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Abstract

This thesis is concerned with the Model Predictive Control (MPC) of linear discrete

time-invariant systems with state and control constraints and subject to bounded distur-

bances.

This thesis proposes a new form of affine disturbance feedback control parametrization,

and proves that this parametrization has the same expressive ability as the affine time-

varying disturbance (state) feedback parametrization found in the recent literature. Con-

sequently, the admissible sets of the finite horizon (FH) optimization problems under

both parametrization are the same. Furthermore, by minimizing a norm-like cost func-

tion of the design variables, the MPC controller derived using the proposed parametriza-

tion steers the system state to the minimal disturbance invariant set asymptotically, and

this minimal disturbance invariant set is associated with a feedback gain which is pre-

chosen and fixed in the proposed control parametrization.

The second contribution of this thesis is a modification of the original proposed affine

disturbance feedback parametrization. Specifically, the realized disturbances are not

utilized in the parametrization. Hence, the resulting MPC controller is a purely state

feedback law instead of a dynamic compensator in the previous case. It is proved that

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



ABSTRACT iii

under the MPC controller derived using the new parametrization, the closed-loop system

state converges to the same minimal disturbance invariant set with probability one if

the distribution of the disturbance satisfies certain conditions. In the case where these

conditions are not satisfied, the closed-loop system state can also converge to the same

set if a less intuitive cost function is used in the FH optimization problem.

The third contribution of this thesis is the generalization of affine disturbance feedback

parametrization to a piecewise affine function of disturbances. Hence, larger admis-

sible set and better performance of the MPC controller could be expected under this

parametrization. Unfortunately, the FH optimization problem under this parametriza-

tion is not directly computable. However, if the disturbance set is an absolute set, deter-

ministic equivalence of the FH optimization problem can be determined and is solvable.

Even if the disturbance set is not absolute, the FH optimization problem can still be

solved by considering a larger disturbance set, and the resulting controller is not worse

than the one under linear disturbance feedback law. In addition, minimal disturbance

invariant set convergence stability is also achievable under this parametrization.

The fourth contribution of this thesis is a feedback gain design approach. Since asymp-

totic behavior of the closed-loop system under any of the proposed parametrization is

determined by a fixed feedback gain chosen a priori in the parametrization, one method

of designing this feedback gain is introduced to control the asymptotic behavior of the

closed-loop system. The underlying idea of the method is that the support function of the

minimal disturbance invariant set and its derivative with respect to the feedback gain can

be evaluated as accurately as possible. Hence, an optimization problem with constraints
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imposed on the support function of the minimal disturbance invariant set can be solved.

Therefore, a feedback gain can be designed by solving such an optimization problem

so that the corresponding minimal disturbance invariant set has optimal supports along

given directions.

Finally, MPC of systems with probabilistic constraints are considered. Properties of

probabilistic constraint-admissible sets of such systems are studied and it turns out that

such sets are generally non-convex, non-invariant and hard to determine. For the pur-

pose of application, an inner invariant approximation is introduced. This is achieved

by approximate probabilistic constraints by robust counter parts. It is shown that under

certain conditions, the inner approximation can be finitely determined by a proposed al-

gorithm. This inner approximation set is applied as a terminal set in the design of MPC

controllers for probabilistically constrained systems. It is also proved that under the re-

sulting controller, the closed-loop system is stable and all of the constraints, including

both deterministic and probabilistic, are satisfied.
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Chapter 1

Introduction

This thesis is concerned with the control of systems under the Model Predictive Control

(MPC) framework. It focuses on the design of MPC controller for a discrete time-

invariant linear system with bounded additive disturbances while fulfilling state and

control constraints. These constraints are either deterministic (hard) or probabilistic

(soft) in nature. The rest of this chapter provides a review of the literature on this

problem.

1.1 Background

Many control strategies developed around the 1960s do not explicitly take uncertainties

into account. Typically, the robustness of the closed-loop system is described by notions

such as gain margin and phase margin. Another common feature of those strategies is
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1.1 Background 2

that constraints are also omitted in their design consideration. However disturbances

and physical constraints, such as actuator saturation, maximal speed of a motor, minimal

return of an investment, etc, are always important constraints in practice. Omitting these

in the controller design may lead to a state or control action that violates them and result

in unpredictable system behaviors or even physical damage to the systems.

Researchers began to focus on the control of constrained and disturbed systems after

the 1960s. The control of such systems has been addressed intensively in the literature,

and various methods have appeared, such as anti-windup control, reference governor,

switching control and several others, see [1, 2, 3, 4, 5, 6, 7, 8]. Among them, a popular

approach is Model Predictive Control, see [9, 10, 11, 12, 13, 14, 15, 16] and the refer-

ences cited therein. This approach has been widely applied in industries [17], especially

in the process industry since the 1980s. The basic idea of MPC is quite simple and can

be found in several textbooks on optimal control theory [18, 19, 20]. In particular, Lee

and Markus in [20] described the underlying idea of MPC as follows:

“One technique for obtaining a feedback controller synthesis from knowl-

edge of open-loop controllers is to measure the current control process state

and then compute very rapidly for the open-loop control function. The first

portion of this function is then used during a short time interval, after which

a new measurement of the process state is made and a new open-loop con-

trol function is computed for this new measurement. The procedure is then

repeated.”
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According to the above description, a model of the “control process” is available to pre-

dict the system behavior, and one practical and useful control process is that described

by a linear time-invariant difference equation

x(t +1) = Ax(t)+Bu(t) (1.1)

where x(t)∈Rn, u(t)∈Rm are the state and control of the system at time t, respectively,

(A,B) are appropriate matrices. The state and control are subject to a constraint

(x(t),u(t)) ∈ Y ⊂ Rn+m (1.2)

where Y represents the joint state and control constraint imposed on the system. The

MPC approach designs a control law by looking ahead N steps at a time. Let the control

in the N steps be

u(t) := {u(0|t), · · · ,u(N−1|t)} ∈ RNm (1.3)

where u(i|t) ∈ Rm is the predicted control i steps from time t. Let x(i|t) be the ith

predicted state within the N steps and collect all the predicted states in,

x(t) := {x(0|t), · · · ,x(N|t)} ∈ R(N+1)n (1.4)
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The MPC approach computes u(t) using a cost function of the form

J(x(t),u(t)) :=
N−1

∑
i=0

`(x(i|t),u(i|t))+F(x(N|t)), (1.5)

where `(·, ·) and F(·) are appropriate stage and terminal costs, respectively. The pre-

dicted control sequence can be determined by solving the following finite horizon (FH)

optimization problem, referred to as PN(x(t)),

min
u(t)

J(x(t),u(t)) (1.6a)

s.t. x(0|t) = x(t), (1.6b)

x(i+1|t) = Ax(i|t)+Bu(i|t), ∀i ∈ ZN−1, (1.6c)

(x(i|t),u(i|t)) ∈ Y, ∀i ∈ ZN−1 (1.6d)

x(N|t) ∈ X f (1.6e)

whereZk denotes the integer set {0,1, . . . ,k} and X f is an appropriate terminal constraint

set. Based on the measurement of x(t), PN(x(t)) yields an optimal control sequence

u∗(t) := {u∗(0|t), · · · ,u∗(N−1|t)}. (1.7)

The first control of u∗(t), u∗(0|t), is then applied to system (1.1) as the control at time t.
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Therefore, the MPC control law can be implicitly expressed as

κ(x(t)) := u∗(0|t). (1.8)

At time instant t + 1 when the measurement of x(t + 1) is available, PN(x(t + 1)) is

solved once again and the applied control is u(t + 1) = κ(x(t + 1)). By repeating this

procedure at every time t, an MPC controller is implemented. One important measure

of the performance of MPC that is mentioned frequently in this thesis is the admissible

set. It is the set of system state within which controller (1.8) is defined and is given by

XN := {x| ∃u such that PN(x) is feasible}. (1.9)

Although MPC application dates back to the 1970s [17], its theoretical study only ap-

peared in the late 1980s. One important requirement of MPC at that time is the stability

of system (1.1) under the MPC control law (1.8). To ensure stability, the terminal con-

straint (1.6e) and the terminal cost F(·) in (1.5) play important roles. Specifically, the

origin of the closed-loop system is asymptotically stable by applying either appropriate

X f set or F(·) or both based on the works of [21] by Bitmead et al., [22] by Rawlings and

Muske, [23] by Couchman et al., [24] by Scokaert et al., [25] by Sznaier and Damborg,

[26] by De Nicolao et al. and others. The survey paper [6] by Mayne et al. summarizes

the needed conditions for stability: X f is a constraint-admissible invariant set under a

local controller and the terminal cost function F(·) is a local Lyapunov function.

The MPC problem becomes more complicated when uncertainty in the form of additive
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disturbances are present. In this case, system (1.1) becomes

x(t +1) = Ax(t)+Bu(t)+w(t) (1.10a)

w(t) ∈W (1.10b)

where w(t)∈Rn is the disturbance at time t and w(t) is assumed to be bounded in the set

W ⊂ Rn. MPC of system (1.10) is the focus of this thesis. With disturbances in (1.10),

the optimization problem PN(x(t)) defined by (1.6) has to be reformulated to take into

account: (i) the effect of w(t) and (ii) the interpretations of constraints (1.6d) and (1.6e)

in the presence of w(t).

For the control of system (1.10), one novel MPC approach that is closely related to the

optimization (1.6) is proposed by Mayne et al. in [13]. In that work, it is assumed

that a disturbance invariant set Z can be determined for the system (1.10) under a linear

feedback law u(t) = Kx(t) in the sense that (A + BK)Z⊕W ⊆ Z, where (A + BK)Z :=

{z| z = (A + BK)ẑ, ẑ ∈ Z} and Ω1⊕Ω2 := {ω = ω1 + ω2| ω1 ∈ Ω1, ω2 ∈ Ω2} is the

Minkowski sum of sets Ω1 and Ω2. Using this set Z and feedback gain K, optimization
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problem (1.6) is reformulated as

min
(x(0|t),u(t))

J(x(t),u(t)) (1.11a)

s.t. x(t) ∈ x(0|t)⊕Z, (1.11b)

x(i+1|t) = Ax(i|t)+Bu(i|t), ∀i ∈ ZN−1, (1.11c)

(x(i|t),u(i|t)) ∈ Y ª (Z×KZ), ∀i ∈ ZN−1 (1.11d)

x(N|t) ∈ X f ªZ (1.11e)

where Ω1 ªΩ2 := {ω| ω + ω2 ∈ Ω1, ∀ω2 ∈ Ω2} is the Pontryagin difference or P-

difference between Ω1 and Ω2. Optimization (1.11) differs from (1.6) in that x(0|t) is

a design variable in (1.11) and x(t), instead of being equal to x(0|t) in (1.6), is only

required to be in a neighborhood of x(0|t) characterized by Z. Additionally, constraint

sets in (1.11d) and (1.11e) are tightened so that the constraints are satisfied by the true

states and controls. After solving (1.11), the MPC control law applied to system (1.10)

is

κ(x(t)) = u∗(0|t)+K(x(t)− x∗(0|t)) (1.12)

which is also different from (1.8). Mayne et al. [13] show that under mild assumptions

of the cost function J(x(t),u(t)) and terminal set X f the set Z is robustly exponentially

stable for the closed-loop system under controller (1.12). A similar idea of introducing

additional terms to the MPC controller can also be found in [8] by Langson et al. and
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[27] by Mayne et al.

Other MPC approaches for the control of system (1.10) have also appeared and a popular

one is the so called “min-max” approach, see for example [28] by Michalska and Mayne,

[29] by Badgwell, [30] by Scokaert and Mayne, [31] by Bemporad et al., [32] and [33]by

Kerrigan and Maciejowski. The FH optimization problem minimizes the worst case that

the disturbance can bring and takes the general form:

min
u(t)

max
w(t)

J(x(t),u(t),w(t)) (1.13a)

s.t. x(i+1|t) = Ax(i|t)+Bu(i|t)+w(i|t), ∀i ∈ ZN−1 (1.13b)

x(0|t) = x(t) (1.13c)

(x(i|t),u(i|t)) ∈ Y, ∀i ∈ ZN−1, ∀w(t) ∈W N (1.13d)

x(N|t) ∈ X f , ∀w(t) ∈W N (1.13e)

where

w(t) := {w(0|t), · · · ,w(N−1|t)} ∈W N ⊂ RNn (1.14)

and W N is the N times cartesian product of W .

Although min-max MPC optimization problem (1.13) has precise interpretation, its

computation is not easy: (i) the expression of the maximum of J(x(t),u(t),w(t)) with

respect to w(t) is hard to determine in general; (ii) constraints (1.13d) and (1.13e) has an
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infinite number of constraints, one for each possible disturbance sequence, w(t) ∈W N .

Fortunately, if J(x(t),u(t),w(t)) is a convex function with respect to w(t) and W N set is

a polytope, the maximizer of maxw(t) J(x(t),u(t),w(t)) occurs at one of the vertices of

W N . Hence, the maximizer of maxw(t) J(x(t),u(t),w(t)) can be determined by search-

ing over the vertices of W N . The same strategy can also be applied to handle constraints

(1.13d) and (1.13e). Namely, instead of considering all w(t) ∈W N , we can consider

w(t) generated from the vertices of W N , avoiding the infinite number of constraints.

However, even when vertices of W N are considered, the number of constraints increases

exponentially with the control horizon and the dimension of the system. Consequently,

the computational burden of the resulting optimization problem can be extremely high

when N or n is large. This usually limits min-max MPC to applications on small-scale

problems.

Possible solution to the computation of MPC is to solve the FH optimization using off-

line approaches or efficient on-line algorithms, such works includes [15] and [34] by

Muñoz de la Peña et al., [35] and [31] by Bemporad et al. and [36] by Goulart et al.

Besides the computational issue of min-max MPC problem (1.13), the resulting MPC

controller derived using (1.13) can be very conservative since the optimal control se-

quence must stabilize the system against all possible disturbances while satisfying the

state and control constraints. One direct result of conservatism of the controller is that

the set of admissible initial state of problem (1.13) becomes small. A solution to reduce

the conservatism is to parameterize the control by available information such as realized

states or disturbances or both so that the influence of the disturbances on the system be-
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havior can be compensated and reduced. The control parametrization and the associated

stability of the corresponding closed-loop system have been research topics since the

late 1990s and various results have appeared. Some of them are closely related to the

work of this thesis. In the next section, a general review on control parametrization and

closed-loop system stability is given.

1.2 Review of Control Parametrization in MPC

As discussed in the previous section, control parametrization plays an important role in

MPC of systems with disturbances. It determines the degree of conservatism of the re-

sulting MPC controller and the size of the admissible set XN . It is known that the most

direct parametrization u(t) := {u(0|t), · · · ,u(N−1|t)}where u(i|t) is a fixed value leads

to a conservative MPC controller and a small admissible set for system (1.10). This is

because a fixed value control sequence has limited flexibility to handle all possible se-

quences of w(t). Hence, u(i|t) is ofen parameterized as functions of state x and/or

disturbance w and when the function is more general, it is expected that XN is larger.

To reduce conservatism and enlarge XN , various control parametrization have been pro-

posed in the literature and they are reviewed below.
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Fixed Feedback Gain Parametrization

One of the most popular control parametrization, referred to as fixed feedback gain

parametrization, is

u(i|t) = K f x(i|t)+ c(i|t), ∀i ∈ ZN−1 (1.15)

where K f is a fixed feedback gain chosen a priori such that A+BK f is stable and c(i|t)∈

Rm, i ∈ ZN−1 are the new design variables, see [9] by Bemporad, [10] by Chisci et al.,

[11] by Rossiter et al., [12] by Lee and Kouvaritakis and [13] by Mayne et al. An

advantage of this fixed feedback gain parametrization is the available characterization

of the asymptotic behavior of the closed-loop system. This is well exemplified in the

literature by the work of [10] by Chisci et al. In that work, the fulfillment of the state

and control constraints is guaranteed by imposing tightened constraints on the nominal

state and control variables. First, note that the predicted system state of (1.10) under

control law (1.15) is

x(i|t) = Φix(0|t)+
i−1

∑
j=0

Φi−1− jBc( j|t)
︸ ︷︷ ︸

x̄(i|t)

+
i−1

∑
j=0

Φi−1− jw( j|t)
︸ ︷︷ ︸

∈ Fi

= x̄(i|t)+
i−1

∑
j=0

Φi−1− jw( j|t) (1.16)
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where Φ = A + BK f , x̄(i|t) is the nominal value of x(i|t) or the state x(i|t) with the

absence of w(i|t), the last term in (1.16) is due to the presence of disturbance and its

value belongs to the set Fi defined by

F0 :=∅, Fi := W ⊕ΦW ⊕·· ·⊕Φi−1W. (1.17)

Clearly, Fi characterizes the reachable set of state x(i) of the system x(i+1) = Φx(i)+

w(i) with x(0) = 0. If Φ is asymptotically stable, F∞ characterizes the asymptotic behav-

ior of x(i + 1) = Φx(i)+ w(i), see [37] by Kolmanovsky and Gillbert, [5] by Blanchini

and the review in Section 2.2.1.

Let ū(i|t) = K f x̄(i|t)+ c(i|t), it follows that

x(i|t) ∈ {x̄(i|t)}⊕Fi (1.18a)

u(i|t) ∈ {ū(i|t)}⊕K f Fi (1.18b)

Hence,

(x(i|t),u(i|t)) ∈ Y, ∀w(t) ∈W N ⇔ (x̄(i|t), ū(i|t)) ∈ Ȳi := Y ª (Fi×K f Fi). (1.19)

The terminal constraint can also be handled in the same way,

x(N|t) ∈ X f , ∀w(t) ∈W N ⇔ x̄(N|t) ∈ X̄ f := X f ªFN . (1.20)
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Collecting all the design variables within the control horizon in c(t) := {c(0|t), · · · ,c(N−

1|t)} and using parametrization (1.15), the FH optimization problem, denoted by PFF
N (x(t)),

is

min
c(t)

N−1

∑
i=0

‖c(i|t)‖2
Ψ (1.21a)

s.t. x̄(0|t) = x(t) (1.21b)

x̄(i+1|t) = Ax̄(i|t)+Bū(i|t), ∀i ∈ ZN−1 (1.21c)

ū(i|t) = K f x̄(i|t)+ c(i|t), ∀i ∈ ZN−1 (1.21d)

(x̄(i|t), ū(i|t)) ∈ Ȳi, ∀i ∈ ZN−1 (1.21e)

x̄(N|t) ∈ X̄ f (1.21f)

where Ψ Â 0 and ‖c(i|t)‖2
Ψ := cT (i|t)Ψc(i|t). At time instant t, PFF

N (x(t)) is solved

and the optimal solution c∗(t) = {c∗(0|t), · · · ,c∗(N− 1|t)} is obtained. The very first

term of the optimal solution is applied to the system, yielding the MPC controller,

κFF(x(t)) := Kx(t)+ c∗(0|t) (1.22)

Also let X FF
N be the admissible set of this approach, i.e.,

X FF
N := {x| ∃c such that PFF

N (x) is feasible}. (1.23)

Feasibility of PFF
N (x(t)), t ≥ 0 and stability of the closed-loop system is also investi-
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gated in [10] and they are summarized in the following property (Lemma 7 and Theorem

8 in [10]).

Property 1.2.1 Provided that the initial state x(0) ∈ X FF
N , then under control law

u(t) = κFF(x(t)) given in (1.22) problem PFF
N (x(t)) is feasible for all t ≥ 0 and the

system (1.10) satisfied the following properties: (i) (x(t),u(t)) ∈ Y for all t ≥ 0; (ii)

limt→∞ c∗(0|t) = 0; (iii) x(t)→ F∞(K f ) as t tends to infinity.

In the above theorem, F∞(K f ) set refers to the F∞ set of the system x(t + 1) = (A +

BK f )x(t) + w(t), where F∞ := limi→∞ Fi with Fi defined in (1.17). Since the system

asymptotic behavior described in (iii) of Property 1.2.1 is referred to many times in this

thesis, it is defined by the following definition.

Definition 1.2.1 (F∞ convergence) A system is said to be F∞(K) attractive if the system

state converges to F∞(K), the minimal disturbance invariant set of the system x(t +1) =

(A+BK)x(t)+w(t) asymptotically.

Time-varying Affine State Feedback Parametrization

The advantages of parametrization (1.15) are the light computational burden of PFF
N (x)

and that the closed-loop system is F∞ stable. However the pre-chosen feedback gain K f

restricts the expressive ability of the parametrization to some extent. To overcome this

restriction, the following time-varying affine state feedback control parametrization has
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been proposed, see [9] by Bemporad and [38] by Smith,

u(i|t) =
i

∑
j=0

L(i, j|t)x( j|t)+g(i|t), ∀i ∈ ZN−1 (1.24)

where L(i, j|t), j ∈ Zi, g(i|t), i ∈ ZN−1 are the design variables at time t. Unfortu-

nately, the mapping between design variables and state and control variables is not lin-

ear. Therefore, the constraints on design variables are non-convex. This is verified by

the following example.

Example 1.2.1 (Example 4 in [39]) Consider the SISO system x(t +1) = x(t)+u(t)+

w(t) with constraint |u(t)| ≤ 3, |w(t)| ≤ 1 and initial state x(t) = 0. Follow parametriza-

tion (1.24) and let g(i|t)≡ 0, L(2,1|t) = 0, it can be shown that

u(1|t) = L(1,1|t)w(0|t) (1.25a)

u(2|t) = L(2,2|t)(1+L(1,1|t))w(0|t)+L(2,2|t)w(1|t) (1.25b)

then the constraints on u(1|t) and u(2|t) is satisfied if and only if

|L(1,1|t)| ≤ 3 (1.26a)

|L(2,2|t)(1+L(1,1|t))|+ |L(2,2|t)| ≤ 3 (1.26b)

It can be verified (L(1,1|t),L(2,2|t)) = (−3,1) and (L(1,1|t),L(2,2|t)) = (−1,3) are

feasible, while (L(1,1|t),L(2,2|t)) = (−2,2) is not.
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As a consequence of this non-linear mapping, the FH optimization problem under parametriza-

tion (1.24) is not computationally tractable. Several approximations [3, 40, 38] have

been proposed to simplify the computation and this remains an open research issue.

Time-varying Affine Disturbance Feedback Parametrization

Instead of using time-varying state feedback parametrization (1.24), Löfberg [41] pro-

posed a time-varying disturbance feedback parametrization,

u(i|t) =
i

∑
j=1

M(i, j|t)w(i− j|t)+ v(i|t), ∀i ∈ ZN−1 (1.27)

where M(i, j|t) ∈ Rm×n, j ∈ Z+
i , v(i|t) ∈ Rm, i ∈ ZN−1 are design variables at time t.

It is shown in [42] by Kerrigan and Maciejowksi that under this parametrization, x(i|t)

and u(i|t) are affine functions of M(i, j|t) and v(i|t). Hence the FH optimization problem

under this parametrization becomes convex and computationally tractable. The relation-

ship between (1.24) and (1.27) was unclear until the work of Goulart et al. [39] in 2006.

They show that parametrization (1.24) and (1.27) are equivalent in their expressive abil-

ities, and this is summarized in the following property (Theorem 9 in [39]).

Property 1.2.2 For any L(i, j|t), j ∈Zi, g(i|t), i∈ZN−1 in (1.24), a set of M(i, j|t), j ∈

Z+
i , v(i|t), i ∈ ZN−1 in (1.27) can be found that yields the same control sequence for

any disturbance sequence and vice-versa.

Remark 1.2.1 Property 1.2.2 implies that if an initial state is feasible for the FH op-
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timization problem under time-varying affine state feedback parametrization, it is also

feasible under the time-varying affine disturbance feedback parametrization. Hence,

both FH optimization problem share the same admissible set.

The cost function used in the FH optimization in [39] is the linear quadratic (LQ) cost

function of nominal state and control variables,

JNLQ(x(0|t),{v(i|t)}N−1
i=0 ) :=

N−1

∑
i=0

(‖x̄(i|t)‖2
Q +‖ū(i|t)‖2

R)+‖x̄(N|t)‖2
P (1.28)

where Q Â 0, R Â 0, P Â 0, x̄(0|t) = x(t), x̄(i + 1|t) = Ax̄(i|t) + Bū(i|t) and ū(i|t) =

v(i|t). Collect all the design variables in v(t) := {v(i|t) i∈ZN−1} and M(t) := {M(i, j|t) j∈

Z+
i i ∈ ZN−1}. Then utilizing parametrization (1.27) and cost function (1.28), the FH

optimization problem, referred to hereafter as PDF
N (x(t)), is

min
v(t),M(t)

JNLQ(x(0|t),v(t)) (1.29a)

s.t. x(0|t) = x(t) (1.29b)

x(i+1|t) = Ax(i|t)+Bu(i|t)+w(i|t), ∀i ∈ ZN−1 (1.29c)

u(i|t) =
i

∑
j=1

M(i, j|t)w(i− j|t)+ v(i|t), ∀i ∈ ZN−1 (1.29d)

(x(i|t),u(i|t)) ∈ Y, ∀i ∈ ZN−1, ∀ w(t) ∈W N (1.29e)

x(N|t) ∈ X f , ∀ w(t) ∈W N (1.29f)
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Optimization problem PDF
N (x(t)) can be solved using standard techniques of Robust

Optimization, see [43] by Ben-Tal et al. and [44] by Ben-Tal and Nemirovski. A brief

review of Robust Optimization techniques is given in Section 2.3 and details of solving

PDF
N (x(t)) are postponed until Chapter 3, see also [39].

Solving optimization problem PDF
N (x(t)) yields the optimizer (v∗(t),M∗(t)) and the

optimal control policy u∗(t). The very first control action of u∗(t) is applied to the

system, yielding the MPC control law,

κDF(x(t)) := v∗(0|t). (1.30)

The admissible set of PDF
N (x(t)) is defined in the same manner as XN in (1.9),

X DF
N := {x| ∃(M,v) such that PDF

N (x) is feasible}. (1.31)

It was also proved in [39] that under controller (1.30), the origin is input-to-state stable

(ISS) for the closed-loop system under mild assumptions. Before introducing ISS, the

following concepts are needed.

Definition 1.2.2 (K -function) A continuous function γ : R+ → R+ is a K -function if

it is strictly increasing and γ(0) = 0; it is a K∞-function if, in addition, γ(s) → ∞ as

s→ ∞.

Definition 1.2.3 (K L -function) A continuous function β :R+×R+→R+ is a K L -

function if for all k ≥ 0, the function β (·,k) is a K -function and for each s ≥ 0,
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β (s,k)→ 0 as k → ∞.

The definition of input-to-state stability is given as follows [39, 45].

Definition 1.2.4 (Input-to-State Stability) For system x(t +1) = f (x(t),w(t)), the ori-

gin is input-to-state stable with region of attraction X ⊆ Rn, if there exist a K L -

function β (·) and a K -function γ(·) such that for all initial states x(0) ∈ X and dis-

turbance sequences w(·), the system state x(t), for all t ≥ 0, satisfies

‖x(t)‖ ≤ β (‖x(0)‖, t)+ γ(sup{‖w(τ)‖| τ ∈ Zt−1}) (1.32)

The feasibility and stability of system (1.10) under controller (1.30) is summarized in

the following property (Proposition 13 and Theorem 23 in [39]).

Property 1.2.3 Given x(0)∈X DF
N , PDF

N (x(t)) is feasible for all t ≥ 0 for system (1.10)

under MPC controller (1.30) and the closed-loop system has the following properties:

(i) (x(t),u(t)) ∈ Y for all t ≥ 0; (ii) the origin is ISS for the closed-loop system.

1.3 Motivations

Based on the review given in the previous section, a picture of the recent development of

MPC for constrained linear systems with additive disturbances, together with its com-

parison with the Linear Quadratic Regulator (LQR) method, is shown in Figure 1.1.
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Figure 1.1: Recent development of MPC and comparison with LQR

LQR is one of the earliest optimal control methods for unconstrained linear systems,

and the controller u(t) = Kx(t) is obtained by minimizing the infinite horizon LQ cost

∑∞
t=0 ‖x(t)‖2

Q + ‖u(t)‖2
R of the disturbance-free linear system x(t + 1) = Ax(t)+ Bu(t).

It is also known that under the optimal LQ feedback law, the closed-loop system is

asymptotically stable [46]. When zero mean additive disturbance is present, controller

u(t) = Kx(t) is still optimal [47, 48], but the system state converges to the minimal

disturbance invariant set F∞(K) [37] in this case.

When no constraint is violated, it is desirable for the MPC controller to achieve the

same closed-loop system behavior as the LQR controller. This is true for the MPC

controller κFF(x) in (1.22) under the fixed feedback gain parametrization (1.15) if the

K f in (1.15) is chosen to be the optimal LQ feedback gain, see Property 1.2.1. Time-
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varying state feedback parametrization (1.24) and time-varying disturbance feedback

parametrization (1.27) generalize the control parametrization (1.15), and hence improve

the MPC controller performance and admit a large admissible set than (1.15). However,

a different stability result, ISS, is proved.

Several desirable properties of (1.10) under an MPC control law can be expected from

the above discussions. These are listed as P1 to P3 below.

P1: F∞ convergence for the closed-loop system under MPC feedback law.

P2: A control parametrization that has as general a representative ability as possible.

P3: Ways to influence the shape of F∞ since it characterize the asymptotic behavior of

the closed-loop system.

Properties P1 and P2 are discussed in Chapter 3, 4 and 5. Chapter 6 shows a design

procedure for P3.

Besides P1-P3, it is observed that in almost all cases in the MPC literature, constraints

are required to be satisfied at all times. This may be too restrictive for some applications.

For some cases, it is acceptable that constraints hold at certain confidence levels [23, 49,

50, 51]. Such constraints are best represented by probabilistic constraints. Chapter

7 of this thesis shows a treatment of handling probabilistic constraint under the MPC

framework.
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1.4 Assumptions

This thesis focuses on the control of following constrained time-invariant linear discrete-

time (CTLD) system,

x(t +1) = Ax(t)+Bu(t)+w(t) (1.33a)

(x(t),u(t)) ∈ Y, ∀ t ≥ 0 (1.33b)

w(t) ∈W, ∀ t ≥ 0 (1.33c)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control of the system at time t, respec-

tively, w(t) ∈ Rn is the disturbance on the system at time t and W is compact, and Y

is the joint state and control constraint set imposed on the system. For the rest of this

thesis, the CTLD system (1.33) is assumed to satisfy the following assumptions.

Assumption 1.4.1

(A1) x(t) is measurable at every time instant t, the system (1.33a) is stabilizable;

(A2) the set

Y := {(x,u)| Yxx+Yuu≤ 1q} ⊂ Rn+m (1.34)

for some Yx ∈ Rq×n and Yu ∈ Rq×m, is compact and contains the origin;
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(A3) the disturbance w(t) is bounded in the sense that

w(t) ∈W := {w| Hw≤ 1r} ⊂ Rn; (1.35)

for some H ∈ Rr×n and contains the origin;

(A4) a constant feedback gain K f ∈ Rm×n is given such that Φ := A+BK f has a spec-

tral radius ρ(Φ) < 1 and a constraint-admissible d-invariant set X f in the follow-

ing form

X f := {x| Gx≤ 1g}, (1.36)

for some G ∈ Rg×n, exists under controller u(t) = K f x(t) in the sense that Φx +

w ∈ X f , (x,K f x) ∈ Y for all x ∈ X f and for all w ∈W.

In the above, 1k is a k-vector with all elements being 1. Assumption (A1) is standard,

and using it, w(t) can be obtained at time t +1 by w(t) = x(t +1)−Ax(t)−Bu(t). Hence,

a control parametrization based on past disturbances is possible. The characterizations

of Y in (A2) is made out of the need for computational consideration. Other additional

assumptions about w(t) and W are also needed and will be introduced when they are

used in the affected chapters. Under (A1)-(A3), results in [37, 52] show that for suffi-

ciently small W , the maximal constraint-admissible disturbance invariant set O∞ exists.

This will be briefly reviewed in Section 2.2.2.
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1.5 Organization of the Thesis

The following highlights the contents of each of the remaining chapters.

Chapter 2: This chapter reviews some basic concepts and methodologies needed in

this thesis. These concepts include convex sets, operations on convex sets, constraint

admissible robust disturbance invariant sets (both the maximal and the minimal) and

robust optimization, etc.

Chapter 3: This chapter introduces a control parametrization based on time-varying

disturbance feedback. The equivalence of the proposed parametrization to those that

have appeared in the literature is established. Using this parametrization, the resulting

FH optimization problem is a quadratic programming problem. Additionally, the control

law approaches to an a prori chosen linear feedback law and the system state converges

to the corresponding F∞ set asymptotically.

Chapter 4: This chapter considers a simplification of the parametrization used in Chap-

ter 3. This new parametrization does not rely on past realized disturbances. By minimiz-

ing a cost function similar to the one used in the Chapter 3, the closed-loop system state

is shown to converge to the F∞ set with probability one under certain assumptions. If a

less intuitive cost function is optimized in the FH optimization problem, the convergence

to F∞ is shown to be deterministic.

Chapter 5: This chapter considers an even more general piecewise affine, control

parametrization based on disturbance feedback. This parametrization includes affine
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disturbance feedback parametrization as a special case, and is expected to have the

largest admissible set over the parametrizations used in Chapter 3 and 4. The rest of

this chapter looks at the computational aspect of the resultant FH optimization problem.

Particularly, if the disturbance set has certain properties, the FH optimization problem

can be conveniently formulated as a convex optimization problem. The definition of this

property and related properties are studied in detail.

Chapter 6: This chapter is concerned with the design of the F∞ set using support func-

tion. For a given feedback gain, both the support function of the minimal disturbance

invariant set and its derivative with respect to the feedback gain can be evaluated with

arbitrary accuracy. Hence, an optimization problem with constraints imposed on the

support functions may be solvable using gradient-based methods. Through an optimiza-

tion problem, a feedback gain can be found so that the minimal disturbance invariant set

satisfies certain constraints. Additional constraints are also introduced to guarantee the

existence of the maximal constraints admissible disturbance invariant set.

Chapter 7: In this chapter, the concept of a constraint admissible disturbance invariant

set for a linear system with hard constraints and additive disturbances is generalized

to the case where the CDTL system has probabilistic constraints and stochastic dis-

turbances. As the most direct extension, a maximal constraint-admissible set for such

a system can be defined. However, this set is non-invariant and non-convex in gen-

eral and this limits its potential applications. An inner approximation of the maximal

constraint-admissible set is proposed. This approximate set is convex and invariant un-

der reasonable conditions. Properties and computation of this set is discussed. Its use as
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a terminal set in an MPC formulation is also introduced.

Chapter 8: This chapter summarizes the contributions of this thesis and outlines direc-

tions for future research.
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Chapter 2

Review of Related Concepts and

Properties

This chapter reviews some basic concepts and properties needed in the subsequent chap-

ters. Definitions of convex sets and related operations are given in Section 2.1. Sec-

tion 2.2 introduces definitions of two important sets of constrained linear systems with

bounded additive disturbances together with their properties. Algorithms for determin-

ing or approximating these two sets are also provided. Section 2.3 briefly reviews results

of Robust Optimization.
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2.1 Convex Sets and Sets Operations

For a thorough review of the definitions and related issues, readers are referred to [53,

37].

2.1.1 Definitions of Convex Sets

Definition 2.1.1 (Convex Set) A set Ω is convex if for any ω1,ω2 ∈ Ω and a scalar λ

with 0≤ λ ≤ 1, λω1 +(1−λ )ω2 ∈Ω.

A convex set is usually defined by a convex function, the definition of which is given

next.

Definition 2.1.2 (Convex Function) A function f (·) : X ⊆Rn→R is a convex function,

if for any x1,x2 ∈ X the following inequality holds for all 0≤ λ ≤ 1,

f (λx1 +(1−λ )x2)≤ λ f (x1)+(1−λ ) f (x2)

Most of convex sets dealt with in this thesis are polytopes which are defined by linear

inequalities. The relevant definitions are stated below.

Definition 2.1.3 (Hyperplane) A hyperplane in Rn is a set in the form

{ω : µT ω = θ}
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for some µ ∈ Rn, not all µi = 0, i ∈ Z+
n and some θ ∈ R.

Definition 2.1.4 (Half Space) A closed half space in Rn is a set in the form

{ω : µT ω ≤ θ}

where µ ∈ Rn, not all µi = 0, i ∈ Z+
n and for some θ ∈ R.

Definition 2.1.5 (Polyhedron) A convex set Ω⊂ Rn taking the form

Ω := {ω : AT ω ≤ b}

where A ∈ Rm×n and b ∈ Rm is called a polyhedron. In this form, a polyhedron Ω is

defined as the intersection of a finite number of closed half spaces. Each of the half

spaces is define by a column of A and the corresponding element in b.

Definition 2.1.6 (Polytope) A polytope is a bounded and closed polyhedron.

2.1.2 Operations on Sets

Definition 2.1.7 (Convex Hull) For a set of points Ω = {ω1, · · · ,ωL} ⊂Rn, the convex

hull of Ω is the smallest convex set that contains Ω and is defined by

CH(Ω) := {ω =
L

∑
i=1

λiωi, λi ≥ 0, ∀i ∈ Z+
L ,

L

∑
i=1

λi = 1}
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Definition 2.1.8 (Scaling of Set) Given a set Ω⊂ Rn and a ∈ R, a scaling of Ω by a is

defined as

aΩ := {z| z = aω, ω ∈Ω}.

Definition 2.1.9 (Linear Mapping of Set) Given a set Ω⊂Rn and A ∈Rm×n, a linear

mapping of Ω by A is

AΩ := {z| z = Aω, ω ∈Ω}.

Definition 2.1.10 (Minkowski Sum) Given two sets Θ⊂Rn and Ω⊂Rn, the Minkowski

sum (vector sum) of Θ and Ω is defined as

Θ⊕Ω := {z ∈ Rn| z = z1 + z2, z1 ∈Θ, z2 ∈Ω}.

It can be derived that

Θ⊕Ω = {z ∈ Rn| z− z2 ∈Θ, z2 ∈Ω}

= Projz{(z,z2)| z− z2 ∈Θ, z2 ∈Ω}

where Projz refers to the projection onto the z space from the (z,z2) space.
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Example 2.1.1 Let

Θ =





z




−0.5 0

0.5 0

0 −1

0 1




z≤ 14





, Ω =





z




5 5

5 −5

−5 5

−5 −5




z≤ 14





Then Θ⊕Ω is

Θ⊕Ω =





z




−0.5 0

0.5 0

0 −1

0 1




z≤




1.1

1.1

1.2

1.2




,




5 5

5 −5

−5 5

−5 −5




z≤




16

16

16

16








and the sets Θ, Ω and Θ⊕Ω are plotted in Figure 2.1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

Ω

Θ

Θ⊕ Ω

z1

z
2

Figure 2.1: Example of Minkowski sum
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Definition 2.1.11 (Pontryagin Difference) Given two sets Θ ⊂ Rn and Ω ⊂ Rn, the

Pontryagin difference, also known as the Minkowski difference, of Θ and Ω is defined as

ΘªΩ := {z ∈ Rn| z+ z1 ∈Θ, ∀z1 ∈Ω}.

Definition 2.1.12 (Support Function) Given a set Ω ⊂ Rn, the support function of Ω,

evaluated at y ∈ Rn is defined as

δΩ(y) := sup
ω∈Ω

yT ω.

Remark 2.1.1 If Ω is a polytope, the support function of Ω can be computed as a linear

programming (LP) problem. This is easy to see from δΩ(y) = max{yT w| AT w≤ b}

Property 2.1.1 Some known properties of support function are: (i) δAΩ(y) = δΩ(AT y);

(ii) δΩ1⊕Ω2(y) = δΩ1(y)+δΩ2(y).

Proof: (i)δAΩ(y) = supω∈Ω yT (Aω) = supω∈Ω(AT y)T ω = δΩ(AT y); (ii)δΩ1⊕Ω2(y) =

supω1∈Ω1,ω2∈Ω2
yT (ω1 +ω2) = supω1∈Ω1

yT ω1 + supω2∈Ω2
yT ω2 = δΩ1(y)+δΩ2(y).

For computing Pontryagin difference of two polytopes, the support function operation

is used, see the following properties.

Property 2.1.2 (Theorem 2.2 in [37]) Suppose Θ⊂Rn and Ω⊂Rn are two polytopes,
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each contains the origin in its interior and Θ is given by

Θ = {z| (µ i
Θ)T z≤ 1, ∀i ∈IΘ}

where µ i
Θ ∈ Rn and IΘ is an index set for Θ, then

ΘªΩ = {z| z+ z1 ∈Θ, ∀z1 ∈Ω}

= {z| (µ i
Θ)T (z+ z1)≤ 1, ∀z1 ∈Ω, ∀i ∈IΘ}

= {z| (µ i
Θ)T z≤ 1− (µ i

Θ)T z1, ∀z1 ∈Ω, ∀i ∈IΘ}

= {z| (µ i
Θ)T z≤ 1−max

z1∈Ω
(µ i

Θ)T z1, ∀i ∈IΘ}

= {z| (µ i
Θ)T z≤ 1−δΩ(µ i

Θ), ∀i ∈IΘ}

Example 2.1.2 Let Θ and Ω be the same as those in Example 2.1.1, using the result of

Property 2.1.2 ΘªΩ is

ΘªΩ =





z




−0.5 0

0.5 0

0 −1

0 1




z≤




0.9

0.9

0.8

0.8








.

and the sets are plotted in Figure 2.2.
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Θ	 Ω

z1
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Figure 2.2: Example of Pontryagin difference

2.2 Robust Invariant Sets

The theory of set invariance plays a fundamental role in the control of constrained linear

systems and has been a subject attracting much attention, see [5, 37] and references cited

therein.

This thesis considers the constraint admissible disturbance invariant sets for linear sys-

tems taking the following form

x(t +1) = Φx(t)+w(t) (2.1a)

x(t) ∈ X , w(t) ∈W, ∀t ≥ 0 (2.1b)

where x(t) ∈ Rn is the system state, w(t) ∈ Rn is the additive disturbance, X is the state

constraint set and W is a bounded disturbance set containing the origin as interior.
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2.2.1 Minimal Disturbance Invariant Set

For system (2.1), the definition of a disturbance invariant set is the following,

Definition 2.2.1 (Disturbance Invariant Set) A set T is a disturbance invariant set

for system (2.1), also known as a d-invariant set, if

Φx+w ∈T , ∀ w ∈W and ∀ x ∈T .

One special d-invariant set is the minimal d-invariant set. Due to the existence of the

disturbance, the state of (2.1a) does not converge to the origin but to a neighborhood of

the origin. The set of all states of (2.1a) reachable at time t, starting from x(0) = 0, is

Ft := {x| x =
t−1

∑
i=0

Φ(t−1−i)w(i), w(i) ∈W, i ∈ Zt−1} (2.2)

and using notation of Minkowski sum, it can also be written as

Ft = W ⊕ΦW ⊕·· ·⊕Φt−1W (2.3)

As t tends to infinity, Ft tends to F∞ and its properties are summarized below, see Theo-

rem 4.1 and Corollary 4.2 in [37] for more.

Property 2.2.1 Assume matrix Φ in (2.1a) is asymptotically stable, then there exists a

compact set, F∞ ∈ Rn, with the following properties:
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(i) 0 ∈ Ft ⊂ F∞;

(ii) Ft → F∞ as t tends to infinity;

(iii) F∞ is the smallest d-invariant set, i.e., if T is any closed d-invariant set, then

F∞ ⊆T .

Although the characteristics of F∞ is clear, unfortunately, there is no method for the

exact determination of F∞ for system (2.1) except for some special cases [37, 54]. In

the literature, various methods of determining the outer bounds of F∞ set have been

proposed, see [5] by Blanchini, [55] by Hirata and Ohta, [56] by Raković et al. and

[57] by Ong and Gilbert. In this thesis, the approach of [57] is used to compute the

outer bounds of F∞ set, and the details, based on the method in [57], are briefly reviewed

below.

In the method, the outer approximation takes the form of σkFk for some scalar σk > 1

and some index k, with F∞ ⊆ σkFk. Since Fk → F∞ as k→∞, σkFk is an excellent choice

for an outer bound of F∞ in the sense that the accuracy of the approximation increases

with increasing k. Specifically, suppose Fk is expressed as

Fk = {x ∈ Rn| (µ j
Fk

)T x≤ 1, ∀ j ∈IFk} (2.4)

where µ j
Fk
∈ Rn and IFk is the index set for the set Fk. The condition F∞ ⊆ σkFk holds

if and only if δF∞(µ j
Fk

)≤ σkδFk(µ j
Fk

) = σk, ∀ j ∈IFk . Let σ k := min j∈IFk
δF∞(µ j

Fk
), then
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it is easy to see that σ kFk is an outer bound of F∞. To compute σ k, note that

δF∞(µ j
Fk

) =
∞

∑
i=0

δW ((Φi)T µ j
Fk

) (2.5)

then it can be computed to a great degree of accuracy by its partial sum δ L
F∞

(µ j
Fk

) =

∑L−1
i=0 δW ((Φi)T µ j

Fk
). The error in the approximation of δF∞(·) by δ L

F∞
(·) can be bounded

because there exist a v > 0 such that 0 < δW ((Φi)T µ j
Fk

) < (ρ(Φ))iv for all j ∈ IFk .

Specifically,

v = ( max
j∈IFk

‖µ j
Fk
‖2) · (max

w∈W
‖w‖2) ·M (2.6)

where M(ρ(Φ))i≥‖Φi‖2 and ‖Φ‖2 is the induced norm of Φ. Then the error is bounded

by v(1−ρ(Φ))−1(ρ(Φ))L, and

δF∞(µ j
Fk

) < σL
k := min

j∈IFk

δ L
F∞(µ j

Fk
)+ v(1−ρ(Φ))−1(ρ(Φ))L. (2.7)

Therefore, the set σL
k Fk is a tight outer bound of F∞. The numerical results of computing

the outer bounds of F∞ set are illuminated through the following example.

Example 2.2.1 Let the parameters in (2.1) be

Φ =




0.4 −0.3

−0.5 −0.2


 , w(t) ∈W := {w ∈ R2| ‖w‖∞ ≤ 1}.

Two sets of approximation are determined. In the first set, L in (2.7) is chosen to be 7
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and k varies from 2 to 6. The corresponding σL
k are listed in Table 2.1 and σL

k Fk are

plotted in Figure 2.3

L = 7 k = 2 k = 3 k = 4 k = 5 k = 6

σL
k 1.5631 1.2855 1.1563 1.0950 1.0607

Table 2.1: Optimal scale with L = 7 and k = 2, . . . ,6

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

σ
7
2F2

σ
7

6
F6

Figure 2.3: Approximation of F∞ with L = 7 and k = 2, . . . ,6

In the second set, k is chosen to be 4 and L in (2.7) varies from 2 to 6. The corresponding

σL
k are listed in Table 2.2 and σL

k Fk are plotted in Figure 2.4

k = 4 L = 2 L = 3 L = 4 L = 5 L = 6

σL
k 1.4882 1.3355 1.2141 1.1836 1.1667

Table 2.2: Optimal scale with k = 4 and L = 2, . . . ,6
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Figure 2.4: Approximation of F∞ with k = 4 and L = 2, . . . ,6

2.2.2 Maximal Constraint Admissible Disturbance Invariant Set

This section briefly review another important set for system (2.1), the maximal con-

straint admissible d-invariant set. This set is usually chosen to be the terminal constraint

set X f in MPC approach and plays a key role in the proof of feasibility of the FH op-

timization problem and stability of the closed-loop system in the later chapters of this

thsis.

Definition 2.2.2 (Constraint Admissible d-invariant Set) A set Γ⊂Rn is a constraint

admissible d-invariant set of system (2.1) if Γ is d-invariant and Γ⊂ X.

Definition 2.2.3 (Maximal Constraint Admissible d-invariant Set) The maximal con-

straint admissible d-invariant set, denoted as O∞, of system (2.1) is a constraint admis-

sible d-invariant set that contains every closed, constraint admissible d-invariant set of

system (2.1).
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Properties and computational issues of the O∞ set of system (2.1) have already been

intensively studied in the literature, see, e.g., [5] and [58] by Blanchini, [59] by Aubin,

[60] by Bertsekas, [61] by Gilber and Tan. An algorithm, based on the results in [37] by

Kolmanovsky and Gilbert, is given below.

Algorithm 2.2.1 (Determination of O∞) Given Φ, X and W in (2.1)

Step 1: Let k = 0, O0 = X and X0 = X;

Step 2: Determine Xk+1 = XkªΦkW. If Xk+1 =∅, set O∞ =∅ and stop;

Step 3: Determine Ok+1 = Ok∩{x|Φk+1x∈ Xk+1}. If Ok+1 =∅, set O∞ =∅ and stop;

Step 4: If Ok+1 = Ok, set O∞ = Ok, k∗ = k and stop; otherwise let k = k +1 and got to

Step 2.

Property 2.2.2 (Theorem 6.3 in [37]) Assume Φ is asymptotically stable and X∞ con-

tains origin in its interior, i.e. 0 ∈ int(X∞), then O∞ is finitely determined, i.e. Algorithm

2.2.1 stops in finite iterations.

Example 2.2.2 Consider the system

x(t +1) = Ax(t)+Bu(t)+w(t)

u(t) = Kx(t)
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where

A =




1.1 1

0 1.3


 , B =




1

1


 , K = [−0.4991 −0.9546] .

and

x(t) ∈ X̄ = {x| ‖x‖∞ ≤ 5}, u(t) ∈U = {u| ‖u‖∞ ≤ 1}, w(t) ∈W = {w| ‖w‖∞ ≤ 0.2}

This system can be converted to the form of (2.1) with

x(t) ∈ X := {x| ‖x‖∞ ≤ 5, ‖Kx‖∞ ≤ 1}

and Φ = A + BK. Using Algorithm 2.2.1, the O∞ set, with k∗ = 2, is plotted in Figure

2.5
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Figure 2.5: O∞ set of the example system
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2.3 Robust Optimization

This section reviews some results in Robust Optimization that are needed to solve the

FH optimization problem of MPC in this thesis. For a thorough review of Robust Opti-

mization, readers are referred to [62], [63] and [44] by Ben-Tal and Nemirovski.

2.3.1 Robust Linear Programming

Consider the following optimization problem,

max
x,y

ax+ cT y (2.8a)

s.t. x+ yT w≤ b, ∀ w ∈ {w : Lw≤ l} (2.8b)

where x∈R and y∈Rn are decision variables, w∈Rn is uncertainty factor and (a,b,c,L, l)

are appropriate parameters. Constraint (2.8b) can be equivalently written as

x+ max
Lw≤l

yT w≤ b (2.9)

Note that the maximum of yT w in (2.9) equals the minimum of its dual problem,

max
w
{yT w| Lw≤ l}= min

z
{lT z| LT z = y, z≥ 0}. (2.10)
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where z is the dual decision variable. Hence, constraint (2.9) can be equivalently ex-

pressed as

x+ lT z≤ b (2.11a)

LT z = y (2.11b)

z≥ 0 (2.11c)

Replacing (2.8b) with (2.11), the optimization problem (2.8) is equivalent to

max
x,y,z

ax+ cT y (2.12a)

s.t. x+ lT z≤ b (2.12b)

LT z = y (2.12c)

z≥ 0 (2.12d)

and this LP is called the deterministic equivalent of (2.8).
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2.4 Notations

Some notations that are to be used frequently are defined in this section.

Integer sets

Zi := {0,1, · · · , i} (2.13)

Z+
i := {1, · · · , i} (2.14)

Given two Matrices A ∈ Rn×m, B ∈ Rp×q and a vector v ∈ Rn. Let Ai ∈ Rn denote the

ith column of A matrix and Let ai, j denote the (i, j) element of A. Let vi, i ∈ Z+
n denote

the ith element of vector v.

Kronecker product

A⊗B :=




a1,1B · · · a1,mB

... . . . ...

an,1B · · · an,mB



∈ Rnp×mq (2.15)

Vector operation

vec(A) :=
[
AT

1 · · · AT
m
]T ∈ Rnm (2.16)
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Frobenius norm

‖A‖F :=

√
n

∑
i=1

m

∑
j=1

a2
i, j = ‖vec(A)‖ (2.17)

Absolute value of vector

|v| := [|v1| |v2| · · · |vn|]T ∈ Rn (2.18)

Maximization of vectors

Given v1,v2 ∈ Rn, v = max{v1, v2} means vi = max{v1
i , v2

i }, ∀i ∈ Z+
n .
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Chapter 3

Stability of MPC Using Affine

Disturbance Feedback Parametrization

In this chapter, an affine disturbance feedback control parametrization for an MPC for-

mulation is proposed. Equivalence of the expressive abilities of the proposed parametriza-

tion and the time-varying disturbance feedback parametrization is shown. This leads

to the conclusion that the closed-loop systems under both parametrizations share the

same admissible set. Furthermore, by minimizing a norm-like cost function, the MPC

controller derived under the proposed control law steers the system state to a minimal

d-invariant set asymptotically.

This chapter is organized as follows. Section 3.1 proposes the new control parametriza-

tion and establishes the equivalence of its expressive ability to that of a time-varying

affine disturbance feedback parametrization. The FH optimization and related defini-
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tions are also given in this section. The choice of objective function and its connection

with the standard linear quadratic cost are given in Section 3.2. Computation of the

resulting FH optimization problem is discussed in Section 3.3. Section 3.4 takes on

the feasibility and stability issues of the closed-loop system. Numerical examples and

summary are contents of the last two sections.

3.1 A New Affine Disturbance Feedback Parametriza-

tion

The CTLD system of (1.33), satisfying Assumption 1.4.1, is considered. For conve-

nience, it is repeated here

x(t +1) = Ax(t)+Bu(t)+w(t) (3.1a)

(x(t),u(t)) ∈ Y, w(t) ∈W, ∀ t ≥ 0 (3.1b)

where x(t) ∈ Rn, u(t) ∈ Rm and w(t) ∈ Rn are the state, control and disturbance of the

system at time t, respectively, W is a bounded disturbance set and Y is the joint state and

control constraint imposed on the system.
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The choice of u(i|t) in this chapter, motivated by [10, 41, 39], takes the form





u(i|t) = K f x(i|t)+ l(i|t)

l(i|t) = c(i|t)+∑N−1
j=1 C(i, j|t)w(i− j|t)

∀i ∈ ZN−1 (3.2)

where l(i|t) is an affine function of the N−1 disturbances preceding time t + i, C(i, j|t)∈

Rm×n is the matrix of coefficients associated with the disturbance at time t + i− j and

w(i− j|t) is the realized disturbance w(t + i− j) if i− j < 0 or an unknown future

disturbance at time t if i− j ≥ 0, see Figure 3.1. K f is the specified feedback gain in

(A4) of Assumption 1.4.1.

Figure 3.1: Disturbances in the parametrization

Parametrization (3.2) differs from time varying affine disturbance feedback parametriza-

tion (1.27), denoted hereafter by uDF , in two ways:

(1) a fixed state feedback term K f x(i|t) is introduced;

(2) the index j runs from 1 to N−1 instead of i, hence realized disturbances are used

in the parametrization.

The role of these two changes will become clear in Section 3.4. Collect the past N−1
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realized disturbances mentioned above in

wr(t) :=




w(−(N−1)|t)

w(−(N−2)|t)
...

w(−1|t)




=




w(t− (N−1))

w(t− (N−2))

...

w(t−1)




∈W N−1 (3.3)

where W N−1 is the N−1 times cartesian product spaces of W . Let the predicted control

sequence (1.3), predicted state sequence (1.4) and unrealized disturbances (1.14) have

the following structure,

x(t) :=




x(0|t)

x(1|t)
...

x(N|t)




, u(t) :=




u(0|t)

u(1|t)
...

u(N−1|t)




, and w(t) :=




w(0|t)

w(1|t)
...

w(N−1|t)




. (3.4)

The rest of the variables within the control horizon in (3.2) can be collected in matrices

C(t) ∈ RNm×(2N−1)n and c(t) ∈ RNm in the following form

C−(t) :=




C(0,N−1|t) C(0,N−2|t) · · · C(0,2|t) C(0,1|t)

0 C(1,N−1|t) · · · C(1,3|t) C(1,2|t)
...

... . . . ...
...

0 0 · · · 0 C(N−2,N−1|t)

0 0 · · · 0 0




, (3.5)
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C+(t) :=




0 0 · · · 0 0

C(1,1|t) 0 · · · 0 0

...
... . . . ...

...

C(N−2,N−2|t) C(N−2,N−3|t) · · · 0 0

C(N−1,N−1|t) C(N−1,N−2|t) · · · C(N−1,1|t) 0




, (3.6)

c(t) :=




c(0|t)

c(1|t)
...

c(N−1|t)




, and C(t) := [C−(t) C+(t)]. (3.7)

Clearly, C−(t) is the collection of the coefficient associated with the past disturbance

wr(t) and C+(t) is the collection of the coefficient associated with the future disturbance

w(t)

Using these notations, the FH optimization using the control parametrization of (3.2),

referred hereafter as PDFC
N (x(t),wr(t)), can be written as

min
c(t),C(t)

JDFC(c(t),C(t))

s.t. x(t) = A x(t)+Bu(t)+G w(t) (3.8a)

u(t) = K x(t)+ c(t)+C−(t)wr(t)+C+(t)w(t) (3.8b)

(x(i|t),u(i|t)) ∈ Y, ∀ w(t) ∈W N , ∀i ∈ ZN−1 (3.8c)

x(N|t) ∈ X f , ∀ w(t) ∈W N (3.8d)

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.1 A New Affine Disturbance Feedback Parametrization 51

where X f is the constraint-admissible d-invariant set as given in Assumption 1.4.1 (A4);

JDFC(c(t),C(t)) is an appropriate cost function details of which are discussed in Section

3.2 and

A :=




In

A

A2

...

AN




, B :=




0 0 · · · 0

B 0 · · · 0

AB B · · · 0

...
... . . . ...

AN−1B AN−2B · · · B




, (3.9)

G :=




0 0 · · · 0

In 0 · · · 0

A In · · · 0

...
... . . . ...

AN−1 AN−2 · · · In




, K := [IN ⊗K f 0], (3.10)

⊗ is Kronecker product of matrices defined in (2.15).

Let the feasible set of the FH optimization problem PDFC
N (x,wr) be

ΠDFC
N (x,wr) := {(c,C)| (c,C) is feasible for PDFC

N (x,wr)} (3.11)

and the admissible set of PDFC
N (x,wr) be defined as

X DFC
N := {x| ΠN(x,wr) 6= /0, ∀ wr ∈W N−1}. (3.12)

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.1 A New Affine Disturbance Feedback Parametrization 52

The rest of the MPC formulation is standard: PDFC
N (x(t),wr(t)) is solved at each time

t, yielding the optimal solution

(c∗(t),C∗(t)) := argmin PDFC
N (x(t),wr(t)) (3.13)

and the very first term of the corresponding optimal control sequence is applied to sys-

tem (3.1a). Hence, the MPC control law is

u(t) = κDFC(x(t),wr(t)) := K f x(t)+ c∗(0|t)+
N−1

∑
j=1

C∗(0, j|t)w(t− j) (3.14)

Although the information of wr(t) is already captured in x(t), it is added for stability

consideration, see Theorem 3.4.2.

The remaining part of this section shows the equivalence of the expressive abilities of

parametrization (3.2) and the time varying disturbance feedback parametrization uDF

in (1.27). Similar to (3.8b), the control sequence u(t) using parametrization (1.27), as

proposed in [41, 39], can be written as

u(t) = v(t)+M(t)w(t) (3.15)
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where

v(t) =




v(0|t)

v(1|t)
...

v(N−1|t)




, M(t) =




0 · · · 0 0

M(1,1|t) · · · 0 0

... . . . ...
...

M(N−1,N−1|t) · · · M(N−1,1|t) 0




are the variables of u(t). Under parametrization of (3.15), the admissible set of the

FH optimization is X DF
N , see equation (1.31). Equivalence of X DF

N and X DFC
N is

summarized in the following theorem.

Theorem 3.1.1 Suppose x(t) ∈ Rn and a realization wr(t) are given. Then, (i) for any

(c(t),C(t)) and w(t) sequence that define u(t) in (3.8b) and x(t) in (3.8a), there exists

a unique (M(t),v(t)) that yields the same u(t) and x(t) sequences. (ii) for any choice

of (M(t),v(t)) that defines u(t) in (3.15) and x(t) in (3.8a), there exists at least one

choice of (c(t),C(t)) of (3.8b) which yields the same u(t) and x(t) sequences for all

w(t) sequence. Hence X DFC
N = X DF

N .

Proof: See Appendix 3.A.1.

Remark 3.1.1 As X DFC
N = X DF

N , it may appear that the variable C− is superfluous.

Its inclusion is needed in ensuring stability of the closed-loop system and will become

obvious in Section 3.4. See also Remark 3.4.1.

A less obvious result regarding properties of X DFC
N follows from Theorem 3.1.1 and is
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stated next.

Lemma 3.1.1 For any pair of (ŵr, w̃r) ∈ W N−1 ×W N−1, ΠDFC
N (x, w̃r) 6= /0 implies

ΠDFC
N (x, ŵr) 6= /0 and vice versa.

Proof: See Appendix 3.A.2.

An immediate consequence of Lemma 3.1.1 and Assumption 1.4.1 (A3) is that X DFC
N

of (3.12) can be equivalently stated as

X DFC
N := {x| ΠN(x,0) 6=∅}. (3.16)

Remark 3.1.2 Characterization (3.16) allows a simple verification of the condition x ∈

X DFC
N . Specifically, x ∈X DFC

N if and only if PDFC
N (x,0) admits a feasible solution.

3.2 Choice of Cost Function

To achieve the desired stability result, the cost function of PDFC
N (x(t),wr(t)) is chosen

to be

JDFC(c(t),C(t)) :=
N−1

∑
i=0

h(l(i|t)) :=
N−1

∑
i=0

[
‖c(i|t)‖2

Ψ +
N−1

∑
j=1
‖vec(C(i, j|t))‖2

Λ

]
(3.17)

for some Ψ Â 0 and Λ Â 0 and vec(C) is the vector operation of C defined in (2.16).

This choice of cost function is motivated from consideration of the standard LQ cost and
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hence preserve the use of the 2 norm. It is possible to show, with additional notations,

that the results of Theorem 3.4.2 remain true if the 1,∞ norm or any norm function of

l(i|t) is used for h(·) in (3.17). The choices of Ψ and Λ can be arbitrary so long as they

are positive definite.

It is of interest to note that (3.17) can be related to the standard infinite horizon LQ cost

if stronger assumptions are made. While not needed for stability consideration, these

assumptions are:

Assumption 3.2.1 Disturbance w(t), cost weight Q, R, P and terminal feedback gain

K f are assumed to satisfy

(A5) w(t) is a random vector, uncorrelated from instant to instant, has zero mean and

covariance matrix Σw, i.e.

E [w(t)] = 0, E
[
wT (t)w(t)

]
= Σw; (3.18)

(A6) Suppose Q º 0, R Â 0 are given and (Q
1
2 ,A) is detectable. Let P = AT PA−

AT PB(R + BT PB)−1BT PA + Q, the solution of the algebraic Riccati equation,

K f =−(R+BT PB)−1BT PA, Ψ = R+BT PB and Λ = Σw⊗Ψ.
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Consider the expected LQ cost of

JELQ(x(t),u(t)) := E(wr(t),w(t))[
N−1

∑
i=0

(‖x(i|t)‖2
Q +‖u(i|t)‖2

R)+‖x(N|t)‖2
P]

where ‖x(i|t)‖2
Q +‖u(i|t)‖2

R and ‖x(N|t)‖2
P are the stage and terminal costs respectively.

Theorem 11.2 of [47] shows that under Assumption 3.2.1 (A6)

N−1

∑
i=0

(xT (i|t)Qx(i|t)+uT (i|t)Ru(i|t))+ xT (N|t)Px(N|t)

= xT (0|t)Px(0|t)+
N−1

∑
i=0

‖u(i|t)−K f x(i|t)‖2
(R+BT PB) +

N−1

∑
i=0

wT (i|t)Pw(i|t)

+
N−1

∑
i=0

[
(Ax(i|t)+Bu(i|t))T Pw(i|t)+wT (i|t)P(Ax(i|t)+Bu(i|t))] . (3.19)

Following control parametrization (3.2), the terms x(i|t) and u(i|t) on the right hand

side of the preceding equation are linear functions of past disturbances w( j|t), j < i.

Taking the expected value over (wr(t),w(t)), the last term on the right hand side of

(3.19) vanishes following Assumption 3.2.1 (A5). In addition, the first and third terms

of the right hand side are constants. This yields

JELQ(x(t),u(t)) := xT (0|t)Px(0|t)+N · trace(ΣwP)+E(wr(t),w(t))(
N−1

∑
i=0

lT (i|t)Θl(i|t))

(3.20)

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.2 Choice of Cost Function 57

where Θ = R+BT PB. The last term of (3.20) is exactly JDFC(c(t),C(t)) in (3.17) if

Ψ = Θ, Λ = Σw⊗Θ. (3.21)

This can be seen from

N−1

∑
i=0

E(wr(t),w(t))

[
(c(i|t)+

N−1

∑
j=1

C(i, j|t)w(i− j|t))T Θ(c(i|t)+
N−1

∑
j=1

C(i, j|t)w(i− j|t))
]

=
N−1

∑
i=0

[
cT (i|t)Θc(i|t)+

N−1

∑
j=1

trace
[
Σw(CT (i, j|t)ΘC(i, j|t))]

]

=
N−1

∑
i=0

[
cT (i|t)Θc(i|t)+

N−1

∑
j=1

vec(C(i, j|t))T (Σw⊗Θ)vec(C(i, j|t))
]

(3.22)

The last line results from E
[
wT Xw

]
= trace(XΣw) = trace(ΣwX) = vec(XT )T vec(Σw)

and vec(AXB) = (BT ⊗ A)vec(X). Θ is positive definite since R and P are positive

definite. Σw ⊗Θ is positive (semi)definite since Kronecker product of two positive

(semi)definite matrices is also positive (semi)definite according to Theorem 4.2.12 of

[64].

As the first two terms of (3.20) are independent of (c(t),C(t)), the minimization of

JDFC(c(t),C(t)) in (3.17) is equivalent to the minimization of expected LQ cost (3.20).

The above equations of (3.20)-(3.22) follows a similar development in [65, 66, 67] by

Goulart and Kerrigan, but is adapted for the proposed parametrization (3.2).
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3.3 Computation of the FH Optimization Problem

This section discusses the computation of the the FH optimization problem PDFC
N (x(t),wr(t)).

Inequalities (3.8c) and (3.8d) can be restated, using characterization of Y and X f given

in Assumption 1.4.1, as




Ȳx 0 Ȳu

0 G 0







x̃(t)

x(N|t)

u(t)



≤ 1Nq+g, ∀ w(t) ∈W N (3.23)

where Ȳx := IN⊗Yx, Ȳu := IN⊗Yu, x̃(t) := [xT (0|t) · · · xT (N−1|t)]T and the dependence

of x(t),u(t) on w(t) are shown explicitly. Using expressions of x(t) and u(t) from

(3.29), (3.23) can be written as

¯A x(t)+ B̄c(t)+ F̄vec(C−(t))+ max
w(t)∈W N

[
B̄C+(t)+ Ḡ

]
w(t)≤ 1s (3.24)

where s := Nq+g, the max operator is taken element-wise and

Y :=




Ȳx 0 Ȳu

0 G 0


 , ¯A := Y




Ax

Au


 , B̄ := Y




Bx

Bu


 (3.25)

Ḡ := Y




Gx

Gu


 , F̄ := Y ((wr(t))T ⊗




Bx

Bu


) (3.26)

Using the expression of (1.35), W N = {w|H̄w≤ 1`, H̄ := IN⊗H, ` := Nr}. Let µi be the

ith row of (B̄C+(t)+ Ḡ ), then each row i of the maximization in (3.24) can be related
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to a linear programming problem in w(t),

max
w(t)

{µiw(t)| H̄w(t)≤ 1`} (3.27)

and following the standard procedure in robust optimization reviewed in Section 2.3.1

(see [62, 63] for more details),

max
w(t)

{µiw(t)|H̄w(t)≤ 1`}= min
zi
{1T

` zi|H̄T zi = µT
i ,zi ≥ 0}

where zi ∈R` is the dual variable of the primal LP. Let Z := [z1 · · ·zs]∈R`×s. By standard

duality results given in Section 2.3.1, constraint (3.23) can be written as a set of linear

inequalities in c(t),C(t) and Z as follows,





¯A x(t)+ B̄c(t)+ F̄ vec(C−(t))+ZT ·1` ≤ 1s,

ZT H̄ = B̄C+(t)+ Ḡ ,

zi ≥ 0, i ∈ {1, · · · ,s}

(3.28)

It is known that PDFC
N (x(t),wr(t)) is feasible if and only if (3.28) is feasible. With these

results, the computation of the solution to PDFC
N (x(t),wr(t)) corresponds to solving a

convex quadratic programming problem with convex quadratic cost function (3.17) and

linear constraints (3.28) in c(t),C(t) and Z.
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3.4 Feasibility and Stability of the Closed-Loop System

The feasibility of PDFC
N (x(t),wr(t)) and stability of the closed-loop system under the

feedback law κDFC(·, ·) of (3.14) are addressed in this section.

Theorem 3.4.1 If PDFC
N (x(t),wr(t)) admits an optimal solution, so does the FH opti-

mization problem PDFC
N (x(t +1),wr(t +1)) under the feedback law (3.14).

Proof: See Appendix 3.A.3.

Theorem 3.4.2 Suppose x(0)∈X DFC
N and Assumption 1.4.1 is satisfied. System (3.1a)

under MPC control law (3.14) has the following properties: (i) (x(t),u(t))∈Y for all t ≥

0, (ii) limt→∞ l(t) = 0 element-wise, (iii) x(t)→F∞(K f ) as t →∞, (iv) If (A5) of Assump-

tion 3.2.1 is satisfied, limt→∞ E
[
x(t)x(t)T ]

= Σ∞, where Σ∞ = ΣT
∞, ΦΣ∞ΦT = Σ∞−Σw

and Φ = A+BK f .

Proof: See Appendix 3.A.4.

Remark 3.4.1 The presence of C−(t) in (3.2) is important in Theorems 3.4.1 and 3.4.2.

Specifically, (ĉ(t +1), Ĉ(t +1)) of (3.31) may not be feasible if wr is not included in the

parametrization of (3.2), see also Remark 3.A.1. Other feasible (c,C) exist and they are

discussed in Chapter 4.

It is interesting to note, from Theorems 3.1.1 and 3.4.2, that the asymptotic behavior of

the closed-loop system is determined only by the terminal feedback gain K f . Hence K f
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offers freedom to control the system asymptotic behavior. One method of designing K f

to control the system asymptotic behavior is introduced in Chapter 6.

3.5 Numerical Examples

In this section, the performance of the proposed MPC control law is illustrated on an

example system with n = 2,m = 1. The system parameters and constraints are:

A =




1.1 1

0 1.3


 , B =




1

1


 , W = {w| ‖w‖∞ ≤ 0.2}

Y = {(x,u)| |u| ≤ 1, ‖x‖∞ ≤ 10}, K f = [−0.4991 −0.9546]

where K f is the LQR feedback gain with

Q =




1 0

0 1


 , R = 1, P =




2.6093 0.21

0.21 2.1837




Terminal set X f is the corresponding maximal constraint-admissible disturbance invari-

ant set of (3.1a) under u(t) = K f x(t).

In the first simulation, w(t) is uniformly distributed over the W set. The proposed ap-

proach is simulated with Ψ, Λ chosen according to (3.21), x(0) = [−3.87 2.18]T and

N = 5. The simulation results are shown in Figure 3.2 and 3.3. In Figure 3.2, X f and an

outer bound of F∞, F̂∞, are plotted. The outer bound F̂∞ is used because the exact F∞ is
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not computable. The procedure for computing F̂∞ follows that given in Section 2.2.1. It

is clear from these figures that x(t) stays within F̂∞ and l(t)→ 0 as t → ∞ and that the

constraints are satisfied at all time.

−4 −3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

x1

x
2

F̂∞

Xf

Figure 3.2: State trajectory of the first simulation
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tt

u
(t

)

Figure 3.3: Control trajectory of the first simulation

The second simulation attempts to show the difference between the stability result of

this work and ISS proved in [39]. In order to highlight the difference, w(t) is assumed
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to be

w(t) =




0.2

0.2


− (0.9)t ×0.4×




θ 1(t)

θ 2(t)




where θ 1(t) and θ 2(t) are uniformly distributed random variables between 0 and 1. And

two sets of parameters in the cost functions of two approaches are used. The two sets

used for (3.17) are S1 = {Ψ,Λ} (the one used in the first simulation) and S2 = {Ψ =

1, Λ = I2}. The two sets used for the cost function in [39] are G1 = {Q,R,P} (the one

used in the first simulation) and G2 = {0.01×Q,R,P} which satisfy the assumption

(Assumption 2) in [39]. Performances of the various cases are simulated with x(0) =

[−1.5 1.5]T , N = 5 and the same disturbance realization. The results are shown in

Figure 3.4 and 3.5. It can be observed that the asymptotic behavior of the system using

the proposed approach depends on the choice of K f only, but that of the other approach

is also affected by the choice of the parameters of objective function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 
S

1

S
2

x1

x
2

F̂∞

Xf

Figure 3.4: State trajectories of the proposed approach

The next simulation compares the sizes of X DFC
N for the proposed approach and that
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Figure 3.5: State trajectories of the other approach

of [10]. The intention is to show the differences between the parametrization of (3.2)

and the parametrization of u(t) = K f x + c(t) where c(t) is a direct variable of the FH

problem, exemplified by the work of [10] and others. For comparison purpose, let

Pre(X f ) = {x|∃u,(x,u) ∈Y,s.t. Ax+Bu+w ∈ X f ,∀w ∈W}, the set of states that can be

brought into X f in one step and Prer = Pre · · ·Pre(Pre(X f )), the r-times repeated appli-

cation of Pre(·). In general, the computation of X DFC
N is expensive. An estimate of it

can be obtained by checking over a grid of points in the x space according to Remark

3.1.2. Figure 3.6 shows 2 sets: X RPC
5 , the admissible set using approach proposed in

[10] and Pre5(X f ). A “·” point stands for a feasible initial state of PDFC
N (x,0) and a

“×” stands for an infeasible initial state. As shown from the figure, X DFC
5 is almost

indistinguishable from Pre5(X f ) but is appreciably larger than X RPC
5 .
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Figure 3.6: Comparison of admissible sets

3.6 Summary

A new affine disturbance feedback control parametrization is proposed in this chapter.

This new parametrization is shown to have the same expressive ability as the time-

varying affine disturbance feedback parametrization proposed in [41, 39]. Therefore

the admissible set under this parametrization is equivalent to that under time-varying

feedback parametrization. The advantage of this parametrization is that F∞ stability is

achievable if a norm-like cost function of the design variables is minimized. In addition,

the size of the consequent F∞ is adjustable by regulating the terminal feedback gain K f .

Finally, the performance of the controller derived under the new parametrization is illus-

trated by numerical examples and from the results it seems that the admissible set under

the new parametrization is larger than the one under fixed feedback gain parametriza-

tion.
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3.A Appendix

3.A.1 Proof of Theorem 3.1.1

For notational simplicity, the index |t is dropped from all variables and x(t) is denoted,

without loss of generality, as x(0). Equations (3.8a) and (3.8b) can be rearranged as




x

u


 =




I −B

−K I




−1 


A x(0)+G w

c+C−wr +C+w




=




ϕ ϕB

K ϕ K ϕB + I







A x(0)+G w

c+C−wr +C+w




=




Axx(0)+Bxc+BxC−wr +(BxC+ +Gx)w

Aux(0)+Buc+BuC−wr +(BuC+ +Gu)w


 . (3.29)

where

ϕ := (I−BK )−1 =




I 0 · · · 0 0

BK f I · · · 0 0

...
... . . . ...

...

ΦN−2BK f ΦN−3BK f · · · I 0

ΦN−1BK f ΦN−2BK f · · · BK f I




and

Ax := ϕA , Bx := ϕB, Gx := ϕG , Au := K ϕA , Bu := I +K ϕB, Gu := K ϕG .
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Comparing the expressions of u of (3.29) with (3.15), it follows that to get the same u

following equations are needed.

Bu(c+C−wr) = v−Aux(0) (3.30a)

BuC+ = M−Gu. (3.30b)

In the above, C+, Bu, M and Gu are block lower triangular matrices. Hence, (M,v) can

be expressed in terms of (c,C). This proves (i). To show that multiple (c,C) exist for one

choice of (M,v), note that Bu is invertible following B−1
u = I−K (ϕ−1 +BK )−1B =

I−K B. Then C+ = (Bu)−1(M−Gu) and c = (Bu)−1(v−Aux(0))−C−wr for any

choice of C−. Then the equivalence of X DFC
N and X DF

N follows directly from (i) and

(ii).

3.A.2 Proof of Lemma 3.1.1

(⇒)ΠDFC
N (x, w̃r) 6= /0 implies that there exists (c̃, C̃−, C̃+) such that PDFC

N (x, w̃r) is fea-

sible. This also means that there exists (ṽ,M̃) such that (3.30) hold for (c̃, C̃−, C̃+).

Let C− = 0, c = B−1
u (ṽ−A x) and C+ = B−1

u (M̃− Gu) and they are feasible to

PDFC
N (x, ŵr) following Theorem 3.1.1. (⇐) Obvious by the symmetry of (ŵr, w̃r).
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3.A.3 Proof of Theorem 3.4.1

The proof follows standard arguments in [10]. Let

(c∗(t),C∗(t)) = argminPDFC
N (x(t),wr(t)).

Choose the feasible control at time t +1 (ĉ(t +1), Ĉ(t +1)) as

ĉ(i|t +1) = c∗(i+1|t), ∀i ∈ ZN−2, ĉ(N−1|t +1) = 0 (3.31a)

Ĉ(i, j|t +1) =





C∗(i+1, j|t) ∀(i, j) ∈ ZN−2×Z+
N−1

0 i = N−1,∀ j ∈ Z+
N−1

(3.31b)

and it is feasible to PDFC
N (x(t + 1),wr(t + 1)) due to the disturbance invariance of X f

under control law u(t) = K f x(t). Let T(c,C) = {(c,C)|∃Z s.t. (c,C,Z) ∈ T} where T is

the polyhedron defined by (3.28). Since T is a polyhedron, so is T(c,C). As JDFC(c,C) is

a norm function, the set {(c,C) ∈ T(c,C)|JDFC(c,C)≤ JDFC(ĉ(t +1), Ĉ(t +1))} is com-

pact. Hence, the optimum of PDFC
N (x(t + 1),wr(t + 1)) exists, following Weierstrass’

theorem.

Remark 3.A.1 It is to be noted that the choice of (3.31) as the feasible control is only

possible under the proposed parametrization (3.2). Specifically, j runs from 0 to N−1.

If j runs from 0 to i as in the case of Chapter 4, a different feasible control at time t +1

is needed, see the proof of Theorem 4.4.1.
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3.A.4 Proof of Theorem 3.4.2

(i) The stated result follows directly from Lemma 3.1.1, Remark 3.1.2 and Theorem

3.4.1.

(ii) Let J∗(t) := JDFC(c∗(t),C∗(t)) and Ĵ(t +1) := JDFC(ĉ(t +1), Ĉ(t +1)) where (ĉ(t +

1), Ĉ(t +1)) are given by (3.31). Then it follows that

J∗(t)− J∗(t +1)≥ J∗(t)− Ĵ(t +1) = h(l(t)) = h(l∗(0|t))≥ 0, ∀ t ≥ 0 (3.32)

where h(·) is as defined in (3.17). Hence, {J∗(t)} is a monotonic non-increasing se-

quence and is bounded from below by zero. This means that

J∗∞ := lim
t→∞

J∗(t)≥ 0 (3.33)

exists. Repeating (3.32) for t from 0 to ∞ and summing them up, it follows that

∞ > J∗(0)− J∗∞ ≥
∞

∑
t=0

h(l(t))≥ 0 (3.34)

This implies that limt→∞ h(l(t)) = 0. Since Ψ and Λ are positive definite, this implies

that

lim
t→∞

c∗(0|t) = 0 and lim
t→∞

C∗(0, j|t) = 0 ∀ j ∈ Z+
N−1 (3.35)
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and the stated result follows.

(iii) The system state under (3.14) can be written as

x(t) = Φtx(0)+
t−1

∑
i=0

Φt−1−iBl(i)+
t−1

∑
i=0

Φt−1−iw(i). (3.36)

The first term on the right approaches zero as t →∞ since ρ(Φ) < 1 and the second term

approaches zero following property (ii). The last term corresponds to a point in the set

Ft := W ⊕·· ·⊕Φt−1W , which approaches F∞ as t →∞. Hence the stated result follows.

(iv) Let x∞ := Σ∞
i=0Φiw(i). Then E(x∞) = 0 and

E(x∞xT
∞) = Σ∞ = Σw +ΦΣwΦT + · · · (3.37)

following the assumptions in (A5) By pre- and post-multiplications of Φ and ΦT of

(3.37) respectively, the stated result follows.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



71

Chapter 4

Probabilistic Convergence under Affine

Disturbance Feedback

In this chapter, an affine disturbance feedback control parametrization is proposed. This

parametrization differs from that proposed in Chapter 3 in that it does not use past re-

alized disturbances. However, it has the same expressive ability and yields the same

admissible set. The use of this parametrization and an appropriate cost function yields

a different closed-loop convergence property: the state of the closed-loop system con-

verges to a minimal d-invariant set with probability one. Deterministic convergence to

the same minimal d-invariant set is also possible if a less intuitive cost function is used.
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4.1 Introduction and Assumption

This chapter continues to consider the CTLD system,

x(t +1) = Ax(t)+Bu(t)+w(t) (4.1a)

(x(t),u(t)) ∈ Y, w(t) ∈W, ∀t ≥ 0 (4.1b)

which satisfies Assumption 1.4.1. Additionally, w(t) is assumed to satisfy the following

assumption for the discussion in this chapter.

Assumption 4.1.1

(A3a) the disturbances w(t) t ≥ 0 are independent and identically distributed (i.i.d.)

with zero mean.

One other technical condition is also needed but its discussion is postponed until Section

4.2.

The MPC controller κDFC(x,wr) in (3.14) of Chapter 3 requires the knowledge of re-

alized disturbances wr for its computation and is different from a traditional MPC con-

troller. This chapter relaxes the utilization of this realized disturbances wr while pre-

serving similar convergence result.
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The rest of this chapter is organized as follows. Section 4.2 states the proposed control

parametrization, the FH optimization problem and the cost function used. Computation

of the FH optimization problem is briefly discussed in Section 4.3. The result of prob-

abilistic convergence of the closed-loop system state is given in Section 4.4. Section

4.5 discusses a formulation that strengthens the convergence result under a weaker set

of assumptions. This, however, requires the use of a somewhat less intuitive cost func-

tion. Numerical examples are the contents of Section 4.6 and they are followed by the

summary of this chapter.

4.2 Control Parametrization and MPC Formulation

The proposed control parametrization within the FH optimization problem takes the

form

u(i|t) = K f x(i|t)+d(i|t)+
i

∑
j=1

D(i, j|t)w(i− j|t) ∀i ∈ ZN−1 (4.2)

where d(i|t) ∈ Rm,D(i, j|t) ∈ Rm×n, j ∈ Z+
i , i ∈ ZN−1 are design variables and K f is

the feedback gain given in (A4) of Assumption 1.4.1. Since j ∈ Z+
i , w(i− j|t) are all

predicted disturbances and no elements of wr(t) are used in (4.2). In this regard, (4.2) is

similar to uDF in (1.27) in that only predicted disturbances are used in the parametriza-

tion. In addition, parametrization (4.2) is equivalent to uDF and (3.2), denoted hear after

as uDFC, in terms of the family of functions that can be represented.
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Remark 4.2.1 To see the equivalence of (4.2) to uDF in (1.27) and uDFC in (3.2), set

C(i, j|t) = 0 for all j > i in (3.2) and it follows that u(i|t) in (4.2) is a special case of

u(i|t) in (3.2). To show the converse, let





d(i|t) = c(i|t)+∑N−1
j=i+1C(i, j|t)w(i− j|t), ∀i ∈ ZN−1

D(i, j|t) = C(i, j|t), ∀ j ≤ i, ∀i ∈ ZN−1

(4.3)

for any c(i|t), C(i, j|t) that defines u(i|t) in (3.2). This establishes the equivalence

of (3.2) and (4.2). The expressive equivalence of (3.2) and (1.27), has already been

established in Theorem 3.1.1 and [68, 69]. With the above result, the representative

abilities of (1.27), (3.2) and (4.2) are all equivalent.

Let x(t), u(t) and w(t) be defined in the same way as in (3.4) and collect all the design

variables in (4.2) within the control horizon N in

D(t) :=




0 0 · · · 0 0

D(1,1|t) 0 · · · 0 0

...
... . . . ...

...

D(N−2,N−2|t) D(N−2,N−3|t) · · · 0 0

D(N−1,N−1|t) D(N−1,N−2|t) · · · D(N−1,1|t) 0




,
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d(t) :=




d(0|t)

d(1|t)
...

d(N−1|t)




.

Then the control sequence defined by (4.2) is

u(t) = K x(t)+d(t)+D(t)w(t) (4.4)

where K := [IN ⊗K f 0].

Remark 4.2.2 Remark 4.2.1 implies that by letting c = d, C− = 0 and C+ = D, (3.8b)

becomes (4.4). Then due to (3.30), (d,D) and (v,M) must satisfy

Bud = v−Aux(0) (4.5a)

BuD = M−Gu. (4.5b)

to obtain the same u(t) of (4.4) and (3.15). Additionally, the mapping between (d,D)

and (v,M) is one-to-one since Bu is a lower triangular matrix with all diagonal ele-

ments being 1 and hence invertible as shown in Section 3.A.1.
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Using the notations defined in (3.9), (3.10) and (4.4), the FH optimization problem under

parametrization (4.2), referred hereafter as PDFD
N (x(t)), is

min
d(t),D(t)

JDFD(d(t),D(t)) (4.6a)

s.t. x(t) = A x(t)+Bu(t)+G w(t) (4.6b)

u(t) = K x(t)+d(t)+D(t)w(t) (4.6c)

(x(i|t),u(i|t)) ∈ Y, ∀ w(t) ∈W N , ∀i ∈ ZN−1 (4.6d)

x(N|t) ∈ X f , ∀ w(t) ∈W N (4.6e)

where the terminal set X f is given in (A4) of Assumption 1.4.1. The cost function

JDFD(d(t),D(t)) takes the form

JDFD(d(t),D(t)) :=
N−1

∑
i=0

[
‖d(i|t)‖2

Ψ +
i

∑
j=1
‖vec(D(i, j|t))‖2

Λ

]
(4.7)

for any choice of Ψ and Λ that satisfy

Ψ = ΨT Â 0, Λº Σw⊗Ψ (4.8)

where Σw is the covariance matrix of disturbance w and vec(·) is stacking operator de-

fined in (2.16). Clearly, JDFD(d,D) is a measure of the deviation of u(i|t) from the

linear control law K f x(i|t) and the motivation for it as the objective function is clear:

penalizing the use of non-zero (d,D) forces the asymptotic behavior of the closed-loop
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system to approach that of x(t +1) = (A+BK f )x(t). The technical condition (4.8) is to

ensure convergence of the closed-loop states and its exact role will become clear in the

proof of Theorem 4.4.2. Several comments on JDFD(d,D) are in order.

Remark 4.2.3 Following the same procedure of Section 3.2, a connection between

JDFD(d(t),D(t)) and the standard LQ cost can also be established. Specifically, un-

der Assumption 3.2.1

Ew(t)

[
N−1

∑
i=0

(‖x(i|t)‖2
Q +‖u(i|t)‖2

R)+‖x(N|t)‖2
P

]

= x(t)T Px(t)+Ntrace(ΣwP)+ JDFD(d(t),D(t)). (4.9)

Since the first two terms on the right hand side of (4.9) are independent of (d(t),D(t)),

minimizing JDFD(d(t),D(t)) is equivalent to minimizing the expected infinite horizon

LQ cost over the disturbance input.

Remark 4.2.4 From (4.8) and (4.9), it may appear that Σw is needed for the determi-

nation of Λ. However, this is not true. The choice of Λ can be made to satisfy (4.8)

even when Σw is not known accurately. One simple choice is to let Λ = α2In⊗Ψ where

α := maxw∈W ‖w‖. Then it follows that Λº Σw⊗Ψ because α2In º wwT for all w ∈W

and α2In⊗Ψ º E[wwT ]⊗Ψ. Consequently, (A3) of Assumption 1.4.1 provides condi-

tions that guarantee the computability of maxw∈W ‖w‖.
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Further discussion on the choice of Ψ and Λ and their influence on closed-loop system

trajectories are discussed in Section 4.4. Several associated sets, needed to facilitate the

discussions in the sequel, are introduced. Let the feasible set of optimization problem

PDFD
N (x) be

T DFD
N := {(x,d,D)| (d,D) is feasible to PDFD

N (x)} (4.10)

and the set of admissible initial states, or equivalently, the domain of attraction of the

MPC controller is

X DFD
N := {x| ∃ (d,D) such that (x,d,D) ∈ T DFD

N }. (4.11)

Remark 4.2.5 One direct result following Theorem 3.1.1 and Remark 4.2.1 is that

X DFD
N = X DFC

N = X DF
N .

As usual, PDFD
N (x(t)) is solved at each time t to obtain the optimizer (d∗(t),D∗(t)) and

the first control, u∗(0|t), is applied to (4.1) at time t resulting in the MPC control law,

u(t) = κDFD(x(t)) := K f x(t)+d∗(0|t). (4.12)

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



4.3 Computation of the FH Optimization 79

4.3 Computation of the FH Optimization

Similar to constraint (3.24), constraints (4.6b)-(4.6e) can be written as

¯A x(0)+ B̄d(t)+ max
w(t)∈WN

[
B̄D(t)+ Ḡ

]
w(t)≤ 1s (4.13)

where s = Nq + g, WN := {w|H̄w ≤ 1`}, ¯A , B̄ and Ḡ are given in (3.25) and (3.26).

Using the procedure given in Section 3.3, PDFD
N (x(t)) can be equivalently stated as

min
d(t),D(t),Z

JDFD(d(t),D(t)) (4.14a)

s.t. ¯A x(t)+ B̄d(t)+ZT 1` ≤ 1s (4.14b)

ZT H̄ = B̄D(t)+ Ḡ (4.14c)

zi ≥ 0, i = 1, . . . ,s (4.14d)

where Z = [z1 · · ·zs] ∈ R`×s. In the conversion from (4.13) to (4.14b)-(4.14d), strong

duality of linear programming is used. This duality results can be extended to W sets

that are non-polyhedral. See, for example, treatments of such sets in [44] by Ben-Tal and

Nemirovski and [70] by Nemirovski. If W is a second-order cone [71, 72] representable

bounded set with non-empty interior such that WN = {w| ‖Liw− li‖ ≤ λ T
i w− θi, i ∈

Z+
k } for some matrices Li, li, λi and θi, i ∈ Z+

k , then it follows from duality that

max{eT w|w∈WN}= min
(µi,ηi)

{
k

∑
i=1

(µT
i li−ηiθi)|

k

∑
i=1

(LT
i µi−ηiλi)= e, ‖µi‖≤ηi, ∀i∈Z+

k }.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



4.3 Computation of the FH Optimization 80

(4.15)

In this case, PDFD
N (x(t)) is a second-order cone programming problem.

Similarly, if W is a bounded semi-definite cone representable set with non-empty in-

terior such that WN = {Ω ∈ RNn|∑Nn
i=1 ΩiCi−F < 0, ∀i ∈ Z+

Nn} where Ci and F are

symmetrical matrices of appropriate dimension, then

max{eT w| w∈WN}= min
ϒ
{Trace(Fϒ)| Trace(Ciϒ) = ei, ∀i∈Z+

Nn, ϒ 4 0}. (4.16)

In this case, PDFD
N (x(t)) is a semi-definite programming problem.

Remark 4.3.1 While the duality result is available for W being a second-order or

semi-definite cone representable set, the availability of X f satisfying (A4) of Assump-

tion 1.4.1 deserves some clarifications. When W is non-polyhedral, computation of a

constraint-admissible disturbance invariant set X f may not be easy. A simple approach

is to construct a polytope Wp such that Wp ⊃W and Wp ≈W. In that case, a X f can

be constructed using Wp following existing computational methods [37]. Using this

X f in (4.6e), PDFD
N (x) becomes either a second-order cone or a semi-definite cone

programming problem. It is worthy to note that the use of such an X f in (4.6e) and

with w(t) ∈W N in both (4.6d) and (4.6e) is less conservative than replacing W by Wp

throughout (4.6d)-(4.6e). An example using such an approach is illustrated in Section

4.6.
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4.4 Feasibility and Probabilistic Convergence

The feasibility of PDFD
N (x(t)) at different time instants and stability of the closed-loop

system under the feedback law (4.12) are addressed in this section.

Theorem 4.4.1 Suppose Assumption 1.4.1 is satisfied, the FH optimization problem

PDFD
N (x) has the following properties (i) T DFD

N is convex and compact. (ii) If x ∈

X DFD
N , the optimal solution of PDFD

N (x) exists. (iii) If PDFD
N (x(t)) admits an opti-

mal solution, so does PDFD
N (x(t + 1)) under the feedback law (4.12) for all possible

w(t) ∈W.

Proof: See Appendix 4.A.1.

Remark 4.4.1 The set X DFD
N can also be proved to be convex and compact. Interested

readers can refer to Section 3.4 of [73].

The main result of probabilistic convergence of the closed-loop system is stated in the

next theorem. Such a convergence is achieved under the Assumption 1.4.1, Assumption

4.1.1 and condition (4.8).

Theorem 4.4.2 Suppose x(0) ∈ X DFD
N and Assumption 1.4.1 and Assumption 4.1.1

are satisfied. System (4.1a) under MPC control law (4.12) obtained from the solution

of PDFD
N (x) using cost function (4.7) satisfying (4.8) has the following properties: (i)

(x(t),u(t)) ∈ Y for all t ≥ 0, (ii) x(t)→ F∞(K f ) with probability one as t → ∞.
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Proof: See Appendix 4.A.2.

One associated issue in the formulation of PDFD
N (x) is the choices of Ψ and Λ in

JDFD(d,D). How should Ψ and Λ be chosen and how do these choices affect the closed-

loop system trajectories? As x(t)→ F∞ from result (ii) of Theorem 4.4.2, it implies that

x(t) enters X f with probability one and stays within thereafter since F∞ ⊂ X f . When this

happens, the optimal (d,D) are zero in PDFD
N (x) and the MPC control law becomes

u(t) = K f x(t) for all t thereafter. The closed-loop system behavior then corresponds to

that of the system x(t +1) = (A+BK f )x(t)+w(t). Clearly, the choices of Λ and Ψ does

not affect the asymptotic behavior of the system but only the transient when x(t) /∈ X f .

Suppose Λ = Σw⊗Ψ. Then admissible changes in Ψ will not result in changes in the

system behavior since Σw⊗Ψ is linear in Ψ. On the other hand, if Ψ is fixed, Λ can

be chosen to be increasingly “larger” than Σw⊗Ψ. In loose terms, a “larger” choice

of Λ penalizes the use of D versus the use of d in J(d,D). Such a preference would

mitigate the effect of the disturbance feedback component in the control parametrization,

resulting in a parametrization that is closer in spirit to u(t) = K f x(t)+c(t) of [10]. When

this happens, the transient response for the system may become slower even though the

domain of attraction X DFD
N remains unaffected. This observation together with the

associated details used in the numerical examples are discussed in Section 4.6.
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4.5 Deterministic Convergence

While the assumption of W being a compact set is reasonable, the assumption of w(t)

being zero mean and i.i.d. is harder to verify in practice. This section is concerned with

the relaxation of Assumption 4.1.1 while achieving a stronger convergence result than

that of Theorem 4.4.2. To this end, the following new cost function is needed.

VDFD(d(t),D(t)) :=
N−1

∑
i=0

[
‖d(i|t)‖2

Ψ +
i

∑
j=1

(γ1‖vec(D(i, j|t))‖2 + γ2‖vec(D(i, j|t))‖)
]

(4.17)

for some constants γ1 and γ2 satisfying

γ1 ≥ α2‖Ψ‖, γ2 ≥ 2αβ‖Ψ‖ (4.18)

where α := maxw∈W ‖w‖ and β := max(x(t),d(t),D(t))∈T DFD
N ,i∈ZN−1

‖d(i|t)‖. The existence

of α and β are guaranteed by compactness of the W and T sets, provided for in (A3)

of Assumption 1.4.1 and part (i) of Theorem 4.4.1 respectively. Furthermore, the com-

putation of β can be simplified to β = max(x(t),d(t),D(t))∈T DFD
N

‖d(0|t)‖, see Appendix

4.A.3.

Let JDFD(d(t),D(t)) in PDFD
N (x(t)) be replaced by VDFD(d(t),D(t)), and denote the

resulting FH optimization problem by PDFDV
N (x(t)). Since only the cost function is re-

placed, the admissible set of PDFDV
N (x(t)), denoted by X DFDV

N , is equivalent to X DFD
N .

Also denote the corresponding MPC control law by κDFDV (·). The convergence result
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under controller u(t) = κDFDV (x(t)) is summarized in the following theorem.

Theorem 4.5.1 Suppose x(0) ∈ X DFDV
N , Assumption 1.4.1 is satisfied, then system

(4.1a) under the MPC controller u(t)= κDFDV (x(t)) satisfies (i) (x(t),u(t))∈Y for all t ≥

0, (ii) x(t)→ F∞(K f ) as t → ∞.

Proof: See Appendix 4.A.4.

Remark 4.5.1 Several choices of the cost function of (4.17) are possible. For example,

the results of Theorem remain true if ‖vec(D(i, j|t))‖ is replaced by ‖D(i, j|t)‖. This

may appear more appealing as less conservative bounds on γ1 and γ2 can be found to en-

sure the non-negativity of p(w(t)) in (4.32). However, its use will result in a semi-definite

programming problem for PDFDV
N (x(t)), which is less desirable computationally. The

use of ‖vec(D(i, j|t))‖ or ‖D(i, j|t)‖F results in a second-order cone programming for

PDFDV
N (x(t)) and is computationally more amiable.

4.6 Numerical Examples

Four examples are presented to validates the results of this chapter. The system param-

eters and constraints of the system are:

A =




1.1 1

0 1.3


 , B =




1

1


 , K f = [−0.7434 −1.0922],
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Y = {(x,u)| |u| ≤ 1, ‖x‖∞ ≤ 8},

W = {Hw̃|H =




1 −0.2

0 1


 and ‖w̃‖∞ ≤ 0.2}

where w̃ ∈ R2 is a random vector uniformly distributed over [−0.2,0.2]× [−0.2,0.2]

with covariance matrix Σw̃ = 0.0133I2. Terminal set X f is the corresponding maximal

constraint-admissible disturbance invariant set of (4.1a) under u(t) = K f x(t), specifi-

cally

X f = {x| Gx≤ 14}, G =




−0.7434 −1.0922

0.7434 1.0922

0.8252 −0.2391

−0.8252 0.2391




.

The weight matrices in the cost function (4.7) are chosen to be

Ψ = 1, Λ = Λop := Σw⊗Ψ =




0.0139 −0.0027

−0.0027 0.0133




The algorithm using cost function (4.20) is simulated with N = 8 and x(0) = [−4 2]T

over 15 realizations of disturbance sequences and the results are shown in Figures 4.1

to 4.4 in solid lines. It is clear from Figures 4.1 and 4.2 that both the state and control

constraints are satisfied by all trajectories, in accordance to property (i) of Theorem

4.4.2. In addition, Figure 4.1 shows the convergence of x(t) into F̂∞(K f ), an outer

bound of the minimal invariant set associated with the choice of K f . This convergence

is further verified by solid lines in Figures 4.3 and 4.4 where the plots of dis(x(t), F̂∞) :=
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minx∈F̂∞
‖x− x(t)‖, the minimum distance to F̂∞, and d(t) := d∗(0|t) against increasing

t are shown.

−4 −3 −2 −1 0 1 2
−2

−1

0

1

2

3

x1

x
2

F̂
∞

(Kf)

Xf

Figure 4.1: State trajectories of the first three simulations

1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

t

u
(t

)

F

Figure 4.2: Control trajectories of the first three simulations

The case where W is non-polyhedral is shown in Simulation II, in connection to Sec-

tion 4.3. The system considered is that of Simulation I but has a different disturbance

characteristic: w is uniformly distributed over W̄ := {w̄| ‖S1w̄‖ ≤ 1, ‖S2w̄‖ ≤ 1} where
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0 2 4 6 8 10
−1

0

1

2

3

4

t

d
is

(x
(t

),
F̂
∞

)

Figure 4.3: Distance between states and F∞(K f ) of the first three simulations
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)

Figure 4.4: Values of d(t) of the first three simulations
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S1 = [5 1; 0 2.5] and S1 = [2.5 0.5; 0 5]. Note that a tight bounding polytope, Wp,

such that Wp ⊃ W̄ , is the W set of Simulation I (see Figure 4.5) and (A4) of Assumption

1.4.1 is satisfied using X f of the first simulation. Also, Ψ and Λ of the first simulation

are used and it is easy to verify that condition (4.8) remains true because Σw Â Σw̄. In

this case, W̄ is a second-order cone representable set and the conversion of (4.6d) and

(4.6e) for all w(i|t) ∈ W̄ follows the procedure in Section 4.3, results in PDFD
N (x) be-

ing a second-order cone programming problem. The simulation results with N = 8 and

x(0) = [2 − 1]T for 15 different realizations of {w(t)} are plotted in Figure 4.1 to 4.4

using dash-dot lines.

−0.2 −0.1 0 0.1 0.2 0.3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

W̄

w1

w
2

W
p

= W

Figure 4.5: Wp set and W̄ set.

Simulation III attempts to understand the influence of the weight matrices, Λ and Ψ of

(4.7), on the performance of the closed-loop system. As stated in Section 4.4, choices of

these matrices affect only the transient behavior when x(t) /∈ X f and not the asymptotic

behavior of the closed-loop system. To quantify the transient, the average number of
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time step, t f (x(0)), taken to enter X f from a given x(0) is reported. Here, the average is

taken over different realizations of the disturbances. Without loss of generality, values

of Λ is varied following the discussions in Section 4.4. Table 4.7 shows the t f (x(0)) and

the associated standard deviation over 20 disturbance realizations for several choices of

x(0) and Λ. For each x(0), the same 20 disturbance realizations are used for the different

Λ in computing t f (x(0)) and the standard deviations. From the table, t f (x(0)) generally

increases when Λ increases. For comparison purpose, the corresponding trajectories of

the system under same settings as the first simulation except for Λ = 104Λop are plotted

in Figure 4.1 to 4.4 using dash lines. From Figure 4.3 and 4.4, the slower convergence

of the state and control trajectories are clearly evident.

The last simulation, Simulation IV, considers the case discussed in Section 4.5. The sys-

tem parameters are the same as those in the first simulation except that the distribution

of w̃ is assumed to be unknown. Hence, α is 0.3124 and β of (4.18) are determined

to be 2.7307 (when N = 8) and 3.5425 (when N = 10). Correspondingly, the weight

matrices of (4.17) are chosen to be Ψ = 1, γ1 = γop
1 := α2‖Ψ‖= 0.0976, γ2 = γop

2 :=

2αβ‖Ψ‖ = 1.7059 (2.213 when N = 10). The values of γ1 and γ2 are increased sepa-

rately and jointly to assess their influence on the system behavior. Similar to the third

simulation, the response of the system with several choices of the weight matrices are

simulated over 20 series of disturbance realizations.

The general effect of increasing values of γ1 and γ2 appears to have similar trend on the

system as the increase in Λ. The time taken to reach X f from any given x(0) increases,

although of a lesser percentage than that by Λ, with increasing values of γ1 and γ2 with
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γ2 having a heavier influence.

4.7 Summary

A control parametrization that does not make use of past realized disturbances is pro-

posed in this chapter. This parametrization preserves the expressive ability of the parametriza-

tion in Chapter 3. Using this parametrization and a proposed cost function under the

MPC framework, the closed-loop system state converges to the minimal robust invariant

set F∞ with probability one. Deterministic convergence to F∞ is also possible using a

less intuitive cost function.
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4.A Appendix

4.A.1 Proof of Theorem 4.4.1

(i) It is easy to see that for each i∈ZN−1, (x(i|t),u(i|t)) are affine functions of (x(t),d(t),D(t))

from (4.6b)-(4.6c). This, together with the fact that Y and X f are convex and compact

sets, means that the feasible set T DFD
N , as defined by constraints (4.6b)-(4.6e) is con-

vex and compact. (ii) Since x ∈ X DFD
N , PDFD

N (x) is feasible. From (i), this means

that ΠDFD
N (x) := {(d,D)|(x,d,D) ∈ T DFD

N } is compact. This, together with the fact that

JDFD(d,D) is continuous with respect to (d,D) means that the optimal solution exists by

Weierstrass’ Theorem [74]. (iii) The proof follows standard arguments but the details

are given for their relevance to Theorem 4.5.1. Let (d∗(t),D∗(t)) denote the optimal

solution of PDFD
N (x(t)). At time t +1 when w(t) is realized, choose (d̂(t +1), D̂(t +1))

by letting

d̂(i|t +1) =





d∗(i+1|t)+D∗(i+1, i+1|t)w(t) ∀i ∈ ZN−2

0 i = N−1

(4.19a)

D̂(i, j|t +1) =





(D∗(i+1, j|t) ∀ j ∈ Z+
i , ∀i ∈ Z+

N−2

0 ∀ j ∈ Z+
N−1, i = N−1

(4.19b)

and it is feasible to PDFD
N (x(t + 1)) for all possible w(t) ∈W due to the disturbance

invariance of X f for system (4.1a) under control law u(t) = K f x(t). It is clear that
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ΠDFD
N (x) is compact for all x∈X DFD

N . Since W is bounded and JDFD is a norm function,

maxw(t) JDFD(d̂(t + 1), D̂(t + 1)) < ∞ and the set {(d,D) ∈ ΠDFD
N (x(t + 1))|J(d,D) ≤

maxw(t) JDFD(d̂(t +1), D̂(t +1))} is compact. Hence, the optimum of PDFD
N (x(t +1))

exists, following the Weierstrass’ theorem.

4.A.2 Proof of Theorem 4.4.2

(i) The stated result follows directly from Theorem 4.4.1. (ii) Let J∗(t) := JDFD(d∗(t),D∗(t))

and Ĵ(t +1) := JDFD(d̂(t +1), D̂(t +1)) where (d̂(t +1), D̂(t +1)) are given by (4.19).

Then it follows that

J∗(t)− Ĵ(t +1)

=
N−1

∑
i=0

(‖d∗(i|t)‖2
Ψ−‖d̂(i|t +1)‖2

Ψ)+
N−1

∑
i=1

‖vec(D∗(i, i|t))‖2
Λ

= ‖d∗(0|t)‖2
Ψ +

N−1

∑
i=1

(‖d∗(i|t)‖2
Ψ−‖d̂(i−1|t +1)‖2

Ψ
)
+

N−1

∑
i=1

‖vec(D∗(i, i|t))‖2
Λ

= ‖d∗(0|t)‖2
Ψ +

N−1

∑
i=1

(‖d∗(i|t)‖2
Ψ−‖d∗(i|t)+D∗(i, i|t)w(t)‖2

Ψ
)
+

N−1

∑
i=1

‖vec(D∗(i, i|t))‖2
Λ

= ‖d∗(0|t)‖2
Ψ +g(w(t)) (4.20)

where

g(w(t)) =
N−1

∑
i=1

(‖vec(D∗(i, i|t))‖2
Λ−2d∗(i|t)T ΨD∗(i, i|t)w(t)−‖(D∗(i, i|t)w(t)‖2

Ψ).

(4.21)
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Taking the expectation of (4.20) over w(t), it follows that

J∗(t)−‖d∗(0|t)‖2
Ψ = Ew(t)

[
Ĵ(t +1)

]
+Ew(t)[g(w(t))]

≥ Ew(t)
[
Ĵ(t +1)

]
(4.22)

≥ Ew(t) [J
∗(t +1)] = Et [J∗(t +1)] . (4.23)

where Et in (4.23) is the expectation taken over w(i), i ≥ t. Inequality (4.22) follows

from the fact that Ew(t)[g(w(t))] ≥ 0. This is true because by taking the expectation of

(4.21), one gets

Ew(t)[g(w(t))]

=
N−1

∑
i=1

(‖vec(D∗(i, i|t))‖2
Λ−‖vec(D∗(i, i|t))‖2

Σw⊗Ψ−2(d∗(i|t))T ΨD∗(i, i|t)E[w(t)])(4.24)

where the last term is zero due to Assumption 4.1.1 and the rest is non-negative due to

(4.8).

Inequality (4.23) follows from the fact that Ĵ(t +1)≥ J∗(t +1) for every w(t)∈W which

implies that Ew(t)[Ĵ(t + 1)] ≥ Ew(t)[J∗(t + 1)]. The last equality of (4.23) follows from

the fact that J∗(t +1) depends on w(t) only and not on any w(i), i > t.

Repeating the inequality of (4.23) for increasing t, one gets,

J∗(t +1)−‖d∗(0|t +1)‖2
Ψ ≥ Ew(t+1) [J

∗(t +2)]
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Since the two terms on the left hand side depends on w(t) and the term on the right

depends on w(t) and w(t +1), the above can be equivalently written as

J∗(t +1)(w(t))−‖d∗(0|t +1)(w(t))‖2
Ψ ≥ Ew(t+1) [J

∗(t +2)(w(t),w(t +1))] . (4.25)

The above inequality holds true for all possible w(t), hence

Ew(t)[J
∗(t +1)(w(t))]−Ew(t)[‖d∗(0|t +1)(w(t))‖2

Ψ]

≥ Ew(t)[Ew(t+1) [J
∗(t +2)(w(t),w(t +1))]] = Et [J∗(t +2)(w(t),w(t +1))] (4.26)

or equivalently

Et [J∗(t +1)]−Et [‖d∗(0|t +1)‖2
Ψ]≥ Et [J∗(t +2)] (4.27)

The equality in (4.26) follows from the i.i.d. in Assumption 4.1.1, particularly,

Ew(t)[Ew(t+1) [J
∗(t +2)(w(t),w(t +1))]]

= Ew(t)

[∫
J∗(t +2)(w(t),w(t +1)) fw(t+1)(w(t +1))dw(t +1)

]

=
∫ ∫

J∗(t +2)(w(t),w(t +1)) fw(t+1)(w(t +1))dw(t +1) fw(t)(w(t))dw(t)

=
∫ ∫

J∗(t +2)(w(t),w(t +1)) fw(t),w(t+1)(w(t),w(t +1))dw(t +1)dw(t)

= Ew(t),w(t+1)[J
∗(t +2)(w(t),w(t +1))] = Et [J∗(t +2)(w(t),w(t +1))]
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where fw(t)(·), fw(t+1)(·) and fw(t),w(t+1)(·, ·) are density functions of w(t), w(t +1) and

their joint density function respectively and fw(t),w(t+1)(·, ·) = fw(t)(·) fw(t+1)(·) from

i.i.d. Summing (4.23) and (4.27) leads to

J∗(t)≥ ‖d∗(0|t)‖2
Ψ +Et [‖d∗(0|t +1)‖2

Ψ]+Et [J∗(t +2)] (4.28)

Repeating the above procedure infinite times leads to

∞ > J∗(t)≥
∞

∑
i=t

Et
[‖d∗(0|i)‖2

Ψ
]

(4.29)

By applying Markov bound (given non-negative random variable η and any ε ≥ 0,

E[η ]≥ εPr{η ≥ ε}), we have

∞ > ε
∞

∑
i=t

Pr(‖d∗(0|i)‖2
Ψ ≥ ε) (4.30)

for any arbitrary small ε > 0. From the First Borel-Cantelli Lemma [75], this implies

that limi→∞ Pr(‖d∗(0|i)‖2
Ψ ≥ ε) = 0. Hence d(0|i) → 0 with probability one as t in-

creases. Consequently, the MPC control law (4.12) converges to K f x(t) with probability

one. When this happens, the closed-loop system converges to x(t + 1) = Φx(t)+ w(t)

and, hence, x(t) converges to F∞(K f ) with probability one.

4.A.3 Computation of β

For notational simplicity, notations (t) and |t are omitted here.
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To see β := max(x,d,D)∈T DFD
N ,i∈ZN−1

‖d(i)‖= max(x,d,D)∈T DFD
N

‖d(0)‖, it is needed to show

that for any (x,d,D)∈ T DFD
N and any integer i∈Z+

N−1, there exists (x̃, d̃, D̃)∈ T DFD
N such

that d̃(0) = d(i). Suppose (x,d,D) defines the state sequence {x(0), . . . ,x(N)} and con-

trol sequence and {u(0), . . . ,u(N− 1)}. Also let {x̄(0), . . . , x̄(N)} denotes the nominal

value of {x(0), . . . ,x(N)}. Define (x̃, d̃, D̃) to be

x̃ = x̄(i) = Φix+
i−1

∑
j=0

Φi−1− jBd( j), d̃( j) =





d( j + i) ∀ j ∈ ZN−1−i

0 N− i≤ j ≤ N−1

,

and

D̃( j,k) =





D( j + i,k) ∀ j ∈ Z+
N−1−i

0 N− i≤ j ≤ N−1

k ∈ Z+
j .

It can be verified that (x̃, d̃, D̃) defines the state sequence

{x(i), · · · ,x(N),Φx(N)+w(N), · · · ,Φix(N)+
i−1

∑
j=0

Φi−1− jw(N + j)}

and control sequence

{u(i), · · · ,u(N−1),K f x(N), · · · ,K f (Φix(N)+
i−1

∑
j=0

Φi−1− jw(N + j))}.

According to (4.6e), x(N)∈X f . According to (A4) of Assumption 1.4.1 under controller

u(i) = K f x(i), all the constraints are satisfied and x(i) ∈ X f for i ≥ N since x(N) ∈ X f .

Therefore, (x̃, d̃, D̃) satisfies (4.6b)-(4.6e) and hence (x̃, d̃, D̃) ∈ T DFD
N .
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Note that any upper bound of β can be used to guarantee the results of Theorem 4.5.1.

One such upper bound is β̃ := ‖σ‖ where σ( j) := max(x,d,D)∈T |d j(0)| and d j(0) is the

jth element of d(0). Hence, the value of β̃ can be computed efficiently by solving n

LPs.

4.A.4 Proof of Theorem 4.5.1

(i) The replacement of cost function JDFD(d(t),D(t)) by VDFD(d(t),D(t)) does not af-

fect the feasibility of problem PDFD
N (x(t)). This means that part (i) of Theorem 4.4.2

remains valid. (ii) Let V ∗(t) and V̂ (t + 1) be defined in the same manner as J∗(t) and

Ĵ(t +1) in the statement of proofs of Theorem 4.4.2. Following the same reasoning until

(4.20), it can be shown that

V (t)∗−V̂ (t +1) = ‖d∗(0|t)‖2
Ψ + p(w(t)) (4.31)

where

p(w(t)) =
N−1

∑
i=1

(γ1‖vec(D∗(i, i|t))‖2 + γ2‖vec(D∗(i, i|t))‖

−2(d∗(i|t))T ΨD∗(i, i|t)w(t)−‖D∗(i, i|t)w(t)‖2
Ψ). (4.32)
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Hence

p(w(t))

≥
N−1

∑
i=1

(γ1‖vec(D∗(i, i|t))‖2 + γ2‖vec(D∗(i, i|t))‖−2‖d∗(i|t)‖‖Ψ‖‖w(t)‖‖(D∗(i, i|t))‖

−‖Ψ‖‖w(t)‖2‖(D∗(i, i|t))‖2)

≥
N−1

∑
i=1

(γ1‖vec(D∗(i, i|t))‖2 + γ2‖vec(D∗(i, i|t))‖−2αβ‖Ψ‖‖(D∗(i, i|t))‖

−α2‖Ψ‖‖(D∗(i, i|t))‖2)

≥
N−1

∑
i=1

(γ1‖vec(D∗(i, i|t))‖2 + γ2‖vec(D∗(i, i|t))‖−2αβ‖Ψ‖‖(D∗(i, i|t))‖F

−α2‖Ψ‖‖(D∗(i, i|t))‖2
F) (4.33)

=
N−1

∑
i=1

(γ1‖vec(D∗(i, i|t))‖2 + γ2‖vec(D∗(i, i|t))‖−2αβ‖Ψ‖‖vec(D∗(i, i|t))‖

−α2‖Ψ‖‖vec(D∗(i, i|t))‖2) (4.34)

=
N−1

∑
i=1

((γ1−α2‖Ψ‖)‖vec(D∗(i, i|t))‖2 +(γ2−2αβ‖Ψ‖)‖vec(D∗(i, i|t))‖)

≥ 0 (4.35)

where ‖D∗(i, i|t)‖F is the Frobenius norm of D∗(i, i|t) and the facts ‖D∗(i, i|t)‖≤‖D∗(i, i|t)‖F

and ‖D∗(i, i|t)‖F = ‖vec(D∗(i, i|t))‖ are used in (4.33) and (4.34). Hence, p(w(t)) ≥ 0

under (4.18). As a consequence, equation (4.31) implies

V ∗(t)−‖d∗(0|t)‖2
Ψ ≥V ∗(t +1)≥ 0 (4.36)
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Hence, {V ∗(t)} is a monotonic non-increasing sequence and is bounded from below by

zero. This means that V∞ := limt→∞V ∗(t)≥ 0 exists. Repeating (4.36) for t from 0 to ∞

and summing them up, it follows that

∞ > V ∗(0)−V∞ ≥
∞

∑
t=0
‖d∗(0|t)‖2

Ψ (4.37)

Since Ψ is positive definite, this implies that limt→∞ d∗(0|t) = 0 and limt→∞ u(t) =

K f x(t). Therefore, the stated result follows.
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Chapter 5

Segregated Disturbance Feedback

Parametrization

This chapter proposes a new control parametrization for MPC of constrained linear dis-

crete time systems with bounded additive disturbances. This parametrization takes the

form of a special piecewise affine disturbance feedback and is a generalization of the

affine disturbance feedback discussed in Chapters 3 and 4. Thus, the domain of attrac-

tion of the resulting closed-loop system using the proposed parametrization is expected

to be larger than those using affine disturbance feedback. Properties and the numerical

computation of MPC under the proposed parametrization are discussed. Under mild

assumptions of the disturbance set, the associated FH optimization can be computed ef-

ficiently. Stability of the closed-loop system with the proposed parametrization is also

ensured.
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5.1 Introduction

Like Chapters 3 and 4, this chapter is concerned with the CTLD system

x(t +1) = Ax(t)+Bu(t)+w(t), (5.1a)

(x(t),u(t)) ∈ Y, w(t) ∈W, ∀ t ≥ 0 (5.1b)

where the variables have the usual meaning and the system satisfies Assumption 1.4.1.

Additionally, w(t) is assumed to satisfy the following assumption

Assumption 5.1.1

(A3b) the disturbances w(t) t ≥ 0 are independent and identically distributed (i.i.d.).

The rest of this chapter is organized as follows. Details of the new control parametriza-

tion and the MPC framework together with the cost function are given in Section 5.2. A

convex reformulation and computational issues are introduced in Section 5.3. Section

5.4 discuss the feasibility of the FH optimization problem and stability of the closed-

loop system. Numerical examples and summary are the contents of the last two sections.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.2 Control Parametrization and MPC Framework 103

5.2 Control Parametrization and MPC Framework

This chapter generalizes the results and the parametrization given in Chapter 4 (a similar

generalization of the parametrization uDFC in (3.2) of Chapter 3 is available in [76]).

5.2.1 Control Parametrization

The proposed control parametrization is a special piecewise affine function of distur-

bance w. To be precise, let w ∈ Rn be segregated into its positive and negative parts

via

wp(w) := max{w,0}, wm(w) := max{−w,0} (5.2)

where the max operation is taken component-wise, i.e., the ith element of wp(w), de-

noted by wp
i (w) = max{wi,0}. With this definition, it follows that for any w ∈ Rn,

wp(w),wm(w) ∈ Rn, wp(w) ≥ 0, wm(w) ≥ 0 and w = wp(w)−wm(w). The following

values are also needed for the new parametrization.

w̄p := Ew[wp(w)], w̄m := Ew[wm(w)], (5.3)

and define

ŵp(w) := wp(w)− w̄p, ŵm(w) := wm(w)− w̄m. (5.4)
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Clearly, ŵp(w) and ŵm(w) have zero means. Hereafter, the dependence of w in wp(w),

wm(w), ŵp(w), ŵm(w) is omitted for notational convenience, except when warranted

by context. Using (ŵp, ŵm) and similar to parametrization uDFD in (4.2), the proposed

u(i|t) takes the form





u(i|t) = K f x(i|t)+ l(i|t), ∀i ∈ ZN−1

l(i|t) = d(i|t)+∑i
j=1 Dp(i, j|t)ŵp(i− j|t)+∑i

j=1 Dm(i, j|t)ŵm(i− j|t)
(5.5)

where d(i|t)∈Rm, Dp(i, j|t), Dm(i, j|t)∈Rm×n are the optimization variables, K f is the

specified state feedback gain in (A4) of Assumption 1.4.1 and the disturbances ŵp(i−

j|t) and ŵm(i− j|t) are obtained from w(i− j|t) using (5.4).

Like wp(w), wm(w), u(i|t) in (5.5) is a special piecewise function of w and, because

of the particular choice of the pieces, is termed Segregated Disturbance Feedback.

Clearly, it is a generalization of linear disturbance feedback parametrization uDFD in

(4.2) (choose Dp(i, j|t) and Dm(i, j|t) in (5.5) to be Dp(i, j|t) = −Dm(i, j|t) = D(i, j|t)

and the same d(i|t) to recover (4.2)) or those in (3.2) and (1.27). This is shown in the

following example.

Example 5.2.1 Consider the system

x(t +1) =




0 0.5

0 0


x(t)+




1

0


u(t)+




1

1


w(t)

where x(0) = [0;0], w(t) is independent, identical and uniformly-distributed over W =
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{w| |w| ≤ 1} and the constraint set Y = {(x,u)| x1 ≥−1.1, x2 ≥−1.1, u≥−0.2}. Sup-

pose it is required that the sequence x(·) has zero mean. Then, it can be verified that no

linear disturbance feedback law in the form of uDFD, uDFC or uDF (respectively (4.2),

(3.2) or (1.27)) can simultaneously satisfy the constraints and the zero mean require-

ment. Since uDFD, uDFC and uDF have the same expressive ability, consider uDF as a

representative case. Zero mean of x(1) with x(0) = [0;0] implies u(0) = 0. Also, then

u(1) = v+Mw(0). The zero mean requirement of x(2) with w(1) being zero-mean means

that E[u(1)] = 0 and hence v = 0, leading to u(1) = Mw(0). The choice of M is further

limited to |M| ≤ 0.2 since u≥−0.2 is a constraint and |w| ≤ 1. The first component of

x(2) is x1(2) = w(1)+(0.5+M)w(0) and no M exists that can satisfy x1(2)≥−1.1 and

|M| ≤ 0.2 simultaneously. However, the segregated disturbance feedback law, u(0) = 0,

u(i) = 0.5ŵm(i−1)−0.1ŵp(i−1) is feasible to all constraints and requirement.

Let x(t), u(t) and w(t) be defined in the same way as in (3.4). Using (5.4), w(t) is

separated into ŵp(t), ŵm(t). The rest of the variables in (5.5) are collected in

Dp(t) :=




0 0 · · · 0 0

Dp(1,1|t) 0 · · · 0 0

...
... . . . ...

...

Dp(N−2,N−2|t) Dp(N−2,N−3|t) · · · 0 0

Dp(N−1,N−1|t) Dp(N−1,N−2|t) · · · Dp(N−1,1|t) 0




,
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Dm(t) :=




0 0 · · · 0 0

Dm(1,1|t) 0 · · · 0 0

...
... . . . ...

...

Dm(N−2,N−2|t) Dm(N−2,N−3|t) · · · 0 0

Dm(N−1,N−1|t) Dm(N−1,N−2|t) · · · Dm(N−1,1|t) 0




,

d(t) :=




d(0|t)

d(1|t)
...

d(N−1|t)




.

Using these notations, the control parametrization of (5.5) within the control horizon

becomes

u(t) = K x(t)+d(t)+Dm(t)ŵm(t)+Dp(t)ŵp(t) (5.6)

where K :=
[
IN ⊗K f 0

]
.
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5.2.2 MPC Formulation

Using the above-mentioned notations, the FH optimization based on the control parametriza-

tion of (5.5) can be summarized as the following problem PSDF
N (x(t)):

min
d(t),D(t)

JSDF(d(t), D(t)) (5.7a)

s.t. x(t) = A x(t)+Bu(t)+G (wp(t)−wm(t)) (5.7b)

u(t) = K x(t)+d(t)+Dm(t)ŵm(t)+Dp(t)ŵp(t) (5.7c)

(x(i|t),u(i|t)) ∈ Y, ∀ w(t) ∈W N , ∀i ∈ ZN−1 (5.7d)

x(N|t) ∈ X f , ∀ w(t) ∈W N (5.7e)

where A , B and G are the same as in (3.9) and (3.10), JSDF(d(t), D(t)) is an appropri-

ate cost function details of which are discussed in the next subsection. Let the feasible

set of the FH optimization problem be

ΘSDF
N (x) = {(d,D) | (d,D) is feasible for PSDF

N (x)} (5.8)

The set of admissible initial states to the FH problem is then

X SDF
N := {x| ΘSDF

N (x) 6=∅}. (5.9)
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Remark 5.2.1 Since by letting Dp(i, j|t) =−Dm(i, j|t) = D(i, j|t) parametrization (5.5)

becomes (4.2), the expressive ability of the former is stronger than that of the latter.

Hence, X DFD
N ⊆X SDF

N and this, together with Remark 4.2.5, implies X DF
N = X DFC

N =

X DFD
N ⊆X SDF

N .

The rest is as usually: the FH optimization problem is solved at each time t and the very

first term of (d∗(t),D∗(t)) = argmin PSDF
N (x(t)) is applied to system (5.1a) yielding

the MPC control law

u(t) = κSDF(x(t)) := K f x(t)+d∗(0|t) (5.10)

5.2.3 Cost Function

The cost function used in this chapter is similar to that used in Chapter 4 and hence its

discussion here is brief. Specifically, the cost function is

JSDF(d(t),D(t)) :=
N−1

∑
i=0

[
‖d(i|t)‖2

Ψ +
i

∑
j=1
‖vec([Dp(i, j|t) Dm(i, j|t)])‖2

Λ

]
(5.11)

for any choice of

ΨÂ 0, Λº Σv⊗Ψ (5.12)

where Σv is the covariance matrix of [ŵp(w); ŵm(w)] := [(ŵp(w))T (ŵm(w))T ]T .

If the density function of w is known, Σv can be found. However, the knowledge of Σv is
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not needed to satisfy (5.12). For example, if Σv is not known, let Λ = 2α2I2n⊗Ψ where

α := maxw∈W ‖w‖ and I2n is the identity matrix of dimension 2n. Then, it can be shown,

in Appendix 5.A.1, that (5.12) is satisfied.

5.3 Convex Reformulation and Computation

This section focuses on the computation of the FH optimization problem PSDF
N (x).

Since (5.7d) and (5.7e) have to hold for all w(i|t) ∈ W and (x(i|t),u(i|t)) are piece-

wise affine functions of w( j|t) j < i, PSDF
N (x) is not directly solvable using standard

techniques in Robust Optimization and a reformulation is needed. To this end, define

v := [wp; wm] = [(wp)T (wm)T ]T (5.13)

which belongs to the set

VW := {v = [v1; v2]| v1− v2 ∈W, v≥ 0, (v1)T v2 = 0} ⊂ R2n. (5.14)

The condition of (v1)T v2 = 0 comes from definition (5.2) and it implies, under (A3) of

Assumption 1.4.1, that VW is a non-convex set even when W is convex. Clearly, there is

a one-to-one mapping between VW and W : for any w ∈W , v1 = wp and v2 = wm while

for any [v1;v2] ∈ VW , w = v1− v2. Define v1(t) and v2(t) in the same structure as w(t)

and let

v̄p := 1N ⊗ w̄p, v̄m := 1N ⊗ w̄m,
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then PSDF
N (x(t)) of (5.7) can be equivalently formulated as

min
d(t),D(t)

JSDF(d(t), D(t)) (5.15a)

s.t. x(t) = A x(t)+Bu(t)+G (v1(t)−v2(t)) (5.15b)

u(t) = K x(t)+d(t)+Dp(t)(v1(t)− v̄p)+Dm(t)(v2(t)− v̄m) (5.15c)

(x(i|t),u(i|t)) ∈ Y, ∀ [v1(t); v2(t)] ∈ (VW )N , ∀i ∈ ZN−1 (5.15d)

x(N|t) ∈ X f , ∀ [v1(t); v2(t)] ∈ (VW )N (5.15e)

Since VW is generally non-convex, PSDF
N (x) is still not computationally tractable by

standard techniques because of (5.15d) and (5.15e). The next subsection shows an ad-

ditional assumption on W and an associated definition that helps towards this end.

5.3.1 Absolute Set

Definition 5.3.1 (Absolute set) A set Ω is an absolute set if it is compact, convex, con-

tains the origin in its interior and ω ∈ Ω if and only if |ω| ∈ Ω where | · | is taken

element-wise.

Examples of absolute sets include those generated by the Lp norms and their intersec-

tions, e.g. {ω : ‖ω‖p ≤ a}, {ω : ‖ω‖∞ ≤ a,‖ω‖2 ≤ b,‖ω‖1 ≤ c}. The use of absolute

set as disturbance model is also quite common [77, 62, 63, 78] and it is stated here as an

assumption.
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Assumption 5.3.1

(A3c) W set is an absolute set.

Theorem 5.3.1 Suppose W satisfy Assumption 5.3.1. The set

VC
W := {v = [v1; v2]| v1 + v2 ∈W, v≥ 0} (5.16)

is the convex hull of VW .

Proof: See Appendix 5.A.2.

Figure 5.1 shows the sets W , VW and VC
W for a simple one dimensional W = {w| |w| ≤

0.2}. That VC
W is the convex hull of VW as stated in Theorem 5.3.1 can be easily verified.
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Figure 5.1: Disturbance set and segregated disturbance set.

Remark 5.3.1 W being an absolute set is not as restrictive as it may appear. Many non-

symmetrical disturbances or disturbances generated from a set with dimension different

from Rn can be represented as {w|w = Ew̄+e, w̄∈ W̄ ⊂R`} where W̄ is an absolute set
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and E and e are some appropriate matrices. For such disturbance models, the exposition

hereafter remains valid but with w replaced by Ew̄+ e.

If W is a polytope set, so is VC
W . It is well known that the solution of PSDF

N (x) is

unaffected by the replacement of VW by VC
W in (5.15d) and (5.15e) (Exercise 3.35 in

[79]). Since VC
W is a polytope, its use in (5.15d) and (5.15e) in place of VW leads to a

computable PSDF
N (x) using standard techniques in robust optimization, see Section 3.3

and [39, 69, 68, 63, 44] for details.

However, it is possible for PSDF
N (x) to handle a more general class of absolute sets other

than polytopes. The next subsection introduces a definition of absolute norm, its dual

and an additional result needed for this purpose.

5.3.2 Absolute Norm

Definition 5.3.2 (Absolute norm) A function η :Rn →R is an absolute norm function

if η(·) satisfies the three standard properties of a norm and the additional property of

η(v) = η(|v|).

Clearly, all polynomial norms or Lp norms are absolute. However, a polynomial norm

induced by an invertible matrix, is not necessarily absolute. Absolute norm function can

also be defined from other absolute norm functions. For example,

ζ (w) := max
l=1,...,L

{alηl(w)}, (5.17)
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in which ηl(·) are absolute norms with al > 0 for all l ∈ Z+
L , is absolute. Hence,

{w : ‖w‖∞≤ 1, ‖w‖2≤ r} can be expressed as {w : η(w)≤ 1}with η(w)= max{‖w‖2/r, ‖w‖∞}.

Given an absolute norm η(·), its dual norm, η∗ : Rn → R, is defined as

η∗(y) := max
η(w)≤1

yT w. (5.18)

Some useful and relevant properties of the dual norm are collected below.

Lemma 5.3.1 Suppose η(·) and η∗(·) are an absolute norm and its dual. Then (i)

η∗(·) is also an absolute norm function (ii) η∗∗(·) = η(·). (iii) The dual norm of the Lp

norm ‖·‖p, p≥ 1, is the Lq norm ‖·‖q with q = 1+1/(p−1). (iv) The dual norm of the

composite norm (5.17) is ζ ∗(y) = min
{

∑L
l=1

1
al

η∗(yl) : ∑L
l=1 yl = y,yl ∈ Rn ∀l ∈ Z+

L

}
.

Proof: See Appendix 5.A.3.

The following example demonstrates (iv) of Lemma 5.3.1. Let W = {w ∈ R2| ‖w‖∞ ≤

0.2, ‖w‖2 ≤ 0.224} which is shown in Figure 5.2. The corresponding absolute norm is
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Figure 5.2: W defined by composite norm
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η(w)= max{5‖w‖∞,4.64‖w‖2} and its dual norm is η∗(z)= min{0.2‖y1‖1+0.224‖y2‖2 : y1+

y2 = z}.

Theorem 5.3.2 A set W is an absolute set if and only if there exists an absolute norm

function, ηw(·), such that W = {w : ηw(w)≤ 1}.

Proof: See Appendix 5.A.4.

5.3.3 Deterministic Equivalence

One additional result, needed to show the deterministic equivalence of PSDF
N (x), is

given in the following theorem.

Theorem 5.3.3 Let W = {w : ηw(w) ≤ 1} ⊂ Rn be an absolute set for some absolute

norm function ηw(·), η∗w(·) be the corresponding dual norm and VC
W be as defined by

(5.16). The two sets

C1 := {(x,y,z) ∈ R2n+1| xT v1 + yT v2 ≤ z, ∀ [v1; v2] ∈VC
W} (5.19)

C2 := {(x,y,z) ∈ R2n+1| η∗w(τ)≤ z, τ ≥ x, τ ≥ y for some τ} (5.20)

are equivalent.

Proof: See Appendix 5.A.5.
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Remark 5.3.2 Following the definition of the dual norm of (5.18), the constraint η∗w(τ)≤

z arising in the expression for C2 in Theorem 5.3.3 is equivalent to

wT τ ≤ z ∀w ∈W

whose tractability and explicit formulation can be found in [62]. In particular, if the

set W is conic quadratic representable, which includes sets prescribed by intersections

of Lp norms, p being a rational number, the resulting robust counterpart is also conic

quadratic representable. The representative power of conic quadratic constraints can

be found in [44]. Software involving conic quadratic representable constraints includes

SDPT3 and MOSEK.

Under Assumption 5.3.1 and the result of Theorem 5.3.2, there exists an absolute norm

function ηw such that W = {w| ηw(w) ≤ 1}. Define ηwN : RNn → R as ηwN (p) :=

maxi∈ZN−1{ηw(p(i))} where p := [pT (1) pT (2) · · · pT (N)]T and p(i) ∈ Rn. Then, it

follows that W N can be represented by W N = {w|ηwN (w)≤ 1}. The corresponding dual

norm of ηwN (·), η∗wN : RNn → R, is given by

η∗wN (q) = max{qT p|ηwN (p)≤ 1}=
N

∑
i=1

max{(q(i))T p(i)|ηw(p(i))≤ 1}=
N

∑
i=1

η∗w(q(i))

(5.21)

where q := [qT (1) · · · qT (N)]T and q(i) ∈ Rn.
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Using these quantities and the characterizations of Y and X f in Assumption 1.4.1, con-

straints (5.15b)-(5.15e) can be restated as

¯A x(t)+ B̄d(t)− B̄(Dp(t)v̄p +Dm(t)v̄m)+(B̄Dp(t)+ Ḡ )v1(t)

+(B̄Dp(t)− Ḡ )v2(t)≤ 1s, ∀ [v1(t);v2(t)] ∈ (VC
W )N (5.22)

where s = qN +g, ¯A , B̄ and Ḡ are the same as in (3.25) and (3.26).

To apply the result of Theorem 5.3.3, let

τ(t) := 1s− ¯A x(t)− B̄d(t)+ B̄(Dp(t)v̄p +Dm(t)v̄m) ∈ Rs (5.23)

Then (5.22) is equivalent to

max
[v1;v2]∈(VC

W )N

[
(B̄Dp(t)+ Ḡ )v1 +(B̄Dm(t)− Ḡ )v2]≤ τ(t). (5.24)

There are s inequalities in (5.24), and each of them is in the same form as the inequality

in (5.19), with B̄Dp+(t)+ Ḡ , B̄Dm+(t)− Ḡ and τ(t) analogous respectively to xT , yT

and z. Then by introducing Ti(t) ∈ RnN , i ∈ Z+
s (analogous to τ in (5.20)) for each row
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of (5.24) and applying result of Theorem 5.3.3, (5.24) is equivalent to





¯A x(t)+ B̄d(t)− B̄(Dp(t)v̄p +Dm(t)v̄m)+ µ(t)≤ 1s

TT (t)≥ B̄Dp(t)+ Ḡ

TT (t)≥ B̄Dm(t)− Ḡ

µ(t) =
[
η∗wN (T1(t)) · · · η∗wN (Ts(t))

]T

T(t) = [T1(t) · · · Ts(t)]

(5.25)

where η∗wN (·) is that given in (5.21).

Remark 5.3.3 The adaptation of Theorem 5.3.3 to a disturbance set defined by the in-

tersection of Lp norm sets is also quite easy. For example, if W = {w| ‖w‖∞ ≤ 1, ‖w‖2 ≤

r}, then ηw(w) = max{1
r ‖w‖2,‖w‖∞}, η∗w(w) = min{r‖w1‖2 + ‖w2‖1,w1 + w2 = w}

and the deterministic equivalence of C1 in Theorem 5.3.3 is C2 = {(x,y,z)| ∃τ,τ1,τ2 ∈

Rn,‖τ2‖1 + r‖τ1‖2 ≤ z,τ1 + τ2 = τ, τ ≥ x, τ ≥ y}. In such a case, (5.21) and (5.25)

remains correct using the new expression of η∗w.

Remark 5.3.4 For some class of disturbances where W is convex but not absolute and

cannot be represented using Remark 5.3.1, the set VW in (5.15) may be relaxed and be

approximated by

V R
W = {v = [v1; v2]| v1− v2 ∈W,v≥ 0} (5.26)

in which the constraint (v1)T v2 ≥ 0 in VW is removed. Therefore, VW ⊆ V R
W and V R

W
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is convex (since W is convex). Suppose PSDFR
N and X SDFR

N are the corresponding

FH problem and the admissible initial set when VW is replaced by V R
W in (5.15d) and

(5.15e). Then, PSDFR
N is computationally more amiable as V R

W is convex. Also, since VW

is defined by having an additional condition to V R
W , VW ⊆V R

W . Consequently, X SDFR
N ⊆

X SDF
N as the control law obtained is more conservative.

Remark 5.3.5 While more conservative than PSDF
N , PSDFR

N is less conservative than

PDFD
N , the FH problem when parametrization (4.2) is used. Again, this is true because

PDFD
N is a special case of PSDFR

N . Hence, if a feasible solution exists for PDFD
N for all

w ∈W, a feasible solution exists for PSDFR
N for all v ∈V R

W . This, together with Remark

5.3.4, means that X DFD
N ⊆X SDFR

N ⊆X SDF
N .

5.4 Feasibility and Stability

This section deals with the feasibility and stability of system (5.1a) under the control law

(5.10). Since the results follow the same arguments as in Section 4.4, both the theorem

and its proof are brief.

Theorem 5.4.1 Suppose x(0) ∈X SDF
N and Assumptions 1.4.1, 5.1.1 and 5.3.1 are sat-

isfied. The closed-loop system using the MPC control law (5.10) has the following

properties:

(i) X SDF
N and ΘSDF

N (x) are convex sets;
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(ii) PSDF
N (x(t)) is feasible for all t ≥ 0;

(iii) (x(t),u(t)) ∈ Y for all t ≥ 0;

(iv) x(t)→ F∞ as t → ∞ with probability one.

Proof: See Appendix 5.A.6.

5.5 Numerical Examples

The proposed approach is illustrated using an example. The system parameters and

constraints are given by:

A =




1.1 1

0 1.3


 , B =




1

1


 , W = {w| ‖w‖∞ ≤ 0.2},

Y = {(x,u)| |u| ≤ 1,‖x‖∞ ≤ 6},

and w(t) is uniformly distributed over W . To implement the MPC controller, K f =

[−0.4991 −0.9546] is chosen as the optimal feedback gain for the unconstrained LQR

problem when Q = I2 and R = 1. Terminal set X f is chosen to be the maximal constraint-

admissible disturbance invariant set of (5.1a) under u = K f x. The proposed approach is

simulated from x(0) = [−5 2]′ for the case where N = 8 and its result is shown in Figure

5.3 and Figure 5.4.

In Figure 5.3, the outer bound F̂∞ is used because the exact F∞ is not computable. The
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Figure 5.3: State trajectory of example one
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Figure 5.4: Control trajectory of example one
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procedure for computing F̂∞ follows that given in Section 2.2.1, also see [80]. It can be

observed that the state converges to F∞ and all the constraints are satisfied all the time.

The next simulation compares the optimal costs of the FH optimization problems using

parameterizations (4.2) and (5.5) for the case where N = 8. For a fair comparison, the

cost functions of the two parameterizations should be consistent. For this purpose, the

weight matrices of JSDF(d,D) is chosen according to (5.12) while the cost function

associated with parametrization (4.2) is chosen according to chapter 4. Our simulation

with (4.2) uses the cost function ∑N−1
i=0

[
‖d(i|t)‖2

Λ +∑i
j=1 ‖vec(D(i, j|t))‖2

ϒ

]
where Λ =

R + BT PB and ϒ = Σw ⊗Λ. Under such choices, both cost functions are equivalent

to the expected value of the same LQ cost. The optimal costs of both problems over

the admissible region are compared and the result is shown in Figure 5.5 and Figure

5.6 where JL
N is the optimal cost under parametrization (4.2) and JS

N is that under (5.5).

Clearly, parametrization (5.5) always yields a better cost than (4.2).
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Figure 5.5: Difference between the two optimal costs
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5.6 Summary

A piecewise affine disturbance feedback parametrization is proposed under the MPC for-

mulation of constrained linear systems with disturbances. This parametrization includes

the standard affine disturbance feedback as a special case, and hence, has a stronger ex-

pressive ability. When the disturbance set is absolute, the FH optimization problem can

be converted into an equivalent convex problem solvable with existing solvers. Even

when the disturbance set is not absolute, the new parametrization still results in a MPC

controller that is less conservative than the one derived from using affine disturbance

feedback. The stability of the closed-loop system under the proposed parametrization is

shown and the asymptotic behavior of the system is characterized by F∞(K f ) where K f

is a user-defined constant feedback gain.
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5.A Appendix

5.A.1 Choice of Λ

Σv = Ew







ŵp(w)− w̄p

ŵm(w)− w̄m







ŵp(w)− w̄p

ŵm(w)− w̄m




T



= Ew







ŵp(w)

ŵm(w)







ŵp(w)

ŵm(w)




T

−




w̄p

w̄m







w̄p

w̄m




T

≺ Ew







ŵp(w)

ŵm(w)







ŵp(w)

ŵm(w)




T

¹max

w∈W

∥∥∥∥∥∥∥∥

ŵp(w)

ŵm(w)

∥∥∥∥∥∥∥∥

2

I2n

¹ (max
w∈W

‖ŵp(w)‖2 +max
w∈W

‖ŵm(w)‖2)I2n

¹ 2α2I2n

5.A.2 Proof of Theorem 5.3.1

Proof: (⇒)Consider [v1;v2] ∈ VW . It follows that v1 ≥ 0,v2 ≥ 0 and (v1)T v2 = 0.

Therefore, v1 + v2 = |v1− v2|. Since W is absolute and v1− v2 ∈W , we have v1 + v2 =

|v1− v2| ∈W which implies that [v1;v2] ∈ VC
W . Since the set VC

W is convex, we have

CH(VW )⊆VC
W .
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(⇐) To show VC
W ⊆ CH(VW ), consider [u1;u2] ∈ VC

W and let S0 = {[u1;u2]}. For all

i ∈ Z+
n , let

Si =
⋃

[v1;v2]∈Si−1

{[v1− eiv1
i ;v2 + eiv1

i ], [v
1 + eiv2

i ;v2− eiv2
i ]}

where ei denotes a unit vector in Rn, with one at the ith element and zeros otherwise.

Observe that for all [v1;v2] ∈ Si, [v1;v2] ∈ CH(Si+1). Indeed, if v1
i + v2

i > 0, let λ =

v1
i /(v1

i + v2
i ) and it follows that

[v1;v2] = λ [v1− eiv1
i ;v2 + eiv1

i ]+ (1−λ )[v1 + eiv2
i ;v2− eiv2

i ].

Otherwise, if v1
i + v2

i = 0, we have [v1;v2] ∈ Si+1. Therefore, by induction, we have

[u1;u2]∈CH(Sn). We can also induce that each [v1;v2]∈ Sn satisfies v1,v2≥ 0, v1 +v2 =

u1 +u2 and v1
i v2

i = 0, i ∈ Z+
n . Hence, |v1− v2|= v1 + v2 = u1 +u2 ∈W . Since W is an

absolute set, we have v1− v2 ∈W and [v1;v2] ∈VW . Therefore, [u1;u2] ∈ CH(VW ).

5.A.3 Proof of Lemma 5.3.1

(i) The proof can be found in [81].

(ii)-(iii)The first two results are well known, see [82].
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(iv): From (5.17),

ζ ∗(y) = max{yT x|aiηi(x)≤ 1, i ∈ Z+
L }

= max(yT x|x ∈ C̄1∩·· ·C̄L})

= min{δ (y1|C̄1)+ · · ·+δ (yL|C̄L)|
L

∑
i=1

yi = y} (5.27)

= min{
L

∑
i=1

1
ai

δ (yi|Ci)|y1 + · · ·+ yL = y} (5.28)

= min{
L

∑
i=1

1
ai

η∗(yi)|y1 + · · ·+ yL = y} (5.29)

where C̄i = 1
ai

Ci and Ci = {x|ηi(x) ≤ 1} ∀i ∈ Z+
L . Equation (5.27) follows a property

of support function (Corollary 16.4.1 of [53]). Specifically, suppose C1,C2, · · ·Cm are

non-empty convex sets in Rn such that C1 ∩C2 · · · ∩Cm 6= /0, then δ (y|C1 ∩C2 · · · ∩

Cm) = min{δ (y1|C1) + · · ·+ δ (ym|Cm)|y1 + · · ·+ ym = x}. Equation (5.28) holds be-

cause δ (x|αC) = αδ (x|C) for any α > 0 while (5.29) follows from the definition of

Ci.

5.A.4 Proof of Theorem 5.3.2

One direction is trivial. Conversely, it suffices to show that for any absolute set, V , an

absolute norm function η(·) exists such that

max{yT v : η(v)≤ 1}= max{yT v : v ∈V}
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for all y ∈ Rn. Consider the support function of V , δ (y|V ), which by inspection is

an absolute norm. Note that any convex, compact and symmetric set with zero in

the interior has support function that satisfies the properties of a norm. Hence, from

(5.18) and property (i) of Lemma 5.3.1, the corresponding dual norm function δ ∗(v) =

max{vT y : δ (y|V )≤ 1} is also an absolute norm function. Let η(·) = δ ∗(·). Hence, by

strong duality of norms, we have for all y ∈ Rn,

max{yT v : η(v)≤ 1}= η∗(y) = δ ∗∗(y) = δ (y|V ) = max{yT v : v ∈V}. (5.30)

5.A.5 Proof of Theorem 5.3.3

Proof: (⇒) Let (x,y,z) be an element of C1. It follows from (5.16) that

z≥ max{xT v1 + yT v2|v1 ≥ 0,v2 ≥ 0,ηw(v1 + v2)≤ 1}

= max{xT v1 + yT v2| v1 ≥ 0,v2 ≥ 0, u = v1 + v2, ηw(u)≤ 1}

= max{τ̄T u| u≥ 0, ηw(u)≤ 1, τ̄i = max{xi,yi}, ∀i ∈ Z+
n } (5.31a)

= max{τ̄T |u| | ηw(u)≤ 1, τ̄i = max{xi,yi}, ∀i ∈ Z+
n } (5.31b)

= max{τT |u| | ηw(u)≤ 1, τi = max{0, τ̄i}, ∀i ∈ Z+
n } (5.31c)

= max{τT u| ηw(u)≤ 1, τi = max{0, τ̄i}, ∀i ∈ Z+
n } (5.31d)

⇒ (x,y,z) ∈ C2
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where the subscript i denotes the ith element of the corresponding vector. The first two

relations come from the definitions of VC
W , W and the re-organization of the constraints.

Equation (5.31a) comes from the fact that the optimal value can be achieved by consid-

ering v1 and v2 where v1
i v2

i = 0 for all i. This is true because the optimal u∗ is such that

u∗i = v1∗
i if xi > yi and u∗i = v2∗

i if xi ≤ yi for all i. Equation (5.31b) follows because W

is an absolute set. Equation (5.31c) comes from the fact that if τi < 0, the optimal u∗i

must be 0. Hence, the maximum value can be obtained by letting τi = max{0, τ̄i}. Since

τ ≥ 0, the absolute sign on u can be relaxed based on property (1) of Lemma 5.3.1. The

last implication follows since the existence of τ , τ ≥ x and τ ≥ y is established.

(⇐) Let (x,y,z) be an element of C2 with a suitable τ ∈ Rn. Then, from the definition

of η∗w(·),

z ≥ max{τT (v1 + v2)| (v1 + v2) ∈W,τ ≥ x,τ ≥ y}

≥ max{τT (v1 + v2)| (v1 + v2) ∈W,v1 ≥ 0,v2 ≥ 0, τ ≥ x,τ ≥ y}

≥ max{xT v1 + yT v2| (v1 + v2) ∈W,v1 ≥ 0,v2 ≥ 0}

= max{xT v1 + yT v2| [v1;v2] ∈VC
W}

⇒ (x,y,z) ∈ C1.

Again, the first inequality holds from definition. The second inequality follows from

the imposition of two additional constraints v1 ≥ 0,v2 ≥ 0. The third inequality follows

from the fact that τT v1 ≥ xT v1 and τT v2 ≥ yT v2 for all v1,v2 ≥ 0 since τ ≥ x and τ ≥ y.
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The last equality is from the definition of VC
W which implies the inclusion.

5.A.6 Proof of Theorem 5.4.1

(i) From (A2) of Assumption 1.4.1 and property (i) of Lemma 5.3.1, η∗wN (·) is a convex

function. This means that the set of feasible (x,d,D,T) of (5.25) is a convex set. The

sets ΘSDF
N (x) and X SDF

N are projections of this convex set onto the (d,D) and x space

respectively and are hence convex sets.

The proof of (ii)-(v) follows essentially the arguments in section 4.4.

(ii)If (d∗(t),D∗(t)) is the optimal control at time t, choose the feasible control at time

t +1 by

d̂(i|t +1) =





d∗(i+1|t)+(Dp(i+1, i+1|t))∗ŵp(t)

+(Dm(i+1, i+1|t))∗ŵm(t) ∀i ∈ ZN−2

0 i = N−1

(5.32a)

D̂k(i, j|t +1) =





(Dk(i+1, j|t))∗ ∀ j ∈ Z+
i , ∀i ∈ Z+

N−2

0 ∀ j ∈ Z+
N−1, i = N−1

∀k ∈ {p,m}(5.32b)

The feasibility of (d̂(t +1), Ĉ(t +1)) for PN(x(t +1)) follows from constraint (5.7e)

and (A4) of Assumption 1.4.1.

(iii) The result follows directly from (ii).
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(iv) Note that (ŵp, ŵm) have zero mean. Hence, following the same argument in the

proof of Theorem 4.4.2, it can be also shown that under condition (5.12) the expected

value of the optimum of PSDF
N (x(t)) decreases with respect to time. Hence, the differ-

ence between the costs at successive times, which is ‖d∗(0|t)‖Ψ, converges to zero with

probability one. As a result, the feedback law in (5.10) converges to K f x(t), leading to

the stated result.
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Chapter 6

Design of Feedback Gain

The stability results of the MPC method in chapters 3, 4 and 5 show that the closed-loop

system state converges to the minimal d-invariant set F∞(K f ) where K f is some fixed

state feedback gain. This chapter introduces a procedure for designing the terminal

feedback gain K f that characterizes the F∞(K f ) set.

6.1 Introduction and Problem Statement

The theory of set invariance plays a fundamental role in the control of constrained dy-

namical systems, see [5] by Blanchini and [59] by Aubin, and a large number of works

are based on set invariance, see [6] by Mayne et al., [37] by Kolmanovsky and Gilbert,

[61] by Gilber and Tan, [54] by Mayne and Schroeder, [83] by Caravani and De Santis,

[84] by Raković et al., [85] by Blanchini, [86] by Dórea and Hennet, [87] by De Santis
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et al., [56] by Raković et al. and the references therein. However, most of these works

are on the determination of an invariant set for a given system. Little attention has been

paid to the research along the reverse direction, i.e. the design of system parameters that

affect the invariant set. This is important since the invariant sets of one particular system

may differ dramatically from each other under different controllers and this is shown by

the following example.

Example 6.1.1 Consider the system x(t +1) = Ax(t)+Bu(t)+w(t) with

A =




1.2 2

0 1.5


 , B =




1

0.5


 , w(t) ∈W = {w| ‖w‖∞ ≤ 0.2}

and three linear feedback laws:

KLQR = [−0.6232 −1.9678], KPP1 = [−0.1714 −1.6571], KPP2 = [−3.3 −0.4]

where KLQR is obtained using the LQR method with Q = I2, R = 1, KPP1 and KPP2 are

designed using pole placement method with poles being [0.8 0.9] and [0.1 − 0.9],

respectively. The outer approximations of the minimal d-invariant sets of the system

under these three linear feedback controllers are plotted in Figure 6.1. It can be seen

that the minimal d-invariant sets are dramatically different.
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−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

F̂∞(KLQR)

F̂∞(KPP1)

F̂∞(KPP2)

x1

x
2

Figure 6.1: F∞ sets under different controllers

This chapter emphasizes the design of feedback laws and consideres the following sys-

tem,

x(t +1) = Ax(t)+Bu(t)+w(t) (6.1a)

u(t) = Kx(t) (6.1b)

w(t) ∈ W (6.1c)

where A ∈ Rn×n, B ∈ Rn×m and K ∈ Rm×n, x(t) ∈ Rn, u(t) ∈ Rm and w(t) ∈ Rn is

bounded in a convex compact set W that contains the origin in its interior. Denote the

minimal d-invariant set of system (6.1) by F∞(K). Note that any convex compact set

can be approximated arbitrarily accurately by an appropriate polytope and any polytope

can be expressed by the support function evaluated in some directions. The rest of this
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chapter shows the evaluation, with arbitrary accuracy, of the support function of F∞(K),

δF∞(K)(η) := max{ηT x| x ∈ F∞(K)},

its derivative with respect to feedback gain K,

∂δF∞(K)(η)
∂K

for any given η ∈ Rn and the design of K, using δF∞(K)(η) and ∂δF∞(K)(η)/∂K.

6.2 Support Function of F∞(K) and Its Derivative

Without loss of generality, consider system (6.1) with m = 1, B = b∈Rn×1 and K = k ∈

R1×n for the convenience of presentation. It can be shown that the results in the rest of

this chapter can be generalized to the multiple input case with minor changes. System

(6.1) can be equivalently written as

x(t +1) = Φx(t)+w(t) (6.2)

where Φ = A+bk. As discussed in Section 2.2.1, the reachable set of x(t) when x(0) = 0

is Ft = W ⊕ΦW ⊕ ·· · ⊕Φt−1W . When time tends to infinity, the reachable set is the

minimal d-invariant set, F∞(k).
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6.2.1 Evaluation of Support Function

Using the properties that (i) δAΩ(y) = δΩ(AT y), (ii) δΩ1⊕Ω2(y) = δΩ1(y)+δΩ2(y) from

Property 2.1.1, and the expression of F∞ = W ⊕ΦW ⊕ ·· · , given η ∈ Rn, the support

function of F∞ can be expressed as

δF∞(η) = δW (η)+δΦW (η)+δΦ2W (η)+ · · · (6.3a)

= δW (η)+δW (ΦT η)+δW ((Φ2)T η)+ · · · (6.3b)

=
∞

∑̀
=0

δW ((Φ`)T η) (6.3c)

=
L

∑̀
=0

δW ((Φ`)T η)+
∞

∑
`=L+1

δW ((Φ`)T η) (6.3d)

Hence, δF∞(η) can be approximated by the first term in (6.3d).

δFL(η) :=
L

∑̀
=0

δW ((Φ`)T η) (6.4)

with a large enough integer L because the second term in (6.3d) is bounded by zero from

below and bounded from above since

δW ((Φ`)T η)≤ ‖η‖ ·max
w∈W

‖w‖ · (‖Φ`‖)≤ vs · (ρ(Φ))` (6.5)
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where vs = ‖η‖ ·maxw∈W ‖w‖ ·M, ρ(Φ) is the spectral radius of Φ and M is a constant

such that M(ρ(Φ))i ≥ ‖Φi‖, ∀i≥ 0. Hence, the last term in (6.3d) satisfies

0≤
∞

∑
`=L+1

δW ((Φ`)T η)≤
∞

∑
`=L+1

vs · (ρ(Φ))` =
vs · (ρ(Φ))L+1

1−ρ(Φ)
. (6.6)

Let the error of approximation be

εL :=
vs · (ρ(Φ))L+1

1−ρ(Φ)
, (6.7)

then

δF∞(η) ∈ [δFL(η), δFL(η)+ εL] (6.8)

For any ε > 0, L can be chosen to be
⌈
lnρ(Φ)(ε(1−ρ(Φ))/v)

⌉−1 so that εL ≤ ε .

Example 6.2.1 Consider a system in the form of (6.1a)-(6.1b) with parameters

A =




1.2 2

0 1.5


 , b =




1

0.5


 , k = [−0.6232 −1.9678]

w(t) ∈W = {w| ‖w‖∞ ≤ 0.2}.

Hence

Φ = A+bk =




0.5768 0.0322

−0.3116 0.5161




η is chosen to be [1 1]T and vs is 1.6 with M = 4. The approximations of δF∞(η) and
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the corresponding errors with different value of L are listed in the following table and

plotted in Figure 6.2. From Figure 6.2, we can see that the approximation of δF∞(η)

η = [1 1]T L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9 L = 10

δFL(η) 0.6748 0.7107 0.7344 0.7492 0.7582 0.7634 0.7664 0.7682

εL 0.3402 0.1887 0.1047 0.0581 0.0322 0.0179 0.0099 0.0055

Table 6.1: Approximation of δF∞(η) with L = 3, . . . ,10

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

δFL
(η) + εL

δFL
(η)

δ F
∞

(η
)

L

Figure 6.2: Approximation of δF∞(η) with different L

converges to 0.7705 as L increases.

The next section shows the evaluation of ∂δF∞(k)(η)/∂k.

6.2.2 Evaluation of the Derivative of the Support Function

For any integer `, let η̄` := (Φ`)T η and

δW ((Φ`)T η) = δW (η̄`) = η̄T
` ·w∗` (6.9)
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where w∗` is the maximizer of δW (η̄`). Therefore

∂δW (η̄`)
∂k j

= (w∗`)
T ∂ η̄`

∂k j
+ η̄T

`

∂w∗`
∂k j

(6.10)

The term ∂w∗`/∂k j in (6.10) depends on the characterization of W . Since w∗` = argmaxw∈W η̄T
` w,

w∗` is a function of η̄`. For the special case when W is a polytope in Rn, ∂w∗`/∂ η̄` is

piecewise constant with respect to η̄` where the various pieces are zero in value. In

particular, ∂w∗`/∂ η̄` has a unique value when the set S(η̄`) := {w| η̄T
` w = δW (η̄`)} is

a singleton. When this is the case ∂w∗`/∂ η̄` = 0, see Figure 6.3a. For the value of η̄`

a

0

impulse

b

w
∗

`

η̄` α[0;−1]

α

‖
∂w∗

`

∂η̄`(α)
‖

η̄
1
`

η̄
2
`

w1

w2

η̄`(α) = η̄
1
`

Figure 6.3: Derivative of support function

shown, w∗` is the unique minimizer of δW (η̄`). For small perturbation around η̄`, so

long as η̄` lies in the cone of η̄1
` and η̄2

` , w∗` remains the same and ∂w∗`/∂ η̄` = 0. Fig-

ure 6.3b shows value of ‖∂w∗`/∂ η̄`(α)‖ where η̄`(α) = η̄` + α




0

−1


. As shown,

‖∂w∗`/∂ η̄`(α)‖ is zero almost everywhere except when η̄`(α) = η̄1
` . Hence, we assume

that ∂w∗`/∂ η̄` = 0 throughout. Since η̄` is a function of k j, ∂w∗`/∂k j = 0.
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Remark 6.2.1 It is possible that multiple maximizers exist in (6.9). In this case, there

are two possible scenarios: either the maximizer is about to change or remains as max-

imizer. In the former scenarios the derivative of δW (η̄`) does not exist actually and we

can use any maximizer in (6.10) to compute an assumed derivative. The latter scenario

is the case which we have discussed before and additionally (ŵ∗` − w̌∗`)
T ∂ η̄`/∂k j = 0

for any two different maximizers ŵ∗` and w̌∗` .

Using (6.3c),

∂δF∞(η)
∂k j

=
∂

∂k j

∞

∑̀
=0

δW ((Φ`)T η) =
∞

∑̀
=0

∂δW (η̄`)
∂k j

=
∞

∑̀
=0

(w∗`)
T · ∂ η̄`

∂k j
(6.11)

Let B̂ j is a n×n square matrix of all zeros except the jth column being b, then

∂ η̄`

∂k j
=

∂ ((Φ`)T η)
∂k j

=
∂ ((Φ`)T )

∂k j
·η (6.12a)

= (B̂ jΦ`−1 +ΦB̂ jΦ`−2 +Φ2B̂ jΦ`−3 + · · ·+Φ`−1B̂ j)T ·η (6.12b)

= (
`−1

∑
i=0

ΦiB̂ jΦ`−1−i)T ·η (6.12c)
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where (6.12b) follows from Φ` = (A+bk)`. Using (6.12c) in (6.11) yields

∂δF∞(η)
∂k j

=
∞

∑̀
=0

(w∗`)
T · ∂ η̄`

∂k j
(6.13a)

=
∞

∑̀
=0

ηT ·
[

`−1

∑
i=0

ΦiB̂ jΦ`−1−i

]
·w∗` (6.13b)

=
L

∑̀
=0

ηT ·
[

`−1

∑
i=0

ΦiB̂ jΦ`−1−i

]
·w∗` +

∞

∑
`=L+1

ηT ·
[

`−1

∑
i=0

ΦiB̂ jΦ`−1−i

]
·w∗` (6.13c)

Given k and a direction η , the value of ∂δF∞(η)/∂k j can be determined as accurate as

possible from (6.13c) by choosing a large enough L. This is true since the second term

in (6.13c) can be bounded and decreases to zero as L increases. To show this, consider

∣∣∣∣∣η
T ·

[
`−1

∑
i=0

ΦiB̂ jΦ`−1−i

]
·w∗`

∣∣∣∣∣ (6.14a)

≤ ‖η‖ ·max
w∈W

‖w‖ ·
`−1

∑
i=0

(‖Φi‖ · ‖B̂ j‖ · ‖Φ`−1−i‖) (6.14b)

≤ ‖η‖ ·max
w∈W

‖w‖ · ` · ‖b‖ ·M2 · (ρ(Φ))`−1 (6.14c)

= vd · (ρ(Φ))`−1 · ` (6.14d)
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where vd = ‖η‖·maxw∈W ‖w‖·‖b‖·M2 and M(ρ(Φ))i ≥ ‖Φi‖, ∀i≥ 0, then the second

term in (6.13c) satisfies

∣∣∣∣∣
∞

∑
`=L+1

ηT ·
[

`−1

∑
i=0

ΦiB̂ jΦ`−1−i

]
·w∗`

∣∣∣∣∣ ≤ vd ·
∞

∑
`=L+1

(ρ(Φ))`−1 · ` (6.15)

Next we show that the right hand side of inequality (6.15) is bounded. To this end, let

∆ =
∞

∑
`=L+1

(ρ(Φ))`−1 · ` =
∞

∑
`=L+1

ρ`−1 · ` (6.16)

where ρ denotes ρ(Φ) for notational simplicity, then ∆ satisfies

∆ = ρL(L+1)+ρL+1(L+2)+ρL+2(L+3)+ · · · (6.17)

ρ∆ = ρL+1(L+1)+ρL+2(L+2)+ρL+3(L+3)+ · · · (6.18)

When (6.17) minus (6.18), we get

(1−ρ)∆ = ρL(L+1)+(ρL+1 +ρL+2 +ρL+3 + · · ·= ρL(L+1)+
ρL+1

1−ρ
. (6.19)

Hence,

∆ =
ρL(L+1)

1−ρ
+

ρL+1

(1−ρ)2 =
ρL

1−ρ
(L+

1
1−ρ

) (6.20)
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and (6.15) becomes

∣∣∣∣∣
∞

∑
`=L+1

ηT ·
[

`−1

∑
i=0

ΦiB̂ jΦ`−1−i

]
·w∗`

∣∣∣∣∣≤ ξL := vd
ρL

1−ρ
(L+

1
1−ρ

) (6.21)

Therefore,

∂δF∞(η)
∂k j

∈
[

∂δFL(η)
∂k j

−ξL,
∂δFL(η)

∂k j
+ξL

]
. (6.22)

Since Φ must be stable, ρ(Φ) < 1 and from (6.21)

lim
L→∞

ξL = 0 (6.23)

The above method of evaluating the derivative is illustrated in the following example.

Example 6.2.2 Consider a system in the form of (6.1a)-(6.1b) with parameters

A =




1.2 2

0 1.5


 , b =




1

0.5


 , k = [−0.6232 −1.9678]

w(t) ∈W = {w| ‖w‖∞ ≤ 0.2}, Φ = A+bk =




0.5768 0.0322

−0.3116 0.5161


 .

η is chosen to be [1 1]T and vd = 7.1554 with M = 4. The approximations of ∂δF∞(η)/∂k j,

j = 1,2 and the corresponding errors with different L are listed in the following table

and plotted in Figure 6.4. From Figure 6.4, we can see that the approximation of

dδF∞(η)/dk converges to [0.1776 −1.3281] as L increases.
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η = [1 1]T L = 11 L = 12 L = 13 L = 14 L = 15 L = 16 L = 17

∂δFL(η)/∂k1 0.1933 0.1876 0.1837 0.1812 0.1796 0.1787 0.1782

∂δFL(η)/∂k2 -1.3361 -1.3358 -1.3344 -1.3327 -1.3313 -1.3301 -1.3293

ξL 0.3258 0.1943 0.1154 0.0682 0.0402 0.0236 0.0138

Table 6.2: Approximation of ∂δF∞(η)/∂k j with different L

6 8 10 12 14 16 18
−5

0

5

6 8 10 12 14 16 18
−5

0

5

LL

∂
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)/
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k
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∂
δ F

∞
(η

)/
∂
k

2

∂δFL
(η)

∂k1

+ ξL

∂δF
L

(η)

∂k1

− ξL

∂δFL
(η)

∂k2

+ ξL

∂δFL
(η)

∂k2

− ξL

.5

Figure 6.4: Approximation of ∂δF∞(η)/∂k j with different L

6.3 Design of Feedback Gain

Using the results introduced in Section 6.2, it is possible to design the feedback gain k

by solving optimization problems with constraints imposed on the support function of

F∞(k) since both the support and its derivative can be evaluated.

Consider the simplest case where the only concern is the “shape” of the resulting F∞(k).

Specifically, we want F∞(k) to have minimal supports along some given directions

µ i
s, i ∈ Is. One possible way to achieve this is by minimizing α subject to the con-
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dition that δF∞(k)(µ i
s)≤ α in the form of

min
k,α

α (6.24a)

s.t. δF∞(k)(µ i
s)≤ α, ∀i ∈Is (6.24b)

The numerical solution of (6.24) can be obtained using a standard non-linear optimiza-

tion solver. For this to happen, values of δF∞(k)(η) and ∂δF∞(k)(η)/∂k at different value

of k are needed and they are given by (6.8) and (6.22).

Another potential application of the techniques developed in this chapter is to ensure

the existence of the maximal disturbance invariant set O∞ defined in Section 2.2.2 in the

design of the feedback gain k. This is important in MPC since the O∞ set is usually used

in MPC as the terminal set.

Suppose system (6.1) is subject to the following joint state and control constraints

Y := {(x,u)| (µ i
x)

T x+(µ i
u)

T u≤ 1, ∀i ∈Iy}. (6.25)

One necessary condition of the existence of O∞ set is that

(x,kx) ∈ Y, ∀x ∈ F∞(k) (6.26)
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or equivalently using u = kx and (6.25),

δF∞(k)(µ i
x + kT µ i

u)≤ 1, ∀i ∈Iy. (6.27)

Hence, in designing k, it is necessary to take this condition into the formulation of

optimization (6.24). More exactly,

min
k,α

α (6.28a)

s.t. δF∞(k)(µ i
s)≤ α, ∀i ∈Is (6.28b)

δF∞(k)(µ i
x + kT µ i

u)≤ 1, ∀i ∈Iy (6.28c)

In the above, constraint (6.28b) can be handled by applying the results in Section 6.2

directly, but handling (6.28c) needs slight modification since η is parameterized by k.

To show the modification, let gT
i := µ i

x + kT µ i
u, ∀i ∈Iy. Similar to (6.3d),

δF∞(gT
i ) =

L

∑̀
=0

δW ((giΦ`)T )+
∞

∑
`=L+1

δW ((giΦ`)T ) (6.29)

and similar to (6.6), the second term on the right hand side of (6.29) satisfies

0≤
∞

∑
`=L+1

δW ((giΦ`)T )≤ v̄s · (ρ(Φ))L+1

1−ρ(Φ)
(6.30)

where v̄s := ‖gi‖ ·maxw∈W ‖w‖ ·M and M(ρ(Φ))i ≥ ‖Φi‖, ∀i ≥ 0. For the support

function to be bounded, we should have ρ(Φ) < 1. As a result, the second term on the
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right hand side of (6.29) tends to zero if L is large enough, so δF∞(gT
i ) can be evaluated

as accurate as possible. Now consider ∂δW ((giΦ`)T )/∂k j. Let

δW ((giΦ`)T ) = (giΦ`) ·w∗` , (6.31)

then using the same argument below (6.10), we have ∂w∗`/∂k j = 0 and

∂δW ((giΦ`)T )
∂k j

=
∂gi

∂k j
Φ`w∗` +gi

∂Φ`

∂k j
w∗` (6.32)

Note that

∂δF∞(gT
i )

∂k j
=

∞

∑̀
=0

∂δW ((giΦ`)T )
∂k j

, (6.33)

following a similar procedure from (6.11) to (6.21), it can be obtained that

∂δF∞(gT
i )

∂k j
∈

[
∂δFL(g

T
i )

∂k j
−ζL,

∂δFL(g
T
i )

∂k j
+ζL

]
(6.34)

where ζL := v̂d
ρL+1

1−ρ + v̌d
ρL

1−ρ (L+ 1
1−ρ ), v̂d := |µ i

u|·maxw∈W ‖w‖·M and v̌d := maxw∈W ‖w‖·

‖gi‖ · ‖b‖ ·M2.

Remark 6.3.1 For multiple input cases where u(t) ∈ Rm m ≥ 2, the results introduced

in Section 6.2 and 6.3 can be easily applied by considering x(t + 1) = Ax(t)+ Bu(t)+

w(t), u(t) = Kx(t), where B = [b1 · · ·bm] and K =
[
kT

1 · · ·kT
m
]T .
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6.4 Numerical examples

In this section, the design approach described in Section 6.3 is demonstrated by exam-

ples. Consider the system (6.1a) with the following parameters,

A =




1.1 1

0 1.3


 , b =




1

1


 , W = {w| ‖w‖∞ ≤ 0.12}

and the µ i
s are

µ1
s =




1

0


 , µ2

s =



−1

0


 , µ3

s =




0

1


 , µ4

s =




0

−1




The objective is to find the smallest bounding square box that contains F∞ set. Solving

optimization problem (6.24) yields

ks = [−1.5111 −0.8889] , αs = 0.3511

The corresponding F∞(ks) set is plotted in Figure 6.5. For the purpose of comparison,

F∞(kLQR) is also plotted, where kLQR = [−0.4991 −0.9546] is obtained using the LQR

method with Q = I2 and R = 1.

Next, consider the case where state and control constraints are presented. µ i
s are chosen

to be the same as in the previous example and let the constraint set Y be

Y = {(x,u)| µxx≤ 1, µ1
u u≤ 1, µ2

u u≤ 1}
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Figure 6.5: Comparison of F∞ sets

where µx = [2.4 2.4], µ1
u = 1, µ2

u =−1. Solving optimization problem (6.28) yields

ksxu = [−0.6133 −1.1150] , αsxu = 0.3838.

The corresponding F∞(ksxu) is plotted in Figure 6.6. For the purpose of comparison,

F∞(ks), which is the optimal F∞ set without state and control constraints, is also plotted.

It can be observed that ks becomes infeasible since it violates the state constraint, while

F∞(ksxu) satisfies both state and control constraints. Not surprisingly, the optimum also

becomes larger. Hence, under the controller u(t) = ksxux(t), O∞ set exists and it is

plotted in Figure 6.7.
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Figure 6.6: Optimal F∞ sets with state and control constraints
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Figure 6.7: Optimal F∞(ksxu) and O∞(ksxu)
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6.5 Summary

Methods of approximating the support function of F∞(k) and its derivative with respect

to the feedback gain k are introduced in this chapter. It has been shown that both the

support function and its derivative can be evaluated as accurate as possible for the case

where W is a polytope. With these values, an optimization problem with constraints im-

posed on the support function becomes numerically solvable. Two optimization prob-

lems are set up for the design of feedback gains. One aims to find a feedback gain that

yields F∞ having a certain optimal shape; while the other guarantees the satisfaction of

state and control constraints in addition. These design methods are illustrated by two

numerical examples.
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Chapter 7

Probabilistically

Constraint-Admissible Set for Linear

Systems with Disturbances and Its

Application

The maximal constraint-admissible set of linear systems with hard constraints has been

widely studied and applied in the design of controller for such systems. This chapter

generalizes the concept of maximal constraint-admissible set to the case where prob-

abilistic constraints, also known as chance constraints or soft constraints, are present.

Properties of probabilistically constraint-admissible sets are studied in this chapter and

it is shown that the maximal probabilistically constraint-admissible set is not invariant in

general. An invariant inner approximation of the set is then proposed. This approximate
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set is used as the terminal set in the design of an MPC controller for a linear system with

additive disturbances and probabilistic constraints. Feasibility and stability of the result-

ing closed-loop system are also discussed. The effectiveness of the proposed approach

is illustrated via numerical examples.

7.1 Introduction

Constraint-admissible invariant (CAI) sets play an important role in the study of con-

strained systems [61, 5, 59]. These sets have been used in many approaches for the

control of constrained systems. For example, CAI sets are used as terminal sets in

MPC, they are also used to characterize the domain of attractions of nonlinear control

laws [88, 89]. Other uses of CAI sets include [3, 90, 91, 92]. Many results have been

obtained for the case of linear discrete time systems with polyhedral constraints (see

[93] and [94] by Bitsoris and [95] by Vassilaki et al). A notable contribution is the

characterization of the maximal invariant CAI sets by Gilbert and Tan [61]. Several

nonlinear feedback controllers have been designed based on this characterization [88].

More recently, CAI sets for the case where a disturbance is present has also been studied

[5] by Blanchini, [37] by Kolmanovsky and Gilbert, [96] by Kerrigan and Maciejowski

and [97] by Raković et al.

Almost all studies on CAI sets have been for systems subject to hard constraints. Typ-

ically, these constraints are imposed on both the state and control of the system and

they have to be satisfied at all time instances. In some applications, constraints need
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not be satisfied for all times but are probabilistic in nature. Problems of such nature

are typically studied under the broader domain of stochastic programming [98]. Indeed,

some problems are better modeled by chance, or probabilistic, constraints or a mixture

of probabilistic and hard constraints. Examples of such systems include the water level

control in a distillation column, [49, 51], risk management on sustainable development

[50, 23], temperature control in buildings [99] and others [100].

This chapter generalizes the concept of constraint-admissible sets to the case where

probabilistic constraints are present. Definition and properties of such a constraint-

admissible set for a linear system with probabilistic constraints are discussed. An inner

approximation of the maximal constraint-admissible set is proposed which is invariant.

Its use as a terminal set under the MPC framework where some constraints are proba-

bilistic in nature are included. The feasibility of the MPC finite horizon optimization

problem and the closed-loop stability under this setting are also discussed.

The rest of this chapter is organized as follows. Properties of stochastic linear systems

are studied in Section 7.2. Definition and properties of probabilistically CAI sets are dis-

cussed in Section 7.3. Section 7.4 proposes a method of determining an inner invariant

approximation of the probabilistically CAI sets. The computation of this approximate

set is given in Section 7.5. The application of this set in MPC is discussed in Section

7.6. Numerical examples and summary are the contents of the last two sections.
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7.2 Probabilistic Constraint and Stochastic System

Consider the linear discrete-time system

x(t +1) = Φx(t)+w(t), x(0) = x0 (7.1)

where x(t) ∈ Rn is the system state and w(t) ∈W ⊂ Rn is a disturbance input. It is

assumed that (7.1) satisfy the following assumption:

Assumption 7.2.1

(A1) System (7.1) is stable, or equivalently, Φ has a spectral radius ρ(Φ) < 1;

(A2) w(t)∈W, t ≥ 0 are independent and identically distributed (i.i.d.) random vectors

with a continuous probability density function fw : W →R+ and
∫

W fw(ω)dω = 1.

Additionally, W is compact and contains the origin in its interior.

The x(t) of system (7.1) is an affine function of disturbances w(0), · · · ,w(t− 1) given

by

x(t) = Φtx0 +
t−1

∑
j=0

Φt− j−1w( j). (7.2)

Since W is compact and ρ(Φ) < 1, x(t) ∈ Ft ⊕{Φtx0} where

Ft = W ⊕ΦW ⊕·· ·⊕Φt−1W. (7.3)
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Also, x(t) is a random variable following (7.2). Suppose the density function of x(t) is

ft(x;x0). Then ft(x;x0) can be obtained using fw(·) under (A2) of Assumption 7.2.1.

Theorem 7.2.1 Suppose system (7.1) satisfies Assumption 7.2.1. The density function

ft(x;x0) of state x(t) is defined for all t, converges in the sense that limt→∞( ft+1(x;x0)−

ft(x;x0)) = 0 for any x and x0.

Proof: See Appendix 7.A.1.

The following example shows the validity of Theorem 7.2.1.

Example 7.2.1 Consider system (7.1) with n = 1,Φ = 0.5 and assume that w is uni-

formly distributed on the set W = {w| |w| ≤ 1}. The density function ft(x;0), for

t = 2, . . . ,7 is shown in Figure 7.1, which shows the convergence of the density func-

tions as t increases.

Figure 7.1: Probability density function of x(2) to x(7)
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Suppose a constraint set, Xs ⊂Rn, is given. The probability that x(t) (t > 0) of (7.1) lies

in Xs can be stated as Pr(x(t) ∈ Xs|x(0) = x0) and evaluated from the fact that

Pr(x(t) ∈ Xs|x0) =
∫

Xs

ft(x;x0)dx, (7.4)

if ft(x;x0) is available. Hence, a constraint on x(t) not to lie outside of Xs with proba-

bility more than ε , 0 < ε < 1, can be imposed as

Pr(x(t) ∈ Xs|x0)≥ 1− ε. (7.5)

Consider all x0 that satisfy (7.5) and collect them as

Pε
t (Xs,Φ, fw) := {x0| Pr(x(t) ∈ Xs|x0)≥ 1− ε} (7.6a)

= {x0|
∫

Xs

ft(x;x0)dx≥ 1− ε}. (7.6b)

Clearly, Pε
t (Xs,Φ, fw) is a set of all points from which the probabilistic constraint is

satisfied t steps from the current time. Indeed, probabilistic constraints like (7.5) are

only meaningful for states in the future. They are not so when applied on past states as

these are no longer stochastic in nature. In (7.6b), the dependence of parameters Xs, Φ

and fw are shown. These system parameters are assumed fixed and references to them

will generally be omitted for notational simplicity in the sequel, unless warranted by

context.
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In general, the numerical characterization of Pε
t is not easy as it involves a multidimen-

sional integration and several convolution operations (7.6b). Procedures that avoid these

expensive operations are discussed in the next two sections.

7.3 Maximal Probabilistically Constraint-Admissible Set

and Its Properties

With (7.5), it is possible to characterize the set that satisfy the probabilistic constraint

from t = 1 till t = k as

Oε
k(Xs,Φ, fw) :=

k⋂

t=1

Pε
t = {x|Pr(x(t) ∈ Xs|x(0) = x)≥ 1− ε, t = 1, · · · ,k} (7.7)

and the maximal probabilistically constraint-admissible (PCA) set, Oε
∞(Xs,Φ, fw), as

Oε
∞(Xs,Φ, fw) := lim

k→∞
Oε

k(Xs,Φ, fw). (7.8)

Since probabilistic constraints are imposed for future states, t starts from 1 instead of 0

in (7.7) and (7.8). As defined above, Oε
∞ can be seen as the generalization of the standard

maximal disturbance invariant set [37] for system (7.1) with hard constraint x(t) ∈ Xs.

Recall that if x(t) ∈ Xs has to be satisfied at all times, the maximal disturbance invariant
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set of (7.1) is

O∞ := {x(0)| x(t) ∈ Xs, t = 0,1, · · ·} (7.9)

Hence, besides handling probabilistic constraint, Oε
∞ differs from O∞ in that the con-

straint at t = 0 is excluded from consideration. More exactly, O∞ is equivalent to Xs∩Oε
∞

with ε = 0 and O∞ 6= O0
∞.

While being the most direct generalization of O∞, Oε
∞ does not share many of its nice

properties. These limitations are best illustrated using examples. Consider again the

simple example of system (7.1) with n = 1, Φ = 0.5, fw(·) being a constant over W =

{w| |w| ≤ 1}, Xs = {x| |x| ≤ 1} and ε = 0.5. From (7.2) and Example 7.2.1, x(t) has

a symmetric probability density function with respect to its mean, Φtx(0), see Figure

7.2. Also, taking expectation over w(i) i ∈ Zt−1 of x(t) in (7.2), E[x(t)] = Φtx(0) since

−1 0 0.5 1 2 4 
0

0.5

f2(x; 8)

f3(x; 8)

f4(x; 8)

X
s

x

Figure 7.2: Density function of x(2), x(3) and x(4) with x(0) = 8 including the location
of the Φtx(0) in the figure
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E[w(t)] = 0. Consider a probabilistic constraint of the form Pr(x(t) ∈ Xs|x(0)) ≥ 0.5.

This constraint can be restated for the example system as a deterministic constraint,

Φtx(0) ∈ Xs, following the symmetry of ft(x,x0), E[x(t)] = Φtx(0) and the range of Xs.

Using (7.6a) and the above observations, Pε
t = {x|Φtx∈Xs} for this example. Similarly,

Oε
∞ =

⋂∞
t=1 Pε

t = {x| Φtx ∈ Xs, t = 1, · · · ,∞}= {x|Φt |x| ≤ 1, t ≥ 1}= {x : |x| ≤ 2}.

Example 7.3.1 (Non-invariance) In general, Oε
∞ is not invariant, that is x(t) ∈ Oε

∞ ;

x(t + 1) ∈ Oε
∞. Consider the system with Φ = −0.5, w(t) uniformly distributed over

W = {w| |w| ≤ 1}, Xs = {x| − 3 ≤ x ≤ 6} and ε = 0.5. Using the analysis in the

preceding paragraph, Pε
t = {x|Φtx ∈ Xs}, so Pε

1 = {x|−12 ≤ x ≤ 6}, Pε
2 = {x|−12 ≤

x≤ 24}, Pε
3 = {x|−48≤ x≤ 24}, · · · . Hence, Oε

∞ =
⋂∞

t=1 Pε
t = {x| −12≤ x≤ 6}. Let

x(0) =−12 ∈Oε
∞ and suppose w(0) = 1. Then, x(1) =−0.5× (−12)+1 = 7 /∈Oε

∞ and

it shows the non-invariance of Oε
∞.

Remark 7.3.1 The non-invariance of Oε
∞ deserves further comments. The main reason

of this non-invariance follows from the fact that Pr(x(2) ∈ Xs|x(0)) ≥ 1− ε does not

imply Pr(x(2) ∈ Xs|x(1) = Φx(0) + w(0)) ≥ 1− ε , for all w(0) ∈W, since the value

of Pr(x(2) ∈ Xs|x(1) = Φx(0) + w(0)) depends on the realization of w(0). Using the

definition of (7.6a), this also means that x(0) ∈ Pε
2 does not imply x(1) ∈ Pε

1 . Hence, Oε
∞

is not invariant.

In general, Oε
∞ can be an empty set. But it is non-empty if Xs contains any robust

invariant set of (7.1). For example, if F∞ ⊆ Xs, then Oε
∞ is non-empty because F∞ :=

limt→∞ Ft where Ft is given by (7.3) must be part of Oε
∞. Also, the above example has a
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convex Oε
∞ set. As shown in the following example, this is not the general case.

Example 7.3.2 (Non-convexity) We show the non-convexity of Oε
∞ by showing the non-

convexity of Pε
i . Consider the system with Φ = 0.5, Xs = {x| |x| ≤ 0.5}, ε = 0.5, W =

{w| |w| ≤ 1} and fw(·) as shown in Figure 7.3. Let xa = 2 and xb =−2. It can be verified

from Figure 7.3 that xa ∈ Pε
1 , xb ∈ Pε

1 since Pr(x(1) ∈ Xs|x(0) = xa) = Pr(−1.5 ≤ w ≤

−0.5) = 0.5 ≥ 1− ε and Pr(x(1) ∈ Xs|x(0) = xb) = Pr(0.5 ≤ w ≤ 1.5) = 0.5 ≥ 1− ε .

However, Pr(x(1) ∈ Xs|x(0) = 0.5xa +0.5xb) = Pr(−0.5≤ w≤ 0.5) = 0 < 1− ε which

implies that 0.5xa +0.5xb 6∈ Pε
1 .

−2 −1.5 −0.5 0.5 1.5 2
−0.5

0

1

2

f
w
(w

)

{w|w ∈ Xs}

{w|Φxa + w ∈ Xs} {w|Φxb + w ∈ Xs}

w

Figure 7.3: Probability density function of w

7.4 An Inner Approximation of Oε
∞

As shown in the previous section, Oε
∞ is not invariant, convex or easily computed in

general. This lack of nice properties prevents it from being useful in applications. This
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section reviews the general treatment of probabilistic constraint and, exploiting the in-

herent freedom, proposes an inner approximation of Oε
∞, Ôε

∞, which is convex and in-

variant with respect to (7.1).

Consider the probabilistic constraint

Pr(v ∈Ω)≥ 1− ε (7.10)

where v is a vector of random variables and Ω is some appropriate set. Define

Sv(ε) := {Ω| Pr(v ∈Ω)≥ 1− ε}. (7.11)

Clearly, Sv(ε) is the collection of sets that have a probability measure greater than 1−ε

and Pr(v ∈ Ω̄) ≥ 1− ε for any Ω̄ ∈ Sv(ε). Obvious properties of Sv(ε) following its

definition are (i) Sv(ε1)⊆ Sv(ε2) if ε1 ≥ ε2; (ii) Suppose Ω1 ∈ Sv(ε) and Ω1 ⊆Ω2, then

Ω2 ∈ Sv(ε). In general, Sv(ε) can have many or infinite elements and this freedom can

be exploited in the approximation of Oε
∞.

Consider (7.6a) and restate it in terms of w( j), j = 0, · · · , t−1 using (7.2). Specifically,

(7.6a) becomes

1− ε ≤ Pr(x(t) ∈ Xs| x(0) = x0) = Pr(Φtx0 +
t−1

∑
j=0

Φt− j−1w( j) ∈ Xs|x0) (7.12a)

= Pr(Φ̂wt ∈ Xsª{Φtx0}|x0) (7.12b)

= Pr(wt ∈Ωt(x0)) (7.12c)
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where wt := [(w(0))T · · ·(w(t − 1))T ]T ∈ W t , Φ̂ = [Φt−1 Φt · · · Φ0] and Ωt(x0) :=

{wt |Φ̂wt ∈ Xsª{Φtx0}}. Following (7.11) and its ensuing discussion, Ωt(x0) is only

one choice in Swt (ε). Other choices exist. In particular, let

Vt,ε := W ×·· ·×W︸ ︷︷ ︸
t−1

×Wε (7.13)

where Wε is any set such that Wε ⊂W with the property that
∫

Wε
fw(w)dw≥ 1− ε . It is

easy to see that Vt,ε ∈ Swt (ε) under the i.i.d. assumption in (A2) of Assumption 7.2.1.

Using Vt,ε , an inner approximation of Pε
t is chosen as

P̂ε
t : = {x| Vt,ε ⊆Ωt(x)}

= {x| x(0) = x, x(t) ∈ Xs, ∀w(t−1) ∈Wε , ∀w( j) ∈W, j ∈ Zt−2} (7.14)

Accordingly, Oε
∞ can be approximated by

Ôε
∞ := ∩∞

t=1P̂ε
t = {x| x(0) = x, x(t) ∈ Xs,

∀w(t−1) ∈Wε , ∀w( j) ∈W j ∈ Zt−2, ∀t ≥ 1} (7.15)

As P̂ε
t is an inner approximation of Pε

t , Ôε
∞ is an inner approximation of Oε

∞. Properties

of Ôε
∞ are summarized in the following theorem.

Theorem 7.4.1 If non-empty, Ôε
∞ of (7.15) has the following properties: (i) it is convex
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if Xs is convex; (ii) it is robustly invariant set with respect to system (7.1) in the sense

that x(t) ∈ Ôε
∞ implies x(t +1) ∈ Ôε

∞.

Proof: See Appendix 7.A.2.

7.5 Numerical Computation of Ôε
∞

Using (7.2) and (7.14), it is easy to see that P̂ε
1 = {x|Φx+w ∈ Xs,∀w ∈Wε}= {x| Φx ∈

XsªWε}, P̂ε
2 = {x| Φ2x ∈ XsªWε ªΦW} and, in general, P̂ε

i = {x| Φix ∈ XsªWε ª

·· ·ªΦi−1W}. These expressions form the basis for the numerical computation of Ôε
∞.

For this purpose, assume

Assumption 7.5.1

(A3) Xs and W are polytopes and contains the origin in their respective interior, and

one choice of Wε ∈ Sw(ε) with Wε being a polytope containing the origin is found.

Assumption (A3) is more stringent than required for reason of simplicity in presentation.

For example, it is possible to assume that Xs is a polyhedron but some other assumptions

are needed [101] to ensure the finite termination of the algorithm for the computation of

Ôε
∞. This algorithm is given below.

Algorithm 7.5.1 (Determination of Ôε
∞)
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(1) Let Y1 = XsªWε ; if Y1 = /0, then Ôε
∞ = /0 and stop; otherwise let Ôε

1 = {x|Φx∈Y1}

and i = 1.

(2) Compute Yi+1 = YiªΦiW. If Yi+1 = /0, then Ôε
∞ = /0 and stop; otherwise continue.

(3) Compute Ôε
i+1 = Ôε

i ∩{x| Φi+1x ∈ Yi+1}. If Ôε
i+1 = Ôε

i , then Ôε
∞ = Ôε

i and stop;

otherwise let i = i+1 and go to step (2).

Ôε
∞ is said to be finitely determined if there exist a finite i such that Ôε

i+1 = Ôε
i . The

following theorem gives a sufficient condition that guarantees finite determination of

Ôε
∞.

Theorem 7.5.1 Suppose Assumption 7.2.1 and 7.5.1 are satisfied and Φ has full rank.

If Y∞ = limt→∞Yt is non-empty, then Ôε
∞ is finitely determined.

Proof: See Appendix 7.A.3.

The following example verifies Theorems 7.4.1 and 7.5.1.

Example 7.5.1 Consider the example given in Example 7.3.1 and choose Wε = {w| |w| ≤

0.5}. Following the procedure of Algorithm 7.5.1, Ôε
1 = {x| − 11 ≤ x ≤ 5} and Ôε

2 =

Ôε
3 = {x| −8≤ x≤ 5}. Therefore, Ôε

∞ = {x| −8≤ x≤ 5}. That this is an invariant set

with respect to the system can also be easily verified.

Remark 7.5.1 From Algorithm 7.5.1, it follows that

Y∞ = XsªWεªΦWªΦ2WªΦ3W · · ·= XsªWεªΦF∞ = Xsª(Wε⊕ΦF∞)⊃ XsªF∞ (7.16)

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.5 Numerical Computation of Ôε
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where F∞ is limt→∞ Ft and Ft is that given by (7.3). The last superset inclusion follows

from the fact that Wε ⊂W, Wε⊕ΦF∞ ⊂W⊕ΦF∞ = F∞. Using this observation, another

sufficient condition for finite determination is that F∞ ⊂ int(Xs). This follows because

if F∞ ⊂ int(Xs), 0 ∈ XsªF∞ which from (7.16) implies 0 ∈ int(Y∞). This observation

can be useful at times since it does not require the characterization of Y∞ and accurate

bounds on F∞ can be computed [80].

Remark 7.5.2 If hard constraints given by x(t) ∈ Xh, ∀ t ≥ 0 is present in system (7.1)

in addition to the probabilistic constraints, Algorithm 7.5.1 can be modified slightly to

handle such a case. Replace step (1) of Algorithm 7.5.1 with

(1) Let Ôε
0 = Xh and Y1 = (XhªW )∩ (XsªWε). If Y1 = /0, then Ôε

∞ = /0 and stop;

otherwise let Ôε
1 = Ôε

0∩{x| Φx ∈ Y1} and set i = 1.

The rest of the algorithm remains unchanged. The resultant algorithm determines a Ôε
∞

set incorporating both hard and probabilistic constraints.
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7.6 The MPC Formulation with Probabilistic Constraint

An obvious application of the Ôε
∞ set is its use in the Model Predictive Control frame-

work where probabilistic and hard constraints are present. Consider

x(t +1) = Ax(t)+Bu(t)+w(t) (7.17)

where x(t) ∈ Rn, u(t) ∈ Rm and wt ∈ Rn are the state, control and disturbance of the

system at time t. Suppose the system is subject to control and state constraints in the

form of

(x(t),u(t)) ∈ Xh, t ≥ 0 (7.18)

Pr{x(t) ∈ Xs} ≥ 1− ε, t ≥ 1 (7.19)

where Xh and Xs are appropriate sets for the hard and soft constraints respectively. This

model includes the typical situation of the hard constraints for control and soft for state.

The objective is to find a state feedback MPC control law that will steer the state to the

neighborhood of origin while satisfying all the constraints.

In addition, system (7.17) is assumed to satisfy the following assumptions:

Assumption 7.6.1
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(B1) the system (A,B) is stabilizable;

(B2) w(t), t ≥ 0 are i.i.d. with zero mean, W is a polytope and a Wε ∈ Sw(ε) satisfying

(A3) of Assumption 7.5.1 is known;

(B3) Constraint sets Xh and Xs are compact polytopes and contain the origin in their

respective interiors.

These assumptions are quite standard for MPC and are needed for computational re-

quirement of Ôε
∞. Clearly, (B1) implies the existence of Φ that satisfies (A1). Similarly,

(B2) implies (A2) and (A3). Suppose the finite horizon (FH) problem has a horizon

length N. Let x(i|t), u(i|t), w(i|t) be the ith predicted state, control and disturbance re-

spectively within the horizon at time t. The parametrization of u(i|t) is chosen to be the

one proposed in Chapter 4 and it takes the form

u(i|t) = K f x(i|t)+d(i|t)+
i

∑
j=1

D(i, j|t)w(i− j|t), i ∈ ZN−1 (7.20)

where d(i|t) ∈ Rm, D(i, j|t) ∈ Rm×n are design variables and K f ∈ Rm×n is chosen so

that Φ := A+BK f satisfies (A1) of Assumption 7.2.1.

For notation simplicity, collect all the design variables within the control horizon in the

following form,

d(t) = {d(i|t)}N−1
i=0 , D(t) = {{D(i, j|t)}i

j=1}N−1
i=1 . (7.21)

The cost function that is to be optimized in the FH optimization problem is also the same
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as that in Chapter 4 and is

JDFD(d(t),D(t)) =
N−1

∑
i=0

[
‖d(i|t)‖2

Ψ +
i

∑
j=1
‖vec(D(i, j|t))‖2

Λ

]
(7.22)

where Ψ and Λ are arbitrary matrices as long as they satisfy

ΨÂ 0, Λº Σw⊗Ψ (7.23)

where Σw is the covariance matrix of w(t). For more information about choosing Ψ and

Λ, see Chapter 4.

With control parametrization (7.20) and cost function (7.22), the FH optimization prob-

lem, referred to hereafter as PPCA
N (x(t)), is

min
(d(t),D(t))

JDFD(d(t),D(t))

s.t. x(0|t) = x(t), x(i+1|t) = Ax(i|t)+Bu(i|t)+w(i|t) (7.24a)

u(i|t) = K f x(i|t)+d(i|t)+
i

∑
j=1

D(i, j|t)w(i− j|t) (7.24b)

(x(i|t),u(i|t)) ∈ Xh, ∀ w(i|t) ∈W, ∀i ∈ ZN−1 (7.24c)

x(i|t) ∈ Xs, ∀ w(i−1|t) ∈Wε , ∀w( j|t) ∈W, j ∈ Zi−2, ∀i ∈ Z+
N (7.24d)

x(N|t) ∈ Ôε
∞, ∀ w( j|t) ∈W, j ∈ ZN−1 (7.24e)

Constraints (7.24a)-(7.24c) are standard in the FH optimization where all constraints are

hard. Constraint (7.24d) guarantees Pr(x(i|t) ∈ Xs|x0) ≥ 1− ε for all i ∈ Z+
N following

the discussion in Section 7.4. The last constraint (7.24e) ensures that both the soft
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and hard constraints are satisfied at all times beyond the horizon. This is true because

x(N|t) ∈ Ôε
∞ means that Pr(x(N + i|t) ∈ Xs|x(N|t)) ≥ 1− ε for all i ≥ 1 following the

characterization of Ôε
∞ in (7.15) and x(N + i|t) ∈ Xh of Remark 7.5.2.

The computation of PPCA
N (x(t)) has already been discussed in Section 3.3 and Section

4.3 and hence is omitted here. The rest of the MPC formulation is standard: PPCA
N (x(t))

is solved at each time t and the very first term of

(d∗(t),C∗(t)) = argmin PPCA
N (x(t))

is applied to system (7.17). Hence, the MPC control law is

u(t) = κPCA(x(t)) := K f x(t)+d(t) := K f x(t)+d∗(0|t) (7.25)

Issues of existence of feasible solution of PPCA
N (x(t)) at various t and the stability result

of overall system under control law (7.25) are summarized in the following Theorem.

Theorem 7.6.1 Suppose PPCA
N (x(0)) is feasible and Assumption 7.6.1 is satisfied. PPCA

N (x(t))

and system (7.17) under MPC control law (7.25) has the following properties: (i)

PPCA
N (x(t)) admits an optimal solution for all t, (ii) (x(t),u(t)) ∈ Xh for all t ≥ 0 and

Pr{x(t + i) ∈ Xs|x(t)} ≥ 1− ε for all i ≥ 1 and t ≥ 0, (iii) x(t) tends to F∞ set with

probability one as t tends to infinity.

Proof: See Appendix 7.A.4.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.7 Numerical Examples 169

7.7 Numerical Examples

An example is used for the numerical simulation in this section. Its system parameters

are:

A =




1.5 0.6

0 1.2


 , B =




1

1


 , K f =

[
−1.0912 −0.6113

]
,W = {w| ‖w‖∞ ≤ 0.1}.

Here, K f is the optimal LQ feedback gain with Q = I2 and R = 1 and w(t) is uniformly

distributed on W .

The first simulation aims to understand the implications of hard and soft constraints on

constraint admissible sets. In this regard, (7.1) is obtained with Φ = A + BK f and O∞

and Ôε
∞ are computed using Algorithm 7.5.1 and Remark 7.5.2. To be consistent with

typical settings of a physical system, the control constraints are modeled as hard while

the states are soft. Correspondingly, these sets are

U = {u| |u| ≤ 1}, Xs = {x| |x1| ≤ 1.95,−1.95≤ x2 ≤ 1.05}, ε = 0.3

and Wε ⊂W is chosen to be

Wε = {w| |w1| ≤ 0.1, −0.1≤ w2 ≤ 0.04}.

Figure 7.4 shows three constraint-admissible sets: O∞, Ô0
∞ and Ôε

∞. Here, O∞ is com-

puted by treating Xs as hard constraint to be satisfied at all times. Correspondingly,
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constraints −1.95≤ x2 ≤ 1.05 of Xs appear as binding constraints of O∞. Also, O∞ and

Ô0
∞ are not the same as the latter considers soft constraints imposed from t ≥ 1 onwards.

Figure 7.4 also include an outer bound of F∞, the set to which the closed-loop system

state converges to under the MPC control law as shown in (iii) of Theorem 7.6.1.

−1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

F̂
∞

x1

x
2

Ôε

∞

dt

O
∞

Ô0

∞

Figure 7.4: Ôε
∞, Ô0

∞ and Ô∞ set of the example system

Figure 7.5 shows the admissible set Xε
N for the example with N = 2. As a comparison, it

also shows XN , the admissible set for the FH optimization problem where Wε and Ôε
∞ of

(7.24d) and (7.24e) are replaced by W and O∞ respectively. Hence, XN is the admissible

set where Xs is treated as hard constraint.

The next simulation shows the states of the system under MPC control law for the case

where x(0) = xa = [−0.4 1.05]T , x(0) = xb = [1.34 0.3]T , N = 2 and

Ψ = 7.8842, Λ =




0.0263 0

0 0.0263


 ,

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.7 Numerical Examples 171

−1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

dt

XN

X
ε

N

Figure 7.5: Comparison of Xε
N and XN sets

satisfying (7.23). The system is simulated over 200 disturbance sequence realizations

and eight of the simulation results are shown in Figure 7.6 to avoid clutter. As shown,

the hard constraints (those associated with |u(t)|< 1) are satisfied and x(t) converges to

the F̂∞ set.

As shown in Figure 7.6, x ∈ Xs does not hold for all time. However, the percentage of

time that x(t) /∈ Xs for t = 1, · · · ,4 over the 200 runs are shown in Table 7.1. Clearly, the

constraint violations never exceed ε , verifying result (ii) of Theorem 7.6.1. The amount

of violation also decreases with increasing t, a behavior that is expected following (iii)

of Theorem 7.6.1 as F∞ lies in the interior of Xs.

Table 7.1: Statics Results
State x(1) x(2) x(3) x(4)

Percentage of x(t) /∈ Xs
x(0) = xa 13.5% 1.5% 0% 0%

x(0) = xb 0% 0% 0% 0%
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Figure 7.6: State and control trajectories

7.8 Summary

This chapter proposes an approach for characterizing a constraint admissible invariant

set for a linear discrete system subjected to hard and probabilistic constraints. When the

constraint and disturbance sets are described by linear inequalities, so is the proposed

characterization. Properties and computations of this set are discussed. Using this as

the terminal set, a state feedback control law is designed under the Model Predictive

Control framework for a system that has both soft and hard constraints. The availability

of the constraint admissible invariant set and the treatment of probabilistic constraints

allow for greater design freedom in dealing with constraints of different importance.
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7.A Appendix

7.A.1 Proof of Theorem 7.2.1

Proof: To derive the density function of x(t), consider the case where x(0) = 0 first.

Then the predicted state of (7.1) is

x(t) = w(t−1)+Φw(t−2)+ · · ·+Φt−1w(0). (7.26)

and denote the density function of x(t) in (7.26) by f 0
t (·) where the superscript 0 means

x(0) = 0. Clearly when t = 1, the density function of x(1) is the same as the density of

w(0) since x(1) = w(0), therefore, f 0
1 (·) = fw(·). Define

yt := w(t)+Φw(t−1)+ · · ·+Φt−1w(1),

then due to the fact that w(i), i ≥ 0 are i.i.d. yt has the same density function as x(t) in

(7.26). Note that random vector x(t +1) can be equivalent expressed as

x(t +1) = yt +Φtw(0), (7.27)

Therefore, the density function of x(t +1) can be determined using those of yt and w(0).

By applying the result in Section 8.16 of [102], the density function of x(t +1) in (7.27)
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is

f 0
t+1(x) =

∫
f(yt ,w(0))(x−Φtw,w)dw =

∫
f 0
t (x−Φtw) fw(w)dw (7.28)

where f(yt ,w(0))(·) is the joint density function of yt and w(0), and the second equation is

due to the independence of yt and w(0). Equation (7.28), together with f 0
1 = fw, yields

the expression of the density function of x(t) in (7.26) as





f 0
1 (x) = fw(x) t = 1

f 0
t (x) =

∫
f 0
t−1(x−Φt−1w) fw(w)dw t ≥ 2

(7.29)

Next, we show that f 0
t is continuous for all t. To this end, consider the difference

between f 0
2 (x) and f 0

2 (x+ξ ) as ξ → 0, we have

lim
ξ→0

( f 0
2 (x+ξ )− f 0

2 (x))

= lim
ξ→0

∫
( fw(x+ξ −Φw)− fw(x−Φw)) fw(w)dw (7.30a)

=
∫

lim
ξ→0

( fw(x+ξ −Φw)− fw(x−Φw)) fw(w)dw (7.30b)

= 0 (7.30c)

where the last equation is due to the continuity of fw(·) made in (A2) of Assumption

7.2.1. Using a similar argument as (7.30a)-(7.30c), it can be shown that f 0
t (·), t ≥ 2 are

all continuous.
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Now consider the case where x(0) = x0 6= 0. According to (7.2) the predicted state in

this case is the sum of x(t) in (7.26) and Φtx0, then its density function can be expressed

as

ft(x;x0) = f 0
t (x−Φtx0). (7.31)

Then the continuity of ft(x;x0) follows directly from the continuity of f 0
t (·) and function

z(x,x0) = x−Φtx0. To show the convergence of ft(x;x0), t ≥ 1, consider

lim
t→∞

( ft+1(x;x0)− ft(x;x0))

= lim
t→∞

∫
( f 0

t (x−Φt+1x0−Φtw)− f 0
t (x−Φtx0)) fw(w)dw = 0 (7.32)

The second equation holds true due to continuity of f 0
t (·) and (A1) of Assumption 7.2.1.

7.A.2 Proof of Theorem 7.4.1

Proof: (i) For each wt ∈ Vt,ε , the set of x0 such that x(t;wt ,x0) ∈ Xs is a convex

set following (7.2) and convexity of Xs. Since P̂ε
t =

⋂
wt∈Vt,ε{x0| x(t;wt ,x0) ∈ Xs} and

intersection of convex set is convex, P̂ε
t is convex. Similarly, Ôε

∞, as the intersection of

P̂ε
t for all t ≥ 1, is also a convex set.

(ii) Suppose x0 ∈ Ôε
∞. The following shows that x1 ∈ Ôε

∞ where x1 = x(1;w(0),x0) =
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Φx0 +w(0) for any w(0) ∈W . Given x0 ∈ Ôε
∞, it follows from (7.14) that x(t;wt ,x0) ∈

Xs, ∀wt ∈Vt,ε and ∀t ≥ 1. In particular, for any specific choice of t = t̄ with t̄ ≥ 2, this

means that

x(t̄;wt̄ ,x0) ∈ Xs, for any wt̄ = [w(0), · · · ,w(t̄−1)] ∈Vt,ε

Let w0 = w(0) be a particular realization of w(0), then there exists a x(t̄;wt̄ ,x0) = x(t̄−

1;wt̄−1,x1) and x(t̄−1;wt̄−1, x(t̄−1;wt̄−1,x1) ∈ Xs. Let t̃ = t̄−1, then

x(t̄−1;wt̄−1,x1) ∈ Xs∀t̄ ≥ 2⇒ x(t̃;wt̃ ,x1) ∈ Xs∀t̃ ≥ 1

Hence, x1 ∈ Ôε
∞.

7.A.3 Proof of Theorem 7.5.1

Proof: From the assumption that Y∞ is non-empty, it follows from Yi+1 = YiªΦiW

and Assumption 7.5.1 that Yi, i≥ 1 are non-empty and compact. In addition, 0 ∈ int(Yi)

since 0 is inside Xs, W and Wε . From step (1) of Algorithm 7.5.1, Ôε
1 = {x|Φx ∈ Y1} is

compact since Y1 is compact and Φ has full rank. From Ôε
i+1 = Ôε

i ∩{x| Φi+1x ∈ Yi+1}

of step (3) of Algorithm 7.5.1,

Ôε
i+1 ⊆ Ôε

i ∀i. (7.33)
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Since 0 ∈ int(Y∞) and ρ(Φ) < 1 from (A1) of Assumption 7.2.1, there exist a finite

integer k ≥ 1, such that Φk+1Ôε
1 ⊂ Y∞. This fact, together with Ôε

k ⊆ Ôε
1, imply that

Φk+1Ôε
k ⊆Φk+1Ôε

1 ⊂ Y∞ ⊂ Yk+1. (7.34)

Since Ôε
i+1 = Ôε

i ∩{x| Φi+1x ∈ Yi+1}, equation (7.34) implies that any x ∈ Ôε
k is also in

Ôε
k+1 or Ôε

k ⊆ Ôε
k+1. This and (7.33) implies that Ôε

k = Ôε
k+1.

7.A.4 Proof of Theorem 7.6.1

Proof: The proof follows those in Chapter 4, and hence is brief.

(i) Let (d∗(t),D∗(t)) denote the optimal solution of PPCA
N (x(t)). At time t + 1 when

w(t) is realized, choose (d̂(t +1), D̂(t +1)) by letting

d̂(i|t +1) =





d∗(i+1|t)+D∗(i+1, i+1|t)w(t), ∀i ∈ ZN−2

0 i = N−1

(7.35)

D̂(i, j|t +1) =





D∗(i+1, j|t) ∀ j ∈ Z+
i , ∀i ∈ Z+

N−2

0 ∀ j ∈ Z+
N−1, i = N−1

(7.36)

Due to the result of Theorem 7.4.1 and the definition of Ôε
∞, constraints (7.24d) and

(7.24e) are all satisfied by (d̂(t + 1), D̂(t + 1)). Hence, it is feasible to PPCA
N (x(t + 1))

for all possible w(t) ∈ W . Let ΠPCA
N (x) denote the feasible set of PPCA

N (x). It is

clear that ΠPCA
N (x) is compact for all admissible x. Since W is bounded and JDFD is
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a norm function, maxw(t) JDFD(d̂(t +1), D̂(t +1)) < ∞ and the set {(d,D)∈ΠPCA
N (x(t +

1))|JDFD(d,D) ≤ maxw(t) J(d̂(t + 1), D̂(t + 1))} is compact. Hence, the optimum of

PPCA
N (x(t +1)) exists, following the Weierstrass’ theorem.

(ii) Following from (i), the hard constraints are satisfied all the time. x(N|t) ∈ Ôε
∞ im-

plies that Pr(x(N + i|t) ∈ Xs|x(N|t))≥ 1− ε for all i ≥ 1. This together with constraint

(7.24e) implies Pr(x(N + i|t) ∈ Xs|x(t))≥ 1−ε for all i≥ 1. This and constraint (7.24d)

implies Pr(x(i|t) ∈ Xs|x(t))≥ 1− ε for all i≥ 1. Then the stated result follows this and

(i).

(iii) Let J∗t := JDFD(d∗(t),D∗(t)) and Ĵt+1(w(t)) := JDFD(d̂(t + 1), D̂(t + 1)) where

(d̂(t +1), D̂(t +1)) are given by (7.35)-(7.36). Then it can be shown that

J∗t − Ĵt+1(w(t)) = ‖d∗(0|t)‖2
Ψ +g(w(t)) (7.37)

where

g(w(t)) :=
N−1

∑
i=1

(‖vec(D∗(i, i|t))‖2
Λ−2(d∗(i|t))T ΨD∗(i, i|t)w(t)−‖D∗(i, i|t)w(t)‖2

Ψ).

(7.38)

Due to (B2) of Assumption 7.6.1 and (7.23), Ew(t)[g(w(t))] ≥ 0. Hence, taking the

expectation of (7.37) over w(t), it follows that

J∗t −‖d∗(0|t)‖2
Ψ ≥ Et

[
J∗t+1

]
, (7.39)
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where Et is the expectation taken over w(i), i≥ t. Repeating the inequality of (7.39) for

increasing t, one gets,

Et [J∗t+1]−Et [‖d∗(0|t +1)‖2
Ψ]≥ Et [J∗t+2]. (7.40)

Summing (7.39) and (7.40) leads to

J∗t ≥ ‖d∗(0|t)‖2
Ψ +Et [‖d∗(0|t +1)‖2

Ψ]+Et [J∗t+2]

Repeating the above procedure infinite times leads to

∞ > J∗t ≥
∞

∑
i=t

Et
[‖d∗(0|i)‖2

Ψ
]

By applying Markov bound (given non-negative random variable R and any ε ≥ 0,

E[R]≥ εPr{R≥ ε}), we have

∞ > ε
∞

∑
i=t

Pr(‖d∗(0|i)‖2
Ψ ≥ ε) (7.41)

for any arbitrary small ε > 0. From the First Borel-Cantelli Lemma [75], this implies

that limi→∞ Pr(‖d∗(0|i)‖2
Ψ ≥ ε) = 0. Hence d∗(0|i) approaches zero with probability

one as t increases. Consequently, the MPC control law (7.25) converges to K f x(t) with

probability one. When this happens, the closed-loop system converges to x(t + 1) =

Φx(t)+w(t) and, hence, x(t) converges to F∞(K f ) with probability one.
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Chapter 8

Conclusions

The main focus of this dissertation is on the design of control laws under the Model Pre-

dictive Control framework for constrained linear discrete-time systems with bounded

disturbances. Emphasis is placed on the admissible set, stability results under several

control parameterizations, computational considerations and the handling of probabilis-

tic constraints. Specifically, this thesis contributes towards the four issues stated in

Section 1.3.

8.1 Contributions of This Dissertation

P1: F∞ convergence under MPC control law.

This thesis contributes towards achieving closed-loop F∞ convergence by proposing
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Figure 8.1: Contributions towards the issues in Section 1.3

three control parametrizations:

uDFC(i|t) = K f x(i|t)+ c(i|t)+
N−1

∑
j=1

C(i, j|t)w(i− j|t),

uDFD(i|t) = K f x(i|t)+d(i|t)+
i

∑
j=1

D(i, j|t)w(i− j|t),

uSDF(i|t) = K f x(i|t)+d(i|t)+
i

∑
j=1

Dp(i, j|t)ŵp(i− j|t)+
i

∑
j=1

Dm(i, j|t)ŵm(i− j|t).

While the details can be different, these three parametrizations all achieve F∞ conver-

gence in some way. The use of uDFC and the corresponding cost function results in x(t)

converging to F∞ set as t tends to infinity, while the use of uDFD and uSDF results in

x(t) converging to F∞ with probability one as t tends to infinity. Also uDFC differs form

uDFD and uSDF in that past realized disturbances are not needed for uDFD and uSDF in
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the feedback law. Parametrization uSDF is a generalization of the other two and hence is

expected to have the largest admissible set.

P2: A general control parametrization.

uSDF also contributes towards the goal of having a more general parametrization under

the MPC framework in the sense that it has the most expressive ability. However, its use

in the FH optimization problem is not directly computable in general. Fortunately, this

is not an issue when the disturbance set is an absolute set.

P3: The ability to control the F∞ set.

The third contribution of this thesis is the approach towards designing a feedback gain K

such that the minimal d-invariant set, F∞(K) is well bounded in some given directions.

The approach is to choose K such that the support functions of F∞(K), δF∞(K)(η), for

some given directions η are under some specific bound. When a set of ηi are used,

the design problem is cast as an optimization problem to be solved by standard numer-

ical techniques. This thesis provides expressions for the evaluation of δF∞(K)(η) and

∂δF∞(K)(η)/∂K for those numerical techniques.

4: Probabilistic constraints in MPC.

The last contribution of this thesis is the treatment of probabilistic constraints in general

and the formulation of the FH optimization problem of MPC of systems having prob-

abilistic constraints. This leads to the concept of constraint-admissible set for system

with probabilistic constraints.
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8.2 Directions of Future Work

Several directions are available for future research and applications based on the work

in this dissertation.

8.2.1 Output Feedback Parametrization

In this thesis, the system state is assumed to be measurable. This situation is not always

possible as only output variables are available in some applications. Hence, extending

the work of this thesis to the case where the control is parameterized by output feed-

back is one future direction. A more important issue is to guarantee the feasibility and

stability of the system under an output feedback parametrization, especially when mea-

surement errors are presented.

8.2.2 Computation of Admissible Set

The admissible set under a time-varying disturbance feedback control parametrization

and segregated disturbance feedback is larger than that under a fixed feedback gain

parametrization. The current approach of computing the admissible set relies on the

projection algorithm [103] by Keerthi and Gilbert. However, this algorithm is not effi-

cient especially when the dimension of the system is large. For this reason, it is signif-

icant if an efficient algorithm can be established. As far as the author can see, this may

need knowledge in set operations and may be developed based on the work in [104] by
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Kerrigan.

8.2.3 Distributed MPC

For application of MPC to large scale systems, decentralized approaches appear appeal-

ing. Decentralized control approaches date back to the seventies of the last century and

are found in a broad spectrum of applications ranging from robotics, flight control to

paper making industries [105]. For example, in a robotic football game, each robot has

to plan its own actions and cooperate with others to score a goal; in the control of un-

manned aerial vehicles (UAVs), each vehicle plans its own trajectory so that together

they achieve certain formation and avoid collision onto each other. These applications

fall under the general class of optimal control problems for a set of decoupled dynam-

ical sub-systems where cost functions and constraints of the sub-systems are coupled.

One possibility of extending the work presented in this thesis is to the area of distributed

MPC.
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