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Summary

This thesis presents a semismooth Newton-CG augmented Lagrangian method for

solving linear and convex quadratic semidefinite programming problems from the per-

spective of approximate Newton methods. We study, under the framework of Euclidean

Jordan algebras, the properties of minimization problems of linear and convex objec-

tive functions subject to linear, second-order, and positive semidefinite cone constraints

simultaneously.

We exploit classical results of proximal point methods and recent advances on sensitiv-

ity and perturbation analysis of nonlinear conic programming to analyze the convergence

of our proposed method. For the inner problems developed in our method, we show that

the positive definiteness of the generalized Hessian of the objective function in these in-

ner problems, a key property for ensuring the efficiency of using an inexact semismooth

Newton-CG method to solve the inner problems, is equivalent to an interesting condition

corresponding to the dual problems.

As a special case, linear symmetric cone programming is thoroughly examined under

this framework. Based on the the nice and simple structure of linear symmetric cone pro-

gramming and its dual, we characterize the Lipschitz continuity of the solution mapping

for the dual problem at the origin.

Numerical experiments on a variety of large scale convex linear and quadratic semidef-

inite programming show that the proposed method is very efficient. In particular, two

classes of convex quadratic semidefinite programming problems – the nearest correlation

matrix problem and the Euclidean distance matrix completion problem are discussed in

details. Extensive numerical results for large scale SDPs show that the proposed method

is very powerful in solving the SDP relaxations arising from combinatorial optimization

or binary integer quadratic programming.



Chapter 1
Introduction

In the recent years convex quadratic semidefinite programming (QSDP) problems have

received more and more attention. The importance of convex quadratic semidefinite

programming problems is steadily increasing thanks to the many important application

areas of engineering, mathematical, physical, management sciences and financial eco-

nomics. More recently, from the development of the theory in nonlinear and convex

programming [114, 117, 24], in this thesis we are strongly spurred by the study of the

theory and algorithm for solving large scale convex quadratic programming over special

symmetric cones. Because of the inefficiency of interior point methods for large scale

SDPs, we introduce a semismooth Newton-CG augmented Lagrangian method to solve

the large scale convex quadratic programming problems.

The important family of linear programs enters the framework of convex quadratic

programming with a zero quadratic term in their objective functions. For linear semidef-

inite programming, there are many applications in combinatorial optimization, control

theory, structural optimization and statistics, see the book by Wolkowicz, Saigal and

Vandenberghe [133]. Because of the simple structure of linear SDP and its dual, we ex-

tend the theory and algorithm to linear conic programming and investigate the conditions

of the convergence for the semismooth Newton-CG augmented Lagrangian algorithm.

1



1.1 Motivation and related approaches 2

1.1 Motivation and related approaches

Since the 1990s, semidefinite programming has been one of the most exciting and ac-

tive research areas in optimization. There are tremendous research achievement on the

theory, algorithms and applications of semidefinite programming. The standard convex

quadratic semidefinite programming (SDP) is defined to be

(QSDP ) min
1
2
⟨X, Q(X)⟩ + ⟨C, X⟩

s.t. A(X) = b,

X ≽ 0,

where Q : Sn → Sn is a given self-adjoint and positive semidefinite linear operator,

A : Sn → ℜm is a linear mapping, b ∈ ℜm, and Sn is the space of n × n symmetric

matrices endowed with the standard trace inner product. The notation X ≽ 0 means

that X is positive semidefinite. Of course, convex quadratic SDP includes linear SDP

as a special case, by taking Q = 0 in the problem (QSDP ) (see [19] and [133] for

example). When we use sequential quadratic programming techniques to solve nonlinear

semidefinite optimization problems, we naturally encounter (QSDP ).

Since Q is self-adjoint and positive semidefinite, it has a self-adjoint and positive

semidefinite square root Q1/2. Then the (QSDP ) can be equivalently written as the

following linear conic programming

min t + ⟨C, X⟩

s.t. A(X) = b,√
(t − 1)2 + 2∥Q1/2(X)∥2

F ≤ (t + 1),

X ≽ 0,

(1.1)

where ∥ · ∥F denotes Frobenius norm. This suggests that one may then use those well

developed and publicly available softwares, based on interior point methods (IPMs),

such as SeDuMi [113] and SDPT3 [128], and a few others to solve (1.1), and so the

problem (QSDP ), directly. For convex optimization problems, interior-point methods



1.1 Motivation and related approaches 3

(IPMs) have been well developed since they have strong theoretical convergence [82, 134].

However, since at each iteration these solvers require to formulate and solve a dense

Schur complement matrix (cf. [17]), which for the problem (QSDP ) amounts to a linear

system of dimension (m + 2 + n2) × (m + 2 + n2). Because of the very large size and

ill-conditioning of the linear system of equations, direct solvers are difficult to solve it.

Thus interior point methods with direct solvers, efficient and robust for solving small and

medium sized SDP problems, face tremendous difficulties in solving large scale problems.

By appealing to specialized preconditioners, interior point methods can be implemented

based on iterative solvers to overcome the ill-conditioning (see [44, 8]). In [81], the

authors consider an interior-point algorithm based on reducing a primal-dual potential

function. For the large scale linear system, the authors suggested using the conjugate

gradient (CG) method to compute an approximate direction. Toh et al [123] and Toh

[122] proposed inexact primal-dual path-following methods to solve a class of convex

quadratic SDPs and related problems.

There also exist a number of non-interior point methods for solving large scale convex

QSDP problems. Kočvara and Stingl [60] used a modified barrier method (a variant of the

Lagrangian method) combined with iterative solvers for convex nonlinear and semidef-

inite programming problems having only inequality constraints and reported computa-

tional results for the code PENNON [59] with the number of equality constraints up to

125, 000. Malick, Povh, Rendl, and Wiegele [73] applied the Moreau-Yosida regulariza-

tion approach to solve linear SDPs. As shown in the computational experiments, their

regularization methods are efficient on several classes of large-scale SDP problems (n not

too large, say n ≤ 1000, but with a large number of constraints). Related to the bound-

ary point method [88] and the regularization methods presented in [73], the approach of

Jarre and Rendl [55] is to reformulate the linear conic problem as the minimization of a

convex differentiable function in the primal-dual space.

Before we talk more about other numerical methods, let us first introduce some

applications of convex QSDP problems arising from financial economics, combinatorial

optimizaiton, second-order cone programming, and etc.
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1.1.1 Nearest correlation matrix problems

As an important statistical application of convex quadratic SDP problem, the nearest

correlation matrix (NCM) problem arises in marketing and financial economics. For

example, in the finance industry, compute stock data is often not available over a given

period and currently used techniques for dealing with missing data can result in computed

correlation matrices having nonpositive eigenvalues. Again in finance, an investor may

wish to explore the effect on a portfolio of assigning correlations between certain assets

differently from the historical values, but this again can destroy the semidefiniteness of

the matrix. The use of approximate correlation matrices in these applications can render

the methodology invalid and lead to negative variances and volatilities being computed,

see [33], [91], and [127].

For finding a valid nearest correlation matrix (NCM) to a given symmetric matrix

G, Higham [51] considered the following convex QSDP problem

(NCM) min
1
2
∥X − G∥2

s.t. diag(X) = e,

X ∈ Sn
+.

where e ∈ ℜn is the vector of all ones. The norm in the (NCM) problem can be Frobenius

norm, the H-weighted norm and the W -weighted norm, which will be given in details

in the later chapter. In [51], Higham developed an alternating projection method for

solving the NCM problems with a weighted Frobenius norm. However, due to the linear

convergence of the projection approach used by Higham [51], its convergence can be very

slow when solving large scale problems. Anjos et al [4] formulated the nearest correlation

matrix problem as an optimization problem with a quadratic objective function and

semidefinite programming constraints. Using such a formulation they derived and tested

a primal-dual interior-exterior-point algorithm designed especially for robustness and

handling the case where Q is sparse. However the number of variables is O(n2) and this

approach is presented as impractical for large n SDP problems. With three classes of

preconditioners for the augmented equation being employed, Toh [122] applied inexact
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primal-dual path-following methods to solve the weighted NCM problems. Numerical

results in [122] show that inexact IPMs are efficient and robust for convex QSDPs with

the dimension of matrix variable up to 1600.

Realizing the difficulties in using IPMs, many researchers study other methods to

solve the NCM problems and related problems. Malick [72] and Boyd and and Xiao

[18] proposed, respectively, a quasi-Newton method and a projected gradient method to

the Lagrangian dual problem of the problem (NCM) with the continuously differentiable

dual objective function. Since the dimension of the variables in the dual problem is

only equal to the number of equality constraints in the primal problem, these two dual

based approaches are relatively inexpensive at each iteration and can solve some of these

problems with size up to serval thousands. Based on recent developments on the strongly

semismoothness of matrix valued functions, Qi and Sun developed a nonsmooth Newton

method with quadratic convergence for the NCM problem in [90]. Numerical experiments

in [90] showed that the proposed nonsmooth Newton method is highly effective. By using

an analytic formula for the metric projection onto the positive semidefinite cone, Qi and

Sun also applied an augmented Lagrangian dual based approach to solve the H-norm

nearest correlation matrix problems in [92]. The inexact smoothing Newton method

designed by Gao and Sun [43] to calibrate least squares semidefinite programming with

equality and inequality constraints is not only fast but also robust. More recently, a

penalized likelihood approach in [41] was proposed to estimate a positive semidefinite

correlation matrix from incomplete data, using information on the uncertainties of the

correlation coefficients. As stated in [41], the penalized likelihood approach can effectively

estimate the correlation matrices in the predictive sense when the dimension of the matrix

is less than 2000.

1.1.2 Euclidean distance matrix problems

An n × n symmetric matrix D = (dij) with nonnegative elements and zero diagonal is

called a pre-distance matrix (or dissimilarity matrix). In addition, if there exist points
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x1, x2, . . . , xn in ℜr such that

dij = ∥xi − xj∥2, i, j = 1, 2, . . . , n, (1.2)

then D is called a Euclidean distance matrix (EDM). The smallest value of r is called

the embedding dimension of D. The Euclidean distance matrix completion problem con-

sists in finding the missing elements (squared distances) of a partial Euclidean distance

matrix D. It is known that the EDM problem is NP-hard [6, 79, 105]. For solving a

wide range of Euclidean distance geometry problems, semidefinite programming (SDP)

relaxation techniques can be used in many of which are concerning Euclidean distance,

such as data compression, metric-space embedding, covering and packing, chain folding

and machine learning problems [25, 53, 67, 136, 130]. Second-order cone programming

(SOCP) relaxation was proposed in [35, 125]. In recent years, sensor network localiza-

tion and molecule structure prediction [13, 34, 80] have received a lot of attention as the

important applications of Euclidean distance matrices.

The sensor network localization problem consists of locating the positions of wireless

sensors, given only the distances between sensors that are within radio range and the

positions of a subset of the sensors (called anchors). Although it is possible to find the

position of each sensor in a wireless sensor network with the aid of Global Positioning

System (GPS) [131] installed in all sensors, it is not practical to use GPS due to its high

power consumption, expensive price and line of sight conditions for a large number of

sensors which are densely deployed in a geographical area.

There have been many algorithms published recently that solve the sensor network

localization problem involving SDP relaxations and using SDP solvers. The semidefinite

programming (SDP) approach to localization was first described by Doherty et al [35]. In

this algorithm, geometric constraints between nodes are represented by ignoring the non-

convex inequality constraints but keep the convex ones, resulting in a convex second-order

cone optimization problem. A drawback of their technique is that all position estimations

will lie in the convex hull of the known points. A gradient-descent minimization method,

first reported in [66], is based on the SDP relaxation to solve the distance geometry

problem.
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Unfortunately, in the SDP sensor localization model the number of constraints is in

the order of O(n2), where n is the number of sensors. The difficulty is that each iteration

of interior-point algorithm SDP solvers needs to factorize and solve a dense matrix linear

system whose dimension is the number of constraints. The existing SDP solvers have

very poor scalability since they can only handle SDP problems with the dimension and

the number of constraints up to few thousands. To overcome this difficulty, Biswas and

Ye [12] provided a distributed or decomposed SDP method for solving Euclidean metric

localization problems that arise from ad hoc wireless sensor networks. By only using

noisy distance information, the distributed SDP method was extended to the large 3D

graphs by Biswas, Toh and Ye [13], using only noisy distance information, and with out

any prior knowledge of the positions of any of the vertices.

Another instance of the Euclidean distance geometry problem arises in molecular

conformation, specifically, protein structure determination. It is well known that protein

structure determination is of great importance for studying the functions and properties

of proteins. In order to determine the structure of protein molecules, KurtWüuthrich

and his co-researchers started a revolution in this field by introducing nuclear magnetic

resonance (NMR) experiments to estimate lower and upper bounds on interatomic dis-

tances for proteins in solution [135]. The book by Crippen and Havel [34] provided

a comprehensive background to the links between molecule conformation and distance

geometry.

Many approaches have been developed for the molecular distance geometry problem,

see a survey in [137]. In practice, the EMBED algorithm, developed by Crippen and

Havel [34], can be used for dealing with the distance geometry problems arising in NMR

molecular modeling and structure determination by performing some bound smoothing

techniques. Based on graph reduction, Hendrickesom [49] developed a software package,

ABBIE, to determinate the molecular structure with a given set of distances. More

and Wu [80] showed in the DGSOL algorithm that global solutions of the molecular

distance geometry problems can be determined reliably and efficiently by using global

smoothing techniques and a continuation approach for global optimization. The distance
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geometry program APA, based on an alternating projections algorithm proposed by

Glunt et al [94], is designed to determine the three-dimensional structure of proteins

using distance geometry. Biswas, Toh and Ye also applied the distributed algorithm in

[13] to reconstruct reliably and efficiently the configurations of large 3D protein molecules

from a limited number of given pairwise distances corrupted by noise.

1.1.3 SDP relaxations of nonconvex quadratic programming

Numerous combinatorial optimization problems can be cast as the following quadratic

programming in ±1 variables,

max ⟨x, Lx⟩ such that x ∈ {−1, 1}n, (1.3)

where L is a symmetric matrix. Although problem (1.3) is NP-hard, semidefinite relax-

ation technique can be applied to solve the problem (1.3) for obtaining a solvable problem

by relaxing the constraints and perturbing the objective function. Let X = xxT , we get

the following relaxation problem:

max ⟨L, X⟩ such that diag(X) = e, X ≽ 0, (1.4)

where e is the vector of ones in ℜn. Of course, a binary quadratic integer quadratic

programming problem takes the form as follows

max ⟨y, Qy⟩ such that y ∈ {0, 1}n, (1.5)

where Q is a symmetric (non positive semidefinite) matrix of order n. The problem (1.4)

is equivalent to (1.3) via x = 2y−e, where y ∈ {0, 1}n. In 1991, Lovász and Schrijver [71]

introduced the matrix-cut operators for 0 − 1 integer programs. The problem (1.5) can

be used to model some specific combinatorial optimization problems where the special

structure of the problem yields SDP models [36, 133, 120]. However, this SDP relaxation

enables the solution of the problem (1.4) that are too large for conventional methods to

handle efficiently.

Many graph theoretic optimization problems can be stated in this way: to find a max-

imum cardinality stable set (MSS) of a given graph. The maximum stable set problem is
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a classical NP-Hard optimization problem which has been studied extensively. Numerous

approaches for solving or approximating the MSS problem have been proposed. A survey

paper [14] by Bomze et al. gives a broad overview of progress made on the maximum

clique problem, or equivalently the MSS problem, in the last four decades. Semidefinite

relaxations have also been widely considered for the stable set problem, introduced by

Grötschel, Lovász and Schrijver [47]. More work on this problem includes Mannino and

Sassano [74], Sewell [107], Pardalos and Xue [86], and Burer, Monteiro, and Zhang [20].

For the subset of large scale SDPs from the collection of random graphs, the relaxation

of MSS problems can be solved by the iterative solvers based on the primal-dual interior-

point method [121], the boundary-point method [88], and the modified barrier method

[60]. Recently, low-rank approximations of such relaxations have recently been used by

Burer, Monteiro and Zhang (see [21]) to get fast algorithms for the stable set problem

and the maximum cut problem.

Due to the fast implementation of wireless telephone networks, semidefinite relax-

ations for frequency assignment problems (FAP) has grown quickly over the past years.

Even though all variants of FAP are theoretically hard, instances arising in practice

might be either small or highly structured such that enumerative techniques, such as

the spectral bundle (SB) method [48], the BMZ method [21], and inexact interior-point

method [121] are able to handle these instances efficiently. This is typically not the case.

Frequency assignment problems are also hard in practice in the sense that practically

relevant instances are too large to be solved to optimality with a good quality guarantee.

The quadratic assignment problem (QAP) is a well known problem from the category

of the facilities location problems. Since it is NP-complete [104], QAP is one of the most

difficult combinatorial optimization problems. Many well known NP-complete problems,

such as traveling salesman problem and the graph partitioning problem, can be easily

formulated as a special case of QAP. A comprehensive summary on QAP is given in [5, 23,

84]. Since it is unlikely that these relaxations can be solved using direct algorithms, Burer

and Vandenbussche [22] proposed a augmented Lagrangian method for optimizing the

lift-and-project relaxations of QAP and binary integer programs introduced by Lovász
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and Schrijver [71]. In [95], Rendl and Sotirov discussed a variant of the bundle method

to solve the relaxations of QAP at least approximately with reasonable computational

effort.

1.1.4 Convex quadratic SOCP problems

Let X and Y be finite dimensional real Hilbert spaces each equipped with a scalar

product ⟨·, ·⟩ and its induced norm ∥ · ∥. The second-order cone programming (SOCP)

problem with a convex quadratic objective function

(QSOCP ) min
1
2
⟨x, Qx⟩ + ⟨c0, x⟩

s.t. ∥Ai(x) + bi∥ ≤ ⟨ci, x⟩ + di, i = 1, . . . , p,

where Q is a self-adjoint and positive semidefinite linear operator in X, c0 ∈ X, A : X →

Y is a linear mapping, ci ∈ X, bi ∈ Y, and di ∈ ℜ, for i = 1, . . . , p. Thus the inequality

constraint in (QSOCP ) can be written as an affine mapping:

∥Ai(x) + bi∥ ≤ ⟨ci, x⟩ + di ⇔

 cT
i

Ai

x +

 di

bi

 ∈ Kqi ,

where Kqi denotes the second-order cone of dimension qi defined as

Kqi := {x = (x0, x̃) ∈ ℜ × ℜqi−1 | ∥x̃∥ ≤ x0}. (1.6)

Since the objective is a convex quadratic function and the constraints define a convex

set, the problem (QSOCP) is a convex quadratic programming problem. Without the

quadratic term in the objective function, the problem (QSOCP ) becomes the standard

SOCP problem which is a linear optimization problem over a cross product of second-

order cones.

A wide range of problems can be formulated as SOCP problems; they include linear

programming (LP) problems, convex quadratically constrained quadratic programming

problems, filter design problems [30, 126], antenna array weight design [62, 63, 64], and

problems arising from limit analysis of collapses of solid bodies [29]. In [69], Lobo et al.
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introduced an extensive list of applications problems that can be formulated as SOCPs.

For a comprehensive introduction to SOCP, we refer the reader to the paper by Alizadeh

and Goldfarb [2].

As a special case of SDP, SOCP problems can be solved as SDP problems in polyno-

mial time by interior point methods. However, it is far more efficient computationally to

solve SOCP problems directly because of numerical grounds and computational complex-

ity concerns. There are various solvers available for solving SOCP. SeDuMi is a widely

available package [113] that is based on the Nesterov-Todd method and presents a theo-

retical basis for his computational work in [112]. SDPT3 [128] implements an infeasible

path-following algorithm for solving conic optimization problems involving semidefinite,

second-order and linear cone constraints. Sparsity in the data is exploited whenever

possible. But these IPMs sometimes fail to deliver solutions with satisfactory accuracy.

Then Toh et al. [123] improved SDPT3 by using inexact primal-dual path-following algo-

rithms for a special class of linear, SOCP and convex quadratic SDP problems. However,

restricted by the fact that interior point algorithms need to store and factorize a large

(and often dense) matrix, we try to solve large scale convex quadratic SOCP problems

by the augmented Lagrangian method as a special case of convex QSDPs.

1.2 Organization of the thesis

In this thesis, we study a semismooth Newton-CG augmented Lagrangian dual approach

to solve large scale linear and convex quadratic programming with linear, SDP and SOC

conic constraints. Our principal objective in this thesis is twofold:

• to undertake a comprehensive introduction of a semismooth Newton-CG aug-

mented Lagrangian method for solving large scale linear and convex quadratic

programs over symmetric cones; and

• to design efficient practical variant of the theoretical algorithm and perform exten-

sive numerical experiments to show the robustness and efficiency of our proposed

method.
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In the recent years, taking the benefit of the great development of theories for nonlinear

programming, large scale convex quadratic programming over symmetric cones have re-

ceived more and more attention in combinatorial optimization, optimal control problems,

structural analysis and portfolio optimization. Chapter 1 contains an overview on the

development and related work in the area of large scale convex quadratic programming.

From the view of the theory and application of convex quadratic programs, we present

the motivation to develop the method proposed in this thesis.

Under the framework of Euclidean Jordan algebras over symmetric cones in Faraut

and Korányi [38], many optimization-related classical results can be generalized to sym-

metric cones [118, 129]. For nonsmooth analysis of vector valued functions over the

Euclidean Jordan algebra associated with symmetric matrices, see [27, 28, 109] and asso-

ciated with the second order cone, see [26, 40]. Moreover, [116] and [57] study the analyt-

icity, differentiability, and semismoothness of Löwner’s operator and spectral functions

associated with the space of symmetric matrices. All these development is the theoretical

basis of the augmented Lagrangian methods for solving convex quadratic programming

over symmetric cones. In Chapter 2, we introduce the concepts and notations of (direc-

tional) derivative of semismooth functions. Based on the Euclidean Jordan algebras, we

discussed the properties of metric projector over symmetric cones.

The Lagrangian dual method was initiated by Hestenes [50] and Powell [89] for solving

equality constrained problems and was extended by Rockafellar [102, 103] to deal with

inequality constraints for convex programming problems. Many authors have made con-

tributions of global convergence and local superlinear convergence (see, e.g., Tretyakov

[119] and Bertsekas [10, 11]). However, it has long been known that the augmented

Lagrangian method for convex problems is a gradient ascent method applied to the

corresponding dual problems [100]. This inevitably leads to the impression that the aug-

mented Lagrangian method for solving SDPs may converge slowly for the outer iteration.

In spite of that, Sun, Sun, and Zhang [117] revealed that under the strong second or-

der sufficient condition and constraint nondegeneracy proposed and studied by [114], the

augmented Lagrangian method for nonlinear semidefinite programming can be locally
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regarded as an approximate generalized Newton method applied to solve a semismooth

equation. Moreover, Liu and Zhang [68] extended the results in [117] to nonlinear op-

timization problems over the second-order cone. The good convergence for nonlinear

SDPs and SOCPs inspired us to investigate the augmented Lagrangian method for con-

vex quadratic programming over symmetric cones.

Based on the convergence analysis for convex programming [102, 103], under the

strong second order sufficient condition and constraint nondegeneracy studied by [114],

we design the semismooth Newton-CG augmented Lagrangian method and analyze its

convergence for solving convex quadratic programming over symmetric cones in Chapter

3. Since the projection operators over symmetric cones are strongly semismooth [115], in

the second part of this chapter we introduce a semismooth Newton-CG method (SNCG)

for solving inner problems and analyze its global and local superlinear (quadratic) con-

vergence.

Due to the special structure of linear SDP and its dual, the constraint nondegeneracy

condition and the strong second order sufficient condition developed by Chan and Sun

[24] provided a theoretical foundation for the analysis of the convergence rate of the

augmented Lagrangian method for linear SDPs. In Chapter 4, motivated by [102, 103],

[114], and [24], under the uniqueness of Lagrange multipliers, we establish the equiva-

lence among the Lipschitz continuity of the solution mapping at the origin, the second

order sufficient condition, and the strict primal-dual constraint qualification. For inner

problems, we show that the constraint nondeneracy for the corresponding dual problems

is equivalent to the positive definiteness of the generalized Hessian of the objective func-

tions in inner problems. This is important for the success of applying an iterative solver

to the generalized Newton equations in solving these inner problems.

The fifth chapter and sixth chapter are on numerical issues of the semismooth Newton-

CG augmented Lagrangian algorithm for linear and convex quadratic semidefinite pro-

gramming respectively. We report numerical results in these two chapters for a variety

of large scale linear and convex quadratic SDPs and SOCPs. Numerical experiments

show that the semismooth Newton-CG augmented Lagrangian method is a robust and
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effective iterative procedure for solving large scale linear and convex quadratic symmetric

cone programming and related problems.

The final chapter of this thesis, seventh Chapter, states conclusions and lists di-

rections for future research about the semismooth Newton-CG augmented Lagrangian

method.



Chapter 2
Preliminaries

To analyze the convex quadratic programming problems over symmetric cones, we use

results from semismooth matrix functions and the metric projector onto the symmetric

cones. This chapter will cite some definitions and properties that are essential to our

discussion.

2.1 Notations and Basics

2.1.1 Notations

Let X and Y be two finite-dimensional real Hilbert spaces. Let O be an open set in

X and Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set O.

Then Φ is almost everywhere F (réchet)-differentiable by Rademacher’s theorem. Let

DΦ denote the set of F(réchet)-differentiable points of Φ in O. Then, the Bouligand

subdifferential of Φ at x ∈ O, denoted by ∂BΦ(x), is

∂BΦ(x) :=
{

lim
k→∞

JΦ(xk) | xk ∈ DΦ, xk → x

}
,

where JΦ(x) denotes the F-derivative of Φ at x. Clarke’s generalized Jacobian of Φ at

x [32] is the convex hull of ∂BΦ(x), i.e.,

∂Φ(x) = conv{∂BΦ(x)}. (2.1)

15
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Mifflin first introduced the semismoothness of functionals in [77] and then Qi and

Sun [93] extended the concept to vector valued functions. Suppose that X, X′ and Y

are finite-dimensional real Hilbert spaces with each equipped with a scalar product ⟨·, ·⟩

and its induced norm ∥ · ∥.

Definition 2.1. Let Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the

open set O. We say that Φ is semismooth at a point x ∈ O if

(i) Φ is directionally differentiable at x; and

(ii) for any ∆x ∈ X and V ∈ ∂Φ(x + ∆x) with ∆x → 0,

Φ(x + ∆x) − Φ(x) − V (∆x) = o(∥∆x∥).

Furthermore, Φ is said to be strongly semismooth at x ∈ O if Φ is semismooth at x and

for any ∆x ∈ X and V ∈ ∂Φ(x + ∆x) with ∆x → 0,

Φ(x + ∆x) − Φ(x) − V (∆x) = O(∥∆x∥2). (2.2)

The Bouligand-subdifferential of composite functions proved in [114, Lemma 2.1] will

be given here.

Lemma 2.1. Let F : X → Y be a continuously differentiable function on an open

neighborhood O of x̄ ∈ X and Φ : OY ⊆ X′ be a locally Lipschitz continuous function on

an open set OY containing ȳ := F (x̄). Suppose that Φ is directionally differentiable at

every point in OY and that JF (x̄) is onto. Then it holds that

∂B(Φ ◦ F )(x̄) = ∂BΦ(ȳ)JF (x̄),

where ◦ stands for the composite operation.

For a closed set D ⊆ X, let dist(x,D) denote the distance from a point x ∈ X to D,

that is,

dist(x,D) := inf
z∈D

∥x − z∥.
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For any closed set D ⊆ X, the contingent and inner tangent cones of D at x, denoted

by TD(x) and T i
D(x) respectively, can be written in the form

TD(x) = {h ∈ X | ∃tn ↓ 0, dist(x + tnh,D) = o(tn)},

T i
D(x) = {h ∈ X | dist(x + th,D) = o(t), t ≥ 0}.

In general, these two cones can be different and inner tangent cone can be nonconvex.

However, for convex closed sets, the contingent and inner tangent cones are equal to each

other and convex [16, Proposition 2.55].

Proposition 2.2. If D is a convex closed set and x ∈ D, then

TD(x) = T i
D(x).

It just follows from the above proposition that for convex sets, since the contingent and

inner tangent cones are equal, or equivalently that

TD(x) = {h ∈ X | dist(x + th,D) = o(t), t ≥ 0}. (2.3)

So in this thesis, for convex closed set we will speak of tangent cones rather than contin-

gent or inner tangent cones.

2.1.2 Euclidean Jordan algebra

In this subsection, we briefly describe some concepts, properties, and results from Eu-

clidean Jordan algebras that are needed in this thesis. All these can be found in the

articles [39, 106] and the book [38] by Faraut and Korányi.

A Euclidean Jordan algebra is a vector space with the following property:

Definition 2.2. A Euclidean Jordan algebra is a triple (V, ◦, ⟨·, ·⟩) where (V, ⟨·, ·⟩) is

a finite dimensional real inner product space and a bilinear mapping (Jordan product)

(x, y) → x ◦ y from V × V into V is defined with the following properties

(i) x ◦ y = y ◦ x for all x, y ∈ V,
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(ii) x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) for all x, y ∈ V, where x2 := x ◦ x, and

(iii) ⟨x ◦ y, z ⟩ = ⟨ y, x ◦ z ⟩ for all x, y, z ∈ V.

In addition, we assume that there is an element e ∈ V (called the unit element) such

that x ◦ e = x for all x ∈ V.

Henceforth, let V be a Euclidean Jordan algebra and call x ◦ y the Jordan product

of x and y. For an element x ∈ V, let m(x) be the degree of the minimal polynomial of

x. We have

m(x) = min{k > 0 | (e, x, x2, . . . , xk) are linearly dependent},

and define the rank of V as r = max{m(x) | x ∈ V}. An element c ∈ V is an idempotent

if c2 = c. Two idempotents c and d are said to be orthogonal if c◦d = 0. We say that an

idempotent is primitive if it is nonzero and cannot be written as a sum of two nonzero

idempotents. We say that a finite set {c1, . . . , cr} is a Jordan frame in V if each cj is a

primitive idempotent (i.e., c2
i = ci) and if

ci ◦ cj = 0 if i ̸= j and
r∑

k=1

ck = e.

Theorem 2.3. (Spectral theorem, second version [38]). Let V be a Euclidean Jordan

algebra with rank r. Then for every x ∈ V, there exists a Jordan frame {c1, . . . , cr} and

real numbers λ1, . . . , λr such that the following spectral decomposition of x satisfied,

x = λ1c1 + · · · + λrcr. (2.4)

The numbers λj are uniquely determined by x and called the eigenvalues of x. Further-

more, the determinant and trace of x are given by

det(x) =
r∏

j=1

λj , tr(x) =
r∑

j=1

λj .

In a Euclidean Jordan algebra V , for an element x ∈ V, we define the corresponding

linear transformation (Lyapunov transformation) L(x) : V → V by

L(x)y = x ◦ y.
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Note that for each x ∈ V, L(x) is a self-adjoint linear transformation with respect to the

inner product in the sense that

⟨L(x)y, z⟩ = ⟨y, L(x)z⟩, ∀ y, z ∈ V.

Let ∥ · ∥ be the norm on V induced by inner product

∥x∥ :=
√

⟨x, x⟩ =

 r∑
j=1

λ2
j (x)

1/2

, x ∈ V.

And we say that x and y operator commute if L(x) and L(y) commute, i.e., L(x)L(y) =

L(y)L(x). It is well known that x and y operator commute if and only if x and y have

their spectral decompositions with respect to a common Jordan frame ([106, Theorem

27]). For examples, if V = Sn, matrices X and Y operator commute if and only if

XY = Y X; if V = Kq, vectors x and y operator commute if and only if either ỹ is a

multiple of x̃ or x̃ is a multiple of ỹ.

A symmetric cone [38] is the set of all squares

K = {x2 | x ∈ V}. (2.5)

When V = Sn,ℜq or ℜn, we have the following results:

• Case V = ℜn. Consider ℜn with the (usual) inner product and Jordan product

defined respectively by

⟨x, y ⟩ =
n∑

i=1

xiyi and x ◦ y = x ∗ y,

where xi denotes the ith component of x, and x ∗ y = (xiyi) denotes the compo-

nentwise product of vectors x and y. Then ℜn is a Euclidean Jordan algebra with

ℜn
+ as its cone of squares.

• Case V = Sn. Let Sn be the set of all n × n real symmetric matrices with the

inner and Jordan product given by

⟨X, Y ⟩ := trace(XY ) and X ◦ Y :=
1
2
(XY + Y X).
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In this setting, the cone of squares Sn
+ is the set of all positive semidefinite matrices

in Sn. The identity matrix is the unit element. The set {E1, E2, . . . , En} is a

Jordan frame in Sn where Ei is the diagonal matrix with 1 in the (i, i)-slot and

zeros elsewhere. Note that the rank of Sn is n. Given any X ∈ Sn, there exists an

orthogonal matrix P with columns of eigenvectors p1, p2, . . . , pn and a real diagonal

matrix D = diag(λ1, λ2, . . . , λn) such that X = PDP T . Clearly,

X = λ1p1p
T
1 + · · · + λnpnpT

n

is the spectral decomposition of X.

• Case V = ℜq. Consider ℜq(q > 1) where any element x is written as x = (x0; x̃)

with x0 ∈ ℜ and x̂ ∈ ℜq−1. The inner product in ℜq is the usual inner product.

The Jordan product x ◦ y in Rq is defined by

x ◦ y =

 xT y

y0x̃ + x0ỹ


In this Euclidean Jordan algebra (ℜq, ◦, ⟨·, ·⟩), the cone of squares, denoted by Kq

is called the Lorentz cone (or the second-order cone). It is given by

Kq = {x : ∥x̃∥ ≤ x0}.

The unit element in Kq is e = (1; 0). We note the spectral decomposition of any

x ∈ ℜq:

x = λ1u1 + λ2u2,

where for i = 1, 2,

λi = x0 + (−1)i∥x̃∥ and ui =
1
2
(1; (−1)iw),

where w = x̃/∥x̃∥ if x̃ ̸= 0; otherwise w can be any vector in ℜq−1 with ∥w∥ = 1.

Let c be an idempotent element (if c2 = c) in a Jordan algebra V satisfying 2L3(c)−

3L2(c) + L(c) = 0. Then L(c) has three distinct eigenvalues 1, 1
2 , and 0 with the corre-

sponding eigenspace V(c, 1), V(c, 1
2), and V(c, 0), where

V(c, i) := {x ∈ V | L(c)x = ix, i = 1,
1
2
, 0}.
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Then V is the direct sum of those eigenspaces

V = V(c, 1) ⊕ V(c,
1
2
) ⊕ V(c, 0) (2.6)

is called the Peirce decomposition of V with respect to the idempotent c.

A Euclidean Jordan algebra is said to be simple if it is not the direct sum of two

Euclidean Jordan algebras. In the sequel we assume that V is a simple Euclidean Jordan

algebra of rank r and dim(V) = n. Then, we know that from the spectral decomposition

theorem that an idempotent c is primitive if and only if dim(V(c, 1)) = 1 [38, Page 65].

Let {c1, c2, . . . , cr} be a Jordan frame in a Euclidean Jordan algebra V. Since the

operators L(ci) commute [38, Lemma IV.1.3], for i, j ∈ {1, 2, . . . , r}, we consider the

eigenspaces

Vii := V(ci; 1) = ℜci and

Vij := V(ci,
1
2) ∩ V(cj ,

1
2) when i ̸= j.

(2.7)

Then we have the following important results from [38, Theorem IV.2.1, Lemma IV.2.2].

Theorem 2.4. (i) The space V decomposes in the following direct sum:

V =
⊕
i≤j

Vij .

(ii) If we denote by Pij the orthogonal projection onto Vij, then

Pii = P(ci) and Pij = 4L(ci)L(cj), (2.8)

where P(c) is the projection in the Peirce decomposition onto V(c, 1), given by P(c) =

L(c)(2L(c) − 1).

Let d denote the dimension of Vij . Since dim(Vij) = dim(Vkl) ([38, Corollary IV.2.6]),

then

n = r +
d

2
r(r − 1). (2.9)
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2.2 Metric projectors

Let X be a finite dimensional real Hilbert space each equipped with a scalar product

⟨·, ·⟩ and its induced norm ∥ · ∥ and K be a closed convex set in X. Let ΠK : X → X

denote the metric projection over K, i.e., for any x ∈ X, ΠK(x) is the unique optimal

solution to the convex programming problem:

min 1
2⟨ z − x, z − x ⟩

s.t. z ∈ K.
(2.10)

For any x ∈ X, let x+ := ΠK(x) and x− := ΠK∗(−x), where K∗ is the dual cone of K,

i.e.,

K∗ := {v ∈ X | ⟨ v, z ⟩ ≥ 0 ∀ z ∈ K}.

We then have the Moreau decomposition [78],

x = x+ − x− and ⟨x+, x−⟩ = 0 ∀x ∈ X,

It is well known [138] that the metric projector ΠK(·) is Lipschitz continuous with the

Lipschitz constant 1, that is, for any two vectors y, z ∈ K,

∥ΠK(y) − ΠK(z)∥ ≤ ∥y − z∥.

Hence, ΠK(·) is F -differentiable almost everywhere in X and for any x ∈ X, ∂ΠK(x) is

well defined. The following lemma is the general properties of ∂ΠK(·) from [76, Propo-

sition 1].

Lemma 2.5. Let K ⊆ X be a closed convex set. Then, for any x ∈ X and V ∈ ∂ΠK(x),

it holds that

(i) V is self-adjoint.

(ii) ⟨ d, V d ⟩ ≥ 0, ∀ d ∈ X.

(iii) ⟨V d, d − V d ⟩ ≥ 0, ∀ d ∈ X.
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In this thesis, we assume that K is a closed convex cone with K∗ = K. For the study

of the later chapters, K contains ℜn
+, Sn

+ and Kq, which is a symmetric cone satisfying

(2.5).

In the following discussion, we represent the properties of the metric projectors over

symmetric cones defined in a Euclidean Jordan algebra results from Euclidean Jordan

algebras given by [116, 118, 129].

Under a simple Euclidean Jordan algebra V with rank r, we can define a Löwner’s

operator [58] associated with V by

ϕV(x) :=
r∑

i=1

ϕ(λi(x))ci, (2.11)

where ϕ : ℜ → ℜ is a scalar valued function and x ∈ V has the spectral decomposition

as in (2.4). In particular, let ϕ(t) = t+ := max(0, t), t ∈ ℜ, Löwner’s operator becomes

the metric projection operator x over the symmetric cone K, i.e.,

x+ =
r∑

i=1

(λi(x))+ci.

Let τ = (τ1, τ2, . . . , τr) ∈ ℜr. Suppose that ϕ is differentiable at τi, for i = 1, 2, . . . , r.

Define the first divided difference of ϕ at τ , denoted by ϕ[1](τ), as the r × r symmetric

matrix with its ijth entry (ϕ[1](τ))ij given by [τi, τj ], where

[τi, τj ] :=


ϕ(τi)−ϕ(τj)

τi−τj
if τi ̸= τj

ϕ′(τi) if τi = τj

, i, j = 1, 2, . . . , r.

From Koarányi [58, Page 74] and [116, Theorem 3.2], the following proposition shows that

ϕV is (continuously) differentiable at x if and only if ϕ(·) is (continuously) differentiable

at λi(x), for i = 1, 2, . . . , r.

Theorem 2.6. Suppose that x =
∑r

i=1 λi(x)ci defined by (2.4). The ϕV is (continu-

ously) differentiable at x if and only if for each i = 1, 2, . . . , r, ϕ(·) is (continuously)

differentiable at λi(x) and for any h ∈ V, the derivative of ϕV(x) is given by

(ϕ
′
V)(x)h =

r∑
i=1

(ϕ[1](τ))ii⟨ci, h⟩ci +
∑

1≤i<l≤r

4(ϕ[1](τ))ilci ◦ (ci ◦ h). (2.12)
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When ϕ(t) = t+, ϕ(·) is differentiable almost everywhere except t = 0. Therefore, we

will next introduce the Bouligand-subdifferential of ϕV(x) when x has zero eigenvalues,

which is based on the report [118] on which the thesis [129] is based.

Suppose there exists two integers s1 and s2 such that the eigenvalues of x are arranged

in the decreasing order

λ1(x) ≥ · · · ≥ λs1(x) > 0 = λs1+1(x) = · · · = λs2(x) > λs2+1(x) ≥ · · · ≥ λr(x). (2.13)

Let 0 < τ ≤ min{λs1(x)/2,−λs2+1(x)}. Define a function ϕ̂τ : ℜ → ℜ+ as

ϕ̂τ (t) =


t if t > τ

2t − τ if t ∈ [τ/2, τ ]

0 if t < τ/2.

For t ∈ ℜ, let ϕ̃τ (t) := ϕ(t) − ϕ̂τ (t). Define

ℜ|β|
> := {z ∈ ℜ|β| | z1 ≥ z2 ≥ · · · ≥ z|β|, zi ̸= 0 ∀ i},

U|β| := {Ω | Ω = lim
k→∞

ϕ[1](zk), zk → 0, zk ∈ R
|β|
> }.

Proposition 2.7. Suppose that x ∈ V has eigenvalues satisfying (2.13). Then W ∈

∂B(ϕ̃τ
V)(x) if and only if there exist a Ω ∈ U|β| and a Jordan frame {c̃s1+1, . . . , c̃s2+1}

satisfying c̃s1+1 + · · · + c̃s2 = cs1+1 + · · · + · · · + cs2, such that

W (h) =
s2∑

i=s1+1

Ωii⟨c̃i, h⟩c̃i +
∑

s1+1≤i<l≤s2

4Ω(i−s1)(l−s1)c̃i ◦ (c̃i ◦ h), ∀h ∈ V.

Furthermore, if W ∈ ∂(ϕ̃τ
V)(x), we have that W − W 2 is positive semidefinite.

In particular, for any h ∈ V, define

W I(h) =
s2∑

i=s1+1

⟨c̃i, h⟩c̃i +
∑

s1+1≤i<l≤s2

4c̃i ◦ (c̃i ◦ h).

Then, from Proposition 2.7, we know that

W I ∈ ∂B(ϕ̃τ
V)(x)
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Under a simple Euclidean Jordan algebra V with rank r, the Bouligand-subdifferential

of the metric projection ΠK(·) is given by

∂BΠK(x) = (ϕ̂τ
V)′(x) + ∂B(ϕ̃τ

V)(x). (2.14)

In particular, there are two interesting elements V 0 and V I in ∂BΠK(x), given by

V 0 = (ϕ̂τ
V)′(x) and V I = (ϕ̂τ

V)′(x) + W I . (2.15)

Next based on the matrix representations of elements in the symmetric cones, we

introduce some definitions about x+ which will be used later.

For 1 ≤ i < l ≤ r, there exist d mutually orthonormal vectors {v(1)
il (x), v(2)

il (x), . . . , v(d)
il (x)}

in V such that

Pil(x) =
d∑

j=1

⟨v(j)
il (x), · ⟩v(j)

il (x),

where d = dim(Vil) satisfies (2.9). Then{
c1(x), c2(x), . . . , cr(x), v(1)

il (x), v(2)
il (x), . . . , v(d)

il (x), 1 ≤ i < l ≤ r
}

is an orthonormal basis of V. Define three index sets

α := {1, . . . , s1}, β := {s1 + 1, . . . , s2}, γ := {s2 + 1, . . . , r}. (2.16)

For the simplicity of the notation, define hii := Piih and hil := Pilh, for 1 ≤ i ≤ l ≤ r.

Then, corresponding to three index sets, we can denote that

hαα =
s1∑

i=1

hii +
∑

1≤i<l≤s1

hjl, hαβ =
s1∑

i=1

s2∑
l=s1+1

hil,

hαγ =
s1∑

i=1

r∑
l=s2+1

hil, hββ =
s2∑

i=s1+1

hii +
∑

s1+1≤i<l≤s2

hjl,

hβγ =
s2∑

i=s1+1

r∑
l=s2+1

hil, hγγ =
r∑

i=s2+1

hii +
∑

s2+1≤i<l≤r

hjl.

(2.17)

And define

Uα := [c1, c2, . . . , v
(j)
il , (j = 1, . . . , d, i = 1, . . . , s1, l = i + 1, . . . , r)],

Uβ := [cs1+1, . . . , cs2 , v
(j)
il , (j = 1, . . . , d, i = s1 + 1, . . . , s2, l = i + 1, . . . , r)]

Uγ := [cs2+1, . . . , cr, v
(j)
il , (j = 1, . . . , d, i = s1 + 1, . . . , s2, l = i + 1, . . . , r)]
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Let U = [Uα, Uβ , Uγ ] and {u1, u2, . . . , un} be the columns of U . For any z ∈ V, let L(z),

P (z), Pil(z) be the corresponding (matrix) representations of L(z), P(z) and Pil(z) with

respect to the basis {u1, u2, . . . , un}. Let ẽ denote the coefficients of e with respect to

the basis {u1, u2, . . . , un}, i.e.,

e =
n∑

i=1

⟨e, ui⟩ui = Uẽ.

And Ũα, Ũβ , and Ũγ denote the coefficients of e with respect to the basis {u1, u2, . . . , un}.

Then, the projector x+ ∈ K can be rewritten as

x+ = U(L(x))+ẽ

Definition 2.3. For any x ∈ V, suppose that the eigenvalues of x satisfy (2.13), the

tangent cone of K at x+ is given by

TK(x+) = {h ∈ V | hββ + hβγ + hγγ ≽ 0}. (2.18)

The lineality space of TK(x+), i.e., the largest linear space in TK(x+), denoted by lin(TK(x+)),

takes the following form:

lin(TK(x+)) = {h ∈ V | hββ = 0, hβγ = 0, hγγ = 0} (2.19)

The critical cone of K at x+ is defined as

C(x+) := TK(x+) ∩ (x+ − x)⊥ = {h ∈ V | hββ ≽ 0, hβγ = 0, hγγ = 0}. (2.20)

The affine hull of C(x+), denoted by aff(C(x+)), can thus be written as

aff(C(x+)) = {h ∈ V | hβγ = 0, hγγ = 0}. (2.21)

Motivated by Shapiro [108] and Bonnans and Shapiro [16], the authors in [118] in-

troduce a linear-quadratic function Υv : V × V → ℜ in the next definition, which will

help us to define the strong second order sufficient condition for the proposed problems.

Definition 2.4. For any v ∈ V, a linear-quadratic function Υv : V × V → ℜ, which is

linear in the first variable and quadratic in the second variable, is defined by

Υv(s, h) := 2 ⟨s · h, v† · h⟩, (s, h) ∈ V × V, (2.22)

where v† is the Moore-Penrose pseudo-inverse of v.
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The following property, given by [118, 129], of the above linear-quadratic function Υv

defined in (3.27) about the metric projector x+ = ΠK(·) over K.

Proposition 2.8. If h ∈ aff(x+), since x+ =
∑s1

j=1 λjcj, then

Υx+(x+ − x, h) =
s1∑

j=1

r∑
l=s2+1

−λl

λj
∥hjl∥2. (2.23)



Chapter 3
Convex quadratic programming over

symmetric cones

3.1 Convex quadratic symmetric cone programming

Let X, Y and Z be three finite dimensional real Hilbert spaces each equipped with a

scalar product ⟨·, ·⟩ and its induced norm ∥·∥. We consider the following convex quadratic

symmetric cone programming (QSCP),

(P ) min
x∈X

f0(x) :=
1
2
⟨x,Q(x) ⟩ + ⟨c, x⟩

s.t. A(x) = b,

B(x) ≽ d,

where Q : X → X is a self-adjoint positive semidefinite linear operator in X, A : X → Y

and B : X → Z are linear mappings, b ∈ Y, d ∈ Z, c ∈ X and K is a symmetric cone

in Z, defined in (2.5). The symbol “≽” denotes that B(x) − d ∈ K. In this thesis, we

consider the symmetric cone consisting of the linear cone ℜl
+, the second order cone Kq

or the positive semidefinite cone Sn
+.

28
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The Lagrangian dual problem associated with (P ) is

(D) max g0(y, z) := inf
x∈X

L0(x, y, z)

s.t. y ∈ Y, z ≽ 0.

where the Lagrangian function L0 : X × Y × Z → ℜ of (P ) is defined as

L0(x, y, z) := f0(x) − ⟨y,A(x) − b⟩ − ⟨ z,B(x) − d⟩.

Given a penalty parameter σ > 0, the augmented Lagrangian function for the convex

quadratic programming problem (P ) is defined as

Lσ(x, y, z) =
1
2
⟨x,Q(x)⟩ + ⟨c, x⟩ − ⟨ y,A(x) − b⟩ +

σ

2
∥A(x) − b∥2

+
1
2σ

[
∥ΠK[z − σ(B(x) − d)]∥2 − ∥z∥2

]
, (3.1)

where (x, y, z) ∈ X × Y × Z and for any z ∈ Z, ΠK(z) is the metric projection onto K

at z. For any σ ≥ 0, Lσ(x, y, z) is convex in x ∈ X and concave in (y, z) ∈ Y × Z, and

lim
σ↓0

Lσ(x, y, z) =


L0(x, y, z) if z ≽ 0,

−∞ otherwise.

Note that ∥ΠK(·)∥2 is continuously differentiable [138], then the augmented Lagrangian

function defined in (3.1) is continuously differentiable.

For a given nondecreasing sequence of numbers σk,

0 < σk ↑ σ∞ ≤ +∞ (3.2)

and an initial multiplier (y0, z0) ∈ Y×Z, the augmented Lagrangian method for solving

problem (P ) and its dual (D) generates sequences xk ⊂ X, yk ⊂ Y, and zk ⊂ Z as

follows 

xk+1 ≈ arg min
x∈X

Lσk
(x, yk, zk)

yk+1 = yk − σk(A(xk+1) − b)

zk+1 = ΠK[zk − σk(B(xk+1) − d)]

σk+1 = ρ σk or σk+1 = σk.

(3.3)
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From the augmented Lagrangian algorithm (3.3), we need to find an optimal solution to

the inner problem min
x∈X

Lσk
(x, yk, zk). Because of the computational cost and time, here,

we only solve the inner minimization problem in (3.3) inexactly. Under some stopping

criteria shown in the later section, the algorithm still converges to a dual optimal solution.

From [102, 103], we know that the augmented Lagrangian method can be expressed

in terms of the method of multipliers for (D). For the sake of subsequent developments,

we introduce related concepts to this.

Let l(x, y, z) : X × Y × Z → ℜ be the ordinary Lagrangian function for (P ) in the

extended form:

l(x, y, z) =

 L0(x, y, z) if x ∈ X and (y, z) ∈ Y × K,

−∞ if x ∈ X and (y, z) ̸∈ Y × K,
(3.4)

The essential objective function in (P) is

f(x) = inf
(y,z)∈Y×Z

l(x, y, z) =

 f0(x) if x ∈ F (P ),

−∞ otherwise,
(3.5)

where F (P ) := {x ∈ X | A(x) = b, B(x) ≽ d} denotes the feasible set of problem (P ),

while the essential objective function in (D) is defined as

g(y, z) = inf
x∈X

l(x, y, z) =

 g0(y, z) if y ∈ Y, z ∈ K,

−∞ if y ∈ Y, z ̸∈ K.
(3.6)

Assume that F (P ) ̸= ∅ and g(y, z) ̸≡ −∞. As in Rockafellar [102], we can define the

following maximal monotone operators

Tl(x, y, z) = {(v, u1, u2) ∈ X × Y × Z | (v,−u1,−u2) ∈ ∂l(x, y, z)},

for (x, y, z) ∈ X × Y × Z, and

Tf (x) = {v ∈ X | v ∈ ∂f(x)}, x ∈ X,

Tg(y, z) = {(u1, u2) ∈ Y × Z | (−u1,−u2) ∈ ∂g(y, z)}, (y, z) ∈ Y × Z
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For each (v, u1, u2) ∈ X × Y × Z, consider the following parameterized problem:

(P (v, u1, u2)) min f0(x) + ⟨v, x⟩

s.t. A(x) − u1 = b,

B(x) − u2 ≽ d,

By using the fact that f is convex and F (P ) is nonempty, we know from Rockafellar [99,

Theorem 23.5] that for each v ∈ X,

T−1
f (v) = arg min

x∈X
{f(x) + ⟨v, x⟩}

= set of all optimal solutions to (P (v, 0, 0)).
(3.7)

By the same token, since g ̸≡ −∞, we have that

T−1
g (u1, u2) = arg max

(y,z)∈Y×Z
{g(y, z) + ⟨u1, y ⟩ + ⟨u2, z ⟩}

= set of all optimal solutions to (D(0, u1, u2)),
(3.8)

where (D(v, u1, u2)) is the ordinary dual problem of P (v, u1, u2) and (D(0, u1, u2)) takes

the form as follows

(D(0, u1, u2)) min g0(y, z) + ⟨u1, y ⟩ + ⟨u2, z ⟩

s.t. y ∈ Y, z ≽ 0.

As an application of [101, Theorems 17’ & 18’], min(P (0, u1, u2)) = sup(D(0, u1, u2)) if

the level set of (P ) is nonempty and bounded, i.e.

Assumption 3.1. For the problem (P ), there exists an α ∈ ℜ such that the level sets

{x ∈ X | f0(x) ≤ α, x ∈ F (P )} is nonempty and bounded.

Then

T−1
g (u1, u2) = ∂p(u1, u2), where p(u1, u2) = inf(P (0, u1, u2)).

Finally,

T−1
l (v, u1, u2) = arg min

x∈X
max

(y,z)∈Y×Z
{l(x, y, z) − ⟨v, x⟩ + ⟨u1, y ⟩ + ⟨u2, z ⟩}

= set of all (x, y, z) satisfying the KKT conditions (3.12)

for (P (v, u1, u2)).

(3.9)
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Definition 3.1. [103] For a maximal monotone operator T from a finite dimensional

linear vector space X to itself, we say that its inverse T−1 is Lipschitz continuous at the

origin (with modulus a ≥ 0) if there is a unique solution z̄ to z = T−1(0), and for some

τ > 0 we have

∥z − z̄∥ ≤ a∥w∥ whenever z ∈ T−1(w) and ∥w∥ ≤ τ. (3.10)

We have the direction condition for the Lipschitz continuity of T−1
g which is in Rock-

afellar [102, Proposition 3].

Proposition 3.2. T−1
g is Lipschitz continuous at the origin, i.e., T−1

g (0, 0) = {(ȳ, z̄)},

and for some δ > 0 we have

∥(y, z) − (ȳ, z̄)∥ ≤ ag∥(u1, u2)∥,

whenever (y, z) ∈ T−1
g (u1, u2) and ∥(u1, u2)∥ ≤ δ, if and only if the convex function

p(u1, u2) is finite and differentiable at (u1, u2) = (0, 0), and there exist λ > 0 and ε > 0

such that

p(u1, u2) ≤ p(0, 0) + ⟨u1,∇yp(0, 0)⟩ + ⟨u2,∇zp(0, 0)⟩ + λ∥(u1, u2)∥2, (3.11)

for all (u1, u2) satisfying ∥(u1, u2)∥ ≤ ε.

3.2 Primal SSOSC and constraint nondegeneracy

The first order optimality condition, namely the Karush-Kuhn-Tucker (KKT) condition,

for (P ) is 
Q(x) + c −A∗y − B∗z = 0,

A(x) = b, B(x) ≽ d, ⟨ z, B(x) − d ⟩ = 0,

x ∈ X, y ∈ Y z ≽ 0,

(3.12)

where A∗ : Y → X and B∗ : Z → X are the adjoins of the linear mappings A and B

respectively. For any KKT triple (x, y, z) ∈ X × Y × Z satisfying (3.12), we call x ∈ X
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a stationary point and (y, z) a Lagrange multiplier with respect to x. Let M(x) be the

set of all Lagrange multipliers at x.

If the following Robinson’s constraint qualification holds at x̄, then M(x̄) is nonempty

and bounded [16, Theorem 3.9 and Proposition 3.17].

Assumption 3.3. Let x̄ be a feasible solution to the convex QSCP problem (P ). Robin-

son’s constraint qualification (CQ) [98] is said to hold at x̄ if A

B

X +

 {0}

TK(B(x̄) − d)

 =

 Y

Z

 , (3.13)

where TK(s) is the tangent cone of K at s.

For any (ȳ, z̄) ∈ M(x̄), suppose that A := z̄ − (B(x̄)− d). Since z̄ ≽ 0, B(x̄) ≽ d and

⟨ z̄, B(x)−d ⟩ = 0, we can assume that A has the spectral decomposition as in (2.4), i.e.,

A = λ1c1 + λ2c2 + · · · + λncn (3.14)

where {λ1, . . . , λr} are the eigenvalues of A being arranged in the nondecreasing order,

satisfying

λ1 ≥ · · · ≥ λs1 > 0 = λs1+1 = · · · = λs2 > λs2+1 ≥ · · · ≥ λn. (3.15)

Then

z̄ =
s1∑

j=1

λjcj , (B(x̄) − d) = −
n∑

j=s2+1

λjcj . (3.16)

According to the definition in (2.16), we denote three index sets

α := {j | λj > 0}, γ := {j | λj < 0}, β := {1, . . . , n}\(α ∪ γ). (3.17)

From Definition 2.3, we know that the tangent cone of K at (B(x̄) − d) is

TK(B(x̄) − d) = {H ∈ Z | Hαα + Hαβ + Hββ ≽ 0}, (3.18)

the critical cone of K at (B(x̄) − d) is defined by

C(B(x̄) − d) := TK(B(x̄) − d) ∩ z̄⊥ = {H ∈ Z | Hαα = 0,Hαβ = 0,Hββ ≽ 0}, (3.19)
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and the affine hull of C(B(x̄) − d) can be written as

aff(C(B(x̄) − d)) = {H ∈ Z | Hαα = 0,Hαβ = 0}. (3.20)

Then, the critical cone C(x̄) of the problem (P ) at x̄ is given by

C(x̄) = {h ∈ X | Ah = 0, Bh ∈ TK(B(x̄) − d), ⟨Q(x̄) + c, h⟩ = 0}

= {h ∈ X | Ah = 0, Bh ∈ C(B(x̄) − d)}

= {h ∈ X | Ah = 0, (Bh)αα = 0, (Bh)αβ = 0, (Bh)ββ ≽ 0}. (3.21)

However, it is difficult to give an explicit formula to the affine hull of C(x̄), denoted

by aff(C(x̄)). We define the following outer approximation set instead of aff(C(x̄)) with

respect to (ȳ, z̄) ∈ M(x̄) by

app(ȳ, z̄) = {h ∈ X | Ah = 0,Bh ∈ aff(C(B(x̄) − d))}

= {h ∈ X | Ah = 0, (Bh)αα = 0, (Bh)αβ = 0} (3.22)

Then for any (ȳ, z̄) ∈ M(x̄), we have that

aff(C(x̄)) ⊆ app(ȳ, z̄). (3.23)

The next proposition shows that the equality in (3.23) holds if (ȳ, z̄) ∈ M(x̄) satisfies a

constraint qualification stronger than Robinson’s CQ (3.13) at x̄.

Proposition 3.4. [114, Proposition 3.1] Let x̄ be a feasible solution to the convex

quadratic SDP problem (P ) and (ȳ, z̄) ∈ M(x̄). We say that (ȳ, z̄) satisfies the strict

constraint qualification (CQ) [16] A

B

X +

 {0}

TK(B(x̄) − d) ∩ z̄⊥

 =

 Y

Z

 , (3.24)

Then M(x̄) is a singleton and aff(C(x̄)) = app(ȳ, z̄).

By the introduction of the constraint nondegeneracy for sensitivity and stability in

optimization and variational inequalities in [15, 110], we have the following formula for

the problem (P).
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Assumption 3.5. Let x̄ be a feasible solution to the convex quadratic SDP problem (P )

and (ȳ, z̄) ∈ M(x̄). We say that the primal constraint nondegeneracy holds at x̄ to the

problem (P ) if  A

B

X +

 {0}

lin[TK(B(x̄) − d)]

 =

 Y

Z

 . (3.25)

To discuss the rate of convergence, we introduce a strong form of the strong second

order sufficient condition for nonlinear programming over symmetric cones given by [118],

which is an extension from nonlinear semidefinite programming introduced by Sun [114].

Assumption 3.6. Let x̄ be a feasible solution to (P ) and (ȳ, z̄) ∈ M(x̄). If the primal

constraint nondegeneracy (3.25) holds at x̄, we say that the strong second order sufficient

condition holds at x̄ if

⟨h, ∇2
xxL0(x̄, ȳ, z̄) h⟩ + Υ(B(x̄)−d) (z̄,Bh) > 0, ∀ h ∈ aff(C(x̄)) \ {0}, (3.26)

where the linear-quadratic function ΥB : X × X → ℜ is defined by

ΥB(S, H) := 2 ⟨S · H, B† · H⟩, (S, H) ∈ X × X, (3.27)

where B† is the Moore-Penrose pseudo-inverse of B.

Remark 3.7. The primal constraint nondegeneracy (3.25) holds at x̄ implies that (ȳ, z̄)

satisfies the strict constraint qualification (3.24), from Proposition 3.4, we know that

M(x̄) = {(ȳ, z̄)} and app(ȳ, z̄) = aff(C(x̄)).

3.3 A semismooth Newton-CG method for inner problems

In this section we introduce a semismooth Newton-CG method for solving the inner

problems involved in the augmented Lagrangian method (3.3). For this purpose, we need

the practical CG method described in [45, Algorithm 10.2.1] for solving the symmetric

positive definite linear system. Since our convergence analysis of the semismooth Newton-

CG method heavily depends on this practical CG method and its convergence property

(Lemma 3.8), we shall give it a brief description here.



3.3 A semismooth Newton-CG method for inner problems 36

3.3.1 A practical CG method

In this subsection, we consider a practical conjugate gradient (CG) method to solve the

following linear equation

W(x) = R , (3.28)

where the linear operator W : X → X is a self-adjoint and positive definite operator, x

and R ∈ X. The practical conjugate gradient algorithm [45, Algorithm 10.2.1] depends

on two parameters: a maximum number of CG iterations imax > 0 and a tolerance

η ∈ (0, ∥R∥).

Algorithm 1. A Practical CG Algorithm: [CG(η, imax)]

Step 0. Given x0 = 0 and r0 = R −Wx0 = R.

Step 1. While (∥ri∥ > η) or (i < imax)

Step 1.1. i = i + 1

Step 1.2. If i = 1; p1 = r0; else; βi = ∥ri−1∥2/∥ri−2∥2, pi = ri−1 + βi p
i−1; end

Step 1.3. αi = ∥ri−1∥2/⟨pi,Wpi⟩

Step 1.4. xi = xi−1 + αip
i

Step 1.5. ri = ri−1 − αiWpi

Lemma 3.8. Let 0 < ī ≤ imax be the number of iterations when the practical CG

Algorithm 1 terminates. For all i = 1, 2, · · · , ī, the iterates {xi} generated by Algorithm

1 satisfies

1
λmax(W)

≤ ⟨xi, R⟩
∥R∥2

≤ 1
λmin(W)

, (3.29)

where λmin(W) and λmax(W) are the smallest and largest eigenvalues of the matrix rep-

resentation of W, respectively.
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Proof. Let x∗ be the exact solution to (3.28) and ei = x∗ − xi be the error in the ith

iteration for i ≥ 0. From [124, Theorem 38.1], we know that

⟨ri, rj⟩ = 0 for j = 1, 2, . . . , i − 1, (3.30)

where ri = b − Wxi. By using (3.30), the fact that in Algorithm 1, r0 = R, and the

definition of βi, we have that

⟨p1, R⟩ = ∥r0∥2,

⟨pi, R⟩ = ⟨ri−1, R⟩ + βi⟨pi−1, R⟩ = 0 +
i∏

j=2

βj⟨p1, R⟩ = ∥ri−1∥2 ∀ i > 1.
(3.31)

From [124, Theorem 38.2], we know that for i ≥ 1,

∥ei−1∥2
W = ∥ei∥2

W + ⟨αip
i,W(αip

i)⟩, (3.32)

which, together with αi∥ri−1∥2 = ⟨αip
i,W(αip

i)⟩ (see Step 1.3), implies that

αi∥ri−1∥2 = ∥ei−1∥2
W − ∥ei∥2

W . (3.33)

Here for any x ∈ X, ∥x∥W :=
√

⟨x,Wx⟩. For any i ≥ 1, by using (3.31), (3.33), and the

fact that x0 = 0, we have that

⟨xi, R⟩ = ⟨xi−1, R⟩ + αi⟨pi, R⟩ = ⟨x0, R⟩ +
i∑

j=1

αj⟨pj , R⟩ =
i∑

j=1

αj∥rj−1∥2

=
i∑

j=1

[
∥ej−1∥2

W − ∥ej∥2
W
]

= ∥e0∥2
W − ∥ei∥2

W , (3.34)

which, together with (3.32), implies that

⟨xi, R⟩ ≥ ⟨xi−1, R⟩, i = 1, 2, . . . , ī.

Thus

1
λmax(W)

≤ α1 =
⟨x1, R⟩
∥R∥2

≤ ⟨xi, R⟩
∥R∥2

. (3.35)

Since e0 = x∗ − x0 = W−1R, by (3.34), we obtain that for 1 ≤ i ≤ ī,

⟨xi, R⟩
∥R∥2

≤
∥e0∥2

W
∥R∥2

=
∥W−1R∥2

W
∥R∥2

≤ 1
λmin(W)

. (3.36)

By combining (3.35) and (3.36), we complete the proof.
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3.3.2 Inner problems

To apply the augmented Lagrangian method (3.3) to solve problems (P ) and (D), for

some fixed (y, z) ∈ Y × Z and σ > 0, we need determine the optimal solution to the

following convex problem

min {φσ(x) := Lσ(x, y, z) | x ∈ X}. (3.37)

It is known from [138] that the augmented Lagrangian function Lσ(·) is continuously

differentiable and for any (x, y, z) ∈ X × Y × Z,

∇φσ(x) = Q(x) + c −A∗(y − σ(A(x) − b)) − B∗ΠK(z − σ(B(x) − d)).

To find the minimizer of the unconstrained problem (3.37), since ΠK(·) is strongly semis-

mooth everywhere, we can use the semismooth Newton-CG method to solve the following

nonlinear equation

∇φσ(x) = 0, for any (y, z) ∈ M(x). (3.38)

By the Lipschitz continuity of ΠK(·), according to Rademacher’s Theorem, ∇φσ is almost

everywhere Fréchet-differentiable in X. For x ∈ X, the generalized Hessian of φσ at x is

defined as

∂2φσ(x) := ∂(∇φσ)(x),

where ∂(∇φσ)(x) is defined in (2.1). Since it is difficult to express ∂2φσ(x) exactly, we

define the following alternative for ∂2φσ(x) with

∂̂2φσ(x) := Q + σA∗A + σB∗ ∂ΠK(z − σ(B(x) − d))B.

From [32, p.75], for h ∈ X,

∂2φσ(x)h ⊆ ∂̂2φσ(x)h,

which means that if every element in ∂̂2φσ(x) is positive definite, so is every element in

∂2φσ(x).
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To apply the semismooth Newton-CG method which will be presented later, we need

to choose an element V̂σ(x) ∈ ∂̂2φσ(x). In the algorithm, we can construct V̂σ(x) as

V̂ 0
σ (x) := Q + σA∗A + σB∗V 0

σ B ∈ ∂̂2φσ(x), (3.39)

where V 0
σ ∈ ∂ΠK(z − σ(B(x) − d)) is given by (2.15).

Next we shall characterize the property that V̂σ(x̂) is positive definite. From the

discussion in [102, section 4], we know that for any (x, y, z) ∈ X × Y × Z,

Lσ(x, y, z) = max
(ξ,ζ)∈Y×Z

{
l(x, ξ, ζ) − 1

2σ
∥(ξ, ζ) − (y, z)∥2

}
.

For the existence of the optimal solutions to inner problem (3.37), we need the following

condition:

Assumption 3.9. For inner problem (3.37), there exists an α0 ∈ ℜ such that the level

sets {x ∈ X | φσ(x) ≤ α0} is nonempty and bounded.

Under Assumption 3.9, by the definition of g in (3.6), we can deduce from [101,

Theoremss 17’ and 18’] that

min
x∈X

φσ(x) = min
x∈X

max
(ξ,ζ)∈Y×Z

{
l(x, ξ, ζ) − 1

2σ
∥(ξ, ζ) − (y, z)∥2

}
(3.40)

= max
ξ∈Y,ζ∈Z

{
g(ξ, ζ) − 1

2σ
∥(ξ, ζ) − (y, z)∥2

}
= max

ξ∈Y,ζ≽0

{
g0(ξ, ζ) − 1

2σ
∥(ξ, ζ) − (y, z)∥2

}
Hence, the dual of inner problem (3.37) is

max g0(ξ, ζ) − 1
2σ∥(ξ, ζ) − (y, z)∥2

s.t. ξ ∈ Y, ζ ≽ 0
(3.41)

For any (x̂, ξ̂, ζ̂) ∈ X×Y×Z, we say that (x̂, ξ̂, ζ̂) is a saddle point of the RHS function
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in (3.40) if it satisfies the following saddle-point conditions for (3.37) and (3.41)

Q(x̂) + c −A∗ξ̂ − B∗ζ̂ = 0,

b −A(x̂) − 1
σ (ξ̂ − y) = 0,

1
σ (ζ̂ − z) + (B(x̂) − d) ≽ 0,

⟨ζ̂, 1
σ (ζ̂ − z) + (B(x̂) − d)⟩ = 0,

x̂ ∈ X, ξ̂ ∈ Y, ζ̂ ≽ 0.

(3.42)

Then for any saddle point (x̂, ξ̂, ζ̂) satisfying (3.42), we have that

⟨ζ̂, ζ̂ − (z − σ(B(x̂) − d))⟩ = 0,

with ζ̂ = ΠK(z − σ(B(x̂) − d)).

Proposition 3.10. Suppose that Assumption 3.9 is satisfied. Let (x̂, ξ̂, ζ̂) ∈ X×Y ×Z

be a saddle point satisfying (3.42). Let ζ̂ and ζ̂ − (z − σ(B(x̂) − d)) have the spectral

decomposition as in (3.16). Then the following conditions are equivalent:

(i) The constraint nondegeneracy condition holds at (ξ̂, ζ̂), i.e.,

 Q A∗ B∗

0 0 I




X

Y

Z

+

 {0}

lin[TK(ζ̂)]

 =

 X

Z


or, equivalently,

Q(X) + A∗(Y) + B∗(lin[TK(ζ̂)]) = X (3.43)

where lin[TK(ζ̂)] denotes the lineality space of TK(ζ̂) as in (2.19), i.e.,

lin[TK(ζ̂)] = {h ∈ Z | hββ = 0, hβγ = 0, hγγ = 0}, (3.44)

where the index sets β and γ are defined in (2.16).

(ii) Every element V̂σ(x̂) ∈ ∂̂2φσ(x̂) is self-adjoint and positive definite.

(iii) V̂ 0
σ (x̂) ∈ ∂̂2φσ(x̂) is self-adjoint and positive definite.
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Proof. “(i) ⇒ (ii)”Let V̂σ(x̂) be an arbitrary element in ∂̂2φσ(x̂) defined by (3.39). Then,

there exists an element Vσ ∈ ∂ΠK(z − σ(B(x̂) − d)) such that

V̂σ(x̂) = Q + σ(A∗A + B∗VσB).

Since, by Lemma 2.5, Vσ is self-adjoint and positive semidefinite, we know that V̂σ(x̂) is

also self-adjoint and positive semidefinite.

Next, we show the positive definiteness of V̂σ(x̂) . Let h ∈ X be such that V̂σ(x̂)h = 0.

Then, by (iii) of Lemma 2.5, we obtain that

0 = ⟨h, V̂σ(x̂)h⟩ = ⟨h, Qh⟩ + σ(⟨h, A∗Ah⟩ + ⟨h, B∗VσBh⟩)

≥ ⟨h, Qh⟩ + σ(∥Ah∥2 + ∥VσBh∥2),

which, together with the positive semidefiniteness of Q, implies that

Qh = 0, Ah = 0, and VσBh = 0.

For any Vσ ∈ ∂ΠK(z − σ(B(x̂)− d)) and h ∈ X such that VσBh = 0, we can obtain that

Bh ∈ [lin(TK(ζ̂))]⊥.

Since the constraint nondegeneracy condition (3.43) holds at (ξ̂, ζ̂), there exist hx ∈ X,

hy ∈ Y and hz ∈ lin(TK(ζ̂)) such that

Qhx + A∗hy + B∗hz = h.

Hence, since Bh ∈ [lin(TK(ζ̂))]⊥ and hz ∈ lin(TK(ζ̂)), it holds that

⟨h, h⟩ = ⟨h, Qhx + A∗hy + B∗hz⟩ = ⟨h, Qhx⟩ + ⟨h, A∗hy⟩ + ⟨h, B∗hz⟩

= ⟨Qh, hx⟩ + ⟨Ah, hy⟩ + ⟨Bh, hz⟩ = 0.

Thus h = 0. This, together with the fact that Vσ is self-adjoint and positive semidefinite,

shows that V̂σ(x̂) is self-adjoint and positive definite.

“(ii) ⇒ (iii)”. This is obviously true since V̂ 0
σ (x̂) ∈ ∂̂2φσ(x̂).
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“ (iii) ⇒ (i) ”. Assume on the contrary that the constraint nondegenerate condition

(3.43) does not hold at (ξ̂, ζ̂). Then, we have

[Q(X)]⊥ ∩ [A∗(Y)]⊥ ∩
[
B∗lin(TK(ζ̂))

]⊥
̸= {0}. (3.45)

Take an arbitrary 0 ̸= h ∈ [Q(X)]⊥ ∩ [A∗(Y)]⊥ ∩
[
B∗lin(TK(ζ̂))

]⊥
. Then for any x ∈ X,

⟨h, Qx⟩ = ⟨Qh, x⟩ = 0 ⇒ Qh = 0.

For any y ∈ Y,

⟨h, A∗y⟩ = ⟨Ah, y⟩ = 0 ⇒ Ah = 0.

And for any z ∈ lin(TK(ζ̂)),

⟨h, B∗z⟩ = ⟨Bh, z⟩ = 0 ⇒ (Bh)αα = 0, (Bh)αβ = 0, (Bh)αγ = 0.

From the definition of V 0
σ in (2.15), it follows that V 0

σ (Bh) = 0. Therefore, for the

corresponding V̂ 0
σ (x̂) given by (3.39), we can obtain that

⟨h, V̂ 0
σ (x̂)h⟩ = ⟨h, Qh⟩ + σ(⟨h, Ah⟩ + ⟨Bh, V 0

σ (Bh⟩) = 0,

which contradicts (iii) since h ̸= 0. This contradiction shows that (i) holds.

Remark 3.11. The condition (3.43) is actually the constraint nondegeneracy condition

for the following problem

max −1
2
⟨x, Q(x)⟩ + ⟨b, ξ⟩ + ⟨d, ζ⟩ (3.46)

s.t. −Q(x) + A∗ξ + B∗ζ = c, (3.47)

ξ ∈ Y, ζ ≽ 0. (3.48)

If the constraint nondegeneracy condition (3.43) holds at (ξ̂, ζ̂), M(ξ̂, ζ̂) is a singleton,

i.e., M(ξ̂, ζ̂) = {x̂}.

Since V̂ I
σ (x̂) is an element in ∂̂2φ(x̂), given by

V̂ I
σ (x) := Q + σA∗A + σB∗V I

σ B ∈ ∂̂2φσ(x), (3.49)

where V I
σ ∈ ∂ΠK(z−σ(B(x)−d)) given by (2.15). Similar to Proposition 3.10, we give a

weaker condition for the positive definiteness of V̂ I
σ (x̂) based on its particular structure.
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Corollary 3.12. Suppose that Assumption 3.9 is satisfied. Let (x̂, ξ̂, ζ̂) ∈ X × Y × Z

be a saddle point satisfying (3.42) and ζ̂ and ζ̂ − (z − σ(B(x̂) − d)) have the spectral

decomposition as in (3.16). Then V̂ I
σ (x̂) is self-adjoint and positive definite if the point

x̂ satisfies the following strict constraint qualification (CQ)

 Q A∗ B∗

0 0 I




X

Y

Z

 +

 {0}

TK(ζ̂) ∩ (B(x̂) − d)⊥

 =

 X

Z

 .

or, equivalently,

Q(X) + A∗Y + B∗
[
TK(ζ̂) ∩ (B(x̂) − d)⊥

]
= X, (3.50)

where I is the identity mapping from Z to Z and TK(ζ̂) ∩ (B(x̂) − d)⊥ i.e.,

TK(ζ̂) ∩ (B(x̂) − d)⊥ = {h ∈ Z | hββ ≽ 0, hβγ = 0, hγγ = 0}, (3.51)

where index sets β and γ are defined in (2.16).

Proof. From the definition of V I
σ (x̂) in (3.49) and Lemma 2.5, since V I(x̂) ∈ ∂ΠK(z −

σ(B(x) − d)) is self-adjoint and positive semidefinite, we know that V I
σ (x̂) is also self-

adjoint and positive semidefinite. Next, we show the positive definiteness of V̂ I
σ (x̂) .

Let h ∈ X be such that V̂ I
σ (x̂)h = 0. Then, by (iii) of Lemma 2.5, we obtain that

0 = ⟨h, V̂ I
σ (x̂)h⟩ = ⟨h, Qh⟩ + σ(⟨h, A∗Ah⟩ + ⟨h, B∗V I

σ (x̂)Bh⟩)

≥ ⟨h, Qh⟩ + σ(∥Ah∥2 + ∥V I
σ (x̂)Bh∥2),

which implies that

Qh = 0, Ah = 0, and V I
σ (x̂)Bh = 0.

From the definition of V I
σ (x̂) in (2.15) and h ∈ X, we have that

V I
σ (x̂)Bh = 0 ⇒ (Bh)αα = 0, (Bh)αβ = 0, (Bh)αγ = 0, and (Bh)ββ = 0.

Thus

Bh ∈ [TK(ζ̂) ∩ (B(x̂) − d)⊥]⊥.



3.3 A semismooth Newton-CG method for inner problems 44

Since x̂ satisfies the strict CQ (3.50), there exist hx ∈ X, hy ∈ Y and hz ∈ TK(ζ̂)∩(B(x̂)−

d)⊥ such that Qhx + A∗hy + B∗hz = h. Hence, since Bh ∈ [TK(ζ̂) ∩ (B(x̂) − d)⊥]⊥, it

holds that

⟨h, h⟩ = ⟨h, Qhx + A∗hy + B∗hz⟩

= ⟨h, Qhx⟩ + ⟨h, A∗hy⟩ + ⟨h, B∗hz⟩

= ⟨Bh, hz⟩ = 0.

Thus h = 0. This, together with the fact that V I
σ (x̂) is self-adjoint and positive semidef-

inite, shows that V̂ I
σ (x̂) is self-adjoint and positive definite.

3.3.3 A semismooth Newton-CG method

Next we shall introduce a promised semismooth Newton-CG (SNCG) algorithm to solve

(3.37). Choose x0 ∈ X. Then the algorithm can be stated as follows.

A SNCG algorithm [SNCG(x0, y, z, σ)]

Step 0. Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], τ1, τ2 ∈ (0, 1), and δ ∈ (0, 1).

Step 1. For j = 0, 1, 2, . . .

Step 1.1. Given a maximum number of CG iterations nj > 0 and compute

ηj := min(η̄, ∥∇φσ(xj)∥1+τ ).

Apply the practical CG Algorithm [CG(ηj , nj)] to find an approximation so-

lution dj to

(V̂σ(xj) + εjI) d = −∇φσ(xj), (3.52)

where V̂σ(xj) ∈ ∂̂2φσ(xj) defined in (3.39) and

εj := τ1 min{τ2, ∥∇φσ(xj)∥}.
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Step 1.2. Set αj = δmj , where mj is the first nonnegative integer m for which

φσ(xj + αjd
j) ≤ φσ(xj) + µαj⟨∇φσ(xj), dj⟩. (3.53)

Step 1.3. Set xj+1 = xj + αj dj .

Remark 3.13. In the SNCG algorithm, since V̂σ(xj) is always positive semidefinite, the

matrix V̂σ(xj) + εjI is positive definite as long as ∇φσ(xj) ̸= 0. So we can always apply

Algorithm 1 to solve the equation (3.52).

Now we can analyze the global convergence of the SNCG algorithm with the as-

sumption that ∇φσ(xj) ̸= 0 for any j ≥ 0. From Lemma 3.8, we know that the search

direction dj generated by the SNCG algorithm is always a descent direction. This is

stated in the following proposition.

Proposition 3.14. For every j ≥ 0, the search direction dj generated in Step 1.2 of the

SNCG algorithm satisfies

1

λmax(Ṽ
j
σ )

≤ ⟨−∇φσ(xj), dj⟩
∥∇φσ(xj)∥2

≤ 1

λmin(Ṽ
j
σ )

, (3.54)

where Ṽ j
σ := V̂σ(xj)+εjI and λmax(Ṽ

j
σ ) and λmin(Ṽ

j
σ ) are the largest and smallest eigen-

values of Ṽ j
σ respectively.

Theorem 3.15. Suppose that Assumption 3.9 holds for problem (3.37). Then the SNCG

algorithm is well defined and any accumulation point x̂ of {xj} generated by the SNCG

algorithm is an optimal solution to the inner problem (3.37).

Proof. By Step 1.1 in the SNCG algorithm, for any j ≥ 0, since, by (3.54), dj is a descent

direction, the SNCG algorithm is well defined. Under Assumption 3.9, since the level

set {x ∈ X | φσ(x) ≤ φσ(x0)} is a closed and bounded convex set, the sequence {xj} is

bounded. Let x̂ be any accumulation point of {xj}. Then, by making use of Proposition

3.14 and the Lipschitz continuity of ΠK(·), we can easily derive that ∇φσ(x̂) = 0. By

the convexity of φσ(·), x̂ is an optimal solution of (3.37).



3.3 A semismooth Newton-CG method for inner problems 46

Since the SNCG algorithm is well defined, we next shall discuss its rate of convergence

for solving inner problems (3.37).

Theorem 3.16. Suppose that Assumption 3.9 holds for problem (3.37). Let x̄ be an

accumulation point of the infinite sequence {xj} generated by the SNCG algorithm for

solving the inner problems (3.37). Suppose that for j ≥ 0, the practical CG algorithm

terminates when the tolerance ηj is achieved, i.e.,

∥∇φσ(xj) + (V̂σ(xj) + εjI) dj∥ ≤ ηj . (3.55)

If the constraint nondegeneracy condition (3.43) holds at (ξ̂, ζ̂), then the whole sequence

{xj} converges to x̂ and

∥xj+1 − x̂∥ = O(∥xj − x̂∥1+τ ). (3.56)

Proof. By Theorem 3.15, we know that the infinite sequence {xj} is bounded and x̂ is

an optimal solution to (3.37) with

∇φσ(x̂) = 0.

Since the constraint nondegenerate condition (3.43) is assumed to hold at (ξ̂, ζ̂), x̂ is the

unique optimal solution to (3.37). It then follows from Theorem 3.15 that {xj} converges

to x̂. From Proposition 4.6, we know that for any Vσ(x̂) ∈ ∂̂2φσ(x̂) defined in (3.39),

there exists a Vσ ∈ ∂ΠK(z − σ(B(x̂) − d)) such that

V̂σ(x̂) = Q + σ(A∗A + B∗VσB) ≻ 0.

Then, for all j sufficiently large, {∥(V̂σ(xj) + εjI)−1∥} is uniformly bounded.

For any V̂σ(xj), j ≥ 0, there exists a Vσ(xj) ∈ ∂ΠK(z − σ(B(xj) − d)) such that

V̂σ(xj) = Q + σ(A∗A + B∗Vσ(xj)B). (3.57)
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Since ΠK(·) is strongly semismooth [115], it holds that for all j sufficiently large,

∥xj + dj − x̂∥ = ∥xj + (V̂σ(xj) + εjI)−1((∇φσ(xj) + (V̂σ(xj) + εjI) dj) −∇φ(xj)) − x̂∥

≤ ∥xj − x̂ − (V̂σ(xj) + εjI)−1∇φσ(xj)∥ + ∥(V̂σ(xj) + εjI)−1∥ ∥∇φσ(xj) + (V̂σ(xj) + εjI) dj∥

≤ ∥(V̂σ(xj) + εjI)−1∥
(
∥∇φσ(xj) −∇φσ(x̂) − V̂σ(xj)(xj − x̂)∥ + (εj∥xj − x̂∥ + ηj)

)
≤ O(∥B∗∥∥ΠK(z − σ(B(xj) − d)) − ΠK(z − σ(B(x̂) − d)) − Vσ(xj)(−σB(xj − x̂))∥

+τ1∥∇φσ(xj)∥∥xj − x̂∥ + ∥∇φσ(xj)∥1+τ )

≤ O
(
∥σB(xj − x̂)∥2 + τ1∥∇φσ(xj) −∇φσ(x̂)∥∥xj − x̂∥ + ∥∇φ(xj) −∇φ(x̂)∥1+τ

)
≤ O(∥xj − x̂∥2 + τ1σ∥B∗∥∥B∥∥xj − x̂∥2 + (σ∥B∗∥∥B∥∥xj − x̂∥)1+τ )

= O(∥xj − x̂∥1+τ ), (3.58)

which implies that for all j sufficiently large,

xj − x̂ = −dj + O(∥dj∥1+τ ) and ∥dj∥ → 0. (3.59)

For each j ≥ 0, let Rj := ∇φσ(xj) + (V̂σ(xj) + εjI) dj . Then, for all j sufficiently large,

⟨Rj , dj ⟩ ≤ ηj∥dj∥ ≤ ∥dj∥∥∇φσ(xj)∥1+τ ≤ ∥∇φσ(xj) −∇φσ(x̂)∥1+τ∥dj∥

≤ (σ∥B∗∥∥B∥∥xj − x̂∥)1+τ∥dj∥ ≤ O(∥dj∥2+τ ),

that is,

−⟨∇φσ(xj), dj⟩ ≥ ⟨dj , (V̂σ(xj) + εjI) dj⟩ + O(∥dj∥2+τ ),

which, together with (3.59) and the fact that ∥(V̂σ(xj) + εjI)−1∥ is uniformly bounded,

implies that there exists a constant δ̂ > 0 such that

−⟨∇φσ(xj), dj ⟩ ≥ δ̂∥dj∥2 for all j sufficiently large.

Since ∇φσ(·) is (strongly) semismooth at x̂ (because ΠK(·) is strongly semismooth ev-

erywhere), from [37, Theorem 3.3 & Remark 3.4] or [83], we know that for µ ∈ (0, 1/2),

there exists an integer j0 such that for any j ≥ j0,

φσ(xj + dj) ≤ φ(xj) + µ⟨∇φσ(xj), dj⟩,
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which means that for all j ≥ j0,

xj+1 = xj + dj .

This, together with (3.58), completes the proof.

Theorem 3.16 shows that the rate of convergence for the SNCG algorithm is of order

(1 + τ). If τ = 1, this corresponds to quadratic convergence. However, this will need

more iterations in the practical CG method. To save computational time, in practice

we choose τ = 0.1 ∼ 0.2, which still ensures the SNCG algorithm achieves superlinear

convergence.

3.4 A NAL method for convex QSCP

In this section, for any k ≥ 0, let φσk
(·) ≡ Lσk

(·, yk, zk). Since the inner problems can not

be solved exactly, we will use the following stopping criteria considered by Rockafellar

[102, 103] for terminating the SNCG algorithm:

(A) φσk
(xk+1) − inf φσk

≤ µ2
k/2σk, µk ≥ 0,

∑∞
k=0 µk < ∞.

(B) φσk
(xk+1)− inf φσk

≤ (δ2
k/2σk)∥(yk+1, zk+1)− (yk, zk)∥2, δk ≥ 0,

∑∞
k=0 δk < ∞.

(B
′
) ∥∇φσk

(xk+1)∥ ≤ (δ
′
k/σk)∥(yk+1, zk+1) − (yk, zk)∥, 0 ≤ δ

′
k → 0.

We shall introduce a semismooth Newton-CG augmented Lagrangian algorithm for solv-

ing the convex quadratic problems (P ) and (D).

A NAL Algorithm

Step 0. Given (x0, y0, z0) ∈ X × Y × K, σ0 > 0, a threshold σ̄ ≥ σ0 > 0 and ρ > 1.

Step 1. For k = 0, 1, 2, . . .

Step 1.1. Starting with xk as the initial point, apply the SNCG algorithm to φσk
(·) to

find xk+1 = SNCG(xk, yk, zk, σk).
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Step 1.2. Updating yk+1 = yk − σk(A(xk+1)− b) and zk+1 = ΠK(zk − σk(B∗xk+1 − d))

satisfying (A), (B) or (B
′
).

Step 1.3. If σk ≤ σ̄, σk+1 = ρ σk or σk+1 = σk.

The global convergence of the NAL algorithm follows from Rockafellar [103, Theorem 1]

and [102, Theorem 4] without much difficulty.

Theorem 3.17. Let the NAL algorithm be executed with stopping criterion (A). Assume

that (P ) satisfies Robinson’s CQ (3.13), then the sequence {(yk, zk)} ⊂ Y×K generated

by the NAL algorithm is bounded and {(yk, zk)} converges to (ȳ, z̄), where (ȳ, z̄) is some

optimal solution to (D), and {xk} is asymptotically minimizing for (P ) with max(D) =

inf(P ).

If {(yk, zk)} is bounded and Assumption 3.1 is satisfied, then the sequence {xk} is also

bounded, and all of its accumulation points of the sequence {xk} are optimal solutions to

(P ).

By using the result from [118] and [129] on the extension of Theorem 4.1 in [114], we

can obtain the following corollary for the Lipschitz continuity of T−1
l .

Corollary 3.18. Let x̄ be a feasible solution to (P ). Suppose that Robinson’s CQ (3.13)

holds at x̄ and (x̄, ȳ, z̄) ∈ X × Y × Z be a KKT point satisfying the KKT conditions

(3.12). If the strong second order sufficient condition (3.26) holds at x̄ and x̄ is constraint

nondegenerate satisfying (3.25), T−1
l is Lipschitz continuous at the origin with modulus

al.

Next we state the local linear convergence of the Newton-CG augmented Lagrangian

algorithm.

Theorem 3.19. Let the NAL algorithm be executed with stopping criteria (A) and (B).

Suppose that (P ) satisfies Robinson’s CQ (3.13). If T−1
g is Lipschitz continuous at the

origin with modulus ag, then the generated sequence {(yk, zk)} ⊂ Y ×K is bounded and

{(yk, zk)} converges to the unique solution (ȳ, z̄) with max(D) = min(P ), and for all k
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sufficiently large,

∥(yk+1, zk+1) − (ȳ, z̄)∥ ≤ θk∥(yk, zk) − (ȳ, z̄)∥,

where

θk =
[
ag(a2

g + σ2
k)

−1/2 + δk

]
(1 − δk)−1 → θ∞ = ag(a2

g + σ2
∞)−1/2 < 1, σk → σ∞ ,

and ag is a Lipschitz constant of T−1
g at the origin (cf. Proposition 3.2). The conclusions

of Theorem 3.17 about {(yk, zk)} are valid.

Moreover, if the stopping criterion (B′) is also used and Assumption 3.5 and 3.6 are

satisfied, then in addition to the above conclusions the sequence {xk} → x̄, where x̄ is

the unique optimal solution to (P ), and one has for all k sufficiently large,

∥xk+1 − x̄∥ ≤ θ′k∥(yk+1, zk+1) − (yk, zk)∥,

where θ′k = al(1 + δ′k)/σk → δ∞ = al/σ∞ and al(≥ ag) is a Lipschitz constant of T−1
l at

the origin.

Remark 3.20. Note that in (3.3) we can also add the term 1
2σk

∥x−xk∥2 to Lσk
(x, yk, zk)

such that Lσk
(x, yk, zk) + 1

2σk
∥x − xk∥2 is a strongly convex function. This actually

corresponds to the proximal method of multipliers considered in [102, Section 5] for which

the k-th iteration is given by

xk+1 ≈ arg min
x∈X

{Lσk
(x, yk, zk) + 1

2σk
∥x − xk∥2}

yk+1 = yk − σ(A(xk+1) − b)

zk+1 = ΠK[zk − σ(B(xk+1) − d)]

σk+1 = ρ σk or σk+1 = σk.

(3.60)

Convergence analysis for (3.60) can be conducted in a parallel way as for (3.3).



Chapter 4
Linear programming over symmetric

cones

In this chapter we will study in details the semismooth Newton-CG augmented La-

grangian method for solving linear symmetric cone programming. Due to the explicit

form of the dual problem, we can characterize the Lipschitiz continuity of the corre-

sponding solution mapping at the origin for the analysis of the rate of convergence of

our proposed method. For the inner problems, we will give the condition that equivalent

to the positive definiteness of the generalized Hessian of the objective function in those

inner problems.

4.1 Linear symmetric cone programming

According to the convex QSCP problems (P ) and (D), we consider the following linear

programming over symmetric cones,

(LP ) min
x∈X

⟨c, x⟩

s.t. A(x) = b,

B(x) ≽ d.

51
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Let FLP := {x ∈ X | A(x) = b,B(x) ≽ d} be the feasible set of (LP ). Thus the dual of

(LP) takes the form

(LD) max ⟨b, y⟩ + ⟨z, d⟩

s.t. A∗y + B∗z = c,

y ∈ Y, z ≽ 0.

Let FLD := {(y, z) ∈ Y × K | A∗y + B∗z = c} be the feasible set of (LD). The KKT

conditions of (LP ) and (LD) are as follows:

A∗y + B∗z = c,

A(x) = b,B(x) ≽ d

y ∈ Y, z ≽ 0,

⟨z, B(x) − d⟩ = 0.

(4.1)

For any KKT point (x̄, ȳ, z̄) ∈ X × Y × Z, M(ȳ, z̄) denotes the set of all the Lagrange

multipliers at (ȳ, z̄).

Let (ȳ, z̄) be an optimal solution to (LD). It is well known that M(ȳ, z̄) is nonempty

and bounded if and only if problem (LD) satisfies the following Robinson’s constraint

qualification.

Assumption 4.1. Let (ȳ, z̄) be a feasible point to (LD). Robinson’s constraint qualifica-

tion (CQ) [98] is said to hold at (ȳ, z̄) if A∗ B∗

0 I


 Y

Z

 +

 {0}

TK(z̄)

 =

 X

Z

 . (4.2)

According to the discussion of maximal monotone operators and their inverses given

in Section 3.2, we have the analogous definitions for those operators for the problems

(LP ) and (LD). The Lagrangian function l0 : X × Y × Z → ℜ for (LP ) in extended

form is defined as:

l(x, y, z) =


⟨c, x⟩ + ⟨y, A(x) − b⟩ − ⟨z, B(x) − d⟩ if x ∈ X, y ∈ Y and z ∈ K,

−∞ if x ∈ X, y ∈ Y and z ̸∈ K.
(4.3)
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The essential objective function of (LP ) takes the form as

f(x) = inf
x∈X

l(x, y, z) =


⟨c, x⟩ if x ∈ FLP ,

+∞ otherwise.
(4.4)

while the essential objective function of (LD) takes the form as

g(y, z) = inf
x∈X

l(x, y, z) =


⟨b, y⟩ + ⟨z, d⟩ if (y, z) ∈ FLD,

−∞ otherwise.
(4.5)

Assume FLP and FLD are nonempty, the maximal monotone operators Tf = −∂f and

Tg = −∂g and Tl = ∂l. And for each v ∈ X and (u1, u2) ∈ Y×Z, consider the following

parameterized problem of (LP ),

(LP (v, u1, u2)) min
x∈X

⟨c, x⟩ + ⟨v, x⟩

s.t. A(x) − u1 = b,

B(x) − u2 ≽ d.

And it dual problem is

(LD(v, u1, u2)) max ⟨ b + u1, y ⟩ + ⟨ d + u2, z ⟩

s.t. A∗y + B∗z − v = c,

y ∈ Y, z ≽ 0.

Since FLP ̸= ∅ and FLD ̸= ∅, then

T−1
f (v) = arg min

x∈X
{f(x) + ⟨v, x⟩}

= set of all optimal solutions to (LP (v, 0, 0)),

and

T−1
g (u1, u2) = arg max

(y,z)∈Y×Z
{g(y, z) + ⟨u1, y ⟩ + ⟨u2, z ⟩}

= set of all optimal solutions to (LD(0, u1, u2)).
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Assume that (LD) satisfies Robinson’s CQ (4.2), we have that

T−1
l (v, u1, u2) = arg max

(x,y,z)∈X×Y×Z
{l0(x, y, z) − ⟨v, x⟩ + ⟨u1, y ⟩ + ⟨u2, z ⟩}

= set of all (x, y, z) satisfying the KKT conditions (4.1)

for (LP (v, u1, u2)).

(4.6)

In order to analyze the convergence of the semismooth Newton-CG augmented La-

grangian method for the problem (LD), we need the following result which characterizes

the Lipschitz continuity of the corresponding solution mapping at the origin. The result

we establish here is stronger than that established in Proposition 15 of [24].

Proposition 4.2. Suppose that (LD) satisfies Robinson’s (CQ) (4.2). Let (ȳ, z̄) ∈ Y×Z

be an optimal solution to (LD). For any x̄ ∈ M(ȳ, z̄), z̄ and B(x̄) − d have the spectral

decomposition as in (3.16). Then the following conditions are equivalent

(i) T−1
g (·, ·) is Lipschitz continuous at (0, 0) ∈ Y × Z.

(ii) The second order sufficient condition

sup
x∈M(ȳ,z̄)

Υz̄(B(x) − d, hz) > 0 ∀ (hy, hz) ∈ C(ȳ, z̄) \ {0} (4.7)

holds at (ȳ, z̄), where C(ȳ, z̄) denotes the critical cone of problem (LD),

C(ȳ, z̄) = {(hy, hz) ∈ Y × Z | A∗hy + B∗hz = 0, (hz)ββ ≽ 0, (hz)βγ = 0, (hz)γγ = 0} .(4.8)

(iii) (ȳ, z̄) satisfies the extended strict primal-dual constraint qualification

 A

B

X +

 {0}

conv

( ∪
x∈M(ȳ,z̄)

(
TK(B(x̄) − d) ∩ z̄⊥

))
 =

 Y

Z

 (4.9)

where for any set W ⊂ Sn, conv(W) denotes the convex hull of W.

Proof. “(i) ⇔ (ii)”. From [16, Theorem 3.137], we know that (ii) holds if and only if for

all (y, z) ∈ N such that (y, z) ∈ FLD, the quadratic growth condition

⟨b, y⟩ + ⟨d, z⟩ ≥ ⟨b, ȳ⟩ + ⟨d, z̄⟩ + c∥(y, z) − (ȳ, z̄)∥2, (4.10)
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holds at (ȳ, z̄) for some positive constant c and an open neighborhood N of (ȳ, z̄) in

Y × Z. On the other hand, from [102, Proposition 3], we know that T−1
g (·) is Lipschiz

continuous at the origin if and only if the quadratic growth condition (4.10) holds at

(ȳ, z̄). Hence, (i) ⇔ (ii).

Next we shall prove that (ii) ⇔ (iii). For notational convenience, let

Γ := conv

 ∪
x∈M(ȳ,z̄)

(
TK(B(x) − d) ∩ z̄⊥

) . (4.11)

“(ii) ⇒ (iii)”. Denote

D :=

 A

B

X +

 {0}

Γ

 .

For the purpose of contradiction, we assume that (iii) does not hold, i.e.,

D ̸=

 Y

Z

 .

Let cl(D) and ri(D) denote the closure of D and the relative interior of D, respectively.

By [99, Theorem 6.3], since ri(D) = ri(cl(D)), the relative interior of cl(D), we know that

cl(D) ̸=

 Y

Z

 .

Thus, there exists B := (By, Bz) ∈ Y × Z such that B /∈ cl(D). Let B be the metric

projection of B onto cl(D), i.e., B = Πcl(D)(B). Let H = B − B ̸= 0. Since cl(D) is a

nonempty closed convex cone, from Zarantonello [138], we know that

⟨H, S⟩ = ⟨B − B, S⟩ ≥ 0 ∀ S ∈ cl(D).

In particular, let H = (hy, hz), we have that

⟨hy, A(x)⟩ + ⟨hz, B(x) + Q⟩ ≥ 0 ∀ x ∈ X and Q ∈ Γ,

which implies (by taking Q = 0)

⟨A∗hy + B∗hz, x⟩ = ⟨By, A(x)⟩ + ⟨hz, B(x)⟩ ≥ 0 ∀ x ∈ X.
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Thus

A∗hy + B∗hz = 0 and ⟨hz, Q⟩ ≥ 0 for any Q ∈ Γ. (4.12)

Since 0 ̸= H ∈ C(ȳ, z̄) and (ii) is assumed to hold, there exists x ∈ M(ȳ, z̄) such that

Υz̄(B(x) − d, hz) > 0. (4.13)

By using the fact that (x, ȳ, z̄) satisfies (4.1), we can assume that z̄ and (B(x)− d) have

the spectral decompositions as in (3.16). Then,

TK(B(x) − d) ∩ z̄⊥ = {H ∈ X | Hββ ≽ 0,Hαα = 0,Hαβ = 0.} (4.14)

where the index sets α and β given by (3.17). For any Q ∈ TK(B(x)−d)∩ z̄⊥, ⟨hz, Q⟩ ≥ 0

implies that

(hz)αγ = 0, (hz)βγ = 0, (hz)αγ = 0, and (hz)ββ ≽ 0. (4.15)

By using (4.8), (4.12), and (4.15), we obtain that H ∈ C(ȳ, z̄) and

(hz)αγ = 0. (4.16)

Therefore, from (2.23) and (3.15), we obtain that

Υz̄(B(x) − d, hz) =
s1∑

j=1

r∑
l=s2+1

−λl

λj
∥(hz)jl∥2 = 0

which contradicts (4.13). This contradiction shows (ii) ⇒ (iii).

“(iii) ⇒ (ii)”. Assume that (ii) does not hold at (ȳ, z̄). Then there exists H =

(hy, hz) ∈ C(ȳ, z̄) \ {0} such that

sup
x∈M(ȳ,z̄)

Υz̄(B(x) − d, hz) = 0. (4.17)

Let x be an arbitrary element in M(ȳ, z̄). Since (x, ȳ, z̄) satisfies (4.1), we can assume

that z̄ and (B(x) − d) have the spectral decompositions as in (3.16) with index sets in

(3.17). From (3.16), (3.27), and (4.17), we have

0 ≤
s1∑

j=1

r∑
l=s2+1

−λl

λj
∥(hz)jl∥2 = Υz̄(B(x) − d, hz) ≤ sup

x∈M(ȳ,z̄)
Υz̄(B(x) − d, hz) = 0,
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which implies

(hz)αγ = 0. (4.18)

Then, by using (4.8), (4.14), and (4.18), we have that for any Qx ∈ TK(B(x) − d) ∩ z̄⊥,

⟨Qx, hz⟩ = ⟨Qx
ββ , (hz)ββ⟩ ≥ 0. (4.19)

Since (iii) is assumed to hold, there exist x ∈ X and Q ∈ Γ such that −hy = A(x)

−hz = B(x) + Q.
(4.20)

By Carathéodory’s Theorem, there exist an integer k ≤ n(n+1)
2 + 1 and scalars αi ≥ 0,

i = 1, 2, . . . , k, with
∑k

i=1 αi = 1, and

Qi ∈
∪

x∈M(ȳ,z̄)

(
TK(B(x) − d) ∩ z̄⊥

)
, i = 1, 2, . . . , k

such that Q can be represented as

Q =
k∑

i=1

αiQi.

For each Qi, there exists a xi ∈ M(ȳ, z̄) such that Qi ∈ TK(B(xi) − d) ∩ z̄⊥. Then by

using the fact that H = (hy, hz) ∈ C(ȳ, z̄) and (4.19), we obtain that

⟨H, H⟩ = ⟨hy, −A(x)⟩ + ⟨hz, −B(x) − Q⟩

= −⟨A∗hy + B∗hz, x⟩ − ⟨hz, Q⟩

= 0 −
k∑

i=1

αi⟨hz, Qi⟩ ≤ 0.

Thus H = 0 which contradicts the fact that H ̸= 0. This contradiction shows that (ii)

holds.

Proposition 4.2 characterizes the Lipschitz continuity of T−1
g at the origin by either

the second sufficient condition (4.7) or the extended strict primal-dual constraint qual-

ification (4.9). In particular, if M(ȳ, z̄) is a singleton, we have the following simple

equivalent conditions.
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Corollary 4.3. Suppose that (LD) satisfies Robinson’s (CQ) (4.2). Let (ȳ, z̄) be an

optimal solution to (LD). If M(ȳ, z̄) = {x̄}, then the following are equivalent:

(i) T−1
g (·) is Lipschitz continuous at the origin.

(ii) The second order sufficient condition

Υz̄(B(x̄) − d, hz) > 0 ∀ (hy, hz) ∈ C(ȳ, z̄) \ {0} (4.21)

holds at (ȳ, z̄).

(iii) (ȳ, z̄) satisfies the strict primal-dual constraint qualification A

B

X +

 {0}

TK(B(x̄) − d) ∩ z̄⊥

 =

 Y

Z

 (4.22)

Remark 4.4. Note that for semidefinite programming in [24, Proposition 15], Chan

and Sun proved that if the multiplier set is a singleton, then the strong second order

sufficient condition at x̄ for (LP ) is equivalent to the constraint nondegenerate condition

for (LD). Hence, we can extend to linear programming over symmetric cones, if M(ȳ, z̄)

is a singleton, then the strong second order sufficient condition (with the set C(ȳ, z̄) in

(4.21) being replaced by the superset {(hy, hz) ∈ Y × Z | A∗hy + B∗hz = 0, (hz)ββ =

0, (hz)βγ = 0, (hz)γγ = 0}) is equivalent to the constraint nondegenerate condition, in the

sense of Robinson [96, 97], at x̄ for (LP ), i.e, A

B

X +

 {0}

lin[TK(B(x̄) − d)]

 =

 Y

Z

 . (4.23)

where lin[TK(B(x̄)−d)] denotes the lineality space of TK(B(x̄)−d) defined in (2.19), i.e.,

lin(TK(B(x̄) − d) = {H ∈ Z | Hαα = 0,Hαβ = 0,Hββ = 0}, (4.24)

where the index sets α and β are defined in (2.16).

Corollary 4.3 further establishes the equivalence between the second order sufficient condi-

tion (4.21) and the strict constraint qualification (4.22) under the condition that M(ȳ, z̄)

is a singleton.
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One may observe that the strict primal-dual constraint qualification condition (4.22)

is weaker than the constraint nondegenerate condition (4.23). However, if strict com-

plementarity holds, i.e., z̄ + (B(x̄) − d) ≻ 0 and hence β is the empty set, then (4.22)

and (4.23) coincide. The constraint nondegenerate condition (4.23) is equivalent to the

primal nondegeneracy stated in [3, Theorem 6]. Note that under such a condition, the

optimal solution (ȳ, z̄) to (LD) is unique.

Remark 4.5. In a similar way, we can establish parallel results for T−1
f as for T−1

g in

Proposition 4.2 and Corollary 4.3. For brevity, we omit the details.

4.2 Convergence analysis

To apply the augmented Lagrangian method (3.3) to problem (LP ), for some fixed

(y, z) ∈ Y × Z, we need to consider the following form of inner problems

min {φσ(y) := Lσ(x, y, z) | y ∈ Y}. (4.25)

where Lσ(x, y, z) is the augmented Lagrangian function for problem (LP ), defined as

Lσ(x, y, z) = ⟨c, x⟩ − ⟨ y,A(x) − b⟩ +
σ

2
∥A(x) − b∥2

+
1
2σ

[
∥ΠK[z − σ(B(x) − d)]∥2 − ∥z∥2

]
, (4.26)

where (x, y, z) ∈ X × Y × Z.

For finding the optimal solution to (4.25), by the strongly semismoothness of ΠK, we

can apply SNCG algorithm to solve the following nonlinear equation

∇φσ(x) = c −A∗(y − σ(A(x) − b)) − B∗ΠK(z − σ(B(x) − d)) = 0.

Then in the SNCG algorithm, we choose an element V̂ 0
σ (x) as

V̂ 0
σ (x) = σ(A∗A + B∗V 0

σ (x)B) ∈ ∂̂2φσ(x), (4.27)

where V 0
σ (x) ∈ ∂ΠK(z − σ(B(x) − d)) defined in (2.15) and ∂̂2φσ(x) is the alternative

form for the generalized Hessian of φσ(x) and has the form

∂̂2φσ(x) := σ
(
A∗A + B∗ ∂ΠK(z − σ(B(x) − d))B

)
.
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Next we shall characterize the property that V̂σ is positive definite at x̂. Since Robin-

son’s CQ (4.2) is assumed to hold, by the definition of g in (4.5), we can deduce from

[101, Theorem 17’ and 18’] that

min
x∈X

φσ(x) = max
ξ∈Y,ζ≽0

{
g(ξ, ζ) − 1

2σ
∥(ξ, ζ) − (y, z)∥2

}
.

Hence, the dual of (4.25) is

max ⟨b, ξ⟩ + ⟨d, ζ⟩ − 1
2σ∥(ξ, ζ) − (y, z)∥2

s.t. A∗ξ + B∗ζ = c,

ξ ∈ Y, ζ ≽ 0.

(4.28)

The KKT conditions of (4.28) are as follows

b − 1
σ (ξ − y) −A(x) = 0,

1
σ (ζ − z) + B(x) − d ≽ 0,

⟨ζ, 1
σ (ζ − z) + B(x) − d⟩ = 0,

A∗ξ + B∗ζ = c,

x ∈ X, ξ ∈ Y, ζ ≽ 0.

(4.29)

For a triple (x̂, ξ̂, ζ̂) ∈ X × Y × Z satisfying the KKT conditions (4.29), ζ̂ and (ζ̂ − z +

σ(B(x̂) − d)) have the spectral decomposition as (3.16). Then x̄ ∈ M(ξ̂, ζ̂) satisfies the

following strict constraint qualification (CQ) A∗ B∗

0 I


 Y

Z

 +

 {0}

[TK(ζ̂) ∩ (B(x̂) − d)]⊥

 =

 X

Z

 .

or, equivalently,

A∗Y + B∗
[
TK(ζ̂) ∩ (B(x̂) − d)⊥

]
= X, (4.30)

where I is the identity mapping from Z to Z and TK(ζ̂) ∩ (B(x̂) − d)⊥. i.e.,

(TK(ζ̂)) ∩ (B(x̂) − d)⊥ = {h ∈ Z | hββ ≽ 0, hβγ = hγγ = 0}, (4.31)
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where index sets β and γ are defined in (2.16). Then M(ξ̂, ζ̂) is singleton [16, Proposition

4.50].

Furthermore, the constraint nondegenerate condition holds at (ξ̂, ζ̂) to the problem

(4.28) if  A∗ B∗

0 I


 Y

Z

 +

 {0}

lin[TK(ζ̂)]

 =

 X

Z

 .

or, equivalently,

A∗Y + B∗
[
lin(TK(ζ̂))

]
= X, (4.32)

where lin[TK(ζ̂)] denotes the lineality space of TK(ζ̂) defined in (2.19), i.e.,

lin(TK(ζ̂)) = {h ∈ Z | hββ = 0, hβγ = 0, hγγ = 0}, (4.33)

where index sets β and γ are defined in (2.16).

As a special case of convex quadratic programming (P ), the following propositions

for inner problems (4.25) and (4.28) are analogous to Proposition 3.10 and Corollary

3.12.

Proposition 4.6. Let (x̂, ξ̂, ζ̂) ∈ X×Y×Z be a triple that satisfies the KKT conditions

(4.29) and ζ̂ and (ζ̂ − z + σ(B(x̂) − d)) have the spectral decomposition as (3.16). Then

the following conditions are equivalent:

(i) The constraint nondegenerate condition (4.32) holds at (ξ̂, ζ̂) to the problem (4.28).

(ii) Every V̂σ(x̂) ∈ ∂̂2φσ(x̂) is self-adjoint and positive definite.

(iii) Choose V 0
σ (x) ∈ ∂ΠK(z − σ(B(x)− d)) defined in (4.27), V 0

σ (x) is self-adjoint and

positive definite.

Moreover, since V̂ I
σ (x̂) ∈ ∂̂2φ(x̂) defined by

V̂ I
σ (x) = σ(A∗A + B∗V I

σ (x)B) ∈ ∂̂2φσ(x), (4.34)

where V I
σ (x) ∈ ∂ΠK(z − σ(B(x) − d)) defined in (2.15). Parallel to Corollary 3.12, we

can give the following corollary for the positive definiteness of V̂ I
σ (x̂).
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Corollary 4.7. Let (x̂, ξ̂, ζ̂) ∈ X × Y × Z be a triple that satisfies the KKT conditions

(4.29). If x̂ ∈ M(ξ̂, ζ̂) satisfies the strict constraint qualification (CQ) (4.30), then V̂ I
σ (x̂)

is self-adjoint and positive definite.

For linear symmetric cone programming, we shall discuss the rate of convergence of

SNCG algorithm to solve the problem (4.28).

Theorem 4.8. Assume that the problem (4.28) satisfies Robinson’s CQ (4.2). Let x̂ be

an accumulation point of the infinite sequence {xj} generated by SNCG algorithm for

solving the inner problem (4.25). Suppose that at each step j ≥ 0, when the practical CG

Algorithm 1 terminates, the tolerance ηj is achieved (e.g., when nj = m + 1), i.e.,

∥∇φ(xj) + (V̂σ(xj) + εjI) dj∥ ≤ ηj . (4.35)

Assume that the constraint nondegenerate condition (4.32) holds at ζ̂ := ΠK(z−σ(B(x̂)−

d)). Then the whole sequence {xj} converges to x̂ and

∥xj+1 − x̂∥ = O(∥xj − x̂∥1+τ ). (4.36)

The global convergence of the NAL algorithm for the linear problems (LP ) and (LD)

is similar to that in Theorem 3.17 for convex quadratic symmetric cone programming.

By the explicit form of the problem (LD), we next state the rate of convergence of the

NAL algorithm for linear cases.

Theorem 4.9. Let the NAL algorithm be executed with stopping criteria (A) and (B).

Assume that (LP) and (LD) satisfy Robinson’s CQ (3.13) and (4.2) respectively. If the

extended strict primal-dual constraint qualification (4.9) holds at (ȳ, z̄), where (ȳ, z̄) is

an optimal solution to (LD), then the generated sequence {(yk, zk)} ⊂ Y×K is bounded

and {(yk, zk)} converges to the unique solution (ȳ, z̄) with min(LP ) = max(LD), and

∥(yk+1, zk+1) − (ȳ, z̄)∥ ≤ θk∥(yk, zk) − (ȳ, z̄)∥ for all k sufficiently large,

where

θk =
[
ag(a2

g + σ2
k)

−1/2 + δk

]
(1 − δk)−1 → θ∞ = ag(a2

g + σ2
∞)−1/2 < 1, σk → σ∞ ,
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and ag is a Lipschitz constant of T−1
g at the origin (cf. Proposition 4.2). The conclusions

of Theorem 3.17 about {(yk, zk)} are valid.

Moreover, if the stopping criterion (B′) is also used and the constraint nondegenerate

conditions (4.23) and (4.32) hold at x̄ and (ȳ, z̄), respectively, then in addition to the

above conclusions the sequence {xk} → x̄, where x̄ is the unique optimal solution to

(LP ), and one has

∥xk+1 − x̄∥ ≤ θ′k∥(yk+1, zk+1) − (yk, zk)∥ for all k sufficiently large,

where θ′k = al(1 + δ′k)/σk → δ∞ = al/σ∞ and al is a Lipschitz constant of T−1
l at the

origin.

Proof. Conclusions of the first part of Theorem 4.9 follow from the results in [103, The-

orem 2] and [102, Theorem 5] combining with Proposition 4.2. By using the fact that

T−1
l is Lipschitz continuous near the origin under the assumption that the constraint

nondegenerate conditions (4.23) and (4.32) hold, respectively, at x̄ and (ȳ, z̄) [118] and

[129], we can directly obtain conclusions of the second part of this theorem from [103,

Theorem 2] and [102, Theorem 5].



Chapter 5
Numerical results for convex QSDPs

We implemented the semismooth Newton-CG augmented Lagrangian (the NAL algo-

rithm) in Matlab to solve a variety of large scale convex quadratic programming prob-

lems on a PC (Intel Xeon 3.2 GHz with 4G of RAM). We measure the infeasibilities and

optimality for the primal and dual problems as follows:

RP = max
(
∥b −A(x)∥
max(1, ∥b∥)

,
∥B(x) − S − d∥

max(1, ∥d∥)

)
, (5.1)

RD =
∥Q(x) + c −A∗y − B∗z∥

max(1, ∥c∥)
, (5.2)

gap =
⟨x,Q(x)⟩ + ⟨c, x⟩ − ⟨b, y⟩ − ⟨d, z⟩

1 + |pobj| + |dobj|
(5.3)

where S = (ΠSn
+
(W ) − W )/σ with W = z − σ(B(x) − d),

pobj =
1
2
⟨x,Q(x)⟩ + ⟨c, x⟩ (5.4)

dobj = −1
2
⟨x,Q(x)⟩ + bT y + ⟨d, z⟩. (5.5)

We do not check the infeasibilities of the conditions z ≽ 0, B(x) ≽ d, ⟨z, (B(x)− d)⟩ = 0,

since they are satisfied up to machine precision throughout the NAL algorithm.

In our numerical experiments, we stop the NAL algorithm when

max{RD, RP } ≤ tol, (5.6)

64
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where the tolerance is 10−6 for most problems except the EDM problems is 10−4. In

solving the subproblem (3.37), we cap the maximum number of Newton iterations to be

50, while in computing the inexact Newton direction from (3.52), we stop the practical

CG solver when the maximum number of CG steps exceeds 500, or when the convergence

is too slow in that the reduction in the residual norm is exceedingly small.

5.1 Random convex QSCP problems

5.1.1 Random convex QSDP problems

We consider the collection of random sparse convex quadratic problems over symmetric

cones which is given as follows,

min 1
2⟨xs, xs ⟩ + ⟨cs, xs⟩ + 1

2⟨xl, Ql(xl) ⟩ + ⟨cl, xl⟩

s.t. As(xs) + Alxl = b,

xs + Bl(xl) ≽ ds,

(5.7)

where xs ∈ Sn, xl ∈ ℜl, cs ∈ Sn, cl ∈ ℜl, Ql is a positive semidefinite matrix in S l, As

is a linear operator from Sn to ℜm, Al is a matrix in ℜm×l, Bl is a linear operator from

ℜl to Sn, and ds ∈ Sn.

In Table 5.1, we list the results obtained by the NAL algorithm for the convex

quadratic problem (5.7) with density= 0.15. The first six columns give the size of prob-

lem (5.7), mat and vec denote the dimensions of the matrix and vector variables, m is

the number of equality constraint, cs and cl are the sizes of SDP and linear cone con-

straints respectively. The middle five columns give the number of outer iteration for

solving (P ), the total number of inner iterations for solving (3.37), the average number

of PCG steps taken to solve (3.52), the objective values pobj and dobj defined in (5.4)

and (5.5), respectively. The relative infeasibilities, gap and times are listed in the last

four columns.

The results of random QSDPs in Table 5.1 show that the NAL algorithm can solve the

QSDPs very efficiently when the dimensions of matrix variables and SDP cone constraints
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are more than 500.

Table 5.1: Results for the NAL algorithm on computing QSDP problems.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

Rn2s1l1v12 100; 200 200 | 100; ; 100 14 | 18.9 | 1.4 -8.83290439 4 -8.83260553 4 6.2-7 | 1.2-7 | -1.7-5 2:59

Rn3s1l5v12 100; 200 300 | 100; ; 500 20 | 19.5 | 1.5 -5.34735658 4 -5.34629213 4 8.4-7 | 3.5-7 | -10.0-5 8:39

Rn6s1l5v12 100; 200 600 | 100; ; 500 20 | 22.9 | 1.4 -7.95663787 4 -7.95548555 4 9.1-7 | 1.2-7 | -7.2-5 11:55

Rn2s1l1v15 100; 500 200 | 100; ; 100 13 | 21.1 | 1.5 -2.42008374 5 -2.42004086 5 7.3-7 | 2.0-7 | -8.9-6 5:18

Rn3s1l5v15 100; 500 300 | 100; ; 500 18 | 20.2 | 1.4 -1.30786630 5 -1.30781300 5 5.1-7 | 5.6-7 | -2.0-5 11:14

Rn6s1l5v15 100; 500 600 | 100; ; 500 19 | 24.3 | 1.4 -2.50565465 5 -2.50556185 5 6.8-7 | 3.5-7 | -1.9-5 14:38

Rn1s1l2v18 100; 800 100 | 100; ; 200 11 | 25.2 | 2.3 -7.05008394 5 -7.05007354 5 3.9-7 | 1.2-7 | -7.4-7 7:55

Rn1s1l7v18 100; 800 100 | 100; ; 700 17 | 22.5 | 1.8 -6.56403601 5 -6.56399043 5 8.8-7 | 2.3-7 | -3.5-6 13:43

Rn6s1l2v18 100; 800 600 | 100; ; 200 16 | 26.8 | 1.4 -5.65895744 5 -5.65891378 5 8.8-7 | 2.4-7 | -3.9-6 14:03

Rn6s1l7v18 100; 800 600 | 100; ; 700 18 | 28.7 | 1.8 -4.74074777 5 -4.74068679 5 8.9-7 | 5.2-7 | -6.4-6 25:20

Rn6s1l1v19 100; 900 600 | 100; ; 100 11 | 29.3 | 1.7 -8.61679384 5 -8.61674448 5 5.4-7 | 2.2-7 | -2.9-6 11:24

Rn6s1l3v19 100; 900 600 | 100; ; 300 17 | 23.2 | 1.5 -9.47479388 5 -9.47471060 5 7.1-7 | 2.0-7 | -4.4-6 14:47

Rn6s1l5v19 100; 900 600 | 100; ; 500 18 | 24.2 | 1.4 -7.59621178 5 -7.59614101 5 6.1-7 | 4.5-7 | -4.7-6 18:06

Rn1s2l2v22 200; 200 100 | 200; ; 200 24 | 29.0 | 1.1 -7.13153150 5 -7.13141535 5 6.3-7 | 1.7-7 | -8.1-6 11:27

Rn1s2l7v22 200; 200 100 | 200; ; 700 26 | 23.3 | 1.3 -7.34900174 5 -7.34879089 5 7.0-7 | 7.2-7 | -1.4-5 32:36

Rn2s4l1v42 400; 200 200 | 400; ; 100 23 | 27.1 | 1.0 -5.29390040 6 -5.29382143 6 4.1-7 | 7.5-8 | -7.5-6 38:02

Rn2s4l3v42 400; 200 200 | 400; ; 300 24 | 25.5 | 1.1 -5.62075367 6 -5.62060959 6 5.0-7 | 3.0-7 | -1.3-5 1:06:55

5.1.2 Random convex QSOCP problems

We consider the following convex quadratic second-order cone programming (QSOCP)

min 1
2⟨x, Qx⟩ + ⟨q, x⟩

s.t. ∥A(x) + b∥ ≤ ⟨c, x⟩ + d,
(5.8)

where Q : X → X is a self-adjoint linear mapping, A : X → ℜn−1 is a linear mapping,

q ∈ X, b ∈ ℜn−1 and d ∈ ℜ. Thus the inequality constraint in (SOCP ) can be written

as an affine mapping:

∥A(x) + b∥ ≤ ⟨c, x⟩ + d ⇔

 cT

A

x +

 d

b

 ∈ Kn,
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where Kn denotes the second-order cone of dimension n defined in (1.6). Thus the

problem (5.8) can be written as

(QSOCP ) min 1
2⟨x, Qx⟩ + ⟨q, x⟩

s.t. Â(x) + b̂ ∈ Kn,

where Â := (cT ;A) and b̂ := (d; b).

We apply the NAL algorithm to solve the cases of problem (QSOCP). For the first

collection of QSOCPs, the operator Q is the identity mapping if the variable is a matrix

and Q is a random symmetric and positive semidefinite matrix if the variable is a vector

with density= 0.25. In table 5.2, cq is the size of the second-order cone constraint. In the

first part of Table 5.2, since there is only one second-order cone constraint in (QSOCP),

the NAL algorithm can solve the size of (QSOCP) up to thousands in few minutes. When

problem (QSCOP) only has vector variables, it can be solved by the NAL algorithm for

very large scale problems shown in the second part of Table 5.2.

Table 5.2: Results for the NAL algorithm on computing QSOCP problems.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

QSOCP1vs1vl1 100; 100 ; | ; 100; 3 | 18.5 | 1.0 -5.12424502 2 -5.12407674 2 4.5-7 | 9.7-7 | -1.6-5 1:26

QSOCP1vs1vl2 100; 200 ; | ; 100; 3 | 27.8 | 1.0 3.28292970 3 3.28292794 3 3.2-7 | 8.7-7 | 2.7-7 1:11

QSOCP1vs1vl3 100; 300 ; | ; 100; 4 | 40.9 | 1.0 -7.57713359 3 -7.57711360 3 6.3-8 | 5.9-7 | -1.3-6 1:31

QSOCP1vs2vl1 200; 100 ; | ; 100; 3 | 30.8 | 1.0 8.03980236 3 8.03986823 3 5.2-8 | 9.7-7 | -4.1-6 3:33

QSOCP1vs2vl2 200; 200 ; | ; 100; 4 | 55.8 | 1.0 -7.35128409 4 -7.35127964 4 7.7-8 | 9.6-7 | -3.0-7 7:00

QSOCP1vs2vl3 200; 300 ; | ; 100; 5 | 78.5 | 1.0 -1.06081961 5 -1.06082030 5 5.2-8 | 8.1-7 | 3.3-7 6:55

QSOCP3vs1vl1 100; 100 ; | ; 300; 3 | 19.9 | 1.0 6.85059278 4 6.85060780 4 3.1-7 | 9.1-7 | -1.1-6 2:07

QSOCP3vs1vl2 100; 200 ; | ; 300; 3 | 21.3 | 1.0 1.51573934 4 1.51574899 4 4.3-8 | 9.5-7 | -3.2-6 2:26

QSOCP3vs1vl3 100; 300 ; | ; 300; 3 | 28.5 | 1.0 2.60034208 3 2.60035664 3 2.2-7 | 8.8-7 | -2.8-6 2:12

QSOCP3vs2vl1 200; 100 ; | ; 300; 3 | 34.9 | 1.0 2.32625214 5 2.32625706 5 5.5-8 | 9.5-7 | -1.1-6 12:18

QSOCP3vs2vl2 200; 200 ; | ; 300; 3 | 51.5 | 1.0 1.11186116 5 1.11186335 5 2.1-7 | 7.8-7 | -9.9-7 13:24

QSOCP3vs2vl3 200; 300 ; | ; 300; 3 | 54.9 | 1.0 2.35319950 5 2.35320543 5 3.1-7 | 8.9-7 | -1.3-6 15:55

QSOCP5vs1vl1 100; 100 ; | ; 500; 3 | 18.5 | 1.0 9.49032754 4 9.49034524 4 2.8-7 | 8.8-7 | -9.3-7 3:16

QSOCP5vs1vl2 100; 200 ; | ; 500; 3 | 21.3 | 1.0 1.22792556 5 1.22792725 5 1.7-7 | 8.1-7 | -6.9-7 3:42

QSOCP5vs1vl3 100; 300 ; | ; 500; 3 | 27.3 | 1.0 5.94365141 4 5.94367085 4 3.2-7 | 8.7-7 | -1.6-6 3:48

QSOCP5vs2vl1 200; 100 ; | ; 500; 3 | 27.8 | 1.0 3.23950750 5 3.23951420 5 9.5-8 | 9.4-7 | -1.0-6 18:00

QSOCP5vs2vl2 200; 200 ; | ; 500; 3 | 41.6 | 1.0 4.44822160 5 4.44823116 5 2.2-7 | 8.2-7 | -1.1-6 20:31

QSOCP5vs2vl3 200; 300 ; | ; 500; 3 | 48.3 | 1.0 3.64821917 5 3.64822759 5 1.5-7 | 9.1-7 | -1.2-6 21:29

QSOCP4vl1 ; 100 ; | ; 400; 5 | 7.0 | 1.0 -9.60442211 2 -9.60441343 2 8.0-7 | 8.9-7 | -4.5-7 04

QSOCP7vl5 ; 500 ; | ; 700; 4 | 8.5 | 1.0 -2.44479022 4 -2.44478973 4 6.0-7 | 8.3-7 | -10.0-8 07

QSOCP12vl10 ; 1000 ; | ; 1200; 4 | 9.0 | 1.0 -1.00125195 5 -1.00125201 5 6.5-7 | 7.0-7 | 3.3-8 17
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Table 5.2: Results for the NAL algorithm on computing QSOCP problems.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

QSOCP12vl15 ; 1500 ; | ; 1200; 4 | 11.7 | 1.0 -2.31199284 5 -2.31199285 5 1.6-7 | 3.9-7 | 2.7-9 46

QSOCP12vl30 ; 3000 ; | ; 1200; 3 | 17.7 | 1.0 -9.83541646 5 -9.83541626 5 6.5-7 | 9.7-7 | -1.0-8 6:35

QSOCP20vl10 ; 1000 ; | ; 2000; 5 | 7.5 | 1.0 -1.17194660 5 -1.17194655 5 2.5-7 | 3.6-7 | -2.3-8 22

QSOCP20vl15 ; 1500 ; | ; 2000; 4 | 8.8 | 1.0 -2.49417551 5 -2.49417553 5 6.5-7 | 6.4-7 | 2.9-9 38

QSOCP20vl30 ; 3000 ; | ; 2000; 3 | 12.7 | 1.0 -1.03120005 6 -1.03120010 6 4.9-7 | 9.1-7 | 2.4-8 3:19

QSOCP60vl10 ; 1000 ; | ; 6000; 6 | 7.0 | 1.0 -1.03135676 5 -1.03135633 5 9.3-7 | 9.9-7 | -2.1-7 47

QSOCP60vl15 ; 1500 ; | ; 6000; 6 | 7.0 | 1.0 -2.43957158 5 -2.43957141 5 2.8-7 | 3.8-7 | -3.5-8 1:18

QSOCP60vl30 ; 3000 ; | ; 6000; 5 | 7.5 | 1.0 -1.00314575 6 -1.00314576 6 2.1-7 | 3.1-7 | 1.8-9 3:13

QSOCP80vl30 ; 3000 ; | ; 8000; 5 | 7.0 | 1.0 -1.00934330 6 -1.00934328 6 5.1-7 | 4.6-7 | -1.2-8 3:36

QSOCP100vl30 ; 3000 ; | ; 10000; 5 | 7.0 | 1.0 -1.00790624 6 -1.00790614 6 8.4-7 | 8.8-7 | -5.0-8 4:13

QSOCP120vl30 ; 3000 ; | ; 12000; 6 | 7.0 | 1.0 -1.01767241 6 -1.01767240 6 3.0-7 | 4.0-7 | -3.7-9 5:18

5.2 Nearest correlation matrix problems

A correlation matrix G is a symmetric positive semidefinite matrix with unit diagonal

and off-diagonal elements between −1 and 1. Such matrices have many applications,

particularly in marketing and financial economics. Unfortunately, due either to paucity

of data/information or dynamic nature of the problem at hand, it is not possible to

obtain a complete correlation matrix. Some elements of G are unknown. To obtain a

valid nearest correlation matrix (NCM) from an incomplete correlation matrix, Higham

[51] considered the following problem

(NCM) min
1
2
∥X − G∥2

s.t. diag(X) = e,

X ∈ Sn
+.

where e ∈ ℜm is the vector of all ones. The norm, in the (NCM) problem, can take these

forms as follows,

(i) Frobenius norm : ∥A∥F =
√

trace(AT A).

(ii) W -weighted norm: ∥A∥W = ∥W 1/2AW 1/2∥F , where W ∈ Sn
+.
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(iii) H-weighted norm: ∥A∥H = ∥H ◦ A∥F , where H = (Hij) ∈ Sn with Hij ≥ 0.

To evaluate the performance of our NAL algorithm for solving the (NCM) problem,

we set the data matrix as follows,

G := (1 − α)B + αE

where α ∈ (0, 1) (eg. α = 0.1), E is a random symmetric matrix with entries in [−1, 1],

generated by E = 2*rand(n)-1; E = triu(E) + triu(E,1)’, and B is generated in

the following examples:

• Randcorr generates a random correlation matrix with with specified eigenvalues

by the MATLAB segment

xx = 10.^{(4*[-1:1/(n-1):0])}; B = gallery(’randcorr’,n*xx/sum(xx).

• Randcorr2 is similar to Example Randcorr except fixing some eigenvalues are

zeros,

n2 = n/2; xx = [10^(-4/(n-1)).^[0:n2-1], zeros(1,n2)];

xx = n*xx/sum(xx); B = gallery(’randcorr’,xx).

• AR1 and CompSym can generate two type correlation matrices based on the

AR(1) model and compound symmetry model given by [52].

• NCM387-riskmetric is the 387 × 387 1-day correlation matrix (as of June 15,

2006) from the lagged datasets of RiskMetrics (www.riskmetrics.com/stddownload

edu.html).

For solving the (NCM) problem, we consider the following classes of test problems:

NCMI. The standard version: The linear operator Q is chosen to be the identity operator

in Sn, i.e., Q(X) = X.
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NCMH. The H-weighted version: The linear operator Q is chosen to be Q(X) = H ◦ X,

where H can be randomly generated as follows. First generate a random symmetric

matrix H0 whose elements are picked from the uniform distribution in [0.1, 10].

Then for a given p ∈ (0, 1), we randomly set approximately n2p elements of H0 to

100 and another n2p elements to 0.01 to simulate the situation where some of the

elements in G are fixed and some others are unrestricted. The resulting matrix is

chosen to be the weight matrix H. In our experiments, we set p = 0.01 or 0.2.

NCMW. The W -weighted version: The linear operator Q is chosen to be Q(X) = WXW ,

where W ∈ Sn is symmetric and positive definite. We set the data of the matrix

W from the choice of the weighted matrix W in [43].

Table 5.3: Results for the NAL algorithm on computing NCMI problems.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

NCM100-AR1 100; 100 | 100; ; 5 | 7.0 | 1.0 2.23088254 0 2.23089226 0 5.5-7 | 3.8-8 | -1.8-6 01

NCM100-CompSym 100; 100 | 100; ; 4 | 7.0 | 1.0 2.69812614-2 2.69804229-2 7.3-7 | 2.6-9 | 8.0-7 01

NCM100-Randcorr 100; 100 | 100; ; 6 | 7.0 | 1.0 3.49175258 0 3.49175996 0 3.1-7 | 1.9-8 | -9.2-7 01

NCM100-Randcorr 100; 100 | 100; ; 6 | 7.0 | 1.0 3.72839570 0 3.72840342 0 3.0-7 | 1.8-8 | -9.1-7 01

NCM500-AR1 500; 500 | 500; ; 7 | 7.0 | 1.0 1.36256510 2 1.36256635 2 2.8-7 | 9.3-9 | -4.6-7 29

NCM500-CompSym 500; 500 | 500; ; 5 | 7.0 | 1.0 4.88027295 1 4.88028757 1 6.4-7 | 2.0-8 | -1.5-6 18

NCM500-Randcorr 500; 500 | 500; ; 7 | 7.0 | 1.0 1.53391453 2 1.53391596 2 3.0-7 | 1.1-8 | -4.7-7 24

NCM500-Randcorr 500; 500 | 500; ; 7 | 7.0 | 1.0 1.56555429 2 1.56555593 2 3.4-7 | 1.2-8 | -5.2-7 29

NCM1000-AR1 1000; 1000 | 1000; ; 7 | 7.0 | 1.0 6.89909276 2 6.89910324 2 6.9-7 | 1.5-8 | -7.6-7 2:34

NCM1000-CompSym 1000; 1000 | 1000; ; 6 | 7.0 | 1.0 3.80780160 2 3.80780776 2 6.0-7 | 1.3-8 | -8.1-7 2:07

NCM1000-Randcor 1000; 1000 | 1000; ; 7 | 7.0 | 1.0 7.31114578 2 7.31115604 2 6.5-7 | 1.5-8 | -7.0-7 2:33

NCM1000-Randcor 1000; 1000 | 1000; ; 7 | 7.0 | 1.0 7.36882232 2 7.36883271 2 6.6-7 | 1.6-8 | -7.0-7 2:33

NCM387-riskmetr 387; 387 | 387; ; 14 | 7.0 | 1.0 1.47285239 2 1.47285313 2 5.6-7 | 4.9-8 | -2.5-7 25

Since Q is a strictly positive operator, the performance of results of NAL algorithm on

the NCM problems is so fast that the algorithm almost have the quadratic convergence

in Table 5.3. Even when the dimensions of variables and constraints is up to 1000, the

NCM problems can be solved only in few minutes.
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Table 5.4: Results for the NAL algorithm on computing H-norm NCM problems with

p = 0.01.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

NCM100-AR1 100; 100 | 100; ; 13 | 36.1 | 1.0 2.64722049 1 2.64742294 1 6.7-7 | 2.5-7 | -3.8-5 11

NCM100-CompSym 100; 100 | 100; ; 14 | 76.8 | 1.1 1.91516041-2 2.09145830-2 8.9-7 | 3.0-7 | -1.7-3 26

NCM100-Randcorr 100; 100 | 100; ; 19 | 27.4 | 1.0 4.62362677 1 4.62391162 1 5.2-7 | 1.6-7 | -3.0-5 12

NCM100-Randcorr 100; 100 | 100; ; 13 | 36.1 | 1.2 4.72084720 1 4.72107928 1 9.5-7 | 5.5-7 | -2.4-5 14

NCM500-AR1 500; 500 | 500; ; 13 | 11.7 | 1.6 2.61602187 3 2.61602860 3 8.3-7 | 5.1-8 | -1.3-6 1:38

NCM500-CompSym 500; 500 | 500; ; 14 | 9.5 | 1.2 5.74879548 2 5.74876282 2 8.6-7 | 1.6-7 | 2.8-6 1:11

NCM500-Randcorr 500; 500 | 500; ; 12 | 8.0 | 1.1 3.01473766 3 3.01473942 3 5.1-7 | 2.1-8 | -2.9-7 1:02

NCM500-Randcorr 500; 500 | 500; ; 15 | 9.3 | 1.2 3.03014635 3 3.03015478 3 5.3-7 | 8.1-8 | -1.4-6 1:24

NCM1000-AR1 1000; 1000 | 1000; ; 18 | 9.0 | 1.1 1.49035680 4 1.49035889 4 7.4-7 | 1.0-7 | -7.0-7 6:50

NCM1000-CompSym 1000; 1000 | 1000; ; 16 | 8.6 | 1.1 6.55333905 3 6.55337763 3 9.4-7 | 2.5-7 | -2.9-6 6:09

NCM1000-Randcor 1000; 1000 | 1000; ; 19 | 8.7 | 1.3 1.58093259 4 1.58093449 4 6.2-7 | 9.1-8 | -6.0-7 7:38

NCM1000-Randcor 1000; 1000 | 1000; ; 18 | 10.1 | 1.2 1.61944132 4 1.61944336 4 4.4-7 | 1.0-7 | -6.3-7 8:03

NCM387-riskmetr 387; 387 | 387; ; 15 | 11.8 | 1.4 4.03067619 3 4.03067559 3 5.2-7 | 1.9-7 | 7.5-8 1:07

Table 5.5: Results for the NAL algorithm on computing H-norm NCM problems with

p = 0.2.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

NCM100-AR1 100; 100 | 100; ; 19 | 35.6 | 1.2 1.63274825 1 1.63571056 1 9.4-7 | 4.1-7 | -8.8-4 19

NCM100-CompSym 100; 100 | 100; ; 19 | 55.1 | 1.1 4.11793221-4 2.12560713-3 7.1-7 | 4.8-7 | -1.7-3 19

NCM100-Randcorr 100; 100 | 100; ; 19 | 30.0 | 1.0 3.09043223 1 3.09057409 1 4.2-7 | 7.0-8 | -2.3-5 15

NCM100-Randcorr 100; 100 | 100; ; 17 | 28.5 | 1.1 4.94611854 1 4.94638398 1 8.5-7 | 8.3-8 | -2.7-5 14

NCM500-AR1 500; 500 | 500; ; 13 | 13.0 | 1.4 2.93985274 3 2.93986063 3 7.9-7 | 1.3-7 | -1.3-6 2:08

NCM500-CompSym 500; 500 | 500; ; 11 | 17.0 | 1.4 3.72680567 2 3.72678346 2 9.6-7 | 1.0-7 | 3.0-6 2:47

NCM500-Randcorr 500; 500 | 500; ; 16 | 10.9 | 1.3 3.33870309 3 3.33872491 3 4.7-7 | 8.8-8 | -3.3-6 1:53

NCM500-Randcorr 500; 500 | 500; ; 16 | 9.7 | 1.3 3.44300435 3 3.44303791 3 4.9-7 | 1.4-7 | -4.9-6 1:44

NCM1000-AR1 1000; 1000 | 1000; ; 15 | 10.6 | 1.2 2.00960303 4 2.00960829 4 6.2-7 | 6.8-8 | -1.3-6 9:04

NCM1000-CompSym 1000; 1000 | 1000; ; 16 | 11.4 | 1.3 6.68421785 3 6.68426315 3 7.5-7 | 9.1-8 | -3.4-6 10:28

NCM1000-Randcor 1000; 1000 | 1000; ; 17 | 9.0 | 1.1 2.10044492 4 2.10045529 4 4.3-7 | 1.5-7 | -2.5-6 8:07

NCM1000-Randcor 1000; 1000 | 1000; ; 17 | 9.5 | 1.3 2.18234308 4 2.18234829 4 6.0-7 | 6.9-8 | -1.2-6 9:01

NCM387-riskmetr 387; 387 | 387; ; 21 | 14.5 | 1.2 1.07255923 4 1.07254880 4 7.3-7 | 1.7-7 | 4.9-6 1:41

Tables 5.4 and 5.5, list the results obtained by the QSDP-GAL algorithm for the H-norm

NCM problems with p = 0.01 and p = 0.2 respectively. The results in Tables 5.4 and

5.5 show that the relative gaps can be reduced very small as the desired accuracy of
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infeasibilities for the H-norm NCM problems.

Table 5.6: Results for the NAL algorithm on computing W-norm NCM problems.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

NCM100-AR1 100; 100 | 100; ; 8 | 11.6 | 1.2 4.01406632-2 4.01515902-2 9.9-7 | 1.0-7 | -1.0-5 04

NCM100-CompSym 100; 100 | 100; ; 17 | 10.7 | 1.0 9.43927680-3 9.44175256-3 4.3-7 | 8.3-8 | -2.4-6 04

NCM100-Randcorr 100; 100 | 100; ; 9 | 10.9 | 1.1 6.25287195-2 6.25273672-2 6.2-7 | 4.6-8 | 1.2-6 04

NCM100-Randcorr 100; 100 | 100; ; 13 | 11.0 | 1.2 7.64308050-2 7.64365845-2 8.8-7 | 9.6-8 | -5.0-6 05

NCM500-AR1 500; 500 | 500; ; 9 | 12.7 | 1.8 1.94451939 0 1.94461715 0 8.4-7 | 9.5-8 | -2.0-5 3:17

NCM500-CompSym 500; 500 | 500; ; 14 | 18.5 | 1.8 9.86698773-1 9.86833418-1 7.5-7 | 1.4-7 | -4.5-5 5:01

NCM500-Randcorr 500; 500 | 500; ; 6 | 14.0 | 1.9 2.03838061 0 2.03862609 0 8.6-7 | 4.7-7 | -4.8-5 5:09

NCM500-Randcorr 500; 500 | 500; ; 6 | 13.5 | 1.9 2.12769503 0 2.12780030 0 2.8-7 | 1.6-7 | -2.0-5 5:18

NCM1000-AR1 1000; 1000 | 1000; ; 23 | 26.5 | 1.4 1.16460867 1 1.16469106 1 7.6-7 | 1.8-7 | -3.4-5 1:29

NCM1000-CompSym 1000; 1000 | 1000; ; 19 | 17.1 | 1.4 5.78548918 0 5.78601682 0 6.6-7 | 2.1-7 | -4.2-5 33:36

NCM1000-Randcor 1000; 1000 | 1000; ; 7 | 12.2 | 2.3 9.11968156 0 9.12194201 0 7.2-7 | 3.4-7 | -1.2-4 33:20

NCM1000-Randcor 1000; 1000 | 1000; ; 9 | 12.0 | 1.9 9.08071778 0 9.08724498 0 4.7-7 | 2.1-7 | -3.4-4 35:52

NCM387-riskmetr 387; 387 | 387; ; 89 | 12.0 | 3.4 7.68457793 0 3.59744521 1 7.7-7 | 1.9-5 | -6.3-1 34:03

In Table 5.6, the relative gap of “NCM387-riskmetric” is not accurate enough although

the infeasibilies of primal and dual problems are reached. It is because the real data

of market is much worse than the random generated matrices and the operator Q for

the W-norm cases is only positive semidefinite. To overcome this, we can reduce the

tolerance and run more iterations.

5.3 Euclidean distance matrix problems

In recent years, the Euclidean distance matrix (EDM) completion problems have received

a lot of attention for their many important applications, such as molecular conforma-

tion problems in chemistry [85] and multidimensional scaling and multivariate analysis

problems in statistics [65]. This section will apply the NAL algorithm to solve (EDM)

completion problems for finding a weighted, closest Euclidean distance matrix.

Let B = (Bij) be a dissimilarity matrix, defined in (1.2), with nonnegative elements
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and zero diagonal in Sn. Define the n × n orthogonal matrix

Q :=
(

1√
n

e | V

)
, QT Q = I. (5.9)

where e is the vector of all ones. Thus V T e = 0 and V T V = I, for V ∈ ℜn×(n−1). We

introduce the linear operators on Sn

θ(B) = diag(B) eT + e diag(B)T − 2(B). (5.10)

Then B is a EDM if and only if B = θ(X) with Be = 0 and B ∈ Sn
+. Let X = V T BV ,

then since Be = 0 we have B = V XV T . Therefore, V XV T ∈ Sn
+ if and only if X ∈ Sn

+.

We consider the following approximate Euclidean distance matrix completion problem

from [1]

(EDM) min
1
2
∥H ◦ (B − θ(XV ))∥2

F

s.t. (θ(XV ))ij = Bij ∀ (i, j) ∈ E ,

X ∈ Sn−1
+ ,

where ◦ denotes Hadamard product, XV := V XV T and V is defined in (5.9), B is

a dissimilarity matrix, H ∈ Sn is a weight matrix with nonnegative elements which

typically has the same sparsity pattern as B, E is a given set of indices. Note that the

operators Q for the (EDM) are positive semidefinite, but not positive definite.

To implement the NAL algorithm, we consider the following classes of QSDPs arising

from the (EDM) problem:

EDM1. For the random EDM problems, we can generate n random points, x1, x2, . . . , xn,

in the unit cube centered at the origin in ℜ3. For a certain cut-off distance R, we

then set the dissimilarity matrix B defined in (1.2) as follows,

Bij =


∥xi − xj∥ if ∥xi − xj∥ ≤ R,

0 otherwise.
(5.11)

The non-negative weight matrix H is chosen to be the 0-1 matrix having the

same sparsity pattern as B. The set of indices where the distances are fixed is



5.3 Euclidean distance matrix problems 74

given by E = {(1, j) | B1j = 0, j = 1, . . . , n}. We generated four test problems

with n = 50, 100, 200, 400, and their corresponding dissimilarity matrices B have

16.6%, 8.6%, 4.5%, and 2.4% nonzero elements, respectively. Note that in the ac-

tual QSDP test problems, we added the term −0.01⟨I, X⟩ to the objective function

in (EDM) so as to induce a low-rank primal optimal solution.

EDM2. Same as EDM1 but the points are chosen to be the coordinates of the atoms in

the following protein molecules, 1PTQ, 1HOE, 1LFB, 1PHT, 1POA, 1AX8, taken

from the Protein Data Bank [9]. These six test problems have dimension n = 401,

557, 640, 813 and the densities of nonzeros in B are 17.4%, 13.1%, 11.0%, 8.3%,

respectively.

Table 5.7: Results for the NAL algorithm on computing EDM problems.

problem mat;vec m | cs; cq ; cl it| itsub| pcg pobj dobj RP | RD| gap time

EDM50 50; 10 | 50; ; 7 | 66.4 | 2.0 6.34541629-2 6.37973333-2 5.3-5 | 8.5-6 | -3.0-4 25

EDM100 100; 12 | 100; ; 7 | 65.6 | 2.2 6.64391571-2 6.88303537-2 6.0-5 | 3.8-5 | -2.1-3 37

EDM200 200; 12 | 200; ; 7 | 70.5 | 2.2 6.63887673-2 6.92644444-2 8.5-5 | 5.4-5 | -2.5-3 1:37

EDM400 400; 15 | 400; ; 12 | 58.4 | 1.9 4.77518288-2 5.00359015-2 7.6-5 | 7.3-5 | -2.1-3 14:48

pdb1PTQ 402; 70 | 402; ; 17 | 61.0 | 1.3 1.09211217 0 1.12228861 0 8.6-5 | 4.6-5 | -9.4-3 18:28

pdb1HOE 558; 42 | 558; ; 16 | 58.6 | 1.4 5.52267196-1 5.67573125-1 9.1-5 | 5.1-5 | -7.2-3 30:24

pdb1LFB 641; 29 | 641; ; 13 | 54.6 | 1.4 1.54148929-1 1.59580279-1 8.4-5 | 6.1-5 | -4.1-3 32:36

pdb1PHT 814; 51 | 814; ; 16 | 57.4 | 1.4 5.26736360-1 5.41945839-1 9.9-5 | 4.7-5 | -7.4-3 1:20:00

Although the optimal solutions to the EDM problems may not satisfy the primal con-

straint nondegeneracy (3.25) or the condition (3.43), the problems listed in Table 5.7 can

be solved by the NAL algorithm with a moderate tolerance 10−4. For the high accuracy

of EDM problems, we have to choose a good preconditioner of the generalized Hessian

matrix defined in (3.39) to improve the performance of the SNCG algorithm for inner

problems.



Chapter 6
Numerical results for linear SDPs

As a special case of QSDPs, the NAL algorithm can also be applied to solve the linear

programming over symmetric cones. Because of the explicit form of the problem (LD),

the NAL algorithm can solve the dual problems more efficient than the primal problems.

Under the same conditions (5.1)−(5.6) of convex quadratic programming in Chapter 5, we

will mainly compare the performance of the NAL algorithm with the related algorithms

in this section.

6.1 SDP relaxations of frequency assignment problems

Due to the fast implementation of wireless telephone networks and satellite communica-

tion projects, the literature on frequency assignment problems (FAP)has grown quickly

over the past years. Since the frequency assignment problem is a NP-complete problem,

we consider the semidefinite relaxation of frequency assignment problems [36]. Given a

network represented by a graph G, a certain type of frequency assignment problem on

G can be relaxed into the following SDP:

max ⟨C, X ⟩

s.t. diag(X) = e, A(X) = b,

B(X) ≤ h, X ∈ Sn
+,

(6.1)

75
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where the data consist of the matrix C ∈ Sn, e ∈ ℜn is the vector of all ones, b ∈ ℜm,

h ∈ ℜr, and the linear maps A : Sn → ℜm and B : Sn → ℜr. The dual of (6.1) has the

form as

min eT y + bT z + hT u

s.t. Diag(y) + A∗z + B∗u − C ∈ Sn
+

y ∈ ℜn, z ∈ ℜm, u ∈ ℜr
+,

(6.2)

where A∗ : ℜm → Sn and B∗ : ℜr → Sn are the adjoints of the operators A and B. We

apply the NAL algorithm to solve the problem (6.2) since it only has the vector variable.

Tables 6.1 and 6.2 list the results obtained by the NAL algorithm and the boundary-

point method for the SDP relaxation of frequency assignment problems tested in [21],

respectively. The details of Table 6.1 and the following tables in this section are almost

the same as those for Table 5.1 except that in the second column m is the dimensional

of the variables.

For this collection of SDPs, the NAL algorithm outperformed the boundary-point

method. While the NAL algorithm can achieve rather high accuracy in max{RP , RD, gap}

for all the SDPs, the boundary-point method fails to achieve satisfactory accuracy after

the maximum iterations achieved in that the primal and dual objective values obtained

have yet to converge close to the optimal values, see [139]. However, although FAP prob-

lems are degenerate for (LP ) and (LD) problems, the NAL algorithm can achieve the

required accuracy max{RP , RD} ≤ 10−6 within moderate CPU time for all the SDPs.

For the FAP problems, previous methods such as the spectral bundle (SB) method

[48], the BMZ method [21], and inexact interior-point method [121] largely fail to solve

these SDPs to satisfactory accuracy within moderate computer time. For example, the

SB and BMZ methods took more than 50 and 3.3 hours, respectively, to solve fap09

on an SGI Origin2000 computer using a single 300MHz R1200 processor. The inexact

interior-point method [121] took more than 2.5 hours to solve the same problem on a

700MHz HP c3700 workstation. Comparatively, our NAL algorithm took only 41 seconds

to solve fap09 to the same accuracy or better.
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Table 6.1: Results for NAL Algorithm on the frequency assignment problems.

problem m | cs; cl it| itsub| pcg pobj dobj RP | RD| gap time

fap01 1378 | 52; 1160 20| 109| 33.2 3.28834503-2 3.28832952-2 8.4-7| 1.0-7| 1.5-7 06

fap02 1866 | 61; 1601 20| 81| 21.4 6.90524269-4 7.02036467-4 8.4-7| 3.5-7| -1.1-5 04

fap03 2145 | 65; 1837 20| 102| 38.6 4.93726225-2 4.93703591-2 1.2-7| 2.5-7| 2.1-6 07

fap04 3321 | 81; 3046 21| 173| 43.5 1.74829592-1 1.74844758-1 2.0-7| 6.4-7| -1.1-5 17

fap05 3570 | 84; 3263 21| 244| 56.6 3.08361964-1 3.08294715-1 7.6-6 | 6.2-7| 4.2-5 32

fap06 4371 | 93; 3997 21| 187| 55.3 4.59325368-1 4.59344513-1 7.6-7| 6.8-7| -10.0-6 27

fap07 4851 | 98; 4139 22| 179| 61.4 2.11762487 0 2.11763204 0 9.9-7| 4.9-7| -1.4-6 30

fap08 7260 | 120; 6668 21| 113| 45.0 2.43627884 0 2.43629328 0 2.8-7| 9.9-7| -2.5-6 21

fap09 15225 | 174; 14025 22| 120| 38.4 1.07978114 1 1.07978423 1 8.9-7| 9.6-7| -1.4-6 41

fap10 14479 | 183; 13754 23| 140| 57.4 9.67044948-3 9.74974306-3 1.5-7| 9.3-7| -7.8-5 1:18

fap11 24292 | 252; 23275 25| 148| 69.0 2.97000004-2 2.98373492-2 7.7-7| 6.0-7| -1.3-4 3:21

fap12 26462 | 369; 24410 25| 169| 81.3 2.73251961-1 2.73410714-1 6.0-7| 7.8-7| -1.0-4 9:07

fap25 322924 | 2118; 311044 24| 211| 84.8 1.28761356 1 1.28789892 1 3.2-6 | 5.0-7| -1.1-4 10:53:22

fap36 1154467 | 4110; 1112293 17| 197| 87.4 6.98561787 1 6.98596286 1 7.7-7| 6.7-7| -2.5-5 65:25:07

Table 6.2: Results obtained by the boundary-point method in [73] on the frequency

assignment problems. The parameter σ0 is set to 1 (better than 0.1).

problem m | cs; cl it pobj dobj RP | RD| gap time

fap01 1378 | 52; 1160 2000 3.49239684-2 3.87066984-2 5.4-6 | 1.7-4| -3.5-3 15

fap02 1866 | 61; 1601 2000 4.06570342-4 1.07844848-3 1.6-5 | 7.5-5 | -6.7-4 16

fap03 2145 | 65; 1837 2000 5.02426246-2 5.47858318-2 1.5-5 | 1.5-4| -4.1-3 17

fap04 3321 | 81; 3046 2000 1.77516830-1 1.84285835-1 4.5-6 | 1.7-4| -5.0-3 24

fap05 3570 | 84; 3263 2000 3.11422846-1 3.18992969-1 1.1-5 | 1.6-4| -4.6-3 25

fap06 4371 | 93; 3997 2000 4.60368585-1 4.64270062-1 7.5-6 | 9.8-5 | -2.0-3 27

fap07 4851 | 98; 4139 2000 2.11768050 0 2.11802220 0 2.5-6 | 1.5-5 | -6.5-5 25

fap08 7260 | 120; 6668 2000 2.43638729 0 2.43773801 0 2.6-6 | 3.5-5 | -2.3-4 34

fap09 15225 | 174; 14025 2000 1.07978251 1 1.07982902 1 9.2-7| 9.8-6 | -2.1-5 59

fap10 14479 | 183; 13754 2000 1.70252739-2 2.38972400-2 1.1-5 | 1.1-4| -6.6-3 1:25

fap11 24292 | 252; 23275 2000 4.22711513-2 5.94650102-2 8.8-6 | 1.4-4| -1.6-2 2:31

fap12 26462 | 369; 24410 2000 2.93446247-1 3.26163363-1 6.0-6 | 1.5-4| -2.0-2 4:37

fap25 322924 | 2118; 311044 2000 1.31895665 1 1.35910952 1 4.8-6 | 2.0-4| -1.4-2 8:04:00

fap36 1154467 | 4110; 1112293 2000 7.03339309 1 7.09606078 1 3.9-6 | 1.4-4| -4.4-3 46:59:28



6.2 SDP relaxations of maximum stable set problems 78

6.2 SDP relaxations of maximum stable set problems

Let G be a simple, undirected graph with the node set V and edge set E . The stability

number α(G) is the cardinality of a maximal stable set of G, and

α(G) := {eT y : yiyj = 0, (i, j) ∈ E , y ∈ {0, 1}n}.

The Lovász theta number θ(G) defined and studied by Lovász in [70] is an upper bound

on the stability number α(G) and can be computed as the optimal value of the following

SDP problem,

θ(G) := max ⟨eeT , Y ⟩

s.t. ⟨Eij , Y ⟩ = 0 ∀ (i, j) ∈ E ,

⟨I, Y ⟩ = 1, Y ≽ 0,

(6.3)

where Eij = eie
T
j + eje

T
i and ei denotes column i of the identity matrix I. It is known

that α(G) ≤ θ(G)+ ≤ θ(G), where

θ+(G) := max ⟨eeT , Y ⟩

s.t. ⟨Eij , Y ⟩ = 0 ∀ (i, j) ∈ E ,

⟨I, Y ⟩ = 1,

Y ≽ 0, Y ≥ 0.

(6.4)

Note that the θ+(G) problem is reformulated as a standard SDP problem by replacing

the constraint Y ≥ 0 by constraints Y − X = 0 and X ≥ 0. Thus such a reformulation

introduces an additional n(n + 1)/2 linear equality constraints to the SDP problem.

Table 6.3 lists the results obtained by the NAL algorithm for the SDP problems arising

from computing θ(G) for the maximum stable set problems. The first collection of graph

instances in Table 6.3 are coming from the randomly generated instances considered

in [121], whereas the second collection is from the Seventh DIMACS Implementation

Challenge on the Maximum Clique problem [56]. The last collection are graphs arising

from coding theory, available from N. Sloane’s web page [111].

Observe that the NAL algorithm is not able to achieve the required accuracy level

for some of the SDPs from Sloane’s collection. It is not surprising that this may happen
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because many of these SDPs are degenerate at the optimal solution. For example, the

problems 1dc.128 and 2dc.128 are degenerate at the optimal solutions x̄ even though

they are nondegenerate at the optimal solutions Y .

Compared with the boundary-point method in [73], the iterative solver based primal-

dual interior-point method in [121], as well as the iterative solver based modified barrier

method in [60], the performance of NAL algorithm is at least as efficient as the boundary-

point method on the theta problems for random graphs and much faster than the methods

in [121] and [60] on a subset of the large SDPs arising from the first collection of random

graphs. Note that the NAL algorithm is more efficient than the boundary-point method

on the collection of graphs from DIMACS. For example, the NAL algorithm takes less

than 100 seconds to solve the problem G43 to an accuracy of less than 10−6, while the

boundary-point method (with σ0 = 0.1) takes more than 3,900 seconds to achieve an

accuracy of 1.5 × 10−5. Such a result for G43 is not surprising because the rank of the

optimal X (equals to 58) is much smaller than n, and as already mentioned in [88], the

boundary-point method typically would perform poorly under such a situation.

Table 6.3: Results for the NAL algorithm on computing θ(G) in (6.3) for the maximum

stable set problems.

problem m | cs; cl it| itsub| pcg pobj dobj RP | RD| gap time

theta4 1949 | 200; 22| 25| 12.7 5.03212191 1 5.03212148 1 4.9-8| 5.2-7| 4.2-8 05

theta42 5986 | 200; 20| 24| 11.6 2.39317091 1 2.39317059 1 2.2-7| 8.5-7| 6.6-8 06

theta6 4375 | 300; 22| 29| 11.0 6.34770834 1 6.34770793 1 4.5-8| 4.8-7| 3.2-8 12

theta62 13390 | 300; 20| 25| 11.2 2.96412472 1 2.96412461 1 5.8-7| 9.2-7| 1.7-8 14

theta8 7905 | 400; 22| 28| 10.6 7.39535679 1 7.39535555 1 6.5-8| 6.9-7| 8.3-8 23

theta82 23872 | 400; 21| 26| 10.3 3.43668917 1 3.43668881 1 1.4-7| 8.8-7| 5.2-8 27

theta83 39862 | 400; 20| 27| 10.8 2.03018910 1 2.03018886 1 1.2-7| 4.8-7| 5.6-8 35

theta10 12470 | 500; 21| 25| 10.6 8.38059689 1 8.38059566 1 6.9-8| 6.6-7| 7.3-8 36

theta102 37467 | 500; 23| 28| 10.2 3.83905451 1 3.83905438 1 6.9-8| 4.8-7| 1.6-8 50

theta103 62516 | 500; 18| 27| 10.7 2.25285688 1 2.25285667 1 4.4-8| 5.8-7| 4.6-8 1:00

theta104 87245 | 500; 17| 28| 11.2 1.33361400 1 1.33361379 1 6.1-8| 6.5-7| 7.6-8 58

theta12 17979 | 600; 21| 26| 10.3 9.28016795 1 9.28016679 1 9.6-8| 8.1-7| 6.2-8 57

theta123 90020 | 600; 18| 26| 10.9 2.46686513 1 2.46686492 1 3.3-8| 5.2-7| 4.1-8 1:34

theta162 127600 | 800; 17| 26| 10.2 3.70097353 1 3.70097324 1 3.6-8| 5.4-7| 3.8-8 2:53

MANN-a27 703 | 378; 9| 13| 6.2 1.32762891 2 1.32762869 2 9.4-11| 7.0-7| 8.3-8 07

johnson8-4 561 | 70; 3| 4| 3.0 1.39999996 1 1.39999983 1 4.5-9| 1.6-7| 4.4-8 00

johnson16- 1681 | 120; 3| 4| 4.0 7.99998670 0 7.99999480 0 8.1-8| 7.5-7| -4.8-7 01

san200-0.7 5971 | 200; 13| 22| 8.9 3.00000066 1 2.99999980 1 2.3-7| 3.1-7| 1.4-7 04
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Table 6.3: Results for the NAL algorithm on computing θ(G) in (6.3) for the maximum

stable set problems.

problem m | cs; cl it| itsub| pcg pobj dobj RP | RD| gap time

c-fat200-1 18367 | 200; 8| 36| 20.3 1.19999983 1 1.19999962 1 1.5-7| 8.3-7| 8.5-8 09

hamming-6- 1313 | 64; 3| 4| 4.2 5.33333334 0 5.33333330 0 4.4-11| 5.8-9| 2.7-9 00

hamming-8- 11777 | 256; 5| 5| 4.0 1.59999983 1 1.59999855 1 7.2-9| 8.0-7| 3.9-7 02

hamming-9- 2305 | 512; 6| 6| 5.2 2.24000000 2 2.24000049 2 1.2-10| 2.4-7| -1.1-7 10

hamming-10 23041 | 1024; 7| 9| 5.6 1.02399780 2 1.02400070 2 7.1-8| 7.1-7| -1.4-6 1:33

hamming-7- 1793 | 128; 4| 5| 4.2 4.26666667 1 4.26666645 1 4.1-12| 6.6-8| 2.6-8 01

hamming-8- 16129 | 256; 4| 4| 4.8 2.56000007 1 2.55999960 1 2.8-9| 2.1-7| 9.0-8 02

hamming-9- 53761 | 512; 4| 6| 6.5 8.53333333 1 8.53333311 1 1.4-11| 3.9-8| 1.3-8 10

brock200-1 5067 | 200; 20| 24| 12.6 2.74566402 1 2.74566367 1 1.2-7| 6.7-7| 6.3-8 06

brock200-4 6812 | 200; 18| 23| 13.0 2.12934757 1 2.12934727 1 1.1-7| 5.8-7| 6.8-8 06

brock400-1 20078 | 400; 21| 25| 10.6 3.97018902 1 3.97018916 1 5.4-7| 9.9-7| -1.7-8 26

keller4 5101 | 171; 17| 21| 15.9 1.40122390 1 1.40122386 1 1.3-7| 4.4-7| 1.3-8 05

p-hat300-1 33918 | 300; 20| 84| 38.7 1.00679674 1 1.00679561 1 5.5-7| 9.4-7| 5.3-7 1:45

G43 9991 | 1000; 18| 27| 11.6 2.80624585 2 2.80624562 2 3.0-8| 4.6-7| 4.2-8 1:33

G44 9991 | 1000; 18| 28| 11.1 2.80583335 2 2.80583149 2 3.6-7| 9.2-7| 3.3-7 2:59

G45 9991 | 1000; 17| 26| 11.5 2.80185131 2 2.80185100 2 3.6-8| 5.8-7| 5.6-8 2:51

G46 9991 | 1000; 18| 26| 11.4 2.79837027 2 2.79836899 2 3.2-7| 9.1-7| 2.3-7 2:53

G47 9991 | 1000; 17| 27| 11.4 2.81893976 2 2.81893904 2 7.0-8| 9.3-7| 1.3-7 2:54

1dc.64 544 | 64; 22| 87| 61.1 1.00000038 1 9.99998513 0 6.9-7| 9.2-7| 8.9-7 06

1et.64 265 | 64; 13| 16| 10.0 1.87999993 1 1.88000161 1 1.2-7| 7.2-7| -4.3-7 01

1tc.64 193 | 64; 14| 25| 14.1 2.00000028 1 1.99999792 1 5.5-7| 9.2-7| 5.7-7 01

1dc.128 1472 | 128; 26| 160| 78.3 1.68422941 1 1.68420185 1 6.4-6 | 6.5-7| 7.9-6 31

1et.128 673 | 128; 14| 25| 11.5 2.92308767 1 2.92308940 1 7.6-7| 4.5-7| -2.9-7 02

1tc.128 513 | 128; 12| 33| 10.7 3.79999935 1 3.79999915 1 1.6-7| 8.5-7| 2.6-8 02

1zc.128 1121 | 128; 10| 16| 8.2 2.06666622 1 2.06666556 1 1.1-7| 5.9-7| 1.6-7 02

1dc.256 3840 | 256; 22| 131| 46.5 3.00000152 1 2.99999982 1 5.1-7| 1.1-8| 2.8-7 1:05

1et.256 1665 | 256; 22| 105| 30.5 5.51142859 1 5.51142381 1 3.2-7| 5.3-7| 4.3-7 52

1tc.256 1313 | 256; 29| 211| 82.2 6.34007911 1 6.33999101 1 7.4-6 | 4.8-7| 6.9-6 2:30

1zc.256 2817 | 256; 13| 17| 8.5 3.79999847 1 3.79999878 1 9.5-8| 4.9-7| -4.1-8 05

1dc.512 9728 | 512; 30| 181| 75.7 5.30311533 1 5.30307418 1 2.0-6 | 4.2-7| 3.8-6 12:07

1et.512 4033 | 512; 16| 90| 40.1 1.04424062 2 1.04424003 2 9.9-7| 7.9-7| 2.8-7 3:48

1tc.512 3265 | 512; 28| 316| 83.4 1.13401460 2 1.13400320 2 3.3-6 | 6.9-7| 5.0-6 28:53

2dc.512 54896 | 512; 27| 258| 61.3 1.17732077 1 1.17690636 1 2.4-5 | 5.0-7| 1.7-4 32:16

1zc.512 6913 | 512; 12| 21| 10.6 6.87499484 1 6.87499880 1 9.0-8| 3.7-7| -2.9-7 44

1dc.1024 24064 | 1024; 26| 130| 64.0 9.59854968 1 9.59849281 1 1.4-6 | 4.9-7| 2.9-6 41:26

1et.1024 9601 | 1024; 19| 117| 76.8 1.84226899 2 1.84226245 2 2.5-6 | 3.5-7| 1.8-6 1:01:14

1tc.1024 7937 | 1024; 30| 250| 79.1 2.06305257 2 2.06304344 2 1.7-6 | 6.3-7| 2.2-6 1:48:04

1zc.1024 16641 | 1024; 15| 22| 12.2 1.28666659 2 1.28666651 2 2.8-8| 3.0-7| 3.3-8 4:15

2dc.1024 169163 | 1024; 28| 219| 68.0 1.86426368 1 1.86388392 1 7.8-6 | 6.8-7| 9.9-5 2:57:56

1dc.2048 58368 | 2048; 27| 154| 82.5 1.74729647 2 1.74729135 2 7.7-7| 4.0-7| 1.5-6 6:11:11

1et.2048 22529 | 2048; 22| 138| 81.6 3.42029313 2 3.42028707 2 6.9-7| 6.3-7| 8.8-7 7:13:55

1tc.2048 18945 | 2048; 26| 227| 78.5 3.74650769 2 3.74644820 2 3.3-6 | 3.7-7| 7.9-6 9:52:09

1zc.2048 39425 | 2048; 13| 24| 14.0 2.37400485 2 2.37399909 2 1.5-7| 7.3-7| 1.2-6 45:16
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Table 6.3: Results for the NAL algorithm on computing θ(G) in (6.3) for the maximum

stable set problems.

problem m | cs; cl it| itsub| pcg pobj dobj RP | RD| gap time

2dc.2048 504452 | 2048; 27| 184| 67.1 3.06764717 1 3.06737001 1 3.7-6 | 4.5-7| 4.4-5 15:13:19

Table 6.4: Results for the NAL algorithm on computing θ+(G) in (6.4) for the maximum

stable set problems.

problem m − cl | cs; cl it| itsub| pcg pobj dobj RP | RD| gap time

theta4 1949 | 200; 20100 20| 67| 31.3 4.98690157 1 4.98690142 1 4.6-8| 7.9-7| 1.4-8 33

theta42 5986 | 200; 20100 18| 41| 26.0 2.37382088 1 2.37382051 1 5.7-7| 9.8-7| 7.6-8 22

theta6 4375 | 300; 45150 15| 61| 27.7 6.29618432 1 6.29618399 1 2.9-8| 7.6-7| 2.6-8 1:03

theta62 13390 | 300; 45150 16| 38| 22.4 2.93779448 1 2.93779378 1 4.0-7| 6.6-7| 1.2-7 44

theta8 7905 | 400; 80200 13| 52| 29.8 7.34078436 1 7.34078372 1 2.8-7| 7.3-7| 4.3-8 1:54

theta82 23872 | 400; 80200 13| 45| 28.6 3.40643550 1 3.40643458 1 4.0-7| 9.9-7| 1.3-7 2:09

theta83 39862 | 400; 80200 13| 40| 23.0 2.01671070 1 2.01671031 1 1.8-7| 4.5-7| 9.4-8 1:50

theta10 12470 | 500; 125250 12| 54| 32.0 8.31489963 1 8.31489897 1 1.3-7| 8.0-7| 4.0-8 3:35

theta102 37467 | 500; 125250 15| 44| 27.6 3.80662551 1 3.80662486 1 4.5-7| 9.1-7| 8.4-8 3:31

theta103 62516 | 500; 125250 12| 38| 26.5 2.23774200 1 2.23774190 1 1.0-7| 9.3-7| 2.3-8 3:28

theta104 87245 | 500; 125250 14| 35| 22.0 1.32826023 1 1.32826068 1 8.1-7| 8.4-7| -1.6-7 2:35

theta12 17979 | 600; 180300 12| 53| 33.9 9.20908140 1 9.20908772 1 6.5-7| 6.6-7| -3.4-7 5:38

theta123 90020 | 600; 180300 15| 43| 29.2 2.44951438 1 2.44951497 1 7.7-7| 8.5-7| -1.2-7 6:44

theta162 127600 | 800; 320400 14| 42| 26.2 3.67113362 1 3.67113729 1 8.1-7| 4.5-7| -4.9-7 11:24

MANN-a27 703 | 378; 71631 7| 26| 21.5 1.32762850 2 1.32762894 2 2.1-7| 6.8-7| -1.6-7 35

johnson8-4 561 | 70; 2485 5| 6| 7.0 1.39999984 1 1.40000110 1 2.2-8| 5.8-7| -4.4-7 01

johnson16- 1681 | 120; 7260 6| 7| 7.0 7.99999871 0 8.00000350 0 5.3-8| 4.3-7| -2.8-7 01

san200-0.7 5971 | 200; 20100 16| 33| 14.5 3.00000135 1 2.99999957 1 5.9-7| 4.0-7| 2.9-7 11

c-fat200-1 18367 | 200; 20100 7| 48| 42.1 1.20000008 1 1.19999955 1 1.3-7| 9.5-7| 2.1-7 36

hamming-6- 1313 | 64; 2080 6| 7| 7.0 4.00000050 0 3.99999954 0 5.7-9| 6.2-8| 1.1-7 01

hamming-8- 11777 | 256; 32896 8| 10| 7.2 1.59999978 1 1.59999873 1 8.5-9| 3.7-7| 3.2-7 05

hamming-9- 2305 | 512; 131328 3| 8| 8.4 2.24000002 2 2.24000016 2 4.6-8| 5.9-7| -3.1-8 18

hamming-10 23041 | 1024; 524800 8| 17| 10.6 8.53334723 1 8.53334002 1 6.0-8| 7.9-7| 4.2-7 4:35

hamming-7- 1793 | 128; 8256 12| 26| 8.2 3.59999930 1 3.60000023 1 3.8-8| 1.3-7| -1.3-7 03

hamming-8- 16129 | 256; 32896 6| 7| 7.0 2.56000002 1 2.56000002 1 2.0-9| 5.1-9| -2.7-10 05

hamming-9- 53761 | 512; 131328 11| 18| 10.6 5.86666682 1 5.86666986 1 1.1-7| 4.4-7| -2.6-7 42

brock200-1 5067 | 200; 20100 17| 48| 30.7 2.71967178 1 2.71967126 1 3.8-7| 7.0-7| 9.3-8 27

brock200-4 6812 | 200; 20100 18| 40| 23.4 2.11210736 1 2.11210667 1 5.4-8| 9.9-7| 1.6-7 21

brock400-1 20078 | 400; 80200 14| 42| 26.4 3.93309197 1 3.93309200 1 9.5-7| 6.5-7| -3.5-9 1:45

keller4 5101 | 171; 14706 18| 73| 43.3 1.34658980 1 1.34659082 1 6.1-7| 9.7-7| -3.7-7 43

p-hat300-1 33918 | 300; 45150 21| 123| 73.5 1.00202172 1 1.00202006 1 8.7-7| 7.2-7| 7.9-7 6:50

G43 9991 | 1000; 500500 9| 126| 52.2 2.79735847 2 2.79735963 2 9.1-7| 8.1-7| -2.1-7 52:00

G44 9991 | 1000; 500500 8| 122| 51.4 2.79746110 2 2.79746078 2 3.3-7| 6.2-7| 5.7-8 49:32

G45 9991 | 1000; 500500 9| 124| 52.0 2.79317531 2 2.79317544 2 9.3-7| 8.6-7| -2.4-8 50:25
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Table 6.4: Results for the NAL algorithm on computing θ+(G) in (6.4) for the maximum

stable set problems.

problem m − cl | cs; cl it| itsub| pcg pobj dobj RP | RD| gap time

G46 9991 | 1000; 500500 8| 112| 52.2 2.79032493 2 2.79032511 2 3.5-7| 9.6-7| -3.3-8 44:38

G47 9991 | 1000; 500500 9| 102| 53.1 2.80891719 2 2.80891722 2 4.7-7| 6.0-7| -5.1-9 40:27

1dc.64 544 | 64; 2080 12| 107| 39.6 9.99999884 0 9.99998239 0 1.2-7| 9.9-7| 7.8-7 09

1et.64 265 | 64; 2080 12| 24| 17.0 1.88000008 1 1.87999801 1 3.2-8| 6.6-7| 5.4-7 02

1tc.64 193 | 64; 2080 12| 54| 37.9 1.99999995 1 1.99999784 1 7.9-8| 9.3-7| 5.2-7 05

1dc.128 1472 | 128; 8256 28| 277| 117.4 1.66790646 1 1.66783087 1 5.4-5| 2.6-8| 2.2-5 3:16

1et.128 673 | 128; 8256 12| 41| 26.9 2.92309168 1 2.92308878 1 8.3-7| 6.6-7| 4.9-7 08

1tc.128 513 | 128; 8256 14| 51| 28.0 3.80000025 1 3.79999965 1 2.3-7| 4.4-7| 7.9-8 09

1zc.128 1121 | 128; 8256 14| 23| 12.9 2.06667715 1 2.06666385 1 8.5-7| 9.3-7| 3.1-6 04

1dc.256 3840 | 256; 32896 21| 131| 39.3 2.99999987 1 3.00000004 1 4.3-8| 1.7-8| -2.8-8 2:24

1et.256 1665 | 256; 32896 21| 195| 108.4 5.44706489 1 5.44652433 1 2.3-5 | 4.0-7| 4.9-5 8:37

1tc.256 1313 | 256; 32896 23| 228| 137.5 6.32416075 1 6.32404374 1 1.5-5 | 7.5-7| 9.2-6 11:17

1zc.256 2817 | 256; 32896 17| 40| 13.6 3.73333432 1 3.73333029 1 1.7-7| 8.2-7| 5.3-7 21

1dc.512 9728 | 512; 131328 24| 204| 72.9 5.26955154 1 5.26951392 1 2.7-6 | 5.4-7| 3.5-6 36:48

1et.512 4033 | 512; 131328 17| 181| 147.4 1.03625531 2 1.03555196 2 1.3-4| 5.8-7| 3.4-4 51:10

1tc.512 3265 | 512; 131328 28| 396| 143.9 1.12613099 2 1.12538820 2 9.3-5 | 7.9-7| 3.3-4 2:14:55

2dc.512 54896 | 512; 131328 33| 513| 106.2 1.13946331 1 1.13857125 1 2.1-4| 7.7-7| 3.8-4 2:25:15

1zc.512 6913 | 512; 131328 11| 57| 37.3 6.80000034 1 6.79999769 1 4.3-7| 7.6-7| 1.9-7 6:09

1dc.1024 24064 | 1024; 524800 24| 260| 81.4 9.55539508 1 9.55512205 1 1.4-5 | 6.9-7| 1.4-5 5:03:49

1et.1024 9601 | 1024; 524800 20| 198| 155.0 1.82075477 2 1.82071562 2 4.8-6 | 7.0-7| 1.1-5 6:45:50

1tc.1024 7937 | 1024; 524800 27| 414| 124.6 2.04591268 2 2.04236122 2 1.5-4| 7.3-7| 8.7-4 10:37:57

1zc.1024 16641 | 1024; 524800 11| 67| 38.1 1.27999936 2 1.27999977 2 6.4-7| 5.7-7| -1.6-7 40:13

2dc.1024 169163 | 1024; 524800 28| 455| 101.8 1.77416130 1 1.77149535 1 1.6-4| 6.2-7| 7.3-4 11:57:25

1dc.2048 58368 | 2048; 2098176 20| 320| 73.0 1.74292685 2 1.74258827 2 1.9-5| 7.1-7| 9.7-5 35:52:44

1et.2048 22529 | 2048; 2098176 22| 341| 171.5 3.38193695 2 3.38166811 2 6.3-6| 5.7-7| 4.0-5 80:48:17

1tc.2048 18945 | 2048; 2098176 24| 381| 150.2 3.71592017 2 3.70575527 2 3.5-4| 7.9-7| 1.4-3 73:56:01

1zc.2048 39425 | 2048; 2098176 11| 38| 29.3 2.37400054 2 2.37399944 2 2.5-7| 7.9-7| 2.3-7 2:13:04

2dc.2048 504452 | 2048; 2098176 27| 459| 53.4 2.89755241 1 2.88181157 1 1.3-4| 7.2-7| 2.7-3 45:21:42

6.3 SDP relaxations of quadratic assignment problems

The quadratic assignment problem (QAP) is one of fundamental combinatorial optimiza-

tion problems in the branch of optimization or operations research in mathematics, from

the category of the facilities location problems. In this section, we apply our NAL algo-

rithm to compute the lower bound for quadratic assignment problems (QAPs) through

SDP relaxations.
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Let Π be the set of n × n permutation matrices. Given matrices A, B ∈ ℜn×n, the

quadratic assignment problem is:

v∗QAP := min{⟨X,AXB⟩ : X ∈ Π}. (6.5)

For a matrix X = [x1, . . . , xn] ∈ ℜn×n, we will identify it with the n2-vector x =

[x1; . . . ; xn]. For a matrix Y ∈ Rn2×n2
, we let Y ij be the n × n block corresponding to

xix
T
j in the matrix xxT . It is shown in [87] that v∗QAP is bounded below by the following

number:

v := min ⟨B ⊗ A, Y ⟩

s.t.
∑n

i=1 Y ii = I, ⟨I, Y ij⟩ = δij ∀ 1 ≤ i ≤ j ≤ n,

⟨E, Y ij⟩ = 1, ∀ 1 ≤ i ≤ j ≤ n,

Y ≽ 0, Y ≥ 0,

(6.6)

where E is the matrix of ones, and δij = 1 if i = j, and 0 otherwise. There are 3n(n+1)/2

equality constraints in (6.6). But two of them are actually redundant, and we remove

them when solving the standard SDP generated from (6.6). Note that [87] actually used

the constraint ⟨E, Y ⟩ = n2 in place of the last set of the equality constraints in (6.6).

But we prefer to use the formulation here because the associated SDP has slightly better

numerical behavior. Note also that the SDP problems (6.6) typically do not satisfy the

constraint nondegenerate conditions (4.23) and (4.32) at the optimal solutions.

In our experiment, we apply the NAL algorithm to the dual of (6.6) and hence any

dual feasible solution would give a lower bound for (6.6). But in practice, our algorithm

only delivers an approximately feasible dual solution ỹ. We therefore apply the procedure

given in [54, Theorem 2] to ỹ to construct a valid lower bound for (6.6), which we denote

by v.

Table 6.5 lists the results of the NAL algorithm on the quadratic assignment instances

(6.6). The details of the table are the same as for Table 6.1 except that the objective

values are replaced by the best known upper bound on (6.5) under the column “best

upper bound” and the lower bound v. The entries under the column under “%gap” are
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calculated as follows:

%gap =
best upper bound − v

best upper bound
× 100%.

We compare our results with those obtained in [22] which used a dedicated augmented

Lagrangian algorithm to solve the SDP arising from applying the lift-and-project proce-

dure of Lovász and Schrijver to (6.5). As the augmented Lagrangian algorithm in [22] is

designed specifically for the SDPs arising from the lift-and-project procedure, the details

of that algorithm is very different from our NAL algorithm. Note that the algorithm

in [22] was implemented in C (with LAPACK library) and the results reported were

obtained from a 2.4 GHz Pentium 4 PC with 1 GB of RAM (which is about 50% slower

than our PC). By comparing the results in Table 6.5 against those in [22, Tables 6 and

7], we can safely conclude that the NAL algorithm applied to (6.6) is superior in terms

of CPU time and the accuracy of the approximate optimal solution computed. Take for

example the SDPs corresponding to the QAPs nug30 and tai35b, the NAL algorithm

obtains the lower bounds with %gap of 2.939 and 5.318 in 15, 729 and 37, 990 seconds

respectively, whereas the algorithm in [22] computes the bounds with %gap of 3.10 and

15.42 in 127, 011 and 430, 914 seconds respectively.

The paper [22] also solved the lift-and-project SDP relaxations for the maximum

stable set problems (denoted as N+ and is known to be at least as strong as θ+) using

a dedicated augmented Lagrangian algorithm. By comparing the results in Table 6.4

against those in [22, Table4], we can again conclude that the NAL algorithm applied

to (6.4) is superior in terms of CPU time and the accuracy of the approximate optimal

solution computed. Take for example the SDPs corresponding to the graphs p-hat300-1

and c-fat200-1, the NAL algorithm obtains the upper bounds of θ+ = 10.0202 and

θ+ = 12.0000 in 410 and 36 seconds respectively, whereas the the algorithm in [22]

computes the bounds of N+ = 18.6697 and N+ = 14.9735 in 322, 287 and 126, 103

seconds respectively.
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Table 6.5: Results for the NAL algorithm on the quadratic assignment problems. The

entries under the column “%gap” are calculated with respect to the best solution listed,

which is known to be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD— %gap time

bur26a 1051 | 676; 228826 27| 389| 105.9 5.42667000 6 5.42577700 6 2.9-3| 2.8-7| 0.016 4:28:43

bur26b 1051 | 676; 228826 25| 358| 92.3 3.81785200 6 3.81663900 6 2.3-3| 6.1-7| 0.032 3:23:39

bur26c 1051 | 676; 228826 26| 421| 107.5 5.42679500 6 5.42593600 6 3.9-3| 4.7-7| 0.016 4:56:09

bur26d 1051 | 676; 228826 27| 424| 102.3 3.82122500 6 3.81982900 6 3.8-3| 5.0-7| 0.037 4:21:32

bur26e 1051 | 676; 228826 27| 573| 100.0 5.38687900 6 5.38683200 6 7.5-3| 1.7-7| 0.001 5:34:39

bur26f 1051 | 676; 228826 25| 534| 100.9 3.78204400 6 3.78184600 6 3.1-3| 6.2-7| 0.005 5:32:51

bur26g 1051 | 676; 228826 24| 422| 91.0 1.01171720 7 1.01167630 7 3.8-3| 6.6-7| 0.004 3:33:58

bur26h 1051 | 676; 228826 24| 450| 96.8 7.09865800 6 7.09856700 6 2.0-3| 2.3-7| 0.001 3:53:22

chr12a 232 | 144; 10440 24| 314| 82.5 9.55200000 3 9.55200000 3 4.6-7| 4.2-12| 0.000 3:02

chr12b 232 | 144; 10440 23| 374| 106.6 9.74200000 3 9.74200000 3 4.3-7| 5.9-12| 0.000 4:12

chr12c 232 | 144; 10440 25| 511| 103.7 1.11560000 4 1.11560000 4 1.7-3| 5.6-7| 0.000 3:33

chr15a 358 | 225; 25425 27| 505| 110.9 9.89600000 3 9.88800000 3 3.3-3| 3.1-7| 0.081 19:51

chr15b 358 | 225; 25425 23| 385| 94.0 7.99000000 3 7.99000000 3 1.9-4| 3.1-8| 0.000 11:42

chr15c 358 | 225; 25425 21| 382| 82.4 9.50400000 3 9.50400000 3 2.2-4| 2.4-8| 0.000 10:39

chr18a 511 | 324; 52650 32| 660| 111.7 1.10980000 4 1.10960000 4 8.1-3| 1.7-7| 0.018 57:06

chr18b 511 | 324; 52650 25| 308| 136.1 1.53400000 3 1.53400000 3 9.9-5 | 6.9-7| 0.000 35:25

chr20a 628 | 400; 80200 32| 563| 117.8 2.19200000 3 2.19200000 3 4.3-3| 2.9-8| 0.000 1:28:45

chr20b 628 | 400; 80200 25| 375| 98.2 2.29800000 3 2.29800000 3 1.1-3| 1.5-7| 0.000 54:09

chr20c 628 | 400; 80200 30| 477| 101.0 1.41420000 4 1.41400000 4 5.5-3| 5.4-7| 0.014 57:26

chr22a 757 | 484; 117370 26| 467| 116.7 6.15600000 3 6.15600000 3 2.3-3| 9.3-8| 0.000 1:50:37

chr22b 757 | 484; 117370 26| 465| 106.4 6.19400000 3 6.19400000 3 1.8-3| 6.9-8| 0.000 1:47:16

chr25a 973 | 625; 195625 26| 462| 84.7 3.79600000 3 3.79600000 3 1.9-3| 1.4-7| 0.000 3:20:35

els19 568 | 361; 65341 28| 554| 99.5 1.72125480 7 1.72112340 7 1.0-4| 6.5-7| 0.008 51:52

esc16a 406 | 256; 32896 24| 251| 106.3 6.80000000 1 6.40000000 1 9.3-5 | 5.3-7| 5.882 10:48

esc16b 406 | 256; 32896 26| 321| 80.7 2.92000000 2 2.89000000 2 5.0-4| 4.9-7| 1.027 10:10

esc16c 406 | 256; 32896 27| 331| 77.5 1.60000000 2 1.53000000 2 6.6-4| 5.6-7| 4.375 10:42

esc16d 406 | 256; 32896 20| 62| 70.8 1.60000000 1 1.30000000 1 6.1-7| 8.0-7| 18.750 1:45

esc16e 406 | 256; 32896 19| 61| 70.1 2.80000000 1 2.70000000 1 9.7-8| 9.4-7| 3.571 1:42

esc16g 406 | 256; 32896 23| 106| 109.8 2.60000000 1 2.50000000 1 2.9-7| 4.7-7| 3.846 4:26

esc16h 406 | 256; 32896 29| 319| 90.0 9.96000000 2 9.76000000 2 1.4-4| 5.8-7| 2.008 10:52

esc16i 406 | 256; 32896 20| 106| 117.4 1.40000000 1 1.20000000 1 8.6-7| 6.9-7| 14.286 4:51

esc16j 406 | 256; 32896 15| 67| 104.8 8.00000000 0 8.00000000 0 1.6-7| 4.1-7| 0.000 2:41

esc32a 1582 | 1024; 524800 26| 232| 101.9 † 1.30000000 2 1.04000000 2 2.5-5 | 7.8-7| 20.000 4:48:55

esc32b 1582 | 1024; 524800 22| 201| 99.4 † 1.68000000 2 1.32000000 2 1.7-4| 7.8-7| 21.429 3:52:36

esc32c 1582 | 1024; 524800 30| 479| 140.2 † 6.42000000 2 6.16000000 2 6.5-4| 2.1-7| 4.050 11:12:30

esc32d 1582 | 1024; 524800 25| 254| 132.0 † 2.00000000 2 1.91000000 2 5.3-7| 5.6-7| 4.500 5:43:54

esc32e 1582 | 1024; 524800 15| 46| 58.2 2.00000000 0 2.00000000 0 2.2-7| 1.1-7| 0.000 31:11

esc32f 1582 | 1024; 524800 15| 46| 58.2 2.00000000 0 2.00000000 0 2.2-7| 1.1-7| 0.000 31:13

esc32g 1582 | 1024; 524800 15| 38| 50.7 6.00000000 0 6.00000000 0 1.7-7| 3.2-7| 0.000 23:25

esc32h 1582 | 1024; 524800 30| 403| 113.3 † 4.38000000 2 4.23000000 2 9.9-4| 3.0-7| 3.425 8:05:32

had12 232 | 144; 10440 23| 457| 93.8 1.65200000 3 1.65200000 3 2.2-4| 1.4-7| 0.000 5:17
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Table 6.5: Results for the NAL algorithm on the quadratic assignment problems. The

entries under the column “%gap” are calculated with respect to the best solution listed,

which is known to be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD— %gap time

had14 313 | 196; 19306 28| 525| 99.5 2.72400000 3 2.72400000 3 1.5-3| 7.6-7| 0.000 13:03

had16 406 | 256; 32896 27| 525| 98.7 3.72000000 3 3.72000000 3 1.4-3| 1.2-7| 0.000 22:37

had18 511 | 324; 52650 29| 458| 104.3 5.35800000 3 5.35800000 3 1.5-3| 4.0-7| 0.000 44:30

had20 628 | 400; 80200 32| 568| 96.7 6.92200000 3 6.92200000 3 3.8-3| 2.6-7| 0.000 1:24:06

kra30a 1393 | 900; 405450 27| 313| 68.0 8.89000000 4 8.64280000 4 4.5-4| 6.5-7| 2.781 4:08:17

kra30b 1393 | 900; 405450 28| 289| 68.9 9.14200000 4 8.74500000 4 3.1-4| 7.4-7| 4.343 3:50:35

kra32 1582 | 1024; 524800 31| 307| 78.6 8.89000000 4 8.52980000 4 4.6-4| 6.0-7| 4.052 6:43:41

lipa20a 628 | 400; 80200 18| 243| 70.1 3.68300000 3 3.68300000 3 5.5-7| 2.9-9| 0.000 24:29

lipa20b 628 | 400; 80200 14| 116| 56.2 2.70760000 4 2.70760000 4 1.7-5 | 6.5-7| 0.000 10:10

lipa30a 1393 | 900; 405450 20| 252| 78.2 1.31780000 4 1.31780000 4 2.5-7| 1.1-10| 0.000 3:41:44

lipa30b 1393 | 900; 405450 18| 83| 80.8 1.51426000 5 1.51426000 5 6.9-7| 3.3-8| 0.000 1:23:34

lipa40a 2458 | 1600; 1280800 22| 324| 81.7 3.15380000 4 3.15380000 4 4.1-7| 4.6-11| 0.000 21:02:51

lipa40b 2458 | 1600; 1280800 19| 121| 76.6 4.76581000 5 4.76581000 5 3.9-6 | 1.3-8| 0.000 7:24:25

nug12 232 | 144; 10440 22| 266| 69.6 5.78000000 2 5.68000000 2 1.2-4| 3.6-7| 1.730 2:27

nug14 313 | 196; 19306 24| 337| 62.3 1.01400000 3 1.00800000 3 3.1-4| 8.0-7| 0.592 5:50

nug15 358 | 225; 25425 27| 318| 62.6 1.15000000 3 1.13800000 3 3.0-4| 7.5-7| 1.043 7:32

nug16a 406 | 256; 32896 25| 346| 80.4 1.61000000 3 1.59700000 3 3.3-4| 6.6-7| 0.807 14:15

nug16b 406 | 256; 32896 28| 315| 64.5 1.24000000 3 1.21600000 3 2.8-4| 4.2-7| 1.935 10:20

nug17 457 | 289; 41905 26| 302| 60.6 1.73200000 3 1.70400000 3 2.0-4| 7.7-7| 1.617 12:38

nug18 511 | 324; 52650 26| 287| 59.5 1.93000000 3 1.89100000 3 2.2-4| 3.5-7| 2.021 15:39

nug20 628 | 400; 80200 26| 318| 65.1 2.57000000 3 2.50400000 3 1.5-4| 5.2-7| 2.568 31:49

nug21 691 | 441; 97461 27| 331| 62.5 2.43800000 3 2.37800000 3 1.9-4| 6.6-7| 2.461 40:22

nug22 757 | 484; 117370 28| 369| 86.0 3.59600000 3 3.52200000 3 3.1-4| 5.9-7| 2.058 1:21:58

nug24 898 | 576; 166176 29| 348| 63.7 3.48800000 3 3.39600000 3 1.8-4| 3.6-7| 2.638 1:33:59

nug25 973 | 625; 195625 27| 335| 60.2 3.74400000 3 3.62100000 3 1.8-4| 3.0-7| 3.285 1:41:49

nug27 1132 | 729; 266085 29| 380| 80.1 5.23400000 3 5.12400000 3 1.3-4| 4.5-7| 2.102 3:31:50

nug28 1216 | 784; 307720 26| 329| 80.5 5.16600000 3 5.02000000 3 2.4-4| 6.3-7| 2.826 3:36:38

nug30 1393 | 900; 405450 27| 360| 61.4 6.12400000 3 5.94400000 3 1.3-4| 3.3-7| 2.939 4:22:09

rou12 232 | 144; 10440 25| 336| 106.3 2.35528000 5 2.35434000 5 4.6-4| 1.6-7| 0.040 4:50

rou15 358 | 225; 25425 26| 238| 64.0 3.54210000 5 3.49544000 5 2.5-4| 4.0-7| 1.317 5:48

rou20 628 | 400; 80200 26| 250| 69.9 7.25522000 5 6.94397000 5 1.5-4| 7.5-7| 4.290 27:26

scr12 232 | 144; 10440 19| 255| 99.9 3.14100000 4 3.14080000 4 4.3-4| 7.5-7| 0.006 3:16

scr15 358 | 225; 25425 19| 331| 91.7 5.11400000 4 5.11400000 4 1.3-7| 2.8-7| 0.000 9:42

scr20 628 | 400; 80200 28| 353| 65.2 1.10030000 5 1.06472000 5 2.6-4| 4.9-7| 3.234 34:32

ste36a 1996 | 1296; 840456 26| 318| 93.8 9.52600000 3 9.23600000 3 1.7-4| 4.1-7| 3.044 15:09:10

ste36b 1996 | 1296; 840456 29| 348| 101.0 1.58520000 4 1.56030000 4 1.8-3| 4.3-7| 1.571 19:05:19

ste36c 1996 | 1296; 840456 28| 360| 105.3 8.23911000 6 8.11864500 6 6.3-4| 4.0-7| 1.462 19:56:15

tai12a 232 | 144; 10440 15| 180| 59.8 2.24416000 5 2.24416000 5 1.8-6 | 7.6-8| 0.000 1:28

tai12b 232 | 144; 10440 29| 596| 112.2 3.94649250 7 3.94649080 7 3.7-4| 9.3-9| 0.000 7:40

tai15a 358 | 225; 25425 23| 196| 65.1 3.88214000 5 3.76608000 5 1.3-4| 5.0-7| 2.990 4:58

tai15b 358 | 225; 25425 29| 409| 102.2 5.17652680 7 5.17609220 7 1.5-3| 7.0-7| 0.008 16:04

tai17a 457 | 289; 41905 23| 168| 69.7 4.91812000 5 4.75893000 5 1.4-4| 5.0-7| 3.237 8:21
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Table 6.5: Results for the NAL algorithm on the quadratic assignment problems. The

entries under the column “%gap” are calculated with respect to the best solution listed,

which is known to be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD— %gap time

tai20a 628 | 400; 80200 27| 220| 73.3 7.03482000 5 6.70827000 5 1.9-4| 4.2-7| 4.642 25:32

tai20b 628 | 400; 80200 31| 485| 91.6 1.22455319 8 1.22452095 8 2.9-3| 1.4-7| 0.003 54:05

tai25a 973 | 625; 195625 27| 194| 77.3 1.16725600 6 1.01301000 6 8.0-7| 7.9-7| 13.214 1:17:54

tai25b 973 | 625; 195625 29| 408| 70.4 3.44355646 8 3.33685462 8 2.6-3| 6.2-7| 3.099 2:33:26

tai30a 1393 | 900; 405450 27| 207| 82.4 † 1.81814600 6 1.70578200 6 8.1-5 | 2.0-7| 6.180 3:35:03

tai30b 1393 | 900; 405450 30| 421| 71.6 6.37117113 8 5.95926267 8 1.4-3| 4.9-7| 6.465 6:26:30

tai35a 1888 | 1225; 750925 28| 221| 81.0 2.42200200 6 2.21523000 6 1.5-4| 5.0-7| 8.537 8:09:44

tai35b 1888 | 1225; 750925 28| 401| 58.3 2.83315445 8 2.68328155 8 8.7-4| 6.4-7| 5.290 10:33:10

tai40a 2458 | 1600; 1280800 27| 203| 85.1 3.13937000 6 2.84184600 6 7.5-5 | 5.3-7| 9.477 15:25:52

tai40b 2458 | 1600; 1280800 30| 362| 74.1 6.37250948 8 6.06880822 8 1.7-3| 4.9-7| 4.766 23:32:56

tho30 1393 | 900; 405450 27| 315| 61.1 1.49936000 5 1.43267000 5 2.4-4| 7.3-7| 4.448 3:41:26

tho40 2458 | 1600; 1280800 27| 349| 60.9 † 2.40516000 5 2.26161000 5 2.0-4| 6.5-7| 5.968 17:13:24

6.4 SDP relaxations of binary integer quadratic problems

The binary integer quadratic (BIQ) problem is formulated as follows

v∗BIQ := min{xT Qx : x ∈ {0, 1}n}, (6.7)

where Q is a symmetric matrix (non positive semidefinite) of order n. Problem (6.7)

belongs to a class of NP-complete combinatorial optimization problems that have many

interesting applications, such as Financial analysis problems [75], CAD problems [61],

and models of message traffic management [42]. Since BIQ problems are usually NP-hard

which are difficult to obtain exact solutions, we consider the following SDP relaxation of

(6.7),

min ⟨Q, Y ⟩

s.t. diag(Y ) − y = 0, α = 1, Y y

yT α

 ≽ 0, Y ≥ 0, y ≥ 0.

(6.8)
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Table 6.6 lists the results obtained by the NAL algorithm on the SDPs (6.8) arising

from the BIQ instances described in [132]. It is interesting to note that the lower bound

obtained from (6.8) is within 10% of the optimal value v∗BIQ for all the instances tested,

and for the instances gka1b–gka9b, the lower bounds are actually equal to v∗BIQ.

Table 6.6: Results for the NAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to

be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD| %gap time

be100.1 101 | 101; 5151 27| 488| 70.5 -1.94120000 4 -2.00210000 4 8.6-7| 5.7-7| 3.137 1:45

be100.2 101 | 101; 5151 25| 378| 78.5 -1.72900000 4 -1.79880000 4 8.3-7| 7.6-7| 4.037 1:32

be100.3 101 | 101; 5151 27| 432| 96.3 -1.75650000 4 -1.82310000 4 3.7-7| 7.0-7| 3.792 2:08

be100.4 101 | 101; 5151 27| 505| 101.2 -1.91250000 4 -1.98410000 4 2.4-6| 7.7-7| 3.744 2:37

be100.5 101 | 101; 5151 25| 355| 78.5 -1.58680000 4 -1.68880000 4 8.6-7| 8.8-7| 6.428 1:28

be100.6 101 | 101; 5151 26| 440| 94.4 -1.73680000 4 -1.81480000 4 4.7-6 | 6.3-7| 4.491 2:06

be100.7 101 | 101; 5151 27| 219| 92.3 -1.86290000 4 -1.97000000 4 1.3-7| 4.9-7| 5.749 1:01

be100.8 101 | 101; 5151 25| 265| 47.1 -1.86490000 4 -1.99460000 4 5.1-7| 5.9-7| 6.955 40

be100.9 101 | 101; 5151 28| 526| 72.6 -1.32940000 4 -1.42630000 4 6.4-7| 5.3-7| 7.289 2:01

be100.10 101 | 101; 5151 27| 493| 52.0 -1.53520000 4 -1.64080000 4 6.7-7| 5.8-7| 6.879 1:25

be120.3.1 121 | 121; 7381 26| 384| 112.4 -1.30670000 4 -1.38030000 4 5.9-6 | 4.9-7| 5.633 2:57

be120.3.2 121 | 121; 7381 27| 410| 117.9 -1.30460000 4 -1.36260000 4 4.6-6 | 4.1-7| 4.446 3:16

be120.3.3 121 | 121; 7381 26| 210| 89.2 -1.24180000 4 -1.29870000 4 2.9-7| 4.4-7| 4.582 1:19

be120.3.4 121 | 121; 7381 27| 391| 64.8 -1.38670000 4 -1.45110000 4 6.6-7| 5.5-7| 4.644 1:49

be120.3.5 121 | 121; 7381 27| 489| 99.0 -1.14030000 4 -1.19910000 4 7.8-6 | 2.9-7| 5.157 3:21

be120.3.6 121 | 121; 7381 26| 386| 111.2 -1.29150000 4 -1.34320000 4 7.9-7| 4.3-7| 4.003 2:57

be120.3.7 121 | 121; 7381 27| 412| 111.9 -1.40680000 4 -1.45640000 4 1.0-4| 5.1-7| 3.526 3:16

be120.3.8 121 | 121; 7381 27| 426| 108.5 -1.47010000 4 -1.53030000 4 8.1-5 | 4.0-7| 4.095 3:10

be120.3.9 121 | 121; 7381 27| 418| 89.2 -1.04580000 4 -1.12410000 4 7.5-5 | 6.3-7| 7.487 2:39

be120.3.10 121 | 121; 7381 30| 611| 84.0 -1.22010000 4 -1.29300000 4 1.1-6 | 2.9-7| 5.975 3:36

be120.8.1 121 | 121; 7381 26| 384| 71.5 -1.86910000 4 -2.01940000 4 4.3-7| 6.6-7| 8.041 1:53

be120.8.2 121 | 121; 7381 26| 402| 113.9 -1.88270000 4 -2.00740000 4 4.9-5 | 4.4-7| 6.623 3:11

be120.8.3 121 | 121; 7381 27| 267| 96.2 -1.93020000 4 -2.05050000 4 5.1-7| 5.1-7| 6.233 1:48

be120.8.4 121 | 121; 7381 26| 399| 96.6 -2.07650000 4 -2.17790000 4 3.4-6 | 4.2-7| 4.883 2:42

be120.8.5 121 | 121; 7381 27| 452| 120.1 -2.04170000 4 -2.13160000 4 8.3-7| 5.3-7| 4.403 3:48

be120.8.6 121 | 121; 7381 29| 459| 90.6 -1.84820000 4 -1.96770000 4 1.3-6 | 6.3-7| 6.466 2:53

be120.8.7 121 | 121; 7381 28| 457| 52.5 -2.21940000 4 -2.37320000 4 2.0-7| 4.9-7| 6.930 1:46

be120.8.8 121 | 121; 7381 27| 151| 66.1 -1.95340000 4 -2.12040000 4 8.0-7| 9.7-7| 8.549 43

be120.8.9 121 | 121; 7381 27| 301| 60.4 -1.81950000 4 -1.92840000 4 2.3-7| 4.1-7| 5.985 1:17

be120.8.10 121 | 121; 7381 27| 307| 102.7 -1.90490000 4 -2.00240000 4 4.1-7| 4.1-7| 5.118 2:14

be150.3.1 151 | 151; 11476 27| 538| 84.7 -1.88890000 4 -1.98490000 4 1.3-5 | 5.3-7| 5.082 4:57

be150.3.2 151 | 151; 11476 28| 499| 89.3 -1.78160000 4 -1.88640000 4 1.1-5 | 6.0-7| 5.882 4:51

be150.3.3 151 | 151; 11476 26| 514| 101.8 -1.73140000 4 -1.80430000 4 1.8-6 | 7.6-7| 4.210 5:37

be150.3.4 151 | 151; 11476 27| 233| 98.2 -1.98840000 4 -2.06520000 4 4.9-7| 6.0-7| 3.862 2:28



6.4 SDP relaxations of binary integer quadratic problems 89

Table 6.6: Results for the NAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to

be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD| %gap time

be150.3.5 151 | 151; 11476 28| 507| 90.4 -1.68170000 4 -1.77680000 4 1.6-5 | 4.1-7| 5.655 4:53

be150.3.6 151 | 151; 11476 27| 517| 95.5 -1.67800000 4 -1.80500000 4 6.7-6 | 5.0-7| 7.569 5:18

be150.3.7 151 | 151; 11476 27| 470| 73.5 -1.80010000 4 -1.91010000 4 6.8-7| 9.1-7| 6.111 3:42

be150.3.8 151 | 151; 11476 27| 377| 84.7 -1.83030000 4 -1.96980000 4 1.3-5 | 6.3-7| 7.622 3:25

be150.3.9 151 | 151; 11476 26| 292| 58.0 -1.28380000 4 -1.41030000 4 3.8-7| 8.8-7| 9.854 1:52

be150.3.10 151 | 151; 11476 27| 438| 121.3 -1.79630000 4 -1.92300000 4 1.6-5 | 3.7-7| 7.053 5:39

be150.8.1 151 | 151; 11476 28| 661| 78.0 -2.70890000 4 -2.91430000 4 9.4-7| 6.6-7| 7.582 5:36

be150.8.2 151 | 151; 11476 27| 272| 87.4 -2.67790000 4 -2.88210000 4 3.5-7| 7.6-7| 7.625 2:34

be150.8.3 151 | 151; 11476 27| 435| 77.9 -2.94380000 4 -3.10600000 4 3.5-7| 8.3-7| 5.510 3:37

be150.8.4 151 | 151; 11476 26| 310| 89.5 -2.69110000 4 -2.87290000 4 8.9-7| 8.6-7| 6.756 3:01

be150.8.5 151 | 151; 11476 27| 500| 113.9 -2.80170000 4 -2.94820000 4 9.4-7| 3.7-7| 5.229 6:06

be150.8.6 151 | 151; 11476 27| 415| 115.6 -2.92210000 4 -3.14370000 4 5.2-6 | 6.8-7| 7.584 4:56

be150.8.7 151 | 151; 11476 27| 446| 127.2 -3.12090000 4 -3.32520000 4 2.8-5 | 2.5-7| 6.546 6:06

be150.8.8 151 | 151; 11476 28| 462| 109.0 -2.97300000 4 -3.16000000 4 5.8-6 | 6.7-7| 6.290 5:23

be150.8.9 151 | 151; 11476 28| 370| 110.7 -2.53880000 4 -2.71100000 4 2.6-7| 5.3-7| 6.783 4:20

be150.8.10 151 | 151; 11476 26| 288| 95.7 -2.83740000 4 -3.00480000 4 5.2-7| 4.7-7| 5.900 2:58

be200.3.1 201 | 201; 20301 29| 615| 89.7 -2.54530000 4 -2.77160000 4 5.6-7| 5.0-7| 8.891 10:29

be200.3.2 201 | 201; 20301 29| 307| 93.2 -2.50270000 4 -2.67600000 4 3.5-7| 5.3-7| 6.925 5:38

be200.3.3 201 | 201; 20301 29| 507| 120.8 -2.80230000 4 -2.94780000 4 5.6-5 | 5.7-7| 5.192 12:09

be200.3.4 201 | 201; 20301 29| 523| 102.1 -2.74340000 4 -2.91060000 4 4.7-6 | 5.4-7| 6.095 10:41

be200.3.5 201 | 201; 20301 28| 466| 116.2 -2.63550000 4 -2.80730000 4 1.4-6 | 5.5-7| 6.519 10:38

be200.3.6 201 | 201; 20301 29| 639| 60.1 -2.61460000 4 -2.79280000 4 9.5-7| 3.7-7| 6.816 7:36

be200.3.7 201 | 201; 20301 29| 534| 93.9 -3.04830000 4 -3.16200000 4 1.1-6 | 5.8-7| 3.730 9:43

be200.3.8 201 | 201; 20301 29| 308| 100.7 -2.73550000 4 -2.92440000 4 6.4-7| 9.0-7| 6.906 5:59

be200.3.9 201 | 201; 20301 28| 482| 87.1 -2.46830000 4 -2.64370000 4 3.2-5 | 3.7-7| 7.106 8:28

be200.3.10 201 | 201; 20301 29| 539| 98.7 -2.38420000 4 -2.57600000 4 5.8-6 | 4.4-7| 8.045 10:25

be200.8.1 201 | 201; 20301 28| 489| 97.5 -4.85340000 4 -5.08690000 4 3.7-5 | 6.2-7| 4.811 9:41

be200.8.2 201 | 201; 20301 29| 192| 74.7 -4.08210000 4 -4.43360000 4 6.1-7| 7.3-7| 8.611 2:46

be200.8.3 201 | 201; 20301 28| 476| 116.1 -4.32070000 4 -4.62540000 4 5.8-7| 9.2-7| 7.052 10:53

be200.8.4 201 | 201; 20301 29| 267| 93.3 -4.37570000 4 -4.66210000 4 8.4-7| 7.2-7| 6.545 4:55

be200.8.5 201 | 201; 20301 28| 521| 93.8 -4.14820000 4 -4.42710000 4 1.7-5 | 7.7-7| 6.723 9:53

be200.8.6 201 | 201; 20301 28| 556| 87.4 -4.94920000 4 -5.12190000 4 2.7-5 | 4.4-7| 3.489 9:48

be200.8.7 201 | 201; 20301 27| 248| 92.6 -4.68280000 4 -4.93530000 4 4.7-7| 6.8-7| 5.392 4:30

be200.8.8 201 | 201; 20301 28| 314| 94.3 -4.45020000 4 -4.76890000 4 7.0-7| 7.7-7| 7.161 5:49

be200.8.9 201 | 201; 20301 29| 543| 115.6 -4.32410000 4 -4.54950000 4 5.8-6 | 3.8-7| 5.213 12:16

be200.8.10 201 | 201; 20301 29| 485| 107.9 -4.28320000 4 -4.57430000 4 6.9-6 | 5.5-7| 6.796 10:15

be250.1 251 | 251; 31626 29| 532| 94.7 -2.40760000 4 -2.51190000 4 4.0-5 | 4.6-7| 4.332 16:41

be250.2 251 | 251; 31626 28| 519| 113.6 -2.25400000 4 -2.36810000 4 3.1-5 | 6.4-7| 5.062 18:51

be250.3 251 | 251; 31626 28| 561| 95.7 -2.29230000 4 -2.40000000 4 2.9-5 | 6.0-7| 4.698 17:17

be250.4 251 | 251; 31626 30| 577| 112.2 -2.46490000 4 -2.57200000 4 4.8-5 | 4.7-7| 4.345 20:42

be250.5 251 | 251; 31626 29| 463| 98.1 -2.10570000 4 -2.23740000 4 9.3-5 | 4.4-7| 6.254 14:30

be250.6 251 | 251; 31626 30| 567| 93.6 -2.27350000 4 -2.40180000 4 2.0-5 | 4.3-7| 5.643 16:39
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Table 6.6: Results for the NAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to

be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD| %gap time

be250.7 251 | 251; 31626 28| 507| 84.7 -2.40950000 4 -2.51190000 4 5.9-5 | 7.1-7| 4.250 14:00

be250.8 251 | 251; 31626 28| 620| 84.1 -2.38010000 4 -2.50200000 4 1.6-5 | 7.5-7| 5.122 16:50

be250.9 251 | 251; 31626 28| 589| 85.8 -2.00510000 4 -2.13970000 4 1.1-4| 3.6-7| 6.713 17:13

be250.10 251 | 251; 31626 29| 591| 88.9 -2.31590000 4 -2.43550000 4 3.4-5 | 4.8-7| 5.164 16:48

bqp50-1 51 | 51; 1326 25| 463| 119.9 -2.09800000 3 -2.14300000 3 7.1-6 | 6.7-7| 2.145 1:12

bqp50-2 51 | 51; 1326 26| 387| 72.7 -3.70200000 3 -3.74200000 3 2.3-5 | 5.8-7| 1.080 39

bqp50-3 51 | 51; 1326 24| 343| 84.3 -4.62600000 3 -4.63700000 3 8.9-7| 9.9-7| 0.238 40

bqp50-4 51 | 51; 1326 28| 486| 106.6 -3.54400000 3 -3.58300000 3 2.5-4| 5.2-7| 1.100 1:08

bqp50-5 51 | 51; 1326 23| 319| 82.7 -4.01200000 3 -4.07700000 3 3.3-5 | 6.9-7| 1.620 37

bqp50-6 51 | 51; 1326 20| 338| 95.8 -3.69300000 3 -3.71100000 3 1.1-5 | 4.4-7| 0.487 44

bqp50-7 51 | 51; 1326 26| 275| 44.0 -4.52000000 3 -4.64900000 3 2.9-7| 6.2-7| 2.854 18

bqp50-8 51 | 51; 1326 26| 289| 73.3 -4.21600000 3 -4.26900000 3 8.5-7| 6.5-7| 1.257 29

bqp50-9 51 | 51; 1326 21| 225| 57.5 -3.78000000 3 -3.92100000 3 8.3-7| 9.0-7| 3.730 19

bqp50-10 51 | 51; 1326 27| 191| 52.2 -3.50700000 3 -3.62600000 3 4.4-7| 6.5-7| 3.393 14

bqp100-1 101 | 101; 5151 25| 443| 80.5 -7.97000000 3 -8.38000000 3 2.7-7| 8.2-7| 5.144 1:49

bqp100-2 101 | 101; 5151 23| 374| 97.1 -1.10360000 4 -1.14890000 4 5.4-4| 4.8-7| 4.105 1:53

bqp100-3 101 | 101; 5151 26| 451| 122.4 -1.27230000 4 -1.31530000 4 9.9-7| 7.3-7| 3.380 2:40

bqp100-4 101 | 101; 5151 26| 420| 129.4 -1.03680000 4 -1.07310000 4 3.5-5 | 6.5-7| 3.501 2:42

bqp100-5 101 | 101; 5151 28| 515| 84.5 -9.08300000 3 -9.48700000 3 5.0-5 | 3.3-7| 4.448 2:16

bqp100-6 101 | 101; 5151 28| 524| 88.4 -1.02100000 4 -1.08240000 4 6.7-7| 4.6-7| 6.014 2:22

bqp100-7 101 | 101; 5151 28| 572| 81.9 -1.01250000 4 -1.06890000 4 8.5-7| 3.9-7| 5.570 2:19

bqp100-8 101 | 101; 5151 26| 440| 107.4 -1.14350000 4 -1.17700000 4 2.4-5 | 7.8-7| 2.930 2:25

bqp100-9 101 | 101; 5151 27| 482| 101.7 -1.14550000 4 -1.17330000 4 5.0-5 | 6.1-7| 2.427 2:31

bqp100-10 101 | 101; 5151 25| 415| 110.4 -1.25650000 4 -1.29800000 4 3.9-5 | 5.7-7| 3.303 2:18

bqp250-1 251 | 251; 31626 28| 483| 117.7 -4.56070000 4 -4.76630000 4 3.9-7| 6.6-7| 4.508 17:42

bqp250-2 251 | 251; 31626 30| 554| 93.5 -4.48100000 4 -4.72220000 4 4.4-5 | 4.1-7| 5.383 16:23

bqp250-3 251 | 251; 31626 28| 296| 116.4 -4.90370000 4 -5.10770000 4 9.9-7| 7.9-7| 4.160 10:36

bqp250-4 251 | 251; 31626 29| 607| 88.9 -4.12740000 4 -4.33120000 4 1.8-5 | 4.5-7| 4.938 17:37

bqp250-5 251 | 251; 31626 28| 570| 103.7 -4.79610000 4 -5.00040000 4 4.4-5 | 6.9-7| 4.260 19:03

bqp250-6 251 | 251; 31626 28| 477| 113.1 -4.10140000 4 -4.36690000 4 1.9-5 | 7.7-7| 6.473 17:11

bqp250-7 251 | 251; 31626 30| 429| 126.3 -4.67570000 4 -4.89220000 4 8.2-7| 5.9-7| 4.630 16:36

bqp250-8 251 | 251; 31626 28| 748| 73.5 -3.57260000 4 -3.87800000 4 6.3-7| 8.8-7| 8.548 17:34

bqp250-9 251 | 251; 31626 29| 453| 117.0 -4.89160000 4 -5.14970000 4 3.7-7| 3.9-7| 5.276 16:12

bqp250-10 251 | 251; 31626 28| 691| 76.7 -4.04420000 4 -4.30140000 4 8.1-7| 5.1-7| 6.360 16:29

bqp500-1 501 | 501; 125751 30| 357| 117.8 -1.16586000 5 -1.25965000 5 2.9-7| 5.5-7| 8.045 1:00:59

bqp500-2 501 | 501; 125751 30| 637| 94.7 -1.28223000 5 -1.36012000 5 7.9-5 | 7.2-7| 6.075 1:31:17

bqp500-3 501 | 501; 125751 30| 363| 118.9 -1.30812000 5 -1.38454000 5 4.4-7| 4.0-7| 5.842 1:01:47

bqp500-4 501 | 501; 125751 30| 663| 79.9 -1.30097000 5 -1.39329000 5 3.7-6 | 4.3-7| 7.096 1:16:35

bqp500-5 501 | 501; 125751 30| 539| 119.6 -1.25487000 5 -1.34092000 5 4.5-5 | 2.5-7| 6.857 1:36:43

bqp500-6 501 | 501; 125751 30| 485| 124.4 -1.21772000 5 -1.30765000 5 4.1-7| 5.1-7| 7.385 1:28:49

bqp500-7 501 | 501; 125751 31| 648| 87.7 -1.22201000 5 -1.31492000 5 8.1-5 | 5.7-7| 7.603 1:25:26

bqp500-8 501 | 501; 125751 31| 412| 126.3 -1.23559000 5 -1.33490000 5 8.6-7| 4.5-7| 8.037 1:14:37
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Table 6.6: Results for the NAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to

be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD| %gap time

bqp500-9 501 | 501; 125751 30| 612| 92.7 -1.20798000 5 -1.30289000 5 9.5-5 | 7.3-7| 7.857 1:24:40

bqp500-10 501 | 501; 125751 30| 454| 130.5 -1.30619000 5 -1.38535000 5 7.0-7| 6.4-7| 6.060 1:24:23

gka1a 51 | 51; 1326 20| 309| 57.9 -3.41400000 3 -3.53700000 3 7.7-7| 6.0-7| 3.603 26

gka2a 61 | 61; 1891 24| 281| 57.3 -6.06300000 3 -6.17100000 3 1.4-7| 4.9-7| 1.781 27

gka3a 71 | 71; 2556 25| 398| 68.3 -6.03700000 3 -6.38600000 3 6.6-7| 9.5-7| 5.781 51

gka4a 81 | 81; 3321 25| 567| 106.2 -8.59800000 3 -8.88100000 3 4.2-6 | 6.3-7| 3.291 2:09

gka5a 51 | 51; 1326 24| 284| 55.9 -5.73700000 3 -5.89700000 3 7.7-7| 7.8-7| 2.789 23

gka6a 31 | 31; 496 25| 175| 46.8 -3.98000000 3 -4.10300000 3 4.4-7| 7.2-7| 3.090 10

gka7a 31 | 31; 496 26| 145| 47.2 -4.54100000 3 -4.63800000 3 3.9-7| 5.5-7| 2.136 08

gka8a 101 | 101; 5151 27| 543| 94.1 -1.11090000 4 -1.11970000 4 3.8-5 | 6.6-7| 0.792 2:39

gka1b 21 | 21; 231 7| 42| 23.8 -1.33000000 2 -1.33000000 2 9.8-7| 5.4-7| 0.000 02

gka2b 31 | 31; 496 15| 241| 101.1 -1.21000000 2 -1.21000000 2 8.8-5 | 7.7-7| 0.000 25

gka3b 41 | 41; 861 12| 85| 25.6 -1.18000000 2 -1.18000000 2 2.9-7| 2.4-8| 0.000 04

gka4b 51 | 51; 1326 14| 88| 25.9 -1.29000000 2 -1.29000000 2 2.8-7| 1.2-9| 0.000 04

gka5b 61 | 61; 1891 12| 86| 26.0 -1.50000000 2 -1.50000000 2 7.6-8| 1.7-8| 0.000 05

gka6b 71 | 71; 2556 13| 123| 34.6 -1.46000000 2 -1.46000000 2 3.3-7| 8.1-10| 0.000 10

gka7b 81 | 81; 3321 19| 193| 33.8 -1.60000000 2 -1.60000000 2 8.9-7| 5.3-7| 0.000 16

gka8b 91 | 91; 4186 15| 198| 47.0 -1.45000000 2 -1.45000000 2 5.9-7| 2.3-9| 0.000 28

gka9b 101 | 101; 5151 18| 252| 50.9 -1.37000000 2 -1.37000000 2 3.7-7| 1.2-10| 0.000 44

gka10b 126 | 126; 8001 17| 298| 94.5 -1.54000000 2 -1.55000000 2 1.6-4| 3.4-7| 0.649 2:14

gka1c 41 | 41; 861 24| 371| 103.7 -5.05800000 3 -5.11300000 3 1.5-5 | 3.8-7| 1.087 45

gka2c 51 | 51; 1326 27| 358| 72.0 -6.21300000 3 -6.32000000 3 2.5-7| 5.6-7| 1.722 35

gka3c 61 | 61; 1891 25| 305| 60.0 -6.66500000 3 -6.81300000 3 3.1-7| 9.6-7| 2.221 31

gka4c 71 | 71; 2556 27| 476| 114.7 -7.39800000 3 -7.56500000 3 9.7-7| 4.5-7| 2.257 1:38

gka5c 81 | 81; 3321 28| 304| 94.6 -7.36200000 3 -7.57600000 3 1.2-6 | 3.9-7| 2.907 1:03

gka6c 91 | 91; 4186 27| 427| 108.4 -5.82400000 3 -5.96100000 3 3.0-5 | 6.2-7| 2.352 1:58

gka7c 101 | 101; 5151 26| 396| 82.2 -7.22500000 3 -7.31600000 3 1.9-4| 6.0-7| 1.260 1:43

gka1d 101 | 101; 5151 27| 439| 96.5 -6.33300000 3 -6.52800000 3 1.1-5 | 2.5-7| 3.079 2:09

gka2d 101 | 101; 5151 27| 523| 84.1 -6.57900000 3 -6.99000000 3 1.7-6 | 6.9-7| 6.247 2:15

gka3d 101 | 101; 5151 26| 467| 96.9 -9.26100000 3 -9.73400000 3 1.4-5 | 4.8-7| 5.107 2:21

gka4d 101 | 101; 5151 28| 375| 104.9 -1.07270000 4 -1.12780000 4 1.4-6 | 4.7-7| 5.137 1:56

gka5d 101 | 101; 5151 26| 422| 91.5 -1.16260000 4 -1.23980000 4 2.3-6 | 6.9-7| 6.640 1:57

gka6d 101 | 101; 5151 27| 338| 102.4 -1.42070000 4 -1.49290000 4 1.9-6 | 5.2-7| 5.082 1:42

gka7d 101 | 101; 5151 27| 177| 75.3 -1.44760000 4 -1.53750000 4 6.2-7| 5.8-7| 6.210 40

gka8d 101 | 101; 5151 26| 271| 118.4 -1.63520000 4 -1.70050000 4 2.0-7| 7.1-7| 3.993 1:35

gka9d 101 | 101; 5151 26| 351| 63.9 -1.56560000 4 -1.65330000 4 7.2-7| 6.1-7| 5.602 1:10

gka10d 101 | 101; 5151 26| 213| 78.5 -1.91020000 4 -2.01080000 4 2.0-7| 7.2-7| 5.266 52

gka1e 201 | 201; 20301 29| 530| 97.3 -1.64640000 4 -1.70690000 4 5.2-5 | 7.9-7| 3.675 10:36

gka2e 201 | 201; 20301 29| 367| 103.4 -2.33950000 4 -2.49170000 4 4.7-7| 4.3-7| 6.506 7:23

gka3e 201 | 201; 20301 30| 559| 91.5 -2.52430000 4 -2.68980000 4 1.6-5 | 2.9-7| 6.556 10:22

gka4e 201 | 201; 20301 29| 512| 113.0 -3.55940000 4 -3.72250000 4 1.2-5 | 4.2-7| 4.582 11:25

gka5e 201 | 201; 20301 28| 510| 95.2 -3.51540000 4 -3.80020000 4 3.9-5 | 5.1-7| 8.101 9:46
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Table 6.6: Results for the NAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to

be optimal unless the symbol (†) is prefixed.

problem m − cl | cs; cl it| itsub| pcg
best

upper bound
lower bound v RP | RD| %gap time

gka1f 501 | 501; 125751 30| 563| 102.8 †-6.11940000 4 -6.55590000 4 9.9-5 | 5.2-7| 7.133 1:28:54

gka2f 501 | 501; 125751 30| 624| 93.6 †-1.00161000 5 -1.07932000 5 6.6-5 | 5.7-7| 7.759 1:28:11

gka3f 501 | 501; 125751 30| 523| 120.4 †-1.38035000 5 -1.50152000 5 2.8-5 | 6.7-7| 8.778 1:31:34

gka4f 501 | 501; 125751 32| 571| 128.8 †-1.72771000 5 -1.87089000 5 8.7-6 | 4.0-7| 8.287 1:44:43

gka5f 501 | 501; 125751 31| 665| 90.5 †-1.90507000 5 -2.06916000 5 6.6-6 | 7.1-7| 8.613 1:25:48



Chapter 7
Conclusions

Along with recent developments on perturbation analysis of the problems under con-

sideration, we introduced a semismooth Newton-CG augmented Lagrangian algorithm

for solving large scale convex quadratic programming over symmetric cones including

linear cone, positive semidefinite cone and second-order cone. Based on classic results

of proximal point methods [102, 103], we analyze the global and local convergence of

our NAL algorithm. Numerical experiments conducted on a variety of large scale convex

quadratic symmetric cone programming problems demonstrated that our algorithm is

very robust and efficient. However, there are still a number of interesting topics for our

future research.

Under the strong second-order sufficient condition (3.26) and the primal constraint

nondegeneracy (3.25), we analyze the rate of convergence of the NAL algorithm. How-

ever, it is still unclear to us on how to characterize the specific condition of the solution

mapping for the dual or the primal-dual of the convex QSCP.

When applying the SNCG algorithm to solve inner problems, we choose the diagonal

part of the generalized Hessian matrix as our preconditioner. Of course, this is too simple

for some very ill-conditioned problems. Hence, by exploiting the specific structure of the

generalized Hessian matrices, one may construct more efficient preconditioners to improve

the performance of the semismooth Newton-CG algorithm at least for several subclasses
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of the problems discussed.

Moreover, there are many interesting applications for nonlinear symmetric cone pro-

gramming. As an important application of convex QSCPs, the subproblems via the

sequential quadratic programming approach for nonlinear symmetric cone optimization

problems can be solved by our NAL algorithm. This may open up a way for studying

more general nonlinear problems.
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