, benchmark for 

manufacturer is DMU 2 and benchmarks for retailer are DMU 3 and 9. The targets for the 

other inefficient DMUs can be interpreted using the same way. 

  The DEA supply chain model provides firstly an approach for characterizing and 

measuring the efficiency of supply chain as well as supply chain members, and secondly, 
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makes it clear that two supply chains may have different input-output mix yet both may be 

efficient. This model enables supply chain members to collectively improve the supply chain 

performance. At the same time, it also provides information on which supply chain members 

are used as benchmarks in order to achieve best-practice performance and to gain a 

competitive edge.   

Next, we will move on to the results discussion for stochastic case. Figure 3.2 

contains box plot of the Monte Carlo efficiency scores by observation number. As can be seen 

in Figure 3.2, DMU 7 (which has an efficiency score of 1 in deterministic case) was not 

consistent on the frontier during the Monte Carlo application. The size of the boxes is 

determined by the span of values from the 25th to the 75th percentiles; as can be seen, they vary 

quite a bit. This indicates how sensitive a particular DMU’s efficiency score is to variations in 

the efficiency of the other DMUs in the data set. For example, DMU 7 and 10 were both 

originally found to be efficient from Model (3.4), their respective efficiency scores are 1 and 

0.992. In addition, the means of their Monte Carlo efficiency scores are very similar (0.954 

and 0.952, respectively), but DMU 7 has a tighter distribution of Monte Carlo efficiency 

scores than DMU 10, indicating less precision in DMU 10’s scores. Appendix B (Table B.2)  

showed the distribution statistics of the efficiency scores for each DMU. 

 

Figure 3.2: Boxplot of the Monte Carlo efficiency score 
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 Compared to the point estimates from traditional DEA model, the distribution of the 

efficiency is able to provide more useful information to the managers. With it, managers could 

know where the efficiency normally lies; hence, they would be able to gauge the reliability of 

the results. 

Based on the mean efficiency values from Figure 3.2, we can group the observations 

into three groups which are high efficiency DMUs, medium efficiency DMUs and low 

efficiency DMUs. The high efficiency group consists of DMU 1, 8, 10 and 7 (with efficiency 

scores ranging from 0.8~1.00); the medium efficiency group consists of DMU 3, 5 and 9 (with 

efficiency scores ranging from (0.7~0.8); and the low efficiency group consists of DMU 2, 4 

and 6 (with efficiency scores lower than 0.7).  Figure 3.3 to 3.6 showed the excess 

distribution function for the three categories of DMUs.  From Figure 3.4, it is evident that 

DMU 8 is first order stochastically dominated by DMU 1, 7 and 10. From Figure 3.5, all the 

DMUs 3, 5, and 9 do not stochastically dominate each other. From Figure 3.6, DMU 2 and 6 

first order stochastically dominate DMU 4. From these graphs, managers could be able to find 

out whether are there any possibilities for a particular DMU to be more efficient than the 

other. An interesting finding is that, it is possible for DMU 10 to be more efficient than DMU 

7 although the average score of DMU 10 is lower than DMU 7. This is not evident from the 

deterministic model. By using this information, managers will be able to make better decisions 

and appropriately strategize to improve their supply chain performance. 
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Figure 3.3: Excess Distribution Function for ‘High Efficiency’ DMUs 

 

 

Z shape Cumulative Frequency curves for 'Medium Efficiency' DMUs
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Figure 3.4: Excess Distribution Function for ‘Medium Efficiency’ DMUs 
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Z shape Cumulative Frequency curves for 'Low Efficiency' DMUs
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Figure 3.5: Excess Distribution Function for ‘Low Efficiency’ DMUs  

Note that Figures 3.5 and 3.6 do not appear to be approximate “uniform distribution”. 

There is no specific reason on why the distributions behave this way. This may be due 

to the data used in the evaluation.  

Table 3.8: Ranking of DMUs 

 

Another implication of our findings is that care should be taken when ranking 

DMUs in terms of their efficiency scores. Table 3.8 shows the ranking comparison 

between stochastic case and deterministic case. The stochastic case is divided into 

Deterministic case Stochastic case 

Rank 
Efficiency 

score DMU 
Mean 

efficiency 
score 

DMU 
Median 

efficiency 
score 

DMU 

1 1 7 0.954 7 1 7 
2 0.992 10 0.952 10 0.992 10 
3 0.943 8 0.892 1 0.942 8 
4 0.933 1 0.884 8 0.933 1 
5 0.795 5 0.793 3 0.798 5 
6 0.791 3 0.791 5 0.795 3 
7 0.783 9 0.785 9 0.774 9 
8 0.613 6 0.602 2 0.597 2 
9 0.601 2 0.593 6 0.589 6 

10 0.576 4 0.566 4 0.562 4 
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mean-based ranking and median-based ranking. The results showed that all the three 

methods of ranking differ. It is often difficult for managers to distinguish between 

mean and median of the efficiency score on which one is a better estimate. The 

decision maker would have to decide based on his/her own discretion on which 

estimate to use for performance ranking. Alternatively, the excess distribution 

functions would be able to shed some lights in handling the discrepancies incurred. 

Figure 3.3 showed that DMU 10 has higher chances of achieving efficiency score of 1 

(about 70% chances) compared to DMU 7, which only has about 60% chances. (Note: 

these values are read from the y axis in correspondence to the efficiency score of 1 at 

the x-axis). DMU 1   is also slightly dominant over DMU 8 (as can be seen from 

Figure 3.3 that the accumulated area under the cumulative frequency curve for DMU 1 

is slightly greater than that of DMU 8. Similarly, for the medium efficiency DMUs 

(refer Figure 3.4), DMU 9 is always dominated by DMU 3 and 5.  For the low 

efficiency DMUs (Figure 3.5), DMU 6 and 2 are always more efficient than DMU 4. 

Hence, the ranking results provided by the stochastic model are able to highlight some 

discrepancies and provide important insights to managers which are not evident if we 

use the deterministic model.  

Target benchmarks  in stochastic model  

Table 3.9: Target peers and percentage of time for target benchmark for each DMU 

DMU Target Supplier Target Manufacturer Target 
Distributor 

Target 
Retailer 

1 7 (94.5%), 1(5.5%) 2 (99%), 1(1%) 1 (98%) 
7 (2%) 

3,9 (97%), 
1(3%) 

2 8, 9 (98.5%),  
2(1.5%) 

2 , 5, 7 (100%) 7 (99%), 2(1%) 2(2.5%), 3,9 
(97.5%) 

3 3(2%), 8,10(98%) 3 (99%), 2(1%) 3(1.5%), 7, 8 
(98.5%) 

3(99%), 
9(1%) 

4 7, 8 (96.5%), 
4(3.5%) 

2, 3 (98.5%), 
4(1.5%) 

7, 10 (99%), 
4(1%) 

3, 9(99%), 
4(1%) 

5 8, 10 (97%),5(3%) 5 (99%),2(1%) 8, 10 (95%), 
5(5%) 

5 (99%), 
3(1%) 
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Table 3.9 shows the target benchmarks and percentage of time for each target to become 

benchmark for each DMU when the model is stochastic. The non bracketed integer in Table 

3.9 denotes the target DMU to refer to as benchmark while the numerical value (in bracket) 

indicates the percentage of time (frequency) for the DMU in becoming the target benchmark. 

The results obtained in the stochastic case are different from the deterministic case.  For 

instances, for DMU 7, its peer for distributor is itself only in the deterministic model. 

However, in the stochastic model, it has two additional targets which are DMU 1 and 8, where 

44.5% of chance the targets will be these two DMUs. Similarly, for DMU 8, it has two 

additional targets for manufacturer (DMU 3 and 7) where 36.2% of chance the targets are 

DMU 3 and 7, and 63.8% of chance the target is DMU 8 and its target distributors are DMUs 

7, 8 and 10, where 75.4% of chance the target is DMU 8 and 24.6% of chance the targets are 

DMU 7 and DMU 10. 

Additional targets are expected to occur in stochastic model due to the following 

reason. When uncertainties occur, additional precaution measures would have to be taken in 

most of the time. This is often carried out by making more comparisons with other DMUs and 

setting more targets to improve the existing performances. Hence, this is apparently depicted 

in the target benchmark results, where more additional targets will be identified in the 

stochastic case compared to the deterministic case. In addition, if target benchmark is only 

carried out using the deterministic way, wrong target might be identified and this could 

jeopardize the overall effort in performance benchmarking. 
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7, 8 (95%), 
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3, 9 (98%), 
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7 7 (99%), 8(1%) 3, 5 (1%),  7(99%) 1, 8 (44.5%), 
7(55.5%) 

7 (99%), 
9(1%) 

8 8 (99%), 10(1%) 3,7 (36.2%),  
8(63.8%) 

8 (75.4%), 
7,10(24.6%) 

4, 9 (98%), 
8(2%) 

9 8, 10 (97%), 9(3%) 3 (99.5%), 9(0.5%) 7, 10 (99%), 
9(1%) 

3 (95%), 
9(5%) 

10 10 (99%),  7,8(1%) 2, 3, 7 (99.5%), 
10(0.5%) 

10 (99%), 
7,8(1%) 

10 (98%), 
3,9(2%) 
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The Monte Carlo study conducted here manages to point out that in the stochastic 

environment there may be additional or different target peers for all the DMUs. This piece of 

important information would be missing if analysis is only based on conventional-LP based 

DEA model. Especially, for the efficient DMUs, (which have obtained a score of 1), they 

would be contented and thought that their processes are extremely efficient. Hence, they will 

not carry out any further improvements in their processes.  But, this is not true. In actual case, 

their performances are not robust and they still need to improve further by fine tuning and 

comparing with other better (or equivalent) target peers (benchmarks)  like some of the 

examples mentioned above. 

In actual industry practices, upon obtaining the value of the efficiency score, managers 

will then use it to adjust their input or output measures. Hence, in the stochastic case, we could 

use the distribution of the efficiency to get some additional insights towards the distribution of 

the measure adjustments. Table 3.10 shows the measure adjustments for DMU 7 for stochastic 

case. 

Table 3.10: Measure adjustments for DMU 7 

 
 

The adjustments are categorized into 4 groups which are ‘0%’, ‘0%< ≤ 5%’, ‘5%< ≤ 

10%’ and ‘10% < ≤ 20%’. These represent the percentage of adjustments: i.e. ‘0%’ means no 

adjustment is needed, ‘0%< ≤ 5%’ means that  adjustment greater than 0% but less than or 

Measure adjustments 
DMU 7 10%<  

≤20% 5%<  ≤10% 0%<  ≤5% 0% 
Supplier-cost 0.0% 0.0% 1.0% 99.0% 
Supplier-revenue 0.0% 0.0% 1.0% 99.0% 
Manufacturing cost 0.0% 0.2% 0.8% 99.0% 
Manufacturing time 0.0% 0.5% 0.5% 99.0% 
Distributor cost 14.0% 17.0% 13.0% 56.0% 
Customer response time 16.5% 12.5% 15.5% 55.5% 
Fill rate 11.0% 14.0% 19.5% 55.5% 
On time delivery 18.0% 10.0% 15.0% 57.0% 
Retailer cost 0.0% 0.0% 1.0% 99.0% 
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equals to 5% is needed for the respective measure and etc. This categorization is based on the 

distribution obtained from the numerical runs. The results showed that there are differences in 

the measure adjustments between the stochastic and deterministic model. For instances, in the 

stochastic model, 14% of the time, DMU 7 would need to adjust its distributor cost between 

10% to 20%, 17% of the time, it needs to adjust between 5% to 10%, 13% of the time it needs 

to adjust between 0% to 5% and 56% of the time, no adjustment is needed. In contrast to the 

deterministic model, DMU 7 does not need to adjust any of its measures because it is fully 

efficient. These are obviously vast different conclusions. The results show that the choice of 

DEA model and the implication of that choice are very serious in terms of managerial decision 

making.  

 

3.6 Conclusion and Managerial Implications 

This chapter developed the DEA supply chain model as well as a simple tool 

which is called the Monte-Carlo DEA to measure supply chain efficiency in stochastic 

environment. Though the DEA supply chain model which we develop may not have 

fully addressed all the concerns in supply chain efficiency measurement, it is still 

better than the conventional method and can be a tentative solution. The Monte Carlo 

DEA method has given a more meaningful interpretation to the efficiency. In contrast 

to the point estimate of the efficiency score given by the conventional DEA model, it 

is able to make statistical inferences on the efficiency. The additional information 

provided such as the distribution, target benchmarks, measure adjustments and other 

statistical measures are invaluable to managers. They provide additional useful 

insights to managerial decision makings. For instances, decision maker could use the 

confidence intervals to gauge the reliability of the calculated efficiency scores. The 

stochastic model approach also offers a new avenue to managers in analyzing the 
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supply chain performances rankings. The target benchmarks and adjustments provide 

additional reference sets for the inefficient DMUs which are not evident from the 

conventional method. In order to demonstrate the usefulness of this method, an 

application study on supply chain was conducted. The results obtained from the 

analysis support the validity of the model. The results were depicted in graphical 

forms to enhance the understanding of the analysts and vast significant differences 

were found between the conventional (deterministic) and the proposed methodology. 

The contribution of this study provides useful insights into the use of Monte Carlo 

technique combined with DEA as a mathematical modelling tool to aid managerial 

decision making in measuring supply chain efficiency. Given the ever increasing 

availability of cheap computing power, the Monte-Carlo DEA based approach appears 

to be a valuable tool for decision makers. It provides them with a technique for 

attaching statistical precision and greater confidence to the efficiency analysis that 

may form the basis of important decisions.   
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CHAPTER 4 

BUDGET ALLOCATION FOR EFFECTIVE DATA 
COLLECTION IN PREDICTION OF AN ACCURATE 

EFFICIENCY SCORE 

 

In chapter 3, we presented a Monte Carlo DEA based approach to measure the supply 

chain efficiency in stochastic environment.  By using the Monte Carlo DEA way, we 

are able to get the distribution of the efficiency and know where the efficiency lies 

most of the time. Starting from this chapter onwards, we will address the second part 

of the thesis, where we will provide an approach on how to get a good estimate of the 

efficiency score. We will focus on given that a user can collect additional data, how 

he/she collects the data effectively so as to obtain a better estimate of the efficiency 

score. 

 

4.1 Introduction 

In the previous chapter, we have used Monte Carlo method to estimate the 

distributions for the efficiency scores based on the distributions for the inputs/outputs. 

The attractiveness of this Monte Carlo DEA approach is its computational simplicity 

and its ability to give statistical inferences of the efficiency. From the numerical study 

conducted, we obtained some useful insights which form the basis for the second part 

of our research. We found that the changes in the distributions of the inputs/outputs 

have impact on the distribution of the efficiency. The following are some of the 

observations obtained from the study: a) when the distributions of the inputs/outputs 

variables are narrower, the distribution of the efficiency will be narrower. In other 
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words, when there is less variation in the inputs/outputs variables, the efficiency score 

will be more accurate.  b)  Each input and output has different impact on the 

efficiency. Some may cause the efficiency to vary more, while some do not have any 

significant impact at all. Based on these observations, we knew that distributions of the 

inputs/outputs will affect the efficiency score.  As the distributions of the 

inputs/outputs are determined by how the data are collected, building on the first work, 

we now proceed to address in the context of data collection, what is the better way to 

collect data so that the efficiency score will be accurate. 

In real application, when the true values of the inputs/outputs are unknown, we 

need to collect data and use the sample means to estimate these true values or true 

means.  Then the inputs/outputs will be a distribution which depends on the amount of 

data collected for that input/output. Intuitively, the more data we collect, the lesser the 

spread of the belief of the true mean. In other words, we know where the true mean 

locates more precisely when we have collected more data. At such, we would want to 

collect as much data as possible. However, due to the exorbitant cost in conducting 

data collection in reality, it is usually a common practice in any organizations that the 

data collection is not infinite and will be limited to a certain budget. In this case, any 

attempt to collect data often raises one question. How should we allocate the budget - 

how many data should we collect for each input/output?  If we naively allocate the 

data collection effort fairly, the efficiency estimated might not be accurate.  Hence, it 

is important to know how to allocate our budget for data collection in order to get a 

better estimate for the efficiency. Different allocation or data collection schemes will 

affect the accuracy of the efficiency.  Intuitively, to ensure high accuracy of the 

efficiency, more efforts or budget should be spent on collecting those data that are 

critical in the process of predicting the efficiency.  By conducting the data collection 
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intelligently, the users can make better use of their resources. Ideally, one would like 

to find out what is the best data collection scheme which yields the best accuracy for 

the efficiency within a given budget.  To do this, we first need to define what we 

meant by accuracy of efficiency. 

 

4.2 Definition of accurate efficiency 

Accuracy of an estimator refers to the degree of conformity of the 

measurement to its actual (true) value. In other words, the degree of variation / 

deviation of the measurement to its actual value; the lower the variation, the better is 

the accuracy. The literature on efficiency study had mostly focused exclusively on the 

variance as the measure for accuracy (Gong, 1995; Grosskopf, 1996). However, there 

is other indicator, such as bias, which is of no less importance and should also be 

subsumed into the performance metric for the accuracy of the efficiency. The 

methodical approach to obtain the efficiency with minimum variance and bias is still 

missing at large (Simar and Wilson, 2000).  In this research, we will use mean square 

error or MSE as the measure for the accuracy of the efficiency. In statistics, MSE of an 

estimator is defined as the amount by which an estimator differs from the true value of 

the quantity being estimated i.e. MSE(b) = E[(b - B)2] where b is the estimator and B 

is the true value of the quantity being estimated (DeGroot, 1970).  

We choose MSE because it is a more appropriate measure than variance due to 

it assesses the quality of an estimator in terms of its variation and unbiasedness. In 

order to suit our case, we define MSE of the efficiency as below. 

2( )DMSE E θ θ= −%                                 (4.1) 
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whereθ% is the belief towards where the true efficiency lies and Dθ is the efficiency 

calculated from the initial data collected. Note that we use sample mean to estimate 

Dθ .  Recall θ(XD) from previous section (Model 3.7), we will use this to represent Dθ . 

We can compute Dθ  this way because this is a common approach adopted by users as 

explained in Section 3.4.1. Without loss of generality, we start off by focusing on how 

to improve the efficiency score for one particular DMU.  The methodology proposed 

in this paper can be easily extended for future work to include multiple DMUs. 

 

4.3 Problem Statement 

The problem statement is, if we can only collect limited additional data, how 

should we distribute our efforts in collecting data so that we can get a better prediction 

of the efficiency.  Note that we assume the effort in collecting data for different 

inputs/outputs is the same.  

Assume we have collected some initial data for all the inputs/outputs and let X  

be the matrix of their sample averages, we will determine the data collection scheme 

(or allocation design) so as to minimize the MSE of efficiency score subject to a 

limited budget for additional samples.  In our research, we refer budget as the total 

amount of additional data to be collected, denoted by N.  The allocation design is 

denoted by [ ]k k Kn ∈=n , where nk represents the number of additional data collected for 

input/output k.  Next, we construct the mathematical model for our problem.  
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4.4 Mathematical Programming Model 

The model that represents our problem statement is as shown below:  

2min ( ) ( ( ) ( ))

s.t. k
k K

F E

n N

θ θ

∈

⎡ ⎤′= −⎣ ⎦
=∑

n X X%

                

(4.2) 

The objective function F(n) is defined as the MSE of the efficiency score for 

allocation design n where X′ is the belief of the inputs/outputs after additional data are 

collected following the allocation design n.  Note that θ(X) is the efficiency score 

computed using Model 3.7. ( )θ ′X% represents the belief for the true efficiency.  The 

above model cannot be solved directly because the distribution for ( )θ ′X%  is unknown. 

In order to estimate F(n), first we need to quantify X′ . We will now discuss how to 

derive X′  under the Bayesian framework.  Let [ ]k k Kx ∈′ ′=X  and kx′ is a random 

variable. 

The rationale for the adoption of the Bayesian model in determining how data 

collection determines the distributions of the inputs/outputs is the ease of derivation of 

the solution approach.  Under the Bayesian model, the belief for the unknown true 

value/mean of the input/output k denoted by µk is treated as a random variable and has 

a prior distribution. This prior distribution describes the knowledge or the subjective 

belief about µk before any sampling. The posterior distribution is updated after we 

observe the samples }1)(ˆ { okk ,...,n,ttx = . The posterior distribution 

})1)(ˆ{( okkk ,...,n,ttx|P =µ summarizes the statistical properties of µk given the prior 

knowledge and sampling information. Note that nok = total number of samples, )(ˆ txk  
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= the t-th sample of the performance measure. Similar to Chen et al. (2000), we 

assume that the µk has a conjugate normal prior distribution and consider non-

informative prior distribution which implies that no prior knowledge is available about 

the performance of any design before conducting simulation. In that case, DeGroot 

(1970) shows that the posterior distribution of µk is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

ok

k
kk n

xNx
2

,~
σ

where 

∑
=

=
okn

t
k

ok
k tx

n
x

1
)(ˆ1 is the sample mean of the observations and  2

kσ   is the true variance 

which can be approximated by the sample variance       ( )
2

1

2 )(ˆ
1

1 ∑
=

−
−

≈
okn

t
kk

ok
k xtx

n
σ . In 

addition to using the Bayesian framework to develop a posterior distribution for the 

unknown true value of the input/output after collecting the data, we also use it to 

approximate the belief of the true mean if additional samples are collected. Based on 

the approximations made in Lee  et al. (2008)  and Chen  et al. (1996), when sample 

size increases, kx  and 2
kσ  do not change  and  if additional nk samples are collected, 

the predicted posterior distribution for µk  can be approximated by 

2

~ , k
k k

ok k

x N x
n n
σ⎛ ⎞

′ ⎜ ⎟+⎝ ⎠
    where kx  and 2

kσ  are the sample mean and variance of the 

original nok independent samples.  Hence, this explains how data collection will affect 

the distributions of the inputs/outputs which will ultimately determine the distribution 

of the efficiency score.  

After using the Bayesian framework to quantify X′ , we can then estimate the 

distribution of the efficiency score through Monte Carlo method. Hence, we are able to 

estimate F given a value of n. An estimation of F(n) is given by   
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2
][

1
))()ˆ((1)( XX θθ −≈ ∑

=
i

M

iM
nF                 (4.3) 

 

where ][
ˆ

iX  is the realization of the inputs/outputs X′  in the replication i of the Monte 

Carlo run for allocation design n and M is the number of random data set. 

Remarks: Recall that we only focus on one DMU. Hence, in our model, θ is only for 

the DMU that we are interested in. However, it can also be generalized to all DMUs as 

well.   

 

4.5 Summary 

In this chapter, we discuss the formulation of the problem statement and the 

mathematical model.  The research problem is to find out what is the best way to 

allocate the budget for data collection within a restricted budget in order to get a good 

estimate of the efficiency score.  The mean square error (MSE) is used as the metric 

for the accuracy of the efficiency. In order to solve the mathematical model, we used 

Bayesian framework to quantify how the data affects the efficiency and then applied 

the Monte Carlo method to estimate the MSE. Solving the model is a non-trivial task 

since it has no close-form formulation for the computation of MSE.  

In the following chapter, we will present two methods to solve the model. We 

will first introduce a gradient search method, followed by a method based on Genetic 

Algorithm (GA). We will demonstrate how to calculate the gradient of the 

performance by using IPA (Infinitesimal Perturbation Analysis) and then how to use 

the gradient information to determine which nk to increase, or in other words which 
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data should we collect.  Then, for the GA based method, we will use GA to search for 

the optimal solutions and OCBA (Optimal Computing Budget Allocation) to 

efficiently allocate the simulation budget. 
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CHAPTER 5 

TWO-PHASE GRADIENT TECHNIQUE  
 

 

As there is no close-form formulation to compute MSE for a given allocation design n 

in our model (refer to the model in Chapter 4), in order to find an optimal solution (or 

allocation), we therefore need to use a search-based method.  In this method, first we 

generate some designs (i.e. different allocations n), then we estimate the MSE. After 

that we repeat this entire process until we find the best MSE and the associated n. We 

adopt the simulation optimization technique which comprised of the Monte Carlo 

simulation to estimate the MSE given a certain allocation scheme and optimization 

techniques to find the better allocation scheme. The estimation of MSE using Monte 

Carlo method is carried out exactly the same way as in the Monte Carlo DEA. Instead 

of the end result which is efficiency, in this case, the end result is MSE which is 

calculated using the formula as previously explained in Chapter 4. The optimization 

techniques include the two-phase gradient technique and the hybrid GA technique. In 

this chapter, we discuss the two-phase gradient technique. We will address all the 

issues that arise. 

 

5.1 Background Information 

The two-phase gradient technique is based on gradient search. The approach 

that we use is that given an allocation design, we estimate the MSE and the gradient of 
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MSE. The gradient information provides a direction for finding a new allocation 

design that may have a lower MSE value.  There will be two stages for this gradient 

technique. In the first phase, we find the gradient of MSE using infinitesimal 

Perturbation Analysis (IPA) approach. Then, using the gradient, we implement the 

hill-climbing algorithm to locate a solution at the boundary. The second phase is a 

gradient-based improvement approach to fine tune the solutions from the first phase.  

Note that the searching method only seeks for a local optimum. This is due to our 

research problem where the solution space can be very huge and unstructured1.   

 The discussion on the two-phase gradient technique is divided into three parts. 

First, we explain how to find the gradient using IPA. Then we explain how we 

implement the hill climbing algorithm by using the gradient derived from phase 1. The 

hill climbing algorithm will guide the search to reach a solution at the boundary. 

Lastly, we explain the improvement stage on how to fine tune the solutions.  

 

5.2. Finding the gradient using IPA 

When we estimate the MSE using Monte Carlo method, at the same time, we 

can also estimate the gradient without rerunning simulation by using IPA. The idea of 

IPA is to consider how perturbation in a parameter affects the changes of the random 

variables generated and eventually how it changes the performance of the system. 

                                                 
1 When the solution space is unstructured (e.g., the decision variables are not real numbers), it will deter the practicality of our 
method (i.e. using perturbation analysis (PA) to estimate the gradient for determining the local search direction) in finding the 
optimal solution. Though, in such case, if the solution space is not large, brute force evaluation for all the design alternatives will 
be able to find the optimal design; this is impractical in our research problem due to the huge solution space. In order to find the 
optimal solution for our research problem, we may need to use some AI (artificial optimization tools)  e.g. Genetic Algorithm 
(GA) which could help us to locate the near-optimal designs. 
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Relating this idea to our research problem, we want to look at when the number of 

allocation changes or in other words, when the number of allocation is perturbed by a 

small amount, how it affects the data that is generated (i.e., the realization of the 

inputs/outputs). After knowing how the perturbation has generated in the data, we 

want to see how it affects the efficiency value. Finally after observing how 

perturbation has generated in the efficiency, we want to find out how it affects the 

overall performance which is the MSE of the efficiency. The gradient of the 

performance (MSE) with respect to n, is denoted by
n
nfn ∂

∂
=∇

)(F
 . We relax the 

problem by assuming that n is a real number vector.  

Remark: In our case, although all elements in n must be integers, we relax it by 

assuming n to be real numbers to suit the conditions in IPA so that we are able to find 

the gradient of the performance with respect to n.  This approximation is fine when n 

is large. The three main steps in IPA are perturbation generation, perturbation 

propagation and perturbation in performance. We will first explain what we want to 

find in each stage of the IPA and then show how to use chain rule to link all these 

together.  To ease the understanding of the readers and for illustration simplification, 

we discuss the lemmas and mathematical proofs from the point of view of an element 

of the vector n. 

 

5.2.1 1st stage (Perturbation generation) 

In the perturbation generation stage, we want to find when we perturb the 

parameter by a small quantity, how will it affect the random number that is generated 
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(Ho and Cao, 1991).  Suppose that the number of initial data collection is given by no 

= [nok]k∈K.  Recall that  ][
ˆ

iX  is the realization after n allocation obtained in replication i 

of the Monte Carlo runs. If we perturb nk value by a small quantity ∆nk, we are 

interested to see how it will affect the ][
ˆ

iX . To simplify the notation for ][
ˆ

iX , we will 

remove the index [i] from it.  Let [ ] Kkkx ∈= ˆX̂ .   

 

Lemma 1: Suppose
2

~ , k
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ok k
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′ ⎜ ⎟+⎝ ⎠
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k ok k

x xZ
n nσ
−
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+

 is the normalized value of 

the realization kx̂ .  Using the common random number to generate the perturbation 

in kx̂ , if nk is changed by ∆nk, then the change in kx̂  can be approximated 

by ( )( )2
2/3)(2

ˆ nn
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PROOF: Recall Bayesian framework that
2
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. The normalized value 

of the realization kx̂  is given by
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+

.  If kn∆  additional samples are 

collected, then the belief of input/output k is given by
2
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Using the same Z statistic, the realization of kx′′  is given by k

ok k k

Z
n n n

σ
+ + ∆

.  Thus, the 

change in kx̂  will be ⎟
⎟
⎠

⎞
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∆++
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kokkkok
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Zx 11ˆ σ . 

Using Taylor expansion: ( )( )2)()()( hhhfhfhhf ∆Ο+∆⋅′=−∆+ , we have  
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5.2.2 2nd stage (Perturbation propagation) 

To solve Model 4.2, we need to generate )ˆ( ][iXθ which we need to solve an LP 

(i.e. Model 3.7) with given ][
ˆ

iX . As we know how the perturbation has generated in kx̂ , 

hence, we will see how it will affect the )ˆ( ][iXθ value. We use the approximation of 

the LP problem and dual model to find the perturbation in )ˆ( ][iXθ .  

 

Lemma 2: Let θ′ be the efficiency score obtained from solving Model (3.7), λ′ the 

solution for the particular DMU that we are interested in, and πk the corresponding 

dual variable for the constraint related to input/output k ∈ K.  If kx̂  changes by kx̂∆ , 

then the change in efficiency score is estimated by θ ′∆  = kk x̂)( ∆′−′ πλθ   if k ∈ S; 
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otherwise, θ ′∆  = kk x̂)1( ∆′− πλ  if k ∈ R. Hence, ( ) k
k

x
k xx k

πλθθθ ′−≈
∆

∆
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if k ∈ S and ( ) k
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ˆ
)ˆ(

0ˆ

XX if k ∈ R.  

 

PROOF: Note that we have dropped the index jo from kx̂ , λ′ and π which refers to the 

particular DMU that we are interested in. Here we need to reintroduce the index jo in 

this proof.  Also note that we have dropped the index [i] from theθ′, λ′ , πk  and kx̂    

because they can be written in general due to the reason that the same principle applies 

to all replications of the Monte Carlo runs.  

 

First, we discuss how the efficiency score changes when the input 
okjx̂  (k ∈ S) 

changes. When 
okjx̂  (k ∈ S) changes by

okjx̂∆ , the corresponding 1st constraint of Model 

(3.7) (DEA Model) will change as follows:   
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Assuming that the changes in the solutions are very small, we replace ( )
oo kjj x̂∆−λθ  

with ( )
oo kjj x̂∆′−′ λθ .  That is, we approximate that the right-hand side of constraint 

corresponding to the input k changes from 0 to ( )
oo kjj x̂∆′−′ λθ .   
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Thus, based on the sensitivity analysis2 of linear programming, we can estimate the 

change in efficiency score by  

( ) kkjj oo
x πλθθ ˆ∆′−′≈′∆  

( ) kj
kj

o

o
x

πλθθ ′−′≈
∆

′∆
ˆ

  

Hence, ( ) kj
kj

x
kj

o

o
okj

o
xx

πλθθθ ′−≈
∆
∆

=
∂
∂

→∆
)ˆ(

ˆ
)ˆ(lim

ˆ
)ˆ(

0ˆ
XXX  

Next, we discuss how the efficiency score changes when the output  
okjx̂  (k ∈ R) 

changes. When 
okjx̂  (k ∈ R) changes by

okjx̂∆ , the corresponding constraint of Model 

(3.7) will change as follows:  

                                                 
2 For an LP problem { }max : ,z = = ≥cx Ax b x 0 , suppose, b changes by ∆b,  the corresponding increment in the 

objective function is bπ∆=∆z  where π is the dual variable for the corresponding primal constraint, which directly reflects 
the change in z owing to a change in the b (see e.g., Winston, 2003). In economic terms, π is referred as the shadow price, which 

is equivalent as the marginal price of b). Thus, if there are changes in both b and A: bbbAAA ∆+→∆+→ , , 
the corresponding increment in the objective function can be approximated as follows: 

AxbAx
bbxAA

∆−=
∆+=∆+ )(

 

Assuming that the changes in the solutions are very small, hence the changes in the right hand side of the constraint can be 

approximated by    

              
xAb

xAbAx
′∆−≈∆

′∆−≈
 

Therefore, the change in the objective function is given by )( xAπ ′∆−≈∆z  
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( ) ( )
( )

ooooo

o

ooooo

o

kjjkjjkj
jjJj

kjj

kjkjjkjkj
jjJj

kjj

xxxx

xxxxx

ˆ1ˆˆ

ˆˆˆˆ

,

,

∆−+≥+

+≥∆++

∑

∑

≠∈

≠∈

λλλ

λλ
  

Assuming that the changes in the solutions are very small, we again replace 

( )
oo kjj x̂1 ∆−λ  with ( )

oo kjj x̂1 ∆′− λ .  That is, the right-hand side of the constraint 

corresponding to output k changes approximately by ( )
oo kjj x̂1 ∆′− λ .  Thus, based on the 

sensitivity analysis of linear programming, we can estimate the change in efficiency 

score by  

( ) kkjj oo
x πλθ ˆ1 ∆′−≈′∆  

( ) kj
kj

o

o
x

πλθ ′−≈
∆

′∆ 1
ˆ

 . 

Hence, ( ) kj
kj

x
kj

o

o
okj

o
xx

πλθθ ′−≈
∆
∆

=
∂
∂

→∆
1

ˆ
)ˆ(lim

ˆ
)ˆ(

0ˆ

XX .   

 

5.2.3 3rd stage (Perturbation in performance) 

Given the perturbation in )ˆ( ][iXθ , we want to see how it affects the overall 

performance, which is to estimate the change in MSE ( )(nF∆ ) when efficiency 

changes by )ˆ( ][iXθ∆ . However, instead of expressing in terms of perturbation, we will 

express in terms of derivative directly to suit our aim which is to find the 

gradient,
n
nfn ∂

∂
=∇

)(F
. Taking derivative of F(n) with respect to )ˆ( ][iXθ , we obtain  
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))()ˆ((2
)ˆ(

)(
][

][

XX
X
n θθ

θ
−=

∂
∂

i
i M

F                  (5.1) 

               

Eventually, by using chain rule3 to link all these together, we are able to find the rate 

of change in F(n) with respect to n.  

Lemma 3: Suppose Lemma 1 and 2 hold, 
kn

F
∂
∂ )(n  can be approximated by 

( ) ( )∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
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⎛
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i
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Z
M 1

][2/3][][][ )(2
)ˆ(*)()ˆ(2 πσλθθθ XXX   if k ∈ S, otherwise 
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= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−′−−
M

i
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k
ii nn

Z
M 1

][2/3][][ )(2
1*)ˆ(2 πσλθθ (X)X  if k ∈ R  

 

PROOF: Here, we need to reintroduce the index i in this proof because it requires the 

values of )ˆ(Xθ , λ, π  and kx̂ in  each replication i of the LP.   

From (5.1), ))()ˆ((2
)ˆ(

)(lim
)ˆ(

)(
][

][
0)ˆ(

][ ][

XX
X
n

X
n

X
θθ

θθ θ
−=

∆
∆

=
∂
∂

→∆
i

ii M
FF
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Lemma 1:  2/3
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)(2
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∂
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Lemma 2: ( ) ][][][
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0ˆ
][

][ )ˆ(
ˆ

)ˆ(
lim

ˆ
)ˆ(

][
ikii

ik

i

x
ik

i

xx ik

πλθ
θθ

′−≈
∆

∆
=

∂

∂
→∆

X
XX

  if k∈S, and  

      ( ) ][][
][

][
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ˆ

)ˆ(
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ˆ
)ˆ(
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ik

i

x
ik

i

xx ik

πλ
θθ

′−≈
∆

∆
=

∂

∂
→∆

XX
 if k∈R  

                                                 
3 Chain rule concept (Apostol, 1974) :  if f(u)=h(g(u)), then  f’(u)=h’(g(u)) g’(u). In intuitive terms, if a variable f(u), depends on 
a second variable, h(g(u)), which in turn depends on a third variable, g(u), then the rate of change of  f(u) with respect to u can be 
computed as the rate of change of f(u) with respect to h(g(u)) multiplied by the rate of change of g(u)  with respect to u.   
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∇=∇ nf  

Using chain rule, 
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⎥
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∂
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Hence, 

( ) ( )[ ] [ ] [ ] [ ] 3/ 2
1

2 ˆ ˆ( ) ( ) ( )
2( )k

M
k

n i i i k i
i ok k

Zf
M n n

σθ θ θ λ π
=

⎡ ⎤⎛ ⎞
′ ′∇ ≈ − ⋅ − ⋅ −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

∑ X X X  if k ∈ S   

Otherwise ( ) ( )[ ] [ ] [ ] 3/ 2
1

2 ˆ( ) ( ) 1
2( )k

M
k

n i i k i
i ok k

Zf
M n n

σθ θ λ π
=

⎡ ⎤⎛ ⎞
′∇ ≈ − ⋅ − ⋅ −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

∑ X X if k ∈ R  

 This completes the proof.     

 

5.3 First phase (Hill‐climbing algorithm) 

This section explains the first phase of the two-phase gradient technique. In 

this first phase, which is based on the hill-climbing algorithm, there are two important 

concepts. The first is to find a good direction and the second is to determine how far to 

move along that direction.  Based on these two concepts, the overall idea for our hill 

climbing algorithm is as follows. Given a starting/current design, we find the direction 

to move based on the gradient information. Next, we decide how far to move so that a 

lower value of MSE can be obtained when we move. With these information, we will 

be able to obtain a new design. After that, we will move to the new design, set it as the 
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current design and repeat the process until the entire budget is used up, which 

is∑
∈

=
Kk

k Nn . 

We will now discuss the details of the first phase. Here, let us denote n(t) as  the 

starting allocation design for iteration t (initially, we set t = 1). The gradient 
)( tnf∇  is 

used to identify the move direction. Let d(t) = [dk(t)]k∈K denote the move direction used 

during iteration t. Since the objective function is to minimize the MSE, the direction 

chosen should be at the most descent gradient, i.e. d(t) = 
)( tnf∇− (Winston, 2003). Thus, 

the new allocation design (point) we intend to evaluate in iteration t + 1 is given by  

)()()()()1( ttttt nfndnn ∇−=+=+ δδ
  

              (5.2) 

where δ > 0 is the selected step size.  

 For our research problem since we are minimizing the MSE, the move 

direction should be the most descent gradient i.e. negative gradient. However, due to 

uniqueness of our problem, the gradient can be non-negative. Therefore, in 

implementing our hill climbing algorithm, apart from considering the direction which 

can improve the performance, we also have to control the move direction. This is to 

ensure that that the hill-climbing will move in the direction that gradually increases the 

total number of allocation and eventually reaches the budget. Therefore, we need to 

address the followings: (i) the move direction must be determined from negative 

gradient, (ii) the allocations must be rounded off to maintain integrality and budget 

requirements, and (iii) how to determine an appropriate step size.  We will elaborate 

each of the issues and describe how to tackle each of these in details. 
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5.3.1 Negative Gradient  

 From Eq. (5.2), for each number of allocation evaluated at iteration t, nk(t) , we 

can find the updated number of allocation as follows: 

Kkfnn
tkntktk ∈∀∇−=+ )()()1( δ

                 (5.3) 

Similarly, for the summation of the total number of allocation 

∑∑∑
∈∈∈

+ ∇−=
Kk

n
Kk

tk
Kk

tk tk
fnn

)()()1( δ
                (5.4)

 

 

In order for the total number of allocation to increase at each move, i.e. 

∑∑
∈∈

+ >
Kk

tk
Kk

tk nn )()1( , we need to have  ∑
∈

∇
Kk

n tk
f

)(
 < 0. This means the gradient has to be 

negative. However, due to the nature of our problem, the gradient can be non-negative. 

Let us define ∑+
∇   

)( tknf as the total sum of the positive gradients and ∑−
∇   

)( tknf as 

the total sum of the negative gradients. That is, 

 ∑∑∑ −+
∈

∇+∇=∇
)()()( tktktk nn

Kk
n fff                   (5.5)  

In order to guarantee that 0
)(
<∇∑

∈Kk
n tk

f  ,  we must have ∑+
∇   

)( tknf  < ∑−
∇   

)( tknf . 

If ∑+
∇   

)( tknf ≥ ∑−
∇   

)( tknf  we can reduce the value of ∑+
∇   

)( tknf while maintain the 

value of ∑−
∇   

)( tknf by multiplying all the positive gradient 
)(

 
tknf∇ with a ‘factor’, 
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denoted by β, which will make  ∑+
∇   

)( tknfβ  < ∑−
∇

)(
 

tknf . In this study, we select 

the value of β such that ∑ ∑+ −
=∇−∇    

)()(
εβ

tktk nn ff . Note that, based on some 

experiments at the preliminary stage, we select ε = 0.001 for our study. That is 

assuming ∑+
∇   

)( tknf > 0, we set   

( )
∑
∑

+

−

∇

−∇−
=

  

 

)(

)(

tk

tk

n

n

f

f ε
β                                 (5.6)

  

Thus, in the case that 0
)(
≥∇∑

∈Kk
n tk

f , the adjusted direction is  

⎪⎩

⎪
⎨
⎧

∇−
<∇∇−

= otherwise
0 if

)(

)()(

)(
tk

tktk

n

nn
tk f

ff
d β                              (5.7) 

where β is given by (5.6).  

 

5.3.2 Round off  

 Recall that a feasible design must only be consisted of non-negative integer 

numbers of allocation. It is likely that equation (5.4) will result in a feasible design. 

Thus, it is necessary to round off each number of allocation to the nearest integer. In 

additions, if the number of allocation is negative, we will set it equal to zero.  

 Observe that it is also possible that∑
∈

+ >
Kk

tk Nn )1( .  In other words, as we are 

advancing, we may move to a design where the total number of allocation exceeds our 
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budget (i.e.,∑
∈

+ >
Kk

tk Nn )1( ). Thus, if ∑
∈

+ >
Kk

tk Nn )1(  after rounding off, we need to 

adjust some numbers of allocations down. Note that we will only consider adjusting 

those numbers of allocation that are positive. For the ease of explanation, we will use 

nk(t+1) as the original number of allocation obtained by equation (5.4) and r
tkn )1( +  as the 

number of allocation after being rounded off. It is easy to see that the largest value of 

r
tkn )1( +  – nk(t+1) indicates that this number of allocation is the least deserved to be 

rounded up. Our adjusting approach is to decrease the numbers of allocation one by 

one starting from that with the largest value of r
tkn )1( + – nk(t+1) until the total number of 

allocation is equal to the total budget N. Note that if the total number of allocation still 

exceeds the budget after all numbers of allocation have been decreased by one, we will 

continue decreasing them in the same order.  

 To briefly illustrate, let say, N = 5 and n(t+1) = [3.7, 1.1, 2.2, 0.6, 0.3] . After 

rounded off, r
t )1( +n  = [4, 1, 2, 1, 0]. That is, ∑

∈
+ =>=

Kk
tk Nn 58)1( . The differences 

r
t )1( +n – n(t+1) = [0.3, -0.1, -0.2, 0.4, -0.3]. Note that we will not decrease the number of 

allocation for k = 5 as it is already zero. Thus, we will decrease the numbers of 

allocation starting from that with the largest value of r
tkn )1( +  – nk(t+1)  to the smallest 

(i.e., in the order of k = 4, 1, 2, 3). As the total number of allocation exceeds the 

budget by three, we will decrease the numbers of allocation by one for k = 4, 1, and 2. 

Therefore, it results in the design [3, 0, 2, 0, 0] which fulfils the budget constraint. 
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5.3.3 Step size 

Now, we assume that 0
)(
<∇∑

∈Kk
n tk

f ; or otherwise, they have been adjusted so 

that the move will increase the total number of allocation. Next, we discuss how to 

determine the appropriate step size value. To move in a direction that gradually 

increases the total number of allocation, we need to determine the appropriate step size  

δ to be used at each move.  The step size cannot be too small (it may not move at all) 

nor too large (it may move too far away and may miss out some better designs that lie 

in between the path). To overcome this problem, we adopt the following approach.  

First, we ensure that the step size is not too large. As mentioned earlier, we will 

select the step size δ that gradually increases the number of allocation. The approach 

we use is to set the increment number of allocation to a fraction φ of the total budget N 

(e.g. φ =10%). The increment number of allocation during iteration t is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−∑

∈Kk
n tk

f
)(

δ . Hence, an appropriate value of δ can be obtained by letting  

Nf
Kk

n tk
φδ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇− ∑

∈
)(          

That is, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−

=

∑
∈Kk

n tk
f

N

)(

φδ                   (5.8) 

Note that we set φ = 10% in the experiment. This is only a target fraction and the final 

movement might be more or less than this fraction due to round off.  This value of φ 



Chapter 5:  Two-phase gradient technique 

 

97 

 

seem to suit our problem based on our results obtained from running some preliminary 

experiments.  

  Next, we ensure that the step size is not too small. We make sure that, nk(t+1) > 

nk(t) for at least one k∈K.  Before rounding off, nk(t+1) – nk(t) = –δ
)( tknf∇ .  As nk(t) is an 

integer, it is required that nk(t+1) – nk(t) > 0.5 before rounding off so that nk(t+1) > nk(t) 

after rounding off. Hence, it is required that ( ) 5.0max
)(
≥∇−

tknfδ ; that is,  

δ ≥ 
}max{

5.0

)( tknf−∇
                                                                                                     (5.9)  

Therefore, the appropriate step size can be determined by choosing the greater value 

between the two choices, as shown in Eq. (5.10).  

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

∇−
−∇

=

∑
∈Kk

n
n

tk
tk f

N
f

)(
)(

,
}max{

5.0max φδ                                                               (5.10)       

  

The pseudo code of the algorithm is shown below.  

 

Algorithm 1:  First phase (hill-climbing)  

Step 0: Initialization: Set n(1) = 0  and  t = 1.  
 
Step 1: Gradient: Compute 

)( tknf∇ using Lemmas 1-3. 
 

Step 2: Direction: If 0
)(
<∇∑

∈Kk
n tk

f  then set the direction d(t) = 
)( tnf∇− ; otherwise  

   determine the direction using (5.6) and (5.7). 
 
Step 3:  Step Size: Determine the step size δ using (5.10).  
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Step 4: New Design: Set n(t+1) = n(t) – δd(t). Round off n(t+1) to obtain the new design 

   using the approach described in section 5.3.2. 

Step 5:  Termination:  If Nn
Kk

tk <∑
∈

+ )1( , set t = t + 1 and return to Step 1; otherwise, 

    stop.   
 

    
 

 

 

   The above proposed algorithm is able to find feasible solutions for Model 4.2. 

However, up to this stage of the technique, there are still some issues. The algorithm 

may have difficulties in finding good solutions. This is because, due to the nature of 

the gradient search technique, this algorithm will stop once the total number of 

allocation reaches the total budget (boundary). In others words, once the constraint 

Nn
Kk

k =∑
∈

is met, the algorithm terminates. The solution at this point, though is 

feasible, may not be a good solution.  Therefore, in order to explore the other points on 

the boundary which can give better solutions, an improvement stage is needed. 

 

5.4 Second phase (Gradient Improvement Stage) 

Even though we managed to find a feasible solution in the first phase, we have 

not actually explored the neighbourhood yet. In this second stage, which is called the 

Gradient Improvement Stage (GIS), it aims to explore the neighbourhood of the 

feasible solution from the first phase.  Neighbourhood here is defined as the set of 

feasible solutions which are near to the current design/point. 
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5.4.1 Overall concept 

 The first phase of the two-phase gradient technique is just to find a design at 

the boundary and this design might not be good. Hence, it is important to perform 

some local or neighbourhood search around this design so as to further improve the 

solution quality.  

 The overall concept of GIS is that, given a current design, we will first identify 

the feasible neighbourhood. Then, we will select which design/point from the 

neighbourhood that we should move to. This design will then be updated as the current 

design.  After that, the entire process (identifying neighbourhood and selection) will be 

repeated until the best design, which is the design with the lowest MSE, is found.   

Before we explain how to define this neighbourhood, we first have to find the 

direction, as analogous to the hill-climbing concept. Our desire is to find a direction 

such that it has a good potential to improve the objective function. Since we are 

minimizing MSE, the improving direction should also be at the most descent gradient. 

With the improvement in performance given by∑
∈

∇
Kk

kn df
k

; hence we want to find the 

direction such that it minimizes ∑
∈

∇
Kk

kn df
k

. We also set the bound of dk to be within -1 

and 1. In order to maintain integrality of the solution, dk must also be integer; hence, dk 

= -1, 0 or 1. We must maintain the feasibility of the solution after the move.  The 

number of allocation must not be negative; thus, it is required that nk + dk ≥ 0 for all k 

∈ K. We also must maintain the total number of allocation; thus, it is required that 
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0=∑
∈Kk

kd . Note that with these requirements, the number of dk’s having the value of 

+1 must equal to those having the value of -1. 

Observe that, ignoring the constraints nk + dk ≥ 0 for all k, the direction that 

minimizes ∑
∈

∇
Kk

kn df
k

 is determined by setting half of the dk’s to +1 and another half to 

-1. For our desired direction, we also want to control the number of dk’s that have a 

nonzero value. With this reason, we impose a constraint 2k
k K

d L
∈

≤∑ , where L is the 

maximum number of pairs of +1 and -1 direction. The mathematical model for finding 

a direction for the second phase is as follows:  

Kkd
Kkdn

Ld

d

df

k

kk

Kk
k

Kk
k

Kk
knk

∈−∈
∈≥+

≤

=

∇

∑

∑

∑

∈

∈

∈

}1,0,1{
,0

2

0s.t.

min

                                (5.11)

 

 Let d* denote the optimal direction obtained from above model. Note that it is 

not difficult to develop an efficient algorithm to solve model (5.11). However, in this 

thesis, we solve the model using a commercial solver.  

 As GIS is also an iterative approach, we will reintroduce the iteration index t. 

We use the solution obtained from the first phase as the starting point/design n(1). In 

iteration t, after an improving direction d(t) is found using the model (5.11), we use it 

to construct the neighbourhood.  In other words, we find all the possible points n(t) + γ 
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d(t), γ = 1, 2, ..., for which improvement in performance is expected. (Note that γ  is 

similar to the step size in the hill climbing concept). In order to maintain feasibility in 

the move, it is required that γ  ≤ { }1:min )()()(
−=tktktk

dn  so that n(t)  + γ d(t) ≥ 0. Let A(t) be 

the set of feasible neighbourhood for design n(t) which can potentially improve the 

current solution n(t). Hence, the neighbourhood is given by Eq. (5.12) below. 

{ }{ }1:min,...,2,1: )()()()()()( −==+= tktktkttt dnA γγdn               (5.12)

     

 After the neighbourhood A(t) is identified, we evaluate all the designs in it. 

After evaluation, we select which design in A(t) that we should move to. To select the 

designs, we not only consider whether the designs have the best performance (lowest 

MSE), but we also consider its potential. We will explain the meaning of ‘potential’ in 

the following discussion.  Let M(n) denotes the MSE of design n. Let α be a given 

constant, potential of the design n is defined as 

  dfnn n∇+= α)()( MV                                  (5.13) 

Recall that for each design n, M(n) is calculated using the Monte Carlo method. The 

improvement in performance is represented by dfn∇  as previously described in Model 

(5.11). We use a constant α to form a linear relationship between the potential and the 

improvement in performance. Note that this is analogous to the linear function y = mx 

+ c, i.e. y = V(n), m = α, x = dfn∇  and c = M(n). The reason we consider V(n)  is that 

we want to advance to a design which not only have the lowest MSE, but also with 

great potential (good future). The greater the potential of the design, the more 

improvement in performance (reduction in MSE) may be expected from the design for 
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the future move.  Next, we illustrate the full details of the GIS algorithm.  Here, we 

use the term design and point interchangeably. 

 

5.4.2 GIS algorithm 

Let us define additional notation necessary to describe the algorithm of GIS. 

nbest = best point/design that we have found (the lowest MSE)   

nbv = )(minarg
)(

n
n

V
tA∈

= point with best potential in A(t) 

nbm = )(minarg
)(

n
n

M
tA∈

= point with best MSE in A(t) 

Our approach is to explore the most potential point first and keep the best point to be 

explored later. We use a flag called ‘unexplore’ to indicate whether or not the best 

point kept has already been explored. If unexplore flag = 1, this means that the best 

point kept has not been explored yet. In our algorithm, every time we have found a 

new best point, the unexplore flag will be set to 1.  The unexplore flag will be set to 0 

if the best point will be explored in the next iteration.  

 Suppose that we are currently in iteration t. We discuss selection process to 

identify the point to be explored in the next iteration (i.e., n(t+1)). There are four cases 

to be considered.   

 

Case 1: V(nbv) < V(nbest)  and  M(nbm) < M(nbest) 
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In this case, we have found the new best point nbm; that is, we set nbest = nbm and 

unexplore flag = 1. The best potential point is nbv which will be explored next; that is, 

we set n(t+1) = nbv.  

 

Case 2: V(nbv) ≥ V(nbest)  and  M(nbm) < M(nbest) 

In this case, we also have found the new best point nbm while the current best point is 

the most potential. If the current best point has not been explored (i.e., unexplore = 1),   

it will be the next point to consider (n(t+1) = nbest). Otherwise, if the current best point 

has been explored (i.e., unexplore = 0), then the next most potential point is nbv; thus, 

we set n(t+1)= nbv. After that, we update nbest = nbm and set unexplore flag = 1.  

 

Case 3: V(nbv) < V(nbest)  and  M(nbm) ≥ M(nbest) 

In this case, the best potential point is nbv, therefore we set n(t+1) = nbv. The best point, 

nbest, remains unchanged.  

 

Case 4: V(nbv) ≥ V(nbest)  and  M(nbm) ≥ M(nbest) 

In this case, the best point remains unchanged and it also indicates that the current 

neighbourhood is not good at all. If the best point has not been explored (i.e., 

unexplore = 1), we set n(t+1) = nbest; otherwise if unexplore = 0, we stop.   

 

In general, when it happens that n(t+1)= nbest, this means that the local optimal solution 

is nearby. To ensure that we can keep exploring and to further exploit the 
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neighbourhood, we can reduce α (of Eq. (5.13)) proportionately. This is analogous to 

reducing the step size in the gradient search when we are near to the optimal solution 

in order to find a better solution.   

 The algorithm will terminate by itself once the optimal solution has been 

found.  In addition, to avoid the same points being explored again, we set A(t) such that 

it always contains those neighbourhood points which have not been explored before. 

Let S be the updated set of all the neighbourhood points of A(t); initially, S = {n(1)}; as 

iteration proceeds, )(tASS ∪← . Hence, A(t) can be written equivalently as:  

{ }{ }( ) ( ) ( ) ( ) ( ) ( ) ( )( )
: 1,2,...,min : 1  and t t t k t k t t tk t

A n d Sγ γ γ= + = = − + ∉n d n d                          (5.14) 

The detail pseudo-code for the GIS algorithm is shown below.  

 

 

Algorithm 2:  GIS  

Step 1: Initialization 
        Set  t = 1,  n(t)  = the solution obtained from first phase (see Section 5.3), 
  nbest =  n(t),  unexplore  =  0, and S = { n(t)}. 
 
Step 2: Identify Neighbourhood  

 Determine *
)(td  using Model (5.11) for given n(t), and determine the 

 neighbourhood A(t) using equation (5.14). 
if A(t) ≠ ∅ 

go to Step 3 
else  

if unexplore = 1 
 n(t+1) = nbest  and go to Step 4 

  else 
   Stop 

 end 
end 
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Step 3:  Selection 
 3.1 Estimate MSE and V for ∀ n ∈ A(t) using Monte Carlo 
       Determine nbv and  nbm

  
 3.2 Select next point, n(t+1)  

         
  Case 1:  V(nbv) < V(nbest) and M(nbm) < M(nbest)  
   n(t+1) = nbv 
   nbest = nbm 
   unexplore = 1 
 

Case 2:   V(nbv) ≥ V(nbest) and M(nbm) < M(nbest)     
 if unexplore = 1 
  n(t+1) =  nbest   
 else 
  n(t+1) = nbv 
 end 
 nbest = nbm 
 unexplore = 1 

 
Case 3:   V(nbv) < V(nbest) and M(nbm) ≥ M(nbest)      
 n(t+1) = nbv 
   
Case 4:  V(nbv) ≥ V(nbest) and M(nbm) ≥ M(nbest)        
 if unexplore = 1 
  n(t+1) = nbest 
 else 
  Stop 
 end 

Step 4: Advance 
      if  n(t+1) = nbest  
  unexplore = 0 
  α ← α/2 
 end 
 set S ← S ∪ At, t ← t+1 and go to Step 2.  
 
 

5.5 Summary 

 In this chapter, we have presented the two-phase gradient technique. This 

technique consists of two phases/stages. In the first phase, it uses the IPA to find the 

gradient and then applies the hill-climbing technique to find the solutions. In the 

second phase, which is called the gradient improvement stage (GIS), it explores the 
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neighbourhood of the solutions.  This results in an improvement in the final solutions, 

where better designs with lower MSE values can be obtained.  Next, we will present 

the hybrid GA technique and the combination of other techniques.  
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CHAPTER 6 

GA TECHNIQUE AND COMBINATIONS OF OTHER 
TECHNIQUES  

 

In this chapter, first we present the hybrid GA technique, followed by the combination 

of other techniques. 

 

6.1 Background Information 

In this chapter, we will explain how to use GA (Genetic Algorithm) to search 

for the optimal solutions for Model (4.2).  Due to the problems that the objective 

function is non convex and does not have an explicit expression, it might not be easy 

to solve by traditional optimization methods. Hence, GA is a good approach as it does 

not need to have an explicit objective function. We chose GA over other 

metaheuristics (i.e. tabu search, simulated annealing and etc.) because it offers several 

advantages over these techniques. GA keeps track of multiple independent solutions to 

the problem, so it easily lends itself to parallel computing possibilities. While heuristic 

search algorithms requires the users to write very problem-specific code to come up 

with a good solution, GA relies on the forces of random mutation and the process of 

natural selection to guide the solution of the problem.  Another advantage of GA is its 

broad searching capabilities; it is able to conduct a broader search of the area, 

exploring many local optima. However, due to the problem that we are solving, the 

objective function needs to be estimated using Monte Carlo method to sample as many 

data as possible for the evaluation of the designs. Thus, this requires a large number of 
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simulation replications and there exists a simulation allocation problem. If the 

simulation replications are to be allocated uniformly among the designs, the total 

simulation cost and computational time can be exhaustively high. In this chapter we 

will explain how to use OCBA (Optimal Computing Budget Allocation) to improve 

the simulation efficiency. By using OCBA, it can efficiently allocate the simulation 

budget of the Monte Carlo runs by optimally determine the number of simulation 

replications needed for each design alternative while identifying the single best design 

with high confidence.  Note that the budget here refers to the computational budget for 

running simulation not the budget for collecting additional data used throughout this 

thesis.  Next section discusses the GA technique and the incorporation of OCBA with 

GA. 

 

6.2 Genetic Algorithm 

The theoretical foundations of GA were originally developed by Holland 

(1975) based on the evolutionary process of biological organisms in nature. GA has 

been widely applied in many fields. GA works with a finite population, which evolves 

from one generation to the next, governed by the principles of natural selection and 

survival of the fittest among the individuals. Each generation consists of a population 

of chromosomes representing the possible solutions. Based on a random generated 

initial population, at every generation, GA evaluates the chromosomes and ranks them 

according to their fitness. The fitter chromosomes are selected to generate new 

offsprings by recombination and mutation operators. This evaluation-selection-

reproduction cycle is repeated until a satisfactory solution is found.  
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6.3 Mechanisms 

In this section, we discuss the mechanism of our GA algorithm which comprises of the 

all parameter settings and conditions used.  

 

6.3.1 Integer encoding scheme 

A standard chromosome is an array of bits.  In our budget allocation problem, 

without loss of generality, we let the set of inputs/outputs K = {1, …, D}. We use an 

array of integers to represent a solution as illustrated in Figure 6.1.  To relate the 

chromosome to a feasible design, we limit the sum of the integers to equal to the 

budget, which is∑
∈

=
Kk

k Nn . 

 

n1 n2 … nD 

 

Figure 6.1: A chromosome representation 

 

6.3.2 Feasibility 

The chromosome represents a feasible solution if it satisfies 

condition∑
∈

=
Kk

k Nn .  If∑
∈

>
Kk

k Nn , the chromosome cannot represent a feasible 

solution. In this case, we attempt to repair the chromosome by ‘randomly’ select one 
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position and reduce it by one, and repeat it until a feasible solution is found. If the 

selected position/gene has a value of zero, it will be omitted and we will select another 

position. Alternatively, if  ∑
∈

<
Kk

k Nn  we randomly select one position and increase it 

by one, and repeat it until a feasible solution is found. Note that only feasible 

chromosomes are kept in the population. 

 

6.3.3 Fitness value 

We relate the fitness of a chromosome to the objective value of Model 4.3. Hence, the 

calculation of fitness is as follows. 

( )∑
=

−==
M

i
iM

MSE
1

2

][ )()ˆ(1fitness ΧX θθ                   

(6.1) 

The chromosome which has the lowest MSE value is deemed to be the fittest.  We use 

Monte Carlo simulation to estimate the fitness.  

 

6.3.4 Population initialization 

We use different ways to construct the initial population in order to ensure that 

the starting points are diversified. First, based on extreme allocation, we allocate the 

entire budget to one particular gene. For instance, when N = 5, D = 5,   n ∈ {(5, 0, 0, 

0, 0), (0, 5, 0, 0, 0), ..., (0, 0, 0, 0, 5)}.  This method will produce D solutions. Second, 

we allocate the budget equally among the genes. For example, when N = 10, D = 5, n 

= (2, 2, 2, 2, 2). Note that this is only applicable to the case where N/D is an integer. 
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The remaining of the initial population will be generated equally using the following 

two methods. We select two genes, then assign randomly to them; one with the value 

e.g. ‘C’ and one with ‘N - C’.  Another method is we randomly select a gene, and then 

assign ‘1’ to it and repeat it until the total number of allocation reaches N. 

 

6.3.5 Selection and reproduction 

As we aim to balance towards more ‘exploitation’ and less ‘exploration’, we 

use ‘tournament selection’. It gives faster initial convergence and less computation 

time compared to other types of selection. We randomly select some number of 

parents from the generation to form a tournament (sub-population) and then select the 

individual with the best fitness in this sub-population, effectively winning the 

tournament. We repeat the process several times until the required number of winners 

is chosen.  In our experiment, we use a tournament size of two and selection with 

replacement. The reproduction of two offsprings is obtained by a two-position 

crossover on two parents as illustrated in Figure 6.2, where the two positions are 

generated randomly. Note that if the offsprings are not feasible (i.e. 

∑
∈

>
Kk

k Nn or∑
∈

<
Kk

k Nn ), we used the technique mentioned in Section 6.3.2 to repair 

them.  
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Parent 1                
           
Parent 2                
         
Random position   

 
      

Offspring 1                
           
Offspring 2                

 

Figure 6.2: Two-position crossover 

 

Each offspring is assigned a small probability of mutation to create more 

diversification to the solutions. Unlike crossover, the operation alters or mutates one or 

more genes within an individual chromosome rather than across a pair of 

chromosomes. Here, we randomly select two genes from the offspring and exchange 

their values.  Figure 6.3 shows the illustrations of mutation for one particular 

offspring. 

 

Random position ↓     ↓    

Before mutation                
           
After mutation                

 

Figure 6.3: Mutations 
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6.3.6 Values of parameters and the termination condition 

In summary, the parameters and conditions used in our GA evaluation are as follows. 

Population size: 100   

Maximum number of generations: 200 

Crossover strategy: two points 

Crossover rate: 1 

Mutation rate:  0. 01 

Stopping criteria:  Either the best solution does not improve for 20 generations or 

maximum number of generations has been generated. 

Selection strategy: Tournament, size = 2 

Percentage of best solutions to be retained in the new generation: 20%. 

Note:  The values of these parameters are determined according to some preliminary 

experiments conducted using a base design. They are the best choice for the GA 

method to solve this research problem.  

 

6.4 Issues  

             As GA evolves from one generation to the next, it extensively searches the 

solution space which involves the evaluation of the fitness of a large number of 

solutions. In addition, the fitness of each solution has to be estimated with high 
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accuracy in order to ensure the survival of the fittest. At such, this requires a large 

number of simulation replications. Therefore the key difficulty with the GA technique 

in association to our problem is how to improve the simulation efficiency. 

Our preliminary results showed that the computational time needed to find the 

solutions is very long. We will overcome this problem by using OCBA (Optimal 

Computing Budget Allocation).  In our GA technique, as we need to retain certain 

percentage of the best design, the original OCBA procedure which only selects the 

single best design could not be applied directly. Slight modifications have to be made 

to the OCBA procedure to cater for this criterion, which is to select the top m-design. 

Chen et al. (2008) developed the OCBA-m technique to provide an efficient allocation 

of simulations runs among design alternatives while selecting the m best design. A 

brief description of OCBA and OCBA-m procedure is explained next. 

 

6.5 OCBA 

The basic idea of OCBA is to optimally determine the number of simulation runs for 

all designs to maximize simulation efficiency with a given computing budget or to 

attain a desired simulation decision quality using a minimum computing budget.  For 

our problem, we apply OCBA to efficiently allocate the simulation runs among the 

designs in order to maximize the simulation efficiency with a given computing budget. 

In contrast to the common way used in simulation which is equal allocation of runs to 

all designs, the concept of OCBA is the unequal allocation of runs to different designs, 

favouring the better designs with more runs. In procedure, OCBA sequentially 
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determines which design alternatives need more simulation runs and how many 

additional runs are needed.  By doing this, the overall simulation efficiency can be 

improved as less computational effort is spent on simulating non-critical alternatives 

and more is spent on critical alternatives. While the run allocation given by OCBA 

may not be an optimal allocation when the simulation budget is finite, the numerical 

testing demonstrates that OCBA is a very efficient approach and can dramatically 

reduce simulation time. Next, we will explain the OCBA-m procedure in detail.  

 

6.5.1 OCBA-m Allocation Procedure 

The following notations are used. 

H = number of simulation replications (simulation budget).     

l = total number of designs need to be evaluated. 

m = number of top designs to be selected in the optimal subset. 

Sm = set of m (distinct) indices indicating designs in selected subset. 

iT  = number of simulation replications allocated to design i.  

Bi = the unknown true value/mean of MSE for design i.   

ijB̂   = the observed MSE for design i in the j-th simulation replication.  

iB  = ∑
=

iT

j
ij

i

B
T 1

ˆ1 , sample mean of the MSE for design i. 



Chapter 6: GA technique and combinations of other techniques 

 

116 

 

2
iσ  = variance of the MSE for design i. 

to =  the number of initial simulation replications for each design. 

t = iteration number 

∆  = increment of the computing budget (i.e., a pre-specified number of    

    replications to be added to the existing computing budget at each iteration).  

Chen et al. (2008) explained that the objective of OCBA-m is to find a simulation 

budget allocation that maximizes the probability of selecting the optimal subset, 

defined as the set of m (m < l) best designs, subject to a constraint on the computing 

budget H. Note that rank order within the subset is not part of the objective. In this 

thesis, we will take Sm to be the m designs with the smallest sample means of the MSE. 

Let 
ri

B be the r-th smallest (order statistic) of { 1B , 2B ,..., lB } i.e. 
1i

B ≤ 
2i

B ≤ ⋅⋅⋅ ≤
li

B . 

Then, the selected subset is given by  

}.,...,,{S 21 mm iii≡  

Without loss of generality, we will take the m best designs as those designs with the m 

smallest MSE (i.e. iB ). Let CSm be the correct selection of the event where Sm actually 

contains the m best designs.  Let the correct selection probability P{CSm}≡ P{The 

selected optimal subset, Sm actually contains all of the m smallest MSE designs}. 

Hence, the OCBA-m problem formulated by Chen et al. (2008) is as follows:  

HT

P

l

i
i

mTT l

=∑
=1

,...,

 s.t.

}CS{max
1

                                     (6.2) 
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Model (6.2) aims to choose T1, T2, ..., Tl such that P{CSm}is maximized, subject to a 

limited computing budget H. Here, Ti is the set of non-negative integers and 

∑
=

l

i
iT

1

denotes the total computational cost assuming the simulation execution times for 

different designs are roughly the same. This formulation implicitly assumes that the 

computational cost of each replication is constant across designs.  

 Chen et al. (2008) explained that the OCBA-m problem (6.2) can be solved by 

approximating P{CSm} using a lower bound based on the Bayesian setting. The true 

value/mean of the MSE for each design, Bi, is assumed unknown and treated as a 

random variable, whose posterior distribution is updated after observed the simulation 

output { ijB̂ , j = 1, ..., t
iT }. Assuming that Bi has a conjugate normal prior distribution 

and non-informative prior distribution and following DeGroot (1970), the posterior 

distribution of Bi will be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

t
i

i
ii T

BNB
2,

~
σ

 where ∑
=

=
t

iT

j
ijt

i
i B

T
B

1

ˆ1  is the sample mean 

of the observed MSE for design i and 2
iσ  is the true variance of the MSE which can be 

approximated by the sample variance of the MSE ( )22

1

1 ˆ
1

t
iT

i ij it
ji

B B
T

σ
=

≈ −
− ∑ .  Based on 

the updated values of these quantities (i.e. the sample means and variances), the lower 

bound can be asymptotically maximized following the relationship (6.3) below. 

From Chen et al. (2008):  

{ } jilji
T
T

jj

ii
t
j

t
i ≠∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+

and,....,2,1,,
/
/

2

1

1

δσ
δσ

               (6.3)          

where 2/)(
1+

+−=
mm iiii BBBδ .   
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The idea behind this approach is to allocate the replications runs in such a way that 

those designs that are in the boundary of the optimal set (i.e., the designs nearer to m) 

will be assigned more replications runs. As the target is to get the optimal set, 

allocating the replication runs this way will provide a high confidence of choosing the 

correct set. Note also that the allocation given by (6.3) assumes known variances and 

independence of estimated sample means of the MSE across designs. 

In practice, a boundary condition needs to be imposed in order to solve the allocation 

(i.e. to find the values of 1t
iT + in (6.3)). The condition is given as 

∑∑
==

+ +∆=
l

i

t
l

i

t
ii

TT
11

1                    (6.4) 

The resulting  1t
iT +   is a continuous number that must be rounded to an integer; in the 

numerical experiments, 1t
iT +  is rounded to the nearest integer.  As 1t

iT +  is the number of 

replication, it may happens that 1t t
i iT T+ < ; hence, in our thesis, we update 1t

iT + with 

max( tt
ii

TT ,1+ ) and then perform the additional t
i

t
i TT −+1  simulations.  To briefly 

illustrate, suppose there are two designs, ∆ = 10, tT1  = 10 and tT2  = 10. Let say, from 

(6.3), 1
1
+tT = 2 1

2
+tT ; and from (6.4) and after rounded to the nearest integer, 1

1
+tT = 17 

and 1
2
+tT = 8. Thus, we set 17}10,17max{1

1 ==+tT  and 10}10,8max{1
2 ==+tT . 

Therefore, we run 7 additional simulation replications for design 1 and none for design 

2. 

 The sequential allocation procedure of OCBA-m is summarized as follows. We 

assume total absence of knowledge about any design considered and any other basis 
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for allocating computing budget at the beginning of the experiment. We first simulate 

all l designs with to replications to get some information about the performance of each 

design during the first stage. As simulation proceeds, the sample means and sample 

variances of each design are computed from the data already collected up to that stage. 

The computing budget is then increased by ∆ and Equation (6.3) and (6.4) are applied 

to determine the new budget allocation. Further simulation replications are then 

performed based on the allocation and the procedure is repeated until the total budget 

H is exhausted. Note that we do not really need to make sure that the total summation 

of the simulation runs exactly equals to H, as long as it exceeds H, we stop.  This is 

because, ideally, each new replication should bring us closer to the optimal solution. 

The algorithm is summarized as follows. 

Algorithm 1: OCBA-m Allocation Procedure 

Step 1: Initialize: Set t = 1 and perform to simulation replications for all designs;    

 1 2
t t t

l oT T T t= = = =L  

Step 2: a.  Update: Calculate iB , σi and δi for i = 1, ..., l. 

b. Allocate: Increase the computing budget by ∆ and calculate the new budget 

allocation 1
1
+tT , 1

2
+tT , ..., 1+t

lT  according to (6.3) and (6.4). Round off 

1+t
iT and set 1 1max{ , }t t t

i i iT T T+ +← . 

c. Simulate: Perform additional t
i

t
i TT −+1 simulations for design i, i = 1, ..., l.  

Step 3: Termination:  If HT t
i

l

i

<∑
=1

, set t ← t + 1 and return to Step 2; otherwise, 

    stop.  
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In the above algorithm, we need to select the initial number of simulation, to and one-

time increment ∆.  Chen et al. (1999) offers detailed discussions on the selection. It is 

well understood that to cannot be too small to avoid poor estimation at the beginning. 

A suitable choice for to is between 5 and 20 (Law and Kelton, 1991). Also, a large ∆ 

can result in waste of computation time to obtain an unnecessarily high confidence 

level. On the other hand, if ∆ is small, we need to do the computation procedure in 

step 2 many times. A suggested choice for ∆ is a number bigger than 5 but smaller 

than 10% of the simulated designs. In particular, we set to = 10 and  ∆ = 10 in our 

experiment. The settings for other parameters are as follows. We set H = 5000, the 

results obtained in this study indicate that the procedure works well for given value of 

H. We set m = 20, which means we retain the top 20% of the population. Total number 

of designs, l which corresponds to the population size, is set to 100. 

 In GA, we use OCBA-m to allocate the simulation runs for the computation of 

the fitness values (i.e. the MSE). The top-m solutions selected by OCBA-m are then 

used in the replacement stage to update the subsequent population in the next 

generation (i.e., we retain the top (m/l × 100) % of the population and replace the rest 

of the population with the offsprings). Note that during the reproduction stage i.e. 

crossover, all the l designs are used for selecting parents. The pseudo-code for the 

GA+OCBA-m algorithm is given in Appendix C. Next, we explain other existing 

heuristic techniques as well as the combinations of the techniques.
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6.6 Other Algorithms and Combination of the 

Techniques 

This section discussed other existing heuristic techniques and the combinations 

of the GIS with GA and the other algorithms. The purpose of the incorporation is to 

examine whether GIS can further improve the prior solutions. We will provide some 

brief explanations for each of the techniques. 

 

Other algorithms 

 

a. Greedy  

 

The concept of the greedy search is equivalent to iteratively construct a rooted tree. 

The idea is to allocate additional data one by one until the total budget N is reached. 

There are two basic steps in the greedy search algorithm.  First, we find feasible 

designs that can be formed by increase the number of allocation of an input/output by 

one; this results in W new designs. Secondly, we evaluate these designs and choose the 

best one, in a greedy sense. The algorithm stops when the total budget N is reached. 

Refer Appendix C for the pseudo-code of the algorithm. 

 

b. Batch 

 

The concept of this algorithm is to divide the total allocation budget N into various 

batches. Then, we find all the possible designs from these batches and select the best 
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one. Let ω be the batch size. In this study, we assume that the total allocation budget N 

is a multiple of the batch size ω. For example, if N = 20, D = 2, ω  = 10, the possible 

allocation designs are (20, 0), (10, 10) and (0, 20). The total number of possible 

designs is given by [(N/ω)  +  (D - 1)]!/[ (N/ω)!(D - 1)!]. Note that the number of 

designs can be large. In our study, we select the batch size such that a total number of 

designs is less than 5000. This is to ensure that we can complete the simulation in a 

reasonable computational time. Otherwise, the simulation runs will take a very long 

time. Refer Appendix C for the pseudo-code of the algorithm. 

 

Next, we discuss the combination of GIS with all the algorithms.  

 

Combination of GIS with all the algorithms 

 

The combination techniques are as illustrated below. 

a. GA+GIS 

We use only the ‘best solution’ from GA and apply the GIS at every generation.  We 

use the elitism option to retain the best chromosome (point) generated at every 

generation. The elite (best) point will always be put back into the population in every 

generation. When applying the GIS to the elite point, we set some conditions. We will 

apply GIS to the chromosome with the best fitness which not been applied GIS in the 

earlier generation. By doing this, we add more diversification to the solution space and 

we can prevent the solution from being easily stuck at a local optima. 
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b. Gradient+GIS 

This is the two-phase gradient technique as discussed in Chapter 5.  In the first phase, 

we will use 10 starting points instead of a single starting point. The reason of doing 

this is because of the non-convex and non linear characteristics of the objective 

function. Multiple start points are able to yield better solutions compared to single start 

point. All the ten starting points are generated randomly i.e. we select one (or few)  

input/output at random and then assign a value less than the budget to its number of 

allocation. Note that these starting points must have the total number of allocations to 

be less than the budget N so that we can apply the gradient method (first phase) on 

them. To briefly illustrate, says, N = 10, a starting point can be n3 = 2, n5 = 1, and nk = 

0 for k ≠ 3, 5; that is∑
∈

=<=
Kk

k Nn 103 . The first-phase gradient technique will apply 

to this starting point to obtain a feasible solution; and GIS will then be applied to find 

an improved solution.  

 

c. Greedy+GIS   

This is the continuation of the greedy technique. We use the final solution from greedy 

and apply the GIS. 

 

d. Batch + GIS   

This is the continuation of the Batch technique. We select the top ten solutions from 

batch and apply the GIS. 
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e. Constructive random  + GIS 

We construct ten starting points, which are boundary points, in a similar fashion as the 

generation of the initial population in GA as mentioned in Section 6.3.4. Then, we 

apply GIS on all the ten points. After going through GIS on each of them, we will 

obtain ten solutions. From there, we pick the best one.  

 

6.7 Summary 

In this chapter, we developed a hybrid GA technique, where GA is used to find 

the solutions, and is enhanced with simulation optimization technique which is OCBA 

to improve the simulation efficiency. Other existing heuristics techniques such as the 

greedy and batch techniques are also presented to solve the budget allocation problem. 

Lastly, the combination of the techniques, which is the incorporation of the GIS 

technique with all the techniques are being explored.  The performance of these 

techniques will be examined in the next chapter. 
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CHAPTER 7 

EXPERIMENTS SETUP, RESULTS & DISCUSSION
 

 

 

In this chapter, we compare the performances of all the techniques which were 

presented in Chapter 5 and 6. First, we explain the setup of the experimental runs 

which includes the parameter settings and the variables used in the study. Then, it will 

be followed by results and discussions. 

 

7.1 Introduction 

There will be two parts of the experiment. The first part introduces methods 

which can find good solutions. The second part incorporates the GIS with the methods 

proposed from the first part to further improve the prior solutions. All these methods 

will be compared against the ‘uniform’ allocation method,  so as to find out whether is 

it better to use sophisticated way for data collection or vice versa.   The uniform 

method is the simplest way to allocate and has been widely applied in real practice, 

whereby the budget is equally allocated to all the random variables. The performance 

of equal allocation will serve as a benchmark for comparison. The first part will cover 

the algorithms such as GA, Gradient (hill-climbing), Greedy and Batch. The second 

section covers the incorporation of the GIS with the methods explored in the first part, 

which includes GA+GIS, Gradient+GIS (Two-Phase Gradient), Greedy+GIS, 
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Batch+GIS and Constructive random+GIS. We will compare a total of 10 algorithms. 

Next, we will explain about the parameter settings of the experiments.  

 

7.2 Parameter settings 

The purpose of the experiment is to investigate how the different algorithms 

perform under different scenarios. The parameters that we choose to cast the scenarios 

are the N (budget), D (dimension or total number of input/output with unknown true 

means), CV (coefficient of variation) and the initial number of data collected (nok). We 

choose the base setting to be (N = 90, D = 10, nok = 4 and CV = 1). To set the different 

sizes of problems, we vary N and D; we use 5 levels of N and 3 levels of D.  There are 

altogether 15 different settings of N and D and we apply the entire settings to all the 

algorithms. Note that for these settings, we fix nok = 4 and CV = 1. To check the effects 

of data variations in the systems, we vary CV and nok.  We fix (N = 90, D = 10, nok = 4) 

to analyze the effects of CV; we use 4 different levels of CV. Similarly, when we 

analyze the effects of nok, we fix (N = 90, D = 10, CV = 1); there are also 4 different 

levels of nok. Hence, there are a total of (15 + 4 + 4 = 23) sets of experiment. Each 

experiment is repeated 10 times independently using different random seeds.  

 

Table 7.1 shows the parameters and the values used for the simulation model of our 

research problem. 
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Table 7.1: Simulation Setup 

Parameters Values 

N (Budget) 30, 60, 90, 120, 150  

D (Dimension) 5, 10, 15 

CV (Coefficient of variation) 0.5, 0.75, 1, 1.5, 2 

nok (Initial number of data collected) 2, 4, 6, 8, 10 

 

 

7.3 Data used in the study 

Experiments are performed using the data sets and the supply chain model 

from Chapter 3. The inputs/outputs which are considered to be stochastic are 

determined based on sensitivity analysis, i.e. starting from the most influential till the 

least influential on the efficiency. Note that D represents the total number of stochastic 

inputs/outputs. The details of the sensitivity analysis are shown in Appendix D. 

Table 7.2 shows the list of variables according to their degree of impact on the 

efficiency. A brief explanation is given next to each of the variable. For further details 

and explanations of the variables used, please refer to Section 3.5.1.  
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Table 7.2: Input/output variables used in the study 

Rank Input/output variable Definition 

1. Retailer revenue Profit obtained by the retailer. 

2. Fill rate (manufacturer) Inventory holding cost incurred by the 
manufacturer. 

3. Supplier revenue Profit obtained by the supplier. 

4. Supplier cost Cost incurred by the supplier. 

5. Fill rate (distributor) Inventory holding cost incurred by the 
distributor. 

6. Customer response time The velocity at which the supply chain 
provides products to the customers. 

7. Supplier labour Labour cost incurred by the supplier. 

8. Cycle time This is an attribute for production flexibility 
i.e. the agility of a supply chain in responding 
to customer demands. 

9. Retailer cost Cost incurred by the retailer. 

10. Manufacturer cost Cost incurred by the manufacturer. 

11. On-time delivery 
(manufacturer distributor) 

This refers to the performance of the 
manufacturer in delivering the correct product, 
at the correct time, condition, and quantity to 
the distributor. 

12. Distributor cost Cost incurred by the distributor. 

13. On-time delivery 
(distributor retailer) 

This refers to the performance of the 
distributor in delivering the correct product, at 
the correct time, condition, and quantity to the 
retailer. 

14. Fill rate (retailer) Inventory holding cost incurred by the retailer. 

15. On-time delivery 
(manufacturer retailer) 

This refers to the performance of the 
manufacturer in delivering the correct product, 
at the correct time, condition, and quantity to 
the retailer. 

Note: ‘Rank’ refers to the degree of impact on the efficiency, i.e. if Rank=1, it has the highest impact on 
the efficiency. 
 
 
Recall that, we are only investigating for one particular DMU jo. For instance, if D = 5, 

this denotes that for DMU jo, there are 5 inputs/outputs which true mean values are 



Chapter 7: Experiments setup, results and discussions 

 

129 

 

unknown, while the remaining inputs/outputs for DMU jo as well as all inputs/outputs 

for other DMUs are deterministic. 

 

For these inputs/outputs xk’s with unknown true means, without loss of generality, we 

assume that the belief for the true means are normally distributed with given mean 

values µk (refer to Table 3.3 in Chapter 3) and the standard deviation values are given 

by σk = CV⋅µk. Note that we also assume that the inputs/outputs are not correlated.    

 

In assessing the performance of the algorithms, our aim is to compare the final MSE of 

the efficiency score after collecting the data based on allocation design n.  The 

approach we use is we apply the algorithms (e.g. GA, Gradient and etc.) to find the 

allocation design n. Note that in order to find the n, we have to use Monte Carlo DEA 

method to estimate the MSE for the allocation design. After that, based on the solution 

obtained, we collect the data and update the belief for the true mean of the variables. 

Finally, we recompute the final MSE. This will be the ‘real MSE’ which we will use 

for comparison among the performances of each algorithm. The experimental flow is 

shown in Figure 7.1 below. A brief explanation is provided as follows. 
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Figure 7.1: Experimental flow 

1. Initialization - we generate nok data for input/output xk by assuming that xk ~ N(µk, 

σk). 

2. We use the required technique to search for the n i.e. first we generate some designs 

(i.e. different allocations n), then we run M monte carlo replications to generate the 

distributions for the inputs/outputs. We set M = 200 in the experiment. From the 

distributions of inputs/outputs, we find the distribution of the efficiency score and 

estimate the MSE. After that we repeat this entire process until we find the best MSE 

and the associated n. 

3. After that, we collect the required number of data according to n. Note that we use 

simulation to generate the data. 

1. Initialization 

3. Collect data 

4. Update belief 

5. Recompute MSE 

2. Monte Carlo DEA 

Find the best 
allocation design n 

End 
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4. Next, we update the belief for the true means, in other words, recalculate the sample 

means and sample variances of those inputs/outputs. 

5.  Lastly, we use the Monte Carlo DEA way again to recompute the final MSE. 

 

Next, we will discuss the computational results and insights obtained from the 

experiments. 

 

7.4 Results and Discussion 

In this section, we test the effectiveness of the proposed methods. All models 

and algorithms are coded in Matlab (version 6.5) and tested on an Intel Pentium IV 2.6 

GHz CPU with 512 MB RAM under the Microsoft Windows XP Operating System. 

The parameters of the proposed algorithms are chosen to ensure a compromise 

between the computational time and the solution quality. The values of the parameters 

used in the computational study are summarized as follows: a) for the two-phase 

gradient technique: L (of Model (5.7)) = 1 and α (of Eq. (5.13)) = 0.5; b) for the hybrid 

GA algorithm: GA parameters (refer section 6.3.6) and OCBA-m parameters (refer 

section 6.5.1).  Note that for the two-phase gradient technique, we use the term 

‘Gradient’ to represent the first phase only.  The term ‘Gradient+GIS’ refers to the full 

technique, which is the two-phase gradient.   

 

 This section is divided into two main parts. The first part provides the main 

insight of the experiment. The second part discusses the performances of all the 
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methods. The results concluded from these two parts will address the research question 

which is ‘Is it better to collect the data using intelligent methods or collect the data 

naively?’. 

7.4.1 Main insights 

In this section, the ultimate aim is to show the importance of allocating the budget 

intelligently. We will provide a comparison of the MSE obtained using intelligent 

method and non-intelligent method and then show how much savings in terms of 

budget that we can achieved. We will analyze the savings of the budget from the 

perspective of the size of the problem. 

 

Figure 7.2 shows the comparison of the MSE obtained using GA+GIS and uniform for 

the case of D = 5.  The results show that convergence is rapid at the beginning and 

when the number of additional allocation increases, the improvement in the solution 

decreases. We used the GA+GIS as the base method for comparison. Savings in the 

budget are calculated using the formula: Savings = (The required allocation budget by 

uniform to achieve the same performance as the base method)  / (The required 

allocation budget by base method).  For instances, when the required allocation budget 

is 30, GA+GIS results in a solution with MSE = 0.1269, where as it requires the 

allocation budget of 120 for the uniform method. (See the black dotted line in Figure 

7.2). Hence, savings = 120/30 = 4.  This means that, we can save four times the budget 

if we use GA+GIS compared to uniform allocation. 
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Figure 7.2: Comparison between GA+GIS and Uniform 

 

Table 7.3-7.5 show the corresponding total number of additional allocation required by 

uniform method to achieve the same performance as the base method (GA+GIS) 

where the savings indicate the ratio required budgets for uniform method to those of 

GA+GIS. 

 

Table 7.3:  Comparison of N and savings when D = 5 

    
MSE GA+GIS Uniform Savings 

0.12694 30 120 4.00 
0.07080 60 425 7.08 
0.06503 90 695 7.72 
0.05563 120 1860 15.50 
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Table 7.4: Comparison of N and savings when D = 10 

    
MSE GA+GIS Uniform Savings 

5.98E-03 30 1570 52.33 
3.30E-03 60 3560 59.33 
2.31E-03 90 4930 54.78 
1.46E-03 120 8160 68.00 

 

Table 7.5: Comparison of N and savings when D = 15 

    
MSE GA+GIS Uniform Savings 

1.19E-05 30 330 11.00 
5.56E-06 60 1635 27.25 
4.23E-06 90 7185 79.83 
3.75E-06 120 13905 115.88 

 

 

When the size of the problem increases, the more savings we can achieve if we use 

sophisticated methods for budget allocation. The results showed that the savings are 

very significant (we can save more than 100 times the budget if we use sophisticated 

methods – see Table 7.5). Thus this means that it is very important for the users to use 

sophisticated methods for allocation and not resort to simplistic way such as 

equal/uniform allocation in allocating the budget for data collection. 

 

7.4.2 Performances comparison  

 Table 7.6 shows the comparison of the performance for each algorithm in 

terms of the quality of the solution. The uniform method is set as the benchmark to 

compare whether intelligent or non-intelligent methods are better in allocating the 

budget. We use root mean square (RMSE) as the performance metric and compare 
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how much improvement can be obtained using intelligent methods.  Note that the 

minimization of MSE is actually the minimization of RMSE. As the values of MSE 

are very small, we present the percentage improvement in terms of RMSE for better 

illustration purposes. 

Table 7.6: Comparison of RMSE and percentage improvement 

Setting Uniform 
(benchmark) 

GA % 
Imp 

Gradient % 
Imp 

Greedy % 
Imp 

Batch % 
Imp 

D=5          
N=30 0.538926 0.356295 33.89 0.502869 6.69 0.457972 15.02 0.465562 13.61 
N=60 0.481585 0.290743 39.63 0.441677 8.29 0.407643 15.35 0.416415 13.53 
N=90 0.418319 0.257822 38.37 0.389521 6.88 0.360621 13.79 0.370507 11.43 
N=120 0.358819 0.237388 33.84 0.352121 1.87 0.329205 8.25 0.329205 8.25 
N =150 0.308822 0.177081 42.66 0.306476 0.76 0.306476 0.76 0.294449 4.65 
D=10          
N =30 0.112322 0.081440 27.49 0.102706 8.56 0.091942 18.14 0.083283 25.85 
N =60 0.110741 0.058274 47.38 0.083283 24.80 0.083283 24.80 0.069054 37.64 
N =90 0.109184 0.048829 55.28 0.060702 44.40 0.057020 47.78 0.056382 48.36 
N =120 0.106202 0.038952 63.32 0.057020 46.31 0.049564 53.33 0.054426 48.75 
N =150 0.103818 0.035456 65.85 0.055738 46.31 0.045774 55.91 0.053083 48.87 
D=15             
N =30 0.010085 0.003447 65.82 0.005376 46.69 0.005239 48.05 0.003872 61.61 
N =60 0.008204 0.002359 71.25 0.004014 51.08 0.002637 67.86 0.003136 61.78 
N =90 0.006617 0.002286 65.46 0.003607 45.50 0.002574 61.10 0.002848 56.96 
N =120 0.005579 0.002155 61.37 0.003292 40.99 0.002508 55.04 0.002774 50.28 
N =150 0.004759 0.002055 56.81 0.003237 31.99 0.002325 51.15 0.002537 46.69 
Note: %Imp = % Improvement 

 

  GA Gradient Greedy Batch 
Average (% 
Improvement) 

51.23 27.41 35.76 35.89 

Max (% Improvement) 71.25 51.08 67.86 61.78 
 

 

The percent improvement is calculated using the formula:  percent improvement = 

(RMSE benchmark - RMSE value obtained by algorithm) / (RMSE benchmark) × 100. 

All the intelligent methods perform better than the uniform method. The performance 

of the two proposed methods has been encouraging. The results show that, if we put in 

more effort in allocating, i.e. using more sophisticated technique such as the GA 

technique, we can obtain a better estimate of the efficiency. This signifies that it is 
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important to allocate intelligently rather than allocate naively. GA has the highest 

improvement (average % improvement is 51.23%), followed by Batch, Greedy and 

Gradient whose average % improvement is 35.89%, 35.76% and 27.41% respectively.  

 

Our results show that with the incorporation of the GIS technique, in most of the cases, 

the solutions of GA can be further improved. In average, the solution can be improved 

by approximately 3.71%. (See Table 7.7). 

 

 

Table 7.7: Comparison of RMSE of GA and GA+GIS and percentage improvement 

Setting GA GA+GIS % 
Improvement 

D=5    
N =30 0.356295 0.356295 0.00 
N =60 0.290743 0.266093 8.48 
N =90 0.257822 0.255000 1.09 
N =120 0.237388 0.235867 0.64 
N =150 0.177081 0.172108 2.81 
D=10    

N =30 0.081440 0.077321 5.06 
N =60 0.058274 0.057455 1.40 
N =90 0.048829 0.048084 1.53 
N =120 0.038952 0.038165 2.02 
N =150 0.035456 0.034448 2.84 
D=15    

N =30 0.003447 0.003447 0.00 
N =60 0.002359 0.002359 0.00 
N =90 0.002286 0.002056 10.04 
N =120 0.002155 0.001936 10.14 
N =150 0.002055 0.001857 9.66 
Average (% 
improvement) 

  3.71 

 

 

Note: The percent improvement is calculated using GA as the benchmark. 
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The results show that, by incorporating a local search (GIS) in the GA method, it 

explores the neighbourhood of the current solution to find a better solution. Hence, in 

most of the cases, the solution improves. 

 

Table 7.8: Comparison of RMSE and % improvement with incorporation of GIS 

Setting Uniform 
(B) 

GA+GIS % Imp. Greedy+
GIS 

% Imp Batch+GI
S 

% Imp 

D=5        
N =30 0.538926 0.356290 33.89 0.456400 15.31 0.465550 13.62 
N =60 0.481585 0.266090 44.75 0.385420 19.97 0.404390 16.03 
N =90 0.418319 0.255000 39.04 0.319630 23.59 0.319800 23.55 
N =120 0.358819 0.235870 34.26 0.265680 25.96 0.245820 31.49 
N =150 0.308822 0.172110 44.27 0.214530 30.53 0.195180 36.80 
D=10        
N =30 0.112322 0.077321 31.16 0.087513 22.09 0.081730 27.24 
N =60 0.110741 0.057455 48.12 0.081529 26.38 0.064784 41.50 
N =90 0.109184 0.048084 55.96 0.053083 51.38 0.051000 53.29 
N =120 0.106202 0.038165 64.06 0.048829 54.02 0.046768 55.96 
N =150 0.103818 0.034448 66.82 0.044978 56.68 0.042808 58.77 
D=15        
N =30 0.010085 0.003447 65.82 0.004986 50.56 0.003705 63.26 
N =60 0.008204 0.002359 71.25 0.002637 67.86 0.002413 70.59 
N =90 0.006617 0.002056 68.93 0.002534 61.71 0.002364 64.28 
N =120 0.005579 0.001936 65.29 0.002357 57.75 0.002246 59.74 
N =150 0.004759 0.001857 60.99 0.002218 53.40 0.002159 54.63 

 

Setting Uniform (B) Random+GI
S 

% Imp Gradient+G
IS 

% Imp 

D=5      
N =30 0.538926 0.488290 9.40 0.468220 13.12 
N =60 0.481585 0.416420 13.53 0.380500 20.99 
N =90 0.418319 0.360620 13.79 0.334490 20.04 
N =120 0.358819 0.306480 14.59 0.276000 23.08 
N =150 0.308822 0.224890 27.18 0.240270 22.20 
D=10      
N =30 0.112322 0.091152 18.85 0.085411 23.96 
N =60 0.110741 0.061294 44.65 0.061546 44.42 
N =90 0.109184 0.054426 50.15 0.053759 50.76 
N =120 0.106202 0.048458 54.37 0.053406 49.71 
N =150 0.103818 0.045684 56.00 0.051629 50.27 
D=15      
N =30 0.010085 0.004132 59.03 0.004498 55.40 
N =60 0.008204 0.002779 66.13 0.003292 59.87 
N =90 0.006617 0.002468 62.71 0.002485 62.44 
N =120 0.005579 0.002239 59.87 0.002479 55.57 
N =150 0.004759 0.002197 53.83 0.002374 50.12 

         Note: B = Benchmark,  %Imp = % improvement 
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    GA+GIS Greedy+GIS Batch+GIS Random+GIS Gradient+GIS 
Average (% Improvement) 52.97 41.15 44.72 40.27 40.13 

Max (% Improvement) 71.25 67.86 70.59 66.13 62.44 
 

Table 7.8 shows that with the incorporation of GIS, the solution for all the methods 

improves further. The gradient, greedy and batch methods are able to find some 

feasible design/solutions but the designs may not be good. By incorporating GIS, this 

helps to perform some local or neighbourhood search around the feasible 

design/solution so as to further improve the solution quality. Hence, as can be seen 

from the results of the experiments, there is a significant improvement in the solution 

of the greedy, batch and gradient algorithms after the incorporation of GIS. The 

performance of Greedy+GIS, Gradient+GIS, Constructive random+GIS and 

Batch+GIS are almost similar (the average percentage improvement ranges between 

40.13% to 44.72%).  Overall the results showed that there is no significant rule 

connected to the dimension (i.e. D) and the total number of additional allocation 

budget (i.e. N) that can favor one method to the other.  The only thing noticeable is 

that all the methods perform better than uniform, and when the total number of 

additional allocation budget increases, regardless of dimension, the MSE decreases. 

Overall, the best performing algorithm is GA+GIS.   
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Figure 7.3: Comparison of MSE at different CV values. 

 

 
Figure 7.4: Comparison of MSE at different initial number of data. 

 

Figure 7.3 and Figure 7.4 show that when the noise level increases, the GA and 

GA+GIS methods are still capable to locate the optimal design.  The reason maybe due 

to the parameter settings in GA which enables it to find a good neighbourhood 
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structure. Hence, GA can find the answer accurately even though randomness in the 

data increases. Nevertheless, the results are also very much dependent on the data used 

in the experiments. 

 

Table 7.9 shows the average CPU time (run time) spent by each method in finding the 

best solution. The gradient technique is the fastest among all the sophisticated 

methods. The incorporation of GIS into GA helps to speed up convergence of the 

solutions in some cases. However, on average, it takes slightly longer time than GA. 

This may be due to the additional time requires by GIS to perform the neighbourhood 

search on the feasible solution. Nevertheless, the additional time taken is not large 

compared to the average time taken by GA. Hence, GA+GIS is still an efficient 

technique. The greedy and batch techniques take long computational time when the 

size of the problem is large. The incorporation of GIS into the batch, gradient and 

greedy techniques improve the solutions in a reasonable computational time. 
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Table 7.9: Average CPU time 

Setting GA Gradient Greedy Batch GA+GIS 
D=5      
N=30 6566 290 792 1294 6596 
N =60 8687 598 1620 7610 8630 
N =90 8980 1069 3191 8837 9959 
N =120 9797 1267 6207 8956 10973 
N =150 10051 1289 11140 9080 13663 
D=10      
N =30 4369 491 1959 704 6799 
N =60 9472 1030 4874 12276 9402 
N =90 14068 1923 8712 12538 20627 
N =120 14975 2079 24435 13133 23307 
N =150 16474 2308 42586 13548 25740 
D=15      
N =30 7362 155 2374 27276 6683 
N =60 7989 903 4623 28068 7690 
N =90 8630 1563 9609 41247 9481 
N =120 9356 1868 20479 42182 10538 
N =150 10721 1902 55103 45668 11236 
Average 9833 1249 13180 18161 12088 
Average(hrs) 2.7 0.3 3.7 5.0 3.4 
max(hrs) 4.6 0.6 15.3 12.7 7.2 

 

Setting Greedy+GIS Batch+GIS Random+GIS Gradient+GIS 
D=5     
N =30 1672 1672 374 614 
N =60 4216 3036 703 1290 
N =90 9990 7348 1590 2599 
N =120 22141 15510 2943 2747 
N =150 41130 18810 3979 3272 
D=10     
N =30 3131 2640 897 910 
N =60 6749 6435 1106 1818 
N =90 8910 13860 2035 3573 
N =120 26041 27170 4283 6380 
N =150 48869 47520 8103 8270 
D=15     
N =30 4694 8800 1187 636 
N =60 4719 8866 1400 1826 
N =90 7513 26950 5224 2801 
N =120 14940 47410 5543 3596 
N =150 28011 57519 14553 3805 
Average 15515 19570 3595 2942 
Average(hrs 4.3 5.4 1.0 0.8 
max(hrs) 13.6 16.0 4.0 2.3 

Lastly, a summary of the strengths and weaknesses of each technique is presented in 

Table 7.10 below.  
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Table 7.10: Strengths and weaknesses of the techniques. 

Techniques Strengths Weaknesses 

1. GA Able to find a good solution in most 

cases. 

Required relatively long time to 

converge to a good solution. 

2. Gradient  Quick at finding a feasible solution.  The solution may not be a good one. 

It did not explore the neighbourhood 

of the feasible solution. 

3. Greedy Simple, easy to implement, Short 

computational time for small size 

problem. 

The solution may not be good. No 

neighbourhood search for the 

feasible solution. Long 

computational time for large size 

problem. 

4. Batch Simple, easy to implement. The solution may not be good. No 

neighbourhood search for the 

feasible solution. Long 

computational time for large size 

problem. 

For all the above techniques, the incorporation of GIS will find a better solution at the 

expense of more computational time.  On average, GIS improves the solution for each 

of the techniques almost equally. 

 

7.5 Conclusion 

In this chapter, we investigate the performance of the proposed techniques. The 

techniques had been applied on the supply chain data sets for solving the budget 

allocation problem in data collection to predict a good estimate of the efficiency score. 

We first apply the basic techniques to find good design allocations. We then 

incorporate the GIS technique to investigate whether the solutions can be further 
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improved.  The results showed that the two proposed techniques performed well in 

allocating the budget for data collection. The GA based technique is effective in 

finding the best solution, while the two-phase gradient method is fast and efficient in 

finding reasonably good solutions.  In addition, the GIS technique can be incorporated 

with other existing methods and it can further improve the solutions efficiently and 

effectively.  

Overall, the results showed that, it is important for the users to allocate the 

budget wisely when he/she is conducting the data collection. The users can achieve 

tremendous savings (as big as 100 times!) in the budget as well as improvements in the 

efficiency results when they use sophisticated way to allocate compared to allocating 

naively. By trading off between efficiency and effectiveness, the users may choose 

which method they want to use for budget allocation in data collection.  

In the next chapter, we will recapitulate the findings and discuss the limitations 

and suggestions for future research. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 
 

 

In this chapter we shall summarize and discuss the main results of our research work 

as described in previous chapters. Possible future research will also be presented.  

 

8.1 Summary of results 
 

 In chapter 3, we addressed the first part of our thesis, in which, we developed 

the Monte Carlo DEA approach to handle data uncertainties in DEA and we apply this 

to measure supply chain efficiency.  A tentative model to measure supply chain 

efficiency is developed based on the basic CCR DEA model. This model removes the 

indirect effect of one’s channel performance which affects the efficiency status of 

another channel. The Monte Carlo DEA method provides an alternative to measure the 

efficiency in stochastic environment. It is simple and easy to implement. It is able to 

provide statistical inferences on the efficiency and give additional information and 

insights to managers (e.g., the confidence interval) compare with other methods of 

measuring supply chain efficiency (e.g., the conventional way of  using average data 

values to calculate a single value of efficiencies). Using average data to calculate the 

efficiency may leads to erroneous efficiency measures if the sample means of the data 

are very different from the true mean values; hence, this may not provide a strong base 

for making decision. Alternatively, using Monte Carlo DEA to obtain the efficiency 
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distributions is more informative than efficiency scores for drawing appropriate 

conclusions.  

 In Chapter 4 to 7, we addressed the second part of the thesis. We provided an 

approach on how to get a better estimate for the efficiency score in the circumstances 

where there are uncertainties or variations in the data. We addressed the problem 

through the context of data collection, which is a norm in efficiency measurement 

whereby the users would have to collect the data in order to calculate the efficiency 

score using the DEA model. We provided a mathematical model in Chapter 4 to solve 

our research problem which is to find out how to allocate the budget for effective data 

collection in order to get a good estimate of the efficiency score. As the problem is 

very tough, we developed two sophisticated techniques which are the two-phase 

gradient technique and the GA technique to solve the model. Chapter 5 discussed the 

two-phase gradient technique and Chapter 6 discussed the GA technique, other 

existing techniques and combinations of the techniques.  

Numerical experiments were conducted using the supply chain data sets. 

Experiments constituted of varying problem sizes and different noise levels in the data 

were examined to investigate how these algorithms perform under different scenarios.  

The performances of all the techniques are compared with the non-intelligent method, 

which is uniform allocation. The performances of the two-phase gradient technique 

and the GA technique have been encouraging. The numerical results show that the two 

proposed methods are effective and efficient in handling the budget allocation 

problem. The two-phase gradient technique is very efficient and capable of finding 

good solutions. The second phase of the gradient technique which is the GIS (Gradient 

Improvement Stage) is very flexible. It can be incorporated with any other existing 

techniques and it can efficiently improve the solutions.  The hybrid GA algorithm 
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yields very good solutions within reasonable amount of computational time. The 

combination of both, which is the GA+GIS is the most effective way in finding the 

best solution for the research problem.    

This research also provides the insights that it is important to conduct the data 

collection wisely. By using sophisticated techniques to allocate the budget for data 

collection, this can provide a better estimate of the efficiency score and achieve greater 

savings in the budget.  Managers can decide which methods that they want to adopt in 

allocating the budget for data collection, by making use of their experience, expertise 

and actual operational condition to handle the trade-off between practicability and 

optimality. 

 To sum up, the contributions of this research are three-folds. First, we develop 

a tentative DEA model to measure supply chain efficiency and provide an alternative 

approach to treat stochastic variations in data, which is the Monte Carlo DEA. Second, 

when data collection is needed and expensive, we provide a way on how to 

intelligently allocate the resources in data collection.  Third, by developing method to 

solve this difficult problem (i.e. using IPA to estimate the gradient and using OCBA to 

improve the simulation efficiency of GA), it is innovative and provides a potential 

methodological contribution in the operational research field.  

Finally, the research problem that we solve in this thesis is a pretty generic 

stochastic linear programming problem.  Besides, contributing to DEA, it also offered 

an effective approach for sampling/computing budget allocation in stochastic LP 

problems. 
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8.2 Limitations of the Research  

Despite the contributions described above, the work reported in this thesis has 

inevitably some limitations. In the first part of the research, the supply chain efficiency 

is taken as the weighted efficiencies of all the supply chain members i.e., by summing 

the weighted combination; this may have some double counting effect on the 

performance of the entire supply chain. The research problem in the second part of the 

thesis is addressed by assuming that only one DMU has uncertain inputs/outputs data.   

This is analogous to one’s own organization, where the users are uncertain about the 

data and have to spend some effort in collecting those data. On the other hand, the data 

for the other organizations are assumed to be certain and deterministic. In addition, the 

constraint in the mathematical model which is rather simplified may not reflect the real 

application in actual industry practices.  There had been no allowances made on the 

cost of collecting the data.  

The data collection is examined using the non-sequential approach, which 

means that the users collect the data after making the final decision and the decision 

cannot be changed halfway.  In reality, the users may use a different approach in 

collecting data, such as doing it sequentially. They may collect a few data first, then 

update their decision and collect the subsequent data.  Hence, the results obtained may 

not be generalized as it depends on the approach used in collecting data. 

Lastly, the application study was conducted using industries located in Penang, 

Malaysia. There may be systemic factors (e.g., economic environment, government 

regulations, financial system, market risks etc) that are not captured in the study. 

Therefore, the results may not be generalized.  
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8.3 Suggestions for future research  

Based on the limitations mentioned above, some of the suggestions for future research 

work are: 

1. To enhance the DEA supply chain model by analyzing how different setting of 

weights affect the supply chain performance. 

2. To compare the effects of different data collection procedures.  

3. To test the proposed algorithms in a more complex environment such as 

considering multiple DMUs and enhance the technicalities of the models (e.g., 

considering the cost of data collection).  

4. To consider how to allocate the budget if we want to determine which DMU is 

the most (or least) efficient. 

Lastly, apart from the suggestions mentioned above,   as our problem can be viewed as 

generic stochastic LP problem, we can also extend the research to the development of 

more effective allocation procedures for general stochastic LP problems. 
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Table A.1: Summary of previous literature surveys on supply chain performance measures 

Category: Theoretical (Performance Measures) 

Title Author Type of 
publications 

Year of 
publication 

Published in Focus objectives 

Supply-chain performance 
benchmarking study 
reveals keys to supply 
chain excellence 

Stewart, G. Article 1995 Logistics Information 
Management, Vol.8 
No.2, pp.38-44 

This paper suggested that best-in-class supply 
chain was characterized by the best 
achievement of both internal-facing measures 
and customer-facing measures. 

Logistics and the Extended  
Enterprise: Benchmarks 
and Best Practices for the 
Manufacturing Professional 

Boyson, S., Corsi, 
T.M., Dresner, 
M.E. and 
Harrington, L.H 

Book 1999 Wiley, NY This paper discussed the set of performance 
targets in benchmarking and possible 
methods to implement improvement solutions 
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Table A.2: Summary of previous literature surveys on supply chain integration 

Category: Theoretical (Concepts on supply chain integration / inter organizational level) 

Title Author Type of 
publications 

Year of 
publication

Published in Focus objectives 

Logistics partnerships and 
supply chain restructuring: 
survey results from the US 
computer industry 

Kopczak, L.R.  Article 1997 Production and 
Operations 
Management, Vol.6, 
No.3, pp.226-247 

Benefits of interfirm 
coordination in food 
industry supply chain 

Stank, T.P., Crum, 
M.R. and Arango, 
M.  

Article 1999 Journal of Business 
Logistics, Vol.20 No.2, 
pp.21-41 

These papers revealed that the core of supply 
chain management is the improvement process at 
the interorganizational level. 

 
Logistics and Supply Chain 
Management 

 
Christopher, M.  

 
Book 

 
1998 

 
Financial Times 
Management, Pitman 
Publishing, London. 

 
The author explained that supply chain 
benchmarking includes joint practices and 
achievements of the chain members in the supply 
chain 

Benchmarking supply 
chain operations 

Gilmour, P. Article 1999 Benchmarking for 
Quality Management 
and Technology, 
Vol.5, No.4, pp.283-
290. 

The author proposed a set of benchmark 
measures based on a set of capabilities which 
consists of process, information technology and 
organization. 

How supply chain 
competency leads to 
business success 

Bowersox, D.J., 
Closs, D.J., and 
Keller, S.B.  

Article 2000 Supply Chain 
Management Review, 
Vol.4 No.4, pp.70-78. 

The authors found that best practice in supply 
chain management resulted in better performance 
compared to companies with less integrated 
supply chain practices 
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Table A.2: Summary of previous literature surveys on supply chain integration [continued] 

 
Category: Theoretical (Concepts on supply chain integration / inter organizational level) 

Title Author Type of 
publications 

Year of 
publication

Published in Focus objectives 

 

Chain or shackles: 
understanding what drives 
supply-chain performance 

Ramdas, K. and 
Spekman, R.E.  

Article 2000  Interfaces, Vol.30, 
No.4, pp.3-21 

The author used system-wide revenues and costs 
to examine collaborative practices between high 
performers among innovative-product supply 
chains and high performers among functional-
product supply chains. 

The nature of interfirm 
partnering in supply chain 
management 

Metnzer, J.M., Min, 
S. and Zacharia, 
Z.G.  

Article 2000 Journal of Retailing, 
Vol.76 No.4, pp.549-
568 

The authors discussed that companies became 
involved in the progressive process of 
collaboration as they moved toward closer 
arrangements with their partners. 

A benchmarking scheme 
for supply chain 
collaboration 

Simatupang, T.M., 
Sridharan, R. 

Article 2004a Benchmarking: An 
International Journal, 
Vol.11, No.1,  pp.9-30. 

This paper highlighted that supply chain 
collaboration shifted the focus of benchmarking 
from a single company level to an inter 
organizational level. The authors also 
recommended an integrated benchmarking 
scheme for supply chain collaboration that consists 
of enabling practices and collaborative 
performance system. 
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Table A.3: Summary of previous literature surveys on supply chain model/framework 

Category: Practical (Model./ Framework) 

Title Author Type of 
publications 

Year of 
publication 

Published in Focus objectives 

Supply-chain operations 
reference model (SCOR): 
the first cross-industry 
framework for integrated 
supply chain management 

Stewart, G., (1997)  Article 1997 Logistics Information 
Management, Vol.10 
No.2, pp.62-67 

The author provided the development of the 
supply chain operations reference (SCOR) 
model as the first cross-industry framework for 
evaluating and improving extended supply 
chain performance. 

 Advanced Supply Chain 
Management 

Poirier, C.C. Article 1999 Berret-Koehler 
Publishers, San 
Francisco, CA. 

The author proposed a progressive framework 
consisting of four levels of supply chain 
optimization. The first two levels of progress 
are internally focused - "sourcing and logistics" 
and "internal excellence". The last two levels 
are “network construction and industry 
leadership".  

What it means to be best 
in class 

Geary, S. and 
Zonnenberg, J.P.  

Article 2000 Supply Chain 
Management 
Review, Vol.4 No.3, 
pp.42-48. 

The author employed the SCOR model to show 
that the best-in-class performers gained 
considerable financial and operating 
advantages over the rest of the respective 
groups.  

Benchmarking a logistical 
operations based on 
causal model 

van Landeghem, R. 
and Persoons, L.  

Article 2001 International Journal 
of Operations and 
Production 
Management, Vol.21 
No 1/2 pp.254-266. 

The authors developed a causal model as a 
mean for identifying possible initiatives to 
bridge the performance gap between a 
company and best-in-class performers. 
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Table A.3: Summary of previous literature surveys on supply chain model/framework [continued] 

 
Category: Practical (Model./ Framework) 

Title Author Type of 
publications 

Year of 
publication 

Published in Focus objectives 

Measuring the success of 
collaboration across the 
virtual supply chain 
through performance 
measurement systems and 
benchmarking 

Polese, W.T.  Research 
paper 

2002 Paper presented at 
the Supply Chain 
World Conference 
and Exposition, New 
Orleans, LA, 23 
April. 

The author developed a supply chain maturity 
model that reflects how companies progress in 
terms of operational capability. There are four 
stages: the first two are functional focus and 
internal integration. Collaboration is the key 
ingredient to reach stage 3 (external 
integration) and stage four (cross-enterprise 
collaboration). In conjunction with the SCOR 
model, the maturity model can be used to 
measure fact-based benchmarking for 
determining best-in-class performance 
opportunities. 

 

.  
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Table A.4: Past literature survey on supply chain case study 

Category: Practical (Case Study) 

Title Author Type of 
publications 

Year of 
publication Published in Focus objectives 

Benchmarking supply 
chain management 
practice in New Zealand 

Basnet, C., Corner, 
J., Wiense, J. and 
Tan,K.  

Article 2003 

Supply Chain 
Management: An 
International 
Journal, Vol.8, No.1, 
pp.57-64 

This paper illustrated an empirical study of 
benchmarking on supply chain practices in 
New Zealand companies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

166 
 

 

 

Table A.5 Studies of DEA with their specific features 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

1980 Bessent (1980) Educational Administration Quarterly A O E 
1980 Charnes and Cooper (1980) Journal of Enterprise Management T/A O O 
1983 Lewin (1983) Health Services Research A O H 
1983 Shaku et al. (1983) Journal of General Systems A O P 
1984 Fare (1984) Journal of Economics T E - 
1984 Lewin (1984) Book A O P 
1984 Weining and Wong (1984) Agricultural Production A E I 
1985 Charnes et al. (1985) Journal of Econometrics T E - 
1985 Fare (1985) European Journal Operational Research T M - 
1985 Fare e al. (1985) Resources and Energy T/A O U 
1985 Miller (1985) American Political Science Review A O P 
1986 Sexton (1986) Books T O - 
1987 Macmillan (1987) Environment and Planning A O P 
1987 Sengupta (1987) International Journal of Systems Science T M - 
1988 Fare (1988) Books T M - 
1988 Kamakura (1988) Management Science T M - 
1988 Learner et al. (1988) Conference Paper T/A O O 
1989 Jesson and Mayston (1989) Policy Journals A O E 
1989 Nyman and Bricker (1989) Review of Economics and Statistics A E H 
1989 Sengupta (1989) Books T O - 
1989 Spanjers(1989) Journal of Operational Research T M - 
1990 Desai and Schinnar (1990) Socio-Economic Planning Sciences T/A E - 
1990 Kamis (1990) Health Services Research A O H 
1990 Oral and Yolalan (1990) European Journal of Operational Research A M B 
1990 Seiford (1990) Computers, environment and Urban Systems T O - 
1990 Seiford and Thrall (1990) Journal of Econometrics T E - 
1990 Sueyoshi (1990) Journal of the Operational Research Society T M - 
1991 Boussofiance et al. (1991) European Journal of Operational Research T M - 
1991 Giokas (1991) Omega A M B 
1991 Mahajan (1991) European Journal of Operational Research T/A M - 
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Table A.5 Studies of DEA with their specific features [continued] 
 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

1991 Parkan (1991) International Journal of Production Economics A E O 
1992 Bjurek et al. (1992) Scandinavian Journal of Economics A E P 
1992 Chang (1992) Journal of Productivity Analysis  A E P 
1992 Dismuke and Sena (1999) Health Care Management Science A O H 
1992 Haag et al. (1992) Applied economics A E I 
1992 Kao and Yang (1992) European Journal of Operational Research A M I 
1992 Morey et al. (1992) Medical Care A O H 
1992 Sueyoshi (1992) Journal of the Operational Research Society T M - 
1992 Thompson et al. (1992) Computer and Operations Research T/A O U 
1993 Burgess and Wilson (1993) Book  A O H 
1993 Caulkins et al. (1993) Operations Research A M I 
1993 Grizzle (1993) International Journal of Public Administration A O - 
1993 Lee and Schmidt (1993) Book T E - 
1993 Roll and Hayuth (1993) Maritime Policy and Management A O I 
1993 Thanassoulis (1993) Journal of the Operational Research Society T M - 
1993 Thompson et al. (1993) Journal of Productivity Analysis  T E - 
1994 Fuss (1994) Canadian Journal of Economics Review A E I 
1994 Sueyoshi European Journal of Operational Research T/A M - 
1994 Sueyoshi (1994) European Journal of Operational Research A M U 
1994 Yaisawarng and Klein (1994) Review of Economics and Statistics A E U 
1995 Athanassopoulos and 

Thanassoulis (1995) 
International Journal of Production Economics T/A E O 

1995 Cooper et al. (1995) European Journal of Operational Research T/A M I 
1995 Dula (1995) International Journal of Systems Science T M - 
1995 Johnes (1995) Economics of Education Review A E U 
1995 Lewin and Lovell (1995) European Journal of Operational Research T M - 
1995 Li and Liu (2005) Journal of South China University of Technology A E I 
1995 Majumdar (1995) Journal of Economic Behaviour and Organization T/A E I 
1995 Olesen (1995) Books T O - 
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Table A.5 Studies of DEA with their specific features [continued] 
 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

1996 Boyd et al. (1996) Working Paper T O - 
1996 Charnes et al. (1996) European Journal of Operational Research T/A M O 
1996 Deborger and Kerstens  (1996) Journal of Productivity Analysis  T/A E O 
1996 Fried et al. (1996) Computer and Operations Research A M E 
1996 Guangfu (1996) Annals of Operations Research A M I 
1996 Kersten (1996) Transportation Research A O I 
1996 Mahmood et al. (1996) Decision Sciences A M O 
1996 Nolan (1996) Logistics and Transportation Review A O I 
1996 Piesse et al. (1996) Journal of International Development A O I 
1996 Retzlaff (1996) Computer and Operations Research B O - 
1996 Sengupta (1996) International Journal of Systems Science T M - 
1996 Soterious and Stavrinids (1996) Conference Paper A O B 
1996 Sueyoshi (1996) Management Science A M I 
1996 Tyteca (1996) Journal of Environmental Management A O U 
1997 Athanassopoulos (1997) European Journal of Operational Research T/A M B 
1997 Athanassopoulos (1997) Journal of the Operational Research Society B M - 
1997 Boussofiance et al. (1997) Applied Economies A E P 
1997 Briec (1997) Journal of Productivity Analysis  T E - 
1997 Chang (1997) European Journal of Operational Research T M - 
1997 Cooper and Tone (1997) Journal of Operational Research T M - 
1997 Giokas (1997) Journal of the Operational Research Society B M - 
1997 Mu and Du (1997) Conference Paper A O I 
1997 Tyteca (1997) Journal of Productivity Analysis T/A E U 
1998 Brockett et al. (1998) International Journal of Systems Science A M I 
1998 Cummins and Zi (1998) Journal of Productivity Analysis  T/A E I 
1998 Grifell et al. (1998) Journal of Productivity Analysis  T E - 
1998 Hashimoto (1998) Journal of Operations Research Society of Japan T M - 
1998 Ozcan et al. (1998) Journal of Medical Systems A O H 
1998 Pitaktong et al. (1998) European Journal of Operational Research T M - 
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Table A.5 Studies of DEA with their specific features [continued] 
 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

1998 Ray and Mukherjee (1998) International Journal of Systems Science A M B 
1998 Rosen et al. (1998) Journal of Productivity Analysis  T E - 
1999 Avkiran (1999) Journal of Bank Marketing A O B 
1999 Camanho et al. (1999) Journal of the Operational Research Society A M B 
1999 Dinc and Haynes (1999) Annals of Regional Science T/A O O 
1999 Gropper et al. (1999) Journal of Productivity Analysis  T E - 
1999 Kao et al. (1999) International Journal of Libraries and Information Services A O E 
1999 Lee and Barua (1999) Journal of Productivity Analysis  T/A E O 
1999 Lothgren and Tambour (1999) Applied Economics  T E - 
1999 Metters and Vargas (1999) Production and Operations Management A E I 
1999 Mota et al. (1999) International Journal of Technology Management T/A O O 
1999 Ramanathan (1999) Indian Journal of Transport Management A O I 
2000 Deng et al. (2000) Computer and Operations Research T/A M B 
2000 Devinney et al.  Organization Science A O O 
2000 Fare and Grosskopf (2000) Socio-Economic Planning Sciences T E - 
2000 Halme and Korhonen (2000) European Journal of Operational Research T M - 
2000 Hong et al. (2000) International Journal of Systems Science T M - 
2000 Lai et al. (2006) Journal of Risk and Insurance T/A E I 
2000 McCallion et al. (2000) Applied Economics A E H 
2000 Nold et al. (2000) Journal of Regional Science A O E 
2000 Odeck (2000) European Journal of Operational Research A M I 
2000 Sarkis (2000) Journal of Operations Management A O I 
2000 Simar and Wilson (2000) Journal of Applied Statistics T E - 
2000 Tybout (2000) Journal of Economic Literature B E - 
2000 Uri (2000) Telecommunications Policy A O I 
2000 Worthington and Dollery (2000) Local Government Studies A O E 
2000 Yeboon et al. (2000) Transactions of the Society of Instrument and Control Engineers T O - 
2001 Brockett et al. (2001) Engineering Economist A O U 
2001 Cooper et al. (2001) Journal of Productivity Analysis  T E - 
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Table A.5 Studies of DEA with their specific features [continued] 
 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

2001 Grundy and Merton (2001) Journal of finance A E B 
2001 Staat (2001) Journal of Productivity Analysis  B E - 
2001 Steinmann and Zweifel (2001) Journal of Productivity Analysis  T E - 
2001 Tone (2001) European Journal of Operational Research T M - 
2001 Valdmanis (2001) Socio-Economic Planning Sciences A E H 
2001 Weber (2001) Review of Economics and Statistics A E I 
2001 Worthington and Dollery (2001) Policy Studies Journal A O E 
2002 Camanho and Dyson (2002) Book  A O B 
2002 Fare et al. (2002) Mathematical and Computer Simulation T/A O O 
2002 Hofmarcher et al. (2002) Health Care Management Science A O H 
2002 Lau and Lam (2002) Journal of the Operational Research Society T/A M O 
2002 Li and Yan (2002) System Engineering Theory and Practice T M - 
2002 Lozano et al. (2002) Journal of the Operational Research Society T/A M O 
2002 Manandhar and Tang (2002) Journal of High Technology Management Research T/A O B 
2002 Weber (2002) Decision Sciences A M I 
2002 Yan et al. (2002) European Journal of Operational Research T M - 
2003 Birman et al. (2003) Mathematical and Computer Modelling A O H 
2003 Calara and Cabanda (2004) Conference Paper A O O 
2003 Guo et al. (2003) Journal of Tianjin University Science and Technology T O - 
2003 Kruger (2003) Oxford Economic Papers  A E O 
2003 Lovell (2003) Journal of Productivity Analysis  T E - 
2004 Amin and Toloo(2004) Computer and Operations Research T O - 
2004 Bernardes and Pinillos (2004) Conference Paper B O - 
2004 Bowlin (2004) European Journal of Operational Research A M B 
2004 Cielen et al. (2004) European Journal of Operational Research T/A M B 
2004 Cummin et al. (2004) Conference Paper T/A O I 
2004 Dmitry and Balash (2004) Conference Paper A O B 
2004 Hof et al. (2004) Forest Science A O I 
2004 Holvad et al. (2004) Transportation T/A O I 
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Table A.5 Studies of DEA with their specific features [continued] 
 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

2004 Jahanshahloo et al. (2004) Applied Mathematics and Computation T O - 
2004 Jahanshallo et al. (2004) Applied Mathematics and Computation T O - 
2004 Joro (2004) Journal of the Operational Research Society T M - 
2004 Korhonen (2004) Management Science T/A M O 
2004 Korhonen nd Luptacik (2004) European Journal of Operational Research T/A M U 
2004 Lozano and Villa (2004) Journal of Productivity Analysis  T/A E O 
2004 Neves et al. (2004) International Journal of Management and Decision Making A O I 
2004 Ozgen and Ozcan (2004) Health Care Management Science A O H 
2004 Ruggiero (2004) Journal of the Operational Research Society T M - 
2004 Shao and Shu (2004) Journal of the Operational Research Society A M O 
2004 Sowlati and Paradi (2004) Omega T M - 
2004 Tuzkaya and Ertay (2004) Conference Paper B O - 
2004 Vaninsky (2004) Journal of Information and Optimization Sciences A O O 
2004 Wu and Xuan (2004) System Engineering Theory and Practice B O O 
2005 Barth and Staat (2005) Journal of Business Performance Management T/A O B 
2005 Bhat (2005) European Journal of Health Economics A E H 
2005 Camanho and Dyson (2005) Journal of the Operational Research Society T/A M B 
2005 Coelli and Rao (2005) Agricultural Economics T/A E I 
2005 Costantino et al. (2005) Conference Paper T/A O I 
2005 Donthu et al. (2005) Journal of Business Research A O I 
2005 Ertuayrul and Mehmet (2005) Emerging Markets Finance and Trade A O B 
2005 Garcia et al. (2005) Progress in Nuclear Energy B O - 
2005 Hong et al. (2005) Construction innovation A O I 
2005 Jahanshahloo et al. (2005) Applied Mathematics and Computation T O - 
2005 Kitayama et al. (2005) Transactions of the Japan Society of Mechanical Engineers A O I 
2005 Li et al. (2005) Journal of the North china Electric Power University A O U 
2005 Munksgaard et al. (2005) Energy Policy A O U 

2005 Ramanathan (2005) International Journal of Operations and Production 
Management A O H 
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Table A.5 Studies of DEA with their specific features [continued] 
 

Year Study Source of Publication Type Journal 
Type 

Application 
scheme 

2005 Saen et al. (2005) Applied Mathematics and Computation T/A O B 
2005 Saen et al. (2005) Applied Mathematics and Computation T O - 
2006 Arestis et al. (2006) International Review of Applied Economics T/A E U 
2006 Bian and Tang (2006) Working Paper T/A O O 
2006 Camanho and Dyson (2006) Journal of Productivity Analysis  T E - 
2006 Damar (2006) Applied Economics T/A E B 
2006 Kirkparick et al. (2006) World Bank Economic Review A E I 
2006 Lee et al. (2006) Lecture notes in Artificial Intelligent B O - 
2006 Ma and Zhang (2006) Systems Engineering and Electronics T O - 
2006 Mabert et al. (2006) Mathematical and Computer Modelling  A O O 

2006 Newman and Matthews 
(2006) Journal of Productivity Analysis  T/A E I 

2006 Prior (2006) Annals of Operations Research T/A M H 
2006 Ramanathan (2006) Socio-Economic Planning Sciences A E O 
2006 Soleimani et al. (2006) Applied Mathematics and Computation T O - 

2006 Soteriou and Hadjicostas 
(2006) European Journal of Operational Research T M - 

2006 Wang et al. (2006) Journal of American Society for Horticultural Science A O I 
2006 Wang et al. (2006) System Engineering Theory and Practice A O O 
2006 Xu et al. (2006) European Journal of Operational Research B M - 
2006 Yang and Lu (2006) IEEE Transactions on Power Systems A O U 
2007 Amin (2007) International Journal of Operations Research T M - 
2007 Cook and Bala (2007) Omega T M - 
2007 Garcia et al. (2007) Applied Economics T/A E O 

2007 Podinovski and Thanassoulis 
(2007) Journal of Productivity Analysis  T E - 
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Table B.1: Target optimal values for inputs, outputs and intermediate of each DMU 
DMU Supplier-

cost 
Supplier-
revenue 

Manufacturing 
cost 

Manufacturing 
time 

Distributor 
cost 

Customer 
response 

time 

Fill rate On time 
delivery 

Retailer 
cost 

Original value 130 20 125 3 90 3 0.7 0.96 100 
Optimal 119.37 21.22 121.26 2.91 75.91 2.53 0.91 0.96 100.00 

1 

% change -8.18 6.11 -2.99 -2.99 -15.65 -15.65 29.92 0.00 0.00 
Original value 150 21 120 2 100 3 0.9 0.95 110 
Optimal 89.97 14.30 74.94 1.25 46.50 1.40 0.54 0.58 78.57 

2 

% change -40.02 -31.90 -37.55 -37.55 -53.50 -53.50 -39.75 -38.47 -28.57 
Original value 165 23 110 3 80 2 0.78 0.97 130 
Optimal 118.84 17.18 82.18 2.24 59.76 1.49 0.58 0.72 123.21 

3 

% change -27.97 -25.29 -25.29 -25.29 -25.29 -25.29 -25.29 -25.29 -5.22 
Original value 170 24 150 4 70 4 0.88 0.89 125 
Optimal 85.53 13.88 66.99 1.79 48.33 2.76 0.48 0.59 82.82 

4 

% change -49.69 -42.19 -55.34 -55.34 -30.96 -30.96 -45.85 -34.02 -33.74 
Original value 200 27 146 2 85 2 0.73 0.99 140 
Optimal 137.58 20.75 112.18 1.54 65.31 1.54 0.56 0.76 133.51 

5 

% change -31.21 -23.17 -23.17 -23.17 -23.17 -23.17 -23.17 -23.17 -4.64 
Original value 185 25 115 3 77 2 0.95 0.89 135 
Optimal 97.85 14.11 66.58 1.74 48.14 1.25 0.49 0.59 96.85 

6 

% change -47.11 -43.57 -42.11 -42.11 -37.48 -37.48 -48.91 -33.99 -28.26 
Original value 135 24 105 2 78 1 0.89 0.93 125 
Optimal 135 24 105 2 78 1 0.89 0.93 125 

7 

% change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Original value 190 30 100 2 90 3 0.87 0.88 155 
Optimal 190 30 100 2 69.30 2.31 0.87 0.88 155 

8 

% change 0.00 0.00 0.00 0.00 -23.00 -23.00 0.00 0.00 0.00 
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 Table B.1: Target optimal values for inputs, outputs and intermediate of each DMU [continued] 
 
DMU Supplier-

cost 
Supplier-
revenue 

Manufacturing 
cost 

Manufacturing 
time 

Distributor 
cost 

Customer 
response 

time 

Fill rate On time 
delivery 

Retailer 
cost 

Original value 185 28 135 4 78 2 0.95 0.99 135 
Optimal 128.72 19.60 93.74 2.78 68.17 1.75 0.66 0.83 117.12 

9 

% change -30.42 -30.00 -30.56 -30.56 -12.60 -12.60 -30.03 -16.50 -13.24 
Original value 190 25 120 3 68 1 0.9 0.83 130 
Optimal 190 25 116.18 2.90 68 1 0.9 0.83 130 

10 

% change 0.00 0.00 -3.18 -3.18 0.00 0.00 0.00 0.00 0.00 

 
 
 
 

Table B.2: The distribution of the Monte Carlo efficiency scores. 

DMU No Mean Median 
(50%) 

5% 10% 25% 75% 90% 95% 

DMU1 0.8923 0.9330 0.6941 0.7171 0.9330 0.9330 0.9330 0.9330 
DMU2 0.6021 0.5973 0.4867 0.5140 0.5474 0.6668 0.6974 0.7092 
DMU3 0.7933 0.7954 0.6459 0.6676 0.7230 0.8655 0.9214 0.9300 
DMU4 0.5661 0.5618 0.4653 0.4717 0.5057 0.6192 0.6677 0.6821 
DMU5 0.7911 0.7976 0.6427 0.6557 0.7222 0.8626 0.9179 0.9369 
DMU6 0.5934 0.5892 0.4975 0.5007 0.5279 0.6470 0.7102 0.7175 
DMU7 0.9543 1 0.8225 0.8375 0.9037 1 1 1 
DMU8 0.8839 0.9425 0.7402 0.7588 0.8023 0.9425 0.9425 0.9425 
DMU9 0.7846 0.7741 0.6375 0.6436 0.6871 0.8874 0.9474 0.9484 

DMU10 0.9527 0.9920 0.8039 0.8469 0.9018 0.9920 0.9920 0.9920 
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APPENDIX C : ALGORITHMS FOR THE GA AND 
OTHER TECHNIQUES.  

 
Algorithm for GA+OCBA-m technique 
 
 
Step 1: Initialization  
 i.e. set N=budget,  number of initial_data, CV, D, 
 pop_size=100, max_generation=200, crossover_prob=1, mutat_prob=0.01,  
 tsize=2, popcount=1, noimprovement=0 
 
Step 2: Generate initial population 
  
Step 3: Evaluation-Selection-Reproduction cycle 
   
 3.1 Evaluate fitness of individuals in the population    
  Apply OCBA-m procedure here. 
  /Calculate the MSE and select the top-m solutions. 
   Set bestMSE=individual with best fitness 
   Arrange the solutions (from the fittest to the least fit) 
  

3.2 Create next generation       
  /*Loop 40 times (percentage of best solutions to be retained 20%) in  
  order to generate 80 children*/ 
  For i=1:40  
   /*Selection of parents*/ 
   k=1; 
   While k<=2 
    Select two individuals randomly  
    Compare MSE of the two 
    Set winner as parent_k; 
   End 
   /*Two-point crossover*-  Exchange of parent’s vector/ 
   Do  crossover using method described in 6.3.5 
  End   
  /*Check feasibility of all children*/ 
  For i=1 to 80  
   Calculate sum_gene  of child [i] 
   If sum_gene>Budget 
    surplus=sum_gene-Budget 
    For i=1 to surplus 
     Randomly select a position or gene 
     Substract 1 from the position    
    End 
   Else if sum_gene<Budget 
    slack=Budget-sum_gene 
    For i=1 to slack 
     Randomly select a position or gene 
     Add 1 to the position     
    End 
   End 
  End 
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  /*Mutation*/ 
  For i=1 to 80   
   If rand()>mutat _prob 
    Randomly select two genes from child [i] 
    Randomly exchange the values of the genes 
   end  
  End 
  
 3.2 Check whether termination condition is satisfied 
  If popcount>1 
       If (bestMSE(popcount)>=bestMSE(popcount-1))         
            noimprovement=noimprovement+1; 
   End 
   If (noimprovement>20) or  (popcount > max_generation) 
    STOP 
   End 
  End 
  
 3.3 Replacement  of the populations by the children. 
  Use the selected top-m solutions from OCBA-m to update the subsequent 
  population for next iteration i.e.  retain the top m solutions & replace the  
  remainder with the children;  popcount=popcount+1; Go to Step 3.1. 
  
   

Figure C.1: Pseudo-code for the GA+OCBA-m algorithm 
 
 
Algorithm for Greedy technique 
 
Step 1: Initialization  

 i.e. set budget,  number of initial_data, D, CV,  N=0, ∆N=1 

Step 2: Increment N by +∆N 

 set N=N+∆N 

Step 3: Evaluate the designs and choose the best one 

 While N ≤ Budget    

  Find feasible design allocations n   

  Calculate MSE for all designs 

  Determine best MSE and the associated n 

  Set best_design = n which has the best MSE 

  N=N+∆N 

 End 

Recall: Nn
Kk

k =∑
∈

and   n = [nk]k∈K 

       
    

Figure C.2: Pseudo-code for the Greedy algorithm 
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Algorithm for Batch technique 
 
Step 1: Initialization  

 i.e. set N=budget, D,  number of initial_data, CV 

Step 2: Find feasible factors  

 List all possible factors (ω) 

 Total number of design = [(N/ω)+D-1]!/[(D-1)!*(N/ω)!]. 

 If total number of design <5000 

  feasible_factors=factors. 

 End 

Step 3: Evaluate the designs 

 For all feasible_factors 

  Find all possible design allocations n   

  Calculate MSE  

  Determine the top 10 best MSE and the corresponding designs  n 

 End 

   
 
   Figure C.3: Pseudo-code for the Batch algorithm 
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APPENDIX D: SUPPLEMENTARY TABLES AND FIGURES 

FOR CHAPTER 7 

 
 
 
Table D.1: Variance of the efficiency as affected by the range of values of the inputs/outputs/variables 
 

Input Values Efficiency Input /output 
variable Min Max Min Max 

Variance of the 
efficiency 

Retailer revenue 155.9 467.7 0.35021988 1 0.422214 
Fill rate (mfg) 42.58% 100.00% 0.908146899 0.648728342 0.067298 
Supplier-revenue 12.78 38.34 0.845703801 0.597763662 0.061474 
Supplier-cost 81 243 0.839970084 0.600661764 0.057268 
customer res time 1.22 3.66 0.803319102 0.620919889 0.033269 
fill rate (DC) 40.19% 100% 0.88081469 0.668728342 0.044981 

Supplier-labor 78.9 236.7 0.763681497 0.64687127 0.013645 
cycle time 1.42 4.26 0.708946597 0.692134652 0.000283 
Retailer cost 65.1 195.3 0.706281897 0.694693477 0.000134 
mfg cost 60.56 181.68 0.704353693 0.696569082 6.06E-05 
on-time delivery 
(mfg-dc) 46.02% 100.00% 0.701826472 0.700200457 2.64E-06 
DC cost 40.28 120.84 0.70147188 0.700407641 1.13E-06 
on-time delivery (dc-
ret) 51.50% 99.90% 0.701239759 0.700439759 6.4E-07 
fill rate (ret) 57.50% 100% 0.700839759 0.700339759 1.6E-07 
on-time delivery 
(mfg-ret) 55.80% 99.99% 0.700439759 0.700139759 0 
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Figure D.1: Sensitivity Analysis 

 

From the sensitivity analysis study conducted by Wong et al. (2008), the overall average 

supply chain efficiency is most sensitive to   ‘retailer revenue’ followed by ‘fill rate (mfg)’, 

‘supplier revenue’ and ‘supplier cost’.  These are the top 4 most influential variables in the 

efficiency study of supply chain. The results are as shown in Figure D.1 and Table D.1.  In 

conducting the sensitivity analysis, we vary one variable at a time. For example, when we 

want to analyze the impact of ‘retailer revenue’ on efficiency, ‘retailer revenue’ will be varied 

while the other variables are kept constant. The purpose of conducting the sensitivity analysis 

is to enable the user to find out the influential variables which have significant impact on the 

average supply chain efficiency. 




