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Summary

In this thesis, a new discrete method, by making use of cylindrical dyadic Green’s

functions, has been presented in the study of electromagnetic transmission through

a cylindrical radome having arbitrary cross sections. By virtue of using the dyadic

Green’s functions, this method takes into consideration the curvature effect of the

radome’s layer, which is partially ignored in classical approaches such as the ray-

tracing method and the plane wave spectrum analysis. Numerical results are com-

pared with those obtained using the plane wave spectrum method and model cylin-

drical wave-spectrum method.

Also outlined in this thesis is the concept of the Method of Moments(MoM)

applied to study electromagnetic transmission through a superspheroidal radome

with dielectric layer. By means of the inner product, the method effectively takes

into account the continuity of the surface, instead of discretizing it as in the MoM.

This proposed method is thus able to make a more accurate analysis of the electro-

magnetic transmission problem with a superspheroidal radome. Numerical results

on the far field radiation pattern are obtained for various geometrical parameters of

the superspheroidal radome, and also compared.

viii



SUMMARY ix

Next, electromagnetic radiation by an infinitely long transmission line analyzed

using the dyadic Green’s function technique is presented. The transmisison line

is located in the vicinity of an elliptic dielectric waveguide. The dyadic Green’s

functions inside and outside of the elliptic waveguide are formulated first in terms of

the elliptical vector wave functions which are in turn expressed as Mathieu functions.

Using the boundary conditions, we derived a set of general equations governing the

scattering and transmitting coefficients of the dyadic Green’s functions. From the

integral equations, the scattered and total electric fields in far-zone are then derived

analytically and computed numerically.

An efficient approach is also proposed to analyse the interior boundary value

problem in a spheroidal cavity with perfectly conducting wall. Then a closed-form

solution has been obtained for the eigenfrequencies based on TE and TM cases. By

means of least squares fitting technique, the values of the coefficients are determined

numerically.

Finally, a new set of closed form expressions of the classic Mie scattering co-

efficients of a spherical nanoshell using a power series up to order 6. This set of

approximate expressions is found to be very accurate in the large range of various

potential engineering applications including optical nanoparticle characterizations

and other nanotechnology applications, validated step by step along the derivation

procedure. Computations using this closed form solutions are very fast and accurate

for both lossy and lossless media, and requires very little effort in the calculations

of the cross section results. Although examples are limited to nano-scattered appli-
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cations, the general theory is applicable to a large frequency spectrum ranging from

radio frequency waves to optical waves.
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Chapter 1

Introduction

In this thesis, new methods or concepts have been proposed to analyze some specif-

ically shaped canonical objects. One method is proposed to analyze transmission

effects of the electromagnetic field through a cylinder radome whose cross-section

can be non-circular. The other method, which makes use of the spherical dyadic

Green’s functions (DGF’s), is developed to study the electromagnetic transmission

through an axis-symmetric radome of superspheroidal shapes. Next, the elliptical

dyadic Green’s function technique has been employed to characterize electromag-

netic radiation of an imposed current line source in the presence of a two layered

isotropic dielectric elliptical cylinder. Then, an efficient approach is proposed to

analyse the interior boundary value problem in a spheroidal cavity with perfectly

conducting wall. Finally, a new set of closed form expressions of the classic Mie

scattering coefficients of a spherical nanoshell is derived a power series. To start

off this introductory chapter, a brief background on the antenna-radome problem

and on the existing methods that had been used in analyzing such a problem are

1



Chapter 1: Introduction 2

discussed. After which the motivation for this project will be highlighted. This is

followed by a brief presentation on the outline of the concepts or methods used in

this project. At the end of this chapter, the organization layout of the remaining

part of the thesis will be given.

1.1 Background

Airborne radar antennas are enclosed in dielectric radomes for protection from a

variety of environmental and aerodynamic effects. The geometry of airborne radome,

being largely determined by aerodynamic considerations, often leads to degradation

of the electromagnetic performance of any enclosed antenna. A good design of

antenna radome system can minimize such undesirable effects. This relies on an

accurate analysis of the effect of a radome on the penetration of electromagnetic

wave. A radome is a dielectric shell that protects the radar antenna while at the

same time tries not to interfere with its operation [1]. Ideally the radome should

appear transparent to radio frequency so as not to degrade the electrical performance

of the enclosed antenna. Unfortunately, due to a dielectric shell that encloses the

antenna, it is inevitable that the wavefront of the electromagnetic wave from the

antenna will be distorted by the radome. This distortion would cause the radome

to adversely affect the operation of the radar system that it intends to protect.

For example, the radome can produce boresight error, which is an apparent change

in the angular position of a radar source or target. In a modern radar system, a

small boresight error may result in a serious degradation of the radar’s performance.
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In addition, part of the radiation energy is lost as a consequence of the scattering

of electromagnetic wave from the radome surface. This will result in peak-gain

attenuation, which is the loss of peak gain. As a consequence of these two effects,

a radome can reduce both the accuracy in determining the angular position of a

target and the range at which the target can be detected. The boresight error and

the peak-gain attenuation are therefore usually the electrical parameters that are of

greatest concern in any radome design. These two parameters can be obtained by

knowing the characteristic of the electromagnetic field both inside and outside the

radome. A radome can also change the sidelobe level of an antenna.

A precise analysis of radome performance is difficult, and nearly impossible in

practice [2], because the general shape of a radome layer usually does not fit into

a frame suitable for an exact analysis. This is especially so for an airborne radome

in which, due to the need for aerodynamic requirements, it’s shapes are not quite

regular. For such a radome, there is no suitable frame that can be used for exact

analysis. To analyze such a radome, one must resort to some approximation meth-

ods. The usual basic principle of approximation is to find a canonical configuration

to approximate the surface of the dielectric layer locally, such that from this local

point of view, the problem can be solved rigorously by analytic means. The accuracy

of such an approximation depends on how closely the canonical problem resembles

the original one.

In order to analyse accurately and improve the performance of the radome,

there are many studies those have been done in this area [3]. One of the tradi-
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tional techniques is the ray tracing method which traces a ray in the direction of

propagation through the radome wall [4—6]. As a widely used method, it provides

accurate results for large radomes, but becomes complicated and less accurate for

rapidly curved shells which may have sharp edges or corners [7]. It makes use of

many approximations, such as treating the radome wall at each intercept point as

locally plane, and assuming that the inner and outer radome walls are parallel at

the intercept point. As a result, the method has limited accuracy.

A closely related method is the Geometrical Optics (GO) method, which treats

electromagnetic propagation as being “light-like” in behaviour. For large radomes,

the method produces a good boresight error prediction accuracy, but it becomes

largely inaccurate for radomes smaller than five wavelengths in diameter. This is

because it makes the assumption that the electromagnetic wave propagates as a

plane wave confined to a cylinder whose cross section the antenna aperture defines.

However this is not true in practice.

A more accurate ray tracing method would be that of the Physical Optics (PO)

technique [8, 9]. This method is based on the Huygen’s principle which states that

each point on a primary wavefront can be considered as a new source of secondary

spherical waves, and that a secondary wavefront can be constructed at the enve-

lope of these spherical waves. Hence the PO method can be employed in surface

integration formulations that produce better accurate results than the GO method.

Beside the various ray tracing techniques, other methods include the plane-

wave spectrum [10,11], modal cylindrical-wave spectrum [12], and the Geometrical
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theory of diffraction [13] each applying its own approximations to solve the radome

problem. The finite element method was also used, where the radome does not affect

the antenna current distribution, in order for the model to work [14]. For any of

these approaches, the multiple scattering among the source, reflector and radome is

ignored.

The method of moments (MoM) technique [15, 16] is understood to be more

accurate than ray tracing as it takes into consideration any corners or edges on

the surface of the radomes. This is possible as the surface of the radomes are

approximated by numerous planar triangular patches [7,17]. This approach, due to

the manipulation of large dimensional matrices where electric size of the problem

is large, becomes computationally heavy, hence limiting its application to small

radomes only. Giuseppe and Giorgio [18] proposed an alternative approach to the

MoM technique when they computed the resistance of a dielectric-covered inclined

series slot, but the loss in accuracy is thus encountered. Based on the MoM, the

Conjugate Gradient - Fast Fourier Transform (CG-FFT) method [19,20] has a much

lower memory requirement and accelerates its computations. This is because the

use of the Fast Fourier Transform results in less operations required, and this in

turn also leads to less errors associated with rounding off during computations.

Electromagnetic scattering of a normal incident plane wave by an elliptical cylin-

der was considered by Yeh [21] and Burke [22]. For the oblique incident case, the

equations needed to solve for the scattering and transmission coefficients were for-

mulated by Yeh [23]. The method in those works is to express the incident, scattered
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and transmitted plane waves in terms of vector wave eigenfunctions obtained using

the separation of variables method. These eigenfunctions are expressed usually in

terms of Mathieu functions. The continuity boundary conditions were then imple-

mented in determination of the coefficients in the scattered and transmitted waves.

Numerical computations were presented in [21, 22, 24, 25] for the normal incident

plane waves. For the oblique incident plane waves, numerical computations were

presented by Kim [26]. Up to now, a generalized analysis of electromagnetic radia-

tion problems involving dielectric elliptical cylinders has not been well-documented

yet. This motivates the present work which considers electromagnetic radiation due

to an infinitely transmission line near a dielectric elliptical cylinder.

Calculation of eigenfrequencies in electromagnetic cavities is useful in various

applications such as the design of resonators. However, analytical calculation of

these eigenfrequencies is severely limited by the boundary shape of these cavities.

In this thesis, the interior boundary value problem in a prolate spheroidal cavity

with perfectly conducting wall is solved analytically.

Light or electromagnetic scattering by composite spheres is another interest in

the scientific and engineering communities [27—34]. Electromagnetic scattering by

a plasma anisotropic sphere was analyzed [27]. The analysis was extended to Mie

scattering by an uniaxial anisotropic sphere [28]. Furthermore, scattering by an

inhomogeneous plasma anisotropic sphere of multilayers was also formulated and

investigated [29]. It can be easily extended to light scattering by an inhomogeneous

plasma anisotropic sphere where the exact solutions could be applied to obtain the
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field distributions in the multilayered spherical structures. Along the analysis line

of [27—29], the standard eigenfucntion expansion technique is utilized and the the-

ory for the anisotropic media can still follow closely to theory used for the isotropic

media. To characterize eigenvalues in the anisotropic media different from those

in the isotropic media, potential formulation and parametric studies for scattering

by rotationally symmetric anisotropic spheres were also carried out recently [30].

In addition, Sun discussed light scattering by coated sphere immersed in absorbing

medium and compared finite-difference time-domain (FDTD) method with analytic

solutions [31]. Scatterers consisting of concentric and nonconcentric multilayered

spheres were also considered [32]. An improved algorithm for electromagnetic scat-

tering of plane wave and shaped beams by multilayered spheres was developed [33]

and the geometrical-optics approximation of forward scattering by coated particles

was then discussed [34]. With new developments of nanoscience and nanotechnology,

it becomes desirable to investigate the microcosmic world of the scattering problems.

Nano-scaled objects have thus attracted considerable attentions recently, primarily

because they have shown some interesting optical properties and are found to be

important for modern photonic applications [35—38]. Nano-scaled metallic parti-

cles exhibit interesting optical characteristics and behave differently from those of

normal-scaled dimensions. Interactions of collective and individual particles of met-

als (such as copper, silver and gold) were studied long time ago [39, 40]. Johnson

and Christy plotted both the real and imaginary parts of relative permittivities of

copper, silver and gold nanoparticles as a function of photon energy in a large range

according to different frequencies [41].
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1.2 Motivation for the Project

Over the past few decades, the dyadic Green’s function technique has been widely

employed to investigated the interaction of the electromagnetic waves with the lay-

ered media in the boundary-value problem [42, 43]. Dyadic Green’s function is a

very powerful technique for analyzing electromagnetic transmission through dielec-

tric shell [42]. Li et al. [44—46] has derived the general expression of the dyadic

Green’s function for multi-layered planar medium, multi-layered spherical medium

and multi-layered cylindrical medium. By using these dyadic Green’s functions,

we are able to obtain a rigorous analysis of the electromagnetic transmission prob-

lem through these media (i.e. planar, spherical and cylindrical). This includes the

multiple reflection effects and the curvature effects of the mediums (spherical and

cylindrical) which are taken care of by these dyadic Green’s functions.

As the dyadic Green’s functions are able to give a rigorous analysis of the trans-

mission problem by taking curvature into consideration, it is therefore the intentions

of this project to be able to make use of such a property of the dyadic Green’s func-

tion in the analysis of the antenna-radome whose structure can be arbitrary. Unfor-

tunately, for a radome in general, its dyadic Green’s function cannot be obtained.

This is because the shape of the radome will not fit into a suitable frame such that

the derivation of its dyadic Green’s function can be carried out. For the first method,

the existing cylindrical dyadic Green’s functions that had already been derived by Li

et al. will be used in the analysis of a cylindrical radome of arbitrary cross-section.

This will be done “indirectly” through some discretization of the radome surface. In
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this way, the curvature effect of the radome surface can be accounted for and hence

it will lead to a much better analysis of the antenna-radome problem as compared to

the methods that uses the plane-slab approximation. The outline of this “discrete”

method or concept is discussed in the next section.

As mentioned above, most of these methods involve some form of approximations

in the process of solving the antenna-radome problem, like discretizing the surface

into small components for easier analysis. For the second method, the method of

moments is a unifying concept that is often applied to solve complex electromagnetic

problems. Its basic idea is to reduce a functional equation to a matrix equation, and

then to solve the matrix equation by known techniques. These techniques include

point-matching, and approximate operators. The choice of the technique to be used

depends largely on the problem set as well as the type of solutions desired. In

the light of the ability of the method of moments to make a continuous instead of

a discrete analysis of the antenna-radome problem, it will be interesting to make

use of this property in our study of the far field radiation in the presence of a

superspheroidal radome.

To obtain general characteristics of the electromagnetic radiation in the pres-

ence of dielectric elliptical cylinders, the dyadic Green’s function is an important

kernel of the integral equations [47—55]. Also, the dyadic Green’s functions are quite

important kernels used in numerical techniques such as the Method of Moments

and the Boundary Element Method. The free space dyadic Green’s function has

already been available in terms of the elliptical vector wave functions. In this work,
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the dyadic Green’s functions for inside and outside of the elliptical cylinder are

formulated first and the scattering superposition principle is employed. Then, the

scattering coefficients of dyadic Green’s functions are formulated by employing the

boundary conditions.

For a spheroidal cavity, calculation of eigenfrequencies in electromagnetic cav-

ities is useful in various applications such as the design of resonators. However,

analytical calculation of these eigenfrequencies is severely limited by the boundary

shape of these cavities. In this work, the interior boundary value problem in a

prolate spheroidal cavity with perfectly conducting wall is solved analytically. By

applying boundary conditions, it is possible to obtain an analytical expression of the

base eigenfrequencies fns0 using spheroidal wave functions [56, 57, 49] regardless of

whether the parameter c = kd/2 is small or large where k denotes the wave number

while d stands for the interfocal distance. An inspection of the plot of a series of

fns0 values (confirmed in [58]) indicates that variation of fns0 with the coordinate

parameter ξ is of the form fns0(ξ) = fns(0)[1+g
(1)/ξ2+g(2)/ξ4+g(3)/ξ6+ · · ·] when

c is small. By fitting the fns0, ξ evaluated onto an equation of its derived form, the

first four expansion coefficients – g(0), g(1), g(2) and g(3) are determined numeri-

cally using the least squares method. The method used to obtain these coefficients

is direct and simple, although the assumption of axial symmetry may restrict its

applications to those eigenfrequencies fnsm , where m = 0.

Recently, a closed form analytical model of the scattering cross section of a single

spherical nanoshell has been considered [59], while some fine experimental works
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were conducted in [60,61]. The results given in [59] seemed to agree with the exact

solutions very well. Our recent careful investigations show that the relative errors in

their results are not so small, especially when the electric size of the nano shell is not

large. The present work is therefore to derive another different closed form solution

for describing the light wave scattered by the nanoshells using a polynomial of up

to order 6. Validation will be made by comparing the present closed form solution

to the exact Mie scattering solution and also to the other closed form solution by

Alam and Massoud.

1.3 Concept Outline

In this thesis, new methods or concepts are proposed in the analysis of radome.

One concept, which involves the use of the cylindrical dyadic Green’s functions

in the analysis of an arbitrary cylindrical radome with non-circular cross-section,

is presented. Basically, the radome is first divided/discretized into several small

sections. Each of these sections will then be modeled by an appropriate cylinder

and the dyadic Green’s functions corresponding to this cylinder will then be used

to find the fields on the outer surface of these section which is also the outer surface

of the radome. In other words, at each point on the radome, it is treated locally

as belonging to some part of a circular cylinder. The dyadic Green’s functions

that characterized this circular cylinder is then used to find the fields that resides

at the particular point on the outer surface of the circular cylinder at which the
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section belongs to. In this way, the fields on the outer surface of the radome can

be obtained but in discrete form. From these discrete fields, its equivalent discrete

current sources can be easily found. Thus, the antenna-radome problem can then be

effectively represented by this set of discrete equivalent current sources alone. From

these equivalent current sources, the transmitted fields outside the radome can then

be obtained via the unbounded dyadic Green’s function. The radiation pattern of

the transmitted antenna’s field is then plotted from which the boresight error and

peak-gain attenuation can be obtained.

The second concept is presented in this thesis, the electromagnetic fields in the

inner and outer regions of the radomes, as well as that within the dielectric radome

layer are first formulated in terms of the unbounded dyadic Green’s function and the

vector wave functions, together with unknown coefficients to be determined. Then

by making use of the boundary conditions for the electromagnetic fields on both the

inner and outer surfaces, a coupled set of integral equations are generated. These

unknown coefficients are solved using the Method of Moments. Knowledge of the

unknown coefficients will allow the determination of the far field radiation pattern.

The third concept, the dyadic Green’s function technique has been employed

to characterize electromagnetic radiation of an imposed current line source in the

presence of an isotropic dielectric elliptical cylinder. The current density along the

infinitely long wire has a constant amplitude but a varying phase. The elliptical

cylinder is considered to be infinite in length. In order to analyze the problem, the

dyadic Green’s functions are expressed in terms of elliptical vector wave functions
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and the general equations needed to solve for the reflection and transmission co-

efficients are derived from the boundary conditions. These derived equations are

transformed into, and solved using, a linear equation system. Numerically, the ra-

diation patterns of the infinitely long wire are computed, plotted, and shown for

various cases where the position and distance of the line source are varied. Both

lossy and lossless dielectric media for the elliptical cylinder are considered. The

results are believed to be very useful to many practical problems, and especially to

characterize cable radiation or transmission line power leakage in tunnels.

The fourth concept, an efficient approach is proposed to analyse the interior

boundary value problem in a spheroidal cavity with perfectly conducting wall. Since

the vector wave equations are not fully separable in spheroidal coordinates, it be-

comes necessary to double-check validity of the vector wave functions employed in

analysis of the vector boundary problems. A closed-form solution has been ob-

tained for the eigenfrequencies fns0 based on TE and TM cases. From a series of

numerical solutions for these eigenfrequencies, it is observed that the fns0 varies

with the parameter ξ among the spheroidal coordinates (η, ξ,φ) in the form of

fns0(ξ) = fns(0)[1+g
(1)/ξ2+g(2)/ξ4+g(3)/ξ6+· · ·] . By means of least squares fitting

technique, the values of the coefficients, g(1), g(2) , g(3), · · ·, are determined numeri-

cally. It provides analytical results, and fast computations, of the eigenfrequencies

and the results are valid if ξ is large (e.g. , ξ ≥ 100).

The last concept describes a new set of closed form expressions of the classic

Mie scattering coefficients of a spherical nanoshell using a power series up to order 6.
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This set of approximate expressions is found to be very accurate in the large range

of various potential engineering applications including optical nanoparticle charac-

terizations and other nanotechnology applications, validated step by step along the

derivation procedure. Computations using the closed form solutions are very fast

and accurate for both lossy and lossless media, but it requires very little effort in

the calculations of the cross sections. Light or electromagnetic wave scattered by a

single sphere or a coated sphere has been considered as a classic Mie theory. There

have been some further extensions which were made further based on the Mie theory.

Recently, a closed form analytical model of the scattering cross section of a single

nanoshell has been considered. The present paper is documented further, based on

the work in 2006 by Alam and Massoud, to derive another different closed form

solution to the problem of light scattered by the nanoshells using polynomials of

up to order 6. Validation is made by comparing the present closed form solution

to the exact Mie scattering solution and also to the other closed form solution by

Alam and Massoud. The present work is found to be, however, more generalized

and also more accurate for the coated spheres of either tiny/small or medium sizes

than that of Alam and Massoud. Therefore, the derived formulas can be used for

accurately characterizing both surface plasmon resonances of nanoparticles (of small

sizes) or nano antenna near-field properties (of medium sizes comparable with half

wavelength).
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1.4 Layout of the Thesis

The layout of the remaining part of this thesis is outlined as follows:

In Chapter 2, a discrete method, which makes use of the cylindrical dyadic

Green’s functions (DGF) together with the field equivalence principle, is developed in

this thesis for characterizing the electromagnetic transmission through a cylindrical

antenna radome of arbitrary cross sections. With the developed discrete method,

results of radiation power patterns of antennas, boresight errors, and peak-gain

attenuations are obtained and compared with some existing results.

In Chapter 3, the method of moments, which makes use of the spherical dyadic

Green’s functions (DGF’s), is developed to study the electromagnetic transmission

through an axil-symmetric radome of superspheroidal shapes. Numerical results on

power patterns and boresight errors are obtained and compared for various geomet-

rical parameters of a superspheroidal radome.

In Chapter 4, the dyadic Green’s function technique has been employed to char-

acterize electromagnetic radiation of an imposed current line source in the presence

of an 2 layered isotropic dielectric elliptical cylinder. The dyadic Green’s functions

inside and outside of the elliptic cylinder are formulated in terms of the elliptical

vector wave functions which are in turn expressed as Mathieu functions. Using the

boundary conditions, we derive a set of general equations governing the scattering

and transmitting coefficients of the dyadic Green’s functions. The scattered and

total electric fields in far-zone are then derived analytically and computed numeri-
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cally..

In Chapter 5, an efficient approach is proposed to analyse the interior boundary

value problem in a spheroidal cavity with perfectly conducting wall. A closed-form

solution has been obtained for the eigenfrequencies based on TE and TM cases. By

means of least squares fitting technique, the values of the coefficients are determined

numerically.

In Chapter 6, a new set of closed form expressions of the classic Mie scattering

coefficients of a spherical nanoshell using a power series up to order 6. This set of

approximate expressions is found to be very accurate in the large range of various

potential engineering applications including optical nanoparticle characterizations

and other nanotechnology applications, validated step by step along the derivation

procedure. Computations using this closed form solution are very fast and accurate

for both lossy and lossless media, but it requires very little effort in the calculations

of the cross section results.

In Chapter 7, conclusions and a brief description of future works will be given.
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reviewed journals and international conferences.
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Chapter 2

A 3D Discrete Analysis of Cylindrical

Radome Using DGF’s

A discrete method, which makes use of the cylindrical dyadic Green’s functions

(DGF) together with the field equivalence principle, is developed in this chapter

for characterizing the electromagnetic transmission through a cylindrical antenna

radome shell with arbitrary curved surface. By use of the dyadic Green’s functions

for multilayered circular cylinders, this discrete method takes into consideration

curvature effects of the radome shell, which is usually ignored in classical approaches

such as the ray-tracing method and the plane wave spectrum analysis technique.

First, the discretized field distribution elements on the outer surface of the cylindrical

radome shell are obtained from an arbitrarily distributed source. Then, the re-

radiation of these elements are analyzed. With the developed discrete method,

results of radiation power patterns of antennas, boresight errors, and peak-gain

attenuations are obtained and compared with some existing results.

19
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2.1 Introduction

The effect of a dielectric layer on the penetration of electromagnetic waves is always

an interesting subject that has found many applications such as in the studies of

the performance of a radar antenna enclosed by a radome. A radome is a dielectric

shell that protects the radar antenna system against the environmental effects while

at the same time tries not to interfere with its operation [1]. Being a dielectric shell

that encloses the antenna, unfortunately, it becomes inevitable that the wavefront

of the electromagnetic wave radiated from the antenna will be distorted by the

radome. This distortion would cause the radome to adversely affect the operation

of the radar system that it intends to protect. For example, radome can produce

boresight error, which is an apparent change in the angular position of a radar source

or target. In a modern radar system, a small boresight error may result in a serious

degradation of the radar’s performance. In addition, part of the radiation energy is

lost as a consequence of the scattering of the wave from the radome surface. This will

results in peak-gain attenuation, which is the loss of peak gain. As a consequence of

these two effects, a radome can reduce both the accuracy in determining the angular

position of a target and the range at which the target can be detected. The boresight

error and the peak-gain attenuation are therefore usually the electrical parameters

that are of the greatest concern in any radome design. These two parameters can

be obtained by knowing the characteristic of the electromagnetic field both inside

and outside the radome.

The ray tracing technique has traditionally been the most widely used method
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for describing propagation through a radome. Unfortunately, several approxima-

tions are made, with the main simplification being to treat the radome as locally

plane. Because of these approximations, the results obtained have limited validity.

Several factors such as the antenna size and radome curvature (in wavelength) have

been found to influence discrepancies. A thorough examination of this plane-slab ap-

proximation method and its validity were done by Subramaniam [62]. To improve

on this ray tracing method, Einziger and Felsen [63, 64] presented a general hy-

brid ray-optical formulation procedure that takes multiple reflection and curvature

correction into consideration. Chang and Chan [2] also introduced an alternative

approach, which is an extension of the work by Einziger and Felsen [63,64], in their

analysis of a two-dimensional radome of arbitrarily curved surface.

Many studies have been done in this area, in order to analyse accurately and

improve the performance of the radome [3]. One of the traditional techniques is

the ray tracing method which traces a ray in the direction of propagation through

the radome wall [4—6]. Arvas et al. [65, 66] have presented a three-dimensional

method of moments solution based on the use of the surface equivalence principle.

Wu and Rudduck [67] have presented the Plane Wave Spectrum-Surface Integration

techniques for boresight analysis of a three-dimensional antenna-radome systems.

Finite element analysis of axisymmetric radome has been presented by Gordon and

Mittra [68]. Paris [69] has presented a procedure for predicting by computer the ra-

diation pattern of an antenna in the presence of a radome. Jeng [70] has employed

three methods which are the Plane Wave Spectrum-Surface Integration [67,70], Sin-

gle Plane Wave-Surface Integration [70] and Geometric Optics-Monopulse Tracking
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techniques [70], in his study of electromagnetic transmission through a 2-dimensional

elliptical dielectric shell in his Master degree thesis. In [67, 69, 70], local plane-slab

approximation (the same as that applied in the traditional ray-tracing method) has

been assumed in the analysis and hence, these methods do not take into considera-

tion the effects of the curvature of the radome shell.

Over the past few decades, the dyadic Green’s function (DGF) technique has

been widely employed to investigate the interaction of the electromagnetic waves

with the layered media in the boundary-value problem [42,43]. Dyadic Green’s func-

tion is a very powerful technique in analyzing electromagnetic transmission through

dielectric shell [42]. Li et al. [44—46] have derived the general expression of the dyadic

Green’s functions for multi-layered planar medium, multi-layered spherical medium

and multi-layered cylindrical medium.

By using these dyadic Green’s functions, we are able to conduct a rigorous three-

dimensional analysis of the electromagnetic transmission problem through these me-

dia (i.e. planar, spherical and cylindrical geometries). This includes the multiple

reflection effects and the curvature effects of the medium (spherical and cylindrical)

which are taken care of by these dyadic Green’s functions. As the DGF is able to give

a rigorous analysis of the transmission problem and to take curvature into consid-

eration, it is therefore the intentions of this chapter to make use of such a property

of the DGF in the analysis of the antenna-radome problem whose radome shape

can be arbitrary. This will ensures a more accurate analysis of the antenna-radome

problem as compared to methods that used the plane-slab approximation [67,69,70].
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Unfortunately, for a radome in general, its dyadic Green’s function cannot be

obtained. This is because, in general, the shape of the radome will not fit into a

suitable frame such that the derivation of its dyadic Green’s function can be carried

out. Thus, in this chapter, the existing dyadic Green’s functions that have already

been derived by Li et at. [46] will be used in the three-dimensional discrete analysis

of a cylindrical radome having an arbitrary cross-section.

2.2 Formulation of the Discrete Method

In this section, the general formulation of the discrete method in the analysis of a

3-dimensional cylindrical radome will be presented. This includes the concepts and

theories that underly the 3-D discrete method.

2.2.1 Concept Outline

In this discrete analysis, the radome is divided into several discrete sections. Each of

these sections is then modeled to be part of an imaginary cylinder (see Fig. 2.1). Us-

ing the cylindrical dyadic Green’s function associated with this imaginary cylinder,

the electromagnetic fields on the outer surface of each of these discrete sections can

be found using the appropriate scattered DGF. From these discrete outer surface

fields, a set of discrete equivalent current sources that resides on the outer radome

surface can be obtained. By using these discrete equivalent sources and the un-
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bounded DGF, the transmitted far fields, from which boresight error and peak-gain

attenuation can be easily obtained, can then be calculated.

Figure 2.1: Illustrating the discretization of a radome.

2.2.2 Application of the Dyadic Green’s Functions

When the dyadic Green’s function for a medium is known, its electromagnetic fields

can be formulated easily in terms of an integral containing the Green’s function and

an arbitrary current distribution of the excitation source [46]. Thus, the electromag-

netic fields Ef and Hf in the f
th layer due to an electric current source Js in the

sth layer can be obtained in terms of its corresponding Green dyadic G
(fs)

e (r, r ) as

follows:

Ef (r) = iωμ0
Vs
G
(fs)
e (r, r ) · Js(r )dV , (2.1a)

Hf (r) =
Vs
∇×G(fs)

e (r, r ) · J s(r )dV , (2.1b)

where Vs identifies the volume occupied by the sources in the s
th layer, μf represents

the permeability of the medium, and G
(fs)

e identify the electric types of the dyadic
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Green’s functions that correspond to the field point in the f -layer and the source

point in the s-layer.

Similarly, the electromagnetic fields Ef and Hf in the f
th layer due to a mag-

netic current source M s in the s
th layer can also be obtained using the magnetic

types of the dyadic Green’s function G
(fs)

m (r, r ) as follows:

Ef (r) = −
Vs
∇×G(fs)

m (r, r ) ·M s(r )dV , (2.2a)

Hf(r) = iω 0
Vs
G
(fs)

m (r, r ) ·M s(r )dV . (2.2b)

Here, take note that the electric and magnetic types of dyadic Green’s functions

G
(fs)
e (r, r ) and G

(fs)
m (r, r ), Eqs. (2.1a) and (2.2b), and Eqs. (2.1b) and (2.2a) are

dual [45, 46, 42], respectively. This means that by making the simple replacement

E → H, H → −E, J →M , M → −J , μ → , and → μ, one may convert the

electric type of dyadic Green’s functionG
(fs)
e (r, r ) to the magnetic typeG

(fs)
m (r, r ),

Eq. (2.1a) to Eq. (2.2b), and Eq. (2.1b) to Eq. (2.2a).

In the studies of the antenna radome problems, expressions of the unbounded

and scattering dyadic Green’s functions which was presented in the article published

by Li [46] will be used. In that article, only the dyadic Green’s functions of the

electric type were derived. However, to obtain the magnetic type of the dyadic

Green’s functions from the already derived electric type dyadic Green’s function,

one can apply the electromagnetic duality property.



Chapter 2: A 3D Discrete Analysis of Cylindrical Radome 26

2.2.3 Unbounded Dyadic Green’s Functions

The unbounded cylindrical dyadic Green’s functions Ge0(r, r ) for r
>

<

r was given

in [42,46]. In the case of our analysis of the transmission problem, r > r . Therefore,

the unbounded DGF is given below:

Ge0(r, r ) =
i

8π

∞

−∞
dh

∞

n=0

(2− δ0n)

η2s

· M (1)
e
onηs

(h)M e
onηs

(−h)+N (1)
e
onηs

(h)N e
onηs

(−h) ,

(2.3)

where the prime denotes the coordinates (r ,φ , z ) of the current source Js orM s

and the superscript (1) of the vector wave functions denotes that the third-type

cylindrical Bessel function or the first-type cylindrical Hankel function H(1)
n (ηfr) is

to be used in the expression for the vector wave function.

The expression for the cylindrical vector wave functions are:

M e
onηf

(h) =∇×

⎡⎢⎢⎢⎣zn(kr) cos
sin

(nφ)eihzz

⎤⎥⎥⎥⎦ , (2.4a)

N e
onηf

(h) =
1

h2+η2f
∇×∇×

⎡⎢⎢⎢⎣zn(kr) cos
sin

(nφ)eihzz

⎤⎥⎥⎥⎦,
(2.4b)

where n and ηf are the eigenvalues, and Zn(ηfr) represents the Bessel function used

in the expression. If there is a superscript (1), Zn(ηfr) is replaced by the cylindrical

Hankel function of the first-type H(1)
n (ηfr), otherwise, cylindrical Bessel function

Jn(ηfr) of the first-type is assumed.



Chapter 2: A 3D Discrete Analysis of Cylindrical Radome 27

The eigenvalue, ηf , and the propagation constant, kf , in the f
th layer, are

related by the following relation:

h2 = (kf )
2 − (ηf)2 , (2.5a)

k2f = ω2μfεf 1 +
iσf

ωεf
, (2.5b)

where εf and σf denote the permittivity and conductivity of the medium (in the

f th region), respectively.

To find the unbounded electromagnetic fields due to an excitation source, Eq. (2.1a)

to Eq. (2.2b) can be used with the Green dyadic being the unbounded dyadic Green’s

function. If the equivalent current sources residing on the outer surface of the

radome are known, then the unbounded dyadic Green’s function can be used on

these equivalent surface current to find the transmitted electromagnetic fields out-

side the radome. The volume integral will be reduced to a surface integral since

these equivalent current sources are assumed to reside only on the radome surface.

In addition, if these equivalent current sources are known only at discrete locations

on the outer surface of the radome (i.e. it is discrete), then numerical integration

such as the trapezoidal or Simpson’s integration can be used to evaluate the integral

involving these discrete sources. To compute these equivalent sources, the outer

surface fields on the radome surface need to be known and they are obtained by

using the scattered DGF.
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2.2.4 Scattered Dyadic Green’s Functions

In [46], the electric DGF corresponding to the transmitted field (i.e. f = 1 and

s = 3) are given:

G
(13)
es (r, r ) =

i

8π

∞

−∞
dh

∞

n=0

(2− δ0n)

η23

× C131HM (1)
e
onη1

(h)M e
onη3

(−h)

+ C131VN (1)
e
onη1

(h)N e
onη3

(−h)

+ C132HN (1)
o
enη1

(h)M e
onη3

(−h)

+C132VM (1)
o
enη1

(h)N e
onη3

(−h) . (2.6)

To find its corresponding magnetic type G
(13)

ms (r, r ), the dual property is applied.

Here, C131H , C131V , C132H ,C132V are the scattering coefficients of the DGF. These coef-

ficients are easily obtained from the transmission matrices FHjm and F
V
jm as demon-

strated in [46]. The expressions for these coefficients as well as the transmission

matrices can be found in Appendix I for completeness of this paper itself. The

scattered coefficients C131H , C131V , C132H , C132V are dependent on the radii (a1 and a2 in

Fig. 2.1) of the inner and outer cylinders.

To find the transmitted electromagnetic fields at a particular point on the outer

surface of the modeling cylinder, Eqs. (2.1a)-(2.2b) and the scattering DGF will be

used with the variable r and θ in the vector wave functions to be the co-ordinates

of that particular point.
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2.2.5 Correction Factor

As can be seen from Fig. 2.1, the actual unit normal n of the radome surface may

not be in line with the unit normal nc of the circular cylinder that models the

discrete sections. These two normals differ by an angle of θd. To correct for this

non-alignment of the two normals, a correction factor is formulated. This correc-

tion factor will be multiplied to the scattered coefficients C131H , C131V , C132H , C132V of the

scattered DGF in order to obtain the “corrected” scattered coefficients for that

particular elementary section.

To obtain the expression for the correction factor F , the transmission coefficient

through a planar layer at both the normal incidence and oblique incidence needs to

be known. These planar transmission coefficients are given as follow.

At normal incidence, the planar transmission coefficient is

Tpn =

4η2η1
(η2+η1)

2

1− (η2+η1)
2 ei2k2t

(η2+η1)
2

. (2.7)

At an oblique incidence, the planar transmission coefficient is

Tpo =

4η2η1 cos θi cos θt
(η2 cos θi+η1 cos θt)

2

1− (η2 cos θi+η1 cos θt)
2 ei2k2t

(η2 cos θi+η1 cos θt)
2

, (2.8)

where

η1 =
μ1

1
, (2.9a)

η2 =
μ2

2
, (2.9b)
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and

k2 = ω
√
μ2 2, (2.10)

where μ is the permeability of the medium, is the permittivity of the medium,

θi is the incidence angle, θt is the transmitted angle and t is the thickness of the

planar layer. The subscript 1 denotes the medium in region 1 (free space) while the

subscript 2 denotes the radome’s layer which is in region 2.

The correction factor is formulated as the ratio of the planar transmission coef-

ficient at an oblique angle of θd (Tpo where the subscript “po” denotes “the planar

oblique”) through a plane slab to the one at normal incidence (Tpn where the sub-

script “pn” denotes “the planar normal”) through the plane slab.

F =
4η2η1 cos θi cos θt

(η2 cos θi + η1 cos θt)
2

1− (η2 cos θi + η1 cos θt)
2
ei2k2t

(η2 cos θi + η1 cos θt)
2

1− (η2 + η1)
2
ei2k2t

(η2 + η1)
2

4η2η1

(η2 + η1)
2

. (2.11)

The plane slab thickness is the same as the thickness of the circular cylinder that

models the small section. Such a ratio is obtained by assuming that the following

relationship holds,

Tpo

Tpn
=
Tco

Tcn
, (2.12a)

or

Tco =
Tpo

Tpn
Tcn. (2.12b)

In (2.12), the parameter Tco (where the subscript “co” denotes “the circular oblique”)

represents the “corrected” circular transmission coefficient, Tcn (where the subscript
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“cn” denotes “the circular normal”) represents the scattered coefficients C131H ,C131V , C132H , C132V
of the DGF.

2.2.6 Equivalent Current Source

Once the fields on the outer surface of the radome are found, its equivalent electric

current source J es and magnetic current sources M es can be determined easily by

the following relationships:

Jes = n×Hs, (2.13a)

M es = Es × n, (2.13b)

where Es and H s refer to the electric and magnetic fields on an elementary surface

of the radome, respectively, and n refers to the outward unit normal at this radome’s

surface element.

2.2.7 Transmitted Field

Once the equivalent discrete current sources that resides on the outer surface of

the radome is known, the antenna-radome combination can then be taken to be

effectively represented by this set of discrete equivalent current sources. Hence, the

transmitted field through the radome can be obtained by evaluating the unbounded

field due to this set of equivalent current sources.
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2.3 Application to 2D Elliptical Radome

The aforementioned procedure for the computation of the electromagnetic fields

is valid for a three-dimensional analysis since the source could be of an arbitrary

current distribution and the field point can be any point in a 3-D cylindrical coor-

dinates. However, to verify our analysis, we consider herein a 2-D case where the

source is assumed to be an infinite long wire of uniform current distribution as given

in [70].

2.3.1 Implementation

By considering the antenna source to be that of an infinite z-directed current dis-

tribution [70], the discrete analysis of a 3-dimensional cylindrical radome will be

reduced to a 2-dimensional problem which can be easily implemented in a numerical

program. The structure of elliptical radome that is considered has been illustrated

in Figure 2.2.

In Fig. 2.2, t is the thickness of the radome, Ω is the scan angle of the antenna, a

is the major axis and b is the minor axis. The various dimensions of the 2-dimensional

elliptical radome that will be used in the analysis are as follows: L = 5λ0, D =
10
3
λ0,

a = 20λ0, and b = 10λ0. Here, λ0 is the wavelength in free space of the antenna field

and n is the relative permittivity of the dielectric radome shell. The source antenna

is of an infinite z-directed electric current distribution Js which is invariant with

the z-direction and it is of unit amplitude (i.e. Js = ze
−iωt).
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Figure 2.2: Geometry of the elliptical radome used in the study.

Using the scattered DGF, both the discrete magnetic and electric fields on the

outer surface elements of the radome is first computed. From these discrete fields,

its equivalent magnetic and electric current sources are then obtained by using the

relationships as shown in Eqs. (2.13a) and (2.13b). The antenna-radome combina-

tion is now taken to be represented by this set of equivalent discrete current sources.

The total transmitted electric fields due to these equivalent sources can be further

computed using the unbounded DGF. Here, the total transmitted field will consist

of 2 components: the E-field due to the equivalent electric source and the E-field

due to the equivalent magnetic source.

The numerical program is implemented using theWolfram’sMathematica (where

180 discrete points used). The numerical program has been checked carefully to en-

sure its validity before it is used to assess the radome’s performance. For example,

the program is used to generate the transmitted electric field for the case in which
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Figure 2.3: Radiation pattern for n = 1

the dielectric constant of the radome is set to be that of the free space. In such

case, the radome should have no effect on the radiation fields. The radiation field

generated by this numerical program is shown in Fig. 2.3. As can be seen, the result

generated by the numerical program is well within the range of error of tolerance

incurred due to numerical computations.

2.3.2 Numerical Results

With the aforementioned numerical implementation, various results of radiation

power patterns of the antenna, boresight errors of the radome, and peak gain atten-

uations are obtained for the cases where t = λ/2, λ, and 2λ, as shown in Fig. 2.4 to

Fig. 2.11. In the computation, the relative permittivity r is set to be 2.

Fig. 2.4 to Fig. 2.7 show the radiation power patterns obtained by the discrete

method at various scanning angles (Ω) of 0o, 6o, 18o, and 24o, respectively. The
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radiation patterns for three different thickness are obtained and plotted for each

scanning angle. It is seen that the radiation patterns differ slightly when the thick-

ness of the radome is an integer times of half-a-wave (λ/2). However, the radiation

patterns are shifted when the scanning angle is increased from 3o to 24o.

Fig. 2.8 and Fig. 2.10 illustrate the boresight errors of the radome for the cases

where t = 1λ and t = 2λ, respectively. These boresight errors of the radome are com-

pared with the results obtained in [2] which used the plane wave spectrum-surface

integration method (PWS-SI) and the model cylindrical wave-spectrum method

(Cyl-WS).

Fig. 2.9 and Fig. 2.11 depict the peak-gain attenuations of the radome for these

two cases, respectively. The results of the peak-gain attenuations of the radome are

also compared with the results obtained in [2].

To compare with the results in [70] which used the PWS-SI method, another

case of the radome is considered where t = 1λ and n = 4. Fig. 2.12 to Fig. 2.15

show the radiation patterns obtained by the discrete method as compared with those

published in [2].

2.4 Discussion

Before one can draw any conclusion from the comparisons in Fig. 2.8 to Fig. 2.15, the

accuracy of the PWS-SI method and the model cylindrical wave-spectrum method

should first be determined.
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Figure 2.4: Radiation patterns for various thicknesses at a scan angle of 0o.
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Figure 2.5: Radiation patterns for various thicknesses at a scan angle of 6o.



Chapter 2: A 3D Discrete Analysis of Cylindrical Radome 37

0 10 20 30 40 50
phi ,degree

-50

-40

-30

-20

-10

0

E-
dleiF

,
Bd

12- l1-l

2-l

Figure 2.6: Radiation patterns for various thicknesses at a scan angle of 18o.
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Figure 2.7: Radiation patterns for various thicknesses at a scan angle of 24o.
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Figure 2.8: Boresight error for a thickness of λ.
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Figure 2.9: Peak-gain attenuation for a thickness of λ.
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Figure 2.10: Boresight error for a thickness of 2λ.
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Figure 2.11: Peak-gain attenuation for a thickness of 2λ.
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Figure 2.12: Radiation pattern for a thickness of λ at a scan angle of 0o.
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Figure 2.13: Radiation pattern for a thickness of λ at a scan angle of 6o.
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Figure 2.14: Radiation pattern for a thickness of λ at a scan angle of 18o.
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Figure 2.15: Radiation pattern for a thickness of λ at a scan angle of 24o.
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Although several assumptions and approximations had been made in both the

PWS-SI method and the model cylindrical wave-spectrum method, their generated

results, even not exact, should still approximate the real solution quite well. This

is because, in these methods, major transmission effects through a dielectric layer

had been taken into consideration. Hence, both the PWS-SI and model cylindrical

wave-spectrum method should, in these cases of elliptical radome, produce results

which are of acceptable or reasonable accuracy.

From the comparisons in Fig. 2.8 to Fig. 2.15, it can be seen that the results that

are generated by the discrete method lie between or close to the results that were

obtained by the PWS-SI method and the model cylindrical wave-spectrum method.

Hence, this would suggest that the accuracy of the discrete method is reasonable.

Theoretically, the discrete method should, however, be more accurate and/or better

than both the PWS-SI method and the cylindrical wave-spectrum method.

In the PWS-SI method, plane-slab approximation is used. This means that

the curvature effect of the radome’s surface has not been taken into consideration.

On the other hand, the discrete method, by the virtue of using the dyadic Green’s

function, takes the curvature of the radome’s shell into consideration. In this aspect,

the discrete method should provide more accurate results than the PWS-SI method.

This argument applies to other conventional methods such as the ray-tracing method

that uses plane-slab approximation.

In the model cylindrical wave-spectrum method, although the curvature of the

radome was taken into consideration, it was only valid for a 2-dimensional analysis
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of the antenna-radome problem. On the other hand, the discrete method is valid

for a more general 3-dimensional analysis of the antenna-radome problem where the

source current could be arbitrarily distributed. In addition, there are some doubts

or uncertainty concerning the formulation of the model cylindrical wave-spectrum

method. For example, in the model cylindrical wave-spectrum method, at each point

on the radome surface, it is modeled locally as a circular cylindrical layer with its

radius being equal to the radius of curvature at that particular point. In this way

of formulation, there might arise a situation in which the radius of the modeling

circular layer might become too small such that the source is now effectively outside

this imaginary circular layer. In this way, the transmission formulation at that

point might becomes invalid. This was what had been encountered when attempts

are made to use this curvature in the discrete method. The radiation pattern that is

obtained using this consideration was found to be out of what should be reasonable!

Note that, although the radome wall is curved and the fields that incidence on

the wall are at an oblique angle, the expected pattern should not be very far off

the unbounded radiation pattern since the thickness of the radome is of half-a-

wavelength (λ/2) and its relative permittivity is only 2.

Finally, although the discrete method is used in the analysis of a 3-dimension

cylindrical radome in this paper, the same principle can be applied in the study of

electromagnetic transmission through, and/or scattering by, a 3-dimensional enclose

structure such as the superspheroidal radome shells. For such a 3-dimensional en-

closed structure, the spherical DGF should be used instead of the cylindrical DGF

which is considered here.
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2.5 Conclusions

In this chapter, a three-dimensional discrete method, which makes use of cylindrical

dyadic Green’s functions, has been proposed in the study of electromagnetic trans-

mission through a cylindrical radome of non-circular cross sections. The general for-

mulation of this discrete method in the study of a 3-dimensional cylindrical radome

of arbitrary cross sections is derived. As an example, this general formulation is

then applied to the study of electromagnetic transmission through a 2-dimensional

elliptical cylindrical radome shell where the source current of the antenna is consid-

ered to be infinite in the z-direction. Several cases of this 2-dimensional elliptical

cylindrical radome shell have been studied. The numerical results generated by the

discrete method for these cases are compared with those obtained by the PWS-SI

and the model cylindrical wave-spectrum method (published in [2] and [70]). From

these comparisons, it was concluded that the discrete method is quite accurate. In

fact, the discrete method, by the virtue of using DGF, should give a more accurate

result. This is because the curvature effects of the radome’s layer/shell among other

considerations have been taken into account by the usage of the DGF.



Chapter 3

Discrete Analysis of a 3D Airborne

Radome of Superspheroidal Shapes

In this chapter, a discrete method, which makes use of the spherical dyadic Green’s

functions (DGF’s), is developed to study the electromagnetic transmission through

an axisymmetric radome of superspheroidal shapes. By means of the dyadic Green’s

functions, the discrete method inherently accounts for the curvature effects of the

radome shell, which is generally ignored in classical approaches such as the ray-

tracing method and the plane wave spectrum analysis. This proposed discrete

method is thus able to give a more accurate analysis on the electromagnetic trans-

mission problem through an airborne radome of superspheroidal shapes. Numerical

results on power patterns and boresight errors are obtained and compared for various

geometrical parameters of a superspheroidal radome.

45
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3.1 Introduction

Radomes are used to enclose antennas with the principal purpose of shielding the

antenna from the physical environment. This improves system availability since the

antenna is not affected by winds, rain, or ice. It can also improve performance since

high winds can distort the shape and pointing direction of the reflector. Typical

applications include antennas for ground, maritime, aircraft and missile electronics

system. Being in a protected environment, the life cycle of the antenna improves.

Moreover the structural requirements of the antenna are less stringent, resulting in

reduced fabrication and installation costs.

Ideally the radome should appear transparent to radio frequency so as not to

degrade the electrical performance of the enclosed antenna. However in practice, the

antenna performance can be altered by radome effects on its radiation pattern. The

more significant of these effects is the boresight error which is the bending of the

angle-of-arrival of a received signal relative to its actual angle-of-arrival, arising from

distortions of the electromagnetic wavefront as it propagates through a dielectric

radome wall. Another effect is antenna side lobe-level degradation which occurs both

because of losses in the radome and distortion in the antenna pattern, as a result

of deformation of the effective illumination pattern. In addition, radiation scattered

from the radome may affect radar performance by elevating antenna side lobes, thus

adding to the clutter that must be mitigated via signal processing. Lastly there

are copolarized and cross-polarized transmission loss which are usually the result of

reflection at the air/dielectric interface and dissipation within the dielectric layers.
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Many studies have been done in this area, in order to analyse accurately and

improve the performance of the radome [3]. One of the traditional techniques is the

ray tracing method which traces a ray in the direction of propagation through the

radome wall [4—6]. Beside the various ray tracing techniques, other methods include

the plane-wave spectrum [10, 11], modal cylindrical-wave spectrum [12], and the

Geometric theory of diffraction [13] each applying their own set of approximations

to solve the radome problem. The Finite Element method [14] assumes that the

radome does not affect the antenna current distribution, in order for the model to

work.

This chapter applies the Method of Moments to the study of electromagnetic

transmission through a superspheroidal radome with dielectric layer. This is a dis-

crete method which makes use of the spherical dyadic Green’s functions (DGF’s).

By means of the inner product, the method effectively takes into account the conti-

nuity of the surface, instead of discretizing it. This proposed method is thus able to

give a more accurate analysis on the electromagnetic transmission problem through

a superspheroidal radome. Numerical results on the far field radiation pattern are

generated for various geometrical parameters of the superspheroidal radome, and

compared.

3.2 Formulation of the Problem

This section will be presenting a general formulation of the analysis that is used in

the study of the far field properties of a source enclosed within a 3-dimensional super-
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spheroidal radome with a dielectric shell. This includes looking into the properties

of the radome, as well as a detailed presentation of the theory and mathematical

expressions that are essential in the study. The unbounded dyadic Green’s function

and the spherical vector wave functions are also given, including how these expres-

sions can be used to generate a general formulation for the electromagnetic field of

the dipole within the radome.

3.2.1 Concept Outline

In the analysis as presented in this chapter, the electromagnetic fields in the inner

and outer regions of the radomes, as well as that within the dielectric radome layer

are first formulated in terms of the unbounded dyadic Green’s function and the

vector wave functions, together with unknown coefficients to be determined. Then

by making use of the boundary conditions for the electromagnetic fields on both the

inner and outer surfaces, a coupled set of integral equations are generated. These

unknown coefficients are solved using the Method of Moments. Knowledge of the

unknown coefficients will allow the determination of the far field radiation pattern.

3.2.2 Analysis of a 3D Superspheroidal Radome

Due to the axis-symmetric property of the superspheroid shape, and the fact that a

dipole oriented along the axis of revolution is employed, it is sufficient to consider a

2-dimensional description of the problem (see Fig. 3.1). Making use of the spherical



Chapter 3: Discrete Analysis of a 3D Airborne Radome 49

coordinates system, it is obvious that quantities like the electric field and unit normal

to the surface, are all independent of the φ̂ component.

This chapter will be investigating a three-layered medium in which the outer-

most and the inner-most layers are free space medium while the second layer con-

stitutes the radome material which is of dielectric nature. The source is located in

the inner-most layer of the radome, at the intersection of the axis and the base.

In Fig. 3.1, a is the length of the radome along the axis of revolution and b is the

radius at the cross-sectional base of the radome. t is the thickness, while r is the

distance measured from the intersection of the base and the axis of revolution (i.e.

the origin).

Figure 3.1: Geometry of the elliptical radome used in the study.

To analyze the problem, we will first take a look at the 3-dimensional super-

spheroidal shape defined by the equation below as derived by P.L. Overfelt in [71].
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y2 + z2 =
b

a

2

(av − xv) 2v , b ≤ a. (3.1)

The unit normal can be easily derived from (3.1) as

n = ± b2xv−1x̂+ a2(av − xv)(1− 2
v
)
(yŷ + zẑ)

b4x2(v−1) + a4(av − xv)2(1− 2
v
)
(y2 + z2)

1
2

. (3.2)

Since the analysis in this paper will be dealing heavily with electromagnetic field

and waves, it is necessary to express the unit normal derived above in the spherical

coordinates system. Making a translation between the three axes by replacing the

x axis by the z axis, the y axis by the x axis, and finally the z axis by the y axis,

equation (3.2) becomes

n = ± a2(av − zv)(1− 2
v
)
(xx̂+ yŷ) + b2zv−1ẑ

a4(av − zv)2(1− 2
v
)
(x2 + y2) + b4z2(v−1)

1
2

. (3.3)

Using the transformation from the rectangular to the spherical coordinates sys-

tem [72], it can be shown that (3.3) can be expressed in terms of r and θ only such

that

n(r, θ) =
nnum(r, θ)

nden(r, θ)
, (3.4)

where

nnum(r, θ) = nrr̂ + nθθ̂ + nφφ̂, (3.5)

such that

nr = a2r sin2 θ[av − rv cosv θ](1− 2
v
)

+b2r(v−1) cosv θ , (3.6a)
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nθ = a2r sin θ cos θ[av − rv cosv θ](1− 2
v
)

−b2r(v−1) cos(v−1) θ sin θ , (3.6b)

nφ = 0. (3.6c)

The component φ have been set to zero here, since it does not make any contribution

in our dealing with a vertical dipole. The relationship between r and θ is as given

below by

r =
ab

[(a sin θ)
v
+ (b cos θ)

v
]
1
v

. (3.7)

3.2.3 General Formulation of the Electromagnetic Fields

The spherical unbounded dyadic Green’s function can be used to find the electric

field generated by a source [73].

Egen(r) =
∞

n=1

n

m=0

[M
(1)
e
o
mn(ks)Keven

odd
+N

(1)
e
o
mn(ks)L even

odd
] (3.8)

where

Keven
odd

= −ωμsks
4π

(2− δ0m)
2n+ 1

n(n+ 1)

(n−m)!
n+m)!

·

Vs
M e

o
mn(ks) · Js(r, r )dV , (3.9)
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and

L even
odd

= −ωμsks
4π

(2− δ0m)
2n+ 1

n(n+ 1)

(n−m)!
n+m)!

·

Vs
N e

o
mn(ks) · Js(r, r )dV . (3.10)

In the presence of a dielectric radome, the electromagnetic fields generated by

the source in the inner-most region will be subjected to multiple reflection and

refraction at the interfaces of the various layers of the radome. The contribution of

all the reflected waves due to the inner surface is accounted for by

Esc(r) =
∞

n=1

n

m=0

[M e
o
mn(kf)Cmn +N e

o
mn(kf )Dmn ], (3.11)

where Cmn and Dmn are the scattered coefficients of the spherical vector wave func-

tions to be solved, and are functions of m and n. The scattered coefficients accounts

for the reflection of the field at the inner surface of the radome, as well as incom-

ing fields from the external layers. The subscript f denotes the field layer. The

propagation constant, kf , in the f
th layer satisfies the following relationship

kf = ω μf f 1 +
iσf

ω f

, (3.12)

where f and σf denote the permittivity and conductivity of that field layer, respec-

tively. A time dependence exp(−iωt) is assumed for the fields throughout.

By the principle of superposition, the electromagnetic fields in the inner-most

layer(s = 3 and f = 3) are

Einner = Egen +Esc, (3.13)
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H inner(r) =
ks

iωμs

∞

n=1

n

m=0

[N (1)
e
o
mn(ks)K even

odd

+M (1)
e
o
mn(ks)L even

odd
+N e

o
mn(kf )Cmn

+M e
o
mn(kf)Dmn ]. (3.14)

As for the electromagnetic fields in the outer-most layer of the radome, f = 1.

These are given by

Eouter(r) =
∞

n=1

n

m=0

[M
(1)
e
o
mn(kf )Amn +N

(1)
e
o
mn(kf)Bmn ], (3.15)

Houter(r) =
kf

iωμf

∞

n=1

n

m=0

[N (1)
e
o
mn(kf)Amn

+M (1)
e
o
mn(kf)Bmn ], (3.16)

where Amn and Bmn are the transmitted coefficients of the spherical vector wave

functions to be solved. The transmitted coefficients account for the transmitted

fields in the outer-most layer after undergoing multiple reflection and refraction at

the two interfaces.

Clearly, the electromagnetic fields in the centre layer (f = 2) must be due

to transmitted fields from the inner region that have undergone refraction at the

inner interface, as well as the multiple reflected waves in the layer due to it being

sandwiched being two layers, together with the incoming fields from the external

layer. These are represented by the following

Ectrl(r) =
∞

n=1

n

m=0

[M (1)
e
o
mn(kf )amn +N

(1)
e
o
mn(kf)bmn

+M e
o
mn(kf)cmn +N e

o
mn(kf)dmn ], (3.17)
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Hctrl(r) =
kf

iωμf

∞

n=1

n

m=0

[N (1)
e
o
mn(kf )amn

+M (1)
e
o
mn(kf )bmn +N e

o
mn(kf )cmn

+M e
o
mn(kf )dmn ], (3.18)

where amn, bmn, cmn and dmn are the coefficients of the spherical vector wave func-

tions to be solved, accounting for the effects discussed earlier.

3.2.4 Boundary Condition and the Method of Moments

Now we make use of boundary conditions at the inner and outer interfaces. For TE

mode, we obtain following four equations

n1 ×
∞

n=1

n

m=0

[M (1)
e
o
mn(k1)Amn −M (1)

e
o
mn(k2)amn

−M e
o
mn(k2)cmn ] = 0, (3.19)

n2 ×
∞

n=1

n

m=0

[ −M e
o
mn(k3)Cmn +M

(1)
e
o
mn(k2)amn

+M e
o
mn(k2)cmn ] = n2 ×

∞

n=1

n

m=0

[M (1)
e
o
mn(ks)K even

odd
], (3.20)

n1 ×
∞

n=1

n

m=0

[
k1

μ1
N (1)

e
o
mn(k1)Amn −

k2

μ2
N (1)

e
o
mn(k2)amn

−k2
μ2
N e

o
mn(k2)cmn ] = 0, (3.21)
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n2 ×
∞

n=1

n

m=0

[ −k3
μ3
N e

o
mn(k3)Cmn +

k2

μ2
N (1)

e
o
mn(k2)amn

+
k2

μ2
N e

o
mn(k2)cmn ] = n2 ×

∞

n=1

n

m=0

[N
(1)
e
o
mn(ks)Leven

odd
]. (3.22)

These four equations above form a coupled set of integral equations, bounded

by the summation series of n and m as given in the expressions for the electric and

magnetic fields. Normal algrebra manipulations cannot be applied to solve these

equations. So the Method of Moments will be used to solve for these unknown

coefficients. we can express the coupled set of integral equations in matrix form as

given by

L · f = y (3.23)

where L is a square matrix with its element being the terms on the left hand side of

equations (3.19) to (3.22). y is a column vector containing the terms on the right

hand side of the equations. Clearly, f is a column vector of the unknown coefficients.

Taking into account the summation of the series of n from 1 to N , and m is

from 0 to n, it is clear that Lmn is a matrix of size 4N (N +1) by 4N(N +1). Now,

defining a set of weighting functions, wl in the range of Lmn, and taking the inner

product of equation (3.23) with each wl, we obtain

< wl,Lmn > ·fl =< wl,yl > (3.24)

for l = 1, 2, 3, ..., 4N(N + 1). The weighting functions [74, 75] chosen should be

linearly independent, and such that the evaluation of the matrix do not become too
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complex. It must also be such that the matrix do not become singular. In this

paper, the cosine function is used such that

wl = cos(lθ). (3.25)

Using above the method of moments, we can solve for the unknown coefficients

(Amn, Cmn, amn and cmn) in the vector fl by matrix inversion.

Similarly, we also can solve for the unknown coefficients (Bmn, Dmn, bmn and

dmn) of TM mode using the method of moments.

3.3 Numerical Results

In this section, some numerical examples are presented to validate the algorithm as

well as to demonstrate the application of the algorithm for analyzing the radiation

patterns of dipoles in radomes. The first example considers a dipole array enclosed

by a spherical dielectric shell of uniform thickness, for which the analytical solution

is available. The inner radius is 1.2λ0, the thickness is 0.08λ0, and the relative

permittivity is fixed at r = 2+j. A x−directed 9-element uniform dipole array with

quarter wavelength inter-element spacing is placed along the x-axis and centered in

the shell. The calculated radiation patterns for φ = 0 and θ from 0 to 90 degrees

are shown in Fig. 3.2. As a reference, the radiation pattern of the dipole array in

free-space is also plotted in the figure. It can be seen that the MOM solution agrees

well with the analytical solution.
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The another example shows the calculated results for a dipole array in the pres-

ence of an ogive radome, v = 1.449. An 8-element dipole array is placed a quarter

wavelength above a conducting plate inside the radome (the plate is positioned at

the radome base). The base diameter is 5.33λ0, the length is 6.67λ0, the thickness is

0.08λ0, and the relative permittivity is fixed at r = 2 + j. The dipole orientations

and array axis are in the same direction (perpendicular to the radome axis). The

calculated radiation patterns for φ = 0 and θ from 0 to 45 degrees are shown in Fig.

3.3. It can be seen that the MoM solution agrees well with the AIM solution [76].

Figure 3.2: Comparison of the MoM result with the exact result for the radiation

pattern of a dipole array with a spherical dielectric shell.

Figure 3.3: Comparison of the MoM result with the AIM result for the radiation

pattern of a dipole array with an ogive radome.
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Next, a electric dipole is placed a quarter wavelength above a conducting plate

inside the radome. The base radius is 10λ0, the length is 10λ0, v = 2 and the

relative permittivity is fixed at r = 2. various results of boresight errors and peak

gain attenuations of the radome, are obtained for the cases where t = 1.0λ, 0.5λ,

0.25λ, and 0.1λ, as shown in Fig. 3.4 and Fig. 3.5.

Figure 3.4: Boresight error for various thickness of radome.

Figure 3.5: Peak-gain attenuations for various thickness of radome.
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3.4 Conclusions

In this chapter, the method of moments, making use of the spherical vector wave

functions as well as the free space dyadic Green’s function, has been proposed in

the study of the electromagnetic transmission through a superspheroidal radome

having a dielectric shell. The general formulation of the Method of Moments in the

study of the far field properties of a source enclosed within a dielectric superspher-

oidal radome is derived. This general formulation is then applied in the study of

electromagnetic transmission through a 3-dimensional superspheroidal radome by

considering a point source. The numerical results of these cases were then gener-

ated and they were presented in terms of the transmitted electric far-field radiation

patterns. From the good agreements with the validity tests, it can be concluded

that the method of moments is capable of generating results which are of reasonable

accuracy.



Chapter 4

Radiation Due to an Infinitely

Transmission Line Near a Dielectric

Elliptical Waveguide

In this chapter, the dyadic Green’s function technique has been employed to char-

acterize electromagnetic radiation of an imposed current line source in the presence

of an isotropic dielectric elliptical cylinder. The current density along the infinitely

long wire has a constant amplitude but a varying phase. The elliptical cylinder is

considered to be infinite in length. In order to analyze the problem, the dyadic

Green’s functions are expressed in terms of elliptical vector wave functions and the

general equations needed to solve for the reflection and transmission coefficients are

derived from the boundary conditions. These derived equations are transformed

into, and solved using, a linear equation system. Numerically, the radiation pat-

terns of the infinitely long wire are computed, plotted, and shown for various cases

60
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where the position and distance of the line source are varied. Both lossy and lossless

dielectric media for the elliptical cylinder are considered. The results are believed

to be very useful to many practical problems, and especially to characterize cable

radiation or transmission line power leakage in tunnels.

4.1 Introduction

Electromagnetic scattering of a normal incident plane wave by an elliptical cylinder

was considered by Yeh [21] and Burke [22]. For the oblique incident case, the equa-

tions needed to solve for the scattering and transmission coefficients were formulated

by Yeh [23]. The method in those works is to express the incident, scattered and

transmitted plane waves in expansions of vector wave eigenfunctions obtained using

the separation of variables method. These eigenfunctions are expressed usually in

terms of Mathieu functions. The continuity boundary conditions were then imple-

mented in determination of the coefficients in the scattered and transmitted waves.

Numerical computations were presented in [21, 22, 24, 25] for the normal incident

plane waves. For the oblique incident plane waves, numerical computations were

presented by Kim [26]. Up to now, a generalized analysis of electromagnetic radia-

tion problems involving dielectric elliptical cylinders has not been well-documented

yet. This motivates the present work which considers electromagnetic radiation due

to an infinitely transmission line near a dielectric elliptical cylinder.

To obtain general characteristics of the electromagnetic radiation in the pres-

ence of dielectric elliptical cylinders, the dyadic Green’s function is an important
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kernel of the integral equations [47—55]. Also, the dyadic Green’s functions are quite

important kernels used in numerical techniques such as the Method of Moments

and the Boundary Element Method. The free space dyadic Green’s function has

already been available in terms of the elliptical vector wave functions. In this work,

the dyadic Green’s functions for regions 1 and 2 of the geometry are formulated

first and the scattering superposition principle is employed. Then, the scattering

coefficients of dyadic Green’s functions are formulated by employing the boundary

conditions.

Using the integral equation, we will consider electromagnetic radiation by an

infinitely long transmission line placed near an elliptical cylinder. This transmission

line is assumed to have an electric current density of constant amplitude but a

varying phase. This current density together with some mathematical properties

of the Mathieu functions are utilized to simplify the general equations satisfied by

the reflection and transmission coefficients. The linear equation system for the

coefficients are then expressed in matrix form and are computed numerically using

both matrix manipulations and iterative technique. The electric field in far-zone are

then be formulated and computed numerically. Various field patterns are plotted

for the transmission line located at different positions with respect to the elliptical

cylinder. Discussions are made and conclusion is drawn.
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4.2 Coordinate System and Mathematical Func-

tions

The elliptical coordinate system as shown in Fig. 4.1 is defined by the following

relations:

c c

y

xv= v=0

v= /2v= /2

v=3 /2

λ

λ

λ

Figure 4.1: A cross section view of the elliptical coordinate system.

x = c cosh(u) cos(v), y = c sinh(u) sin(v), z = z, (4.1)

where

0 ≤ u ≤∞, and 0 ≤ v ≤ 2π;

while c stands for the semi-focal length of the ellipse. The contour surfaces of

constant u represent confocal elliptic cylinders, while those of constant v identify

confocal hyperbolic cylinders. The problem of interest in this chapter is shown in
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Fig. 4.2 where an infinitely long transmission line source is positioned parallelly with

respect to the dielectric elliptical cylinder.

z

y

x

Li
ne

 S
ou

rc
e

Figure 4.2: Radiation by an infinitely long transmission line in the presence of an

elliptical dielectric cylinder.

Two kinds of Mathieu functions are used here, i.e., the periodic solution consist-

ing of the even or odd angular functions, Semλ(v) and Somλ(v); and the non-periodic

functions consisting of the even or odd radial functions, Remλ(u) and Romλ(u). All

the definitions of the Mathieu functions are obtained from the National Bureau of

Standards [77] and given below (for a self-contained description):

Semλ(v) =
∞

n=0

Dm
n (λ) cos(nv), m = 0, 1, 2, · · · ; (4.2a)
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Somλ(v) =
∞

n=0

Fmn (λ) sin(nv), m = 1, 2, 3, · · · ; (4.2b)

where the summation
∞
n=0 means that when m is even, n is summed over all the

even values and when m is odd, n is summed over all the odd values. The radial

Mathieu functions of the first kind are defined as

Remλ(u) =
π

2

∞

n=0

(i)m−nDm
n (λ)Jn[cλ cosh(u)], (4.3a)

Romλ(u) =
π

2
tanh(u)

∞

n=0

(i)n−mnFmn (λ)Jn[cλ cosh(u)].

(4.3b)

The radial Mathieu functions of the second kind are expressed by

Ne(2m)λ(u) = (−1)m π

2

∞

k=0

(−1)kD
2m
2k (λ)

D2m
0 (λ)

Yk(a)Jk(b), (4.4a)

Ne(2m+1)λ(u) = (−1)m π

2

∞

k=0

(−1)k

× D
2m+1
2k+1 (λ)

D2m+1
1 (λ)

[Yk+1(a)Jk(b) + Yk(a)Jk+1(b)], (4.4b)

No(2m)λ(u) = (−1)m π

2

∞

k=1

(−1)k

× F
2m
2k (λ)

F 2m2 (λ)
[Yk+1(a)Jk−1(b)− Yk−1(a)Jk+1(b)], (4.4c)

No(2m+1)λ(u) = (−1)m π

2

∞

k=0

(−1)k

× F
2m+1
2k+1 (λ)

F 2m+11 (λ)
[Yk+1(a)Jk(b)− Yk(a)Jk+1(b)], (4.4d)

where a = cλ
2
eu and b = cλ

2
e−u. Also, Jn(•) and Yn(•) denote the Bessel functions

of the first and second kinds, respectively. The radial functions of the third kind

representing outgoing waves for the given time dependence of e−iωt are defined as:

R
(1)
e
omλ
(u) =Re

omλ
(u) + iNe

omλ
(u). (4.5)
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The orthogonality properties of the angular Mathieu functions are provided as

follows:

2π

0
Semλ(v)Som λ(v)dv=0, (4.6a)

2π

0
Semλ(v)Sem λ(v)dv=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, m = m ,

Iemλ, m = m ;

(4.6b)

2π

0
Somλ(v)Som λ(v)dv=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, m = m ,

Iomλ, m = m ;

(4.6c)

where

Iemλ = π
∞

n=0

(1 + δo) [D
m
n (λ)]

2
, (4.7a)

Iomλ = π
∞

n=0

[Fmn (λ)]
2
, (4.7b)

with δo = 1 when n = 0 and δo = 0 when n = 0. Note that the orthogonality can

only be applied for the same λ. We can express the angular Mathieu functions of

different λ and λ given by McLachlan [78]:

Semλ(v) =
∞

r=0

χemrSerλ (v), (4.8a)

Somλ(v) =
∞

r=1

χomrSorλ (v), (4.8b)

∂

∂v
Semλ(v) =

∞

r=0

χemr

∞

p=1

ζerpSopλ (v), (4.8c)

∂

∂v
Somλ(v) =

∞

r=1

χomr

∞

p=0

ζr,pSepλ (v). (4.8d)

Again, the prime in the summation of means that when m is even, r or p is

summed over even numbers and when m is odd, r or p is summed over all odd
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numbers. Using Eqs. (4.2a) and (4.2b), we defined χemr, χomr, ζemp and ζomp as:

χemr =
2π
0 Semλ(v)Serλ (v)dv

2π
0 S2erλ (v)dv

=

∞

n=0
(1 + δ0)D

m
n (λ)D

r
n(λ )

∞

p=0
(1 + δ0)[Dr

p(λ )]
2
, (4.9a)

χomr =
2π
0 Somλ(v)Sorλ (v)dv

2π
0 S2orλ (v)dv

=

∞

n=1
Fmn (λ)F

r
n(λ )

∞

p=1
[F rp (λ )]

2
, (4.9b)

ζemp=

2π
0

∂
∂v
Semλ (v)Sopλ (v)dv
2π
0 S2opλ (v)dv

=

− ∞
n=1

nDm
n (λ )F

p
n (λ )

∞

n=1
[F

p
n (λ )]

2
, (4.9c)

ζomp=

2π
0

∂
∂v
Somλ (v)Sepλ (v)dv
2π
0 S2epλ (v)dv

=

∞

n=1
nFmn (λ )D

p
n(λ )

∞

n=0
(1 + δ0)[D

p
n(λ )]

2
. (4.9d)

4.3 Dyadic Green’s Functions

The unbounded dyadic Green’s function was obtained by Tai [47] for u
>

<

us in

terms of elliptical vector wave functions:

Geo(r, r ) = − 1
k21
uuδ(r − r ) + i

2π

∞

−∞
dh

m

1

λ2Ie
omn

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M (1)

e
omλ
(h)M e

omλ
(−h) +N (1)

e
omλ
(h)N e

omλ
(−h),

M e
omλ
(h)M

(1)
e
omλ
(−h) +N e

omλ
(h)N

(1)
e
omλ
(−h);

(4.10)
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where us denotes the position of the source from the origin which is at the centre

of the elliptical cylinder while λ and h satisfy the relation of k2 = ω2μ = λ2 + h2.

The expansion of a combination of even and odd means,

M e
omλ
(h)M

(1)
e
omλ
(−h) =M emλ(h)M

(1)
emλ(−h)

+Momλ(h)M
(1)
omλ(−h). (4.11)

The vector wave functions are expressed in terms of Mathieu functions below:

M e
omλ
(h) =

1

β
Re
omλ
(u)

∂Se
omλ
(v)

∂v
u− Se

omλ
(v)

∂Re
omλ
(u)

∂u
v eihz, (4.12a)

M (1)
e
omλ
(h) =

1

β
R
(1)
e
omλ
(u)

∂Se
omλ
(v)

∂v
u− Se

omλ
(v)

∂R
(1)
e
omλ
(u)

∂u
v eihz, (4.12b)

and

N e
omλ
(h) =

1

kβ
ihSe

omλ
(v)

∂Re
omλ
(u)

∂u
u+ ihRe

omλ
(u)

+
∂Se

omλ
(v)

∂v
v + βλ2Re

omλ
(u)Se

omλ
(v)z eihz, (4.13a)

N
(1)
e
omλ
(h) =

1

kβ
ihSe

omλ
(v)

∂R
(1)
e
omλ
(u)

∂u
u+ ihR

(1)
e
omλ
(u)

+
∂Se

omλ
(v)

∂v
v + βλ2R

(1)
e
omλ
(u)Se

omλ
(v)z eihz. (4.13b)

Subsequently, we consider two regions, namely, Region 1 outside of the dielectric

cylinder (with permittivity 1 and permeability μ1) and Region 2 inside of the di-

electric cylinder (with permittivity 2 and permeability μ2) . We can now assume

that the scattering dyadic Green’s functions due to an electric source in Region 1
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are defined as:

G
(11)

es (r, r ) =
i

2π

∞

−∞
dh

m

1

η2Iemη
Ae
om
M (1)

e
omη
(h)

+Bo
em
N (1)

o
emη
(h) M (1)

e
omη
(−h) + Ce

om
N (1)

e
omη
(h)

+Do
em
M (1)

o
emη
(h) N (1)

e
omη
(−h) , (4.14a)

G
(21)
es (r, r ) =

i

2π

∞

−∞
dh

m

1

ξ2Ie
omξ

ae
om
M e

omξ
(h)

+bo
em
N o

emξ
(h) M

(1)
e
omη
(−h) + ce

om
N e

omξ
(h)

+do
em
Mo

emξ
(h) N

(1)
e
omη
(−h) , (4.14b)

where Ae
om
, Bo

em
, Ce

om
, and Do

em
represent the reflection coefficients while ae

om
, bo
em
,

ce
om
, do

em
denote the transmission coefficients, η = k21 − h2 and ξ = k22 − h2 with

k1 = ω
√
μ1 1 and k2 = ω

√
μ2 2. The first superscript in G

(11)

es andG
(21)

es corresponds

to the region where the observation point is located while the second superscript

corresponds to the region where the source is located and in the present case, the

source is located in Region 1 only.

Using the principle of scattering superposition, we have

G
(11)

e (r, r ) =Geo(r, r ) +G
(11)

es (r, r ), (4.15a)

G
(21)

e (r, r ) =G
(21)

es (r, r ), (4.15b)

where the eigenvalue λ in Geo(r, r ) should take the form of η. The boundary

conditions at u = uo are satisfied by the dyadic Green’s functions as follows [47]:

u× G
(11)

e (r, r )−G(21)

e (r, r ) = 0, (4.16a)

u×
⎡⎣∇×G(11)

e (r,r )

μ1
− ∇×G

(21)
e (r, r )

μ2

⎤⎦ =0. (4.16b)
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Substituting Eqs. (4.10), (4.14a), and (4.14b) into the boundary equations, we have

for Eq. (4.16a):

u×
∞

−∞
dh

m

1

η2Ie
omη

M e
omη
(h)M (1)

e
omη
(−h)

+N e
omη
(h)N (1)

e
omη
(−h) + Ae

om
M (1)

e
omη
(h)

+Bo
em
N

(1)
o
emη
(h) M

(1)
e
omη
(−h) + Ce

om
N

(1)
e
omη
(h)

+Do
em
M

(1)
o
emη
(h) N

(1)
e
omη
(−h)

= u×
∞

−∞
dh

m

1

ξ2Ie
omξ

ae
om
M e

omξ
(h)

+bo
em
N o

emξ
(h) M

(1)
e
omη
(−h) + ce

om
N e

omξ
(h)

+do
em
M o

emξ
(h) N

(1)
e
omη
(−h) ; (4.17a)

and for Eq. (4.16b):

u×
∞

−∞
dh

m

k1

η2Ie
omη

N e
omη
(h)M (1)

e
omη
(−h)

+M e
omη
(h)N

(1)
e
omη
(−h) + Ae

om
N

(1)
e
omη
(h)

+Bo
em
M

(1)
o
emη
(h) M

(1)
e
omη
(−h) + Ce

om
M

(1)
e
omη
(h)

+Do
em
N

(1)
o
emη
(h) N

(1)
e
omη
(−h)

=
1

μr
u×

∞

−∞
dh

m

k2

ξ2Ie
omξ

ae
om
N e

omξ
(h)

+bo
em
M o

emξ
(h) M

(1)
e
omη
(−h) + ce

om
M e

omξ
(h)

+do
em
N o

emξ
(h) N (1)

e
omη
(−h) . (4.17b)

These two equations will be solved later for the scattering coefficients.
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4.4 Equations Satisfied by Scattering Coefficients

After formulating the dyadic Green’s functions and obtaining the general set of

boundary equations, we can now apply them to practical radiation problems. To

analyze EM radiatiation, an infinitely long transmission line source with an electric

current density of the following form is assumed:

J(r ) = Eo
δ(u − us)δ(v − α)

β2
e−ik1 cos γz z. (4.18)

It can be shown that the volume integral of the scalar product of the electric current

source and the vector wave functions are as follows:

ΦM =
V
M

(1)
e
omη
(−h) · J(r )dV = 0, (4.19a)

ΦN =
V
N (1)

e
omη
(−h) · J(r )dV

=
η2

k1
R
(1)
e
omη
(us)Se

omη
(α)Eo2πδ(h+ k1 cos γ). (4.19b)

Using these above relations, we can scalarly multiply both sides of (4.17a) and

(4.17b) with the current density and then simplify them into the following equations:

from (4.17a),

u×
m

R
(1)
e
omη
(us)

η2Ie
omη

N e
omη
(−k1 cos γ) + Ce

om

×N (1)
e
omη
(−k1 cos γ) +Do

em
M

(1)
o
emη
(−k1 cos γ) Se

omη
(α)

= u×
m

R
(1)
e
omη
(us)

ξ2Ie
omξ

ce
om
N e

omξ
(−k1 cos γ) + do

em

×Mo
emξ
(−k1 cos γ) Se

omη
(α) ; (4.20a)

and from (4.17b),

u×
m

R
(1)
e
omη
(us)k1

η2Ie
omη

M e
omη
(−k1 cos γ) + Ce

om
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×M (1)
e
omη
(−k1 cos γ) +Do

em
N (1)

o
emη
(−k1 cos γ) Se

omη
(α)

=
1

μr
u×

m

R
(1)
e
omη
(us)k2

ξ2Ie
omξ

ce
om
M e

omξ
(−k1 cos γ)

+do
em
N o

emξ
(−k1 cos γ) Se

omη
(α) . (4.20b)

These equations, i.e., (4.20a) and (4.20b) can be further simplified by substituting

the vector wave functions in terms of the Mathieu functions in Eqs. (4.12a) to (4.13b)

and decomposing the v- and z-components. These decomposed equations can then

be further simplified by applying the orthogonal properties of the Mathieu functions

from (4.6a) to (4.6c) and some special properties of the Mathieu functions in term

of different wavenumbers in (4.8a) to (4.8d). With this process, eight equations (4

upper subscript cases and 4 lower subscript cases) can be obtained:

Ce
oq
=

1

Se
oqη
(α)

∞

m=0

R
(1)
e
omη
(us)

R
(1)
e
oqη
(us)

Ie
oqη

Ie
omξ

ce
om

k1

k2

Re
omξ
(u)

R
(1)
e
oqη
(u)

× χe
omq
Se
omη
(α) −

Re
oqη
(u)

R
(1)
e
oqη
(u)
, (4.21a)

De
oq
=

1

μrSo
eqη
(α)

∞

m=1

R
(1)
e
omη
(us)

R
(1)
e
oqη
(us)

Io
eqη

Io
emξ

de
om

Re
omξ
(u)

R
(1)
e
oqη
(u)

×χe
omq
So
emη
(α) ; (4.21b)

and

∞

m=0

R
(1)
e
omη
(us)

Ie
omξ

i cos γce
om

k1

k2
Re
omξ
(u)Se

omη
(α)

1

η2

− 1
ξ2

∞

r=0

χe
omr

ζe
orq
=

∞

m=1

R
(1)
e
omη
(us)

Ie
omξ

do
em
Se
omη
(α)χo

emq

× 1

ξ2
∂

∂u
Ro
eqξ
(u)− 1

η2μr

Ro
emξ
(u)

R
(1)
o
eqη
(u)

∂

∂u
R
(1)
o
eqη
(u) , (4.22a)

∞

m=1

R
(1)
o
emη
(us)

μr

Io
eqη

Io
emξ

i cos γde
om
Re
omξ
(u)So

emη
(α)
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× 1

η2
− 1

ξ2

∞

r=0

χe
omr

ζe
orq
+
R
(1)
o
eqη
(us)

η2
So
eqη
(α)

× ∂

∂u
Ro
eqη
(u)−

Ro
eqη
(u)

R
(1)
o
eqη
(u)

∂

∂u
R
(1)
o
eqη
(u)

=
∞

m=1

R
(1)
o
emη
(us)

Io
eqη

Io
emξ

co
em
χo
emq
So
emη
(α)

k2

ξ2μrk1

× ∂

∂u
Ro
emξ
(u)− k1

η2k2

Ro
emξ
(u)

R
(1)
o
eqη
(u)

∂

∂u
R
(1)
o
eqη
(u) . (4.22b)

Equations (4.22a) to (4.22b) are satisfied by the transmission coefficients. They are

then solved by using the matrix operations by varying q. The reflection coefficients

are then solved by substituting the transmission coefficients into Eqs. (4.21a) to

(4.21b). From Eqs. (4.22a) to (4.22b) we can write

[Γe] · [Ceven] = [∆o] · [Dodd] , (4.23a)

[Γo] · [Codd] = [∆e] · [Deven] , (4.23b)

[Ξe] · [Deven] + [Ωeq] = [Ψo] · [Codd] , (4.23c)

[Ξo] · [Dodd] + [Ωoq] = [Ψe] · [Ceven] , (4.23d)

where

Ωe
oq
=
R
(1)
e
oqη
(us)

η2
Se
oqη
(α)

∂

∂u
Re
oqη
(u)

−
Re
oqη
(u)

R
(1)
e
oqη
(u)

∂

∂u
R
(1)
e
oqη
(u) , (4.24a)

Γe
o(q,m)

=
R
(1)
e
omη
(us)

Ie
omξ

i cos γ
k1

k2
Re
omξ
(u)Se

omη
(α)

× 1

η2
− 1

ξ2

∞

r=0

χe
omr

ζe
orq
, (4.24b)

∆e
o(q,m)

=
R
(1)
o
emη
(us)

Io
emξ

So
emη
(α)χe

omq

1

ξ2
∂

∂u
Re
oqξ
(u)
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− 1

η2μr

Re
omξ
(u)

R
(1)
e
oqη
(u)

∂

∂u
R
(1)
e
oqη
(u) , (4.24c)

Ξe
o(q,m)

=
R
(1)
o
emη
(us)

μr

Io
eqη

Io
emξ

i cos γRe
omξ
(u)So

emη
(α)

× 1

η2
− 1

ξ2

∞

r=0

χe
omr

ζe
orq
, (4.24d)

Ψe
o(q,m)

= R
(1)
e
omη
(us)

Ie
oqη

Ie
omξ

χe
omq
Se
omη
(α)

k2

ξ2μrk1

× ∂

∂u
Re
omξ
(u)− k1

η2k2

Re
omξ
(u)

R
(1)
e
oqη
(u)

∂

∂u
R
(1)
e
oqη
(u) ; (4.24e)

[Ceven] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ce0

ce1

ce2

ce3

...

ceN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, [Codd] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

co1

co2

co3

co4

...

coN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.25a)

[Deven] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

de1

de2

de3

de4

...

deN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, [Dodd] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

do1

do2

do3

do4

...

doN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.25b)

In the next section, the electric field expressions will be obtained.
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4.5 Far Field Expressions

The radiated electric field in free space due to the transmission line in the absence

of the cylinder are expressed as:

Efree(r) = iωμo
V
Geo(r, r ) · J(r )dV

= iωμo
v

i

2π

∞

−∞
dh

m

1

η2Ie
omη

×N (1)
e
omη
(h)N e

omη
(−h) · J(r )dV

= − ωμo
m

Eo

k1Ie
omη

N (1)
e
omη
(−k1 cos γ)

×Re
omη
(us)Se

omη
(α). (4.26a)

The scattered electric field can be found from:

Es(r) = iωμo
V
G
(11)

es (r, r ) · J(r )dV ,

= iωμo
v

i

2π

∞

−∞
dh

m

1

η2Ie
omη

Ce
om
N (1)

e
omη
(h)

+Do
em
M (1)

o
emη
(h) N (1)

e
omη
(−h) · J(r )dV ,

= − ωμo
m

Eo

k1η2Ie
omη

Ce
om
N (1)

e
omη
(−k1 cos γ)

+Do
em
M

(1)
o
emη
(−k1 cos γ) R(1)e

omη
(us)Se

omη
(α).

(4.26b)

The total electric field in the outer region of the cylindrical structure is

Etotal = Efree +Es. (4.27)

Explicitly, we can write the components of the free-space electric field by expressing

the vector wave functions in terms of Mathieu functions as follows:

Efreeu = ωμo
m

Eo

k1Ie
omη

i cos γ

β

∂R
(1)
e
omη
(u)

∂u
Se
omη
(v)
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×Re
omη
(us)Se

omη
(α)e−ik1 cosγz, (4.28a)

Efreev = ωμo
m

Eo

k1Ie
omη

i cos γ

β

∂Se
omη
(v)

∂v
R
(1)
e
omη
(u)

×Re
omη
(us)Se

omη
(α)e−ik1 cosγz, (4.28b)

Efreez = − ωμo
m

Eo

k1Ie
omη

η2

k1
Se
omη
(v)R

(1)
e
omη
(u)

×Re
omη
(us)Se

omη
(α)e−ik1 cosγz. (4.28c)

The components of the scattered electric field are:

Esu= −
μo

o m

Eo

Ie
omη

Ce
om

−i cos γ
β

∂R
(1)
e
omη
(u)

∂u

Se
omη
(v) +

Do
em

β

∂So
emη
(v)

∂v
Ro
emη
(u) R

(1)
e
omη
(us)

Se
omη
(α)e−ik1 cos γz, (4.29a)

Esv = −
μo

o m

Eo

Ie
omη

Ce
om

−i cos γ
β

R
(1)
e
omη
(u)

∂Se
omη
(v)

∂v

−
Do
em

β
So
emη
(v)

∂R
(1)
o
emη
(u)

∂u
R
(1)
e
omη
(us)Se

omη
(α)

× e−ik1 cosγz, (4.29b)

Esz = −
μo

o m

Eo

Ie
omη

Ce
om

η2

k1
R
(1)
e
omη
(u)Se

omη
(v)

×R(1)e
omη
(us)Se

omη
(α)e−ik1 cosγz. (4.29c)

Using the asympotic expression of the radial Mathieu functions of the third kind [79]

given below

R(1)emη(us) −→
ei(ηrs−

2m+1
4

π)

√
ηrs

, (4.30a)

R(1)omη(us) −→
ei(ηrs−

2m+1
4

π)

√
ηrs

, (4.30b)
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where rs represents the cylindrical radial coordinate, we can rewrite the components

of the free-space electric field in far zone as follows:

Efreer =
μo

o m

(−i)mηEo√
ηrIe

omη

i cos γSe
omη
(φ)Se

omη
(α)

×Re
omη
(us)e

−ik1 cosγzeiηr−
π
4 , (4.31a)

Efreez = − μo

o m

(−i)mEo√
ηrIe

omη

η2

k1
Se
omη
(φ)Re

omη
(us)

× Se
omη
(α)e−ik1 cosγzeiηr−

π
4 . (4.31b)

The components of the far scattered electric field can be written as:

Esr = −
μo

o m

(−i)mηEo
Ie
omη

Ce
om

−i cos γ√
ηr

Se
omη
(φ)

×R(1)e
omη
(us)Se

omη
(α)e−ik1 cos γzeiηr−

π
4 , (4.32a)

Esφ=
μo

o m

(−i)mηEo√
ηrIe

omη

Do
em
So
emη
(φ)R

(1)
e
omη
(us)

× Se
omη
(α)e−ik1 cos γzeiηr−

π
4 , (4.32b)

Esz = −
μo

o m

(−i)mEo√
ηrIe

omη

Ce
om

η2

k1
Se
omη
(v)R

(1)
e
omη
(us)

× Se
omη
(α)e−ik1 cos γzeiηr−

π
4 . (4.32c)

4.6 Numerical Results

The scattered and total electric fields normalized by the far field μo
η or

|Efree| are

numerically computed and plotted for several cases. The transmission line source

is placed at several distances with respect to the elliptical cylinder. We have also

considered various effects (including lossless and lossy effects) of dielectric media at

different frequencies and for various cylinder dimensions. For ease of comparison
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and convenience of drawing meanful conclusion, we assume the cross section area

of the elliptical cylinder remains unchanged while the shape of the cylindrical cross

section varies. For each of the figures, we also assumed that a/b = 2.0, 3.75, and

15.1, respectively while ka is assumed to be 0.73, 1.00, and 2.00 correspondingly.

Figures 4.3(a) and 4.3(b) show the normalized scattered and total electric fields

in the lossless case (where r = 2.0), respectively, when the transmission line source

is placed at us = 2a and α = 180 (on the major axis at a relatively large distance).

It is observed that when the elliptic shape is close to a sphere, the scattered

electric field seems to be the largest; and it becomes smallest when the elliptic shape

is very oblate. Physically, it is understandable as the physical area that blocks the

wave propagation varies with the shape of the cylinder. The larger the blocking

area, the more the energy is reflected. It is also seen that the field radiated directly

from the transmission line may have a different phase from the field reflected by

the cylinder. So, the stronger scattered field does not mean the total field is also

stronger, as seen from Figs. 4.3(a) and 4.3(b). In certain angles, the field is enhanced

because of the in-phase summation; while in some other angles, the field can be very

low because of the opposite phase and its resulted cancelation of the field. Another

observation is that the electric field radiated directly from the transmission line

dominates the total electric field.

To see the effects of the lossy materials, Figs. 4.4(a) and 4.4(b) show the nor-

malized scattered and total electric fields in the lossy case (where r = 2.0 + i2.0),

respectively. The other parameters used in Figs. 4.4(a) and 4.4(b) are the same as
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Figure 4.3: Normalized scattered and total electric fields for us = 2a, r = 2.0 and

α = 180o.
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those used in Figs. 4.3(a) and 4.3(b).

From Figs. 4.4(a) and 4.4(b), it is seen that the magnitude of field scattered

by a lossy cylinder is even larger than that by a lossless cylinder. This scattering

enhancement phenomena can be explained as more of the waves are reflected back

due to the lossy nature of the dielectric. However, it is also seen from Figs. 4.3(a)

and 4.3(b) that the magnitude of the total electric field in the presence of the lossy

cylinder is smaller than that in the presence of the lossless cylinder. This is simply

because some of the power is absorbed by the lossy material. At φ = 180o, the

backscattering effects for the lossy dielectric media become very strong.

Figures 4.5(a) and 4.5(b) show the normalised scattered and total electric field

for the lossless case (where r = 2.0, and the transmission line is placed nearer to

the cylinder at us = 1.2a and α = 180
o. Comparing these in Figs. 4.3(a) and 4.3(b)

where the source is placed at us = 2a, it is seen that magnitude of the scattered field

increases, but the pattern does not change drastically as the line source is moved

closer to the cylindrical waveguide along the ellipse’ major axis while the total

electric field also increases slightly in magnitude. In the case where k1a = 2.00, the

oscillations appearing in the total field distribution decrease when the line source is

moved closer to the cylinder.

So far, we have looked into various effects of elliptic cylinder’s shape, the line

source’s distance, the cylinder’s dielectric material property on both scattered and

total electric fields, when the tranmission line is located in the ellipse’s major axis.

Subsequently, we will invetigate those effects when the tranmission line is located
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Figure 4.4: Normalized scattered and total electric fields for us = 2a, r = 2.0+ i2.0

and α = 180o.
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Figure 4.5: Normalized scattered and total electric fields for us = 1.2a, r = 2.0 and

α = 180o.
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in the ellipse’s minor axis. Figs. 4.6(a) and 4.6(b) show the normalized scattered

and total electric fields in the lossless case where r = 2.0 and the transmission line

source is placed along the minor axis nearer to the cylinder at us = 2b and α = 270
o.

In the present case, the radial distance is shorter than that in Figs. 4.3(a) and 4.3(b)

and the area that blocks the wave propagation along the minor axis is increased. It

is seen from Figs. 4.6(a) and 4.6(b) that the distribution pattern of the scattered

wave changes dramatically. Similar to the previous cases that we considered, the

oscillation in the scattered field distribution occurs and its magnitude is small when

the ellipse is close to a sphere in shape but is very large when the ellipse is very oblate

in shape (and close to a plate). Also, it is found that backscattering is very strong

but the forward scattering is even stronger. In other words, the scattered field along

the major axis becomes quite weak. It is also found that when the transmission line

is located in the minor axis direction, the total field distribution pattern varies with

the shape of the ellipse, but its tendency does not change too much with shape.

An important observation is that in this case, neither the backscattering nor the

forward scattering is strong and a maximum occurs at an angle of about 50o. This

maximum varies with the shape of the ellipse slightly.

To see effects of the radial distance further in the present case, Figs. 4.7(a)

and 4.7(b) show the normalized scattered and total electric fields in the lossless

case where r = 2.0 and the transmission line source is placed along the minor axis

nearer to the cylinder at us = 1.2b and α = 270
o. The similar observation to that in

Figs. 4.6(a) and 4.6(b) is found. However, magnitudes of both scattered and total

electric fields in Figs. 4.7(a) and 4.7(b) are, in general, larger than those magnitudes
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Figure 4.6: Normalized scattered and total electric fields for us = 2b, r = 2.0 and

α = 270o.
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in Figs. 4.6(a) and 4.6(b). Also, the elliptical waveguide’s shapes varying from a

sphere to an oblate ellipse make more significant difference in both the scattered

and the total electric fields. For the total electric field, we notice a slight increase in

magnitude and for the case where k1a = 2.00 the field pattern changes slightly as

the line source is moved closer to the cylinder. A similar observation is also made,

that is, neither the backscattering nor the forward scattering in the present case is

strong and a maximum occurs at an angle varying from 50o to 80o depending upon

the shape.

4.7 Conclusions

In this chapter, electromagnetic radiation by an infinitely long transmission line an-

alyzed using the dyadic Green’s function technique. The transmission line carries

a current of constant amplitude but varying phase and is located in the vicinity

of an elliptic dielectric waveguide. Wave penetration into, and scattering by, the

elliptic waveguide are investigated. The dyadic Green’s functions inside and out-

side of the elliptic waveguide are formulated first in terms of the elliptical vector

wave functions which are in turn expressed as Mathieu functions. Using the bound-

ary conditions, we derived a set of general equations governing the scattering and

transmitting coefficients of the dyadic Green’s functions. From integral equations,

the scattered and total electric fields in far-zone are then derived analytically and

computed numerically. Different positions of the line source and various medium

parameters of the elliptical cylinder are considered and corresponding results are
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Figure 4.7: Normalized scattered and total electric fields for us = 1.2b, r = 2.0 and

α = 270o.
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obtained and discussed.



Chapter 5

Closed-Form Eigenfrequencies in

Prolate Spheroidal Conducting

Cavity

In this chapter, an efficient approach is proposed to analyse the interior boundary

value problem in a spheroidal cavity with perfectly conducting wall. Since the

vector wave equations are not fully separable in spheroidal coordinates, it becomes

necessary to double-check validity of the vector wave functions employed in analysis

of the vector boundary problems. A closed-form solution has been obtained for

the eigenfrequencies fns0 based on TE and TM cases. From a series of numerical

solutions for these eigenfrequencies, it is observed that the fns0 varies with the

parameter ξ among the spheroidal coordinates (η, ξ,φ) in the form of fns0(ξ) =

fns(0)[1+g
(1)/ξ2+g(2)/ξ4+g(3)/ξ6+· · ·] . By means of least squares fitting technique,

the values of the coefficients, g(1), g(2) , g(3), · · ·, are determined numerically. It

88
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provides analytical results, and fast computations, of the eigenfrequencies and the

results are valid if ξ is large (e.g., ξ ≥ 100).

5.1 Introduction

Calculation of eigenfrequencies in electromagnetic cavities is useful in various ap-

plications such as the design of resonators. However, analytical calculation of these

eigenfrequencies is severely limited by the boundary shape of these cavities. In this

chapter, the interior boundary value problem in a prolate spheroidal cavity with per-

fectly conducting wall is solved analytically. By applying boundary conditions, it is

possible to obtain an analytical expression of the base eigenfrequencies fns0 using

spheroidal wave functions [56, 57,49] regardless of whether the parameter c = kd/2

is small or large where k denotes the wave number while d stands for the interfocal

distance.

An inspection of the plot of a series of fns0 values (confirmed in [58]) indicates

that variation of fns0 with the coordinate parameter ξ is of the form fns0(ξ) =

fns(0)[1 + g
(1)/ξ2 + g(2)/ξ4 + g(3)/ξ6 + · · ·] when c is small. By fitting the fns0, ξ

evaluated onto an equation of its derived form, the first four expansion coefficients –

g(0), g(1), g(2) and g(3) are determined numerically using the least squares method.

The method used to obtain these coefficients is direct and simple, although the

assumption of axial symmetry may restrict its applications to those eigenfrequencies

fnsm , where m = 0.
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5.2 Spheroidal Coordinates and Spheroidal Har-

monics

The prolate spheroidal coordinates shown in Fig. 5.1 are related to rectangular

coordinates by the following transformation [56,57,49]

F

F

d/2

d/2

0

Figure 5.1: Prolate spheroidal coordinates (η, ξ,φ) and a conducting cavity.

x=
d

2
(1− η2) (ξ2 − 1) cosφ, (5.1a)

y=
d

2
(1− η2) (ξ2 − 1) sin φ, (5.1b)

z=
d

2
ηξ, (5.1c)

with

−1 ≤ η ≤ 1, 1 ≤ ξ <∞, 0 ≤ φ ≤ 2π. (5.1d)
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while the oblate spheroidal coordinates are related by

x=
d

2
(1− η2) (ξ2 + 1) cos φ, (5.2a)

y=
d

2
(1− η2) (ξ2 + 1) sinφ, (5.2b)

z =
d

2
ηξ, (5.2c)

with

−1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ φ ≤ 2π, (5.2d)

or

0 ≤ η ≤ 1, −∞ < ξ <∞, 0 ≤ φ ≤ 2π. (5.2e)

With these coordinates systems, the Helmholtz scalar wave equation becomes

separable. The solutions of the wave equation are expressed in the following scalar

wave functions:

ψmn = Smn(c, η)Rmn(c, ξ)
cos

sin

mφ (5.3a)

for prolate spheroidal coordinates and

ψmn = Smn(−ic, η)Rmn(−ic, iξ)
cos

sin

mφ (5.3b)

for oblate spheroidal coordinates, respectively. The four functions, Smn(c, η), Rmn(c, ξ),

Smn(−ic, η) and Rmn(−ic, iξ), satisfy the following ordinary differential equations:

d

dη
(1− η2)

d

dη
Smn(c, η) +

λmn − c2η2 − m2

1− η2 Smn(c, η) = 0, (5.4a)
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d

dξ
(ξ2 − 1) d

dξ
Rmn(c, ξ) −

λmn − c2ξ2 + m2

ξ2 − 1 Rmn(c, ξ) = 0; (5.4b)

and

d

dη
(1− η2)

d

dη
Smn(−ic, η) +

λmn + c
2η2 − m2

1− η2
Smn(−ic, η) = 0, (5.5a)

d

dξ
(ξ2 + 1)

d

dξ
Rmn(−ic, iξ) −

λmn − c2ξ2 − m2

ξ2 + 1
Rmn(−ic, iξ) = 0. (5.5b)

5.3 Theory and Formulation

5.3.1 Background Theory

The prolate spheroidal cavity under consideration is shown in Fig. 5.1. In view of

the fact that Mathematica handles only vector differential operations in the prolate

spheroidal coordinates in accordance with the notations used in the book by Moon

and Spencer [80, pp. 28−29], a temporary change of coordinates is necessary.

As noted by Moon and Spencer [80], the vector Helmholtz equation is more com-

plicated than the scalar counterpart, and its solution using the variable-separation

principle may sometimes cause new problems. This is especially true in rotational

systems like that of the spherical coordinates or spheroidal coordinates. In spheroidal
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coordinates, the solution to vector boundary value problems is further complicated

by the fact that the vector wave equation is not exactly separable in spheroidal

coordinates. Although another more general analysis has been performed using the

vector wave functions, formed by operating on the scalar spheroidal wave functions

with vector operators, the validity of the results obtained is doubtful. In view of

these limitations, several assumptions are made in the formulation of the current

boundary problem in order to provide a truer, more accurate picture.

5.3.2 Derivation

With axial symmetry assumed, it is possible to separate the field components into

Eξ, Eη, and Hφ for the TM mode and Hξ, Hη, and Eφ for the TE mode.

First, the TM mode is considered. With axial symmetry, Hφ can be assumed

simply as

Hφ = F (c, ξ)G(c, η). (5.6)

By applying the Maxwell equations

∇×E = − ∂B

∂t
, (5.7a)

∇×H =
∂D

∂t
, (5.7b)



Chapter 5: Closed-Form Eigenfrequencies in Prolate Spheroidal Conducting Cavity94

and using the formulation of ∇×X in the spheroidal coordinates where

∇×X =

η(gξgφ)
−1/2 ξ(gηgφ)

−1/2 φ(gηgξ)
−1/2

∂

∂η

∂

∂ξ

∂

∂φ

Xη(gη)
1/2 Xξ(gξ)

1/2 Xφ(gφ)
1/2

(5.8)

with X being either E or H, and

gη =
d2(ξ2 − η2)

4(1− η2)
, (5.9a)

gξ =
d2(ξ2 − η2)

4(ξ2 − 1) , (5.9b)

gφ=
d2

4
(1− η2)(ξ2 − 1), (5.9c)

the following equations can be obtained:

∂2F (c, ξ)

∂ξ2
(ξ2 − 1) + 2ξ ∂F (c, ξ)

∂ξ

− (c2 + αmn)− c2ξ2 + 1

ξ2 − 1 F (c, ξ) = 0, (5.10a)

∂2G(c, η)

∂η2
(1− η2)− 2η∂G(c, η)

∂η

− (c2 + αmn)− c2η2 + 1

1− η2
G(c, η) = 0. (5.10b)

In the case when the semimajor axis of the spheroidal surface is close to the

semiminor axis (d/2 =
√
a2 − b2 << 1), the parameter c2 (c = kd/2) used in

the summation with αmn will diminish due to the decreasing value of d
2. Thus

Eqs. (5.10a) and (5.10b) will be reduced to

∂2F (c, ξ)

∂ξ2
(ξ2 − 1) + 2ξ ∂F (c, ξ)

∂ξ
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− αmn − c2ξ2 + 1

ξ2 − 1 F (c, ξ) = 0, (5.11a)

∂2G(c, η)

∂η2
(1− η2)− 2η∂G(c, η)

∂η

− αmn − c2η2 + 1

1− η2 G(c, η) = 0. (5.11b)

Comparison of Eqs. (5.10a) and (5.10b) with Eqs. (2.8a) and (2.8b) in [49]

indicates that the solutions to the differential equations are in fact given by

F (c, ξ) = BnR1n(c, ξ), (5.12a)

G(c, η) = CnS1n(c, η) (5.12b)

(i.e., the radial and angular functions of the first kind with m = 1 where and

subsequently the superscript (1) has been omitted). In the equations above, Bn and

Cn are unknowns to be determined from the EM boundary conditions. Hence, the

magnetic field component for the TM modes can in fact be expressed as

Hφ = BnCnR1n(c, ξ)S1n(c, η), (5.13)

and the electric field is therefore expressed as

Eξ =
A

jω
√
1− η2

R1n(c, ξ)

× BnCn 1− η2
∂S1n(c, η)

∂η
+
d

2
S1n(c, η) , (5.14a)

Eη =
A

jω
BnCn

∂

∂ξ
R1n(c, ξ) ξ2 − 1 , (5.14b)

where

A =
2

d(ξ2 − 1)(1− η2)
.
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To obtain the resonance condition, Eη must be zero at the surface ξ = ξ0 of the

perfectly conducting spheroidal cavity. From Eq. (5.14b), this requires that

∂

∂ξ
R1n(c, ξ) ξ2 − 1

ξ=ξ0

= 0. (5.15)

Thus, by finding the roots of the equation above, the eigenfrequency of the TM

mode can be found.

By principle of duality, the fields components for the TE mode can be obtained

by substituting Eφ for Hφ, −Hξ for Eξ, and −Hη for Eη, respectively. Hence, the

resonance condition for the TE modes can be obtained by setting Eφ = 0 at ξ = ξ0.

From Eq. (5.13), the boundary condition requires that

R1n(c, ξ)|ξ=ξ0 = 0. (5.16)

5.4 Numerical Results for TE Modes

5.4.1 Numerical Calculation

Using the package created in [49], the zeros of the radial function, as required by

the resonance condition in Eq. (5.16) can be found in a straightforward way. This

is because coding the radial function into a package offers convenience of treating

R(1)mn(c, ξ) as if it is normal function like cosine and sine. Hence, the command “Find-

Root” in Mathematica can be employed to solve directly for the zeros of R(1)mn(c, ξ).

This is achieved by means of the Newton-Raphson method in the software program.
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In our program, the iterations will stop when a relative error less than 10−6 is

achieved. As in any Newton’s method implementation, an initial guess is required.

The spherical Bessel function zeros of various orders are assigned as the first guess.

This will provide faster convergence since in the case considered, the spheroidal

coordinates can actually be approximated roughly by the spherical coordinates. And

from Stratton [57], the resonance condition is given by jn(kr) = 0 in the spherical

coordinates. Under the circumstance considered, cξ (in spheroidal coordinates) →

kr (in spherical coordinated), thus the required values of cξ must be in the region

around zeros of the spherical Bessel functions.

It is observed from practical calculations that in the region when cξ is large,

“FindRoot” using Newton’s method is capable of evaluating the zeros accurately at

a very high speed. However, at the same time, it is also observed that the rate will

decrease drastically in the region where cξ is small. This can be explained by the

proximity of the initial guess. A series of zeros, spanning the range from ξ = 100 to

ξ = 1000, were collected at irregular intervals.

From the work done by Kokkorakis and Roumeliotis [81], it can be shown, after

some manipulations, that the series of values of cξ that satisfies R1n(c, ξ) = 0, are,

in fact, governed by an equation of the form

c(ξ)ξ = g0 1 +
g1

g0

1

ξ2

+
g2

g0

1

ξ2

2

+
g3

g0

1

ξ2

3

+ · · · , (5.17)

where g0, g1, g2, . . . are unknown coefficients to be determined.
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From Eq. (5.17), the following equation relating the eigenfrequency of the spher-

oidal cavity can be obtained:

fns0 =
g0

πdξ
√
μ

1 +
g1

g0

1

ξ2

+
g2

g0

1

ξ2

2

+
g3

g0

1

ξ2

3

+ · · · . (5.18)

Thus, by determining the coefficients, g1, g2, g3, . . ., a closed-form formula for the

eigenfrequency of a spheroidal cavity is obtained. For a given spheroidal dimension

expressed in terms of d and ξ0, the eigenfrequency of a spheroidal cavity can be

computed quickly and accurately using Eq. (5.18).

Hitherto, the coefficients have been solved only by Kokkorakis and Roumeliotis

[81]. However, only the first two expansion coefficients (g1 and g2) of the series in

(5.17) are given in his work. Moreover, except for the first coefficient g1 which can be

obtained directly, the second coefficients can only be obtained by using a relatively

complicated equation. Furthermore, the equation is obtained after a very lengthy

derivation that spanned over than 50 equations.

For the purpose of numerical comparison, a more direct and simpler approach for

obtaining the coefficients is employed in the present work. First, the series of values

of cξ that satisfy the condition R1n(c, ξ) = 0 over the range of ξ mentioned earlier

are collected and placed in a list. Then, by means of the least squares method, these

values of cξ and ξ are fitted onto a function of the form given in Eq. (5.17). In this

way, the parameters g0, g1, g2, g3, . . ., can be determined readily. In Mathematica,

this is accomplished simply by two short statement commands. To see the difference
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between the analytical and numerical approaches, we plotted in Fig. 5.2 the values

of cξ (vertical axis) satisfying (i) R
(1)
11 (c, ξ) = 0 (denoted by “Original”) and (ii)

the fitted equation with g0, g1 and g2 (denoted by “Fitted”) determined against ξ

(horizontal axis). A fairly good agreement is observed.

0 200 400 600 800 1000

4.49343

4.49345

4.49347

4.49350

4.49352

4.49355

4.49357   Original  :
  Fitted      :

Figure 5.2: The values of cξ (vertical axis) satisfying (i) R
(1)
11 (c, ξ) = 0 and (ii) the

fitted equation with g0, g1 and g2 determined against ξ (horizontal axis).

5.4.2 Results and Comparison

The values for the coefficients g0, g1, g2, and g3 for the TE modes are calculated and

tabulated in Tables 5.1 and 5.2. Kokkorakis and Roumeliotis solved for the same set

of coefficients in a lengthy and complicated manner. A complete but smaller table

has been published in their work [81].

By comparing the present tables and Kokkorakis’s tabulated results, it is ob-

served, first, that the first two coefficients produced with this method agree with

Kokkorakis’s evaluations to a minimum of five significant digits. This shows the
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Table 5.1: Expansion Coefficients g0, g1, g2, and g3 for TEns0 Modes (s = 1, 2, and

3)

n m s = 1 s = 2 s = 3

g0 1 0 4.493410 7.725252 10.904120

2 0 5.763460 9.095012 12.322940

3 0 6.987932 10.417120 13.698020

4 0 8.182562 11.704910 15.039660

g1/g0 1 0 0.400000 0.400000 0.400000

2 0 0.285714 0.285714 0.285714

3 0 0.266667 0.266667 0.266667

4 0 0.259752 0.259752 0.259785

g2/g0 1 0 0.318057 0.405000 0.540398

2 0 0.234662 0.330848 0.467022

3 0 0.109708 0.0069634 -0.015400

4 0 0.100111 0.057204 0.001593

g3/g0 1 0 0.000039 0.000049 0.000052

2 0 0.000033 0.000041 0.000065

3 0 0.000005 0.000001 0.000007

4 0 0.000006 0.000008 0.000001
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Table 5.2: Expansion Coefficients g0, g1, g2, and g3 for TEns0 Modes (s = 4, 5, and

6)

n m s = 4 s = 5 s = 6

g0 1 0 14.066190 17.220750 20.371300

2 0 15.5146000 18.689040 21.853870

3 0 16.923620 20.121810 23.304250

4 0 18.301260 21.525420 24.727570

g1/g0 1 0 0.400000 0.400000 0.400000

2 0 0.285729 0.285716 0.285729

3 0 0.266667 0.268331 0.266667

4 0 0.259741 0.259751 0.259764

g2/g0 1 0 0.720727 0.945740 1.216530

2 0 0.639935 0.848433 1.098372

3 0 -0.051312 -0.272904 -0.258691

4 0 -0.060967 -0.139916 -0.226860

g3/g0 1 0 0.000079 0.000117 0.000117

2 0 0.000090 0.000119 0.000132

3 0 -0.000007 -0.000010 -0.000025

4 0 -0.000008 -0.000006 -0.000031
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capability of the method to produce equally accurate results by means of a sim-

pler way. Second, it is almost impossible to produce the coefficients g3, g4, and g5

using Kokkorakis’s method. The amount of analytic computation required using

the method makes it impractical. On the other hand, the method presented here

can be used to produce these coefficients effortlessly and almost instantly, without

sacrificing any accuracy. Finally, in the paper of Kokkorakis and Roumeliotis [81], it

is claimed that the coefficients are valid in the case when ξ >> 1. However, there is

no definite definition of how small ξ must be for the coefficients to be valid. In this

chapter, the valid range of ξ has been determined, numerically, to be 1/ξ < 0.01 for

n = 1, 2 and 1/ξ < 0.005 for n = 3, 4. For other higher-order n, the valid range of ξ

will have to be reduced further.

5.5 Numerical Results for TM Modes

5.5.1 Numerical Calculation

Closed-form solutions of the eigenfrequencies for TM modes are obtained in a similar

fashion. The variation of cξ with ξ bears an identical form to the Eq. (5.18); that is,

the eigenfrequency for the TM modes can be expressed in a form identical to those

shown in (5.18) except that now, g0 has to be changed to satisfy the equation

jds (g0) =
d[xjs(x)]

dx x=g0

= 0, (5.19)

where js(x) represents the spherical Bessel functions.
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By comparison with the TE modes, two differences need to be considered in the

programming aspect. First, the resonance condition has to be altered. Previously,

for the TE modes, the condition stated in Eq. (5.16) is satisfied. In the TM modes,

the boundary condition requires that Eq. (5.15) be satisfied. At the surface ξ = ξ0,

the boundary condition becomes

∂

∂ξ
R1n(c, ξ) ξ2 − 1

ξ=ξ0

= 0. (5.20)

With the new boundary condition, the zeros of the left-hand term of (5.15) have

to be found instead of that of the radial function. In the program, the zeros of the

radial derivative expression in Eq. (5.15) are evaluated using the same Newton’s

method. However, the function is now different, and so is the initial guess. For the

TE modes, the various orders of zeros of the functions in Eq. (5.19) are used instead.

To see the difference between the analytical and numerical approaches, we plotted in

Fig. 5.3 the values of cξ (vertical axis) satisfying (i) ∂/(∂ξ)(R
(1)
11 (c, ξ)

√
ξ2 − 1) = 0

(denoted by “Original”) and (ii) the fitted equation with g0, g1 and g2 (denoted by

“Fitted”) determined against ξ (horizontal axis). A fairly good agreement is also

observed.

5.5.2 Results and Comparison

Employing the same technique to determine the expansion coefficients g1, g2, g3,

. . ., a series of cξ values that forces the function in Eq. (5.15) to approach zero is

collected and fitted into an equation of the form in Eq. (5.18). In this way, the various
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Figure 5.3: The values of cξ (vertical axis) satisfying (i) ∂/(∂ξ)(R
(1)
11 (c, ξ)

√
ξ2 − 1) =

0 and (ii) the fitted equation with g0, g1 and g2 determined against ξ (horizontal

axis).

expansion coefficients are determined. Tabulations of various values obtained using

this method for the TM modes are made and shown in Tables 5.3 and 5.4.

The same observation and the same conclusion as in [81] can be drawn upon

comparing of the two tables for the TM modes with those for the TE modes. Hence,

they are not repeated here.

5.6 Conclusion and Discussion

In this chapter, one of the many possible applications of the spheroidal wave func-

tion package is presented in detail, solving an interior boundary value problem. The

convenience of coding in Mathematica package is manifested by the ability of this

program to find the zeros of functions with complex argument (such as radial func-

tions) simply with one statement. This problem, by itself, is a highly interesting
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Table 5.3: Expansion Coefficients g0, g1, g2, and g3 for TMns0 Modes (s = 1, 2, and

3)

n m s = 1 s = 2 s = 3

g0 1 0 2.743707 6.116764 9.316616

2 0 3.870239 7.443087 10.713010

3 0 4.973420 8.721750 12.063590

4 0 6.061949 9.967547 13.380120

g1/g0 1 0 0.472361 0.411295 0.404717

2 0 0.317536 0.291498 0.288341

3 0 0.287607 0.270829 0.268664

4 0 0.275250 0.263014 0.261515

g2/g0 1 0 0.341865 0.365769 0.473216

2 0 0.241764 0.287367 0.398629

3 0 0.146803 0.094815 0.045170

4 0 0.127803 0.078719 0.002503

g3/g0 1 0 0.000047 0.000050 0.000064

2 0 0.000007 0.000039 0.000054

3 0 0.000005 0.000003 0.000001

4 0 0.000017 0.000011 0.000001
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Table 5.4: Expansion Coefficients g0, g1, g2, and g3 for TMns0 Modes (s = 4, 5, and

6)

n m s = 4 s = 5 s = 6

g0 1 0 12.485940 15.643870 18.796250

2 0 13.920520 17.102740 20.272000

3 0 15.313560 18.524210 21.713930

4 0 16.674150 19.915400 23.127780

g1/g0 1 0 0.402599 0.401648 0.401139

2 0 0.287621 0.286712 0.286420

3 0 0.267865 0.267472 0.267247

4 0 0.260747 0.260430 0.260245

g2/g0 1 0 0.629327 0.831403 1.078787

2 0 0.498710 0.741883 0.971928

3 0 -0.015979 -0.090035 -0.177032

4 0 -0.029849 -0.100678 -0.183054

g3/g0 1 0 0.000086 0.000113 0.000147

2 0 0.000033 0.000008 0.000076

3 0 0.000002 -0.000012 -0.000024

4 0 -0.000003 -0.000014 -0.000025
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topic. Due to the preoccupation with the more important issue of completing the

Mathematica package, the axial symmetry is assumed so as to reduce the complexity

of the problems. The more general and practical problem in which the assumption of

axial symmetry is removed is a topic worth looking into for future investigations. As

indicated in [49], the study of oblate spheroidal cavities can be achieved in a similar

way or by symbolic transfer between the oblate and prolate coordinates. However,

it should be noted that the assumed axial symmetry is kept in the z-direction and

the assumed field components are not changed in the symbolic programming. s



Chapter 6

A New Closed Form Solution to Light

Scattering by Spherical Nanoshells

Light or electromagnetic wave scattered by a single sphere or a coated sphere has

been considered as a classic Mie theory. There have been some further extensions

which were made further based on the Mie theory. Recently, a closed form analytical

model of the scattering cross section of a single nanoshell has been considered. The

present chapter is documented further, based on the work in 2006 by Alam and

Massoud, to derive another different closed form solution to the problem of light

scattered by the nanoshells using polynomials of up to order 6. Validation is made

by comparing the present closed form solution to the exact Mie scattering solution

and also to the other closed form solution by Alam andMassoud. The present work is

found to be, however, more generalized and also more accurate for the coated spheres

of either tiny/small or medium sizes than that of Alam and Massoud. Therefore,

the derived formulas can be used for accurately characterizing both surface plasmon

108
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resonances of nanoparticles (of small sizes) or nano antenna near-field properties (of

medium sizes comparable with half wavelength).

6.1 Introduction

Light scattering by spherical particles has been a classical subject which attracted

lots of interests over the past a few decades and was also formulated rigorously using

the Mie theory [82]. Calculations of derivatives of Mie scattering coefficients were

clearly shown in [83]. As the electrical parameter/size k0a (where k0 denotes the

wave number of the free space and a stands for the radius of the sphere) of a scatter-

ing object becomes much smaller than 1, the Rayleigh scattering dominates [84,85]

and it is expressed approximately by the first order expression in Mie scattering

theory.

Using the same method for matching boundary conditions, the results of elec-

tric and magnetic fields scattered by multilayered spherical structures can be easily

extended [86—90]. Scattering of electromagnetic waves from two concentric spheres

was first worked out by Aden and Kerker [86]. Scattering by multilayered spheres

was well studied [87, 88] both in the near field and the far field. Scattering of an

inhomogeneous sphere was also considered [89] where the sphere is discretized into

a multilayered sphere of different permittivities along the radial direction. In addi-

tion, a sphere placed in a unbounded medium is also considered in [90] where how

the incident plane wave is formulated and considered in the classical Mie scattering
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field theory was also addressed in detail. A number of applications was reported by

Kerker in [91].

Electromagnetic radiation problem associated with a multilayered sphere was

also considered [92, 93]. The dyadic Green’s functions used to define electric and

magnetic fields in spherically multilayered media were derived [92], which helps

to formulate the dipole or antenna radiation problem easily and straightforwardly.

Applications of the electromagnetic radiation due to a loop antenna in the presence

of a sphere was also considered [93] which could be applied to the medical radiation

treatment to human head.

Light or electromagnetic scattering by composite spheres is another interest in

the scientific and engineering communities [27—34]. Electromagnetic scattering by

a plasma anisotropic sphere was analyzed [27]. The analysis was extended to Mie

scattering by an uniaxial anisotropic sphere [28]. Furthermore, scattering by an

inhomogeneous plasma anisotropic sphere of multilayers was also formulated and

investigated [29]. It can be easily extended to light scattering by an inhomogeneous

plasma anisotropic sphere where the exact solutions could be applied to obtain the

field distributions in the multilayered spherical structures. Along the analysis line

of [27—29], the standard eigenfucntion expansion technique is utilized and the the-

ory for the anisotropic media can still follow closely to theory used for the isotropic

media. To characterize eigenvalues in the anisotropic media different from those

in the isotropic media, potential formulation and parametric studies for scattering

by rotationally symmetric anisotropic spheres were also carried out recently [30].
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In addition, Sun discussed light scattering by coated sphere immersed in absorb-

ing medium and compared FDTD method with analytic solutions [31]. Scatterers

consisting of concentric and nonconcentric multilayered spheres were also consid-

ered [32]. An improved algorithm for electromagnetic scattering of plane wave and

shaped beams by multilayered spheres was developed [33] and the geometrical-optics

approximation of forward scattering by coated particles was then discussed [34].

With new developments of nanoscience and nanotechnology, it becomes desir-

able to investigate the microcosmic world of the scattering problems. Nano-scaled

objects have thus attracted considerable attentions recently, primarily because they

have shown some interesting optical properties and are found to be important for

modern photonic applications [35—38]. Nano-scaled metallic particles exhibit in-

teresting optical characteristics and behave differently from those of normal-scaled

dimensions. Interactions of collective and individual particles of metals (such as

copper, silver and gold) were studied long time ago [39, 40]. Johnson and Christy

plotted both the real and imaginary parts of relative permittivities of copper, silver

and gold nanoparticles as a function of photon energy in a large range according to

different frequencies [41].

Recently, a closed form analytial model of the scattering cross section of a single

spherical nanoshell has been considered [59], while some fine experimental works

were conducted in [60,61]. The results given in [59] seemed to agree with the exact

solutions very well in accordance with the results in Figs. 6.2 and 6.3. Our recent

careful investigations realize that the relative errors in their results are not so small,
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especially when the electric size of the nano shell is not large. The present paper

is therefore to derive another different closed form solution for describing the light

wave scattered by the nanoshells using a polynomial of up to order 6. Validation will

be made by comparing the present closed form solution to the exact Mie scattering

solution and also to the other closed form solution by Alam and Massoud.

6.2 Basic Formulas

The geometry of the problem defined in this paper is shown in Fig. 6.1, where we

will follow closely with the definitions in [59]. So the out-most to inner-most regions

1 1

2 2

3 3

Figure 6.1: Geometry of light scattering by a spherical nanoshell in hosting medium.

are denoted as Regions i = 3, 2 and 1 whose permittivities and permeabilities are
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assumed to i and μi = μ0 (as nonmagnetic materials), respectively. The incident

plane wave is propagating along +z direction. The inner radius of the coated sphere

is a and outer radius is b; in other words, the spherical geometrical thickness of the

nanoshell is c = b − a. For convenience of the formulation, we take x = k0a =

ω
√

0μ0a = aω/c and y = k0b = ω
√

0μ0b = bω/c to be the electrical parameters

for the inner and outer radii of the spherical nanoshell (where c denotes the speed

of light in free space)1. In addition, the refractive indices of the spherical nanocore

and the nanoshell are denoted by m1 = 1/ 0 and m2 = 2/ 0, respectively.

The refractive index of the background hosting medium is m3 = 3/ 0 and it is

assumed herein that it is not necessarily unity, but it can be simplified as m3 = 1

for free space. Correspondingly, the wave numbers in the regions are denoted by

kj = ω
√

jμ0 where j = 1, 2 and 3 for the inner, the intermediate, and the outer

regions of the problem geometry.

Electric field of an electromagnetic plane wave with an amplitude of E0 in un-

bounded hosting medium can be written in terms of the spherical vector wave func-

tionsM (TE-wave) and N (TM-wave) as follows:

Ei =
∞

n=1

in
2n+ 1

n(n + 1)
M (1)

o1n − iN (1)
e1n , (6.1)

where an incident wave amplitude E0 is assumed to be unity for simplification of

the formulation. This assumption will not affect the further discussion and results.

When it is scattered by the nanoshell, the electric wave outside of the nanoshell in

the hosting medium is written in terms of the outgoing TE and TM waves in the

1The definition made in Ref. [59] is not precisely correct unless the hosting or background

medium is free space. Details of the proof will be given later.
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following similar form

Escat,3 =
∞

n=1

in
2n+ 1

n(n+ 1)
anM

(3)
o1n(k3r)− ibnN (3)

e1n(k3r) (6.2a)

while the field inside the nanoshell is expressed by

Escat,2 =
∞

n=1

in
2n+ 1

n(n+ 1)
anM

(3)
o1n(k2r) + cnM

(1)
o1n(k2r)

−i bnN (3)
e1n + dnN

(1)
e1n ; (6.2b)

and the electric field inside the nanospherical core-region is given due to the TE and

TM standing waves by

Escat,1 =
∞

n=1

in
2n+ 1

n(n + 1)
cnM

(1)
o1n(k1r)− idnN (1)

e1n(k1r) . (6.2c)

In the aforegiven field expressions where the eigenvalue m = 1, the spherical vector

wave functionsM (i)
emn andM

(i)
omn for even and odd TE modes and N

(i)
emn and N

(i)
omn

for even and odd TM modes are defined for i = 1, 2, 3 and 4 as

M (i)
emn(kr) = − z(i)n (ρ)

mPmn (cos θ)

sin θ
sinmφθ

− z(i)n (ρ)
dPmn (cos θ)

dθ
cosmφφ, (6.3a)

M (i)
omn(kr) = z

(i)
n (ρ)

mPmn (cos θ)

sin θ
cosmφθ

− z(i)n (ρ)
dPmn (cos θ)

dθ
sinmφφ, (6.3b)

N (i)
emn(kr) =

n(n+ 1)z(i)n (ρ)

ρ
Pmn (cos θ) cosmφr

+
d

ρdρ
ρz(i)n (ρ)

dPmn (cos θ)

dθ
cosmφθ

−mP
m
n (cos θ)

sin θ
sinmφφ , (6.3c)

N (i)
omn(kr) =

n(n+ 1)z(i)n (ρ)

ρ
Pmn (cos θ) sinmφr

+
d

ρdρ
ρz(i)n (ρ)

dPmn (cos θ)

dθ
sinmφθ
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+
mPmn (cos θ)

sin θ
cosmφφ . (6.3d)

In the above definitions, the superscripts (1), (2), (3) and (4) of z(i)n (ρ) (where

ρ = kr denotes the argument of the spherical Bessel functions) refer to the first kind

of spherical Bessel function, the second kind of spherical Bessel function, the first

kind of spherical Hankel function, and the second kind of spherical Hankel function,

respectively.

Apparently, there exist 8 sets of unknown parameters, (an, bn, cn and dn) and

also (an, bn, cn and dn), to be determined. From continuity relations of electric field

and magnetic field tangential components, we will have 4 boundary conditions on the

inner spherical interface and the other 4 boundary conditions on the outer spherical

interface. So, all the unknown coefficients can be determined uniquely. The solution

procedure is rather standard, although lengthy. So, we will not provide the details

of all the solutions, instead we will provide the obtained scattering coefficients in

the hosting medium only, an and bn. They are given by

an =
anumn

adenn
, and bn =

bnumn

adenn
, (6.4)

where the numerators Na,b
n and denominators Da,b

n of the two scattering coefficients

are explicitly given below:

anumn =m3ψn(m3y) [ψn(m2y)− Anχn(m2y)]

−m2ψn(m3y) [ψn(m2y)− Anχn(m2y)] , (6.5a)

adenn =m3ξn(m3y) [ψn(m2y)− Anχn(m2y)]

−m2ξn(m3y) [ψn(m2y)− Anχn(m2y)] , (6.5b)
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bnumn =m2ψn(m3y) [ψn(m2y)− Bnχn(m2y)]

−m3ψn(m3y) [ψn(m2y)− Bnχn(m2y)] , (6.5c)

adenn =m2ξn(m3y) [ψn(m2y)− Bnχn(m2y)]

−m3ξn(m3y) [ψn(m2y)− Bnχn(m2y)] , (6.5d)

with the intermediate parameters An and Bn defined
2 as

An=
m2ψn(m2x)ψn(m1x)−m1ψn(m2x)ψn(m1x)

m2χn(m2x)ψn(m1x)−m1χn(m2x)ψn(m1x)
, (6.6a)

Bn=
m2ψn(m1x)ψn(m2x)−m1ψn(m1x)ψn(m2x)

m2χn(m2x)ψn(m1x)−m1χn(m2x)ψn(m1x)
; (6.6b)

and the Reccati-Bessel functions were defined3 as

ψn(ρ) = ρjn(ρ), (6.7a)

χn(ρ) = ρyn(ρ), (6.7b)

ξn(ρ) = ρh(1)n (ρ) = ρ [jn(ρ) + iyn(ρ)] , (6.7c)

with the prime to denote their first order derivative of the Reccati-Bessel functions.

For the nonmagnetic medium, we have the free space permeability for all the regions,

i.e., μ1 = μ2 = μ3 = μ0. Again, 1 and 2 denote the permittivities of the spherical

nanocore and the nanoshell while 3 stands for the permittivity in the outer region

of the structure. The formulas given in (6.5a)-(6.5d) are slightly different from those

forms in [59], because we herein enclose m3 in the formulation without loss of any

generality while the formulas in (1) and (2) of [59] is only applicable to the case

where the outer region is free space; but in the later applications in [59], the authors

assumed 3 = 1.78 0 which does not make sense.

2In Eqs. (12) and (13) of Ref. [59], subscripts of some ψn(ρ) and its derivative were missing.

3In Ref. [59], χn(ρ) was not generally defined.
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6.3 New Closed Form Solution to Intermediate

Coefficients An and Bn

As the scattering coefficients an and bn are of our specific interests here, although

they look very complicated and involved with the spherical Bessel functions of var-

ious kinds. To do so, we also follow the similar procedure of approximating the

scattering coefficients an and bn by taking the series expansions of the following first

and second kinds of spherical Bessel functions as:

jn(z) =
zn

(2n+ 1)!!
×

1− z2/2

1!(2n+ 3)
+

(z2/2)
2

2!(2n+ 3)(2n + 5)
+ · · · , (6.8a)

yn(z) =
(2n− 1)!!
zn+1

×

1− z2/2

1!(1− 2n) +
(z2/2)

2

2!(1− 2n)(3− 2n) + · · · , (6.8b)

where and subsequently, n!! denotes the factorial by a step of 2 (for instance, 7!! =

7 · 5 · 3 · 1 while 8!! = 8 · 6 · 4 · 2). It should be noted that the approximations

taken by Alam and Massoud seemed to be incorrect. The numerical tests show that

when x = 0.6 and n = {1, 2, 3}, we will have the following exact values of jn(z) =

{0.192892, 0.023389, 0.00201634}. If we use the approximation in [59], the following

values are obtained: jn(z) = {0.149956, 0.0196055, 0.00175972}; but if we use the

approximations in (6.8a) and (6.8b) of this paper where only the explicit first 3 terms

are included, we will obtain fairly accurate results of jn(z) = {0.192893, 0.023389,

0.00201634}. Similarly, for the same given conditions (x = 0.6 and n = {1, 2, 3}),

we have the exact values of yn(z) = {3.23367, 14.7928, 120.04}, the approximate
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values of yn(z) = {3.95662, 24.7842, 155.333} by Ref. [59], and the approximate

values of yn(z) = {3.23278, 14.7972, 120.032} by this paper.

6.3.1 Approximate Expression of Coefficient An

With the confidence built, we are now moving toward deriving the closed form

solution for the coefficient An as follows:

An ≈ A
num
n

Adenn
, (6.9)

where we have the closed form solutions to the numerator Anumn and denominator

Adenn :

Anumn = − (2n− 5)(2n− 3)(2n − 1)πx2n+1m2n+1
2 m2

2

−m2
1 x4 4n3 + 24n2 + 41n− 2x2m2

2 + 21 m4
1

− 2x2 x4m4
2 − 4n3 + 28n2 + 67n+ 63 x2m2

2

+2 8n4 + 68n3 + 202n2 + 247n+ 105 m2
1

+ 4n3 + 24n2 + 41n + 21 x4m4
2 − 4(2n+ 5)

×x2m2
2 + 8 4n2 + 16n+ 15 , (6.10a)

Adenn =4n 4n2 + 8n + 3 Γ2 n+
1

2
4n2 + 24n

+35)x4 4n3 − 19n+ (1− 2n)x2m2
1 − 15 m6

2

+ 4n2 + 4n − 35 x2 2(2n+ 1)x4m4
1 − 4n3

+32n2 + 43n − 30 x2m2
1 + 4 8n4 + 28n3 + 2n2

−63n− 45)]m4
2 + 4n2 − 16n+ 15 [−(2n+ 3)
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× x6m6
1 + −4n3 + 79n+ 105 x4m4

1 − 12 8n3

+52n2 + 94n + 35 x2m2
1 + 8 16n5 + 128n4

+336n3 + 292n2 − 37n− 105 m2
2 + n 16n4

−16n3 − 160n2 + 292n− 105 m2
1 x

4m4
1 − 4(2n

+5)x2m2
1 + 8 4n2 + 16n+ 15 . (6.10b)

It is noted that a factor of

FAn =
mn
1 (32n

5+48n4−400n3−216n2+1250n−525)−1
128× 22n ×mn+1

2 × Γ2 n + 5
2

(6.11)

has been involved in both the numerator and the denominator of coefficient An in

(6.6a) and has been canceled in (6.9).

It is seen that the solution derived here is general enough for all the different

values of n and x values, more complete in form than that given in [59]. Also, it is

seen that the closed form solution is very simple, given in terms of only some simple

additions of algebraic functions. Also, it is to be shown later that they are quite

accurate; and it is valid for complex argument x as well. For those who use Fortran

or C languages to write their own codes for computations, this has made the code

implementation extremely easier and faster.

Specifically, need to generate the solution for the first a few orders. Firstly, we

have the case of n = 1, and easily we have the following simplified solution:

Anum1 =27πx3m3
2 m

2
1 −m2

2 2800− 280 m2
1 +m

2
2 x

2

+ 10m4
1 + 36m

2
2m

2
1 + 10m

4
2 x

4 , (6.12a)
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Aden1 =
15π

4
30240 m2

1 + 2m
2
2 − 3024 m2

1 −m2
2 m2

1

+10m2
2 x

2 + 4 27m6
1 + 540m

2
2m

4
1 + 1323m

4
2m

2
1

−1890m6
2 x

4 + 4 −15m2
2m

6
1 − 162m4

2m
4
1

−63m6
2m

2
1 x

6 ; (6.12b)

and when n = 2:

Anum2 = − 33πx5m5
2 m

2
1 −m2

2 10584− 756 m2
1 +m

2
2

× x2 + 21m4
1 + 62m

2
2m

2
1 + 21m

4
2 x

4 , (6.13a)

Aden2 =
315π

16
−266112 2m2

1 + 3m
2
2 + 6336 m2

1 −m2
2

6m2
1 + 21m

2
2 x

2 + 16 −66m6
1 − 231m2

2m
4
1

+2376m4
2m

2
1 − 2079m6

2 x
4 + 16 7m2

2m
6
1

−110m4
2m

4
1 − 297m6

2m
2
1 x

6 . (6.13b)

6.3.2 Approximate Expression of Coefficient Bn

Similarly, the closed form solution for the coefficient Bn is given by

Bn ≈ B
num
n

Bdenn

, (6.14)

where we have the closed form solutions to the numerator Bnumn and denominator

Bdenn :

Bnumn = 128n7 + 448n6 − 1120n5 − 3920n4 + 2072n3

+7252n2 − 450n− 1575 πx2n+3m2n+1
2 m2

1
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−m2
2 (2n+ 3)x4m4

1 + 2x
2 (2n+ 5)x2m2

2

−4 4n2 + 20n+ 21 m2
1 + (2n+ 3) x

4m4
2

−8(2n+ 7)x2m2
2 + 16 4n2 + 24n + 35 , (6.15a)

Bdenn =4n(2n + 1)2(2n+ 3)2 4n2 + 24n+ 35

× Γ2 n+
1

2
− 8n3 − 36n2 + 46n− 15

× x6m6
1 + 8n3 − 4n2 − 82n+ 105 x4 8n2

+16n+ x2m2
2 − 10 m4

1 − 8n3 + 28n2 − 50n

−175) x2 −x4m4
2 + 4 4n2 − 4n− 3 x2m2

2

+8 8n3 − 4n2 − 18n+ 9 m2
1 + 8n3 + 60n2

+142n+ 105) −x6m6
2 + 2 4n2 − 16n+ 15

× x4m4
2 + 8 8n3 − 36n2 + 46n− 15 x2m2

2

+16 16n4 − 64n3 + 56n2 + 16n− 15 . (6.15b)

Similarly, it is also noted that a factor of

FBn =
2−2(n+6)mn+1

1 m−n2
(2n−5)(2n−3)(2n−1)(2n+1)(2n+3)Γ2 n+ 9

2

(6.16)

has been involved in both the numerator and the denominator of coefficient Bn in

(6.6b) and has been canceled in (6.14).

To make it applicable and specific in solution, we consider the solution to the

coefficient B1 below. Again, we split its expression into the numerator and denom-

inator and they are respectively given as follows:

Bnum1 = − x5m3
2 m

2
1 −m2

2 5x2m4
1 + 2 7x2m2

2 − 180
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×m2
1 + 5m

2
2 x

2m2
2 − 72 x2 + 5040 , (6.17a)

Bden1 =15 x6m6
1 − 9x4 x2m2

2 + 14 m4
1 + 63x

2 x4m4
2

+12x2m2
2 + 40 m2

1 + 105 x6m6
2 − 6x4m4

2

−24x2m2
2 − 144 . (6.17b)

The above fractional form suggests that the solution to the coefficient B1 is not as

simple as the expression of the linear function of x5 given in [59]. To gain more insight

into the accuracy of the expressions, we will discuss on the details of comparisons

among the three sets of data, the exact solution from Mie theory, the closed form

solution in [59], and the new closed form solution in this paper.

6.3.3 Validations and Accuracy

To gain insight into the accuracy of the present closed form solution to the co-

efficients An and Bn, we have considered relative errors of the numerical results

obtained using the present closed form solution as compared with the exact results

obtained directly from the Mie scattering theory. In addition, we have also con-

sidered the relative errors of the previously obtained closed form solution results

in [59]. To gain the consistent results, we also assume the same parameters as used

in [59], where 1 = (5.44/1.78) 0, 3 = 0, and 2 = ( 1 + 3)/2. A comparison has

been shown in Fig. 6.2(a) for the coefficient A1, in Fig. 6.2(b) for the coefficient

A2, and in Fig. 6.2(c) for the coefficient B1. It is clearly shown that the present

results of closed form solution to these coefficients are far more accurate than those

in [59] where the relative error of A1 is always larger than 25% and can reach 30%;
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the relative error of A2 increase up to 25% at a speed faster than cubic power; and

the relative error of B1 also increases from 17% to 35%. All of these accuracies are

neither scientifically nor engineeringly acceptable.

6.4 New Closed Form Solutions to Scattering Co-

efficients an and bn

Now, we turn to the approximations finally to the scattering coefficients an and bn.

Substituting (6.8a) and (6.8b) into (6.7a) and (6.7b) and further into (6.7c), we

could approximate (6.5a) and (6.5b) as follows.

6.4.1 Approximate Expression of Coefficient an

Generalized Case for Any n and Arbitrary Material Properties

Without loss of any generality, we would keep all the intermediates inside. From

the Taylor series expansions and keep the terms up to the order 6, we have

an = y
2n+1αn,n

αn,d
= y2n+1

6

=0

α( )n,ny

6

=0

α
( )
n,dy

(6.18)

where the coefficients for the numerator are

α(0)n,n= − Anm−n−12 mn
3

(n + 1)m2
2 + nm

2
3

2n+ 1
, (6.19a)
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Figure 6.2: The relative errors of coefficients A1, A2, and B1 obtained in this paper

and also in Ref. [59], all compared with the exact solution obtained using the Mie

scattering theory. The bullet-dotted curve “− − •− −” denotes the results in [59]

while the solid curve “––” stands for the result in this chapter.
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α(1)n,n= 0, (6.19b)

α(2)n,n=Anm
−n−1
2 mn

3 m2
3 −m2

2

× (2n
2 + 5n+ 3)m2

2 + n(2n− 1)m2
3

2 (8n3 + 12n2 − 2n− 3) , (6.19c)

α(3)n,n= −
4−n(n+ 1)πmn

2m
n
3 (m

2
2 −m2

3)

(2n+ 1)2Γ2 n + 1
2

y2(n−1), (6.19d)

α(4)n,n=Anm
−n−1
2 mn

3 m2
3 −m2

2 [(n+ 1)(2n+ 3)(2n

+ 5)m4
2 − 3[4n(n+ 1)− 15]m2

3m
2
2 − n[4n(n

− 2) + 3] m4
3 / 8(4n

2 − 9)(4n2 − 1)(2n + 5) ,

(6.19e)

α(5)n,n=
2−2n−1(n+ 1)πmn

2m
n
3 (m

4
2 −m4

3)

(2n + 1)2(2n+ 3)Γ2 n+ 1
2

y2(n−1), (6.19f)

α(6)n,n=Anm
1−n
2 mn+2

3 (2n − 1)(2n+ 5)(2n+ 7)m4
2

− 2(2n− 5)(2n+ 1)(2n+ 7)m2
3m

2
2 + (2n− 5)

(2n− 3)(2n+ 3)m4
3 / 8(4n

2 − 25)(4n2 − 9)

× (4n2 − 1)(2n+ 7) ; (6.19g)

while the coefficients for the denominator are

α
(0)
n,d = −

i4nn

π
Γ2 n+

1

2
Anm

−n−1
2 m−n−13

× m2
2 −m2

3 , (6.20a)

α
(1)
n,d =0, (6.20b)

α
(2)
n,d = −

i22n−3n
π

(2n− 1)Γ2 n− 1
2
An

×m−n−12 m−n−13 m4
2 −m4

3 , (6.20c)

α
(3)
n,d =

y2(n−1)m−n−12 m−n−13

2n+ 1
−i nm2

2 + (n+ 1)m
2
3

× m2n+1
2 − Anm2n+1

3 (n+ 1)m2
2 + nm

2
3 ,
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(6.20d)

α
(4)
n,d = −

i22n−3

(1− 2n)2(2n− 3)πΓ
2 n+

1

2
Anm

−n−1
2

×m−n−13 m2
2 −m2

3 n(2n− 1)m4
2 + 2[n(2n

−3) + 4]m2
3m

2
2 + n(2n− 1)m4

3 , (6.20e)

α
(5)
n,d =

y2(n−1)m−n−12 m−n−13

2(4n2 − 1)(2n + 3) m2
2 −m2

3 [i(n+ 1)(2n

+ 3)m2
3m

2n+1
2 + in(2n− 1)m2n+3

2 − (n+ 1)

× (2n+ 3)Anm2n+1
3 m2

2 − n(2n− 1)Anm2n+3
3 ,

(6.20f)

α
(6)
n,d = −

i4n−4

π
[4(n− 4)n+ 15]Γ2 n− 5

2
Anm

1−n
2

× m4
2 −m4

3 m
1−n
3 − 4

−n−1(n+ 1)πy4(n−1)mn
2

Γ2 n+ 3
2

× m2
2 −m2

3 m
n
3 . (6.20g)

These coefficients look complicated, because we considered the general cases of the

materials and also the expansion polynomial series up to power 6. They could be

significantly simplified, as to be demonstrated later. It should be noted that the

expressions of numerator and denominator in (6.18) do not simply follow the power

series exactly because the order number n involves also in the power series. For

instance, y2(n−1) and y4(n−1) are contained in the intermediate series coefficients, but

they will disappear when the first order n = 1 is considered. When the second or

higher orders are considered, then we have to see if they should be excluded because

we basically keep the series expansion up to the order 6.

To see the general variation of the coefficient an, we look into the first and

dominant coefficient a1 and plotted their real (in Fig. 6.3(a)) and imaginary (in
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Fig. 6.3(b)) parts in Fig. 6.3, of which the real part is directly used to calculate the

extinction cross sections. It is shown that they are changing monotonically within

the range of the electrical spherical core radius x ∈ (0.01, 1.0) and the electrical

spherical nanoshell radius y = x + t ∈ (0.02, 1.4) where the spherical nanoshell

thickness t ∈ (0.01, 0.4). As the scattering cross section involves the magnitude,

therefore we also consider the magnitude (in Fig. 6.3(c)) and phase (in degrees in

Fig. 6.3(d)) variations of the coefficient a1. It is clearly seen that within the ranges of

the physical parameters, these variations are also monotonic. These provide certain

sense for the accuracy versus the expansion order of the coefficients, and thus confirm

the feasibility of the present work.

Special Case I (n = 1)

To simplify the above expression of an, we let n = 1 but still leave m3 to be general.

Therefore, the following significantly simplified terms are obtained:

a1 = y
3α1,n

α1,d
, (6.21)

where

α1,n = − A1m3

3
2m2

2 +m
2
3 +

A1m3

30
−10m4

2

+ 9m2
3m

2
2 +m

4
3 y

2 − 2m
3
2m3

9
m2
2 −m2

3 y
3

− A1m3

840
−70m6

2 + 49m
2
3m

4
2 + 20m

4
3m

2
2

+ m6
3 y

4 − m3

45
m3
2m

4
3 −m7

2 y
5

+
A1m

2
2m

3
3

7560
21m4

2 + 54m
2
3m

2
2 + 5m

4
3 y

6, (6.22a)
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Figure 6.3: The exact coefficient a1 versus the spherical core radius x ∈ (0.01, 1.0)

and the spherical nanoshell thickness t ∈ (0.01, 0.4). The other electrical parameters

are 1 = (5.44/1.78) 0, 3 = 0, and 2 = ( 1 + 3)/2 while μ1 = μ2 = μ3 = μ0.
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2 +
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2 y
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− 1
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im5
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+ 2im3
2 + 2A1m3m

2
2 +A1m
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3 y3

+
iA1 (m

6
2 + 5m

2
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4
2 − 5m4

3m
2
2 −m6

3)

8m2
3

y4

+
i (m2

2 −m2
3)

30m2
3

m5
2 + 10m

2
3m

3
2 + 10iA1m

3
3m

2
2

+iA1m
5
3 y

5 +
1

36
m2
2 −8m3m

3
2 + 8m

3
3m2

−3iA1 m4
2 −m4

3 y6. (6.22b)

In (6.21) together with (6.22a) and (6.22b), the intermediate parameter A1 was

defined in (6.9) (where n = 1) together with their numerator and denominator

defined in (6.12a) and (6.12b), respectively. Please take note that the above specific

coefficients in (6.21) given in (6.22a) and (6.22b) can be directly simplified from the

expression in 6.18 except for the cancelation of a factor m2
2 in both denominators

of α1,n and α1,d. The coefficient a1 shown in (6.21) together with its intermediate

coefficients in (6.22a) and (6.22b) can be simplified by letting m3 = 1, the same as

what was done in [59]. Doing so, we could further simplify the expressions.

After the approximate coefficient a1 is obtained, we may wish to validate it

and confirm its accuracy range versus the electrical inner radius x ∈ (0.01, 1.0) and

electrical outer radius y of the spherical nanoshell. For ease of understanding and

calculation, we consider the nanoshell thickness t ∈ (0.01, 0.4) to represent the outer

radius y = x + t ∈ (0.02, 1.4), as shown in Fig. 6.4. When we consider the relative

error limit of 0.68 for the real part of coefficient Re[a1], it is seen in Fig. 6.4(a)

that the maximum relative error of the present work is below 0.68 while it is much

smaller for scientific and engineering applications when the nanocore radius is not
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electrically large or when the nanoshell is not electrically thick. At the meantime,

we limit the same relative error of 0.68 for the results in [59] and it is seen from

Fig. 6.4(b) that the inaccurate area (as cut on the top of the 3D figure) is very large.

There is only a small region where the relative error of Re[a1] in [59] is smaller than

0.68. As the scattering cross section is proportional to the magnitude square of the

coefficient, |a1|2, therefore, we also look into the relative errors of |a1| in the present

paper and also the work in [59], but limit both of them to the allowable errors of

0.15 for engineering applications. It is found from Fig. 6.4(c) and Fig. 6.4(d) that

the approximate results produced in this paper are fairly accurate. For the results

produced in this paper, there is only a very small inaccurate area with relative error

slightly larger than 0.15, as shown in Fig. 6.4(c). For the results published in [59],

however, we see in Fig. 6.4(c) that most of the results have relative errors larger

than 0.15.

Special Case II (n = 2)

Similarly, we could also simplify the above general expression of an by letting n = 2

to obtain the coefficient a2. As a result, the following simplified formula is obtained:

a2 = y
5α2,n

α2,d
, (6.23)

where

α2,n= − 1
5
A2m

2
3 3m

2
2 + 2m

2
3 +

1

70
A2m

2
3 −7m4

2

+5m2
3m

2
2 + 2m

4
3 y

2 − A2m
2
3

2520
63m6

2 − 72m2
3m

4
2
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Figure 6.4: The relative errors of approximate coefficient a1 formulas derived here

in this chapter and in the existing work [59] versus the spherical core radius x ∈

(0.01, 1.0) and the spherical nanoshell thickness t ∈ (0.01, 0.4).
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α2,d=
18iA2

m3
3

m2
3 −m2

2 +
3iA2

m3
3

m4
3 −m4

2 y
2 +

3iA2

4m3
3

× m2
3 −m2

2 m2
2 +m

2
3

2
y4 − 1

5m3
3

2im7
2

+3im2
3m

5
2 + 3A2m

5
3m

2
2 + 2A2m

7
3 y

5 +
iA2m

2
2

4m3

× m4
2 −m4

3 y
6. (6.24b)

In (6.23) together with (6.24a) and (6.24b), the intermediate parameter A2 was

defined in (6.9) (where n = 2) together with their numerator and denominator

defined in (6.13a) and (6.13b), respectively.

Using this result, we also calculated the absolute values of the coefficient |a2| and

made a comparison on accuracies of the present results and the results published

in [59], as shown in Fig. 6.5. It is seen in Fig. 6.5(a) that the coefficient |a2| is

also monotonically changing and its magnitude is much smaller than that of |a1|

by about 10 times especially when the sphere core radius is electrically small or the

nanoshell thickness is electrically very thin. Shown also in Fig. 6.5(b) and Fig. 6.5(c)

are the comparisons of the relative errors of the approximated a2 values calculated

using the approximate formulas in this paper and also in [59]. It is apparent that

when the relative error of 0.15 is kept, the area using the present formulas is much

accurate. Because the contribution of |a2| to the overall values of the extinction and

scattering cross sections is only about 10%, so this makes the overall of the present

error is even smaller.
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Figure 6.5: The variation of |a2| and the relative errors of the formulas derived in this

chapter and in the existing work [59] versus the spherical core radius x ∈ (0.01, 1.0)

and the spherical nanoshell thickness t ∈ (0.01, 0.4).
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6.4.2 Approximate Expression of Coefficient bn

Coefficient bn

Similarly, the coefficient bn can be generally derived. However, it is realized that

in many papers on nanoparticle scattering formulations, the coefficient bn is not

calculated at all. Nevertheless, the procedure for deriving the coefficients an and bn

in (6.4) is the same, also the formula structures for an and bn are the same. Except

for the change of the ratio m3/m2 in an into m2/m3 in bn and the replacement of An

in an by Bn in bn symbolically, all the other formulations are identical. Therefore,

we will not repeat this procedure, but simply provide the useful first order coefficient

b1 for the comparison purpose.

By letting n = 1 in (6.4), we have the first term of the coefficient bn simplified

as

b1 = y
β1,n

β1,d
, (6.25)

where

β1,n = − B1m
2
3

m2

+
B1m

2
3

6m2

m2
3 −m2

2 y
2 − B1m

2
3

120m2

× 5m4
2 − 6m2

3m
2
2 +m

4
3 y

4 +
1

45
m2
2m

2
3 m

2
3

−m2
2 y

5 +
B1m

2
3

15120m2
105m6

2 + 63m
2
3m

4
2

−9m4
3m

2
2 +m

6
3 y

6, (6.26a)

β1,d = − iB1 (m
2
2 −m2

3)

m2m3

− im
3
2 +B1m

3
3

m2m3

y +
iB1

2m2m3

× m4
2 −m4

3 y
2+
i (m2

2 −m2
3)

6m2m3

m3
2 + iB1m

3
3 y

3
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− iB1

48m2m3

m2
2 −m2

3

3
y4 +

(m2
2 −m2

3)

120m2m3

−im5
2

+5im2
3m

3
2 − 5B1m3

3m
2
2 +B1m

5
3 y

5 +
1

45
m2
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4
3

−m4
2m

2
3 y

6. (6.26b)

In (6.25) together with (6.26a) and (6.26b), the parameter B1 was defined in (6.14)

(n = 1) together with their numerator and denominator defined in (6.17a) and

(6.17b), respectively.

To check the accuracy, we have also calculated the coefficient b1. Shown in

Fig. 6.6 are the relative errors of b1 values computed using the present solution in

this paper and the solution in [59]. The parameters used in the calculations are the

same as before in Figs. 6.4 and 6.5. It is seen clearly that when the relative error

is controlled within 0.45, the area with high accuracy of the results in this paper is

very large, as compared with that of the results in [59].

6.5 Discussions and Conclusions

The extinction total cross-section (TCS) is defined as the ratio of the sum of absorbed

and scattered energy of incident waves. Mathematically, the extinction total cross-

section and the scattering cross section are expressed as

Qext=
2π

k20

∞

n=1

(2n+ 1) e[an + bn], (6.27a)

Qsca =
2π

k20

∞

n=1

(2n+ 1) |an|2 + |bn|2 . (6.27b)
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Figure 6.6: The relative errors of the formulas |b1| derived in this chapter and in the

existing work [59] versus the spherical core radius x ∈ (0.01, 1.0) and the spherical

nanoshell thickness t ∈ (0.01, 0.4).

From this, we could see that the closed form expressions for the extinction cross

section and the scattering cross section will be given analytically and approximately

as follows:

Qext≈ 2π
k20
[3 e[a1] + 5 e[a2] + 3 e[b1]] , (6.28a)

Qsca≈ 2π
k20

3|a1|2 + 5|a2|2 + 3|b1|2 . (6.28b)

Apparently, these cross sections are dominated by the value of a1. The coefficients

a2 and b1 also contribute to the extinction and scattering cross sections, and their

contributions will improve the accuracy of calculating these cross sections although

they are much smaller in value.

In summary, we have derived in this chapter a new set of closed form expressions
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of the classic Mie scattering coefficients of a spherical nanoshell using a power series

up to order 6, which follows closely to the other set in [59]. The derived expressions

are very general in nature, because the term number n of the Mie scattering coeffi-

cient series is still kept inside for the other potential applications, in addition to the

general expressions consisting of the information of the three region electrical para-

meters (permittivities and permeabilities) and geometrical parameters (the electric

inner and outer radii of the structure). This set of approximate expressions is found

to be very accurate in the large range of various potential engineering applications

including optical nanoparticle characterizations and other nanotechnology applica-

tions, validated step by step along the derivation procedure. Computations using

this closed form of solutions are very fast and accurate for both lossy and lossless

media, but it requires very little effort in the calculations of the cross section results.



Chapter 7

Conclusions and Future Work

In this thesis, a few new methods or concepts are proposed to analyze specifically

shaped canonical objects.

Firstly, two new methods are proposed for analysis of radome. One method,

which makes use of cylindrical dyadic Green’s functions, has been proposed in the

study of electromagnetic transmission through a cylindrical radome of non-circular

cross sections. The general formulation of this discrete method in the study of

a 3-dimensional cylindrical radome of arbitrary cross sections is derived. As an

example, this general formulation is then applied to the study of electromagnetic

transmission through a 2-dimensional elliptical cylindrical radome shell where the

source current of the antenna is considered to be infinite in the z-direction. Several

cases of this 2-dimensional elliptical cylindrical radome shell have been studied. The

numerical results generated by the discrete method for these cases are compared with

those obtained by the PWS-SI and the model cylindrical wave-spectrum method

138
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(published in [2] and [70]). From these comparisons, it is concluded that the discrete

method is quite accurate.

The other method, which makes use of the spherical dyadic Green’s functions

(DGF’s), is developed to study the electromagnetic transmission through an axil-

symmetric radome of superspheroidal shapes. which makes use of cylindrical dyadic

Green’s functions, has been proposed in the study of electromagnetic transmission

through a cylindrical radome of non-circular cross sections. The general formulation

of this discrete method in the study of a 3-dimensional cylindrical radome of arbi-

trary cross sections is derived. However, there is no experimental result available at

this moment for the further validity confirmation.

Next, electromagnetic radiation by an infinitely long transmission line analyzed

using the dyadic Green’s function technique. The transmission line carries a cur-

rent of constant amplitude but varying phase and is located in the vicinity of an

elliptic dielectric waveguide. Wave penetration into, and scattering by, the elliptic

waveguide are investigated. The dyadic Green’s functions inside and outside of the

elliptic waveguide are formulated first in terms of the elliptical vector wave functions

which are in turn expressed as Mathieu functions. Using the boundary conditions,

we derived a set of general equations governing the scattering and transmitting co-

efficients of the dyadic Green’s functions. From integral equations, the scattered

and total electric fields in far-zone are then derived analytically and computed nu-

merically. Different positions of the line source and various medium parameters of

the elliptical cylinder are considered and corresponding results are obtained and
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discussed.

Then, one of the many possible applications of the spheroidal wave function

package is presented in detail, solving an interior boundary value problem. The

convenience of coding in Mathematica package is manifested by the ability of this

program to find the zeros of functions with complex argument (such as radial func-

tions) simply with one statement. This problem, by itself, is a highly interesting

topic. Due to the preoccupation with the more important issue of completing the

Mathematica package, the axial symmetry is assumed so as to reduce the complexity

of the problems. The more general and practical problem in which the assumption

of axial symmetry is removed is a topic worth looking into for future investigations.

As indicated in [49], the study of oblate spheroidal cavities can be achieved in a

similar way or by symbolic transformation between the oblate and prolate coordi-

nates. However, it should be noted that the assumed axial symmetry is kept in

the z-direction and the assumed field components are not changed in the symbolic

programming.

Lastly, a new set of closed form expressions of the classic Mie scattering coef-

ficients of a spherical nanoshell using a power series up to order 6, which follows

closely to the other set in [59]. The derived expressions are very general in nature,

because the term number n of the Mie scattering coefficient series is still kept inside

for the other potential applications, in addition to the general expressions consist-

ing of the information of the three region electrical parameters (permittivities and

permeabilities) and geometrical parameters (the electric inner and outer radii of the
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structure). This set of approximate expressions is found to be very accurate in the

large range of various potential engineering applications including optical nanoparti-

cle characterizations and other nanotechnology applications, validated step by step

along the derivation procedure. Computations using this closed form of solutions

are very fast and accurate for both lossy and lossless media, but it requires very

little effort in the calculations of the cross section results.

In my future work, it will be considered that the infinite transmission line carries

a current of constant amplitude but varying phase and is located into an elliptic

dielectric radome. Numerical results generated by this method will be compared

with those obtained by the discrete methods.
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