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ABSTRACT

Facing intense market competition and high demand variability, firms are

beginning to use flexible process structures to improve their ability to match

supply with uncertain demand. The concept of chaining has been extremely

influential in this area, with many large automakers already making this the

cornerstone of their business strategies to remain competitive in the industry.

In this thesis, we aim to provide a theoretical justification for why partial

flexibility works nearly as well as full flexibility. We also seek to extend

the theory of partial flexibility to environments that take into account new

factors relevant to the practice of process flexibility.

We first study the asymptotic performance of the chaining strategy in

the symmetric system where supply and (mean) demand are balanced and

identical. We utilize the concept of a generalized random walk to show that

an exact analytical method exists that obtains the chaining efficiency for gen-

eral demand distributions. For uniform and normal demand distributions,

the results show that the 2-chain already accrues at least 58% and 70%,

respectively, of the benefits of full flexibility. Our method can also be ex-

tended to more general cases such as non-symmetrical demands, unbalanced

systems, and higher-degree chains.

We then extend our analysis to take into account the response dimension,



Abstract ix

the ease with which a flexible system can switch from producing one product

to another. Our results show that the performance of any flexible system may

be seriously compromised when response is low. Nevertheless, our analytical

lower bounds show that under all response scenarios, the 2-chain still manages

to accrue non-negligible benefits (at least 29.29%) vis-à-vis full flexibility.

Furthermore, we find that given limited resources, upgrading system response

outperforms upgrading system range in most cases, suggesting a proper way

to allocate resources. We also observe that improving system response can

provide even more benefits when coupled with initiatives to reduce demand

variability.

Next, we consider the impact of partial production postponement on the

performance of flexible systems. Under partial postponement, we find that

results on chaining under full postponement may not hold. In the example

of small systems, when postponement level is lower than 80%, the celebrated

2-chain may perform quite badly, with a performance loss of more than 12%.

By adding another layer of flexibility, i.e. a third chain, the optimality loss

is restored to 5% even when postponement drops to 65%. We also study

the flexibility-postponement tradeoff and find that a firm operating with

a 3-chain at 70% postponement can perform extremely well with minimal

optimality loss.

Finally, we look into the fragility of flexible systems under the threat

of supply disruptions. Under both link and node disruptions, we find that

having a third chain, or a third layer of flexibility in the asymmetric setting,

can greatly reduce system fragility. Furthermore, when additional capacity is

made available, the performance of the third chain appears to be insensitive
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to how this extra capacity is allocated, which differs from the case of the

2-chain. These observations, in conjunction with the recommendations for

partial production postponement, suggest that there is substantial value in

employing the third chain.
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1. INTRODUCTION

Since the 1980s, we have witnessed the advent of globalization and the

tremendous effects it has on world consumption and production. A quick

look at a BusinessWeek report [2] on the top 100 brands in 2007 reveals that

these brands already hail from twelve different countries around the world.

(See Table 1.1 for a partial listing.) According to the report, each of these

brands derives at least a third of its earnings outside its home country. This

tells us that increasingly, the world is moving towards a phenomenon of bor-

derless consumption. That is, for consumers, the world is becoming their

shopping mall. On the other hand, for manufacturers, the whole world is

becoming their customer.

With the said internationalization of market competition, firms nowa-

days need to build up the capacity for becoming competitive as a world-class

company. The most common solution has been to turn to outsourcing and

offshoring, essentially tapping into the production capabilities of factories, big

and small, all over the world. For example, many American and European

brands outsource their sourcing function to Hong Kong-based Li & Fung,

the world’s leading supply chain company who controls a network of over

10,000 production facilities scattered everywhere in places like China, Brazil,

the Czech Republic, Honduras, Mauritius, Mexico, Poland, South Africa,
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Country Brand(s)
United States Coca-Cola, Microsoft, Nike, Disney, Apple, Starbucks
Japan Toyota, Canon, Nintendo, Sony
Finland Nokia
Germany BMW, Siemens, SAP, Adidas, Nivea
France Louis Vuitton, AXA, L’Oreal, Hennessy, Chanel
South Korea Samsung, Hyundai, LG
Britain HSBC, Reuters, BP, Smirnoff, Burberry
Switzerland Nescafe, UBS, Nestle, Rolex
Sweden IKEA
Netherlands Philips, ING
Italy Gucci, Prada
Spain Zara

Tab. 1.1: Partial Listing of Top 100 Brands by Country

Zimbabwe, and countries in Southeast Asia [21]. On this phenomenon of

borderless manufacturing, Fung et al [24], [25] believe the trend is “to rip

the roof off the factory. In contrast to Henry Ford’s assembly line, where

all the manufacturing processes were under one roof, the entire world is our

factory.” Other than granting firms the ability to increase capacity through

global aggregation, this strategy also allows the firms to control and reduce

operating expenses as well as focus on improving their core businesses, such

as product design and marketing.

Another important trend is the fragmentation of consumer demand. In-

stead of catering to one big market with more or less homogeneous demand,

companies are beginning to see more niche markets with diverse tastes as

well as the emergence of variety-seeking consumer behavior. As this trend

becomes more prevalent, we see an increasing proliferation of product lines

as companies struggle to stay competitive. In the automobile industry, the

number of car models offered in the United States market has increased from



1. Introduction 3

195 (in 1984), to 238 (in 1994), to 282 (in 2004), and was projected to reach

330 by 2008 (cf. [54]). The same phenomenon can be observed in other

industries such as electronics, clothing, food products, and even services like

entertainment/media and education. As a result, demand uncertainty on a

per product basis increases and forecasting becomes more difficult.

Facing such an increased demand uncertainty as well as heightened mar-

ket competition, businesses can no longer rely on capacity, pricing, quality,

and timeliness alone as competitive strategies. One approach in recent years

that has proven effective is the use of flexible production facilities. In the

automobile industry, for example, companies are increasingly moving from

focused factories to flexible factories. According to a survey conducted in

2004, the plants of major automobile manufacturers in North America, such

as Ford and General Motors, are more flexible than their counterparts 20

years ago (cf. [53]). The survey shows that these flexible plants can produce

many more types of cars to cater to rapidly changing consumer demands

while the plant capacities have not changed very much. The kind of flexibil-

ity adopted in these plants is known as “process flexibility” in the operations

management literature.

1.1 Process Flexibility

“Process flexibility” can be defined as a firm’s ability to provide varying goods

or services, using different facilities or resources (cf. [32], [47]). Nowadays,

it has become a common strategy among players in the automobile industry

to employ process flexibility in their production facilities [53]. This focus on
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process flexibility as a competitive strategy can likewise be observed in other

manufacturing industries, such as the textile/apparel industry [19] and the

semiconductor/electronics industry [43]. The value of flexibility also extends

to service industries, where firms have increasingly employed cross-trained

workers to provide more flexible services [30].

1 1

2 2

50

150

100

100

FacilitiesProducts

Dedicated System

1 1

2 2

50

150

100

100

FacilitiesProducts

Flexible System

Fig. 1.1: The Benefits of Process Flexibility

To illustrate the benefits gained from employing process flexibility, we

must first understand how a flexible production system works. Consider the

two systems in Figure 1.1. Both systems have two products and two facilities.

The demands of the products are random while the capacities of the facilities

are fixed at 100 units each. The system on the left is a dedicated production

system (also known as a focused factory) while the one on the right is a

flexible system. When demand for product 1 is low while demand for product

2 is high, the extra demand for product 2 is lost to the dedicated system and

the extra capacity of facility 1 is wasted. On the other hand, a flexible system

is able to recover an additional sales of 50 units due to its ability to produce

more products in each facility. This is the fundamental reason why process

flexibility has been an effective strategy in many industries. In an interview

with the Wall Street Journal [11], Chrysler Group CEO Thomas LaSorda
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disclosed that flexible production “gives us a wider margin of error.” With

regard to the value of process flexibility, he said, “if the Caliber doesn’t sell

well, the Jeep Compass and Patriot could take up capacity, and eventually

a fourth model will be built, too.”

The theoretical justification for the effectiveness of process flexibility

can be traced back to the early work of Eppen [20]. For a multi-location

newsvendor problem, he showed that the mismatch cost for a decentralized

system exceed those in a centralized system, and that the gap between these

two systems depends on the demand correlation. Indeed, a decentralized

system is analogous to a dedicated production system, while the centralized

system corresponds to flexible production. Likewise, it makes sense that

process flexibility is most effective when product demands are negatively

correlated and least effective when demand correlation is positive.

It should be noted, however, that Eppen’s result on the benefits of con-

solidation or risk pooling is predicated on the assumption of full consolidation

or complete pooling. In the context of process flexibility, we must have a fully

flexible production system where all facilities can produce all products for

the said theory to hold. In addition, most of the early works on process flex-

ibility examine the appropriate mix of dedicated versus flexible resources,

thus focusing only on fully flexible resources. Unfortunately, many compa-

nies realize that full flexibility typically comes at great expense, thus they

can only make limited use of these theories on full flexibility. This calls for

a new or extended theory of partial flexibility.

With most facilities capable of producing most products, one may over-

invest in process flexibility. On the other hand, when one has too little or



1. Introduction 6

no flexibility at all, this may result in a high level of lost sales. This be-

comes a question of striking a balance between flexibility and cost, which

can be restated as whether one can achieve the benefits of full flexibility at

an acceptable cost level. Jordan and Graves [32] show via simulation studies

that this is possible using the concept of a simple “chaining” strategy. Here,

a plant capable of producing a small number of products, but with proper

choice of the process structure (i.e., plant-product linkages), can achieve

nearly as much benefit as the full flexibility system. This concept is widely

believed to be true, and has been applied successfully in many industries. For

example, Chrysler CEO LaSorda has repeatedly mentioned the importance

of chaining in his interviews and speeches [35], while VP Frank Ewasyshyn

was recently inducted into the Shingo Prize Academy for his contributions to

flexibility and efficiency [1]. Jordan and Graves [32] also applied the chaining

strategy to General Motors’ production network.

To enhance our understanding of the progress in this research and to put

in perspective the contributions of this thesis, a thorough literature review

on process flexibility is provided in Section 1.1.1.

1.1.1 Literature Review

In the operations management literature, there are two main streams of re-

search related to process flexibility. The first stream examines the trade-off

between flexible and dedicated resources. Fine and Freund [22] characterize

the optimal investment in flexibility (i.e. the optimal amounts of dedicated

and flexible resources) for a price-setting firm, where demand is modeled by
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a discrete probability distribution of k possible states that affect demand.

Van Mieghem [55] takes a critical-fractile approach to solving the optimal

flexibility investment for a price-taking firm, but for any arbitrary multivari-

ate demand distribution. Bish and Wang [10] extend van Mieghem’s work to

a price-setting firm facing different types of correlated demands.

The above studies, though, focus only on full flexibility; that is, all fa-

cilities can produce all types of products. Unfortunately, in practice, the

acquisition cost of full flexibility is usually too enormous to permit the re-

covery of adequate benefits. In response, a second stream of research looks

at different degrees of flexibility, and examines the value of these types of

process flexibility. The landmark study was by Jordan and Graves [32], who

introduced the concepts of “smart limited flexibility” and “chaining”. They

observe, through extensive simulation, that limited flexibility, configured the

right way, yields most of the benefits of full flexibility. Furthermore, they

claim that limited flexibility has the greatest benefits when a “chaining”

strategy is used. In the symmetric case where the (mean) demand and fa-

cility capacity are balanced and identical, a chaining configuration is formed

by enabling every facility to produce two products and every product to be

produced by two facilities, in a way that “chains” up all the facilities and

products. For a 10-facility, 10-product example, the expected sales gener-

ated from chaining is compared to that of full flexibility using numerical

simulation. The results show that chaining already achieves about 95% of

the benefits of full flexibility while incurring only a small fraction of the cost.

Figure 1.2 provides an illustration.

The theory developed and the insights gained from studying the sym-
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Fig. 1.2: Chaining is Almost as Good as Full Flexibility

metric case are then used to formulate principles and guidelines to address

the more sophisticated asymmetric case where facilities can have varying

capacities while product demands may follow arbitrary probability distribu-

tions. Here, Jordan and Graves follow similar ideas of adding more linkages

to the system such that the resulting structure forms a cycle (albeit not nec-

essarily a regular chain). In addition, they propose a probabilistic measure

(later called the JG index) that can be used for evaluating different flexibility

structures. Applying these concepts to General Motors’ production network,

they find that indeed a partially flexible system, if well designed, already

captures almost all the benefits of full flexibility.

Because the twin ideas of smart limited flexibility and chaining have

been well received, many researchers subsequently applied and examined

these strategies in various other contexts such as supply chains ([27], [10]),
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queuing ([7], [28]), revenue management ([26]), transshipment distribution

network design ([39], [58]), manufacturing planning ([34]) and flexible work

force scheduling ([18], [30], [57], [13]). For example, Graves and Tomlin [27]

extended the study to multi-stage supply chains and found that “chaining”

also works very well. Hopp et al. [30] observed similar results in their study

of a work force scheduling problem in a ConWIP (constant work-in-process)

queuing system. They compared “cherry picking”, where capacity is “picked”

from all other stations versus “skill-chaining” where workforce in each station

is cross-trained to perform work in the next adjacent station. They observed

that “skill-chaining” outperforms “cherry picking” and also that a chain with

a low degree (the number of tasks a worker can handle) is able to capture

the bulk of the benefits of a chain with high degree.

Another issue addressed in the literature is the search for effective in-

dices to measure the performance of flexibility structures (cf. [32], [27], [31],

and [17]). For example, Jordan and Graves [32] proposed a probabilistic in-

dex, which roughly measures the probability that unsatisfied demand from a

subset of products in a given flexible system would exceed that of a fully flex-

ible system. However, this index is usually very hard to compute if demands

are not normally distributed or they are correlated due to the complexity

of the joint probability distribution. This renders the index of limited use

especially in the case of correlated demands when such performance indices

are most needed. To overcome this problem, Iravani et al. [31] proposed a

new perspective on flexibility using the concept of “structural flexibility” and

introduced new flexibility indices. The indices are obtained by first defining

the “structural flexibility matrix” and then taking the largest eigenvalue as
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well as the mean of this matrix as flexibility indices. These indices are easy

to compute and are applicable to serial, parallel, open, and closed networks.

More recently, Chou et al. [17] introduced the Expansion Index, based on

the concept of graph expander. They define this index as the second smallest

eigenvalue of an associated Laplacian matrix. Numerical experiments show

that this index performs as well, if not better than the previous indices in

most of the problem instances considered.

Another group of studies tries to warn the community about some unac-

counted issues when employing process flexibility. Bish et al. [9] go beyond

just matching supply and demand as they study the impact of flexibility on

the supply chain. They show that in a 2 × 2 system, certain practices that

may seem reasonable in a flexible system can result in greater production

swings and higher component inventory levels, which will then increase op-

erational costs and reduce profits. To account for partial flexibility, Muriel

et al. [45] extend Bish et al.’s work to larger systems and obtain similar find-

ings. Brusco and Johns [13] present an integer linear programming model to

evaluate different cross-training configurations in a workforce staffing prob-

lem. In their model, they consider a case wherein a worker is 100% efficient

in his primary skill but only 50% efficient in his secondary skill. Under this

scenario, the value of skill-chaining may be significantly reduced due to the

efficiency lost in using secondary capacity. In this thesis, we also examine

issues and concerns not previously considered in the literature. At the same

time, we propose measures on how to mitigate the effects of these additional

factors. We defer this discussion to Section 1.2.

The previous works cited above present limited concrete analytical re-
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sults. To strengthen the analytical aspect, Akşin and Karaesmen [3] first

show that the optimal system sales for any demand realization in a given

flexible system can be obtained by deriving the maximum flow in a network

flow model. The performance of the system (in terms of expected sales) is

therefore equivalent to determining the expected amount of maximum flow

in a network with random capacities. The authors then use their network

flow model to show that the expected throughput is concave in the degree of

flexibility. This implies the diminishing value of additional flexibility, partly

explaining why chaining already gives a substantial portion of the benefits of

full flexibility. Bassamboo et al. [6] study the optimal type and amount of

flexibility for stochastic processing systems. Focusing on high-volume sym-

metric systems and using heavy-traffic queueing analysis, they analytically

demonstrate that the optimal flexibility configuration invests a lot in dedi-

cated resources, a little in only bi-level flexibility, but nothing in level-k > 2

flexibility, let alone full flexibility. Chou et al. [17] use the concept of graph

expanders to provide a rigorous proof of the existence of a sparse partially

flexible structure (not necessarily chaining) for a symmetrical system that

accrues most of the benefits of full flexibility. In another paper, Chou et

al. [16] use constraint sampling to characterize the analytical performance

of sparse structures, vis-à-vis the full flexibility system, when the demand

and supply are asymmetrical. However, no theoretical results exist on how

to analytically capture exactly how well the chaining strategy performs.

As mentioned, the process flexibility problem is intimately related to the

problem of determining the expected amount of maximum flow in a network

with random capacity. Karp et al. [33] developed an algorithm to find
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the maximum flow in a random network with high probability, but to the

best of our knowledge, the algorithm could not be used to find the expected

maximum flow value. For the case when the capacities are exponentially

distributed, Lyons et al. [41] used the connection between random walk

and electrical network theory to bound the expected max flow value by the

conductance of a related electrical network (where the capacity of each arc is

replaced by the expected capacity value). The proof technique relies heavily

on the properties of the exponential distribution and thus cannot be utilized

for more general distribution. Hence, a non-simulation-based method for

obtaining the expected maximum flow in the random network of process

flexibility must be developed from scratch.

1.2 Research Objectives and Results

The objectives of this thesis are:

• To provide further theoretical justification for the effectiveness of the

chaining strategy: Although some works have already started toward

building the theory of partial flexibility, it remains to be established

exactly how effective the chaining strategy is. The classical simulation

result by Jordan and Graves that a 2-chain in a 10×10 system already

captures 95% of the benefits of full flexibility has yet to be justified or

reproduced analytically. We utilize the concept of a generalized random

walk to show that an exact analytical method exists that obtains the

chaining efficiency for very large systems. This method works for a wide

range of demand distributions and confirms the belief in the community
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that chaining is almost as good as full flexibility. More importantly, our

proposed method can be generalized and incorporated into the analysis

of more sophisticated settings.

• To examine the performance of chaining as system size grows infinitely

large: For small n (say n = 10), previous works already show that

chaining accrues about 95% of the benefits of full flexibility. As sys-

tem size increases, this value tends to decrease based on our additional

simulations. A natural question would then be how fast chaining per-

formance deteriorates as n increases to infinity. Such asymptotic anal-

ysis is important given today’s growing manufacturing and service net-

works, and complements existing literature which is largely simulation

based and thus confined only to small or moderate size systems. Our

proposed random walk method can be used to obtain exact analytical

values for the asymptotic chaining efficiency. These values also serve

as lower bounds for any finite system size n. Interestingly, even when

system size is infinitely large, our results show that chaining can still

offer most (70% À 0) of the benefits of full flexibility.

• To examine the performance of chaining when system response is not

perfect: It has been suggested in the literature and confirmed among

managers that process flexibility must be viewed based on two dimen-

sions: range and response. Range is the set of states that a system can

adopt, while response is the ease with which the system switches from

state to state. Although both dimensions are important, the existing

literature does not analytically examine the response dimension – most
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works assume system response is always perfect. We model the re-

sponse dimension in terms of production efficiencies such that primary

production is less expensive (more efficient) than secondary produc-

tion. We use the Max-Flow Min-Cut theorem to obtain lower bounds

in our quest to characterize the chaining performance for all relevant

response levels. We can show that the performance of any flexible sys-

tem may be significantly lowered when operating under low response

levels. Nevertheless, our lower bounds show that under all response

scenarios, chaining still manages to accrue non-negligible benefits (at

least 29.29%) vis-à-vis full flexibility.

• To examine the performance of chaining under partial production post-

ponement: Aside from process flexibility, another approach that can

help deal with demand uncertainty is production postponement. Pro-

duction postponement is “the firm’s ability to set production quantities

after demand uncertainty is resolved”. When there is no postponement,

the firm acts as a make-to-stock manufacturer; with full postponement,

it behaves in a make-to-order fashion. Because existing literature on

process flexibility assumes full postponement, we seek to understand

how the existing theories hold under partial postponement. We utilize

a multi-item newsvendor model with second supply and partial capac-

ity sharing to study both partial flexibility and partial postponement.

We find that results on chaining under full postponement may not hold

under partial postponement. For small systems, when postponement

level is lower than 80%, the celebrated 2-chain may perform quite badly,
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with a performance loss of more than 12%. By adding another layer

of flexibility, i.e. a third chain, the optimality loss is restored to 5%

even when postponement drops to 65%. This serves as evidence for the

potential value of employing a third chain (or in the asymmetric case,

a third layer of flexibility).

• To examine the performance of chaining under supply disruptions: Re-

cent studies have pointed out that supply chains are increasingly sus-

ceptible to disruptions that may be caused by labor strikes, hurricanes,

fires, and other unexpected calamities. It has been shown that mea-

sures used to protect against demand uncertainty and yield uncertainty

are not suitable for mitigating disruption risks. Instead, one must equip

his supply chains with more redundancy or slack to buffer against dis-

ruption uncertainty. However, firms have historically been disinclined

to invest in additional infrastructure or inventory, despite the poten-

tially large payoff in the event of a disruption. Hence, it is but natural

to turn to process flexibility for a way to reduce the buffer requirements

or to maximize the utilization of additional resources. We study the

fragility of flexible systems and how it changes when more flexibility

is introduced or when additional capacity is provided. We find that

the third chain, or a third layer of flexibility in the asymmetric case,

can greatly reduce system fragility. It can also increase implementation

flexibility in terms of how additional capacity must be allocated.
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1.3 Preliminaries: Models and Measures

As in existing literature, there are usually two cases considered for the study

of partial flexibility: the symmetric case and the asymmetric case. In this

thesis, we focus on the symmetric case for the purpose of theory-building.

Insights gained from this exercise are then transferred and numerically tested

on the asymmetric case. For that reason, we define the general notations for

our analysis based on the symmetric setting.

Any flexibility structure for an n-product, n-facility system can be rep-

resented by a bipartite graph G(n) = (A(n) ∪ B(n),G(n)). On the left is

a set A(n) of n product nodes while on the right is a set B(n) of n facility

nodes. An edge e = (i, j) ∈ G(n) connecting product node i to facility node

j means that facility j is endowed with the capability to produce product

i. Here, G(n) ⊆ A(n) × B(n) denotes the set of all such links; that is, the

edge set of the bipartite graph. Hence, each flexibility configuration can be

uniquely represented by the edge set G(n). The three most common flexibility

configurations studied in the literature are:

1. The dedicated system:

D(n) = {(i, i) | i ∈ {1, 2, . . . , n}}

2. The chaining system1:

C(n) = {(i, i) | i = 1, 2, . . . , n} ∪ {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}

1 This structure is also known as the 2-chain (because each plant is connected to two
products, and vice versa) or the long chain (because it is the longest possible 2-chain).
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3. The full flexibility system:

F(n) = A(n)×B(n)

Figure 1.3 shows some examples of flexibility configurations for a three-

facility, three-product system. Graphs (a), (b), and (c) are the three respec-

tive special configurations as listed above for the case n = 3.
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Fig. 1.3: Bipartite Graph Representation of 3× 3 Flexibility Structures

We also generalize the above chaining system C(n) to higher-degree

chains. Previously, the degree of each product or facility node in the chaining

strategy is set at 2. In general, we can extend this to degree d ≤ n, where

each product node is connected to d facility nodes and each facility node is

linked to d product nodes. Clearly, when d = 1 and d = n, we recover the

dedicated and full flexibility systems, respectively. The expanded notation

is as follows. For d = 1, 2, . . . , n, the d-chain is

Cd(n) =

{n−d+1⋃
i=1

{(i, i), (i, i + 1), . . . , (i, i + d− 1)}
}

⋃ { n⋃

i=n−d+2

{(i, i), (i, i + 1), . . . , (i, n), (i, 1), (i, 2), . . . , (i, i− n + d− 1)}
}



1. Introduction 18

We use the notation Cd(n) when comparing the performance of the 2-

chain with higher-degree chains. Otherwise, we revert to the original nota-

tions D(n) = C1(n), C(n) = C2(n) and F(n) = Cn(n).

We let D = (D1, D2, . . . , Dn) denote the demand vector and C =

(C1, C2, . . . , Cn) denote the supply vector. Each demand Di is assumed to be

random and follow some distribution function Fi, while every supply capacity

Cj is fixed. In the symmetric case, we further assume that D1, D2, . . . , Dn

are i.i.d. and follow the same distribution F , whereas all facilities have the

same capacity Cj = C.

1.3.1 Optimization Models

The problem boils down to solving an optimization model for each real-

ization of product demands D. The expectation of the optimal objective

value (whether sales, profit, or cost) is computed and incorporated into per-

formance measures for flexibility structures. The optimization models we

consider in this thesis are: (1) the Maximum Flow Model, (2) the Maximum

Profit Model, and (3) the Minimum Mismatch Cost Model.

1. The maximum flow model: In this model, we find the maximum sales

possible given the demand realizations, facility capacities and the flex-

ibility configuration. This is a suitable model when system response

is perfect and products have equal unit revenues and unit production

costs.
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Z∗
G(n)(D) = max

n∑
i=1

n∑
j=1

xij (1.1)

s.t.

n∑
j=1

xij ≤ Di ∀i = 1, 2, . . . , n;

n∑
i=1

xij ≤ Cj ∀j = 1, 2, . . . , n;

xij ≥ 0 ∀ i, j = 1, . . . , n,

xij = 0 ∀ (i, j) /∈ G(n).

2. The maximum profit model: This is the model we use to study the

response dimension. Because we model system response in terms of

production efficiencies, we must consider a maximum profit criterion

to account for the more expensive secondary or backup production.

Here, we let p be the unit revenue, cp be the unit cost of primary

production, and cs(≥ cp) be the unit cost of secondary production.

Π∗
G(n)(D, cs) = max (p− cp)

n∑
i=1

xii + (p− cs)
n∑

i=1

∑

j 6=i

xij (1.2)

s.t.
n∑

j=1

xij ≤ Di ∀ i = 1, . . . , n

n∑
i=1

xij ≤ Cj ∀ j = 1, . . . , n

xij ≥ 0 ∀ i, j = 1, . . . , n

xij = 0 ∀ (i, j) /∈ G(n)
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3. The minimum mismatch cost model: We use the following multi-item

newsvendor model with secondary supply and partial capacity sharing

to examine process flexibility under partial production postponement.

We let α denote the level of postponement2. Hence, the problem be-

comes a two-stage optimization model where (1 − α) of the capacity

must be allocated before actual demand is observed while that of the

remaining α of the capacity can be postponed after demand is made

known. Here, the vectors x and y denote first-stage production and

second-stage production, respectively. The vector ξ denotes the real-

ization of the demand vector, while co and cu represent the unit overage

and underage costs.

G∗
G(n)(α) = minx GG(n)(x, α) (1.3)

s.t.
n∑

i=1

xij ≤ (1− α)Cj ∀j = 1, 2, . . . n

xij ≥ 0 ∀i, j = 1, 2, . . . n

xij = 0 ∀(i, j) /∈ G(n)

where

GG(n)(x, α) = co · g1(x) + cu · g2(x)− cu · E[hG(n)(x, α, ξ)]

g1(x) =
n∑

i=1

∫ ∑n
j=1 xij

0

( n∑
j=1

xij − ξi

)
dFi(ξi)

2 In practice, α can be different for different products. However, we use the same
parameter α for all products in order to have analytical tractability so as to gain insights
into the general effect of the postponement level on system performance.
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g2(x) =
n∑

i=1

∫ ∞

∑n
j=1 xij

(
ξi −

n∑
j=1

xij

)
dFi(ξi)

and

hG(n)(x, α, ξ) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑

j=1

yij ≤
(

ξi −
n∑

j=1

xij

)+

∀i = 1, 2, . . . n

n∑
i=1

yij ≤ αCj ∀j = 1, 2, . . . n

yij ≥ 0 ∀i, j = 1, 2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

1.3.2 Performance Measures

The above optimization problems have to be solved for each realization of

demand and the expectation of the optimal objective function values is taken

with respect to the demand uncertainty. In fact, this poses as one of the

main challenges in our analysis. Nevertheless, once these expected values

are obtained, they can be subsequently included in the computation of the

following performance measures for different flexibility structures.

1. Expected Sales Ratio: This measures the performance of any partially

flexible system in terms of expected sales relative to full flexibility.

SRP(G(n)) =
EP[Z

∗
G(n)(D)]

EP[Z∗
F(n)(D)]
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where P is the probability measure that characterizes random demand

vector D. Since distributional ambiguity is not the focus of this study,

the probability measure in question is usually distinct and clear from

the context. Hence, from here onwards, we drop P for notational sim-

plicity. The simplified notation for the Expected Sales Ratio becomes

SR(G(n)) =
E[Z∗

G(n)(D)]

E[Z∗
F(n)(D)]

2. Expected Benefits Ratio (or Flexibility Efficiency): This measures the

performance of any partially flexible system in terms of expected im-

provements (which may be in terms of sales, profit, or cost) over the

dedicated system, relative to full flexibility.

FE(G(n)) =
E[Z∗

G(n)(D)]− E[Z∗
D(n)(D)]

E[Z∗
F(n)(D)]− E[Z∗

D(n)(D)]

or

FE(G(n), cs) =
E[Π∗

G(n)(D, cs)]− E[Π∗
D(n)(D, cs)]

E[Π∗
F(n)(D, cs)]− E[Π∗

D(n)(D, cs)]

or

FE(G(n), α) =
G∗
D(n)(α)−G∗

G(n)(α)

G∗
D(n)(α)−G∗

F(n)(α)

whichever is appropriate in the given context.

3. Chaining Efficiency: This is a shorthand for the flexibility efficiency of



1. Introduction 23

the chaining system or the 2-chain.

CE(n) = FE(C(n))

or

CE(n, cs) = FE(C(n), cs)

or

CE(nα) = FE(C(n), α)

whichever is appropriate in the given context.

4. Chaining Efficiency for d-chains: This is a shorthand for the flexibility

efficiency of a d-chain.

CEd(n) = FE(Cd(n))

or

CEd(n, cs) = FE(Cd(n), cs)

or

CEd(n, α) = FE(Cd(n), α)

whichever is appropriate in the given context.

5. Asymptotic Sales Ratio: This is the asymptotic limit of the Expected
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Sales Ratio as system size expands to infinity.

ASR(G(∞)) = lim
n→∞

SR(G(n))

6. Asymptotic Chaining Efficiency: This is the asymptotic limit of the

Chaining Efficiency as system size expands to infinity.

ACE = lim
n→∞

CE(n)

or

ACE(cs) = lim
n→∞

CE(n, cs)

or

ACE(α) = lim
n→∞

CE(n, α)

whichever is appropriate in the given context.

7. Asymptotic Chaining Efficiency for d-chains: This is the asymptotic

limit of the Chaining Efficiency of a d-chain as system size expands to

infinity.

ACEd = lim
n→∞

CEd(n)

or

ACEd(cs) = lim
n→∞

CEd(n, cs)

or

ACEd(α) = lim
n→∞

CEd(n, α)
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whichever is appropriate in the given context.

8. Optimality Loss/Gap: This measures the loss in a system with par-

tial flexibility and partial postponement relative to the optimal system

which possesses full flexibility and full postponement.

OG(G(n), α) =
G∗
G(n)(α)

G∗
F(n)(1)

− 1

1.4 Structure of Thesis

The remaining sections of the thesis are organized as follows. The asymptotic

chaining efficiency is analyzed using a random walk approach in Chapter 2.

The method is applied to common demand distributions such as the uni-

form and the normal distributions. Additionally, we adjust the method to

more general cases such as non-symmetrical demands, unbalanced systems,

and higher-degree chains. Chapter 3 will investigate the impact of the re-

sponse dimension on the performance of flexible systems. For the symmetric

system, we characterize the chaining efficiency for all relevant response lev-

els and show that in the worst case, chaining still provides non-negligible

benefits. The trade-off between system range and system response, and the

complementary nature of upgrading system response and reducing demand

variability are also discussed. In Chapter 4, we make a case for the often

ignored third chain in terms of partial production postponement and supply

disruptions. Section 4.1 shows that the 2-chain may not be enough under

partial postponement, but the 3-chain can make up for most of the postpone-
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ment loss. The right mix of flexibility and postponement is also explored.

Section 4.2 then looks at systems subject to supply disruptions in terms of

fragility, flexibility and capacity. The idea that the third chain can be a

positive element under supply disruptions is also proposed and illustrated.

Finally, Chapter 5 concludes with a summary of results and plans for future

research.



2. ASYMPTOTIC CHAINING EFFICIENCY

In this chapter, we examine the effect of increasing system size on the per-

formance of the chaining strategy vis-à-vis the full flexibility system. To

this end, we consider the following simple example. Suppose each plant has

a capacity of Cj = 100 units for each j, and each product consumes one

unit of capacity and has an expected demand of Di = 100 units for each

i. Note that the (mean) demand and supply are balanced and identical in

this case. We assume further that the demand is normally distributed with

a standard deviation of 33 units (so that the probability of negative demand

is negligible).

We then simulate the expected system sales for the dedicated system,

the chaining system, and the full flexibility system. We first observe the

demand realizations and then we determine how much of each product is

produced by each plant in order to maximize total sales. This boils down to

solving the Maximum Flow Model introduced in Section 1.3.1.
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Z∗
G(n)(D) = max

n∑
i=1

n∑
j=1

xij

s.t.

n∑
j=1

xij ≤ Di ∀i = 1, 2, . . . n;

n∑
i=1

xij ≤ Cj ∀j = 1, 2, . . . n;

xij ≥ 0 ∀ i, j = 1, . . . , n,

xij = 0 ∀ (i, j) /∈ G(n).

We solve the above problem for each random realization of the demand

vector D. Table 2.1 shows the expected performance of the different struc-

tures over the random demand, as n varies. The expected sales ratio of

chaining to full flexibility and the chaining efficiency (expected benefits ratio

of chaining to full flexibility) are also tabulated.

System Expected Sales Ratios
Size n D(n) C(n) F(n) SR(C(n)) CE(n)

10 864.47 949.36 955.14 99.39% 93.62%
15 1297.51 1434.44 1447.00 99.13% 91.59%
20 1728.52 1915.78 1938.93 98.81% 89.00%
25 2179.81 2401.94 2441.73 98.37% 84.81%
30 2601.84 2871.06 2929.84 97.99% 82.08%
35 3044.48 3352.66 3430.70 97.73% 79.79%
40 3469.06 3807.16 3905.48 97.48% 77.47%

Tab. 2.1: Expected Sales Ratio and Chaining Efficiency as System Size Increases

For small n (say n = 10), our simulation shows that the expected sales,

essentially the maximum flow, in the three systems are 864.47, 949.36, and

955.14, respectively. This demonstrates that chaining already achieves most
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(99.39%) of the expected sales of full flexibility as well as most (93.62%) of

the benefits of full flexibility. As the system expands, the performance of

chaining deteriorates slightly, but still at an impressive sales ratio of 97.48%

and chaining efficiency of 77.47% for n = 40. A natural question is how

well the chaining structure performs as n increases to infinity. Such asymp-

totic analysis is important given today’s growing manufacturing and service

networks. This study also complements existing literature which is largely

simulation-based and thus confined only to small or moderate size systems,

by supplying a lower bound on the actual performance of large finite systems.

The rest of this chapter is devoted to developing an analytical method that

captures the asymptotic chaining performance for general demand distribu-

tions.

2.1 The Basic Model

Consider the case where there is an equal number of plants and products,

with a (fixed) supply and (mean) demand of µ for each one; that is, the

identical and balanced case. We further assume that all products have an

independent and identically distributed demand Di which follows a sym-

metrical distribution around its mean E[Di] = µ.1 Since demand cannot

be negative, we assume that Di ∈ [0, 2µ] for all demand realizations. Let

1 Our technique can be modified to handle cases when mean demand does not equal
plant capacity and when the demand is not symmetrical about the mean. For the moment,
we focus on the identical and balanced case merely for ease of exposition. The generalized
approach is presented in Section 2.4
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D = (D1, . . . , Dn) denote the demand of the n products. Let

MF (G(n),D)

denote the maximum amount of production supported by the structure G(n)

in the system (obtained by solving the Maximum Flow Model Z∗
G(n)(D) in

Section 1.3.1). For the dedicated and the full flexibility systems, it is easy to

see that

MF (D(n),D) =
n∑

i=1

min(µ,Di) =
n∑

i=1

(
µ− (µ−Di)

+

)
,

and

MF (F(n),D) = min

(
nµ,

n∑
i=1

Di

)
= nµ + min

(
0,

n∑
i=1

Di − nµ

)
.

As demands are independent and bounded, by the Central Limit Theorem,

E

[
min

(
0,

n∑
i=1

Di − nµ

)]
=
√

nE

[
min

(
0,

∑n
i=1(Di − µ)√

n

)]
∼ O(

√
n).

We are interested in comparing the performance of the long chain, vis-à-

vis the full flexibility system. In particular, we want to evaluate the asymp-

totic sales ratio of chaining to full flexibility introduced in Section 1.3.2.

ASR(C(∞)) = lim
n→∞

E[MF (C(n),D)]

E[MF (F(n),D)]
,
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As well as tracking the above ratio, we would also like to track the

asymptotic chaining efficiency which measures the improvement of the chain-

ing structure over the dedicated system. This refinement is useful, as it rules

out those cases where the dedicated system is already as good as the full

flexibility system. In fact, for the dedicated system, it is easy to show that

ASR(D(∞)) =
µ− E[(µ−Di)

+]

µ
.

By our assumption, E[(µ−Di)
+] ≤ µ/2. Hence, we already have

ASR(D(∞)) ≥ 1/2.

We recall, from Section 1.3.2, the definition of chaining efficiency (or flexibil-

ity efficiency of chaining), which is just the expected benefits ratio of chaining

to full flexibility.

CE(n)
∆
=

E[MF (C(n),D)]− E[MF (D(n),D)]

E[MF (F(n),D)]− E[MF (D(n),D)]

=
E[MF (C(n),D)]− nµ + nE[(µ−Di)

+]

nE[(µ−Di)+]−O(
√

n)
.

Our interest is to characterize the ACE or asymptotic value of the chaining

efficiency, where

ACE
∆
= lim

n→∞
CE(n).
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It follows that

ACE =
E[(Di − µ)+] + limn→∞ 1

n
E[MF (C(n),D)]− µ

E[(Di − µ)+]
(2.1)

Hence, our focus from here onward is to find 1
n
E[MF (C(n),D)]. Once the

asymptotic chaining efficiency is obtained, the asymptotic sales ratio of chain-

ing to full flexibility can be easily computed as follows.

ASR(C(∞)) = lim
n→∞

E[MF (C(n),D)]

E[MF (F(n),D)]

= ACE + (1− ACE)

(
lim

n→∞
E[MF (D(n),D)]

E[MF (F(n),D)]

)

= ACE + (1− ACE)

(
µ− E[(µ−Di)

+]

µ

)

As the flow on each arc is bounded by µ, we can delete a link from the

chain C(n), to obtain P(n), without affecting the asymptotic performances

of the two structures. In fact, we have the following lemma which states that

the long path is asymptotically equivalent to the long chain.

Lemma 1.

lim
n→∞

E[MF (P(n),D)]

n
= lim

n→∞
E[MF (C(n),D)]

n

We thus focus on finding the maximum flow on the path structure P(n),

rather than the chain C(n).
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2.2 The Random Walk Approach

For ease of exposition, we let the arc linking demand node i to supply node

i denote the “primary” arc, and the arc linking demand node i to supply

node i + 1 the “secondary” arc. We delete the arc from demand node n to

supply node 1 to obtain the path P(n). The maximum flow on the long

path P(n) can be determined in a greedy fashion: first, satisfy the demand

D1 using whatever primary capacity, which is provided by the primary arc,

that is available (i.e., µ units), then using as much secondary capacity, which

is provided by the secondary arc, as needed (i.e., another µ units). Next,

based on the level of capacity remaining, satisfy the demand Di using the

primary and secondary capacities, with i ranging from 2 to n, in that order.

Note that this may (or may not) reduce the primary capacity of the next

product demand, which may then need to rely more on secondary capacity.

The amount of max flow obtained in this greedy fashion is a random variable,

depending on the values of Di.

To present this greedy approach formally and to facilitate our analysis,

we let Ti denote the amount of primary capacity left for product i and let

Si denote the amount of secondary capacity consumed by product i, after

demands for products 1 to i−1 have been satisfied using the greedy method.

Therefore, Ti = µ−Si−1 and we set S0 = 0. Let TF denote the total maximum

flow. Similarly, let TE =
∑n

i=1 Di − TF denote the difference between the

total demand and the total flow; that is, the total unmet demand. This
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implies

1

n
E[TE] = µ− 1

n
E[TF]. (2.2)

Consider step i of the greedy approach, wherein Ti is known before Di

is observed. The greedy allocation implies

Si = min[(Di − Ti)
+, µ], Ti+1 = µ− Si, TE = TE + [(Di − Ti)

+ − µ]+

Taking the cases when demand is above mean and below mean, we

summarize the greedy approach as follows.

Algorithm 1. (Greedy Approach)

1. Set i := 1, S0 := 0, T1 := µ, and TE := 0.

2. Observe Di.

If Di > µ, then Si := min[Si−1 + Di − µ, µ], Ti+1 = µ − Si, and

TE := TE + max[Di − Ti − µ, 0]

If Di < µ, then Si := max[Si−1 + Di − µ, 0], Ti+1 = µ − Si, and

TE := TE.

3. If i = n− 1, then STOP. TE := TE + max(Dn − Tn, 0). Return TE as

the minimum excess.

Otherwise, i := i + 1 and go to Step 2.
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At this point, note that {Si : i = 0, 1, 2, . . .} behaves much like a general-

ized random walk, with random step size Xi
∆
= Di−µ and absorbing bound-

aries 0 and µ. The value TE grows in Step 2 only when Di−Ti > µ,; that is,

when Si = min(Di+Si−1−µ, µ) = µ. We call this quantity (Xi−Ti) the level

of overshoot at the upper boundary. Note that (Xi − Ti)=Di − Ti − µ.

In Step 2 of the greedy algorithm, when Di < µ, it is possible that

Si−1 +Di−µ < 0. We call this amount (−Si−1−Xi) the level of overshoot

at the lower boundary. Note that we do not account for overshoot at the

lower boundary while keeping track of TE in the greedy algorithm.

The random walk starts initially at S0 = 0, the lower boundary. It gets

trapped at the lower boundary whenever Xi < 0, and escapes only when

Xi > 0. An interesting phenomenon happens when the random walk hits the

upper boundary - the walk gets trapped at the upper boundary whenever

Xi > 0, and it escapes from the upper boundary only when Xi < 0.

Let

τ
∆
= inf {n : Sn = µ, n ≥ 1}

denote the stopping time when the walk first hits the upper boundary. We

can re-start the random walk from the lower boundary at time τ : interchange

the roles of the upper and lower boundaries, and let

X ′
i ← −Xi = µ−Di ∀ i > τ,

S ′τ ← µ− Sτ = 0,

S ′i =





min[S ′i−1 + X ′
i, µ] if X ′

i > 0

max[S ′i−1 + X ′
i, 0] if X ′

i < 0
∀ i > τ.
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Since X ′
i is distributed in an identical fashion to Xi by symmetry of demand

distribution, the random walk S ′i from S ′τ = 0 onwards, under the above

change of co-ordinate, is identical in distribution to the earlier random walk

Si starting at S0 = 0.

Note that the way we account for TE changes under this new model. In

the earlier walk, TE changes value only at the upper boundary, whereas in

the new random walk, TE changes only when there is overshoot at the lower

boundary. We repeat this process whenever the new random walk hits the

upper boundary, switching back to the original random walk model. Let Ŝi

denote the stochastic process obtained by toggling between Si and S ′i in the

above manner.

Example 1. Figure 2.1 shows an example of a path that the random walk

{Si, i = 0, 1, 2, . . .} may traverse. Here, products 1, 3, 4, 9, and 10 have

demands lower than µ, while the rest have demands higher than µ. We also

see the walk get absorbed in the lower boundary three times and in the upper

boundary once. When the walk was absorbed in the upper boundary, some

unmet demands for products 6, 7, and 8 were lost. We are interested in the

expected amount of such excess quantities.

Suppose we consider another generalized random walk {Ŝi, i = 0, 1, 2, . . .}

such that Ŝ0 = S0, but Ŝi toggles between S ′i = µ−Si and Si each time Ŝi hits

the upper boundary. That is, the first time Ŝi hits the upper boundary, change

to Ŝi = S ′i; the next time, switch back to Ŝi = Si, and so on. Figure 2.2 shows
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…

0

1 1098765432 1211

Fig. 2.1: Sample Path for Original Random Walk

the equivalent sample path for the new random walk that corresponds to the

sample path for the old random walk in Figure 2.1.

…

0

1 1098765432 1211

Fig. 2.2: Sample Path for Toggling Random Walk

Note that unmet demand is incurred at the upper boundary when Ŝi = Si,

but at the lower boundary when Ŝi = S ′i. For example, in Figure 2.2, we easily

verify that indeed, unmet demands are incurred for products 6, 7, and 8.

Although it is possible to work on {Si, i = 0, 1, 2, . . .}, the transfor-

mation to {Ŝi, i = 0, 1, 2, . . .} provides a more convenient formulation. In

particular, {Ŝi, i = 0, 1, 2, . . .} turns out to be a regenerative process when-
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ever the random walk hits the upper boundary - the process regenerates and

its continuation is a probabilistic replica of the original process starting at

step 1 again.

Because all regenerating cycles are probabilistically identical, it suffices

to examine the characteristics of one cycle for the purpose of asymptotic

analysis. Some of these relevant characteristics are

• Cycle Duration τ : the length of each regenerative cycle. Recall that

τ
∆
= inf {n : Sn = µ, n ≥ 1, S0 = 0} .

• Cycle Overshoot ψ: the amount of overshoots at both the lower and

upper boundaries in each cycle.

ψ
∆
=

τ∑
i=1

(
(Si − Si−1 −Xi)χ(Xi < 0) + (Si−1 + Xi − Si)χ(Xi > 0)

)
,

where χ(·) denote the indicator function.

Note that ψ can be decomposed into two components, with ψ = ψL + ψU ,

where

ψL
∆
=

τ∑
i=1

(
(Si − Si−1 −Xi)χ(Xi < 0)

)
,

and

ψU
∆
=

τ∑
i=1

(
(Si−1 + Xi − Si)χ(Xi > 0)

)
.

Consider a renewal process {N(t) : t ≥ 0}, having i.i.d. inter-arrival

time Yi with Yi ∼ τ for all i. The reward Ri obtained at the ith renewal is
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ψL if i is even, and is ψU if i is odd. Note that from (2.2),

n∑
i=1

Di −
N(n)+1∑

i=1

Ri ≤ MF (Pn,D) ≤
n∑

i=1

Di −
N(n)∑
i=1

Ri. (2.3)

Because Ŝi toggles alternately between Si and S ′i and by the renewal reward

theorem,

lim
n→∞

E[
∑N(n)

i=1 Ri]

n
=

E[ψL] + E[ψU ]

2

1

E[τ ]
.

Hence, taking the limit in (2.3) obtains

Theorem 1.

lim
n←∞

E[MF (P(n),D)]

n
= µ− E[ψ]/2

E[τ ]
.

For any discrete demand distribution symmetrical around the mean ∆,

the parameters E[ψ] and E[τ ] can be obtained by solving a system of linear

equations. We represent the distribution as follows.

support{Di} = {0, 1, . . . , ∆, . . . , 2∆− 1, 2∆}

Let

Px = Prob(Di = ∆ + x), ∀x = −∆,−∆ + 1, . . . , ∆− 1, ∆

and WLOG2,

Px = P−x > 0, P0 = 0

2 Suppose P0 > 0. Let P ′0 = 0, P ′x = Px

1−P0
,∀x 6= 0. It follows that E[τ ′] = (1− P0)E[τ ]

and E[ψ′] = (1− P0)E[ψ]
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Define the stopping time if the random walk started at x.

τx
∆
= inf{n : Sn = µ, n ≥ 1, S0 = x}

Clearly, τ = τ0, and τ∆ = 0. Conditioning on the next move,

E[τx] = 1 +
∆−1∑
j=1

E[τj]Pj−x + E[τ0]
∆∑

j=x

Pj, ∀x = 0, 1, . . . , ∆− 1 (2.4)

We can obtain E[τ ] = E[τ0] by solving the system of equation (2.4).

Similarly, given S0 = x, we define the overshoot as

ψx
∆
=

τx∑
i=1

(
(Si − Si−1 −Xi)χ(Xi < 0) + (Si−1 + Xi − Si)χ(Xi > 0)

)

Obviously, ψ = ψ0 and ψ∆ = 0. Conditioning on the next move,

E[ψx] = rx +
∆−1∑
j=1

E[ψj]Pj−x + E[ψ0]
∆∑

j=x

Pj, ∀x = 0, 1, . . . , ∆− 1 (2.5)

where

rx =
∆+x∑
j=∆

(j −∆)Pj−x +
∆∑

j=x

(j − x)Pj, ∀x = 0, 1, . . . , ∆− 1

We can obtain E[ψ] = E[ψ0] by solving the system of equation (2.5).



2. Asymptotic Chaining Efficiency 41

By Theorem 1 and the definition of ACE, we have

Theorem 2. The asymptotic chaining efficiency can be uniquely obtained as

follows.

ACE = 1− E[ψ0]

2E[τ0]E[(Di −∆)+]

where E[ψ0] and E[τ0] come from the solutions to linear systems (2.4) and

(2.5), respectively.

Proof. We show first the uniqueness of the solutions to (2.4) and (2.5).

Observe that (2.4) and (2.5) have the same homogeneous system. Since
∑∆−1

j=1 Pj−x +
∑∆

j=x Pj < 1, the associated matrix is strictly diagonally dom-

inated, hence nonsingular.

Now, from (2.1), Lemma 1 and Theorem 1,

ACE =
E[(Di −∆)+] + limn→∞ 1

n
E[MF (P(n),D)]−∆

E[(Di −∆)+]

= 1− E[ψ0]

2E[τ0]E[(Di −∆)+]

Furthermore, ACE is invariant over the scale of the demand.

Corollary 1. Suppose D′
i ∼ cDi, c > 0. Then, ACE ′ = ACE.

Proof. It is easy to see that E[τ ′0] = E[τ0], E[ψ′0] = cE[ψ0], and E[(D′
i −

c∆)+] = cE[(Di −∆)+], from which the result follows.
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This gives rise to an efficient method to determine the asymptotic effi-

ciency of the 2-chain. When demand follows a discrete distribution, Theorem

2 and Corollary 1 can be directly applied. On the other hand, when demand

follows a continuous distribution from 0 to 2µ, the above results can still be

used to approximate the asymptotic chaining performance. This is done by

discretizing the distribution into 2∆ + 1 equally spaced demand points from

0 to 2µ. Obviously, the more discrete points used, the better the approxima-

tion.

2.3 Applications

2.3.1 Two-Point Distribution

When demand Di = 0 or 2µ with equal probability, then it is easy to see

that

E[ψ] = µ, E[τ ] = 2 ⇒ ACE = 0.5

Furthermore, since E[(µ−Di)
+] = µ/2,

ASR(C(∞)) = ACE + (1− ACE)

(
µ− E[(µ−Di)

+]

µ

)

= 0.5 + (1− 0.5)(1− 0.5) = 0.75

Thus, the chaining strategy achieves only 75% of the efficiency of the full flex-

ibility system. This poor performance stems in part from the large variability

in the demand distribution.
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2.3.2 Uniform Distribution

Suppose demand Di = 0, 1, . . . , ∆ − 1, ∆ + 1, . . . , 2∆ − 1, 2∆ with equal

probability; that is,

Px =
1

2∆
, ∀x = 1, . . . , ∆− 1, ∆

It can be shown that

E[τ0] =
4∆(2∆ + 1)

(∆ + 2)(∆ + 1)
, E[ψ0] =

∆(5∆ + 4)

3(∆ + 2)
, E[Di −∆]+ =

∆ + 1

4

Hence,

ACE =
7∆ + 2

12∆ + 6
.

Furthermore, since E[(∆−Di)
+] = (∆ + 1)/4,

ASR(C(∞)) =
7∆ + 2

12∆ + 6
+

5∆ + 4

12∆ + 6
×

(
0.75− 1

4∆

)

=
43∆2 + 15∆− 4

48∆2 + 24∆

When demand Di is uniformly distributed over [0, 2µ], we can obtain

the ACE by first discretizing the interval into 2∆ + 1 demand points, then

taking the limit as ∆ →∞. Hence

ACE = lim
∆→∞

7∆ + 2

12∆ + 6
=

7

12
≈ 58.33%
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and

ASR(C(∞)) = lim
∆→∞

43∆2 + 15∆− 4

48∆2 + 24∆
=

43

48
≈ 89.58%

Note that in this case, the value of the expected max flow in the 2-chain is

already around 89.6% of the expected max flow in the full flexibility system!

2.3.3 Normal Distribution

Suppose demand Di ∼ N(µ, σ). Then, we can likewise approximate the value

of ACE by discretization. Moreover, Corollary 1 implies that for a fixed

coefficient of variation, the ACE is independent of the actual magnitudes of

µ and σ. Table 2.2 summarizes how the ACE values change with respect to

the discretization level ∆ and the coefficient of variation CV .

Coefficient of Variation (CV)
∆ 0.33 0.31 0.29 0.27 0.25 0.23 0.21
2 0.6452 0.6509 0.6559 0.6599 0.6629 0.6649 0.6660
4 0.6895 0.7007 0.7124 0.7244 0.7365 0.7486 0.7604
6 0.6970 0.7090 0.7216 0.7348 0.7484 0.7623 0.7765
8 0.6997 0.7119 0.7248 0.7383 0.7524 0.7669 0.7819
10 0.7010 0.7133 0.7263 0.7399 0.7542 0.7690 0.7843
12 0.7017 0.7140 0.7271 0.7408 0.7552 0.7701 0.7856
14 0.7022 0.7145 0.7275 0.7413 0.7558 0.7708 0.7864

Tab. 2.2: Asymptotic Chaining Efficiency for Various Levels of Discretization and
Demand Uncertainty

To handle negative demand, we truncated the distribution to have finite

support [0, 2µ]. Because the resulting distribution remains symmetric around

the mean, our random walk approach works. For the results reported in

Table 2.2, we considered CV ≤ 0.33, which implies negligible probability of

negative demand. Therefore, the accuracy loss is also negligible. For higher
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values of CV , it is still reasonable in many cases to truncate the distribution

in the same manner and the approach still works. Nevertheless, if a more

realistic truncation results in a non-symmetrical demand distribution, then

we have to use an extended version of our random walk approach. We defer

this discussion to Section 2.4.

The table also shows that as we increase the number of demand points,

the approximation becomes finer. More importantly, the value of ACE de-

creases in the coefficient of variation. This is because as relative uncertainty

decreases, the need for any form of flexibility is reduced, thus improving the

value of the 2-chain relative to full flexibility.

We tabulate next the ratio of the expected sales from the chaining struc-

ture and the full flexibility system in Table 2.3. Interestingly, even with a

CV of 0.33, the expected sales under the chaining structure are already close

to 96% of the full flexibility system.

Coefficient of Variation (CV)
0.33 0.31 0.29 0.27 0.25 0.23 0.21

ASR(C(∞)) 0.9614 0.9650 0.9687 0.9723 0.9758 0.9791 0.9823

Tab. 2.3: Asymptotic Sales Ratio for Various Levels of Demand Uncertainty

2.4 Extensions

The proposed method works so long as all products have the same demand

distribution and all plants have the same capacity, even if the system is unbal-

anced (i.e., capacity not equal to mean demand) and the demand distribution

is not symmetrical around the mean.
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2.4.1 New Random Walk: Alternating Renewal Process

Consider the case when demand is not symmetrical around its mean and

expected demand is not equal to fixed capacity. We assume that all products

have an independent and identically distributed demand Di which follows a

general distribution with mean E[Di] = µ. Each plant has a capacity of C

units. Let D = (D1, . . . , Dn) denote the demand of the n products. Let

MF (G(n),D)

denote the maximum amount of production supported by the structure G(n)

in the system. For the dedicated and full flexibility system, it is easy to see

that

MF (D(n),D) =
n∑

i=1

min(C,Di) =
n∑

i=1

(
C − (C −Di)

+

)
,

and

MF (F(n),D) = min

(
nC,

n∑
i=1

Di

)
= nC + min

(
0,

n∑
i=1

Di − nC

)

=
n∑

i=1

Di −
( n∑

i=1

Di − nC

)+

As demand is independent and bounded, by the Central Limit Theorem,

E

[( n∑
i=1

Di − nC

)+]
=
√

nE

[(∑n
i=1 Di − nµ√

n
+

n(µ− C)√
n

)+]
∼ O(

√
n).

As before, we are interested in the asymptotic sales ratio of chaining to
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full flexibility.

ASR(C(∞)) = lim
n→∞

E[MF (C(n),D)]

E[MF (F(n),D)]
,

We would also like to track both the chaining efficiency and the asymptotic

chaining efficiency as previously defined.

CE(n)
∆
=

E[MF (C(n),D)]− E[MF (D(n),D)]

E[MF (F(n),D)]− E[MF (D(n),D)]

=
E[MF (C(n),D)]− nC + nE[(C −Di)

+]

nµ−O(
√

n)− nC + nE[(C −Di)+]

=
E[MF (C(n),D)] + nE[(Di − C)+]− nµ

nE[(Di − C)+]−O(
√

n)
.

and

ACE
∆
= lim

n→∞
CE(n).

It follows that

ACE =
limn→∞ 1

n
E[MF (C(n),D)] + E[(Di − C)+]− µ

E[(Di − C)+]

Using an alternating renewal process, we extend the random walk method

developed for the symmetric case as follows.

lim
n→∞

E[MF (C(n),D)]

n
= µ− E[ψ0] + E[ψ̂0]

E[τ0] + E[τ̂0]
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where τi and τ̂i are the stopping times for the odd and even cycles, respec-

tively, while ψi and ψ̂i denote the respective overshoots. Hence,

ACE = 1− E[ψ0] + E[ψ̂0]

E[τ0] + E[τ̂0]
· 1

E[Di − C]+

Moreover,

ASR(C(∞)) =
µ− E[ψ0]+E[ψ̂0]

E[τ0]+E[τ̂0]

µ
= 1− E[ψ0] + E[ψ̂0]

E[τ0] + E[τ̂0]
· 1

µ

2.4.2 Example: Non-symmetrical Demand

In the case of non-symmetrical demand, the odd and the even cycles will

have different stopping times and overshoots. To demonstrate, we consider

the following example.

Di =





0, w.p. 0.3

2, w.p. 0.1

4, w.p. 0.4

8, w.p. 0.2

and Ci = 5

Note that Di is not symmetrical about the mean. To obtain the asymptotic

chaining efficiency and the asymptotic sales ratio for this scenario, we solve
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the following systems of linear equations.




0.2 0 0 −0.2 0

−0.8 1 0 0 −0.2

−0.4 −0.4 1 0 0

−0.4 0 −0.4 1 0

−0.3 −0.1 0 −0.4 1







E[τ0] E[ψ0]

E[τ1] E[ψ1]

E[τ2] E[ψ2]

E[τ3] E[ψ3]

E[τ4] E[ψ4]




=




1 0

1 0

1 0

1 0.2

1 0.4




and




0.8 −0.4 0 −0.1 0

−0.2 1 −0.4 0 −0.1

−0.2 0 1 −0.4 0

−0.2 0 0 1 −0.4

0 −0.2 0 0 1







E[τ̂0] E[ψ̂0]

E[τ̂1] E[ψ̂1]

E[τ̂2] E[ψ̂2]

E[τ̂3] E[ψ̂3]

E[τ̂4] E[ψ̂4]




=




1 0.6

1 0.4

1 0.2

1 0

1 0




Hence,

ACE = 1− E[ψ0] + E[ψ̂0]

E[τ0] + E[τ̂0]
· 1

E[Di − Ci]+

= 1− 0.7436 + 1.2377

22.7920 + 2.8798
· 1

0.6

= 0.8714
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and

ASR(C(∞)) = 1− E[ψ0] + E[ψ̂0]

E[τ0] + E[τ̂0]
· 1

µ

= 1− 0.7436 + 1.2377

22.7920 + 2.8798
· 1

3.4

= 0.9773

2.4.3 Example: Unbalanced System

We consider next the situation when the total supply capacity may not be

the same as the total demand. Consider the case when the demands are

normally distributed with mean µ and standard deviation σ (with a CV of

at most 0.33), but the capacity of each plant is λ.

When λ = µ, we note that the absence of a safety capacity entails a fill

rate of only 100(1-0.399× CV)% = 86.7% for each product, when CV=0.33.

To guarantee a 97.26% fill rate for each product, a dedicated system ought

to carry a safety capacity of σ units for each product, leading to a total

safety capacity of nσ units. Since full flexibility corresponds to complete

capacity pooling, we can achieve a 97.26% fill rate for the entire system with

only σ
√

n units of safety capacity. This dramatic reduction in safety stock

investment performance comes about with full flexibility in the production

system. We investigate the corresponding performance in the case of the

chaining structure.

Tables 2.4 and 2.5 demonstrate that both ACE and ASR(C(∞)) in-

crease in the ratio of supply to mean demand (λ/µ). This suggests that the

balanced scenario (λ = µ) provides a lower bound for the situation when
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λ > µ (i.e., safety capacity scenario). Therefore, with λ = µ + σ/
√

n (i.e.,

σ
√

n units of total safety capacity in the system), a chaining structure can

already guarantee a fill rate of at least 97.26%× 96.14% = 93.5%. Note that

the average safety capacity per plant is decreasing in n. For the dedicated

system to maintain this level of fill rate, the corresponding safety capacity

investment is at least 0.5nσ. This analysis suggests another advantage of

flexibility in production planning - apart from increasing the expected sales,

the flexibility strategy can also help to decrease the safety capacity invest-

ment needed to maintain a required fill-rate level. In the identical demand

case, we expect that the safety capacity investment needed should decrease

roughly by a factor of O(
√

n).

Coefficient of Variation (CV)
λ/µ 0.33 0.31 0.29 0.27 0.25 0.23 0.21
0.85 0.2986 0.2810 0.2616 0.2400 0.2162 0.1904 0.1628
0.90 0.4156 0.4035 0.3892 0.3720 0.3513 0.3265 0.2972
0.95 0.5561 0.5552 0.5531 0.5492 0.5428 0.5328 0.5180
1.00 0.7037 0.7159 0.7290 0.7428 0.7574 0.7726 0.7885
1.05 0.8314 0.8510 0.8715 0.8924 0.9136 0.9345 0.9541
1.10 0.9189 0.9365 0.9529 0.9673 0.9794 0.9886 0.9947
1.15 0.9659 0.9771 0.9859 0.9923 0.9964 0.9986 0.9996

Tab. 2.4: Asymptotic Chaining Efficiency for Various Levels of Safety Capacity
and Demand Uncertainty

2.4.4 Higher-degree Chains

In the case of higher-degree chains, the extension of the random walk method

is quite simple. For a d-chain, the corresponding ACEd can be obtained using

a similar random walk with the sole exception that the upper boundary is
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Coefficient of Variation (CV)
λ/µ 0.33 0.31 0.29 0.27 0.25 0.23 0.21
0.85 0.8467 0.8475 0.8482 0.8489 0.8494 0.8497 0.8499
0.90 0.8912 0.8930 0.8948 0.8964 0.8978 0.8988 0.8994
0.95 0.9304 0.9335 0.9365 0.9394 0.9421 0.9444 0.9464
1.00 0.9614 0.9650 0.9687 0.9723 0.9758 0.9791 0.9823
1.05 0.9820 0.9852 0.9882 0.9909 0.9934 0.9955 0.9972
1.10 0.9930 0.9950 0.9966 0.9979 0.9988 0.9994 0.9998
1.15 0.9977 0.9986 0.9992 0.9996 0.9998 1.0000 1.0000

Tab. 2.5: Asymptotic Sale Ratio for Various Levels of Safety Capacity and Demand
Uncertainty

stretched to (d− 1)µ. That is, the upper boundary is 2µ for 3-chain, 3µ for

4-chain, and so on.

With this new method, we can compute for ACEd and ASR(Cd(∞)) for

different values of d and for normal demand distributions with coefficient of

variation (CV) values ranging from 0.21 to 0.33. The numerical results are

presented in Table 2.6 and Table 2.7, respectively.

Coefficient of Variation (CV)
d 0.33 0.31 0.29 0.27 0.25 0.23 0.21
2 0.7046 0.7161 0.7287 0.7423 0.7567 0.7718 0.7875
3 0.8294 0.8368 0.8449 0.8536 0.8628 0.8723 0.8821
4 0.8800 0.8855 0.8914 0.8978 0.9045 0.9114 0.9184
5 0.9072 0.9116 0.9164 0.9215 0.9267 0.9321 0.9376

Tab. 2.6: Asymptotic Chaining Efficiency for Various Levels of Partial Flexibility
and Demand Uncertainty

We observe the considerable gains in ACEd and in ASR(Cd(∞)) that

one can obtain by upgrading from 2-chain to 3-chain. These gains are high

relative to the improvements derived from 3-chain to 4-chain. Further on, the

gains from 4-chain to 5-chain becomes negligible. This insight tells us that
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Coefficient of Variation (CV)
d 0.33 0.31 0.29 0.27 0.25 0.23 0.21
2 0.9614 0.9650 0.9687 0.9723 0.9758 0.9791 0.9822
3 0.9777 0.9799 0.9821 0.9843 0.9863 0.9883 0.9901
4 0.9843 0.9859 0.9875 0.9890 0.9905 0.9919 0.9932
5 0.9879 0.9891 0.9904 0.9916 0.9927 0.9938 0.9948

Tab. 2.7: Asymptotic Sales Ratio for Various Levels of Partial Flexibility and De-
mand Uncertainty

when the system size is very large, there might be a need for more flexibility.

The good news is that a third layer (or at most a fourth layer) of flexibility

appears to be enough to capture most of the loss brought about by system

expansion.



3. RANGE AND RESPONSE: DIMENSIONS OF

FLEXIBILITY

The current literature on process flexibility relies on the assumption that

each facility can produce any assigned product with the same efficiency. This

does not take into account the possibility that facilities primarily designed to

produce certain products can only serve as less efficient secondary (or back-

up) production options for other products. This concern is not entirely new.

In an early work, Slack [49] suggested that flexibility has two dimensions.

One dimension involves the range of states a production or service system

can adopt. A system is considered more flexible than another if it can take

on a wider range of states, for example, make a greater variety of products.

Hence, a 2-chain system is more flexible than a dedicated system. However,

this property by itself does not completely describe the flexibility of a system.

The ease with which the system switches from one state to another in terms of

cost, time, or organizational disruption is also vital. A system that switches

more quickly, smoothly, or cheaply from state to state should likewise be

considered more flexible than a system that does the same at greater expense.

Termed “range” and “response” in the literature [49], these two dimensions

and the importance of their distinction have been acknowledged in practice
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as observed in interviews with managers [49]. In fact, managers believe that

differentiating between range and response has helped them articulate their

flexibility needs.

To the best of our knowledge, there has been no paper in the literature

that analytically examines both dimensions of process flexibility as most

papers only consider range flexibility (e.g. partial flexibility versus full flexi-

bility). One way to bring in the response dimension is to consider the setup

time or the setup cost incurred when switching from producing product A to

product B. Both are undesirable as setup time effectively reduces capacity

whereas setup cost reduces total profits. Moreover, a fully flexible system

can be expected to exhibit more production switching than a less flexible

system like chaining. Modeling response this way, chaining efficiency or the

performance of sparse structures can only improve as the response level de-

teriorates. Hence, the core models in Chapter 2 and in Chou et al. [16] are

robust against such setup effects.

In this chapter, we model the response dimension in terms of production

efficiencies. We distinguish between primary and secondary production, such

that primary production is at least as cheap as secondary production.1 If

the cost of secondary production is high, we say that the response is low.

Otherwise, if the cost of secondary production is low (comparable to primary

production), we say that the response is high. In the special case when

the cost of secondary production equals the cost of primary production, we

1 Production efficiency can also be modeled in terms of production time. In that case,
we can approximate increased production time by increased production cost in the sense
that in order to retain the original production speed, one has to spend more on other
resources like labor.
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say that the response is perfect. To incorporate these production costs,

we use an expected profit criterion for evaluating process flexibility. This

criterion generalizes the expected sales criterion when system response is

perfect. Once again, we analyze the asymptotic performance of process

flexibility structures for all response levels when the system size becomes

infinitely large.

3.1 The General Model

We consider a firm with n products and n plants. Product i has random

demand Di whereas plant j has fixed capacity Cj. At this stage, we do not

make any assumptions on the demand distribution nor on system asymmetry.

To model the response dimension, we suppose that plant i is designed to

produce product i primarily. Only as a back-up option, it can also produce

product j 6= i as a secondary product but less efficiently. Each unit of

product i sold earns the firm p dollars. Without loss of generality, we ignore

the goodwill cost associated with unsatisfied demand.2 Now if this unit of

demand is produced by its primary plant i, the production cost is cp. On the

other hand, this same product produced by a secondary plant j 6= i costs the

firm at least as much at cs ≥ cp. We call cp and cs the costs of primary and

secondary production, respectively. To avoid triviality, we assume cs < p.

We can then use the cost parameter cs to capture the system response level

as summarized in the table below.

2 In the case where the firm incurs a goodwill cost of g for every unit of unsatisfied
demand, we add the goodwill cost to the unit revenue and get the imputed price p̄ = p+g.
Replacing p with p̄, we use the same model and get the same analytical results.
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Response Value of cs

Low cs ≥ 1
2
(p + cp)

High cp < cs < 1
2
(p + cp)

Perfect cs = cp

Tab. 3.1: Summary of System Response Levels

As before, our goal is to characterize how a given flexibility configuration

performs relative to full flexibility. We use the edge set G(n) of a bipartite

graph to represent the flexibility configuration under consideration.

Let D = (D1, . . . , Dn) be the demand vector and let xij be the number

of units of product i produced by facility j. Given a system response level

cs, a flexibility configuration G(n) and demand realization D, the task boils

down to solving the following Maximum Profit Model introduced in Section

1.3.1.

Π∗
G(n)(D, cs) = max (p− cp)

n∑
i=1

xii + (p− cs)
n∑

i=1

∑

j 6=i

xij (3.1)

s.t.
n∑

j=1

xij ≤ Di ∀ i = 1, . . . , n

n∑
i=1

xij ≤ Cj ∀ j = 1, . . . , n

xij ≥ 0 ∀ i, j = 1, . . . , n

xij = 0 ∀ (i, j) /∈ G(n)

We want to study the flexibility efficiency measure introduced in Section

1.3.2, which captures the incremental benefits of any flexibility structure over

the default dedicated system, relative to the best system, which is the full
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flexibility system.

FE(G(n), cs) =
E[Π∗

G(n)(D, cs)]− E[Π∗
D(n)(D, cs)]

E[Π∗
F(n)(D, cs)]− E[Π∗

D(n)(D, cs)]
(3.2)

It can be shown that for any flexibility structure, its flexibility efficiency may

worsen as system response worsens (see Theorem 3). It follows that this

profit-based flexibility efficiency is never more than the sales-based flexibility

efficiency considered in Jordan and Graves [32] and in Chapter 2 of this

thesis. Hence, it is a more conservative flexibility measure.

Now, observe that regardless of the value of cs, it is easy to derive the

optimal production allocations for both the dedicated system and the full

flexibility systems. For the dedicated system, each facility can only produce

its primary product. Therefore, the optimal allocation is for each facility to

produce as many units of its primary product as possible. On the other hand,

for the full flexibility system, any facility can produce any product. Thus, it

is optimal for each facility to produce as many units of its primary product

as possible, and only thereafter, use its extra capacity, if any, to produce the

extra demand, if any, of any other product. We have the following optimal

allocation for the dedicated system:

x∗ii = min(Di, Ci) ∀ i

x∗ij = 0 ∀ i,∀ j 6= i
(3.3)
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and the following optimal allocation for the fully flexible system:

x∗ii = min(Di, Ci) ∀ i

∑
i

∑
j 6=i x

∗
ij = min[

∑
i(Di − Ci)

+,
∑

i(Ci −Di)
+]

= min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci)

(3.4)

The last equation can be interpreted intuitively as total secondary production

equaling total production minus total primary production.

Observe that the arguments of FE(G(n), cs) completely capture the di-

mensions of process flexibility, as |G| and cs respectively represent the range

and response levels. For G1(n) ⊆ G2(n), it is easy to see that FE(G1(n), cs) ≤
FE(G2(n), cs) since G2(n) has a larger feasible region. This means that up-

grading system range improves system performance. The same can also be

said about upgrading system response as shown in the following theorem.

Theorem 3. For a fixed flexibility structure G(n), such that D(n) ⊆ G(n) ⊆

F(n), its flexibility efficiency FE(G(n), cs) is non-increasing in cs over the

interval [cp, p).

Proof. Consider cs > c′s. For a fixed structure G(n) and a demand realization

D, we let XP =
∑n

i=1 x∗ii and XS =
∑n

i=1

∑
j 6=i x

∗
ij be the optimal primary

and secondary production, respectively, when secondary production cost is

cs. Similarly, X ′
P and X ′

S are the optimal primary and secondary production

when secondary production cost is c′s. From model (3.1), equations (3.3) and
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(3.4), and the definition of flexibility efficiency (3.2), we obtain the following:

FE(G(n), cs) =
E[(p− cs)XS − (p− cp)(

∑
i min(Di, Ci)−XP )]

E[(p− cs)(min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci))]

Hence,

FE(G(n), cs) =
E[XS − p−cp

p−cs
(
∑

i min(Di, Ci)−XP )]

E[((min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci))]

≤
E[XS − p−cp

p−c′s
(
∑

i min(Di, Ci)−XP )]

E[((min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci))]

≤ E[(p− c′s)X
′
S − (p− cp)(

∑
i min(Di, Ci)−X ′

P )]

E[(p− c′s)((min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci))]

= FE(G(n), c′s)

The first inequality is because cs > c′s and XP is bounded above by
∑

i min(Di, Ci).

The second inequality results from the feasibility of (XP , XS) to model (3.1)

when secondary cost is c′s.

Note that when cs = cp, the expected profit criterion reduces to the

expected sales criterion. Hence, by the above proposition, for any fixed

flexibility structure G(n), such that D(n) ⊆ G(n) ⊆ F(n), its flexibility

efficiency under the expected profit criterion is never higher than that under

the expected sales criterion. This implies that when we take into account

the possibility of low response (lower efficiency of secondary production), the

value of any flexibility structure may be reduced.3 This serves as a precaution

3 Note that the results do not require any assumption about demand or supply, except
that the number of products must equal the number of facilities.
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not to oversell the benefits of any form of flexibility and a need to examine

first the system response level.

Although the previous result may not have come unexpected, a more

surprising result is that when system response deteriorates to a certain level

(i.e. it enters the low response region), further deterioration will cause no

more harm to the system than it does to the full flexibility system. The

following theorem captures this insight.

Theorem 4. For a fixed flexibility structure G(n), such that D(n) ⊆ G(n) ⊆

F(n), FE(G(n), cs) is constant over the interval [1
2
(p + cp), p).

Proof. If cs ≥ 1
2
(p + cp), then p− cp ≥ 2(p− cs). This means producing one

primary unit is at least as good as producing two secondary units. Therefore,

the optimal production allocation can be obtained using a very simple greedy

approach, that is, the firm must let each facility produce as many units of

its primary product as possible, and only thereafter use its extra capacity,

if any, to produce the extra demand, if any, of its secondary product. This

means that XP =
∑

i min(Di, Ci) and XS is also independent of c2. Hence,

FE(G(n), cs) =
E[(p− cs)XS − (p− cp)(

∑
i min(Di, Ci)−XP )]

E[(p− cs)(min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci))]

=
E[(p− cs)XS]

E[(p− cs)(min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci))]

=
E[XS]

E[min(
∑

i Di,
∑

i Ci)−
∑

i min(Di, Ci)]
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Theorem 4 shows that once system response hits the halfway mark be-

tween perfect response and worst-case response, the efficiency of the system

plateaus at a certain level. This is because at that point, any additional

deterioration in system response can cause only as much harm to the system

as it does to the full flexibility system. In the next section, we will revisit

this scenario and demonstrate how to obtain this worst-case efficiency level

for the chaining structure under special demand distributions.

Example 2. Chaining Strategy for a 3× 3 System with Uniform Demand

Suppose the demands for all products are i.i.d. and uniformly distributed in

[0, 2µ]. Let CE(3, cs) = FE(C(3), cs) be the flexibility efficiency of the 2-

chain in a 3 × 3 system. It is not difficult, though it is tedious, to evaluate

CE(3, cs) in closed form for this special case.

CE(3, cs) =





1− 3
11

cs−cp

p−cs
if cp ≤ cs < 1

2
(p + cp)

8
11

if 1
2
(p + cp) ≤ cs < p

Figure 3.1 depicts how the value of CE(3, cs) changes as the cost of sec-

ondary production increases or as system response worsens. Note that when

cs ≈ cp, CE(3, cs) ≈ 100%. Consistent with Theorems 3 and 4, CE(3, cs)

is non-increasing in cs over [cp, p), and decreasing over [cp,
1
2
(p + cp)]. This

implies that as the gap in production efficiencies widens (system response

deteriorates), the relative value of the chaining strategy decreases. However,

this value does not decrease below 8
11

because when the gap reaches a criti-
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cs

C
E

(3
,c

 s)

cp (cp+ p) / 2 p

8/11

1

Fig. 3.1: Chaining Efficiency vs. Secondary Production Cost (3 × 3 System with
Uniform Demand)

cal level, any further increase in it will have no more effect on the chaining

strategy than it would have on full flexibility.

This example shows that chaining efficiency may deteriorate as system

response worsens. Nonetheless, the performance gap is never worse than

72.7%. However, when n is large, we expect the performance gap to deteri-

orate further. In the following section, we determine the asymptotic limit of

the performance gap when n is large.

3.2 Valuing the Chaining Strategy

In this section, we characterize the asymptotic performance of the chaining

strategy for all relevant response levels. For ease of exposition, we consider a

stylized model where all products have independent, identically distributed,

and symmetric demands, with values in the range [0, 2E(Di)]. Examples of
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such demand distributions are uniform and (truncated) normal distributions.

Note that our analysis can be extended easily to more general and asymmetric

demand distribution. On the supply side, all facilities have capacities with

Ci = E(Di) = µ, ∀ i. We call such a system identical and balanced.

Because of the assumption of symmetry, we can model demand in the

following general form. Let Di = µ + aiYi, where 0 ≤ Yi ≤ µ and

ai =





1, with probability 1
2

−1, with probability 1
2

Note that Yi follows some distribution with support [0, µ] and represents the

absolute deviation of demand Di from the mean µ.

We recall, from Section 1.3.2, the definition of chaining efficiency as

follows.

CE(n, cs) = FE(C(n), cs) =
E[Π∗

C(n)(D, cs)]− E[Π∗
D(n)(D, cs)]

E[Π∗
F(n)(D, cs)]− E[Π∗

D(n)(D, cs)]
.

From (3.3) and (3.4), we can express the denominator of CE(n, cs) as follows:

E[Π∗
F(n)(D, cs)]−E[Π∗

D(n)(D, cs)] = (p−cs)E

[
min

(∑
i

Di, nµ

)
−

∑
i

min(Di, µ)

]

(3.5)

The challenge in our analysis is to evaluate the term E[Π∗
C(n)(D, cs)] in

the numerator. As shown in Theorem 4, the optimal production allocation

varies dramatically depending on whether cs is higher or lower than a thresh-

old value 1
2
(p + cp). If cs is at least the threshold, then p − cp ≥ 2(p − cs).
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This means that it is at least as good to produce one primary unit as it is to

produce two secondary units. Therefore, the optimal production allocation

can be obtained using a very simple greedy approach. We discuss this further

in Section 3.2.1.

On the other hand, if cs is below the threshold, then p− cp < 2(p− cs).

This means that it is profitable to replace one unit of primary production

with two units of secondary production whenever possible. Unfortunately,

obtaining the optimal allocation under this case becomes much more compli-

cated as it depends on the different possible demand realizations. The classic

expected sales criterion, whereby cs = cp < 1
2
(p + cp), is a special instance of

the subthreshold case. In Chapter 2, we developed a random walk method

to obtain the exact value of CE(n, cs) for cs = cp as n → ∞ for arbitrary

demand distributions. Unfortunately, this method does not work for the gen-

eral subthreshold case when cs 6= cp. In this chapter, we describe a method

to obtain lower bounds for CE(n, cs) when cs ≤ 1
2
(p + cp). To simplify the

exposition, we first discuss the lower bound as it applies to the case cs = cp

in Section 3.2.2. How this method works for the general subthreshold case is

presented in Section 3.2.3.

3.2.1 System Response is Low

As mentioned in Theorem 4, the superthreshold case implies that one unit of

primary production is at least as profitable as two units of secondary produc-

tion. Consequently, we use the following greedy approach. The firm must let

each facility produce as many units of its primary product as possible, and
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only thereafter use its extra capacity, if any, to produce the extra demand,

if any, of its secondary product. The optimal solution is as follows:

x∗ii = min(Di, µ) ∀ i

x∗12 = min[(D1 − µ)+, (µ−D2)
+]

x∗23 = min[(D2 − µ)+, (µ−D3)
+]

...

x∗n−1,n = min[(Dn−1 − µ)+, (µ−Dn)+]

x∗n1 = min[(Dn − µ)+, (µ−D1)
+]

(3.6)

The following well-known facts on normally distributed random variables will

be useful for our next result.

Lemma 2. If X,X1, X2 ∼ N(0, σ), and X1, X2 are independent, then

(a) E[X+] = σ√
2π

(b) E[min(X+
1 , X+

2 )] = σ√
2π

(1− 1√
2
)

Theorem 5. When 1
2
(p + cp) ≤ cs < p and for sufficiently large n, the

chaining efficiency is decreasing in n and bounded below by the asymptotic

chaining efficiency

ACE(cs) = lim
n→∞

CE(n, cs) =
1

2

E[min(Y1, Y2)]

E[Y1]
≤ 0.5.
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Proof. We start by writing the expected optimal chaining profit as follows:

E[Π∗
C(n)(D, cs)] = (p− cp)E[

∑
i min(Di, µ)]

+(p− cs)E[
∑

i min[(Di − µ)+, (µ−Di+1)
+]]

= n(p− cp)E[min(Di, µ)]

+n(p− cs)E[min[(D1 − µ)+, (µ−D2)
+]]

= n(p− cp)E[min(Di, µ)] + 1
4
n(p− cs)E[min(Y1, Y2)]

(3.7)

The first equation is from (3.6), while the second equation comes from the

identical distribution of the demands. The last equation is the result of the

definition of the absolute demand deviation Yi. Since the first term in (3.7)

is also the expected optimal profit for the dedicated system, the numerator

of CE(n, cs) becomes

1

4
n(p− cs)E[min(Y1, Y2)] (3.8)

For the denominator, we let S =
∑

i Di. Since n is sufficiently large, we

invoke the Central Limit Theorem to get S ∼ N(nµ,
√

nσ) and X = S−nµ ∼
N(0,

√
nσ), where σ is the standard deviation of demand Di. Then, we use

(3.5), Lemma 2(a), and the definition of Yi to obtain

(p− cs)E[min(S, nµ)−∑
i min(Di, µ)]

= (p− cs)E[
∑

i Di −X+ −∑
i Di +

∑
i(Di − µ)+]

= (p− cs)

[
nE(D1 − µ)+ −

√
nσ√
2π

]

= n(p− cs)

[
1
2
E[Y1]− 1√

n
σ√
2π

]
(3.9)



3. Range and Response: Dimensions of Flexibility 68

Combining (3.8) and (3.9) and taking limit, we arrive at the desired result.

Note that our analysis above does not consider that the chaining strategy

usually exploits long chains – chains that link up as many supply and de-

mand nodes as possible. In particular, we only consider that the secondary

production arcs in the chaining strategy form a perfect matching. Such a

matching can also be formed by a collection of short chains. As a result,

a long chain performs identically to short chains under this scenario. This

observation contrasts with the fundamental insight in the literature when we

assume that system response is perfect. See Figure 3.2 for an illustration.
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Fig. 3.2: Long Chain vs. Short Chains: The Effect of System Response
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3.2.2 System Response is Perfect

When cs = cp, the expected profit criterion is equivalent to the expected sales

criterion. Hence, expected optimal profit becomes expected maximum flow.

We let MF (D(n),D), MF (C(n),D), and MF (F(n),D) be the maximum

dedicated flow, the maximum chaining flow, and the maximum full flexibility

flow, respectively, for an n×n system with demand realization D. It follows

that the chaining efficiency can be written as

CE(n, cp) =
E[MF (C(n),D)]− E[MF (D(n),D)]

E[MF (F(n),D)]− E[MF (D(n),D)]

Similar to (3.9), we can express the denominator as

E[MF (F(n),D)]− E[MF (D(n),D)] = n

[
1

2
E[Y1]−O(1/

√
n)

]
(3.10)

Let

Expected Chaining Gain = E[MF (C(n),D)−MF (D(n),D)]

Consider any demand realization D. Observe that each demand node

i has either Di > µ (positive node) or Di < µ (negative node) with equal

likelihood.4 We define a cluster to be a run of consecutive positive nodes

followed by a run of consecutive negative nodes. For example, suppose n = 10

and the demand outcome is {N, P, P, P, N,N, N, P, N,N} where P denotes

4 We assume demand distribution has continuous support.
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a positive node while N denotes a negative node. The 2nd to 7th nodes

form the first cluster {P, P, P, N, N,N} while the last 3 and the 1st form

the next cluster {P,N, N, N}. This allows us to break the whole system

into smaller pieces (called clusters), and we can easily optimize the flow for

each cluster. The aggregate solution from all clusters remains feasible for the

max-flow problem of the whole system, and thus provides a lower bound for

MF (C(n),D), that is,

Expected Chaining Gain ≥ E[Sum of Cluster Chaining Gains]

= E[Number of Clusters] · E[Cluster Chaining Gain]

(3.11)

The last equation holds for large n, and is the result of Wald’s equation (see

Ross [46], pg 462) and the fact that all clusters are probabilistically identical

and independent.

To obtain the expected cluster chaining gain, we consider just one clus-

ter. Observe that for this cluster, the lengths of the positive and negative

runs as well as the deviations of realized demands from the mean are all

random variables. We let M and N be the lengths of the positive and nega-

tive runs, respectively. Both M and N follow a geometric distribution with

p = 0.5. From our earlier definition, we have Yi for the demand deviations

(Yi = Di − µ for positive nodes while Yi = µ−Di for negative nodes).
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Lemma 3. For any cluster with M positive nodes followed by N negative

nodes, the maximum chaining flow is

MF (C(n),D) = min

(M+N∑
i=1

Di, (M + 1)µ +
M+N∑

i=M+1

Di, (M + N)µ

)

and the cluster chaining gain is

Cluster Chaining Gain = min

( M∑
i=1

Yi, µ,

M+N∑
i=M+1

Yi

)

Proof. We use the equivalence between max-flow and min-cut to derive the

above result. Consider the max-flow problem on the network shown in Fig-

ure 3.3, from source s to sink t. All links are directed from left to right

with capacities as indicated. Arcs from demand nodes to supply nodes have

infinite capacities.

Let C be a cut of the network and V (C) be its cut value. Because of the

infinite capacities of demand-to-supply arcs, every cut with finite cut value

can be uniquely represented by {s} union with a subset of S = {1, 2, . . . , M +

N}. For example, C1 = {s, 1, 2, . . . , M − 1,M + N} represents the cut in

Figure 3.3, with cut value V (C1) =
∑M+N−1

i=M Di + (M + 1)µ.

Let S+ = {1, 2, . . . , M} and S− = {M+1,M+2, . . . , M+N}. Then every cut

can be written as C = {s}∪P∪N where P ⊆ S+,N ⊆ S−. Recall that Di > µ

for i ∈ S+ and Di < µ for i ∈ S−. We show next that essentially we only need
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Fig. 3.3: Sample Cut for Network with Perfect System Response: C1 =
{s, 1, 2, . . . , M − 1,M + N}

to keep track of the values of three different cuts. Let C∗ = {s} ∪P∗ ∪N∗ be

a minimum cut of the above network flow problem.

• If P∗ = ∅, then N∗ = ∅, thus C∗ = {s}.

Suppose N∗ 6= ∅. Identify j = min{i : i ∈ N∗}. Let C = {s} ∪ N
where N = N∗\{j}. Then V (C) = V (C∗) + Dj − µ if j + 1 ∈ N∗, while

V (C) = V (C∗) + Dj − 2µ if j + 1 /∈ N∗. Hence, V (C) < V (C∗), which

contradicts the optimality of C∗.

• If P∗ 6= ∅, then P∗ = S+.

Suppose ∅ ⊂ P∗ ⊂ S+. If 1 ∈ P∗, then let j = min{i : i /∈ P∗} and

C = C∗ ∪ {j}. It follows that V (C) = V (C∗)−Dj if j + 1 ∈ C∗, while

V (C) = V (C∗) −Dj + µ if j + 1 /∈ C∗. Hence, V (C) < V (C∗), which
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contradicts the optimality of C∗.

If 1 /∈ P∗, then let j = min{i : i ∈ P∗}− 1 and C = C∗ ∪{j}. It follows

that V (C) = V (C∗)−Dj if j − 1 ∈ C∗, while V (C) = V (C∗)−Dj + µ

if j − 1 /∈ C∗. Hence, V (C) < V (C∗), which contradicts the optimality

of C∗.

• If N∗ 6= ∅, then P∗ = S+ and N∗ = S−, thus C∗ = {s} ∪ S.

P∗ = S+ follows from the previous two statements. Therefore, it suffices

to show that N∗ 6= ∅ and P∗ = S+ implies N∗ = S−. Suppose ∅ ⊂ N∗ ⊂
S−. If M + N ∈ N∗, then let j = max{i : i /∈ N∗}+ 1 and C = C∗\{j}.
It follows that V (C) = V (C∗)+Dj−µ < V (C∗), which contradicts the

optimality of C∗.

If M+N /∈ N∗, then let j = max{i : i ∈ N∗} and C = C∗\{j}. It follows

that V (C) = V (C∗)+Dj−µ if j−1 ∈ C∗, while V (C) = V (C∗)+Dj−2µ

if j − 1 /∈ C∗. Hence, V (C) < V (C∗), which contradicts the optimality

of C∗.

Note that if N∗ = S−, then deleting any node j ∈ N∗ from C∗ does not

produce a cut with lower value. Thus, the argument holds because of

∅ ⊂ N∗ ⊂ S−.

Hence, the search for a minimum cut can be restricted to the three cuts {s},
{s} ∪ S+, and {s} ∪ S, from which the first result follows.
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The second result is an easy consequence of the first, since

Cluster Chaining Gain = MF (C(n),D)−MF (D(n),D)

= min

(M+N∑
i=1

Di, (M + 1)µ +
M+N∑

i=M+1

Di, (M + N)µ

)

−
( M∑

i=1

µ +
M+N∑

i=M+1

Di

)

= min

( M∑
i=1

Yi, µ,

M+N∑
i=M+1

Yi

)

Lemma 4. For an n× n system,

E[Number of Clusters]

n
→ 1

4
as n →∞

Proof. Without loss of generality, assume node 1 is negative. Then, the

number of clusters from node 1 to node n can be viewed as a counting process,

in fact, a renewal process whereby each occurrence of a cluster constitutes a

renewal. By the Elementary Renewal Theorem (see Ross [46], pg 409) and

because E[cluster length] = E[M + N ] = 4, the result follows.

Combining (3.10), (3.11), Lemma 3, and Lemma 4, we obtain the following

key result of the paper.

Theorem 6. When the cost of secondary production equals the cost of pri-

mary production (cs = cp), the asymptotic chaining efficiency is bounded
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below as follows:

ACE(cp) ≥ 1

2

E[min(
∑M

i=1 Yi,
∑N

i=1 Ỹi, µ)]

E[Y1]

where M, N are geometric r.v. with p = 0.5, and Yi, Ỹi are i.i.d. random

variables with support [0, µ].

3.2.3 System Response is High

As mentioned earlier, the subthreshold case means that it is profitable to

displace one unit of primary production in favor of two units of secondary

production. This implies that the greedy approach used in Section 3.2.1 no

longer works. The maximum flow approach used in Section 3.2.2 must be

adjusted to apply to this case because maximum flow includes using the extra

capacity of facility i to meet the extra demand for product i+j for any i and

j. We call such an allocation a j-order displacement. It is easy to see that a

j-order displacement is justified only if j units of secondary production are as

profitable as j−1 units of primary production, a requirement not necessarily

satisfied by the subthreshold condition. Consequently, our analysis requires

dividing this subthreshold case into countably infinite subcases, namely,

k

k − 1
≤ p− cp

p− cs

<
k − 1

k − 2
(3.12)

for k = 3, 4, . . .

For subcase k, a j-order displacement is profitable for j < k, but not
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for j ≥ k. Therefore, if we use the maximum flow approach, we should

distinguish flows that result in profitable displacement from flows that do

not. In particular, the optimal allocation should not include displacements

of order k or higher. Secondly, the flows must be assigned different weights,

corresponding to different profit levels, depending on the amount of produc-

tion displaced. Specifically, for a j-order displacement, the unit profit is

j(p− cs)− (j − 1)(p− cp).

Let g(j) be the expected maximum flow net of dedicated flow for a

cluster of length j. We obtain g(j) in a manner similar to Section 3.2.2 and

set g(1) = 0 for completeness. Therefore, ∆g(j) = g(j + 1)− g(j) represents

the incremental flow in a cluster of length j + 1 over a cluster of length j.

This additional flow is made up of displacements of order j or less, which

implies a unit profit level of at least j(p− cs)− (j− 1)(p− cp). However, this

is relevant only for j < k. For j ≥ k, the incremental flow may be zero if all

displacements are of order j, and thus unprofitable. Recalling from Section

3.2.2 that M + N denotes cluster length and writing Cluster Chaining Gain

as CCG, we have the following recursive inequalities:

For j = 1, 2, . . . , k − 1,

E[CCG | M + N = j + 1] ≥ E[CCG | M + N = j] (3.13)

+[j(p− cs)− (j − 1)(p− cp)]∆g(j)

For j = k, k + 1, . . .

E[CCG | M + N = j + 1] ≥ E[CCG | M + N = j] (3.14)
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where E[CCG | M + N = 1] = 0. It follows from (3.13) and (3.14) that

for j = 1, 2, . . . , k − 1,

E[CCG | M + N = j] ≥ ∑j−1
i=1 [i(p− cs)− (i− 1)(p− cp)]∆g(i) (3.15)

while for j = k, k + 1, . . .

E[CCG | M + N = j] ≥ ∑k−1
i=1 [i(p− cs)− (i− 1)(p− cp)]∆g(i) (3.16)

At this point, we are ready to prove the following theorem.

Theorem 7. For k = 3, 4, . . ., if 1
k
[p + (k − 1)cp] ≤ cs < 1

k−1
[p + (k − 2)cp],

then

ACE(cs) ≥
∑k−1

i=1 [i(p− cs)− (i− 1)(p− cp)]∆g(i) · P{M + N > i}
2(p− cs)E[Y1]

where

∆g(j) = g(j + 1) − g(j), g(j) = E[min(
∑M

i=1 Yi,
∑N

i=1 Ỹi, µ) | M + N = j],

g(1) = 0, and M, N are geometric with p = 0.5, and Yi, Ỹi are i.i.d. random

variables with support [0, µ].
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Proof. Conditioning on M + N and using (3.15) and (3.16), we get

E[Cluster Chaining Gain]

=
k∑

j=2

E[CCG | M + N = j] · P{M + N = j}

+
∞∑

j=k+1

E[CCG | M + N = j] · P{M + N = j}

≥
k∑

j=2

j−1∑
i=1

[i(p− cs)− (i− 1)(p− cp)]∆g(i) · P{M + N = j}

+
k−1∑
i=1

[i(p− cs)− (i− 1)(p− cp)]∆g(i) · P{M + N > k}

=
k−1∑
i=1

[i(p− cs)− (i− 1)(p− cp)]∆g(i) · P{i < M + N ≤ k}

+
k−1∑
i=1

[i(p− cs)− (i− 1)(p− cp)]∆g(i) · P{M + N > k}

=
k−1∑
i=1

[i(p− cs)− (i− 1)(p− cp)]∆g(i) · P{M + N > i} (3.17)

Next, the given condition implies (3.12), which means that only displace-

ments of an order less than k are profitable. Following arguments similar to

Lemma 3, Lemma 4, and Theorem 6, we obtain

lim
n→∞

CE(n, cs) ≥ E[Cluster Chaining Gain]

2(p− cs)E[Y1]
(3.18)

Substituting (3.17) into (3.18), we arrive at the desired result.
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Theorems 5, 6, and 7 complete the characterization of asymptotic chain-

ing efficiency over all relevant response levels. In the next section, we demon-

strate how these results can be applied to two commonly used distributions,

namely, uniform and normal.

3.2.4 Computational Examples

Applying Theorem 5 to the uniform and the normal distributions, we obtain

the following expressions:

1. For uniform distribution, we have Yi ∼ U(0, µ) ∀ i as well as

E[Y1] =

∫ µ

0

y · 1

µ
dy =

1

2
µ

E[min(Y1, Y2)] = 2

∫ µ

0

∫ y1

0

y2 · 1

µ
· 1

µ
dy2dy1 =

1

3
µ

E[D2
i ] =

∫ 2µ

0

y2 · 1

2µ
dy =

4

3
µ2

σ =
√

E[D2
i ]− E[Di]2 =

√
4

3
µ2 − µ2 =

µ√
3

Therefore, for 1
2
(p + cp) ≤ cs < p

CE(n, cs) =
1
4
E[min(Y1, Y2)]

1
2
E[Y1]− 1√

n
σ√
2π

=
1

3− 2
√

6√
n
√

π

and

ACE(cs) =
1

3
≈ 33.33%.
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2. For normal distribution, we have Di ∼ N(µ, σ) ∀ i. It follows that

Xi = Di − µ ∼ N(0, σ) and Yi = |Xi|, ∀ i. Assume µ ≥ 3σ such that

negative demand has negligible probability.

E[Y1] = E[X+
1 ] + E[X−

1 ] = 2E[X+
1 ] =

2σ√
2π

E[min(Y1, Y2)] = E[min(X+
1 , X+

2 )] + E[min(X+
1 , X−

2 )]

+E[min(X−
1 , X+

2 )] + E[min(X−
1 , X−

2 )]

= 4E[min(X+
1 , X+

2 )] =
4σ√
2π

(
1− 1√

2

)

Therefore, 1
2
(p + cp) ≤ cs < p

CE(n, cs) =
1
4
E[min(Y1, Y2)]

1
2
E[Y1]− 1√

n
σ√
2π

=
1− 1√

2

1− 1√
n

and

ACE(cs) = 1− 1√
2
≈ 29.29%

We can then apply Theorems 6 and 7 via Monte Carlo sampling. The fol-

lowing table summarizes the computational results.

Theorem Response Uniform Distribution Normal Distribution
Theorem 5 Low 33.33% 29.29%
Theorem 6 Perfect 52.70% 53.85%
Theorem 7 High See Figure 3.4 See Figure 3.4

Tab. 3.2: Asymptotic Chaining Efficiency for all Relevant System Response Levels
(Uniform and Normal Demands)
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ACE vs. Secondary production cost
(p = 20, cp = 4, cs = 4 to 20)
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Fig. 3.4: Bounds for Asymptotic Chaining Efficiency vs. Secondary Production
Cost (Uniform and Normal Demands)
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3.3 Trade-offs and Complements

3.3.1 Range versus Response

In Theorem 5 and Section 3.2.4, we have already seen that a system with

low range and low response (chaining with high cs) can perform quite badly

(e.g., 29.29% for normally distributed demands). To improve such a system,

one can either upgrade response or upgrade range. With limited resources,

it is of interest to know which upgrade provides greater improvement: a

high response with limited range or a high range with low response, that is,

chaining with low secondary cost or full flexibility with high secondary cost.

Let S1(n) and S2(n) be the high response (chaining) and high range (full

flexibility) systems, respectively. Denote their respective costs of secondary

production by c1 and c2 such that c1 < c2. Our goal then is to compare the

ratios of each system to the best possible system, which is full flexibility with

secondary cost at cp. That is,

lim
n→∞

E[Π∗
S1(n)(D, c1)]

E[Π∗
F(n)D, cp)]

versus lim
n→∞

E[Π∗
S2(n)(D, c2)]

E[Π∗
F(n)(D, cp)]

Suppose further that c2 ≥ 1
2
(p + cp) and c1 = cp. It is easy to see that

lim
n→∞

E[Π∗
S1(n)(D, c1)]

E[Π∗
F(n)D, cp)]

= ASR(C(∞))

= ACE + (1− ACE)

(
µ− E[(µ−Di)

+]

µ

)

= 1− (1− ACE) · E[(µ−Di)
+]

µ
(3.19)
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Moreover, we can prove a bound on ACE following the random walk ap-

proach introduced in Chapter 2.

Lemma 5.

ACE = 1− E[ψ0]

2E[τ0]E[(Di − µ)+]
≥ 1

2
.

where ψ0 and τ0 are the cycle overshoot and cycle duration in the random

walk approach used in Chapter 2.

Proof. The result follows from Wald’s identity, the symmetry of demand

distribution, and

ψ0 ≤
τ0∑

i=1

(Di − µ)− + (Dτ0 − µ)+ =

τ0−1∑
i=1

(Di − µ)− + (Dτ0 − µ)+

We are now ready to present the following result:

Theorem 8. If demands are i.i.d. and symmetric, then response is at least

as good as range, that is,

lim
n→∞

E[Π∗
S1(n)(D, c1)]

E[Π∗
F(n)D, cp)]

≥ lim
n→∞

E[Π∗
S2(n)(D, c2)]

E[Π∗
F(n)(D, cp)]

where response is chaining with secondary cost at c1 = cp while range is full

flexibility with secondary cost at c2 ≥ 1
2
(p + cp).
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Proof. Using Lemma 5, equation (3.19), and c2 ≥ 1
2
(p + cp),

lim
n→∞

E[Π∗
S2(n)(D, c2)]

E[Π∗
F(n)(D, cp)]

= lim
n→∞

(p− cp)E[
∑n

i=1 min(Di, µ)] + (p− c2)E[min(
∑n

i=1 Di, nµ)−∑n
i=1 min(Di, µ)]

(p− cp)E[min(
∑n

i=1 Di, nµ)]

≤ lim
n→∞

(p− cp)E[
∑n

i=1 min(Di, µ)] + 1
2
(p− cp)E[min(

∑n
i=1 Di, nµ)−∑n

i=1 min(Di, µ)]

(p− cp)E[min(
∑n

i=1 Di, nµ)]

= lim
n→∞

1
2
E[min(

∑n
i=1 Di, nµ) + 1

2
E[

∑n
i=1 min(Di, µ)]

E[min(
∑n

i=1 Di, nµ)]

=
1

2
+

1

2
lim

n→∞
E[

∑n
i=1 min(Di, µ)]

E[min(
∑n

i=1 Di, nµ)]

= 1− 1

2
· E[(µ−Di)

+]

µ

≤ 1− (1− ACE) · E[(µ−Di)
+]

µ

= lim
n→∞

E[Π∗
S1(n)(D, c1)]

E[Π∗
F(n)D, cp)]

Remark 1. If the response of the high range system improves, that is, c2 =

1
2
(p + cp)− ε, and ACE = 1

2
(e.g., 2-point distribution), then Theorem 8 no

longer holds.

Remark 2. In general, when c2 = p+acp

a+1
for a > 1, Theorem 8 no longer

holds for an arbitrary demand distribution (i.e., arbitrary ACE). Neverthe-

less, Theorem 8 still holds if ACE ≥ a
a+1

. This can be achieved by reducing

the demand coefficient of variation. In other words, reducing demand vari-
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ability allows the high response system to outperform an even more responsive

high range system.

The Impact of Size, Demand Variability, and Cost

The above theorem compares asymptotic performances, that is, when

n →∞. For n →∞, Theorem 8 tells us that chaining with perfect response

(c1 = cp) can beat full flexibility with secondary cost at c2 ≥ 1
2
(p + cp), for

any symmetric distribution. To illustrate, suppose p = 10 and cp = 5. Then

to achieve the same performance as chaining with perfect response, one must

install full flexibility and yet can let response slip only halfway (i.e. secondary

cost can increase up to 7.5 only).

Naturally, one may wonder whether this result still holds when system

size is finite. More precisely, when n is finite, how much room in response

are we allowed to slip if we replace chaining with perfect response by full

flexibility? In other words, we seek the least secondary cost c∗2 of a full

flexibility system that chaining with perfect response can still beat. Without

loss of generality, we let p = 1 and cp = 0. Then, Theorem 8 states that

c∗2 = 0.5. Figures 3.5 and 3.6 show the values of c∗2 as n range from 10 to 40

for discrete uniform and normal demands, respectively.

The figures suggest that as system size decreases, the value of upgrading

to full flexibility also decreases. To put in perspective, take the example of

n = 20, p = 10, and cp = 5. If demand follows a 10-point distribution, then

upgrading to full flexibility allows the firm to relax system response from 5

to 6.5. This is a paltry gain compared to the ridiculous expense involved

in installing 400 production links. This implies that Theorem 8 already
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c2* vs n (Discrete Uniform Distribution)
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considers the worst case, and thus offers a conservative conclusion. Moreover,

as the demand coefficient of variation5 decreases, the value of upgrading to

full flexibility likewise decreases. This suggests the complementary nature of

upgrading response and reducing demand variability. We will have more to

say on this in Section 3.3.2.

However, it is possible that perfect response is not achievable. If this

happens, we expect c∗2 to rise as the chaining system departs from perfect

response. In other words, it becomes harder for chaining to beat full flexi-

bility. Figures 3.7 and 3.8 illustrate this pattern. In addition, the gradient

of the curve also provides some insight into choosing a system when perfect

response is not possible. It is easy to argue that the higher the gradient,

the more unstable the chaining system. For example, if the gradient is sig-

nificantly greater than 1, then deterioration of the chaining system response

by a little makes full flexibility significantly more attractive. Now, we see

from the figures that the gradient value increases as the demand coefficient

of variation (CV) decreases. Moreover, if we expect system response to dete-

riorate over time (secondary cost to go up), then we should go for the more

stable system. Otherwise, we should prefer the less stable system. These

observations lead to the following guidelines listed in Table 3.3.

Response will deteriorate Response will improve
CV high Prefer chaining Prefer full flexibility
CV low Prefer full flexibility Prefer chaining

Tab. 3.3: System Choice without Perfect Response

5 The series of discrete uniform distributions in Figure 3.5 are arranged in decreasing
coefficient of variation.



3. Range and Response: Dimensions of Flexibility 88

c2* vs c1 (Discrete Uniform Distribution)
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Fig. 3.7: Full Flexibility’s Least Secondary Production Cost vs. Partial Flexibil-
ity’s Secondary Production Cost (Discrete Uniform Demand)

c2* vs c1 (Normal Distribution)
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Fig. 3.8: Full Flexibility’s Least Secondary Production Cost vs. Partial Flexibil-
ity’s Secondary Production Cost (Normal Demand)
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Asymmetry and Correlation

Obviously, one would next wonder whether these results carry over be-

yond the identical and balanced case. We address this concern by studying

the 16-product 8-plant example used by Jordan and Graves [32]. Figure 3.9

shows the plants and products used in this setting. It also includes expected

demand for each product, capacity for each plant, as well as both primary

(dotted lines) and secondary (full lines) production links. As in [32], we also

assume that product demands are truncated (±2σ) normally distributed ran-

dom variables with standard deviation σi = 0.4E[Di]. The products can be

divided into three subgroups: products A to F, products G to M, and prod-

ucts N to P. The demand for products in the same subgroup are pairwise

correlated with a correlation coefficient of 0.3. There are no correlations

between the demands for products in different subgroups.

We compare two systems: (1) the sparse system (asymmetric equivalent

of chaining) given in Figure 3.9 (which includes both primary and secondary

links) whose cost of secondary production is c1, and (2) the full flexibility

system (i.e., any plant can produce any product) whose cost of secondary

production is c2. Assuming p = 1 and cp = 0, our simulation study reveals

that the sparse system with c1 = 0 can beat full flexibility with c2 = 0.07,

and so on, as shown in Table 3.4. The numbers show that for this setting,

upgrading to full flexibility provides very minimal benefits, that is, response

is allowed to worsen by only a very small amount. Hence, our theory that

system improvement must prioritize system response over system range seems

to hold even under general asymmetric settings.
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Fig. 3.9: Example of Asymmetric and Correlated System

Secondary Cost
Sparse System Full Flexibility

(c1) (c∗2)
0.00 0.07
0.05 0.14
0.10 0.20
0.15 0.27
0.20 0.33

Tab. 3.4: Sparse System vs. Full Flexibility: Comparison of Secondary Production
Costs (Asymmetric and Correlated System)
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3.3.2 System Response and Demand Variability

The previous section clearly demonstrates the need to improve the response

dimension of a system. This means reducing cs to the level of cp. A natural

question to ask is how much benefit does this bring? Using Theorem 5 and the

random walk approach introduced in Chapter 2, we compare the asymptotic

chaining efficiencies for high and low cs for some (discrete and continuous)

uniform and normal distributions. It is easy to see that for a discrete uniform

distribution with 2∆ possible demand values, we have

E[min(Y1, Y2)] =
(∆ + 1)(2∆ + 1)

6∆2
· µ

E[Y1] =
∆ + 1

2∆
· µ

ACE(cs) =
E[min(Y1, Y2)]

2E[Y1]
=

2∆ + 1

6∆
=

1

3
+

1

6∆
for high cs

ACE(cp) =
7∆ + 2

12∆ + 6
=

7

12
− 1

8∆ + 4
when cs = cp

CV =

√
2∆2 + 3∆ + 1

6∆2

We compile the results for some values of ∆ in Table 3.5. Those for normal

distributions are summarized in Table 3.6. These results suggest that pro-

duction efficiency brings more benefits as the demand coefficient of variation

decreases. This implies that although upgrading system response is impor-

tant, it becomes even more so if coupled with initiatives to reduce demand

uncertainty. In other words, we propose that improving production efficiency

and reducing demand variability are complements.
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∆ Distribution CV ACE(cs) for high cs ACE(cp) Improvement
1 2-point 1.00 0.5000 0.5000 0.0000
2 4-point 0.79 0.4167 0.5333 0.1166
3 6-point 0.72 0.3889 0.5476 0.1587
4 8-point 0.68 0.3750 0.5556 0.1806
...

...
...

...
...

...
∞ continuous 0.58 0.3333 0.5833 0.2500

Tab. 3.5: ACE Improvement for Upgrading System Response (Discrete Uniform
Demand)

CV ACE(cs) for high cs ACE(cp) Improvement
0.33 0.2929 0.7022 0.4093
0.31 0.2929 0.7145 0.4216
0.29 0.2929 0.7275 0.4346
0.27 0.2929 0.7413 0.4484
0.25 0.2929 0.7558 0.4629
0.23 0.2929 0.7708 0.4779
0.21 0.2929 0.7864 0.4935

Tab. 3.6: ACE Improvement for Upgrading System Response (Normal Demand)



4. VALUE OF THE THIRD CHAIN

In Section 2.4.4, we caught a glimpse of the potential value of employing a

third chain in the design of flexible production systems. In the asymmetric

case, we refer to the “third chain” as adding a third layer of flexibility (not

necessarily a regular chain) to the sparse structure proposed by Chou et al.

[16]. The optimal design of additional flexibility can be partially dealt with

using either the constraint sampling methodology developed in [16] or the

graph expander heuristics introduced in [17].

In this chapter, we further strengthen the case in support of the third

chain in two ways: (1) when there is no full production postponement, and (2)

when there are supply disruptions. We first consider the symmetric setting

and demonstrate that the highly celebrated 2-chain is not sufficient in the

presence of these two factors previously ignored in the literature. We further

show that the 3-chain already recovers a bulk of the losses brought about by

partial production postponement or supply disruptions, and that the 4-chain

and higher chains can only provide minimal improvements.

For the asymmetric case, the interesting decision is how to design the

“third chain”. That is, given a budget to augment a third layer of flexi-

bility, how does one choose from all the possible product-facility links? We

apply the constraint sampling methodology introduced in [16] and discover
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that, indeed, this additional amount of flexibility introduced into the system

can already cushion most of the adverse effects of partial postponement and

supply disruptions.

4.1 Process Flexibility and Production Postponement

With the advent of globalization and fragmentation of consumer demand,

firms are faced with both uncertainty and complexity in their struggle to stay

competitive in the global production and consumption network. Aside from

process flexibility, another approach that can help deal with these challenges

is “production postponement”. Production postponement is “the firm’s abil-

ity to set production quantities after demand uncertainty is resolved”. When

there is no postponement, the firm acts as a make-to-stock manufacturer;

with full postponement, it behaves in a make-to-order fashion. In most in-

stances, firms need to make simultaneous decisions on the level of flexibility

as well as the level of postponement.

Clearly, the ideal solution is to have full flexibility and full postponement.

However, full flexibility whereby all facilities can produce all products typi-

cally comes at great expense. Likewise, full postponement requires a highly

responsive production system with short production lead times or the system

may achieve poor service levels. It is precisely these concerns that prompt

us as well as other papers in the literature to look into employing partial

levels of flexibility and postponement. Assuming full postponement, Jordan

and Graves [32] show that partial flexibility, in the form of a simple “chain-

ing” strategy, can achieve nearly as much benefit as the full flexibility system



4. Value of the Third Chain 95

(almost 95%). Assuming full flexibility, Fisher and Raman [23] demonstrate

that partial postponement using accurate response can lead to significant

savings. Allowing a portion of capacity to be postponed to a point when

some demand information is obtained, they found that for a major fashion

skiwear company, cost relative to the existing system was reduced by enough

to increase profits by 60%. However, to the best of our knowledge, none

of the papers in the literature examine the benefits of implementing partial

levels of both flexibility and postponement.

To better understand the importance of production postponement, we

provide a brief review of the relevant literature. Inspired by the innovative

practices of Benetton (Signorelli and Heskett [48]) and Hewlett-Packard (Lee

et al [37]), the community has seen a growing interest in the study of pro-

duction postponement. Alderson [4] appears to be the first to have coined

the term “postponement” to refer to any strategy that allows for the “post-

ponement of differentiation, such as postponing changes in form and identity

to the latest possible point in the marketing flow or postponing change in

inventory location to the latest possible point in time.” Many subsequent

works (e.g. Lee and Tang [38], Anand and Mendelson [5], and the references

therein) studied the costs and benefits of postponement under different con-

ditions. Interested readers may refer to the survey by Swaminathan and Lee

[51].

In essence, one may see production postponement as a middle ground

between make-to-stock and make-to-order systems. This is done by per-

forming certain steps in the manufacturing process at an early period while

postponing the remaining steps until demand uncertainty is resolved. An-
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other way to connect the extremes of make-to-stock and make-to-order is by

setting a portion of capacity to be consumed prior to knowledge of demand

whereas the balance can be allocated to actual product demands as they

become known. This is the model adopted in Fisher and Raman [23] as well

as Van Mieghem and Dada [56]. The latter, however, focuses on the issue of

comparing production postponement and price postponement, and does not

consider the issue of flexibility which interests us in this paper. Nonetheless,

it is the same way of modeling production postponement in those two papers

that we also utilize in this paper. Our aim is to study the process flexibility

problem under arbitrary levels of production postponement.

4.1.1 Model Description

This section generalizes the process flexibility model under full postponement

to the case where the postponement level can range anywhere between the

extremes of make-to-stock and make-to-order. To this end, we develop a

model to capture partial levels of both process flexibility and production

postponement. The setting is as follows. We consider a system with n

plants and n products. As before, we let A(n) and B(n) represent the set of

product nodes and the set of plant nodes, respectively. The product demands

are ξ1, ξ2, . . . , ξn which are independent and identically distributed random

variables with distribution F symmetrical around the mean µ. This family

of distributions includes the uniform and normal distributions. The plants,

on the other hand, have fixed capacities of µ units each. We shall focus on

this symmetric setting for the purpose of theory building and to gain basic
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insights.

Early on, the firm carries out two strategic decisions; namely, the level

of flexibility and the level of postponement. For flexibility, the firm chooses

a flexibility configuration G(n) ⊂ A(n)×B(n). We focus on symmetric flexi-

bility structures and reduce the decision to a scalar d, denoting the common

node degree. Moreover, we consider structures that form the longest chains

possible due to their well-established efficiency (see [32], [16]). That is, we

consider d-chains as defined in Section 1.3.

For production postponement, we model a two-period production pro-

cess and define α as the proportion of capacity postponed to the second

period while 1 − α is for first-period consumption. When α = 0, we have a

make-to-stock setting and all production must be decided in the first period.

When α = 1, our model reduces to the make-to-order, full-postponement set-

ting in the literature. We allow the firm to choose its desired postponement

level α over the range [0, 1].

Given any combination of G(n) (equivalently, d) and α, the expected

mismatch cost can be determined by solving the following two-stage problem.

In the first stage, (1−α)µ units are made available at each plant to produce

whatever allowed combination of products 1, 2, . . . , n to stock, i.e. without

information on actual final demand. In the second stage, the remaining αµ

units in each plant become available to meet whatever actual demand the

firm cannot fill from first-stage stock. Our problem here is essentially a

multi-item newsvendor model with second-stage supply and partial capacity

sharing, which we refer to as the Minimum Mismatch Cost Model in Section

1.3.1. In our analysis, we assume that overstocking and understocking are
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equally penalized, i.e. co = cu.

(P1) : G∗
G(n)(α) = minx GG(n)(x, α)

s.t.
n∑

i=1

xij ≤ (1− α)µ ∀j = 1, 2, . . . n

xij ≥ 0 ∀i, j = 1, 2, . . . n

xij = 0 ∀(i, j) /∈ G(n)

where

GG(n)(x, α) = g1(x) + g2(x)− E[hG(n)(x, α, ξ)]

g1(x) =
n∑

i=1

∫ ∑n
j=1 xij

0

( n∑
j=1

xij − ξi

)
dF (ξi)

g2(x) =
n∑

i=1

∫ ∞

∑n
j=1 xij

(
ξi −

n∑
j=1

xij

)
dF (ξi)

and

hG(n)(x, α, ξ) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑

j=1

yij ≤
(

ξi −
n∑

j=1

xij

)+

∀i = 1, 2, . . . n

n∑
i=1

yij ≤ αµ ∀j = 1, 2, . . . n

yij ≥ 0 ∀i, j = 1, 2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

Allowing first-stage production to be fully flexible while holding second-
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stage production to G(n)-flexibility, we have Problem 2 as follows. Notice

that under full flexibility, there will be multiple optimal solutions. Hence,

the n2-dimensional decision vector x can be reduced to the n-dimensional

decision vector z by letting zi =
∑n

j=1 xij,∀i = 1, 2, . . . , n.

(P2) : G
∗
G(n)(α) = minx GG(n)(x, α)

s.t.
n∑

i=1

xij ≤ (1− α)µ ∀j = 1, 2, . . . n

xij ≥ 0 ∀i, j = 1, 2, . . . n

= minz GG(n)(z, α)

s.t.
n∑

i=1

zi ≤ (1− α)nµ

zi ≥ 0 ∀i = 1, 2, . . . n

where

GG(n)(z, α) = g1(z) + g2(z)− E[hG(n)(z, α, ξ)]

g1(z) =
n∑

i=1

∫ zi

0

(zi − ξi)dF (ξi)

g2(z) =
n∑

i=1

∫ ∞

zi

(ξi − zi)dF (ξi)
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and

hG(n)(z, α, ξ) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑

j=1

yij ≤ (ξi − zi)
+ ∀i = 1, 2, . . . n

n∑
i=1

yij ≤ αµ ∀j = 1, 2, . . . n

yij ≥ 0 ∀i, j = 1, 2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

4.1.2 Insufficiency of the 2-Chain

In this section, we compare the optimal expected mismatch cost of the chain-

ing strategy with that of the full flexibility system. In order to achieve that,

we must first characterize the optimal solution x∗ of (P1) and (P2). The

theory of majorization and Schur-convexity (see [42]) is utilized as follows.

We let x(1) indicate the largest element in vector x, x(2) indicate the second-

largest element, and so on.

Definition 1. The vector x is said to majorize the vector y (denoted x Â y)

if

∑k
i=1 x(i) ≥

∑k
i=1 y(i) ∀k = 1, 2, . . . , n− 1

and
∑n

i=1 xi =
∑n

i=1 yi
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Definition 2. A function f : Rn →R is called Schur-convex if

x Â y ⇒ f(x) ≥ f(y)

Lemma 6. Suppose f : Rn → R and dom f = Rn
+. Define g : Rn → R

by g(x) = f(x+), where x+ is the component-wise positive part of x. If f

is convex in x and nondecreasing in each argument xi over [0,∞), then g is

convex in x.

Proof. Without loss of generality, let x =




x1

x2

x3

x4




, y =




y1

y2

y3

y4



∈ Rn such

that x1 ≥ 0,y1 ≥ 0,x2 ≥ 0,y2 ≤ 0, x3 ≤ 0, y3 ≥ 0,x4 ≤ 0,y4 ≤ 0; xi,yi ∈
Rni ,∀i = 1, 2, 3, 4 and

∑4
i=1 ni = n. For λ ∈ [0, 1],
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g




λx1 + (1− λ)y1

λx2 + (1− λ)y2

λx3 + (1− λ)y3

λx4 + (1− λ)y4




= f




λx1 + (1− λ)y1

(λx2 + (1− λ)y2)
+

(λx3 + (1− λ)y3)
+

0




≤ f




λx1 + (1− λ)y1

λx2

(1− λ)y3

0




≤ λf




x1

x2

0

0




+ (1− λ)f




y1

0

y3

0




= λg




x1

x2

x3

x4




+ (1− λ)g




y1

y2

y3

y4




The first inequality holds because λx2 ≥ λx2+(1−λ)y2; λx2 ≥ 0; (1−λ)y3 ≥
λx3 + (1 − λ)y3; (1 − λ)y3 ≥ 0 and f is increasing in each argument. The

second inequality is due to the convexity of f while the equations follow from

definition.
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Proposition 1. GG(n)(z, α) is Schur-convex for any symmetric structure

G(n).

Proof. According to Marshall and Olkin [42], it suffices to show that GG(n)(z, α)

is symmetric and convex in z. Clearly, g1(z) and g2(z) are symmetric, i.e.

any two of its arguments can be swapped without modifying the function

value. For symmetric structure G(n), E[hG(n)(z, α, ξ)] is also symmetric.

Hence, GG(n)(z, α) is symmetric.

Next, we can see that g1(z) is separable and each individual term g1i(zi) =
∫ zi

0
(zi − ξi)dF (ξi) is convex because g′′1i(zi) = f(zi) ≥ 0. Therefore, g1(z) is

convex. We then turn our attention to

g2(z)− E[hG(n)(z, α, ξ)] = E

[ n∑
i=1

(ξi − zi)
+ − hG(n)(z, α, ξ)

]

Letting bi = (ξi − zi)
+, we want to characterize the convexity of

∑n
i=1 bi −

hG(n)(b, α) where

hG(n)(b, α) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑

j=1

yij ≤ bi ∀i = 1, 2, . . . n

n∑
i=1

yij ≤ αµ ∀j = 1, 2, . . . n

yij ≥ 0 ∀i, j = 1, 2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

According to Bertsimas and Tsitsiklis [8], hG(n)(b, α) is concave in b. It is



4. Value of the Third Chain 104

also easy to see that
∑n

i=1 bi − hG(n)(b, α) ≥ 0 and 0 ≤ ∂hG(n)

∂bi
≤ 1. It follows

that
∑n

i=1 bi−hG(n)(b, α) is convex in b and nondecreasing in each argument

bi over [0,∞). By Lemma 6 and preservation of convexity under composition

with affine function and expectation, g2(z)−E[hG(n)(z, α, ξ)] is convex in z.

Hence, GG(n)(z, α) is convex in z.

Lemma 7. Suppose f : R → R is an increasing convex function while

g, ĝ : R → R are decreasing convex functions such that ĝ′(x) < g′(x) ≤ 0. If

x∗ minimizes f(x) + g(x) and x̂∗ minimizes f(x) + ĝ(x), then x∗ ≤ x̂∗.

Proof. It follows from optimality that f ′(x∗) = −g′(x∗) and f ′(x̂∗) = −ĝ′(x̂∗).

Since f is convex while −g,−ĝ are concave, f ′ is nondecreasing and −g′,−ĝ′

are nonincreasing. Because −ĝ′(x) > −g′(x), x∗ ≤ x̂∗.

Proposition 2. x∗ii = (1 − α)µ,∀i = 1, 2, . . . , n and x∗ij = 0,∀i 6= j is a

solution to both (P1) and (P2).

Proof. Consider first (P2). From Proposition 1 and Marshall and Olkin

[42], the Schur-convex function GG(n)(z, α) is minimized at z∗i = z0, ∀i =

1, 2, . . . , n. We want to find z0 that minimizes

GG(n)(z01, α) = g1(z01) + h1(z01, α)

≥ g1(z01) + h2(z01, α)

≥ g1(z01) + h3(z01, α)
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where

h1(z01, α) = E

[ n∑
i=1

(ξi − z0)
+ − hG(n)(z01, α, ξ)

]

h2(z01, α) = E

[ n∑
i=1

(ξi − z0)
+ − hF(n)(z01, α, ξ)

]

= E

[ n∑
i=1

(ξi − z0)
+ −min

( n∑
i=1

(ξi − z0)
+, αnµ

)]

= E

[
max

(
0,

n∑
i=1

(ξi − z0)
+ − αnµ

)]

h3(z01, α) = E

[
max

(
0,

n∑
i=1

(ξi − z0)− αnµ

)]

Let

Ĝ(z0) = g1(z01) + h3(z01, α)

=
n∑

i=1

∫ z0

0

(z0 − ξi)dF (ξi) +

∫ ∞

nz0+αnµ

(ξ − nz0 − αnµ)dF̂ (ξ)

where ξ =
∑n

i=1 ξi ∼ F̂ .

To minimize Ĝ(z0) such that z0 ≤ (1 − α)µ, we take the derivative as

follows.

Ĝ′(z0) = nF (z0)− n[1− F̂ (nz0 + αnµ)]

= n[F (z0) + F̂ (nz0 + αnµ)− 1]

≤ n

[
1

2
+ F̂ (nµ)− 1

]
, ∀z0 ≤ (1− α)µ

= n

[
1

2
+

1

2
− 1

]
= 0, ∀z0 ≤ (1− α)µ
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That Ĝ′((1−α)µ) ≤ 0 implies that the unconstrained solution ẑ∗0 ≥ (1−α)µ.

Moreover, it can be shown that ∂h1

∂z0
< ∂h2

∂z0
< ∂h3

∂z0
≤ 0. By Lemma 7, the un-

constrained minimizer of GG(n)(z01, α) is z∗0 ≥ ẑ∗0 ≥ (1 − α)µ. Hence, the

optimal solution to (P2) is z∗i = (1−α)µ,∀i = 1, 2, . . . , n. This is equivalent

to x∗ii = (1 − α)µ,∀i = 1, 2, . . . , n and x∗ij = 0,∀i 6= j. Since this solution is

also feasible for (P1) and the feasible set of (P1) is a subset of the feasible

set of (P2), it also solves (P1).

Proposition 2 tells us that under the given conditions, the optimal first-

stage production is to exhaust all first-stage capacity for primary production

regardless of the flexibility structure. This implies that when α = 0, i.e.

there is no postponement of production, any form of flexibility brings no

additional benefits. In fact, when no postponement is possible, it may be

worthwhile to consider a dedicated system (d = 1) with no flexibility at all.

Of course, if the firm anticipates an improvement in postponement in the

future, existing flexibility should not be uninstalled.

That said, we want to characterize the performance gap between full

flexibility and the 2-chain as the level of postponement increases. As in

Section 1.3, we let C(n) denote the 2-chain structure and define

∆G(α)
∆
= G∗

C(n)(α)−G∗
F(n)(α)

= E[hF(n)((1− α)µ1, α, ξ)]− E[hC(n)((1− α)µ1, α, ξ)]

where the second equation is due to Proposition 2, which allows g1(x
∗) +

g2(x
∗) to cancel out.
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Proposition 3. ∃α ∈ (0, 1) such that ∆G(α) is largest.

Proof. Define ĥG(n)(α) = E[hG(n)((1− α)µ1, α, ξ)] and

hG(n)((1− α)µ1, α, ξ) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑

j=1

yij ≤ (ξi − (1− α)µ)+ ∀i = 1, 2, . . . n

n∑
i=1

yij ≤ αµ ∀j = 1, 2, . . . n

yij ≥ 0 ∀i, j = 1, 2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

so that ∆G(α) = ĥF(n)(α)− ĥC(n)(α).

It can also be shown that ĥF(n)(α) ≥ ĥC(n)(α), ĥF(n)(0) = ĥC(n)(0), and

limα→∞ ĥF(n)(α) = limα→∞ ĥC(n)(α). According to Bertsimas and Tsitsiklis

[8], ĥG(n)(α) is increasing and concave in α for any G(n). It follows that

∃α ∈ (0,∞) such that ∆G(α) is largest. For α ≥ 1,

ĥF(n)(α) = E

[
min

( n∑
i=1

(ξi − (1− α)µ)+, αnµ

)]

= E

[
min

( n∑
i=1

(ξi − µ + αµ), αnµ

)]

= αnµ + E

[
min

( n∑
i=1

(ξi − µ), 0

)]

Since ĥF(n)(α) is increasing and linear in α over [1,∞), ĥC(n)(α) is increasing

and concave in α, ĥF(n)(1) > ĥC(n)(1) (see Chou et al [16]), and limα→∞ ĥF(n)(α) =
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limα→∞ ĥC(n)(α), it follows that ∆G(α) is decreasing in α over [1,∞). Hence,

∃α ∈ (0, 1) such that ∆G(α) is largest.

Proposition 3 suggests that for certain levels of partial postponement,

the performance gap between full flexibility and the 2-chain may not be as

small as it is under the full postponement case. In a make-to-order environ-

ment (α = 1 ), it is already known in the literature that the 2-chain performs

almost as well as full flexibility. On the other hand, in a make-to-stock sce-

nario (α = 0 ), any form of flexibility is of no benefit, thus the 2-chain and

full flexibility would incur the same cost. For some α ∈ (0, 1) though, the

difference between full flexibility and 2-chain may be quite significant.

That said, if one wants to approximate the benefits of full flexibility and

full postponement using only partial levels of both these dimensions, care

has to be taken in choosing the proper levels of flexibility and postponement

that can give the desired result. Unlike the process flexibility literature which

finds that minimal partial flexibility is enough to achieve the benefits of the

first-best solution, it may not be true with just any low levels of flexibility

and postponement. In the event of partial postponement, more flexibility is

necessary to make up for the performance loss. The question becomes how

much additional flexibility is enough.

4.1.3 Sufficiency of the 3-Chain

In reality, every firm has to contend with the limitation that it can only em-

ploy partial levels of both production postponement and process flexibility.
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However, this does not stop firms from trying to find postponement-flexibility

configurations that achieve a high percentage of the performance of full flex-

ibility and full postponement (which we call the first-best solution). With

full postponement, a 2-chain is enough to approximate the performance of

the first-best solution. Without full postponement, we have shown that the

2-chain does not suffice. The performance loss can be attributed to two fac-

tors: flexibility loss and postponement loss. Under full postponement, there

is no postponement loss and the 2-chain incurs minimal flexibility loss. Un-

der partial postponement, postponement loss is incurred but on top of that,

the flexibility loss of the 2-chain also becomes quite significant. This explains

why, for example, a 2-chain with 50% postponement can perform quite badly.

While using additional flexibility to cushion the postponement loss is

interesting and important, we shall defer this discussion to the next section.

Here, we focus first on how to reduce the flexibility loss when there is partial

postponement. To do so, we use the method of asymptotic analysis intro-

duced in Chapter 2. For every pair of degree of flexibility d and level of

postponement α, the flexibility efficiency (the inverse of flexibility loss) can

be measured as in Section 1.3.2.

ACEd(α) = lim
n→∞

G∗
D(n)(α)−G∗

Cd(n)(α)

G∗
D(n)(α)−G∗

F(n)(α)

= lim
n→∞

ĥCd(n)(α)− ĥD(n)(α)

ĥF(n)(α)− ĥD(n)(α)
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where ĥG(n)(α) = E[hG(n)((1− α)µ1, α, ξ)] and

hG(n)((1− α)µ1, α, ξ) = maxy

n∑
i=1

n∑
j=1

yij

s.t.
n∑

j=1

yij ≤ (ξi − (1− α)µ)+ ∀i = 1, 2, . . . n

n∑
i=1

yij ≤ αµ ∀j = 1, 2, . . . n

yij ≥ 0 ∀i, j = 1, 2, . . . n

yij = 0 ∀(i, j) /∈ G(n)

Observe that hG(n) is an instance of the Maximum Flow Model described

in Section 1.3.1, with capacities Cj = αµ and identical distributed demand

random variables Di = (ξi− (1−α)µ)+. Note that this demand distribution

is just a truncated version of the original distribution with negative drift.

The resulting system will no longer be symmetric because capacity does not

equal expected demand and demand is not symmetrical around its mean.

Nonetheless, the method using alternating renewal process initiated in Sec-

tion 2.4.1, as well as its extension to higher-degree chains in Section 2.4.4,

can be used to study our problem at hand.

Consider demand that follows a normal distribution with a coefficient

of variation of 0.30, and total capacity that equals expected demand. Table

4.1 and Figure 4.1 summarize the asymptotic chaining efficiency for various

levels of production postponement and partial flexibility. Under full post-

ponement, we already expect the 2-chain to perform quite well providing

72% of the benefits of full flexibility even if the system size becomes ridicu-
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Flexibility Structure
α 2-chain 3-chain 4-chain 5-chain
0.1 18.29% 26.73% 31.04% 33.38%
0.2 31.99% 45.24% 51.89% 55.67%
0.3 42.19% 57.62% 65.11% 69.44%
0.4 49.88% 65.88% 73.38% 77.69%
0.5 55.80% 71.52% 78.64% 82.68%
0.6 60.48% 75.52% 82.12% 85.82%
0.7 64.26% 78.48% 84.55% 87.91%
0.8 67.38% 80.76% 86.34% 89.39%
0.9 70.00% 82.58% 87.72% 90.51%
1.0 72.23% 84.08% 88.84% 91.40%

Tab. 4.1: Asymptotic Chaining Efficiency for Various Levels of Production Post-
ponement and Partial Flexibility

ACE vs Postponement level
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2-chain ACE

3-chain ACE

4-chain ACE
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Fig. 4.1: Asymptotic Chaining Efficiency vs Level of Production Postponement
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lously large, say 1 million × 1 million. However, under 50% postponement,

this number drops to only 55%. This confirms our earlier result that the 2-

chain may not be sufficient under partial postponement. Fortunately, adding

a third chain can restore the performance back to almost 72%. Adding a

fourth chain can bring some benefits but significantly less than the gain from

2-chain to 3-chain. We also see that further improvements from the fifth

and higher chains are negligible. Such investments are no longer worthwhile,

and especially so in the rather common scenario where the cost of additional

flexibility increases in the amount of flexibility already installed. Notice also

that for low postponement levels (say 10%), no amount of partial flexibility

may be able to recover the flexibility loss in the system, unless one consid-

ers the enormous investment in full flexibility. For various other scenarios

(different coefficient of variation and different demand distributions), we also

report similar results – that in the case of partial postponement, the 2-chain

is insufficient, but the 3-chain is enough. This observation contrasts with the

process flexibility literature which believes that the additional benefit from

using the third chain is negligible.

4.1.4 The Flexibility-Postponement Trade-off

In this section, we turn our emphasis to overall performance loss, which

includes both flexibility loss and postponement loss. To this end, we examine

the total expected mismatch cost as it changes with respect to various levels

of postponement and flexibility. We also explore the interesting trade-off

between process flexibility and production postponement. That is, for a
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given target performance level (e.g. mismatch cost), what are the different

combinations of flexibility and postponement which can achieve this target?

Such analysis can aid in the proper allocation of resources between flexibility

and postponement.

We conduct a numerical study on a 10-plant, 10-product system. Each

product has demand that follows a normal distribution with mean 2000 units

and standard deviation 600 units. Each plant has a capacity of 2000 units.

For each postponement level α ∈ {0.00, 0.05, 0.10, . . . , 0.95, 1.00} and each

degree of flexibility d ∈ {1, 2, 3, . . . , 9, 10}, we computed the minimum mis-

match cost over a set of 1000 demand scenarios by solving the following

optimization problem. This problem, which is equivalent to problem (P1),

can then be formulated as a large linear program.

min
x,y

1

1000

1000∑

k=1

n∑
i=1

[( n∑
j=1

xij +
n∑

j=1

yk
ij − ξk

i

)+

+

(
ξk
i −

n∑
j=1

xij −
n∑

j=1

yk
ij

)+]

s.t.
n∑

i=1

xij ≤ (1− α)µ ∀j = 1, 2, . . . n

n∑
i=1

yk
ij ≤ αµ ∀j = 1, 2, . . . n, ∀k = 1, 2, . . . , 1000

xij ≥ 0 ∀i, j = 1, 2, . . . n

yk
ij ≥ 0 ∀i, j = 1, 2, . . . n, ∀k = 1, 2, . . . , 1000

xij = 0 ∀(i, j) /∈ G(n)

yk
ij = 0 ∀(i, j) /∈ G(n),∀k = 1, 2, . . . , 1000

where ξk
i is the demand for product i under the kth demand scenario, while yk

ij

is the second-stage production allocation upon seeing the demand scenario.
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We plot the expected mismatch cost against the postponement level for

different levels of flexibility, as well as the expected mismatch cost against the

level of flexibility for different postponement levels. The respective graphs

are shown in Figure 4.2 and Figure 4.3. Observe that the expected cost is

decreasing and convex in the level of either dimension (flexibility or post-

ponement), implying their diminishing values. This tells us that a little bit

of either dimension can already bring about substantial benefits. However,

we also see that the rate at which the cost diminishes is increasing in the

other dimension – postponement and flexibility are complements. When one

dimension is low, limited improvement in the other dimension may not bring

as much benefits and so more increase in this second dimension will continue

to generate value.
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From Figure 4.2, we also confirm the following earlier findings.

1. With no postponement, any form of flexibility is useless. At α = 0, all

five lines converge to the same point.

2. With full postponement, 2-chains and up are very efficient. At α =

1, see the huge gap between the dedicated system and full flexibility,

whereas the 2-chain line is very near full flexibility.

3. Under partial postponement, 2-chain may not be sufficient. For α ∈
[0.1, 0.7], the gap between 2-chain and full flexibility is quite sizable,

especially between 0.2 and 0.5.

4. Under partial postponement, 3-chain and up continues to be quite ef-

ficient. One can clearly see that the 3-chain line very nearly traces the
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full flexibility line, recovering most of the flexibility loss at all post-

ponement levels.

Furthermore, the computational data we obtained can be used to demon-

strate the trade-off between flexibility and postponement. For a given level

of mismatch cost, we plot into a curve the different combinations of flexibility

and postponement levels that return that cost level. We do the same for sev-

eral different expected cost levels and come up with the following family of

indifference curves between flexibility and postponement as shown in Figure

4.4. Table 4.2 summarizes the expected mismatch cost of all the 22 indiffer-

ence curves as well as their optimality gap (as defined in Section 1.3.2) from

the best curve (Curve #22).

Curve Expected Optimality Curve Expected Optimality
# Cost Gap # Cost Gap
1 4,815 504% 12 993.5 24.53%
2 4,345 445% 13 889.3 11.47%
3 3,945 394% 14 837.5 4.98%
4 3,605 352% 15 827.1 3.67%
5 3,100 289% 16 818.5 2.59%
6 2,550 220% 17 809.5 1.47%
7 2,440 206% 18 804.6 0.85%
8 1,905 139% 19 801.3 0.44%
9 1,480 86% 20 799.1 0.16%
10 1,215 52% 21 798.3 0.06%
11 1,050 32% 22 797.8 0.00%

Tab. 4.2: Mismatch Cost Values and Optimality Gaps for Flexibility-
Postponement Indifference Curves

From Figure 4.4 and Table 4.2, we can see that for the dedicated system,

even with full postponement, the performance gap is a shocking 206% (i.e.

the cost is more than three times that of the first-best solution). As for
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the 2-chain, postponement levels lower than 80% will bring the optimality

gap to more than 11.5%. Fortunately, the 3-chain can still survive a 57%

postponement level to provide a performance gap of only 11.5%. To further

support the case of the 3-chain, any improvement to 4-chain and beyond

is mostly marginal in the sense that such improvement can only replace a

minimal amount of postponement.

We also try to identify the location of some firms on the indifference map

to provide perspective on what one can achieve realistically. Traditional firms

tend to be on the lower left quadrant and incurs ridiculously high expected

costs. At the other end, the gold standard of manufacturing excellence Li

& Fung lies somewhere along Curves #20, 21, or 22. Because of its clout,

this company may very well be the only one of its kind that can afford both

high levels of postponement (90% to 100%) and flexibility (5-chain, 6-chain

or up), thus operating at almost optimality (upper right quadrant). Sport

Obermeyer, studied by Fisher and Raman [23], probably falls somewhere in

the upper left quadrant because it operates at full flexibility with some

postponement. Its optimality gap is probably between 25% and 50%. These

numbers suggest that the company may have overinvested in flexibility and

could channel some of their resources to improve postponement.

Finally, we locate an area (lower right quadrant) where investments

in flexibility and postponement appear to be most efficient for a firm with-

out the power of Li & Fung. The first recommendation is to use a 3-chain

with 70% postponement (Curve #16) which will result in an optimality loss

of only 2.59%. The postponement level of this 3-chain system may be re-

duced to 65% (Curve #14) if one can tolerate a larger optimality loss of
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about 5%. For an even lower budget, one may also consider a 3-chain with

57% postponement or a 2-chain with 80% postponement (Curve #13), both

generating optimality losses of about 11.5%.

As the System Grows

The previous observations provide evidence of the potential value of a third

chain. In particular, the third chain can be used to compensate for the loss

brought about by partial postponement. This naturally begs the question of

whether this theory will still hold when the system size grows. To this end, we

reproduce the above numerical study to systems of size n = 15, 20, 25, . . . , 40.

We consider d = 1, 2, 3, n which are the dedicated system, the 2-chain, the

3-chain, and full flexibility, respectively. As they are the recommended post-

ponement levels in the previous discussion, we present the results for post-

ponement levels of 65%, 70%, and 75% in Tables 4.3, 4.4, and 4.5, respec-

tively.

Size Optimality Gap Ratios

n D(n) C2(n) C3(n) F(n) C2(n)−C3(n)
C2(n)−F(n)

C2(n)−C3(n)
C2(n)

10 209.34% 24.53% 4.58% 4.27% 98.46% 81.34%
15 274.80% 49.97% 9.98% 6.34% 91.66% 80.04%
20 346.40% 75.33% 17.04% 7.96% 86.53% 77.38%
25 393.20% 95.24% 26.59% 8.27% 78.94% 72.09%
30 488.75% 121.48% 37.02% 9.95% 75.73% 69.53%
35 489.03% 128.88% 45.25% 10.48% 70.63% 64.89%
40 534.50% 144.07% 50.79% 11.44% 70.33% 64.74%

Tab. 4.3: Optimality Gap as Size Increases for 65% Postponement

One can clearly see that a 2-chain can perform extremely badly when

system size grows. In fact, when n = 40 the optimality loss rises to as high

as 144% at 65% postponement. This can be partially remedied by employing
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Size Optimality Gap Ratios

n D(n) C2(n) C3(n) F(n) C2(n)−C3(n)
C2(n)−F(n)

C2(n)−C3(n)
C2(n)

10 207.86% 19.01% 2.59% 2.47% 99.24% 86.37%
15 272.76% 41.69% 6.03% 3.69% 93.83% 85.53%
20 343.92% 64.92% 11.02% 4.71% 89.52% 83.02%
25 390.71% 83.82% 18.89% 4.89% 82.26% 77.46%
30 485.74% 107.97% 27.10% 5.99% 79.30% 74.90%
35 485.93% 115.31% 34.55% 6.22% 74.03% 70.04%
40 531.26% 129.36% 39.53% 6.90% 73.36% 69.44%

Tab. 4.4: Optimality Gap as Size Increases for 70% Postponement

Size Optimality Gap Ratios

n D(n) C2(n) C3(n) F(n) C2(n)−C3(n)
C2(n)−F(n)

C2(n)−C3(n)
C2(n)

10 207.00% 14.80% 1.46% 1.43% 99.76% 90.13%
15 271.46% 34.81% 3.44% 2.04% 95.72% 90.11%
20 342.33% 56.15% 6.86% 2.64% 92.13% 87.79%
25 389.14% 74.21% 13.33% 2.76% 85.21% 82.04%
30 483.90% 96.65% 19.64% 3.58% 82.75% 79.68%
35 483.94% 103.86% 26.20% 3.58% 77.44% 74.77%
40 529.22% 116.84% 30.82% 4.08% 76.28% 73.62%

Tab. 4.5: Optimality Gap as Size Increases for 75% Postponement
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the third chain, reducing the optimality loss by about 65% to 74% (e.g.

from 144% to 51%). Now suppose you have already installed a 2-chain as

recommended in existing literature, only to find out your postponement level

is between 65% and 75%. Because of your poor performance, you consider

upgrading to a 3-chain. Column 6 tells you that whatever benefit you may

obtain from upgrading to full flexibility, you can already achieve at least 70%

of it by just adding the third chain. Similarly, the last column informs us that

whatever benefit you can get from upgrading to optimality (full flexibility and

full postponement – very costly), you can already accrue at least about 65%

of it by merely adding the third chain. These percentages will be even higher

if system size is smaller than 40.

4.1.5 The Asymmetric Case

In this section, we test our theory on the asymmetric setting. Here, the

asymmetric analog of the 3-chain is a sparse structure with an additional

layer of flexibility. For example, in an n×n system, the “2-chain” consists of

2n links while the “3-chain” is made up of 3n links. The resulting structures

may no longer be regular and symmetric as in the earlier setting. Of course,

the choice of which 2n or 3n links must be optimized. In the two numerical

studies that follow, the constraint sampling methodology developed in [16]

is utilized. The two case studies we consider are: (1) O’neill Inc. (in Cachon

and Terwiesch [14]), and (2) Sport Obermeyer Ltd. (in Hammond and Anand

[29]).
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O’neill Inc.

O’neill Inc. is a designer and manufacturer of water sports apparel,

wetsuits and accessories. Their products range for entry-level products for

beginners, to wetsuits for competitive surfers, to sophisticated sportswear for

professional divers. Because the demands for the products are subject to the

whims of fashion, O’neill faces the tough production challenge of not ordering

too much or too little. Table 4.6 presents a sample list of products and the

respective demand forecasts (in terms of mean and standard deviation). In

addition to its own production facility in Mexico, O’neill also employs the

services of contract manufacturers in Asia. The issue of which facility to be

equipped with technology to produce which product is basically the flexibility

question we are interested in. Moreover, a portion of production must be

committed before the selling season, while the rest can be allocated later on

with better idea of the actual demand.

Expected Standard
Item Model demand deviation

1 DIVE COMP 3/2 FULL 1,100 660
2 WMS 7000 X 7MM FULL 600 360
3 EPIC 5/3 W/HD 800 296
4 HEAT 3/2 1,200 444
5 HEATWAVE 4/3 700 259
6 ZEN-ZIP 4/3 3,100 1,147
7 TRIATHLON 4/3 FULL 2,600 1,690
8 REACTOR 3/2 1,500 750
9 CYCLONE 4/3 950 665
10 WMS EVOLUTION 4/3 850 595

Tab. 4.6: Demand Forecasts for Diving Products at O’neill Inc.

In this study, we consider a production network of 10 facilities, each
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one primarily assigned to manufacture one product. For example, facility

1 mainly produces DIVE COMP 3/2 FULL. Also, each facility has enough

capacity to meet the expected demand of its primary product, e.g. facility 1

has a capacity of 1,100 units. To make the system more flexible, we add 10

more links and call the resulting 20-link structure 2-sparse, the asymmetric

analog of the 2-chain. Augmenting with another set of 10 links, we would get

a 3-sparse structure, the asymmetric analog of the 3-chain. We then examine

the performance of the 2-sparse and the 3-sparse structures relative to full

flexibility, under varying levels of production postponement.

Next, we briefly explain how the numerical study is carried out. Here,

D = (D1, D2, . . . , D10) is the demand vector while C = (C1, C2, . . . , C10) is

the capacity vector.

Numerical Procedure:

[Step 1]: Estimate the sampling probabilities for each facility-product pair

(i, j) such that i 6= j. This represents the likelihood that link (i, j) will be

the next most attractive link to add to the dedicated system (cf. Chou et al.

[16] for details on the constraint sampling methodology).

1. Generate 1000 demand realizations based on the given demand distri-

bution. Let Dk denote the demand generated in the kth instance.

2. Estimate the weight assigned to link (i, j), using

wij =
1

1000

1000∑

k=1

(Dk
i − Ci)

+(Cj −Dk
j )

+

max{∑10
l=1(D

k
l − Cl)+,

∑10
l=1(Cl −Dk

l )
+}
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3. Estimate the sampling probability for link (i, j), using

p̃ij =
wij∑10

k=1

∑10
l=1 wkl

[Step 2]: Generate the best 2-sparse structure. Call it S2(10).

1. Generate 100 2-sparse structures. For each 2-sparse structure, sample

one link at a time based on the sampling probabilities p̃ij, and add to

the dedicated system until 10 new links have been added.

2. Grade the 100 2-sparse structures and choose the best. Generate an-

other 1000 demand realizations, and simulate the performance of each

2-sparse structure based on this set of demand. Select the 2-sparse

structure with the best performance.

[Step 3]: Generate the best 3-sparse structure. Call it S3(10).

1. Generate 100 3-sparse structures. For each 3-sparse structure, sample

one link at a time based on the sampling probabilities p̃ij excluding

those already included in S2(10). Add the link to the best 2-sparse

structure and repeat until 10 new links have been added.

2. Grade the 100 3-sparse structures and choose the best. Use the 1000

demand realizations generated for 2-sparse performance evaluation, and

simulate the performance of each 3-sparse structure based on this set

of demand. Select the 3-sparse structure with the best performance.

[Step 4]: Compute the performance of the dedicated system, the 2-sparse

system, the 3-sparse system, and full flexibility.
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1. Generate 100 demand scenarios. Let Dk denote the demand generated

in the kth scenario.

2. For each system G(10) ∈ {D(10),S2(10),S3(10),F(10)} and for each

postponement level α ∈ {0.00, 0.05, 0.10, . . . , 0.95, 1.00}, solve the fol-

lowing large LP as an approximation of the underlying stochastic news-

vendor problem. For simplicity, we assume equal overage and underage

costs. The decision vectors x and yk denote first-stage production and

second-stage production, respectively. For given structure G(10) and

postponement level α, the minimum expected mismatch cost is as fol-

lows.

G∗
G(10)(α)

= min
100∑

k=1

10∑
i=1

[( 10∑
j=1

(xij + yk
ij)−Dk

i

)+

+

(
Dk

i −
10∑

j=1

(xij + yk
ij)

)+]

s.t.
∑

i:(i,j)∈G(10)

xij ≤ (1− α)Cj, ∀j = 1, . . . , 10

∑

i:(i,j)∈G(10)

yk
ij ≤ αCj, ∀j = 1, . . . , 10, ∀k = 1, . . . , 100

xij ≥ 0, ∀ i, j = 1, . . . , n

xij = 0, ∀ (i, j) /∈ G(10)

yk
ij ≥ 0, ∀ i, j = 1, . . . , n, ∀k = 1, . . . , 100

yk
ij = 0, ∀ (i, j) /∈ G(10), ∀k = 1, . . . , 100.
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3. For S2(10) and S3(10), compute the flexibility efficiency as follows.

FE(G(10), α) =
G∗
D(10)(α)−G∗

G(10)(α)

G∗
D(10)(α)−G∗

F(10)(α)

Expected Mismatch Cost Flex. efficiency
α D(10) S2(10) S3(10) F(10) S2(10) S3(10)

0.00 4,844 4,824 4,815 4,815 67.24% 100.00%
0.05 4,545 4,360 4,277 4,211 55.29% 80.26%
0.10 4,274 3,939 3,798 3,685 56.94% 80.88%
0.15 4,020 3,560 3,370 3,230 58.21% 82.28%
0.20 3,790 3,221 2,983 2,826 58.98% 83.73%
0.25 3,587 2,923 2,648 2,483 60.10% 85.05%
0.30 3,406 2,659 2,349 2,189 61.36% 86.83%
0.35 3,251 2,432 2,088 1,937 62.31% 88.46%
0.40 3,121 2,236 1,869 1,727 63.47% 89.76%
0.45 3,009 2,070 1,688 1,558 64.68% 91.00%
0.50 2,915 1,931 1,538 1,428 66.20% 92.62%
0.55 2,837 1,816 1,415 1,324 67.50% 94.01%
0.60 2,773 1,717 1,312 1,237 68.75% 95.16%
0.65 2,719 1,634 1,230 1,169 69.99% 96.10%
0.70 2,676 1,575 1,169 1,124 70.93% 97.09%
0.75 2,647 1,533 1,125 1,095 71.79% 98.05%
0.80 2,623 1,503 1,095 1,071 72.21% 98.48%
0.85 2,605 1,479 1,071 1,054 72.58% 98.91%
0.90 2,589 1,463 1,060 1,047 73.00% 99.15%
0.95 2,580 1,451 1,053 1,041 73.36% 99.25%
1.00 2,577 1,447 1,051 1,041 73.61% 99.38%

Tab. 4.7: Expected Mismatch Cost and Flexibility Efficiency for O’neill Inc.

Table 4.7 summarizes the result for the numerical study of O’neill Inc.

The general behavior of the production system under different levels of flexi-

bility and postponement appears to be similar to the symmetric case. When

there is full postponement, the 2-sparse structure performs quite well at 73%
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efficiency. However, under partial postponement, the efficiency can drop to

the range 55-65%. By adding a layer of flexibility, the 3-sparse structure not

only recovers the said flexibility loss, but also provides an efficiency of at

least 80% under all postponement levels. This is even better than the 73%

of the 2-sparse structure under full postponement.

Sport Obermeyer Ltd.

Sport Obermeyer Ltd. is a manufacturer of stylish high-performance ski

clothing and ski equipment products. It holds a commanding 45% share of

the children’s skiwear market and 11% share of the adult market. One of its

main challenges is the production planning for women’s parkas mostly due to

the demand volatility caused by ever changing fashion. Table 4.8 shows ten

styles of women’s parkas and their respective demand forecasts. A clearer

picture of actual demand can be obtained through feedback from retailers, al-

though such information will only be available after the Las Vegas trade show

in March of each year. However, manufacturing has to start well in advance

of the trade show season and some items must be produced to stock. Fortu-

nately, a considerable portion of capacity (called reactive capacity) may be

deferred until March. The level of postponement (i.e. the amount of reactive

capacity) and the degree of flexibility in Sport Obermeyer’s production net-

work play huge roles in determining the outcome of the company’s financial

performance.

In this study, we consider a production network of 10 facilities, each

one primarily assigned to manufacture one product. For example, facility 1

mainly produces the Gail style. Also, each facility has enough capacity to

meet the expected demand of its primary product, e.g. facility 1 has a capac-
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Expected Standard
Item Style demand deviation

1 Gail 1,017 194
2 Isis 1,042 323
3 Entice 1,358 248
4 Assault 2,525 340
5 Teri 1,100 381
6 Electra 2,150 404
7 Stephanie 1,113 524
8 Seduced 4,017 556
9 Anita 3,296 1,047
10 Daphne 2,383 697

Tab. 4.8: Demand Forecasts for Women’s Parkas at Sport Obermeyer

ity of 1,017 units. Although facilities have their primary style assignments,

it would serve the company well if these facilities can also produce the other

styles. As much as full flexibility whereby all facilities can make all styles is

most desirable, we show that a 3-sparse structure with only 30 links (20 links

in addition to the primary assignments) already captures a large portion of

the benefits of full flexibility. Similar to the symmetric case as well as the

case study on O’neill Inc., this finding is true for all levels of production post-

ponement. In fact, for most levels of postponement, the 3-sparse structure

is already at least 90% efficient. We use the same numerical procedure as in

the case on O’neill Inc. Table 4.9 summarizes the results.

4.2 Process Flexibility and Supply Disruptions

In this section, we further discuss the merits of the third chain through the

lens of supply disruptions. Recent studies have pointed out that supply chains
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Expected Mismatch Cost Flex. efficiency
α D(n) S2(n) S3(n) F(n) S2(n) S3(n)

0.00 3,500 3,480 3,477 3,477 88.16% 100.00%
0.05 3,066 2,809 2,681 2,574 52.22% 78.37%
0.10 2,719 2,311 2,059 1,918 50.94% 82.39%
0.15 2,463 1,939 1,602 1,465 52.50% 86.32%
0.20 2,268 1,664 1,270 1,158 54.37% 89.84%
0.25 2,127 1,463 1,038 952 56.51% 92.71%
0.30 2,023 1,316 878 809 58.24% 94.27%
0.35 1,945 1,208 771 707 59.52% 94.84%
0.40 1,886 1,127 696 645 61.20% 95.88%
0.45 1,843 1,065 646 610 63.15% 97.09%
0.50 1,813 1,022 617 591 64.71% 97.88%
0.55 1,793 990 607 584 66.41% 98.11%
0.60 1,780 967 600 584 67.96% 98.66%
0.65 1,770 951 594 584 69.03% 99.11%
0.70 1,764 941 591 584 69.72% 99.42%
0.75 1,759 934 589 584 70.21% 99.56%
0.80 1,757 929 589 584 70.57% 99.56%
0.85 1,754 927 589 584 70.69% 99.56%
0.90 1,753 926 589 584 70.73% 99.56%
0.95 1,753 926 589 584 70.75% 99.56%
1.00 1,752 926 589 584 70.74% 99.56%

Tab. 4.9: Expected Mismatch Cost and Flexibility Efficiency for Sport Obermeyer
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are increasingly susceptible to disruptions that may be caused by labor strikes

(e.g. General Motors [12]), hurricanes (e.g. Katrina and Rita [44]), fires (e.g.

Philips semiconductor plant [36]), and other unexpected calamities. Given

the millions of dollars lost in these mishaps, there has been growing concern

and interest in the study of supply disruption mitigation. One important

finding in the literature is that supply disruption risks are fundamentally

distinct from demand uncertainty and recurrent supply risks, and thus may

require a new set of strategies (cf. [50], [15]). For example, Chopra et al. [15]

show the importance of decoupling recurrent supply risk and disruption risk

when planning mitigation strategies, while Snyder and Shen [50] demonstrate

that the optimal strategy for coping with supply disruptions is the exact

opposite of that for demand uncertainty.

Without consideration for supply disruptions, the thought leaders in re-

cent decades have championed tightly optimized and just-in-time practices.

Unfortunately, the increasing threat of supply disruptions has exposed the

vulnerability of these lean supply chain systems. Therefore, recent research

makes a case for more redundancy or slack in order to buffer against disrup-

tion uncertainty. However, firms have historically been disinclined to invest

in additional infrastructure or inventory, despite the potentially large pay-

off in the event of a disruption. Hence, it is but natural to turn to process

flexibility for a way to reduce the buffer requirements or to maximize the

utilization of additional resources.

Tomlin and Wang [52] examine both mix flexibility and dual sourcing in

an attempt to study supply chains characterized by both demand uncertainty

and unreliable resources. For a firm that can invest in dedicated resources and
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fully flexible resources, they show that the intuition that a flexible strategy

dominates a dedicated strategy is true only if the firm is risk neutral or if

the resources are perfectly reliable. When both conditions fail to hold, a

resource-aggregation disadvantage inherent in their model may outweigh the

capacity pooling benefits of flexibility. However, this paper does not address

the issue of partial flexibility.

A more related paper is by Lim et al. [40] who extend the classical

Jordan and Graves [32] study on process flexibility with the possibility of

supply disruptions and the underlying cost of flexibility. They focus on single

failures (i.e. single link disruptions and single node disruptions) because

the scenario of multiple failures can be decomposed into subnetworks with

single failures for the purpose of analysis. A measure called “fragility” is

introduced which quantifies the change in system performance before and

after a disruption. Under some conditions, it can be shown that reducing

system fragility is equivalent to reducing total cost of the system. That said,

their main result is as follows: if a system is more exposed to link disruptions,

it is preferable to install a collection of small chains, while it is preferable to

build a longer chain when the network is more exposed to node disruptions.

4.2.1 Fragility and Flexibility

In this section, we want to examine how the third chain (or additional flexi-

bility) can be utilized to improve the fragility of the system. To this end, we

first recall the definition of fragility (cf. [40]).

Definition 3. The fragility of a system G(n) with respect to disruption D is
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the difference in expected shortfalls after and before the disruption. That is,

FD(G(n)) = SFD(G(n))− SF (G(n)).

Because expected shortfall is expected total demand minus expected

total system sales, system fragility can alternatively be expressed as the

difference in expected total system sales before and after the disruption, i.e.

FD(G(n)) = E[Z∗
G(n)(D)]− E[Z∗D

G(n)(D)] (4.1)

where Z∗
G(n)(D) and Z∗D

G(n)(D) are the respective maximum flows before and

after the disruption D given demand realization D, as defined in Section

1.3.1.

In Lim et al. [40], the rationale for focusing on system fragility when

comparing two or more systems is the assumption that these systems have

equal (or comparable) total system costs when there is no disruption. For

example, compare a long 2-chain in a 10 × 10 production network with a

collection of 5 short 2-chains. Each of the latter is just a fully flexible 2× 2

system. Suppose that the additional cost of installing the long 2-chain is

just about recovered by the increased expected sales (equivalently, reduced

shortfall) in the system. Lim et al. [40] show that short chains have lower

fragility than the long chain under single link disruptions, while the opposite

holds under single node disruptions.

In a similar breath, we suppose that the 3-chain has already been ratio-
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nalized on the basis of increased system size and/or the presence of partial

production postponement as in previous sections. That is, we assume that

the expected total system cost of the 3-chain does not exceed that of the

2-chain when there is no disruption. We then examine the fragility of the

3-chain vis-à-vis the 2-chain following equation (4.1). For our simulation

study, we consider symmetric systems of size n = 5, 10, . . . , 40. Capacity

at each facility is set at 2000 units while demand is normally distributed

with mean µ = 2000, truncated from 0 to 2µ, and coefficient of variation

CV = 0.2, 0.3, 0.4, 0.5. We simulate 1000 demand scenarios for each combi-

nation and summarize the results in Table 4.10. For all system sizes, all CV

values, and both disruption types, we find that the 3-chain is significantly

less fragile than the 2-chain. That is,

FD(C3(n)) < FD(C2(n))

∀D ∈ {1LD, 1ND}, n ∈ {5, 10, . . . , 40}, CV ∈ {0.2, 0.3, 0.4, 0.5}. This serves

as additional evidence for the value of the third chain on top of the arguments

already established in Section 2.4.4 and Section 4.1. However, there is no

consistent pattern on the behavior of fragility with respect to system size or

demand coefficient of variation.

We also conduct a comparative study between a long 3-chain and a

collection of short 3-chains (fully flexible 3 × 3 systems). For system size

n = 6, 12, . . . , 30, we consider the same demand, supply, and disruption sce-

narios as in the previous study. Table 4.11 compiles the results. We observe

that Lim et al.’s [40] result that short 2-chains are better under link disrup-
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Coefficient of Variation
Size Disrupt 20% 30% 40% 50%
n Type C2(n) C3(n) C2(n) C3(n) C2(n) C3(n) C2(n) C3(n)
5 Link 165 0 230 0 292 0 337 4

Node 1677 1,676 1,498 1,481 1,474 1,418 1,469 1,361
10 Link 282 0 417 2 524 17 475 25

Node 1,549 1,519 1,510 1,394 1,488 1,281 1,535 1,312
15 Link 419 1 529 27 563 59 562 80

Node 1,555 1,486 1,567 1,360 1,559 1,304 1,561 1,269
20 Link 437 5 571 40 560 93 562 138

Node 1,514 1,380 1,594 1,333 1,551 1,293 1,583 1,352
25 Link 540 11 558 70 582 125 562 177

Node 1,579 1,385 1,565 1,279 1,585 1,351 1,569 1,331
30 Link 566 19 585 97 577 143 579 202

Node 1,596 1,365 1,608 1,337 1,544 1,330 1,549 1,344
35 Link 577 32 584 105 540 147 547 203

Node 1,583 1,333 1,600 1,372 1,590 1,400 1,522 1,393
40 Link 626 42 570 116 588 191 511 183

Node 1,598 1,327 1,553 1,313 1,559 1,361 1,533 1,387

Tab. 4.10: Fragility for 2-Chain and 3-Chain under Single Link and Single Node
Disruptions for Various Levels of Demand Uncertainty
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tions while a long 2-chain is better under node disruptions extends nicely

to the case of 3-chains. In fact, the short 3-chains under link disruptions

are not fragile at all in all the situations we considered. Also, for small to

medium-sized production networks (n = 6, . . . , 24) and coefficient of varia-

tion not too large (at most 40%), the long 3-chain is not too shabby under

link disruptions while the short 3-chains can perform quite poorly under node

disruptions. Having said that, we would tend to recommend a long 3-chain

over a collection of short 3-chains for most realistic cases whereby the nature

of the next disruption (link or node) is unknown.

Coefficient of Variation
Size Disrupt 20% 30% 40% 50%
n Type long short long short long short long short
6 Link 0 0 0 0 1 0 7 0

Node 1,614 1,721 1,478 1,581 1,391 1,518 1,393 1,485
12 Link 1 0 9 0 40 0 63 0

Node 1,489 1,726 1,364 1,600 1,321 1,553 1,331 1,455
18 Link 1 0 26 0 78 0 126 0

Node 1,447 1,727 1,322 1,602 1,277 1,468 1,340 1,465
24 Link 8 0 67 0 113 0 164 0

Node 1,348 1,712 1,326 1,584 1,313 1,518 1,340 1,485
30 Link 17 0 81 0 138 0 189 0

Node 1,383 1,739 1,284 1,582 1,346 1,485 1,344 1,461

Tab. 4.11: Fragility for Long 3-Chain versus Short 3-Chain under Single Link and
Single Node Disruptions for Various Levels of Demand Uncertainty

4.2.2 Fragility, Flexibility and Capacity

We have already seen that supply disruptions (particularly, node disruptions)

can lead to significant losses to the system as exhibited by the fragility values

in Table 4.10. Although the third chain can help mitigate these losses to some
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extent, we do not expect the same benefits to come from further upgrades in

flexibility. Hence, we turn to increasing capacity as another mitigation strat-

egy. Suppose we are given a budget to increase capacity by 10%. How will

this affect system fragility? More importantly, how must this extra capacity

be utilized? For example, is it more desirable to distribute the additional

capacity evenly among the existing facilities or to place that extra capacity

in a standby facility that will fill in for whichever facility gets disrupted?

We carry out a simulation study to compare the two ways we can add

capacity to systems exposed to supply disruptions. In the event of a dis-

ruption, the system incurs a total performance loss, which we break down

into disruption loss and flexibility loss. Disruption loss is that portion that

is due to the occurrence of the disruption, while flexibility loss is that which

results from having partial flexibility instead of full flexibility. In our study,

we focus on the flexibility loss because with this amount minimized, further

measures to reduce disruption losses can take comfort in the fact that the

system already operates at close to full flexibility. We consider system sizes

n = 5, 10, . . . , 40, and supply of 2000 units at each facility with additional

2000 units to be allocated either evenly among the existing facilities or housed

in a standby facility. Demand is normally distributed with mean µ = 2000,

truncated from 0 to 2µ, and coefficient of variation is 0.3. We simulate 1000

demand scenarios and compute the flexibility efficiency as presented in Ta-

ble 4.12. We observe that allocating the extra capacity to a standby facility

appears to be a more robust approach when considering a 2-chain system.

However, when a 3-chain is employed, the performance turns out to be insen-

sitive to how the additional capacity is allocated. This provides the firm with
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more decision flexibility, especially in cases when either of the two allocation

options is not available. Ultimately, this implementation flexibility also adds

to the value of having a third chain.

Use of 10% Capacity
Size Disrupt Distribute Evenly Standby Facility
n Type C2(n) C3(n) C2(n) C3(n)

None 100% 100% 100% 100%
5 Link 94% 100% 100% 100%

Node 98% 100% 100% 100%
None 99% 100% 98% 100%

10 Link 90% 100% 98% 100%
Node 91% 100% 98% 100%
None 97% 100% 95% 100%

15 Link 87% 100% 95% 100%
Node 86% 100% 95% 100%
None 93% 100% 92% 100%

20 Link 86% 99% 92% 100%
Node 84% 99% 92% 100%
None 92% 100% 90% 100%

25 Link 86% 99% 90% 100%
Node 84% 99% 90% 100%
None 90% 100% 88% 99%

30 Link 84% 99% 88% 99%
Node 82% 98% 88% 99%
None 87% 99% 86% 99%

35 Link 83% 98% 86% 99%
Node 81% 97% 86% 99%
None 87% 99% 86% 98%

40 Link 84% 98% 86% 98%
Node 82% 97% 86% 98%

Tab. 4.12: Flexibility Efficiency for Two Ways to Add Capacity to Symmetric
Systems Exposed to Supply Disruptions
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4.2.3 The Asymmetric Case

To test our observations on the asymmetric setting, we recall the two case

studies considered in Section 4.1.5; namely, O’neill Inc. and Sport Obermeyer

Ltd. Using the constraint sampling methodology introduced by Chou et al.

[16], we generate the 2-sparse and 3-sparse structures for each case study.

For each study, we simulate 1000 demand scenarios and compute the fragility

values for both structures, and both single link and single node disruptions.

Because the system is no longer symmetric, the expected system performance

depends on which link or node is disrupted. We compute the fragility for each

disruption and summarize the results in Figure 4.5. Although a very small

set of instances shows that the 2-chain may even have lower fragility than the

3-chain, the 3-chain is for the most part significantly less fragile than the 2-

chain. This supports our earlier finding that on top of reducing the negative

effects of increasing system size and partial production postponement, the

third chain can likewise improve system fragility in the event of unexpected

supply disruptions.

We also examine whether it is more desirable to distribute an addi-

tional 10% capacity proportionately among existing facilities or place it in

a standby facility. In Table 4.13, we find that the standby facility in a 2-

sparse structure is more robust, especially when a node is disrupted. With

the 3-sparse structure, the same is still true but the difference is no longer as

pronounced. This supports our earlier finding that the performance of the

3-sparse structure is insensitive to the allocation method for extra capacity,

giving the firm more implementation flexibility.
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Fig. 4.5: Box and Whisker Plots for Fragility Values of 2-Sparse and 3-Sparse
Structures of Asymmetric Systems Under Link and Node Disruptions

Use of 10% Capacity
Company Disrupt Distribute Standby Facility

Name Type S2(n) S3(n) S2(n) S3(n)
None 79% 100% 76% 99%

O’neill Link 78% 97% 76% 99%
Node 72% 96% 76% 99%

Sport None 75% 99% 70% 99%
Ober- Link 71% 95% 70% 99%
meyer Node 64% 95% 70% 99%

Tab. 4.13: Flexibility Efficiency for Two Ways to Add Capacity to Asymmetric
Systems Exposed to Supply Disruptions



5. CONCLUSIONS

The purpose of this thesis is to provide an analytical justification of why

partial flexibility performs nearly as well as full flexibility, and to extend

this theory of partial flexibility to environments that take into account other

factors relevant to the practice of process flexibility or capacity pooling.

We first study the asymptotic performance of the chaining strategy when

system size grows very large. For the symmetric case where supply and

(mean) demand are balanced and identical, we develop a generalized ran-

dom walk approach that can analytically compute the efficiency of chaining

under general demand distributions. For uniform and normal demand distri-

butions, the results show that the 2-chain already accrues at least 58% and

70%, respectively, of the benefits of full flexibility. This confirms the widely

believed maxim in the community that chaining already accounts for most

of the gains of full flexibility. Our method can also be adjusted to measure

the performance of higher order chains, such as the 3-chain, the 4-chain, and

so on.

Subsequently, we expand our analysis to take into account factors such

as the response dimension, partial production postponement, and the occur-

rence of supply disruptions. In each scenario, we find that the performance

of chaining may deteriorate significantly. We then propose measures on how
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to reduce this performance decline.

When the response dimension is not perfect, we demonstrate that the

performance of any flexible system may be seriously compromised. For ex-

ample, when system response is sufficiently low, the chaining efficiency for a

10× 10 system can go down to as low as 42.83%. This can be interpreted as

a precaution not to overstate the benefits of process flexibility and as a call

to examine the system response when engaging in process flexibility. Nev-

ertheless, we find that surprisingly, when system response deteriorates to a

certain threshold, the performance plateaus at a certain level and further

response deterioration will cause no more harm to the system than it does to

full flexibility. In addition, the performance of a long chain becomes identi-

cal to short chains, which differs from the high response case. This suggests

that when system response is low and can no longer be improved, one can be

better served by installing the less expensive shorter chains. We also show

that given limited resources, upgrading system response outperforms upgrad-

ing system range in most cases. Moreover, improving system response can

provide even more benefits when coupled with initiatives to reduce demand

variability.

When full production postponement is not possible, we discover that

previous results on partial flexibility no longer holds as strongly. In the

example of small systems, we find that when postponement level is lower

than 80%, the celebrated 2-chain strategy may perform quite badly, with a

performance loss of more than 12%. By adding another layer of flexibility,

i.e. a third chain, we find that the optimality loss improves to 5% even

when postponement drops to 65%. For larger systems, we find that the
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performance of the 2-chain becomes even worse, but the 3-chain under 65%

to 75% postponement may be able to salvage a substantial portion of this

optimality loss. Further flexibility upgrades, e.g. fourth or fifth chain, can no

longer produce as much benefit. We also study the flexibility-postponement

tradeoff and find that a firm operating with a 3-chain at 70% postponement

can perform extremely well with minimal optimality loss.

Under the threat of supply disruptions, we find that the fragility of a

2-chain (both long and short) may be too high under both link and node

disruptions. By introducing a third chain, the fragility of the system is sig-

nificantly reduced. This suggests that in addition to cushioning the adverse

effects of system size increase and partial production postponement, a third

chain can also provide some protection against supply disruptions. Because

redundancy is another widely recommended strategy for supply risk mitiga-

tion, we also study the interaction of flexibility and additional capacity. We

observe that when using a 3-chain, the choice of how to allocate additional ca-

pacity no longer becomes critical, which differs from the case when a 2-chain

is used. This provides implementation flexibility for the decision-maker, fur-

ther strengthening the case for the value of the third chain. Although it can

be argued that the above benefits can also be obtained in a 4-chain or higher

chains, one must bear in mind that it is in the 3-chain that these benefits first

appear and additional benefits must be established for additional chains.

There are several other directions to further extend the results in this

thesis. It will be interesting to consider price-responsive demands and for-

mulate the manufacturers problem as one of maximizing profits. It would

also be interesting to look at this problem in an oligopolistic framework and
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to examine the impact of pricing and partial flexibility on the strategic re-

sponses of the players in the market. For the asymmetric case, the existence

of a sparse structure that captures bulk of the benefits of full flexibility under

the partial postponement scenario and the supply disruptions scenario can

also be challenging to prove. Moreover, our results on the fragility of sys-

tems exposed to supply disruptions can use some analytical strengthening.

We leave these issues for future research.
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