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SUMMARY 

 

The pro-inflammatory neuropeptide substance P (SP) is known to play an important 

role in the pathophysiology of various inflammatory diseases. Preprotachykinin-A gene 

knock-out (PPTA-/-) mice (lacking SP) are shown to be protected against polymicrobial 

sepsis. The aim of this study was to evaluate the role of SP in polymicrobial sepsis and 

associated lung injury and understand the molecular mechanisms involved in the 

pathogenesis of this serious inflammatory disorder. 

 

Pharmacological blocking of the neurokinin receptors with SR140333, a highly potent 

and selective antagonist of the neurokinin-1 receptors (NK-1R), and GR159897, a 

neurokinin-2 receptor (NK-2R) antagonist, were studied 8 h after cecal ligation and 

puncture surgery that induced polymicrobial sepsis in mice. Lung tissue was collected 

and analyzed for myeloperoxidase activity, histology, chemokines, cytokines and 

adhesion molecules. Transcription factors nuclear factor kappa B (NF-κB) and 

activator protein-1 (AP-1) were analyzed to elucidate the mechanism involved. A 

beneficial effect of treatment with SR140333, but not GR159897, in lung injury in 

sepsis was observed. NK-1R blocking lowered leukocyte infiltration and lung levels of 

chemokines, cytokines and adhesion molecules. The mechanistic studies revealed that 

the inhibition of SP action was mediated through NK-1R and the downstream signaling 

cascade involving protein kinase C alpha (PKCα) and NF-κB and AP-1 transcription 

factors modulated the pro-inflammatory mediators in polymicrobial sepsis. The 

combined data provided further support for the role of SP in polymicrobial sepsis. 

In addition to the use of neurokinin receptor blockers, PPTA gene knock-out mice were 



 xi

subjected to polymicrobial sepsis in order to understand the immunological basis of 

protection enjoyed by these mice lacking SP. Affymetrix high-density oligonucleotide 

arrays were used for lung gene expression profiling. Genes that were either consistently 

increased or decreased were shortlisted and semi-quantitative reverse transcriptase-

polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay 

(ELISA) were used to validate the results for selected differentially expressed genes. 

Multiplexed bead-based suspension arrays were employed for the time-course 

measurement of a set of plasma cytokines. Elevated levels of pro- and anti-

inflammatory gene and protein expression were observed in the early stages of sepsis 

in PPTA gene knock-out mice. This may help in resolving the infection without 

excessive immunosuppression in PPTA gene knock-out mice. Additional antimicrobial 

mediators that were observed in the study might have further supported in restoring and 

maintaining the delicate balance of inflammatory forces.  
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CHAPTER 1. INTRODUCTION 

 

1.1 General overview 

Patients with severe burns, hemorrhage, traumatic injury or abdominal surgery are 

highly vulnerable to pathogens and opportunistic infections. In addition, critically ill, 

elderly, pediatric and post-operational patients in the intensive care unit are also 

susceptible to infections. A minor wound infection in these patients can easily end up 

in sepsis (Kobayashi et al., 2006). In the United States alone, approximately 750000 

people develop sepsis annually and one third of them die of the resulting multiple 

organ failure (Angus et al., 2001). The incidence of sepsis has been estimated to 

increase by 1.5% every year with a current annual cost of $16.7 billion for sepsis 

treatment in the USA (Angus et al., 2001; Martin et al., 2003). Sepsis has a high death 

rate (30-47%) especially in immunocompromised conditions such as patients with 

malignancies, organ transplants or AIDS (Kobayashi et al., 2006; Riedemann et al., 

2003). Even in this modern era of medical science, sepsis associated complications are 

the most common cause of fatalities in the intensive care units. Predominantly 

supportive treatment, with no effective therapies so far, helps little in reducing the 

mortality rate of sepsis (Ness et al., 2004). 

Sepsis is the intense systemic inflammatory response syndrome caused usually by 

bacterial infection (Ashare et al., 2005). When the immune defenses of the body fail to 

eliminate pathogens, infection spreads through blood circulation. The resultant 

production of pro-inflammatory cytokines and chemokines leads to recruitment of 

neutrophils, tissue damage and multiple organ failure (Ness et al., 2004). However, it 

is the subsequent excessive production of anti-inflammatory mediators that induces 
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immunosuppression and fatalities in sepsis (Ashare et al., 2005; van der Poll and 

Deventer 1999). Balance between pro-inflammatory and anti-inflammatory mediators 

plays an important role in the pathophysiology of sepsis. 

Sepsis is generally caused by mixed infection (Sriskandan and Altmann 2008) and 

multiple mediators have been reported to be involved in the development of sepsis 

(Okazaki and Matsukawa 2009; Marshall et al., 2003). Substance P (SP), a 

preprotachykinin-A (PPTA) gene product, is an immunoregulatory neuropeptide 

implicated in various inflammatory diseases. Recent literature reports illustrate 

evidence of a role for SP in acute pancreatitis, endotoxemia, and polymicrobial sepsis 

(Ramnath et al., 2006; Ng et al., 2008; Puneet et al., 2006; Zhang et al., 2007). 

However understanding the molecular mechanisms and therapeutic implications of the 

role of SP in sepsis and associated lung injury remains a challenge. 

 

1.2 Literature review 

1.2.1 Polymicrobial sepsis 

Sepsis is a state of systemic inflammatory response syndrome with a known focus of 

infection resulting from bacteria, virus, fungus or parasites (Matsuda and Hattori, 

2006). Severe sepsis refers to sepsis with at least one organ or organ system 

dysfunction and septic shock is severe sepsis associated with hypotension (Remick 

2007). A staging system has been developed for sepsis based on 4 characteristics 

represented by the acronym PIRO: P- for the predisposition (pre-existing co-morbid 

conditions); I- for the insult/infection (clinical knowledge about the pathogen); R- for 

the response to the infectious challenge (including the development of systemic 
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inflammatory response syndrome); and O- for organ dysfunction (including 

coagulation cascade) (Levy et al., 2003).  

Sepsis is a common, expensive and often fatal clinical illness caused by an imbalance 

in the inflammatory response of the body mainly against sustained and overwhelming 

bacterial infection. The initial pro-inflammatory response to eliminate pathogens is 

followed by an excessive production of anti-inflammatory mediators that also 

contributes to the pathophysiology of sepsis (Ashare et al., 2005; Reddy et al., 2001; 

van der Poll and Deventer 1999). Sepsis is manifested by a varying degree of low 

blood pressure, coagulopathy, reduced oxygen supply to the tissues and often multiple 

organ failure. Hemodynamic features of sepsis include cardiovascular instability, 

reduced ejection fraction and decreased systemic vascular resistance (Wilson et al., 

1998). 

1.2.1.1 Pathophysiology of polymicrobial sepsis 

Pathophysiology of polymicrobial sepsis is generally agreed to be complex and so far 

no single mediator/system/pathway/pathogen has been reported to drive this 

multifactorial disease on its own (Remick 2007). It comprises a continuum of clinical 

and pathophysiological severity induced by a score of pathogens (Sriskandan and 

Altmann 2008). Although recently gram-positive infections have been documented to 

be more frequent (Martin et al., 2003), both gram-positive and gram-negative sepsis 

are common (Sriskandan and Altmann 2008). Staphylococcus aureus and Escherichia 

coli are the most common causes of sepsis and Pseudomonas aeruginosa is reported to 

be the most lethal (Vincent et al., 2000). But many cases of sepsis are due to mixed 

infection and polymicrobial in origin. 
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Several facets of the interaction between host and pathogen must be considered before 

unraveling the immune events leading to sepsis. The survival of the host depends on its 

recognition of invading organism and a quick response. The innate immune response is 

the primary line of defence against infectious assault. The innate defenses of the host 

immune system such as neutrophils, macrophages and natural killer cells recognize 

biochemical patterns displayed by pathogens and trigger active responses either 

directly or by releasing cytokines or by activating T and B cells. Innate immune 

system utilizes pattern-recognition receptors (PRRs) to recognize these highly 

conserved pathogen-associated molecular patterns (PAMPs) such as bacterial cell-wall 

components (lipopolysaccharide, LPS) and peptidoglycans. Toll-like receptors (TLRs) 

are a family of pattern-recognition receptors present on mammalian macrophages, 

dendritic cells and other cells triggering innate immune responses. So far 10 TLRs 

have been identified with TLR-4 being the first in 1997. TLR-4s recognize endotoxin 

(LPS) while TLR-2s detect peptidoglycan and lipoteichoic acid (Beutler 2002). Once 

activated, TLRs trigger a cascade of cellular signals and engage a sequence of 

cytoplasmic interaction that result in activation of transcription factor NF-κB and 

transcription of target genes (Wiersinga and van der Poll 2007). The resulting gene 

products act on T and B cells to initiate adaptive immunity. However under 

pathological conditions, this activation may lead to septic shock as heavy load of 

pathogens can induce massive quantities of inflammatory cytokines and activation of 

innate immunity throughout the host. Innate immune sensing is beneficial to the host 

when the bacterial inoculum is limited, but with massive systemic bacterial 

contamination the innate immune sensing could be damaging (Beutler 2002). 
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1.2.1.2 Dysregulated coagulation 

Although the coagulation system is not conventionally a part of the immune response 

to pathogens, both are linked closely in sepsis (Sriskandan and Altmann 2008). Septic 

patients reportedly have coagulation abnormalities, endothelial cell injury and 

abnormal blood flow (Remick 2007). The clotting system is activated by the invading 

pathogens in the blood stream along with a down-regulation of anticoagulant system 

and fibrinolysis (Wiersinga and van der Poll 2007). Thrombus and clot formation is 

promoted which in turn leads to more inflammation (Schouten et al., 2008). Although 

limited intravascular coagulation benefits survival by walling off the damaged and 

infected tissue, disseminated intravascular coagulation leads to microvascular clogging 

and impaired organ perfusion (Sriskandan and Altmann 2008; Opal 2004). Thus it is 

important to limit excessive coagulopathic damage and simultaneously maintain 

localized clot formation (Esmon 2000). Recombinant human activated protein C 

(APC) has been introduced as a therapeutic intervention for its anti-coagulant and anti-

inflammatory properties (Bernard et al., 2001). It is also reported to inhibit neutrophil 

chemotaxis and NF-κB activation (Amaral et al., 2004). However it is not useful in all 

septic patients and the beneficial effects are still not completely convincing (Eichacker 

et al., 2006).      

1.2.1.3 Endothelial cell dysfunction 

The blocking of peripheral blood vessels and the resulting ischaemia leads to 

endothelial cell damage (Sriskandan and Altmann 2008). It is worsened by the direct 

bacterial invasion and loss of barrier function. Platelets bind to the damaged surface 

resulting in platelet and fibrin accumulation and adhesion molecules attract neutrophils 

leading to endothelial disruption and plasma extravasations (Remick 2007). However 
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endothelial cells have not been shown to undergo apoptosis during sepsis in in vivo 

animal models (Hotchkiss et al., 2001). 

1.2.1.4 Inflammatory mediators in sepsis 

The inflammatory response is an integral part of sepsis. An ideal situation is when the 

inflammatory response eliminates the infectious assault without harming the host.  

Inflammatory mediators such as chemokines, cytokines, adhesion molecules, nitric 

oxide, hydrogen sulfide, SP have been reported to play varied roles in the progression 

of sepsis. A balance between anti- and pro-inflammatory mediators is crucial in 

deciding the outcome of sepsis.  

1.2.1.4.1 Chemokines 

Chemokines are a family of small (8-14 kDa), inducible cytokines secreted by a 

variety of cells. They play a crucial role in trafficking and recruiting antibacterial 

leukocytes to the primary sites of innate immune response. Chemokines are classified 

into 4 subfamilies depending on the relative position of cysteine residues. CC and 

CXC chemokines are the most widely studied peptides in sepsis. Chemokines 

produced by bacterial infections play an important role on the improvement or 

impairment of host antibacterial resistances. While chemokines help to boost the host 

defenses against invading pathogens, overwhelming levels of the same can lead to the 

pathogenesis of sepsis. Chemokines bind to a family of G protein-coupled 

transmembrane receptors on the surface of leukocytes (Ramnath et al., 2006). CCR1, 

CCR2, CCR4, CXCR1 and CXCR2 are the important chemokine receptors in sepsis.   

Chemokine production is increased in animals and humans exposed to pathogens. 

CXCL8 (interleukin-8, IL-8) systemic levels are reported to be elevated in humans 

during bacterial sepsis (Aalto et al., 2004). Similarly, plasma levels of CXCL9 
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(monokine-induced by interferon-γ, MIG) (Shin et al., 2003), CCL2 (monocyte 

chemoattractant protein-1, MCP-1) (Bossink et al., 1995), CCL3 (macrophage 

inflammatory protein-1α, MIP-1α) (O’Grady et al., 1999), CCL4 (MIP-1β) (O’Grady 

et al., 1999; Proulx et al., 2002) and CCL8 (MCP-2) (Bossink et al., 1995) were 

demonstrated to increase during sepsis. Our group has also reported elevated levels of 

chemokines in polymicrobial sepsis (Puneet et al., 2006; Zhang et al., 2007). In this 

perspective, various chemokine receptor antagonists have been tried and tested in 

animal models of sepsis and found to be promising.    

1.2.1.4.2 Cytokines 

Cytokines are soluble, low-molecular-weight glycoproteins that are synthesized and 

released in response to tissue damage. Inflammatory mediators released in sepsis are 

aimed to enhance leukocyte trafficking to the site of infection. Neutrophil mediates 

clearance of bacteria, but if the neutrophil transmigration is unchecked, significant 

organ damage may occur by the release of pro-inflammatory granules and enzymes 

(Sriskandan and Altmann 2008). Activation of TLRs by microorganisms triggers a 

signaling cascade culminating in the activation of NF-κB and transcription of various 

pro-inflammatory cytokines and chemokines. Tumor necrosis factor alpha (TNF-α), 

IL-1 and IL-6 coordinate the initiation of acute phase response in sepsis (Sriskandan 

and Altmann 2008). The acute phase response that is triggered by the pathogen 

recognition is important for survival in sepsis. TNF-α and IL-1 exert profound effects 

on the endothelium, vasculature and coagulation cascade. TNF-α acting through type I 

and II TNF receptors results in further NF-κB mediated transcription of pro-

inflammatory mediators. 
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The host simultaneously produces anti-inflammatory mediators such as IL-10, sTNFRs 

to counter-balance the pro-inflammatory response. Mechanisms of the anti-

inflammatory response have not been clearly understood so far (Reddy et al., 2001). 

 

1.2.1.4.3 Novel cytokines 

Recently, two soluble cytokines and a transmembrane receptor (discussed below) have 

also been identified as a critical mediator of sepsis.  

1.2.1.4.3.1 High Mobility Group Box-1 (HMGB-1) 

HMGB-1, a nonhistone, nuclear DNA-binding protein involved in gene transcription, 

is reported as a late mediator of sepsis (Cinel and Opal 2009). Elevated levels of 

HMGB-1 are detected in septic patients and are correlated with the degree of organ 

dysfunction (Sundén-Cullberg et al., 2005; Gibot et al., 2007). When released in large 

quantities into the extracellular environment in sepsis, it can have harmful pro-

inflammatory effects (Sriskandan and Altmann 2008; Ulloa and Tracey 2005). 

Apoptotic tissue damage possibly induces the release of HMGB-1, which then binds to 

bacterial substances and also initiates a second wave of TLR signaling (Zimmerman et 

al., 2004; Yu et al., 2006; Qin et al., 2006). Macrophages and neutrophils are also 

capable of actively secreting HMGB-1 to trigger inflammation (Cinel and Opal 2009). 

LPS and various cytokines release HMGB-1 from activated macrophages and binding 

of HMGB-1 to receptor for advanced glycation end products (RAGE), TLR-2, and -4, 

is reported to activate NF-κB and extracellular regulated kinase 1/2 (Hori et al., 1995; 

Park et al., 2004). HMGB-1, being a late emerging cytokine of sepsis, provides a wide 

therapeutic window and is an attractive target for treatment. 
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1.2.1.4.3.2 Macrophage Migration Inhibitory Factor (MIF) 

MIF, originally found in T cells, is a stress response mediator and pro-inflammatory 

cytokine (Calandra et al., 1995). It has been detected in clinical sepsis and may have a 

role in the pathogenesis of sepsis (Cinel and Opal 2009). During endotoxaemia, MIF 

was shown to be produced by the anterior pituitary gland (Calandra and Roger 2003) 

although the source of trigger of MIF in humans is not clear (Sprong et al., 2007). 

Injection of MIF reportedly increased mortality and inhibition of MIF decreased TNF-

α and IL-1β and improved survival in endotoxin-induced shock and sepsis models 

(Calandra and Roger 2003; Calandra et al., 2000; Bozza et al., 1999). In normal 

conditions, MIF is found to sensitize macrophages to LPS by promoting the expression 

of TLR-4 (Roger et al., 2001) and regulate activation-induced apoptosis (Mitchell et 

al., 2002). However, elevated MIF in sepsis delays the clearance of activated 

monocytes/macrophages by apoptosis and consequently increases cytokine production 

and pro-inflammatory response (Cinel and Opal 2009). 

1.2.1.4.3.3 Receptor for advanced glycation end products (RAGE) 

HMGB-1 is known to activate RAGE, an immunoglobulin superfamily receptor and a 

part of the innate immune system (Harris and Raucci 2006). RAGE has been shown to 

decrease inflammation, neutrophil extravasation and migration (Chavakis et al., 2003). 

Administration of anti-RAGE antibody much later in polymicrobial sepsis in mice has 

shown to promote survival and thus provided a therapeutic rationale (Lutterloh et al., 

2007). 

1.2.1.4.4 Nitric Oxide (NO) 

NO, a ubiquitous biological molecule produced by various cells, is believed to play a 

key role in the pathogenesis of sepsis, especially the cardiovascular alterations (Panas 
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et al., 1998). At high concentrations, NO forms peroxynitrite which is reported to be 

pro-inflammatory and cytotoxic and may cause tissue damage (Chandra et al., 2006). 

NO contributes to septic shock by means of vasodilatation, myocardial dysfunction, 

oxidative damage, increased intestinal permeability and subsequent translocation of 

bacteria, and inhibition of mitochondrial respiration (Vincent et al., 2000). Genetic 

deletion of inducible NO synthase (iNOS), the enzyme that synthesizes NO from L-

arginine, has been reported to protect mice from endotoxin-induced mortality (Wei et 

al., 1995). Selective iNOS inhibitors, Aminoguanidine (Wu et al., 1996) and L-

canavanine (Liaudet et al., 1997) have also been shown to benefit in experimental 

sepsis. L-NAME (N omega-nitro-L-arginine methyl ester), an NO antagonist, is 

reported to improve arterial pressure and oxygenation in septic patients (Avontuur et 

al., 1995). However, few other studies demonstrated that nitric oxide donors may 

improve splanchnic microcirculation in sepsis (Assadi et al., 2008; Siegemund et al., 

2007; Baumgart et al., 2009).With continuing debate over the pros and cons of NO 

inhibition, more targeted and selective inhibition of NOS isoforms should help better 

in the management of sepsis (Chandra et al., 2006). 

1.2.1.4.5 Carbon monoxide (CO) 

Carbon monoxide is a toxic gas that binds strongly to the iron centers of heme-

containing proteins such as hemoglobin, catalase, myoglobin, and cytochrome-c-

oxidase (Alonso et al., 2003; Foresti et al., 2008). Carbon monoxide promotes 

vasodilatation and the effects are particularly pronounced in the hepatosplanchnic 

system (Baumgart et al., 2009). It also shows anti-inflammatory properties (Baumgart 

et al., 2009). Severe sepsis patients have reportedly higher carboxyhemoglobin levels 

than nonseptic intensive care unit controls (Zegdi et al., 2002). Further, 



 11

carboxyhemoglobin levels were higher in patients who survived (Zegdi et al., 2002). 

However, inhalation of carbon monoxide for 1 h by volunteers before endotoxin 

injection failed to produce any anti-inflammatory effects (Mayr et al., 2005). 

1.2.1.4.6 Hydrogen Sulphide (H2S) 

Endogenous hydrogen sulphide is synthesized in mammals from L-cysteine by 

cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) (Szabó 2007). 

Vasodilator hydrogen sulphide has been shown to regulate hemodynamic parameters 

in animal models of septic shock (Hui et al., 2003). Pro-inflammatory role of hydrogen 

sulphide has been reported in polymicrobial sepsis (Zhang et al., 2006) which is 

mediated through SP and also other mediators (Zhang et al., 2007).      

1.2.2 Substance P (SP) 

Neuropeptide SP belongs to the tachykinin family, along with other members such as 

neurokinin A (NKA), neurokinin B (NKB), and two elongated forms of neurokinin A: 

neuropeptide γ and neuropeptide K (Bhatia et al., 2003; Eulberg et al., 2005). 

Tachykinins share a common C-terminal sequence Phe-Xaa-Gly-Leu-Met-NH2 that is 

needed for their interaction with specific receptors and is important for producing most 

of their biological effects (Bhatia 2003; Kimura et al., 1984). In mammals, the gene 

PPTA or PPT-I encodes both SP and NKA, and neurokinin B is encoded by the 

preprotachykinin-B gene (PPTB or PPT-II) (Harrison and Geppetti 2001; Severini et 

al., 2002; Bhatia 2003). Another preprotachykinin gene (PPTC) has been described 

that encodes a novel tachykinin termed hemokinin-I (Zhang et al., 2000). The PPTA 

gene has been detected in both central and peripheral nervous system, in enteric 

neurons of the gut and in various cells of the immune system (Bhatia 2003). The PPTB 

gene is expressed almost exclusively in the central nervous system (Bhatia 2003). 
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SP was discovered in 1931 by Von Euler and Gaddum as an active compound from 

horse intestine and brain extract that caused intestinal smooth muscle contractions 

(Maggio 1988). The 11 amino acid sequence of SP was discovered in 1970 by Chang 

and Leeman (Chang and Leeman 1970). SP is localized in the central nervous system as 

well as released from nerve endings in several peripheral tissues, including the entire 

length of the gastrointestinal tract, the pancreas as well as the colon. Immunoregulatory 

peptide SP is produced at various inflammation sites. It is found in resident 

macrophages, circulating leukocytes and dendritic cells (Ho et al., 1997; Lai et al., 

1998; O’Connor et al., 2004) and is known to have a role in neurogenic inflammation 

(Chavolla-Calderon et al., 2003). SP is reported to increase postcapillary venule 

permeability, immune cell influx, and glandular secretion in mammalian airways 

(Rizzo et al., 1999). It also induces the release of pro-inflammatory mediators, 

lymphocyte proliferation and chemotaxis (Gronberg et al., 2004). Increased SP 

immunoreactivity has been found in bronchoalveolar lavage samples from patients 

suffering from lung diseases (Espiritu et al., 1992). 

Three distinct receptors, NK-1R, NK-2R and NK-3R, mediate the biological actions of 

tachykinins. SP, NKA and NKB are generally considered to be the preferred ligands 

for NK-1R, NK-2R and NK-3R, respectively (Regoli et al., 1989). However, both 

NKA and NKB have been shown to be potent in stimulating NK-1R (Hastrup and 

Schwartz 1999) and all the three mammalian tachykinins (SP, NKA and NKB) are 

reported to be capable of acting as full agonists on each of the three receptors, with 

different potencies (Bhatia 2003). SP binds with high affinity to NK-1R, and with low 

affinity to NK-2 and 3 receptors (Koon and Pothoulakis 2006). The NK receptors 
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belong to the superfamily of rhodopsin-like, G-protein-coupled receptors (GPCRs) 

with seven transmembrane spanning segments.  

Activation of NK receptors results in the exchange of GDP bound to Gα subunit of the 

G protein for GTP and dissociation into Gα and Gβγ subunits (Johnston and 

Siderovski, 2007; Oldham et al., 2007; Rozengurt 2007). GTP-Gα complex activates 

the β isoforms of phospholipase C (PLC) which catalyses the hydrolysis of 

phosphatidyl inositol 4,5 bisphosphate (PIP2) in the plasma membrane resulting in 

inositol 1,4,5 trisphosphate (IP3) and 1,2,diacylglycerol (DAG) (Exton 1996; 

Rozengurt 1998). Inositol 1,4,5 trisphosphate binds to its intracellular receptor, a 

ligand gated calcium channel, found in the endoplasmic reticulum to release calcium 

from the internal stores (Mikoshiba 1997). 1,2,diacylglycerol directly activates enzyme 

PKC (Nishizuka 1995). Stimulation of peripheral tachykinin receptors leads to smooth 

muscle contraction, neuronal stimulation, endothelium-dependent vasodilation, plasma 

protein extravasation, chemotaxis and activation of immune and inflammatory cells, 

and stimulation of secretion (Maggio 1988; Patacchini and Maggi 2001). 

An elevated expression of SP receptor binding sites has been observed in the 

submucosa of patients suffering from inflammatory bowel disease (Mantyh et al., 

1988) and increased NK-1R in lymphoid aggregates, small blood vessels, and enteric 

neurons was reported in patients with Crohn’s disease (Mantyh et al., 1994; Mantyh et 

al., 1995). Elevated systemic SP levels have been reported in postoperative septic 

patients (Beer et al., 2002). SP, acting through NK-1R, is reported to play an important 

role in the pathogenesis of acute pancreatitis (Bhatia et al., 2003; Patto et al., 1992). 

Genetic deletion of NK-1R as well as pharmacological blockade of NK-1R has been 

shown to protect mice against acute pancreatitis and associated lung injury (Lau et al., 
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2005; Bhatia et al., 1998). Genetic deletion of PPTA has been reported to ameliorate 

acute pancreatitis and associated lung injury (Bhatia et al., 2003). Further, PPTA 

knockout mice are protected against polymicrobial sepsis (Puneet et al., 2006) and 

LPS-induced endotoxemia (Ng et al., 2008). Deletion of PPTA gene in those mice 

significantly attenuated inflammation and damage in the lungs (Puneet et al., 2006; Ng 

et al., 2008). 

1.2.3 Nuclear Factor-κB (NF-κB) transcription factor 

1.2.3.1 The NF-κB family 

NF-κB is a general term that corresponds to various dimeric complexes of Rel protein 

family members (Hayden and Gosh 2004; Ghosh and Karin 2002). Various home- and 

heterodimeric combinations are formed by c-Rel, RelA (p65), RelB, NF-κB1 (p50 and 

its precursor p105) and NF-κB2 (p52 and its precursor p100), but the p50/p65 

heterodimer is the most commonly detected form (Calzado et al., 2007). The DNA 

binding, dimerization, and nuclear translocation of NF-κB are mediated by N-terminal 

Rel-homology domain (RHD), shared by all the members (Calzado et al., 2007). NF-

κB is regulated through its localization in the cell. In normal resting cells, NF-κB is 

bound to inhibitory IκB proteins such as IκBα, IκBβ and IκBε in the cytoplasm (Ghosh 

and Karin 2002). IκB proteins interact with NF-κB through multiple ankyrin repeats 

and inhibit its DNA binding (Calzado et al., 2007). IκBα blocks the nuclear 

translocation of only p65 and IκBβ masks p65 and p50 (Calzado et al., 2007). IκBα 

also provides a negative feedback mechanism for the termination of NF-κB response 

(Arenzana-Seisdedos et al., 1995). 
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1.2.3.2 Activation of NF-κB 

NF-κB is a ubiquitous transcription factor that is activated by a wide range of signals 

such as LPS, cytokines, growth factors, viral infection and DNA damage, mediated 

through three major pathways: canonical and non-canonical pathways (Pomerantz and 

Baltimore 2002) and a cascade triggered by DNA damage (Janssens and Tschopp 

2006). A proteasome-dependent step to generate DNA-binding dimers is common to 

all the pathways (Ben-Neriah and Schmitz 2004). Canonical pathway involves a 

cascade of adaptor proteins and protein kinases, stimulating inhibitor kappa B kinase 

(IKK) complex comprising enzymatically active subunits IKK-α and β (IκB kinases) 

and their regulatory subunit IKKγ/NEMO (NF-κB essential modifier) (Akira and 

Takeda 2004; Karin and Ben-Neriah 2000). The IKKγ/NF-κB essential modifier 

subunit binds to Lys 63-linked polyubiquitination allowing subsequent activation of 

IKK (Wu et al., 2006; Ea et al., 2006). Activated IKKβ phosphorylates IκB, enabling 

subsequent lysine-48-linked polyubiquitination of IκBα and proteolytic degradation 

(Calzado et al., 2007). The unmasked nuclear localization sequence of p65 protein 

allows translocation of NF-κB into the nucleus and binding to its consensus decameric 

sequence in the promoter region of genes involved in the pro-inflammatory response, 

encoding immunoreceptors, cell adhesion molecules, cytokines and chemokines 

(Baeuerle and Baichwal 1997).       

The noncanonical activation pathway involves IKKα protein and is independent of 

IKKβ (Calzado et al., 2007). It induces a delayed and sustained activation of primarily 

RelB-containing NF-κB dimmers, unlike the rapid activation observed in canonical 

pathway (Calzado et al., 2007). DNA damage-triggered NF-κB activation is not very 

clear yet as ultraviolet-induced NF-κB signaling is independent of IKK activation, but 
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most other DNA-damaging substances involve an IKK-dependent IκBα 

phosphorylation (Li and Karin 1998). 

1.2.3.3 NF-κB and diseases 

NF-κB is suggested to have an important role in innate and acquired immunity 

(Lenardo and Baltimore 1989). Dysregulated NF-κB activity is reported in various 

diseases including chronic inflammation and cancer. NF-κB activation is a key 

mediator of the inflammatory response in pancreatitis (Chen et al., 2002). In 

rheumatoid arthritis, NF-κB activation is reported to precede the onset of disease, and 

inhibition of NF-κB decreased the production of inflammatory cytokines and 

ameliorated the disease severity (Firestein et al., 2004; Bacher and Schmitz 2004). 

Various studies have evaluated the role of NF-κB in sepsis. Elevation of inflammatory 

mediators during septic shock has been shown to depend on NF-κB activation 

(Calzado et al., 2007). Bacteria and their components activate NF-κB via TLRs 

through the classical IKK pathway (Hayden and Gosh 2004). LPS is reported to 

activate NF-κB via TLR-4 (Murthy et al., 2004) and peptidoglycan, a major 

component of gram-positive bacteria, utilizing TLR-2. Although NF-κB is an 

important target in treating diseases, cell-type specific inhibition of NF-κB pathway is 

a better strategy for drug development as NF-κB is also important for its anti-apoptotic 

activities and host-defense immune responses.    

1.2.4 Activator protein – 1 (AP-1) transcription factor 

The transcription factor AP-1 consists of a mixture of heterodimers composed of 

members of the Jun, Fos and activating transcription factor protein families. AP-1 

family includes ATF1-4, c-Fos, c-Jun, c-Myc and C/EBP (Shaywitz and Greenberg 

1999; Wisdom 1999). Phosphorylation of AP-1 family members by kinases leads to 
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transactivation activity. Growth factors, neurotransmitters, polypeptide hormones, 

inflammatory cytokines, bacterial and viral infections as well as a variety of physical 

and chemical stresses induce AP-1 via mitogen-activated protein kinase to translate 

external stimuli into changes of gene expression (Chang and Karin 2001). 

Transcription factor complex consisting of AP-1 and nuclear factor of activated T cells 

(NFAT) regulate cytokine genes (Zenz et al., 2008). Nuclear factor of activated T cell-

dependent gene regulation has been demonstrated for IL-2, IL-3, granulocyte 

macrophage colony-stimulating factor (GM-CSF), IL-4, IL-5, IL-13, interferon-γ 

(IFN-γ), TNF-α, CD40L, FasL, CD5, Igκ, CD25 and the chemokines IL-8 and MIP1α 

(Zenz et al., 2008). 

1.2.5 Mitogen activated protein kinases (MAPKs) 

MAPKs are a family of serine/threonine kinases that transduce signals from the cell 

surface to the nucleus (Chang and Karin 2001; Dong et al., 2002; Hazzalin and 

Mahadevan 2002). Phosphorylation of MAPKs is necessary to activate them. 

Extracellular signal regulated kinases (ERKs), Jun-N terminal kinases (JNKs) and p38 

MAPKs are the 3 major types of MAPKs. ERKs are believed to be involved in the 

control of cell division; JNKs regulate transcription; and p38 MAPKs are activated by 

inflammatory cytokines and environmental stress. MAPK cascade consists of MAPKs, 

the kinases that activate the MAPKs (MAPK kinases such as MEKs) and MAPKK 

kinase or MEK kinase (MAPKKK or MEKK) (English et al., 1999). MEKs are dual-

specificity kinases that recognise and phosphorylate the MAPKs. MEK kinases 

(MEKKs) located upstream of MEKs activate them (Schramek 2002). Two isoforms 

of JNK, JNK1 and JNK2, and two isoforms of ERKs, p44 MAPK (ERK1) and p42 

MAPK (ERK2) are known. Activated MAPKs lead to the activation of various 
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transcription factors such as NF-κB and AP-1, protein kinases, phospholipases, 

cytoskeleton-associated proteins, and thus result in biological responses.  

1.2.6 Animal models of sepsis 

Although various animal models of sepsis have been developed, cecal ligation and 

puncture (CLP) - induced sepsis model in rodents remains the gold standard (Rittirsch 

et al., 2007; Remick et al., 2000; Deitch 2005; Buras et al., 2005). Administration of 

endotoxin, LPS, is practiced by many researchers to study lethal sepsis. However, the 

endotoxemia model is different from polymicrobial sepsis with respect to a number of 

characteristics (Riedemann et al., 2003). The kinetics and magnitude of peritoneal and 

systemic cytokine and chemokine levels in LPS model has been demonstrated to differ 

from CLP model (Remick et al., 2000). 

CLP closely mimics symptoms of clinical sepsis such as hypothermia, tachycardia and 

tachypnea in rodents. Perforation of cecum serves as an endogenous source of bacterial 

infection, resulting in bacterial peritonitis, followed by systemic mixed enteric bacteria 

load (Rittirsch et al., 2009). Bacteremia leads to systemic activation of the 

inflammatory response, septic shock, multiorgan dysfunction and eventually failure. 

CLP model has the advantage of inducing sepsis with varied severity for investigating 

both acute and chronic sepsis (Benjamin et al., 2004; Xiao et al., 2006). However, it is 

important to use the model with high consistency to obtain reliable and reproducible 

results, as length of the cecum ligated, size of the needle used and the number of 

punctures determine the outcome of resulting sepsis (Singleton and Wischmeyer 2003; 

Baker et al., 1983).    

Possible approaches of studying the effects of SP in animal models of sepsis include, 

depletion of SP with capsaicin, pharmacological blocking of SP receptors and 
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silencing of gene encoding SP (Bhatia et al., 2003). Capsaicin pre-treatment is 

reported to inhibit microvascular leakage induced by toxic gases in rats and guinea 

pigs (Solway and Leff 1991). Capsaicin, the active component of chilli pepper, 

selectively binds to transient receptor potential vanilloid (TRPV)-1 receptors on 

sensory nerves, depleting presynaptic stored SP from nerve endings. Thus ablation of 

sensory nerves by capsaicin helps to study neurogenic inflammation. Specific blocking 

of NK receptors provides another good approach to study SP in various disease models 

(Bhatia et al., 2003). Further, my access to PPTA-/- mice is a great advantage as 

silencing of gene encoding SP provides a valuable animal model to study the role of 

SP in diseases. Indeed, PPTA-/- mice have been reported to be successfully used earlier 

in disease models such as acute pancreatitis (Bhatia et al., 2003), endotoxemia (Ng et 

al., 2008), sepsis (Puneet et al., 2006), and nociception (Martin et al., 2004). 

            

1.3 Objectives 

The aim of this study is to: 

1. investigate the role of SP in the pathogenesis of sepsis and associated lung 

injury in mice 

2. evaluate the effect of pharmacological blocking of the SP receptors on the 

severity of sepsis  

3. analyze the genetic signature of PPTA knock-out animal model of sepsis  

4. explore the underlying molecular mechanism of SP-NK receptor activation.  

Two different strategies were employed:  

1. Inhibition of the NK receptor by treating the mice with receptor blockers.  

2. PPTA gene knock-out mice were used to study polymicrobial sepsis.  
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CHAPTER 2. MATERIALS AND METHODS 

 

2.1 Materials 

SP ELISA kit was purchased from Peninsula Laboratories, Inc., Bachem, San Carlos, 

CA, USA. SR140333 was provided by Sanofi Synthelabo, France. TRIzol® Reagent 

(Invitrogen Life Technologies, Carlsbad, CA, USA), RNeasy® mini kit (QIAGEN, 

USA) and GelRedTM (Biotium, Hayward, CA, USA), were used for the RNA isolation 

and quantification. GeneChip® Mouse Genome 430 2.0 array, GeneChip® 

Hybridization Wash and Stain kit, One-cycle Target labeling and Control Reagents 

(containing IVT labeling kit, One cycle cDNA Synthesis kit, Sample Cleanup module, 

Poly-A RNA Control kit, Hybridization Controls) were purchased from Affymetrix, 

Inc. Santa Clara, CA, USA. NanoDrop® ND1000 Spectrophotometer (NanoDrop 

Technologies, Inc., Wilmington, DE, USA) was used for RNA quantification. PCR 

was performed in MyCyclerTM thermal cycler (Bio-Rad Laboratories, Hercules, CA, 

USA). iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) was used for cDNA 

synthesis. Primers were synthesized by 1st BASE Pte. Ltd., Singapore. GeneChip® 

Fluidics Station 450, GeneChip® Hybridization Oven 640, and GeneChip® Scanner 

3000 at the DSO were used for data collection. Procarta™ Cytokine Assay kit 

(Panomics, Inc.) was used for plasma cytokine profiling.  

 

2.2 Animal Ethics   

All animal experiments performed were in accordance with the guidelines of the DSO 

Animal Care and Use Committee (DSOACUC), DMERI, Singapore, which follows 
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the established International Guiding Principles for Animal Research. Mice were 

maintained at a controlled temperature (21-24° C) and lighting (12 h light/dark cycle) 

and fed with standard laboratory chow and drinking water, provided ad libitum. 

Animals were randomly assigned to control or experimental groups using six or more 

mice for each group. Before the experiment, two days of acclimatization was allowed 

for all mice. 

 

2.3 Induction of polymicrobial sepsis  

Mice were anesthetized lightly with mouse anesthesia cocktail (0.75 ml ketamine (100 

mg/ml) and 1 ml medetomindine (1 mg/ml) dissolved in 8.25 ml distilled water) (7.5 

ml/kg body weight) (Animal Holding Unit, NUS, Singapore). Polymicrobial sepsis 

was induced by CLP as described elsewhere (Ayala et al., 1996; Zhou et al., 2001; 

Baker et al., 1983). Following strict aseptic conditions, the anterior abdomen was 

shaved and a midline incision was made in the lower part of the abdomen. The 

peritoneum was opened and the cecum was ligated 3-5 mm below the ileocecal valve 

with 4/0 silk suture without obstructing the bowel (Fig. 2.1). The cecum was 

punctured twice with a 22-gauge needle distal to the point of ligation and squeezed 

gently to extrude the cecal contents. The cecum was placed back in the abdomen and 

the muscle and skin incision were sutured separately with sterile Permilene 5/0 thread. 

All the mice were given saline (1 ml, s.c) after the surgery and kept on heat pads for 

recovery. The same surgical procedure except the cecal ligation and puncture was 

performed on sham-operated animals. The animals were sacrificed 8 h after surgery by 

an i.p. injection of a lethal dose of pentobarbitone. Blood was collected by cardiac 

puncture, heparinized, centrifuged, plasma removed and stored at -80° C. Samples of  
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Fig. 2.1 

 

 

Fig. 2.1 Cecal Ligation and Puncture. The cecum was ligated 3-5 mm below the 
ileocecal valve with 4/0 silk suture without obstructing the bowel. The cecum was 
punctured twice with a 22-gauge needle distal to the point of ligation and squeezed 
gently to extrude the cecal contents. 
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lung were snap frozen in liquid nitrogen and stored at -80° C for subsequent 

measurements. 

 

2.4 Myeloperoxidase estimation 

Myeloperoxidase (MPO) activity as a measure of neutrophil sequestration in lung was 

quantified as described previously (Bhatia et al., 2000; Bhatia et al., 1998). Lung 

tissue samples were thawed, homogenized in 20 mM phosphate buffer (pH 7.4), 

centrifuged (10,000 × g, 10 min, 4° C) and the resulting pellet resuspended in 50 mM 

phosphate buffer (pH 6.0) containing 0.5% hexadecyltrimethylammonium bromide 

(Sigma, St. Louis, MO, USA). The suspension was subject to four cycles of freezing 

and thawing and further disrupted by sonication (40 sec). The sample was then 

centrifuged (10,000 × g, 5 min, 4° C) and the supernatant used for the MPO assay. The 

reaction mixture consisted of the supernatant, 1.6 mM tetramethylbenzidine (Sigma, 

St. Louis, MO, USA), 80 mM sodium phosphate buffer (pH 5.4), and 0.3 mM 

hydrogen peroxide. This mixture was incubated at 37° C for 110 sec, the reaction 

terminated with 2 M H2SO4 and the absorbance measured at 450 nm. The absorbance 

was then corrected for the DNA content of the tissue sample (Labarca and Paigen 

1980). Results were expressed as fold increase over control. 

 

2.5 ELISA analysis 

Plasma and lung tissue homogenates were assayed to evaluate the level of chemokines, 

cytokines and adhesion molecules by a sandwich ELISA according to the 

manufacturer’s instructions. Lung sample was homogenized in 1 ml phosphate buffer 

20 mM, pH 7.4, centrifuged and the resultant supernatant was used for the assay. 
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DuoSet ELISA kits with matched antibody pairs against mouse 

chemokine/cytokine/adhesion molecule were obtained from R&D systems, Inc., 

Minneapolis, MN, USA. Briefly, anti-chemokine/cytokine/adhesion molecule primary 

antibody was coated onto 96-well ELISA plates and incubated overnight at room 

temperature. Samples and standards were added to the wells and incubated for 2 h, the 

wells were washed, and a biotinylated goat anti-mouse chemokine/cytokine/adhesion 

molecule antibody was added for 2 h. Plates were washed again, and streptavidin 

conjugated to horseradish peroxidase was added for 20 min. After a further wash, 

tetramethylbenzidine was added for color development and the reaction was 

terminated with 2 N H2SO4. Absorbance was measured at 450 nm. Sample 

concentration was estimated from the standard curve. DNA assay was performed 

fluorometrically by using Hoechst dye 33256 (Labarca and Paigen 1980). The sample 

concentration was then corrected for the DNA content of the tissue (Labarca and 

Paigen 1980). 

 

2.6 Histopathology 

Paraffin-embedded lung samples were sectioned at 5-µm thickness, stained with 

hematoxylin / eosin (H&E) and qualitatively evaluated by light microscopy and 

documented by photographs. Eight randomly chosen microscopic fields (x125) were 

examined for each tissue sample and the extent of cell injury/necrosis, represented by 

the destruction of histo-architecture of the cells, vacuolization and swelling of cells, all 

of which have been associated with an inflammatory reaction, was evaluated. 
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2.7 Substance P estimation 

The level of SP in lung tissue was measured using competitive Enzyme Immunoassay 

kit (Bachem, Peninsula Laboratories, USA) as per the manufacturer’s protocol. 

Briefly, the lung tissue (about 100 mg) was homogenized in 1 ml ice-cold SP assay 

buffer for 20 s. The homogenate was centrifuged (13,000 rpm, 20 min, 4°C) and the 

supernatant was separated. SP in the supernatant was adsorbed on C18 separation 

column containing 200 mg C18 (Bachem, Peninsula Laboratories, USA) as described 

(Castagliuolo et al., 1997). The adsorbed peptide was then eluted with 1.5 ml of 75% 

v/v acetonitrile and freeze-dried overnight. The lyophilized sample was reconstituted 

in SP assay buffer and the SP content was then determined using the SP ELISA kit 

(Bachem, Peninsula Laboratories, USA) according to the manufacturer’s instructions. 

Non-biotinylated SP in the sample competes for the limited amount of immobilized 

antibody and the color intensity produced by the substrate depends on the quantity of 

biotinylated SP bound to the immobilized antibody. Absorbance was measured at 450 

nm and SP level was read from a standard curve. It was expressed as picograms per 

milliliter for plasma and picograms per microgram of DNA for lung. DNA assay was 

performed fluorometrically by using Hoechst dye 33256 (Labarca and Paigen 1980). 

 

2.8 Nitric oxide measurement 

Nitrite is determined as an indicator of nitric oxide production in the tissue as NO is 

rapidly converted to nitrite and nitrate. Formation of nitrite was determined 

spectrophotometrically by Griess assay as described (Marzinzig et al., 1997). The 

assay provides for enzymatic reduction of nitrate to nitrite by nitrate reductase, 

followed by spectrophotometric analysis of total nitrite using Griess reagent. 
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Absorbance was measured at 540 nm and the total nitrite concentration was then 

corrected for the DNA content of the tissue. 

 

2.9 Preparation of nuclear extract 

Active Motif nuclear extraction kit (SciMed, Carlsbad, CA, USA) was used to prepare 

nuclear extracts from lung following the instructions from the manufacturer. Briefly, 

lung tissue (50 mg) was homogenized in hypotonic buffer containing detergent, 

incubated for 15 min on ice, and then centrifuged at 850 g, 4°C for 10 min. The pellets 

were resuspended in hypotonic buffer, treated with detergent and centrifuged at 14,000 

g, 4°C for 30 s. The nuclei in the pellets were lysed with complete lysis buffer and the 

nuclear proteins solubilized in the buffer containing protease inhibitors. The nuclear 

fraction was separated by centrifuging at 14,000 g, 4°C for 10 min and collecting the 

supernatant. Protein concentration in the nuclear extract was determined by using 

protein assay kit (Bio-Rad Laboratories, CA, USA). Sample (5 μl) was added to 250 μl 

of Bradford reagent (Bio-Rad Laboratories, Hercules, CA, USA), incubated for 5 min 

and read at 595 nm. Protein concentration was calculated from a standard curve. 

 

2.10 NF-κB DNA-binding activity 

To measure NF-κB binding to DNA and activation, ELISA-based TransAM NF-κB 

p65 transcription factor assay kit (Active Motif, SciMed, Carlsbad, CA, USA) was 

used. Nuclear proteins (5 μg) from the nuclear extract were added to each well coated 

with an unlabeled oligonucleotide containing the consensus binding site for NF-κB 

(5’-GGGACTTTCC-3’) (Parry and Mackman 1994) and incubated for 1 h at room 

temperature to allow the active form of NF-κB to bind. A primary antibody directed 
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against activated NF-κB p65 subunit was added to detect the NF-κB complex bound to 

the oligonucleotide. Addition of a secondary antibody conjugated to horseradish 

peroxidase provided a sensitive colorimetric estimation by spectrophotometry. 

Absorbance was measured at 450 nm using microplate reader (Tecan Systems Inc., 

San Jose, CA, USA). Results were expressed as fold increase over the control group. 

 

2.11 AP-1 DNA-binding activity 

TransAM AP-1 c-Jun transcription factor assay kits (Active Motif, SciMed, Carlsbad, 

CA, USA) were used to detect and quantify AP-1 activation. AP-1 dimers in the 

nuclear extract (5 μg of nuclear protein) were added to the 96-well microplate with 

immobilized oligonucleotide that had a 12-O-tetradecanoyl-phorbol-13-acetate (TPA) 

- responsive element (TRE) (5’-TGA(C/G)TCA-3’) to specifically bind to the 

oligonucleotide. Primary antibody was used to recognize accessible epitopes on c-Jun 

proteins upon DNA binding. Secondary antibody conjugated to horseradish peroxidase 

was added for the colorimetric reaction. Absorbance was read at 450 nm using 

microplate reader (Tecan Systems Inc., San Jose, CA, USA). Results were expressed 

as fold increase over the control group. 

 

2.12 Western blot experiment 

Lung tissue (50 mg) was homogenised in lysis buffer containing protease inhibitor 

cocktail (Sigma Chemical Co.) and phosphate inhibitor cocktail (Sigma Chemical 

Co.). The homogenate was centrifuged at 13,000 g, 4° C for 10 min and the protein 

concentration in the supernatant was determined using Bradford reagent. 80 μg of the 

protein in the supernatant was separated on a 12% SDS-polyacrylamide gel 
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(Invitrogen) and transferred to PVDF membranes (Millipore) by electrophoresis. Non-

specific binding was blocked by incubating the membrane at room temperature in 5% 

non-fat dry milk in phosphate buffered saline Tween 20 (PBST) (0.05% Tween 20 in 

phosphate buffered saline) for 1 h. The blots were incubated overnight at 4° C with 

primary antibody (rabbit anti-mouse antibody; Cell Signalling Technology) at 1:1000 

dilutions in 2.5% non-fat dry milk in phosphate buffered saline Tween 20. The 

membranes were then washed four times with phosphate buffered saline Tween 20 and 

incubated with goat anti-rabbit horseradish peroxidase-conjugated secondary antibody 

(Santa Cruz Biotechnology) at 1:2000 dilutions in 2.5% non-fat dry milk in phosphate 

buffered saline Tween 20 for 2 h. Visualization of the blot was done using enhanced 

chemiluminescence (ECL) detection kit (Pierce, Rockford, IL, USA) and exposure to 

X-ray films (CL-XPosureTM, Pierce). Hypoxanthine guanine phosphoribosyl 

transferase (HPRT) (Santa Cruz Biotechnology; 1:1000 dilution) was used as the 

housekeeping protein. The band densities were quantified using a UVP® bioimaging 

system (UVP, Upland, CA, USA). The intensity of bands was analyzed using 

LabWorks™ Image Analysis software (UVP, CA, USA). 

 

2.13 RNA isolation and quantification 

Total RNA was isolated from the lung tissue (n > 6 for each group) using TRIzol® 

reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. 

RNeasy® mini kit was used to clean up the total RNA after extraction. Briefly, 

extracted RNA sample was lysed and homogenized in the presence of a highly 

denaturing guanidine-thiocyanate-containing buffer to inactivate RNases leaving intact 

RNA. Ethanol was added for appropriate binding and the sample was applied to an 
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RNeasy Mini spin column to bind total RNA to the membrane. Contaminants were 

washed away and high-quality RNA was eluted in 30-100 µl water. As all RNA 

molecules longer than 200 nucleotide were purified by this method, mRNA was 

enriched and most other RNAs (15-20% of total RNA) were selectively excluded. The 

quantity of extracted RNA was determined by spectrophotometric analysis 

(NanoDrop®ND1000). RNA samples used were of highest purity with A260/A280 ratios 

close to 2.0 (range: 1.9–2.1). The integrity of RNA was assessed by 1% w/v 

denaturing agarose gel electrophoresis using GelRed dye to stain 18S and 28S rRNA 

bands. The RNA sample was stored at −80° C until microarray analysis or RT-PCR. 

 

2.14 Semiquantitative reverse transcriptase-polymerase 

chain reaction (RT-PCR) 

RNA (1 μg) was reversely transcribed using iScript™ cDNA Synthesis Kit (Biorad, 

Hercules, CA, USA) at 25° C for 5 minutes, 42° C for 30 minutes, followed by 85° C 

for 5 minutes. The cDNA was used as a template for PCR amplification by iQ™ 

Supermix (Biorad, Hercules, CA, USA). PCR amplification was carried out in 

MyCycler (Bio-Rad). The reaction mixture was first subjected to 95° C for 3-5 min, 

followed by an optimal cycle of amplification (denaturation, annealing, and 

elongation) and a final extension at 72° C for 5-7 min. PCR products were analyzed on 

1.5% w/v agarose gel containing 0.1 µl/ml GelRed and visualized by the UVP® 

bioimaging system (UVP, Upland, CA, USA). The intensity of bands was analyzed 

using LabWorks™ Image Analysis software (UVP). Densitometry results from PCR 

products were normalized to the mouse 18S band densities. 
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2.15 Microarray experiments 

GeneChips were prepared individually for each of the mouse lung sample (n = 3 for 

each group; n = 12 total) according to Affymetrix GeneChip® Expression Analysis 

Technical Manual. Briefly, double-stranded cDNA was synthesized from total RNA 

extracted from the mouse lung; an in vitro transcription (IVT) and One-cycle Target 

labeling were done to obtain biotin-labeled cRNA from the cDNA, purified and 

fragmented before hybridization to the arrays. Biotin labeled RNA fragments 

(“target”) were hybridized to the oligonucleotide probes on the array and stained with 

streptavidin phycoerythrin conjugate using the Genechip® fluidics station. Fluorescent 

hybridization signal was detected by the GeneChip® Scanner 3000, enabled for high-

resolution scanning. The amount of light emitted at 570 nm was proportional to the 

bound target at each location on the probe array. GeneChip Operating Software 

(GCOS) with Affymetrix Microarray Suite 5.0 (MAS5) algorithm was used to define 

the probe cells and compute intensity for each cell. Each complete probe array was 

imaged and stored in a separate data file. 

 

2.16 Microarray data analysis 

The Expression ConsoleTM software was used to enable probe set summarization and 

to verify if the hybridization results and initial data were of sufficient quality for 

secondary analysis. Using GeneSpring™ 7.3 software (Agilent Technologies, CA, 

USA), differentially expressed genes that showed a fold change of ≥ 2 against sham in 

at least 1 of 3 mice were selected. Differentially expressed genes were further grouped 

based on Gene ontology-Biological Process [DAVID Bioinformatics Resources 2008, 

National Institute of Allergy and Infectious Diseases (NIAID), NIH, Gene function 
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classification Tool (http://niaid.abcc.ncifcrf.gov/)]. Representation of specific 

inflammatory and immunoregulatory pathways among the differentially expressed 

genes was analyzed with Pathway Studio® software (Ariadne Genomics, Rockville, 

MD) version 5.0. The software uses information available in the current literature to 

identify common pathways, targets or regulators that are associated with the altered 

genes to generate biological interaction networks. Microarray expression data was 

imported into Pathway Studio® to graphically represent all known relationships and 

potential interactions between the differentially expressed genes. Biological network 

pathway was proposed according to Pathway Studio® definitions regarding gene 

expression, interactions and regulations. The microarray data have been deposited in 

NCBI’s Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/projects/geo/index.cgi) and are accessible through a 

GEO Series accession number. 

  

2.17 Statistics  

Data were expressed as the mean ± standard error of the mean (SEM). In all figures, 

vertical bars denote SEM. The significance of changes was evaluated by using 

ANOVA when comparing three or more groups and Tukey’s method as a post hoc test 

for comparison among different groups. A p < 0.05 was taken as significant.  
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CHAPTER 3. NEUROKININ-1 RECEPTOR 

ANTAGONIST TREATMENT IN 

POLYMICROBIAL SEPSIS 

 

3.1 Introduction 

SP binds to NK-1 G protein-coupled receptors on the surface of effector cells and acts 

as a pro-inflammatory mediator in many inflammatory states (Lai et al., 1998; Bhatia 

et al., 2003). NK-1R activation has been shown to enhance inflammation by 

decreasing the vascular tone, increasing the endothelial microvascular permeability 

and transport of inflammatory cells (Chavolla-Calderόn et al., 2003). SP and NK-1R 

have been implicated in the up-regulation of ICAM-1 on vascular endothelial cells and 

neutrophil infiltration (Nakagawa et al., 1995) and leukocyte adhesion to the 

endothelial or epithelial cells in the airways (Baluk et al., 1995; DeRose et al., 1994) 

in inflammation. Furthermore, PPTA gene deletion protected against lung injury and 

mortality in polymicrobial sepsis (Puneet et al., 2006).  

Thus in addition to the use of gene knock-out animal models, it was imperative to 

pharmacologically block the SP receptor to understand the mechanism of action of SP 

in sepsis. SR140333 (nolpitantium) is a highly potent and selective antagonist of the 

tachykinin NK-1R in humans and other animals (Emonds-Alt et al., 1993). It has been 

shown to reduce the severity of inflammation in trinitrobenzene sulfonic acid-induced 

colitis in rat colon (Di Sebastiano et al., 1999). SR140333 inhibited mustard oil-

induced plasma protein extravasations in the dorsal skin of the rat hind paw (Amann et 

al., 1995). It is also reported to reduce arachidonate release from alveolar macrophages 
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in guinea-pigs exposed to SP (Boichot et al., 1998). Recently, SR140333 was found to 

be effective in the modulation of the inflammatory response and airway remodeling in 

mice (Veron et al., 2004). Moreover, SR140333 is reported to cause antagonism of the 

SP-induced relaxations of human isolated intralobar pulmonary arterial rings (Pedersen 

et al., 2000).       

Therefore, this part of the study was aimed at evaluating the role of SP and NK-1R in 

polymicrobial sepsis in mice. As bowel perforation-induced peritonitis patients are 

reported to have infection resulting from a mixed intestinal flora (Ellaban et al., 2004), 

a similar model of polymicrobial sepsis that is reliable and clinically relevant was 

selected. Thus CLP surgery was used to cause polymicrobial sepsis in mice. 

 

3.2 Materials and Methods 

3.2.1 Animal ethics 

All animal experiments performed were in accordance with the guidelines of the DSO 

Animal Care and Use Committee (DSOACUC), DMERI, Singapore as mentioned in 

Section 2.2. 

3.2.2 Induction of polymicrobial sepsis 

Swiss male mice (25-30 g) used for the study were randomly assigned to sham or CLP 

experimental groups (n > 6 in each group). Polymicrobial sepsis was induced in mice 

by CLP as described in Section 2.3. The same surgical procedure except the cecal 

ligation and puncture was performed on sham-operated animals. Vehicle (DMSO 

diluted in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml, s.c.) was administered 

to CLP-operated mice either 30 min before (pre-treatment) or 1 h after (post-treatment) 

the CLP. The animals were sacrificed 8 h after surgery by an i.p. injection of a lethal 
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dose of pentobarbitone. Blood was collected by cardiac puncture, heparinized, 

centrifuged, plasma removed and stored at -80° C. Samples of lung were snap frozen 

in liquid nitrogen and stored at -80° C for subsequent measurement of tissue MPO 

activity and chemokine, cytokine and adhesion molecule levels. Random cross-

sections of lung were fixed in 4 % neutral phosphate-buffered formalin and embedded 

in paraffin wax for histopathology examination. 

3.2.3 Myeloperoxidase estimation 

MPO activity as a measure of neutrophil sequestration in lung was quantified as 

described in Section 2.4. 

3.2.4 Histopathology 

Paraffin-embedded lung sections were stained with hematoxylin / eosin and evaluated 

by light microscopy as explained in Section 2.6. 

3.2.5 ELISA analysis of chemokines, cytokines and adhesion 

molecules 

Plasma and tissue homogenates were assayed to evaluate the level of chemokines 

(MCP-1, MIP-2 and RANTES), cytokines (IL-6, IL-1β and TNF-α) and adhesion 

molecules (E- and P-selectins, ICAM-1 and VCAM-1) by a sandwich ELISA 

according to Section 2.5. Sample concentration was estimated from the respective 

standard curve. 

3.2.6 Statistical analysis 

All values were expressed as mean ± SEM. The significance of changes was evaluated 

by using ANOVA when comparing three or more groups and Tukey’s method as a 

post hoc test for comparison among different groups. A p value of < 0.05 was 

considered to indicate a significant difference. 
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3.3 Results 

3.3.1 Effect of SR140333 treatment on neutrophil sequestration in 

lung in CLP mice 

Neutrophil infiltration was quantified by measuring tissue MPO activity. Increased 

MPO activities represent recruitment of neutrophils and a state of inflammation. 

Following 8 h after CLP, MPO activity in lung was significantly increased in vehicle 

treated, in both pre- and post-CLP, animals when compared to the sham mice (Fig. 

3.1). Treatment with SR140333, 30 min before or 1 h after CLP, significantly reduced 

the MPO activity in lung (Fig. 3.1). 

Figure 3.2(a-e) shows representative hematoxylin / eosin stained lung sections from 

sham and CLP operated mice. Histological evaluation of lung sections showed a 

significant increase in alveolar thickening, an indicator of edema, as well as 

inflammatory infiltration in CLP animals treated only with vehicle (Fig. 3.2b and d). 

Lung section from sham group showed little or no edema and inflammatory infiltration 

(Fig. 3.2a). Prophylactic and therapeutic treatment with SR140333 significantly 

reduced the lung injury, represented by reduced lung edema and neutrophil infiltration 

(Fig. 3.2c and e). 

3.3.2 Effect of SR140333 treatment on chemokine levels in lung 

Chemokines are produced in response to infection. They act as chemoattractants to 

various inflammatory cells in sepsis. I determined the levels of CXC chemokine MIP-2 

and CC chemokines MCP-1 and RANTES in lung tissue. As expected, lung MIP-2 

levels in CLP mice without SR140333 treatment were significantly higher compared to 

the sham levels (Fig. 3.3a). Administration of SR140333, both pre- and post-CLP 

resulted in a significant decrease in lung MIP-2 levels compared to the corresponding   
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Fig. 3.1 

 

 

 

Figure 3.1 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung neutrophil infiltration. Mice (n = 6-9 in each group) were divided into 
CLP-operated and sham-operated groups. CLP-operated mice received vehicle 
(DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. either 30 min 
before (pre-treatment) or 1 h after (post-treatment) the CLP. The same surgical 
procedure as the CLP-operated animals except the cecal ligation and puncture was 
performed on sham-operated animals. 8 h after the CLP procedure, mice were 
sacrificed and lung MPO activity was determined. Results shown are the mean ± SEM. 
* p < 0.001 when vehicle-treated CLP animals were compared with sham group 
animals; ** p < 0.05 when SR140333-treated CLP animals were compared with 
vehicle-treated CLP animals. 
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Fig. 3.2 (a-e) 

 

 

 

Figure 3.2 Morphological changes in H & E stained mouse lung on induction of 
sepsis. Panel a, sham: no CLP; Panel b, vehicle (DMSO in PBS, 0.25% v/v) 
administered 30 min before CLP – Pre-treatment control; Panel c, SR140333 (1 
mg/kg) administered 30 min before CLP – SR140333 pre-treatment; Panel d, vehicle 
(DMSO in PBS, 0.25% v/v) administered 1 h after CLP – Post-treatment control; 
Panel e, SR140333 (1 mg/kg) administered 1 h after CLP – SR140333 post-treatment. 
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Fig. 3.3a 

 

 

Fig. 3.3b 

 

 

 

 

  

 

 

 

 

 
 
Figure 3.3 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung MIP-2 (Fig. 3.3a) and RANTES (Fig. 3.3b) levels in mice. Mice (n = 
6-9 in each group) were divided into CLP-operated and sham-operated groups. CLP-

*
*

**

**

MIP2 (Lung) 
(pg/µg)

0

50

100

150

200

250

300

350

sham vehicle+CLP SR140333+CLP CLP+vehicle CLP+SR140333

RANTES (Lung) 
(pg/µg)

0

30

60

90

120

sham vehicle+CLP SR140333+CLP CLP+vehicle CLP+SR140333

† †

∞ 



 39

operated mice received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 
0.25 mg/ml) s.c. either 30 min before (pre-treatment) or 1 h after (post-treatment) the 
CLP. The same surgical procedure as the CLP-operated animals except the cecal 
ligation and puncture was performed on sham-operated animals. 8 h after the CLP 
procedure, mice were sacrificed and lung MIP-2 and RANTES levels were 
determined. Results shown are the mean ± SEM. * p < 0.001 when vehicle-treated CLP 
animals were compared with sham group animals; ** p < 0.001 when SR140333-
treated CLP animals were compared with vehicle-treated CLP animals; ∞ p < 0.05 
when vehicle-treated CLP animals were compared with sham group animals; † p < 0.05 
when SR140333-treated CLP animals were compared with vehicle-treated CLP 
animals. 
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levels in vehicle treated CLP mice (Fig. 3.3a). CLP procedure slightly increased the 

production of lung RANTES compared to that in sham animals, with the increase 

being significant in animals treated with vehicle 1 h after CLP (Fig. 3.3b). However, 

SR140333 when injected either 30 min or 1 h after CLP resulted in a significant 

decrease in lung RANTES levels  compared to the corresponding levels in the absence 

of SR140333 (Fig. 3.3b).  

Similarly MCP-1 production increased significantly in the lungs of CLP mice 

compared to that of sham animals (Fig. 3.4a). This increase in MCP-1 levels was 

reversed significantly by SR140333 administered either pre- or post-CLP surgery (Fig. 

3.4a). A similar trend was also found in plasma samples (Fig. 3.4b). The high level of 

plasma MCP-1 found in CLP mice was decreased by SR140333 treatment. The 

reduction observed was especially significant when SR140333 was injected 30 min 

before CLP (Fig. 3.4b). 

3.3.3 Effect of SR140333 treatment on cytokine levels in lung 

As a primary line of defense against invading pathogens, cytokines are released in 

large amount by the host immune system. In the CLP sepsis model, I measured the 

major cytokines, IL-1β, IL-6, and TNF-α, in lung tissue. As shown in Fig 3.5a, CLP 

animals injected only with the vehicle showed a significant increase in lung IL-1β 

levels compared to that in sham mice. Administration of SR140333, both 30 min 

before and 1 h after CLP, resulted in a significant reduction in the lung IL-1β levels. 

Another important cytokine studied - IL-6, showed a similar pattern of increase in CLP 

induced sepsis (Fig. 3.5b). The lung levels of IL-6 in CLP mice injected only with 

vehicle, either 30 min before or 1 h after CLP, were significantly higher compared to 

that in sham operated group. SR140333 when injected either 30 min before or 1 h after  
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Fig. 3.4a 

 

 

Fig. 3.4b 

 

 
Figure 3.4 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung (Fig. 3.4a) and plasma (Fig. 3.4b) MCP-1 levels in mice. Mice (n = 6-
9 in each group) were divided into CLP-operated and sham-operated groups. CLP-
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operated mice received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 
0.25 mg/ml) s.c. either 30 min before (pre-treatment) or 1 h after (post-treatment) the 
CLP. The same surgical procedure as the CLP-operated animals except the cecal 
ligation and puncture was performed on sham-operated animals. 8 h after the CLP 
procedure, mice were sacrificed and plasma and lung MCP-1 levels were estimated as 
described in Methods. Results shown are the mean ± SEM. * p < 0.01 when vehicle-
treated CLP animals were compared with sham group animals; ** p < 0.001 when 
vehicle-treated CLP animals were compared with sham group animals; ∞ p < 0.01 
when SR140333-treated CLP animals were compared with vehicle-treated CLP 
animals; † p < 0.05 when SR140333-treated CLP animals were compared with vehicle-
treated CLP animals. 
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Fig. 3.5a 

 
 

Fig. 3.5b 
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Fig. 3.5c 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung levels of pro-inflammatory cytokines, IL-1β (Fig. 3.5a), IL-6 (Fig. 
3.5b) and TNF-α (Fig. 3.5c), in mice. Mice (n = 6-9 in each group) were divided into 
CLP-operated and sham-operated groups. CLP-operated mice received vehicle 
(DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. either 30 min 
before (pre-treatment) or 1 h after (post-treatment) the CLP. The same surgical 
procedure as the CLP-operated animals except the cecal ligation and puncture was 
performed on sham-operated animals. 8 h after the CLP procedure, mice were 
sacrificed and lung IL-1β, IL-6 and TNF-α level were estimated. Results shown are the 
mean ± SEM. * p < 0.001 when vehicle-treated CLP animals were compared with 
sham group animals; ** p < 0.001 when SR140333-treated CLP animals were 
compared with vehicle-treated CLP animals; ∞ p < 0.01 when SR140333-treated CLP 
animals were compared with vehicle-treated CLP animals; † p < 0.05 when vehicle-
treated CLP animals were compared with sham group animals. 
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CLP significantly decreased the lung IL-6 levels compared to the corresponding values 

in the absence of SR140333 treatment in CLP mice (Fig. 3.5b). The lung TNF-α level 

was not significantly different between sham operated animals and CLP operated mice 

treated only with the vehicle (Fig. 3.5c). Further, treatment with SR140333 did not 

lower the lung TNF-α level significantly in both the treatment groups 8 h after CLP, as 

shown in Fig 3.5c. 

3.3.4 Effect of SR140333 treatment on adhesion molecules in lung 

Adhesion molecules play an important role in the leukocyte-endothelial interactions 

and resulting leukocyte migration into the site of injury or infection. ELISA assay was 

performed to analyze the lung levels of adhesion molecules such as ICAM-1, VCAM-

1, and E- and P-selectin in sepsis. Figure 3.6a represents ICAM-1 levels in lung of 

sham- operated or CLP-operated mice. Animals with CLP surgery had a significantly 

higher level of ICAM-1 in lung compared to the level in sham surgery group (Fig. 

3.6a). SR1403333 injected either 30 min before or 1 h after CLP lowered this increase 

significantly (Fig. 3.6a). Lung VCAM-1 level showed no statistically significant 

increase with CLP operation compared to the levels in sham operated mice (Fig. 3.6b). 

Selectins are a major class of adhesion molecules known to play an important role in 

early inflammation stages in recruiting the leukocytes to the site of inflammation. 

Next, I investigated the changes in the production of selectins in lungs. Lung E-

selectin level was significantly higher after CLP surgery compared to that in sham-

operated mice (Fig. 3.7a). This increase was almost completely reversed by 

SR1403333 when injected either 30 min or 1 h after CLP (Fig. 3.7b). A similar trend 

was observed in case of another selectin, the P-selectin. When P-selectin levels were 

determined 8 h after CLP procedure, there was a significant increase in both pre- and 
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Fig. 3.6a 

 

 

Fig. 3.6b 

 

 

Figure 3.6 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung levels of adhesion molecules, ICAM-1 and VCAM-1, in mice. Mice 
(n = 6-9 in each group) were divided into CLP-operated and sham-operated groups. 
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CLP-operated mice received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 
mg/kg; 0.25 mg/ml) s.c. either 30 min before (pre-treatment) or 1 h after (post-
treatment) the CLP. The same surgical procedure as the CLP-operated animals except 
the cecal ligation and puncture was performed on sham-operated animals. 8 h after the 
CLP procedure, mice were sacrificed and lung ICAM-1 and VCAM-1 level were 
estimated. Results shown are the mean ± SEM. * p < 0.05 when vehicle-treated CLP 
animals were compared with sham group animals; ** p < 0.05 when SR140333-treated 
CLP animals were compared with vehicle-treated CLP animals; ∞ p < 0.01 when 
SR140333-treated CLP animals were compared with vehicle-treated CLP animals. 
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Fig. 3.7a 

 

 

Fig. 3.7b 

 

 

Figure 3.7 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung levels of adhesion molecules, E-selectin (Fig. 3.7a) and P-selectin 
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sham-operated groups. CLP-operated mice received vehicle (DMSO in PBS, 0.25% 
v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. either 30 min before (pre-treatment) or 1 
h after (post-treatment) the CLP. The same surgical procedure as the CLP-operated 
animals except the cecal ligation and puncture was performed on sham-operated 
animals. 8 h after the CLP procedure, mice were sacrificed and lung E-selectin and P-
selectin levels were estimated. Results shown are the mean ± SEM. * p < 0.001 when 
vehicle-treated CLP animals were compared with sham group animals; ** p < 0.01 
when vehicle-treated CLP animals were compared with sham group animals; ∞ p < 
0.01 when SR140333-treated CLP animals were compared with vehicle-treated CLP 
animals; † p < 0.05 when SR140333-treated CLP animals were compared with vehicle-
treated CLP animals; ‡ p < 0.05 when vehicle-treated CLP animals were compared 
with sham group animals; # p < 0.05 when SR140333-treated CLP animals were 
compared with vehicle-treated CLP animals. 
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post-vehicle control groups compared to sham operated mice. Administration of 

SR140333 30 min before or 1 h after CLP resulted in a significant reduction in lung P-

selectin levels. These results indicate that treatment with SR140333 reduced the lung 

inflammation in CLP sepsis, in terms of neutrophil infiltration, levels of chemokines, 

cytokines and adhesion molecules. 

 

3.4 Discussion 

Accumulating evidence over the years has emphasized the pro-inflammatory role of 

SP in various inflammatory states. SP, acting via NK-1R, has been shown to enhance 

inflammation. SP is also known to activate mast cells and thus stimulate neutrophil 

extravasation (Yano et al., 1989; Walsh et al., 1995). The importance of SP and NK-

1R in inflammation has been evident from the earlier studies using mice deficient in 

NK-1R (Bhatia et al., 1998) and PPTA gene (Bhatia et al., 2003), which demonstrated 

a key role of SP in acute pancreatitis and associated lung injury. In addition, treatment 

with NK-1R antagonist, CP-96345, has been shown to be protective against acute 

pancreatitis and associated lung injury (Lau et al., 2005; Lau and Bhatia 2006). 

Recently the role of PPTA gene products as key mediators of lung injury in 

polymicrobial sepsis was reported (Puneet et al., 2006). The study showed that the 

deletion of PPTA gene in mice delayed the pathology of sepsis with protection against 

pulmonary tissue damage (Puneet et al., 2006). Results from the present study further 

substantiate the role of SP in sepsis and demonstrate SP as a potential therapeutic 

target in sepsis. 

SR140333 is a highly selective and potent non-peptide antagonist of NK-1R compared 

to CP96345 and RP67580, two proto-typical non-peptide antagonists of NK-1R 
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(Emonds-Alt et al., 1993). This competitive blocker has the advantage of being species 

independent in its potency (Emonds-Alt et al., 1993). Thus we used SR140333 at a 

dose sufficient enough to inhibit the SP effects of bronchoconstriction and plasma 

extravasations (Emonds-Alt et al., 1993). CLP was used as the model of polymicrobial 

sepsis and SR140333 was injected either 30 min before or 1 h after the CLP surgery. 

The experiment was designed to study the effects of inhibition when SR140333 was 

given before the surgery as well as after the pathogenic assault has set in. The animals 

were sacrificed 8 h after CLP to collect blood and tissue as the MPO activity was 

observed to peak at this time point. Since lung is the main target for damage in sepsis 

(Cohen 2002), we have focused primarily on pulmonary injury and the levels of 

inflammatory mediators in lung. 

Neutrophil migration to the site of infection is important in the control of infection in 

sepsis. Neutrophils achieve host defense by releasing proteolytic enzymes and 

producing reactive oxygen species to degrade invading pathogens. However, excessive 

production of these factors by overwhelmingly activated neutrophils may lead to host 

tissue damage during sepsis. MPO activity in lung as a measure of neutrophil 

infiltration was evaluated 8 h after CLP. MPO activity increased after CLP and was 

reduced significantly by treatment with SR140333, 30 min before or 1 h after CLP. 

This was further supported by the histological sections of lung. SR140333 injection 

clearly reduced the leukocyte infiltration and edema, the signs of lung injury in sepsis.   

Recruitment of various inflammatory cells including neutrophils is mediated by 

chemokines (Salkowski et al., 1998). Chemokines, MCP-1 and MIP-2 are known to 

orchestrate migration of leukocytes during sepsis and lead to tissue injury. We have 

shown that MCP-1 and MIP-2 level in lung correlates with neutrophil infiltration in the 
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lung (Puneet et al., 2006). Consistent with the earlier reports, I found a significant 

increase in the production of MCP-1 and MIP-2 in lung. SR140333 treatment 

significantly lowered the lung levels of these two chemokines. RANTES levels also 

reduced significantly with SR140333 administration. 

Pro-inflammatory cytokines such as IL-1β and TNF-α are needed to control infection 

in sepsis (Ashare et al., 2005). Although these cytokines recruit and activate cells that 

defend against pathogens during the early phase of infection, if produced in excess, the 

same cytokines can damage the tissue (Ness et al., 2004). Further, MCP-1 is known to 

attract neutrophils by activating resident macrophages, which are the source of many 

inflammatory cytokines and chemokines (Matsukawa et al., 1999). Therefore, next I 

studied the production of major cytokines IL-6, IL-1β and TNF-α in lung after 

SR140333 treatment. As the cytokines produced locally in tissue inflammation are 

more important than that in the serum, I analyzed the levels mainly in lung tissues. 

There was a significant increase in the lung levels of both IL-6 and IL-1β 8 h after 

CLP. Neuropeptides are known to stimulate cytokine production in macrophages, 

lymphocytes and mast cells (Dickerson et al., 1998). In addition, SP is reported to 

influence LPS induced production of pro-inflammatory cytokines which was abolished 

by NK-1R blocking (Dickerson et al., 1998). SR140333 administration either 30 min 

before or 1 h after CLP in the present study reversed the increase in IL-6 and IL-1β. 

However, unlike in LPS induced endotoxemia, in CLP model of sepsis TNF-α is not 

the main mediator of mortality (Eskandari et al., 1992; Villa et al., 1995). 

Consistently, the present results showed no significant difference in lung TNF-α level 

after CLP. 
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Adhesion molecules are important in the activation and adhesion of leukocytes to the 

endothelium and infiltration into the tissue to fight the infectious organisms (Chandra 

et al., 2006). Selectins, a major group of adhesion molecules, are involved in the 

earliest step of acute inflammatory process mediating the rolling of leukocytes 

(Chandra et al., 2006). High level of pro-inflammatory mediators in sepsis is reported 

to up-regulate various adhesion molecules (Parent and Eichacker 1999). Absence of 

ICAM-1 in knock-out mice has been reported to reduce the severity of sepsis by 

impairing the leukocyte migration and damage of organs (Hildebrand et al., 2005). I 

found a significant increase in the lung levels of ICAM-1, E- and P-selectin in mice 

with CLP induced sepsis compared to sham operated group. Treatment with SR140333 

lowered the lung levels of ICAM-1, E- and P-selectin significantly. It has been shown 

that SP induces leukocyte trafficking via the up-regulation of adhesion molecules and 

treatment with SR140333 reduced the leukocyte rolling, adhesion and emigration 

(McLean et al., 2000). Thus SR140333 treatment in the present study could have 

reduced the severity of sepsis by impairing the leukocyte migration via modulating the 

levels of adhesion molecules. Further there was a significant reduction in VCAM-1 

level with SR140333 treatment in CLP mice which is consistent with the reported 

blocking of SP-induced endothelial VCAM-1 expression in skin cells by a NK-1R 

antagonist (Quinlan et al., 1999). 

As SP levels are known to be increased in sepsis, it can be speculated from the present 

data that SP acting through NK-1R is one of the major players in sepsis, responsible 

for the leukocyte responses, inflammatory processes and pulmonary damage. I further 

hypothesize that chemokines (MCP-1, MIP-2), cytokines (IL-1β, IL-6) and adhesion 

molecules (ICAM-1, E-selectin, and P-selectin) are modulated downstream by the 
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action of SP on NK-1R. Thus blocking of NK-1R by SR140333 could ameliorate the 

inflammatory effects in sepsis. 

In summary, data from the present study shows a beneficial role of SR140333 

treatment in lung injury in CLP induced mouse sepsis model. SR140333 injected either 

30 min before or 1 h after CLP significantly reduced the lung levels of MPO, MIP-2, 

MCP-1, IL-1β, IL-6, ICAM-1, E-selectin, and P-selectin. As septic lung injury 

involves various mediators, therapeutic strategies should be targeted at multiple 

mediators for a successive outcome and NK-1R blocking has a potential therapeutic 

benefit by lowering the leukocyte infiltration and lung levels of chemokines, cytokines 

and adhesion molecules. However further clinical studies are needed to establish the 

benefits of NK-1R blockade in sepsis. Next section provides mechanistic insights into 

the actions of SP-NK-1R in sepsis. 
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CHAPTER 4. MECHANISTIC STUDIES 

 

4.1 Introduction 

NF-κB transcription factor system is known to control the expression of a number of 

genes involved in the innate immune response of the body against infection and 

inflammation. Genes responsible for immunoreceptors, cytokines, chemokines and 

apoptosis are all modulated by this important family of transcription factor (Viatour et 

al., 2005). NF-κB activity is reported to be impaired in chronic inflammation (Calzado 

et al., 2007) and inhibition of NF-κB has been suggested to be beneficial in 

maintaining the balance between pro- and anti-inflammatory cytokines in 

inflammatory diseases (Amos et al., 2006). AP-1 is another transcription factor that is 

induced by inflammatory cytokines and cellular stress. Phosphorylation of AP-1 is 

necessary for transcriptional activity.   

Phosphorylation of NF-κB and AP-1 and thus transcription of pro-inflammatory 

mediators is facilitated by the activation of various MAPKs. MAPKs in turn are 

activated by bacterial products, cytokines and chemokines (Brown and Jones 2004; 

Kyriakis and Avruch 2001). AP-1 c-Jun is reported to be phosphorylated in vitro by 

ERK1 and ERK2 (Pulverer et al., 1993; Pulverer et al., 1991). ERK is also shown to 

be a regulator of NF-κB activity (Jiang et al., 2004). ERK1/2 reportedly induce NF-κB 

activation by stimulating downstream MAPK-activated protein kinases (MKs) (Panta 

et al., 2004; Hayden and Gosh 2004). p38 MAPKs are also activated by inflammatory 

cytokines and environmental stress. 
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With NK-1R antagonist treatment showing a beneficial role in lung injury in CLP-

induced mouse sepsis model, I next explored the possible mechanism by which SP 

contributes to sepsis by investigating downstream mediators and transcription factors 

involved in this effect. Apart from analyzing the activation of NF-κB and AP-1, 

protein levels of second messengers and MAPKs, mRNA levels of NK-1R and SP 

concentrations were also evaluated.    

 

4.2 Materials and Methods 

4.2.1 Animal ethics 

All animal experiments performed were in accordance with the guidelines of the DSO 

Animal Care and Use Committee (DSOACUC), DMERI, Singapore as mentioned in 

Section 2.2. 

4.2.2 Induction of polymicrobial sepsis 

Swiss mice (male, 25-30 g) used for the study were randomly assigned to sham or CLP 

experimental groups (n > 6 in each group). Polymicrobial sepsis was induced in mice 

by CLP as described in Section 2.3. The same surgical procedure except the cecal 

ligation and puncture was performed on sham-operated animals. Vehicle (DMSO 

diluted in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml, s.c.) was administered 

to CLP-operated mice either 30 min before (pre-treatment) or 1 h after (post-treatment) 

the CLP. The animals were sacrificed 8 h after surgery by an i.p. injection of a lethal 

dose of pentobarbitone. Blood was collected by cardiac puncture, heparinized, 

centrifuged, plasma removed and stored at -80° C. Samples of lung were snap frozen 

in liquid nitrogen and stored at -80° C for subsequent measurement. 
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4.2.3 Preparation of nuclear extract 

Nuclear extracts were prepared from lung tissue and protein concentrations in the 

extracts were measured as explained in Section 2.9. 

4.2.4 NF-κB DNA-binding activity 

ELISA-based TransAM NF-κB p65 transcription factor assay kit (Active Motif, 

SciMed, Carlsbad, CA, USA) was used to measure NF-κB DNA-binding activity from 

the nuclear extract (reference: Section 2.10). 

4.2.5 AP-1 DNA-binding activity 

TransAM AP-1 c-Jun transcription factor assay kits (Active Motif, SciMed, Carlsbad, 

CA, USA) were used to quantify AP-1 activation in the nuclear extract according to 

Section 2.11. 

4.2.6 Western blot experiment 

Protein levels of IκBα, ERK1/2, JNK, p38, PKCα in lung homogenates were analyzed 

by Western blot according to Section 2.12. 

4.2.7 RNA isolation and quantification 

Total RNA was isolated from the lung tissue and quantified as described in Section 

2.13. RNA samples with A260/A280 ratios close to 2.0 (range: 1.9–2.1) and integrity 

were used for RT-PCR.  

4.2.8 Semiquantitative RT-PCR 

Isolated lung RNA (1 μg) was reversely transcribed and PCR amplified (Section 2.14). 

The primer sequences and optimal amplification conditions for NK-1R and NK-2R are 

given in Table 4.1. 
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Table 4.1 Primer sequences and optimal conditions used in PCR analysis 
 

Gene 
name Sense primer sequence (5’-3’) Antisense primer sequence (5’-3’) Amplification 

conditions 

No. of 
amplifi-
cation 
cycles 

NK-1R CTT GCC TTT TGG AAC CGT GTG CAC TGT CCT CAT TCTCTT GTGGG 95°C 30s; 59°C 30s; 
72°C 30s 38 

NK-2R TGC TGT CAT CTG GCT GGT AG TCT TCC TCG GTT GGT GTC CC 95°C 30s; 61°C 30s; 
72°C 30s 42 

18S GTA ACC CGT TGA ACC CCA TT CCA TCC AAT CGG TAG TAG CG 95°C 30s; 59°C 30s; 
72°C 30s 24 
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4.2.9 Substance P estimation 

SP levels were measured in lung and plasma by competitive ELISA method according 

to Section 2.7. The lung SP concentration was then corrected for the DNA content of 

the tissue. 

4.2.10 Nitric oxide measurement 

Lung and plasma nitrite levels were determined as an indicator of NO production by 

spectrophotometric analysis using Griess reagent as described in Section 2.8. 

4.2.11 Statistical analysis 

Statistical analysis was performed as mentioned in Section 2.17. 

 

4.3 Results 

4.3.1 Effect of SR140333 treatment on lung NF-κB activation after 

sepsis 

As NF-κB is an important transcription factor involved in inflammatory diseases, its 

activation and nuclear translocation was measured after induction of sepsis and 

treatment with the NK-1R antagonist. NF-κB activity was significantly increased (p < 

0.001) in vehicle treated (both prophylactic and therapeutic) mice 8 h after CLP 

compared to the sham group (Fig 4.1a). Injection of SR140333, both 30 min before 

and 1 h after CLP, reduced the NF-κB activity significantly (p < 0.001) (Fig 4.1a). 

Western blot analysis was performed to evaluate the activation and degradation of 

IκBα. When the inhibitory protein IκBα is phosphorylated and degraded, NF-κB is 

freed for nuclear translocation. As expected, I observed a significant reduction in IκB 

levels (p < 0.01) in vehicle treated (both prophylactic and therapeutic) mice 8 h after 
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Fig. 4.1a 
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Figure 4.1 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung NF-κB DNA-binding activity and IκB-α level. Mice (n = 6-9 in each 
group) were divided into CLP-operated and sham-operated groups. CLP-operated mice 
received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. 
either 30 min before (pre-treatment) or 1 h after (post-treatment) the CLP. The same 
surgical procedure as the CLP-operated animals except the cecal ligation and puncture 
was performed on sham-operated animals. 8 h after the CLP procedure, mice were 
sacrificed and lung NF-κB DNA-binding activity and IκB-α level were determined. 
Results shown are the mean ± SEM. * p < 0.001 when vehicle-treated CLP animals 
were compared with sham group animals; ** p < 0.001 when SR140333-treated CLP 
animals were compared with vehicle-treated CLP animals; ∞ p < 0.01 when vehicle-
treated CLP animals were compared with sham group animals; ≠ p < 0.05 when 
SR140333-treated CLP animals were compared with vehicle-treated CLP animals.   
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CLP compared to the sham group (Fig 4.1b). SR140333 treatment, both 30 min before 

and 1 h after CLP, restored the IκB levels significantly (p < 0.05) (Fig 4.1a).   

4.3.2 Effect of SR140333 treatment on lung AP-1 activation after 

sepsis 

Activation of another transcription factor that is involved in sepsis, AP-1 c-Jun, was 

also measured after induction of sepsis and treatment with the NK-1R antagonist. 8 h 

after CLP, AP-1 activity was significantly increased (p < 0.001) compared to the sham 

group in vehicle treated mice (Fig 4.2). S.c administration of the NK-1R antagonist, 

SR140333, both 30 min before and 1 h after CLP, reduced the AP-1 activity 

significantly (p < 0.05).  

4.3.3 Effect of SR140333 treatment on MAPKs and PKCα in sepsis 

To evaluate the link between NK-1R antagonist treatment and transcription factor 

inhibition, western blot analysis was performed for various MAPKs: ERK1/2, p38 and 

JNK. Significant activation of ERK1/2 to the phosphorylated form was detected 8 h 

after CLP in vehicle treated mice lung homogenates (p < 0.05) (Fig 4.3a). SR140333 

treatment, both 30 min before and 1 h after CLP, showed a trend to reduce the phospho 

ERK1/2 levels, although the reduction was not statistically significant (Fig 4.3a). 

p38 and JNK MAPKs showed very weak signals and did not show significant 

differences between the groups (data not shown). 

The enzyme PKCα involved in signal transduction of G-protein-coupled receptors was 

also evaluated in sepsis. Significant phosphorylation and activation of PKCα was 

observed 8 h after sepsis in mice injected with only vehicle compared to the sham 

group (p < 0.05) (Fig 4.3b). Prophylactic and therapeutic blocking of NK-1R with 

SR140333 resulted in a significant reduction in lung PKCα phosphorylation in mice  
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Fig. 4.2 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung AP-1 activity. Mice (n = 8-9 in each group) were divided into CLP-
operated and sham-operated groups. CLP-operated mice received vehicle (DMSO in 
PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. either 30 min before (pre-
treatment) or 1 h after (post-treatment) the CLP. The same surgical procedure as the 
CLP-operated animals except the cecal ligation and puncture was performed on sham-
operated animals. 8 h after the CLP procedure, mice were sacrificed and lung AP-1 
cJun activity was determined. Results shown are the mean ± SEM. * p < 0.001 when 
vehicle-treated CLP animals were compared with sham group animals; ** p < 0.05 
when SR140333-treated CLP animals were compared with vehicle-treated CLP 
animals. 
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Figure 4.3 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung Phospho ERK1/2 (Fig.4.3a) and Phospho-PKCα (Fig. 4.3b). Mice (n 
= 6 in each group) were divided into CLP-operated and sham-operated groups. CLP-
operated mice received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 
0.25 mg/ml) s.c. either 30 min before (pre-treatment) or 1 h after (post-treatment) the 
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procedure, mice were sacrificed and lung Phospho-ERK1/2 and Phospho-PKCα were 
determined. Results shown are the mean ± SEM. * p < 0.05 when vehicle-treated CLP 
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 8 h after sepsis induction (p < 0.05). 

4.3.4 Effect of SR140333 treatment on lung NK receptors after sepsis 

mRNA levels of NK receptors, NK-1R and NK-2R, were analyzed by semiquantitative 

RT-PCR. CLP-induced sepsis resulted in a significant up-regulation of both the NK 

receptors in vehicle-treated mice compared to sham group (p < 0.05) (Fig 4.4a and b). 

NK-1R blocker had no significant changes on the expression of NK-1R and NK-2R.  

4.3.5 Effect of SR140333 treatment on SP levels in sepsis 

Next I measured the protein levels of SP in plasma and lung. Both systemic (p < 0.01) 

(Fig 4.5a) and lung tissue (p < 0.01) (Fig 4.5b) SP levels were elevated in mice 

subjected to CLP surgery as shown previously (Puneet et al., 2006). Treatment with 

SR140333 did not affect the lung SP levels (Fig 4.5b). However, plasma SP levels 

were significantly reduced by the NK-1R antagonist, both prophylactically and 

therapeutically (p < 0.05) (Fig 4.5a).   

4.3.6 Effect of SR140333 treatment on NO levels in sepsis 

Lung and plasma nitrite levels as a measure of NO were measured. As expected in 

sepsis, NO levels were significantly higher in plasma (p < 0.05) and lung (p < 0.001) 8 

h after CLP procedure (Fig 4.6a and b). SR140333 administered s.c. failed to lower 

the elevated NO levels in lung (Fig 4.6b). However, the reduction was significant in 

plasma for both, prophylactic and therapeutic groups (p < 0.01) (Fig 4.6a). 

 

4.4 Discussion 

In the previous chapter, the data indicated that SP acting through NK-1R was 

responsible for the leukocyte responses, inflammatory processes and pulmonary 

damage in polymicrobial sepsis and various chemokines, cytokines and adhesion 
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Fig. 4.4a 
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Figure 4.4 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on lung NK-1R (Fig.4.4a) and NK-2R (Fig. 4.4b) mRNA levels. Mice (n = 6-
9 in each group) were divided into CLP-operated and sham-operated groups. CLP-
operated mice received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 
0.25 mg/ml) s.c. either 30 min before (pre-treatment) or 1 h after (post-treatment) the 
CLP. The same surgical procedure as the CLP-operated animals except the cecal 

* *

* *



 68

ligation and puncture was performed on sham-operated animals. 8 h after the CLP 
procedure, mice were sacrificed and lung NK-1R and NK-2R mRNA were determined. 
Results shown are the mean ± SEM. * p < 0.05 when vehicle-treated CLP animals were 
compared with sham group animals. 
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Fig. 4.5a 
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Figure 4.5 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on plasma (Fig 4.5a) and lung (Fig. 4.5b) SP levels. Mice (n = 6-9 in each 
group) were divided into CLP-operated and sham-operated groups. CLP-operated mice 
received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. 
either 30 min before (pre-treatment) or 1 h after (post-treatment) the CLP. The same 
surgical procedure as the CLP-operated animals except the cecal ligation and puncture 
was performed on sham-operated animals. 8 h after the CLP procedure, mice were 
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sacrificed and plasma and lung SP levels were determined. Results shown are the 
mean ± SEM. * p < 0.01 when vehicle-treated CLP animals were compared with sham 
group animals; ** p < 0.05 when SR140333-treated CLP animals were compared with 
vehicle-treated CLP animals.  
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Fig. 4.6a 
 

 

 

 

 

 

 

Fig. 4.6b 

 

 

 

 

 

 

 

Figure 4.6 Effect of SR140333 administration, either 30 min before or 1 h after 
CLP, on plasma (Fig 4.6a) and lung (Fig. 4.6b) NO levels. Mice (n = 6-7 in each 
group) were divided into CLP-operated and sham-operated groups. CLP-operated mice 
received vehicle (DMSO in PBS, 0.25% v/v) or SR140333 (1 mg/kg; 0.25 mg/ml) s.c. 
either 30 min before (pre-treatment) or 1 h after (post-treatment) the CLP. The same 
surgical procedure as the CLP-operated animals except the cecal ligation and puncture 
was performed on sham-operated animals. 8 h after the CLP procedure, mice were 
sacrificed and plasma and lung NO levels were determined. Results shown are the 
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mean ± SEM. * p < 0.05 when vehicle-treated CLP animals were compared with sham 
group animals; ** p < 0.01 when SR140333-treated CLP animals were compared with 
vehicle-treated CLP animals; ∞ p < 0.001 when vehicle-treated CLP animals were 
compared with sham group animals.  
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molecules modulated the downstream signaling pathway. Blocking of NK-1R was 

beneficial to the mice in managing the inflammatory effects in sepsis. So my next goal 

was to explore the underlying mechanisms for these beneficial effects of SR140333 in 

sepsis. It was important to see how the downstream intracellular signaling was 

propagated in order to achieve this effect.  

It is well known that SP, after binding to NK-1R, up-regulates pro-inflammatory 

cytokines (Williams et al., 2007). Also, activation of inflammatory mediators in sepsis 

depends mainly on the activation of pro-inflammatory transcription factor NF-κB 

(Calzado et al., 2007). NF-κB is activated by a wide range of signals including 

bacterial LPS, cytokines, viral infection and lung injury. Furthermore, lung epithelial 

cells have been reported to highly express cytokine genes in response to stimuli or 

injury (Chang et al., 1998; Hierholzer et al., 1997). My data on NF-κB shows that SP 

acting through NK-1R was responsible for NF-κB activation and thus expression of 

pro-inflammatory mediators in sepsis. Treatment of septic mice with NK-1R 

antagonist resulted in lowering of IκB degradation and reduction in nuclear 

translocation of NF-κB. Although NF-κB inhibition has been reported to improve 

survival in endotoxin models, the situation is not so straight forward in CLP-induced 

sepsis (Calzado et al., 2007). Impaired survival has been reported when NF-κB was 

inhibited by the metal chelator PDTC (Joshi et al., 2002). While inhibition of NF-κB 

decreases the inflammatory mediators, complete loss of anti-apoptotic actions of NF-

κB might be detrimental in the host-defense against invading pathogens (Calzado et 

al., 2007). I found a lowering of NF-κB activation, but the levels were still elevated 

compared to the basal levels. SR140333 treatment lowered the activity of AP-1 

transcription factor as well in sepsis. AP-1 is reported to regulate various cytokine and 
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chemokine genes (Zenz et al., 2008). Thus SR140333 appears to modulate 

inflammatory mediators by regulating the activation of transcription factors NF-κB 

and AP-1. 

MAPKs signaling cascade, especially ERK1/2, is known to activate NF-κB 

transcription (Kyriakis and Avruch 2001; Chen et al., 2004; Wang et al., 2005). In 

vitro treatment of Tacr1-expressing cells with SP is shown to increase phosphorylation 

of ERK1/2 (Williams et al., 2007). I investigated the potential involvement of ERK in 

mediating SP-NK-1R induced NF- B activation in sepsis. ERK phosphorylation was 

significantly increased in CLP induced sepsis, indicating a possible activation of NF-

κB mediated by this MAPK in sepsis. However, NK-1R blocking did not reduce the 

ERK level to a significant extent. Tachykinins have the ability to activate NF-κB by 

multiple mechanisms (Williams et al., 2007). In colonic epithelial cells, SP-induced 

NF-κB activation was dependent on the activity of PKCδ but not calcium or ERK 

(Koon et al., 2005; Zhao et al., 2002). Thus, possibly other mechanisms might be 

involved in the SP-NK-1R mediated signaling in sepsis in addition to ERK.                      

NK-1R, which mediates the actions of SP, is a G-protein-coupled receptor (Mizuta et 

al., 2008; Williams et al., 2007) and PKC is a downstream signalling molecule 

activated by G-protein-coupled receptors (Nishizuka 1995). The serine/threonine PKC 

family has at least 11 mammalian isozymes and are important components of 

intracellular signal transduction pathways (Lee et al., 2008). PKC is involved in 

regulating transcription and mediating immune response (Tan and Parker 2003). It is 

known to aggregate platelets and constrict bronchial smooth muscles (Harper and 

Poole 2007; Dempsey et al., 2007). A PKC inhibitor is reported to suppress 

angiotensin-induced NF-κB expression in vascular smooth muscles (Ji et al., 2009). 
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PKCα acting upstream of PKCθ is reported to activate the IKK complex and NF-κB in 

T lymphocytes (Trushin et al., 2003). PKC inhibitor has been shown to block SP 

induced activation of NF-κB in vitro (Williams et al., 2007). I observed a significant 

phosphorylation and activation of PKCα, 8 h after sepsis and blocking of NK-1R with 

SR140333 resulted in a significant reduction in lung PKCα levels. Thus it is possible 

to conclude that SP acting through NK-1R promotes inflammation in polymicrobial 

sepsis via NF- B and AP-1 activation, mediated also by PKCα.       

NK-1R is implicated in mediating pro-inflammatory processes and its expression is 

reported to be up-regulated in inflammatory conditions (O’Connor et al., 2003; Chu et 

al., 2000). NK-1R inhibitor is shown to diminish lung inflammation in rats infected 

with respiratory syncytial virus (King et al., 2001). Increased expression of NK-1 

(Adcock et al., 1993) and NK-2 (Bai et al., 1995) receptor mRNA has been reported in 

asthmatic airways. As expected, expression of NK-1R and NK-2R in the present study 

was elevated 8 h after CLP-induced sepsis. Treatment with NK-1R antagonist had no 

significant change in the receptor expression, although it reduced the lung 

inflammation in sepsis.  

Similarly lung and plasma SP levels were elevated in septic mice in the absence of 

NK-1R blocker. We have earlier shown SP to be a key mediator of sepsis and 

associated lung damage (Puneet et al., 2006). Tissue (lung) levels of SP were not 

affected by blocking the actions of SP. However it is intriguing that plasma SP levels 

were lowered by the NK-1R antagonism. It is possible that blocking of SP actions 

resulted in its increased clearance from the bloodstream, but the local levels at the site 

of injury remained elevated; as such the increase in SP levels in CLP was of higher 

magnitude in tissue compared to plasma. Expression of PPTA gene that encodes for SP 
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and NKA was also observed to be up-regulated 8 h after CLP-induced sepsis and the 

levels correlated with the corresponding lung and plasma SP concentrations (data not 

shown).  

NO is considered to be a mediator of sepsis and associated tissue damage (Vincent et 

al., 2000). In normal conditions, vascular endothelial cells produce low levels of NO 

that regulate blood pressure by mediating smooth-muscle relaxation (Kuhl and Rosen 

1998). However, in sepsis, LPS and cytokines induce iNOS to synthesize high levels 

of NO leading to smooth-muscle relaxation, pressor refractory vasodilation, and shock 

(Kuhl and Rosen 1998). The present data shows that CLP induced sepsis resulted in a 

significant increase in lung NO levels and NK-1R blocking had no effect on tissue NO 

levels. However, plasma NO levels were reduced by SR140333 treatment. The reason 

for this effect is not clear. 

In conclusion, the data reveal that SP acting via NK-1R initiates signaling cascade that 

is mediated by PKCα and ERK and leads to NF-κB and AP-1 activation and further 

modulates pro-inflammatory mediators in polymicrobial sepsis and the effect of SP is 

blocked by NK-1R antagonist SR140333. Next, I studied the role of NK-2R 

antagonism in sepsis. 
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CHAPTER 5. NEUROKININ-2 RECEPTOR 

ANTAGONIST TREATMENT IN 

POLYMICROBIAL SEPSIS 

 

5.1 Introduction 

SP, NKA and NKB are the three major members of tachykinin family, each of which 

bind to specific neurokinin receptors in a preferential manner and may play a critical 

role in inflammation. The effects of SP are mediated mainly by NK-1R as it binds NK-

1R with high affinity compared to its low affinity to the other tachykinin receptors, 

NK-2R and NK-3R (Koon and Pothoulakis 2006). NKA and NKB show high binding 

affinity for NK-2R and NK-3R respectively (Patacchini et al., 2004). NK-2R mRNA, 

but not NK-3R, has been detected in normal lungs (Lau and Bhatia 2006). A selective 

NK-2R inhibitor has been reported to inhibit NKA induced bronchoconstriction in 

asthmatics (Van Schoor et al., 1998). 

Although the effects of SP were found to be mediated mainly via NK-1R in sepsis, it 

was interesting to explore if NK-2R had any role in the actions of SP in sepsis. Both 

NK-1 and NK-2 receptors are reported to be up-regulated in burn-associated sepsis 

promoting the formation of oedema and hyperalgesia (Sabato et al., 2003). During the 

early phase of endotoxemia, endogenous tachykinins have been shown to act through 

NK-2R affecting lung mechanics and both NK-1 and NK-2 receptors were involved in 

causing airway microvascular leakage (Tang et al., 2002). GR159897 is a highly 

potent, selective and long acting non-peptide NK-2R antagonist (Beresford et al., 

1995; Advenier 1995). It is proposed to be a useful tool for studying the physiological 
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and pathophysiological role of NK-2R activation. Thus, I studied the effect of blocking 

NK-2R with GR159897 in polymicrobial sepsis. Lung MPO activity, chemokine and 

cytokine levels were measured to evaluate the beneficial effects, if any, of blocking 

NK-2R in sepsis.     

 

5.2 Materials and Methods 

5.2.1 Animal ethics 

All animal experiments performed were in accordance with the guidelines of the DSO 

Animal Care and Use Committee (DSOACUC), DMERI, Singapore as mentioned in 

Section 2.2. 

5.2.2 Induction of polymicrobial sepsis 

Swiss male mice (25-30 g) used for the study were randomly assigned to sham or CLP 

experimental groups (n > 6 in each group). Polymicrobial sepsis was induced in mice 

by CLP as described in Section 2.3. The same surgical procedure except the cecal 

ligation and puncture was performed on sham-operated animals. Vehicle (DMSO 

diluted in PBS, 0.25% v/v) or GR159897 (0.12 mg/kg; 0.25 mg/ml, s.c.) was 

administered to CLP-operated mice 1 h after the CLP. The animals were sacrificed 8 h 

after surgery by an i.p. injection of a lethal dose of pentobarbitone. Samples of lung 

were snap frozen in liquid nitrogen and stored at -80° C for subsequent measurement 

of tissue MPO activity and chemokine and cytokine levels. 

5.2.3 Myeloperoxidase estimation 

MPO activity as a measure of neutrophil sequestration in lung was quantified as 

described in Section 2.4. 
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5.2.4 ELISA analysis 

Lung tissue homogenates were assayed to evaluate the level of chemokines (MCP-1 

and MIP-2), and cytokines (IL-6 and IL-1β) by a sandwich ELISA according to 

Section 2.5. Sample concentration was estimated from the respective standard curve. 

5.2.5 Statistical analysis 

All values were expressed as mean ± standard error of the mean (SEM). The 

significance of changes was evaluated by using ANOVA when comparing three or 

more groups and Tukey’s method as a post hoc test for comparison among different 

groups. A p value of < 0.05 was considered to indicate a significant difference. 

 

5.3 Results 

5.3.1 Effect of GR159897 treatment on neutrophil sequestration in 

lung after CLP surgery 

Tissue MPO activity as a measure of neutrophil infiltration was quantified as increased 

MPO activities indicate neutrophil recruitment and a state of inflammation. As 

expected, 8 h after CLP, MPO activity in lung was significantly increased in vehicle 

treated animals when compared to the sham mice (p < 0.001) (Fig. 5.1). However 

treatment with the NK-2R antagonist, GR159897, 1 h after CLP, did not significantly 

reduce the MPO activity in lung (Fig. 5.1). 

5.3.2 Effect of GR159897 treatment on lung chemokine levels in septic 

mice 

Chemokines produced in response to infection attract various inflammatory cells in 

sepsis. I measured the levels of major CXC chemokine, MIP-2 and CC chemokine,  
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Fig. 5.1 

 

 

 

 

 

 

 

 

 

Figure 5.1 Effect of GR159897 administration 1 h after CLP on lung neutrophil 
infiltration. Mice (n = 6-8 in each group) were divided into CLP-operated and sham-
operated groups. CLP-operated mice received vehicle (DMSO in PBS, 0.25% v/v) or 
GR159897 (0.12 mg/kg; 0.25 mg/ml) s.c. 1 h after the CLP. The same surgical 
procedure as the CLP-operated animals except the cecal ligation and puncture was 
performed on sham-operated animals. 8 h after the CLP procedure, mice were 
sacrificed and lung MPO activity was determined. Results shown are the mean ± SEM. 
* p < 0.001 when vehicle-treated CLP animals were compared with sham group 
animals. 
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MCP-1 in lung homogenates. CLP-induced sepsis resulted in a significantly higher 

MIP-2 levels in vehicle treated mice compared to the sham group (p < 0.001) (Fig. 

5.2a). However, GR159897 treatment did not change the elevated lung MIP-2 levels 

observed 8 h after CLP surgery in vehicle control group (Fig. 5.2a). Similarly MCP-1 

levels also increased significantly 8 h after CLP surgery without GR159897 

administration compared to that of sham animals (p < 0.001) (Fig. 5.2b). But this 

increase in MCP-1 levels was not affected significantly by GR159897 administration 1 

h after CLP surgery (Fig. 5.2b). 

5.3.3 Effect of GR159897 treatment on lung cytokine levels in septic 

mice 

Further, I measured the major cytokines, IL-1β and IL-6, in lung tissue. Animals 

injected only with the vehicle showed a significant increase in lung IL-1β levels 8 h 

after CLP surgery compared to that in sham mice (p < 0.001) (Fig. 5.3a). 

Administration of GR159897 1 h after CLP procedure failed to affect the lung IL-1β 

levels (Fig. 5.3a). IL-6 showed a similar pattern of increase in CLP induced sepsis 

(Fig. 5.3b). The lung IL-6 levels in mice subjected to CLP surgery and injected only 

with the vehicle 1 h after CLP, were significantly higher compared to that in sham 

operated group (p < 0.001). GR159897 when injected 1 h after CLP surgery did not 

significantly change the lung IL-6 levels compared to the corresponding levels in the 

absence of NK-2R antagonist treatment (Fig. 5.3b). 

 

5.4 Discussion 

NK-2R stimulation has been reported to play a role in bronchoconstriction induced by 

various agents that induce the release of tachykinins (Advenier et al., 1997; Joos and  
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Fig. 5.2a 

 

 

 

 

 

 

 

 

 
Fig. 5.2b 
 

 

 

 

 

 

 

 

 

Figure 5.2 Effect of GR159897 administration 1 h after CLP on lung MIP-2 (Fig. 
5.2a) and MCP-1 (Fig. 5.2b) levels. Mice (n = 6-8 in each group) were divided into 
CLP-operated and sham-operated groups. CLP-operated mice received vehicle 
(DMSO in PBS, 0.25% v/v) or GR159897 (0.12 mg/kg; 0.25 mg/ml) s.c. 1 h after the 
CLP. The same surgical procedure as the CLP-operated animals except the cecal 
ligation and puncture was performed on sham-operated animals. 8 h after the CLP 
procedure, mice were sacrificed and lung MIP-2 and MCP-1 levels were determined. 
Results shown are the mean ± SEM. * p < 0.001 when vehicle-treated CLP animals 
were compared with sham group animals. 
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Fig. 5.3a 

 
 

 

 

 

 

 

 

 

Fig. 5.3b 

 

 

 

 

 

 

 

 

 
Figure 5.3 Effect of GR159897 administration 1 h after CLP on lung IL-1β (Fig. 
5.3a) and IL-6 (Fig. 5.3b) levels. Mice (n = 7-9 in each group) were divided into 
CLP-operated and sham-operated groups. CLP-operated mice received vehicle 
(DMSO in PBS, 0.25% v/v) or GR159897 (0.12 mg/kg; 0.25 mg/ml) s.c. 1 h after the 
CLP. The same surgical procedure as the CLP-operated animals except the cecal 
ligation and puncture was performed on sham-operated animals. 8 h after the CLP 
procedure, mice were sacrificed and lung IL-1β and IL-6 levels were determined. 
Results shown are the mean ± SEM. * p < 0.001 when vehicle-treated CLP animals 
were compared with sham group animals. 
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Pauwels 2000). Selective NK-2R antagonists are thought to be beneficial in airway 

disease (Rizzo et al., 1999). Inhibition of NKA mediated or capsaicin-mediated 

dyspnea by SR 48968, an NK-2R antagonist, has been demonstrated in guinea pigs 

(Advenier 1995). SR 48968 also is reported to inhibit cough induced by citric acid or 

capsaicin (Advenier 1995). In addition, SR 48968 is able to abolish the bronchial 

hyper-reactivity induced by a citric acid challenge or an ovalbumin challenge in guinea 

pigs (Advenier 1995). Nonpeptide, long-acting NK-2R antagonists are regarded as 

suitable experimental tools in humans, especially for a determination of the role of 

tachykinins in asthmatic patients.  

GR159897 is a non-peptide NK-2R antagonist that I selected for the study to analyse 

the role of NK-2R blocking in polymicrobial sepsis-associated lung injury. Since NK-

1R antagonism was found to be beneficial in polymicrobial sepsis and associated lung 

injury, I further evaluated if SP mediated its pro-inflammatory activity in sepsis via 

NK-2R, in addition to NK-1R. Administration of GR159897 1 h after CLP failed to 

reduce MPO levels significantly in septic mice. Also, the chemokines such as MCP-1, 

MIP-2 and cytokines IL-1β and IL-6 were not affected by NK-2R blocking in sepsis. 

Tachykinins are known to contract smooth muscles mainly by interaction with NK-2R, 

while the vascular and pro-inflammatory effects are mediated by NK-1R (Joos et al., 

2000). In the absence of GR159897, vehicle treated mice showed symptoms of 

polymicrobial sepsis with elevated MPO activity and lung chemokine and cytokine 

levels. Thus it seems probable that pro-inflammatory activity of SP in polymicrobial 

sepsis is mediated mainly by NK-1R. I did not probe the role of NK-3R as it is not 

found in the lungs (Lau and Bhatia 2006). 

Further studies were performed using PPTA-/- mice.  
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CHAPTER 6. PPTA GENE DELETION AND 

POLYMICROBIAL SEPSIS 

 

6.1 Introduction  

Gene expression profiling using microarray is a relatively novel approach. Global 

genome explorations are efficient and feasible tools for understanding the molecular 

signature of diseases. The aim is to comprehensively analyze various mediators that 

are differentially expressed in a disease state and visualize the genetic network 

(Schulze and Downward 2001). This global approach could eventually help understand 

the complete mechanism involved in the pathogenesis of a disease better. With the 

help of microarray analysis, researchers can aim to search for diagnostic and 

therapeutic markers. However, there are few reports of using microarrays to study 

sepsis in vivo (Chung et al., 2006).  

It has been shown previously that the pathogenesis of sepsis was delayed in PPTA-/- 

mice and the gene deletion protected against lung injury in sepsis (Puneet et al., 2006). 

SP is also implicated in various other inflammatory conditions such as acute 

pancreatitis (Bhatia et al., 2003) and endotoxemia (Ng et al., 2008). To better 

understand the molecular mechanisms of polymicrobial sepsis and associated lung 

damage in PPTA-/- mice, I employed microarray analysis of pulmonary gene 

expression. Main focus was on lung injury as respiratory failure is one of the main 

causes leading to mortality in sepsis. As the lung MPO activity was highest 8 h after 

CLP (data not shown), lung tissue was collected by sacrificing the mice at this time 

point. I sought to evaluate the genome-wide tissue-specific differential expression 
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pattern after the induction of polymicrobial sepsis in PPTA knockout mice, with 

particular focus on chemokines and cytokines. The microarray data was further 

supported with semi quantitative RT-PCR and ELISA. 

 

6.2 Materials and Methods 

6.2.1 Animal Ethics 

Reference: Section 2.2 

6.2.2 Induction of polymicrobial sepsis 

PPTA-/- and wild-type Balb/c male mice (25-30 g) were randomly divided into sham or 

CLP experimental groups (n > 6 in each group). Polymicrobial sepsis was induced by 

CLP as explained in Section 2.3. The same surgical procedure except the cecal ligation 

and puncture was performed on sham-operated animals. The animals were sacrificed 8 

h after surgery by an i.p. injection of pentobarbitone. Samples of lung were snap 

frozen in liquid nitrogen and stored at -80° C for RNA isolation and ELISA. Blood 

was collected by cardiac puncture, heparinized, centrifuged, plasma removed and 

stored at -80° C for subsequent measurement. 

6.2.3 RNA isolation and quantification 

Total RNA from lung tissue was isolated, purified and quantified as explained in detail 

in Section 2.13, with slight modification for microarray experiments. Briefly, tissue 

was homogenized in 10 ml Trizol in RNase free tube, incubated at room temperature 

for 5 min and centrifuged for 5 min at 11,750 g, 4° C. The supernatant was mixed with 

2 ml chloroform, incubated at room temperature for 3 min and centrifuged for 15 min 

at 11,750 g, 4° C. 5 ml of the supernatant was mixed with 5 ml of isopropanol, 

incubated at room temperature for 10 min and centrifuged for 10 min at 11,750 g,      
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4° C. After discarding the supernatant, the pellets were washed with 1ml 75% ethanol, 

centrifuged for 5 min at 7500 g, 4° C and the total RNA pellets were subjected to 

clean-up as explained in Section 2.13. Only RNA samples passing the purity and 

integrity test were used further for microarray and RT-PCR analysis.   

6.2.4 Microarray experiments 

GeneChip hybridization and scanning were performed individually for each of the 

mouse lung sample from the four groups (n = 3 for each group; n = 12 total) according 

to Affymetrix GeneChip® Expression Analysis Technical Manual as mentioned in 

Section 2.15. All the 12 samples were processed simultaneously to avoid batch 

variations and errors. 

6.2.5 Microarray data analysis 

Microarray data was analyzed and biological network pathway was created for both 

PPTA-/- and wild-type septic mice as described in Section 2.16. 

6.2.6 Semiquantitative Reverse transcriptase-polymerase chain 

reaction (RT-PCR) 

Lung RNA (1 µg) was reverse transcribed and the cDNA was subjected to PCR 

amplification and analysis as briefed in Section 2.14 for selected differentially 

expressed genes. The primer sequences for detection of IL-1β, MCP-1, MIP-2, 

interleukin-1 receptor antagonist (IL-1ra), MIP-1α, MIP-1β, interferon inducible 

protein-10 (IP-10), serum amyloid A3 (SAA3), chemokine (C-C motif) receptor 2 

(CCR-2), chemokine (C-C motif) receptor 5 (CCR-5) and 18S gene, optimal annealing 

temperature, and optimal cycles are shown in Table 6.1. 
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Table 6.1 Primer sequences and optimal conditions used in PCR analysis 
 

Gene 
name Sense primer sequence (5’-3’) Antisense primer sequence (5’-3’) Amplification 

conditions 
No. of 

amplification 
cycles 

SAA3 AGC CTT CCA TTG CCA TCA TTC TT AGT ATC TTT TAG GCA GGC CAG CA 94°C 1min; 58°C 1min; 
74°C 1min 25 

IP10 GTGTTGACATCATTGCCACG GCTTACAGTACAGAGCTAGG 95°C 30s; 60°C 30s; 
45°C 45s 30 

MCP1 CCCCACTCACCTGCTGCTACT CACTGTCACACTGGTCACTCC 95°C 50s; 64°C 50s; 
72°C 1min 36 

MIP-1α ACTGCCCTTGCTGTTCTTCTCT AGGCATTCAGTTCCAGGTCAGTGA 95°C 30s; 61°C 30s; 
72°C 30s 33 

MIP-1β CCCTCTCTCTCCTCTTGCTCGT TTCAACTCCAAGTCACTCATGTACTCA 94°C 30s; 55°C 30s; 
72°C 1min 32 

MIP-2 GCTGTCAATGCCTGAAGACC TAGTTCCCAACTCACCCTCTC 95°C 50s; 65°C 50s; 
72°C 1min 36 

IL-1β AAGGAGAACCAAGCAACGAC GAGATTGAGCTGTCTGCTCA 95°C 50s; 63°C 50s; 
72°C 1min 34 

CCR-2 CACGAAGTATCCAAGAGCTT CATGCTCTTCAGCTTTTTAC 94°C 30s; 58°C 45s; 
72°C 70s 35 

CCR-5 TTCCCTGTCATCGCTTGCTCT CGGATGGAGATGCCGATTTT 94°C 1min; 60°C 1min; 
72°C 2min 40 

IL-1ra GACCCTGCAAGATGCAAGCC CAGGACGGTCAGCCTCTAGT 95°C 20s; 51°C 20s; 
72°C 20s 36 

18S GTA ACC CGT TGA ACC CCA TT CCA TCC AAT CGG TAG TAG CG 95°C 30s; 59°C 30s; 
72°C 30s 24 
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6.2.7 ELISA analysis 

For the measurement of cytokine IL-1ra, ELISA kit from R&D Systems (Minneapolis, 

MN, USA) was used employing a quantitative sandwich enzyme immunoassay as 

explained in Section 2.5 with slight modification. Briefly, standards and samples were 

pipetted into the microplate wells pre-coated with mouse IL-1ra-specific polyclonal 

antibody and incubated for 2 h. After washing away unbound substances, an enzyme-

linked mouse IL-1ra-specific polyclonal antibody was added to the wells and 

incubated for 2 h. Following a wash, a substrate solution was added to the wells and 

incubated for 30 min to yield a blue product that turned yellow when the Stop solution 

was added. The optical density of each well was determined using a microplate reader 

set to 450 nm. The intensity of the color measured was proportional to the amount of 

mouse IL-1ra bound in the initial step. The sample values were then read off the 

standard curve and corrected for the DNA content of the lung tissue. Lung IL-1ra was 

expressed as pg/µg of DNA and plasma as pg/ml. The lower limit of detection was 

31.25 pg/ml.  

6.2.8 Statistics 

Differentially expressed genes were analyzed by One-way ANOVA (p < 0.05) for 

array data to compare differences between the medians of the groups. For RT-PCR and 

ELISA data, statistical analysis was performed as mentioned in Section 2.17. 

 

6.3 Results  

6.3.1 Microarray quality control 

Each of the Affymetrix high-density oligonucleotide arrays that I used for lung 

expression profiling had 45000 probe sets to analyze the expression level of over 
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39000 transcripts and variants from about 34000 well characterized mouse genes. As 

the high cost of genomic investigations was a limitation, I used three arrays for each 

group according to MIAME guidelines (Brazma et al., 2001). All the twelve arrays 

passed the quality controls included within the arrays such as hybridization controls 

(bioB, bioC, bioD, and cre), Poly-A controls (dap, lys, phe, and thr), normalization 

control set and housekeeping/control genes (GAPDH, beta-Actin, transferrin receptor, 

pyruvate carboxylase). Illustration of the box-whisker plot was done to examine the 

distribution of data and to ensure proper dynamic range (Fig. 6.1). Data distributions 

were assessed based on the highest intensity value at saturation. Appropriately similar 

distribution of data was considered to be of high-technical quality for further analysis. 

The expression of genes was compared between sham controls and CLP-induced 

sepsis groups among wild-type and PPTA-/- mice. I focused on genes that were either 

consistently increased or decreased in all sets of experiments. Only those genes whose 

expressions changed by 2-fold or greater in at least one pair-wise comparison were 

taken as significant (p < 0.05). These differentially expressed genes were further 

annotated based on their known biological functions using the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID). Many of the genes 

were present in more than one functional class. 

 

6.3.2 Inflammatory gene profile of wild-type septic mice 

Table 6.2 lists majority of the genes altered by CLP in wild-type and PPTA-/- mice, 

grouped under the biological process gene ontology classes of inflammatory response, 

chemotaxis, leukocyte activation, response to bacterium, regulation of cellular process, 

signal transduction, cytokine and chemokine mediated signaling pathway. Few others 
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Fig. 6.1 
 

 

 
Figure 6.1 The box-whisker plot of distribution of normalized intensity values for 
each sample. The boxes represent interquartile range, with 75th percentile at the top 
and 25th percentile at the bottom. The line in the middle of the box represents the 50th 
percentile (median). Whiskers represent the rest of the distribution, with intensity 
values beyond 1.5 times the inter-quartile range shown in red. The x-axis represents 
individual microarray, while the y-axis represents the normalized intensity values. CLP 
– cecal ligation and puncture; PPTA-/-- preprotachykinin-A knockout. 
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Table 6.2 Differentially expressed genes in wild-type and PPTA-/- mice 8 h after 

cecal ligation and puncture (CLP)-induced sepsis 

  
Gene name Fold increase/ decrease b 

wild-type CLP 
(compared to sham) 

PPTA-/- CLP 
(compared to sham) 

inflammatory Response 
serum amyloid a 3 a 4.21 54.52 
chemokine (c-c motif) ligand 2 a 5.52 54.37 
fc receptor, ige, high affinity i, gamma polypeptide 2.30   7.15 
chemokine (c-x-c motif) ligand 10 a 5.04 12.58 
chemokine (c-c motif) receptor 1 4.66 15.52 
chemokine (c-x-c motif) ligand 1 5.35 37.74 
interleukin 1 receptor antagonist a 6.23               125.25 
chemokine (c-x-c motif) ligand 2 a               107.41               114.76 
cd14 antigen 7.93  13.70 
toll-like receptor 13 3.72     5.52 
chemokine (c-c motif) ligand 4 a 3.55   17.59 
interleukin 1 beta a 6.77     8.85 
selectin, platelet 2.57   12.03 
toll-like receptor 2 4.09     6.09 
complement component 5a receptor 1 3.19     6.50 
tumor necrosis factor receptor superfamily, member 
1b 

2.15     8.14 

cd28 antigen 1.87     2.56 
chemokine (c-c motif) ligand 3 a                 13.05   73.16 
toll-like receptor 6 2.18     2.68 
tumor necrosis factor receptor superfamily, member 
1a 

- c     2.09 

mitogen activated protein kinase kinase 3 -     2.12 
oxidized low density lipoprotein (lectin-like) 
receptor 1 

-     5.51 

orosomucoid 1 -                  34.00 
signal transducer and activator of transcription 3 -      2.63 
chemokine (c-c motif) receptor 2 a -      5.26 
chemokine (c-c motif) ligand 22 -      2.83 
Fc receptor, IgG, low affinity iib -      9.90 
Fc receptor, IgG, low affinity iii -      6.59 
toll-like receptor 5 -     -2.24 d 
toll-like receptor 1 -      3.53 
cd44 antigen -      3.62 
signal transducer and activator of transcription 5a -      2.44 
phospholipase a2, group vii (platelet-activating 
factor acetylhydrolase, plasma) 

-      7.59 
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Table 6.2 (Continued) 
 

Gene name Fold increase/ decrease 
wild-type CLP 

(compared to sham) 
PPTA-/- CLP 

(compared to sham) 
Chemotaxis 
chemokine (c-c motif) ligand 9 2.27 10.09 
s100 calcium binding protein a8 (calgranulin a) 2.68 - 
formyl peptide receptor 1 9.01 48.18 
chemokine (c-c motif) ligand 17                     -   8.49 
chemokine (c-c motif) receptor 5 a                     - 14.45 
cysteine rich protein 61                     -  -5.25 
integrin beta 2                     -   3.68 
interleukin 16                     -   3.71 
chemokine (c-c motif) ligand 6                     -   3.63 
leukocyte activation 
cd80 antigen                   3.19   2.60 
cd52 antigen 1.92   2.27 
interleukin 12a                     -   2.61 
growth arrest and dna-damage-inducible 45 gamma                     -   4.21 
fas (tnf receptor superfamily member)                     -   4.82 
cd40 antigen                     -   2.10 
response to wounding 
coagulation factor xiii, a1 subunit 2.12   4.17 
gap junction membrane channel protein alpha 1                     -   3.25 
coagulation factor x                     - 17.55 
coagulation factor vii                     -   2.43 
fibrinogen, gamma polypeptide                     - 11.57 
response to bacterium 
cathelicidin antimicrobial peptide 5.33 40.93 
peptidoglycan recognition protein 1 4.44   2.26 
lipopolysaccharide binding protein                     -   2.46 
regulation of cellular process
protein tyrosine phosphatase, non-receptor type 11                  -2.25 - 
matrix metallopeptidase 9 3.48   1.95 
mitogen activated protein kinase kinase kinase 8 4.01   8.26 
caspase 4, apoptosis-related cysteine peptidase                     -   8.62 
heat shock protein 1A                     -  -7.87 
interferon regulatory factor 1                     -   3.25 
interferon regulatory factor 7                     -   2.63 
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Table 6.2 (Continued) 
 

Gene name Fold increase/ decrease 
wild-type CLP 

(compared to sham) 
PPTA-/- CLP 

(compared to sham)
signal Transduction 
interleukin 7 receptor                     - 9.81 
g protein-coupled receptor 35 2.77 6.49 
rho family gtpase 1 3.24 8.83 
interleukin 1 receptor, type ii 8.97              18.83 
g protein-coupled receptor 27 2.24                3.49 
interleukin 10 receptor, alpha 2.06 2.53 
regulator of g-protein signaling 1 4.64 8.55 
suppressor of cytokine signaling 3 4.73              10.67 
regulator of g-protein signaling 2 2.36                  - 
janus kinase 2                     -                2.41 
interleukin 17 receptor                     - 2.61 
mitogen activated protein kinase kinase kinase 
kinase 2 

                    -             -15.93 

phospholipase c, delta 3                     -               -2.55 
chemokine (c-x-c motif) receptor 6                     - 2.29 
peroxisome proliferator activator receptor delta                     - 2.27 
sphingosine kinase 1                     - 6.67 
suppressor of cytokine signaling 2                     - 2.27 
interleukin 4 receptor, alpha                     - 4.38 
interleukin 8 receptor, beta                     - 3.05 
neuropilin 1                     -               -2.64 
metallothionein 1 2.68 5.58 
plasminogen activator, urokinase receptor 2.47 4.42 
phosphatidylinositol 3-kinase catalytic delta 
polypeptide 

                    - 3.39 

mitogen-activated protein kinase kinase kinase 
kinase 5 

                    -               -2.69 

mitogen activated protein kinase kinase kinase 1                     -                2.83 
mitogen-activated protein kinase kinase kinase 6                     -                9.08 
mitogen activated protein kinase 8                     -               -4.66 
response to Other Organism 
neutrophilic granule protein                   4.70              27.44 
response to fungus                                                                                                                            
pentraxin related gene                     -              11.74 
cytokine and chemokine mediated signaling pathway
colony stimulating factor 2 receptor, beta 1, low-
affinity (granulocyte-macrophage) 

                  2.86              10.45 

leukocyte immunoglobulin-like receptor, 
subfamily b (with tm and itim domains), member 
3 

2.57                6.62 

colony stimulating factor 2 receptor, beta 2, low-
affinity (granulocyte-macrophage) 

                    -                4.57 
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Table 6.2 (Continued) 
 

Gene name Fold increase/ decrease 
wild-type CLP 

(compared to sham) 
PPTA-/- CLP 

(compared to sham) 
other 
lipocalin 2 2.66 11.97 
arginase type II 2.10   5.74 
interleukin 1 family, member 9 5.18 19.02 
matrix metallopeptidase 8 9.61 12.30 
interferon induced transmembrane protein 6 5.61 34.46 
s100 calcium binding protein a9 (calgranulin b) 3.19   2.92 
inhibitor of dna binding 2                     -   3.91 
cytokine inducible sh2-containing protein                     -   2.01 
secretory leukocyte peptidase inhibitor                     -   3.76 
amphiregulin                     -   3.59 
interferon induced transmembrane protein 2                     -   2.51 
mitogen activated protein kinase kinase kinase 4                     -                 -3.23 
mitogen-activated protein kinase-activated protein 
kinase 3 

                    -   2.36 

mitogen-activated protein kinase kinase kinase 14                     -   2.60 
natriuretic peptide receptor 3                     -   3.12 
 

a The genes validated by RT-PCR. 
b Values represent fold-changes in gene expression in wild-type and PPTA-/- mice 
subjected to CLP-induced sepsis, over corresponding sham-operated mice. All the 
fold-changes analyzed by GeneSpring™ 7.3 software were statistically significant (P < 
0.05) compared to sham control.  
c Absence of a value (-) indicates that the fold-change was less than 2. 
d Negative values represent decreased mRNA levels compared to respective sham 
group values.  
PPTA-/-, preprotachykinin-A. 
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of mixed or unknown functions are grouped separately as they are also reported in the 

literature to be differentially expressed in sepsis. As expected, CLP-induced sepsis in 

wild-type mice resulted in a significant increase in many of the inflammatory response 

and chemotaxis genes compared to sham surgery. Some of the chemokine superfamily 

members that were up-regulated significantly include C-C chemokines (CCL-2, CCL-

3, CCL-4, CCL-9), and C-X-C chemokines (CXCL-1, CXCL-2, CXCL-10). In 

addition, SAA3, IL-1β, CCR-1, TLR-2, s100 calcium binding protein a8 (S100A8) and 

matrix metallopeptidase (MMP) 8 and 9 were also increased by more than 2-fold in 

wild-type septic mice compared to sham. It was interesting to note that the anti-

inflammatory cytokine, IL-1ra also showed a greater than six-fold increase after CLP 

in these mice.         

6.3.3 Inflammatory gene profile of PPTA-/- septic mice  

However, PPTA-/- mice also exhibited high expression of inflammatory response and 

chemotaxis genes 8 h after CLP compared to sham mice. The fold increase was 

significantly higher compared to that in wild-type mice, especially for the chemokines 

CCL-2, CCL-3, CCL-4, CCL-9, CXCL-1, CXCL-2 and CXCL-10. Similarly, the 

expression of SAA3, IL-1β, CCR-1, TLR-2, and MMP-8 increased significantly in 

PPTA-/- mice 8 h after CLP compared to the corresponding fold increase in wild-type 

mice. Unlike in wild-type mice, S100A8 and MMP-9 in PPTA-/- mice did not show 

more than 2-fold increase after CLP. Further, CCL-6, CCL-17, CCL-22, CCR-2, CCR-

5, TLR-1, and phosphatidylinositol 3-kinase catalytic delta polypeptide were expressed 

more in PPTA-/- mice after the induction of sepsis and this was not seen in wild-type 

mice after CLP. I also observed much higher increase of IL-1ra gene in PPTA-/- mice 8 

h h after CLP compared to the wild-type mice. Lastly there was a significant down-
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regulation of TLR-5 and heat-shock protein 1A only in PPTA-/- mice after the 

induction of sepsis. 

6.3.4 Semiquantitative RT-PCR data 

To further validate the microarray results, RT-PCR was carried out. Ten genes were  

selected whose expression altered by more than 2-fold in septic mice. RNA from 

individual mouse lung was evaluated for these genes by RT-PCR. 8 h after CLP-

induced sepsis, pulmonary gene expression levels of MCP-1 (CCL-2), MIP-1α (CCL-

3), MIP-1β (CCL-4), MIP-2 (CXCL-2), IP-10 (CXCL-10), IL-1 β, SAA3 and IL-1ra 

were increased compared to the corresponding levels in sham operated mice (Fig. 

6.2a-h). The elevated mRNA levels were observed in both the wild-type and PPTA-/- 

mice after sepsis, with a significantly higher increase in the latter. There was no 

significant change in the expression levels of chemokine receptors, CCR-2 and CCR-5, 

in septic wild-type mice compared to sham mice (Fig. 6.2i and j). However, a 

significant up-regulation was observed for both CCR-2 and CCR-5 in PPTA-/- mice 8 h 

after CLP (CCR-2 p < 0.01 and CCR-5 p < 0.05 vs sham) (Fig. 6.2i and j). The 

mRNA levels evaluated by RT-PCR showed a similar trend to the microarray gene 

expression data for the chosen 10 genes. 

6.3.5 IL-1ra protein levels after sepsis 

Further I also measured the protein levels of anti-inflammatory cytokine IL-1ra in lung 

and plasma by ELISA. IL-1ra level was up-regulated after CLP-induced sepsis with 

similar pattern as the gene expression (Fig. 6.3). The increase in lung (Fig. 6.3a) and 

plasma (Fig. 6.3b) IL-1ra level was significantly higher in PPTA-/- mice after the 

induction of sepsis (lung: p < 0.001 vs sham; plasma: p < 0.05 vs sham) compared to 

the corresponding increase in wild-type mice. 
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Fig. 6.2a 

 

 

 

 

 

 

 

Fig. 6.2b 

 

 

 

 

 

 

 

Fig. 6.2c 
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Fig. 6.2d 

 

 

 

 

 

 

 

Fig. 6.2e 

 

 

 

 

 

 

 

Fig. 6.2f 
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Fig. 6.2g 

 

 

 

 

 

 

 

Fig. 6.2h 

 

 

 

 

 

 

 

Fig. 6.2i 
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Fig. 6.2j 

 

 

 

 

 

 

 

Figure 6.2 Pulmonary inflammatory and chemotaxis gene transcripts in wild-type 
and PPTA-/- mice. a. MCP-1, b. MIP-1α, c. MIP-1β, d. MIP-2, e. IP-10, f. IL-1β, g. 
IL-1ra, h. SAA3, i. CCR-2, j. CCR-5. mRNA levels of these genes in lung were 
evaluated 8 h after CLP or sham surgery in wild-type and PPTA-/- mice by 
semiquantitative RT-PCR analysis (expressed as a ratio of band density of the gene to 
18S). Mouse 18S was used as a control. Results were expressed as mean ± SEM (n = 
6-9 mice per group). p values < 0.05 were considered to be significant. CCR - 
chemokine (C-C motif) receptor; CLP – cecal ligation and puncture; IL – interleukin; 
IL-1ra – interleukin-1 receptor antagonist; IP-10 - IFN-γ-inducible protein 10; MCP-1 
- monocyte chemoattractant protein-1; MIP – macrophage inflammatory protein; 
PPTA-/-- preprotachykinin-A knockout; SAA3 - serum amyloid A3. 
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Fig. 6.3a 

 

 

 

 

 

 

 
 
 
Fig. 6.3b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3 Protein levels of IL-1ra in wild-type and PPTA-/- mice. a. Lung, b. 
Plasma. IL-1ra levels in lung and plasma were measured 8 h after CLP or sham 
surgery in wild-type and PPTA-/- mice by ELISA. Results were expressed as mean ± 
SEM (n = 6-12 mice per group). p values < 0.05 were considered to be significant. 
CLP – cecal ligation and puncture; IL-1ra – interleukin-1 receptor antagonist; PPTA-/-- 
preprotachykinin-A knockout. 
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6.3.6 Pathway analysis of differentially expressed genes 

Pathway Studio software was used to identify a possible gene network in wild-type 

and PPTA-/- mice subjected to CLP-induced sepsis using the genes listed in Table 6.2. 

Genes were linked to each other based on the published literature (Fig. 6.4a and b). 

Most of the differentially expressed genes were found to be connected and the few 

unconnected genes were excluded from the figure. The pathway analysis highlighted 

significantly higher number of links and interactions and higher expressions in PPTA-/- 

mice among known inflammatory and immune response genes compared to the wild-

type mice (Fig. 6.4a and b). 

 

6.4 Discussion 

It is well known that inflammatory response is an important part of sepsis. During the 

course of polymicrobial sepsis a range of pro- and anti-inflammatory cytokine and 

chemokine genes is up-regulated which is evident from the Pathway analysis. 

Although the inflammatory mediators activate leukocyte trafficking to the site of 

infection to fight the invading pathogens, excessive inflammation could be damaging 

(Sriskandan and Altmann 2008). At the same time, the host also produces counter-

balancing anti-inflammatory mediators (Sriskandan and Altmann 2008) which 

produced in excess can cause immunosuppression and fatalities (Ashare et al., 2005). 

Concurrent overexpression of both pro-inflammatory as well as anti-inflammatory 

cytokines has been reported in the early phase of lethal sepsis (Osuchowski et al., 

2006). So far there is a lack of consensus on whether to suppress or boost immunity or 

to do both at different times as clinical trials of various immunomodulators aimed at 

the inflammatory axis in severe sepsis have failed (Sriskandan and Altmann 2008). 
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Fig. 6.4a 
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Fig. 6.4b 
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Figure 6.4 Proposed biological network of differentially expressed genes in sepsis. 
a. wild-type septic mice, b. PPTA-/- septic mice. Using Pathway Studio, a pathway 
network was built for microarray data based on previously reported interactions in the 
literature. The links and nodes represent literature based findings. Some of the 
prominent, differentially expressed genes shared in inflammatory and immune 
response in sepsis were used to create the network. ‘‘+’’ depicts positive 
regulation/expression; line ending with ‘‘┤’’ depicts negative regulation/ expression. 
Up- and down-regulated genes are indicated in red and green, respectively. IL1RN – 
interleukin-1 receptor antagonist; S100A9 – S100 calcium binding protein A9 
(calgranulin B); MMP-8 - Matrix metalloproteinase 8; CAMP – cathelicidin 
antimicrobial peptide; GRO2 – growth related oncogene 2 (CXCL2); GRO3 - growth 
related oncogene 3 (CXCL3); MMP-9 - Matrix metalloproteinase 9; S100A8 – S100 
calcium binding protein A8 (calgranulin A); CCL4 – chemokine (c-c motif) ligand 4; 
IL1B – interleukin-1β; PGLYRP – peptidoglycan recognition protein; CCR1 – 
chemokine (c-c motif) receptor 1; TLR – toll-like receptor; CCL17 – chemokine (c-c 
motif) ligand 17; LBP – lipopolysaccharide binding protein; HSP1A – heat shock 
protein 1A; PPTA-/-- preprotachykinin-A knockout. 
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Chemokines such as MIP-2, MIP-1α and MCP-1 levels are reported to be increased 8 

h after CLP-induced severe sepsis in mice (Walley et al., 1997). These chemokines are 

chemoattractants to neutrophils and contribute to the host defense (Smith 1994), but in 

severe sepsis, may also cause mortality (Walley et al., 1997). Elevated serum level of 

CCL3 was also found in septic patients (Cavaillon et al., 2003). Further, peritoneal 

CCL6 (Ness et al., 2004) and CCL22 (Matsukawa et al., 2000; Ness et al., 2003) 

concentrations were elevated in the CLP mouse model of sepsis. The present 

microarray analysis showed a significantly higher expression of few of the 

inflammatory genes in PPTA-/- mice after sepsis compared to the wild-type mice. 

Although gene expression of CCL-2, CCL-3, CCL-4, CCL-9, CXCL-1, CXCL-2 and 

CXCL-10 were increased in wild-type mice after CLP, which was as expected, the 

increase was more significant in PPTA-/- mice 8 h after sepsis. In spite of the elevated 

gene expression of pro-inflammatory chemokines, PPTA-/- mice are protected against 

CLP induced sepsis (Puneet et al., 2006). The precise mechanism of protection is not 

clear yet.  

Interestingly, CCL3, CCL6 and CXCL10 have been demonstrated to be protective in 

sepsis-induced injury and mortality in a murine CLP model (Ness et al., 2004; Ness et 

al., 2003; Takahashi et al., 2002). CXCL10 (IFN-γ-inducible protein 10, IP-10) is a 

potent antimicrobial chemokine (Yang et al., 2003) but the mechanism of protection is 

unknown (Ness et al., 2004). However, CCL6 is reported to augment peritoneal 

macrophage activity and reduce bacterial leak from the gut (Ness et al., 2004). 

Macrophage-derived chemokine (MDC) (CCL22) also protected mice against CLP-

induced death (Matsukawa et al., 2000). CCL17, a Th2 lymphocyte chemoattractant, is 

thought to regulate the pro-inflammatory type 1 response in CCR1–/– mice after CLP-
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induced sepsis (Ness et al., 2004). I found a significant increase in CCL-6, CCL-17 

and CCL-22 gene exclusively in PPTA-/- mice after the induction of sepsis. It is 

possible that these chemokines provide some protection against pathogens and damage 

in PPTA-/- mice after CLP. Pathway analysis further provides an insight into the 

complex network of interactions among these pro-inflammatory chemokines.    

The role of chemokine receptors in sepsis is not very clear (Ness et al., 2004). Mice 

lacking CXCR-2 or CCR-1 are reportedly less susceptible to CLP-induced sepsis 

(Ness et al., 2004; Ness et al., 2003). On the contrary, macrophages expressing 

CX3CR-1, CCR-2 or CCR-4 have been shown to protect against pathogens due to 

their bactericidal functions (Ishida et al., 2008). The present microarray data showed a 

significant increase of more than 2-fold in CCR-2 and CCR-5 gene, only in PPTA-/- 

septic mice compared to sham, implying bactericidal functions. However, CCR-1 

expression in the wild-type and PPTA-/- mice also increased after CLP and the increase 

was more in the latter. CCL-3 is a known ligand of CCR-1 and CCL-2, CCL-3 and 

CCL-22 along with their receptors have been observed to enhance antibacterial 

activities of macrophages (Matsukawa et al., 2000; Takahashi et al., 2002; Matsukawa 

et al., 1999). Thus the elevated CCL-3-CCR-1 expression seen in the present data 

could be beneficial in PPTA-/- mice. 

Cytokines play an important but complex role in sepsis. Activated CD4 T cells secrete 

cytokines with either inflammatory (type 1 helper T-cell [Th1]) properties (TNF- , 

interferon- , IL-2), or anti-inflammatory (type 2 helper T-cell [Th2]) properties (IL-4 

and IL-10) (Abbas et al., 1996; Opal and DePalo 2000) influenced by the type, size 

and the site of infection (Abbas et al., 1996). Cytokines are considered both friend and 

foe in sepsis (Hotchkiss and Karl 2003). Although normal cytokine reactions help to 
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defend host and eliminate bacteria, overwhelming invasion induces systemic 

cytokinemia. Successful treatment of sepsis involves cytokine modulation and 

restriction of the systemic reactions only to the inflammatory foci. However it should 

be noted that only a small amount of cytokines can defend host and a complete 

blockade may damage the host (Kato et al., 1995).  

The microarray analysis showed that IL-1β increased significantly in both wild-type 

and PPTA-/-septic mice compared to sham. However, the anti-inflammatory cytokine, 

IL-1ra also showed a significant increase after CLP in these mice and the expression 

was much higher in PPTA-/- mice compared to wild-type mice. Elevated IL-1ra gene 

expression in wild-type mice after sepsis is consistent with a literature report that IL-

1ra mRNA level increased (by 10-fold) 3 to 6 h after CLP and sustained for 18 h 

(Salkowski et al., 1998). IL-1ra competitively inhibits the binding of IL-1α and IL-1β 

to their receptors and thus neutralizing their effects (Bresnihan and Cunnane 1998). 

Recent clinical trial of neonatal-onset multisystem inflammatory disease showed a 

promising improvement with IL-1ra treatment (Remick 2007; Goldbach-Mansky et al., 

2006). It is believed that anti-inflammatory strategies applied early in patients with a 

hyper-inflammatory immune response may be life-saving (Hotchkiss and Karl 2003). 

PPTA-/- mice exhibited high expression of IL-1ra early in sepsis along with the hyper-

inflammatory state, which could partly explain the improvement in survival. High 

levels of blood IL-1ra are found in septic patients and in animal models of sepsis 

although the role of IL-1ra in the immunosuppression is not clearly defined (Reddy et 

al., 2001). 

Serum amyloid A3, a major acute phase protein with a role in antibacterial immunity, 

has been reported to be enhanced by up to 1000-fold in sepsis (Sriskandan and 
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Altmann 2008). SAA3 is released at the site of injury and LPS-stimulated 

macrophages show enhanced expression of SAA3 (Meek et al., 1992). In the present 

data, SAA3 was observed to increase in wild-type and PPTA-/- septic mice compared 

to sham, with a higher increase in the knock-out mice, thus providing more 

antibacterial immunity. S100A8 is a new group of pro-inflammatory proteins 

expressed by phagocytes in inflammatory diseases (Roth et al., 2003). S100A8 was 

reported to be up-regulated in the blood samples of severe sepsis patients (Prucha et 

al., 2004). I found a similar increase in S100A8 in wild-type mice after sepsis. 

Interestingly, this increase was absent in PPTA-/- septic mice. Surfactants containing 

antibacterial substances such as cathelicidins can destroy both Gram-positive and 

Gram-negative pathogens (Sriskandan and Altmann 2008) and orchestrate a variety of 

inflammatory and immune responses (Zanetti 2004). PPTA-/- mice showed much 

higher fold-increase of cathelicidins after sepsis compared to the corresponding wild-

type mice. 

MMP-8, secreted mainly by neutrophils, is known to contribute to inflammatory cell 

trafficking and inflammation in asthma (Gueders et al., 2005). However, MMP-8 is 

also suspected to regulate protective immune functions as it is found to be anti-

inflammatory in allergic asthma (Gueders et al., 2005). As expected, the microarray 

data showed a significant up-regulation of MMP-8 gene after sepsis in wild-type mice. 

But the increase was more prominent in PPTA-/- mice, thus possibly providing anti-

inflammatory protection and neutrophil apoptosis. MMP-9 is a matrix degrading 

enzyme which is highly expressed at inflammation sites (Grimm et al., 2006). MMP-9 

plays a role in the pathogenesis of various chronic inflammatory diseases such as 

asthma where MMP-9 is up-regulated (Lee et al., 2001; Kelly and Jarjour 2003; 



 111

Wenzel et al., 2003). MMP-9 is implicated in the recruitment of eosinophils and 

neutrophils (Lee et al., 2001). Reduced MMP-9 secretion on a molecular level might 

cause an anti-inflammatory effect (Grimm et al., 2006). PPTA-/- mice did not show 

more than 2-fold increase in MMP-9 after CLP unlike the wild-type mice implying 

some beneficial anti-inflammatory effect. 

Although TLRs and their downstream signal transduction via PI3K are important in 

sepsis, I excluded them from this discussion as it is beyond the scope of this thesis to 

consider all the mediators involved in sepsis. However, I would like to allude to the 

fact that PI3K activation can lead to survival in sepsis (Cinel and Opal 2009) and the 

PPTA-/- mice had elevated PI3K gene expression after CLP in the present experiment. 

Similarly, it is sufficient to mention that the significant down-regulation of heat shock 

protein 1A in PPTA-/- septic mice (Fig. 4 B) could be associated with beneficial effects 

as heat shock protein induction before a pro-inflammatory stimulus is reported to be 

protective but after a pro-inflammatory stimulus it is found to be cytotoxic (Chen et 

al., 2007). 

RT-PCR results for selected differentially expressed genes further validated the data 

from the microarray analysis. The RT-PCR data showed a similar expression of all the 

10 genes evaluated when compared to microarray results. Although the fold-change 

between the sham control and CLP-induced sepsis mice determined by RT-PCR 

differed from that found on microarray, the trend of the response was similar between 

the two methods.  

DNA microarray reflects the functional state of the cell, but it is the translated protein 

that executes the instructions of the genome (White and Salamonsen 2005). 

Reportedly, less than 50% of the changes at the mRNA level are conveyed to the 



 112

protein level and various post-translational modifications alter their function (Schulze 

and Downward 2001; White and Salamonsen 2005). To evaluate if transcription and 

translation are coordinately regulated, IL-1ra was quantified in plasma and tissue by 

ELISA. In line with literature reports of elevated circulating IL-1ra in sepsis 

(Cavaillon et al., 2003), and consistent with the microarray and RT-PCR data, I found 

a significant increase in IL-1ra protein level in both wild-type and PPTA-/- mice 8 h 

after sepsis. It seems prudent to define the inflammatory status on the basis of 

complete plasma profile and genome data, even if grouping into traditional 

immunologic categories becomes difficult (Osuchowski et al., 2006). 

So far the scientific community does not have an answer for whether the septic 

patients are hyper-inflammatory or immuno-compromised (Remick 2007). Failed 

clinical trials have shown that simply blocking inflammatory response may be paid 

back by an impaired resolution of infection. Instead of targeting any individual 

mediator that reflects the functional status of sepsis, inflammation should be treated at 

the right time in the right place. In this perspective this study provides a valuable 

molecular fingerprint of PPTA-/- mice that are protected against mortality in CLP-

induced sepsis. This is the first investigation exploring pulmonary gene expression 

profiles using microarray analysis in PPTA-/- mice subjected to CLP-induced sepsis. 

Elevated levels of pro- and anti-inflammatory gene expression observed in the early 

stages of sepsis may help in resolving the infection without excessive 

immunosuppression. Antimicrobial mediators such as CXCL10, SAA3, cathelicidins, 

that were observed in the present study would further support in maintaining this 

precarious balance of inflammatory forces. In conclusion, in this study I have shown 

the gene profile following sepsis and the effect of PPTA gene deletion. This study will 
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help define the mechanisms by which PPTA gene products contribute to lung injury in 

sepsis.  

In addition to the gene expression, I also did simultaneous cytokine protein expression 

at various time points, as explained in the next chapter. 
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CHAPTER 7. PLASMA CYTOKINE PROFILE IN 

PPTA-/- MICE 

 

7.1 Introduction 

In sepsis, the nature of the insult, the cellular composition and the micro-environment 

of each organ, influences the extent of local tissue injury (Cavaillon and Annane 

2006). Infection, injury and inflammation trigger the release of cytokines that act as 

immune mediators (Ray et al., 2005; de Jager and Rijkers 2006). These inflammatory 

proteins are elevated in various disease states such as autoimmune diseases, bowel 

inflammatory disease and sepsis. It has been well established that cytokine cascades 

play a major role in the progression of sepsis. Large amounts of cytokines are 

produced mainly within tissues and released into the systemic circulation to mediate 

the inflammatory responses in sepsis. Anti-inflammatory mediators predominate 

systemically to avoid new inflammatory foci, but within the tissues their levels may 

not always be sufficient to prevent deleterious inflammatory response (Cavaillon and 

Annane 2006). Thus, in addition to the pathophysiological evaluation of lung tissue, it 

is important to analyze the cytokine profile in peripheral blood compartment in PPTA-/- 

septic mice. 

Plasma is considered as one of the major sources for measurement of clinical markers 

in sepsis (Osuchowski et al., 2006). As early diagnosis and treatment are critical in 

sepsis management, evaluation of plasma cytokines over a time course can provide a 

window towards a better understanding of the nature and severity of sepsis. Rather 

than analyzing individual cytokine levels by conventional ELISA, integration of data 
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from simultaneous measurement of multiple cytokines is more likely to be 

representative of biological processes. In this regard, I used Multiplexed bead-based 

suspension arrays for the measurement of a set of plasma cytokines in PPTA-/- mice 

subjected to polymicrobial sepsis.    

Luminex Multianalyte Profiling (xMAP) technology is widely used for quantification 

of analytes such as proteins, ligands, DNA and RNA in multiplexed bead-based assays 

(Kingsmore 2006; Nolan and Mandy 2006). The beads bound with antibodies, 

oligonucleotides or peptides are run through a Luminex instrument and classified by 

laser excitation of the internal dyes (Arellano-Garcia et al., 2008). The reporter dye is 

excited by another laser and the fluorescence proportional to the bound analyte is 

recorded (Vignali 2000; Ray et al., 2005). High throughput, accuracy, efficiency, 

sensitivity, simultaneous analyte detection, low cost and time reduction are some of 

the pros of these liquichips (Vignali 2000; Dupont et al., 2005; Prabhakar et al., 2002; 

Linkov et al., 2007). In addition, the data collected by xMAP technology has been 

reported to be comparable to that from ELISA (Dupont et al., 2005). 

  

7.2 Materials and Methods 

7.2.1 Animal Ethics 

Reference: Section 2.2 

7.2.2 Induction of polymicrobial sepsis 

PPTA-/- and wild-type Balb/c male mice (25-30 g) were randomly divided into sham or 

CLP experimental groups (n = more than 6 in each group). Polymicrobial sepsis was 

induced by CLP as explained in Section 2.3. The same surgical procedure except the 

cecal ligation and puncture was performed on sham-operated animals. The mice were 
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sacrificed at various time points (1, 5, 8 and 24 h; n = at least 6 for each time point) 

after surgery by an i.p. injection of pentobarbitone (Fig. 7.1). Blood was harvested 

through cardiac puncture, heparinized, centrifuged, plasma removed and stored at -80° 

C for subsequent measurement. 

7.2.3 Plasma cytokine profile using bead array 

Time-dependent plasma cytokine profile was obtained using Procarta™ Cytokine kits 

(Panomics, CA, USA) employing multiplex immunoassays based on xMAP™ 

detection technology developed by Luminex™ (Luminex Corporation) using 

Luminex™ bead array system. Fluorescently encoded antibody beads that were 

uniquely detected in a flow cytometer were used and 18 mouse cytokines were 

evaluated through a sandwich immunoassay (Fig. 7.1). Briefly, 50 µl of the antibody 

beads were added to each well of the pre-wet 96-well filter bottom plate and washed 

with wash buffer. Assay buffer (75 µl/well), standard and sample (25 µl/well) were 

added to the pre-designated wells and incubated for 30 min at room temperature on a 

shaker (500 rpm). After washing, detection antibody (25 µl/well) was added and 

incubated for 30 min at room temperature on a shaker (500 rpm). Streptavidin-PE (50 

µl/well) was added to the washed plate and incubated again for 30 min at room 

temperature on a shaker (500 rpm). Subsequent to another wash, 120 µl/well of the 

reading buffer was added, placed on a shaker (500 rpm) for 5 min at room temperature 

and analyzed on Luminex 100 instrument. The median fluorescence intensity of 100 

beads per sample per cytokine was used to determine the intensity levels of cytokines. 

Standard curves were plotted and fitted using a 5-parameter logistic model, from 

which the sample cytokine concentrations were determined. The bead-analyte 

associations are given in Table 7.1 (Procarta™ Mouse Cytokine Assay kit, Panomics,  
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Fig. 7.1 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Schematic workflow of multiplex immunoassay. PPTA-/- and wild-type 
Balb/c mice were randomly divided into sham or CLP experimental groups (n = 6-8 in 
each group). The mice were sacrificed at various time points (1, 5, 8 and 24 h) after 
surgery and plasma was analyzed for 18 mouse cytokines by a sandwich multiplex 
immunoassay. The sample cytokine concentrations were determined using standard 
curves. CLP – cecal ligation and puncture; PPTA-/-- preprotachykinin-A knockout. 
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Table 7.1 Bead-analyte association-Procarta Mouse Cytokine Assay Kit1 
 
 

Bead2 Analyte 

18 IL-1α 
19 IL-1β 
20 IL-2 
21 IL-3 
25 IL-4 
26 IL-5 
27 IL-6 
28 IL-10 
33 IL-12(p40) 
34 IL-12(p70) 
35 IL-17 
36 IL-13 
37 KC 
42 RANTES 
43 IFN-γ 
44 GM-CSF 
45 TNF-α 
47 MIP-1α 
52 EOTAXIN 

 

 
1 Procarta Mouse Cytokine Assay Kit was used for the assay. Each of the beads was 
coated with a reagent specific to the analyte given in the table.  
2 Each of the colour-coded tiny beads (microspheres) was given a number to identify 
the cytokine analyte it represents. 
GM-CSF - granulocyte macrophage-colony-stimulating factor; IFN-γ – interferon-γ; 
IL – interleukin; KC - keratinocyte-derived chemokine; MIP-1α - macrophage 
inflammatory protein-1α; RANTES - regulated upon activation normal T cell 
expressed and secreted; TNF-α - tumor necrosis factor-alpha. 
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CA, USA). The cytokine concentrations obtained for each group at the different time 

points were averaged across each replicate set and expressed as pg/ml. The kit 

sensitivity (Limit of Detection, LOD) was 1 pg/ml/cytokine. 

7.2.4 Statistics 

Statistical analysis was performed as mentioned in Section 2.17. 

 

7.3 Results 

PPTA-/- and wild-type mice were sacrificed at 1, 5, 8 and 24 h after sham or CLP 

surgery and 18 plasma cytokines were analyzed. Among all the cytokines tested 

(namely CCL11, GM-CSF, IFN-γ, IL-10, IL-12, IL-13, IL-17, IL-1α, IL-1β, IL-2, IL-

3, IL-4, IL-5, IL-6, CXCL1, CCL3, CCL5, TNF-α), levels of both pro- (Fig. 7.2) and 

anti-inflammatory (Fig. 7.3) cytokines were significantly elevated in the PPTA-/- sepsis 

mice compared to the wild-type mice. IL-2, IL-3, IL-4 and IL-17 levels were below the 

detection limit of the assay in all the samples. 

7.3.1 Cytokine profile as a function of time for the sham groups 

Mice subjected to sham surgery showed elevated levels of various cytokines at 1 and 5 

h after the surgery (P < 0.05) (Fig 7.2 and 7.3). IL-1β, GM-CSF, CCL11, IL-5, IFN-γ, 

IL-10 and IL-13 were increased in wild-type mice at the early time points studied (Fig 

7.2a,g,j,l,m and 7.3a,b respectively). Similarly, PPTA-/- mice showed elevated levels 

of IL-1β, CCL5, GM-CSF, CCL11, IL-5, IFN-γ, IL-10 and IL-13 (Fig 7.2a,f,g,j,l,m 

and 7.3a,b respectively) at 1 and 5 h after sham surgery. However the levels were 

reduced in both PPTA-/- and wild-type sham groups at the later time points. 
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Fig. 7.2a 

  
 
 
 
Fig. 7.2b 

   

 
 
 
Fig. 7.2c 
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Fig. 7.2d 

  

 

Fig. 7.2e 

  

 
Fig. 7.2f 
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Fig. 7.2g 

  

 
 
Fig. 7.2h 

  

 
 
Fig. 7.2i 
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Fig. 7.2j 
 

 

 
 
Fig. 7.2k 

  

 
 
Fig. 7.2l 
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Fig. 7.2m 

  

  

Figure 7.2 Plasma pro-inflammatory cytokine profile in wild-type and PPTA-/- 
septic mice. a. IL-1β; b. IL-6; c. IL-12(p40); d. IL-12(p70); e. CXCL1; f. CCL5; g. 
GM-CSF; h. TNF-α; i. CCL3; j. CCL11; k. IL-1α; l. IL-5; m. IFN-γ. Cytokine levels in 
plasma were measured 1, 5, 8 and 24 h after CLP or sham surgery in wild-type and 
PPTA-/- mice by multiplex immunoassay. Results were expressed as mean ± SEM (n = 
6 mice per group). P values were shown for comparison with corresponding sham 
group. Symbols were used to denote significant differences between groups as a 
function of time. Key: Balb/c sham, open bars; Balb/c CLP, outlined diamond bars; 
PPTA-/- sham, dotted bars; PPTA-/- CLP, small grid bars. *P<0.001 when compared to 
the corresponding normal value; **P<0.05 when compared to the corresponding values 
of Balb/c septic mice at different time points; #P<0.05 when compared to the 
corresponding values of PPTA-/- septic mice at different time points; CLP, cecal 
ligation and puncture; GM-CSF, granulocyte macrophage-colony-stimulating factor; 
IL, interleukin; IFN-γ, interferon-γ; PPTA-/-, preprotachykinin A knockout; TNF-α, 
tumor necrosis factor-α. 
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Fig. 7.3a 
 

 

 
Fig. 7.3b 
 

 
 
 
Figure 7.3 Plasma anti-inflammatory cytokine profile in wild-type and PPTA-/- 
septic mice. a. IL-10; b. IL-13.  Cytokine levels in plasma were measured 1, 5, 8 and 
24 h after CLP or sham surgery in wild-type and PPTA-/- mice by multiplex 
immunoassay. Results were expressed as mean ± SEM (n = 6 mice per group). P 
values were shown for comparison with corresponding sham group. Symbols were 
used to denote significant differences between groups as a function of time. Key: 
Balb/c sham, open bars; Balb/c CLP, outlined diamond bars; PPTA-/- sham, dotted 
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bars; PPTA-/- CLP, small grid bars. *P<0.001 when compared to the corresponding 
normal value; **P<0.05 when compared to the corresponding values of Balb/c septic 
mice at different time points; #P<0.05 when compared to the corresponding values of 
PPTA-/- septic mice at different time points; CLP, cecal ligation and puncture; IL, 
interleukin; PPTA-/-, preprotachykinin A knockout. 
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7.3.2 Cytokine profile as a function of time for the Balb/c septic mice 

Mice subjected to CLP have been reported to show elevated levels of pro-

inflammatory cytokines such as IL-6, CXCL2 and TNF-α (Zhang et al., 2007; Puneet 

et al., 2006; Ertel et al., 1991; Salkowski et al., 1998). Consistently, I found increased 

plasma IL-6, IL-12(p70), CXCL1, CCL5, GM-CSF, TNF-α, CCL3 and CCL11 levels 

(Fig. 7.2b,d-j respectively) in Balb/c septic mice (P < 0.05). The elevated levels were 

apparent by 5 h after CLP for many of the cytokines and continued to remain high 

even at the 24 h time point (Fig. 7.2). However, CXCL1 and GM-CSF levels showed a 

reduction at 8 h time point (Fig. 7.2e,g).    

Anti-inflammatory cytokine, IL-10 levels were increased in wild-type mice only at 5 

and 8 h after CLP (P < 0.001) (Fig. 7.3a). In addition, IL-13 levels showed significant 

increase only at 8 h after surgery (P < 0.05) (Fig. 7.3b). 

7.3.3 Cytokine profile as a function of time for the PPTA-/- septic mice 

PPTA-/- septic mice also showed an increase in various cytokines over 24 h after 

induction of sepsis (P < 0.05). A significant elevation was observed for IL-1β, IL-6, 

IL-12(p40), IL-12(p70), CXCL1, GM-CSF, TNF-α, CCL3, CCL11, IL-1α, IL-5, IL-10 

and IL-13 (Fig. 7.2a-e,g-l and Fig. 7.3a,b respectively). However, IL-1β and IL-5 

levels were lowered at 8 h after CLP surgery (Fig. 7.2e,g). 

7.3.4 Comparative cytokine profiles for the PPTA-/- and wild-type 

septic mice 

Several sets of cytokines showed significantly different patterns across the PPTA-/- and 

the wild-type septic mice compared to their corresponding sham control groups. 
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7.3.4.1 Pro-inflammatory cytokine profiles 

Plasma IL-1β levels were elevated more significantly in PPTA-/- septic mice during the 

later phase of sepsis (8 and 24 h) (P < 0.05 and P < 0.001 respectively) compared to 

the corresponding wild-type mice (Fig. 7.2a). Levels of IL-6, an important pro-

inflammatory cytokine in sepsis, were increased significantly in wild-type mice at 8 h 

after CLP (P < 0.05), but the increase was significantly higher in PPTA-/- septic mice at 

5, 8 and 24 h after CLP (P < 0.001) and also when compared to the corresponding 

increase in wild-type group (Fig. 7.2b). Pro-inflammatory cytokine, IL-12(p70), is a 

heterodimer of IL-12(p40) and IL-12(p35) subunits connected by a disulphide bond 

that is essential for the biological activity (Cooper and Khader 2007). IL-12(p70) was 

significantly increased in wild-type mice only at 1 h after CLP (P < 0.01) but the 

difference was apparent in PPTA-/- septic mice at 5 h (P < 0.05) (Fig. 7.2d). Levels of 

IL-12(p40), a component of cytokines IL-12 and IL-23, were higher in PPTA-/- septic 

mice at 5, 8 and 24 h after CLP (P < 0.001) (Fig. 7.2c). CXCL1 and GM-CSF levels 

were also significantly elevated (P < 0.001 and P < 0.05 respectively) in PPTA-/- septic 

mice compared to the wild-type septic mice (Fig. 7.2e,g). 

Systemic levels of TNF-α were increased significantly more in PPTA-/- mice 5 h after 

CLP (P < 0.001) and the increase was apparent upto 24 h post-CLP (P < 0.001) (Fig. 

7.2h). CCL3 protein levels in plasma were also significantly elevated in PPTA-/- mice 

at 5 and 8 h after CLP (P < 0.001) compared to the increase in wild-type mice at 8 h (P 

< 0.05), but this increase was reversed by 24 h post-CLP (Fig. 7.2i). In contrast, 

plasma CCL11 levels were elevated to a greater extent in PPTA-/- mice upto 24 h after 

CLP (Fig. 7.2j). IL-1α levels were found to be increased in PPTA-/- septic mice 

compared to the other groups only at 8 h after CLP (Fig. 7.2k). IL-5 plasma levels 
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were not significantly different between the wild-type and PPTA-/- septic mice at any 

of the time points studied except at 24 h (P < 0.05) (Fig. 7.2l). Lastly, IFN-γ was 

found to be significantly increased in wild-type septic mice as early as 1 h (P < 0.01) 

and persisted upto 5 h after CLP, but the increase was not statistically significant in 

PPTA-/- septic mice (Fig. 7.2m). 

7.3.4.2 Anti-inflammatory cytokine profiles 

Levels of IL-10 were increased after CLP in both PPTA-/- and wild-type mice, but the 

difference was significant in PPTA-/- mice at 5, 8 and 24 h (P < 0.001, P < 0.001 and P 

< 0.05 respectively) after the surgery (Fig. 7.3a). Similarly, plasma levels of another 

anti-inflammatory cytokine, IL-13, were elevated in PPTA-/- and wild-type septic mice 

compared to the sham group, but the increase was more significant for the knock-out 

mice especially at 5, 8 and 24 h (P < 0.05, P < 0.001 and P < 0.05 respectively) after 

the induction of sepsis (Fig. 7.3b). 

 

7.4 Discussion 

It is interesting to note that the PPTA gene deletion in mice contributed to a survival 

phenotype evidenced by a greater resilience to sepsis (Puneet et al., 2006). However, 

the mechanism of tolerance and survival at elevated levels of systemic inflammatory 

cytokines has yet to be established. In the previous section, elevated levels of 

pulmonary cytokines were seen in PPTA-/- mice subjected to polymicrobial sepsis. 

Although tissue-associated cytokine levels represent the cytokine production more 

closely, systemic levels also provide a faster and reliable means of measurement, 

especially in clinical applications. Detectable plasma cytokines are likely to represent 

the excess of produced mediators which have not been contained within target tissues 
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or organs. Using a bead-array based platform coupled with a flow-cytometric 

fluorescent based reader, I performed simultaneous measurement of 18 mouse 

cytokines using a very small volume (25 µl) of plasma per assay. Multiplexed bead-

based arrays have been shown earlier to be especially useful for detection of analytes 

in precious small volume (Liu et al., 2005). 

Plasma cytokine time-point data showed that PPTA-/- mice subjected to CLP-induced 

sepsis exhibited elevated levels of both pro- and anti-inflammatory cytokines. Indeed, 

early phase of lethal sepsis is reported to show over-expression of both pro- and anti-

inflammatory cytokines (Osuchowski et al., 2006). Plasma concentrations of TNF-α, 

IL-1β, IL-6, IL-8, soluble cytokine receptors, cytokine receptor antagonists and 

counter-inflammatory cytokines are known to be elevated in human sepsis (Blackwell 

and Christman 1996). I found significantly elevated levels of various pro-inflammatory 

cytokines such as TNF-α, CCL3, IL-1β, IL-6, CXCL1 and CCL11 in PPTA-/- mice 

compared to the wild-type mice, especially at later time points after induction of 

sepsis. TNF-α, IL-1 and IL-6 coordinate the initiation of acute phase response in sepsis 

(Sriskandan and Altmann 2008) that is triggered by the pathogen recognition and is 

important for survival in sepsis. CCL3, CCL6 and CXCL10 have been demonstrated to 

be protective in sepsis-induced injury and mortality in a murine CLP model (Ness et 

al., 2004; Ness et al., 2003; Takahashi et al., 2002). CCL22 also protected mice 

against CLP-induced death (Matsukawa et al., 2000). In our previous study using 

PPTA-/- septic mice, only CCL2 and CXCL2 levels in lung and plasma were analysed 

by ELISA (Puneet et al., 2006). Although both the chemokines were elevated in 

PPTA-/- and wild-type septic mice, the increase was lower in the former group (Puneet 

et al., 2006). These two chemokines were believed to act as chemoattractants to 
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leukocytes and play a role in tissue damage (Puneet et al., 2006). We did not repeat 

these two chemokines in the present study, but the range of chemokines and cytokines 

studied showed a significant elevation upto 24 h after induction of sepsis. It is not clear 

yet as to why genetic deletion of SP, a product of PPTA gene, leads to significantly 

elevated cytokine levels, although it is possible that these pro-inflammatory cytokines 

are useful in countering the pathogenic invasion in the early phase of sepsis. A 

significant initial increase in IL-6 and subsequent reduction at a late stage has been 

reported to protect septic mice (Zhu et al., 2009). Multiple mechanisms and mediators 

could be at play in this scenario which needs to be probed further. 

Balance between pro-inflammatory and anti-inflammatory mediators plays an 

important role in the pathophysiology of sepsis. Anti-inflammatory cytokines such as 

IL-10 and IL-13 were also significantly elevated in PPTA-/- mice after sepsis. The 

increase was more significant in PPTA-/- septic mice compared to the corresponding 

wild-type mice. It has been reported that anti-inflammatory strategies applied early in 

patients with a hyper-inflammatory immune response may prove to be life-saving 

(Hotchkiss and Karl 2003). Inhibition of IL-10 12 h after CLP has been shown to 

improve survival in mice (Song et al., 1999). Depending on the time of intervention, 

IL-10 has been reported to be protective or deleterious in sepsis (Latifi et al., 2002). 

PPTA-/- septic mice showed elevated levels of IL-10 at 5 and 8 h after sepsis and a 

subsequent reduction, both of which could have proved beneficial against mortality. 

IL-12(p80), a homodimer of IL-12(p40) has been reported to be an antagonist of pro-

inflammatory IL-12 receptor β1 (Cooper and Khader 2007). IL-12(p40) is released 

from various inflammatory cells in response to pathogenic or inflammatory signals 

(Trinchieri et al., 2003). IL-12(p40) is reported to show both protective and pathogenic 
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immune responses (Cooper and Khader 2007). Interestingly, we found significantly 

elevated levels of IL-12(p40) in PPTA-/- mice compared to the wild type mice after the 

induction of sepsis. The increase corresponded with the elevation in pro-inflammatory 

cytokine IL-12(p70) in PPTA-/- septic mice. However, the significance of this effect is 

not very clear. The observed levels of IL-12(p40) were in agreement with the reported 

50-fold higher IL-12(p40) secretion compared with IL-12p70 in murine shock model 

(Wysocka et al., 1995). In addition, in the previous section (Chapter 6), elevated 

levels of another anti-inflammatory cytokine, IL-1ra, were shown in PPTA-/- mice 

compared to wild-type mice after sepsis. Cytokine receptor antagonists are cytokine-

like molecules binding to receptors but without signal transduction (Blackwell and 

Christman 1996). IL-1ra plasma levels are reported to be elevated both in human 

volunteers injected with endotoxin as well as patients with severe sepsis, although its 

function is not clear (Kuhns et al., 1995; Gårdlund et al., 1995). 

Although the specific role of anti-inflammatory molecules in sepsis remains undefined, 

a complex interaction between cytokines and cytokine-neutralizing molecules is 

assumed to determine the clinical presentation and outcome of sepsis (Blackwell and 

Christman 1996). In patients with lethal septic shock, the level of secreted anti-

inflammatory molecules is believed to be insufficient to counter the overwhelming 

pro-inflammatory mediators (Blackwell and Christman 1996). However, in PPTA-/- 

mice, elevated levels of both the pro- and anti-inflammatory mediators may act 

simultaneously and help to resolve the infectious assault at the early stages of sepsis 

without excessively damaging the host tissue; and thus prolong the survival in these 

mice. Overall data indicates that multiple factors play protective roles in polymicrobial 

sepsis in PPTA-/- mice and render them resistant to microbial infection. The current 
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time-dependent cytokine snapshot represents a rich source of information for further 

analysis and investigation. 

Limited knowledge of the molecular mechanisms in sepsis has in the past led to the 

failure of various clinical trials of otherwise promising drug molecules from pre-

clinical stages. Recent enabling ways to detect genetic signatures of sepsis and 

biomarker identification more rapidly and cost-effectively are beginning to provide 

added insight to both the research and clinical arenas (Cinel and Opal 2009). Finding a 

“magic bullet” is not more important than evaluating the complete immune response 

and inflammatory status and tailoring the treatment for individualized therapy in 

critically ill patients. Toward this end, our multiplexed approach of time-point analysis 

of cytokines, which are major mediators of sepsis, provides a relevant and valuable 

platform for further research and discovery and a better diagnostic tool to profile septic 

patients clinically. 
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CHAPTER 8. CONCLUSION AND FUTURE 

DIRECTIONS 

 

8.1 Concluding remarks 

It is evident from the overall data that the neuropeptide SP had a major role to play in 

polymicrobial sepsis and associated lung injury and its actions were mediated through 

NK-1R, as summarized in Fig. 8.1. As described in Chapter 3, I used the formal 

approach of blocking the SP actions through NK-1R with SR140333, a specific NK-

1R antagonist. The results showed that SR140333 treatment in CLP surgery-induced 

polymicrobial sepsis in mice had a beneficial role observed 8 h later in terms of lung 

injury. Pulmonary damage that is generally associated with polymicrobial sepsis was 

alleviated by blocking the actions of SP via NK-1R. Also there was a lowering of 

leukocyte infiltration and lung levels of chemokines, cytokines and adhesion 

molecules that are involved in the propagation of inflammation.  

The mechanistic studies in Chapter 4 revealed that the inhibition of SP actions 

mediated through NK-1R in polymicrobial sepsis, involved the downstream signaling 

cascade involving PKCα and NF-κB and AP-1 transcription factors. Pro-inflammatory 

signals of SP-NK-1R were carried from the cell surface to the nucleus by these 

messenger molecules leading to the modulation of various pro-inflammatory mediators 

in sepsis. There was also a significant down-regulation of NK-1R. Further, to rule out 

the possibility of SP actions through other NK receptors in sepsis, albeit marginal, the 

mice were treated with GR159897, a specific NK-2R antagonist as explained in 

Chapter 5. Inhibition of SP actions via NK-2R did not help in reducing the lung injury  
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Fig. 8.1 
 

 

Figure 8.1 Schematic representation of role of SP in polymicrobial sepsis 
AP-1 – activator protein-1; CLP – cecal ligation and puncture; NF-κB - nuclear factor 
kappa B; NK-1R – neurokinin-1 receptor; PKCα – protein kinase C alpha; PPTA-/-- 
preprotachykinin-A knockout.  
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8 h after induction of polymicrobial sepsis. Thus it is clear that SP activation of NK-

1R, but not NK-2R, is important in its pro-inflammatory actions in sepsis. 

In addition to the use of pharmacological tools to block neurokinin receptors, gene 

knock-out mice subjected to polymicrobial sepsis were also studied, as described in 

Chapter 6, to understand the immunological basis of protection enjoyed by these mice 

lacking SP. PPTA-/- and wild type mice were subject to sham or CLP surgery. 

Pulmonary gene expression profiling showed interesting elevation of both pro- and 

anti-inflammatory gene in the early stages of sepsis in PPTA-/- mice. Semi-quantitative 

RT-PCR and ELISA were used to validate the results for selected differentially 

expressed genes. Consistent with recent literature reports that conventional division of 

pro- and anti-inflammatory status does not exist in sepsis, I found an active 

involvement of both the forces in providing protection to PPTA-/- mice in sepsis. 

Lastly, multiplexed bead-based suspension arrays were employed for the time-course 

measurement of a set of plasma cytokines as detailed in Chapter 7. Interesting changes 

in both pro- and anti-inflammatory cytokines in PPTA-/- mice in sepsis over time 

further substantiated the gene analysis data and conclusions. 

The combined data implied that SP is one of the major players in polymicrobial sepsis, 

the immunological disorder which is known to be complicated with various mediators 

in action at any given time. The study may help in substantiating the therapeutic 

approach of resolving the infection without excessive immunosuppression as well 

searching for novel therapeutic interventions to modulate the pro-inflammatory actions 

of SP-NK-1R better.
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8.2 Future directions 

Potential scope of the future work in this area is immense as thorough understanding 

of this critical disorder and tailoring suitable therapy for individual patients may help 

conquer complications of sepsis and bring down the economic strain on the healthcare 

systems all over the world. Recommendations for future work are as follows:   

1. Global genomic analysis of mice treated with SP receptor antagonists by 

microarray would be a valuable tool to compare the beneficial effects of 

receptor antagonism with gene deletion.  

2. Charting out complete cytokine profile of septic mice treated with receptor 

inhibitors over a 24 – 48 h period can also be considered.  

3. Study of another PPTA gene product NKA in polymicrobial sepsis might be 

carried out to see if it has any beneficial role in alleviating lung injury in 

addition to SP. 

4. Enhancement of SP actions with inhibitors of neutral endopeptidase (NEP) 

could be a potential approach. NEP, a metalloprotease enzyme, degrades small 

secreted signaling peptides like SP, and thus inhibition of NEP enhances SP 

actions. 
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