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Accelerated Life Test in Chinese Philosophy 
 

 

When Heaven is about to place a great responsibility on a great man, it 

always first frustrates his spirit and will, exhausts his muscles and bones, 

exposes him to starvation and poverty, harasses him by troubles and 

setbacks so as to stimulate his spirit, toughen his nature and enhance his 

abilities. 

--- Mencius, 372 – 289 BC 

 

天将降大任于斯人也，必先苦其心志，劳其筋骨，饿其体肤，

空乏其身，行拂乱其所为，所以动心忍性，增益其所不能。 

                  

--- 《孟子 告子下》 

 

 



i 

 

Acknowledgements 
I am deeply indebted to my supervisor, Associate Professor TANG Loon Ching, the 

head of the Department of Industrial and Systems Engineering (ISE), National 

University of Singapore. He led me to and guided me in the world of reliability 

engineering. This dissertation would not have been possible without his patience, 

encouragement, expert advice, and strict requirement, which gave me the deepest 

impression during the past years.  

Deepest gratitude is also due to the faculty members of the ISE department. I am 

grateful to Professor GOH Thong Ngee and Dr. NG Szu Hui for their valuable support 

and recommendation when I applied for my current research position in our 

department. I am also grateful to Professor XIE Min who provided me with valuable 

suggestions when I applied to the Ph. D program at NUS.  

Sincere thanks also go to the ISE simulation laboratory technologist Ms. NEO 

Siew Hoon, Celine, and the ISE management assistant officer Ms. OW Lai Chun for 

their constant assistance. 

To all my friends in Singapore, what else can I say? I do not list your names here 

as you are always on my mind. Thank you all. You are the sunshine of my life in the 

beautiful Singapore.  

To my parents, grandparents, my wife REN Jia and my families, I started to live 

on campus when I was twelve, and left my hometown when I was eighteen. I wish I 

could spend more time with you. Your endless love and selfless support means 

everything in my life. 



ii 

 

Table of Contents 
 

LIST OF TABLES .................................................................................................................................. XII 

LIST OF FIGURES ............................................................................................................................... XIV 

LIST OF SYMBOLS ............................................................................................................................. XIX 

CHAPTER 1.  INTRODUCTION .......................................................................................................... 1 

1.1.  INTRODUCTION TO ACCELERATED LIFE TESTING ...................................................................... 1 

1.1.1.  Functions of Accelerated Life Testing ................................................................................. 2 

1.1.2.  Types of Accelerated Life Testing ........................................................................................ 4 

1.2.  STATISTICS AND RELIABILITY MEASURES ................................................................................. 5 

1.3.  PROBLEMS WITH ACCELERATED LIFE TESTING ......................................................................... 7 

1.4.  THE STRUCTURE AND SCOPE ................................................................................................... 10 

CHAPTER 2.  LITERATURE REVIEW ON STATISTICAL ALT MODELING, INFERENCE 

AND PLANNING ..................................................................................................................................... 14 

2.1.  INTRODUCTION ......................................................................................................................... 14 

2.2.  TYPES OF STRESS LOADINGS ................................................................................................... 14 

2.3.  DATA TYPE ............................................................................................................................... 16 

2.4.  STATISTICAL MODEL OF CONSTANT-STRESS ALT ................................................................... 17 

2.5.  INFERENCE METHODS FOR ACCELERATED LIFE TESTING DATA .............................................. 27 

2.5.1.  Maximum Likelihood (ML) Methods for ALT Data Analysis .......................................... 33 

2.4.1.1 Illustration of MLE: Temperature-ALT on Device-A ...................................................................... 34 

2.4.1.2 Checking Model Assumptions .......................................................................................................... 37 

2.4.1.3 Drawback of ML Methods ................................................................................................................ 38 

2.5.2.  Preliminaries on Bayesian Analysis in Reliability ............................................................ 39 

2.5.2.1 Bayes’ Law ........................................................................................................................................ 39 

2.5.2.2 The Bayes Paradigm in Reliability Engineering .............................................................................. 40 

2.5.2.4 Illustrative Example: Bayesian Analysis for Repairable Systems ................................................... 41 



iii 

 

2.5.3.  Bayesian Methods for ALT Data Analysis ......................................................................... 48 

2.5.4.  Comments on Fisherian and Bayesian Inference for ALT Data ........................................ 50 

2.6.  PLANNING METHODS FOR ACCELERATED LIFE TESTING ......................................................... 52 

2.6.1.  Planning Based on Maximum Likelihood (ML) Theory ................................................... 52 

2.6.2.  Robustness of ALT Plans and Bayesian Planning Methods .............................................. 54 

2.6.3.  The Equivalence Theorem ................................................................................................. 57 

2.7.  ASYMPTOTIC THEORY .............................................................................................................. 57 

CHAPTER 3.  A SEQUENTIAL ALT FRAMEWORK AND ITS BAYESIAN INFERENCE .... 59 

3.1.  INTRODUCTION ......................................................................................................................... 59 

3.2.  THE FRAMEWORK OF SEQUENTIAL ACCELERATED LIFE TESTING .......................................... 64 

3.3.  THE FRAMEWORK OF BAYESIAN INFERENCE ........................................................................... 65 

3.4.  NUMERICAL EXAMPLES ........................................................................................................... 68 

3.4.1.  A temperature-accelerated life test ..................................................................................... 68 

3.4.2.  Analyze Device-A data using APC framework ................................................................. 69 

3.4.3.  Analyze Device-A data using FSPC framework ............................................................... 77 

3.5.  SIMULATION STUDIES .............................................................................................................. 80 

3.5.1.  Failure Data Generation ..................................................................................................... 80 

3.5.2.  Quantify the Prior Knowledge ........................................................................................... 80 

3.5.3.  Simulation Design .............................................................................................................. 81 

3.5.4.  Analysis of Simulation Outputs ......................................................................................... 82 

CHAPTER 4.  DOUBLE-STAGE ESTIMATION UTILIZING INITIAL ESTIMATES AND 

PRIOR KNOWLEDGE ........................................................................................................................... 90 

4.1.  INTRODUCTION ......................................................................................................................... 90 

4.1.1.  The Model ........................................................................................................................... 92 

4.2.  THE DOUBLE-STAGE ESTIMATION ........................................................................................... 92 

4.2.1.  STAGE 1: Obtain the Initial Estimate................................................................................ 92 

4.2.2.  STAGE 2:  Obtain the Shrinkage Estimates .................................................................... 93 

4.2.3.  Obtain the Least-Squares Estimates ................................................................................... 95 



iv 

 

4.3.  QUANTIFYING THE EFFECTS OF PRIOR KNOWLEDGE .............................................................. 96 

4.3.1.  The Bias .............................................................................................................................. 96 

4.3.1.1. When the Slope Parameter is Correctly Specified .......................................................................... 96 

4.3.1.2. When the Slope Parameter is Incorrectly Specified ........................................................................ 98 

4.3.1.3. Bias of the Estimator on Lower Stress Levels ................................................................................ 99 

4.3.2.  The Mean-Squared-Error ................................................................................................. 103 

4.4.  NUMERICAL STUDY ............................................................................................................... 103 

4.4.1.  Simulation Results ............................................................................................................ 105 

4.4.2.  The Computerized Implementation ................................................................................. 108 

CHAPTER 5.  BAYESIAN PLANNING OF SEQUENTIAL ALT ................................................. 111 

5.1.  INTRODUCTION ........................................................................................................................ 111 

5.1.1.  The Model ..........................................................................................................................115 

5.2.  THE FRAMEWORK OF THE SEQUENTIAL ALT PLANNING ........................................................116 

5.2.1.  STAGE 1: Planning for Test at the Highest Stress Level .................................................118 

5.2.2.  STAGE 2: Planning for Tests at Lower Stress Levels ......................................................119 

5.2.2.1 Deduction of the Prior Distribution ................................................................................................ 120 

5.2.2.2 Approximation of the Posterior Distribution .................................................................................. 120 

5.2.2.3 The Bayesian Planning Problem ..................................................................................................... 122 

5.3.  NUMERICAL EXAMPLES ......................................................................................................... 123 

5.3.1.  Planning an ALT with 2 Stress Levels ............................................................................. 124 

5.3.1.1 STAGE 1: Planning the test at the Highest Stress Level Hx  .......................................................... 124 

5.3.1.2 STAGE 2: Planning the Test at the Low Stress Level Lx  .............................................................. 126 

5.3.2.  Planning of a Compromise ALT with 3 stress Levels ..................................................... 130 

5.4.  COMPARISON OF THE SEQUENTIAL PLAN WITH STATIC PLAN ................................................ 136 

5.4.1.  Generation of Failure Data ............................................................................................... 136 

5.4.2.  Simulation Design ............................................................................................................ 137 

5.4.3.  Simulation Results ............................................................................................................ 138 

5.4.4.  Comparison of the Sequential Plan with Compromise Plan ........................................... 145 



v 

 

CHAPTER 6.  BAYESIAN PLANNING OF SEQUENTIAL ALT WITH STEPWISE LOADED 

AUXILIARY ACCELERATION FACTOR ........................................................................................ 150 

6.1.  INTRODUCTION ....................................................................................................................... 150 

6.1.1.  Motivations of Using an Auxiliary Acceleration Factor.................................................. 152 

6.1.2.  Organization ..................................................................................................................... 153 

6.2.  THE ALT MODEL AND A BAYESIAN PLANNING CRITERION ................................................... 154 

6.2.1.  The ALT Model with Auxiliary Acceleration Factor ....................................................... 154 

6.2.2.  A Bayesian Planning Criterion ......................................................................................... 155 

6.3.  PLANNING OF A SEQUENTIAL ALT WITH AUXILIARY ACCELERATION FACTOR ..................... 156 

6.3.1.  Planning and Inference for Test at the Highest Stress Level ........................................... 156 

6.3.2.  Planning Tests at Lower Stress Levels ............................................................................. 159 

6.3.2.1 Construction of Prior Distribution .................................................................................................. 159 

6.3.2.2 The Choice of an Auxiliary Acceleration Factor ............................................................................ 160 

6.3.2.3 The Likelihood Function and Time Compression Target ............................................................... 161 

6.3.2.4 The Information Matrix at Low Stresses ........................................................................................ 163 

6.3.2.5 The Planning of Tests at Low Stresses ........................................................................................... 167 

6.4.  CASE STUDY: TEMPERATURE-ALT OF AN ELECTRONIC CONTROLLER.................................. 168 

6.4.1.  Test Design and Data Analysis at the High Stress Level ................................................. 169 

6.4.2.  Test Design and Data Analysis at Lower Stress Levels ................................................... 171 

6.4.2.1 Information Transfer and Decay ..................................................................................................... 171 

6.4.2.2 Motivations of Using an Auxiliary Acceleration Factor ................................................................ 172 

6.4.2.3 Test Design at Low Temperature Level .......................................................................................... 175 

6.4.2.4 Sensitivity of the Optimum Plan to Mis-specification of p  .......................................................... 177 

6.4.2.5 Evaluation of the Developed Plan .................................................................................................. 180 

6.5.  CONCLUSIONS ........................................................................................................................ 182 

CHAPTER 7.  PLANNING FOR SEQUENTIAL ALT BASED ON THE MAXIMUM 

LIKELIHOOD (ML) THEORY ........................................................................................................... 183 

7.1.  INTRODUCTION ....................................................................................................................... 183 



vi 

 

7.1.1.  The Model ......................................................................................................................... 183 

7.2.  THE FRAMEWORK OF THE ML PLANNING APPROACH ........................................................... 183 

7.2.1. STAGE 1: Test Planning at the Highest Stress Level .......................................................... 185 

7.2.2. STAGE 2: Test Planning at the Lowest and Middle Stress Level ....................................... 185 

7.2.2.1. Planning Inputs .............................................................................................................................. 185 

7.2.2.2. The Fisher Information .................................................................................................................. 186 

7.2.2.3. The Test Planning Problem ............................................................................................................ 187 

7.3.  NUMERICAL EXAMPLE ................................................................................................... 188 

7.3.1.  Reliability Estimation of an Adhesive Bond ................................................................... 188 

7.3.2.  STAGE 1: Planning for the Test Run at the Highest Stress Level .................................. 189 

7.3.3.  STAGE 2 Planning for Test Runs at the Lowest and Middle Stress Level ..................... 191 

7.4.  DISCUSSIONS AND CONCLUSIONS .............................................................................. 193 

CHAPTER 8.  CASE STUDY: PLANNING AND INFERENCE OF AN ELECTRONIC 

CONTROLLER SEQUENTIAL ALT .................................................................................................. 198 

8.1.  INTRODUCTION ....................................................................................................................... 198 

8.1.1.  Background and Experiment Purpose .............................................................................. 198 

8.1.2.  The Acceleration Model ................................................................................................... 199 

8.2.  THE EXPERIMENT ................................................................................................................... 199 

8.2.1.  Planning and Inference under the Highest Stress ............................................................ 199 

8.2.1.1 Test Design ...................................................................................................................................... 199 

8.2.1.2 Test Procedure ................................................................................................................................. 201 

8.2.1.3 Test Data Analysis ........................................................................................................................... 201 

8.2.2.  Planning and Inference under Lower Stresses ................................................................. 204 

8.2.2.1 Tests Design .................................................................................................................................... 204 

8.2.2.2 Simulation Assessment of the Developed Plan .............................................................................. 206 

8.2.2.3 Test Procedure ................................................................................................................................. 207 

8.2.2.4 Test Data Analysis ........................................................................................................................... 209 

8.2.3.  Conclusions ...................................................................................................................... 212 



vii 

 

CHAPTER 9.  PLANNING AND ANALYSIS OF ACCELERATED LIFE TEST FOR 

REPAIRABLE SYSTEMS WITH INDEPENDENT COMPETING RISKS .................................. 213 

9.1.  INTRODUCTION ....................................................................................................................... 213 

9.1.1.  Accelerated Life Test for Repairable Systems ................................................................. 213 

9.1.2.  Accelerated Life Test with Competing Risks .................................................................. 215 

9.1.3.  ALT Planning for Repairable Systems with Competing Risks ....................................... 216 

9.2.  THE MODELING OF ALT FOR REPAIRABLE SYSTEMS ............................................................ 217 

9.2.1.  The Power Law Process and the Acceleration Model ..................................................... 218 

9.2.1.1.  The Power Law Process ........................................................................................................ 218 

9.2.1.2.  The Acceleration Model ........................................................................................................ 219 

9.2.2.  Modeling for Competing Risks ........................................................................................ 220 

9.2.3.  Modeling of ALT for Repairable Systems with Competing Risks .................................. 222 

9.3.  THE FISHER INFORMATION MATRIX ....................................................................................... 223 

9.4.  THE PRIOR DISTRIBUTION ...................................................................................................... 227 

9.5.  THE BAYESIAN PLANNING PROBLEM ..................................................................................... 228 

9.5.1.  The Planning Criterion ..................................................................................................... 229 

9.5.1.1.  The Choice of Utility Function ............................................................................................. 229 

9.5.1.2.  The Evaluation of Expected Utility ...................................................................................... 230 

9.5.2.  The General Equivalence Theorem .................................................................................. 232 

9.6.  A NUMERICAL CASE STUDY .................................................................................................. 233 

9.6.1.  Accelerated Life Test for Diesel Engine .......................................................................... 233 

9.6.2.  Prior Specification ............................................................................................................ 234 

9.6.3.  Numerical Search for a Two-Stress Optimum Plan ......................................................... 236 

9.6.4.  Numerical Search for Three-Stress Compromise Plan .................................................... 240 

9.6.5.  Efficiency Loss of Compromise Plans ............................................................................. 242 

9.6.6.  Evaluation of ALT Plans .................................................................................................. 243 

9.7.  ANALYSIS OF TESTING DATA ................................................................................................. 245 

9.8.  CONCLUSION .......................................................................................................................... 252 



viii 

 

CHAPTER 10.  CONCLUSIONS ........................................................................................................ 254 

BIBLIOGRAPHY ................................................................................................................................... 257 

APPENDIX……. ..................................................................................................................................... 275 



ix 

 

Summary 
 

This dissertation investigates several important problems in Accelerated Life Test 

(ALT). Both statistical inference (Chapter 3 and 4) and planning (Chapter 5, 6, 7 and 9) 

methods are proposed accompanied with numerical examples and simulation studies.  

 In the analysis of ALT data, some stress-life model is typically used to relate 

results obtained at stressed conditions to those at use condition. For example, the 

Arrhenius model has been widely used for accelerated testing involving high 

temperature. Motivated by the fact that some prior knowledge of the particular model 

parameters is usually available, a sequential constant-stress accelerated life testing 

(ALT) scheme is proposed in this dissertation (Chapter 3). Under this framework, test 

at the highest stress is firstly conducted to quickly yield preliminary information on 

key ALT model parameters. In reality, these parameters are usually difficult to be 

specified and have more bearing on the developed plans. Using both information 

obtained at the highest stress and that elicited from engineering experiences, prior 

distributions for model parameters at lower stress levels are deduced. Particularly, two 

basic Bayesian inference frameworks are presented, namely, the All-at-one Prior 

Distribution Construction (APC) and the Full Sequential Prior Distribution 

Construction (FSPC). Assuming Weibull failure times, this thesis 1) derives the 

closed-form expressions for estimating the smallest extreme value location parameter 

at each stress level; 2) compares the performance of the proposed Bayesian inference 

to that of Maximum Likelihood (ML) methods; and 3) assesses the risk of including 
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empirical engineering knowledge into ALT data analysis under the proposed 

framework. Step-by-step illustrations of both frameworks are presented using a 

published real-life ALT dataset. 

This dissertation also addresses the applicability of the proposed inference method. 

In practice, the applications of Bayesian inference in ALT data analysis are typically 

limited by 1) the difficulty of quantifying prior knowledge into mathematical 

expressions, and 2) the potential risk of violating data objectivity when certain prior 

knowledge is incorporated. Hence, Chapter 4 proposes a Double-Stage Estimation 

procedure and establishes the closed-form relationships between the prior knowledge 

and the statistical precision/accuracy of certain estimates.  

In the planning of ALT, preliminary estimates of unknown model parameters are 

often needed so as to assess the statistical efficiency of test plans. Very often, the 

margin of error is high and the requisite level of statistical precision cannot be 

achieved as planned. To enhance the robustness of ALT plan to misspecification of 

model parameters, approaches to planning sequential ALT are proposed. Under the 

proposed sequential scheme, test at the highest stress level is firstly planned and 

conducted. Then, both Bayesian (Chapter 5 and 6) and Maximum Likelihood (Chapter 

7) based frameworks are proposed to incorporate the information obtained under the 

highest stress in the planning of subsequent tests under lower stresses. Under either 

framework, the large-sample approximation to posterior density is used, and both 

sample allocation and stress combinations at lower stress levels are optimized by 

minimizing the variance of certain reliability estimates at use condition. Sometimes, 
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since few or zero failures are obtained when the stress is low, an auxiliary acceleration 

factor, with its effect on product life distribution being well understood, is embedded 

into the Bayesian planning framework so as to amplify the failure probability under 

lower stresses (Chapter 6). Comprehensive simulation studies are conducted to 

compare the performance of the sequential testing scheme to that of the traditional 

non-sequential planning and testing. In Chapter 8, a case study that successfully 

employs the methods introduced in this dissertation is provided to reaffirm the 

strengths of the proposed planning and inference approaches for sequential accelerated 

life tests.  

Chapter 9 proposes a Bayesian approach to planning an accelerated life test (ALT) 

for repairable systems with multiple s-independent failure modes. A power law process 

(PLP), that combines both proportional intensity (PL) and acceleration time (AT) 

approaches, is used for modeling the failure process of repairable systems under ALT. 

Based on the Bayesian D-optimality and Ds-optimality, this chapter develops optimal 

plans for ALT by invoking the general equivalence theorem. It also addresses the 

problem of prior elicitation, and derives the expression of the Fisher information 

matrix. Finally, a case study on testing diesel automotive engines is presented to 

illustrate how to use the proposed planning principle to obtain the 2-stress-level 

optimal plan and a compromise plan for 3-stress-level ALT. 
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Chapter 1. Introduction 

1.1. Introduction to Accelerated Life Testing  

Manufacturers today are facing strong pressure to develop newer products with more 

features and higher reliability. In line with the modern quality philosophy for 

producing high reliability products, this is achieved by improving the design and 

manufacturing processes, rather than relying on inspections. For example, Electronic 

Engine Controls (EEC) is one of the most complex and expensive components of the 

jet engine. Reliability must be designed into the EEC from the initial stage of design 

by considerations of hardware selection, manufacturing processes, software design, 

rigorous testing, fault detection and monitoring logic, and proper in-service trouble 

shooting procedures (Sikand et al 2005).  

For this reason, various up-front reliability tests of materials, components and 

systems have been motivated in both product design and production phases. However, 

today’s manufacturers usually do not have the luxury of collecting 100% of the 

information needed to make a bulletproof reliability analysis due to the strong pressure 

to shorten the time-to-market of their products. It is always a need to balance the 

gathering and analyzing of information against the timeliness of the decision being 

made. For some modern products which are designed to operate properly for tens of 

years, testing under normal operating conditions in a practical length usually causes 

zero or few failures. “No one wants to learn from mistakes, but we cannot learn 
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enough from successes to go beyond the state of the art”. Without enough failures, 

engineers simply do not have enough information for estimating the time-to-failure 

distribution or the long-term performance of their products. 

Hence, Accelerated Life Test (ALT), which precipitates timely information on 

product reliability, has been widely used. During an ALT, testing units (materials, 

components, systems, etc.) are subject to high level of stress (temperature, humidity, 

voltage, usage rate, and etc.) to yield short lives. The life data obtained at over-stressed 

conditions are then used to evaluate product reliability at normal operating conditions. 

Because of its irreplaceable role in estimating and improving product reliability, ALT 

has become one of the most important reliability programs in manufacturing industries 

facing the rapidly changing technologies and increasingly high customer expectations.  

In the following sections, we shall see the basic functions as well as the 

classification of modern ALT. 

1.1.1. Functions of Accelerated Life Testing 

ALT carries multiple functions in product design and development. Usually, it is 

helpful to answer those important questions listed in Table 1.1 (Porter 2004).  

From a product life cycle perspective, Yang (2007) classifies ALT into three 

categories: design ALT, qualification ALT, and production ALT. Within each category, 

the functions of test may not necessarily be the same. Design ALT carries functions 

involving 1) comparing and assessing material reliability; 2) determining optimum 

design alternatives; and 3) confirming the effectiveness of a design change. Once the 
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product design is done, qualification ALT is usually followed for design verification by 

testing product prototypes. Within this phase, ALT is primarily used to 1) demonstrate 

whether the design achieves the reliability target; and 2) estimate the reliability of the 

design. When the design verification is completed, ALT plays another important role in 

process validation, including 1) demonstration of the capability of the manufacturing 

process; and 2) estimation of the product reliability.  

Table 1.1 Questions answered by ALT 

Research What are the boundaries of a new type of technology? 

Development What design features need correcting? What must be changed to make it 

work? 

Validation Does the product meet the life/performance requirements? How reliably? 

Production What production parameters affect the fabrication of the product? What 

are the optimal values and tolerances for the parameters? 

Warranty What causes the warranty failure? How can the warranty failure be 

reproduced? What corrects the warranty failure? 

Life Extension What residual life exists in a system at the end of its scheduled life? 

What performance envelope adjustments or maintenance schedule 

changes can be made to extend the useful life safely? 

 

In summary, by analyzing failures obtained from ALT, reliability engineers are 

essentially aimed to find out ‘how’, ‘when’, and ‘why’ products fail at normal 

operation conditions. Answering the question ‘how’ requires the identification of 

potential design and manufacturing defects, namely, the identification of failure modes. 

Answering the question ‘when’ requires the quantification of product reliability for 
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critical failure modes (see Section 1.2). Finally, in order to remove or reduce products’ 

deficiencies using better design, manufacturing, or component selection, the third 

question ‘why’ has to be answered.  

In fact, failures obtained in product life test help to identify problems and thus 

provide opportunities to improve the design and manufacturing process. This reminds 

me of the ancient Chinese saying by Mencius, “When Heaven is about to place a great 

responsibility on a great man, it always first frustrates his spirit and will, exhausts his 

muscles and bones, exposes him to starvation and poverty, harasses him by troubles 

and setbacks so as to stimulate his spirit, toughen his nature and enhance his abilities”. 

1.1.2. Types of Accelerated Life Testing 

In this dissertation, the focus is on quantitative ALTs that are used to obtain timely 

information on product life distribution at use conditions by testing products at 

higher-than-use conditions. Usually, this type of ALT can take form of 1) usage rate 

acceleration; 2) over stress acceleration; 3) changing level of control factor; and 4) 

tightening the failure threshold. Key reliability measures can be estimated by analyzing 

the failure data obtained from stressed conditions, and the highest stress level should 

be carefully chosen to accelerate the right failure mode without introducing irrelevant 

failure modes that are not of interest to reliability engineers. 

When the life information at use conditions is not needed, however, there are other 

important types of accelerated tests, e.g. the Highly Accelerated Life Test (HALT), the 

Environmental Stress Testing (EST), the Environmental Stress Screening, and etc. In 
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general, these types of tests are used to expose design/manufacturing defects, and thus 

usually require smaller sample size.  

In addition to different types of ALT, we will see different stress loading methods 

in Section 2.2. But it has to be always remembered that “it is not the test that is 

important, but the information (Porter 2004)”.  

1.2. Statistics and Reliability Measures 

As the only available powerful tool that effectively quantifies data/information 

uncertainty, statistics is used as the official mathematical language in reliability 

modeling and analysis which deal with the random nature of product failures. In the 

monograph “Statistical Methods in Reliability Engineering”, Meeker and Escobar 

(1998) provide detailed discussions on methods for data collection, analysis, and 

interpretation which are important for product reliability and design decisions.  

In Figure 1.1a, the four basic statistical operations are presented (Efron 1982), 

namely, enumeration (data collection), summary, comparison, and inference. As a 

contrast, Figure 1.1b shows the four basic operations in ALT applications. It is very 

interesting to observe that every basic operation in ALT applications employs certain 

powerful tools from its counterpart in statistical operations. For example, an ALT 

project usually starts with test planning as it determines if failure data can be collected 

efficiently. Since products typically fail in a random manner, the knowledge of data 

collection (enumeration) in statistics plays an important role as it provides guidance of 

how an ALT should be planned given certain optimality criterion. After an ALT is 
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completed, testing results are briefly summarized using summary statistics such as the 

total number of failures at each testing condition, and simple comparison can thus be 

made based on these summary statistics. Finally, in order to quantify product reliability 

at use condition, or predict product reliability at a given time, or make decisions 

depending on product life distribution, engineers borrow the powerful tool of statistical 

inference that yields estimates with statistical significance by taking into account the 

random nature of product failure.  

 

 
(a) (b) 
 

Figure 1.1 Mapping of basic operations from statistics to ALT 

Several important reliability measures, which are defined using the language of 

statistics, are widely used in practice. Commonly used ones include the Reliability 

function--a probability that an item is functioning at any time, the mean time to failure 
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(MTTF), the life quantile, the failure/hazard rate, and etc.  

1.3. Problems with Accelerated Life Testing 

Current ALTs have problems that restrict their applications. Meeker and Escobar (1998) 

and Pascual et al. (2006) summarize the possible pitfalls of accelerated life testing. In 

this section, a discussion on those major problems is presented. 

 For complex mechatronics systems/assemblies with multiple potential failure 

modes, it is difficult to lock on the target failure mode in an ALT. In other 

words, failure modes precipitated by ALTs might not be those occurring under 

normal operation conditions. Currently, most quantifiable ALTs are used to 

make an inference on certain key reliability measures for one particular failure 

mode. Hence, it is vitally important to make sure that failure produced by ALT 

is actually caused by one of the dominated failure modes in the field. However, 

this is not easy at all. On the one hand, severe testing environment might 

produce new/irrelevant failure modes, namely, these failure modes do not 

really exist under normal operation conditions. On the other hand, the 

sequence that different failure modes occur might also be shuffled under 

accelerated conditions. As shown in Figure 1.2, the target failure mode A is 

more likely to occur before the nuisance failure mode B under normal 

operation conditions, however, this order is switched under accelerated 

environment. Hence, the analysis of ALT data is sometimes beyond the 
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capability of reliability engineers or statisticians, it requires the participation 

of managers and senior design engineers, which challenges the teamwork of 

many companies. In practice, since the target failure mode is usually 

identified before a quantitative ALT by employing the methods such as Failure 

Modes and Effects Analysis (FMEA), engineers can use some special 

case-dependent techniques to keep those irrelevant failure modes from 

occurring. For instance, they can add some protections to those fragile 

components or links if their failure modes are not the primary concerns. Or, 

they can reduce the level of acceleration. Unfortunately, this results in the 

second problem as follows. 

 

Figure 1.2 Illustration of the change in failure model occurrence order 

 For complex mechatronics systems/assemblies, it is hard to achieve a high 

time compression. As discussed above, the level of acceleration may be 

reduced to lock on the target failure mode for an ALT. Sometimes, the highest 

level of acceleration is limited by the most fragile component of that system. 
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As shown in Figure 1.2, in order to produce failure mode A during an ALT, the 

actual acceleration level used should be much lower than that shown in the 

figure. Hence, it takes a long time, usually several months, to obtain enough 

failures that support an inference on product reliability with statistical 

significance. 

 The current role of ALT prohibits the company from taking full advantage of 

the powerful technique of ALT. Although ALT now has been widely 

recognized as an indispensable part in product design/development, it is 

certainly not the most important part. Hence, the budget for reliability testing 

program must always be weighed against the expected benefits that can be 

obtained. The statistical sample size, for example, is frequently too large to be 

affordable as it largely affects the test cost, required capacity of test 

equipments, test time, and estimate accuracy (Yang 2007, pp. 240). 

Furthermore, as we have seen above, a successful ALT at the system-level not 

only requires efforts across different departments, but also sufficient time and 

financial supports. Unfortunately, these requirements can be very tedious for 

small companies which are not able to spend too much on reliability 

improvement. Hence, reliability programs will not be the top priority when 

decisions on resource distribution are made. The relationship between 

information, time, cost and engineering decisions in the development process 

should be explored to provide a common dialog for making sound decisions 

about what information to collect, what validation tools to use and what 
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resources to apply. Ultimately, if validation tools are selected and applied to 

provide the key information precisely when it is needed, the development 

process will not just be faster; it will be a truly efficient development process.  

1.4. The Structure and Scope 

This dissertation develops both data analysis and test planning methods for the 

proposed sequential constant-stress accelerated life testing. The structure of this 

dissertation is sketched in Figure 1.3. 

 

 

 

 

 

 

 

 

 

Figure 1.3 The structure of the thesis 
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ALT modeling, inference and planning is firstly presented. The purpose of this 
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data analysis and test planning methods, but also to compare these methods in order to 

see both of their advantages and disadvantages.  

Chapter 3 and 4 are focused on the analysis of ALT data.  

Following the discussion, a sequential ALT (SALT) scheme, with its motivation 

clearly stated, is proposed in Chapter 3. Under this framework, test at the highest stress 

is firstly conducted to quickly yield preliminary information on key ALT model 

parameters. Then, using both the information obtained at the highest stress and that 

elicited from product engineers, prior distributions for model parameters at lower 

stress levels are constructed. Particularly, two basic Bayesian inference frameworks are 

developed, namely, the All-at-one Prior Distribution Construction (APC) and the Full 

Sequential Prior Distribution Construction (FSPC). Based on the assumption of 

Weibull failure times, this chapter is focused on the 1) derivation of closed-form 

expressions for estimating the smallest extreme value location parameter at each stress 

level; 2) performance comparison of the proposed Bayesian inference to that of 

Maximum Likelihood (ML) methods; and 3) assessment of the risk of including 

empirical engineering knowledge into ALT data analysis under the proposed 

framework.  

Based on the results of Chapter 3, Chapter 4 goes one step further and proposes a 

double-stage estimation utilizing both initial estimates and prior knowledge. In 

particular, the relationship between prior knowledge and statistical precision/accuracy 

of certain estimates for reliability is investigated in detail.  

Chapter 5 ~ 9 are focused on the planning of an ALT.  
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Based on the framework of sequential ALT proposed in Chapter 3, both Bayesian 

(Chapter 5 and 6) and Maximum Likelihood (Chapter 7) based planning methods are 

proposed to incorporate the information obtained under the highest stress in the 

planning of subsequent tests under lower stresses. Under either framework, the 

large-sample approximation to posterior density can be used, and both sample 

allocation and stress combinations at lower stress levels should be optimized by 

minimizing the variance of certain reliability estimates at use condition. Sometimes, 

since few or zero failures are obtained when the stress is low, an auxiliary acceleration 

factor, with its effect on product life distribution being well understood, can be 

embedded into the Bayesian planning framework so as to amplify the failure 

probability under lower stresses (Chapter 6). Comprehensive simulation studies are 

needed to compare the performance of the sequential testing scheme to that of the 

traditional non-sequential planning and testing. In Chapter 8, a real case study that 

successfully employs the methodologies introduced in this dissertation will be 

provided to reaffirm the strengths of the proposed planning and inference of sequential 

accelerated life tests.  

Chapter 9 can be viewed as an independent chapter as the method proposed in this 

chapter does not apply to the framework of sequential ALT. In this chapter, we 

consider the situation when more than one failure modes are often of interest, and 

propose a Bayesian approach to planning an accelerated life test (ALT) for repairable 

systems with multiple s-independent failure modes. A power law process (PLP), that 

combines both proportional intensity (PL) and acceleration time (AT) approaches, is 
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used for modeling the failure process of repairable systems under ALT. Based on the 

Bayesian D-optimality and Ds-optimality, we develop optimal plans for ALT by 

invoking the general equivalence theorem. We also discuss the elicitation of prior 

distributions, and derive the expression of the Fisher information matrix. Finally, a 

case study on testing diesel automotive engines is presented to illustrate how to use the 

proposed planning principle to obtain the 2-stress-level optimal plan and a compromise 

plan for 3-stress-level ALT. 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

Chapter 2. Literature Review on Statistical ALT 

Modeling, Inference and Planning 

2.1. Introduction 

This chapter reviews the current development of Accelerated Life Testing (ALT) 

modeling, inference and planning. It involves 5 fundamental issues: Stress loadings, 

Data type, Statistical ALT model, ALT data analysis, and ALT planning. Figure 2.1 

below sketches the organization structure of this chapter.  

 

 

  

 
 
 

 

 

Figure 2.1 Organization of Chapter 2 

2.2. Types of Stress Loadings 

Stresses used in ALT typically include temperature, humidity, voltage, vibration, etc. 

and the most commonly adopted patterns of loading these stresses are constant-stress, 

step-stress, progressive stress loadings, cyclic stress loading, and etc. Accordingly, we 

have constant-stress ALT (CSALT), step-stress ALT (SSALT) and progressive-stress 

ALT (PSALT).  

Section 2.1 Stress Loading     Section 2.2 Data Type 

Section 2.3 Statistical ALT model 
(Life time distribution; Stress-life relationships) 

Section 2.4 ALT Data Analysis Section 2.5 ALT Planning 
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 As shown in Figure 2.2a, stress applied to testing units does not vary with time in 

CSALT. In practice, test with this type of stress loading is most commonly conducted 

due to its simplicity. Methods for analyzing CSALT data are also relatively mature and 

empirically verified.  

 
Figure 2.2 Stress loadings in ALT 

For both SSALT and PSALT, stress applied to sample units is time-dependent. For 

SSALT, stress remains at a certain level for a period of time and jumps to a higher 

level at a pre-specified point as shown in Figure 2.2b. For PSALT, stress constantly 

increases with time as shown in Figure 2.2c. Both SSALT and PSALT have advantages 

in yielding failures quickly but impose challenges for modeling the data. In fact, the 

models are not well developed and might lead to less accurate conclusions. ALT with 

cyclic stresses shown in Figure 2.2d is also used in practice, e.g. Monroe and Pan 
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(2008). However, both the modeling and analysis for such an ALT become much more 

difficult, and necessary simplifications are usually needed.  

More stress loading patterns can be found in Nelson (1990) and Yang (2007).  

2.3. Data Type 

“Reliability data are typically censored”. This is the first distinguishing feature of 

reliability data summarized by Meeker and Escobar (1998).  

For accelerated life tests, two stopping (censoring) rules are commonly adopted. 

One, test is stopped at a pre-specified time (known as time-censoring or type-I 

censoring). Two, test is stopped when a given number of failures has been observed 

(known as failure censoring or type-II censoring). Thus, what engineers usually have 

are some exact observations mixed with censored observations which provide a bound 

or bounds of actual failure times.  

Typical data type in ALT includes: complete (exact) data, right censored data, and 

interval censored data.  

 Complete (exact) data. As shown in Figure 2.3, unit A has failed before the 

test is done, hence, the exact failure time of unit A (C3) has been recorded and 

referred as a complete or exact observation.  

 Right censored data. As shown in Figure 2.3, unit B has not failed before the 

test is done, hence, the actual failure time of unit B is unknown. In this case, 

what engineers observe is a lower bound (C) of the actual failure time, and 

this lower bound value is referred as a right censored observation. Right 
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censored data and complete data are the two most common and important data 

types appear in typical ALT datasets.  

 Interval censored data. As shown in Figure 2.3, unit C has failed before the 

test is done, however, the failure time is roughly known as within an interval 

(C1~C2). This type of observation is referred as interval censored data which 

reflects uncertainty as to the exact time the units failed within an interval. 

Usually, it comes from tests or situations where the objects of interest are not 

constantly monitored (See Yang 2007, pp. 245 for detailed introduction to data 

collection methods). 

 

Figure 2.3 Illustration of exact data, right censored data, and interval censored data 

2.4. Statistical Model of Constant-Stress ALT 

A typical statistical model of constant-stress ALT consists of the following two 
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components as shown in Figure 2.4. 

 
Figure 2.4 Statistical ALT model 

 

Component 1: A life time distribution that models product’s behavior at a 

particular stress level. This assumption might be avoided if non-parametric methods 

are used, but parametric models provide important practical advantages for most 

applications. This thesis therefore only focuses on parametric ALT models. Table 2.1 

summarizes the characteristics of those life time distributions commonly used for 

reliability data modeling. More details can be found Leemis (1995), Meeker and 

Escobar (1998), Nelson (1990). Particularly, a relationships plot among continuous 
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univariate lifetime distributions is provided by Leemis (1995). 

Component 2: A relationship (also called stress-life model) that quantifies the 

manner in which the life time distribution changes across different stress levels. Table 

2.2 summarizes the characteristics of those commonly used stress-life models. In this 

table, the Acceleration Factor fA is defined as the ratio of the life between the use level 

and a higher stress level. More details can be found in Nelson (1990), Meeker and 

Escobar (1998), and Livingston (2000).  
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Table 2.1 Characteristics of life-time distributions commonly used in ALT 

Distribution Key Characteristics Remarks 

Weibull 

Probability density function: 

( )
1

exp , 0t tf t t
β ββ

α α α

− ⎡ ⎤⎛ ⎞ ⎛ ⎞= − >⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

Cumulative density function: 

( ) 1 exp , 0tF t t
β

α
⎡ ⎤⎛ ⎞= − − >⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

Reliability function: 

( ) ( )1 exp , 0tR t F t t
β

α
⎡ ⎤⎛ ⎞= − = − >⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

MTTF: 

11MTTF α
β

⎛ ⎞
= ⋅Γ +⎜ ⎟

⎝ ⎠
 

a) One of the most commonly used distributions in ALT and 

reliability data modeling; 

b) α is the scale parameter; β is the shape parameter; 

c) Appropriate for modeling life times having constant 

( 1β = ), strictly increasing ( 1β > ), and strictly decreasing 

( 1β < ) failure rate; 

d) Log-location-scale parametric distribution; 

e) IfT follows Weibull distribution with scaleα and shape β , 

then, ( )logY T=  follows smallest extreme value distribution 

with location ( )logμ α= and scale 1σ β= ; 
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Failure rate: 

( )
1

, 0th t t
ββ

α α

−
⎛ ⎞= >⎜ ⎟
⎝ ⎠

 

TTFp: 

( ) ( )

( ) ( )

1

1

1exp log

1 exp exp

p sev

sev

t p

z z

α
β

−

−

⎡ ⎤
= +Φ⎢ ⎥

⎣ ⎦
Φ = − −⎡ ⎤⎣ ⎦

 

Smallest 

Extreme 

Value 

Probability density function: 

( )

( )

1 ,

exp exp

sev

sev

yf y y

z z

μφ
σ σ

φ

−⎛ ⎞= −∞ < < ∞⎜ ⎟
⎝ ⎠

= −⎡ ⎤⎣ ⎦

 

Cumulative density function: 

( ) ,sev
yF y yμ
σ
−⎛ ⎞= Φ −∞ < < ∞⎜ ⎟

⎝ ⎠
 

TTFp: ( )1
p sevy pμ σ−= +Φ  

a) IfT follows Weibull distribution with scaleα and shape β , 

then, ( )logY T=  follows smallest extreme value distribution 

with location ( )logμ α= and scale 1σ β= ; 

b) Location-scale parametric distribution; 
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Exponential Equivalent to Weibull distribution with 1β =  
a) Model life data with constant failure data; 

b) Simple, even used in situations in which it does not apply; 

Normal 

Probability density function: 

( )

( ) ( ) ( )2

1 ,

1 2 exp 2

nor

nor

yf y y

z z

μφ
σ σ

φ π

−⎛ ⎞= −∞ < < ∞⎜ ⎟
⎝ ⎠

= −
 

Cumulative density function: 

( )

( ) ( )

,nor

z

nor nor

yF y y

z w dw

μ
σ

φ
−∞

−⎛ ⎞= Φ −∞ < < ∞⎜ ⎟
⎝ ⎠

Φ = ∫
 

TTFp: 

( )1
p nory pμ σ−= +Φ  

a) Useful to model life data when 0μ > andσ μ is small; 

b) Not commonly used in reliability and ALT; 

Lognormal 
Probability density function: 

( ) ( )( )1 log , 0norf t t t
t
φ μ σ

σ
⎡ ⎤= − >⎣ ⎦  

a) One of the most commonly used life time distribution in 

ALT and reliability modeling; 



23 

 

Cumulative density function: 

( ) ( )( )log , 0norF t t tμ σ⎡ ⎤= Φ − >⎣ ⎦  

Reliability function: 

( ) ( )( )1 log , 0norR t t tμ σ⎡ ⎤= −Φ − >⎣ ⎦  

MTTF: 

2exp 0.5MTTF μ σ⎡ ⎤= +⎣ ⎦  

Failure rate: 

( ) ( ) ( ) , 0h t f t R t t= >  

TTFp: 

( )1expp sevt pμ σ−⎡ ⎤= +Φ⎣ ⎦  

b) Useful in degradation, fatigue data modeling; 

c) ( )h t starts at zero, increases to a certain point, and 

decreases to zero.  
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Table 2.2 Characteristics of commonly used stress-life models 

Model Expression Remarks 

Arrhenius 

relationship 

1 1exp a
f

u a

EA
k T T

⎡ ⎤⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

aE : activation energy, ev 

k : Boltzmann’s Constant 

   ( 58.6141 10−× ev/C) 

uT : use temperature in Kelvin 

aT : test temperature in Kelvin 

a) Model product life as a function of temperature; 

b) Typical value of aE is usually available from physical or 

chemical knowledge, empirical data, failure mechanisms, and 

etc.  

Hallberg – Peck 

relationship 

3
1 1expa a

f
u u a

RH EA
RH k T T

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

aRH : use relative humidity 

uRH : test relative humidity 

a) Model product life as a function of temperature, humidity 

and bias.  

b) Usually used in highly accelerated stress test (HAST), 

temperature humidity bias (THB), and Autoclave (unbiased) 
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aE , k , uT , aT  defined as above 

Eyring 

relationship 

1 1exp
m

a a
f

u u a

T EA
T k T T

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

aE , k , uT , aT  defined as above 

m : constant ranges from 0 to 1 

a) Based on physical theory describing the effect that 

temperature has on a reaction rate 

Inverse-Power 

relationship 

1

a
f

u

VA
V

β−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

aV : test voltage 

uV : use voltage 

1β : material-specific exponent 

a) Useful for voltage acceleration; 

Coffin – Mansion 

relationship 

m

a
f

u

TA
T

⎛ ⎞Δ
= ⎜ ⎟Δ⎝ ⎠

 

aTΔ : thermal cycle temperature change in test 

environment 

a) Thermo-Mechanical effects; 

b) Model effects of low-cycle fatigue induced by thermal 

stressing 
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uV : thermal cycle temperature change in use 

environment 

m : constant 

c) m is derived from empirical data 

NVM data 

retention T-Model 

0

exp a u
f

T TA
T

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
 

aT : test junction temperature in Kelvin 

uT : use junction temperature in Kelvin 

0T : data-retention characteristic temperature 

a) NVM is short for nonvolatile memory 

b) Model for data loss 

c) Dependent on the temperature, the dielectric properties, 

and the electric field strength 
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2.5. Inference Methods for Accelerated Life Testing Data 

To quantify the reliability of product, some key reliability measures are to be estimated. 

Various methods have been proposed for ALT data analysis. Nelson (1990) classified 

these methods into the following 7 categories. In Table 2.3, a summary of these 

methods are presented. 

 Graphical methods 

 Least squares analysis (LS) 

 Iterative least squares (ILS) 

 Weighted regression (WR) 

 Best linear unbiased estimator (BLUE) 

 Maximum Likelihood (ML) methods 

 Bayesian analysis 

To review, illustrate, and compare these methods, consider a typical 

constant-stress ALT model as follows,  

Suppose a number of specimens of sample size N are tested at k constant stress 

levels is for 1,...,i k= . Let ks and 0s respectively denotes the pre-specified highest stress 

and the design stress where certain product reliability is to be estimated, we 

parameterize is  

( ) ( ) ( ) ( )0 0 0or
                                                                    0,1,...,

i i k k i i kx s s s s x s s s s
i k

= − − = − −

∀ =
,              (2.1) 

such that 0 1x = for 0s s= and 0kx = for ks s= for the first type of parameterization; 
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whereas 0 0x = for 0s s=  and 1kx = at ks s= for the second type of parameterization. 

Regardless of the type of parameterization, the testing region is always[0,1] .  

At any stress level is , 1,...,i k∀ = , in number of specimens is tested until a 

pre-specified censoring time ic . The failure timeT at any stress is assumed to follow a 

log-location-scale distribution 

( )( )( )( ) logF t t μ σ= Φ − ,                 

where μ andσ are respectively the location and scale parameter of failure time in 

log-scale. In particular, the location parameter μ depends on stress through a linear 

stress-life model 

0 1i ixμ β β= +                                                  (2.2) 

and the shape parameterσ is a constant independent of stress. 

It is noted that both Arrhenius and inverse power relationships can be linearized 

after proper parameterization. For example, the Arrhenius model can be linearized as 

0 1
1

0 1

Activation energy, 1log
Boltzmann constant, Temp

  

where        log   1/ Temp         

a

B

a B

EA
k

s

A E k s

μ

β β

β β −

= + ⋅

= + ⋅

= = ⋅ =

                (2.3) 

The assumption of constant shape parameterσ is motivated by the fact thatσ is 

usually associated with the underlying failure mechanism. Although controversial, this 

type of assumption is not uncommon in statistics. For example, in both linear 

regression analysis and ANOVA, statisticians often make similar assumptions that the 

dependent variables associated with different independent variables are normally 

distributed with the same variance. Certain techniques, as we shall see in Section 2.4.2, 
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have been developed to check the validity of this assumption. Meeter and Meeker 

(1994) discussed ALT plans with a non-constant scale parameter. 

Parameters contained in this constant-stress ALT model are collected in the 

triplets 0 1( , , )β β σ=φ . 

In what follows, the first 5 methods are briefly reviewed. After that, detailed 

review of the ML methods and Bayesian analysis are respectively presented in Section 

2.4.1 and Section 2.4.2.  
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Table 2.3 Summary of ALT data analysis methods 

Method Characteristics Main limitations Representative references 

Graphical Information visualization; Simple Lack of rigorous analytic results 
Klein and Moeschberger (2004), 

Nelson (1975a, 1982) 

LS 
Effective for complete data; 

Exact variance available 
Difficult to handle censored data 

Nelson (1975b), Kahn (1979), 

Teng and Yeo (2002) 

Iterative LS 
Updated version of LS to handle censored 

data 

Lack of thorough studies on estimator 

bias 

Schmee and Hahn (1979, 1981),  

Aitkin (1981) 

WR 
Weights on information obtained at each 

stress 

Lack of thorough studies on estimator 

performance; No software available 
Lawless (1982) 

BLUE 
Minimum variance unbiased linear 

estimator 

Poor performance for heavy 

censoring 
Nelson and Hahn (1972, 1973) 

ML 
Applicable for all stress loadings and data 

types; Automatically applied. 

Asymptotic approximation 

inadequate for few failures 

Nelson (1990), 

Meeker and Escobar (1998)  

Bayesian Prior knowledge included 
Difficult to specify a priori; data 

objectivity is at risk 

Barlow et al. (1988), Singpurwalla (2006) 

Zhang and Meeker (2006) 
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Graphical methods are extremely important in industrial applications to analyze 

ALT data based on the model above. They are simple and able to visualize critical 

information contained in dataset. Hence, they are ideal and powerful communication 

tools among engineers or between engineers and other people who are not familiar 

with statistical analysis. However, graphical methods have disadvantages due to the 

lack of analytic formulations.  They usually do not reveal the underlying relationships 

among key statistical quantities, such as the relationship between sample size and 

statistical precision. Furthermore, different people might reach different conclusions 

based on the very same graph. In Nelson (1990), the author presented another 

disadvantage of graphical methods saying that such methods are difficult to quantify 

the statistical uncertainty by means of confidence intervals. Fortunately, commercial 

packages such Minitab and Reliasoft significantly mitigate this problem by 

automatically generating the confidence bounds for many important statistical plots. 

More details of the applications of graphical methods can be found in Nelson (1975a) 

and Klein and Moeschberger (2004).  

The least squares method is a well known and simple analytic approach in 

regression analysis (Birkes and Dodge 1993, Chatterjee and Price 1991). In the 

literature, a least squares approach for the estimation of the inverse power law 

parameters assuming Weibull failure times can be found in Nelson (1975b). Only 

complete data were considered in this work, and the least squares estimates were 

assumed to be approximately normal. Kahn (1979) presented a least squares estimation 

for the inverse power law for ALT with type-II censoring. According to Kahn (1979), 
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the least squares estimator has many desirable properties: it is best linear unbiased and 

orthogonal for any sample size; the exact variance of the estimator is available; it is 

approximately normal for small number of stress levels provided a moderate number 

of failures is observed at each stress. However, the application of such method in ALT 

data analysis is limited as it is difficult to handle censored data. Much effort has been 

made to enhance the capability of the least squares method (Buckley and James 1979, 

Jin et al. 2006), but the modified versions of the method appear to be mathematically 

difficult thus less attractive to practitioners.  

 One of the modified versions of the least squares method was the iterative least 

squares found in Schmee and Hahn (1979, 1981) and Aitkin (1981). The salient feature 

of the iterative least squares is that the censored data are replaced by the value equal to 

its expected failure time conditioning on how long the specimen run without failure. 

Within each iteration, the value used to replace the censored data is updated based on 

the regression line fitted in previous iteration. Monte Carlo simulation shows that the 

iterative least squares method performs comparably to ML methods as discussed later. 

This is not surprising at all if we consider the fact that the iterative least squares 

procedure replaces the censored values with the expected values within each iteration.  

The weighted regression method is somehow connected to the inference method 

introduced in Chapter 3. In this method, parameters at each stress level are separately 

estimated, and the stress-life relationship is then fitted using the weighted least square 

regression with weights being the inverse of the variance of estimators under each 

stress (Lawless 1982). Unfortunately, this method performs poorer than ML methods 
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in terms of the precision and accuracy of estimation.  

The best linear unbiased estimators (BLUE) method was presented by Nelson and 

Hahn (1972, 1973). It performs comparable to ML estimators in terms of the mean 

squared error. However, for heavy censoring, ML methods are still better (Bugaighis 

1988).  

In the following two sections, a detailed review of ML methods and Bayesian 

analysis are provided. These two methods are most important in ALT data analysis and 

closely related to the study presented in Chapter 3 and Chapter 4.  

2.5.1. Maximum Likelihood (ML) Methods for ALT Data Analysis 

Maximum Likelihood (ML) methods the most widely used for analyzing ALT data. 

Such methods are straightforward (automatic) and applicable to almost all types of 

data and stress loadings. Hence, commercial packages, such as Reliasoft and Minitab, 

employ ML methods as the standard procedures in analyzing ALT data. In this section, 

I briefly review the ML methods in ALT data analysis. Important results can be found 

in Nelson (1982, 1990), Meeker and Escobar (1998), Pascual et al. (2006), 

Balakrishnan and Xie (2007a, 2007b). 

The log-likelihood function corresponding the observed failure dataY is 

( ) ( ) ( )
1 1

1( ; ) log 1 exp
ink

ij ij ij i
i j

l Y zκ φ κ ζ
σ= =

⎧ ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑∑φ                (2.4) 

where the subscript “ ij⋅ ” denote the jth failure at stress is ; ( )( )logi i icζ μ σ= − is the 

standardized censoring time; ( )( ) ( )logij ij i ij iz t yμ σ μ σ= − = − is the standardized 
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failure time; and the index ijκ =1when ij iz ζ< and ijκ =0 otherwise;  

 The Maximum Likelihood Estimate (MLE) φ̂ is the value that maximizes the 

equation (2.4), that is, the efficient score equals zero at φ̂  

( ) ( )
. ˆ

ˆ

;
0

l Y
U

=
=

∂
= =

∂φ φ
φ φ

φ
φ

φ
                                       (2.5) 

Particularly, φ̂ is asymptotically normally distributed with its variance-covariance 

matrix given by 

0 0 1 0

0 1ˆ

ˆ ˆ ˆ ˆ ˆvar( ) cov( , ) cov( , )
ˆ ˆˆ ˆ ˆ                  var( )      cov( , )

ˆ                                        var( )   

β β β β σ

β β σ

σ
=

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥= − =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

φ φ
φ φ

Σ I  ,                 (2.6) 

where
2

2
ˆ

( ; )ˆ l Y

=

∂
=

∂φ
φ φ

φI
φ

is the information observed at ˆ=φ φ . 

2.4.1.1 Illustration of MLE: Temperature-ALT on Device-A 

An illustration of the application of MLE is given below using the dataset presented in 

Appendix. In this test, engineers analyzed the temperature-accelerated life test data on 

a particular device. Three temperature levels are involved in the test. At each level, the 

failure data are modeled by Weibull distribution ( )( )( )( ) logF t t μ σ= Φ − . A linear 

stress-life relationship 0 1i isμ β β= + is assumed with is equals the inverse of the 

temperature (in Kelvin). The scale parameter σ is a constant, independent of 

temperature.  

Applying the ML methods to the device-A data, we have the maximum likelihood 

estimate φ̂ of 0 1( , , )β β σ=φ by maximizing the equation (2.7). Numerical methods are 

often needed at this step. 
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( ) ( ) ( )
3

1 1

1( ; ) log 1 exp
in

ij SEV ij ij i
i j

l Y zκ φ κ ζ
σ= =

⎧ ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑∑φ                  (2.7) 

 Based on the large-sample theory, the variance-covariance matrix of φ̂ is computed 

using the following equation (2.8), see Nelson and Meeker (1978) 

1
1

ˆ
ˆ

ˆˆ ˆ
ink

ij

i j

−
−

=
=

⎡ ⎤⎡ ⎤= − = −⎢ ⎥⎣ ⎦ ⎣ ⎦
∑∑φ φ φ

φ φ
φ φ

Σ I i                                  (2.8) 

In equation (2.8), ˆij
φi is the observed Fisher information contributed by 

the jth failure at stress level i  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

00 01 0

01 11 1

0 1 ˆ

2

0 0 12

2

2

, , ,

ˆ , , ,

, , ,

where

1 , , , , 0,1ij i

ij i ij i ij i

ij
ij i ij i ij i

ij i ij i ij i

za b
ab ij ij k

a b

za
a a ij

a

A z A z B z

A z A z B z

B z B z C z

g glA e e g x g x a b

glB x e

ζ

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

κ κ
β β σ

κ
β σ σ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

−∂ ⎛ ⎞ ⎡ ⎤= = + − = = =⎜ ⎟ ⎣ ⎦∂ ∂ ⎝ ⎠
−∂ ⎛ ⎞= = −⎜ ⎟∂ ∂ ⎝ ⎠

φ

φ φ

i

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

2
2 2

2 2

1 1 1 , 0,1

1 2 1 1 1 1

ij iji i

ij iji i

z
ij ij ij ij i

z z
ij ij ij ij i ij ij ij i

e z e e a

lC z e z e z e e

ζ ζ

ζ ζ

κ κ κ ζ

κ κ ζ κ κ ζ
σ σ

⎡ ⎤− + − + + − =⎣ ⎦

∂ −⎛ ⎞ ⎡ ⎤= = − − − + − + + + −⎜ ⎟ ⎣ ⎦∂ ⎝ ⎠  

(2.9) 

Table 2.4 and 2.5 below present the analysis outputs generated by MINITAB. In 

Table 2.4, both the MLE φ̂ and its 95% confidence interval are presented. Very often, 

these results are visualized by Figure 2.5, which is known as the relation plot in 

MINITAB. On this plot, both failure times at each stress level and the estimated 

stress-life model (for 10% percentile, .1y ) are plotted. 
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Table 2.4 Regression table 

Predictor 
Standard 

Z P 
95.0% Normal CI 

Coef. Error Lower Upper 

0β  7.5155 0.1853 40.57 0.000 7.1524 7.8786 

1β  5.1218 0.7889 6.49 0.000 3.5755 6.6680 

σ  0.7085 0.1033   0.5323 0.9429 
Log-Likelihood -77.279 

Table 2.5 Table of percentile 

Percent 
Stress 

Percentile Standard 
Error 

95.0% Normal CI 
Temp. Standard Lower Upper 

10 283K 1 11.0429 0.5323 9.9994 12.0863 

 

The result in Table 2.5 can be visualized using another plot. Figure 2.6 presents 

the smallest extreme value multiple probability plot for each stress level (including the 

design level) based on the fitted model. The estimated percentile ( ).1ˆ 1y  at the use level 

as well as its confidence interval can now be immediately read from this plot.  
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Figure 2.5 Relation plot for log (failure time), Y   
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Figure 2.6 Smallest extreme value multiple probability plot for log (failure time), Y  

2.4.1.2 Checking Model Assumptions 

An important part of ALT analysis is checking for departures from model assumptions. 

In fact, this is a critical step for any parametric method before drawing conclusions 

from the data. Meeker and Escobar (1998) suggested 4 commonly used regression 

model diagnostics, including 1) plot of standardized residuals versus fitted values; 2) 

probability plot of standardized residuals; 3) other residual plots; and 4) Sensitivity 

analysis. Chatterjee and Price (1991) and Birkes and Dodge (1993) also provided 

elegant discussions on the detection/correction of regression model violations. 

 However, all the diagnostics above suffer from one common difficulty in checking 

the validity of ALT model assumptions. In a typical ALT dataset, failure data at each 

stress level are usually censored to the right. Heavily censoring is also not uncommon 

at lower stress levels. This feature makes the above methods 1) ~ 3) very difficult to 

interpret, particularly the plot of standardized residuals versus fitted values. Hence, this 
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dissertation only highlights 2 most effective techniques: the multiple-probability plot 

of ML estimates with a fitted acceleration relationship, and the sensitivity analysis.  

Figure 2.6 is the multiple smallest extreme value probability plot of ML estimates 

with a fitted acceleration relationship. In this figure, the cdf estimated from the fitted 

model are plotted on a smallest extreme value probability plot. Since the deviation of 

each data point from linearity at each stress level is not strong, thus the assumed 

Weibull-Arrhenius ALT model with constantσ is adequate to model the Device-A data. 

Instead of answering the question whether the model assumptions are valid, which 

can be very difficult for heavily censored data, sensitivity analysis examines the 

consequence of potential assumption violations by assessing the degree to which 

estimates depend on model assumptions. In practice, ALT data analysis is not just a 

pure statistical problem. It involves multiple decisions considering multiple 

(conflicting) objectives. Hence, knowing the consequence of possible assumption 

violations is essential for decision makings when those residual/probability plots fail to 

effectively validate the model. In Chapter 3 and 4, sensitivity analysis is widely used to 

detect the effect of uncertain inputs on both statistical precision and accuracy.  

2.4.1.3 Drawback of ML Methods 

A drawback of ML theory is that the approximate variances and confidence limits for 

estimators are accurate only for tests with enough failures. Recall equation (2.6), the 

ML estimate φ̂ is asymptotically normally distributed with variance ˆ
φΣ . Hence, when 

the number of failures is small, the normal approximation becomes inadequate. This is 
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one of the reasons that strongly motivates various Bayesian inference methods 

described below.  

2.5.2. Preliminaries on Bayesian Analysis in Reliability 

When the number of failures is small, which is typically the case in practice, 

asymptotic approximations could be grossly inaccurate. When this happens, it is better 

to consider Bayesian approach particularly when prior empirical information is 

available. However, before reviewing the Bayesian methods for ALT data analysis, we 

shall first introduce some preliminaries of Bayesian analysis in reliability engineering.  

2.5.2.1 Bayes’ Law 

The Bayes’ Law, a straightforward mathematical result, is one of the fundamental rules 

of mathematical probability theory. It is concerned with reversing the order of the 

statements in a conditional probability.  

 Let A and B denote two events,H denote the background information, then, the 

Bayes’ Law has the following three equivalent forms  

( ; ) ( ; )
( ; )

( ; )
P A B P B

P B A
P A

=
H H

H
H

 ;                                (2.10a) 

or 

( ; ) ( ; )
( ; )

( ; ) ( ; )
P A B P B

P B A
P A B P B

=
∑

H H
H

H H
  ;                             (2.10b) 

or 

( ; ) ( ; ) ( ; )P B A P A B P B∝H H H  ;                                (2.10c) 



40 

 

 It is interesting to note that Thomas Bayes (1702-1761) might not be the person 

who derived this law that bears his name; it could be a Cambridge mathematician 

Saunderson (Singpurwalla 2006). In addition, the great French mathematician Laplace 

(1749-1827) also set out a mathematical system of inductive reasoning based on 

probability, which we would today recognize as a huge contribution to Bayes’ Law.  

2.5.2.2 The Bayes Paradigm in Reliability Engineering 

The Bayesian paradigm for statistical inference is a probabilistic view of the world that 

all uncertainty should only be described by probability and its calculus, and that 

probability is personal or subjective (Singpurwalla 2006). 

 To understand the Bayesian paradigm from a reliability engineering point of view, 

let A in equation (2.10) represent the data, and B represent explanations about the 

probability mechanism generating the data, we then have  

( ; ) ( ; )
( ; )

( ; )
( ; ) ( ; )

                 
( ; ) ( ; )

                 ( ; ) ( ; )

f X f
f X

f X
f X f

f X f

f X f

θ θ
θ

θ θ
θ θ

θ θ

⋅
=

⋅
=

⋅

∝ ⋅
∑

H H
H

H

H H
H H

H H

                               (2.11) 

 Here, the term ( ; )f X θ H is known as the probability model for data X with 

parameterθ . For example, let X be the failure data of a product obtained from a life 

test, then, ( ; )f X θ H can be a probability distribution, say, the Weibull distribution, 

that quantifies the uncertainty of X . In addition, we also note that in this example, 

( ; )f X θ H is exactly the likelihood function corresponding to the observed data X of 

the density ( ; )f X θ H . 
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The term ( ; )f θ H is the prior distribution for parameter θ that quantifies the 

uncertainty of the unknown parameterθ . Usually, the prior distribution is specified 

subjectively (see Berger (1985)), and this subjectivity has been the center of debate. It 

is certainly true that the use of Bayesian methods in reliability engineering might 

sometimes risk the objectivity of the analysis, but as we shall see in this thesis, 

subjective judgment or empirical knowledge can also be valuable for reliability 

analysis and experiment planning, provided that we have a proper way to utilize them. 

For ALT problems that will be discusses in this thesis, the Bayesian methods are 

particularly important when sample sizes or the number of failures insufficient. Section 

2.5.4 provides a more detailed discussion on the debate of using Bayesian methods in 

reliability engineering.  

2.5.2.4 Illustrative Example: Bayesian Analysis for Repairable Systems 

A simple numerical example is presented in this section to illustrate the use of 

Bayesian approaches in analyzing real-life reliability data. Consider a scenario in 

facilities management industry in which the total number of failures is large due to a 

large pool of similar repairable systems but the number of failures for a single system 

is very small due to relative short observation intervals (compare to lifetime of the 

system). This situation arises when systematic recording failure data is newly instituted, 

and its initial results and benefits need to be presented. Table 2.6 presents a set of 

heavily interval-censored data from a fleet of repairable systems obtained in an 

observation period T . It can be seen that only about 10% of the 1616 systems 
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experienced one or more failures (repairs) during the observation period.  

In what follows, we shall employ and compare three Bayesian approaches in 

analyzing the data presented in Table 2.6, namely, the naïve Bayesian approach, the 

Bayesian estimation based on single system, and the Bayesian analysis based on the 

Dirichlet-Multinomial model.  

Table 2.6 Summary of failure data from a large fleet of repairable systems 

Age Group 
(year) 

Total No. 
of 

systems 

No. of 
systems 
with 0 
failure 

No. of 
systems 
with 1 
failure 

No. of  
systems 
with 2 
failures 

No. of 
systems 
with 3 
failures 

No. of 
systems 

with more 
than 3 

failures 
9 ~ 12 232 215 15 1 1 0 
12 ~ 15 206 179 18 3 2 4 
15 ~ 17 240 209 28 2 0 1 
17 ~ 18 175 154 17 4 0 0 
18 ~ 19 202 184 17 1 0 0 
19 ~ 20 390 360 17 5 4 4 
20 ~ 21 171 159 8 1 3 0 
Total 1616 1460 120 17 10 9 

 

 Naïve Bayesian Approach.  

We firstly assume that the failure process of a single system i follow a 

homogeneous Poisson process (HPP) with intensity iλ , i.e.  

( )( ) exp( )
!

in
i

i i i
i

Tf n T
n
λλ λ= ⋅ −  

where in is the number of failures of system i during the observation periodT . 

 Conventionally, if all N systems are similar, not necessarily to be identical, it is 

possible to further assume that these iλ are drawn from a certain prior distribution, say, 
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a Gamma distribution ( )ip λ  

1( ) exp( )
( )i i ip
α

αβλ λ λ β
α

−= ⋅ ⋅ −
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  Then, the posterior distribution of iλ is easily found using the Bayes’ Rule  

1( )( , ) exp( ( ))
( )

i
i

n
n

i i i i
i

Tp n T T
n

α
αβλ λ λ β

α

+
+ −+

= ⋅ ⋅ − +
Γ +

 

Here, since Gamma distribution is the conjugate distribution of Poisson 

distribution, the posterior ( , )i ip n Tλ is still a Gamma distribution with 

parameters ( , )in Tα β+ + . Next, as suggested by Frohner (1985a, 1985b), a simple 

mixture of ( , )i ip n Tλ is used to obtain the posterior distribution ofλ  

1

1( ) ( , )
N

i i
i

p p n T
N

λ λ
=

= ∑  

 Figure 2.7 shows the obtained distribution ( )p λ and the prior distribution ( )ip λ . 

Particularly, the hyper-parametersα and β are chosen as  

2

2 2

ˆ ˆ
ˆ ˆ
μ μα β
σ σ

= =  

where 2 21 1ˆ ˆ ˆ, ( )
1

N N
i ii i

n n
N T N

μ σ μ= = −
⋅ −∑ ∑ . 

 One of the advantages of this naïve Bayesian approach is that it allows a certain 

level of heterogeneity among systems. However, such a method is termed as the naïve 

approach since the mixed distribution ( )p λ neither converges to the true distribution 

nor to any particular distribution (Fisher 1990). Moreover, as can be seen in Figure 2.7, 

the probability density approaches infinite as the failure intensity approaches zero. 

Apparently, this is logically incorrect.   
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Figure 2.7 Posterior density ( )p λ and the prior distribution ( )ip λ   

 

Figure 2.8 Plot of posterior distributions for different in  

 Bayesian Estimation Based on Single System 

Instead of mixing the posterior distribution of iλ , one may simply focuses on 

individual system and uses the prior information elicited from the entire system 

population. Again, we assume HPP failure process, and employ the conjugate Gamma 
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prior distribution. Figure 2.8 plots the posterior distributions of iλ for different number 

of failures in observed inT .  

Then, the Bayesian prediction distribution of the number of failures in for 

system i within a given future time intervalT ′ is (Rigdon and Basu, 2000)  

( )( )
! ( ) ( )

i

i

n
i i

i n n
i

T n np n
n T T

α

α

β α
α β + +

′⋅ ⋅Γ + +
∝

′⋅Γ ⋅ + +
 

 The plot of ( )ip n given different in is shown in Figure 2.9. 

 

Figure 2.9 Plot of ( )ip n for different in  

In predicting the number of failures of a repairable system, the uncertainty in the 

estimation for iλ should be combined with the variability in the distribution ( )ip n . In 



46 

 

the classical paradigm, it is difficult to combine these two sources of uncertainty. In the 

Bayesian paradigm, however, such an analysis is straightforward. 

 Bayesian Estimation Based on Dirichlet-Multinomial Model 

Methods presented above all focus on the estimation of intensity and adopts the 

assumption of HPP. In practice, however, the intensity is neither known nor observable, 

and the assumption of HPP is might be a controversial one as the intensity of a system 

usually changes as time. 

Instead of focusing on the intensity, one might employ a Dirichlet-Multinomial 

model and directly focus on the number of failures of a single system in the short time 

intervalT . Given a fleet of systems N , define a vector 0 1 2 3 3( , , , , )K k k k k k += with its 

element jk denoting the number of systems that experienced j failures during the timeT . 

Clearly, jk follows a Multinomial distribution with parameter 0 1 2 3 3( , , , , )Q q q q q q +=    

5
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!
( ) 0 1, 1

!
ii ki

i i iii
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==
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 Then, as a conjugate distribution of Multinomial distribution, Dirichlet distribution 

is naturally chosen as the prior distribution for parameter Q . Then, we have  

5
5 11

5 1

1

( )
( ) ii ui

ii
ii

u
P Q q

u
−=

=

=

Γ
= ∑ ∏
∏

 

where 0iu > are constants specifying the Dirichlet distribution. Here, since we do not 

have any information on the failure history, a non-informative prior distribution is used 

by letting 0ju → . Given the observation 0 1 2 3 3( , , , , )K k k k k k += , the posterior 

distribution of 0 1 2 3 3( , , , , )Q q q q q q += is still a Dirichlet distribution with 

parameter 0 0 1 1 2 2 3 3 3 3( , , , , )u k u k u k u k u k+ ++ + + + + . Then, we have  
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with its variance given by, 

5
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 Figure 2.10 shows the interval estimation with 95% confidence of the number of 

systems that experience i failures in the future time intervalT T′ = for 0,1, 2,3,3i = + . It 

is seen that, the length of the estimated interval becomes wider as the number of 

failures becomes bigger. This is because fewer data are collected for systems 

experiencing more failures.  

 

 

Figure 2.10 Estimated numbers of systems experiencing i failures for 0,1, 2,3,3i = +  

As seen above, the Bayesian approach based on the Dirichlet-Multinomial model 

directly focuses on the number of failures, thus circumvent the difficulty of handing 

the failure intensity. However, one apparent drawback of such an approach is that the 
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prediction interval must have the same length as that of the observation interval. 

2.5.3. Bayesian Methods for ALT Data Analysis 

As we have seen above, unlike ML methods, which can be viewed as an automatic 

procedure, Bayesian methods do not have a uniform or consistent form. Each method 

has its unique features. This difference usually arises in how the model is constructed 

or how the prior information is introduced into the analysis.  

Some early studies of Bayesian methods for ALT data analysis were presented by 

De Groot and Goel (1988), Barlow et al. (1988), Mazzuchi and Singpurwalla (1988), 

etc. A survey of these early studies can be found in Viertl (1988). Meinhold and 

Singpurwalla (1983, 1987) and Singpurwalla (2006) presented a very interesting 

exploration of the application of the Kalman filter in ALT data analysis. In their work, 

the Kalman filter, which is popularly used by control engineers, is interpreted using a 

Bayesian formulation. Some new results (after 1990) of Bayesian methods for ALT 

data analysis were presented in Achcar and Louzada-Neto (1992), Van Dorp et al. 

(1996), Van Dorp and Mazzuchi (2004, 2005), Tojeiro et al. (2004). In what follows, I 

briefly discuss several typical Bayesian methods for analyzing ALT data. Some ideas 

will be borrowed and re-visited in Chapter 3, 4 and 5.  

 Barlow et al. (1988) presented an elegant Bayesian analysis of the stress-rupture 

life of Kevlar/epoxy spherical pressure vessels. This is one of the pioneering studies of 

Bayesian methods in ALT data analysis, and provides several wonderful ideas for the 

inference and planning methods presented in Chapter 3, 4 and 5. In their work, failure 
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time T at each stress level i is assumed to follow Weibull distribution with scale 

parameter iα and shape parameter iβ . Therefore, given a constant prior 

distribution ( ),i iϑ α β , the posterior distribution ( ),i iπ α β at that stress level is given by  

( ) ( ) ( ), , ; ,i i i i i iL Tπ α β α β ϑ α β∝ ⋅                                  (2.10) 

where ( ), ;i iL Tα β is the likelihood function of ( ),i iα β given dataT . Then, the prior 

density on ( ),α β at use condition can be extrapolated from the derived posterior 

distributions ( ),i iπ α β at each accelerated stress level.  

 This work is without any doubt a successful exploration of Bayesian methods in 

ALT data analysis, however, for heavily censored data, the flat or diffuse prior density 

is an especially poor choice. From this perspective of view, the practical impact of this 

type of Bayesian analysis is very much limited despite of its theoretical achievements. 

In fact, it does not significantly over-perform ML method when a well constructed 

parametric ALT model is available. Of course, the use of non-informative prior 

distributions to a great extent avoids the potential risk of violating data objective by 

incorporating some subjective or empirical engineering knowledge.  

In fact, based on the ALT model given in Section 2.3, the posterior 

distribution ( )π φ can be directly derived from the prior distribution ( )ϑ φ as shown in 

equation (2.11). Zhang and Meeker (2006) actually employed this idea and proposed a 

Bayesian method for ALT planning 

( ) ( ) ( );YL Yπ ϑ∝ ⋅φ φ φ                                           (2.11) 

Instead of maximizing ( );YL Yφ as ML method does, the posterior distribution is 

maximized to yield the Bayesian estimate φ̂ . Based on the large sample theory, φ̂ is 
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normally distributed with mean φ̂ and variance matrix ˆ
φΣ (Berger 1985) 

( ) 1

ˆ

ˆ ˆ ϑ
−

=

⎡ ⎤= − +⎣ ⎦φ φ
φ φ

Σ I I                                           (2.12) 

where ˆ
φI is still the Fisher information observed at φ̂ , whereas ϑI is the information 

contained in the prior distribution ( )ϑ φ .  

From equation (2.12), the advantage as well as the essence of Bayesian method is 

immediately seen. By combining the information obtained from the data and certain 

empirical knowledge, a more precise estimate φ̂ can be obtained. When the number of 

failure is large, the information ϑI contained in the prior distribution is overshadowed 

by the information ˆ
φI obtained from the data (i.e. ˆdet( ) det( )ϑ < φI I ), hence, the result 

obtained from equation (2.12) depends more on objective data. On the other hand, 

when the information ˆ
φI obtained from data is vague, the prior knowledge then plays a 

dominant role in data analysis. Hence, when the prior knowledge is not reliable, the 

Bayesian method might violate the objectivity of the analysis. This is the most 

controversial part of Bayesian theory and greatly limits the application of this method.  

2.5.4. Comments on Fisherian and Bayesian Inference for ALT Data 

There has been a long-running debate between Fisherian (Frequentist) and Bayesian 

inference. Anyone who have read Efron (1986) and those discussions attached to that 

paper must be able to feel the heat of such debate. Luckily, this debate should not exist 

in ALT data analysis. Careful engineers will not apply his/her procedures mechanically, 

be them Fisherian or Bayesian. All they need are cautions when they quantify their 
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valuable empirical knowledge. When the 

prior information is vague, they may 

immediately drop it when presented with 

sharper information from tests. On the other 

hand, if certain reliable information, say, the 

range of the activation energy, on products 

reliability is available, Bayesian approach is 

the only best available way so far to employ 

this valuable information that is accumulated 

from years practice.  

As discussed in the first section of this 

dissertation, the key question in ALT is how 

to balance the gathering and analyzing of 

information against the timeliness of the 

decision being made. Engineers usually have 

multiple conflicting objectives in conducting an experiment. Both cost and 

time-to-market considerations prohibit long test duration and large sample size. Hence, 

the ultimate purpose of an ALT is sometimes not to “seize the high ground of scientific 

objectivity (Efron, 1986)”. This further encourages the use of Bayesian methods in 

ALT analysis. Just like the great Euclid set 5 Axiom in “The thirteen books of the 

Elements” as the basic rules 2000 years ago, why don’t we also set some ground rules 

for ALT data analysis in order to make the results logically sound? Say, the reliability 
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of the upgraded version is not worse than the original product; or, the MTTF of such 

product is between some interval; or, the activation energy of consumer electronics is 

typically within the interval [0.5, 1.5], and etc.  

Lindley (1975) has foreseen a Bayesian 21st century. Using engineering 

knowledge in ALT data analysis may yield inaccurate results from time to time, but in 

recent decades, advancement in information technology has greatly facilitated the 

documentation and sharing of past engineering knowledge. It is thus timely for us to 

explore enabling statistical techniques that conveniently incorporate empirical 

engineering knowledge while keeping the risk of violating the data objectivity in check. 

But two issues are of paramount importance for Bayesian methods, 1) the way to 

quantify prior information; and 2) the robustness of the method to prior information. 

We therefore address these two problems in this study.   

2.6. Planning Methods for Accelerated Life Testing 

The first ALT plan was derived by Chernoff (1962) based on Exponential failure times. 

This section reviews important ALT planning approaches in the literature. 

2.6.1. Planning Based on Maximum Likelihood (ML) Theory 

To plan a constant-stress ALT, one needs to choose 1) the stress level combinations 

while fixing the highest stress level, and 2) the number of test units allocated to each 

stress level. The pioneering ideas of modern ALT plans based on ML theory were 

conceived by Nelson and Kielpinski (1976), Nelson and Meeker (1978), Meeker 
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(1984), and Nelson (1990). Nelson and Kielpinski (1976) and Nelson and Meeker 

(1978) presented the ML theory for large sample statistically optimum constant-stress 

ALT plans with two stress levels. Meeker (1984) and Meeker and Hahn (1985) 

extended the above results and presented good compromise plans with more than two 

stress levels. They proposed a 4:2:1 allocation ratio for low, middle and high stress 

levels for constant-stress ALT plans and gave the optimum low stress level by 

assuming that the middle stress is the average of the high and low stress levels. The 

4:2:1 plan was then extended under other test constraints by Yang (1994) and Yang and 

Jin (1994). Tang et al. (2002) proposed two approaches that optimize both low and 

middle stress and their respective allocations for three-stress compromise 

constant-stress ALT plans. Meeter and Meeker (1994) presented the plan that 

considered non-constant log time-to-failure scale parameter. Compared to the 

statistically optimum constant-stress ALT plan with two stress levels, compromise 

plans improve the robustness to misspecification of unknown inputs by sacrificing 

some statistical efficiency. In practice, the obtained optimum plan is usually evaluated 

by simulation techniques (Meeker et al. 2005). 

 Given the prior information or pre-specified values of ALT model parameters, an 

optimum plan is typically the one that minimizes the asymptotic variance of the MLE 

of certain reliability measure at use condition (known as c-optimal). Other planning 

criteria have also been used. Meeker and Escobar (1995) minimized the determinant of 

the covariance matrix for the model parameters. Tang and Xu (2005) proposed a 

framework which considers multiple (conflicting) objectives in ALT planning. 
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 Step-stress ALT plans can be found in Alhadeed and Yang (2002), Tang (2003, 

2005), etc. For ALT plans with other type of stress loadings, one may refer to the 

comprehensive review given by Nelson (2005).  

2.6.2. Robustness of ALT Plans and Bayesian Planning Methods 

Bayesian planning enhances the robustness of ALT plans to mis-specification of ALT 

model as well as model parameters.  

When the most commonly used c-optimal criterion is adopted, the asymptotic 

variance of the MLE is the key quantity used in determining the optimum plan. This 

quantity depends on the “planning information” which consists of empirical 

knowledge or guessed values of the unknown life time distribution and the stress-life 

model. Since these models as well as their parameters are never known exactly, 

assuming they are known at the planning stage might lead to a false sense of statistical 

precision. In fact, one pitfall of ALT is to fail to recognize that although statistical 

confidence limits account for estimator variability, they do not account for model 

uncertainty. Hence, much effort has been made to enhance the robustness of an ALT 

plan using Bayesian planning methods.  

 Early results in this area were given by De Groot and Goel (1979, 1988). Zhang 

and Meeker (2006) recently presented a general Bayesian planning framework where 

the optimum planξminimizes the pre-posterior expectation of the posterior variance 

over the marginal distribution of all possible unobserved failure data t  

( )| | ,( ) var reliability measure of interestC E ⎡ ⎤= ⎣ ⎦t ξ φ t ξξ                     (2.13) 
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This work closely follows the classical framework of the constant-stress ALT 

planning (see Nelson and Kielpinski 1976, Nelson and Meeker 1978). However, 

instead of specifying exact values for those unknown model parameters, prior 

distributions are assigned to each parameter [ ]0 1, ,β β σ=φ to increase the robustness of 

the plan. 

Chaloner and Larntz (1992) not only used prior distribution for unknown model 

parameters, but also assigned weights to different failure-time distribution and the 

optimum plan can therefore be viewed as a result of model-averaging. The optimum 

planξ is found by minimizing 

( ) ( )
2

1 1
1

 : weight given to Weibull and Lognormal distributions
 : weight given to linear or quadratic stress-life models
: expection over the unknown parameters assuming linear mode

i l q
i

l

C E E E

where

E

ξ λ π π

λ
π

=

= +∑

l
: expection over the unknown parameters assuming quadratic modellE     

(2.14)             

Verdinelli at el. (1993) and Singpurwalla (2006) proposed an interesting Bayesian 

planning method by maximizing the (Shannon) mutual information. The optimum 

planξ is found by maximizing 

 

( ) ( )
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,
log

 : the observed value
: the predicted value for time 

u

u
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u

u

p t
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t u

t ξ t ξ

t ξ
ξ

t

⎡ ⎤
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⎢ ⎥⎣ ⎦
                                   (2.15) 

Compare equation (2.13) and (2.15), the similarity is immediately seen. In 

equation (2.13), the optimum plan D maximizes the expected Fisher information 
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on φ given the unobserved data t , while in equation (2.15), the optimum 

plan D maximizes the mutual information between the predicted value ut and t . In fact, 

predicting ut is equivalent to estimating the model parameterφ . Hence, the Zhang and 

Meeker’s Bayesian criterion is very much closely or similar to that of Verdinelli and 

Singpurwalla’s. An elementary but elegant introduction to information-theoretic theory 

can be found in Haykin (1999, Chapter 10). Pascual and Montepiedra (2003a, 2003b) 

and Pascual (2006) thoroughly discussed the robustness of an ALT plan and proposed 

planning approach robust to misspecification of ALT models. In Table 2.7, studies on 

the robustness in ALT plans are summarized.  

 

Table 2.7 Summary of studies focusing on the robustness of ALT plans 

Category  Selected References Descriptions 

Robustness 
w.r.t. specified 
model 
parameters 

Nelson and Hahn (1972, 
1973) Monte-Carlo simulation 

Ginebra and Sen (1998) Minimax approach 
De Groot and Goel (1979, 
1988), Verdinelli at el. 
(1993),  Singpurwalla 
(2006), Zhang and Meeker 
(2006) 

Bayesian planning; Quantify the 
uncertainty using prior distributions

Robustness 
w.r.t. assumed 
life time 
distribution 

Chaloner and Larntz (1992) Bayesian model-averaging 

Pascual and Montepiedra 
(2003a) 

Weighted sum of asymptotic 
sample ratios (ASRs) 

Pascual and Montepiedra 
(2003b) Minimax plan minimize ASRs 

Robustness 
w.r.t. assumed 
stress-life model 

Pascual (2006) Bias-robust estimator 
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2.6.3. The Equivalence Theorem 

Very often, numerical methods are needed to obtain optimum ALT plans by 

maximizing certain criteria ( )ξφ . Hence, in order to verify the global optimality of the 

developed ALT plans, the general equivalence theorem (GET) introduced by Whittle 

(1973) has been used (e.g. Chaloner and Larntz (1992), Zhang and Meeker (2006), 

Pascual (2007), etc).  

  Let xξ be a one-point plan that allocates all units to stress x . Then, the Frechet 

derivative of criterion ( )ξφ atξ in the direction of xξ is defined as,  

{ }( )1

0
( , ) lim (1 ) ( )xd xξ ξ ξ ξ

ε
ε φ ε ε φ−

↓
= − + −⎡ ⎤⎣ ⎦  

 The GET says that, if ( )ξφ is concave, *( )ξφ is the global maximum 

iff *sup ( , ) 0d xξ = . The concavity of the planning criteria ( )i ξφ for 1, 2,...,5i = is 

guaranteed here as discussed in Chaloner and Verdinelli (1995). 

2.7. Asymptotic Theory 

In subsequent chapters, asymptotic results are repeatedly used. The importance of the 

use of the asymptotic theory is to obtain good approximate solutions when exact 

solutions are computationally difficult to find (which is often the case in practice). 

Mathematically, the following regularity conditions are required (Cox and Hinkley 

2000): 

• The parameter space of the ALT model parameter,φ , has finite dimension, is 

closed and compact, and the true parameter value is interior to the parameter 
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space; 

• The probability distributions defined by any two different values ofφ are 

distinct; 

• The first three derivatives of the log-likelihood, ( ; )l Yφ , with respect toφ exist 

in the neighborhood of the true parameter value almost surely. Further, in such 

a neighborhood, 1N − times the absolute value of the third derivative is bounded 

above by a function ofY , whose expectation exists; 

• The identity, { ( ) ( ); }TE U U⋅ ⋅ = φφ φ φ I , holds and the information φI is finite and 

positive definite in the neighborhood of the true parameter value.  

 It is not difficult to see that, these conditions are satisfied in all problems to be 

discussed below.     
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Chapter 3. A Sequential ALT Framework and Its 

Bayesian Inference 

3.1. Introduction 

This chapter presents the basic framework of sequential accelerated life testing (SALT) 

and a Bayesian approach for analyzing SALT data. 

In analyzing ALT data, the accuracy of the extrapolation is determined by the 

statistical method used to fit the stress-life model. As we have discussed in Chapter 2, 

various fitting methods based on Maximum Likelihood (ML) methods have been 

proposed. ML methods are straightforward and applicable to almost all types of data 

and stress loadings. Since the ML estimator is asymptotically normal, confidence 

limits for such an estimator can be easily approximated. However, when the number of 

failures is small, which is typically the case in practice, asymptotic approximations 

could be grossly inaccurate. When this happens, it is better to consider Bayesian 

approach particularly when prior empirical information is available. Under a general 

Bayesian framework, unknown parameters are replaced with prior distributions. In 

Table 3.1, we summarize some typical Bayesian approaches for ALT applications, 

classified by the type of failure time distributions, unknown parameters and their prior 

distributions. These methods are able to incorporate prior knowledge into data analysis 

in the face of small sample size and short test duration, but the difficulty in specifying 

a reasonable priori distribution sometimes significantly limits their applications 

(Nelson, 1990).  
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Here, it is necessary to point out that engineering applications and scientific 

research are serving different purposes. In addition to seizing the high ground of 

scientific objectivity, reliability engineers always pursue multiple (conflicting) 

objectives, typically including cost and time-to-market considerations, in product 

testing projects. This strongly motivates the use of previous knowledge/data as long as 

the risk is acceptable. In recent decades, advancement in information technology has 

greatly facilitated the documentation and sharing of past engineering knowledge. It is 

thus timely for us to explore enabling statistical techniques that conveniently 

incorporate empirical engineering knowledge while keeping the risk of violating the 

data objectivity in check. 

In this chapter, we shall see a sequential constant-stress ALT scheme and its 

Bayesian inference approach. Conducting an accelerated life test (ALT) sequentially is 

an important strategy that allows for the step-by-step (sequential) exploration on 

products’ reliability. This is particularly desirable for newly developed materials or 

devices for which the uncertainty associated to ALT model and model parameters are 

still high. In practice, performing an ALT sequentially also helps to save the sample 

size and requires fewer testing equipments, even though a longer testing duration is 

sometimes needed as in all sequential experiments. Assuming Exponential failure 

times, an important work on the optimal sequential ALT design was presented by 

Bessler et al (1962). Given the observations at different testing stress levels, the 

authors extended the key result of Chernoff (1959) and presented an approach that 

selects the optimal testing stress combination for the remaining units, if more tests are 
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needed, by maximizing the Kullback-Leibler information number for the statistical 

hypothesis of interest. This framework has the major advantage in saving sample size, 

but it is usually time consuming and requires more testing equipments, say, 

temperature chambers, as tests at different stresses need to be conducted at each stage 

of the sequential testing. Other results on sequential ALT are also found in the 

literature. Morris (1987) proposed the adaptive design for ALT under destructive 

inspection, and Edgeman and Lin (1997) considered the analysis of sequential ALT 

data based on the inverse-Gaussian failure distribution.  

Under the scheme to be proposed in this chapter, test at the highest stress level is 

firstly conducted to quickly generate failures. This is the case when preliminary 

information of the product reliability is needed. Traditionally, this information plays an 

important role in test planning; however, as we shall soon see, it is also very useful for 

statistical inference. In some practical situations, test at the highest stress level has to 

be firstly conducted simply due to the lack of testing equipments. There might be no 

way to simultaneously carry out all test runs under different temperatures with only 

one temperature chamber. Using the information obtained at the highest stress, a 

Bayesian inference framework is employed to analyze the data coming from lower 

stress testing levels. Particularly, the following three issues are addressed: 1). the 

performance of the Bayesian inference in terms of both statistical accuracy and 

precision; 2). the applicability of the inference method, i.e. whether the prior 

distribution can be easily specified; 3). the effects of prior knowledge, namely, the 

robustness of the proposed method.  
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 Figure 3.1 below shows the organization of this chapter. Section 3.2 and 3.3 

respectively describes the sequential ALT scheme and the Bayesian inference 

frameworks. In Section 3.4, a step-by-step illustration of the proposed method can be 

found. In Section 3.5, the robustness of the proposed method is investigated by 

simulation. Further discussions are provided in Chapter 4 which contains a theoretical 

study of the effect of the specified model parameter values.  

 

 
Figure 3.1 Organization of Chapter 3 and Chapter 4

Section 3.2 
Framework of Sequential ALT 

Section 3.4 
Numerical Examples 

Section 3.5 
Simulation Studies 

Section 3.3 
Framework of the Bayesian Inference 
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Table 3.1 Typical Bayesian applications in ALT 

Reference 

Assumed 

Distribution of 

Failure Times 

Unknown Parameter Prior Distribution 

Van Dorp et al.  

(1996, 2004, 2005) 

Exponential 

and Weibull 
Failure rate (transformed) Dirichlet distribution 

Pathak et al. (1991) Exponential 
Failure rate λ ; 

Time transformation parameter θ  

Gamma distribution for λ ; 

Truncated Pareto, or Uniform, or 

Uniform-Truncated Pareto composite for θ  

Chaloner and Larntz  

(1992)  
Lognormal or Weibull 

Probability that the lifetime is less than the censoring 

time at use stress and the highest stress, HD PP ,  

Beta distribution for ))1/(log( DD PP − and 

))1/(log( HH PP −  

Achar and 

Louzada-Neto (1992) 
Weibull 

Accelerated model parameters and the shape 

parameter of the lifetime distribution (Weibull) 
Non-informative distribution 

De Groot and Goel 

(1988) 
Exponential Tampering coefficient and failure rate Gamma distribution 

Barlow et al. (1988) Weibull 
Scale and shape parameters of the lifetime 

distribution (Weibull) 
Constant 

Zhang and Meeker 

(2006) 
Weibull 

Accelerated model parameters and the scale 

parameter of the log-lifetime distribution (SEV) 
Lognormal 
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3.2. The Framework of Sequential Accelerated Life Testing 

A sequential constant-stress ALT scheme can be modeled as follows,   

1). the Sequential Test Procedure: 

 The test involves k ( 2k ≥ ) constant stress levels is organized in a strictly 

increasing order                                   

0 1 2 ... ks s s s≤ < < < ,                

where 0s is the design stress where the given reliability measures are to be 

estimated, and ks is the highest stress which is pre-specified. 

 Test at the highest stress level ks is firstly conducted until a pre-specified 

censoring time kc if the type-I censoring is adopted, or a pre-specified number 

of items has failed if the type-II censoring is adopted (Nelson 1990).  

 After the test at ks is completed, tests at lower stresses is , 1,..., 1i k∀ = −  are 

conducted until a pre-specified censoring time ic ( 1,..., 1i k∀ = − ) if the type-I 

censoring is adopted, or a pre-specified number of items has failed if the 

type-II censoring is adopted. 

2). Assumptions: 

 At each stress level, the failure timeT follows the Weibull distribution with 

scaleα and shape β . Hence, the logarithm failure time Y follows smallest 

extreme value (SEV) distribution with location μ and scaleσ  

( ) ( )( )( ) ( ); , 1 exp exp where log 1F y yμ σ μ σ μ α σ β= − − − = =  

 The scale parameterσ does not depend on the stress level. 
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 The location parameter μ depends on the stress, or a function of it, through a 

linear stress-life function 0 1: log( ) ( )i i if sϕ μ α β β= = + ⋅ .  

3.3. The Framework of Bayesian Inference 

Categorized by how prior distributions at lower stress level are constructed, the 

proposed Bayesian inference method has two frameworks, namely, the All-at-one Prior 

Distribution Construction (APC) and the Full Sequential Prior Distribution 

Construction (FSPC).  

As illustrated in Figure 3.2a, the framework of APC includes 4 steps.  

 Step 1. Derive the posterior distribution ( )kπ μ . APC starts at the highest stress 

level by deriving the posterior distribution ( )kπ μ for the location parameter kμ . 

Since the number of failures at the highest stress level is expected to be large, 

a non-informative prior distribution is chosen here as it does not raise any risk 

of violating the data objectivity.  

 Step 2. Construct prior distributions for lower stress levels ( 1, 2,..., 1i k= − ). 

When the posterior distribution ( )kπ μ is derived, prior distributions ( )iϑ μ for 

all lower stress levels are simultaneously constructed given a pre-specified 

prior distribution 1( )ϑ β . For the Arrhenius model, specifying the prior 

distribution 1( )ϑ β is equivalent to specifying the prior distribution ( )aEϑ of the 

activation energy aE . In practice, aE has been well defined particularly for 

consumer electronics. Its value or range is generally available from past 

experience, physical/chemical knowledge, or engineering handbooks.  



66 

 

 Step 3. Derive posterior distributions for lower stress levels ( 1, 2,..., 1i k= − ). 

When ( )iϑ μ at lower stress levels have been constructed, posterior 

distributions ( )iπ μ can be derived using the Bayesian rule. 

 Step 4. Fit an appropriate stress-life model to the estimates ˆiμ found in above 

steps ( 1, 2,...,i k= ). 

FSPC differs from APC in how prior distributions ( )iϑ μ at lower stress levels 

( 1, 2,..., 1i k= − ) are constructed. Given the prior distribution 1( )ϑ β , the analysis based 

on FSPC moves downwards from the highest stress level to the lowest. The prior 

distribution ( )iϑ μ at any lower stress i ( 1, 2,..., 1i k= − ) is constructed from those 

posterior distributions ( )jπ μ that have already been derived ( 1,...,j i k= + ). For 

example when 3k = , the prior distribution ( )2ϑ μ is derived from ( )3π μ and ( )1ϑ β ; 

whereas ( )1ϑ μ is derived from ( )2π μ and ( )3π μ . The framework of FSPC with 

3k = is illustrated in Figure 3.2b.  

Compared to APC, FSPC is more robust to the prior information on 1β . However, 

it becomes less preferred when this prior information is accurate. Detailed discussions 

on this trade-off are presented in simulation studies.  

In both APC and FSPC, we fit a stress-life model to ˆiμ in the last step. This is 

similar to the weighted regression approach used by Lawless (1982). In that approach, 

the unknown parameter iμ at each stress level is separately estimated, and the stress-life 

relationship is found using least-square method with weights being the amount of 

information obtained at each level.  
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(a) 

(b) 

Figure 3.2 Framework of the Bayesian inference (a) APC (b) FSPC 
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3.4. Numerical Examples 

In this section, step-by-step illustrations of the proposed inference method are 

presented using a real-life dataset.  

3.4.1. A temperature-accelerated life test 

Hooper and Amster (1990) present a temperature-accelerated life test for a certain 

device-A. The data are available in the Appendix as well as Meeker and Escobar 

(1998). In this constant-stress ALT,  

1). Testing units, which have the normal operation temperature 0T equals 283K , are 

tested at 3  temperature levels 1 2 3313 , 333 , 353T K T K T K= = = . To facilitate the 

analysis, let 1/i is T= , and standardize is as 0 0( ) / ( )i i kx s s s s= − − ; 

2). At any stress level ix ( 1, 2,3i = ), in units are tested, and ir number of failures are 

observed at a censoring time c ;  

Here, 1 2 3 1 2 3100, 20, 15, 10, 9, 14n n n r r r= = = = = = , and 5000c hrs= ; 

3). Failure times at each stress level ix ( 1, 2,3i = ) follow Weibull distribution with 

scale parameter iα and shape parameter β . Let ijt be the jth failure obtained from stress 

level is , the logarithm of failure time ( )logij ijy t= therefore follows the smallest 

extreme value distribution 

( )( ) 1 exp expF y y μ σ⎡ ⎤= − − −⎡ ⎤⎣ ⎦⎣ ⎦ ; 

4). The Arrhenius model is chosen to describe the dependency of iμ on temperature, 

i.e. Activation energy, 1log
Boltzmann constant,

a
i

B i

EA
k T

μ = + ⋅ . Then, we have the linear stress-life 
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model ( ; )ixϕ Φ as 

0 1

1 1
0 0 1 0

( ; )

where  log ( )
i i i

a B a B k

x x

A E k s E k s s

μ ϕ β β

β β− −

= Φ = + ⋅

= + ⋅ ⋅ = ⋅ ⋅ −
                 (3.1) 

5). σ is a constant independent of temperature. 

3.4.2. Analyze Device-A data using APC framework 

A step-by-step illustration of APC is presented in this section. To make the illustration 

clearer, we only focus on the estimation of ( )0 1,β β and assume σ equals to its 

maximum likelihood estimate 0.7 (Nelson & Meeker 1978). Although the application 

of the Bayesian inference framework is not restricted to situations in whichσ is known 

(see Chapter 4), two reasons motivate this simplification: 1) the closed-form solution 

ofσ̂ is not available; 2) the estimates ( )0 1
ˆ ˆ,β β are not sensitive toσ̂ . At the end of this 

section, we provide a sensitivity analysis to justify this point. 

APC involves the following 4 steps to analyze the Device-A data. 

 STEP 1: Derive the Posterior Distribution ( )3π μ of 3μ  

Suppose the test at the highest temperature level 3 353T K= has been firstly 

conducted, the first step of APC is to derive the posterior distribution ( )3π μ of 3μ . 

Since the number of failures (14 failures out of 15 items) is large enough, ( )3π μ is 

derived from a non-informative prior distribution ( )3ϑ μ using the Bayesian rule. 

Figure 3.3a shows the posterior distribution ( )3π μ . 

If the mode of ( )3π μ , i.e., the generalized MLE (Berger 1985), is chosen to be the 

estimate of 3μ , we then have 
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( ) ( )

( ) ( )
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1 1

ˆ

1 1

1

1 1
3 3 3 3 3 3
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1 exp exp exp exp
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ˆ log log

ˆ    log log

k k k

k k

k

r n r
kj k kj k k k

j j

k

r

k kj k k k k
j

r

j
j

y y cIn

t n r c r

t n r c r

μ μ

σ σ

σ σ

μ μ μ
σ σ σ σ

μ

μ σ

μ σ

−

= =

=

=

=

⎡ ⎤⎛ − − ⎞⎛ ⎞ ⎛ − ⎞⎛ ⎞∂ ⋅ − ⋅ −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦ =
∂

⎡ ⎤⎛ ⎞
⇒ = ⋅ + − ⋅ −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⇒

⎡ ⎛ ⎞
= ⋅ + − ⋅ −⎜ ⎟

⎝ ⎠

∏ ∏

∑

∑ 7.48
⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
(3.2) 

In fact, ( )3π μ  is asymptotically normal with mean 3μ̂ and variance: (Cox and 

Hinkley 2000) 

( ) ( )

( )

3 3

3 3 3

12
3

3 2
3 ˆ

3 3 3 3
3

1 1

ˆvar 0.036

log1where log exp exp
r n r

i i

i i

l

y y cl

μ μ

μ
μ

μ

μ μ μμ
σ σ σ σ

−

=

−

= =

⎡ ⎤∂
= − =⎢ ⎥∂⎣ ⎦

⎛ − − ⎞ ⎛ − ⎞⎧ ⎫ ⎧ ⎫= + − + −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎝ ⎠

∑ ∑
 

(3.3) 

Hence, we approximate ( )3π μ using the normal curve as shown in Figure 3.3b. As 

can be seen later, this approximation plays an important role in constructing the prior 

distributions ( )2ϑ μ and ( )1ϑ μ . 

 



71 

 

0

0.5

1

1.5

2

2.5

6.5 7 7.5 8 8.5

mu3

d
e
n
s
i
t
y

 
(a) 

0

0.5

1

1.5

2

2.5

6.5 7 7.5 8 8.5

mu3

d
en

si
ty

original appoximated
 

(b) 

Figure 3.3 Posterior distribution ( )3π μ   (a) original (b) approximated 

 

 STEP 2: Construct the Prior Distributions of 2μ and 1μ  

Step 2 involves constructing the prior distributions ( )2ϑ μ and ( )1ϑ μ based 

on ( )3π μ and particular engineering knowledge on the slope 1β  (or aE equivalently),  

3 1

1
1 0

( 1) 1,2

where  ( )
i i

a B k

x i

E k s s

μ μ β

β −

= + ⋅ − ∀ =

= ⋅ ⋅ −
                                      (3.4) 

As seen in equation (3.4), ( )iϑ μ can be constructed from ( )3π μ if the information 

on aE  is available. In practice, information on aE is generally available from previous 

experience, physical/chemical knowledge, or MIL-STD and handbooks. For many 
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consumer electronics products, aE for various failure mechanisms are roughly within 

some typical ranges. In this example, our engineering knowledge suggests a uniform 

distribution ( )aEϑ defined on the interval [ 0.5, 0.8a aE E− += = ]. Although arbitrary 

form of ( )aEϑ is allowed, the uniform distribution is clearly an easy choice considering 

the applicability of the proposed method in practice.  

Recall that ( )3π μ is asymptotically normal, the pdf of ( )2ϑ μ and ( )1ϑ μ can be 

written as follows, 

2

1/2
3 3

1/2 1/2
3 3

1
3 0

1
3

( )1 1( ) exp
ˆ ˆ(2 var( )) 2 var( )

2 erf erf
ˆ ˆ(2 var( )) (2 var( ))

where 
ˆ ( ) ( 1)
ˆ (

i

i

a i
i a

i i

i i i i

i i

i a B k i

i a B

a da
a a

a a
a a

a E k s s x

a E k

μϑ μ
π μ μ

μ μ
μ μ

μ

μ

+

− + −

− +

+ −

− − −

+ + −

⎧ ⎫−
∝ ⋅ − ⋅⎨ ⎬⋅ −⎩ ⎭

⎛ ⎞⎧ ⎫ ⎧ ⎫− −
= ⋅ −⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟− ⎩ ⎭ ⎩ ⎭⎝ ⎠

= + ⋅ ⋅ − ⋅ −

= + ⋅ ⋅

∫

0 ) ( 1)k is s x− ⋅ −

               (3.5) 

Figure 3.4a and 3.4b respectively shows the prior distribution ( )2ϑ μ and ( )1ϑ μ . 

Apparently, the spread of ( )1ϑ μ is wider than that of ( )2ϑ μ . This is because the 

distance between stress level 1 and 3 is farther than that between stress level 2 and 3, 

as a result, the uncertainty on iμ  becomes larger as the distance from stress level i to 3 

increases. That is, uncertainty over the value of aE  leads to an information loss. In the 

extreme case when aE is specified to an exact value, i.e. a aE E− += , the information loss 

is zero in constructing ( )1ϑ μ and ( )2ϑ μ . 
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(a) 

 
(b) 

Figure 3.4 Constructed prior distribution (a) ( )2ϑ μ  (b) ( )1ϑ μ  

 

 STEP 3: Derive the Posterior Distributions of 2μ and 1μ  

Apply the Bayes rule, the posterior distributions ( )2π μ and ( )1π μ  are shown in 

Figure 3.5a and 3.5b. 

Again, ( )2π μ and ( )1π μ can be approximated by (Berger1985) 

( )( )
( ) ( ) ( )( )

1( )

2
( )

2
ˆ

ˆ , 1, 2

where log

i

i

i i

i i

i i i i

N I i

I f

ϑ μ

ϑ μ

μ μ

μ

μ ϑ μ
μ

−

=

⎡ ⎤ ∀ =⎣ ⎦

⎡ ⎤∂
= − ⋅⎢ ⎥∂⎣ ⎦

Y

Y Y
                  (3.6) 

Hence, the posterior distribution ( )2π μ is approximately ( )8.81,0.033N and the 
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posterior distribution ( )1π μ is approximately ( )10.13,0.05N . In Figure 3.5a and 3.5b, 

the approximated curves are also plotted. As clearly seen, these curves well 

approximate ( )2π μ and ( )1π μ . As the number of failures at the lowest stress level 1 is 

relatively small, the large sample approximation of ( )1π μ appears to be slightly worse 

than that of ( )2π μ .  

 

  
(a) 

 

  
(b) 

 
 

Figure 3.5 Posterior distribution  (a) original and approximated posterior 

distribution ( )2π μ  (b) original and approximated posterior distribution ( )1π μ  
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Then, the estimate ˆiμ is the root of the following equation, 

( ) ( ) ( )

( ) ( )
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( ) ( )
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1 1

1

2 2

3 3

3

3 3
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1 1 0 1,2
exp

exp exp
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i i
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i

r
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ij i i i i
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i i i i

i
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⎟
⎟
⎠

 (3.7) 

 STEP 4: Estimate the Stress-Life Model 

Substitute 3ˆ 7.48μ = , 2ˆ 8.81μ = and 1ˆ 10.13μ = into the model 0 1i ixμ β β= + , we have 

0 1

1

2

3

1 2 3

where [ , ]
1,

             1,
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             [ , , ]
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=
=
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X
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                                       (3.8) 

It follows that 

2
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Figure 3.6 illustrates how APC works in analyzing Device-A data.  

 
Figure 3.6 Analyze the device-A data using APC 

As mentioned at the beginning, the analysis above is based on a particular value 

ofσ . Figure 3.7 below gives the sensitivity analysis of 0μ̂ for differentσ . The values 

0.514 and 0.906 are respectively the lower and upper confidence bound of the MLE 

ofσ at 95% confidence level. It is seen from the Figure 3.7, the relative variation 

of 0μ̂ is less than 6% whenσ ranges between 0.514 and 0.906.  

 
     σ  

Figure 3.7 Sensitivity analysis of 0μ̂  
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3.4.3. Analyze Device-A data using FSPC framework  

In APC, the prior information on aE is directly used to construct both ( )2ϑ μ and ( )1ϑ μ . 

Hence, inaccurate information might lead to poor estimates 2μ̂ and 1μ̂ . To enhance the 

robustness of the Bayesian inference, we present below the full sequential prior 

distribution construction (FSPC) framework for analyzing Device-A data. Compared to 

APC, FSPC only uses the prior information on aE  to construct ( )2ϑ μ ; while ( )1ϑ μ is 

constructed from ( )2π μ and ( )3π μ . 

 Similar to APC, the sequential analysis of FSPC also includes 4 steps.  

 STEP 1: Derive the Posterior Distribution of 3μ  

From the result of section 3.4.2, we have ( ) ( )( )3 3 3ˆ ˆ~ 10.13, var 0.036Nπ μ μ μ= = . 

 STEP 2: Construct the Prior Distribution of 2μ and Derive the Posterior 

Distribution of 2μ  

 From the result of section 3.4.2, ( )2π μ asymptotically follows normal 

distribution ( )( )2 2ˆ ˆ8.82, var 0.033N μ μ= = . 

 STEP 3: Construct the Prior Distribution of 1μ and Derive the Posterior 

Distribution of 1μ  

Unlike the framework of APC where the prior distribution ( )1ϑ μ is constructed 

from ( )aEϑ and ( )3π μ , FSPC allows ( )1ϑ μ to be constructed based on the derived 

posterior distributions ( )2π μ and ( )3π μ . Given ( )2π μ and ( )3π μ , the preliminary 

estimated value 1μ of 1μ can be easily obtained in (3.10). It is normally distribution with 

mean 1μ and variance ( )1var μ  
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= =
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⎛ ⎞ ⎛ ⎞− −
= + =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

                (3.10) 

Hence, we naturally choose ( )( )1 110.33, var 0.19N μ μ= = shown in Figure 3.8a as 

the prior distribution ( )1ϑ μ . 

Then, the posterior distribution ( )1π μ is derived using the Bayesian rule,  

1 1( | data from stress level 1) ( ) (data from stress level 1)Lπ μ ϑ μ∝ ⋅  

Figure 3.8b shows the posterior distribution ( )1π μ . Again, if the mode of ( )1π μ is 

chosen as the Bayesian estimate, we have 17.10ˆ1 =μ . In addition, based on equation 

(3.6), ( )1π μ is approximated by ( )( )1
1( )

1 1ˆ 10.17, 0.042N Iϑ μμ
−

⎡ ⎤= =⎣ ⎦Y . The 

approximated curve is also given in Figure 3.8b. 

 

 

(a)        (b) 

Figure 3.8 Prior and posterior distribution 

(a) prior distribution ( )1ϑ μ  (b) posterior distribution ( )1π μ with approximated curve 
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 STEP 4: Estimate the Stress-Life Model 

Substitute 3ˆ 7.48μ = , 2ˆ 8.82μ = and 1ˆ 10.17μ = into the model 0 1i ixμ β β= + , we 

have 

0 1

1
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1 2 3
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XΦ M
Φ

X
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                                         (3.11) 

It follows that 
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∑ ∑

∑ ∑           (3.12) 

Figure 3.9 illustrates how FSPC works in analyzing Device-A data.  

 

Figure 3.9 Analyze the device-A data using FSPC 
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3.5. Simulation Studies 

Simulation studies are conducted to examine the performance of the proposed 

Bayesian inference method. In particular, we address the following three questions,  

Q1: What are the effects of the prior knowledge?  

Q2: Given different prior knowledge about the activation energy, how does the 

proposed Bayesian inference method compare to MLE in terms of estimation accuracy 

and precision? 

Q3: How does the robustness of FSPC compared to that of APC? 

3.5.1. Failure Data Generation 

The Device-A ALT plan is again used in the simulation study. In each simulation run, 

failure data are generated based on the values given in (3.13)  

1 1
0 1 0 0

0.71 , 0.61 , log 12.65

log ( )
a

i i a B a B k i

E A

x A E k s E k s s x

σ

μ β β − −

= = = −

= + = + ⋅ ⋅ + ⋅ ⋅ − ⋅
                (3.13) 

3.5.2. Quantify the Prior Knowledge 

Let the prior knowledge about aE  has the form given by equation (3.14). That is, the 

pre-specified aE is uniformly distributed on an interval with its length controlled byτ . 

These intervals might either tightly cover the true value of aE , or loosely cover the true 

value of aE , or even miss the true value of aE . These are the scenarios that engineers 

might encounter in practice, and their effects are of our interest 

( )~ ,a a aE uniform E Eτ τ− +                                       (3.14) 
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3.5.3. Simulation Design 

We propose 20 combinations of ( ),aE τ  for a particular censoring time. As seen in 

Table 3.2, the censoring time has three levels: 2500hrs, 5000hrs, and 10000hrs; for 

each censoring time, aE has five levels:0.5, 0.55, 0.61(the true value), 0.65, and 0.7; for 

each aE , the precision control factorτ  has four levels: 0, 0.1, 0.2, and 0.3. Hence, 

there are total 60 “censoring time- aE -τ ” combinations in the simulation study. For 

each combination, 10e6 simulation runs are repeated. In each run, the failure times are 

generated, and the estimate 0μ̂ is derived using APC, FSPC and MLE. 

Table 3.2 Simulation design table 

2500hrs 5000hrs 10000hrs 

0.5aE =  

0τ =  

0.5aE =  

0τ =  

0.5aE =  

0τ =  
0.1τ =  0.1τ =  0.1τ =  
0.2τ =  0.2τ =  0.2τ =  
0.3τ =  0.3τ =  0.3τ =  

0.55aE =  

0τ =  

0.55aE =  

0τ =  

0.55aE =  

0τ =  
0.1τ =  0.1τ =  0.1τ =  
0.2τ =  0.2τ =  0.2τ =  
0.3τ =  0.3τ =  0.3τ =  

0.61aE =  

0τ =  

0.61aE =  

0τ =  

0.61aE =  

0τ =  
0.1τ =  0.1τ =  0.1τ =  
0.2τ =  0.2τ =  0.2τ =  
0.3τ =  0.3τ =  0.3τ =  

0.65aE =  

0τ =  

0.65aE =  

0τ =  

0.65aE =  

0τ =  
0.1τ =  0.1τ =  0.1τ =  
0.2τ =  0.2τ =  0.2τ =  
0.3τ =  0.3τ =  0.3τ =  

0.7aE =  

0τ =  

0.7aE =  

0τ =  

0.7aE =  

0τ =  
0.1τ =  0.1τ =  0.1τ =  
0.2τ =  0.2τ =  0.2τ =  
0.3τ =  0.3τ =  0.3τ =  
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3.5.4. Analysis of Simulation Outputs 

Simulation results are contained in Table 3.3 ~ 3.5.   

 



83 

 

Table 3.3 Simulation results (censoring time = 2500hrs) 

aE  τ  
APC FSPC MLE 

Bias Var. MSE Bias Var. MSE Bias Var. MSE 

0.5aE =  

0τ =  -0.5992 0.0255 0.3846 -0.2132 0.1481 0.1936 0.1061 0.4228 0.4341 
0.1τ =  -0.0134 0.1980 0.1981 0.0063 0.2456 0.2456 0.1061 0.4228 0.4341 
0.2τ =  0.0933 0.2920 0.3006 0.0486 0.2778 0.2802 0.1061 0.4228 0.4341 
0.3τ =  0.1533 0.3515 0.3750 0.0904 0.3000 0.3082 0.1061 0.4228 0.4341 

0.55aE =  

0τ =  -0.3372 0.0296 0.1433 -0.1046 0.1629 0.1739 0.1061 0.4228 0.4341 
0.1τ =  0.0709 0.2647 0.2697 0.0444 0.2669 0.2688 0.1061 0.4228 0.4341 
0.2τ =  0.1398 0.3415 0.3610 0.0752 0.2905 0.2961 0.1061 0.4228 0.4341 
0.3τ =  0.1829 0.3838 0.4172 0.1024 0.3037 0.3141 0.1061 0.4228 0.4341 

0.61aE =  

0τ =  0.0020 0.0343 0.0343 0.0438 0.1766 0.1782 0.1061 0.4228 0.4341 
0.1τ =  0.1498 0.3271 0.3496 0.0998 0.2918 0.3018 0.1061 0.4228 0.4341 
0.2τ =  0.1870 0.3827 0.4176 0.1069 0.3017 0.3131 0.1061 0.4228 0.4341 
0.3τ =  0.2176 0.4106 0.4579 0.1207 0.3088 0.3233 0.1061 0.4228 0.4341 

0.65aE =  

0τ =  0.2330 0.0376 0.0919 0.1393 0.1935 0.2129 0.1061 0.4228 0.4341 
0.1τ =  0.1965 0.3521 0.3907 0.1385 0.3003 0.3195 0.1061 0.4228 0.4341 
0.2τ =  0.2173 0.3999 0.4471 0.1298 0.3102 0.3271 0.1061 0.4228 0.4341 
0.3τ =  0.2406 0.4283 0.4862 0.1339 0.3137 0.3316 0.1061 0.4228 0.4341 

0.7aE =  

0τ =  0.5483 0.0426 0.3432 0.2681 0.2147 0.2806 0.1061 0.4228 0.4341 
0.1τ =  0.2568 0.3629 0.4289 0.1869 0.3109 0.3458 0.1061 0.4228 0.4341 
0.2τ =  0.2530 0.4148 0.4788 0.1630 0.3093 0.3358 0.1061 0.4228 0.4341 
0.3τ =  0.2666 0.4469 0.5180 0.1470 0.3200 0.3416 0.1061 0.4228 0.4341 
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Table 3.4 Simulation results (censoring time = 5000hrs) 

aE  τ  
APC FSPC MLE 

Bias Var. MSE Bias Var. MSE Bias Var. MSE 

0.5aE =  

0τ =  -0.4491 0.0222 0.2239 -0.1013 0.1117 0.1220 0.0616 0.2127 0.2165 
0.1τ =  -0.0016 0.1176 0.1176 0.0144 0.1469 0.1471 0.0616 0.2127 0.2165 
0.2τ =  0.0547 0.1577 0.1607 0.0339 0.1555 0.1566 0.0616 0.2127 0.2165 
0.3τ =  0.0753 0.1679 0.1736 0.0478 0.1580 0.1603 0.0616 0.2127 0.2165 

0.55aE =  

0τ =  -0.2475 0.0224 0.0847 -0.0333 0.1128 0.1139 0.0616 0.2127 0.2165 
0.1τ =  0.0430 0.1471 0.1490 0.0329 0.1519 0.1529 0.0616 0.2127 0.2165 
0.2τ =  0.0729 0.1680 0.1733 0.0451 0.1568 0.1588 0.0616 0.2127 0.2165 
0.3τ =  0.0849 0.1715 0.1787 0.0539 0.1572 0.1601 0.0616 0.2127 0.2165 

0.61aE =  

0τ =  0.0063 0.0281 0.0281 0.0456 0.1211 0.1227 0.0616 0.2127 0.2165 
0.1τ =  0.0772 0.1641 0.1701 0.0545 0.1568 0.1597 0.0616 0.2127 0.2165 
0.2τ =  0.0865 0.1719 0.1794 0.0584 0.1587 0.1622 0.0616 0.2127 0.2165 
0.3τ =  0.0960 0.1737 0.1829 0.0593 0.1563 0.1598 0.0616 0.2127 0.2165 

0.65aE =  

0τ =  0.1873 0.0324 0.0675 0.1005 0.1260 0.1361 0.0616 0.2127 0.2165 
0.1τ =  0.0945 0.1653 0.1743 0.0693 0.1555 0.1603 0.0616 0.2127 0.2165 
0.2τ =  0.0959 0.1727 0.1819 0.0642 0.1561 0.1602 0.0616 0.2127 0.2165 
0.3τ =  0.1051 0.1754 0.1864 0.0628 0.1550 0.1590 0.0616 0.2127 0.2165 

0.7aE =  

0τ =  0.4361 0.0346 0.2248 0.1569 0.1321 0.1567 0.0616 0.2127 0.2165 
0.1τ =  0.1013 0.1683 0.1786 0.0910 0.1532 0.1615 0.0616 0.2127 0.2165 
0.2τ =  0.1119 0.1712 0.1837 0.0794 0.1556 0.1619 0.0616 0.2127 0.2165 
0.3τ =  0.1133 0.1768 0.1896 0.0707 0.1570 0.1620 0.0616 0.2127 0.2165 
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Table 3.5 Simulation results (censoring time = 10000hrs) 

aE  τ  
APC FSPC MLE 

Bias Var. MSE Bias Var. MSE Bias Var. MSE 

0.5aE =  

0τ =  -0.2721 0.0278 0.1018 -0.0483 0.0830 0.0857 0.0557 0.1163 0.1194 
0.1τ =  0.0003 0.0723 0.0723 0.0105 0.0865 0.0864 0.0557 0.1163 0.1194 
0.2τ =  0.0293 0.0885 0.0893 0.0209 0.0900 0.0894 0.0557 0.1163 0.1194 
0.3τ =  0.0384 0.0920 0.0935 0.0291 0.0900 0.0908 0.0557 0.1163 0.1194 

0.55aE =  

0τ =  -0.1462 0.0281 0.0495 -0.0030 0.0870 0.0867 0.0557 0.1163 0.1194 
0.1τ =  0.0251 0.0858 0.0864 0.0211 0.0880 0.0875 0.0557 0.1163 0.1194 
0.2τ =  0.0370 0.0912 0.0926 0.0269 0.0900 0.0897 0.0557 0.1163 0.1194 
0.3τ =  0.0436 0.0929 0.0948 0.0306 0.0900 0.0906 0.0557 0.1163 0.1194 

0.61aE =  

0τ =  0.0095 0.0306 0.0306 0.0354 0.0879 0.0892 0.0557 0.1163 0.1194 
0.1τ =  0.0386 0.0891 0.0906 0.0315 0.0890 0.0886 0.0557 0.1163 0.1194 
0.2τ =  0.0424 0.0921 0.0939 0.0332 0.0898 0.0909 0.0557 0.1163 0.1194 
0.3τ =  0.0490 0.0930 0.0969 0.0340 0.0898 0.0909 0.0557 0.1163 0.1194 

0.65aE =  

0τ =  0.1275 0.0313 0.0476 0.0564 0.0840 0.0867 0.0557 0.1163 0.1194 
0.1τ =  0.0510 0.0894 0.0920 0.0396 0.0870 0.0882 0.0557 0.1163 0.1194 
0.2τ =  0.0492 0.0921 0.0946 0.0378 0.0900 0.0908 0.0557 0.1163 0.1194 
0.3τ =  0.0511 0.0932 0.0958 0.0338 0.0900 0.0903 0.0557 0.1163 0.1194 

0.7aE =  

0τ =  0.2830 0.0344 0.1135 0.0938 0.0820 0.0908 0.0557 0.1163 0.1194 
0.1τ =  0.0670 0.0899 0.0944 0.0518 0.0860 0.0889 0.0557 0.1163 0.1194 
0.2τ =  0.0558 0.0923 0.0954 0.0434 0.0900 0.0903 0.0557 0.1163 0.1194 
0.3τ =  0.0545 0.0936 0.0966 0.0383 0.0900 0.0911 0.0557 0.1163 0.1194 
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Based on the results, we first plot the bias of 0μ̂ against ( ),aE τ for different 

censoring time in Figure 3.10.  

 

    (a)      (b)      (c) 

 

    (d)      (e)      (f) 

 

Figure 3.10 Effects of ( , )aE τ on the bias of 0μ̂  
(a) APC is used, and the censoring time is 2500 hrs. (b) APC is used, and the censoring 

time is 5000 hrs. (c) APC is used, and the censoring time is 10000 hrs. (d) FSPC is used, 

and the censoring time is 2500 hrs. (e) FSPC is used, and the censoring time is 5000 hrs. 

(f) FSPC is used, and the censoring time is 10000 hrs. 

 

The plot suggests the following observations. 

O1: The longer the test duration, the smaller the bias of 0μ̂ . Given a certain level 

ofτ , the more accurate the specified aE , the smaller the bias of 0μ̂ . When aE is 

over-specified (under-specified), the estimate 0μ̂ has a positive (negative) bias.  

O2: Regardless of the aE value, the bias of 0μ̂ converges to a positive value as the 
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toleranceτ grows. This is because whenτ becomes larger, the estimate 0μ̂ depends more 

on the failure data and less on our prior knowledge. Since the data are time censored to 

the right, it is therefore not surprising to see a positively biased 0μ̂ . This also explains 

why the bias is actually small when aE is under-specified andτ is moderate. For 

example, when aE =0.5 andτ =0.1, the bias of 0μ̂ is the smallest for both APC and FSPC. 

That is, the effect of under-specifying aE cancels that of time censoring.   

O3: FSPC depends less on the expert knowledge compared to APC, hence, FSPC 

yields smaller bias than APC when aE deviates from 0.61. However, when the 

specified aE is close to the true value, APC yields a smaller bias than FSPC. This is a 

trade-off. 

The pre-specified ( ),aE τ  not only affects the bias but also the variance of 0μ̂ . The 

variance of 0μ̂ against ( ),aE τ for different censoring time is plotted in Figure 3.11. For 

both APC and FSPC, the bigger the toleranceτ , the higher the uncertainty of the prior 

knowledge, and the bigger the variance of 0μ̂ . If we compare both bias and variance of 

the estimates given by all these 3 methods, another two important observations are 

found in Figure 3.12. 

O4: FSPC is more robust than APC to the variation of ( ),aE τ . Although both the 

absolute bias and variance of 0μ̂ yielded by FSPC vary with ( ),aE τ , the variation is 

much smaller compared to the results given by APC. Of course, APC has certain 

advantages in two situations. 1) When the activation energy aE is accurately 

pre-specified (i.e. aE is near 0.61 andτ is small), APC gives the estimate with smaller 

bias and variance; 2) When aE is under-specified, say 0.5, andτ is moderate, say 0.1, 
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APC also gives the estimate with small bias and moderate variance. As we have 

explained above, this is due to the cancellation of effects between 

under-specifying aE and time censoring.  

O5: Either APC or FSPC gives smaller variance of 0μ̂ than MLE particularly when 

the test duration is long. This is indeed the advantage of the proposed Bayesian 

inference over MLE, although the estimate obtained from the former method could be 

more biased for some ( ),aE τ combinations. Fortunately, when the test duration is long 

FSPC is robust enough in the sense that the surface of the absolute bias given by FSPC 

is flat and close to the surface given by MLE.  

 
     (a)       (b)      (c) 

 
      (d)       (e)       (f) 

 

 
 

Figure 3.11 Effects of ( , )aE τ on the variance of 0μ̂  
 

(a) APC is used, and the censoring time is 2500 hrs. (b) APC is used, and the censoring 

time is 5000 hrs. (c) APC is used, and the censoring time is 10000 hrs. (d) FSPC is 

used, and the censoring time is 2500 hrs. (e) FSPC is used, and the censoring time is 

5000 hrs. (f) FSPC is used, and the censoring time is 10000 hrs. 
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     (a)           (b) 

    
(c) (d) 

    
     (e)           (f) 

 
Figure 3.12 Comparison of both bias and variance among APC, FSPC and MLE 

(a) bias of 0μ̂ , censoring time: 2500hrs (b) variance of 0μ̂ , censoring time: 2500hrs (c) 

bias of 0μ̂ , censoring time: 5000hrs (d) variance of 0μ̂ , censoring time: 5000hrs (e) bias 

of 0μ̂ , censoring time: 10000hrs (f) variance of 0μ̂ , censoring time: 10000hrs. 
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Chapter 4.  Double-Stage Estimation Utilizing Initial 

Estimates and Prior Knowledge 

In Chapter 3, we have seen how some prior knowledge of key ALT model parameters 

can be used in analyzing sequential ALT data. This chapter considers the inference 

problem for an important type of sequential accelerated life tests (ALT), and proposes 

an easy-to-apply double-stage estimation (DSE) procedure which utilizes both 

preliminary testing results and empirical engineering knowledge. A step-by-step 

description of the procedure is provided. The bias, (asymptotic) variance and 

mean-squared-error of the estimator are also derived so as to measure the risk of 

incorporating prior engineering knowledge into the data analysis. Finally, a simulation 

study is presented to compare the performance of DSE to that of MLE, and visualize 

the risk associated to the DSE procedure. To facilitate the use of the proposed 

procedure, a computer program coded under the MATLAB® Graphical User Interface 

Design Environment (GUIDE) is provided and available from the author.  

4.1. Introduction 

Recall a typical parametric model of constant-stress ALT that consists of two 

components:  

Components 1: A log-location-scale distribution that models failure timeT at any 

testing stress 

( ) [(log ) / ]F t t μ σ= Φ −   ,            

where μ and σ is respectively the location and scale parameters, and Φ is the 

standardized location-scale Cdf.   
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Components 2: A linear stress-life relationship that describe the manner in which 

the life time distribution changes across different stress levels  

0 1 , unknown constant 0,1,...,i is i kμ β β σ= + ⋅ = ∀ =               (4.1) 

where is denotes the possibly transformed testing stress. Clearly, this model involves 3 

model parameters 0 1( , , )β β σ=φ . 

Based on the framework of sequential ALT presented in Chapter 3, the test at the 

highest testing stress level ks yields the initial estimate ˆ ˆ ˆ( , )k kμ σ=θ . Then, from the 

prior knowledge on 1β , we also obtain the initial estimate iθ of iθ at any lower stress 

level for 1,2,..., 1i k= −  

1ˆ ˆ( ( ), ) 1,2,..., 1i k i ks s i kμ β σ= + − ∀ = −θ                           (4.2) 

On the other hand, test at stress is also yields a local estimate iθ of iθ . If iθ implies 

that the initial estimate iθ is reasonable, we “shrink” iθ towards iθ to yield the final 

estimate of ˆ
iθ  

ˆ ( , )i i i= Γθ θ θ                                                    (4.3) 

whereΓ is the shrinkage rule to be determined in this chapter.  

 The main object of the double-stage estimation above is to save sample size or test 

duration by utilizing initial estimates and prior information and yet to retain high 

efficiency. Readers might recognize that this is exactly the fundamental idea of 

double-stage shrinkage estimator (DSSE) discussed in Al-Bayyati and Arnold (1972).  

In what follows, we formally propose a double-stage estimator, and quantify the 

bias, asymptotic variance of such an estimator given initial estimates and prior 

knowledge.  
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4.1.1. The Model 

The SALT model presented in Section 3.2 is used throughout this chapter. 

4.2. The Double-Stage Estimation 

As discussed above, initial estimates obtained at the highest stress ks and the prior 

knowledge on 1β could be used together for data analysis at lower stress 

levels is for 1, 2,..., 1i k= − . As shown in Figure 4.1, the double-stage estimation of ALT 

data involves the following steps,  

  

 

 

 

Figure 4.1 A flow chart of ALT data analysis using the double-stage estimation 

4.2.1. STAGE 1: Obtain the Initial Estimate 

At the highest stress ks , the log-likelihood function corresponding to the observed (log) 

failure data ,1 ,2 ,( , , , )
kk k k k ny y yy = is given by 

( ) ( ), , ,
, ,

1

1; log exp 1 exp
kn

k j k k j k k j k
k k k j k j

j

y y y
l θ y

μ μ μ
κ κ

σ σ σ σ=

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪− − −⎟⎪ ⎪⎜ ⎟ ⎟⎜ ⎜⎟⎟ ⎟= + − − −⎜ ⎜ ⎜⎨ ⎬⎟⎟ ⎟⎜ ⎜ ⎜⎟⎟ ⎟⎜ ⎜⎪ ⎪⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
∑ (4.4)  

where the subscript “ ,( )i j⋅ ” corresponds to the jth observation at stress is , andκ is 

defined as  

0   for right-censored observation
1   for exact observation

κ
⎧⎪⎪=⎨⎪⎪⎩

 

STAGE 1: 
Obtain initial 
estimate at the 
highest stress level 

STAGE 2: 
Parameter estimation 
at lower stress levels 

Parameter 
estimation at 
use condition 

Specified slope 
parameter
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Numerically maximizing (4.4) yields the MLE  

ˆ arg max ( ; )k k klθ θ y= ,                                            (4.5) 

with asymptotic covariance matrix  

12

ˆ 2
ˆ

ˆ ˆ ˆ   var( )     cov( , ) ( ; )ˆ
ˆ ˆ ˆcov( , )     var( )k

k k

k k k k k

k k k k

l
θ

θ θ

θ y
θ

μ μ σ
μ σ σ

−

=

⎛ ⎞⎛ ⎞ ∂ ⎟⎟ ⎜⎜ ⎟⎟Σ = = −⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜ ⎜ ∂⎝ ⎠ ⎝ ⎠
 

Hence, given an empirically specified 1β , the initial estimate, iθ , of iθ at low 

stresses, 1
1{ }k

i is −
= , are obtained through the stress-life relationship 

1ˆ ˆ( ( ), ) 1,..., 1i k i k ks s i kθ μ β σ= + − ∀ = −   ,                        (4.6) 

with asymptotic covariance matrix ˆ
ˆ ˆ

i kθ θ
Σ =Σ . 

4.2.2. STAGE 2:  Obtain the Shrinkage Estimates 

As the sequential test proceeds to the 2nd stage, in observations, ,1 ,( , , )
ii i i ny yy = , 

at each low stress is are obtained. Using these observations, we obtain the MLE of iθ   

arg max ( ; ) 1,..., 1i i il y i kθ θ= ∀ = −   ,                            (4.7) 

where iθ is referred as the local estimate of iθ .  

To obtain the shrinkage estimate of iθ , it is proposed to maximize the 

log-likelihood function 

( )

, ,
,

1 ,
,

, ,
,

( ; , )

log log
log exp

log
1 exp

   log exp

k

i k i

i k j i i k j i
k jn

j i k j i
k j

i j i i j i
i j

l

A y A y

A y

y y

θ y y

μ μ
κ σ

σ σ

μ
κ

σ

μ μ
κ σ

σ σ

=

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪+ − + − ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎟⎪ ⎪− + −⎜ ⎜ ⎟⎟⎜⎪ ⎪⎜ ⎟⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎝ ⎠⎪ ⎪= ⎨ ⎬⎪ ⎪⎛ ⎞+ −⎪ ⎪⎟⎜⎪ ⎪⎟− − ⎜⎪ ⎪⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭
⎛ ⎛ ⎞− −⎜ ⎟⎜ ⎟+ − + − ⎜ ⎟⎜ ⎟⎜⎝ ⎠⎝

∑

( ) ,
,

1

1 exp
in

i j i
i j

j

y μ
κ

σ=

⎧ ⎫⎞ ⎛ ⎞⎪ ⎪−⎟⎪ ⎪⎟⎜⎟ ⎟− −⎜ ⎜⎨ ⎬⎟ ⎟⎜ ⎜⎟ ⎟⎜⎪ ⎪⎟⎜ ⎝ ⎠⎠⎪ ⎪⎩ ⎭
∑

       (4.8) 
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where 1exp( ( ))i i kA s sβ= − is known as the time-scale factor (Meeker and Escobar 

1998).  

That is, given the specified 1β , we map the data, ky , observed at ks to is according to 

1

1

( ; )
( ) log 1,2, , 1

i k

i k k i k

f
s s A i k

y y
y y

β
β

′ =

= − + = + ∀ = −
 ,                (4.9) 

as if iy′ was collected from is . 

Then, the shrinkage estimates ˆ
iθ are obtained as 

ˆ arg max ( ; , ) 1,..., 1i i k il i kθ θ y y= ∀ = −    ,                       (4.10) 

with asymptotic covariance matrix 

12

ˆ 2
ˆ

ˆ ˆ ˆ   var( )     cov( , ) ( ; , )ˆ 1,..., 1
ˆ ˆ ˆcov( , )     var( )i

i i

i i i i k i

i i i i

l i k
θ

θ θ

θ y y
θ

μ μ σ

μ σ σ

−

=

⎛ ⎞⎛ ⎞ ∂ ⎟⎟ ⎜⎜ ⎟⎟Σ = = − ∀ = −⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜ ⎜ ∂⎝ ⎠ ⎝ ⎠
 

In order to see the shrinkage structure clearly, we assumeσ to be known. It follows 

from (4.10) that 

ˆ
exp exp exp  1,2, , 1i k i i i

k i k i

r r i k
r r r r

μ μ μ
σ σ σ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= + ∀ = −⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ +
,          (4.11) 

or equivalently  

ˆ  1, 2, , 1k i
i i i

k i k i

r r i k
r r r r

β β βα α α= + ∀ = −
+ +

.                  (4.12)  

We see that from (4.11), ˆ iμ is always between iμ and iμ , i.e. 

ˆ ˆ( ) / ( ) 0i i i iμ μ μ μ− − < , and the ratio ˆ ˆ| | / | |i i i iμ μ μ μ− − is monotone increasing 

as /i kr r . The interpretation of this observation is clear: as more failures are obtained at 

low stresses, the shrinkage estimate moves towards the local estimate. Similar 

observation also holds for (4.12). Also note that, equation (4.12) is exactly of the form 

of the equation (1) in Al-Bayyati and Arnold (1972), where the shrinkage estimator is a 
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linear combination of initial and local estimators. 

Remark 4.1. Instead of using MLE, the best linear unbiased estimates (BLUE), ˆ
iθ , 

based on order statistics can also be obtained given an empirically specified value of 1β . 

Interested readers might consult the method described in Nelson and Hahn (1972, 

1973). 

4.2.3. Obtain the Least-Squares Estimates 

The generalized least squares can now be used to find the estimate, φ̂ . Let 

 

1

2
1 2

ˆvar( )
ˆ      var( )

ˆ ˆ ˆ ˆ( , , , ) ,
            

ˆ                 var( )

T
k

k

V

μ
μ

μ μ μ μ

μ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

              ,                 

and define the design matrix 

 ( )
1 2

1,  1,  ,1
, , ,

T

k
S s s s= ,                                  

the estimate φ̂ is then given by 

( ) ( )10 1 1

1

1
1 1

1 1

ˆ
ˆ

ˆ

ˆ ˆ ˆ ˆvar ( ) var ( )

T T

k k

i i i
i i

S V S S V
β

μ
β

σ σ σ σ

−− −

−
− −

= =

⎛ ⎞⎟⎜ ⎟⎜ =⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑
,                            (4.13) 

with covariance matrix 

( ) 11

2 1
ˆ 1

1

ˆ ˆ
ˆvar ( )

T

k

i
i

S V S

φ σ
σ

−−

−
−

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Σ = ⋅⎜ ⎟⎛ ⎞⎜ ⎟⎟⎜⎜ ⎟⎟⎜ ⎟⎜ ⎟ ⎟⎜ ⎟⎜ ⎝ ⎠ ⎟⎜⎝ ⎠
∑

    .                       (4.14) 

If the 100p-th life quantile, 0( )py s , at use stress is of interest, we have 



96 

 

0 0 1 0
ˆ ˆˆ ˆ( ) log( log(1 ))p p py s s z z pβ β σ= + + = − − ,                   (4.15) 

with variance  

1̂
0 0 0

ˆˆvar( ( )) (1, , ) (1, , )T
p p py s s z s z

β
= Σ                                 (4.16) 

Remark 4.2. In section 4.2.3, a linear stress-life relationship is fitted to the 

estimate, ˆ
iθ , at each testing stress, 1{ }k

i is = , weighted by the amount of information 

obtained at that level. This important idea in ALT data analysis can also be found in 

Nelson and Hahn (1972, 1973), as well as in the weighted regression approach 

presented by Lawless (1982).  

4.3. Quantifying the Effects of Prior Knowledge 

As discussed, it is of paramount importance to measure the risk of using the 

empirically specified 1β . Hence, this section derives the bias, (asymptotic) variance, 

and MSE of the estimator, 0ˆ ( )py s , for any given value of 1β .  

In order to obtain the following analytic results, we are forced to assumeσ to be a 

known constant since the closed-form solution ofσ does not exist for (4.5), (4.7) and 

(4.10). In practice, the preliminary estimate ofσ can be obtained numerically from the 

test at the highest stress, i.e. from (4.5). 

4.3.1. The Bias  

4.3.1.1. When the Slope Parameter is Correctly Specified 

Let *
1β denotes the (unknown) true value of 1β , we have 

Lemma 4.1. For a knownσ and *
1 1β β= , 0ˆ ( )py s obtained in (4.15) is biased and has 

the bias  
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{ } { }0 0 0

1 1 1
0

ˆ ˆbias ( ) ( ) ( )

                    (1, )( ) ( )
p p p

T T

y s E y s y s

s S V S S V b− − −

= −

=
   ,                         (4.17) 

where 

1 1

1 1

(0, ) log( )

(0, ) log( )
(0, ) log( )

k k

k k k k

k k

r r r r

b r r r r
r r

ψ

σ ψ
ψ

− −

⎛ ⎞+ − + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⋅ ⎟⎜ ⎟+ − +⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ −⎝ ⎠

,            

for type-II censoring, and 

1 1

1 1

(0, 2) log( 2)

(0, 2) log( 2)
(0, 1) log( 1)

k k

k k k k

k k

r r r r

b r r r r
r r

ψ

σ ψ
ψ

− −

⎛ ⎞+ + − + + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜≈ ⋅ ⎟⎜ ⎟+ + − + +⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ + − +⎝ ⎠

,            

for type-I censoring, andψ is a Polygamma function.  

Proof. Let 

0
1 1,2,..., 1i

i k
i k

λ
⎧ =⎪⎪=⎨⎪ = −⎪⎩

    ,            

we obtain the MLE, ˆ iμ , from (4.5) and (4.10) 

( ) 1/ ( )ˆ (log( ) log( ))  1,2,...,T T
i i i i k i i kZ A Z r r i kσμ σ λ λ= ⋅ + ⋅ ⋅ − + ⋅ ∀ = ,      (4.18) 

where ( )( )( ) 1/ 1/
, , ,1

1inT
i i j i j i j ij

Z t cσ σκ κ
=

= + −∑ . 

Here, ˆ iμ are biased with its bias given by 

{ } { }

( )
( ) 1/ ( )

1/

ˆ ˆbias

            log log  1,2,...,

i i i

T T
i i i k

i i k
i

E

Z A ZE r r i k
σ

σ

μ μ μ

λ
σ λ

α

= −

⎧ ⎫⎛ ⎞⎪ ⎪+ ⋅ ⋅ ⎟⎪ ⎪⎜ ⎟= ⋅ − + ⋅ ∀ =⎜⎨ ⎬⎟⎜ ⎟⎪ ⎜ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

 

                                                             (4.19) 

When *
1 1β β= , it is easy to see that the statistic 

1/ ( ) 1/ ( )2 ( )T T
i i i i i kX Z A Zσ σα λ−= ⋅ + ⋅ ⋅ ,            
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follows the chi-square distribution with degree of freedom, 2( )i i kr rλ+ ⋅ , under type-II 

censoring (Meeker and Escobar 1998). For type-I censoring, we can approximate iX by 

the chi-square distribution with degree of freedom, 2( 1 ( 1))i i kr rλ+ + + . This follows 

that  

{ }1 (0, ( 1 ( 1))) log( )  for type-I censoring
ˆbias

(0, ( )) log( )               for type-II censoring
i i k i i k

i
i i k i i k

r r r r
r r r r

ψ λ λ
σ μ

ψ λ λ
−

⎧ + + + − + ⋅⎪⎪⋅ =⎨⎪ + − + ⋅⎪⎩
 

                                                             (4.20)  

and from equations (4.13) and (4.15), we obtain 

{ } ( )( ) ( )11 1
0 0ˆbias ( ) 1, T T

py s s S V S S V b
−− −= ,            

as was to be proved.  

4.3.1.2. When the Slope Parameter is Incorrectly Specified 

In practice, however, the specified value of 1β never equals *
1β . Define 

*
1 1
1/ * 1/

* *
1
1

( )

exp( ( ))

exp( ( ))

i i i

i i k

i i k

e

A A

A s s

e s s

σ σ

β β

δ

β

δ σ−

= +

= ⋅

= −

= −

                  

we have 

Lemma 4.2. For a knownσ and *
1 1 eβ β= + , 0ˆ ( )py s obtained in (4.15) is biased and 

has the bias 

{ } { }0 0 0

1 1 1
0 1 2

ˆ ˆbias ( ) ( ) ( )

ˆ ˆ ˆ                    (1, )( ) ( (bias{ }, bias{ },..., bias{ }) )
p p p

T T T
k

y s E y s y s

s S V S S V μ μ μ− − −

= −

=
  (4.21) 

where ˆbias{ } {log( / 2 ( 1) / 2) log( )}i i i i k i i kE X X r rμ σ δ λ λ= ⋅ + − ⋅ ⋅ − + ⋅ . 

Proof. It follows from equation (4.19) that 
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{ } ( ) ( ){ }ˆbias log / 2 ( 1) / 2 log 1,...,i i i i k i i kE X X r r i kμ σ δ λ λ= ⋅ + − ⋅ ⋅ − + ⋅ ∀ = . 

                                                             (4.22)  

Numerical methods, such as the Monte-Carlo method, are needed to evaluate this 

equation. When 0e= , equation (4.22) and (4.19) are exactly the same. 

Finally, from equations (4.13) and (4.15), it is immediately that 

1 1 1
0 0 1 2ˆ ˆ ˆ ˆbias{ ( )} (1, )( ) ( (bias{ }, bias{ },..., bias{ }) )T T T

p ky s s S V S S V μ μ μ− − −= ,            

as was to be proved.  

4.3.1.3. Bias of the Estimator on Lower Stress Levels 

For estimates at each lower stress levels, we have another two interesting results 

summarized by Lemma 4.3 and Lemma 4.4.  

Lemma 4.3: If the shape parameter β is known and the acceleration factor kiA is 

correctly specified, for any positive constantκ we have, 

,
ˆlim ( )

i k
i ic c

E β βα α
→∞

=   1, 2,..., 1i k∀ = −  

Proof: Given the observations ( ir , kr , kt ), ˆ( )iE βα  at any lower stress test 

level is for 1,2,..., 1i k= − is given by 

1 1
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⎛ ⎞
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⎝ ⎠
∑ ∑ ∑ ∑t        (4.23) 

Define the failure probability 1 exp( ( ) )i i iP c βα= − − of an item at stress level is , 

we then have, 
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(4.24) 

It follows that, 

( ) ( ) ( )

( ) ( ) ( )
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0 1 1
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(4.25) 

Finally, 

( ) ( ) ( )
( )
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( )

1 1

1

ˆ ˆ ˆ
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⎝ ⎠= = = =
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∑ ∑     (4.26) 

Equation (4.26) implies that, when the acceleration factor kiA is correctly specified 

to its true value *
kiA , for any positive constantκ we have, 

,
ˆlim ( )

i k
i ic c

E β βα α
→∞

=   1, 2,..., 1i k∀ = −                                (4.27) 

Lemma 4.4: Let
1

* *
ki kiA Mβ= , ( ) *

ki ki kiA A γ+ = + , and ( ) *
ki ki kiA A γ− = − , then, the following 

result hold iff 1=β   

( ) ( )

,
ˆ ˆlim ( ( ; ) ( ; )) 0

i k
i ki i kic c

E A E Aα α+ −

→∞
+ =    1, 2,..., 1i k∀ = −  

Proof: When kiA is falsely specified as *
ki ki kiA A e= + , for any lower stress level is we 

have 

*

,
ˆlim ( ) ( ( ) ) / ( )

i k
i i i ki ki k k i kc c

E n A e n n nβ β β βα α α
→∞

= + + +                      (4.28) 

If failure times follow Exponential distribution, i.e. 1β = , equation (4.28) yields, 

,
ˆlim ( )

i k

k k
i i kic c

i k

nE e
n n
αα α

→∞
= + ⋅

+
                                     (4.29) 

 Hence, when 1β = , we have  
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( ) ( )

,
ˆ ˆlim ( ( ) ( )) 0

i k
i ki i kic c

E A E Aα α+ −

→∞
+ =    1, 2,..., 1i k∀ = −               (4.30) 

It equation (4.29), ( )
,

ˆlim
i k

ic c
E βα

→∞
is a linear function of the error e . When the ratio 

between in and kn increases, the term ( )k k i kn e n nα + becomes smaller which implies that 

the effect of the specified slope parameter vanishes as i kn n approaches infinity. On the 

other hand, when in is small compared to kn , the estimation results heavily depend on 

the specified slope parameter.  

As a simple illustration, Figure 4.2 illustrates how the expectation ˆ( )iE βα varies 

with the test duration given that kiA is correctly specified. When test duration is zero, 

ˆi
βα is unbiased since *

ki kiA A= . As test proceeds, the bias grows towards the positive 

side since most data are censored during this phase. After a certain point, the bias 

decreases and eventually goes to zero.  

 

Figure 4.2 The bias of ˆi
βα against test duration for any lower stress level i  

When *
ki k iA A≠ , Figure 4.3 shows the effect of test duration on ˆ( )iE βα with 1β = . 

As seen in this figure, over-specifying and under-specifying kiA have a symmetric effect 

on
,

ˆlim ( )
i k

ic c
E βα

→∞
as implied by equation (4.29). As test duration becomes larger, the 
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distances between two neighboring curves converges to a constant which can be 

evaluated by equation (4.29). 

 

Figure 4.3 ˆ( )iE βα against test duration for any lower stress level i  ( 1β = ) 

Particularly when 1β ≠ , over-specifying and under-specifying kiA have an 

asymmetric effect on the value of
,

ˆlim ( )
i k

ic c
E βα

→∞
. This is shown in Figure 4.4.  

 

Figure 4.4 ˆ( )iE βα against test duration for any lower stress level i  ( 2β = ) 
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4.3.2. The Mean-Squared-Error 

Generally speaking, the main object of the double-stage estimation above is to save 

sample size or test duration by utilizing initial estimates and prior information and yet 

to retain high efficiency. However, as we have seen, the estimator is biased by 

incorporating the prior information. Therefore, the mean-squared-error of the estimator 

could be used to decide if the double-stage estimation should be used (see e.g. 

Al-Bayyati and Arnold 1972). Assuming the shape parameter β is known, the 

mean-squared-error (MSE) of 0ˆ ( )py s is directly computed by, 

{ } { }2
ˆ0 0 0 0

ˆˆ ˆMSE ( ) bias ( ) (1, , ) (1, , )T
p p p py s y s s z s z

Φ
= + Σ                  (4.31) 

4.4. Numerical Study 

A simulation study is presented in this section to 1) compare the performance of DSE 

to that of MLE, and 2) visualize the risk associated to DSE.  

A temperature-accelerated life test is used in this section. This real-life ALT was 

firstly reported by Hooper and Amster (1990). Table 4.1 summarizes the testing plan.  

Table 4.1 A three-stress-level temperature-accelerated life test 

Sequential 
testing stage Condition Temp Stress level 

(11605 / Temp) 
Censoring 
time (hrs) 

Sample 
size 

 Use 293K 39.6075   
Stage 1 High 353K 32.8754 5000 15 
Stage 2 Low 313K 37.0767 5000 100 

Mid 333K 34.8498 5000 20 
 

For this ALT, the log-lifetime under any temperature is assumed to follow the SEV 

distribution. The scale parameter σ is assumed to be constant independent of 

temperature, and the location parameter μ depends on temperature through the 
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Arrhenius life-stress relationship 

0 11605 / TempaEμ β= + ⋅ ,                        

where aE is the activation energy.  

The objective of this ALT is to estimate the 0.1 life quantile .1y at the use 

temperature. 

The simulation study is designed as follows. 

1). Generation of Failure Times 

To generate SEV failure times at each testing stress, the following values are used 

* * * *
0( , , ) ( 13.2043,0.6302,0.7084)aEφ φ σ= = −                               

These values are the MLE ofφ obtained using the original dataset published in 

Hooper and Amster (1990), and reprinted in Meeker and Escobar (1998). 

2). Simulation Procedure: 

Step-1:  Simulate the testing data using *φ and the plan given in Table 4.1.  

Step-2a: Obtain the estimate, .1ˆ MLEy , of .1y using MLE. 

Step-2b: Set 0.2eVaE = (which is 31% of the true value, * 0.63eVaE = ). 

Step-3b: Obtain the estimate, .1ˆ DSEy , of .1y using DSE. 

Step-4b: If 1eVaE <  (which is 160% of the true value, *
aE ), then, 0.05a aE E= + and 

go to Step-3b.  

Otherwise, go to Step-5. 

Step-5:  Start the next iteration from Step-1 

In this simulation study, 500 iterations are completed. 
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4.4.1. Simulation Results 

Simulation results, i.e. the estimates, .1ˆ MLEy and .1ˆ DSEy , obtained within each iteration 

are plotted in Figure 4.5. In this figure, *
.1ŷ is the (unknown) true value of .1ŷ calculated 

from *φ . 
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Figure 4.5 ( )
.5ˆb[ ]MLEy and ( )

.5ˆb[ ]DSEy against the specified activation energy aE  
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The trade-off of using DSE is immediately seen from Figure 4.5. We define the 

relative risk 

.1 .1ˆ ˆMSE( ) / MSE( )DSE MLEy yη=    ,                                   (4.32) 

and plots η against the specified aE in Figure 4.6. As seen in this 

figure, 1η≤ when aE ranges from 0.47 to 0.78 , which are respectively 75% and 124% 

of the true value *
aE .  

 

Figure 4.6 Plot of relative risk against the specified activation energy 
 

 Let aE+ and aE− respectively denote the upper and lower bound of aE within 

which 1η≤ , we extend the test duration from 5000 to 8000 to see how aE+ and aE− are 

changed correspondingly. Figure 4.7 plots both aE+ and aE− for different censoring times. 

It is seen that, the interval between aE+ and aE− becomes slightly wider as the test 

duration increases. This observation can be briefly explained by: since more failures 

are observed at low stresses for longer test duration, the shrinkage estimate at each 

stress is getting closer to the local estimate, and .1ˆ DSEy become less dependent on the 
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specified value of aE .  

 

Figure 4.7 Plot of aE− and aE+ against censoring time 
 

Remark 4.3. A natural extension of the DSE procedure can be immediately seen, 

namely, instead of specifying an exact value of 1β , a prior distribution 1( )ϑ β that 

quantifies the uncertainty over 1β can be used. The resulting sequential Bayesian 

analysis is described in Liu and Tang (2009). 

4.4.2. The Computerized Implementation 

GUIDE, the MATLAB® graphical user interface development environment, provides a 

set of tools for creating graphical user interface (GUI). Hence, in order to facilitate the 

use of the proposed DSE method, the procedure is coded using the MATLAB® 

GUIDE.  

Figure 4.8 shows the GUI of the DSE procedure for analyzing sequential ALT data. 

The 4 modules are briefly described as follows:   

Module 1: Data import/input from workspace. Basic information, including testing 
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stress levels, use stress, censoring time, and the empirically specified slope parameter 

are the required inputs of this module. In addition, users are also required either input 

or import testing data. It is noted that in the censoring column, the text “0” and “1” 

respectively denotes the exact and right-censored observation.   

Module 2: DSE procedure. Given the input of module 1, this module performs the 

DSE procedure and estimates key reliability measures, such as the stress-life model, 

covariance matrix of the estimate for model parameters, and important life-quantiles 

often used in practice.   

Module 3: Weibull probability plot for the fitted model. Following the analysis in 

module 2, this module automatically generates the Weibull probability plot for the 

fitted model.  

Module 4: Risk assessment. Given a possible deviation of the pre-specified slope 

parameter as well as the life-quantile of interest, this module estimates the bias, and 

MSE of the quantile estimator. 
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Figure 4.8 Graphical user interface (GUI) of MAT-DSE 
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Chapter 5. Bayesian Planning of Sequential ALT  

5.1. Introduction 

From this chapter onwards, our focus is turned to ALT planning problems.  

Based on the sequential test scheme, this chapter describes a Bayesian planning 

method for sequential constant-stress ALT (A planning method for sequential ALT that 

is based on the likelihood theory is presented in Chapter 7). As discussed in Chapter 2, 

in planning of Accelerated Life Tests, preliminary estimates of unknown model 

parameters are often needed so as to assess the statistical efficiency of a test plan. Very 

often, the margin of error is high and the requisite level of statistical precision cannot 

be achieved as planned. Hence, test at the highest stress level is firstly planned and 

conducted under the sequential scheme. As we shall see in this chapter, a Bayesian 

framework is then deployed to incorporate the information obtained at the highest 

stress level in the planning of subsequent accelerated tests at lower stress levels. Under 

this framework, the normal approximation to posterior density is used, and both the 

optimum sample allocation and stress combinations at lower stress levels are chosen to 

minimize the pre-posterior variance of the estimate of the percentile of the time to 

failure at use condition. We shall see in this chapter how the proposed test scheme can 

be applied to design ALTs with 2 and 3 constant stress levels. A comprehensive 

simulation study can also be found that compares the performance of the sequential 

testing scheme to that of the traditional non-sequential testing. It can be seen that the 

robustness of an ALT plan can be greatly enhanced using the proposed approach 

without affecting the total test duration. 
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To plan a constant-stress ALT, one needs to decide 1) the stress level combinations 

and 2) the sample allocation to each stress level. Meeker and Escobar (1993) 

summarized the characterization of one- and two-factor constant-stress ALT test plans.  

Most ALT plans involve constant stress loading. Very often, the lifetime at each 

stress is assumed to follow a log-location-scale life time distribution such as Weibull or 

Lognormal. A simple linear stress-life relationship between the location parameter and 

some function of stress are employed, and the scale parameter is assumed to be a 

constant independent of stress. Hence, three parameters are of interest in such a 

constant-stress ALT model, i.e., the scale parameter of the life time distribution, the 

intercept parameter of the linear stress-life relationship, and the slope parameters of the 

linear stress-life relationship. Each of these parameters has its own physical 

interpretation. The scale parameter is closely related to the failure mechanism; the 

intercept parameter is usually the median life (or a function of it) under a particular 

stress; and the slope parameter is the reflection of both product properties and 

acceleration mechanism. For example, under a temperature acceleration scheme in 

which the Arrhenius model is usually appropriate, there exists a one-to-one 

correspondence between the value of the slope parameter and the Arrhenius activation 

energy -- a property of the product in response to operation temperature.  

The pioneering ideas of modern ALT planning techniques were conceived by 

Nelson and Kielpinski (1976), Nelson and Meeker (1978), Meeker (1984), and Nelson 

(1990). Given the prior information or pre-specified values of all three ALT model 

parameters, an optimum plan is typically the one that minimizes the asymptotic 

variance of the Maximum Likelihood Estimate (MLE) of certain reliability measure at 

use condition (c-optimality). Other planning criteria, such as the maximization of 

determinant of the Fisher information matrix for model parameters (D-optimality), 
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have also been used (e.g. Meeker and Escobar (1993)). Tang and Xu (2005) proposed a 

framework which considers multiple (conflicting) objectives in ALT planning. For a 

comprehensive review of different planning criteria, one may refer to Chaloner and 

Verdinelli (1995), and Pilz (1991). Recently, Pascual (2007) presented an ALT 

planning approach considering competing risks, and Meeker et al. (2005) discussed 

how to evaluate the developed optimum plans via simulation.  

For many applications, the product life percentile at use condition is of interest. 

Then, the c-optimality criterion becomes appropriate. When the c-optimality is adopted 

as in most ALT plans, the asymptotic variance of the MLE is used as a yardstick in 

determining the optimum plan. As discussed in Chernoff (1972), the asymptotic 

variance depends on the “best guess” of the unknown model parameter values, and the 

developed plan is also known as the local optimal plan. Hence, assuming the model 

parameters are known at the planning stage might lead to a false sense of statistical 

precision. This is one of the key motivations of using Bayesian design methods. 

Although there has been a long-run debate on the theoretical framework of Bayesian 

approach, the primary consideration in practice is whether the method yields good 

result after balancing all potential risks and conflicting objectives. For example, Zhang 

and Meeker (2006) recently presented a general Bayesian method for planning ALTs. 

Instead of specifying exact values for those unknown model parameters, prior 

distributions are assigned to each parameter to enhance the robustness of the plan. 

Chaloner and Larntz (1992) not only used priors, but also assigned weights to different 

lifetime distributions and life-stress models. Pascual (2006) addressed the possibility 

of bias arising from mis-specifying the ALT model and developed a robust planning 

method. Comprehensive reviews of ALT planning can be found in the excellent books 

authored by Nelson (1990) and Meeker and Escobar (1998).  
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The sequential testing scheme presented in this chapter is motivated by the 

following observations from practice. First, it is difficult to specify the unknown model 

parameters at the planning stage. As we have discussed above, misspecification of 

model parameters leads to a false sense of statistical precision. When tests at all stress 

levels are simultaneously done, there are a few adjustments engineers can do when 

they finally realize that some model parameters are mis-specified.  

Second, the degree of difficulty in specifying the unknown model parameters is 

different, i.e. the amount of prior information we have on each unknown parameter is 

usually not the same. Zhang and Meeker (2006) have already provided a discussion on 

this issue. If we assume a log-location-scale failure-time distribution as well as a 

log-linear stress-life model, it might be relatively easier for us to specify the value of 

the slope parameter. In the case of the Arrhenius model, specifying the slope parameter 

is equivalent to specifying the Arrhenius activation energy. For many applications, the 

ranges of the activation energy for typical failure mechanisms have already been well 

defined particularly for consumer electronics. This even allows some ALT to be 

conducted at only one extreme stress level (e.g. MIL-STD-883). On the other hand, the 

specification of the intercept parameter and the scale parameter appears to be much 

more difficult. The value of the intercept parameter might be specified from 

product/design specifications, or prior knowledge from similar products, but the 

margin of the specification error is usually so high that easily lead to a poor plan which 

provides a false sense of statistical precision. For the scale parameter, what engineers 

usually know is whether it is larger or smaller than a certain value, say 1.  

Third, the values of the intercept and the slope parameters are directly related to 

the logarithm life at various stress levels. Conducting the ALT in a sequential manner 

will help in specifying the intercept parameter. Moreover, in situations where ALT with 



115 

 

more than one stress level cannot be simultaneously run, sequential testing is 

commonly adopted. Hence, when the test results of the first batch of units become 

available, engineers should be able to use this fresh information to plan or adjust the 

subsequent tests. For more discussions on sequential testing and design of experiment, 

one may refer to Chernoff (1972), Pilz (1991), Wetherill and Glazebrook (1986), and 

Michlin et al. (2008).  

In the rest of the chapter, we first present 1) the statistical model of a 

constant-stress ALT in Section 5.1.2; 2) the framework of the sequential ALT planning 

and inference in Section 5.2; 3) numerical examples that illustrates the application of 

the proposed method in Section 5.3; and 4) simulation studies that compare the 

performance of the sequential planning to that of the traditional non-sequential 

planning in Section 5.4. 

5.1.1. The Model 

The model presented in Section 3.2 is still in use. However, in order to facilitate the 

discussion of this chapter, new notations and different parameterization are introduced. 

Hence, the full model is given as follows,   

 k stress levels are involved in the test. Very often, the stress is (possibly 

transformed) is parameterized as (Nelson (1990), pp. 320)  

0( ) /( ) for 0,1,...,i i k kx s s s s i k= − − = .                           (5.1) 

In (5.1), ks is the highest stress and is specified; 0s is the design stress where a 

given percentile is to be estimated. Clearly, 0 1x = at 0s ; and 0kx = at ks .  

 N specimens are available for the test. At each stress level ix , in number of 

specimens are tested untill a pre-specified time ic (type-I censored). Let ir be the 
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number of failures at stress ix  and the failure timeT follows Weibull distribution. 

Hence, the logarithm failure timeY follows the Smallest Extreme Value (SEV) 

distribution with location iμ and scale iσ , i.e., 

( ; ) 1 exp( exp(( ) )) where  ( , )i iF y yθ θμ σ μ σ= − − − = . 

In this chapter, ijy denotes the logarithm failure time of the jth unit at stress i , and 

is standardized as ( )ij ij i iz y μ σ= − . Similarly, we also standardize the censoring 

time as (log( ) )i i i icζ μ σ= − , and define an index ijκ such that ijκ =1 if ij iz ζ< ; 

otherwise ijκ =0; 

 The location parameter μ depends on stress through a linear stress-life model 

0 1i ixμ β β= +                                                (5.2) 

From equation (5.1), we have 0 kβ μ= and 1 0 kβ μ μ= − . It is also noted that many 

important stress-life models, including the Arrhenius model and Inverse Power 

relationship can both be expressed by (5.2) after certain parameterizations (Nelson 

(1990)). 

 The scale parameter σ is a constant independent of stress, i.e. 

0 1 ... kσ σ σ σ= = = =  

The 100p-th percentile of the SEV distribution 0 0 1 0 0( )p py x x uβ β σ= + + ⋅  at the 

design stress 0x is to be estimated, where ln[ ln(1 )]pu p= − − .  

5.2. The Framework of the Sequential ALT Planning 

The framework of the sequential ALT planning is sketched in Figure 5.1. As seen in 

Figure 5.1, the sequential planning involves 2 stages. At stage 1, the test at the highest 



117 

 

stress level Hx is firstly planned and conducted in order to yield preliminary 

information on ( 0β ,σ ). This information is then used in stage 2 as one of the planning 

inputs.  

To plan the test at the highest stress Hx , one needs to specify the values of ( 0β ,σ ). 

Although the margin of specification error is high as discussed above, useful 

information on ( 0β ,σ ) are still obtainable after the test since enough failures are 

expected under the highest stress in most applications. At stage 2, both the optimum 

sample allocation and stress combinations for tests at lower stress levels are generated 

using the information obtained under the highest stress as well as the prior information 

on 1β . Details are presented below.  

 

  

 

  

 

 

 

 

 

 

Figure 5.1 Framework of the sequential ALT planning based on Bayesian method 
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5.2.1. STAGE 1: Planning for Test at the Highest Stress Level 

To plan the test at the highest stress level Hx , one needs to: 

 Specify the values of Hμ and Hσ . Note that, Hμ equals the intercept parameter 0β of 

the stress-life model andσ is a constant independent of stress.  

 Specify the test duration Hc and a reasonable number of failures HR to be expected 

for the test at the highest stress. Here, it is essential to see enough failures under 

the highest stress since results obtained at this stage is used as planning 

information for stage 2. Hence, given the test duration, an expected number of 

failures must be specified. In practice, the upper bound of HR is usually limited by 

cost considerations.   

Given the specified values of Hμ , Hσ , Hc and HR , the number of units needed for 

the test at Hx can be calculated as 

1 1(1 exp( ( exp( )) ))H
H H H Hn R c σμ −= ⋅ − −                               (5.3) 

 Preliminary information on ( , )H Hμ σ is obtained by analyzing the failure data 

obtained at the highest stress. Using the Bayes rule (Carlin and Louis (2000)), the 

posterior distribution ( , )H Hπ μ σ can be found in (5.4). Here, since the number of 

failures is expected to be large at the highest stress, a constant prior distribution 

of ( , )H Hμ σ is used as it does not risk the objectivity of our analysis  

  
( ) ( ) ( )( ) ( )( )

1
, exp log 1/ exp 1 exp

Hn

H H Hj H Hj Hj Hj H
j

z zπ μ σ κ σ κ ζ
=

⎧ ⎫
∝ + − − −⎨ ⎬

⎩ ⎭
∑   (5.4) 

If the mode of the posterior distribution is taken as the Bayesian 

estimate, ˆ ˆ ˆ[ , ]H H Hμ σ=θ is the value that maximizes ( , )H Hπ μ σ and is sometimes called 
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the generalized maximum likelihood estimate (Berger (1985), pp. 133). Based on the 

large sample theory (Berger (1985), pp. 244), the posterior 

density ( , )H Hπ μ σ asymptotically follows bivariate normal distribution as shown in 

(5.5), where ( )Hl θ is the likelihood function of Hθ ; ˆ
HΣ is the covariance matrix; 

and ˆ
HI is the Fisher information observed at ˆ

Hθ  

( )
( )2 1

2
ˆ

ˆ ˆ ˆ~ ,

logˆ ˆ ˆwhere ,

H H H

H
H H H

H

N

l −

=

∂ ⎡ ⎤= = −⎣ ⎦∂
θ θ

θ θ Σ

θ
I Σ I

θ

                       (5.5) 

Based on the results above, the estimate ˆ (0)py of the 100p-th life percentile at the 

highest stress Hx equals ˆ ˆH p Huμ σ+ ⋅ , and its posterior variance ˆvar( (0))py is calculated 

by ˆ[1, ] [1, ]p H pu u ′Σ . 

5.2.2. STAGE 2: Planning for Tests at Lower Stress Levels 

To plan the tests at lower stress levels, one needs to: 

 Specify the sample size and the test duration available for tests at lower stress 

levels.  

 Specify the total number of stress levels for tests under lower stresses.  

 Obtain the information on ( , )H Hμ σ yielded at the highest stress. 

 Specify a possible range 1 1[ , ]β β− + for the value of 1β . In practice, usually only the 

prior bounds of 1β is known (see e.g. Pilz (1991), pp. 16), we therefore assume that 

any value within the range 1 1[ , ]β β− + is equally likely to be true. 
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5.2.2.1 Deduction of the Prior Distribution 

Given the range of 1β and the approximated posterior distribution ( , )H Hπ μ σ , the prior 

distribution ( , )i iϑ μ σ of ( , )i iμ σ at any stress ix can be constructed using the 

relationships 1i H ixμ μ β= + and 0 1 ... kσ σ σ= = = . Equation (5.6) gives the pdf of the 

deduced prior distribution ( , )i iϑ μ σ . Similar ideas of prior distribution construction but 

for different problems can be found in Barlow et al. (1988), and Meinhold and 

Singpurwalla (1987)  

1 2 1/2

2 2
2

3/2 1/2

ˆ ˆ( , ) (2 var( ) var( )) (1 )

ˆ ˆ 1( ) 2 ( )( ) ( )            exp 2(1 )
ˆ ˆ ˆ ˆvar( ) var( ) var( ) var( )

1 (        exp
ˆ2 ( var( )) ( )

i

i

i i k

i i i i
i

k k i i

i i

d
ω

ω

ϑ μ σ π μ σ ρ

μ ω ρ μ ω σ σ σ σ ρ ω
μ μ σ σ ω ω

σ
π σ ω ω

+

−

− −

+ −

− +

= ⋅ −

⎛ ⎞⎛ ⎞− − − −
− − + − ⋅⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

= ⋅ −
−

∫
2ˆ ) erf ( ) erf ( )

ˆ2 var( )
1, 2,..., 1

i i

i k

σ ψ ψ
σ

− +⎡ ⎤− ⎡ ⎤⋅ −⎢ ⎥ ⎣ ⎦
⎣ ⎦

∀ = −
    (5.6) 

where 

1 1 1

1/2 1/2 1/2

2 1/2

1/2 1/2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , cov( , ) / var( ) var( )
ˆ ˆ ˆ ˆvar ( ) var ( ) ( ) var ( )

ˆ ˆ(2 var( ) var( )(1 ))
ˆ ˆ ˆvar ( ) var ( ) (

i H i i H i i H i H H H H

i H i H i H H
i

H H

i H i H i H
i

x x xω μ β ω μ β ω μ β ρ μ σ μ σ

μ σ ω σ ρ σ σ μψ
μ σ ρ

μ σ ω σ ρ σ σψ

− − + +

−
−

+
+

= + = + = + =

⋅ − ⋅ − − ⋅
= −

−

⋅ − ⋅ − −
= −

2

1/2

2 1/2

1/2

0

ˆ) var ( )
ˆ ˆ(2 var( ) var( )(1 ))

erf is the error function given by the definite integral erf ( ) 2

H

H H
z tz e dt

μ
μ σ ρ

π −

⋅
−

= ∫
 

5.2.2.2 Approximation of the Posterior Distribution 

A critical step is to evaluate the large-sample approximate covariance matrix iΣ of the 

preposterior distribution, ( )iπ θ , by conditioning on 1 1β β= , a value sampled from the 

prior distribution 1( )ϑ β . Note that, given 1 1β β= , the preposterior distribution, ( )iπ θ , at 
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lower testing stress ix (for 1,..., 1i H= − ) can be approximated by a bivariate normal 

distribution with covariance matrix  

1 2 2 2 2( ) log ( ) /  and [ ( ) / ]i i

i ii i i i iE lϑ ϑ ϑ−= + = −∂ ∂ = −∂ ∂θ θΣ I I I θ θ I θ θ     (5.7) 

where iϑI and
iθ

I are evaluated at 1ˆ ˆ( , )i H i Hxμ β σ= +θ . 

In equation (5.7), ( )2 2logi
i i

ϑ ϑ= ∂ ∂I θ θ is the information on iθ contained in the 

prior distribution ( , )i iϑ μ σ . Since the closed-from of ( , )i iϑ μ σ has been derived in 

equation (5.6), conventional numerical differentiation method can be used to 

evaluate iϑI (see Friedman and Kandel (1994)). 
iθ

I is the information expected to 

obtain from the test at stress ix conditioning on 1 1β β= . The closed-form expression 

of
iθ

I can be easily derived as follows 

2 2 11 12

12 22
[ ( ) / ]

i i i i
I IE l n I I

⎛ ⎞= −∂ ∂ = ⋅⎜ ⎟
⎝ ⎠θI θ θ ,                                          

where 

2
11

2 2
12 21

2
22

(1 ( )) exp( )

(1 ( ))

(1 ( ))

I B

I I A B C G

I A D E F H

σ ζ ζ

σ σ ζ

σ ζ

⋅ = − −Φ

⋅ = ⋅ = + + + −Φ

⋅ = + + + + −Φ

,                                           

and 

1

1

1

1 exp( exp( )) exp( exp( )) exp( exp( )) 1
1 exp( exp( ))(1 (1 exp( ))) (exp( ))
2 exp( exp( )) 2 (exp( )) 2
2 2exp( exp( ))(1 (1 exp( ))) 2 (exp( )) 2

exp( ) exp( ) 2 exp( )

A B
C E
D E
E E

G H

ζ ζ ζ ζ
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= − − = − − 2
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1
1

exp( )

exp(2 exp( ))

( ) is the exponential integral defined as exp( )

 is the Euler's constant, which is approximately 0.577216
( ) 1- exp( exp( )) is the standard SEV Cdf

x

F x x x dx

E x t t dt
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∞ −
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∫
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After iΣ has been found, the preposterior expectation
1
(var( ( )))p iE y xβ of the 

posterior variance var( ( ))p iy x at the stress ix is computed by averaging var( ( ))p iy x over 

the specified range of 1β as shown in equation (5.8)  

1

1
1

1 1(var( ( ))) (1, ) (1, ) ( ) 1,..., 1T
p i p i pE y x u u d i H

β

β β
ϑ β β

+

−
= ∀ = −∫ Σ         (5.8) 

The Monte-Carlo integration method can be used here to evaluate (5.8) (see 

Robert and Casella (1999)).  

5.2.2.3 The Bayesian Planning Problem 

To derive an appropriate plan for tests at lower stress levels for 1, 2,..., 1i k= − , both 

sample allocation in and stress level combinations ix must be chosen according to a 

certain planning criterion. In this chapter, the optimal plan for tests at lower stresses 

minimizes the preposterior expectation
1
(var( (1)))pE yβ of the posterior variance (1)py at 

use stress. This is done by optimizing the stresses 1 2 1( , ,..., )kx x x − on which the tests are 

to be conducted, and the number of samples 1 2 1( , ,..., )kn n n − allocated to each chosen 

stress.  

Let 

( )
1 1

1 1 1 T

H Hx x x−
=X                             

be the design matrix;Λ be the diagonal matrix given by 

1

1

1

1

(var( ( )))

(var( ( )))

var( (0))

p

p H

p

E y x

E y x

y

β

β −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Λ  

and (1,1)=1 . The sequential optimum ALT plan can be obtained by solving the 



123 

 

following 

1

1 1

1 11

Min   (var( (1))) ( )

s.t.   0  and  0 1

T T
p

H
i i Hi

E y

n N n x x

β
− −

−=

=

= ≥ < < < ≤∑
1 X Λ X 1

   .             (5.9)  

Note that while ˆvar( (0)) (1, ) (1, )T
p p H py u u= Σ ,

1
(var( ( )))pE y xβ for all low stresses 

need to be evaluated numerically. Fortunately, in practice, the number of lower stress 

levels is typically no more than three and additional constraints are imposed to reduce 

the dimensionality of the solution space. An example will be given later. 

It is noted that the Bayesian planning approach presented above is based on the 

approximate normality. Hence, Clyde (1993) suggested several approaches that can be 

used to ensure the normality of the posterior distribution. One may also refer to Kass 

and Slate (1994) for useful diagnostics for posterior normality.  

In the next section, numerical examples are presented to illustrate the application 

of the proposed sequential ALT planning. Simulation studies are conducted after that. 

5.3. Numerical Examples 

The numerical example presented below is taken from examples 20.1 ~ 20.4 of Meeker 

and Escobar (1998). In this example, engineers responsible for the adhesive bond 

reliability need to estimate the 0.1 percentile of failure-time distribution at the use 

operating temperature of 50ºC. 300 units and 183 days are available for the test. 

Existing engineering knowledge suggests that Weibull distribution is a reasonable 

model for the bond failure times and the Arrhenius relationship is an appropriate 

underlying stress-life model when the operating temperature ranges from 50ºC to 

120ºC.  

Both ALT plans with 2 and 3 stress levels are developed in this section using the 



124 

 

proposed method. To make the presentation clear, a simple summary of planning steps 

are presented as below,  

Stage 1: Planning the test at the highest stress Level Hx . This step determines the 

number of units to be tested at the highest stress level. By analyzing the data collected 

at the highest stress, preliminary information on 0( , )β σ is obtained.  

Stage 2: Planning the tests at lower stress levels. Based on the information 

obtained at the highest stress, and the prior knowledge about the slope parameter 1β , 

prior distributions for parametersμ andσ at lower stresses are derived. Both sample 

allocation and stress level combination at lower stresses are then optimized.  

5.3.1. Planning an ALT with 2 Stress Levels 

5.3.1.1 STAGE 1: Planning the test at the Highest Stress Level Hx  

The test at the highest stress level Hx is firstly planned and conducted. Given the 

planning values 0 4.72β = and 0.6σ = , we generate (using equation (5.3)) the contour 

plot of the sample size Hn versus the expected number of failures HR and the censoring 

time Hc . 

As seen in Figure 5.2, more units are needed for a larger value of HR given the test 

duration. Let 15HR = and 60Hc = days, Hn is approximately 50 from Figure 5.2.  
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Figure 5.2 Contour plot of Hn against HR and Hc  

 

Suppose the test at the highest stress Hx has been conducted and 50 failure times 

are obtained as shown in Table 5.1. These data are simulated assuming the model 

parameters 0 4β = and 0.8σ = ; and “_” denotes the censored data. 

Table 5.1 Failure times at the highest stress level Hx   
Failure Times at Hx  (day) 
33.3, 48.4, 39.3, 58.8, 47.4, 60.0, 33.6, 19.4, 38.0, 28.6, 60.0, 53.2, 17.7, 25.4, 44.5, 
34.6, 16.9, 60.0, 31.7, 60.0 ,49.2, 60.0, 10.953, 60.0, 18.8, 3.3, 1.4, 17.3, 46.8, 40.9, 
60.0, 28.4, 60.0, 4.2, 21.9, 49.6, 20.6, 60.0, 46.6, 6.4, 25.2, 60.0, 13.6, 29.5, 60.0, 60.0, 
31.3, 29.4, 54.3, 34.0 

 

Based on the data in Table 5.1, the posterior distribution ( , )H Hπ μ σ shown in 

Figure 5.3 is derived from a constant prior distribution of ( , )H Hμ σ . 

Here, ˆ 3.87Hμ = , ˆ 0.65Hσ = , and [ ]1ˆ ˆ[ ] 0.0112,0.0003;0.0003,0.0086H H
−= − =Σ I .  

As discussed, the posterior distribution ( , )H Hπ μ σ can be approximated by a 

bivariate normal distribution 1ˆˆ ˆ([ , ],[ ] )H H HN Iμ σ −− using equation (5.5). Figure 5.4 

shows the approximated distribution. In practice, the quality of this type of 

approximation, which is substantially determined by the sample size, can be simply 

quantified by special hypothesis tests, say, the Kolmogorov-Smirnov (KS) tests as 
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shown in the example given by Martz et al (1988). In addition, one may also refer to 

Kass and Slate (1994) for diagnostics of posterior normality.  

        
     Figure 5.3 Posterior distribution ( ),H Hπ μ σ  

 
           Figure 5.4 Approximation of the posterior distribution ( ),H Hπ μ σ  

5.3.1.2 STAGE 2: Planning the Test at the Low Stress Level Lx  

 Quantify the Value of the Slope Parameter 

In this example, the Arrhenius model is employed for modeling the dependency 

of μ on temperatureT , i.e. 

5

Activation energy, 1log
Boltzmann constant, 8.6171 10

a

B

EA
k T

μ −= + ⋅
= ×
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 Let 1s T= and 0( ) ( )k kx s s s s= − − , the re-parameterization of the Arrhenius 

model yields the linear stress-life model as 

( )
0 1

0 1 0where  log a a
k k

B B

x
E EA s s s
k k

μ β β

β β

= +

= + ⋅ = ⋅ −
 

Hence, specifying the value of 1β here is equivalent to specifying the Arrhenius 

activation energy aE . In this project, the activation energy of the adhesive bond is 

thought to be within the range of (0.6, 0.8), then, the slope parameter 1β is roughly 

within the interval (3.84, 5.12) as 1
1 0( )a B kE k s sβ −= ⋅ ⋅ − . 

 Deduction of the Prior Distribution for ( iμ , iσ ) 

At any lower stress level ( ]0,1ix ∈ , the prior distribution ( , )i iϑ μ σ of ( , )i iμ σ is obtained 

from equation (5.6). In Figure 5.5, we present two examples of the constructed prior 

distributions respectively at the stress 0.5ix = and 1ix = .  

As discussed, the prior distribution is deduced based on the approximated 

posterior distribution ( , )H Hπ μ σ and the interval of 1β . Hence, we are seeing the sports 

field shaped contour of the constructed prior distribution, especially when 1ix = . This 

observation suggests that the uncertainty over iμ grows as the distance 

between ix and Hx becomes larger; or equivalently, the prior information on iμ becomes 

vague when the distance between ix and Hx increases.  
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Figure 5.5 Examples of the constructed prior distribution ( ),i iϑ μ σ  

 Optimize the Location of Lx  

250 units and 123 days are left to conduct the test at the low stress level Lx . Using 

equation (5.7), the approximate posterior distribution ( , )i iπ μ σ of ( , )i iμ σ at stress ix can 

be derived. For this adhesive bond reliability test, engineers are interested in the 0.1 

percentile of the failure time distribution at use condition. Hence, given the 

information yielded by the test at the highest stress level Hx , the 

optimum *
Lx minimizes

1 0.1(var( (1)))E yβ at use condition. This is done by solving 

equations (5.9). Figure 5.6 plots
1 0.1(var( (1)))E yβ against stress Lx . The optimum 

* 0.8Lx = (62ºC) can be directly read from the figure.  
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Figure 5.6 Plot of [var( (1))]pDE yt against stress Lx  

Compared to the conventional non-sequential (static) planning (Meeker and 

Escobar, 1998, Chapter 20), the sequential ALT planning reduces the range of 

extrapolation in estimating the 0.1 percentile at use condition. This is because an 

informative prior distribution has been constructed for ( , )L Lμ σ . Hence, we can further 

push the optimum *
Lx towards the design level. More details are presented in simulation 

studies.  

 Effect of the Specified Range of 1β  

In the planning above, the activation energy of the adhesive bond is thought to be 

within the range (0.6, 0.8), that is, the slope parameter 1β is roughly within (3.84, 5.12). 

Suppose now we extend the upper bound of the activation energy to 0.9, i.e. the range 

of the slope parameter 1β  becomes (3.84, 5.76). This modification indicates a higher 

perceived bond reliability, i.e. fewer failures are expected at a particular lower stress 

level. Intuitively, the optimum *
Lx should be increased from the current level 0.8 so as to 

produce more failures. This is confirmed by the new optimal *
Lx =0.7 (68ºC).  
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Figure 5.7 Effect of the pre-specified interval of 1β  

5.3.2. Planning of a Compromise ALT with 3 stress Levels 

ALT plans with two stress levels are known to be less robust against modeling error as 

discussed in both Nelson (1990) and Meeker and Escobar (1998). In fact, they are 

usually used as benchmarks for more practical compromise plans which consist of 

more than two stress levels. In this section, we shall illustrate the approach to planning 

tests at both middle and low stresses, given the testing results obtained from the 

highest stress.   

For meaningful inference, the minimum expected number of failures LR and MR at 

both Lx and Mx need to be specified. Typically, at least 4 or 5 failures should be obtained 

as suggested in Meeker and Escobar (1998). As the key role of having the middle 

stress level is to check for curvature in the stress-life relationship, we set the middle 

stress Mx at the mid-point of Lx and Hx , i.e. ( ) / 2 / 2M L H Lx x x x= + = .  

Suppose M L Mn nπ += ⋅ units are allocated to the middle stress level, 
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where L M Hn N n+ = − is the remaining testing units and 0 1π≤ ≤ . In our formulation, 

both π and the low stress level Lx are the decision variables in the following 

optimization problem which involves non-linear constraints  

1 0.1: (var( (1)); , )

. .
(1 ) ( ) , ( )

0 2 1 , 0 1

L

L M L L L M M M

H L M

Min E y x

s t
n p x R n p x R

x x x

β π

π π
π

+ +⋅ − ⋅ ≥ ⋅ ⋅ ≥
= < = ≤ ≤ ≤

                    (5.10) 

where ( )Lp x and ( )Mp x respectively denotes the failure probability at the low and 

middle stress level. From the prior distribution ( , )L Lϑ μ σ and ( , )M Mϑ μ σ obtained using 

equation (5.6), we have  

0

0

( ) (1 exp( exp( ))) ( , )

( ) (1 exp( exp( ))) ( , )

L L L L L L

M M M M M M

p x d d

p x d d

ζ ϑ μ σ σ μ

ζ ϑ μ σ σ μ

∞ ∞

−∞

∞ ∞

−∞

= − −

= − −

∫ ∫
∫ ∫

 

For the optimization problem (5.10), Figure 5.8 depicts the feasible 

region S when 5L MR R= = (see the later numerical example). It is noted that, the 

feasible region S will be empty if the sample size L Mn + is too small to achieve the 

minimum number of failures LR and MR required. In addition, the feasible region is not 

convex as the curve ( )L M M Mn p x Rπ+ ⋅ ⋅ = is not convex w.r.t. Lx , and the 

curve (1 ) ( )L M L Ln p x Rπ+ ⋅ − ⋅ = is not concave w.r.t. Lx .   

To solve the optimization problem (5.10) with nonlinear constraints, the interior 

penalty function method (Fiacco and McCormick (1968)) can be used. By adding 

some multiple of the negative of the inverse of the constraint equations, this method 

modifies the function
1 0.1(var( (1)))E yβ to form a new unconstrained objective function  
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1

6 1
0.1 1

1 2

3 4 5 6

( , , ) (var( (1)); , ) , 0

where    (1 ) ( ) , ( )
             1 , , 1 ,      

L L ii

L L M L M L M M

L L

F x k E y x k g k

g R n p x g R n p x
g x g x g g

βπ π

π π
π π

−
=

+ +

= − >

= − ⋅ − ⋅ = − ⋅ ⋅
= − = − = − = −

∑
         (5.11) 

If a monotonically decreasing sequence ( ){ }ik , ( ) 0ik ↓ , is chosen in (5.11), we can 

easily find the optimum point ( ) ( )( , )i i
Lx π that minimizes the unconstrained object 

function ( )( , , )i
LF x kπ . Fiacco and McCormick (1968) have shown that   

( ) ( ) * *lim( , ) ( , )i i
L Li

x xπ π
→∞

=  

where * *( , )Lx π is the optimum point for problem (5.10).  

Figure 5.8 depicts the trajectory of ( ) ( )( , )i i
Lx π as ( )ik decreases. Within each iteration, 

( ) ( )( , )i i
Lx π  is found by the well known Newton-Raphson method.  

 

Figure 5.8 Results of applying the penalty function method 

 It is seen that the optimum point * * ( ) ( )( , ) lim( , )i i
L Li

x xπ π
→∞

= is found at the extreme 

corner of the feasible region S which is approximately (0.78,0.08) . Similar result is 

plotted in Figure 5.9, where the response value represents the
1 0.1(var( (1)); , )LE y xβ π in 

log-scale.  
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Figure 5.9 The optimum point lies on the extreme corner of the feasible region 

Substitute * 0.78Lx = and * 0.08π =  into the equation (5.10), we 

obtain
1

* *
0.1(var( (1)); , ) 0.0588LE y xβ π = . Table 5.2 summarizes the compromise plan for 

the adhesive bond test.  

Table 5.2 Compromise sequential ALT plan 

Condition 
Temp. 

iT  

Stress 

ix  

Test 

Duration ic  

Sample 

Allocation, in  

Expected Failures, 

iR  

Use 50ºC 1    

Low 63ºC 0.78 123days 230 5 

Mid 89ºC 0.39 123days 20 5 

High 120ºC 0 60days 50 15 

(The pre-posterior expectation
1 0.1(var( (1)))E yβ of 0.1var( (1)y is approximately 0.0588) 

 

The above plan can be validated by simulation as follows. Suppose now the tests 

are conducted at * 0.78Lx = and * 0.39Mx = based on the plan given in Table 5.2. Table 5.3 

presents the simulated failure data using the assumed model 

parameters 0 4β = , 1 4.5β = , and 0.8σ = . As we can see, 5 failures are obtained from 



134 

 

the test at Lx ; 4 failures are obtained from the test at Mx . 

Table 5.3 Simulated failure times at * 0.78Lx = and * 0.39Mx =  

Failure times at 0.78Lx =  Failure times at 0.39Mx =  

22.8 
44.8 
59.1 
84.4 
87.7 
105.2 

123 (×224) 

46.1 
62.5 
86.2 
98.9 
101.7 

123 (×15) 

  (“_” denotes the censored data) 

 

Using equation (5.6), the prior distribution ( , )i iϑ μ σ of ( , )i iμ σ at both stress 

levels *
Lx and *

Mx can be constructed. Then, the estimates ˆ ˆ( , )i iμ σ at these 2 stress levels 

are those values that maximize the posterior distribution ( , )i iπ μ σ . This is equivalent to 

maximizing equation (5.12) 

1

log ( , ) log( ( , )) ( ( log exp( )) (1 )exp( )) Constant
in

i i i i ij i ij ij ij ij
j

z zπ μ σ ϑ μ σ κ σ κ ζ
=

= + − + − − − +∑
  (5.12) 

Then, we obtain ˆ 7.24Lμ = , ˆ 0.664Lσ = and ˆ 5.28Mμ = , ˆ 0.594Mσ = . Similar to 

equation (5.7), the posterior distribution ( , )i iπ μ σ is asymptotically normally 

distributed with mean ˆ
iθ and variance matrix ˆ

iΣ as given by equation (5.13), where ˆ
iθ

I is 

the Fisher information observed at ˆ ˆ ˆ( , )i i iμ σ=θ  

1

2 2 2 2
ˆ

ˆ ˆ ˆˆ ˆ[ , ] , [ ( )]
ˆwhere log ( ) , log ( )

i

i

i

i i i

i i i i

i i i il

ϑ

ϑ

μ σ

ϑ

−

=

= = − +

= ∂ ∂ = ∂ ∂

θ

θ θ θ

θ Σ I I

I θ θ I θ θ
            (5.13) 

 Then, we have 

[ ]ˆ 0.0381,0.0061;0.0061,0.0042L =Σ , [ ]ˆ 0.0162,0.0020;0.0020,0.0068M =Σ           
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Figure 5.10 shows the approximated posterior distributions of ( , )i iμ σ as well as 

the prior distributions for both stress levels * 0.78Lx = and * 0.39Mx = . 

 

Figure 5.10 Approximated posterior distributions ( , )M Mπ μ σ and ( , )L Lπ μ σ  

 

Finally, the 10th life percentile at use condition is given by 

1 1 1
.1ˆ (1) ( ) ( ) 6.728T Ty − − −= =1 X Λ X X Λ Y  ,                            (5.14) 

with variance 

1 1
.1ˆvar( (1)) ( ) 0.0541T Ty − −= =1 X Λ X 1  ,                             (5.15) 

where 

.1 .1

.1 .1

.1 .1

ˆ ˆ(0.78) var( (0.78))1  0.78
ˆ ˆ1  0.39 (0.39) var( (0.39))
ˆ ˆ1    0 (0) var( (0))

y y
y y
y y

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
X Y Λ                 

and 

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

ˆˆ ˆ ˆ ˆ(0.78) 5.746, var( (0.78)) (1, ) (1, ) 0.0318
ˆˆ ˆ ˆ ˆ(0.39) 3.943, var( (0.39)) (1, ) (1, ) 0.0492

ˆˆ ˆ ˆ ˆ(0) 2.407, var( (0)) (1, ) (1, ) 0.053

T
L L L

T
M M M

T
H H H

y u y u u

y u y u u

y u y u u

μ σ

μ σ

μ σ

= + = = =

= + = = =

= + = = =

Σ

Σ

Σ

      

We see that .1ˆvar( (1)) 0.0541y = is close to the preposterior expectation of the 
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large-sample approximate posterior variance
1 0.1(var( (1))) 0.0544E yβ = .  

5.4. Comparison of the Sequential Plan with Static Plan 

Simulation studies are conducted in this section to compare the performance of the 

sequential ALT planning to that of the traditional static (non-sequential) ALT planning. 

The comparison is based on both the statistically optimum test plan with 2 stress levels 

and compromise plan with 3 stress levels. For the static planning, plans are generated 

by the commonly used Maximum Likelihood (ML) method described by Meeker & 

Escobar (1998), and the simulated failure data is then analyzed using the Maximum 

Likelihood Estimation (MLE). For the sequential planning, plans are generated 

sequentially using the method proposed in this chapter, and the simulated failure data 

are analyzed by the proposed method as shown in the numerical example above. 

5.4.1. Generation of Failure Data 

We assume that the logarithm failure times at each stress level follow the SEV 

distribution with a constant scale parameterσ . The location parameter μ is a linear 

function of the standardized stress, i.e. 0 1 , [0,1]x xμ β β= + ∈ . Failure times are 

simulated using the assumed values 0 4β = , 1 4.5β = , and 0.8σ = .  

Particularly, when the sequential planning is used, the test at the high stress 

level Hx is conducted first. Again, 15 failures are expected within 60 days for this test 

run.  
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5.4.2. Simulation Design 

To examine the effects of misspecification of model parameters, we consider 9 

scenarios of how these parameters are (mis)specified as given in Table 5.4.  

Table 5.4 Simulation design 

Simulation 

Scenarios 

Pre-specified 

0β  

Pre-specified 1β  

Pre-specifiedσ  Non-sequential 

Planning 

Sequential 

Planning 

1 ( )0  ( )0  ( )− ~ ( )+  ( )0  

2 ( )−  ( )−  ( )− ~ ( )+  ( )−  

3 ( )−  ( )−  ( )− ~ ( )+  ( )+  

4 ( )−  ( )+  ( )− ~ ( )+  ( )−  

5 ( )−  ( )+  ( )− ~ ( )+  ( )+  

6 ( )+  ( )−  ( )− ~ ( )+  ( )−  

7 ( )+  ( )−  ( )− ~ ( )+  ( )+  

8 ( )+  ( )+  ( )− ~ ( )+  ( )−  

9 ( )+  ( )+  ( )− ~ ( )+  ( )+  

 

Similar to DOE, “ ( )+ ” implies that the model parameter is over-specified to its 

upper bound “ +⋅ ”; “ ( )− ” implies that the model parameter is specified to its lower 

bound “ −⋅ ”; and “ (0) ” implies that the model parameter is correctly specified.  

In our design, we set the upper bound 0 5β + = , which is 25% higher than its true 

value; the lower bound 0 3β − = , which is 25% lower than its true value. Since the slope 

parameter is usually easier to be specified in practice, we let the upper bound 1 5β + = , 
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which is 12.55% higher than its true value; the lower bound 1 4β − = , which is 12.55% 

lower than its true value. Further, we let 1σ + = , which is 25% higher than its true value; 

0.6σ − = , which is 25% lower than its true value. When the sequential planning 

method is used, the pre-specified range of 1β is always 1 1[ , ]β β− + .  

For each scenario, 100 simulation runs are conducted. Within each simulation run, 

optimum ALT plans are generated using both sequential and static planning methods. 

Under each generated plan, failure times are simulated, and the 0.1 percentile 0.1(1)y is 

estimated.  

5.4.3. Simulation Results 

Simulation results are presented in Table 5.5. For each simulation scenario, planning 

outputs using both methods are given in columns “Outputs”. There are two 

sub-columns under “Std. Dev”: sub-column “A” is the asymptotic standard error (for 

static planning) or the pre-posterior expectation of the posterior standard error (for 

sequential planning) of the estimate 0.1ˆ (1)y given by the developed plans, denoted 

as 0.1ˆAse( (1))y ; sub-column “B” is the sample standard deviation of the 

estimate 0.1ˆ (1)y calculated from 100 repeated simulation runs, denoted as 0.1ˆSD( (1))y . 

For each simulation run, the estimate 0.1ˆ (1)y is plotted as shown in Figure 5.11.  
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Table 5.5 Comparison between the sequential and static ALT plan with 2 stress levels 

 

Static Planning Sequential Planning 

Inputs Outputs 
Std. Dev. 

Inputs Outputs 
Std. Dev. 

A B A B 

1 0 4β =  

1 4.5β =  

0.8σ =  

183c =  

300n =  

61Hn =  

239Ln =  

0.51Lx =  

( 081 CLT = ) 

 

0.242 0.384 
0 4β = , 0.8σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

22Hn = , 278Ln =  

0.85Lx = ( 059 CLT = ) 

0.269 0.207 

2 0 3β =  

1 4β =  

0.6σ =  

183c =  

300n =  

50Hn =  

250Ln =  

0.7Lx =  

( 068 CLT = ) 

 

0.107 0.319 
0 3β = , 0.6σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

15Hn = , 285Ln =  

0.8Lx = ( 062 CLT = ) 

0.310 0.227 

3 0 3β =  

1 4β =  

1σ =  

183c =  

300n =  

58Hn =  

242Ln =  

0.7Lx =  

( 068 CLT = ) 

 

0.167 0.267 
0 3β = , 1σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

16Hn = , 284Ln =  

0.9Lx = ( 056 CLT = ) 

0.320 0.229 

4 0 3β =  

1 5β =  

0.6σ =  

183c =  

300n =  

68Hn =  

232Ln =  

0.53Lx =  

( 080 CLT = ) 

0.137 0.334 
0 3β = , 0.6σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

15Hn = , 285Ln =  

0.8Lx = ( 062 CLT = ) 

0.310 0.227 

5 0 3β =  

1 5β =  

1σ =  

183c =  

300n =  

50Hn =  

250Ln =  

0.69Lx =  

( 069 CLT = ) 

 

0.194 0.272 
0 3β = , 1σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

16Hn = , 284Ln =  

0.9Lx = ( 056 CLT = ) 

0.320 0.229 
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6 0 5β =  

1 4β =  

0.6σ =  

183c =  

300n =  

87Hn =  

213Ln =  

0.35Lx =  

( 092 CLT = ) 

 

0.405 0.622 
0 5β = , 0.6σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

16Hn = , 224Ln =  

0.95Lx = ( 053 CLT = ) 

0.250 0.168 

7 0 5β =  

1 4β =  

1σ =  

183c =  

300n =  

57Hn =  

243Ln =  

0.59Lx =  

( 075 CLT = ) 

 

0.378 0.287 
0 5β = , 1σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

16Hn = , 224Ln =  

0.95Lx = ( 053 CLT = ) 

0.274 0.212 

8 0 5β =  

1 5β =  

0.6σ =  

183c =  

300n =  

95Hn =  

205Ln =  

0.28Lx =  

( 096 CLT = ) 

 

0.528 0.721 
0 5β = , 0.6σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

16Hn = , 224Ln =  

0.95Lx = ( 053 CLT = ) 

0.250 0.168 

9 0 5β =  

1 5β =  

1σ =  

183c =  

300n =  

74Hn =  

226Ln =  

0.47Lx =  

( 084 CLT = ) 

 

0.509 0.405 
0 5β = , 1σ =  

1 ~ (4,5)uniformβ  

183c =  300n =  

15HR =  

60Hc = , 123Lc =  

16Hn = , 224Ln =  

0.95Lx = ( 053 CLT = ) 

0.274 0.212 

 

 



141 

 

 

Figure 5.11 Plot of estimated 0.1ˆ (1)y of each simulation run for all scenarios 
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Three key observations from the simulation results presented in Table 5 and Figure 

11 are:  

♦ The sequential ALT plan yields an estimate 0.1ˆ (1)y with higher precision 

For both planning methods, Figure 5.12 depicts the standard deviation of 0.1ˆ (1)y  

(both the 0.1ˆAse( (1))y given in the sub-column “A” and the sample standard 

deviation 0.1ˆSD( (1))y given in the sub-column “B”) for each simulation scenario. It is 

clear that the sequential plan consistently yields smaller 0.1ˆSD( (1))y than the 

non-sequential static plan for all scenarios.  

 

Figure 5.12 Plot of standard deviation of 0.1ˆ (1)y for all simulation scenarios 

In addition, based on the plot in Figure 5.12, the sequential plan appears to provide 

a conservative planning result since the 0.1ˆAse( (1))y given by the sequential plan is 

larger than the sample standard deviation 0.1ˆSD( (1))y for all scenarios. However, this 

conclusion does not always hold. Recall that the sequential plan is developed 

(averaged) over a specified range 1 1[ , ]β β− + of 1β . Conceivably, when the true value 

of 1β is small, say, somewhere near 1β
− , more failures might be obtained at lower stress 

levels than it is expected, thus the sample standard deviation 0.1ˆSD( (1))y tends to be 
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smaller than the pre-posterior expectation 0.1ˆAse( (1))y . On the other 

hand, 0.1ˆSD( (1))y can be larger than 0.1ˆAse( (1))y if the true value of 1β is larger than it is 

expected.   

 In fact, it is not easy to conclude that which (pre-specified) parameter(s) causes 

the dramatic change of 0.1ˆSD( (1))y for the static plan. What might be helpful here is to 

compute the “effect” of each (pre-specified) parameter using the method that has been 

widely applied to analyze the results of a 32  factorial experiment, namely, we estimate 

the “effect” of each parameter and their interactions by (Montgomery and Runger, 

(2003)) 

3 1

ContrastEffect
2 −=                                               (5.16) 

The results are presented in Table 5.6. It can be seen that the intercept 

parameter 0β , the slope parameter 1β , and their interaction have relatively larger effect 

on 0.1ˆSD( (1))y for the static plan. This observation supports the third motivation of the 

proposed sequential planning discussed in the introduction. By conducting the ALT in 

a sequential manner helps in specifying the intercept parameter 0β . By using a prior 

distribution of 1β addresses the uncertainty associated to the slope parameter. Therefore, 

it is possible to enhance the robustness of the plan against mis-specification of model 

parameters. 

Table 5.6 Effect of pre-specified model parameters and their interactions 

 0β  1β  σ  0β 1β  0β σ  1β σ  0β 1β σ  

Effect 0.1945 -0.2075 0.043 -0.1180 0.0655 0.0185 -0.009 

 

♦ Sequential ALT plan is more robust to the misspecification of model 

parameters.  
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As clearly seen in Figure 5.12, both ( )0.1ˆAse (1)y and ( )0.1ˆSD (1)y yielded by the 

sequential plan remain stable across different scenarios, that is, the sequential plan is 

robust to the pre-specified model parameters. We compute the relative error (RE) 

between ( )0.1ˆAse (1)y and ( )0.1ˆSD (1)y for both plans. Figure 5.13 plots the computed RE 

(in its absolute value) for each scenario. It is seen that, the RE curve of the sequential 

plan is considerably stable and always under the RE curve of the static plan. This 

observation supports the conclusion that the robustness of an ALT plan can be greatly 

improved using the sequential testing scheme even without affecting the total test 

duration at times. 

 

Figure 5.13 Plot of RE for all simulation scenarios 

♦ The sequential ALT plan decreases the degree of extrapolation.  

In choosing levels of the accelerating variable, it is necessary to balance 

extrapolation in the accelerating variable with extrapolation in time (Meeker and 

Escobar (1998), Chapter 20). Hence, we compare the optimum low stress level for 

both sequential and static plan under each simulation scenario. The results are shown 

in Figure 5.14.  
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Figure 5.14 The optimum low temperature level for all simulation scenarios 

As seen from the figure, the optimum low stress level can be further push towards 

the use condition if the sequential test plan is adopted. As discussed above, this is 

because an informative prior distribution of ( , )i iμ σ is constructed for test planning at 

the low stress. In addition, it is also observed that the optimum low temperature 

yielded by the sequential plan does not vary dramatically across different simulation 

scenarios, namely, the sequential ALT plan is less sensitive to the pre-specified 

planning values. 

5.4.4. Comparison of the Sequential Plan with Compromise Plan 

The comparison above is based on two-level optimal plans. Such plans are known 

not to be robust to mis-specification of planning values, but usually used as 

benchmarks for more practical compromise plans which consist of more than two 

stress levels (Meeker and Escobar, (1998)). For example, the 4:2:1 test plan proposed 

in Meeker and Hahn (1985) is a special type of compromise plan which allocates 4/7, 

2/7, and 1/7 of all units to three equally-spaced stress levels Lx , ( ) / 2M L Hx x x= + , 

and 0Hx = . In this section, we present a comparison study between the proposed 
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sequential plan and the 4:2:1 static compromise plan based on the adhesive bond 

example presented above. All numerical settings remain unchanged.  

 In order to design a meaningful and fair comparison study, two issues must be 

addressed,  

♦ For the static compromise planning, both sample size allocation and stress level 

combination for all stress levels are simultaneously optimized. For the proposed 

sequential planning, however, the sample allocation at the highest stress is firstly 

determined using a different approach. Hence, it is appropriate to compare the 

proposed sequential plan to the 4:2:1 plan as the sample allocation to each stress level 

can be fixed for both sequential and static plans. 

♦ The testing duration Hc at the highest stress for the sequential plan must be 

pre-determined. In this comparison study, we consider three testing durations 

as 30Hc = , 60Hc = and 90Hc = . For each Hc , all the 9 scenarios listed in Table 4 are 

studied.  

The comparison results are presented in Table 5.7. In this table, Up and Hp are 

respectively the failure probability at use condition and the highest stress level; “Ase” 

is the asymptotic standard error (for static plan) or the pre-posterior expectation of the 

posterior standard error (for sequential plan) of the estimate 0.1ˆ (1)y given by the testing 

plans; “ASR” is known as the asymptotic sample ratio which is defined as  

*
0.1 0.1

*
0.1

ˆ ˆAse( (1)) -Ase ( (1))ASR 100%
ˆAse ( (1))

y y
y

= ×                              (5.17) 

where *
0.1ˆAse ( (1))y is the “Ase” when all model parameters are correctly specified, i.e. 

the 0.1ˆAse( (1))y for the simulation scenario 1.  

Clearly, ASR measures the robustness of the developed plans to the 

mis-specification of model parameters. This idea is partially borrowed from Pascual 
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and Montepiedra (2003). In their work, the authors used the ASR, defined in a different 

way, to measure the planning robustness against mis-specification of failure time 

model. 

Figure 5.15 plots the ASR for both the static 4:2:1 plan and sequential plan under 

all simulation scenarios. It is immediately seen that the ASR of the sequential plan is 

smaller than that of the 4:2:1 plan. Particularly, when the test duration at the highest 

stress is short, say 30Hc = , the sequential plan appears to be more sensitive to the 

pre-specified model parameters. This is because the preliminary information 

on 0β andσ is vague when not enough failures are obtained at the highest stress, and the 

developed plan dependents more on the specified model parameters which can be 

mis-specified. 

 
Figure 5.15. Plot of ASR for all simulation scenarios 

 

 In addition, it is interesting to observe that the lowest stress level Lx yielded by the 

sequential plan is 1 or very much close to 1. As we have discussed above, this is due to 

an informative prior distribution on ( , )Lμ σ has been used. Hence, to ensure enough 

failures, it is highly recommended to specify a minimum number of failures LR at 

stress Lx as we did in the numerical example. On the other hand, if little information 

on 0β andσ is obtained from the test at the highest stress, or the prior knowledge on 1β is 
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vague, the lower stress level Lx will become higher so as to generate more failures.    
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Table 5.7 Comparison between the sequential plan and the static 4:2:1 ALT plan 

Scenario 
4:2:1 Plan Sequential Plan, 30Hc =  Sequential Plan, 60Hc =  Sequential Plan, 90Hc =  

Up  Hp  Lx  Lp  Ase  ASR Lx  Lp  Ase  ASR Lx  Lp  Ase  ASR Lx  Lp  Ase  ASR 

1 .0162 .9893 .51 .2270 .2868 1 1 .0134 .2478 1 .98 .0090 .2528 1 .98 .0081 .2629 1 

2 .0493 .9999 .70 .3188 .1288 55.0% .96 .0236 .1828 26.2% .98 .0107 .1915 24.3% 1 .006 .2008 20.6% 

3 .1537 .9999 .84 .2759 .1884 34.3% 1 .0786 .2081 16.0% 1 .0563 .2129 25.8% 1 .0429 .2251 11.0% 

4 .0095 .9999 .54 .3569 .1625 43.3% .96 .0236 .1828 26.2% .98 .0107 .1915 24.3% 1 .006 .2008 20.6% 

5 .0595 .9999 .67 .2736 .2316 19.2% 1 .0786 .2081 16.0% 1 .0563 .2129 25.8% 1 .0429 .2251 11.0% 

6 .0018 .7578 .36 .1245 .4880 70.2% 1 .0003 .3578 44.4% 1 .0002 .2771 9.6% 1 .0002 .2735 8.2% 

7 .0223 .7086 .59 .1099 .4480 56.2% 1 .0074 .3042 22.8% 1 .0065 .3030 19.9% 1 .0058 .3156 24.8% 

8 .0003 .7578 .29 .1236 .6435 124.3% 1 .0003 .3578 44.4% 1 .0002 .2771 9.6% 1 .0002 .2735 8.2% 

9 .0083 .7086 .47 .1109 .6051 111.0% 1 .0074 .3042 22.8% 1 .0065 .3030 19.9% 1 .0058 .3156 24.8% 
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Chapter 6. Bayesian Planning of Sequential ALT with 

Stepwise Loaded Auxiliary Acceleration Factor 

6.1. Introduction 

It is extremely important to obtain enough number of failures from an ALT. However, 

one challenge today in both ALT planning and inference is that failures can still be 

elusive at lower stress levels when product reliability is high, see e.g. the case study 

presented in Section 6.4. To mitigate this problem, the common remedy is to specify a 

minimum number of failures at low stress levels. But this inevitably leads to a longer 

test duration which may not always be feasible. As a result, the low stress level is 

typically elevated to meet the time constraint. This results in high, sometimes 

intolerable, degree of extrapolation in estimating product reliability at use stress. 

Motivated by a real-case application shown in Section 6.4, an auxiliary acceleration 

factor (AAF) is introduced in this chapter to further amplify the failure probability at 

low stress levels. Particularly, as illustrated by Figure 6.1, we shall embed the AAF 

into the framework of sequential Bayesian ALT planning, and obtain optimal 

sequential ALT plans with a selected AAF. Several important problems with practical 

significance shall be addressed in this article, including the modeling of a sequential 

ALT with an AAF, the choice of an AAF as well as its loading profile, the Bayesian 

optimal planning problem of a sequential ALT with AAF, and the robustness of the 

sequential testing plan against mis-specification of model parameters.   
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Figure 6.1 Framework of planning a sequential ALT with auxiliary acceleration factor (AAF) 

Step 2 Construct prior distribution for 
any low stress level; 

        Compute the expected number 
of failures at low stress level 

Planning 
information 

Is there an AAF 
available?  

Step 3a Plan and conduct the tests 
at low stresses without AAF 

 
i.e. optimize both sample allocation and 
stress combination 

Step 3b Plan and conduct the tests at low 
stresses with AAF 

 
i.e. optimize sample allocation, stress 
combination, and the loading profile of AAF 

No  

No  

Yes  

Is an AAF needed? 

Yes  

Step 1 Plan and conduct the test at 
the highest stress level 
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In what follows, we provide comprehensive discussions on both the background 

and motivation of the problem addressed in this chapter, and explain in detail the 

framework of sequential ALT planning with AAF as sketched by Figure 6.1.   

6.1.1. Motivations of Using an Auxiliary Acceleration Factor 

Although an ALT can be sequentially conducted, the number of failures might be 

elusive at low stresses as seen in the case study presented in Section 6.4. In fact, this is 

not a trivial situation nowadays when product reliability is getting higher. Not seeing 

enough failures usually makes it extremely difficult to estimate product reliability, or 

to discover product deficiencies. To mitigate this problem, one common practice is to 

add an additional constraint that specifies the minimum number of failures expected to 

obtain, see Meeker and Escobar (1998). However, as shown in the case study provided 

in Section 6.4, this constraint leads to a longer test duration which may not always be 

feasible. As a result, the low stress level is forced to be elevated to meet the time 

constraint. This results in high, sometimes intolerable, degree of extrapolation in 

estimating product reliability at use stress. 

Hence, an auxiliary acceleration factor (AAF), with its effect on product life well 

defined, is introduced in this chapter to further amplify the failure probability of testing 

units at low stress levels (step 3b in Figure 6.1). For one example, one can 

intentionally change the level of one or more controllable factors, say, the size of the 

prototype, so as to amplify the failure probability of testing units, see e.g. Bai and Yun 

(1996). For another example, in a reliability test of certain micro relays operating at 

difference levels of silicone vapor (ppm), the usage rate (Hz) might be used as an 

auxiliary factor if the effect of usage rate on product reliability is well defined, see e.g. 

Yang (2005). In the temperature-accelerated life test presented in Section 6.4, the 
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humidity level controlled in the chamber will be used as an auxiliary acceleration 

factor as its effect on our product life is well understood; also see Livingston (2000).  

In fact, we have seen similar ideas in the literature as the one to use an auxiliary 

acceleration factor. In the study of design of experiment (DOE), Joseph and Wu (2004) 

and Jeng et al. (2008) proposed a method known as FAMe--the failure amplification 

method. For such a method, an amplification factor with known effect is proposed to 

ensure an adequate number of failures during an experiment. However, the distinction 

here is that, FAMe is developed for system optimization while ALT is used for 

reliability estimation at user condition through extrapolation.  

No matter what factor is chosen as the AAF, it is extremely important to make sure 

that it accelerates the right failure mode which is of our interest. Therefore, a careful 

modeling of AAF is a must as discussed in detail in Section 6.2.  

6.1.2. Organization 

The remainder of this chapter is organized as follows. Section 6.2 presents the ALT 

model and a Bayesian planning criterion based on which our analysis will be carried 

on. Section 6.3 describes the approach for planning a sequential ALT with auxiliary 

acceleration factor at low stress levels. The developed plan simultaneously optimizes 

the sample allocation, stress level combination, and loading pattern of the auxiliary 

acceleration factor. In Section 6.4, we present the motivating case study of this study to 

demonstrate the application of proposed planning method.  
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6.2. The ALT Model and a Bayesian Planning Criterion 

6.2.1. The ALT Model with Auxiliary Acceleration Factor 

Consider a constant-stress ALT that involves ( 2)k ≥ stress levels. At each stress level, 

in number of specimen is tested until a pre-specified time ic . Let ks denote the highest 

stress which is pre-fixed, and 0s denote the design stress where a given reliability 

measure is to be estimated, we standardize stress s  

0( ) / ( )k kx s s s s= − −                                               (6.1) 

, such that 0 1x = for the design stress 0s ; 0kx = for the highest stress ks . Hence, the 

testing region is defined on [0,1]X = where the highest testing stress is pre-fixed.  

At any stress, we assume that product life follows Weibull distribution. That is, the 

logarithm of product life follows Smallest Extreme Value (SEV) distribution with its 

cumulative distribution function (Cdf) given by 

( ) [( ) / ]SEVF y y μ σ= Φ −                                           
(6.2)

 

Here,μ andσ are respectively the location and scale parameters of product life y in 

log-scale; 1 exp( exp( ))SEV zΦ = − − is the standardized SEV Cdf.  

As discussed in the introduction, an auxiliary acceleration factor (AAF) will be 

chosen to amplify the failure probability of testing units at low stress levels. 

Let v denote the level of AAF; maxv denotes the maximum allowable level of AAF; 

and usev denotes the nominal level of AAF when no auxiliary acceleration is applied, we 

then standardize v  

use max use( ) / ( )h v v v v= − −                                           (6.3) 
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such that 0h = for usev v= and 1h = for maxv v= . Note that, the standardization of v is 

different with that of s in (1) for the convenience of presentation in the following 

sections. After an AAF has been incorporated, the testing region is expanded to a unit 

square. 

Furthermore, the stress-life relationship is assumed to be 

0 1 2 ,  is a unknown constantx hμ β β β σ= + +                        (6.4)  

where 0β and 1β are unknown parameters to be estimated, whereas 2β is the known 

effect (possibly needs to be verified) of the chosen AAF. In practice, many commonly 

used stress-life models, such as the higher usage model proposed in Yang (2005), the 

Arrhenius and Hallberg-Peck relationships considered in Section 6.4, can all be easily 

linearized into the form of (6.4). In addition, asσ is closely related to the failure 

mechanism, it is reasonable to assumeσ to be a constant as long as the failure 

mechanism of interest does not change. Apparently, if no auxiliary acceleration factor 

is used, i.e. 0h = , the stress-life model in (6.4) is simplified to 0 1xμ β β= + with 

0kμ β= as 0kx = ; and 0 0 1μ β β= +  as 0 1x = .  

6.2.2. A Bayesian Planning Criterion 

A Bayesian planning approach is used in this chapter, and the goal of the test is to 

estimate the 100p-th percentile ( )py x of the SEV distribution at use stress 

where 1x = and 0h = . Collect the parameter ( , )iμ σ in a vector ( , )i iμ σ=θ  

for 0,1,...,i k= , (1)py is given as  

0 0(1) T
p py uμ σ= + ⋅ = cθ                                            (6.5) 

where 1 ( ) log( log(1 ))p SEVu p p−= Φ = − − and [1, ]pu=c .  
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Clearly, given a testing planξ , the posterior variance var( (1))py depends on the 

(unobserved) failure data t . Hence, a pre-posterior expectation of the posterior 

variance over the marginal distribution of t is naturally chosen to obtain a Bayesian test 

planning criterion as follows  

0

( ) [var( (1))]

[ var( ) ]
p

T

C E y

E

= −

= −

t ξ

t ξ

ξ

c θ c
                                          (6.6) 

That is, the optimal plan maximizes ( )C ξ in (6.6), or equivalently, minimizes the 

pre-posterior expectation of the posterior variance var( (1))py . 

6.3. Planning of a Sequential ALT with Auxiliary 

Acceleration Factor 

We formally present in this section the sequential planning approach for constant-stress 

ALT with a stepwise loaded auxiliary acceleration factor at lower stress levels.  

6.3.1. Planning and Inference for Test at the Highest Stress Level 

The planning of test at the highest stress level can be done using the method described 

in Section 5.2.1. In what follows, however, we introduce a different planning approach 

which takes into account the uncertainty in collecting failure data.  

Under the sequential ALT planning scheme depicted by Figure 6.1, test at the 

highest stress level is firstly planned and conducted. As failures are usually relatively 

easier to obtain at the highest stress, there is no strong motivation to use any auxiliary 

acceleration stress. In practice as seen in Section 6.4, engineers may not even know at 

this moment an auxiliary acceleration factor will be needed for subsequent tests.  
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To plan the test at the highest stress kx , one needs to, 

 Specify the test duration kc , and the number of failures kr expected to obtain.  

 Specify the values for parameters kμ andσ , based on which the reliability of 

testing units at stress kx is calculated by 1exp[ ( exp( )) ]k k kR c σμ= − .  

 Specify a confidence levelα .  

Given the planning information above, the number of units to be tested at the 

highest stress kx can be easily found by solving the following equation 

1

0
(1 ) 1

k
k

k

r
n ii i

n k k
i

C R R α
−

−

=

− = −∑                                         (6.7) 

That is, the probability of seeing less-than- kr failures is1 α− . Equation (6.7) is also 

known as the Bogey testing which are commonly used for product reliability 

demonstration, and the value1 α− is sometimes referred as the consumer’s risk, see 

Yang (2007, pp.384). Here, the specified value of kr should at least be 4 or 5 so as to 

yield enough information for both reliability assessment and subsequent tests planning.    

Suppose that the test at kx has been conducted and we have observed failure data ky . 

The posterior distribution ( )k kπ θ y is directly derived applying the Bayes’ rule 

( ) ( ) ( ; )k k k k kLπ ϑ∝ ⋅θ y θ θ y
 

where ( , )k kμ σ=θ ; ( )kϑ θ is prior distribution of kθ ; and ( ; )k kL θ y is the likelihood 

function of kθ . In the context of ALT, since the number of failures is expected to be 

large enough at the highest stress, we let ( )kϑ θ be a constant so as to protect the data 

objectivity and obtain the posterior distribution as follows  

1
( ) exp{ ( log exp( )) (1 ) exp( )}kn

k k k j k j k j k j kj
z zπ κ σ κ ζ

=
∝ ⋅ − + − − − ⋅∏θ y     (6.8) 



158 

 

where the subscript “- kj ” is associated to the jth observation at the stress kx ; 

( ) /z y μ σ= − is the standardized failure time; (log ) /i i icζ μ σ= − is the standardized 

censoring time; andκ =1for exact failure data whileκ =0 for censored data. 

Throughout this chapter, the mode of the posterior distribution is used as the 

Bayesian estimate, i.e. ˆ ˆ ˆ[ , ] arg max ( )
kk k k kμ σ π= = θθ θ y . In Berger (1985), this type of 

estimate is known as the Generalized Maximum Likelihood Estimate (GMLE).  

Under the framework of sequential ALT plan, the derived ( )k kπ θ y will then be 

used in Section 6.3.2.1 to construct the prior distributions ( )iϑ θ for iθ at lower stress 

levels ( 1,..., 1i k= − ). For simplicity, we approximate the ( )k kπ θ y by a bivariate 

normal distribution with mean ˆ
kθ and variance ˆ

kΣ  

1 2 2
ˆ

ˆ ˆ ˆ ˆ ˆ~ ( , ) =[ ] ,    =[ ( ; ) / ]
k k k

k k k k k k k k kN l−
=

− ∂ ∂θ θ θ
θ y θ Σ Σ I I θ y θ          (6.9) 

where ( ; )k kl θ y is the log-likelihood function of kθ , and ˆ
kθ

I is the Fisher information 

observed at ˆ
kθ . Based on the results derived above, the estimated 100p-th 

percentile ˆ (0)py at the highest stress level 0kx = is estimated by ˆ ˆk puμ σ+ ⋅ with 

asymptotic variance ˆ T
kcΣ c . 

 It is noted that, the normal approximation in (6.9) might not be a necessary step, 

but it certainly facilitates the construction of prior distribution as we shall soon see 

below, and greatly simplifies the proposed method for industrial application. Hence, 

what is truly necessary is to check the quality of the approximation, as well as the 

posterior normality of ( )k kπ θ y , see Martz et.al (1988) and Kass and Slate (1994). 

Generally speaking, as a reasonable large number of failures can usually be obtained at 

the highest stress level, the normal approximation here is expected to be appropriate in 
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many applications.  

6.3.2. Planning Tests at Lower Stress Levels 

6.3.2.1 Construction of Prior Distribution 

Results obtained from the test at the highest stress level are then used to construct the 

prior distribution ( )iϑ θ of iθ at any given lower stress ix for 1, 2,..., 1i k= − , using the 

approach described in Section 5.2.2.1. That is, given a specified range 1 1[ , ]β β− + of the 

slope parameter 1β , and the normally approximated ( )k kπ θ y   

1 2 1/2

2 2
2

ˆ ˆ( ) (2 var( ) var( )) (1 )

ˆ ˆ ˆ ˆ( ) 2 ( )( ) ( )                  exp 2(1 )
ˆ ˆ ˆ ˆvar( ) var( ) var( ) var( )

k k k

k k k k

k k

π π μ σ ρ

μ μ ρ μ μ σ σ σ σ ρ
μ μ σ σ

− −= ⋅ −

⎛ ⎞⎛ ⎞− − − −
⋅ − − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

θ y

 

we obtain the prior distribution ( )iϑ θ by changing the variable as 1k i ixμ μ β= −  

1 2 1/2

2 2
2

3/2 1/2

ˆ ˆ( ) (2 var( ) var( )) (1 )

ˆ ˆ 1( ) 2 ( )( ) ( )            exp 2(1 )
ˆ ˆ ˆ ˆvar( ) var( ) var( ) var( )

ˆ1 (        exp
ˆ2 ( var( )) ( )

i

i

i k

i i i i
i

k k i i

i i

d
ω

ω

ϑ π μ σ ρ

μ ω ρ μ ω σ σ σ σ ρ ω
μ μ σ σ ω ω

σ σ
π σ ω ω

+

−

− −

+ −

− +

= ⋅ −

⎛ ⎞⎛ ⎞− − − −
− − + − ⋅⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

−
= ⋅ −

−

∫

θ

2) erf ( ) erf ( )
ˆ2 var( )

1, 2,..., 1

i i

i k

ψ ψ
σ

− +⎡ ⎤
⎡ ⎤⋅ −⎢ ⎥ ⎣ ⎦

⎣ ⎦
∀ = −

 

21/2

0

1

1 1

where  erf is the error function given by the definite integral erf ( ) 2

ˆ                     
ˆ ˆ ˆ ˆ ˆ ˆ           , , cov( , ) var( ) var( )

           

z t

i k i

i k i i k i k k

i

z e dt

x

x x

π

ω μ β

ω μ β ω μ β ρ μ σ μ σ

ψ

− −

− − + +

−

=

= +

= + = + =

=

∫

1/2 1/2 1/2

2 1/2

1/2 1/2 1/2

2 1/2

ˆ ˆ ˆ ˆvar ( ) var ( ) ( ) var ( )
ˆ ˆ(2 var( ) var( )(1 ))

ˆ ˆ ˆ ˆvar ( ) var ( ) ( ) var ( )           
ˆ ˆ(2 var( ) var( )(1 ))

i i k

k

i i k
i

k

μ σ ω σ ρ σ σ μ
μ σ ρ

μ σ ω σ ρ σ σ μψ
μ σ ρ

−

+
+

− + + −
−

− + + −
=

−

     

                                                              (6.10) 

It is noted that, since the prior knowledge about 1β always involves a certain 
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amount of uncertainty, the information on iμ andσ contained in ( )iϑ θ decays as the low 

stress ix  moving away from the highest stress kx where ( )k kπ θ y is derived. In other 

words, the prior distribution ( )iϑ θ must become diffuse as ix approaches 1. In the case 

study provided in Section 6.4, we shall revisit this issue and provide more detailed 

illustrations. 

6.3.2.2 The Choice of an Auxiliary Acceleration Factor  

As we have discussed in Section 6.1.3, failures can be extremely difficult to obtain if 

the stress level is low. Hence, a possible auxiliary acceleration factor, with its effects 

well understood, can be used to amplify the failure probability so as to maximize the 

information obtained at lower stress levels.  

In practice, it turns out to be important to carefully select an AAF, if it exists, as 

well as its maximum level so that the failure mode of interest does not change. In 

addition, it is also desirable to verify the pre-specified effect of the AAF after an ALT 

has been done. As we have seen in Section 6.2.1, the modeling of an ALT with AAF 

certainly requires stronger assumptions than that of a normal constant-stress ALT, 

hence, as long as the “amplification” target can be achieved, it is not always necessary 

to set the AAF to a high level throughout the test. In other words, we need to load the 

AAF with a target that specifies how much we are going to amply the failure 

probability. 

Based on the considerations above, the step-stress stress loading scheme is 

naturally chosen for AAF, and the LCEM cumulative exposure model proposed in 

Tang (2003) is correspondingly adopted. It has been shown by Tang (2003) that, the 

LCEM model includes the well-known Nelson’s cumulative exposure model as its 

special case under Weibull lifetime assumption. More importantly, it enables us to 
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derive the optimal loading pattern with a given time compression target which is 

defined as the ratio between the “equivalent time-to-failure at use condition” and “the 

actual time-to-failure at testing condition”. In what follows, we consider a simple 

two-step step-stress loading pattern for AAF, although the approach can be quite easily 

generalized to accommodate multiple-step step-stress loading patterns.  

A simple two-step step-stress loading pattern for AAF at a low stress level ix can 

be illustrated by Figure 6.2. As seen from the figure, the level of AAF is initially set 

to ,1ih where use ,1 maxih h h≤ ≤ . At time iτ , the level of AAF is elevated to ,2 max 1ih h= = and 

the test is continued until the censoring time ic . Of course, the original acceleration 

factor is held on a level of ix during the entire testing process, i.e. 

 ,1

,2 max

0
   and    0i i

i i
i i i

h t
h x x t c

h h t c
τ

τ

≤ <⎧⎪= = ≤ <⎨ = ≤ <⎪⎩
 

Here, the holding time iτ , low level ,1ih of AAF, and ix need to be optimized in the 

test planning to be discussed in Section 6.3.2.5. 

 

 

 

  

 

 

Figure 6.2 Illustration of a two-step step-stress loading of an auxiliary acceleration 

factor at stress ix based on the LCEM exposure cumulative model 

6.3.2.3 The Likelihood Function and Time Compression Target 

To obtain the likelihood function, we need to translate the test times over different 

Testing Time ,1ih  

ix  

,2 max 1ih h= =  

iτ  ic  ,2 ( )it j  ( )
,2 ( )e

it j  ( )e
ic  ,1( )it j  ( )

,1 ( )e
it j  

use 0h =  

Standardized Stress Level  
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AAF levels to a common reference stress. Let ,1( )it j be the jth failure at the testing 

condition ,1( , )i ix h , then, based on the LCEM model, its equivalent failure time of at 

condition use( , 0)ix h = is 

,0( )
,1 ,1

,1

exp( )
( ) ( )

exp( )
ie

i i
i

t j t j
μ
μ

= ⋅                                          (6.11) 

where ,0 0 1 2 use 0 1i i ix h xμ β β β β β= + + = + and ,1 0 1 2 ,1i i ix hμ β β β= + +  

Let ,2 ( )it j be the jth failure at the testing condition ,2( , )i ix h , then, based on the 

LCEM model, its equivalent failure time of at condition use( , 0)ix h = is 

,0 ,0( )
,2 ,2

,1 ,2

exp( ) exp( )
( ) ( ( ) )

exp( ) exp( )
i ie

i i i i
i i

t j t j
μ μ

τ τ
μ μ

= ⋅ + ⋅ −                          (6.12) 

where ,2 0 1 2 2 0 1 2i i ix h xμ β β β β β β= + + = + +  

For each censored observation, the equivalent censoring time is 

,0 ,0( )

,1 ,2

exp( ) exp( )
( )

exp( ) exp( )
i ie

i i i i
i i

c c
μ μ

τ τ
μ μ

= ⋅ + ⋅ −                               (6.13) 

Hence, let ,1ir and ,2ir respectively denote the number of failures obtained 

within [0, )iτ and [ , )i icτ , the log-likelihood function of ( , )i iμ σ=θ at testing 

condition use( , 0)ix h = is given by  

,1 ,2
( ) ( ) ( ) ( )
,1 ,1 ,2 ,2

1 1

( )
,1 ,2

( ) { log( ) exp( )} { log( ) ( ) exp( ( ))}

            ( ) exp( )

i ir r
e e e e

i i i i i
j j

e
i i i i

l z z z j z j

n r r

σ σ

ζ
= =

= − + − + − + −

+ − −

∑ ∑θ

 (6.14) 

where 

( ) ( )
,1 ,1 ,0

( ) ( )
,2 ,2 ,0

( ) ( )
,0

( ) (log( ( )) ) /

( ) (log( ( )) ) /

(log( ) ) /

e e
i i i

e e
i i i

e e
i i i

z j t j

z j t j

c

μ σ

μ σ

ζ μ σ

= −

= −

= −  
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Furthermore, from equation (6.13), we define a time compression target iψ at 

stress ix  based on the LCEM cumulative exposure model 

( )

,0 ,0

,1 ,2 ,1 2 2

equivalent test duration, 
actual test duration, 

exp( ) exp( )
( )

exp( ) exp( ) exp( ) exp( ) ( )
  

e
i

i
i

i i
i i i

i i i i i i

i i

c
c

c
h c

c c

ψ

μ μ
τ τ

μ μ β τ β τ

=

⋅ + ⋅ −
− ⋅ + − ⋅ −

= =

  (6.15) 
 

It is not difficult to see that 21 i eβψ≤ ≤ . Particularly, 1iψ = corresponds to the 

situation when no AAF is used (i.e. i icτ = ), whereas 2
i eβψ = corresponds to the 

situation when AAF is set to its maximum value maxh throughout the test (i.e. 0iτ = ). 

6.3.2.4 The Information Matrix at Low Stresses 

Conditioning on a particular 1 1 1[ , ]β β β− +∈ , the pre-posterior distribution of iθ at any 

lower stress level ix can be approximated by a bivariate normal distribution with 

covariance matrix iΣ given by Berger (1985, p. 224) 

1[ ( )]               1,..., 1i

ii i kϑ −= − + ∀ = −θΣ I I                             (6.16) 

where
iθ

I given in (6.17) is the information expected to be obtained from the test 

at ix conditioning on 1 1β β=  

2 2( ( ) / )
i i iE l= ∂ ∂θI θ θ                                             (6.17) 

and iϑI is obtained from the constructed prior distribution ( )iϑ θ  

2 2log( ( )) /i
i i

ϑ ϑ= ∂ ∂I θ θ                                           (6.18) 

Common numerical differentiation method is needed in order to evaluate iϑI , see 

e.g. Friedman and Kandel (1994)). In practice, this can be easily done as the 

closed-from of ( )iϑ θ has already been derived in equation (6.10). 
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The closed-form expression of
iθ

I can be derived as follows, 

At any low stress level ix , in testing units are tested for ic units of time. Suppose 

an AAF is loaded following the m -step step-stress loading profile as follows 

,1 ,0 ,1

,2 ,1 ,2

, , 1 ,

0i i i

i i i
i

i m i m i m i
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h t

h

h t c

τ τ
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, where ,i qτ is the stress changing time of AAF for 0,1,...,q m= . 

Then, the information expected to be obtained from the test at low stress 

level ix consists of ( 1)m+ components as follows 

,0 ,1 ,1 ,2 1

, , 1

,[ , ) ,[ , ) ,[ , ) ,[ , )

,[ , )

, , 1

where
 is the expected Fisher information obtained 

                    from failure data in the interval [ , ) for

i i i i i i i i m m i m

i i q i q

i q i q
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τ τ

τ τ

−

+

∞

+

= + + + +θ θ θ θ θ

θ

I I I I I

I

,[ , )

0,1,..., 1

     is the expected Fisher information obtained 

                    from censored data
i m

q m

τ ∞

= −

θI

     

Under any testing condition ,( , )i i qx h for 0,1,...,q m= , we have assumed that the 

failure times follow Weibull distribution. Hence, the logarithm failure times follows 

smallest extreme value (SEV) distribution with location ,i qμ and scaleσ . Furthermore, 

let ( )et denote the equivalent test time at reference condition use( , 0)ix h = based on the 

LCEM model, we define the standardized equivalent failure time in log-scale as 

( ) ( )
,0(log( ) )  e e

iz t μ σ= −  

and correspondingly the standardized stress changing time of AAF 

( ) ( )
, ,0(log( ) ) 0,1,...,e e

q i q i q mζ τ μ σ= − ∀ =  

Using the above parameterization, the information expected to be obtained from 
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one observation within the interval 0 1[ , )τ τ is 
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The information expected to be obtained from one observation within the 

interval , , 1[ , )i q i qτ τ + for 1, 2,..., 1q m= − is 
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and the information expected to be obtained from one censored observation is 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) 2
,[ , ]

( )

2 ( ) ( ) ( ) 2

exp( ) /

1

2 ( )

e ei m m

e e e
m m m

e e e e
m m m m

e
i z

e
m

e e e
m m m

i z

e e e

e e e e

τ ζ

ζ ζ ζ

ζ ζ ζ ζ

ζ
σ ζ ζ ζ

∞ =
= −∂ ∂

⎡ ⎤− − −
= ⋅ ⎢ ⎥

⎢ ⎥− − − −⎣ ⎦

θ θ

                  

Hence, 
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I is given by 
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In the equation above, ,[ ]i i qn P⋅ for 1, 2,..., 1q m= − is the expected number of 

failures within the interval , , 1[ , )i q i qτ τ + , and ,[ ]i i mn P⋅  is the expected number of censored 

data. It is easily seen that
iθ

I depends on the specified 2β only 

through ,[ ]i i qn P⋅ for 1, 2,...,q m= . 

Finally, based on the iΣ at stress ix conditioning on 1 1β β= , the preposterior 

expectation
1
(var( ( )))p iE y xβ of the posterior variance var( ( ))p iy x at stress ix is computed 

by averaging var( ( ))p iy x over the specified range of 1β , i.e.  
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(6.19) 

6.3.2.5 The Planning of Tests at Low Stresses 

We are now ready to formulate the planning problem of tests at low stress levels with 

AAF. To summarize, given (i) the data ky obtained at the highest stress 0kx = , (ii) the 

specified range of the slope parameter 1β , and (iii) the time compression target, the 

developed ALT plan optimizes the (i) sample allocations, (ii) stress combinations, and 

(iii) the loading profiles of the AAF at lower stresses, so that the preposterior 

expectation
1
(var( (1)))pE yβ of the posterior variance (1)py at use stress 0 1x = is 

minimized. This optimization problem is formulated as follows  
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and (1,1)=1 . The optimum ALT plan can be obtained by solving 
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6.4. Case Study: Temperature-ALT of an Electronic 

Controller 

A case study, which is indeed the motivation of our study, is presented in this section to 

illustrate the sequential Bayesian ALT planning approach with an AAF. It deals with an 

ALT project in which engineers assessed the reliability of a newly developed cost 

reduction electronic controller.  

Facing the escalating pressure from competitors, the company lately developed a 

new electronic controller with lower cost. Although a slight decline in reliability is 

expected, the 10% life quantile of the controller under normal operation conditions 

must still be larger than two years. To quickly assess if the new design meets this 

reliability target, product engineers launched this two-stress constant-stress ALT on 

120 controller prototypes within one and a half month, i.e. 75days. More than one 

failure modes were carefully monitored in the actual testing, however, only one 

dominate failure mode, namely, the soft starter (SS) failure, is considered in this 

section for a clear illustration of the proposed planning approach.  

Temperature was initially chosen as the acceleration factor. The use temperature of 

the controller is defined as 045 C , while the highest temperature allowed in the test 

is 085 C . Other environment factors, involving the relatively humidity (RH), on/off 

cycle frequency, voltage level was respectively set to the use level, i.e. 60%, 10sec 

on/60sec off, 220V50Hz.  

Weibull distribution was used to model the SS lifetime as strongly indicated by 

historical data. Hence, the logarithm failure time follows the Smallest Extreme Value 

(SEV) distribution with location parameterμ and scale parameterσ . Furthermore, the 
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way thatμ changes with temperature is assumed to follow the Arrhenius model as in 

(6.21), and the scale parameterσ is a constant independent of stress 

( ) 0
1EaT

k T
μ β= + ×                                              (6.21) 

where T is the Kelvin temperature used in test; Ea is the activation energy in 

electron-volts; and 58.6171 10k −= × is the Boltzmann’s constant.  

6.4.1. Test Design and Data Analysis at the High Stress Level 

Based on the framework of sequential ALT plan presented in Figure 6.1, the ALT 

started from testing the units from the high temperature level 085 C . It is noted that 

engineers did not realize at this moment that an auxiliary acceleration factor would be 

used in the subsequent testing.  

Using equation (6.7), Figure 6.3 below plots the calculated minimum sample size 

given different expected number of failures kr and consumer’ risk1 α− .  

 

 

Figure 6.3 Sample sizes for different values of r and (1 α− ) 

Expected Number of Failures, r 

1 α−  
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In this project, 6 failures were expected and the confidence levelα was chosen as 

0.9, hence, 44 controller prototypes were tested at 085 C as indicated by Figure 6.3. The 

recorded SS failure times are presented in Table 6.1. To protect proprietary information, 

data here are simulated and re-scaled from the fitted model of the original application.  

Table 6.1 Failure times at the highest temperature 

Failure Times (hrs) 

79.559  210.47  590.03  400.56  491.41  138.94  673.98  109.4  149.95  204.7  

425.32  643.31  117.15  328.99  351.87  720×29 
 

Using equations (6.8) and (6.9), the posterior distribution 2( )π θ was derived and 

approximated by a bivariate normal distribution 2 2
ˆ ˆ( , )N θ Σ  

2 2 2 2
ˆ ˆ~ ( , )Nθ y θ Σ  

where 2
ˆ [7.35,0.90]=θ and 1

2 2
ˆ ˆ [0.1142,0.0529;0.0529,0.0489]−= − =Σ I . 

Figure 6.4 shows both the original and approximated posterior distribution 2( )π θ .  
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Figure 6.4  Posterior distribution and its normal approximation at the high stress level 

6.4.2. Test Design and Data Analysis at Lower Stress Levels 

6.4.2.1 Information Transfer and Decay 

Given the approximated posterior distribution of 2θ and the prior knowledge about 

the activation energy Ea , the prior distribution ( )iϑ θ at any lower temperature level can 

be constructed using (6.10). In this project, empirical engineering experience suggests 

that Ea  most likely ranges from 0.8 to 1.2.  

As briefly discussed in Section 6.3.2.1, the knowledge on Ea always involves a 

certain amount of uncertainty, and the information on iθ contained in the prior 

distribution ( )iϑ θ therefore decays as the testing temperature decreases from the 

highest level 085 C . The rate of information decay is determined by the amount of 

uncertainty associated to Ea . The higher the uncertainty, the faster the information 

Approximated 
posterior distribution 

Original contour of the 
posterior distribution 

Approximated contour of 
the posterior distribution 

Original posterior 
distribution 
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decays. In the most extreme cases when no information about Ea is available, the 

decay rate becomes infinity, i.e. the prior distribution of iθ cannot be constructed at 

lower temperature levels.  

 To illustrate the information transfer and decay from the highest to lower 

temperature level, we construct two prior distributions for iθ respectively 

at 045 C and 065 Cusing equation (6.10). The results are given in Figure 6.5.  

 

  

Figure 6.5 Illustration of the constructed prior distributions 

As clearly shown by this figure, the constructed prior distribution ( )iϑ θ becomes 

diffuse as the testing temperature decreases. In other words, the information contained 

in the prior distribution decays as the temperature level moving away from the 085 C . 

This is the observation that is intuitively correct: As only the test at the highest 

temperature 085 C has been conducted, we naturally have higher uncertainty on SS life 

distribution at those testing levels with lower temperature.  

6.4.2.2 Motivations of Using an Auxiliary Acceleration Factor 

Based on the constructed ( )iϑ θ , engineers calculated the expected number of failures 

Uncertainty on mu 
grows from the 
highest stress to 
lower stress levels 

045 C  

065 C 

085 C  
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at each lower temperature level before they planned the test at lower temperature level. 

Figure 6.6 below shows their results. As seen from this figure, in order to see more 

than 4 or 5 failures, the lowest temperature should be at least 063 C which is almost 

standing on the middle point between 045 C and 085 C . Hence, the degree of 

extrapolation was considered to be too high.  

 

Figure 6.6 Expected number of failures at each lower temperature level 

In fact, this problem can be well understood from another interesting perspective 

of view by comparing the information expected to be obtained from units tested at a 

particular temperature level to that conveyed by the constructed prior distribution at 

the same stress level. To conduct this comparison, we need the ratio defined as follows  

   
det
det

i

iϑ
η = θI

I
                                          (6.22) 

where iϑI and
iθ

I is respectively defined in equation (6.17) and (6.18).  

Figure 6.7 plots the ratioη against temperature level. As clearly seen, since very 

few failures are expected when the temperature is low, the information obtained from 
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testing the rest controller prototypes at a low temperature level ( 0<74 C ) is even less 

than the information contained in the constructed prior distributions. Then, one natural 

question raised is that why the tests at lower stress levels are still needed rather than 

testing all units at the highest stress level.  

 

Figure 6.7 Plots of the ratioη against testing temperature 

Hence, in this project, there existed a strong motivation to use an auxiliary 

acceleration factor. Among the three candidates AAF including relative humidity (RH), 

on/off cycle frequency, and voltage, RH was eventually chosen as the AAF as its effect 

on the life of the soft starter has been well defined from previous experiments. 

Correspondingly, the Arrhenius life-stress model given in (6.21) was extended to the 

Hallberg-Peck relationship as follows so as to incorporate the AAF  

0
0

1( , ) logEa HT H p
k T H

μ β
⎛ ⎞

= + × + × ⎜ ⎟
⎝ ⎠

                              (6.22) 

where H is the relative humidity level in test; 0 60%H = is nominal humidity level at 

use condition; p is the humidity acceleration constant; andT , Ea and k is defined in 

(6.21). Furthermore, the assumption that the scale parameter σ is a constant 

independent of stress still holds.  
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6.4.2.3 Test Design at Low Temperature Level 

The planning information needed for the test at low temperature are now summarized 

as follows,  

 The posterior distribution 2( )π θ obtained from the test under the highest 

temperature; 

 The specified range of the activation energy, 0.8 1.2Ea≤ ≤ ; 

 The number of controller units, 76 ; and the test duration left,1080hours; 

 The pre-specified humidity acceleration constant, 3p = . According the design 

specifications, the nominal relative humidity 60%, and the maximum humidity 

should not exceed 90%; Furthermore, the AAF has a two-step step-stress loading 

pattern based on the LCEM cumulative exposure model as discussed in Section 

6.3; 

 The target time compression, 1 3ψ = ; 

Given the planning information above, we obtain the optimum plan as 

summarized by Table 6.2 using equation (6.20).  

As seen in Table 6.2, the test is firstly conducted at highest temperature 085 C with 

humidity fixed to the nominal value 60% (Point A in Figure 6.8). At this stress point, 

the probability of failure is around 0.32, which is considered high enough for engineers 

to quickly obtain enough failures. However, when the temperature level descends 

to 053 C with the humidity level fixed (Point B in Figure 6.8), the probability of failure 

quickly drops to an extremely low value which is less than 0.01. Hence, an AAF is 

loaded following the profile given in Table 6.2. According to this profile, the test is 

firstly conducted on 053 C and 60% humidity level for 170.5 hours (Point C. Here, point 

B and C are overlapped). Then, the humidity level is increased to 90% (Point D) and 
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the test is stopped till maximum test duration 1080 hours is reached. Note that, no 

auxiliary acceleration stress is applied in the first 170.5 hrs at the low temperature 

level as the target time compression is achieved. Since the model presented in this 

chapter requires stronger assumptions than that of ordinary CSALT, the auxiliary 

acceleration stress should be used only when it is truly necessary.  

Table 6.2 Accelerated life test plan for the cost reduction electronic controller 

Condition i  Temperature, 0C  Humidity Level, % Test Time, hr Sample 
Size 

Use 45 60   

Low 53  See Loading 
profile 1080 76 

High 85 60 720 44 
 

Humidity Loading Profile at 54 0C Temperature Level 

Low Humidity Level: 60% 
High Humidity Level: 90% 
Holding Time:  170.5 hrs 
 
Expected Failures: 
 Interval [0, 170.5] : No failure 
 Interval [170.5,1080]: 5 failures 
 Interval [1080,∞ ): 71 censored  

For this plan, the asymptotic standard error of the estimate ( )1py equals 0.3408 
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Figure 6.8 Illustration of the sequential ALT plan with auxiliary acceleration factor 

6.4.2.4 Sensitivity of the Optimum Plan to Mis-specification of p  

In our model, the effect of the auxiliary acceleration factor is assumed to be known, 

but what if the value of p is mis-specified? How does the optimum stress combination, 

sample allocation, and the loading pattern of the auxiliary acceleration factor change 

if we perturb the value of p ? These are the questions that we try to answer in 

this section.  

However, it turns out to be extremely difficult to establish the closed-form 

relationship between the optimum plans and p . Generally speaking, the specified 

effect p affects the planning results only through the expected information
iθ

I at lower 

stress levels. Here, we let the specified p range from 2.8 to 3.5 with step size 0.1, and 

re-design the test at low temperature level. The results are given in Table 6.3.  

 

 

 

 

Humidity 

Temperature 

Point A: ( 085 C , 60%) Points B, C: ( 053 C , 60%) 

Point D: ( 053 C , 90%) 

Failure Probability ≈ 0.32 Failure Probability < 0.01 

Failure Probability ≈ 0.08 

 085 C   053 C  

 60% 

 90% 
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Table 6.3 Sensitivity of the optimum plan to p  

Specified p  
Optimum Low Temperature  Optimum Low Humidity  Optimum Holding Time  Standard Deviation of 0.1(1)y

Planned 
Value  

Relative 
Change, RT   

 Planned 
Value  

Relative 
Change, RH 

 Planned 
Value 

Relative 
Change, RHT

 Planned 
Value 

Relative 
Change, RSD 

3 053 C  0  60 % 0  170.5 hr 0  0.3408 0 

2.8 053 C  0  60 % 0  57.5 hr -66.4 %  0.3375 -0.9 % 

2.9 053 C  0  60 % 0  116.0 hr -31.9 %  0.3400 -0.2 % 

3.1 053 C  0  60 % 0  221.0 hr 29.6 %  0.3429 0.6 % 

3.2 053 C  0  60 % 0  268.0 hr 57.2 %  0.34438 1.1 % 

3.3 053 C  0  60 % 0  312.0 hr 82.8 %  0.3476 2.0 % 

3.4 053 C  0  60 % 0  352.5 hr 106.7 %  0.3501 2.8 % 

3.5 053 C  0  60 % 0  391.0 hr 129.1 %  0.35341 3.7 % 
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Figure 6.9 plots the relative change of the optimum temperature level, optimum 

low humidity, optimum holding time of low humidity, and the expected standard 

deviation of 0.1(1)y against the specified p . It is immediately seen that the optimum 

holding time is the only quantity that is sensitive to the specified p , whereas the 

optimum temperature, optimum low humidity, and the expected standard deviation 

of 0.1(1)y appears to be robust to the specified p .  

To understand why this is the case, recall the Hallberg-Peck stress-life model given 

in (6.22). When p is getting larger, the effect of humidity on product becomes stronger. 

As a result, it is no longer necessary to test the products at a high humidity level for a 

long time, hence, the holding time of the low humidity increases so as to maintain a 

fixed time compression. Since the time compression target is always achieved, the 

expected standard deviation of 0.1(1)y does not vary too much, and we do not have to 

change the optimum low temperature and low humidity used in the test.  

 

Figure 6.9 Sensitivity of optimum plan to p  
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6.4.2.5 Evaluation of the Developed Plan 

Next, the developed ALT plan is evaluated using the Monte Carlo simulation, see e. g. 

Meeker and Escobar (1998), Zhang and Meeker (2006), to see if the plan achieves its 

intended precision level for the estimate of interest.  

For each simulation run, given the testing results obtained at the highest 

temperature from Table 6.2, we simulate failure times for the 76 controller units at low 

temperature level according to the plan given in Table 6.3, assuming that both the 

Hallberg-Peck relationship and those specified planning inputs are true. Based on the 

simulated dataset, the estimate 0.1ˆ (1)y of the 0.1 life percentile at the use temperature is 

obtained. A total of N simulation runs are to be conducted based on the above 

procedure so as to compute the sample standard deviation 0.1ˆSD( (1))y . 

To gauge the total number of simulation runs needed to obtain a stable estimate, 

we progressively run the simulation for 10 independent repeated trails and track the 

sample standard deviation 0.1ˆSD( (1))y . Figure 6.10 plots the calculated sample standard 

deviation 0.1ˆSD( (1))y against simulation runs for each trial. It is clearly seen that, the 

variation of 0.1ˆSD( (1))y is getting smaller as the number of simulation runs increases 

and a total of 5000 simulation runs should suffice.  

Figure 6.11 presents the histogram of the results, 5000 estimates of 0.1ˆ (1)y at use 

temperature, obtained from the first simulation trial. This figure describes the amount 

of variability would be expected if we repeated the ALT over and over. It is seen from 

Figure 6.11, the sample standard deviation 0.1ˆSD( (1)) 0.3721y = , which is slightly 

higher than the large-sample approximate standard error 0.1ˆAse( (1)) 0.3408y = given 

from Table 6.3.  
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Figure 6.10 Plot of the sample standard deviation 0.1ˆSD( (1))y against simulation runs 

 

 

Figure 6.11 Simulation evaluation of the developed ALT plan 
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6.5. Conclusions 

In this chapter, we presented a Bayesian planning method for sequentially design a 

constant-stress accelerated life test. Particularly, an auxiliary acceleration factor was 

used to amplify the failure probability of testing items at low stress levels. It was 

proposed that the auxiliary acceleration factor follows a step-stress loading pattern 

based on a cumulative exposure model LCEM with a target time compression fixed. To 

apply this method, the effect of the auxiliary acceleration factor must be known and 

must not interact with other acceleration factors. In the case study, the proposed 

approach was illustrated by the Hallberg-Peck model with the humidity acceleration 

factor known.  
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Chapter 7. Planning for Sequential ALT Based on the 

Maximum Likelihood (ML) Theory 

7.1. Introduction 

In Chapter 5, a Bayesian method was adopted to plan sequential constant-stress ALTs. 

In this chapter, we shall see how the classical planning method, which is based on the 

maximum likelihood (ML) theory, can be extended to accommodate the situation when 

ALT is sequentially conducted.  

In what follows, Section 7.2 describes the framework of the planning method for a 

constant-stress ALT with multiple stress levels. Section 7.3 illustrates the application 

of the proposed method using the adhesive bond reliability testing example.   

7.1.1. The Model 

The model presented in Section 5.1.1 is used throughout this chapter.  

7.2. The Framework of the ML Planning Approach 

We present in this section, based on the ML theory, the framework of the sequential 

planning approach. Although it can be easily generalized to ALT with multiple stress 

levels, the following discussion only focuses on an ALT with 3 constant stress levels. 
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Figure 7.1Framework of the ML planning approach 

As shown in Figure 7.1, two stages are involved in the framework. At stage 1, test 

at the highest stress level 3x is firstly planned given the specified values of 0β andσ . In 

practice, the true values of 0β andσ are never known exactly, hence, engineers have to 

guess these values based on their engineering knowledge. When the test the highest 

stress level 3x is done, the ML estimates of 0β̂ andσ̂ can be easily derived. At stage 2, 

based on the estimates ( 0β̂ ,σ̂ ) and the pre-specified value of 1β , test runs at the lowest 

stress and middle stress are planned by optimizing both sample allocation and stress 

level combination. Compared to the planning information on 0β andσ , information on 

the slope 1β is relatively easier to obtain from handbooks or certain physical/chemical 

knowledge of products’ failure mechanism. When the popular Arrhenius model is used, 

for example, specifying 1β is equivalent to specifying the activation energy aE which has 

been well defined especially for consumer electronics. Note that, although sample size 

and test duration are usually assumed to be fixed in many previous studies, in reality, 

however, engineers might also be interested in the trade-off between sample size/test 

Specified values of 0β andσ  

Plan the test at 3x   

Conduct the test at 3x   

Sample allocation at 3x  

Specified value of 1β  

Plan the tests at 2x and 1x  

Sample allocation and stress 
combination at 2x and 1x  

Conduct the test at 2x and 1x  0β̂ andσ̂  
0β̂ , 1̂β andσ̂  

Stage 1 Stage 2
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duration and statistical precision. It is this trade-off that generates the full picture and 

makes our decisions more flexible. In what follows, each stage is described in detail. 

7.2.1. STAGE 1: Test Planning at the Highest Stress Level 

The approach presented in Section 6.3.1 is used to plan the test at the highest stress 

level. That is, given the planning inputs: 1) the censoring time 3c , and the number of 

failures 3R expected to see; 2) the values for both parameters 0β andσ ; and 3) a 

confidence levelα , the number of units needed in the test at 3x is obtained by solving 

the equation 

( )
1

0

1 1
H

H

H

R
n ii i

n
i

C p p α
−

−

=

− = −∑                                         (7.1) 

This is exactly the binomial bogey testing which are commonly used for product 

reliability demonstration, and the value1 α− is then referred as the consumer’s risk 

(Yang 2007, pp.384).  

7.2.2. STAGE 2: Test Planning at the Lowest and Middle Stress Level 

7.2.2.1. Planning Inputs 

After the test at the highest stress 3x has been done, we move to the second stage of 

sequential ALT planning. To plan the tests at lower stresses, i.e. the lowest and middle 

stresses, one needs to: 

 Estimate 0β andσ from the testing data obtained at the highest stress level.  

Based on the ML theory, the estimate 0
ˆ ˆ( , )β σ is found by maximizing the 

log-likelihood function 
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( )3

0 3 3 3 3 31
( , ) ( log exp ) (1 )expn

j j j jj
l z zβ σ κ σ κ ζ

=
= − + − − −∑           (7.2) 

where the subscript ij⋅ corresponds to the jth failure at stress i  

 Specify the slope parameter 1β .  

 Specify the sample size 1 2n n+ available for tests at 1x and 2x .  

 Specify the position and sample allocation of 2x .  

Since the middle stress is typically added to check the non-linearity of the 

stress-life model, we constrain the middle stress level to be halfway 

between 1x and 3x . In addition, to avoid the developed 3-stress plan from 

degenerating to a 2-stress optimum plan, we let the proportion of sample allocated 

to stresses 1x and 2x follows 2 1 2/ ( )n n n π+ = . 

7.2.2.2. The Fisher Information 

Collect all 3 ALT model parameters in a vector 0 1( , , )β β σ=θ . Let 3Î denote the 

observed Fisher information on θ from the test at the highest stress level 3x ; 

1I and 2I respectively denote the expected information onθ to be obtained from tests at 

low and middle stresses, then, the asymptotic covariance matrix /Σ of the MLE θ̂ is 

given by 

1
3 1 2

ˆ( )−/ = + +Σ I I I                                                (7.3) 

Using the results of Nelson and Meeker (1978), the observed information 

matrix 3Î is derived as in equation (7.4). Note that, as the test at 3x does not contain any 

information on the slope 1β of the stress-life model, the second row and column 

of 3Î must be zeros 
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1I and 2I is the expected information onθ respectively obtained from tests at low 

and middle stress.  Based on the definition of Fisher information, expressions 

of 1I and 2I can be derived as  
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                     (7.5) 

7.2.2.3. The Test Planning Problem 

The optimization criterion here is to minimize the large-sample (asymptotic) 

variance ˆvar( )py of the estimate ˆ py at use stress 0 1x = . Hence, the optimization problem 

is formulated as  
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s.t      ( ) / 2 / 2
         / / (1 )

T
p p py u u
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n n π π

= /

= + =
= −

Σ

                                   (7.6) 

In the literature, this type of criterion is known as the c-optimality, and interested 

readers may refer to an excellent reference by Atkinson and Donev (2007) for more 

details. In the next section, we illustrate the application of the proposed framework 

using a numerical example.  

7.3. NUMERICAL EXAMPLE 

7.3.1. Reliability Estimation of an Adhesive Bond 

Suppose an ALT is conducted to estimate the 0.1 life quantile of certain adhesive bond 

at the use operating temperature. Necessary planning information is summarized as 

below,  

 300 adhesive bond units and 230days are available for the test.  

 Temperature is used as the acceleration factor. In particular, the use temperature 

is 050 Caccording to the design specifications, whereas the highest temperature 

allowed in the test is 0120 C . That is, the testing region ranges from 050 C to 0120 C . 

 Weibull distribution is used to model the adhesive bond data as suggested by 

previous testing results on similar products. Equivalently, the logarithm failure 

times follow SEV distribution with locationμ and scaleσ . 

 Arrhenius relationship is taken as the underlying stress-life model on the testing 

region ranging from 050 C to 0120 C , i.e.  

5

Activation energy, 1log
Boltzmann constant, 8.6171 10

a

B

EA
k T

μ −= + ⋅
= ×
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Let 1s T= and 0( ) ( )k kx s s s s= − − , the re-parameterization of the Arrhenius 

model yields the linear stress-life model as  

0 1

1 1
0 0 1 0where  log ( )a B a B k

x

A E k S E k S S

μ β β

β β− −

= + ⋅

= + ⋅ ⋅ = ⋅ ⋅ −
 

In this example, engineering experiences suggest that 

log 16.733A = − and 0.7265aE = . Hence, we have the pre-specified 

values 0 4.72β = and 1 4.65β = as the planning inputs.  

 The scale parameterσ is constant independent of testing temperature, and is 

specified as 0.6σ = .  

7.3.2. STAGE 1: Planning for the Test Run at the Highest Stress Level 

Given the planning inputs 0 4.72β = , 0.6σ = and 0.9α = , equation (7.1) generates the 

contour plot, as shown in Figure 7.2, of the required sample size 3n against the 

specified number of failures 3R and the confidence levelα . Apparently, the required 

sample size 3n increases as either 3R or 3c increases. 
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Figure 7.2 Plot of 3n for different number of failures 3R and the confidence levelα  

Suppose 3 12R = failures are expected within 3 80c = days, 35 adhesive bond units 

are tested at the highest temperature level 0120 Cas indicated by Figure 7.2.  

The testing data at the highest stress level are presented in Table 7.1. It is seen that, 

27 adhesive bonds fail within 80days during the test at 0120 C temperature level. 

Maximize the likelihood function given by equation (7.2), we have the MLE of 

both 0β andσ as 

( )
3

0 0 3 3 3 3 3
1

ˆ ˆ( , ) arg max ( , ) arg max ( log exp ) (1 )exp

(4.0125,0.8747)

n

j j j j
j

l z zβ σ β σ κ σ κ ζ
=

⎧ ⎫
= = − + − − −⎨ ⎬

⎩ ⎭
=

∑

 

Table 7.1 Simulated failure times at the highest temperature level 

Failure times (day) 

5 74 31 42 10 19 45 80 15 46 31 17 7 21 80 50 6 8 50 10 80 56 15 80 80 79 80 32 67 

80 80 20 46 7 44 
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7.3.3. STAGE 2 Planning for Test Runs at the Lowest and Middle 

Stress Level 

Based on the ML estimates ( 0β̂ ,σ̂ ) and equation (7.4), we can compute each entry of 

the observed Fisher information matrix 3Î . However, to derive the Fisher 

information 1I and 2I , additional planning information is needed as discussed in Section 

7.2.2.2.  

 The pre-specified slope parameter, 1 4.65β = ; 

 The censoring times of tests at stress levels 1x and 2x , 1 2 150daysc c= = ; 

 The sample size 1 2 3300 265n n n+ = − = ; 

 0.1π = , i.e. 10% units are allocated at the middle stress level 2x ; 

 0.1p = , i.e. the 10% smallest extreme value percentile at use stress is of interest. 

Then, using equations (7.5) and (7.6), we are able to conduct the numerical search 

of optimum ALT plan as shown in Figure 7.3. It is seen that, the minimum value 

of *
0.1ˆvar ( ) 0.12y ≈ is achieved when *

1 0.52x = ( 080 C ) and * *
2 1 / 2 0.26x x= =  ( 099 C). 

Table 7.2 summarizes the complete sequential plan. 

Table 7.2 Developed sequential ALT plan for the adhesive bond ALT 

Stage Condition 
Stress Level Test 

Duration 

Failure 

Probability 
Allocation 

Expected 

Failures Temp Std. 

1 High 120C 0 80 days 0.43 35 15 

2 
Mid 99C 0.26 

150 days
0.19 27 5 

Low 80C 0.52 0.03 238 7 

 

 



192 

 

 

Figure 7.3 Plot of *
0.1ˆvar ( )y against 1x  

 

One salient advantage of sequential experiment is that subsequent decisions can be 

flexibly made based on the results of previous testing outputs. For example, engineers 

might be interested in whether it is profitable to apply more test units or longer test 

duration. To answer this question, we let Ln be the baseline or default sample size 

available for tests at stresses 1x and 2x ; ω (>0) be a proportional adjuster of Ln such 

that L Ln n ω= ⋅ .  

For the adhesive bond ALT example, the default samples size Ln is 265, and the 

testing duration c at both stresses 1x and 2x are 150 days. Using equations (7.5) and (7.6), 

we obtain the contour plot of the optimum *
0.1ˆvar ( )y against different values ofω and 

censoring time c . As seen from Figure 7.4, in order to reduce a fixed amount of 

variance *
0.1ˆvar ( )y , the amount of additional test duration or sample size required 

depends on the current *
0.1ˆvar ( )y . The smaller the *

0.1ˆvar ( )y , the larger the additional 

sample size/test duration. For example, suppose the target variance level is 0.1 instead 

of 0.12, one may increase the test duration to 175 hrs (from point “A” to “B”); or 
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increase the sample size to 265×1.25=339 (from point “A” to “C”); or simultaneously 

increase both sample size and test duration (e.g. from point “A” to “D”) depending on 

certain considerations, say, the cost of the test (Tang and Xu 2005).  

 
 

Figure 7.4 Contour plot of *
0.1ˆvar ( )y against sample size and test duration 

 

7.4. DISCUSSIONS AND CONCLUSIONS 

The sequential ALT planning can be used as a strategy to enhance the robustness of 

ALT plan against mis-specification of model parameters, especially when there is a 

high margin of parameter specification error.  

To visualize the key idea behind the sequential planning approach as well as its 

advantages, we re-visit the numerical example presented in Section 7.3, and let 

        :  expected Fisher information from a single observation at stress , 1, 2,3

det :  the  element of the determinant of matrix , , , 1, 2,3
i i

jk
i i

x i

jkth i j k

∀ =

∀ =

i

i i
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In particular, we assume thatσ is known so as to make the discussion clearer. Then, 

at any stress ix , we have,  

11 12

12 22

det det
det 1, 2,3

det det
i i

i
i i

i
⎡ ⎤

= ∀ =⎢ ⎥
⎣ ⎦

i i
i

i i
 

, where 11det ii and 22det ii will be respectively interpreted as the expected information to 

be obtained on parameter 0β and 1β .  

Figure 7.5 plots both 11det ii and 22det ii at each stress levels given different 

specified values of 0β and 1β . As seen from this figure, the expected information is 

much more sensitive to the specified value of 0β . In many applications, unfortunately, 

the value of 0β is extremely difficult to be specified, and the margin of error can be 

very large. Hence, by conducting the test in a sequential manner, we are able to secure 

the accuracy of the specified value of 0β . In fact, based on the failure data obtained at 

the highest stress level, a confidence interval of 0β can be constructed. Then, as shown 

in Figure 7.6, the value of 0β can be confined to a range which covers the true value at 

a given confidence level. As we have discussed in the introduction part, the value 

of 1β is relatively easier to obtain as it is often associated to products’ failure 

mechanism, hence, the proposed sequential planning framework has its advantages in 

developing more robust ALT plans. Of course, one possible side effect of conducting 

an ALT sequentially is that the test duration might be longer. 
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Figure 7.5 Expected information per observation (a) at 1x ; (b) at 2x ; (c) at 3x  
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Figure 7.6 Pre-estimation of 0β under the sequential planning framework  

(a) at 1x ; (b) at 2x ; (c) at 3x  
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Chapter 8. Case Study: Planning and Inference of an 

Electronic Controller Sequential ALT 

8.1. Introduction 

8.1.1. Background and Experiment Purpose 

This case study deals with an ALT project in which engineers assessed the reliability of 

a newly developed cost reduction electronic controller installed on one of their 

domestic products. The sequential planning and inference scheme was successfully 

implemented in this testing project which involves temperature, humidity and power 

cycles. 

Facing the escalating pressure from competitors in the field, the design team of the 

company lately developed a new electronic controller with lower manufacturing cost. 

As this new product is a simplified version of the original design, a decline in 

reliability is expected. To quickly assess whether the new design still meets the 

reliability target within 45 days, product engineers launched this accelerated life 

testing project using 60 controller prototypes. Both temperature and humidity were 

taken as accelerating factors in this experiment. According to the products’ 

specifications, the nominal temperature and relative humidity are respectively 45C and 

50%, and the 10% percentile of products’ lifetime should not be less than 2 years. 

Furthermore, the power cycle was also taken into account in order to fully simulate the 

working conditions of the controller. 
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8.1.2. The Acceleration Model  

Since Weibull distribution had been successfully used to model data of the original 

version of the controller, engineers adopted the assumption of Weibull failure times 

with scale parameterα and shape parameter β . Besides, it is assumed that β is a 

constant independent of stress, whereasα depends on both temperature and relative 

humidity through Hallberg-Peck relationship 

( )
(318 ,60%) 1 1exp

, 60% 318
where

: Acceleration Factor
: Relative Humidity in Test

:    Temperature in Test
:  Activation Energy

:    Boltzman's Constant
:    Humid

pK RH EaAF
T RH k k T

AF
RH
T
Ea
k
p

α
α

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = × × −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

ity Acceleration Factor

            (8.1) 

8.2. The Experiment 

To protect proprietary information in what follows, I simulated data from the fitted 

model for the original application and re-scaled the data. Furthermore, I also masked 

the name of the actual dominate failure mode and called it “failure mode 820314”.  

8.2.1. Planning and Inference under the Highest Stress 

8.2.1.1 Test Design 

Under the sequential framework of ALT planning, test at the highest stress level is 

conducted first. For the acceleration model to hold, the highest temperature and 

relative humidity are respectively fixed to 85C and 90%. To plan the test at the highest 
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stress level Hx , engineers firstly specified both values for the scale parameter Hα and 

the shape parameterσ at the test condition in which 85T C= and 90%RH = . The 

specification was done using previous test results of the original version of the 

controller. Based on this information, the shape parameter 1σ ≈ , the humidity 

acceleration factor 3p ≈ , and the activation energy 1Ea ev≈ . Hence, as the 10% 

percentile of the lifetime is 2 years (17520 hours) according to controller design 

specifications, Hα was computed as 

{ }

0

0

90% 1 1exp 835hrs
60% 318 358

1 exp 17520 0.1

p

H
RH Ea

k k T
where

α α

α

= ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × × − =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

− − =

       (8.2) 

Figure 8.1 shows the contour plot of the sample size needed for the test at the 

highest stress level against test duration and expected number of failures.  

 
Figure 8.1 Contour plot of sample size needed in the test 

 In this project, 15 days were assigned to the test at the highest stress level, and 5 
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failures were expected. From the reading of Figure 8.1, 14 controllers were tested.  

8.2.1.2 Test Procedure 

During the test, the controllers were fixed by the mechanical fixture in a 

temperature/humidity chamber. All systems that have microprocessor controls were 

programmed with test software; all wiring inside the chamber was rated for 125C 

operation; the function test was done optically so that test engineers can determine 

whether the “failure mode 820314” has occurred.  

 The temperature/humidity/voltage loading profile is given in Figure 8.2. The 

power cycles are 5 hours on and 1 hour off for a 6 hours cycle.  
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Figure 8.2 Temp/Humidity/Voltage Loading Profile 

8.2.1.3 Test Data Analysis 

The test results, as reported in Table 8.1, were obtained after 15 days. Before 

conducting the data analysis, engineers firstly checked the assumption of Weibull 

failure times. From the Weibull probability plot in Figure 8.3, there was no significant 

evidence indicating a violation of this assumption.  
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Table 8.1 Testing data collection form 

CONTROLLER ACCELERATED LIFE TEST DATA COLLECTION FORM 

Ref No: 0829x1         Page: 1 of: 1    Data: Jun, 2007 
Testing Item Name: Cost Reduction Controller Project Engineer: Victor Liu 
 
Data: 

No. Temperature 
(C) 

Humidity 
(%) 

Failure/Censoring 
Time (hrs) 

Failure 
Mode 

Notes 

1 85 95 355.28 820314  
2 85 95 12.76 820314  
3 85 95 360 820314  
4 85 95 47.25 820314  
5 85 95 155.90 820314  
6 85 95 73.92 820314  
7 85 95 360 820314  
8 85 95 171.07 820314  
9 85 95 82.21 820314  
10 85 95 360 820314  
11 85 95 360 820314  
12 85 95 219.81 820314  
13 85 95 262.04 820314  
14 85 95 339.58 820314  

Total Number of Failures: 10 

Failure Times (hrs)

P
e
r
c
e
n
t

100001000100101

99

90

80
70
60
50

40

30

20

10

5

3

2

1

Probability Plot for Failure Times
Weibull - 95% CI

 

Figure 8.3 Weibull probability plot for failure times 

Then, based on the data reported from the table above, information on 
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both ( )logH Hμ α= and 1σ β= in log-scale was quantified using the posterior 

distribution ( ),Hπ μ σ . Figure 8.4 shows the deducted posterior distribution. In this 

project, the mode of the posterior distribution was taken as the Bayesian 

estimate [ ]ˆ ˆ ˆ,H Hμ σ=θ , then, ˆ 5.74Hμ = and ˆ 0.855σ = as indicted in Figure 8.4.  

 
Figure 8.4 Posterior distribution ( , )Hπ μ σ at the highest stress level 

 

As the actual number of failures obtained from the test is much larger than the 

expected number of failures, engineers realized that they might have overrated the 

controller reliability at the highest stress level. At this moment, however, they did not 

have sufficient information to judge whether this deviation is caused by a decline in 

controller reliability or a mis-specification of the humidity acceleration factor p as well 

as the activation energy Ea . Hence, they proceeded to conduct further testing at lower 

stress levels. Here, in order to relax the burden of the heavy computation in what 

follows, the posterior distribution ( ),Hπ μ σ was approximated by a bivariate normal 
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distribution as shown in Figure 8.5.  

 

 
Figure 8.5 Normal approximation of the posterior distribution ( , )Hπ μ σ  

 

8.2.2. Planning and Inference under Lower Stresses 

8.2.2.1 Tests Design 

After the test under the highest stress was done, engineers proceeded to plan the 

subsequent tests involving three temperature-humidity combinations. As seen in Figure 

8.6, these combinations include: 1) test at low temperature and low humidity (the 

lowest stress level); 2) test at high temperature and low humidity (the middle stress 

level 1); and 3) test at low temperature and high humidity. The sample allocation to 

these three stress levels follows 8:1:1 ratio.  

Approximated 
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contour 

Original 
contour 
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Figure 8.6 Experiment design 

Given the specified ranges for both humidity acceleration factor [ ]2.5,3.5p∈ and 

activation energy [ ]0.7,1.2Ea∈ , Figure 8.7 shows the expected variance of the 

estimator for the 0.1 percentile at use condition against the low temperature level and 

the low humidity level. Based on the reading from the figure, product engineers 

obtained the optimal test plan as summarized in Table 8.2.   

 
Figure 8.7 Expected variance of the estimator at different  

low temperature level and the low humidity level 
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Table 8.2 Developed test plan 

CONTROLLER ACCELERATED LIFE TEST PLAN 

Ref No: 0233x8         Page: 1 of: 1    Data: Jun, 2007 
Testing Item Name: Cost Reduction Controller  Project Engineer: Victor Liu 
Testing Purpose: Estimate the 0.1 life percentile at 45C and 60% humidity 
Expected Variance of the Estimator: 1.701 
 
Plan: 

Test 
Stage 

Temperature 
(C) 

Humidity 
(%) 

Test Duration 
(hrs) 

Sample 
Size 

Expected 
Failures 

1 85 95 360 14 5 

2 
85 60 720 5 3 
58 95 720 5 1 
58 60 720 36 1 

 

8.2.2.2 Simulation Assessment of the Developed Plan 

Before conducting the tests, engineers quickly run a simulation in order to assess the 

developed plan. In each simulation run, p and Ea are randomly generated from their 

specified ranges, then, based on the generated values and test results obtained from the 

highest stress level, failure times at each lower stress levels were simulated. From 

every batch of failure times, engineers computed the asymptotic variance of the 

estimator for the 0.1 life percentile at use condition. Figure 8.8 presented the 

simulation results involving 1000 simulation runs. As seen from this figure, the 

expected variance (1.701) only slightly higher than the mean of the simulated variance 

(1.6), hence, engineers proceeded to the run the tests.  
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Figure 8.8 Simulation assessment of test plan 

8.2.2.3 Test Procedure 

During the test, the controllers were fixed by the mechanical fixture in a 

temperature/humidity chamber. All systems that have microprocessor controls were 

programmed with test software; all wiring inside the chamber was rated for 125C 

operation; the function test was done optically so that test engineers can determine 

whether the “failure mode 820314” has occurred. The temperature/humidity/voltage 

loading profiles are given in Figure 8.9. 
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(a) The middle stress 1: high temperature – low humidity 
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(b) The middle stress 2: low temperature – high humidity 
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 (c) The lowest stress level: high temperature – high humidity 
 

Figure 8.9 Temp/Humidity/Voltage Loading Profiles 
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8.2.2.4 Test Data Analysis 

The test results, as reported in Table 8.3, were obtained after 30 days.  

Table 8.3 Testing data collection form 

CONTROLLER ACCELERATED LIFE TEST DATA COLLECTION FORM 

Ref No: 0829x1         Page: 1 of: 1    Data: Jun, 2007 
Testing Item Name: Cost Reduction Controller Project Engineer: Victor Liu 
 
Data: 

No. Temperature 
(C) 

Humidity 
(%) 

Failure/Censoring 
Time (hrs) 

Failure 
Mode 

Notes 

1 58 60 29.80 820314  
2 58 60 720.00 820314  
3 58 60 720.00 820314  
… … …    
36 58 60 720.00 820314  

Total Number of Failures: 1 
Data: 

No. Temperature 
(C) 

Humidity 
(%) 

Failure/Censoring 
Time (hrs) 

Failure 
Mode 

Notes 

1 85 60 334.09 820314  
2 85 60 632.88 820314  
3 85 60 720.00 820314  
4 85 60 720.00 820314  
5 85 60 720.00 820314  

Total Number of Failures: 2 
Data: 

No. Temperature 
(C) 

Humidity 
(%) 

Failure/Censoring 
Time (hrs) 

Failure 
Mode 

Notes 

1 58 90 131.45 820314  
2 58 90 720.00 820314  
3 58 90 720.00 820314  
4 58 90 720.00 820314  
5 58 90 720.00 820314  

Total Number of Failures: 1 
 

 Engineers analyzed these failure data, Figure 8.10 shows both deduced prior 

distribution and derived posterior distribution at each lower stress levels. Table 8.4 

summarizes the analysis results.  
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(a) The lowest stress level: low temperature, low humidity 

 
(b) The middle stress level 1: high temperature, low humidity 

 
(c) The middle stress level 2: low temperature, high humidity 

 

Figure 8.10 Prior and posterior distribution at each lower stress levels



211 

 

Table 8.4 Data analysis results 

 

CONTROLLER ACCELERATED LIFE TEST DATA ANALYSIS REPORT 

Ref No: 0829x1                      Page: 1 of: 1    Data: Aug, 2007 
Testing Item Name: Cost Reduction Controller Project Engineer: Victor Liu 
 
Analysis Results: 

Stress 
Level 

Temperature 
(C) 

Humidity 
(%) 

Analysis Results 
Scale: 

mu 
Shape: 
sigma 

0.1 life percentile variance 
( log-scale)

Lower bound at 95% level 
In log-scale In hours In log-scale In hours 

High 85 90 5.740 0.855 3.816 45.4 0.3204 2.886 17.9 
Mid 1 85 60 7.000 0.756 5.299 200.1 0.2959 4.404 81.8 
Mid 2 58 90 8.110 0.924 6.031 416.1 0.3215 5.101 164.2 
Low 58 60 9.800 0.956 7.649 2097.7 0.2746 6.787 886.2 
Use 45 60   8.853 6995.3 0.4606 7.7367 2290.9 
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8.2.3. Conclusions 

Since 2290.9 hours are far less than 2 years, the reliability of the cost reduction 

controller does not meet the requirement. In fact, when the test at the highest stress 

level was done, engineers had already found that the actual number of failures was far 

more than the expected number. At that moment, however, they could not decide 

whether this deviation was due to an overestimation of product reliability or a 

mis-specification of the stress-life model parameters. Until the whole tests were done, 

they finally realized that re-design and improvements in controller reliability are 

needed. From this simple case study, we have seen one real application of the 

sequential ALT planning and inference scheme in manufacturing industry, in which 

some key stress-life model parameters are well understood from engineering empirical 

knowledge.  
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Chapter 9. Planning and Analysis of Accelerated Life 

Test for Repairable Systems with Independent 

Competing Risks 

9.1. Introduction 

This chapter describes a Bayesian method of planning an accelerated life test for 

repairable systems with multiple s-independent failure modes. At any testing stress, 

failure times of each failure mode are assumed to constitute a Power Law Process 

(PLP). The scale parameter of the failure process is a log-linear function of stress, 

whereas the shape parameter is a constant independent of stress. We use both Bayesian 

D-optimality and Ds-optimality to develop the two-stress optimum as well as the 

three-stress compromise ALT plan. Particularly, the prior elicitation is discussed, the 

Fisher information matrix is derived, and the global optimality of the two-stress ALT 

plan is verified using the general equivalence theorem. We provide a numerical 

example to illustrate the proposed planning method, and employed a Bayesian curve 

fitting method based on the Dirichlet process mixture of normals to evaluate the 

posterior distribution when the sample size is relatively small. 

9.1.1. Accelerated Life Test for Repairable Systems 

As we have seen in previous chapters, a significant amount of research has been done 

on both test planning and data analysis for non-repairable system ALT. However, the 

problem of planning an ALT for repairable systems has not yet been fully investigated. 
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Even if for non-repairable systems, since the number of prototypes are usually small in 

the R&D phase, failed products, if possible, can be repaired and continuously tested 

(see e.g. Guida and Giorgio 1995, Yun et al. 2006, Guerin et al. 2004).  

In the literature, most of the studies of repairable systems ALT are mainly focused 

on data analysis. Guida and Giorgio (1995) presented an important method for 

analyzing ALT data from repairable systems. In their study, repairable systems are 

modeled by the Power Law Process (PLP) with covariates. Both proportional intensity 

(PI) and accelerated time (AT) regression models are conceived in formulating the 

dependence of the failure process on the covariates (stress), and the maximum 

likelihood (ML) solutions are derived for parameter estimation. It is noted that, the use 

of the PLP in modeling the failure process implicitly implies that the repair restores the 

system to the intensity just before failure. According to the classification of Pham and 

Wang (1994), this type of repair is termed as the ‘minimal repair’. In Guerin et al. 

(2004), based on the same ‘minimal repair’ assumption, the authors derived two useful 

ALT models for repairable systems, namely, the Arrhenius-exponential model, and the 

Peck-Weibull model.  In many cases, the repair action does make a system younger, if 

not as good as new. This situation was considered in Yun et al. (2006) and the PI 

regression model was used for analyzing the ALT data. 

Little work has been done on the planning of an ALT for repairable systems. 

Considering the economic factors, the early work of Flehinger (1965) developed 

optimum test plans for repairable systems test assuming (homogeneous) Poisson 

process. Recently, Guo and Pan (2008) provided a theoretical method that helps to 
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determine the minimal sample size and test duration for demonstration tests of 

repairable systems.  

9.1.2. Accelerated Life Test with Competing Risks 

A complex system, either non-repairable or repairable, may fail due to one of a series 

of failure modes, or competing risks (see Chapter 7, Nelson 1990). A good real-life 

example of repairable systems subject to competing risks was presented in Langseth 

and Lindqvist (2006). In that study, the authors provided a data analysis for a particular 

compressor system based on the dataset from the Offshore Reliability Data (OREDA) 

Database.  

Most of the literature on ALT ignores the possibility of multiple failure modes. For 

those that did consider competing risks, the focus is mainly on data analysis. For 

example, assuming independent failure modes and type I/type II/progressive censoring, 

Klein and Basu (1981) obtained ML estimators when the underlying life distributions 

are Weibull with equal or unequal shape parameters. Zhao and Elsayed (2004) 

presented a method for analyzing ALT data considering both system hard failure and 

degradation. The lifetime of hard failure was modeled by Weibull distribution and the 

system degradation was assumed to follow a Brownian motion process. 

Very few studies have been done on ALT planning with competing risks, and the 

planning of an ALT for repairable systems with competing risks have not been 

explored yet. Recently, Pascual (2008) presented an important work for planning of an 

ALT for non-repairable system. In that study, it was assumed that the failure modes 
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have respective latent failure times, and the minimum of these times corresponds to the 

product life. Further, these latent failure times were assumed to be independently 

Weibull with unknown shape parameter. Optimum plans were obtained based on 

different planning criteria motivated by practical considerations. 

9.1.3. ALT Planning for Repairable Systems with Competing Risks 

In this chapter, we propose a Bayesian approach to planning a constant-stress ALT for 

repairable systems with competing risks. Usually, preliminary estimates of unknown 

model parameters are needed so as to assess the statistical efficiency of a test plan. For 

the ALT planning approaches based on the likelihood theory, the asymptotic variance 

of the MLE is used as a yardstick in determining the optimum plan, and the developed 

plan is locally optimum depending on the “best guess” of the unknown model 

parameter values (see Chernoff (1972)). Hence, if the margin of parameters 

specification error is high and the requisite level of statistical precision cannot be 

achieved as planned. Motivated by this fact, various Bayesian methods for planning an 

ALT for non-repairable systems have been explored by many researchers. Some 

important results were presented in Chaloner and Larntz (1992), Zhang and Meeker 

(2006), Singpurwalla (2006), and etc. Compared to other ALT planning approaches 

based on the likelihood theory, Bayesian planning approaches generally enhance the 

robustness of the developed plans against mis-specifications of ALT models. 

For the planning problem addressed in this chapter, the number of unknown model 

parameters could be large as it is proportional to the number of failure modes. Hence, 
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assuming these parameters are known at the planning stage can easily lead to a “false 

sense of statistical precision (Zhang and Meeker 2006)”. Based on this reasoning, we 

shall employ a Bayesian framework for planning an ALT for repairable systems with 

competing risks.  

In Section 9.2, we briefly review the Power Law Process with covariates, and the 

statistical model of the repairable systems ALT with more than one failure modes is 

presented. Section 9.3 derives the expected Fisher information matrix for any given 

testing plan, and Section 9.4 discusses the specification of the prior which quantifies 

the uncertainly of unknown model parameters based on empirical engineering 

knowledge. In Section 9.5, details of the Bayesian planning problem are presented. 

This involves optimally choosing both sample allocation and stress combinations for a 

testing plan. In particular, the Bayesian D-optimality and Ds-optimality are used as the 

planning criteria. In Section 9.6, a numerical example is presented to illustrate the 

proposed Bayesian planning approach, and the equivalent theorem provided in Whittle 

(1973) is used to check the optimal approximate plan is indeed globally optimal. 

Section 9.7 employs a Bayesian curving fitting method based on Dirichlet process 

mixture of normals to evaluate the posterior distribution when the sample size is small.   

9.2. The Modeling of ALT for Repairable Systems 

This section develops the ALT model for repairable system with competing risks. 

Section 9.2.1 introduces both the Power Law Process (PLP) that models the failure 

process; as well as the acceleration model that formulates the dependence of the failure 
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process on testing conditions. Section 9.2.2 describes the modeling for competing risks; 

Based on the results in Section 9.2.1 and 9.2.2, Section 9.2.3 generalizes the ALT 

model for repairable system with competing risks.  

9.2.1. The Power Law Process and the Acceleration Model 

Consider a constant-stress ALT where N repairable systems are tested at m possibly 

transformed stress levels is for 1,...,i m= and 2m ≥ . Particularly, i iN N π= ⋅ systems are 

allocated to stress level is and tested for iT units of time. Let ms denotes the highest stress 

level which is pre-fixed, and 0s denotes the normal use stress level. We standardize is  

0

i m
i

m

s sx
s s
−

=
−

 

such that 00 1m ix x x= ≤ ≤ = for 1, 2,...,i m= . 

At any stress level ix , each system is subject to k risks or causes of failure. Upon 

the occurrence of each failure, the system is immediately repaired, and the repair time 

is assumed to be negligible. 

9.2.1.1. The Power Law Process 

Assuming that repair times are negligible, the occurrence of consecutive failures of a 

repairable system constitutes a stochastic point process, say ( )N t . One commonly used 

stochastic model is the Non-Homogeneous Poisson Process (NHPP) as described by 

Rigdon and Basu (1989). Such a model implicitly implies that the system reliability 

restores to the level it was in just before the occurrence of the failure, i.e. the system is 

as bad as old after repair. According to the classification of Pham and Wang (1994), 
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this type of repair is termed as the ‘minimal repair’. 

A NHPP is often specified in terms of the intensity ( )v t , and the most popular form 

of ( )v t is given as 

1

( ) 0, 0tv t
ββ α β

α α

−
⎛ ⎞ ⎛ ⎞= ⋅ > >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                               (9.1) 

and the cumulative mean number of failures in the time interval (0, ]t is then computed 

as,  

1

0 0
( ) ( )

t t t tt v t dt dt
β ββ

α α α

−
⎛ ⎞ ⎛ ⎞Λ = = ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫                              (9.2) 

A NHPP with the intensity specified as (9.1) is referred as the Power Law Process 

(PLP). PLP has many nice properties for modeling repairable system. For example, the 

shape parameter β  determines how system reliability improves or deteriorates over 

time. When 1β < , the intensity is decreasing, hence, the PLP is a useful model for the 

system burn-in phase. When 1β > , the intensity is increasing, hence, the PLP is a good 

model for the system wear-out phase. And particularly when 1β = , the intensity is a 

constant and the underlying process reduces to the well-known (Homogeneous) 

Poisson Process with Exponential inter-arrival time. In addition, by comparing 

intensity (9.1) to that of Weibull distribution, it is not difficult to recognize that the 

time to the first failure under the PLP exactly follows Weibull distribution with scale 

parameterα and shape parameter β .  

9.2.1.2. The Acceleration Model 

In this chapter, the PLP is used to model the failure process due to particular risk at 
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given testing condition i for 1, 2,...,i m= . Clearly, it is desirable to model the 

dependence of the failure process on testing conditions. In the literature, both the 

Proportional Intensity (PI) and Accelerated Time (AT) approaches are proposed.  

PI approach (Cox 1972) assumes the mean number of failures under testing 

condition i in a time interval (0, ]t is iu times of that under baseline condition in the same 

time interval, i.e. 0( ) ( )i it t uΛ = Λ ⋅ ; while AT approach (Nelson 1990) assumes that the 

mean number of failures under testing condition i in a time interval (0, ]t equals that 

under baseline condition in the time interval (0, ]iu t⋅ .  

As shown by Guida and Giorgio (1995), both approaches give the same result 

under the PLP model. According to their results, the effect of the testing stress ix is to 

alter the scale parameterα while leaving the shape parameter β unchanged. Hence, we 

have   

0 0/ ,  1,2,...,i i iu i mα α β β= = ∀ =                            (9.3) 

The result shown in (9.3) is extremely important as it provides the theoretical basis 

for the following modeling of repairable system ALT with competing risks. 

9.2.2. Modeling for Competing Risks 

At any stress level ix , each system is subject to k known risks. Hence, for each 

system on test, a sequence of failure times for each risk r ( 1,2,...,r k= ) is obtained. 

We assume that these failure times are either observed (exact) or right censored.  

In particular, for system j at stress ix , let ( )
,
r

i jn denotes the total number of failures 

due to risk r for 1, 2,...,r k= ; ( ) ( ) ( )
, , , ,(1), (2),..., ( )r r r

i j i j i j i jt t t n denote the exact failure times 
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due to risk r ; and iT denotes the censoring time at stress ix . Then, Table 9.1 lists the 

observations for system j at condition i . 

Table 9.1 Observations for system j at condition i   

Risks Number of 
Failures Observed (Exact) Failure Times Censoring Time 

1 (1)
,i jn  (1) (1) (1) (1)

, , , ,(1), (2) , ... , ( )i j i j i j i jt t t n  iT  

2 (2)
,i jn  (2) (2) (2) (2)

, , , ,(1), (2) , ... , ( )i j i j i j i jt t t n  iT  

    

k  ( )
,
k

i jn  ( ) ( ) ( ) ( )
, , , ,(1), (2) , ... , ( )k k k k

i j i j i j i jt t t n  iT  

 

At any stress level ix , the failure times ( ) ( ) ( )
, , , ,(1), (2),..., ( )r r r

i j i j i j i jt t t n for risk r are 

modeled by a PLP process. Hence, apply equations (9.1) and (9.2), the failure intensity 

at any stress ix w.r.t. risk r is 

( ) ( ) 1( )
( )

( ) ( )( )

r r
i ir

r i
i r r

i i

tv t
β β

β
α α

−
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠                                        (9.4)

 

and the cumulative mean number of failures w.r.t. risk r until any time t is  
( )

( )
( )( )

r
i

r
i r

i

tt
β

α
⎛ ⎞

Λ = ⎜ ⎟
⎝ ⎠                                                (9.5) 

Let ( )
0

rα and ( )
0

rβ respectively denote the (baseline) value of ( )rα and ( )rβ at normal 

operating condition, then, under either PI or AT approach, equation (9.3) implies that 

( ) ( ) ( ) ( ) ( )
0 0   ,              1,2,..., , 1,2,...,r r r r r

i i iu i m r kα α β β= = ∀ = =           (9.6) 

That is, the effect of the testing stress ix is to alter the scale parameter ( )rα while 

leaving the shape parameter ( )rβ unchanged.  
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9.2.3. Modeling of ALT for Repairable Systems with Competing Risks 

In summary, an ALT for repairable systems with competing risks is modeled as 

follows, 

 For each system j ( 1,2,..., ij N= ) at stress level ix ( 1, 2,...,i m= ), the sequence of 

failure times ( ) ( ) ( )
, , , ,(1), (2),..., ( )r r r

i j i j i j i jt t t n due to any risk r ( 1, 2,...,r k= ) constitutes the 

power law process (PLP) with scale parameter ( )r
iα and shape parameter ( )r

iβ . 

 Let ( ) ( )exp[ (1 )]r r
i iu xγ= ⋅ − , equation (9.6) implies that  

( ) ( ) ( ) ( )exp( ) , 0r r r r
i m ixα α γ γ= ⋅ >                               (9.7) 

i.e. we have a log-linear relationship 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0 1 0where log( ),r r r r r r r

i m i i mx xμ μ γ γ γ μ α μ γ= + = + = =         (9.8) 

After the test has been performed, it is always important to verify this stress-life 

relationship based on the data. At the planning stage, 

assuming ( ) ( )exp[ (1 )]r r
i iu xγ= ⋅ − is motivated by:  

   It yields the (log) linear model of (9.8), which maintain the flexibility and 

simplicity of the model; 

   Mathematically, it guarantees the intensity, ( )r
iu , to be nonnegative for 

all ( )rγ and ix .  

   Many important stress-life model can be linearized, including the 

Arrhenius-type and inverse power models; 

 Failure processes due to different risks might not necessarily have the same shape 

parameter ( ) ( )1/r r
i iβ σ= . However, for any given risk r , equation (9.3) implies that 
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the shape parameter ( )r
iβ is an unknown constant independent of stress under either 

PI or AT model, i.e. ( ) ( )r r
iσ σ= given risk r for 0,1,...,i m=  

Hence, this ALT model consists of a 3 k× vector (1) (2) ( )( , ,..., )k=θ θ θ θ as its 

parameters, where the component ( ) ( ) ( ) ( )
0 1( , , )r r r rθ γ γ σ= for 1, 2,...,r k= . 

9.3. The Fisher Information Matrix 

Based on the model developed, the Fisher information matrix for an ALT planξ is 

defined as 

2 ( )( ; ) lE θI θ ξ
θ θ

⎡ ⎤∂
= − ⎢ ⎥∂ ∂⎣ ⎦

                                            (9.9) 

where ( )l θ is the log-likelihood of the model parameterθ , which can be written as a 

summation of the log-likelihood ( ) ( )
, ( )r r

i jl θ contributed from system j at stress ix with 

respect to risk r  

( ) ( )
,

1 1 1

( ) ( )
iNm k

r r
i j

i j r

l l
= = =

=∑∑∑θ θ                                          (9.10) 

Here, since each failure mode is assumed to be s-independent, let ( )( ; )rI θ ξ be the 

expected information with respect to risk r obtained from all m stress levels, it is 

immediately seen that the Fisher information matrix ( ; )I θ ξ for the plan ξ is 

a3 3k k× block diagonal matrix with ( )( ; )rI θ ξ as the rth block  

(1)

(2)2

( )

3

( ; )
( ; )( )( ; )

( ; )k

k

lE

×

⎡ ⎤
⎢ ⎥⎡ ⎤∂ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥′∂ ∂⎣ ⎦ ⎢ ⎥
⎣ ⎦

I θ ξ
I θ ξθI θ ξ

θ θ
I θ ξ

            (9.11) 

 To obtain the expression of ( )( ; )rI θ ξ , we let 
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( ) ( )
,

1 1
( ; )

iNm
r r

i j
i j

I
= =

= ∑∑I θ ξ  

where ( )
,
r

i jI is the expected information obtained from any system j at stress ix with 

respect to risk r . Similar to equation (9.9), ( )
,
r

i jI is defined as   

( )2 ( ) ( )
,( )

, ( ) ( )

( )r r
i jr

i j r r

l
I E

⎡ ⎤∂
⎢ ⎥= −

′⎢ ⎥∂ ∂⎣ ⎦

θ

θ θ
                                        (9.12) 

We now derive the closed-form expression of ( )
,
r

i jI . For system j at stress ix , 

let ( ) ( ) ( )
, , , ,0 (1) (2) ... ( )r r r

i j i j i j i j it t t n T< < < < < be the failure times with respect to risk r before 

time iT . The joint density of ( )
,
r

i jn and ( ) ( ) ( )
, , , ,(1), (2),..., ( )r r r

i j i j i j i jt t t n is given by (Rigdon and 

Basu 2000, pp.136) 

( )
( )

( )

( )( ) ( )( ),
,

( ) ( )
,

( )

( ) ( ) ( ) ( )
, , , , ,

1( )
( ) ( )
, ,( )

( ) 1

( )
,( )

, (1), (2),..., ( )

( ) exp , 1

exp , 0

rr rri j
i j

r r
i j

r

r r r r
i j i j i j i j i j

nr n
r ri

i j i jrnr l i
i

ri
i jr

i

f n t t t n

Tt l n

T n

β β

β

β

β

αα

α

−

⋅
=

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟⎜ ⎟ − ≥⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ ⎛ ⎞⎜ ⎟⎪ − =⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

∏   

Making the change of variables exp( )α μ= , 1/β σ= , and exp( )t y= , we have the 

joint density of ( )
,
r

i jn and ( ) ( ) ( ) ( )
, , , ,(1) (2) ( )r r r r

i j i j i j i j iy y y n c−∞ < < < <  

( )
( ) ( )
, ,

( ) ( ) ( ) ( ) ( )
, , , , ,

( ) ( ) ( ) ( )
, , ( )

,( ) ( ) ( ) ( )
1

( )

(

, (1), (2), , ( )

( )1 exp exp exp exp , 1

exp exp

r r
i j i j

r r r r r
i j i j i j i j i j

n r r rn r
i j i i j ri i

i jr r r r
l

r
i i

f n y y y n

n y l c
n

c

μ μ
σ σ σ σ

μ
σ

=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞−⎛ ⎞ ⎜ ⎟− − ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠=
−

−

∏

( )
,) , 0r

i jr n

⎧
⎪
⎪⎪
⎨

⎛ ⎞⎪ ⎛ ⎞
=⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

 

The log-likelihood ( ) ( )
, ( )r r

i j il θ is thus 

( )
,

( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

( ) ( ) ( )
, 0 1

( ) ( )
1

( ; , (1), (2), , ( ))

( ) ( )1log exp( )
r

i j

r r r r r r
i j i j i j i j i j i j

r r rn
i j i

ir r
l

l n y y y n

y l xγ γ
ζ

σ σ=

⎛ ⎞− +
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

θ
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where
( ) ( )
0 1

( )

( )r r
i i

i r

c xγ γζ
σ

− +
= . 

Let ( ) ( ) ( ) 1 ( ) ( ) ( )
, , 0 1( ) log ( ) ( ( ) ( ))r r r r r r

i j i j iA l y l xσ σ γ γ−= − + − + and ( ) exp( )r
i iB ζ= , we then 

have 

2 ( )
,

( ) 2
( ) 1 ( ) ( ) ( )

, 0 1

( ) 2
( )
,

2 ( )

( ) 2

0 0 1
( ) 1 0

( )
1 2( ) ( ( ) ( ))

0 0 1
1              0

( )
symmetric 1 2 ( )

exp( ) exp( ) exp( ) exp( )
1

( )

r
i j

ir
i i r r r r

i j i

ir
r

i j

i i i i i ir
i

r
i i

A l
x

y l x

x
z l

x
B

σ
σ γ γ

σ

ζ ζ ζ ζ ζ

σ

−

⎡ ⎤
∂ ⎢ ⎥= ⎢ ⎥′∂ ∂ ⎢ ⎥+ − +⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

+
∂

=
′∂ ∂

θ θ

θ θ
2

2

exp( ) exp( ) exp( )
symmetric exp( ) 2 exp( )

i i i i i i i

i i i i

x x xζ ζ ζ ζ
ζ ζ ζ ζ

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎣ ⎦

 

where ( ) ( ) 1 ( ) ( ) ( )
, , 0 1( ) ( ) ( ( ) ( ))r r r r r

i j i j iz l y l xσ γ γ−= − + , and it is the only quantity that is a 

function of the logarithm failure time y . Hence, the 

information ( ) ( ) ( )
, ,( )r r r

i j i jI nθ conditioning on the number of failures ( )
,
r

i jn is 

( )

( )
,

2 ( ) ( )
, ,( ) ( ) ( )

, ,

( )
, 2 ( )

( )
,( ) 2

( ) ( )
, ,1

( )
( )

0 0
1 0

( )
symmetric 2 ( ( ))

r
i j

r r
i j i jr r r

i j i j
i i

r
i j r
r i

i j ir
i inr r

i j i jl

l n
I n E

n
Bn x

n E z l
σ

=

⎡ ⎤∂
⎢ ⎥= −

′∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ∂− ⎢ ⎥⎢ ⎥= −

′⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦∑

θ
θ

θ θ

θ θ

 

To derive the closed-form expression of the expectation ( )
,( ( ))r

i jE z l of ( )
, ( )r

i jz l , we 

need the Theorem 26 presented in Rigdon and Basu (2000) on page 59. The theorem 

states that, if a PLP is observed until time t , then, conditioning on the number of 

failures n , the random failure times 1 2 nt t t< < < are distributed as n order statistics 

from the distribution with Cdf, ( ) ( ) / ( ) ( / )F x x t x t β= Λ Λ = for 0 x t< ≤ . 
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 Hence, conditioning on the number of failures ( )
,
r

i jn , the pdf of the thl failure time of 

system j at stress i with respect to risk r can be derived as, 

( )
,

( ) ( ) ( )

11 1 1 1( ) ( ) ( ) ( )
, , , ,( )

, ( ) ( )
,

( 1) ( ) ( ) ( )1( ( )) 1
( ) ( 1)

r
i j

r r r

l n l
r r r r

i j i j i j i jr
i j r r

i j i i i i

n t l t l t l
f t l

l n l T T T T

σ σ σ

σ

− −
−⎡ ⎤ ⎡ ⎤

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ + ⎢ ⎥ ⎢ ⎥= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ Γ − + ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

whereΓ is the Gamma function. Making the change of variable exp( )t y= , we have 
( )
,( ) ( ) ( )

, , ,( )
, ( ) ( ) ( ) ( )

,

( 1) ( ) ( )1( ( )) exp 1 exp
( ) ( 1)

r
i jl n lr r r

i j i j i i j ir
i j r r r r

i j

n y l c y l c
f y l

l n l σ σ σ

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞Γ + − −

= ⋅ ⋅ −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Γ Γ − + ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

and the ( )
,( ( ))r

i jE z l is evaluated by 

( ) ( ) ( )
, 0 1( ) ( ) ( )

, , ,( )

( ) ( )
( ( )) ( ( )) ( )i

r r r
c i j ir r r

i j i j i jr

y l x
E z l f y l dy l

γ γ
σ−∞

− +
= ⋅∫  

Let ( ) ( ) ( )
, ,( ) exp(( ( ) ) / )r r r

i j i j il y l cκ σ= − , a l= , and 1b n a= − + , we obtain,  

1( ) ( ) 1 ( ) 1 ( ) 1 ( )
, , , , ,0

1 1 ( ) 1 ( ) 1 ( )
, , ,0

( ( )) log( ( )) ( , ) ( ( )) (1 ( )) ( )

                         ( , ) ( ( )) (1 ( )) ( )

( ( ) ( ))

r r r a r b r
i j i j i j i j i j

r a r b r
i i j i j i j

i

E z l l B a b l l d l

B a b l l d l

a a b

κ κ κ κ

ζ κ κ κ

ψ ψ ζ

− − −

− − −

= ⋅ ⋅ ⋅ −

+ ⋅ ⋅ ⋅ −

= − + +

∫
∫  

whereψ is the Digamma function defined as ( ) log ( ) /x x xψ = ∂ Γ ∂ ; and ( , )B a b is the 

Beta function defined as ( ) ( ) / ( )a b a bΓ Γ Γ + . Note that  

1 ( ) 1 ( ) 1
, ,( , ) ( ( )) (1 ( ))r a r b

i j i jB a b l lκ κ− − −⋅ ⋅ −  

is exactly the pdf of the Beta distribution for random variable ( )
,0 ( ) 1r

i j lκ< < . 

 Averaging over ( )
,
r

i jn , the expected Fisher information ( )
,
r

i jI is obtained as  

( )
,

( ) ( ) ( ) ( ) ( )
, , , ,0

( ) ( )r
i j

r r r r r
i j i j i j i jn

I I n p n∞

=
= ⋅∑ θ  

where ( )p ⋅ is the probability of observing ( )
,
r

i jn failures from system j at stress i with 

respect to risk r . Here, the random variable ( )
,
r

i jn has a Poisson distribution with 

mean
( )( )( )
rr

i iT βα  (see Rigdon and Basu 2000, pp.136), 
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( )( ) ( )
,( ) ( )

( ) ( )
, ,( )

,

[( ) ] exp[ ( ) ]( ) , 0,1, 2,...
!

rr r
i jnr r

r ri i i i
i j i jr

i j

T Tp n n
n

β βα α−
= =  

9.4. The Prior Distribution 

Prior elicitation is an important issue in planning an ALT using Bayesian approaches. 

Very often, prior distributions are constructed either from historical data of previous 

test (e.g. Clyde et al. 1996) or from subjective opinion based on empirical engineering 

knowledge (e.g. Kadane 1996). In this chapter, available prior information on the 

unknown ALT model parameters (1) (2) ( )( , ,..., )k=θ θ θ θ is quantified in terms of joint 

prior distributions of ( ) ( ) ( ) ( )
0 1( , , )r r r rθ γ γ σ= for 1, 2,...,r k= .  

The slope ( )
1

rγ parameter is associated to particular acceleration mechanism. Useful 

information on ( )
1

rγ is usually obtainable from preliminary testing, engineering 

experience, physical knowledge about the system, or engineering handbooks such as 

MIL-HDBK-217E. In this chapter, a lognormal prior distribution ( ) ( )
1( )r rm m γ= for 

( )
1

rγ is used as in reference Zhang and Meeker (2006).  

The interpretation of ( )rσ is clear as it measures the reliability improvement or 

deterioration of the system. In this chapter, a lognormal prior distribution 

( ) ( )( )r rg g σ= for ( )rσ is used as in reference Zhang and Meeker (2006). 

As the interpretation of ( )
0

rγ is less clear, the prior of ( )
0

rγ is obtained in an indirect 

way by specifying a prior distribution of the cumulative mean number of 

failures ( )
0
rΛ in a given time interval (0, ]t at use stress level 0x . 

Suppose ( )
0
rμ

Λ
and ( )

0

2
rσ

Λ
respectively denote the mean and variance of ( )

0
rΛ based on our 
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prior knowledge, Guida et al. (1989) suggests a Gamma prior distribution for the 

quantity ( )
0
rΛ as follows  

( )

( ) ( ) ( ) ( )
0 0 0 0

1( ) ( ) ( ) ( ) ( )
0 0 0 0

2 2

( ) exp( ), 0
( )

where
,r r r r

a ar r r r rbh h b
a

a bμ σ μ σ

−

Λ Λ Λ Λ

= Λ = Λ − Λ Λ >
Γ

= =

                  (9.13) 

 Then, assume that the prior information on ( )
0
rΛ , ( )

1
rγ and ( )rσ are independent, we 

obtain the joint density of ( ) ( ) ( )
0 1( , , )r r rγ γ σ by making the change of 

variable ( ) ( ) 1 ( ) ( )
0 0 1exp[( ) ( )]r r r rcσ γ γ−Λ = − −  

  

( ) ( ) ( ) ( )
0 1

( ) 1 ( ) ( )
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r r r r

r r r
r r r r r
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r r
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γ γ σ

σ γ γ σ γ γ
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γ γ γ γ
σ σ σ

−
−

=

∂ − −
= − ⋅ ⋅ − −

∂

⎛ ⎞⎛ ⎞− − − −
= ⋅ ⋅ ⋅ ⋅ − ⋅⎜ ⎟⎜ ⎟⋅Γ ⎝ ⎠⎝ ⎠

 

                                                               (9.14)

 Finally, since different risks are assumed to be s-independent in this chapter, the 

joint prior distribution of (1) (2) ( )( , ,..., )k=θ θ θ θ is ( ) ( )
1

k r
r

wθϑ
=

=∏ . 

9.5. The Bayesian Planning Problem 

The planning of an ALT involves choosing both the optimum stress combinations and 

sample allocations. Specifically, the testing (experiment) region here is between the 

use stress 0 1x = and the highest stress 0mx = , and the plan ξ must choose 

a ( 1)m − -tuple 1 2 1( , ,..., )mx x x −=X that determines on which stresses the test is to be 

conducted, as well as another ( 1)m − -tuple 1 2 1( , ,..., )mπ π π −=Π that specifies the 

proportion of samples (i.e.
1

1m
ii

π
=

=∑ ) to be allocated to each stress ix for 1, 2,...,i m= .  
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In the context of Bayesian design, the optimum ALT plan *ξ is the one that 

maximizes the pre-defined utility function ( )U ξ . In the literature, different goals of 

ALT can motivate different choices of utility functions ( )U ξ . This is in line with 

Lindley’s arguments that “a good way to design experiments is to specify a utility 

function reflecting the purpose of the experiment, to regard the design choice as a 

decision problem and to select a design that maximizes the expected utility (Chaloner 

and Verdinelli, 1995)”. In general, there will be no planξwhich is uniformly best, i.e., 

which maximizes the utility function ( )U ξ regardless of the formulation of ( )U ξ (Pilz, 

1991). 

9.5.1. The Planning Criterion 

9.5.1.1. The Choice of Utility Function 

In the context of Bayesian design, the optimum ALT plan *ξ maximizes a pre-defined 

utility function ( )U ξ . If we adopt the idea of Zellner (1988) and view the inference as 

information processing involving input information and output information, the 

optimum ALT plan is the one that maximizes the pre-posterior expectation of the 

Kullback-Leibler distance between the posterior ( , )π θ t ξ and prior 

distribution ( )θϑ over the marginal distribution of (unobserved) testing data t   

( , )
( ) log ( , ) ( )

( )
U d p d

π
π

ϑ
⎧ ⎫

= ⋅⎨ ⎬
⎩ ⎭
∫ ∫

θ t ξ
ξ θ t ξ θ t ξ t

θ
 

Or equivalently, the expected gain in Shannon information  

( ) log ( , ) ( , )U p d dπ= ⋅∫ ∫ξ θ t ξ t θ ξ θ t                                (9.15) 
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In general, there will be no planξwhich is uniformly best, i.e., which maximizes 

the utility function ( )U ξ regardless of the formulation of ( )U ξ . In practice, different 

goals of ALT can motivate different choices of utility functions ( )U ξ , which is in line 

with Lindley’s arguments that “a good way to design experiments is to specify a utility 

function reflecting the purpose of the experiment, to regard the design choice as a 

decision problem and to select a design that maximizes the expected utility (Chaloner 

and Verdinelli 1995)”. The recent work of Pascual (2008) also embodies this idea of 

choosing planning criteria. 

9.5.1.2. The Evaluation of Expected Utility 

The estimation of the exact expected utility in (9.15) can be done using the Markov 

chain Monte Carlo (MCMC) method introduced in Muller and Parmigiani (1996). In 

practice, however, such estimation can be computationally intractable. Hence, the 

approximation of the expected utility that provides an easy-to-interpret simplification 

to the planning problem is particularly important for industrial applications.  

Several normal approximations are available for the utility ( )U ξ presented in (9.15), 

see Berger (1985), pp. 224, and also see Kass and Slate (1994) for some diagnostics of 

the posterior normality. In this chapter, we letθ denote the posterior mode, i.e. the 

generalized MLE (Berger 1985, pp.133), of the parameterθ , and approximate the 

posterior distribution ( )θπ by a normal distribution ( )1, ( ( ; ))N θ I θ ξ − . Then, the 

utility ( )U ξ presented in (9.15) is approximated by 

( )3 3 1( ) log(2 ) log det( ( ; ))
2 2 2
k kU dπ ϑ≈ − − + ⋅∫ξ I θ ξ θ θ                  (9.16) 
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Dropping those constant terms, we obtain the Bayesian D-optimality criterion that 

maximizes 

( )1( ) log det( ( ; )) dξ I θ ξ θ θφ ϑ≈ ⋅∫                                    (9.17) 

The Bayesian D-optimality criterion minimizes the expected generalized variance 

of θ̂ over the marginal distribution of (unobserved) testing data t which makes it is an 

appropriate criterion for estimating the unknown model parameterθ . It is also noted 

that the D-optimum plan is invariant under nonsingular transformation of parameters. 

Interested readers might refer to Atkinson and Donev (1992) for the eight important 

properties of D-optimum designs. 

In some cases, we note that experimenters are only interested in a subset ofθ and 

treat others as nuisance parameters. This arises when the nuisance parameters are 

important for modeling purposes, but they are not of primary interest. Then, 

sD -optimality criterion can be used in place of the D-optimality criterion. 

Re-parameterize and partitionθ so that we are interested in the first part 1θ of 1 2[ , ]θ θ θ= . 

Then, the information matrix given in equation (9.11) can be partitioned as 

1

2

( ; ) 0
( ; )

0 ( ; )
I θ ξ

I θ ξ
I θ ξ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                                       (9.18) 

 In order to estimate 1θ as precisely as possible, i.e., to minimize the generalized 

variance of 1θ̂ , sD -optimality leads to maximizing the following planning criterion  

( )2
2

det( ( ; ))( )
det( ( ; ))

dI θ ξξ θ θ
I θ ξ

φ ϑ≈ ⋅∫                                     (9.19) 

Numerical methods are needed to obtain optimum ALT plans by maximizing (9.17) 

and (9.19). 



232 

 

9.5.2. The General Equivalence Theorem 

In order to verify the global optimality of the developed ALT plans, the general 

equivalence theorem (GET) introduced by Whittle (1973), which has been widely used 

(e.g. Pascual 2008, Chaloner and Larntz 1992, and Zhang and Meeker 2006), can be 

applied. 

Whittle (1973) proved the GET in the context of linear design, and Chaloner and 

Larntz (1989) applied it to Bayesian design. Letξ be a probability measure on the 

testing region [0,1]X = , and our planning problem is to find such a measureξ that 

maximizes 1( )φ ξ or 2 ( )φ ξ . Here, both 1( )φ ξ and 2 ( )φ ξ are concave directly following the 

results given in Firth and Hinde (1997). 

Further define the Frechet derivative of the criterion ( )φ ξ at ξ in the direction 

of xξ as follows 

{ }( )1

0
( , ) lim (1 ) ( )xd x

ε
ε φ ε ε φ−

↓
= − + −⎡ ⎤⎣ ⎦ξ ξ ξ ξ  

Then, the following equivalence theorem gives the conditions for the plan *ξ to be 

globally optimal.  

Theorem (Whittle 1973): If ( )φ ξ is concave, an optimal design *ξ can be 

equivalently characterized by any of the three conditions:  

(a) *ξ maximizes ( )φ ξ ;  (b) *ξ minimizes sup ( , )
x X

d x
∈

ξ ;  (c) *sup ( , ) 0
x X

d x
∈

=ξ . 

Hence, we have 

Theorem 9.1: If 1( )φ ξ is concave, then, *
1( )φ ξ is the global maximum iff 

( ) ( ) ( ){ }* 1

0 1
sup dim tr ( ; )( ( ; )) 0x

x
dϑ−

≤ ≤
− + ⋅ =∫θ I θ ξ I θ ξ θ θ                  (9.20) 
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Theorem 9.2: If 2 ( )φ ξ is concave, then, *
2 ( )φ ξ is the global maximum iff 

( ) ( ) ( ){ } ( ){ }* 1 * 1
1 2 2

0 1
sup dim tr ( ; )( ( ; )) tr ( ; )( ( ; )) 0x x

x
dϑ− −

≤ ≤
− + − ⋅ =∫θ I θ ξ I θ ξ I θ ξ I θ ξ θ θ             

                                                            (9.21) 

9.6. A Numerical Case Study 

In this section, we present a numerical example to illustrate the application of the 

proposed Bayesian ALT planning methods. Both the statistically optimum two-stress 

plan and the compromise three-stress plan are developed.  

9.6.1. Accelerated Life Test for Diesel Engine 

We present a numerical case study to illustrate the application of the proposed 

Bayesian ALT planning methods. Consider a newly designed 6-cyliner 6.8 3dm swept 

volume diesel automotive engine. To investigate the effects of the operation condition 

on engine reliability, an accelerated life test program was launched with 8 engine 

prototypes. During the test, engineers mounted each engine to a truck, and run these 

trucks for 150,000km at different stress levels x which consist of elaborately designed 

combinations of speed, load, and road conditions. For example, 0x = if the truck runs 

on a mountain track at full load; 0.75x = if the truck runs on a circuit track at 

maximum speed; and of course, 1x = if the truck runs at pre-defined use speed, load, 

and road conditions. In what follows, we shall assume x to be continuous between 0 

and 1 without explicitly mentioning the relationships between x and the combination of 

speed, load, and road conditions. 



234 

 

For a clear illustration, we assume that only two types of s-independent failure 

modes, denoted as the type-I and type-II failure, were monitored in the test. Upon 

failure, the kilometer-to-failure was recorded, and the engine was repaired immediately. 

For each failure mode, the failure process at any stress is modeled by PLP with the 

scale parameter which is a log-linear function of the stress x as in equation (9.8); and 

the shape parameter is a constant independent of stress. 

9.6.2. Prior Specification 

To plan an ALT for the diesel engine, prior distributions for the unknown model 

parameters ( ) ( ) ( ) ( )
0 1( , , )r r r rθ γ γ σ= for 1, 2r = must be elicited as discussed in 9.4. Here, 

previous experience with the failure mechanisms suggests that the slope 

parameter (1)
1γ and (2)

1γ for the type-I and type-II failure mode is near 1 and 1.5, 

respectively. Hence, a lognormal distribution (1) (1)
1( )m m γ= is used as the prior 

distribution for (1)
1γ , with mean 0.013−  and standard deviation chosen such that a 

central 95% probability interval for (1)
1γ is approximately between 0.7 and 1.3  

(1)
(1) (1) 1

1 nor(1)
1

log( ) ( 0.013)1( )
0.15 0.15

m m γγ φ
γ

⎡ ⎤− −
= = ⎢ ⎥

⎣ ⎦
 

Similarly, a lognormal distribution (2) (2)
1( )m m γ=  is used as the prior distribution 

for (2)
1γ , with mean 0.400  and standard deviation chosen such that a central 95% 

probability interval for (2)
1γ is approximately between 1 and 2  

(2)
(2) (2) 1

1 nor(2)
1

log( ) 0.41( )
0.15 0.15

m m γγ φ
γ

⎡ ⎤−
= = ⎢ ⎥

⎣ ⎦
 

 The pdf of both (1)m and (2)m are graphed in Figure 9.1.  
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Figure 9.1 Prior distributions of (1)m and (2)m  

In practice, the lack of precise information about the shape parameter ( )rβ usually 

motives the use of a moderately informative prior distribution ( )rg , see example 

Rigdon and Basu (2000) and Zhang and Meeker (2006). In this case study, the failure 

intensity of the diesel engine is thought to be increasing with time, i.e. the shape 

parameter ( )rβ is most likely to be greater than 1 for both failure modes.  

Hence, a lognormal distribution (1) (1)( )g g σ= of (1) (1)1σ β= for the type-I failure 

mode is used, with mean (1)( ) 0.85E σ = − and the standard deviation chosen such that a 

central 95% probability interval for (1)σ is approximately between 0.35 and 0.50. 

(1)
(1) (1)

nor(1)

1 log( ) ( 0.85)( )
0.1 0.1

g g σσ φ
σ

⎡ ⎤− −
= = ⎢ ⎥

⎣ ⎦
 

Similarly, a lognormal distribution (2) (2)( )g g σ= of (2)σ for the type-II failure mode 

is used with mean (2)( ) 0.70E σ = − , and the standard deviation chosen such that a 

central 95% probability interval for (2)σ is approximately between 0.40 and 0.60. 

(2)
(2) (2)

nor(2)

1 log( ) ( 0.70)( )
0.1 0.1

g g σσ φ
σ

⎡ ⎤− −
= = ⎢ ⎥

⎣ ⎦
 

 The pdf of both (1)g and (2)g are graphed in Figure 9.2.  
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Figure 9.2 Prior distributions of (1)g and (2)g  

As discussed in Section 9.4, the prior of ( )
0

rγ is usually obtained in an indirect way 

by specifying a prior of the cumulative mean number of failures ( )rΛ within 610 km at 

use stress 1x = . Suppose (1) 80μ
Λ

= and (1)
2 10σ
Λ

= are respectively chosen as the mean 

and variance of (1)Λ , and ( 2) 100μ
Λ

= and ( 2)
2 10σ
Λ

= are respectively chosen as the mean 

and variance of (2)Λ , the joint density of ( ) ( ) ( ) ( )
0 1( , , )r r r rθ γ γ σ= for 1,2r = is obtained 

from equation (9.14),  
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where 4log(15 10 )c = × is the censoring kilometer in log-scale.  

9.6.3. Numerical Search for a Two-Stress Optimum Plan 

If all model parameters contained inθ are of interest, maximizing (9.17) yields the 

optimum two-stress ALT plan *ξ for the diesel engine test. The planning space 
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is ix and iπ for 1, 2i = , with constraints 0 , 1i ix π≤ ≤ , and 2

1
1ii

π
=

=∑ . Specifically, since 

the highest stress level 2 0x = has been fixed, we are searching on a 2-dimension space 

for the optimum level of the low stress 1x and the proportion of sample 1π allocated to 1x . 

Figure 9.3 shows the contour plot of 1( )ξφ with respect to 1x and 1π . The cross of the 

dashed lines indicates the position of the optimum point *
1 0.81x = and *

1 0.33π = that 

yields the maximum *
1( ) 34.4652ξφ = . 

 

 

Figure 9.3 Contour plot of the numerical search for two-stress optimum ALT plan 

 

In fact, the two-stress optimum ALT plan yields the maximum 1( )ξφ over all 

possible test designs. That is, any m-stress plans for 2m > eventually degenerates to a 

two-stress plan to yield the maximum 1( )ξφ . This global optimality of the developed 

two-stress plan *ξ can be verified by the general equivalence theorem (GET) introduced 

in Section 9.5. Figure 9.4 plots the directional derivative *( , )d xξ as a function 
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of [0,1]x∈ . It is immediately seen that *sup ( , ) 0d xξ = for [0,1]x∈ , indicating the 

plan *ξ that allocates *
1 0.33π = proportion of sample to the low stress *

1 0.81x = is 

globally optimum.   

 

 

Figure 9.4 The plot of the directional derivative *( , )d xξ as a function of [0,1]x∈  

 

Similarly, if only (1) (1) (1) (1)
0 1( , , )θ γ γ σ= or (2) (2) (2) (2)

0 1( , , )θ γ γ σ= is of interest, 

maximizing the criterion (9.19) with respect to 1x and 1π develop the optimum ALT plan. 

Figure 9.5 shows the contour plots of 2 ( )ξφ with respect to 1x and 1π when (1)θ and (2)θ is 

of interest, respectively.  
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Figure 9.5 Contour plot of the numerical search for two-stress optimum ALT plan 

(a) When (1)θ is of interest; (b) When (2)θ is of interest 

As summarized in Table 9.2, if the test is conducted to estimate (1)θ , the optimum 

plan *ξ allocates *
1 0.33π = proportion of sample to the low stress *

1 0.93x = ; if the test is 

conducted to estimate (2)θ , the optimum plan *ξ allocates *
1 0.33π = proportion of 

sample to the low stress *
1 0.73x = . 

Table 9.2 Optimum two-Stress ALT plans for the diesel engine test 

 (Sample size 8N = , Censoring distance 415 10T = × km) 
 

Criterion ( 1 1,x π ) 

Expected No. 
of Type-I 

Failures Per 
System 

Expected No. 
of Type-II 

Failures Per 
System 

*( )U ξ  *( )ξφ  

1x  2x  1x  2x  

1( )ξφ  (0.81, 
0.33) 1.5 10.0 4.0 45.2 8.7190 34.4652 

2 ( )ξφ  

Type-I 
Failure  

(0.93, 
0.33) 1.2 10.0 2.8 45.2 3.4662 15.4460 

Type-II 
Failure 

(0.73, 
0.33) 1.8 10.0 5.1 45.2 5.2690 19.0517 
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Figure 9.6 plots the directional derivative *( , )d xξ as a function of [0,1]x∈ for both 

plans. It is seen that *sup ( , ) 0d xξ = for [0,1]x∈ , indicating the global optimality of 

both plans. 

 

Figure 9.6 Plot of the directional derivative *( , )d xξ as a function of [0,1]x∈  

(a) When (1)θ is of interest; (b) When (2)θ is of interest 

9.6.4. Numerical Search for Three-Stress Compromise Plan 

In practice, the two-stress optimum ALT plan is not robust to misspecification of 

model parameters and assumptions. It is more often used as a bench mark of the testing 

plan, unless the model, pre-specified parameters, and testing data are all valid (see 

Nelson 1990, pp. 341 for detailed discussions).  

It is well-known that the assumption of linear stress-life relationship cannot be 

validated with a two-stress plan. To avoid this drawback, a third (middle) testing stress 

is added. Since the two-stress ALT is globally optimal as we had discussed above, 
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adding the third testing stress reduces the statistical efficiency of the plan, and the 

developed three-stress ALT plan is therefore called the compromise plan. 

To keep the three-stress compromise plan from degenerating to a two-stress 

optimum plan, we let 2 0.25π = , i.e. 2 units are allocated to the middle level. In 

addition, since the middle stress level is added mainly to check the linearity of the 

stress-life model, we also let the middle stress be halfway between the low and high 

stress, i.e. we have 2 1 2x x= . Then, maximizing (9.17) and (9.19) respectively, the 

compromise plans are obtained as summarized in Table 9.3.  

 

Table 9.3 Compromise three-stress ALT plans for the diesel engine test 

Criterion ( 1 2 1, ,x x π ) 

Expected No. 
of Type-I 

Failures Per 
System 

Expected No. of 
Type-II Failures 

Per System *( )U ξ  *( )ξφ  

1x  2x  3x  1x  2x  3x  

1( )ξφ  (1, 0.5, 0.15) 0.9 3.1 10.0 2.3 10.1 45.2 8.6448 34.3168

2 ( )ξφ  
Type-I  (1, 0.5, 0.17) 0.9 3.1 10.0 2.3 10.1 45.2 3.3997 15.3130

Type-II (1, 0.5, 0.09) 0.9 3.1 10.0 2.3 10.1 45.2 5.2509 19.0155

(Sample size 8N = , Proportion of sample allocated to the middle stress 2 0.25π = , 

Censoring distance 150,000T = km) 

 

 In the next section, a discussion will be presented based on the key observations of 

numerical example. 
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9.6.5. Efficiency Loss of Compromise Plans 

A good compromise plan has more practical advantages with acceptable loss of 

statistical efficiency. To investigate the efficiency loss of the developed three-stress 

diesel engine compromise plans, we define the relative D-efficiency of the 

compromise plan as below 

{ }( )* * *( ) exp ( ) ( )com com optη φ φ= −ξ ξ ξ
                                  (9.22) 

where *
comξ denotes the developed three-stress compromise plan, and *

optξ denotes the 

statistically optimum two-stress plan. 

In addition, we also define the adjusted relative D-efficiency as shown in (9.23)  

{ }* * *1( ) exp ( ) ( )a com com optη φ φ
ρ

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
ξ ξ ξ

                              (9.23)              

where ρ equals the total number of parameters of interest so that the relative efficiency 

measure *( )a comη ξ does not depend on the dimension of the problem. This definition can 

be directly derived from the D-efficiency of an arbitrary design defined in Atkinson 

and Donev (1992), pp. 116. 

Table 9.4 shows the relative D-efficiency of the three diesel engine compromise 

ALT plan with respect to the corresponding statistical two-stress optimum plan. It is 

seen that, by sacrificing an acceptable amount of loss in statistical efficiency, we obtain 

the three-stress compromise plans which are more robust in practice. 
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Table 9.4 Efficiency loss of the three-stress compromise plan 

Compromise Plans *( )comξφ  *( )optφ ξ  ρ  *( )comξη  *( )a comη ξ  

Whenθ is of interest 34.3168 34.4652 6 0.8621 0.9756 

When (1)θ is of interest 15.3130 15.4460 3 0.8755 0.9566 

When (2)θ is of interest 19.0155 19.0517 3 0.9644 0.9880 

9.6.6. Evaluation of ALT Plans 

After an ALT plan is developed, Monte-Carlo simulation is an insightful tool to 

visualize the sampling uncertainty, e.g. Zhang and Meeker 2006, Meeker et al 2005. 

For the diesel engine ALT, we use simulation in this section to evaluate the 

compromise three-stress ALT plan when both failure modes are of interest, i.e. 

(1) (2)[ , ]=θ θ θ is to be estimated. Other developed plans can be evaluated utilizing the 

same approach. 

When 1( )ξφ is the criterion, the expected information matrix *( ; )I θ ξ of the 

compromise three-stress ALT plan *ξ developed in Table 9.3 is computed as 

(1) *
*

(2) *

( ; )
( ; )

( ; )
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I θ ξ
I θ ξ

I θ ξ
 

where 

(1)

307.54 22.12 414.01
( ; ) 13.70 19.10

1772.8

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I θ ξ , (2)

993.43 49.34 2779.1
( ; ) 29.17 100.52

14556

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I θ ξ  

Hence, the large-sample approximate variance-covariance matrix for (1)θ̂ and (2)θ̂ is 

respectively the inverse of (1)( ; )I θ ξ and (2)( ; )I θ ξ  
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(1)
3

5.33 6.97 1.17
83.23 0.73 10

0.83

−

− −⎡ ⎤
⎢ ⎥= ×⎢ ⎥
⎢ ⎥⎣ ⎦

θ
Σ  , ( 2)

3

2.32 2.46 0.43
37.72 0.21 10

0.15

−

− −⎡ ⎤
⎢ ⎥= ×⎢ ⎥
⎢ ⎥⎣ ⎦

θ
Σ           

                                                            (9.24) 

Then, based on the developed compromise three-stress ALT plan, we simulate the 

failure times using the model parameters randomly sampled from the prior 

distribution ( )ϑ θ , and obtain the generalized MLE (Berger 1985, pp. 

133) (1) (2)ˆ ˆ ˆ[ , ]=θ θ θ using a non-informative prior distribution forθ . After 200 repetitions 

of the above process, Figure 9.7 plots the histograms for the 

estimates (1)
0γ̂ , (1)

1̂γ , (1)σ̂ , (2)
0γ̂ , (2)

1̂γ and (2)σ̂ . It is seen that, the sample standard 

deviation of (1)
0ˆSD( )γ , (1)

1̂SD( )γ , (1)ˆSD( )σ , (2)
0ˆSD( )γ , (2)

1̂SD( )γ , 

and (2)ˆSD( )σ respectively well agrees with the corresponding asymptotic standard 

error (1)
0ˆAse( )γ , (1)

1̂Ase( )γ , (1)ˆAse( )σ , (2)
0ˆAse( )γ , (2)

1̂Ase( )γ ,and (2)ˆAse( )σ . Here, the 

asymptotic standard error is directly derived from the large-sample approximate 

variance-covariance matrix given in (9.24).  
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Figure 9.7 Simulation assessment of the plan 

 

9.7. Analysis of Testing Data 

Given testing data, posterior distribution of parameters of interest can be found using 

the Bayes’ Rule (e.g. Singpurwalla 2006). When the sample size is moderately large, 

various normal approximations greatly simplifies the evaluation of posterior 

distribution and usually perform reasonably well in practice (Berger 1985, pp. 224).  

However, only 8 engine prototypes are available in the diesel engine ALT example. 

In fact, this is not a trivial case in practice as the number of prototypes is usually small 

during product R&D phase. Recall what we have mentioned in the introduction, one 

SD = 0.081 
Ase = 0.073 

SD = 0.034 
Ase = 0.029 

SD = 0.301 
Ase = 0.288 

SD = 0.051 
Ase = 0.048 

SD = 0.207 
Ase = 0.194 

SD = 0.015 
Ase = 0.012 

(1)
0γ̂  (1)

1̂γ  (1)σ̂  

(2)
0γ̂  (2)

1̂γ  (2)σ̂  
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important reason to repair failed prototypes in a life test is due to lack of samples (see 

e.g. Guida and Giorgio 1995, Yun et al. 2006, and Guerin et al. 2004). Hence, in this 

section, we employ the Bayesian curve fitting method proposed in Muller and 

Parmigiani (1996) and Muller et al (1996) to evaluate of the posterior distribution, and 

particularly compare this method to the large-sample based normal approximation of 

posterior distribution. Several important reliability measures for repairable systems are 

estimated using both methods.  

To clearly demonstrate the data analysis as well as the comparison study, suppose 

engineers are only interested in the parameter (1) (1) (1) (1)
0 1( , , )θ γ γ σ= of the type-I failure 

mode, and treat (2) (2) (2) (2)
0 1( , , )θ γ γ σ= as nuisance. Hence, based on the plan developed 

in Table 9.2, a two-stress ALT is conducted with 3 engines allocated to the low stress. 

The testing results are presented in Table 9.5. 

Given the testing data, the posterior distribution (1)( )π θ of (1)θ is 

(1) (1) (1)( data) ( ) ( ;data)f lπ ∝ ⋅θ θ θ  

where (1)( )f θ is the prior distribution (1)θ used for data analysis, and (1)( )l θ is the 

likelihood of (1)θ given the testing data. Recall the planning criteria defined in (9.17) 

and (9.19), we therefore use a non-informative prior distribution (1)( )f θ for (1)θ in 

analyzing the data.  

In practice, the exact evaluation of (1)( )π θ can be computational intractable. 

Hence, (1)( )π θ is usually approximated using normal distribution as follows (Berger 

1985, pp. 224) 
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( )(1) (1) (1) 1data ~ , ( ( ))N −θ θ I θ  

where (1)θ denote the MLE of (1)θ , and ( )I θ is the information observed at (1)θ . 

Table 9.5 Kilometers to failure of the diesel engine on test 

Stress Level Kilometers to Failure ( 510× ) 

Low 

Engine 8:  

1.4972 

Engine 2:  

0.9806 

Engine 6:  

0.1249    1.3304 

High 

Engine 1:  

0.2840    0.3182    0.4664    0.5252    0.6763    0.7840    0.8744  

1.0337    1.1279    1.1669    1.2278    1.3119    1.4561 

Engine 5:  

0.3833    0.8264    1.2253    1.2281    1.3001    1.4080    1.4108  

1.4320    1.4945 

Engine 7:  

0.4817    0.6066    0.8096    0.8673    0.9870    0.9883    1.0641  

1.1511    1.1822    1.1903    1.2045 

Engine 2:  

0.5891    0.8338    0.8704    1.0615    1.1384    1.2009    1.2153  

1.2391    1.2638    1.3124 

Engine 4:  

0.4103    0.4158    0.4752    0.6999    0.7388    0.9662    1.0496 

 

When the sample size is small, the normality of (1)( )π θ might not be guaranteed. 
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One may refer to Kass and Slate (1994) for diagnostics of posterior normality. In 

Muller and Parmigiani (1996) and Muller et al (1996), the authors proposed a Bayesian 

curve fitting method using Dirichlet process mixture (DPM) of normal distributions. 

The salient idea is to reconstruct the posterior distribution by multivariate normal 

mixtures using the Monte Chain Monte-Carlo integration and density estimation. 

Specifically, given a sample 1 2{ , ,..., }nθ θ θ generated from the posterior distribution, this 

method fitting the following model to the points 1 2{ , ,..., }nθ θ θ   

0
1 1

0

~ ( , )
, ~
~ ( , )

( , ) ( ; , ( ) ) ( ; , )     for  1, 2,...,

i i i

i i

N
G

G DP G

G W s sS N m B i n

θ μ
μ

α

μ μ− −

Σ
Σ

Σ = Σ ⋅ =

 

Here, W is the Wishart distribution, and DP refers to a Dirichlet process. The 

hyper-parameters S , m , B ,α respectively has hyper-priors 1( ; , )W S q q R− , ( ; , )N m a A , 

1 1( ; , ( ) )W B c cC− − and 0 0( ; , )a bαΓ .  

Based on this model, a Gibbs sampling scheme was presented to produce a 

Markov chain that eventually yields an approximation of the posterior distribution 

of 1 2{ , ,..., }nθ θ θ .  

 Figure 9.8 below shows the sampled values of (1)θ from the posterior 

distribution (1)( )π θ using the Markov Chain Monte-Carlo simulation, the normally 

approximated posterior distribution, as well as the re-constructed posterior 

distribution (1)( )π θ using Dirichlet process mixture of normals. It is seen that the 

re-constructed posterior distribution (1)( )π θ using Dirichlet process mixture of normals 

tends to concentrate on the high density region of the sampled (1)θ .  
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In our experiment, when the reconstruction of (1)( )π θ converges, the Dirichlet 

process mixture of normals happens to consist of only one normal distribution as its 

component. This allows us to use the normal probability plot to conduct a fair 

comparison between the normally approximated and DPM re-constructed posterior 

distribution. Figure 9.9 below plots the sampled (1)θ on a normal probability plot paper, 

and also shows the fitted marginal distributions of (1)
0γ , (1)

1γ and (1)σ respected from the 

normally approximated and DPM re-constructed posterior distribution. Here, the 

plotting position on the vertical axis is the inverse of the standard normal 

distribution NORΦ evaluated at the estimated ˆ ( 0.3) / ( 0.4)F i n= − + , and the plotting 

position on the horizontal axis is the ordered sampled values. It is immediately seen 

that, the DPM re-constructed posterior distributions gives closer fit to the posterior 

distribution, particularly for the marginal posterior distributions of (1)
0γ and (1)σ .  
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Figure 9.8 The Approximation of the posterior distribution
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Figure 9.9 Comparison of the approximated and DMP re-constructed posterior 

marginal distribution 

 

Using the both normally approximated and DPM re-constructed, Table 9.6 below 

provides the point estimation as well as the lower bound with 95% confidence level for 

some commonly used key reliability measures of the diesel engine at use condition, 

only considering the type-I failure mode.  
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Table 9.6 Estimated key reliability measures of the diesel engine at use condition 

(Type-I failure mode) 

Reliability Measures 

Using the Normally 
Approximated Posterior 

Distribution 

Using the DPM Re-constructed 
Posterior Distribution 

Point 
Estimation  

Lower Bound 
with 95% 

Confidence 

Point 
Estimation  

Lower Bound 
with 95% 

Confidence 

10% Life Quantile 3.41 410× km 1.56 410× km 4.37 410× km 2.07 410× km 

Median Life 11.09 410× km 5.96 410× km 11.80 410× km 6.41 410× km 

Number of Repairs  
within the first 510 Km 0.73 0.24 0.67 0.17 

Failure Intensity at 610 Km 
0.66 repairs 
per 410 km 

0.12 repairs 
per 410 km 

1.72 repairs 
per 410 km 

0.21 repairs 
per 410 km 

 

9.8. Conclusion 

This chapter described a Bayesian method for planning a single-variable 

constant-stress ALT of repairable systems with multiple failure modes. For each failure 

mode, the failure process was modeled by a Power Law Process. A log linear 

relationship was assumed to describe the relationship between the unknown scale 

parameter and testing stress, while the shape parameter is a constant independent of 

stress. Here, different failure modes were assumed to be s-independent, and the 

corresponding failure processes might not have the same shape parameters. To develop 

the optimal plan, the Bayesian D-optimality and Ds-optimality were adopted, and the 

Generalized Equivalence Theorem was used to verify the global optimality of the 

developed plans. Furthermore, we provided a diesel engine testing example to 

illustrate the proposed planning approach. Particularly, a Bayesian curve fitting method 

called Dirichlet process mixture of normal distributions was employed to analyze the 
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testing data since the sample size is relatively small.  
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Chapter 10. Conclusions 

This dissertation proposed a framework of sequential constant-stress accelerated life 

test (ALT). Both inference and planning methods were thoroughly discussed. 

Sufficient numerical (case) studies were presented, and necessary comparison studies 

based on both theoretical derivations and simulation techniques were provided. 

Important issues involves the set-up of the framework, the data analysis under right 

censoring scheme, the selection of prior distributions, the elicitation and quantification 

of empirical engineering knowledge, the robustness of the estimator as well as the test 

plan, the approximation of probability density, the experiment design under multiple 

conflicting objectives, and etc.  

 The original idea of the sequential data analysis came to my mind when I prepared 

the term paper of IE6123-reliability. In regression analysis, one of the most commonly 

used assumptions is the independent assumption of observations associated to different 

explanatory variables. However, in many industrial applications such as ALT, test 

results obtained at one particular stress level may provide certain clue on the life 

distribution at other stress levels, provided that certain amount of information on the 

stress-life relationships is available. Fortunately, this is the case in many ALT 

applications. Using empirical engineering knowledge, or test results from older 

generations of the product, product engineers are usually able to elicit some useful 

information on stress-life relationships. For example, they might roughly know the 

range of the activation energy, or they might be able to specify the most probable value. 

Hence, from my point of view, the key problem is not whether we should incorporate 

this empirical information, which might risk the objectivity of the analysis, but to 

come out with an effective method that employs such information.  
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 As indicated by the literature review provided in Chapter 2, current Bayesian 

methods, which could be very useful in some situations, suffer from the difficulty of 

choosing appropriate prior distributions. This difficulty is of two-fold. One, it is 

difficult to choose the right form of the prior distribution; Two, it is difficult to 

quantify the value of information into the prior distribution. Hence, people may argue 

that the objectivity of Bayesian analysis is questionable. From another perspective of 

view, however, ALT is only one essential part of the product life-cycle reliability 

engineering. This is a cycle that consists of multiple decisions under different scenarios, 

and most of these decisions are never made pure objectively. In engineering 

applications, although Bayesian methods might violate the data objectivity when they 

are not properly used, this does not necessarily mean that a better decision can be made 

if we disregard the prior knowledge. Again, the question here is how to come out with 

an effective Bayesian method and this is the key motivation of this study.  

Based on this reasoning, Chapter 3 presented the sequential ALT framework and 

its Bayesian inference. Under this framework, test at the highest stress level is firstly 

conducted. When this test is completed, we have some information on the intercept of 

the stress-life model as well as the scale of the failure time distribution (in log scale). 

Then, by specifying the range of the slope parameter, prior distributions at any stress 

level can be deduced. However, since engineers are never able to specify the exact 

value of the slope parameter, uncertainty always exists over this parameter. As 

discussed in Chapter 6, this causes an information-decay during the 

information-transmission among stress levels. The higher the uncertainty; the larger 

the decay rate. So, in order to maximize the information obtained at the lower stress 

levels, an auxiliary acceleration factor was introduced Chapter 6 that amplifies the 

failure probability when the stress level is low. In Chapter 4, the effects of the specified 
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slope parameter was thoroughly investigated and numerical examples were presented 

to visualize such effects. Here, I need to point out that the choice of a uniform prior 

distribution for the slope parameter may not be optimal. The adoption of this form of 

distribution is due to it can be conveniently used in reality. Further studies are 

definitely needed here so as to make the method of sequential ALT analysis a more 

complete one. Chapter 5 presented the planning method for the sequential ALT, and 

Chapter 7 approaches the same problem but from a non-Bayesian perspective of view. 

Comparison studies between the methods presented in these two sections are important, 

particularly results in closed-forms.  

After a case study presented in Chapter 8, we investigated the planning of an ALT 

for repairable systems with multiple competing risks in Chapter 9. In reality, many 

systems/products are repairable and experience multiple failure modes in their lifetime. 

More important, as prototypes are usually costly at the R&D phase, failed testing units 

are fixed in order to cut down the total number of samples needed for the test. Hence, 

the method proposed in Chapter 9 provides reliability engineers with an effective 

method to plan such a test when testing units are fixed upon failure, and the 

mechanism of failures are not unique.  
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Appendix 

Table A.1 ALT data for Device-A (Data from Meeker and Escobar 1998) 

Hours Status Number of Devices Temperature, C 
5000 Censored 30 10 
1298 Failed 1 40 
1390 Failed 1 40 
3187 Failed 1 40 
3241 Failed 1 40 
3261 Failed 1 40 
3313 Failed 1 40 
4501 Failed 1 40 
4568 Failed 1 40 
4841 Failed 1 40 
4982 Failed 1 40 
5000 Censored 90 40 
581 Failed 1 60 
925 Failed 1 60 
1432 Failed 1 60 
1586 Failed 1 60 
2452 Failed 1 60 
2734 Failed 1 60 
2772 Failed 1 60 
4106 Failed 1 60 
4674 Failed 1 60 
5000 Censored 11 60 
283 Failed 1 80 
361 Failed 1 80 
515 Failed 1 80 
638 Failed 1 80 
854 Failed 1 80 
1024 Failed 1 80 
1030 Failed 1 80 
1045 Failed 1 80 
1767 Failed 1 80 
1777 Failed 1 80 
1856 Failed 1 80 
1951 Failed 1 80 
1964 Failed 1 80 
2884 Failed 1 80 
5000 Censored 1 80 

 


