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SUMMARY  

 

Pathogen infected cells express antigens that are recognised by cytotoxic T lymphocytes (CTLs) 

as short peptides complexed with surface MHC class I molecules. These MHC/peptide 

complexes provide a specific and unique target for immune based therapeutic approaches for 

targeting cells expressing viral antigens or tumour specific epitopes. Hence an antibody that 

mimics the specificity of cytotoxic T lymphocytes and recognises MHC/peptide complexes on the 

surface of tumour cells, represents an attractive new targeting strategy.  

 

We have developed a T cell receptor-like antibody (TCR-like antibody) which targets EBV nuclear 

antigen 1 (EBNA-1) in the context of HLA-A201 using conventional hybridoma techniques with a 

high degree of specificity. EBNA-1, a latent protein of Epstein-Barr Virus (EBV), is a DNA-binding 

protein that is essential for the replication and maintenance of the EBV genome and is 

expressed in all EBV-infected cells. EBV is a gamma herpesvirus found in all human populations 

and is associated with malignancies such as Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL) 

and nasopharyngeal carcinoma (NPC). 

 

In our study, we detail the generation and characterisation of this monoclonal antibody. We 

demonstrate that this monoclonal antibody exhibit a specific binding pattern and binds with 

high affinity to HLA-A201/EBNA-1 complexes on the surface of EBV transformed B-

lymphoblastoid cell lines (BLCLs), tumour cell lines and NPC biopsies. In addition, this 

monoclonal antibody is able to detect constitutive levels of HLA-A201/EBNA-1 complexes and as 

such represents a novel reagent for EBV research and for targeting EBV-associated malignant 

cells. 
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1.1 T Cell Receptor-Like Antibodies (TCR-Like Antibodies)  

The advent of major histocompatibility complex (MHC) tetramer technology has enabled the 

detection and analysis of rare populations of antigen-specific T cells. However, the ability to 

visualise cells expressing tumour antigens remains suboptimal due to the lack of appropriate 

reagents that enable the detection of intracellular antigens on live or fresh cells. It is well 

established that tumour cells express antigens that are recognised by cytotoxic T lymphocytes 

(CTLs) derived from cancer patients (Renkvist et al., 2001; Rosenberg 2001). Antigens are 

expressed as short peptides in complex with MHC class I molecules on the tumour cell surface. 

Such tumour-specific MHC/peptide complexes on the surface of tumour cells provide a specific 

and unique target for immune based therapeutic approaches.  

 

Whilst soluble T cell receptors are able to target these tumour-specific MHC/peptide complexes, 

they have low affinity for their ligands and are unstable as recombinant-engineered molecules, 

thus making them potentially unreliable for immunotherapy (Davis et al., 1998). An alternative 

strategy is to engineer a high affinity antibody that can mimic the specificity of the T cell and 

specifically recognise MHC/peptide complexes on the surface of the tumour cells. These 

antibodies are termed T cell receptor like antibodies (TCR-like antibodies). Hence, this project 

involves the generation of a TCR-like antibody targeting a peptide from an Epstein-Barr virus 

tumour antigen as a model.   

 

1.2 Epstein-Barr Virus 

Epstein-Barr virus (EBV) is a gamma herpesvirus of the genus Lymphocryptovirus (LCV). Its 

genome consists of a linear double-stranded DNA that is approximately 184 kilobase pairs (kbp) 

in length (Kieff and Rickinson, 2001). It was discovered in 1964 by Epstein, Achong and Barr who 
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identified the herpesvirus by electron microscopy in a cell line from Burkitt’s lymphoma (BL), a 

childhood tumour that is common in Africa (Epstein et al., 1965). This virus was shown to be 

unable to replicate in cultured cells unlike the known human herpesvirus and was not reactive 

with antibodies of other known human herpesviruses. Hence EBV became the first human 

tumour virus (Kieff and Rickinson, 2001). 

 

EBV can be classified as either Type I or Type II based on the differences in the EBV nuclear 

antigens EBNA-2, EBNA-3A, EBNA-3B and EBNA-3C genes (Sample et al., 1990). Type I is the 

predominant form of EBV found in most areas and it has been found in diseases such as 

nasopharyngeal carcinoma (Chen et al., 1992) and head and neck carcinomas (Shu et al., 1992). 

Type II is found mainly in Burkitt’s lymphomas and has been isolated in areas such as Africa 

(Kenya) and New Guinea (Young et al., 1987). In addition, Type I EBV transforms and 

immortalises peripheral blood lymphocytes into B-lymphoblastoid cell lines (BLCLs) more 

efficiently than Type II EBV (Shu et al., 1992). 

 

Epstein Barr virus infection occurs worldwide and the majority of the population are infected 

with EBV in some stage of their lives. In the United States, as many as 95% of adults between 35 

and 40 years old have been infected with EBV which is spread by oral transmission via the saliva 

of an infected individual. Most primary infections occur during childhood and are asymptomatic. 

However, if the infection is delayed until adolescence or adulthood, it can result in infectious 

mononucleosis (IM) (Crawford, 2001). Infectious mononucleosis is associated with the 

hyperactivation of CD8+ T-cell response and the symptoms of IM include fever, sore throat, 

swollen lymph glands and severe fatigue. Occasionally, the spleen or liver may swell and on rare 

occasions, IM may cause heart disorders and affect the central nervous system. However, it is 
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almost never fatal and patients usually recover within one to two months. Despite this, EBV 

remains dormant or latent in the infected individual for life (CDC, 2008). 

 

1.3 Routes Of Infection 

In normal healthy carriers, EBV infection may infect both epithelial and/or B cells. In the former, 

the infection is predominantly replicative while in the latter, EBV infection is predominantly 

latent and has the potential to induce transformation. From studies carried out on patients with 

IM, high titres of infectious EBV were found in the saliva. This suggests that EBV can reproduce 

productively in the oral cavity or throat of the patient. Despite these findings, the exact location 

of productive infection is still under debate with some favouring the oropharyngeal epithelial 

cell infection while others supporting the direct infection of local mucosal B lymphocytes 

(Crawford, 2001; Young and Rickinson, 2004).  

 

Evidence supporting epithelial cell infection is seen in cases where EBV is detected in oral hairy 

leukoplakia. This is a benign lesion of the oral epithelia caused by opportunistic infection of EBV 

in immuno-compromised patients (De Souza et al., 1989). The virus is also detected in pre-

invasive undifferentiated nasopharyngeal carcinoma (Pathmanathan et al., 1995) and dysplastic 

gastric epithelium (Gulley et al., 1996). Hence EBV could be an early trigger for tumourgenesis in 

these diseases. 

 

However, EBV has not been detected in normal epithelial cells in tonsillar epithelium of IM 

patients (Niedobitek et al., 2000). Moreover, it is difficult to obtain convincing results of primary 

infection of epithelial cells since they lack complement receptor 2 (CR2) or CD21, an EBV B cell 

receptor (Young et al., 1989).  
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Conversely, there is strong evidence to suggest that primary infection involves B cells. A study 

was carried out on a group of patients with a rare genetic defect in Bruton’s thymidine kinase 

gene (X-linked agammaglobulinaemia, XLA) who lack the mature CR2-expressing B cells. They 

were found to be free of EBV infection which suggests that without B cells, they are unable to 

support EBV infection (Crawford, 2001). In addition, sections taken from tonsils removed in 

acute IM showed the presence of latently and lytically infected B cells while no evidence of 

epithelial cell infection was detected (Anagnostopolous et al., 1995). Thus to date, there is more 

evidence that favours the direct EBV infection of B cells. 

 

Epstein-Barr virus preferentially infects B cells through the adsorption of EBV outer envelope 

glycoprotein gp350/220 to complement receptor CR2/CD21 (receptor for complement 

component C3d) on the cell surface (Nemerow et al., 1987). In addition, the viral glycoprotein 

gp25 (gL) and gp42/38 complexed with viral gp85 (gH) also interacts with human leucocyte 

antigen (HLA) class II which is a co-receptor for virus entry into B cells (Knox and Young, 1995). 

The aggregation and cross-linking of CD21 probably results in CD21 mediated tyrosine kinase 

signal transduction thus activating B cells from their resting state (Masucci et al., 1987; Martin et 

al., 1994).  

 

Resting B cells are transformed into permanent, latently infected lymphoblastoid cell lines (LCLs) 

in vitro. Every cell of the LCLs carries multiple extrachromosomal copies of the viral episome and 

constitutively expresses a set of viral gene products known as the latent proteins (Young and 

Rickinson, 2004). Occasionally, EBV infects other cells such as epithelial cells. However, infection 

of these cells is not as efficient and occurs through a separate pathway that is still poorly 

defined (Borza and Hutt-Fletcher, 2002). 



 Literature Review 

 

6 

 

1.4 EBV Latent Gene Products 

The latent gene products consist of six EBV nuclear antigens (EBNAs 1, 2, 3A, 3B, 3C and LP), 

three latent membrane proteins (LMPs 1, 2A and 2B) and transcripts from the BamHI A region 

(BART transcripts). In addition, LCLs consistently express abundant amounts of small, non-

polyadenylated (and therefore non-coding) RNAs, (EBERs 1 and 2) whose functions are still 

unclear (Kieff and Rickinson, 2001). These latent gene products activate resting B cells to enter 

into the cell cycle, maintain continuous proliferation and prevent cells from undergoing 

apoptosis (Tsurumi et al., 2005). Figure 1.1 shows the linearised BamHI restriction map of the 

EBV genome. The BamHI fragments are named according to size with A being the largest 

fragment. Lowercase letters indicates the smallest fragments. The region labelled Nhet is a 

heterogenous region due to the variable number of terminal repeats in different viral isolates 

and clones of EBV-infected cells (Young and Rickinson, 2004; Murray and Young, 2001).  

 

 
Figure 1.1 Open Reading Frames For EBV Latent Proteins                       
Location of open reading frames for EBV latent proteins on the BamHI restriction-endonuclease map of 
prototype B95.8 genome. 
(Murray and Young, 2001)  
 

This pattern of latent EBV gene expression is referred to as ‘Latency III’ (Lat III) (Young and 

Murray, 2003). Besides this, two other forms of latency patterns are observed. In ‘Latency I’ (Lat 

I), which is characteristic of Burkitt’s lymphoma (BL), only EBNA-1, the EBERs and BamHI 

transcripts are detected. In ‘Latency II’ (Lat II), EBNA-1, the EBERs, BamHI transcripts, LMP-1 and 
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LMP-2 are expressed and this pattern is observed in EBV-associated Hodgkin’s disease (HD) and 

undifferentiated nasopharyngeal carcinoma (UNPC) (Murray and Young, 2001). 

 

The location and transcription of these latent proteins are illustrated in Figure 1.2. The origin of 

replication (OriP) is shown in orange. The large green solid arrows represent the coding exons 

for each of the latent proteins (EBNAs 1, 2, 3A, 3B, 3C, LP and LMPs 1, 2A and 2B) and the 

direction in which they are transcribed. EBNA-LP is transcribed from various repetitive exons 

while LMP-2A and LMP-2B are made up of multiple exons located on either side of the terminal 

repeat (TR) region which is formed during the circularisation of linear DNA to produce the 

episome. The blue arrows at the top show the highly transcribed RNAs - EBERs 1 and 2. The 

outer long green arrow shows EBV transcription during Lat III, in which all the EBNAs are 

transcribed from either the Cp or Wp promoter. The various EBNAs are encoded by individual 

mRNAs generated by differential splicing of the same long primary transcript. The inner shorter 

red arrow represents the transcription of EBNA-1 during Lat I and II where the promoter 

originates at Qp. The blue arrows show the location of BARF0 and BARF1. Although BamHI 

transcripts are detected during latent infection, no protein has been definitely identified (Young 

and Rickinson, 2004). 
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Figure 1.2 The Epstein-Barr Virus Genome 
A diagram showing the locations and transcription of latent proteins on 
the double stranded DNA episome. 
(Young and Rickinson, 2004) 

 

Table 1.1 below provides a summary of the various EBV genes, their locations in the cell and the 

latency types in which they are expressed. 

 

 

EBV-encoded genes Location Latency Type 

EBNA-1 Nucleus I, II, III 

EBNA-2 Nucleus III 

EBNA-3 Nucleus III 

LMP-1 Membrane II, III 

LMP-2 Membrane II, III 

EBER-1 and EBER-2 Nucleus I, II, III 

Table 1.1 Locations And Latency Types Of EBV-Encoded Genes 
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1.5 Replication Cycle 

1.5.1 Lytic Cycle 

Although most of the LCLs are in the latent state, a small percentage of cells proceed to the lytic 

cycle. This switch is mediated by the expression of BZLF1 and BRLF1 viral transactivator proteins 

and triggers the expression of viral genes (Young and Murray, 2003) and certain cellular 

promoters. This leads to the activation of genes involved in DNA replication and metabolism, 

followed by genes coding for viral structural proteins. In this lytic cycle, the EBV genome is 

amplified more than hundredfold by the viral replication machinery (Tsurumi et al., 2005). 

Latent genes are also down-regulated and this results in apoptosis and aids the release of 

infectious EBV virions. 

 

1.5.2 Primary Infection 

In the peripheral blood, EBV is present in the memory B cells and these cells express the latent 

gene products LMP-2A and EBNA-1 (Babcock et al., 1998). Studies done by Joseph and 

colleagues showed that a subset of healthy tonsils contains EBV positive naïve B cells which 

show an activated phenotype, thus suggesting that they have been directly infected (Joseph et 

al., 2000). These naïve B cells are either eliminated by CTLs or differentiate to memory B cells 

which leave the tonsil. Some of these memory B cells will terminally differentiate into plasma 

cells where they may initiate replication and replenish the memory B cell pool (Murray and 

Young, 2001). 
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Figure 1.3 Primary Infection of EBV 
Possible pathways that take place during primary infection.  
(Young and Rickinson, 2004) 

 

Figure 1.3 above is a summary of the possible pathways that can take place during primary 

infection of EBV. The exact entry site of EBV is still uncertain and several views prevail. The virus 

may infect the epithelium via oral transmission and establish lytic replication producing 

infectious EBV particles that infects either naïve or memory B cells. Many of the B cells are 

eliminated by the cytotoxic primary T cell response but some may escape by down-regulating 

antigen expression to establish a reservoir of positive memory B cells with suppressed antigen 

presentation (Latency 0). In an alternative view, naïve B cells are the main targets of EBV 

infection. After infection, they undergo germinal centre differentiation and become memory B 

cells (Liu and Arpin, 1997).  
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1.5.3 Persistent Infection 

 
Figure 1.4 Persistent infection Of EBV 
Possible pathways that take place during persistent infection. 
(Young and Rickinson, 2004) 

 

After primary infection, EBV persists in a person for life.  The B cells harbour the virus in the 

latent form and there is a low level continuous or intermittent production of virus which is 

secreted in the saliva (Yao et al., 1985). To sustain this persistent infection, EBV has evolved a 

highly successful way to evade the immune system. Although the exact mechanism is still 

unclear, Thorley-Lawson and Babcock have done studies that suggest that EBV gains access into 

the memory B cells where it can reside undetected by immuno-surveillance mechanisms for a 

long time (Thorley-Lawson and Babcock, 1999). However, B cells require two survival signals to 

survive in the lymph node. Firstly, the B cell receptor (BCR) has to bind to an antigen on the 

surface of dendritic cells and secondly, the B cell surface co-receptor molecule such as CD40, has 

to bind to their ligands on CD4 T cells (MacLennan, 1994).  

 

In EBV-infected B cells, the virus induces the expression of LMP-1 and LMP-2A, which have 

functions similar to CD40 and BCR, respectively. Thus, the infected cells survive and differentiate 
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into plasma cells or memory B cells (Anagnostopoulos et al., 1995; Babcock et al., 1998). The 

EBV-infected plasma cells may then migrate to the epithelial cells and activate the lytic cycle, 

releasing low levels of virus particles in the saliva. In addition, the virus particles produced could 

infect new memory or naïve B cells which replenish the B cell reservoir or are eliminated by the 

established memory T cell response as seen in Figure 1.4 (Young and Rickinson, 2004). 

 

1.6 Latent Proteins  

1.6.1 Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1)  

In our study, we focused upon EBNA-1, thus we shall look at this latent protein in greater detail. 

EBNA-1 is a DNA-binding protein that is expressed in all EBV-infected cells. It is essential for 

replication and maintenance of the EBV genome and does this by a sequence-specific binding of 

EBNA-1 to the origin of replication, OriP. EBNA-1 also functions as a transcriptional activator and 

upregulates the expression of Cp and LMP-1 (Kieff and Rickinson, 2001). In addition, EBNA-1 can 

also negatively regulate its own expression by interacting with two cis regulatory sites 

downstream of the promoter Qp (Nonkwelo et al., 1996). 

 

EBNA-1 contains a glycine-glycine-alanine (Gly-Gly-Ala) repeat sequence that separates the 

protein into amino- and carboxy-terminal domains. This repeat sequence varies in length in 

different EBV isolates. Previous studies have suggested that this acts as a cis-acting inhibitor and 

may inhibit antigen processing via the ubiquitin-proteosome MHC class I pathway (Levitskaya et 

al., 1995). Hence, EBNA-1 peptides are not presented on MHC class I molecules, protecting it 

from CD8+ T cell responses.  
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Blake and colleagues isolated human CD8 T cell clones that recognised EBNA-1-specific peptides 

on HLA-B3501 and HLA-A203. The T cells only recognised and presented EBNA-1 without the 

Gly-Ala repeat domains and were unable to present full length EBNA-1. However, when full 

length EBNA-1 was introduced exogenously, the protein could be processed and presented on 

MHC class I via a (transporter associated with antigen processing) TAP-independent pathway 

(Blake et al., 1997). In a subsequent study by Blake et al., an alternative pathway known as 

cross-presentation or cross-priming was proposed involving the antigen presenting cells (APCs) 

as intermediates. They demonstrated that specialised cells such as dendritic cells (DCs), could 

take up full length EBNA-1 and present them exogenously to CD8+ T cells thus eliciting responses 

that were as strong as the immunodominant epitopes of EBNA-3 proteins (Blake et al., 2000). 

 

This finding remains controversial as it remains difficult to translate cross-presentation on DCs 

to normal processing of full-length EBNA-1 in infected B cells. Gene knockout studies carried out 

by Humme and colleagues indicate that EBNA-1 does not have a crucial role in in vitro B cell 

transformation beyond the maintenance of the viral genome (Humme et al., 2003).  On the 

other hand, EBNA-1 may have a direct role in oncogenesis as directing EBNA-1 expression to B 

cells results in B cell lymphomas in transgenic mice (Wilson et al., 1996). In addition, EBNA-1 

may also have a role in the survival of Burkitt’s lymphoma cells in vitro (Kennedy et al., 2003). 

 

  



 Literature Review 

 

14 

 

 

The proposed functions of the rest of the latent proteins are summarised in the table below. 

Latent Proteins Functions References 

EBV Nuclear Antigen 2 (EBNA-2)  Transformation of B cells 

 Transcriptional activator of 
cellular and viral genes 

 

 Hammerschmidt 
and Sugden, 1989 

 Kieff and 
Rickinson, 2001 

 Wang et al., 1987 
EBV Nuclear Antigen 3 (EBNA-3) 

 EBNA-3A 

 EBNA-3B 

 EBNA-3C 

 3A and 3C: Transformation of B 
cells 

 3B: Induces the expression of 
vementin and CD40 

 Repress EBNA-2 mediated 
transactivation 

 Robertson, 1997 

Latent Membrane Protein 1 
(LMP-1) 

 Induces the expression of cell-
surface adhesion molecules, 
activation antigens 

 Upregulates anti-apoptotic 
proteins (BCL2 and A20) and 
cytokine production (IL6, IL8) 

 Function similar to CD40 -  
provides growth and 
differentiation signals to B cells 

 Wang et al., 1990 
 
 

 Eliopoulos et al., 
1997, 1999 
 

 Uchida et al., 
1999 

Latent Membrane Protein 2 
(LMP-2) 

 LMP-2A 

 LMP-2B 

 2A: Modifies normal B cell 
development and favours the 
maintenance of EBV latency 

 2A: Prevents inappropriate 
activation of the EBV lytic cycle. 

 2B: Regulates LMP-2A 

 Longnecker, 2000 
 

 

 Caldwell et al., 
1998 

Small Non-polyadenylated RNAs 
(EBERs) 

 Disrupts the activity of 
interferon alpha and confers 
cellular resistance against viral 
infections 

 Nanbo et al., 
2002 

 

Table 1.2 Summary Of The Functions Of Latent EBV Genes 
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1.7 Structure Of HLA Class I Complex And Peptide Binding 

The human leucocyte antigen (HLA) is the human version of the major 

histocompatibility complex (MHC) and it consists of class I and class II. 

HLA class I is expressed on most somatic cells while class II is expressed 

on a subgroup of immune cells such as B cells, T cells, dendritic cells, 

macrophages and some endothelial/epithelial cells (Klein, 1986). As 

seen from Figure 1.5, HLA class I complex comprises of a heavy and light 

chain. The heavy chain consists of α1 and α2 which are peptide binding 

domains; α3, an immunoglobulin-like domain; the transmembrane 

region (TM); and the cytoplasmic tail while the light chain consists of 

β2-microglobulin (β2m). 

 

The peptide binding region consists of a floor formed by a β-pleated sheet and two walls formed 

by α helixes. The MHC class I peptide binding groove is closed as the ends converge (Bjorkman, 

1987). As such it contains shorter peptide sequences (7 to 15 residues long) as compared to the 

open groove of the MHC class II molecule. In each peptide sequence, some amino acids in the 

middle of the peptide may protrude out of the groove while most of the other amino acids point 

into the groove and are housed in small pockets in the floor of the groove. Most MHC class I 

molecules have six pockets and these determine the specificity of peptides that can bind. Two of 

the pockets at positions two (P2) and nine (P9) are particularly important and they are known as 

anchor residues. In HLA-A2, there is a preference for isoleucine, leucine or methionine at P2 and 

leucine or valine at P9 (Batalia and Collins, 1997). 

  

α1 α2  

TM 

β2m α3  

Cytoplasmic Tail 

Peptide Binding 

Groove 

Figure 1.5 Structure of 
HLA Class I Molecule 
(Klein, 1986) 
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1.8 Immune Response 

Antigens are processed through two different pathways – MHC classes I and II. Endogenous 

antigens are processed by the MHC class I pathway while exogenous antigens are processed by 

the MHC class II pathway. Our study focuses on tumour antigens which are endogenous and 

hence are processed through the MHC class I pathway.  

 

 

Figure 1.6 The MHC Class I Pathway 
The molecules involved in the various steps of MHC class I presentation. 
(Lautscham et al., 2003) 

 

Endogenous antigens are degraded in the cytosol by the proteosome complex into peptide 

fragments. As seen in Figure 1.6, these are transported into the endoplasmic reticulum (ER) in 

an ATP-dependent manner by the transporter associated with antigen processing (TAP). TAP is a 

heterodimer that comprises of TAP1 and TAP2 subunits. It extends through the ER membrane 

and transports peptides that are 8-16 amino acids in length, a size suitable for the binding of 

peptides to the groove of the MHC class I molecule.  
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In the ER, the newly synthesized MHC class I heavy chains associate with calnexin and with the 

help of ERp57, the heavy chain refolds and binds to free β2m. The MHC complex then associates 

with tapasin, and calnexin is exchanged for calreticulin. When this MHC complex associates with 

TAP, the peptide binds to the MHC complex and migrates to the surface of the cell where the 

peptide is presented to CD8 cytotoxic T lymphocytes (Lautscham et al., 2003).  

 

1.8.1 Identified Cytotoxic T Lymphocyte Epitopes Expressed By EBNA-1 

EBNA-1 was traditionally thought to be an immunologically invisible latent protein produced by 

EBV to evade the host immune system. However, many studies have since shown that EBNA-1 

can be processed and presented to CD8 and CD4 T cells on MHC classes I and II. In addition, the 

C terminal tail is the most immunogenic portion of the protein. Currently, cytotoxic T 

lymphocytes (CTL) epitopes on EBNA-1 are still poorly characterised as it is not as 

immunodominant as other EBNAs such as EBNA-3. As mentioned before, Blake and colleagues 

isolated human CD8 CTL clones that recognised EBNA-1 peptides on HLA-B3501 and HLA-A203. 

HLA-B3501 recognised the 11-mer peptide sequence HPVGEADYFEY (EBNA-1 407-417) while 

HLA-A203 recognised the 9-mer sequence VLKDAAIKDAL (EBNA-1 574-582) (Blake et al., 1997).  

 

In subsequent studies, it was discovered that strong responses to exogenous EBNA-1 was not 

limited to these two HLA molecules. An additional HLA-B7 and HLA-B53 specific for EBNA-1 was 

identified after screening for interferon gamma (IFN-γ) responses with ELISPOT. These MHC 

class I molecules were specific for EBNA-1 peptides and elicited CTL responses that were as 

strong as immunodominant protein, EBNA-3. Both recognised a 9-mer sequence. HLA-B7 

recognised IPQCRLTPL (EBNA-1 528-536) while HLA-B53 recognised HPVGEADYF which was 

interestingly, within the sequence of HLA-B3501 (Blake et al., 2000). Another study by Stuber et 
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al. using MHC stabilisation assay, also showed that this exact sequence bound well to HLA-B7. 

Besides this, synthetic 9-mer sequences were also shown to bind well to HLA-A201 (Stuber et al., 

1995). 

 

1.9 HLA Allele Frequencies 

The allelic frequencies of the HLAs are also important to determine how widespread each allele 

is and the ethnic groups that represent them. For a TCR-like antibody to gain widespread use, 

the targeted HLA allele should be one that is common. HLA-A201 is second most common allele 

found in 11 regions in the world (Solberg et al., 2008). Figure 1.7 below shows the distribution of 

HLA-A201 around the world. 

 

 
Figure 1.7 A Geographical Interpolation of HLA-A201 Allele Frequencies 
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In the Singaporean Chinese population, the HLA-A2 allele is one of the most common alleles 

with various subtypes such as HLA-A203, HLA-A206 and HLA-A207. The allelic frequencies of the 

various subtypes are shown in Table 1.3 below. Previously, our laboratory has also generated an 

antibody that is HLA-A201 restricted. Hence, we decided to focus our study on this particular 

HLA-A201 allele, specific for the EBNA-1 epitope (FMVFLQTHI) identified by Stuber and 

colleagues (Stuber et al., 1995). 

 

HLA Allele Frequency in Singapore (%) 

HLA-A201 10.4 

HLA-A203 6.7 

HLA-A206 4 

HLA-A207 13.1 

 

Table 1.3 Allelic Frequencies Of HLA-A2 In The 

Singaporean Chinese Population 
(Middleton et al., 2000) 

 

1.10 EBV Malignancies 

1.10.1 Burkitt’s Lymphoma (BL)  

Burkitt’s lymphoma (BL) is a highly proliferative B cell tumour in which EBV was first identified 

(Epstein et al., 1965). There are three forms of BL known as the endemic, sporadic and 

immunodeficiency related form. The endemic variant is the high-incidence form of BL that 

occurs in malaria endemic areas of Africa and Papua New Guinea, with an annual incidence of 

about 5-10 cases per 100 000 children. It usually involves the facial bones such as the jaw, and 

other organs like the kidney, ovaries, or the breast. The sporadic variant is a low-incidence form 

of BL which takes place worldwide, mostly in developed countries but with a much lower 

incidence rate. Although EBV is present in all cases of endemic BL, it is found in only 15% of the 
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sporadic cases and these involve mainly the lymphoid tissue of the gut and the upper 

respiratory tract (Yustein and Dang, 2007). The immunodeficiency related variant is mainly 

observed in HIV patients, frequently occurring before the development of full-blown AIDS. 

About 30-40% of the cases are related to EBV infection (Kieff and Rickinson, 2001; Young and 

Rickinson, 2004).  

 

A feature characteristic of BL tumours is the chromosomal translocation of chromosome 8 (8q24) 

in the region of c-myc proto-oncogene and either chromosome 14 of the immunoglobulin heavy 

chain or chromosome 2 or 22 of the immunoglobulin light chain (Murray and Young, 2001). This 

results in the constitutive expression of c-myc oncogene which causes continuous proliferation 

and inhibits differentiation (Zech et al., 1976). In addition, many tumours also have mutations in 

the tumour suppressor gene p53 which is the most common gene mutation in human cancers 

(Farrell et al., 1991). 

 

The examination of BL tumour tissues shows that they are monoclonal; suggesting that EBV 

infection is an early event preceding the proliferation of B cells (Neri et al., 1991; Raab-Traub 

and Flynn, 1986). The origin of BL may be the germinal centroblasts as studies have shown that 

BL cells resemble centroblast cells. Proliferating centroblasts are subject to somatic 

hypermutation and c-myc translocation may have occurred as an error during this process 

(Chapman et al., 1995; Klein et al., 1995; Harris et al., 2001). An analysis of viral gene expression 

of BL cells revealed EBNA-1 (Kelly et al., 2002) as well as EBERs and BamHI transcripts (Crawford, 

2001). Although the exact role of EBV in the pathogenesis of BL is still unclear, EBNA-1 may play 

a role in maintenance of the viral genome (Humme et al., 2003) while EBERs induce the 
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expression of IL10 to increase cell survival and reduce immune reactivity (Takada and Nanbo, 

2001). 

 

Malaria and HIV can act as chronic stimuli of B cell production and in HIV; exaggerated germinal 

centre activity may occur (Boshoff and Weiss, 2002). This would in turn increase the chances of 

c-myc translocation (Young and Rickinson, 2004). Both these diseases possess 

immunosuppressive effects that may decrease the levels of EBV-specific cytotoxic T cell 

response (Whittle et al., 1984). 

 

1.10.2 Hodgkin’s Lymphoma (HL)  

Whilst Hodgkin’s lymphoma (HL) is not geographically restricted, its association with EBV is 

geographically restricted. In a study done by Glaser and colleagues, it was shown that EBV 

associated HL was twice as prevalent in less developed countries than the developed countries 

(Glaser et al., 1997). A review by Hsu and Glaser also showed that 90-100% of HL cases in 

developing countries are EBV associated as compared to a minority of cases in developed 

countries such as the USA and Europe (Hsu and Glaser, 2000). Besides geographical location, 

EBV association with HL also varies with sex, age, ethnicity and histological subtype (Flavell and 

Murray, 2000). Hodgkin’s lymphoma is characterised by the presence of large multinucleate 

Reed-Sternberg cells (RSC) (Figure 1.8) and Hodgkin’s cells which takes up only 1-2% of the 

tumour tissue but together result in malignancy.  
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Figure 1.8 Morphology Of Cells Found In Hodgkin’s Lymphoma.  
Normal lymphocytes compared with a Reed-Sternberg cell, which is large 
and multinucleate. 
(National Cancer Institute) 

 

By studying their immunoglobulin (Ig) genes, the origins of these cells were found to derive from 

B cells and are clonal. This indicates that EBV infection occurred before clonal expansion 

(Anagnostopoulos et al., 1989). The association of EBV with HL was indicated by high level of 

antibody titres to EBV antigens in HL patients as compared to other lymphoma patients. It was 

also shown that these high levels preceded the development of HL by several years. In addition, 

there were findings of a threefold increase in risk of HL with patients who had a history of IM 

(Gutensohn and Cole, 1980).  

 

In EBV associated HL, the viral genome is present in every cell but its expression of EBV latent 

genes is restricted to EBNA-1, LMP-1, LMP-2A, EBERs and BamHI transcripts (Deacon et al., 

1993). LMP-1 may provide growth and survival signals while LMP-2A may provide the BCR 

signals required for survival of the malignant cells (Thorley-Lawson and Babcock, 1999). To 

obtain an accurate diagnosis of HL, multiple biopsies may have to be taken to identify the 

characteristic RSCs since they are present in a very small percentage of cells and tissues (Ansell 

et al., 2006). 

http://upload.wikimedia.org/wikipedia/commons/0/02/Reed-Sternberg_lymphocyte_nci-vol-7172-300.jpg
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1.10.3 Nasopharyngeal Carcinoma (NPC)  

Nasopharyngeal carcinoma (NPC) is a tumour of the squamous epithelium in the post nasal 

space (Crawford, 2001). The undifferentiated form of NPC – World Health Organisation (WHO) 

type III – shows the most consistent association with EBV. This tumour is most common in areas 

of China and South-east Asia, having an incidence of around 20-30 cases per 100 000 (Yu and 

Yuan, 2002). Individuals of Chinese descent, especially Cantonese males, have high incidence 

rates, regardless of where they live. Besides this genetic predisposition, environmental and 

dietary factors such as ingestion of salted fish and traditional herbal remedies may contribute to 

NPC (Yu et al., 1986; Armstrong et al., 1998).  

 

The undifferentiated form of NPC is characterised by a prominent lymphocytic infiltrate and this 

interaction between the tumour cells and the lymphocytes may be important for the continued 

growth of the malignant cells. The association of EBV and NPC was first established through 

serological studies (Old et al., 1966). EBV DNA is consistently detected in all NPC regardless of 

the geographical location and incidence rate. The viral DNA from NPC tissues have been found 

to be monoclonal which suggests that EBV infection of a single cell occurred before the clonal 

expansion of malignant cells (Raab-Traub and Flynn, 1986). Some EBV latent genes such as 

EBNA-1, LMP-1, LMP-2A, LMP-2B, EBERs and BamHI transcripts, are detected in NPC tumour 

cells (Brooks et al., 1992). Out of these, LMP-1 and LMP-2 which are involved in cellular gene 

expression and growth may contribute to the highly invasive and malignant growth of the 

tumour (Raab-Traub, 2002). NPC produces few symptoms in the early stages with innocuous 

lesions in the post nasal cavity. As such most cases are already advanced when detected. Early 

detection is extremely difficult, even by an experienced ortholaryngologist (Leong et al., 1999). 
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1.10.4 Current Therapies For EBV Malignancies 

The current therapies of Burkitt’s lymphoma and Hodgkin’s lymphoma involve radiotherapy and 

short courses of high intensity chemotherapy together with cyclophosphamide, vincristine, 

doxorubicin and methotrexate (Magrath et al., 1996). Other alternatives include biological 

agents such as rituximab, an anti-CD20 monoclonal antibody that activates antibody-dependent 

cell cytotoxicity and cell-dependent cytotoxicity. The addition of rituximab to chemotherapy was 

shown to improve outcome of BL especially in the elderly (Thomas et al., 2006). However, the 

drawback of chemotherapy is its side effects such as haematological toxicity and neurotoxocities. 

The most effective therapy for NPC is radiation therapy as it is usually advanced at presentation 

and the lesions may be poorly accessible to surgeons. Combination therapies that involve 

chemotherapy and surgery are alternatives dependent on the stage of the disease (Psyrri et al., 

2006). A major disadvantage in the current therapies is the lack of specificity in the targeting of 

tumour cells which may destroy normal bone marrow and result in severe side effects. In 

addition, the use of toxins in chemotherapy may inhibit the growth of immune cells and leave 

patients immunocompromised. Hence, a therapeutic agent that targets tumour cells specifically 

without adverse side effects would be ideal. 

 

1.11 Aims Of Our Project 

In our project, we aimed to produce a monoclonal antibody that recognises latent EBV protein, 

EBNA-1, in the context of HLA-A201. EBNA-1 is present in 100% of EBV associated tumours and 

thus has the potential to be a useful tool in a diagnostic and therapeutic setting for EBV 

associated malignancies. To achieve this, HLA-A201/EBNA-1 monomers were produced and used 

as reagents to produce the monoclonal specific antibodies in mice. Fusion was carried out with 

the spleenocytes taken from the mice and myeloma cells to produce hybridoma cell lines. This 
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was followed by screening of the cells via flow cytometry to establish its specific binding. The 

monoclonal was then characterised and tested against EBV transformed B-lymphoblastoid cell 

lines (BLCLs), tumour cell lines and NPC biopsies. 

 



 

 

 

 

 

MATERIALS AND METHODS 
 

Chapter 2 
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Media, Buffers, Solutions And Chemicals 

All media, buffers, solutions and chemicals used in this study are listed in the Appendix. 

 

2.1 Tissue Culture 

2.1.1 HLA-A2 Cell Lines 

The cell lines used were T2, THP-1, U937 (A2), RPMI-6666 and CCRF-SB (all purchased from ATCC, 

USA). All were cultured in RPMI-1640 medium (Hyclone, Thermo Fisher Scientific, Roskilde, 

Denmark) with 10% foetal bovine serum (FBS) (Gibco, Invitrogen, Carlsbad, CA USA) and 1% 

penicillin/streptomycin (pen/strep) (Gibco). T2 is a human lymphoblast suspension cell line; 

THP-1 is a human monocytic leukaemic suspension cell line while U937 is a human monocytic 

suspension cell line. U937 cells were stably transfected with HLA-A201. RPMI-6666 and CCRF-SB 

are tumour cell lines. RPMI-6666 is a human lymphoblast suspension cell line derived from 

Hodgkin’s lymphoma while CCRF-SB is a human lymphoblast suspension cell line derived from 

acute lymphoblastic leukaemia. These two cell lines expressed human leucocyte antigen A2 

(HLA-A2) and are EBNA-1 positive. 

 

2.1.2 Culture Of HLA-A2 Cell Lines 

Cells were grown in 25 cm2 (T25) or 75 cm2 (T75) sterile plastic tissue culture flasks (Nunc 

Thermo Fisher Scientific, Roskilde, Denmark) and cell densities were maintained between 3 x 105 

and 1 x 106 cells per ml according to the protocol on the ATCC website. Once the cell density 

exceeded 106, half the cell suspension was discarded. This was then replaced with the same 

volume of RPMI-1640 media (Hyclone) with 10% FBS and 1% penicillin/streptomycin (R10). Cells 

were pipetted gently to minimise cell clumping and sub-cultured every 2 to 3 days and grown at 

37oC in a 5% CO2 incubator (Sanyo, Wood Dale, USA). 
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2.1.3 Culture Of B-Lymphoblastoid Cell Lines (BLCLs)  

The EBV transformed B-lymphoblastoid cell lines were obtained from various patients and 

volunteers and stored frozen in liquid nitrogen at WHO Immunology Centre, Singapore.   

 

2.1.3.1 Growth Of BLCLs 

BLCLs were thawed at 37oC in a water bath and resuspended in 10 ml of R10 under sterile 

conditions. The cells were centrifuged at 350 g for 5 mins and the supernatant discarded. The 

pellet is resuspended in 5 ml of R10 and transferred to a T25 culture flask. The cell culture was 

then incubated in a CO2 incubator at 37oC. The density of the cells was monitored and culture 

medium added when necessary. When the volume exceeded 15 ml, 80% of the cell culture was 

transferred to a T75 culture flask and 20 ml of fresh R10 medium was added. To the remaining 

cell suspension, 5 ml of fresh R10 medium was added in the T25 flask. The cell cultures were 

incubated at 37oC in a CO2 incubator until ready for freezing or harvesting. 

 

2.1.3.2 Freezing Of BLCLs 

Once the cells achieved 80% confluent growth, the cell suspension was centrifuged at 350 g for 

5 mins and the supernatant was discarded. The pellet was resuspended in 1 ml cold freezing 

mixture and transferred to a labelled cryo-vial (Thermo Fisher Scientific, Nunc) and kept at -80oC 

for a day before being transferred to liquid nitrogen. 
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2.2 Antibody Production 

2.2.1 Peptides  

EBNA-1 (FMVFLQTHI) (Stuber et al., 1995) and M1 peptides (GILGFVFTL) were synthesised by 

Mimotopes (Mimotopes, Victoria, Australia) and its purity was analysed by electrospray mass 

spectrometry.  

 

2.2.2 Preparation Of Competent Cells 

E. coli strain BL21 (DE3) (Novagen, Madison, WI, USA), used for plasmid amplification and 

recombinant protein expression, was prepared for chemical transformation. 

 

Stock cells were streaked onto Luria-Bertani agar (LA) plates and incubated at 37oC overnight. A 

single colony was inoculated into 10 ml Luria-Bertani broth (LB) and incubated at 37oC overnight 

with vigorous shaking at 220 rpm. The next day, the 10 ml culture was inoculated into 500 ml LB 

medium and incubated at 37oC for 3-4 hrs with vigorous shaking until the optical density (OD600) 

reached 0.6. The cell culture was centrifuged at 3000 rpm for 15 mins. The supernatant was 

discarded and the pellet was resuspended in 10 ml transformation buffer I (TfBI) and centrifuged 

at 3000 rpm for 8 mins. The supernatant was discarded and the pellet was resuspended gently 

in 2 ml cold transformation buffer II (TfBII). The competent cells were aliquoted into 1.5 ml 

tubes, frozen in liquid nitrogen and stored at -80oC. 

 

2.2.3 Transformation 

E. coli strain BL21 competent cells were thawed on ice and 100 µl of cells were aliquoted into a 2 

ml tube. 100 ng pET30-HLA construct was added to the cells and incubated on ice for 30 mins. 

After incubation, the cells were heat-shocked for 30 s at 42oC and put on ice for 1 min. Next, 250 
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µl of SOC media (Invitrogen) was added and the suspension was incubated at 37oC for 1 hr with 

shaking. The suspension was put on ice for 1 min and 50 µl and 200 µl of the suspension was 

spread on each LK plate (LB with 30 µg/ml kanamycin). The plates were then left to incubate 

overnight at 37oC. 

 

2.2.4 Inoculation 

The next morning, the plates were taken out from the incubator and stored at 4oC. In the 

evening, a single colony was inoculated into 15 ml of LB media with 30 µg/ml kanamycin (LK) 

and incubated at 37oC overnight with shaking. 

 

2.2.5 Protein Expression 

5 ml of culture was inoculated into 500 ml of LK media and the flask was incubated at 37oC for 

1½ hr with shaking. Mini-prep (Qiagen, GmbH, Germany) was carried out for the remainder of 

the culture according to the manufacturer’s instructions. The OD600 was checked every half an 

hour. Once the OD600 reached between 0.6 and 0.8, 1 mM isopropyl β-D-I-thiogalactopyranoside 

(IPTG) (Sigma-Aldrich Inc, St. Louis, MO, USA) was added into each flask to induce protein 

expression at mid-log phase. The culture was left to incubate in the dark at 37oC for 4 hrs with 

shaking. Thereafter, the cells were centrifuged at 4oC, 5000 rpm for 10 mins to harvest the cells. 

Supernatant was discarded and the pellet was resuspended in 5 ml of resuspension buffer with 

10 mM dithiothreitol (DTT) (Sigma-Aldrich), 0.2 mM phenylmethylsulphonylfluoride (PMSF) 

(Sigma-Aldrich), and 5 µl 1 mg/ml pepstatin A (Sigma-Aldrich). The resuspended pellet was 

stored at -80oC overnight. 
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2.2.6 Inclusion Bodies Preparation 

The inclusion bodies were thawed at room temperature. To every 5 ml of resuspended culture, 

12.5 ml of lysis buffer was added together with 0.5 ml 1 mg/ml DNase I (Sigma Aldrich), 10 mM 

DTT and 5 mM MgCl2. The mixture was transferred into 30 ml centrifuge bottles and rocked 

vigorously on ice for 20 mins. 10 mM sodium ethylenediaminetetraacetate (NaEDTA; pH 8.0) 

was added to each bottle. The cells were further lysed by sonication which was carried out for 5 

cycles, each consisting of 30 s pulsing followed by 30 s break. After that, the mixture was 

centrifuged at 10 000 rpm, 4oC for 15 mins. The supernatant was discarded and the pellet was 

resupended in 15 ml of wash buffer I with 1 mM DTT, 0.2 mM PMSF and 15 µl 1 mg/ml pepstatin 

A. After resuspension, the mixture was homogenised for 30 s and centrifuged at 10 000 rpm, 4oC 

for 15 mins. This wash step was repeated thrice. Next, the pellet was resuspended in 10 ml of 

wash buffer II together with 1 mM DTT, 0.2 mM PMSF and 10 µl 1 mg/ml pepstatin A. The 

mixture was homogenised for 30 s and centrifuged at 10 000 rpm, 4oC for 15 mins. The 

supernatant was discarded and 200 µl of water was added to the pellet to form a white paste. 

10 ml of 8 M urea buffer was then added to the paste with 0.1 mM DTT, 0.2 mM PMSF and 10 µl 

1 mg/ml pepstatin A. The mixture was left to shake for 1 hr at room temperature and 

centrifuged at 10 000 rpm, 4oC for 1 hr. The supernatant was collected into a 50 ml falcon tube 

and 0.2 mM PMSF and 10 µl 1 mg/ml pepstatin A was added. This was then aliquoted and into 

1.5 ml centrifuge tubes and stored at -80oC.   

 

2.2.7 SDS-PAGE Gel   

2.2.7.1 Preparation of Polyacrylamide Gel 

Gel electrophoresis was carried out to quantitate the concentration of inclusion bodies. 10% 

separating gels were used for the heavy chain samples while 15% separating gels were used for 

the β2m samples. Both used 4% stacking gels. Gels were cast using the Bio-Rad Mini-PROTEAN 
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Electrophoresis System (Bio-Rad, Hercules, CA, USA). The following reagents were added to 

form two 1.5 mm thick gels. 

 

 10% Separating Gel 15% Separating Gel 4% Stacking Gel 

RO Water 8 ml 5 ml 6 ml 

30% Acrylamide (Bio-Rad) 7 ml 10 ml 1.5 ml 

Resolving Buffer (pH 8.8) 5 ml 5 ml - 

Stacking Gel Buffer (pH 6.8) - - 2.5 ml 

10% APS 100 µl 100 µl 100 µl 

TEMED (Bio-Rad) 15 µl 15 µl 10 µl 

Table 2.1 Polyacrylamide Gel Recipes 
 

2.2.7.2 Sample Preparation And Electrophoresis 

Samples were prepared in 0.5 ml tubes and 10 µl 5x Lammeli sample buffer (Bio-Rad) was added 

into each tube. Samples and standards were mixed with sample buffer. Samples of heavy chain 

and β2m were added in increasing volumes of 0.5, 1, 2, 4 µl while the standards were added in 

increasing concentrations of 1, 2, 4, 8 µg. Samples with buffer were boiled at 98oC for 5 mins. 

Before loading into the wells, the samples were pulsed down. Samples and standards were 

loaded together with a protein marker (Bio-Rad Precision Plus Protein Standards). 

Electrophoresis was carried out in the presence of 1x denaturing running buffer under a 

constant voltage of 200 V for about 45 mins until the dye front reached the bottom of the gel. 

Proteins separated on a SDS-PAGE gel were simultaneously fixed and stained with Coomassie 

blue staining solution. The gel was immersed in the staining solution for 20 mins with gentle 

rocking. It was then destained with destaining buffer overnight with gentle rocking. 

Subsequently, the gel was soaked in water for 2 days and dried in a gel dryer (GelAir Drying 
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System, Bio-Rad). The concentrations of the samples were determined by a comparison against 

the known concentrations of the standards.   

 

2.2.8 Refolding Of HLA- β2m-Peptide Monomers 

Once the concentrations of the samples were determined, refolding of HLA monomers was 

carried out. Refolding buffer was prepared in a 500 ml bottle according to the volumes listed. 

 

Compounds Final Amount (400 ml) 

Tris 100 mM 40 ml of 1 M Tris (pH 8.0) 

NaEDTA 2 mM 1.6 ml of 0.5 M EDTA (pH 8.0) 

L-Arginine Monohydrochloride 400 mM 33.6g 

L-Gluthathione Oxidised 0.5 mM 0.122g 

L-Gluthathione Reduced 5 mM 0.614g 

RO H2O - Top up to 400 ml 

Table 2.2 Refolding Buffer 
 

To the refolding buffer, 0.2 mM PMSF and 400 µl 1 mg/ml pepstatin A was added and the 

solution was cooled at 4oC. 4 mg of peptide was dissolved in 25 µl DMSO and added to the 

refolding buffer. In a 15 ml tube, 12 mg heavy chain and 8 mg β2m was mixed. An additional 3 

mg of refolded β2m was added to increase yield. Using a peristaltic pump (Peristar, WPI, 

Stevenage, UK), the mixture of heavy chain and β2m was pumped into the refolding buffer at a 

constant flow rate. The bottle was placed on a magnetic stirrer and left in the cold room. 

Further injections of heavy chains were added directly into the refolding buffer at 8 mg every 24 

hrs over a span of 72 hrs.  
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2.2.9 Dialysis 

After refolding, the samples were dialysed before further purification. A large 5 L beaker was 

filled with 20 mM Tris-HCl (pH 8.0). The Spectra/Por Dialysis membranes (Spectrum Laboratories 

Inc, Rancho Dominguez, CA, USA) were soaked in MilliQ water for 5 mins and rinsed with Tris. 

One end of the tubing was sealed with a plastic clip and using a funnel, the tube was filled with 

the refolding mixture from the other end and sealed. The tubing was placed into the beaker and 

left to stir at 4oC for 12-16 hrs. Subsequently, the dialysed solution was filtered through a 0.22 

µm filter unit and the solution was stored at 4oC.  

 

2.2.10 Anion Exchange Chromatography 

Pumps A and B were washed with MilliQ water. With the flow rate set at 1 ml/min, the HiPrep 

16/10 DEAE FF column (AKTA, GE Healthcare, Uppsala, Sweden) was attached to the AKTA FPLC 

System (GE Healthcare). Column equilibration was carried out with 5 column volumes (CV) 

MilliQ water followed by 5 CV buffer A, 5 CV buffer B and 5 CV buffer A. Buffer A is 20 mM Tris 

(pH 8.0) while buffer B is 20 mM Tris/1 M NaCl (pH 8.0).  The dialysed solution was loaded into 

the column after equilibration at a flow rate of 5 ml/min and run according to a stepwise 

gradient programme. Proteins were eluted in increasing salt concentrations (buffer B) at a flow 

rate of 5 ml/min and 1 ml fractions were collected. The stepwise gradient programme used is 

shown below (Figure 2.1).  
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Figure 2.1 Profile Of Gradient Programme Used For Anion Exchange 
Chromatography 

 

HLA monomers were eluted in approximately 15% buffer B while the other proteins were eluted 

at higher concentrations of buffer B. After anion exchange, selected samples were analysed on a 

SDS-PAGE gel. 10 µl of each sample was run on a 15% SDS-PAGE gel and analysed. Fractions 

which had both the heavy chain (35 kDa) and β2m (12 kDa) were pooled together and 

concentrated to 200-500 µl using the Centricon Centrifugal Filter Unit with Ultracel YM-30 

membrane (Millipore Corporation, Billerica, MA, USA). The purified fraction was stored at 4oC 

before further purification.  

 

2.2.11 Superdex (Gel Filtration)  

The Superdex HR 10/30 75 column (GE Healthcare) was attached to the AKTA FPLC System (GE 

Healthcare) and column equilibration was carried out with 5 CV of MilliQ water and 5 CV buffer 

A. 200 µl of the above purified HLA monomers was injected into the sample loop using a syringe 

and subsequently loaded into the column and proteins were eluted using an isocratic gradient 

with a flow rate of 0.8 ml/min in 20 mM Tris (pH 8.0). Fractions of 0.5 ml were collected and 

analysed by 15% SDS-PAGE. Those which had both the heavy chain (35 kDa) and β2m (12 kDa) 
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were pooled together and concentrated to 500 µl using the Centricon YM-10 (Millipore). The 

purified monomers were then stored at -80oC.  

 

2.2.12 Biotinylation Of HLA Monomers 

70 µl of purified monomer was biotinylated by incubating with 10 µl of biomix A, 10 µl of biomix 

B, 10 µl of supplemental biotin, 0.2 µl 3 mg/ml BirA enzyme (Avidity LLC, CO, USA), 0.2 µl 0.1 M 

PMSF and 0.1 µl 1 mg/ml pepstatin A at 28oC for 12-18 hrs at a final volume of 100 µl. 1 ml 10 

mM Tris was added to the biotinylated complex, mixed and transferred to a Centricon YM-30 

tube. This was centrifuged at 3500 rpm for 10 mins. The washing step was repeated twice and 

the retentate collected. 

 

The amount of biotinylated product was quantitated by immunoprecipitation using streptavidin 

beads (Sigma-Aldrich). 10 µl of the beads were first washed with 1 ml of 10 mM Tris, 150 mM 

NaCl, 0.1% Triton-X100 and pulsed at 8000 rpm. This step was repeated twice. The supernatant 

was discarded and 20 µg of cleaned-up biotinylated HLA complexes was added into a 1.5 ml 

centrifuge tube with 500 µl 10 mM Tris, 2 µl 0.1 M PMSF and 1 µl 1 mg/ml pepstatin A. The 

mixture was left to shake at 4oC for 16 hrs. After incubation, the beads were washed with 1 ml 

of 10 mM Tris, 150 mM NaCl, 0.1% Triton-X100 and pulsed at 8000 rpm. This was repeated twice. 

The supernatant was discarded and the sample was subjected to 15% SDS-PAGE and visualised 

with Coomassie blue staining. The quantity of biotinylated HLA complexes was compared 

against bovine serum albumin (BSA) (Sigma-Aldrich) standards of known concentrations. The 

percentage of biotinylated HLA complexes was determined by comparing it against biotinylated 

HLA complexes that were non-immunoprecipitated. A negative control of streptavidin beads 

was used as well. The cleaned-up biotinylated HLA-complexes was aliquoted and stored at -80oC.  
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2.3 Immunisation Of Mice  

Immunisation was carried out over a span of 45 days on 4 Balb/C female mice that were 6-8 

weeks old. On day 0, 100 µg monomer in an emulsion of 500 µl 1x phosphate buffered saline 

(PBS) and 500 µl complete Freund’s adjuvant (Sigma-Aldrich) was prepared and equal volumes 

were injected intra-peritoneally into each mouse. This was repeated on days 21 and 35 with 100 

µg monomer in an emulsion of 500 µl 1x PBS and 500 µl incomplete Freund’s adjuvant each. On 

day 42, 100 µg monomer was dissolved in 500 µl 1x PBS and equal volumes were injected into 

each mouse intra-veinously via the tail vein. The mice were sacrificed on day 45 and their 

spleens harvested.   

 

2.3.1 Preparation Of Feeder Layer 

Balb/C female mice were sacrificed and their fur around the peritoneal cavity removed to reveal 

the peritoneal membrane. A small incision was made and 5 ml cold RPMI medium was injected 

into each mouse. The mouse was massaged to dislodge the macrophages in the intra-peritoneal 

cavity. RPMI medium was then pipetted out and collected in a 50 ml Falcon tube. This process 

was repeated 4 times to ensure that most of the macrophages were collected. Next, a cell count 

was done to ensure that there were sufficient cells for use. The cell suspension was centrifuged 

at 1600 rpm for 5 mins. The supernatant was discarded and the pellet was resuspended in an 

appropriate amount of hypoxanthine-aminopterin-thymidine (HAT) media (Sigma). 100 µl of cell 

suspension was pipetted into each well of a 96-well plate. The plates were incubated overnight 

at 37oC in a CO2 incubator.   
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2.3.2 Harvesting Of NS-1 Cells 

NS-1 myeloma cells were transferred into round-bottomed tubes and centrifuged at 1200 rpm 

for 5 mins. The supernatant was discarded and the pellet resuspended in 10 ml warm RPMI 

medium. A cell count was done and the tubes were incubated at 37oC in a CO2 incubator.  

 

2.3.3 Harvesting Splenocytes From Mice 

The mice were sacrificed and their spleens removed under sterile conditions. The spleens were 

washed in 1x PBS and homogenised through a sterile cell strainer (BD Biosciences, San Jose, CA 

USA). RPMI medium was added to obtain a single cell suspension. This was centrifuged at 1100 

rpm for 5 mins. The supernatant was discarded and the pellet was resuspended in 10 ml RPMI 

and split into 2 tubes for fusion. 

 

2.3.4 Hybridoma Fusion Without MACS Beads Selection 

The splenocytes were added to the NS1 myeloma cells and centrifuged at 1100 rpm for 3 mins. 

The supernatant was discarded and the cells were resuspended. 1 ml of warm polyethylene 

glycol (PEG) (Sigma-Aldrich) was added slowly over 1 min. The tube was then incubated for 1 

min at 37oC. Following that, 3 ml of RPMI medium was added at a rate of 1 ml/min. It was 

topped up with an additional 5 ml of RPMI medium and the tube was centrifuged at 1100 rpm 

for 3 mins. The supernatant was discarded and the pellet was resuspended. 20 ml of warm HAT 

media was added and the tube was incubated at 37oC in a CO2 incubator for 2 hrs. After 

incubation, the cell suspension was topped up with an appropriate volume of HAT media and 

100 µl of cell suspension was pipetted into each well of a 96-well plate that had previously been 

incubated with the feeder layer.  The plates were incubated at 37oC in a CO2 incubator and each 



 Materials and Methods 

 

39 

 

well was topped up with an additional 100 µl of HAT on day 7. The plates were observed 8-10 

days later when colonies were visible. On day 14, cells were fed with HT media instead. 

 

2.3.5 Hybridoma Fusion With MACS Beads Selection  

30 µg of biotinylated monomer was added to the splenocytes and incubated at 4oC for 20 mins. 

Thereafter, 5 ml of cold PBS was added and centrifuged at 1100 rpm for 5 mins to wash. Next, 

100 µl anti-biotin microbeads (Miltenyi Biotec GmbH, Germany) was added to the cells and 

incubated at 4oC for 20 mins. The mixture was washed with 5 ml of cold PBS and centrifuged at 

1100 rpm for 5 mins. In the meantime, the LS columns (Miltenyi Biotec) were pre-wet with 1 ml 

of cold PBS and 1 ml of RPMI medium. After centrifuge, the supernatant was discarded and the 

cells were resuspended in 1 ml of RPMI medium. The cells were then added to the column. After 

all the cells have been adsorbed on the column, 1 ml of RPMI medium was added to each 

column to wash out the unbound cells. This process was repeated twice. Following that, the LS 

column was taken out of the magnetic board and put into a 15 ml tube where the cells were 

eluted with 3 ml of RPMI medium. The elution process was repeated with another 3 ml of RPMI 

medium.  

 

The eluted cells were added to NS1 cells and centrifuged at 1100 rpm for 3 mins. The 

supernatant was discarded and the cells were resuspended. 1 ml of warm PEG was added slowly 

over 1 min. The tube was then incubated for 1 min at 37oC. Following that, 3 ml of RPMI was 

added at a rate of 1 ml/min. 5 ml of RPMI was added and the tube was centrifuged at 1100 rpm 

for 3 mins. The supernatant was discarded and the pellet was resuspended. 20 ml of warm HAT 

media was added and the tube was incubated at 37oC in a CO2 incubator for 2 hrs. After 

incubation, the cell suspension was topped up with an appropriate volume of HAT media and 
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100 µl of cell suspension was pipetted into each well of a 96-well plate that had previously been 

incubated with the feeder layer.  The plates were incubated at 37oC in a CO2 incubator and the 

wells were topped up with an additional 100 µl of HAT on day 7. The plates were observed 8-10 

days later when colonies were visible. On day 14, the cells were fed with HT media instead. The 

clones were scored and screened by flow cytometry for specific binding. 

 

2.4 Screening Of The Clones By Flow Cytometry 

Screening of the clones was done by flow cytometry using T2 cells. Once the clones were visible, 

100 µl of supernatant was pipetted out and transferred into individually labelled flow cytometry 

tubes (BD). An appropriate volume of T2 cells were harvested and one set was incubated with 

M1 peptide (Mimotopes) while the other set was incubated with EBNA-1 peptide (Mimotopes) 

for 45 mins at 37oC in the CO2 incubator. After incubation, an equal amount of cells was pipetted 

into each tube. Following that, the tubes were incubated at 4oC for 35 mins. To wash away the 

excess supernatant, 4 ml PBS was added to each tube and centrifuged at 350 g for 5 mins. The 

supernatant was discarded and 10 µl diluted goat anti-mouse AlexaFluor 488 (FITC) (Invitrogen) 

was added to each tube. The tubes were incubated in the dark at room temperature for 25 mins. 

After incubation, 4 ml PBS was added to each tube and centrifuged at 350 g for 5 mins. The 

supernatant was discarded and the cells were resuspended. To fix the cells, 500 µl 4% 

paraformaldehyde (PFA) (Thermo Fisher Scientific) was added to each tube and the tubes were 

now ready to be analysed with CellQuest Pro Software on a BD Calibur Machine (BD). 
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2.4.1 Sub-cloning Of Hybridoma Cells 

After analysis, clones that showed a positive shift as compared to the controls were marked. The 

cells were transferred into a 24-well plate and incubated at 37oC in the CO2 incubator. Once the 

cells had achieved confluency, the supernatant was harvested and another round of flow 

cytometry was carried out to confirm that the antibody still had the ability to bind to the 

peptide. Clones which showed a good specificity to the peptide was cultured and frozen in liquid 

nitrogen. 

 

2.4.2 Limiting Dilution Of Hybridoma Cells 

Limiting dilution was performed to ensure that single cell per well was attained so as to increase 

the chances of getting a monoclonal antibody. The cells were transferred from the 24-well plate 

into a 15 ml tube and centrifuged at 350 g for 5 mins. The supernatant was discarded and the 

cells were resuspended in 10 ml R10 medium. A cell count was done and the cell suspension was 

diluted to 104 per ml. Tenfold dilutions were done until the required cell dilutions were obtained 

(0.5 and 1 cell per well). 100 µl of cells were then pipetted into each well on a 96-well plate and 

incubated at 37oC in a CO2 incubator. The clones were scored after 8-10 days and screened by 

flow cytometry for specific binding. 

 

2.5 Clonality Check 

To determine if the antibody obtained was indeed monoclonal, a clonality check was done using 

the Novagen IgG primer kit. RNA extraction was carried out according to the manufacturer’s 

instructions (Roche Diagnostics GmbH, Germany). To obtain the cDNA, RT-PCR was carried out 

with the appropriate primers from the kit. Following that, the samples were analysed by gel 
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electrophoresis on a 1% agarose gel at 120 V for 45 mins. The bands were visualized with the 

Chemidoc machine (Vilber Lourmat, France).  

2.6 In Vivo Ascites  

Once a monoclonal clone with a high specificity was obtained, it was expanded in T75 flasks. 

Every 3-4 days, half the volume was pipetted out and centrifuged at 350 g for 5 mins. The 

supernatant was collected and stored at 4oC. The same volume of R10 medium was then added 

back into the T75 flask. 

 

2.7 Purifying Monoclonals By FPLC 

The supernatant collected was filtered with a 0.22 µm filter and purified by fast protein liquid 

chromatography (FPLC) using Sepharose G beads. The concentration of purified antibody was 

measured by the Bradford Protein Assay. 

 

2.8 Bradford Protein Assay 

In a 96-well plate, 10 µl of the standards were added in increasing concentrations. Next, samples 

were added in duplicates for each volume. Following that, 300 µl of Bradford solution (Pierce, 

Thermo Fisher Scientific, Roskilde, Denmark) was added into each well. Once a colour change 

from brown to blue was observed, the plate was analysed with a microplate reader (Bio-Rad).  

 

2.9 Storage Of Purified Antibody 

After quantification, the antibody was diluted with glycerol to a final concentration of 1 mg/ml. 

The antibody was aliquoted into 1.5 ml tubes and stored at -80oC. 
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2.10 Antibody Isotyping   

Hybridoma supernatant was collected and 150 µl of the sample was placed into each 

development tube. The tubes were incubated at room temperature for 30 s and vortexed briefly 

to completely resuspend the coloured latex. Next, one isotyping strip was placed into each tube. 

The strips were incubated for 5-10 mins until the positive bands appeared. A blue band indicates 

the class or subclass and light-chain composition of the monoclonal antibody (Isostrip Mouse 

Monoclonal Isotyping Kit, Roche).  

 

2.11 Enzyme-Linked ImmunoSorbent Assay (ELISA)  

To estimate the affinity of the monoclonal antibody, a sandwich ELISA was used. A 96-well 

Maxisorp plate (NUNC) was coated with 100 µl of polyclonal rabbit anti-β2m antibody (Dako, 

Denmark) diluted 2000x in 0.05 M sodium carbonate buffer (pH 9.6) and incubated overnight at 

room temperature. The next day, the plate was washed 3 times with PBS/0.05% Tween. To 

block non-specific binding, 300 µl 1% bovine serum albumin (BSA) was added to each well and 

incubated at room temperature for 1 hr. The plate was washed 3 times with PBS/0.05% Tween 

and incubated with 100 µl EBNA-1/HLA-A201 monomer at room temperature for 2 hrs. The 

monomers were diluted in 1% BSA. After incubation, the plate was washed 3 times with 

PBS/0.05% Tween and incubated with 100 µl monoclonal antibody at room temperature for 4 

hrs. After washing 3 times with PBS/0.05% Tween, 100 µl of goat anti-mouse horseradish 

peroxidise (HRP) (Abcam, Cambridge, USA) diluted 10 000x was added to each well and 

incubated for 1 hr at room temperature. The plate was then washed 3 times with PBS/0.05% 

Tween. Following the wash, 100 µl pre-warmed 3,3´,5,5´-tetramethylbenzidine (TMB) substrate 

(BD) was added to each well and incubated until a colour change was observed. Thereafter, 50 

µl of 2M sulphuric acid was added to stop the reaction. A colour change of blue to yellow was 
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observed. The intensity of the colour was measured with an ELISA reader (Bio-Rad) at a 

wavelength of 450 nm. 

 

2.12 Native Gel Electrophoresis 

2.12.1 Preparation Of Native Polyacrylamide Gel 

Separating gels with 10% acrylamide concentrations were used together with stacking gels of 

2.5%. Gels were cast using the Bio-Rad Mini-PROTEAN Electrophoresis System (Bio-Rad) 

according to the manufacturer’s instructions. The following reagents were added to form two 

1.5 mm thick gels.  

 

Reagents 10% Separating Gel 2.5% Stacking Gel 

Water 7.5 ml 5 ml 

30% Acrylamide/Bis 6 ml - 

4x Separating Gel Buffer 4.5 ml - 

10% Acrylamide/Bis - 2 ml 

8x Stacking Gel Buffer - 1 ml 

10% APS 120 µl 50 µl 

 

Table 2.3 Native Gel Recipes 
 

The separating gel was prepared first and left to polymerise for 1 hr at room temperature. 

Thereafter, the stacking gel was added above it and left to polymerise for 2 hr at room 

temperature before use.  
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2.12.2 Sample Preparation And Electrophoresis 

Each sample was mixed with 15 µl of native sample buffer (Bio-Rad) and loaded into the wells. A 

pre-stained protein marker was added as well (Bio-Rad Precision Plus Protein Standards). 

Electrophoresis was carried out in the presence of 1x non-denaturing running buffer under a 

constant current of 25 mA for 5-6 hrs at 4oC.  

 

2.12.3 Western Blotting  

After gel electrophoresis, the gel was transferred to a Polyvinylidene Difluoride (PVDF) 

membrane (Bio-Rad) using a Mini Trans-Blot Cell (Bio-Rad). The PVDF membrane was first pre-

wet with 100% ethanol and rinsed with MilliQ water. Following this, the gel, PVDF membrane, 

filter paper and fibre pads were equilibrated in 1x transfer buffer for 10 mins. A gel sandwich 

was assembled by putting together a fibre pad onto the cathode side of the cassette followed by 

a filter paper, the gel, PVDF membrane, another filter paper and fibre pad. Precautions were 

taken to ensure that no air bubbles were trapped in between the layers. The membrane was 

also cut to distinguish between different sample lanes. After the sandwich was assembled, gel 

electrophoresis was carried out in the presence of 1x transfer buffer at a constant voltage of 350 

mA for 2 hrs at 4oC.  

 

2.12.4 Staining Of PVDF Membrane 

The PVDF membrane was removed from the sandwich, wet with methanol and dried in a 56oC 

oven for 10 mins for blocking. The membrane was then washed with TTBS for 10 mins thrice 

with vigorous shaking. Following that, the membrane was incubated with W6/32, a 

conformational specific monoclonal antibody, at a 1:500 dilution in TTBS for 1 hr with shaking. 

After incubation, it was washed with TTBS for 10 mins thrice with vigorous shaking. A goat anti-
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mouse HRP (Pierce) was incubated with the membrane at a dilution of 1:5000 in TTBS for 1 hr. 

After washing with TTBS for 10 mins thrice with vigorous shaking, a developing solution 

(Western Lightning Chemiluminescence, Perkin Elmer, MA, USA) was added to the membrane 

for 2 mins. The signals were then developed and visualised on a film (Amersham Biosciences, GE 

Healthcare). 

 

2.13 Immunohistochemistry 

2.13.1 Embedding And Cutting 

A drop of embedding liquid was placed on the metal bowl that was in a styrofoam box of dry ice. 

A tissue was then placed on top of it and covered immediately with another drop of embedding 

media. After it had solidified, the tissue was stored at -80oC. The tissue samples were cut using 

the cryostat machine, placed on glass slides and stored in a slide box at -80oC. 

 

2.13.2 Staining 

After the slides had been left to dry at room temperature for 1 hr, the slides were fixed in ice-

cold methanol for 10 mins and washed in PBS thrice. To prevent unspecific binding, 1% BSA was 

used as a blocking agent for 10 mins. After washing with PBS thrice, the slides were stained with 

primary antibody and incubated overnight at room temperature. The next day, the slides were 

washed and one drop of peroxidise block (Dako) was added to the slides for 5 mins at room 

temperature (RT). The slides were washed and another drop of Dako labelled polymer was 

added and incubated for 30 mins at RT. The slides were washed and 100 µl diluted 3,3-

diaminobenzidine (DAB) was added to each sample. The slides were washed and dipped in 

Mayer’s haematoxylin. After washing in water, 2% ammonium hydroxide was added. Following 

this, the slides were washed in water and dipped into 70% ethanol for 5 mins, 95% ethanol for 5 
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mins thrice, absolute ethanol for 5 mins thrice and xylene for 5 mins four times. The slides were 

then mounted with Clarion mounting media and were ready for viewing. 
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3.1 Antibody Generation And Characterisation 

3.1.1 HLA-A2 Expression And Purification 

The heavy chain HLA-A201 and the light chain β2m were separately transformed in E. coli strain 

BL21 competent cells and expressed as inclusion bodies. The E. coli cells were then lysed by 

sonication and the inclusion bodies were isolated and purified by repeated washings. To 

determine the concentrations of heavy or light chains obtained, the samples were analysed on 

SDS-PAGE and a comparison was done with standards of known concentrations (stock 

concentration of 1 mg/ml). As seen in Figure 3.1 below, a range of concentrations was analysed 

on the SDS-PAGE, the density and thickness of the bands were compared to the standards and 

the final concentration obtained was deduced to be 32 mg/ml.   

 

 

Figure 3.1 SDS-PAGE Of Light Chain β2m.   
To determine the concentration of light chain obtained, a comparison was done with standards of known 
concentrations (stock concentration of 1 mg/ml). Increasing volumes of both were added and the density 
and thickness of the bands between the test sample and standard was compared. The concentration of 
β2m obtained is 32 mg/ml. 
 

To obtain the monomer, the heavy and light chains were refolded in the presence of the peptide 

over 72 hours with the addition of heavy chain every 24 hours. 

 

                       β2m                        β2m Standards      
 M      0.5     1       2        4       2       4        8       16 (µl) 
 

15 kDa   
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In our study, a peptide sequence was chosen from Epstein-Barr virus nuclear antigen 1 (EBNA-1) 

protein. EBNA-1 is essential for replication and maintenance of the EBV genome and is 

expressed in all EBV-infected cells. A peptide prediction software, ProPred1, was used to predict 

the binding of HLA-A201 to the whole EBNA-1 sequence (Singh and Raghava, 2003). The peptide 

sequence FMVFLQTHI (position 562-570) was chosen as it showed potentially good binding and 

it is a well-defined CTL epitope (Bihl et al., 2005). 

 

3.1.2 Purification Of Monomer And Mouse Immunisation 

After refolding, the monomer was dialysed overnight and purified through anion exchange 

chromatography followed by size exclusion. Anion exchange chromatography separates 

molecules according to their charge. The monomer which is negatively charged will adsorp to 

the matrix that contains positively charged molecules – diethylaminoethyl (DEAE). The 

monomer will then be eluted by an increasing salt concentration in a step-wise gradient (green 

line in Figure 3.2 below).   
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Figure 3.2 above shows a typical DEAE anion exchange profile. Selected fractions were taken 

from each peak and analysed on SDS-PAGE. As seen in Figure 3.2, two bands were obtained for 

each fraction, one for the heavy chain and the other for the light chain. Only fractions that had 

both the heavy and light chains were collected and concentrated to a volume of 200-500 µl for 

further purification by size exclusion (Superdex). Size exclusion involves separation of molecules 

based on their size and the time it takes to travel through the pores in the column. Hence, larger 

molecules take less time to travel though the column and are eluted first. A typical size exclusion 

profile generated from our experiments is shown in Figure 3.3. 

 

 

Figure 3.2 DEAE Anion Exchange Profile And SDS-PAGE.  
Fractions from the two peaks were collected and analysed with SDS-PAGE. Only fractions that contain 
both the heavy and light chains were collected for further purification. The boxed section shows lanes 
that contain both the heavy (35 kDa) and light chains (12 kDa). 
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Figure 3.3 Superdex Profile And SDS-PAGE.   
Fractions from the two peaks were collected and analysed with SDS-PAGE. Only fractions that contain 
both the heavy and light chains were collected and concentrated. The boxed section shows lanes that 
contain both the heavy (35 kDa) and light chains (12 kDa). 
 

All fractions collected were analysed on an SDS-PAGE. Similar to the anion exchange profile, only 

those fractions that have both the heavy and light chains were collected and concentrated. 

Thereafter, a Bradford protein assay was carried out to determine the concentration of the 

monomer obtained. The HLA-A201/EBNA-1 monomer had a concentration of 5 mg/ml. These 

were aliquoted and stored at -80oC.  

 

3.1.3 Biotinylation Of HLA Monomers 

The purified monomer was biotinylated with the incubation of BirA enzyme mix at 28oC for 12-

18 hours. The mixture was washed and concentrated in a Centricon YM-30 tube. The amount of 

biotinylated product was quantitated by immunoprecipitation using streptavidin beads followed 
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by analysis on a 15% SDS-PAGE (Figure 3.4). The concentration of biotinylated monomers was 

estimated by a comparison with the BSA standards of known concentrations (1 mg/ml) while the 

percentage of biotinylation of HLA monomers was determined by comparing it against 

biotinylated HLA monomers that were non-immunoprecipitated. From the results obtained, 

approximately 60% of HLA monomer was biotinylated. 

 

 
Figure 3.4 SDS-PAGE Of Biotinylated HLA Monomer.  
The concentration of biotinylated monomers was estimated by a comparison with the BSA standards of 
known concentrations (1 mg/ml) while the percentage of biotinylation of HLA monomers was determined 
by comparing it against biotinylated HLA monomers that were non-immunoprecipitated. Streptavidin 
beads act as a negative control.  
 

3.1.4 Analysis Of Monomer On Native Gels 

To confirm that the monomer had folded properly, purified monomer was analysed on a non-

denaturing native gel and immunoblotted with the conformational specific monoclonal antibody 

(W6/32) (Parham et al., 1979). This antibody binds HLA complexes when they are folded into a 

tertiary complex with the peptide. In Figure 3.5, the band observed shows that the monomer is 

properly folded and can be used as an immunogen for making HLA-A201/EBNA-1 antibodies in 

mice. 

 

                          BSA (µg) 
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Non-Immunoprecipitated HLA monomers 

             Immunoprecipitated HLA monomers 

                          Streptavidin Beads only 



 Results 

 

54 

 

 

Figure 3.5 Analysis Of Purified Monomer Using Non-
Denaturing Native Gel.  
The gel was immunoblotted with anti-HLA conformational 
specific monoclonal W6/32 and the single band obtained 
confirmed that the purified monomer was folded correctly. 
 

 

Balb/C female mice were immunised with the HLA-A201/EBNA-1 monomer in complete 

Freund’s adjuvant. Over a period of 45 days, two more boosts were given on days 21 and 35 

with incomplete Freund’s adjuvant and the final boost was given intra-veinously on day 42 via 

the tail vein with HLA-A201/EBNA-1 monomer in PBS only. The mice were sacrificed on day 45 

and their spleens harvested. A portion of the splenocytes were fused with NS-1 myeloma cells to 

form hybridomas while the rest underwent an additional selection process. This involved pulsing 

the splenocytes with biotinylated monomers followed by immunomagnetic selection using anti-

biotin microbeads. The selected cells were then fused to NS-1 myeloma cells. The hybridomas 

were plated onto 96-well plates and observed 8-10 days later when colonies were visible. The 

clones were then scored and screened by flow cytometry for specific binding. 

 

3.1.5 Antibody Screening  

After 8-10 days, once the growing colonies were visible by eye, 100 µl supernatant was 

harvested and screened with T2 cells. T2 cells which are EBV/EBNA-1 negative and TAP deficient 

are not able to process and cleave endogenous peptides. Without these short peptide 

fragments binding to the MHC class I molecule, they are unstable and do not present the MHC 

complex on the surface of cells. However, when an exogenous peptide is added, it binds to the 

HLA-A201/EBNA-1 

Monomer 
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MHC class I molecule and stabilises it, thus allowing the MHC/peptide complex to be presented 

on the surface of cells to cytotoxic T cells. Our antibody will then recognise this MHC/peptide 

complex and bind. 

 

Firstly, T2 cells were incubated with the EBNA-1 peptide before the supernatant, which 

contained the antibodies, was added. The cells were stained with FITC and analysed by flow 

cytometry. An irrelevant M1 influenza peptide (GILGFVFTL) was used as a negative control. This 

peptide was chosen as it is a well characterized, HLA-A201 restricted peptide. This control helps 

us to differentiate those antibodies that bind to HLA-A201 only versus those that bind to both 

HLA-A201 and the EBNA-1 peptide. Below is a representative flow cytometry histogram (Figure 

3.6) for antibodies that are only specific for HLA-A201. It is observed that the antibody binds 

equally well to the relevant EBNA-1 (Blue) and irrelevant M1 peptide (Red) and show similar 

shifts for both peptides. This shows that the antibody binds to HLA-A201 and does not 

specifically recognises the HLA-A201/EBNA-1 peptide complex. Since we are only interested in 

antibodies with T-cell receptor-like specificity that bind to both HLA-A201 and the specific 

peptide EBNA-1, we assume that antibodies with the profile described above are negative.  

 

 

 

 
 
 
 
Figure 3.6 Profile Of Hybridoma Screening For Clones That Are HLA-A201 Specific Only.   
T2 cells were used for screening. The control irrelevant M1 peptide (Red) shows a similar shift as the 
EBNA-1 peptide (Blue), thus showing that the antibody is specific for HLA-A201 but not the EBNA-1 
peptide. Secondary controls (FITC only without primary antibody) pulsed with M1 peptide (Pink) and 
EBNA-1 peptide (Purple) are shown. 
 

EBNA-1 Control EBNA-1 M1  M1 Control 
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Figure 3.7 shows the flow cytometry profile of a positive result obtained from an antibody with 

specific binding. As seen in the histogram, a one log shift to the right (Blue) was observed as 

compared to the irrelevant peptide (Red). This shows that the antibody is able to bind 

specifically to the HLA-A201/EBNA-1 epitopes only and do not bind to either HLA-A201 or the 

irrelevant M1 peptide. 

 

  

Figure 3.7 Profile Of A Positive Result That Shows Specific Binding.   
Results obtained from a hybridoma clone that binds specifically to both the HLA-A201 and EBNA-1 
peptide as seen by a one log shift of the EBNA-1 (Blue) curve as compared to the M1 (Red) curve. The 
secondary control (Purple) is shown.  
 

Figure 3.8 shows a summary of the hybridomas that were screened after undergoing an 

additional biotinylated monomer based selection step. 6% of the clones obtained were specific 

for both the HLA-A201 and the EBNA-1 peptide while 13% were positive for just HLA-A201 alone. 

This is in contrast to the hybridomas that did not undergo the biotin selection. None of the 

clones screened were positive for HLA-A201 and EBNA-1 while only 1% were HLA-A201 positive. 

This shows that this method is crucial for the production of antibodies that bind specifically to 

both the HLA and the peptide. 
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Figure 3.8 Pre-Selection Of B Cells For The Required Specificity Significantly Enhances The Percentage Of 
HLA-A201/EBNA-1 Specific Hybridomas Versus Unselected Splenocytes.  Unselected splenocytes were 
compared with splenocytes selected on the basis of their binding to HLA-A201/EBNA-1 biotinylated 
monomers prior to fusion. Unselected splenocytes did not generate any HLA-A201/EBNA-1 specific 
hybridomas compared to splenocytes selected for their binding capacity to the monomer.  Moreover, the 
selected cells were found to have a stable phenotype with better overall specificities compared to 
positive clones from the unselected hybridoma pool.  

Unselected MACS Selected 
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3.1.6 Limiting Dilution 

To obtain a monoclonal antibody, the hybridoma cells above were cultured and subcloned twice. 

Subcloning involves limiting dilution at 0.5 or 1 cell per well. This was done to ensure that single 

cell per well was attained so as to increase the chances of getting the correct monoclonal 

antibody. At each round, the clones were screened by flow cytometry to confirm their binding 

specificities. Figure 3.9 shows the flow cytometry profile of a clone obtained after two rounds of 

limiting dilution.  

 

 
 
Figure 3.9 Screening B Cell Hybridomas For HLA-A201/EBNA-1 Specificity.    
T2 cells were used to test the specificity of the hybridoma clones generated from mice immunised with 
HLA-A201/EBNA-1 peptide complexes. T2 cells were pulsed with EBNA-1 peptide (FMVFLQTHI) (5 µM) 
(Blue) and compared by flow cytometry with T2 cells pulsed with the HLA-A201 restricted influenza A 
peptide M1 (GILGFVFTL) (5 µM) (Red). Secondary controls (FITC only without primary antibody) pulsed 
with M1 (Pink) and EBNA-1 (Purple) peptides are shown. 
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3.1.7 Isotype Test And Clonality Check 

To test the isotype of the antibody, an isotyping strip from Roche was used. In each strip, two 

bands were observed after incubation. One is for the positive control and the other is for the 

antibody. As seen in Figure 3.10 below, our antibody is specific for IgG1 and К light chain. 

 

 
 
Figure 3.10 Isotype Test For Anti-HLA-A201/EBNA-1.   
The isostrip was incubated in 150 μl supernatant for 10 mins at room temperature. The isotype profile for 
anti-HLA-A201/EBNA-1 is IgG1 and К light chain. HC=Heavy Chain, LC=Light Chain 
 

An additional test was carried out to confirm its monoclonality. RNA was extracted from the 

hybridoma cells and a reverse-transcription PCR (RT-PCR) was carried out with primers specific 

for the variable regions of the heavy chain IgG1 and К light chain (Novagen IgG Primer kit). The 3’ 

Ig primers provided were complementary to the conserved region adjacent to the variable 

regions and thus were specific to the various heavy chain IgG (A-F) and К light chain subtypes (A-

G). Hence, these primer sets enabled these regions to be amplified by PCR.   

 

The results were analysed by agarose gel electrophoresis. From the gel photo (Figure 3.11A), it is 

seen that our antibody is specific for subtype C of the heavy chain and A, B, C, D and F of the 

light chain. One reason for the multiple bands for the light chain is that the fusion myeloma NS-1 

HC LC 

Heavy Chain IgG1 

Light Chain К 
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cells also variably express aberrant К transcripts. Only clones that showed a single band in the 

heavy chain were chosen. A positive control PCR template provided in the kit was used to 

ensure the suitability of PCR conditions used (Figure 3.11B). 

 

 

 

Figure 3.11 Immunoglobulin Clonality For Anti-HLA-A201/EBNA-1.   
RNA was extracted from the hybridoma cells and RT-PCR was carried out using primers specific for the 
subtypes of heavy and light chains. The results were analysed by agarose gel electrophoresis. The 
subtypes for heavy chain and light chain are (A-F) and (A-G) respectively. Only clones that showed a single 
band in the heavy chain were chosen. (A) is an example of a positive clone while (B) is the positive control 
provided by the kit. For the positive control, there should be no bands for heavy chain A,C, E and F and 
light chain A, D, E and F. 
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3.1.8 In Vitro Ascites And Purification of Antibody 

This clone was cultured and produced on a larger scale using an in vitro ascites method. 

Supernatant containing the antibodies was collected over a period of time and purified through 

FPLC using Separose G beads. The FPLC trace shows a distinct peak at 100 ml of buffer B with a 

value of about 2400 mAU. The fractions collected were analysed by SDS-PAGE. Two bands were 

observed, one represents the heavy chain (about 50 kDa) while the other represents the light 

chain (about 20 kDa) (Figure 3.12). 

  

 
Figure 3.12 FPLC Trace And SDS-PAGE Analysis Of Purified Antibody.   
The collected supernatant was purified by FPLC. The fractions corresponding to the peak was collected 
and analysed by SDS-PAGE. A heavy chain (50kDa) and light chain (20 kDa) was observed. 
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3.1.9 Antibody Affinity  

To test the affinity of the monoclonal to the monomer, an established ELISA method was carried 

out (Beatty et al., 1987). A titration of the monomer (antigen) was done to obtain a standard 

curve in the presence of excess antibody. Thereafter, the range of monomer concentrations on 

the linear portion of the standard curve was used for the actual affinity ELISA test. The range of 

monomer used was between 6.25 ng/ml and 50 ng/ml. The OD was measured and a graph was 

plotted of OD (y-axis) verses log (antibody concentration) (x-axis) (Figure 3.13).  

 

The range of monoclonal used was between 0 ng/ml and 20 000 ng/ml. A sigmoid curve was 

obtained with the best fit curve. As the concentration of monomer increases, the curve is more 

pronounced. The formula listed was used to calculate the approximate affinity (Kaff) of the 

antibody. The affinity obtained for our antibody (1.544 x 10-9 M) is comparable to an established 

antibody BB7.2, which is an antibody specific for HLA-A2 (Parham and Brodsky, 1981). 

 

 

 

 

 

 

 

 

 

 

 



 Results 

 

63 

 

 

 
 

Formula used to calculate Kaff: 
 

Kaff =  
n − 1

2 Ab′  −  [Ab]
 

 
n = Dilution factor of antigen 

Ab’ = OD50 of antibody at diluted concentration 
Ab = OD50 of antibody at less diluted concentration 

 

 
Kaff= 1.544 x 10-9 M 

 
Figure 3.13 Experimental Dose-Response Curves For Anti-HLA-A201/EBNA-1 At Increasing 
Concentrations Of Antigen.  
The affinity of the antibody for the antigen was determined with ELISA and calculated based on the above 
formula. 
 

3.1.10 Peptide Titration And Specificity Of Anti-HLA-A201/EBNA-1 

To test the sensitivity of the monoclonal to EBNA-1 peptide, a titration of the peptide was tested 

with T2 cells. T2 cells were pulsed with the various concentrations of EBNA-1 peptide, incubated 

with the monoclonal and analysed by flow cytometry. As seen from the plot (Figure 3.14), there 

is an increase in binding as the concentration of peptide increases and the monoclonal can be 

Affinity Curves of HLA-A201/EBNA-1 Monoclonal Antibody 
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used to detect HLA-A201/EBNA-1 peptide complexes on the cell surface down to a 

concentration of 0.01 µM.  

 

 

To test the specificity of the monoclonal to the HLA-A201/EBNA-1 complex, T2 cells were pulsed 

with various HLA-A201 restricted peptides and the binding was analysed by flow cytometry. 

These include EBV peptides such as latent membrane protein 1 (LMP-1) and Cytomegalovirus 

(CMV) peptides such as internal matrix protein (pp65) and immediate-early protein 1 (IE1). M1, 

an influenza peptide was used as a negative control. From Figure 3.15, it is observed that 

specific binding was seen for HLA-A201/EBNA-1 complexes only (Blue) and not for the rest of 

the HLA-A201 peptide complexes. 

 

 

 

Figure 3.14 Binding Of Anti-HLA-A201/EBNA-1 Over A Range Of Peptide Concentrations.   
T2 cells were pulsed with increasing concentrations of EBNA-1 peptide. Peptide loaded cells were 
incubated with anti-HLA-A201/EBNA-1 and detection of binding was with goat anti-mouse FITC. The 
results were analysed using flow cytometry. Binding of anti-HLA-A201/EBNA-1 to peptide complexes was 
observed with a concentration as low as 0.01 μM peptide. 
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Figure 3.15 Anti-HLA-A201/EBNA-1 Binds Exclusively To HLA-A201/EBNA-1 Complexes And Not To Other 
HLA-A201 Peptide Complexes.  
T2 cells were pulsed with 5 μM of the various HLA-A201 restricted peptides. Peptide loaded cells were 
incubated with anti-HLA-A201/EBNA-1 and detection of binding was with goat anti-mouse FITC. The 
results were analysed using flow cytometry. Specific binding was observed for HLA-A201/EBNA-1 
complexes only (Blue) and not the other HLA-A201 peptide complexes. 
 

3.1.11 Testing Monoclonal Against HLA-A201 Cell Lines 

Next, we tested the monoclonal against the HLA-A201 positive B-lymphoblastoid cell lines 

(BLCLs) (CF 986, CM 936 and CM 800). These BLCLs were obtained from various patients and 

volunteers and stored frozen in liquid nitrogen in the WHO Immunology Centre, NUS. The cells 

were pulsed with EBNA-1 peptide before the addition of the monoclonal, and analysed with 

flow cytometry. In BLCLs, peptide loading is facilitated by the exchange of endogenously derived 

peptides with EBNA-1 peptides that were introduced externally. Our results show that the 

monoclonal was able to detect HLA-A201/EBNA-1 complexes on the surface of the BLCLs (Figure 

3.16A). Interestingly, all three BLCLs also showed a degree of binding when pulsed with the 

irrelevant M1 peptide (Red). An explanation could be that since BLCLs are EBV transformed, 

they would express EBV latent proteins. Hence it can be deduced that our monoclonal is able to 

detect constitutive levels of HLA-A201/EBNA-1 complexes.  

 

To test this further, the monoclonal was tested on cell lines that are HLA-A201 expressing but 

not EBV transformed. Hence there should not be any EBV proteins present constitutively. The 
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three cell lines used were T2, THP-1 and U937-A2. T2 cells are human lymphoblast suspension 

cells, THP-1 are human monocytic leukemic suspension cells and U937-A2 are human monocytic 

suspension cells that are stably transfected with HLA-A201. The results show that when the cells 

were pulsed with M1 influenza peptide, incubated with the monoclonal and analysed by flow 

cytometry, no shift was observed (Figure 3.16B). However, when the cells were pulsed with 

EBNA-1 peptide, a shift was observed and this shows that the monoclonal is able to bind 

specifically to HLA-A201/EBNA-1 peptide complexes on the cell surface and not to HLA-A201 or 

the irrelevant peptide. It also confirms the previous observation that the monoclonal is able to 

detect constitutive levels of HLA-A201/EBNA-1 complexes.  
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Figure 3.16 Anti-HLA-A201/EBNA-1 Recognises Constitutively Expressed EBNA-1 In EBV Transformed 
HLA-A201 BLCLs.   

(A) EBV transformed BLCLs that are HLA-A201 restricted (CF986, CM936, CM800). Cells were pulsed 
with peptides and analysed by flow cytometry. Anti-HLA-A201/EBNA-1 was able to recognise 
constitutively expressed EBNA-1 in EBV immortalised BLCLs as shown by the shifts observed 
when these BLCLs were pulsed with a control influenza peptide M1 (Red).  

(B) Non-EBV transformed cell lines which are HLA-A201 restricted (T2, THP-1, U937-A2). Cells were 
pulsed with peptides and analysed by flow cytometry. No shift was observed in the control M1 
peptide pulsed cells (Red) while a shift was observed in EBNA-1 pulsed cells (Blue). Controls are 
shown in orange. 
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3.2 Monoclonal Specificity For EBV Tumours 

3.2.1 Testing Of Monoclonal Against HLA-A2 Subtypes 

The monoclonal was tested against other subtypes of HLA-A2 and its ability to bind was 

determined by flow cytometry. The other subtypes tested were from BLCLs that expressed 

either HLA-A203, HLA-A206 or HLA-A207. The peptide epitopes presented by HLA-A201 may be 

similar to that presented by HLA-A203, HLA-A206 and HLA-A207. When these BLCLs were pulsed 

with EBNA-1 peptide, there was some binding observed as shown by the shifts in the blue 

histograms (Figure 3.17).  

 

 

However, the degree of binding for HLA-A201 and HLA-A207 was more similar as compared to 

HLA-A203 and HLA-A206. This could be due to the fact that there is only one base difference 

between HLA-A201 and HLA-A207 with an amino acid change from tyrosine to cysteine. On the 

other hand, there are two and three base changes for HLA-A206 and HLA-A203 respectively. 

 
Figure 3.17 BLCLs Taken From Human Donors And Pulsed With Peptides. Flow cytometry was used to 
analyse binding of anti-HLA-A201/EBNA-1 to peptide complexes on BLCLs of various subtypes. A degree of 
binding was seen in both the EBNA-1 peptide pulsed cells (Blue) and the influenza peptide M1 pulsed cells 
(Red), suggesting that anti-HLA-A201/EBNA-1 can bind to constitutively expressed levels of EBNA-1. 
Secondary controls pulsed with EBNA-1 (Purple) and M1 (Pink) are shown. 

EBNA-1 Control EBNA-1 M1  M1 Control 
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Table 3.1 below gives a summary of the amino acid changes. Certain base changes may affect 

the binding of the peptide to the groove on the HLA molecule thus affecting the binding 

efficiency of the monoclonal to it.  

 

 

 

 

 

 

 

These BLCLs are all EBV transformed cells thus they have constitutive levels of EBNA-1 as seen in 

the previous experiment. Our monoclonal is thus able to detect these constitutive levels of 

EBNA-1, resulting in a shift even when the cells are pulsed with an irrelevant peptide such as M1. 

Similarly, the degree of shift observed in M1 may vary depending on the HLA-A2 subtype of the 

cells.  

 

This has potentially important implications for the use of these antibodies. According to a study 

by Solberg who conducted a meta-analytic review on 497 population studies, HLA-A201 is the 

second most common allele and is found in 11 regions in the world (Solberg et al., 2008). In the 

Singaporean Chinese population, HLA-A201 is also one of the more common alleles with a 

frequency of 10.4%. The frequencies of the other HLA-A2 subtypes in the Singaporean Chinese 

population are as follows, 6.7% for HLA-A203, 4.0% for HLA-A206 and 13.1% for HLA-A207 

(Middleton et al., 2000) (Figure 3.18). Hence, this monoclonal is applicable for a larger 

HLA Nucleotide Amino Acid HLA 
Nucleo

tide 
Amino Acid 

A201 
 

GCG 
GTG 
TTG 

Alanine 
Valine 

Leucine 

A203 ACG 
GAG 
TGG 

Threonine 
Glutamic Acid 
Tryptophan 

TTC 
ACA 

Phenylalanine 
Threonine 

A206 TAC 
ACC 

Tyrosine 
Threonine 

TAT Tyrosine A207 TGT Cysteine 

 

Table 3.1 Base Changes Between HLA-A201 And HLA-A203, HLA-A206 
And HLA-A207 
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population as it can detect HLA-A2/EBNA-1 complexes on the surface of the other HLA-A2 

subtypes as well.  

 

 

Figure 3.18 Percentages Of HLA-A2 Alleles In Singaporean Chinese Population And 
The Amino Acid Changes Between The Different HLA-A2 Subtypes.  

 

3.2.2 Binding Of Monoclonal To Tumour Cells 

To test the binding of the monoclonal to naturally processed EBNA-1 epitopes in tumour cells, 

two tumour cell lines were chosen. CCRF-SB is a human lymphoblast suspension cell line derived 

from acute lymphoblastic leukaemia while RPMI-6666 is a human lymphoblast suspension cell 

line derived from Hodgkin’s lymphoma. Both cell lines are EBNA-1 positive and express HLA-

A201 as seen by their staining with BB7.2 which is a HLA-A2 monoclonal antibody (Figure 3.19). 

These cells give a more accurate representation of the normal levels of HLA-A201/EBNA-1 

complexes that are expected to be present on the cell surface as compared to the peptide 

loaded samples. The cells were incubated with the monoclonal, stained with goat anti-mouse 

FITC and analysed by flow cytometry. The results showed a clear binding of the monoclonal to 

EBNA-1 epitopes in a natural state without the addition of exogenous peptide. 
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Figure 3.19 Anti-HLA-A201/EBNA-1 Detects Constitutive Levels Of EBNA-1 In HLA-A2 Restricted Tumour 
Cell Lines.   
Cells were incubated with BB7.2 and anti-HLA-A201/EBNA-1 and detection of binding was shown by flow 
cytometry. CCRF-SB is a human lymphoblast derived from acute lymphoblastic leukaemia while RPMI-
6666 is a human lymphoblast derived from Hodgkin’s lymphoma. Both cell lines express HLA-A201 as seen 
by the positive staining with a HLA-A2 specific antibody, BB7.2. Anti-HLA-A201/EBNA-1 was able to 
recognise constitutively expressed EBNA-1 in both cell lines (Purple).  Controls are shown in pink. 
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3.2.3 Staining Of NPC Biopsies With The Monoclonal  

Frozen cryosectioned NPC biopsies were obtained from patients and stained with our 

monoclonal. Figures 3.20A and 3.20D show the negative controls (secondary antibodies only) at 

10x and 100x magnification respectively. Figures 3.20B and 3.20E are the positive controls that 

were stained for HLA-A2. As compared to the negative control, Figures 3.20C and 3.20F show 

positive staining. This data shows the ability of the monoclonal to detect HLA-A201/EBNA-1 

complexes on the surface of these biopsies.  

 

There is the potential for this monoclonal to be used to detect EBV infected cells in situ without 

the need for biopsies to be carried out in the future. This could involve tagging the antibody 

with a fluorescent label and viewing infected cells via in vivo whole animal imaging technology 

such as the xenogen system. This would be useful for diseases such as NPC where the lesions 

may be situated in spots that are hard to reach and biopsy.  
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Figure 3.20 Immunohistological Staining Of Nasopharyngeal Carcinoma (NPC) Biopsy With The 
Monoclonal.  
Sections B and E were stained with BB7.2, an antibody specific for HLA-A2 while sections C and F were 
stained with anti-HLA-A201/EBNA-1. Positive staining was observed for both as seen by the reddish 
brown colour. Anti-HLA-A201/EBNA-1 can bind to HLA-A201/EBNA-1 complexes on infected tissue 
samples. Sections A and D were control slides stained with secondary antibodies only. (Done by Song 
Zhenying) 
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It is now well established that tumour cells express antigens that can be recognised by cytotoxic 

T lymphocytes (CTLs) derived from cancer patients (Renkvist et al., 2001; Rosenberg 2001). 

These CTLs recognise antigens that are in complex with MHC class I molecules. However, several 

studies have shown that using CTL for immunotherapy may not work in a clinical setting (Perez-

Diez and Marincola, 2002; Huang et al., 2007). To enhance the immune response, a high affinity 

antibody that can mimic the specificity of the T cell and specifically recognise MHC/peptide 

complexes represents an attractive alternative strategy (Figure 4.1).  

 

In our study, we have generated a TCR-like monoclonal 

antibody which targets EBNA-1 in the context of HLA-

A201. EBNA-1 is a latent protein of EBV and it is a DNA 

binding protein that is expressed in all EBV-infected cells. 

Using a novel technique of pre-selecting the hybridoma 

cells using biotinylated monomers, we have 

demonstrated that this step is crucial to increase the 

probability of obtaining a MHC/peptide specific antibody. 

This antibody was also shown to be monoclonal with a single IgG1 heavy chain and К light chain.  

 

In contrast to low affinity T cell receptors (Davis et al., 1998), our monoclonal has a higher 

affinity and yet is able to maintain T cell like specificity. The affinity of our monoclonal is 

comparable to that produced in other labs. A HLA-A2 monoclonal specific for Mage3, produced 

by Bernardeau et al. has an affinity of 2.37 x 10-9 (Bernardeau et al., 2005) while another HLA-

A201 monoclonal specific for eIF4G has an affinity of 6 x 10-9 (Weidanz et al., 2007).  

 

Figure 4.1 TCR-like Monoclonal. 
The monoclonal (green) recognises 
the MHC (pink) and peptide (red) 
complexes. 
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The monoclonal exhibits a specific binding pattern and binds only to HLA-A2/EBNA-1 complexes 

and not to other HLA-A201 restricted peptide complexes. Our monoclonal is also sensitive 

enough to detect peptide complexes on the cell surface at a concentration of 0.01 µM by flow 

cytometry.  

 

In addition, our monoclonal is able to detect constitutive levels of HLA-A201/EBNA-1 complexes 

on the surface of the BLCLs, including tumour cells from Hodgkin’s lymphoma and acute 

lymphoblastic leukaemia. Using immunohistochemical methods, we have also shown the ability 

to detect HLA-A201/EBNA-1 complexes in NPC biopsy samples. Our monoclonal is thus able to 

detect MHC/peptide complexes after processing of antigens. Hence, it may be useful as a tool to 

detect and analyse tumour-specific antigens and study antigen presentation in EBV related 

diseases. 

 

Currently, some diseases associated with EBV include Hodgkin’s lymphoma (HL), Burkitt’s 

lymphoma (BL) and nasopharyngeal carcinoma (NPC). Although other groups have developed 

similar MHC/peptide specific monoclonal antibodies, none have been specific for EBV peptides 

and they have not been used for diagnostic or therapeutic purposes.  

 

Hence, our monoclonal could potentially be applied in a clinical setting both for diagnostic and 

therapeutic purposes. In Singapore, the incidence of NPC among Chinese ranks among the 

highest in Asia. It is also among the top ten cancers in men in Singapore (Trends in Cancer 

Incidence in Singapore 2001-2005, Singapore Cancer Registry). This monoclonal could be used to 

detect EBV infected cells in situ without the need for biopsies to be carried out. This could 

involve tagging the monoclonal with a fluorescent label and viewing infected cells via in vivo 
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whole animal imaging technology such as the xenogen system. This would be useful for diseases 

such as NPC where the lesions may be situated in spots that are hard to reach and biopsy. This 

would also aid in the early diagnosis of diseases and lead to better prognosis and treatment. 

 

In a therapeutic setting, humanised versions of these monoclonals can be applied to all cells that 

have the EBV target protein and the right HLA type. Cytotoxic drugs and radionuclides could be 

tagged to the monoclonals and used to target specific tumour cells. The monoclonals could also 

be used to identify patients with a specific tumour peptide complex before attempting 

therapeutic vaccinations and following that, to track the survival of cells lacking the target 

antigen (Porgador et al., 1997). 

 

An important consideration for the effectiveness of the use of the monoclonal in a therapeutic 

setting is the concentration and density of the target peptide complex in the tumour cells. To 

overcome this problem, we can use a combination of a panel of antibodies targeted at different 

EBV proteins. Previously, our laboratory has generated monoclonals targeted at other EBV 

proteins such as latent membrane protein 1 (LMP-1) and latent membrane protein 2 (LMP-2). 

Two other approaches to increase the sensitivity of the antibody involve antibody engineering 

strategies. Firstly, the avidity of the antibody can be enhanced by making it multivalent and 

tagging it with a fluorescent probe. This has been shown by Cohen et al. to dramatically increase 

the binding by two logs as compared to the monovalent molecule measured by flow cytometry. 

In addition, the use of such fluorescent multivalent antibodies requires only a single staining 

step (Cohen et al., 2003).  
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Secondly, affinity maturation strategies can increase the affinity of the antibody without altering 

the TCR-like specificity. This involves a combination of L chain shuffling, H chain-targeted 

mutagenesis and in vitro selection of phage display libraries (Chames et al., 2002; Chowdhury et 

al., 1999). A combination of these strategies will thus result in antibodies that are more sensitive 

and specific for therapeutic uses. 

 

Our monoclonal can also be used to quantify specific HLA/peptide complexes on the surface of 

cells produced by endogenous processing pathways. This can be done by flow cytometry 

staining and comparing the fluorescent intensity with that of calibration beads with known 

numbers of fluorescent molecules per bead. This is a simple and straight-forward method to 

obtain quantitative data on specific HLA/peptide complex expression and may aid in our 

understanding of certain disease phenotypes. Previously, to quantify HLA/peptide complexes, 

biochemical isolation techniques were used. This was a laborious and expensive method that 

produced multiple experimental artefacts. In addition, it could not distinguish between 

intracellular pools of peptide complexes and those on the cell surface (Cohen et al., 2003). 

 

Another use of our monoclonal could be in the area of localising the sites of peptide interaction 

with the MHC class I molecules and to trace the trafficking of such MHC/peptide complexes in 

cells by methods such as confocal microscopy. Through this, we would be able to determine the 

organelles in which the peptides are being loaded onto MHC class I molecules and study these 

pathways in greater detail. 

 

The use of this monoclonal to study antigen presentation in cells has interesting implications for 

EBNA-1 as the exact mechanism for EBNA-1 presentation has not been well characterised. As 
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mentioned earlier, EBNA-1 contains a glycine-glycine-alanine repeat sequence and studies have 

suggested that this acts as a cis-inhibitor to inhibit antigen processing via the ubiquitin-

proteosome MHC class I pathway (Levitskaya et al., 1995). Hence EBNA-1 peptides are not 

presented on MHC class I molecules, protecting it from CD8+ responses. However, Blake and 

colleagues proved otherwise when they isolated some human CD8 T cell clones that recognised 

EBNA-1 specific peptides (Blake et al., 1997).  

 

A study by Lee and colleagues showed that EBV infected cells could directly present EBNA-1 

epitopes to T cells via a proteosome/TAP-dependent pathway (Lee et al., 2004). Another study 

also confirmed the finding that defective ribosomal products (DRiPs) and not full length EBNA-1, 

were the major source of antigens for endogenously processed EBNA-1 CD8+ T cell epitopes. 

Treatment of cells with citrate buffer blocked the endogenous presentation of epitopes from 

newly synthesised EBNA-1 and significantly decreased EBNA-1-specific T cells (Tellam et al., 

2004).  

 

Using this monoclonal, we may be able to answer questions at a molecular detail not possible 

previously. The ease with which quantification can be carried out with this monoclonal would 

also make it an important tool in the study of antigen presentation and processing. This will 

shed some light on the pathway of EBNA-1 processing in the cell, its location at different time 

points, its density and pattern of distribution.  

 

The usefulness and widespread application of this monoclonal lies in its target protein EBNA-1 

which is a latent protein that is present in all EBV-infected cells. Moreover, HLA-A201 is not only 

common in Singaporean Chinese but is the most common allele in Caucasians as well. In 
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Singaporean Chinese, there are many HLA-A2 subtypes and as seen from our data, the 

monoclonal may be able to detect them in complex with the EBNA-1 peptide as well. To gain a 

better understanding of the exact amino acids that bind to the monoclonal, an alanine scan 

could be carried out. This may provide some insight as to the differential binding abilities of the 

monoclonal to the various HLA-A2 subtypes. 

 

From our study, we have developed a TCR-like monoclonal antibody that is specific for HLA-

A2/EBNA-1 using conventional hybridoma techniques with a high degree of specificity. This 

monoclonal has been shown to bind specifically with high affinity to HLA-A2/EBNA-1 complexes 

on the surface of EBV transformed BLCLs, tumour cell lines and in NPC biopsies. The monoclonal 

is also able to detect constitutive levels of HLA-A2/EBNA-1 complexes as seen in EBV 

transformed BLCLs. Currently, we are in the midst of humanising this monoclonal in 

collaboration with Prof. David Lane, University of Dundee. Given the well established association 

between EBV and various human malignancies, the development of this monoclonal will lead to 

exciting findings as a new EBV laboratory reagent and as a diagnostic and therapeutic tool. 
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6.1 Reagents for Tissue Culture 

6.1.1 R10 Medium 

Reagents Amount (500 ml) 

RPMI-1640 500 ml 

FBS 50 ml 

Pen/strep 5 ml 

 

FBS and pen/strep was added to the RPMI-1640 medium and stored at 4oC. 

 

6.1.2 Freeze Mix 

Reagents Amount  

FBS 9 ml 

DMSO 1 ml 

 

FBS and DMSO was mixed and stored at -20oC. 
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6.2 Reagents For Antibody Production 

6.2.1 Luria-Bertani Agar (LA) 

Reagents Amount (1L) 

Tryptone 10 g 

Yeast Extract 5 g 

NaCl 5 g 

Agarose 15 g 

RO water Top up to 1 L 

 

The reagents were dissolved in 1 L of RO water, autoclaved and stored at room 

temperature. 

 

6.2.2 Luria-Bertani Broth (LB) 

Reagents Amount (1L) 

Tryptone 10 g 

Yeast Extract 5 g 

NaCl 5 g 

RO water Top up to 1 L 

 

The reagents were dissolved in 1 L of RO water, autoclaved and stored at room 

temperature. 

 

6.2.2 Transformation Buffer I (TfBI) 

Reagents Final  Amount (200 ml) 

KAc 30 mM 0.589 g 

KCl 100 mM 1.49 g 

CaCl2.H2O 10 mM 0.294 g 

Glycerol 15% (v/v) 30 ml 

MnCl2.2H2O 50 mM 1.62 g 

RO water - Top up to 200 ml 
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The reagents were dissolved in 200 ml of RO water, filtered through a 0.22 µm filter and 

stored at 4oC. 

 

6.2.3 Transformation Buffer II (TfBII) 

Reagents Final  Amount (100 ml) 

NaMOPS 10 mM 50 ml 

CaCl2.H2O 75 mM 1.103 g 

KCl 10 mM 0.075 g 

Glycerol 15% (v/v) 15 ml 

RO water - Top up to 100 ml 

 

50 ml of MOPS was titrated with 1 drop of 10 M NaOH followed by 1 M NaOH until pH 

7.0 was reached. This together with the rest of the compounds were added to 100 ml of 

RO water, filtered through a 0.22 µm filter and stored at 4oC. 

 

6.2.4 Kanamycin  

Reagents Amount (60 ml) 

Kanamycin  60 mg 

RO water Top up to 60 ml 

 

Kanamycin was dissolved in RO water and filtered through a 0.22 µm filter. It was then 

aliquoted and stored at -20oC. 

 

6.2.5 Isopropyl β-D-I-thiogalactopyranoside (IPTG) 

Reagents Amount (50 ml) 

IPTG  11.915 g 

RO water 50 ml 

 

IPTG was dissolved in RO water and filtered through a 0.22 µm filter. It was then 

aliquoted and stored at -20oC. 
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6.2.6 Dithiothreitol (DTT) 

Reagents Amount (50 ml) 

DTT 3.858 g 

RO water 50 ml 

 

DTT was dissolved in RO water and filtered through a 0.22 µm filter. It was then 

aliquoted and stored at -20oC. 

 

6.2.7 Phenylmethylsulphonylfluoride (PMSF) 

Reagents Amount (50 ml) 

PMSF 0.871 g 

Isopropanol 50 ml 

 

PMSF was dissolved in isopropanol, aliquoted and stored at -20oC. 

 

6.2.8 Pepstatin A 

Reagents Amount (50 ml) 

Pepstatin A 50 mg 

Ethanol 50 ml 

 

Pepstatin A was dissolved in ethanol, aliquoted and stored at -20oC. 

 

6.2.9 Resuspension Buffer (pH 8.0) 

Reagents Final  Amount (1 L) 

Tris-HCl 50 mM 50 ml 

Sucrose 25% (w/v) 250 g 

NaEDTA 1 mM 2 ml 

RO water - Top up to 1 L 

 

The reagents were added and pH was adjusted to 8.0. RO water was added to obtain a 

final volume of 1L. It was stored at 4oC. DTT (10 mM) was added prior to use. 
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6.2.10 Lysis Buffer 

Reagents Final  Amount (1 L) 

Tris-HCl 50 mM 50 ml 

Triton X-100 1% (v/v) 10 ml 

Sodium deoxycholate 1% (v/v) 10 g 

NaCl 100 mM 5.84 g 

Sodium azide 0.1% (w/v) 1 g 

RO water - Top up to 1 L 

 

All reagents were added except Triton X-100 to 900 ml of RO water. Following that, 

Triton X-100 was added and the buffer was topped up to 1 L. The lysis buffer was stored 

at 4oC. DTT (10mM) was added prior to use. 

 

6.2.11 DNase I Stock 

Reagents Final  Amount (10 ml) 

DNase 1 mg/ml 10 mg 

Tris-HCl 20 mM 200 µl 

MgCl2 10 mM 100 µl 

Glycerol 50% (v/v) 5 ml 

RO water - Top up to 10 ml 

 

The above reagents were dissolved in 10 ml RO water, aliquoted and stored at -20oC. 

 

6.2.12 Wash Buffer I (pH 8.0) 

Reagents Final  Amount (2 L) 

Tris-HCl 50 mM 100 ml 

Triton X-100 1% (v/v) 10 ml 

Sodium deoxycholate 1% (v/v) 10 g 

NaCl 100 mM 5.84 g 

Sodium azide 0.1% (w/v) 1 g 

RO water - Top up to 2 L 
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All reagents were added except Triton X-100 to 1900 ml of RO water. Following that, 

Triton X-100 was added and the pH was adjusted to 8.0. RO water was added to obtain a 

final volume of 2 L. The wash buffer was stored at 4oC. DTT (1mM) was added prior to 

use. 

 

6.2.13 Wash Buffer II (pH 8.0) 

Reagents Final  Amount (1 L) 

Tris-HCl 50 mM 50 ml 

NaEDTA 1 mM 2 ml 

Sodium azide 0.1% (w/v) 1 g 

RO water - Top up to 1 L 

 

The above reagents were dissolved in 900 ml of RO water and the pH was adjusted to 

8.0. RO water was added to obtain a final volume of 1 L. DTT (1 mM) was added prior to 

use. 

 

6.2.14 Urea Buffer (pH 6.0) 

Reagents Final  Amount (500 ml) 

4-Morpholineethanesulfonic acid (MES) 25 mM 2.44 g 

Urea 8 M 240.24 g 

NaEDTA 10 mM 10 ml 

RO water - Top up to 500 ml 

 

The above reagents were dissolved in 480 ml of RO water and the pH was adjusted to 

6.0. RO water was added to obtain a final volume of 500 ml. DTT (0.1 mM) was added 

prior to use. 
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6.3 Reagents For SDS-PAGE Gel 

6.3.1 Resolving Buffer (pH 8.8) 

Reagents Final  Amount (1 L) 

Tris base 1.5 M 181.7 g 

RO water - Top up to 1 L 

 

Tris base was dissolved in 950 ml of RO water and pH was adjusted to 8.8. RO water was 

added to obtain a final volume of 1 L. 

 

6.3.2 Stacking Gel Buffer (pH 6.8) 

Reagents Final  Amount (500 ml) 

Tris base 500 mM 30.3 g 

RO water - Top up to 500 ml 

 

Tris base was dissolved in 450 ml of RO water and pH was adjusted to 6.8. RO water was 

added to obtain a final volume of 500 ml. 

 

6.3.3 Ammonium Persulphate (APS) 

Reagents Amount (1 ml) 

APS 0.1 g 

RO water 1 ml 

 

APS was dissolved in 1 ml of RO water, filtered through a 0.22 µm filter and stored at 

4oC. 
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6.3.4 Coomassie Blue Staining Solution  

Reagents Amount (500 ml) 

Coomassie Blue R250 0.6 g 

Methanol 250 ml 

Glacial acetic acid 50 ml 

RO water 200 ml 

 

Coomassie Blue was dissolved in the above reagents and mixed well. 

 

6.3.5 Destaining Solution 

Reagents Amount (880 ml) 

Methanol 400 ml 

Glacial acetic acid 40 ml 

RO water 400 ml 
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6.4 Reagents For Immunisation Of Mice 

6.4.1 Polyethylene Glycol (PEG) 

Reagents Amount  

PEG-4000 4 g 

RPMI-1640 6 ml 

 

PEG was dissolved in RPMI and the pH was adjusted with sterile 2 M NaOH til a pink 

colour was obtained. The solution was then filtered through a 0.22 µm filter. 

 

6.4.2 100x HAT 

 

HAT was purchased as a 50x powder from Sigma-Aldrich, reconstituted with 10 ml of 

media to make 50x HAT solution and stored at -20oC.  

 

6.4.3 100x HT 

Reagents Amount  

Hypoxanthine 136.1 mg 

Thymidine 38.7 mg 

RO water 100 ml 

 

The above reagents were dissolved in RO water and stored as 5 ml aliquots in -20oC. One 

aliquot was used for every 500 ml of RPMI-1640 medium. 

 

6.4.4 HAT Medium 

Reagents Amount  

RPMI-1640 500 ml 

FBS 50 ml 

Pen/strep 5 ml 

100x HAT 10 ml 
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6.4.5 HT Medium 

Reagents Amount  

RPMI-1640 500 ml 

FBS 50 ml 

Pen/strep 5 ml 

100x HT 5 ml 
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6.5 Reagents For Flow Cytometry 

6.5.1 4% Paraformaldehyde (PFA) 

Reagents Amount  

PFA 20 g 

1x PBS 500 ml 

 

PFA was dissolved in 1x PBS in a 56oC water bath and stored at 4oC. 
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6.6 Reagents For ELISA 

6.6.1 Sodium Carbonate Buffer (pH 9.6) 

Reagents Amount  

Sodium carbonate 0.53 g 

RO water 100 ml 

 

Sodium carbonate was dissolved in RO water and the pH was adjusted to 9.6. 

 

6.6.2 PBS/0.05% Tween 

Reagents Amount (1 L) 

Tween-20 500 µl 

1x PBS 1 L 

 

Tween-20 was added to 1 L of 1x PBS and mixed well. 

 

6.6.3 1% BSA 

Reagents Amount (200 ml) 

BSA 2 g 

1x PBS 200 ml 
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6.7 Reagents For Native Gel Electrophoresis 

6.7.1 10% Acrylamide Solution 

Reagents Amount  

Acrylamide 10 g 

N,N-methylenebisacrylamide 2.5 g 

RO water Top up to 100 ml 

 

The reagents were dissolved in 100 ml of RO water, filtered and stored at 4oC. 

 

6.7.2 4x Non-Denaturing Separating Gel Buffer (pH 8.9) 

Reagents Final  Amount  

Tris base 1.5 M 18.2 g 

TEMED - 0.23 ml 

RO water - Top up to 100 ml 

 

Tris base and TEMED was dissolved in 90 ml of RO water and the pH was adjusted to 8.9. 

RO water was added to obtain a final volume of 100 ml. The buffer was wrapped in 

aluminium foil to protect it from light and stored at room temperature. 

 

6.7.3 8x Non-Denaturing Stacking Gel Buffer (pH 6.8) 

Reagents Final  Amount  

Tris base 0.47 M 5.7 g 

TEMED - 0.46 ml 

RO water - Top up to 100 ml 

 

Tris base and TEMED was dissolved in 90 ml of RO water and the pH was adjusted to 6.8. 

RO water was added to obtain a final volume of 100 ml. The buffer was wrapped in 

aluminium foil to protect it from light and stored at room temperature. 
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6.7.4 10x Non-Denaturing Gel Running Buffer (pH 8.3) 

Reagents Final  Amount  

Tris base 50 mM 6.06 g 

Glycine 384 mM 28.8 g 

RO water - Top up to 1 L 

 

Tris base and glycine was dissolved in 950 ml of RO water and the pH was adjusted to 8.3. RO 

water was added to obtain a final volume of 1 L. 
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6.8 Reagents for Western Blot 

6.8.1 10x Transfer Buffer (pH 8.3) 

Reagents Final  Amount  

Tris base 250 mM 30.3 g 

Glycine 1.92 M 144 g 

RO water - Top up to 1 L 

 

Tris base and glycine was dissolved in 950 ml of RO water and the pH was adjusted to 

8.3. RO water was added to obtain a final volume of 1 L. The buffer was stored at 4oC. 

 

6.8.2 1x Transfer Buffer 

Reagents Amount  

10x Transfer Buffer 100 ml 

Methanol 100 ml 

RO water 800 ml 

 

6.8.3 TTBS 

Reagents Final  Amount  

Tris 20 mM 20 ml 

NaCl 150 mM 30 ml 

Tween-20 - 1 ml 

RO water - Top up to 1 L 

 


