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SUMMARY 

 

Antenna arrays with multiple isolated ports are widely used in space-time techniques 

like diversity reception, MIMO technique, adaptive beamforming or nulling and 

direction finding. For applications on size-limited platforms (e.g. in mobile terminals), 

restrictions on the available space demand the use of an element spacing significantly 

smaller than λ/2. The small element spacing introduces strong mutual coupling 

between the ports of the compact arrays. The strong coupling can cause significant 

system performance degradation. An RF decoupling network may be used to 

compensate for the mutual coupling effects. A systematic decoupling network design 

approach using eigenmode analysis is proposed. It involves the step-by-step 

decoupling of the characteristic eigenmodes of the array. The decoupling networks 

contain only lossless reactive components. In practical implementation, the lossless 

reactive components are usually converted to microstrip lines or striplines. These 

networks are sometimes much larger in size than the array itself, which makes the 

concept less suitable for applications where the available space for the antennas is 

limited. Therefore, an alternative approach to realize port decoupling is also presented. 

Antenna elements are fed via a modal feed network where isolation between the new 

input ports is achieved by exploiting the inherent orthogonality of the eigenmodes of 

the array. For beam forming, the required element weights are obtained as a linear 

combination of the orthogonal eigenvectors. This new approach is easy to understand 

and provides a simple design procedure of decoupling. The size of the decoupling 

network can be significantly reduced. This makes it suitable for application in mobile 

devices. 
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Chapter 1 Introduction 

 

1.1 Background 

Multi-antenna technology may be viewed as an extension of the so-called smart 

antenna [1], a popular technology for improving wireless communication dating back 

to 1950s. In multiple-input-multiple-output (MIMO) wireless communication 

techniques, multiple antennas are employed at both ends of the wireless link to 

significantly improve system performance [2]. In wireless systems such as mobile, 

personal communications, and wireless PBX/LAN networks, the use of multiple 

antennas can result in a significant increase in system capacity. With 2 or 3 antennas, 

the capacity of a mobile radio system can be doubled, while a 7-fold capacity increase 

can be achieved with 5 antennas [3]. Antenna arrays with multiple ports can also be 

used in space-time techniques like diversity reception, adaptive beamforming or 

nulling and direction finding. Multi-port antennas usually have the design goal of 

isolated ports and uncorrelated radiation patterns. However, when two or more 

antennas are in close proximity of each other, there is an interchange of energy 

between them. This interchange of energy constitutes mutual coupling among the 

antenna elements. Mutual coupling becomes particularly significant as the 

inter-element spacing is decreased [4]. It has been shown [5, 6] that the performance 

of an adaptive antenna array is strongly affected by the electromagnetic characteristics 

of the antenna array, like the mutual coupling between its elements. The goal of 

isolation is normally achieved by ensuring a sufficient inter-element spacing of at 

least λ/2 in order to inhibit the effects of mutual coupling. However, in the case of 

size-limited platforms like mobile applications, the required diversity can only be 

achieved if an element spacing significantly smaller than λ/2 is utilized. With such 
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small element spacing mutual coupling is not any longer negligible [7, 8]. The 

increased mutual coupling between the antenna elements apparently does not affect 

the capacity of a MIMO system [9], but it will decrease the antenna gain considerably 

and thus cause significant system performance degradation [4, 10, 11]. Mutual 

coupling causes a reduction in the signal-to-noise ratio (SNR) [4, 12]. The decrease in 

the SNR reduces the detection range and increases the minimum detectable velocity 

of the target in spacetime adaptive processing [12]. The presence of mutual coupling 

also decreases the eigenvalues of the covariance matrix of the signal, which controls 

the response time of an adaptive array [4]. Studies have also examined the effect of 

mutual coupling on pattern characteristics for a variety of communication applications 

[13-17]. In many applications, the available volume restricts the physical size of the 

antennas. For maximum versatility, the number of elements in an adaptive array needs 

to be as large as possible. On the other hand, the increased mutual coupling associated 

with a decrease in element spacing limits the frequency bandwidth and increases the 

sensitivity to dissipative losses. The required bandwidth and radiation efficiency 

dictates the maximum number of array elements for a given platform size. It is 

therefore vital that mutual coupling be taken into consideration during the design of 

arrays with small element spacing.  

 

This has attracted much attention and various compensation techniques have been 

proposed. In shaped beam antennas, modification of the excitation vector can 

compensate for mutual coupling [18]. Signal processing techniques may be applied to 

the received signal vectors from adaptive arrays in digital beam forming (DBF) and 

direction finding applications to counter the effects of mutual coupling [19-22]. 

However, the SNR of receiver or transmitter channels can only be optimized through 
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proper matching of the port impedances of the array for arbitrary element excitations. 

Due to mutual coupling, port impedances vary for different element excitations and 

cannot be simultaneously matched to the optimum source impedance. SNR 

degradation resulting from impedance mismatches cannot be compensated for through 

signal processing, but can be overcome via the implementation of a RF decoupling 

network (DN) [23-25]. Various implementations of decoupling networks have been 

described in the literature. In its simplest form, the decoupling network consists of 

reactive elements connected between neighboring array elements, which effectively 

cancels the external mutual coupling between them. However, this is only applicable 

in special cases where the off-diagonal elements of the admittance matrix are all 

purely imaginary [23, 24, 26]. Decoupling networks for arrays with arbitrary complex 

mutual admittances were described in [27-29]. The DNs for 3-element and 4-element 

arrays described in [28, 29] are symmetrical networks. Network elements were 

obtained by either applying an eigenmode analysis or a complete network analysis of 

the DN/array combination. The design of decoupling networks for larger arrays with 4 

or more elements is presented in the thesis. For circulant symmetric arrays, a 

systematic design approach can be formulated by involving the step-by-step 

decoupling of the characteristic eigenmodes of the array. 

 

An alternative approach to achieve port decoupling is also proposed. It involves a 

modal feed network which makes use of the orthogonality of the eigenmodes of the 

array to achieve decoupling. The input ports to the feed network and array 

combination can then be matched independently. In digital beam forming applications, 

the required element weights are obtained as a linear combination of the orthogonal 

eigenmode vectors. 
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1.2 Objectives of the project 

This project aims to develop design concepts of decoupling networks for compact 

arrays with small element spacing. Different ways of achieving decoupling between 

the antenna ports are investigated analytically. Procedures for the design and 

realization of the decoupling networks are to be developed and verified with 

experimental results. 

 

1.3 Organization of the thesis 

This thesis consists of six chapters, including this introductory chapter. Chapter 2 

provides the theoretical background on dense arrays for digital beam-forming and the 

theory of mutual coupling. Chapter 3 presents a brief review of related work on 

characteristics of dense arrays and the modal model. It also describes the decoupling 

network design using the eigenmode analysis with design examples of 3-element and 

4-element arrays. Chapter 4 describes a systematic design approach for decoupling 

larger arrays. It involves the step-by-step decoupling of the characteristic eigenmodes 

of the array, illustrated with design examples. Chapter 5 presents the alternative 

approach to achieve port decoupling by using the modal feed network, where isolation 

between the new input ports is achieved by exploiting the inherent orthogonality of 

the eigenmodes of the array. Design examples with experimental results are included. 

Chapter 6 gives some concluding remarks on this project. 
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Chapter 2 Theoretical Background 

 

2.1 Introduction 

This chapter introduces the theoretical background to the project. It includes digital 

beam forming and its applications, the theory of mutual coupling and the need for a 

decoupled array. 

 

2.2 Digital beam forming 

With the increasing demand for wireless services, telecommunications has evolved 

from the traditional wired phone to personal communication services (PCS). This 

brings about an increase in the type of wireless services provided, such as fixed, 

mobile, outdoor and indoor, and satellite communications. As PCS provides pervasive 

communication services, it will require much higher levels of system capacity than 

the current mobile systems. The capacity of a communications system can be 

increased directly by enlarging the bandwidth of the existing communications 

channels or by allocating new frequencies to the service. However, since the 

electromagnetic spectrum is limited and becoming congested with a proliferation of 

sources of interference, it is usually not feasible to increase system capacity by 

opening new spectrum space for wireless communications applications. Instead, 

efficient reuse of the existing frequency resources is critical. 

 

Many multiple access techniques have been used to maximize the capacity of the 

existing frequency resources. Space-division multiple access (SDMA) is one of them. 

In SDMA, the geographical coverage area is divided into a large number of cells. The 

same frequency can be reused in different cells that are separated by a spatial distance 
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to reduce the level of co-channel interference. However, for a given amount of base 

station transmission power, there is a limit on the number of cells that can be served in 

a particular geographical area, and hence a limit on the capacity that the base station 

can support. Therefore, to further increase the capacity, advanced forms of SDMA are 

needed. The advanced forms of SDMA use smart antennas, or more commonly known 

as adaptive antennas. These antennas are capable of beam-forming. For example, 120° 

sectorial beams at different carrier frequencies can be used within a cell and each 

sectorial beam can be used to serve the same number of users as are served in the case 

of ordinary cells [30], as illustrated in Figure 2.1. This technique triples the capacity 

of the cell. The ultimate form of SDMA is to use independently steered high-gain 

beams at the same carrier frequency to provide service to individual user within a cell 

[30], as shown in Figure 2.2. 

 

Figure 2.1 120° sectorized cell pattern [30] 
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Figure 2.2 Independently steered beams [30] 

 

By employing digital beam-forming (DBF) techniques, more flexibility and control 

can be achieved from smart antennas. A DBF antenna can be considered as the 

ultimate antenna, since it has the ability to capture all the information incident on the 

antenna and apply appropriate signal processing technology to make the information 

useful to the observer. DBF is a marriage between antenna technology and digital 

technology. Figure 2.3 shows a generic DBF antenna system [30].  

 

 

Figure 2.3 A generic DBF antenna system 
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It consists of three major components, namely the antenna array, the digital 

transceivers, and the digital signal processor [30]. DBF is a system in which the RF 

signal received by the antenna array is digitized and processed digitally. The radiation 

patterns of the antenna can be controlled by digital signal processing techniques to 

achieve the desired performance [30-38]. 

 

2.3 Mutual coupling 

When two or more antennas are in close proximity of each other, there is an exchange 

of energy between them. This exchange of energy constitutes mutual coupling among 

the antenna elements. The presence of a nearby element alters the current distribution, 

radiated field and input impedance of an antenna. Therefore, the performance of the 

antenna depends not only on its own current but also on the current of neighboring 

elements. With the emerging trends to employ multiport antenna technologies at 

mobile terminals, mutual coupling is prominent and the assumption of constant SNR 

in many publications [39, 40] no longer holds due to the limited space allocated to 

antenna systems. Therefore, considering a dense antenna array as a radiating structure 

with mutual coupled ports is more suitable. 

 

For an antenna element, there are two types of impedance associated with it. The first 

type is the driving point impedance. This depends on the self-impedance, that is, the 

input impedance in the absence of other elements. The second type is arriving point 

impedance, which is dependent on the mutual impedance between the driven element 

and other elements. Consider a two-element antenna system as shown in Figure 2.4. 
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Figure 2.4 Two element monopole array 

 

The two-element system is equivalent to a two-port network. The voltage-current 

relations can be written as: 

1 11 1 12 2

2 21 1 22 2

V Z I Z I
V Z I Z I

= +
= +

,        (2.1) 

where 

2

1

2

1

1
11

1 0

1
12

2 0

2
21

1 0

2
22

2 0

I

I

I

I

VZ
I

VZ
I

VZ
I

VZ
I

=

=

=

=

=

=

=

=

.         (2.2) 

Z11 and Z22 are the self-impedances of antenna elements 1 and 2 respectively; Z12 and 

Z21 are the mutual impedances. The driving-point impedances are given as 

1 2
1 11 12

1 1

2 1
2 22 21

2 2

d

d

V IZ Z Z
I I
V IZ Z Z
I I

= = +

= = +
 .      (2.3) 
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To match an antenna element, the driving-point impedance needs to be adjusted to a 

required value. Since mutual impedance affects the driving-point impedance, it plays 

an important role in the performance of the array. 

 

2.4 The need for a decoupled array 

For an array with M elements, there exist M mutually orthogonal eigenmodes. The 

mode admittance associated with eigenmode m is given by Ym = Gm + jBm, where Gm 

and Bm are respectively the conductance and susceptance of mode m. The mode 

admittance is equal to the mth eigenvalue of the admittance matrix. By means of 

eigenmode representation, the array with mutually coupled elements can be replaced 

with a set of equivalent antennas whose radiation patterns correspond to the mutually 

orthogonal radiation patterns [23, 24]. In the receive mode, each of the equivalent 

antennas can be modeled as a current source with source admittance equal to the 

corresponding mode admittance Ym and current source im, as illustrated in Figure 2.5. 

A receiver channel with input admittance Yin,rec is connected to the antenna. A noise 

voltage and a noise current source, as shown in Figure 2.5, represent the noise 

characteristics of the receiver channel. 

 

Figure 2.5 Equivalent circuit for mth eigenmode of array in receive mode 
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The performance of the array, in terms of power matching and signal-to-noise-ratio 

(SNR), is affected by the mutual coupling between the array elements. 

 

The power contribution from mode m is maximized if the condition Ym
* = Yin,rec is met. 

In an ideal case with no mutual coupling between the array elements, all the mode 

admittances are equal to each other. Simple two-port matching networks between the 

antenna ports and receiver channels can transform the mode admittances to meet the 

condition for maximum power transfer. However, in the presence of mutual coupling, 

the mode admittances are not identical and simultaneous matching for all modes 

cannot be achieved via two-port matching networks [24]. If one particular mode is 

selected for power matching, the other modes will be mismatched. Mismatch of a 

mode results in a decrease in transducer power gain for that mode relative to the case 

of power matching. 

 

In analysis of the circuit model in Figure 2.5, it is taken into account that the effective 

receiver noise temperature Teff is a function of the source admittance Ym. The 

minimum receiver noise temperature Teff,min is achieved when the source admittance 

equals an optimum value Yopt = Gopt + jBopt. The effective noise temperature for mode 

m can be written as [23, 24] 

2

opt
eff , eff ,min 0 eq

m
m

m

Y Y
T T T R

G
−

= + ,      (2.4) 

where Req and T0 are the equivalent noise resistance and the room temperature 

respectively. 

 

For an array with incident signal given by ( )inc ,Θ ΦE , the SNR is given by [23, 24] 
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( ) ( ) 2
inc

1
2

2 2 opt
eff ,min 0 eq

1 1

, ,
SNR =

= =

Θ Φ ⋅ Θ Φ
=

−
+

∑

∑ ∑

C E�

� �

M

m
m

M M
m

m m
m m m

w

Y Y
T w T R w

G

,   (2.5) 

where ( ),Θ ΦC is a vector function that defines the mode radiation patterns, and �mw is 

a set of effective weights for adjustments to form the desired radiation pattern. 

 

From (2.5), it is clear that the maximum SNR is achieved when all mode admittances 

are noise-matched: Ym = Yopt for m = 1, 2, …, M. In the presence of mutual coupling 

between the array elements, noise matching for a selected mode can only be achieved 

at the cost of noise-mismatch for the remaining modes. In addition, the SNR becomes 

a function of the effective weights and also a function of the desired radiation pattern. 

It has been shown in [23, 24] that signal-to-noise maximization can only be achieved 

if all mode admittances of the array are identical and matched to the optimum 

admittance. This necessitates the use of a decoupling network. It has been suggested 

that by connecting simple reactive elements between the input ports and antenna ports, 

the mutual coupling between the antenna elements can be completely removed [26]. 

However, this can only be implemented in cases where the off-diagonal elements of 

the admittance matrix are all purely imaginary. In the design of decoupling networks 

for arrays with arbitrary complex mutual admittances, eigenmode and network 

analysis can be applied, which will be presented in detail in the following chapters. 
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Chapter 3 Decoupling Network Design Using Eigenmode Analysis 

 

3.1 Introduction 

This chapter presents a brief review of related work on characteristics of dense arrays 

and a modal model from Chaloupka [23-25]. It describes the design of decoupling 

networks for 3-element and 4-element arrays using eigenmode analysis or network 

analysis. Analytical solutions and experimental results verify both analysis methods. 

 

3.2 Modal representation of a dense antenna array 

Figure 3.1 shows the basic diagram of an adaptive array in [4]. The output signal from 

each element is multiplied by a complex weight, and then these signals are summed to 

produce the array output S(t). The weights are automatically adjusted to optimize 

some desired criteria, e.g. SNR, with a selected algorithm. To study the behavior of a 

dense array, we must know the element/port output voltages. These port output 

voltages will be used as the input signals to the processor. Therefore, Gupta and 

Ksienski [4] developed the expression for the element output voltages when the 

mutual coupling is taken into account. The expression, as in Equation (3.9), was 

developed by considering the N-element array as an (N+1)-terminal linear, bilateral 

network responding to an outside source, as shown in Figure 3.2.  

 

As shown in Figure 3.2, each port of the N-element array is terminated in a known 

load impedance ZLk (k = 1, 2, …, N). For the sake of simplicity, we first consider the 

case ZL1 = ZL2 = … = ZLN = ZL here. The far field radiation is symbolized as a driving 

source with open circuit voltage Vg and internal impedance Zg. With these notations, 

the Kirchoff relation for the (N + 1)-port network is given as below: 



  16

1 1 11 2 12 1 g 1S

2 1 21 2 22 2 g 2S

1 1 2 2 g S

N N

N N

N N N N NN N

V I Z I Z I Z I Z

V I Z I Z I Z I Z

V I Z I Z I Z I Z

= + + + +

= + + + +

= + + + +

"
"

#
"

,    (3.1) 

where non-vanishing Zij = Zji (i, j = 1, 2, …, N) represents the mutual impedance 

between the ports (array elements) i and j. Here kSZ (k = 1, 2, …, N) is the mutual 

impedance between port (array element) k and the hypothesized port at the driving 

source and it shows the “coupling to free space”. 

 

Figure 3.1 The basic diagram of an adaptive array 

Vg

Linear Bilateral (N+1)-Port Network

Zg

+ -VS

Ig

+ -V1
+ -V2

+ -VN

I1 I2 IN

ZL1 ZL2 ZLN

Radiation
Source

Antenna
Ports

 

Figure 3.2 Equivalent (N + 1)-port network of antenna arrays 
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Furthermore, making use of the relationship between terminal current and load 

impedance, we have 

L

j
j

V
I

Z
= − , j = 1, 2, …, N.        (3.2) 

 

If all the elements in the array are in an open circuit condition, then 

0, 1,2,jI j N= = " ,       (3.3) 

and from Equation (3.1), we have 

o g S= =j j jV V I Z .        (3.4) 

Substituting (3.2) and (3.4) into (3.1), we obtain 

111 12

L L L
1 o1

221 22
2 o2

L L L

o
1 2

L L L

1

1

1

⎡ ⎤+⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥+
⎢ ⎥⎣ ⎦

"

"
# #

# # %

"

N

N

N N
N N NN

ZZ Z
Z Z Z

V V
ZZ Z

V V
Z Z Z

V V
Z Z Z
Z Z Z

.         (3.5) 

Then, we use the vector/matrix notation as 

111 12

L L L

221 22

L L L0

1 2

L L L

1

1

1

N

N

N N NN

ZZ Z
Z Z Z

ZZ Z
Z Z Z

Z Z Z
Z Z Z

⎡ ⎤+⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

Z

"

"

# # %

"

,      (3.6) 

and 

[ ]
[ ]

1 2

o o1 o2 o

=

=

V

V

"

"

T
N

T
N

V V V

V V V
,       (3.7) 

so that we have a compact expression 
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0 o=Z V V .         (3.8) 

In Equation (3.8), Z0 is the normalized impedance matrix and Vo represents the open 

circuit voltages at the antenna terminals. Because Z0 is nonsingular, the element 

output voltages can be obtained from the open circuit voltages [4] as 

-1 1
0 o L o( / )−= = +V Z V I Z VNN NN Z .     (3.9) 

Here, INN is an N N×  identity matrix and ZNN represents the symmetric N N×  

impedance matrix. Because ZNN is a complex valued matrix, we have 

NN NN NNj= +Z R X ,       (3.10) 

where RNN is the resistance matrix, while XNN is the reactance matrix. 

 

Eigensolution representation by Chaloupka [25] is an appropriate way for discussing 

the specific properties of dense arrays and details are shown as follows. 

 

Since RNN and XNN are real symmetric matrices, their eigenvalues are real and the 

corresponding eigenvectors are mutually orthogonal. Furthermore, for a large class of 

antenna configurations which possess certain symmetry properties, the eigenvectors 

of RNN and XNN coincide. In case they disagree, eigenvectors of RNN and XNN can be 

forced to agree with each other by adding some reactive loading to the antenna ports. 

Without loss of generality, common eigenvectors of RNN and XNN are assumed here, 

such that the impedance matrix can be diagonalized, that is, 

T
NN NN N NN= ⋅ ⋅Z U z U ,      (3.11) 

where 

1 2diag[ , ,..., ]N Nz z z=z       (3.12) 

is composed of the N “modal impedances” and the unitary matrix 
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( )1 2, ,...,NN N=U u u u        (3.13) 

is composed of the N orthonormal eigenvectors of ZNN. 

 

From Equations (3.9) and (3.11), the element output voltages can be represented as 

1
L o( / )T T

NN NN N NNZ −= +U V I z U V .     (3.14) 

Therefore, by means of this eigensolution, the array with mutually coupled ports is 

modelled by an equivalent set of N non-coupled antennas (modes), with 

o o
T
NN
T
NN

⎧ =
⎨

=⎩

v U V
v U V

       (3.15) 

as modal open circuit voltages and modal output voltages respectively. 

 

The modal model provides a deep insight into the characteristic properties of 

multi-port antenna with reduced element spacing. It allows us to draw a basic 

conclusion about how increased mutual coupling impacts the properties of a dense 

multi-port antenna.  

 

3.3 Properties of multi-port dense antenna array 

The properties of an arbitrary N-element array with N ports terminated by the 

complex-valued load impedance ZL have been characterized in [10] by relating the 

port voltages nV  to the electric field vector incE  of a plane wave impinging the 

array from a variable direction of arrival (DOA) ( ,Θ Φ ): 

inc( , )= Θ Φ ⋅C En nV k .       (3.16) 

Here, we denote coefficient k as 

L
0

0

Re{ }
4

Zk
Z

λ=
π

,       (3.17) 
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where λ0 and Z0 denote free space wavelength and wave impedance respectively. With 

the particular choice of k in Equation (3.17), the power delivered to the load at port n 

becomes 

2
2

inc,cp| ( , ) |
4
λ
π

= Θ ΦCn nP S       (3.18) 

with Sinc,cp as the incident co-polar radiation density. Cn  represents the 

complex-valued vector radiation pattern associated with port n, or the port pattern. 

The square of their magnitude equals to the angular dependent antenna gain, if we 

define the gain to include power reduction due to mismatch and crosstalk between the 

ports. What is important here is that the port pattern differs from the element pattern 

of a dense array, given the strong mutual coupling between different elements. 

 

In the discussion of the properties of dense multi-port antennas, two aspects are of 

major interest, namely, the pattern correlation and the gain reduction. 

 

The pattern correlation between different ports can be represented by utilizing an 

inner product defined as [10] 

*1, ( , ) ( , )d
4π

= = Θ Φ ⋅ Θ Φ Ω∫C C C Cvij i j i jK ,   (3.19) 

where dΩ  denotes the element of solid angle. Therefore, N N×  correlation matrix 

K gives the entire set of correlation coefficients among N port patterns. Ideally when 

there is no cross talk and power matching at all ports and no dissipative losses, matrix 

K simplifies into a unity matrix. 

 

Accordingly, the gain reduction can be quantified as the gain reduction factor given 

by [10] 
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η =j jjK .        (3.20) 

Here, ηj is in the range of [0, 1] and characterizes the deviations from the ideal case 

for the port patterns. To discount the impact from gain reduction, the normalized 

cross-correlation coefficient kij between the patterns of ports i and j is defined as 

| |
κ = ij

ij
ii jj

K
K K

.       (3.21) 

This describes the similarity between different port patterns, in regards to the angular 

dependence of amplitude, phase and polarization. 

 

The definition of port patterns of a multi-port antenna from Equation (3.16), the gain 

reduction factors from Equation (3.20) and the normalized cross-correlation from 

Equation (3.21) provide an appropriate formal framework to discuss the impact of 

mutual coupling on the antenna properties. In the following subsection, the 

eigenmode model is used to further discuss the properties of dense multi-port 

antennas. 

 

3.3.1 Antenna properties by means of eigenmode models 

As shown in the sections above, each N-port antenna possesses N mutually orthogonal 

modal patterns, even if the element spacing is reduced to values much smaller than 

λ/2. Therefore, the modal representation [10] will be further explored in this 

subsection to discuss the properties of dense multi-port antennas. 

 

Figure 3.3 depicts the modal model for an N-port antenna in the receive mode, in 

which the antenna is represented by a set of N uncoupled antennas. Mode m (m = 1, 

2, …, N) is defined to correspond to the excitation of the multi-port antenna which is 
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obtained by setting all modal voltages equal to zero except for voltage vm. This leads 

to the specific set of driving voltages given by: 

(0,0, , , ,0)T
m NN mV v= ⋅U " " .      (3.22) 

The corresponding modal pattern is denoted by ( , )Θ Φcm  and normalized to 

|| || 1=cm . 

 

v1ZL

Vo,1

z1

v1ZL

vNZL

Vo,N

zN

vNZL

Mode 1

Mode N

1( , )Θ Φc

( , )Θ ΦcN

 

Figure 3.3 Mode model for multi-port antenna 

 

As we assume no dissipative losses in the antenna structure, the principle of energy 

conservation enforces the so-defined eigen-radiation patterns to be mutually 

orthogonal [24, 41]. Thus, we have 

, δ=c cm n mn ,       (3.23) 

where δmn denotes the Kronecker delta function. 

 

As in Equation (3.16) and (3.17), the modal source voltage and modal output voltages 
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of mode m become [10, 25] 

o, 0 inc
0

o, 0
inc

L L 0

Re{ } ( , )

Re{ } ( , )
1 / 1 /

λ
π

λ
π

⎧
= Θ Φ ⋅⎪

⎪
⎨
⎪ = = Θ Φ ⋅⎪ + +⎩

c E

c E

m
m m

m m
m m

m m

zv
Z

v zv
z Z z Z Z

,  (3.24) 

with the available power from mode m given by 

2
20

,avail inc
0

| |
8
λ
π

= ⋅c Em mp
Z

.       (3.25) 

Here, we define the complex valued mismatch factor for mode m as 

L

L

2 Re{ }Re{ }m
m

m

z Z
z Z

Λ =
+

,       (3.26) 

with 20 | | 1m≤ Λ ≤ , so that, the power delivered via the m-th eigen-radiation pattern to 

the load is given by 

2
,avail| |m m mp p= Λ .       (3.27) 

Moreover, with the definition of mismatch factors Λm, the radiation pattern for port n 

can be represented as a linear combination of the mutually orthogonal eigen radiation 

patterns of the array [10, 25]: 

1
( , ) ( , )

=

Θ Φ = Λ Θ Φ∑C c
N

n nm m m
m

u .     (3.28) 

The expansion coefficients are given by the product of the elements unm of the unitary 

matrix UNN and the mismatch factors Λm, whereas unm depends on the array structure 

and Λm are functions of the load impedance. Therefore, for arrays with mutually 

coupled ports, the port radiation patterns depend on the choice of the load impedance 

ZL. 

 

Thus, the gain reduction factor at port n becomes [10, 25] 
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2 2 2
port ,

1

1 | | | | | |
4

η
π =

= Ω = Λ∑∫ Cv
N

n n m nm
m

d u .    (3.29) 

This gain reduction factor includes the effect of non-vanishing cross-talk between 

different ports as well as mismatch at the ports. Since 

2

1
| | 1

N

nm
m

u
=

=∑ ,        (3.30) 

ηport,n approaches unity if all mismatch factors are equal to one. Similarly, we have 

2 *

1

2 2 2 2

1 1

| || |

( | | | | )( | | | | )
κ =

= =

Λ
= =

Λ Λ

∑

∑ ∑

N

m mi mj
ij m

ij N N
ii jj

m mi m mj
m m

u uK
K K

u u
.   (3.31) 

If all mismatch factors approach unity (i.e. perfect matching to all modes), the N port 

radiation patterns would be uncorrelated, due to the orthonormality of the rows of 

matrix UNN.  

 

Equations (3.27) to (3.31) turn out to be the key for understanding the impact of 

mutual coupling on the properties of a dense multi-port antenna. With increasing 

mutual coupling, the deviation between the modal impedances increases. Since the 

modal impedances are different from each other, while the load impedances are equal, 

simultaneous matching of all modes is not possible. Therefore, the non-unity 

mismatching factors Λm lead to the port gain reduction and inter-port cross 

correlation. 

 

3.4 DBF in multi-port dense antenna array 

The digital beam forming (DBF) can be represented via a linear combination of the N 

modal radiation patterns of the antennas [25]: 
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*
DBF

1
( , ) ( , )

=

Θ Φ = Θ Φ∑C c
N

m m
m

w ,      (3.32) 

 

As shown from Equation (3.28), the modal output signals are weighted in an 

unwanted manner by the mismatch factors Λm. This unwanted weighting can be 

numerically compensated for in DBF by using the modified modal weights: 

*/m m mw kw= Λ� .       (3.33) 

Here, k is an arbitrarily-defined constant. 

 

This type of compensation can be considered as “compensation for the effects of 

mutual coupling” in digital processing and has already been discussed in a variety of 

references [4, 19, 20, 42, 43]. The port weights, which are more accessible to signal 

processing part, can be obtained [25] via: 

1 2( , , , )T
N NN NNW W W k= =W U d w" .    (3.34) 

Here, 

* * *
1 2

1 1 1diag[ , , , ]NN
N

=
Λ Λ Λ

d "      (3.35) 

and 

1 2( , , , )T
Nw w w=w "        (3.36) 

denotes the modal weights. 

 

The constant k can be determined if  

1H =W W         (3.37) 

is to be enforced, so that we get 
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2

2 1
DBF

2 2

1

| |

| | / | |

N

m
m

N

m m
m

w
k

w
η =

=

= =
Λ

∑

∑
.      (3.38) 

DBFη  gives the effective gain reduction of a multi-port dense antenna. Maximum gain 

reduction occurs if the highest weight | |mw  is allocated to the modal pattern m with 

the strongest mismatch, or the lowest | |mΛ . 

 

In case of receiver systems, the modal voltages due to a strongly mismatched mode 

are typically much weaker than the modal voltages corresponding to well-matched 

modes. DBF is able to “numerically amplify” the modal voltages by employing a 

higher weight. However, this changes the effective load for each mode and therefore, 

makes the noise matching impossible [24]. 

 

In case of transmitter systems, a higher weight can also be used to compensate for the 

strong reflection due to mode mismatching. The cost is that the delivered power will 

be increased by a factor of DBF1 η in order to end up with to the same radiated power 

density in the far field. 

 

Except for these results obtained from the mode model, this method also sheds light 

on how we can proceed to address the pattern correlation and gain reduction 

simultaneously within multi-port dense antenna arrays. Note that, from Equation 

(3.38), we can find that if all array modes are matched to the load at the same time 

while the radiation pattern remains the same in terms of amplitude, phase and 

polarization on the DOA, the absolute value of the amplitude for all DOA increases 

by a factor of DBF1 η . 
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In the next section, a general theory about the decoupling network (DN) will be 

introduced. 

 

3.5 DN for multi-port dense antenna array 

Since strong mutual coupling exists within dense multi-port antennas, if all modes are 

terminated with the same load ZL, non-correlated radiation patterns can only be 

achieved at the cost of a reduced effective antenna gain, which, therefore, requires a 

higher transmitted power in transmitting systems or degrades the signal-to-noise ratio 

(SNR) in receiving systems. 

 

A solution to this problem is to use an RF network to transform the N parallel load 

impedances ZL into a set of different impedances [23-25], which will match the 

different modal impedances, respectively. 

 

Figure 3.4 gives a general idea of such a decoupling network. The left shows a dense 

multi-port antenna with decoupling network, and the right shows the effective circuits 

for different modes. These effective circuits differ for each mode, so that at the load 

point, different modal impedances are all converted into the same, which achieve the 

power or noise matching, depending on the application. To avoid energy consumption, 

the decoupling network should be a lossless 2N-port network with N-input and 

N-output ports. It transforms the N modal impedance with impedance matrix zN into a 

new modal impedance matrix z� N , so that it is the conjugate of the load impedance 

matrix L L L L= diag[ , ,..., ]
N

Z Z ZZ ���	��
 , that is, 



  28

*
L L L L= diag[ , ,..., ]N

N

Z Z Zz Z� ���	��

*= .      (3.39) 

 

 

Figure 3.4 Dense multi-port antennas with DN 

 

It has been assumed in the previous section that the array impedance matrix ZNN can 

be transformed into a diagonal matrix zN by means of a unitary matrix UNN. This 

requires the eigenvectors of RNN and XNN to coincide. For a class of antenna structures 

where certain symmetry conditions are met, this statement holds, but it is not always 

so. In a more general case, the following procedure described in [25] can be applied to 

obtain an impedance matrix Z� NN  which can be represented by Equation (3.11): 

 

1) Since -1
NN NN NN NN= = + jY Z G B , the real and symmetric conductance matrix is 

determined and diagonalized as  

⋅ ⋅G U g UT
NN NN NN= .       (3.40) 
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2) In case the eigenvectors of GNN do not agree with the eigenvectors of BNN, a shunt 

network Bshunt composed of susceptances is connected between antenna ports, so that 

the new susceptance matrix 

shuntNN NN= +B B B�       (3.41) 

has the same eigenvectors as GNN. 

 

3) Then the new impedance matrix 

-1= ( + ) = ⋅ ⋅Z G B U z U� � � T
NN NN NN NN NNj    (3.42)            

has the properties which were assumed throughout the previous sections. 

 

4) The shunt network Bshunt can be merged with a shunt network from the 

decoupling and matching network. 

 

There are different realizations for a DN [27]. If a ladder type is chosen, the synthesis 

can be derived from conventional 2-port network synthesis. The fundamental theory 

in the DN realization is that, while series reactances jxseries are common to all 

two-ports, shunt susceptances jbshunt,m are different for each mode. Therefore, different 

modal impedance matching simultaneously is made possible. 

 

A possible topology of the DN for a two-port antenna in [25] is given in Figure 3.5. 

Ports 1 and 2 are antenna ports, while ports 1′ and 2′ are the newly formed ports from 

the decoupling network. 
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Figure 3.5 DN for a two-port antenna 

 

In the simplest case, i.e. with a minimum number of sections, the decoupling 

condition is enforced at the centre frequency only. With additional sections, the 

decoupling frequency bandwidth can be increased. However, with an increase in the 

decoupling network sections ns, a saturation effect with the bandwidth improvement 

will occur [44, 45]. 

 

3.6 DN design and realization 

3.6.1 DN for 3-port antenna array 

An array of three monopoles was fabricated to verify the model [28]. Figure 3.6 

shows the 3-element array, where each monopole element has a length that is quarter 

of a wavelength and the inter-element spacing is a tenth of a wavelength. Table 3.1 

summarizes the parameters of the array [28]. The inter-element spacing is very small 

compared to the conventional half-wavelength element spacing. This small element 

spacing results in strong mutual coupling between elements of the array. The 

performance of the array, in terms of power matching and signal-to-noise-ratio (SNR), 

is affected by the mutual coupling between the array elements. The admittance 
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parameters of the array are 11 0.0406 77.8Y = ∠− °  and 12 0.0203 92.2Y = ∠ ° . 

 

 

Figure 3.6 A 3-element monopole array 

 

Table 3.1 Dimensions of the 3-element monopole array 

Operational frequency f0 2.45 GHz 

Monopole length L 30.6 mm 

Monopole radius r 3 mm 

Array element spacing d 12.5 mm 

Ground radius R 18 cm 

 

The proposed lossless decoupling network for a 3-element array in [28] is shown in 

Figure 3.7. The decoupling network consists of a series section with components jX1 

and a parallel section with components jB2. Two analysis approaches can be used to 

compute the components of the decoupling network. The first approach is the 

eigenmode analysis while the second is the network analysis. 
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Figure 3.7 A generalized DN for a 3-element array 

 

3.6.1.1 Eigenmode analysis 

Due to symmetry, the admittance matrix of the three-element array is given by  

11 12 12

12 11 12

12 12 11

Y Y Y
Y Y Y
Y Y Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y .       (3.43) 

The eigenvalues of the admittance matrix (modal admittances) are: 

11 12

11 12

2 ;

.

A

B C

Y Y Y

Y Y Y Y

= +

= = −
      (3.44) 

The equivalent circuits for different modes [24] are shown in Figure 3.8. The series 

component is simply jX1. From two-port network theory, the admittance matrix of the 

parallel section of the decoupling network, as shown in Figure 3.7, can be obtained 

and is given by 

2 2 2

DN,p 2 2 2

2 2 2

2
2

2

j B jB jB
jB j B jB
jB jB j B

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

Y .     (3.45) 

Since DN,p DN,p
11 122 0Y Y+ = , there is no parallel component in the equivalent circuit for 

mode A. For mode B or C, the parallel component can be computed as 

DN,p DN,p
11 12 23Y Y j B− = . 
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Figure 3.8 Equivalent circuits for different modes of 3-element array 

 

Therefore, the equivalent modal admittances are: 

1

in, 1
1 ,

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

A
A

Y jX
Y

       (3.46) 

1

in, in, 1 2
1 3 .

−
⎛ ⎞

= = + +⎜ ⎟
⎝ ⎠

B C
B

Y Y jX j B
Y

     (3.47) 

In this eigenmode analysis, the decoupling network decouples the ports of the array 

by matching all the mode admittances. From Equations (3.46) and (3.47), X1 and B2 

can be obtained by numerically solving the following set of nonlinear simultaneous 

equations: 

in, in,

in, in,

Re Re

Im Im

⎧ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎩

A B

A B

Y Y

Y Y
.      (3.48) 

 

The analytical results or numerical results for X1 and B2 can be obtained using 

Mathematical tools such as Mathematica [46] or Matlab [47]. 

 

3.6.1.2 Network analysis 

The following impedance and admittance matrices [28] describe the series and 

parallel sections of the decoupling network shown in Figure 3.7 respectively: 
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1

DN,s 1

1

0 0
0 0
0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
jX

jX
jX

,     (3.49) 

2 2 2

DN,p 2 2 2

2 2 2

2
2

2

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

Y
j B jB jB

jB j B jB
jB jB j B

.    (3.50) 

The admittance matrix of the decoupled array can be written as: 

( ) 1D 1
in array DN,s DN,p

−−= + +Y Y Z Y .     (3.51) 

 

For decoupling to be achieved, the mutual admittance of the decoupled system, D
12Y , 

should be zero. Solutions for X1 and B2 are obtained by solving the following set of 

nonlinear simultaneous equations: 

 
D

12

D
12

Re[ ] 0

Im[ ] 0

⎧ =⎪
⎨
⎪ =⎩

Y

Y
.       (3.52) 

The solutions are again obtained using Mathematical tools such as Mathematica or 

Matlab. It has been verified that solutions thus obtained are consistent with those 

obtained from the eigenmode analysis. 

 

3.6.1.3 Matching network 

The decoupled antenna array can easily be matched to any desired impedance, since 

the impedances looking into each port of the array are now identical. An L-network 

topology described by Pozar in [48], consisting of a shunt and series component, can 

be used for matching as shown in Figure 3.9. 
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Figure 3.9 L section matching networks for cases where (a) RL>Rin and (b) RL<Rin 

 

Consider the network of Figure 3.9(a) and let ZL = RL + jXL. The impedance seen 

looking into the matching network must be equal to Zin = Rin + jXin. Thus 

( )in in
L L

1
1

+ = +
+ +

R jX jX
jB R jX

.    (3.53) 

Rearranging (3.53) and separating into real and imaginary parts gives two equations 

for the two unknowns X and B, which can be solved to give [48] 

2 2
L L in L L in L

2 2
L L

L in in
in

L L

,

1 .

± + −
=

+

= + − +

X R R R X R R
B

R X

X R RX X
B R BR

    (3.54) 

Two solutions are possible for B and X. Both positive and negative values of B and X 

are possible (positive X ≡ inductor, negative X ≡ capacitor, positive B ≡ capacitor, 

negative B ≡ inductor). Therefore, both solutions are physically realizable. However, 

one solution may result in significantly smaller values for the reactive components 

and may be the preferred solution because it results in larger bandwidth. 

 

Consider the network of Figure 3.9(b), which is used when RL < Rin. The admittance 

seen looking into the matching network must be equal to Yin = Gin + jBin = 1/Zin. Thus 

( )in in
L L

1
+ = +

+ +
G jB jB

R j X X
.     (3.55) 

Rearranging and separating into real and imaginary parts again give two equations for 
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the two unknowns X and B, which can be solved to give [48] 

( )

( )

L in L L

in in L L in

1 ,

1 .

= ± − −

= ± − +

X R G R X

B G G R R B
     (3.56) 

 

In the case of matching the decoupled array, D
L 111=Z Y . In general, for matching to, 

for example, a system with Zin equals 50Ω, the values for B and X can be found by 

Equations (3.54) or (3.56). 

 

The completed array with decoupling and matching network [28] (case of Figure 

3.9(a)) is shown in Figure 3.10. 

 

 

Figure 3.10 A 3-element array with decoupling and matching network 

 

The decoupling and matching network contains only lossless components such as 

inductors or capacitors. There exists two possible decoupling network configurations 

for an array, and for each decoupling network two possible configurations can be used 

as matching network. One possible configuration [28] of the calculated decoupling 

and matching network at 2.45 GHz is shown in Table 3.2. 
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Table 3.2 Decoupling network and matching network configurations 

Decoupling network Matching network 

Series Parallel Shunt Series 

C = 0.57 pF L = 4.41 nH 
L = 0.164 nH C = 1.149 pF 

L = 6.29 nH C = 0.96 pF 

 

3.6.1.4 DN implementation and measurement results 

The decoupling and matching networks designed in the previous section are based on 

lossless capacitors and inductors. These ideal lumped capacitors and inductors have to 

be converted to realizable forms. One convenient way of realizing the decoupling and 

matching networks is in microstrip or stripline. Kuroda’s identities [48-51] are applied 

to transform the lumped components into microstrip or stripline stubs. Table 3.3 [28] 

summarizes the realization of the ideal capacitors and inductors as microstrip stubs, 

with the corresponding equations required for the transformations. 

 

Pictures of the array elements with supporting structure and the microstrip decoupling 

circuit in [28] are shown in Figures 3.11 and 3.12. The array elements are gold-plated 

brass rods. The supporting structure is made of aluminum. The circular plate acts as a 

large ground plane for the array. The material used for the microstrip decoupling and 

matching networks is Rogers RT/duroid 5880 substrate with dielectric constant of εr = 

2.2, thickness of 31 mil and loss tangent of 0.0009. In designing the layout of the 

microstrip network, the lines were meandered to reduce the size of the overall 

network. Meandering of the lines does not affect the performance of the network as 

long as the effective length of the curved lines is equivalent to the original length of 

the straight microstrip lines. The network was mounted on the underside of the metal 
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block in the supporting structure. 

 

 
Figure 3.11 The 3-element array with supporting structure [28] 

 

Table 3.3 Transformation of ideal components to microstrip stubs. 

Initial network Transformed network Design equations 

 

sc 1

0

1 0

tan
2 2

2

ω πθ − ⎛ ⎞
= ±⎜ ⎟+⎝ ⎠

= +

L
Z L

LZ Z

 

 

sc 1
2

0

1 0 2

tan
21 2

1
2

ω πθ
ω

ω

− ⎛ ⎞
= ±⎜ ⎟

−⎝ ⎠

= −

Z C

Z Z
C

 
 

sc 1

0
tan ωθ − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

L
Z

 

 
 

( )sc 1
0tan

2
πθ ω−= ±CZ  
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Figure 3.12 Photo of microstrip network [28] 

 

The measured and simulated results [28] of the array to be decoupled in are shown in 

Figures 3.13 and 3.14. 
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Figure 3.13 Simulated and measured S11 of array to be decoupled 
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Figure 3.14 Simulated and measured S12 of array to be decoupled 

 

The array with its decoupling and matching network was measured and the results 

were compared to those obtained from theoretical simulations [28]. The measured and 

simulated results are in close agreement with only slight shift in the frequency 

response. As shown in Figures 3.15 and 3.16, the array has successfully been 

decoupled since it has a low value of S12 (below –15 dB) over the frequency range 

considered. The array is also matched with a reflection coefficient of about –15 dB at 

the minimum of the S11 curve. 
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Figure 3.15 Simulated and measured S11 of the decoupled and matched array 
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Figure 3.16 Simulated and measured S12 of the decoupled and matched array 

 

3.6.2 DN for 4-port antenna array by eigenmode analysis 

An array of 4 elements was designed and decoupled to verify the modal model [29]. 

The array was designed based on the aperture-coupled patch antenna, as shown in 
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Figure 3.17. Rogers RT/duroid 5870 with dielectric constant of εr = 2.33, thickness of 

3.175 mm and loss tangent of 0.0021 was used as the substrate of the antenna, while 

RO4003 with dielectric constant of εr = 3.38, thickness of 0.508 mm and loss tangent 

of 0.0021 was used as the substrate of the feed network part. The three-layer structure 

makes it possible to separate the antenna design and decoupling/matching network 

realization on two semi-isolated layers. The dimensions of the array element [29] are 

shown in Table 3.4. 

 

 

Figure 3.17 Single aperture-coupled ring patch 

 

Four identical elements are placed closely with a gap of 2 mm between neighbouring 

elements to form the array in [29], as shown in Figure 3.18. Due to the strong mutual 

coupling, fine tuning is performed to improve the performance of the array and the 

S-parameters are shown in Figure 3.19. It can be seen that although the reflected 

power at the input port can be made quite low, the incident power actually goes back 

to the circuit through other ports because of the mutual coupling. 
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Table 3.4 Dimensions of the aperture-coupled ring patch 

Operational frequency f0 2.45 GHz 

Median radius R 23.16 mm 

Width of the ring Ro-Ri 18.65 mm 

Length of the aperture LS 15 mm 

Width of the aperture WS 1 mm 

Length of the feed line LF 2 mm 

Width of the feed line WF 2 mm 

Length of the tuning stub Lstub 5.5 mm 

 

 

Figure 3.18 Four-element aperture-coupled ring patch array 
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Figure 3.19 S-Parameters of the optimized array 

 

3.6.2.1 Eigenmode analysis 

To decouple the array, the modal representation described in Section 3.2 was used in 

[29]. The four-element array can be represented in terms of different eigenmodes. Due 

to the symmetry of the above array, its admittance matrix can be represented as 

11 12 13 12

12 11 12 13
4,4

13 12 11 12

12 13 12 11

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

Y Y Y Y
Y Y Y Y
Y Y Y Y
Y Y Y Y

      (3.57) 

It can be diagonalized as 

4,4 4,4 4 4,4= ⋅ ⋅Y U y UT ,       (3.58) 

where 

4,4

1 1 1 1
1 1 1 1

0.5
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

U ,      (3.59) 
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and 

1

2
4

3

4

0 0 0
0 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

y

y
y

y
y

.      (3.60) 

Here, yi (i = 1, 2, 3 or 4) represents the ith eigenvalue (modal admittance) of the array, 

given as following: 

1 11 12 13

2 3 11 13

4 11 12 13

2

2

= + +⎧
⎪⎪ = = −⎨
⎪

= − +⎪⎩

y Y Y Y

y y Y Y

y Y Y Y

.       (3.61) 

In the case that the impedance matrix is of concern, we can also follow the same 

procedure as above. These two approaches are related by 

1
4,4 4,4 4 4,4

−= ⋅ ⋅Z U y UT .      (3.62) 

It can be seen from Equation (3.61) that it is impossible to match the four modal 

admittances to the load at the same time. Therefore, a decoupling network is going to 

be implemented to transform the modal admittances to equal values. 

 

Figure 3.20 gives one possible structure of DN [29]. In this figure, four kinds of 

two-port networks are represented by four types of reactive elements, namely jBp1, jB0, 

jBp2 and jBm. The entire structure will be fed through the newly formed ports (1′, 2′, 3′ 

and 4′) instead of the original ports 1, 2, 3 and 4. 
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3'4'

 

Figure 3.20 DN topology for 4-port array [29] 

 

Before calculating the values of the reactive elements, a lemma which will be used in 

the design, was proved [29]. As shown in Figure 3.21, with a fixed reactive element 

jB0, for a set of circuits which have a constant conductance at the A-A' reference plane, 

that is the real part of y' is equal to a constant value C, the conductance G and 

susceptance B of the admittance y should lie on a circle centered at ( 2
0 02 ,−B C B ) 

with a radius of 2
0 / 2B C  in the (G, B) plane. This statement is proved as follows: 

 

 

Figure 3.21 General circuit for the lemma 
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From the circuit theory, it can be stated that 

0

0

0 0
2 2

0

( )
( )

( ) [ ( )] .
( )

+′ ′= + =
+ +

+ − +
=

+ +

G jB jBy C jB
G j B B

G jB jB G j B B
G B B

     (3.63) 

Equating the real and imaginary parts at both sides of Equation (3.63), respectively, 

gives 

2
0

2 2
0

2 2 2
1 0 0
2 2

0

( )

'
( )

⎧
=⎪ + +⎪

⎨
+ +⎪ =⎪ + +⎩

GB C
G B B

G B B B BB B
G B B

.      (3.64) 

Therefore, we have 

2 2
2 2 20 0

0( ) ( ) ( )
2 2

− + + =
B BG B B
C C

.     (3.65) 

Equation (3.65) shows that G and B is on the circle centered at ( 2
0 02 ,−B C B ) with a 

radius of 2
0 2B C , as shown in Figure 3.22. Therefore, the lemma is proved and will be 

used in the design of the decoupling network. 

 

2
0 2B C

0B

 

Figure 3.22 The circle defined by Equation (3.66) on GB plane 
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From the topology depicted in Figure 3.20, equivalent circuits for the three different 

modes differ from each other and were studied in [29]. Figures 3.23, 3.24 and 3.25 

show the equivalent circuits for Mode 1, 2 & 3 and 4 with the DN respectively. The 

sub-figure (a) gives the mode voltage applied to excite a corresponding mode, while 

sub-figure (b) shows the simplified equivalent circuit accordingly. 

jBp1

jBp2

jB0

jBm

+1 +1

+1+1

 

3.23(a) 

 

1′y 1′′y1y

 
3.23(b) 

Figure 3.23 Equivalent circuit for mode 1 with DN. 
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3.24(a) 

 

2y

jB0

j2Bp1 j(2Bp2+Bm)

2′y 2′′y

 

3.24(b) 

Figure 3.24 Equivalent circuit for mode 2 and 3 with DN. 
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3.25(a) 

 

4y 4′y 4′′y

 

3.25(b) 

Figure 3.25 Equivalent circuit for mode 4 with DN. 

 

To have no power reflection for all the four modes, all the four modal admittances 1′′y , 

2′′y , 3′′y  and 4′′y  should be matched to the loads. From the figures above, we have 

[29] 
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1 1 11 12 13

2 3 2 p1 11 13 p1

4 4 p1 11 12 13 p1

2

2 2

4 2 4

′ = = + +

′ ′= = + = − +

′ = + = − + +

y y Y Y Y

y y y j B Y Y j B

y y j B Y Y Y j B

.   (3.66) 

 

As the parallel elements j(2Bp2+Bm) and j(4Bp2+Bm) can only change the imaginary 

part of 1′′y , 2′′y , 3′′y  and 4′′y , the real part should be equal to each other to make 

simultaneous matching of the four modes possible. Therefore, 1′y , 2′y , 3′y  and 4′y  

should be on one circle, according to the lemma proved earlier.  

 

Let the center of the circle be at (m, n). From Equation (3.65), we get [29] 

2
0

0

/ 2=

= −

m B C

n B
.        (3.67) 

Rewrite the admittance parameters of the array as 

11 11 11

12 14 12 12

13 13 13

= +

= = +

= +

Y g jb

Y Y g jb

Y g jb

.       (3.68) 

Equation (3.66) then becomes 

1 1 1

2 3 2 2 p

4 4 4 p

( )

( 2 )

′ = +

′ ′= = + +

′ = + +

y g jb

y y g j b B

y g j b B

,      (3.69) 

where 
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1 11 12 13

2 3 11 13

4 11 12 13

1 11 12 13

2 3 11 13

4 11 12 13

p p1

2

2

2

2

2

= + +

= = −

= − +

= + +

= = −

= − +

=

g g g g

g g g g

g g g g

b b b b

b b b b

b b b b

B B

.       (3.70) 

From the lemma we have [29] 

2 2 2
1 1

2 2 2
2 2 p

2 2 2
4 4 p

( ) ( )

( ) ( )

( ) ( 2 )

− + − =

− + + − =

− + + − =

g m b n m

g m b B n m

g m b B n m

,    (3.71) 

which leads to 

2 2 2
1 1 1 1

2 2 2 2
2 2 2 p 2 p 2 p

2 2 2 2
4 4 4 p 4 p 4 p

2 2 0

2 2 2 2 0

2 4 4 2 4 0

− + + − =

− + + + + − − =

− + + + + − − =

g mg b n nb

g mg b B n b B b n B n

g mg b B n b B b n B n

. (3.72) 

From the first equation of (3.72), we have 

2 2 2
1 1 1

1

2
2

+ + −
=

g b n nbm
g

.      (3.73) 

Substituting (3.73) into the last two equations of (3.72), we have 

2 2
1 1 2 2 1 2 2

2 2
1 1 2 2 1 3 2

2 2 0

4 4 4 0

− + + + + =

− + + + + =

ax x x x bx b x c

dx x x x ex b x f
,    (3.74) 

where x1 and x2 are unknowns defined as 

1

2 p p12

=

= =

x n

x B B
,        (3.75) 

while coefficients are defined as 
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1 2

1

2 1 1 2

1
2

2 22 1
2 1 2 2

1

1 4

1

4 1 1 4

1
2

2 24 1
4 1 4 4

1

2 2

2 2

g ga
g

g b g bb
g

g bc g g g b
g

g gd
g

g b g be
g

g bf g g g b
g

−
=

−
=

= − − +

−
=

−
=

= − − +

.     (3.76) 

Given the conclusions of the lemma, and solving the Equation (3.74), we have [29] 

2
p1

0 1

22
1 1

2 2 2
1 1 1 1 1

2

2 2

=

= − = −

= =
+ + −

xB

B n x

x gnC
m g b x x b

.    (3.77) 

From Equation (3.64), we have 

2 2 2
1 0 1 0 1 0

1 2 2
1 1 0

2 2 2
2 0 2 0 2 0

2 3 p2 m2 2
2 2 0

2 2 2
4 0 4 0 4 0

4 p2 m2 2
4 4 0

( )

2
( )

4
( )

′ ′ ′+ +′′=
′ ′+ +

′ ′ ′+ +′′ ′′= = + +
′ ′+ +

′ ′ ′+ +′′ = + +
′ ′+ +

g B b B b Bb
g b B

g B b B b Bb b B B
g b B

g B b B b Bb B B
g b B

,   (3.78) 

where 1b′′ , 2b′′ , 3b′′  and 4b′′  are defined as 

1 1 1

2 3 2 2

4 4 4

′′ ′′ ′′= +

′′ ′′ ′′ ′′= = +

′′ ′′ ′′= +

y g jb

y y g jb

y g jb

.       (3.79) 

It is noted that 1y′′ , 2y′′ , 3y′′  and 4y′′  have the same real parts and it is only needed 

to equate their imaginary parts for matching, that is, 
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1 2 4′′ ′′ ′′= =b b b .        (3.80) 

Solving Equation (3.80) to get [29] 

2 2 2 2 2 2
2 0 2 0 2 0 4 0 4 0 4 0

p2 2 2 2 2
2 2 0 4 4 0

2 2 2 2 2 2 2 2 2
1 0 1 0 1 0 4 0 4 0 4 0 2 0 2 0 2 0

m 2 2 2 2 2 2
1 1 0 4 4 0 2 2 0

1
2 ( ) ( )

2
( ) ( ) ( )

⎡ ⎤′ ′ ′ ′ ′ ′+ + + +
= −⎢ ⎥′ ′ ′ ′+ + + +⎣ ⎦

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + +
= + −

′ ′ ′ ′ ′ ′+ + + + + +

g B b B b B g B b B b BB
g b B g b B

g B b B b B g B b B b B g B b B b BB
g b B g b B g b B

. (3.81) 

Here all the values of the elements in the DN have been calculated [29] and multiple 

solutions exist for an array. 

 

For the array designed and optimized previously, at the centre frequency of 2.45 GHz, 

the admittance parameters are given [29] as 

-2 -3 -1
11

-5 -2 -1
12

-3 -3 -1
13

= 1 10 + 2.598 10

= 9.397 10 + 1.161 10

= -5.183 10 + 1.009 10

× × Ω

× × Ω

× × Ω

Y j

Y j

Y j

.                 

After solving the equations above, one set of the component values of the DN at 

center frequency are [29] 

-3
p1

-2
p2

-2
0

-3
m

= 8.036 10

= -1.743 10

= -1.960 10

= -4.271 10

×

×

×

×

B

B

B

B

.         

 

The decoupled array can be matched using the L section matching network introduced 

in section 3.6.1.3. Figure 3.26 shows the calculated port scattering parameters of the 

decoupled and matched array [29]. It can be seen that S12 and S13 are reduced to -50 

dB from a level of -10 dB in the original array. The DN can be realized by a set of 

lumped reactive elements, i.e., capacitors or inductors. 
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Figure 3.26 S-parameters of the array with decoupling and matching network 

 

3.6.2.1 Measurement results 

Photographs of the front and back of the fabricated antenna in [29] are shown in 

Figures 3.27 and 3.28. The dimension for the ground plane is 10 cm × 10 cm. The 

three layers of the structure were etched on two substrates, and these were joined with 

plastic screws, as shown in the photos. The S-parameters are shown in Figure 3.29. It 

can be seen that the values of S12 and S13 are successfully reduced to below –15 dB 

over the frequency range considered. The array is also matched with a reflection 

coefficient of about –25 dB at the center frequency. 
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Figure 3.27 Photo of the front of the array [29] 

 

 

Figure 3.28 Photo of the back of the array [29] 
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Figure 3.29 Measured S-parameters of the decoupled and matched array 
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Chapter 4 Closed-form Design Equations for Decoupling Network of 

Circulant Symmetric Dense Array 

 

4.1 Introduction 

Decoupling networks for arrays with arbitrary complex mutual admittances using 

eigenmode analysis were described in Chapter 3. In this chapter, closed-form design 

equations for the decoupling network elements of circulant symmetric dense arrays 

are presented. Design equations for small arrays are described first and are then 

extended to larger arrays. 

 

4.2 Design of decoupling networks for small arrays 

A symmetrical array of n = 3 identical elements is characterized by a scattering matrix 

Sa given by  

11 12 12

12 11 12

12 12 11

=

a a a

a a a

a a a

S S S

S S S

S S S

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

aS .      (4.1) 

For an array with n = 2 elements, the scattering matrix will be the 2×2 sub-matrix 

indicated in Equation (4.1). The corresponding impedance matrix can in both cases be 

calculated from [48] 

-1
0= ( + )( )Z −a a aZ I S I S ,      (4.2) 

where I is an n×n identity matrix and Z0 is the characteristic impedance of the system. 

 

If n = 2, the eigenvalues of the impedance matrix are given by 

 
11 12

11 12

= + = +

= + =

a a
a a a

a a
b b b

Z R j X Z Z

Z R j X Z Z−
,        (4.3) 
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while the corresponding orthogonal eigenvectors are 

 
T

T

= [1, 1]

= [1, 1]−

e

e

a

b

.         (4.4) 

For n = 3, the eigenvalues are 

 
11 12

11 12

= + = + 2

= + = =−

a a
a a a

a a
b b b c

Z R j X Z Z

Z R j X Z Z Z
,     (4.5) 

with eigenvectors 

 

T

T

T

= [1, 1, 1]

= [2, 1, 1]

= [0, 1, 1]

− −

−

e

e

e

a

b

c

.       (4.6) 

 

These arrays can be decoupled using the circuits shown in Figure 4.1(a) and (b) 

respectively. Using the characteristic circuits for the eigenmodes [10, 23, 28], the 

modal admittances as seen from the new input ports (1′, 2′, etc.) are given by 

( )

( )

-1
1

-1
1 2

= +

= + +

′

′

a a

b b

Y Z j X

Y Z j X jnB
.      (4.7) 

For n = 3, note that ′ ′b cY = Y . 

 

The array can be decoupled by ensuring that the modal admittances are equal. Setting 

′ ′a bY = Y  and evaluating the real and imaginary parts give the following closed-form 

results for the elements of the decoupling network: 
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( ) ( )

2

1

1 1
2 2 22 2

1 1

4=
2

+ +1=
+ + + +

b a

b b a a

B B ACX
A

X X X XB
n R X X R X X

− ± −

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

,   (4.8) 

where 

 ( )

( ) ( )2 2 2 2

=

= 2

= + +

a b

a b b a

a b b b a a

A R R

B R X R X

C R R X R R X

−

−

−

.     (4.9) 

 

The input impedance at each port will then be equal to the modal impedances defined 

in Equation (4.7). The ports can be matched to the system impedance Z0 using L 

section impedance matching networks [48] described in section 3.6.1.3. 

 

1

2

3' 2'

1'

3

1

1'
jX1

2

2'

(a) (b)

jX1

jB2

jX1

jX1 jX1

jB2 jB2

jB2

 

Figure 4.1 Decoupling networks for (a) a 2-element array and (b) a symmetrical 

3-element array 

 

To verify the theory, decoupling networks for 2-element and 3-element monopole 

arrays were designed. The dimensions of the two arrays are given in Table 4.1. 
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Table 4.1 Dimensions of the 2-element and 3-element monopole arrays 

Monopole length λ/4 

Monopole diameter 0.025λ 

Array element spacing 0.1λ 

 

The scattering parameters of the arrays were calculated using IE3D [52] and 

converted into impedance parameters using Equation (4.2) and assuming a system 

impedance of Z0 = 50Ω. The impedance parameters at the centre frequency f0 and 

decoupling network elements as calculated using Equation (4.8) are given in Table 4.2.  

The elements of the L section impedance matching networks are also shown, with X 

being the reactance of a series element and B the susceptance of a parallel element to 

ground.  

 

Table 4.2 Calculated decoupling and matching network elements for small arrays 

 2-element array 3-element array 

Array impedance parameters 
11

12

= 50.70 + 15.34Ω

= 47.05 7.02Ω

a

a

Z j

Z j−

11

12

= 48.48 + 9.45Ω

= 44.96 12.61Ω

a

a

Z j

Z j−

Decoupling network elements 
1

2

= 41.98

= 0.023

X

B

−

−
 

1

2

= 45.95

= 0.0128

X

B

−

−
 

Decoupled port impedance = 97.75 33.66ΩaZ j′ − = 138.4 61.71ΩaZ j′ −

Matching network elements 
3

4

= 0.00681

= 54.47

B

X
 

3

4

= 0.00649

= 76.13

B

X
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Again using IE3D, the scattering parameters of the arrays were calculated over a 

frequency range of 0.95f0 to 1.05f0 and the results are shown in Figure 4.2 and 4.3. 

a
11S  and a

12S  are scattering parameters of the original array, while 11S  and 12S  are 

the scattering parameters of the decoupled and matched array. 
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Figure 4.2 Scattering parameters of the 2-element monopole array 
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Figure 4.3 Scattering parameters of the 3-element monopole array 

 



  63

The results clearly illustrate the validity of the theory. Simulations for the normalized 

azimuth radiation pattern of the decoupled 2-element and 3-element arrays when fed 

at port 1 are shown in Figures 4.4 and 4.5, respectively. When feeding port 2 of the 

2-element array, the radiation pattern is rotated by 180°. For excitation at ports 2 or 3 

of the 3-element array, the radiation pattern is rotated by ±120°. The arrays have 

superdirective radiation patterns suitable for applications in frequency multiplexing, 

direction finding and adaptive nulling. 
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Figure 4.4 Normalized azimuth radiation pattern of the 2-element array 

 



  64

0

30

60
90

120

150

180

210

240
270

300

330

0.0

0.5

1.0

0.0

0.5

1.0

3 2

 

 

 

1

 

Figure 4.5 Normalized azimuth radiation pattern of the 3-element array 

 

4.3 Design of decoupling networks for larger arrays 

To compensate the effect of mutual coupling on system performance degradation, 

various implementations of passive and lossless decoupling and matching networks 

have been introduced in literature [23-29, 53-56]. However, all reported investigations 

have been limited to a maximum of three or four radiators. For maximum versatility, 

the number of elements in an adaptive array needs to be as large as possible. Extended 

from Section 4.2, the design of decoupling networks for larger arrays is explored here. 

For arrays with elements evenly distributed on the circumference of a circle, also 

called circulant symmetric arrays, a systematic design approach can be formulated. It 

involves the step-by-step decoupling of the characteristic eigenmodes of the array. 

The procedure is illustrated by considering the examples of a 6-element and an 

8-element circular symmetrical monopole arrays. 
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4.3.1 Basic circuit model 

In order to establish a basic model which can be used to decouple eigenmodes of an 

array, we first consider the general circuit models shown in Figure 4.6. 

 

'
1Z '

2Z  

Figure 4.6 General circuit model for matching two distinct terminating impedances 

 

The circuits are terminated in impedances Z1 = R1 + jX1 and Z2 = R2 + jX2. A series 

element of impedance of jX and parallel elements with admittances of jn1B and jn2B 

are used to transform Z1and Z2 to produce input admittances of 1′Y  and 2′Y . The 

input admittances are given by 

( )

( )

-1
1 1 1

-1
2 2 2

= + +

= + +

′

′

Y Z j X jn B

Y Z j X jn B
.      (4.10) 

The aim is to match the input admittances. Setting 1 2′ ′Y = Y  and evaluating the real and 

imaginary parts give 

 
2

1 2
4( , )

2
− ± −

= =
b b acX g Z Z

a
     (4.11) 

and 

 

( ) ( )

1 1 2 2

1 2
2 22 2

1 2 1 1 2 2

( , , , , )

1
( )

=

⎛ ⎞+ +⎜ ⎟= −
⎜ ⎟− + + + +⎝ ⎠

B h Z n Z n X

X X X X
n n R X X R X X

,   (4.12) 

where 



  66

 ( )

( ) ( )

1 2

1 2 2 1

2 2 2 2
1 2 2 2 1 1

2

= −

= −

= + − +

a R R

b R X R X

c R R X R R X

.    (4.13) 

This basic circuit can be used to design a decoupling network for a larger array. 

 

4.3.2 Decoupling of large arrays 

Decoupling of an array involves a process of modifying its impedance matrix to 

reduce all the off-diagonal elements to zero. Alternatively, it can also be regarded as a 

process of equalizing the eigenmode impedances (i.e. the eigenvalues of the 

impedance matrix). The corresponding eigenvectors can be viewed as the port 

voltages under the conditions when a specific mode is excited. In general, an 

N-element array characterized by an impedance matrix with k distinct eigenvalues 

would require a decoupling network with 2(k-1) independent parameters. Decoupling 

of a symmetrical array can be accomplished in (k-1) stages by using a ladder of 

circulant symmetric network configurations (henceforth referred to as stage networks) 

which each consist of N identical series reactive elements followed by N identical 

parallel reactive elements. The parallel elements can be arranged in the shape of 

polygons (a single N-sided polygon or a set of smaller polygons rotated with respect 

to one another) or in the shape of a star (with or without a common node at the center). 

We need to identify (k-1) suitable stage networks. The stage networks will reduce to 

equivalent circuits resembling those in Figure 4.6 for every eigenmode. We can 

determine the parameter n of a stage network for each mode by assuming port 

voltages corresponding to the appropriate eigenvector and using circuit analysis to 

obtain the equivalent network. Two modes with distinct eigenmode impedances can 

then be decoupled during each stage. We may use the relations provided in Equations 
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(4.11) and (4.12) to determine the values of the network elements. 

 

This principle is best illustrated by considering examples of circulant symmetric 

6-element and 8-element monopole arrays with elements regularly spaced on the 

circumference of a circle. 

 

4.3.2.1 Decoupling of a circular symmetrical 6-element array 

For such an array, mutual coupling is only a function of the distance between 

elements, and therefore the scattering parameters of the array are given by 

 

11 12 13 14 13 12

12 11 12 13 14 13

13 12 11 12 13 14

14 13 12 11 12 13

13 14 13 12 11 12

12 13 14 13 12 11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

aS

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

.    (4.14) 

The corresponding impedance matrix can be computed from Equation (4.2). The 

eigenvalues of the impedance matrix (viz. the eigenmode impedances) are given by 

11 12 13 14

11 12 13 14

11 12 13 14

11 12 13 14

2 2

2 2

= + + +

= − + −

= = − − +

= = + − −

a a a a
a

a a a a
b

a a a a
c d

a a a a
e f

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

.    (4.15) 

The corresponding eigenvectors are 
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[1,1,1,1,1,1]

[1, 1,1, 1,1, 1]

[1, 0, 1,1, 0, 1]

[1, 1, 0,1, 1, 0]

[1, 0, 1, 1, 0,1]

[1,1, 0, 1, 1, 0]

=

= − − −

= − −

= − −

= − −

= − −

e

e

e

e

e

e

T
a

T
b

T
c

T
d

T
e

T
f

.     (4.16) 

 

In order to decouple the array, we use a combination of the circuits shown in Figure 

4.7 to decouple sets of eigenmodes. The equivalent circuit for each mode is defined in 

Figure 4.8. 

 

 

Figure 4.7 Stage network configurations for 6-element array 

 

'
mZ  

Figure 4.8 Equivalent network of the circuits in Figure 4.7 when mode m is excited 
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The derivation of the parameter n in the equivalent circuits for each mode is best 

illustrated by considering the circuits in Figure 4.7 and assuming port voltages 

corresponding to the respective eigenvectors. Note that “O.C.” stands for open circuit 

while “S.C.” stands for short circuit to the ground. First, let’s consider the first circuit 

in Figure 4.7 and mode a. Since the eigenvector is [1, 1, 1, 1, 1, 1]T
a =e , an 

excitation vector [1, 1, 1, 1, 1, 1] Volt=V  is applied to ports 1′-6′ as shown in 

Figure 4.9(a). The circuit reduces to the one shown in Figure 4.9(b), resulting in the 

equivalent circuit of Figure 4.9(c). From inspection, it follows that the parameter n = 

0 for mode a. 

 

 

(a) Mode a of the first circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for mode a 



  70

aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.9 Equivalent circuit of the first circuit in Figure 4.7 for mode a 

 

Then we consider mode b of the first circuit in Figure 4.7. Since the eigenvector is 

[1, -1, 1, -1, 1, -1]T
b =e , [1, -1, 1, -1, 1, -1] Volt=V  is applied to ports 1′-6′ as 

shown in Figure 4.10(a). The circuit reduces to the one shown in Figure 4.10(b), 

resulting in the equivalent circuit of Figure 4.10(c). From inspection, it follows that 

the parameter n = 4 for mode b. 

 

 

(a) Mode b of the first circuit in Figure 4.7 



  71

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.10 Equivalent circuit of the first circuit in Figure 4.7 for mode b 

 

Next, we consider modes c and d of the first circuit in Figure 4.7. Since the 

eigenvector is [1, 0, -1, 1, 0, -1]T
c =e , [1, 0, -1, 1, 0, -1] Volt=V  is applied to ports 

1′-6′ as shown in Figure 4.11(a). Note that when a port has a voltage of 0 V, it can be 

grounded to earth. The circuit reduces to the one shown in Figure 4.11(b), resulting in 

the equivalent circuit of Figure 4.11(c). From inspection, it follows that the parameter 

n = 3 for mode c and d. 

 

Finally, we consider modes e and f of the first circuit in Figure 4.7. Since the 

eigenvector is [1, 0, -1, -1, 0, 1]T
e =e , [1, 0, -1, -1, 0, 1] Volt=V  is applied to ports 

1′-6′ as shown in Figure 4.12(a). The circuit reduces to the one shown in Figure 

4.12(b), resulting in the equivalent circuit of Figure 4.12(c). From inspection, it 

follows that the parameter n = 1 for mode e and f. 
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(a) Modes c and d of the first circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.11 Equivalent circuit of the first circuit in Figure 4.7 for modes c and d 
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(a) Modes e and f of the first circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for modes e and f 

eZ ′

 

(c) Equivalent circuit for modes e and f 

Figure 4.12 Equivalent circuit of the first circuit in Figure 4.7 for modes e and f 

 

Now the equivalent circuits of the first circuit in Figure 4.7 for all modes have been 

derived. Similarly, the equivalent circuits of the second and the third circuits in Figure 

4.7 for different modes can be obtained and are shown in Figures 4.13-4.16 and 

Figures 4.17-4.20 respectively. The results are summarized in Table 4.3. 
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(a) Mode a of the second circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for mode a 

aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.13 Equivalent circuit of the second circuit in Figure 4.7 for mode a 
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(a) Mode b of the second circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.14 Equivalent circuit of the second circuit in Figure 4.7 for mode b 
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(a) Modes c and d of the second circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.15 Equivalent circuit of the second circuit in Figure 4.7 for modes c and d 
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(a) Modes e and f of the second circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for modes e and f 

eZ ′

 

(c) Equivalent circuit for modes e and f 

Figure 4.16 Equivalent circuit of the second circuit in Figure 4.7 for modes e and f 
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(a) Mode a of the third circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for mode a 

aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.17 Equivalent circuit of the third circuit in Figure 4.7 for mode a 
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1
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1'

2'

3'

4'

5'

6'

jX

jXjX

jXjX

jX

jB

jB jB jB

jB

jB

1V
-1V

1V
-1V

1V

-1V

S.C.

S.C.
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(a) Mode b of the third circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.18 Equivalent circuit of the third circuit in Figure 4.7 for mode b 
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(a) Modes c and d of the third circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.19 Equivalent circuit of the third circuit in Figure 4.7 for modes c and d 
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(a) Modes e and f of the third circuit in Figure 4.7 

 

(b) Intermediate equivalent circuit for modes e and f 

eZ ′

 

(c) Equivalent circuit for modes e and f 

Figure 4.20 Equivalent circuit of the third circuit in Figure 4.7 for modes e and f 

 

From Table 4.3, it is clear that we can use the first circuit to decouple mode groups (c, 

d) and (e, f), the second circuit to decouple mode groups b and (c, d, e, f) and finally 

the third circuit for decoupling mode groups a and (b, c, d, e, f). The complete 

decoupling network is shown in Figure 4.21. 
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Table 4.3 Basic circuit configurations for mode decoupling 

Circuit Parameter n 

1
jX

1'
jB

6 2

3

4

5

2'

3'

4'

5'

6'

jX jX

jX

jX

jX

jB

jB

jBjB

jB

 

Mode a: 
n = 0 

 
Mode b: 

n = 4 
 

Modes c, d: 
n = 3 

 
Modes e, f: 

n = 1 

 

Modes a, b: 
n = 0 

 
Modes c, d, e, f: 

n = 3 

 

Mode a: 
n = 0 

 
Modes b, c, d, e, f: 

n = 1 
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Figure 4.21 Complete decoupling network for a symmetrical 6-element array 

 

Comparing the relevant equivalent circuits for mode groups (c, d) and (e, f) with those 

shown in Figure 4.6, it follows that 1 ( , )= c eX g Z Z  and 1 1( ,3, ,1, )= c eB h Z Z X , with g 

and h as defined in Equations (4.11) and (4.12). The new impedance parameters as 

seen from ports 1', 2', 3', 4', 5' and 6' in Figure 4.21 are given by 

 1 1
1 1(( ) )− −′ = + +aZ Z Z Y .    (4.17) 

The terms Z1 and Y1 in (4.17) are defined by 

 diag[ , , , , , ]=Zi i i i i i ijX jX jX jX jX jX ,    (4.18) 

and 
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1 1 1

1 1 1

1 1 1
1

1 1 1

1 1 1

1 1 1

2 - 0 0 0 -
- 2 - 0 0 0

0 - 2 - 0 0
=

0 0 - 2 - 0
0 0 0 - 2 -

- 0 0 0 - 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

j B jB jB
jB j B jB

jB j B jB
jB j B jB

jB j B jB
jB jB j B

.    (4.19) 

The eigenvalues for Z' are then obtained as 

11 12 13 14

11 12 13 14

11 12 13 14

2 2

2 2

′ ′ ′ ′ ′= + + +

′ ′ ′ ′ ′= − + −

′ ′ ′ ′ ′ ′ ′ ′= = = = − − +

a

b

c d e f

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z Z Z Z

.  (4.20) 

Note that modes c, d, e and f are now decoupled. 

 

Subsequently, we decouple mode groups b and (c, d, e, f) using circuit elements X2 

and B2. Comparing the equivalent circuits with those shown in Figure 4.6 gives 

2 ( , )′ ′= b cX g Z Z and 2 2( ,0, ,3, )′ ′= b cB h Z Z X .  The impedance parameters as seen from 

ports 1'', 2'', 3'', 4'', 5'' and 6'' in Figure 4.21 are given by 

 1 1
2 2(( ) )− −′′ ′= + +Z Z Z Y ,    (4.21) 

where Z2 is defined by Equation (4.18), and 

2 2 2

2 2 2

2 2 2
2

2 2 2

2 2 2

2 2 2

2 0 - 0 - 0
0 2 0 - 0 -

- 0 2 0 - 0
=

0 - 0 2 0 -
- 0 - 0 2 0

0 - 0 - 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

j B jB jB
j B jB jB

jB j B jB
jB j B jB

jB jB j B
jB jB j B

.   (4.22) 

The eigenvalues of ′′Z  are found as 

11 12 13 14

11 12 13 14

2 2

2 2

′′ ′′ ′′ ′′ ′′= + + +

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= = = = = − + −

a

b c d e f

Z Z Z Z Z

Z Z Z Z Z Z Z Z Z
.    (4.23) 
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Finally, mode groups a and (b, c, d, e, f) are decoupled. From the equivalent circuits 

for these modes, it follows that 3 ( , )′′ ′′= a bX g Z Z  and 3 3( ,0, ,1, )′′ ′′= a bB h Z Z X . The 

impedance parameters as seen from ports 1''', 2''', 3''', 4''', 5''' and 6''' are then given by 

 1 1(( ) )− −′′′ ′′= + +3 3Z Z Z Y ,    (4.24) 

where Z3 is defined by Equation (4.18) and 

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3
3

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

5 - - - - -6 6 6 6 6 6
5- - - - -6 6 6 6 6 6

5- - - - -6 6 6 6 6 6=
5- - - - -6 6 6 6 6 6

5- - - - -6 6 6 6 6 6
5- - - - -6 6 6 6 6 6

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

Y

j j j j jj B B B B B B

j j j j jB j B B B B B

j j j j jB B j B B B B

j j j j jB B B j B B B

j j j j jB B B B j B B

j j j j jB B B B B j B

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.  (4.25) 

 

All modes are then matched, since 

11a b c d e fZ Z Z Z Z Z Z′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′= = = = = = .    (4.26) 

The new input ports will also be decoupled and will have the same input impedance. 

Again, the ports can be matched to the system impedance Z0 using L section 

impedance matching networks [48] described in Section 3.6.1.3. 

 

To verify the theory, a decoupling network for a specific 6-element monopole array 

was designed and analyzed. The six elements of the array were evenly distributed on a 

circle with radius of 15 mm (0.125λ at a center frequency of f0 = 2.5 GHz). Each 

monopole had a length of 28 mm (0.23λ) and a diameter of 1 mm (0.0083λ). With a 

system impedance of Z0 = 50 Ω, the array’s S-parameters were computed using IE3D 

[52] and converted into impedance parameters using Equation (4.2). The scattering 
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parameters of the array at f0 and the computed decoupling network elements are 

specified in Table 4.4. The elements of the L section impedance matching networks 

are also shown, with B4 being the susceptance of a parallel element to ground and X4 

the reactance of a series element. 

 

Table 4.4 S-parameters and decoupling network elements for the 6-element array 

Array scattering parameter 

11

12

13

14

6.79 dB 159.3

7.96 dB 4.5

15.33 dB 53.4

17.93 dB 101.5

= − ∠ °

= − ∠ °

= − ∠− °

= − ∠− °

a

a

a

a

S

S

S

S

 

Decoupling network elements 

1

2

3

4.4123,

2.2399,

2.7955,

=

= −

=

X

X

X

1

2

3

0.05184

0.06078

0.1087

=

= −

=

B

B

B

 

Decoupled port impedance 142.661 69.2205′′′ = − ΩaZ j  

Matching network elements 4 40.006263, 79.4505= =B X  

 

The scattering parameters of the decoupled and matched array were calculated over a 

frequency range of 0.98f0 to 1.02f0 and shown in Figures 4.22. The results shown 

clearly illustrate the validity of the theory. Simulations for the normalized azimuth 

radiation pattern of the decoupled 6-element array obtained by feeding the port 1 are 

shown in Figure 4.23. For excitation at successive ports, the radiation pattern will be 

rotated by 60°. The array is suitable for applications in frequency multiplexing, 

direction finding and adaptive nulling. 
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Figure 4.22 Scattering parameters of the decoupled and matched 6-element array 
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Figure 4.23 Normalized azimuth radiation pattern of the decoupled 6-element array 
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4.3.2.2 Decoupling of a circular symmetrical 8-element array 

The scattering parameters of the circular symmetrical 8-element array are given by 

 

11 12 13 14 15 14 13 12

12 11 12 13 14 15 14 13

13 12 11 12 13 14 15 14

14 13 12 11 12 13 14 15

15 14 13 12 11 12 13 14

14 15 14 13 12 11 12 13

13

=aS

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S14 15 14 13 12 11 12

12 13 14 15 14 13 12 11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a a a a a a a

a a a a a a a a

S S S S S S

S S S S S S S S

.    (4.27) 

Again, the corresponding impedance matrix can be computed from Equation (4.2). 

The eigenvalues of the impedance matrix are given by 

11 12 13 14 15

11 12 13 14 15

11 13 15

11 12 14 15

11 12 14 15

2 2 2

2 2 2

2

2 2

2 2

= + + + +

= − + − +

= = − +

= = − + −

= = + − −

a a a a a
a

a a a a a
b

a a a
c d

a a a a
e f

a a a a
g h

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

,    (4.28) 

and the corresponding eigenvectors are 

 

[1, 1, 1, 1, 1, 1, 1, 1]

[1, -1,1, -1,1, -1, 1, -1]

[1, 1, -1, -1, 1, 1, -1, -1]

[1, -1, -1, 1, 1, -1, -1, 1]

[ 2, -1, 0, 1, - 2, 1, 0, -1]

[1, - 2, -1, 0, -1, 2, -1, 0]

[ 2, 1, 0, -1, -

T
a

T
b

T
c

T
d

T
e

T
f

g

=

=

=

=

=

=

=

e

e

e

e

e

e

e 2, -1, 0, 1]

[1, 2, 1, 0, -1, - 2, -1, 0]

T

T
h =e

.    (4.29) 
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In order to decouple the eigenmodes, we need to ensure that their modal impedances, 

i.e. eigenvalues of impedance matrix, are equal. Similar to the previous example of 

6-element array, we use a combination of the circuits shown in Figure 4.24 to 

decouple sets of eigenmodes. The equivalent circuit for each mode is also defined in 

Figure 4.8. 

 

 

Figure 4.24 Stage network configurations for 8-element array 

 

Before calculating the values of components in each circuit, we show the derivation of 

the parameter n in the equivalent circuits for each mode. Please note that “O.C.” 

stands for open circuit while “S.C.” stands for short circuit to the ground. 

 



  90

First, let’s consider the first circuit in Figure 4.24 and mode a. Since the eigenvector 

is [1, 1, 1, 1, 1, 1, 1, 1]T
a =e , an excitation vector [1, 1, 1, 1, 1, 1, 1, 1] Volt=V  is 

applied to ports 1′-8′ as shown in Figure 4.25(a). The circuit reduces to the one shown 

in Figure 4.25(b), resulting in the equivalent circuit of Figure 4.25(c). From inspection, 

it follows that the parameter n = 0 for mode a. 

 

 

(a) Mode a of the first circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for mode a 

aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.25 Equivalent circuit of the first circuit in Figure 4.24 for mode a 
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Next, we consider mode b of the first circuit in Figure 4.24. Since the eigenvector is 

[1, -1, 1, -1, 1, -1, 1, -1]=e T
b , [1, -1, 1, -1, 1, -1, 1, -1] Volt= +V  is applied to ports 

1′-8′ as shown in Figure 4.26(a). The circuit reduces to the one shown in Figure 

4.26(b), resulting in the equivalent circuit of Figure 4.26(c). From inspection, it 

follows that the parameter n = 4 for mode b. 

 

(a) Mode b of the first circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.26 Equivalent circuit of the first circuit in Figure 4.24 for mode b 
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Then, we consider modes c and d of the first circuit in Figure 4.24. Since the 

eigenvector is [1, 1, -1, -1, 1, 1, -1, -1]=e T
c , [1, 1, -1, -1, 1, 1, -1, -1] Volt=V  is 

applied to ports 1′-8′ as shown in Figure 4.27(a). The circuit reduces to the one shown 

in Figure 4.27(b), resulting in the equivalent circuit of Figure 4.27(c). From inspection, 

it follows that the parameter n = 2 for modes c and d. 

 

(a) Modes c and d of the first circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.27 Equivalent circuit of the first circuit in Figure 4.24 for modes c and d 
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However, for modes e, f, g and h of the first circuit in Figure 4.24, we have to use a 

different approach to obtain the equivalent circuit. Let’s consider modes e and f first. 

Since the eigenvector of mode e is [ 2, -1, 0, 1, - 2, 1, 0, -1]=e T
e , an excitation 

vector [ 2, -1, 0, 1, - 2, 1, 0, -1] Volt=V  is applied to ports 1′-8′ as shown in 

Figure 4.28(a). If a port has a voltage of 0 V, it can be grounded to earth. Assume the 

ports 1-8 are terminated in an impedance of Ze. Then the circuit in Figure 4.28(a) 

reduces to the one in Figure 4.28(b). Therefore, the current I can be calculated as 

2 2 ( 2 1)

2 2 (2 2)

= + × +
+

= + × +
+

e

e

I jB
Z jX

jB
Z jX

.     (4.30) 

Then the input admittance is 

1 (2 2)
2

′ = = + +
+e

e

IY jB
Z jX

.     (4.31) 

From the Equation (4.31) and Figure 4.28(c), it can be concluded that the equivalent 

circuit for modes e and f is the circuit in Figure 4.28(d). From inspection, it follows 

that the parameter n = 2 2+  for modes e and f. 
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2V

- 2V

 

(a) Modes e and f of the first circuit in Figure 4.24 

2V

′eY

 

(b) Intermediate circuit 

′eY(2 2)+j B
 

(c) Equivalent circuit of intermediate circuit 
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′eZ(2 2)+j B

 

(d) Equivalent circuit for modes e and f 

Figure 4.28 Equivalent circuit of the first circuit in Figure 4.24 for modes e and f 

 

Finally, let us consider modes g and h of the first circuit in Figure 4.24. Since the 

eigenvector of mode g is [ 2, 1, 0, -1, - 2, -1, 0, 1]=e T
g , an excitation vector 

[ 2, 1, 0, -1, - 2, -1, 0, 1] Volt=V  is applied to ports 1′-8′ as shown in Figure 

4.29(a). The circuit reduces to the one in Figure 4.29(b) 

 

2V

- 2V

 

(a) Modes g and h of the first circuit in Figure 4.24 
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2V

′gY

 

(b) Intermediate circuit 

(2 2)−j B ′gY

 

(c) Equivalent circuit of intermediate circuit 

(2 2)−j B ′gZ

 

(d) Equivalent circuit for modes g and h 

Figure 4.29 Equivalent circuit of the first circuit in Figure 4.24 for modes g and h 

 

Similar to modes e and f, the current I can be calculated as 

2 2 ( 2 1)

2 2 (2 2)

= + × −
+

= + × −
+

g

g

I jB
Z jX

jB
Z jX

.     (4.32) 

Then the input admittance is 

1 (2 2)
2

′ = = + −
+g

g

IY jB
Z jX

.     (4.33) 
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From the Equation (4.33) and Figure 4.29(c), it can be concluded that the equivalent 

circuit for modes g and h is the circuit in Figure 4.29(d). From inspection, it follows 

that the parameter n = 2 2−  for modes g and h. 

 

Now the equivalent circuits of the first circuit in Figure 4.24 have been derived for all 

modes. In the same way, the equivalent circuits of other circuits in Figure 4.24 for 

different modes can be obtained and are shown in Figures 4.30-4.34, Figures 

4.35-4.39 and Figures 4.40-4.44 respectively. The results are then summarized in 

Table 4.5. 

 

 

(a) Mode a of the second circuit in Figure 4.24 

1

1'
jX

 

(b) Intermediate equivalent circuit for mode a 
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aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.30 Equivalent circuit of the second circuit in Figure 4.24 for mode a 

 

 

(a) Mode b of the second circuit in Figure 4.24 

1

1'
jX

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.31 Equivalent circuit of the second circuit in Figure 4.24 for mode b 
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(a) Modes c and d of the second circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.32 Equivalent circuit of the second circuit in Figure 4.24 for modes c and d 
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2V

- 2V

 

(a) Modes e and f of the second circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes e and f 

eZ ′

 

(c) Equivalent circuit for modes e and f 

Figure 4.33 Equivalent circuit of the second circuit in Figure 4.24 for modes e and f 
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2V

- 2V

 

(a) Modes g and h of the second circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes g and h 

jX

Zg j2B ′gZ

 

(c) Equivalent circuit for modes g and h 

Figure 4.34 Equivalent circuit of the second circuit in Figure 4.24 for modes g and h 
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(a) Mode a of the third circuit in Figure 4.24 

1

1'
jX

 

(b) Intermediate equivalent circuit for mode a 

aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.35 Equivalent circuit of the third circuit in Figure 4.24 for mode a 
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(a) Mode b of the third circuit in Figure 4.24 

1

1'
jX

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.36 Equivalent circuit of the third circuit in Figure 4.24 for mode b 
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(a) Modes c and d of the third circuit in Figure 4.24 

1

1'
jX

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.37 Equivalent circuit of the third circuit in Figure 4.24 for modes c and d 
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2V

- 2V

 

(a) Modes e and f of the third circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes e and f 

eZ ′

 

(c) Equivalent circuit for modes e and f 

Figure 4.38 Equivalent circuit of the third circuit in Figure 4.24 for modes e and f 
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1

1' 2

3

4
5

6

8

2'

3'

4'
5'

6'

7'

8'

jX
jX

jX

jX

jX

jX

jX

jX

jB jB

jB

jB

jBjB

jB

jB

S.C.

1V

0V

-1V-1V

0V

2V

- 2V

1V

7

 

(a) Modes g and h of the third circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes g and h 

′gZ

 

(c) Equivalent circuit for modes g and h 

Figure 4.39 Equivalent circuit of the third circuit in Figure 4.24 for modes g and h 
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(a) Mode a of the forth circuit in Figure 4.24 

1

1'
jX

 

(b) Intermediate equivalent circuit for mode a 

aZ ′

 

(c) Equivalent circuit for mode a 

Figure 4.40 Equivalent circuit of the forth circuit in Figure 4.24 for mode a 
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1

1' 2

3

4

5

6

8

2'

3'

4'
5'

6'

7'

8'

jX
jX

jX

jX

jX

jX

jX

jX

jB jB

jB

jB
jBjB

jB

jB

1V
-1V

1V

-1V

1V

-1V

1V

-1V

S.C.

7

 

(a) Mode b of the forth circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for mode b 

bZ ′

 

(c) Equivalent circuit for mode b 

Figure 4.41 Equivalent circuit of the forth circuit in Figure 4.24 for mode b 
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(a) Modes c and d of the forth circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes c and d 

cZ ′

 

(c) Equivalent circuit for modes c and d 

Figure 4.42 Equivalent circuit of the forth circuit in Figure 4.24 for modes c and d 
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2V

- 2V

 

(a) Modes e and f of the forth circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes e and f 

eZ ′

 

(c) Equivalent circuit for modes e and f 

Figure 4.43 Equivalent circuit of the forth circuit in Figure 4.24 for modes e and f 
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(a) Modes g and h of the forth circuit in Figure 4.24 

 

(b) Intermediate equivalent circuit for modes g and h 

′gZ

 

(c) Equivalent circuit for modes g and h 

Figure 4.44 Equivalent circuit of the forth circuit in Figure 4.24 for modes g and h 
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Table 4.5 Basic circuit configurations for mode decoupling 

Circuit Parameter n 

 

Mode a: 
n = 0 

 
Mode b: 

n = 4 
 

Modes c, d: 
n = 2 

 
Modes e, f: 
n = 2 2+  

 
Modes g, h: 
n = 2 2−  

1

1' 2

3

4

5

6

7

8

2'

3'

4'
5'

6'

7'

8'

jX
jX

jX

jX

jX

jX

jX

jX

jB
jB

jB

jBjB

jB jB
jB

 

Modes a, b: 
n = 0 

 
Modes c, d: 

n = 4 
 

Modes e, f, g, h: 
n = 2 

 

Modes a, b, c, d: 
n = 0 

 
Modes e, f, g, h: 

n = 1 

 

Mode a: 
n = 0 

 
Modes b, c, d, e, f, g, h: 

n = 1 
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From Table 4.5, it is clear that the first circuit can be used to decouple mode groups (e, 

f) and (g, h), the second circuit to decouple mode groups b and (c, d), then the third 

circuit to decouple mode groups (b, c, d) and (e, f, g, h) and finally the forth circuit to 

decouple mode groups a and (b, c, d, e, f, g, h). Details of the design of decoupling 

circuit are as follows. 

 

Circuit shown in Figure 4.45(1) is used to decouple mode groups (e, f) and (g, h). 

Based on the equivalent circuits for these modes, the circuit elements are given by 

1 ( , )= e gX g Z Z  and 1 1( , 2 2, , 2 2, )= + −e gB h Z Z X , where functions g and h are 

defined in Equations (4.11) and (4.12). 

1

1' 2

3

4

5

6

7

8

2'
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4'
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jX1
jX1
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1" 2'
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jX4

jX4

jX4
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jX4

jX4

jX4
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jB2

jB2jB2

jB2 jB2
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jB3 jB3

jB3

jB3

jB3jB3

jB3
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jB4 jB4

jB4
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jB4
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(1) (2)

(3) (4)  

Figure 4.45 Decoupling circuit for 8-element array 
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The new impedance parameters as seen from ports 1'-8' in Figure 4.45(1) are given by 

 1 1
1 1(( ) )− −′ = + +aZ Z Z Y ,    (4.34) 

where Z1 and Y1 in (4.34) are defined by 

 diag[ , , , , , , , ]=Zi i i i i i i i ijX jX jX jX jX jX jX jX ,    (4.35) 

and 

1 1 1

1 1 1

1 1 1

1 1 1
1

1 1 1

1 1 1

1 1 1

1 1 1

2 - 0 0 0 0 0 -
- 2 - 0 0 0 0 0

0 - 2 - 0 0 0 0
0 0 - 2 - 0 0 0

=
0 0 0 - 2 - 0 0
0 0 0 0 - 2 - 0
0 0 0 0 0 - 2 -

- 0 0 0 0 0 - 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

j B jB jB
jB j B jB

jB j B jB
jB j B jB

jB j B jB
jB j B jB

jB j B jB
jB jB j B

.  (4.36) 

 

The eigenvalues for Z' are then obtained as 

11 12 13 14 15

11 12 13 14 15

11 13 15

11 12 14 15

2 2 2

2 2 2

2

2 2

′ ′ ′ ′ ′ ′= + + + +

′ ′ ′ ′ ′ ′= − + − +

′ ′ ′ ′ ′= = − +

′ ′ ′ ′ ′ ′ ′ ′= = = = − + −

a

b

c d

e f g h

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z Z Z Z

.   (4.37) 

Note that modes e, f, g and h are now decoupled. 

 

Subsequently, we decouple mode groups b and (c, d) using the circuit shown in Figure 

4.45(2). From the equivalent circuits for these modes, circuit elements X2 and B2 can 

be calculated by 2 ( , )′ ′= b cX g Z Z and 2 2( ,0, , 4, )′ ′= b cB h Z Z X . The impedance 

parameters as seen from ports 1''-8'' in Figure 4.45(2) are given by 

 1 1
2 2(( ) )− −′′ ′= + +Z Z Z Y ,    (4.38) 

where Z2 is defined by Equation (4.35), and 
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2 2 2

2 2 2

2 2 2

2 2 2
2

2 2 2

2 2 2

2 2 2

2 2 2

2 0 - 0 0 0 - 0
0 2 0 - 0 0 0 -

- 0 2 0 - 0 0 0
0 - 0 2 0 - 0 0

=
0 0 - 0 2 0 - 0
0 0 0 - 0 2 0 -

- 0 0 0 - 0 2 0
0 - 0 0 0 - 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

j B jB jB
j B jB jB

jB j B jB
jB j B jB

jB j B jB
jB j B jB

jB jB j B
jB jB j B

.  (4.39) 

Then, the eigenvalues of ′′Z  are as 

11 12 13 14 15

11 12 13 14 15

11 12 14 15

2 2 2

2 2 2

2 2

′′ ′′ ′′ ′′ ′′ ′′= + + + +

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= = = − + − +

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= = = = − + −

a

b c d

e f g h

Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

.   (4.40) 

 

Then, mode groups (b, c, d) and (e, f, g, h) are decoupled with circuit shown in Figure 

4.45(3). From the equivalent circuits for these modes, it follows that 3 ( , )′′ ′′= b eX g Z Z  

and 3 3( ,0, ,1, )′′ ′′= b eB h Z Z X . The impedance parameters as seen from ports 1'''-8''' are 

then given by 

 1 1(( ) )− −′′′ ′′= + +3 3Z Z Z Y ,    (4.41) 

where Z3 is defined by Equation (4.35) and 
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3 3

3 3

3 3

3 3

3

3 3

3 3

3 3

3 3

0 0 0 0 0 0
2 2

0 0 0 0 0 0
2 2

0 0 0 0 0 0
2 2

0 0 0 0 0 0
2 2=

0 0 0 0 0 0
2 2

0 0 0 0 0 0
2 2

0 0 0 0 0 0
2 2

0 0 0 0 0 0
2 2

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎣ ⎦

Y

j jB B

j jB B

j jB B

j jB B

j jB B

j jB B

j jB B

j jB B

. (4.42) 

 

The eigenvalues of ′′′Z  are as 

11 12 13 14 15

11 12 13 14 15

2 2 2

2 2 2

′′′ ′′′ ′′′ ′′′ ′′′ ′′′= + + + +

′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′= = = = = = = − + − +

a

b c d e f g h

Z Z Z Z Z Z

Z Z Z Z Z Z Z Z Z Z Z Z
.  (4.43) 

 

Finally, mode groups a and (b, c, d, e, f, g, h) are decoupled using the circuit shown in 

Figure 4.45(4). Based on the equivalent circuits for these modes, circuit elements X4 

and B4 can be got by 4 ( , )′′′ ′′′= a bX g Z Z and 4 4( ,0, ,1, )′′′ ′′′= a bB h Z Z X . The impedance 

parameters as seen from ports 1''''-8'''' are then given by 

 1 1(( ) )− −′′′′ ′′′= + +4 4Z Z Z Y ,    (4.44) 

where Z4 is defined by Equation (4.35) and 
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j j j j j j jB B B B B j B B B

j j j j j j jB B B B B B j B B

j j j j j j jB B B B B B B j B

.  (4.45) 

 

Now, all modes are then matched since 

"" "" "" "" "" "" "" "" ""
11a b c d e f g hZ Z Z Z Z Z Z Z Z= = = = = = = = .   (4.46) 

The new input ports will also be decoupled and will have the same input impedance. 

Again, the ports can be matched to the system impedance Z0 using L section 

impedance matching networks [48] described in Section 3.6.1.3. 

 

To verify the theory, a decoupling network for a specific 8-element monopole array 

was designed. The eight elements of the array were evenly distributed on a circle with 

radius of 15 mm (0.125λ at a center frequency of f0 = 2.5 GHz). Each monopole had a 

length of 28 mm (0.23λ) and a diameter of 1mm (0.0083λ). With a system impedance 

of Z0 = 50 Ω, the array’s S-parameters were computed using IE3D [52] and converted 

into impedance parameters using Equation (4.2). The scattering parameters of the 

array at f0 and the computed decoupling network elements are specified in Table 4.6. 

The elements of the L section impedance matching networks are also shown, with B5 
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being the susceptance of a parallel element to ground and X5 the reactance of a series 

element. 

 

Table 4.6 S-parameters and decoupling network elements for the 8-element array 

Array scattering parameter 

11

12

13

14

15

5.92 dB 167.6

7.73 dB 13.8

13.42 dB 27.9

19.95 dB 85.0

20.97 dB 126.5

= − ∠ °

= − ∠ °

= − ∠− °

= − ∠− °

= − ∠− °

a

a

a

a

a

S

S

S

S

S

 

Decoupling network elements 

1

2

3

4

0.0602,

2.8225,

0.3403,

2.8642,

= −

= −

= −

= −

X

X

X

X

1

2

3

4

0.1427

1.3181

58.6733

0.3385

= −

= −

=

= −

B

B

B

B

 

Decoupled port impedance 180.374 115.258′′′′= − ΩaZ j  

Matching network elements 5 50.005437, 101.001= =B X  

 

The scattering parameters of the decoupled and matched array were calculated over a 

frequency range of 0.99f0 to 1.01f0 and shown in Figures 4.46. Again, the results 

shown clearly illustrate the validity of the theory. Simulations for the normalized 

azimuth radiation pattern of the 8-element array obtained by feeding the port 1 are 

shown in Figure 4.47. For excitation at successive ports, the radiation pattern will be 

rotated by 45°. 

 

We successfully demonstrated the design of a decoupling network for an array with 

more than four elements, albeit over a narrow frequency range. The principles 
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presented in this chapter provide a framework for the systematic design of decoupling 

networks for symmetrical arrays. The procedure would theoretically be applicable to 

arrays of various sizes. However, implementation of the decoupling network for the 

examples of 6-element and 8-element array would require the use of multilayer 

circuits, and would be even more challenging for arrays with more elements. 
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Figure 4.46 Scattering parameters of the decoupled and matched 8-element array 
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Figure 4.47 Normalized azimuth radiation pattern of the 8-element array 
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Chapter 5 Decoupling Network Design Using Modal Feed Network 

 

5.1 Introduction 

Design of decoupling network for arrays with arbitrary complex mutual admittances 

by applying eigenmode analysis and/or network analysis of the DN/array combination 

has been described in previous chapters. In this chapter, an alternative approach 

making use of the orthogonality of the eigenmodes of the array to achieve port 

decoupling is described and verified with experimental results.  

 

5.2 The inspiration of the alternative design of decoupling network 

The decoupling networks for 2- to 4-element arrays with arbitrary complex mutual 

admittances presented in [23-29] and previous two chapters are symmetrical networks 

with lossless reactive elements. These network elements were obtained by applying 

either an eigenmode analysis or a complete network analysis of the DN/array 

combination. Although those designs work well in decoupling an array, they still have 

some shortcomings need to improve.  

 

The decoupling and matching network proposed before contains only lossless 

components such as inductors or capacitors. The values of those components are 

obtained by solving a number of equations. However, there may be no such 

commercial components with the calculated values when implementing the network. 

Therefore, the circuit has to be recalculated if lumped elements are going to be used. 

However, it is not guaranteed that suitable values can be obtained every time. Usually 

the lossless reactive components have to be converted to realizable microstrip line or 

stripline by exploiting Kuroda’s identities [48-51]. Although the lines can be 
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meandered, the overall size of the decoupling and matching network is usually 

relatively large and it makes the design difficult to be applied in many mobile 

handsets, as in [28]. 

 

Therefore, new decoupling technique is demanded. An alternative approach was 

developed to achieve port decoupling which involves the use of a modal feed network. 

Isolation between the new input ports is achieved by exploiting the inherent 

orthogonality of the eigenmodes of the array [53-56]. The input ports to the feed 

network and array combination can then be matched independently. In digital beam 

forming applications, the required element weights are obtained as a linear 

combination of the orthogonal eigenmode vectors. This new approach is easy to 

understand and provides a simple design procedure of decoupling. Details of this 

decoupling approach will be described in the following sections. 

 

5.3 Theory and design of modal feed network 

5.3.1 S-parameters of feed network and array combination 

Consider an (M+N)-port passive feed network connected to an N-element array, as 

shown in Figure 5.1. We denote the first M ports as the external ports and the 

remaining N ports as the internal ports, which are connected to the array. We assume 

that the array can be modeled as an N-port network with scattering parameter matrix 

Sa, which is independent of the element excitation. The scattering parameters of the 

combination of the feed network and the array can then be obtained by following the 

multiport connection method [57]. The scattering parameter relation b = Sa for the 

feed network is separated into two groups, the first corresponding to the M external 

ports (denoted by e) and the second corresponding to the N internally connected ports 



  123

(denoted by i): 

ee eie e

ie iii i

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

S Sb a
S Sb a

,      (5.1) 

where eeS , =ei ieS ST  and iiS are M×M, M×N and N×N sub-matrices, while ae, be and 

ai, bi are column vectors of dimension M and N respectively. Since the internal ports 

are connected directly to the array, we have that  

 = a
i ia S b .        (5.2) 

Combining (5.2) and the second relation of (5.1) yields 

 1( )− = +a
i ie e ii iS a S a S a ,      (5.3) 

so that 

 1 1[( ) ]− −= −a
i ii ie ea S S S a .      (5.4) 

 

1

2

M

M+1

M+2

M+N

Feed network

1

2

N

Array

S Sa

Sc

 

Figure 5.1 (M+N)-port feed network connected to an N-element array 

 
Substituting (5.4) into the first relation of (5.1) gives 

 { }1 1[( ) ]− −= + − =a c
e ee ei ii ie e eb S S S S S a S a ,   (5.5) 
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where Sc is the M×M scattering parameter matrix of the feed network and array 

combination. 

 

5.3.2 Ideal modal feed network 

Now consider a so-called modal feed network with 2N ports. The modal feed network 

has N external ports and the remaining N internal ports are connected to an N-port 

array of uniformly spaced, identical elements. The feed network produces the nth 

eigenvector of Sa at the internal ports in response to an input signal at external port n. 

 

An ideal modal feed network will have the following characteristics:  

 = =ee iiS S 0 ,        (5.6) 

 1 2[ ]N=ieS e e e… ,       (5.7) 

 1T −= =ei ie ieS S S ,        (5.8) 

where column vector em is the mth orthonormal eigenvector of the array scattering 

parameter matrix Sa. Note that Sie is the orthogonal matrix which diagonalizes Sa. 

 

The S-parameters of the combined feed network and array are obtained by 

substituting (5.6), (5.7) and (5.8) into (5.5) to obtain 

 

1 1

1

1 2

[( ) ]

diag[ , , ] ,

− −

−

= + −

=

= λ λ λ

c a
ei ie

a
ie ie

S 0 S S 0 S

S S S

… N

     (5.9) 

where λm is the mth eigenvalue of Sa. The input ports of the combined network are 

therefore decoupled ( 0 ,= ≠cSij i j ) but mismatched ( 0≠cSii ). They can be matched 

individually by introducing appropriate matching networks. 
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For a desired element excitation [ ]1 2, ,...=y T
Ny y y , the signals required at the 

external ports of the modal feed network, [ ]1 2, ,...=x T
Nx x x , are obtained from 

 1−= =ie eix S y S y .       (5.10) 

 

To verify the modal feed network proposed, a symmetrical 2 2×  monopole array is 

considered. The inter-element spacing for the monopoles is 15 mm. Each monopole 

consists of a copper wire which is 1 mm in diameter and 29 mm in length. The 

S-parameter at 2.6 GHz is 

0.276 0.191 0.347 0.038 0.038 0.225 0.347 0.038
0.347 0.038 0.276 0.191 0.347 0.038 0.038 0.225
0.038 0.225 0.347 0.038 0.276 0.191 0.347 0.038
0.347 0.038 0.038 0.225 0.347 0.038 0.276

− − + − + − +
− + − − + − +

=
− + − + − − +
− + − + − +

aS

j j j j
j j j j
j j j j
j j j 0.191

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦j

.(5.11) 

 

Two different sets of S-parameters of the combination of the feed network and the 

array obtained from direct calculation and ADS [58] simulation are presented. 

1). Direct calculation from Equation (5.9): 

1 2 4

11 12 13 14 11 12 13 14

11 12 13 14 11 12 13 14

diag[ , , ]

diag[ , ,

         , ]

0.456 0.11 0 0 0
0 0.314 0.416 0 0
0 0 0.314 0.416 0
0 0 0 0.932 0.042

= λ λ λ

= + + + + − −

− − + − + −

− +⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

cS …

a a a a a a a a

a a a a a a a a

S S S S S S S S

S S S S S S S S

j
j

j
j

 (5.12) 
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2). ADS simulation: 

From (5.6)-(5.8), the ideal modal feed network for a 4-element array has S-parameters 

given by 

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 11
1 1 1 1 0 0 0 02
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

S .    (5.13) 

 

The network configuration in ADS is shown in Figure 5.2. The 4-port block 

represents the antenna array and contains the data of (5.11), while the 8-port block 

represents the modal feed network and contains the data of (5.13). The S-parameter of 

the combination of feed network and array from ADS is shown in Table 5.1. 
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Figure 5.2 Network setup in ADS to verify modal feed network. 
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Table 5.1 Simulation results in ADS 

freq

2.600 GHz

S(1,1)

0.469 / 166.438 

S(1,2)

6.206E-17 / -26.565 

S(1,3)

1.522E-16 / -114.2...

S(1,4)

1.299E-16 / -171.1...

freq

2.600 GHz

S(2,1)

1.475E-16 / -48.814 

S(2,2)

0.521 / -52.954 

S(2,3)

1.388E-17 / 0.000 

S(2,4)

5.043E-17 / 63.435 

freq

2.600 GHz

S(3,1)

2.178E-16 / -30.651 

S(3,2)

1.739E-16 / 118.610 

S(3,3)

0.521 / -52.954 

S(3,4)

1.093E-16 / 1.818 

freq

2.600 GHz

S(4,1)

9.930E-16 / -116.56...

S(4,2)

0.000 / 0.000 

S(4,3)

4.965E-16 / 153.435 

S(4,4)

0.933 / -2.580 

 

 

The result in Table 5.1 is written in matrix as 

0.469 166.44 0 0 0

0 0.521 52.95 0 0

0 0 0.521 52.95 0

0 0 0 0.933 2.58

0.456 0.11 0 0 0
0 0.314 0.416 0 0
0 0 0.314 0.416 0
0 0 0 0.932 0.042

j
j

j
j

⎡ ⎤∠
⎢ ⎥

∠−⎢ ⎥
= ⎢ ⎥

∠−⎢ ⎥
⎢ ⎥∠−⎣ ⎦

− +⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

cS

D

D

D

D

.

 (5.14) 

It can be seen that Equation (5.14) is exactly the same as Equation (5.12), which was 

obtained from direct calculation. 

 

5.3.3 Practical modal feed network 

It is often more practical to implement a modal feed network which produces 

orthogonal output vectors, but with an additional phase shift φm  associated with 

mode m. We still assume that ≈eeS 0  and ≈iiS 0 , but here we have 
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 =ieS PΦ ,        (5.15) 

 
1,T −= =ei ieS S ΦP       (5.16) 

where 

 1 2diag[ , , ]Njj je e e φφ φ=Φ … ,    (5.17) 

and 

 1 2[ ]N=P e e e… .      (5.18) 

 

The S-parameters of the N-port network resulting from connecting the modal feed 

network to the array are then given by 

 
1 2

1

22 2
1 2diag[ , , ] .

−

φφ φ

=

=

= λ λ λ

c a
ei ie

a

S S S S

ΦP S P Φ

… Njj j
Ne e e

 (5.19) 

 

The signals required at the external ports of the modal feed network are related to the 

desired element excitations via  

 1 *−= =iex S y Φ P yT ,      (5.20) 

where *Φ  is the conjugate of matrix Φ . 

 

5.4 Results of design examples and discussion 

To illustrate the principle, two practical examples are examined: a 2-element linear 

array and a 2×2 planar array. In both cases, the array elements are monopoles 

consisting of brass rods mounted on a 62 mil FR4 (εr = 4.4) substrate. The upper 

metallization of the substrate acts as the ground plane, as shown in Figure 5.3. The 

elements are excited via microstrip lines etched on the bottom surface of the substrate. 
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Monopole

Ground plane
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6 mm

24 mm

5 mm

2.4 mm

 

Figure 5.3 Monopole array element used in the construction of prototype arrays 

 

5.4.1 Modal feed network for 2-element monopole array 

The S-parameters of an array with two identical elements are given by 

 
11 12

12 11

a a

a a

S S

S S

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

aS .      (5.21) 

The eigenvalues of aS  are 

1 11 12

2 11 12

λ = +

λ = −

a a

a a

S S

S S
,       (5.22) 

while the orthonormal eigenvectors are given by 

 

1

2

11
12

11
12

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

e

e
.       (5.23) 

 

The modal feed network for such an array may be implemented as a rat-race 180º 



  130

hybrid. With port numbering as defined in Figure 5.4, the S-parameters of the hybrid 

are given by 

 

0 0 1 1
0 0 1 1
1 1 0 02
1 1 0 0

j
⎡ ⎤
⎢ ⎥−− ⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎣ ⎦

S .     (5.24) 

 

1
(∑)

2
(Δ)

4

3

 

Figure 5.4 Port numbering for a rat-race 180º hybrid coupler which acts as modal feed 

network for the 2-element array 

 

In this case, we find that in (5.17) 

1 2 90φ = φ = − D .       (5.25) 

The S-parameters of the 2-port network resulting from connecting the hybrid to the 

array are obtained from (5.19) as 

 
11 12

12 11

0

0

a a

a a

S S

S S

⎡ ⎤− −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

cS .     (5.26) 

The combined network may then be matched by providing suitable matching circuits 

at ports 1 and 2.  

 

A prototype monopole array with an element spacing of 0.1λ was fabricated, as 
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shown in Figure 5.5. The dimensions of antenna element of the monopole array are as 

what shown in Figure 5.3. The upper metallization of the substrate acts as the ground 

plane. 

 

 

Figure 5.5 2-element monopole array mounted on a substrate 

 

The scattering parameters of the array were measured using an Agilent Technologies 

8510C Network Analyzer. The measured scattering parameters of the array are shown 

in Figure 5.6. The reflection coefficient is small, but a high level of mutual coupling 

of approximately -5 dB at 2.6 GHz is observed. 

 

The modal feed network shown in Figure 5.7 (but without the matching stubs) was 

fabricated on the lower surface of the substrate and connected to the array. The 

S-parameters were again measured and the results are shown in Figure 5.8. The two 

ports are no longer matched, but according to (5.26), this is to be expected. However, 

the two ports are isolated, with the mutual coupling being less than -20 dB across the 

frequency band. 
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Figure 5.6 Measured S-parameters of the 2-element monopole array 

 

 

Figure 5.7 Modal feed network implemented as a rat-race hybrid on the lower surface 

of the substrate 
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Figure 5.8 Measured S-parameters of the hybrid coupler connected to the 2-element 

monopole array 

 

Finally, the external ports were matched by introducing stubs at ports 1 and 2 [59], as 

depicted in Figure 5.7. Theoretically, this should be a straightforward task of 

calculating stub lengths and positions to match the impedances corresponding to the 

port reflection coefficients in (5.26). It should however be noted that the currents 

induced on the array elements for a specific mode are strictly not a direct 

superposition of the currents for single element excitation. Sa is therefore not entirely 

independent of the element excitation. As in Figure 5.9, the measurement shows that 

the two ports of the decoupled array are matched at different and shifted frequencies, 

although they were both theoretically matched at around 2.6 GHz. Some tuning was 

thus required to obtain the measured results shown in Figure 5.10. Decoupling and 

matching are achieved simultaneously, albeit over a narrow band. 
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Figure 5.9 Measured S-parameters of the 2-element monopole array with matching 

networks at the external ports of the modal feed network without tuning 
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Figure 5.10 Measured scattering parameters of the 2-element monopole array with 

tuned matching networks at the external ports of the modal feed network 

 

Measured and simulated modal radiation patterns of this array at 2.6 GHz are shown 
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in Figure 5.11 and Figure 5.12. The measurements were performed in an anechoic 

chamber. The measurement setup consisted of an Agilent N5230A network analyzer 

and AL-4806-3C multi-axis position controller from ORBIT/FR Engineering to rotate 

the antenna. Calibration was performed using two horn antennas from Q-Par Angus 

Ltd. The array was fed at one of the two input ports of the modal feed network while 

the other input port was terminated in matched load. This termination absorbed any 

cross-coupled power at the other port, thus preventing the excitation of more than one 

eigenmode. Pattern measurements were performed while rotating the antenna through 

360 degrees. The simulations were performed using the commercial software package 

IE3D [52]. The simulation model included the effect of the feed network, but an 

infinite ground plane was assumed for pattern calculations. 
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Figure 5.11 Simulated and measured radiation patterns for mode 1 of the 2-element 

monopole array 
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Figure 5.12 Simulated and measured radiation patterns for mode 2 of the 2-element 

monopole array 

 

5.4.2 Modal feed network for 2×2 element monopole array 

A symmetrical 2×2 array has the following S-parameters: 

 

11 12 13 14

12 11 14 13

13 14 11 12

14 13 12 11

a a a a

a a a a

a a a a

a a a a

S S S S

S S S S

S S S S

S S S S

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

aS .     (5.27) 

 

The eigenvalues of aS are given by 

1 11 12 13 14

2 11 12 13 14

3 11 12 13 14

4 11 12 13 14

,

,

,

,

λ = + + +

λ = + − −

λ = − − +

λ = − + −

a a a a

a a a a

a a a a

a a a a

S S S S

S S S S

S S S S

S S S S

      (5.28) 

while the orthonormal eigenvectors are 
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1 2 3 4

1 1 1 1
1 1 1 11 1 1 1, , ,
1 1 1 12 2 2 2
1 1 1 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e e e e .  (5.29) 

 

An 8-port modal feed network can be implemented by using 90º hybrid couplers, as 

shown in Figure 5.13. The scattering parameters of this network are defined by 

( /2 ) ( ) ( /2 )

( /2 ) ( /2 )
1
2 ( /2 ) ( /2 )

( /2 ) ( ) ( /2 )

,

.

− θ π −θ π−θ π −θ

− θ π −θ − θ −π −θ

− θ −π −θ − θ π −θ

− θ −π −θ π−θ −π −θ

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

ee ii

ie ei

S S 0

S S

j j j j

j j j j
T

j j j j

j j j j

e e e e

e e e e

e e e e

e e e e

  (5.30) 

The phase terms in (5.17) are therefore 

1

2 4

3

2

φ = −θ,

φ = φ = π −θ,

φ = π−θ.

       (5.31) 

The S-parameters of a combination of this feed network and the 2×2 array are 

obtained from (5.19) as 

 

2
11 12 13 14

2
11 12 13 14

2
11 12 13 14

2
11 12 13 14

diag ( ) ,

( ) ,

( ) ,

( ) .

− θ

− θ

− θ

− θ

⎡= + + +⎣

− − + +

− − +

⎤− + − + ⎦

cS a a a a j

a a a a j

a a a a j

a a a a j

S S S S e

S S S S e

S S S S e

S S S S e

   (5.32) 

 

The external ports of the feed network can again be matched with the addition of 

conventional matching circuits. 
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The 2×2 monopole array shown in Figure 5.14 was fabricated. The dimensions of 

antenna element are shown in Figure 5.3. The inter-element spacing was arbitrarily 

chosen as 20 mm (approximately 0.17λ). The measured scattering parameters of the 

array are shown in Figure 5.15. Strong mutual coupling is observed. 

 

 

Figure 5.13 8-port modal feed network for the 2×2 element array 
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Figure 5.14 2×2 element monopole array with inter-element spacing of 20 mm 
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Figure 5.15 Measured scattering parameters of the 2×2 array. 

 

The modal feed network shown in Figure 5.16 (without the matching stubs) was 

realized using -3dB 90º branchline couplers. It was implemented on the lower surface 

of the substrate and connected to the array. The measured S-parameters are shown in 

Figure 5.17. The ports are not matched, but the introduction of the modal feed 



  140

network has the effect of decoupling the ports. 

 

 

Figure 5.16 8-port modal feed network consisting of four -3 dB 90º branchline 

couplers 

 

With the addition of stub matching networks at ports 1 to 4, decoupling and matching 

are achieved simultaneously. The measured S-parameters are shown in Figure 5.18. 

Some tuning was again required in order to achieve resonance at a fixed frequency for 

each of the four eigenmodes. 
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Figure 5.17 Measured scattering parameters of the modal feed network connected to 

the 2×2 array 

 

2.4 2.5 2.6 2.7 2.8
-40

-30

-20

-10

0

S14

S13

S12

|S
| (

dB
)

Frequency (GHz)

 S11

 S22

 S33

 S44

 

Figure 5.18 Measured scattering parameters of the 2×2 array with matched external 

ports of the modal feed network 

 

The radiation patterns of the four modes were computed using IE3D [52], and the 
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results are shown in Figures 5.19 and 5.20. The modal feed network in Figure 5.16 

was included in the simulation model for the calculation of the currents on the antenna 

elements and the respective radiation patterns. The eigenpatterns are mutually 

orthogonal according to the definition provided in [24]. An arbitrary pattern within 

the 4-dimensional space of radiation patterns available from the original array can be 

obtained from a weighted linear combination of the modal patterns [24]. 
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Figure 5.19 Simulated radiation patterns (normalized) of the 2×2 array for 

eigenmodes 1 and 2 
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Figure 5.20 Simulated radiation patterns (normalized) of the 2×2 array for 

eigenmodes 3 and 4 

 

As seen from the above examples, the modal feed network ensures isolation between 

the input ports of the system, which can then be matched independently. The 

frequency bandwidth of such a system is limited by the level of mutual coupling in 

the original array [23], but also depends on the extent of the impedance mismatch 

observed at the external ports of the modal feed network. In order to minimize the 

mismatch, it is desirable to start off with an array with matched elements, i.e. 11| |aS  

should be as small as possible. Theoretically, the alternative approach to port 

decoupling and matching presented in this chapter is applicable to arrays with an 

arbitrary number of uniformly-spaced, identical elements. However, the complexity 

involved in the implementation of the modal feed network may limit application of 

this method to smaller arrays. 
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5.4.3 Compact modal feed network for 2×2 element monopole array 

The modal feed network described in previous sections successfully isolates the input 

ports of a symmetrical array by exploiting the inherent orthogonality of the 

eigenmodes of the array. For a symmetrical 2×2 array, the required modal feed 

network basically consists of an 8-port comparator and impedance matching circuits. 

In the example of Section 5.4.2, the modal feed network was realized using four -3dB 

90º branchline couplers. While this circuit produced the desired response, it was again 

substantial in size compared to the area required for the array. It would therefore be 

desirable to be able to reduce the size of the feed network while retaining the 

attractive properties of such an antenna system. 

 

In this section, a novel 2×2 monopole array is described. The feed network is 

implemented as a planar ring-type 8-port comparator with four broadside coupled line 

sections [60]. Compared to other 8-port hybrids based on interconnected branch guide 

90º hybrids and transmission lines [61, 62], the compact coupled line hybrid ring 

circuit has a circumference of only 1 wavelength and thus is a good choice for the 

feed network. This results in a significant reduction in size. The dimensions of the 

adaptive array are determined by the radiating elements and element spacing, since 

the feed network no longer imposes a lower limit on the overall size. 

 

As shown in Figure 5.21, the ring circuit has four quarter-wavelength-long coupled 

line hybrids. The coupled transmission lines are etched on the top (solid lines) and 

bottom (dotted lines) surfaces of a thin dielectric board. It is based on the use of four 

90º hybrids connected together in a symmetrical arrangement to produce an 8-port 
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circuit. As a result, at a given frequency, the 8-port hybrid has the same size as a 

2-branch 90º hybrid, which can significantly reduce the size of the feed network. 
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Figure 5.21 Schematic diagram of an 8-port hybrid ring circuit based on four coupled 

line 90º hybrids 

 

At an appropriate reference plane, it can be shown that the coupled ring circuit has 

S-parameters of  

0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 11
1 1 0 0 0 02
1 1 0 0 0 0

1 1 0 0 0 0
1 1 0 0 0 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

S

j j
j j

j j
j j

j j
j j

j j
j j

.    (5.33) 

As seen from the above S matrix, all ports are matched and the sets of 4 input and 4 

output ports are isolated and power from any input port is equally divided to the 

output ports. 



  146

 

If -90º phase shifter is added to ports 3 and 7 and 90º phase shifter is added to ports 4 

and 8, the S matrix becomes  

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 11
1 1 1 1 0 0 0 02
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

S .    (5.34) 

This is the S matrix of the standard sum and difference comparator. From Equation 

(5.6) – (5.8), we know it is exactly the S matrix of an ideal feed network for an array 

of 4. 

 

Figure 5.22 shows the structure of the 4-element array with ring coupled lines as 

decoupling network. The top surface of the first layer and the bottom surface of the 

third layer are ground planes and the ring coupled lines are etched on the two sides of 

the mid layer. The substrate was chosen as RT/Duroid 5880 (εr = 2.2) of thickness 20 

mil for the top and bottom layers and 5 mil for center layer. The ideal even and odd 

mode impedances for the coupled line hybrids are 0 120.71 eZ = Ω  and 

0 20.71 oZ = Ω . At the selected center frequency of 2.6 GHz, it was calculated that the 

chosen line width of 0.508 mm would yield impedances of approximately 

0 114 eZ = Ω  and 0 22 oZ = Ω , which were deemed to be acceptable. The inner radius 

of the ring is then 13.51 mm and the outer radius is 14.02 mm. The additional phase 

shifters mentioned above that are required at some of the ports to produce the proper 

comparator response were implemented as simple line sections. The inter-element 
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spacing for the monopoles is 15 mm (≈ 0.13λ). Each monopole consists of a copper 

wire which is 1 mm in diameter and 29 mm in length. The array elements are placed 

inside the ring. They protrude through Teflon-filled holes in the upper ground plane of 

the stripline structure and are connected to the internal ports of the feed network. The 

photographs of the prototype array with decoupling network are shown in Figures 

5.23 - 5.25. 

 

 

Figure 5.22 2×2 element monopole array with compact ring-type comparator circuit 

as modal feed network 

 

The scattering parameters of the original array were measured using an Agilent 

Technologies 8510C Network Analyzer. The results are shown in Figure 5.26. Mutual 

coupling of approximately -10 dB at 2.6 GHz is observed. 
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Figure 5.23 Prototype 2×2 element monopole array with decoupled ports 

 

 

Figure 5.24 Ring etched on the bottom surface of first layer 
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Figure 5.25 Ring etched on the bottom surface of second layer 
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Figure 5.26 Measured S-parameters of the original 2×2 monopole array 

 

The measured S-parameter of the array with ring feed network (without the matching 

network) is shown in Figure 5.27. It can be seen that all the ports have been isolated 

with the mutual coupling being around -20 dB across the frequency band. However, 

in accordance with Equation (5.9), the ports are not matched. With the addition of 
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stub matching networks at ports 1 to 4, decoupling and matching are achieved 

simultaneously. The measured S-parameters are shown in Figure 5.28. Some tuning 

was again required in order to achieve resonance at a fixed frequency for each of the 

four eigenmodes. 
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Figure 5.27 Measured S-parameters of the modal feed network connected to the 2×2 

array 

 

Measured and simulated modal radiation patterns at 2.6 GHz are shown in Figures 

5.29 – 5.32. The measurements were performed in the same way as described in 

Section 5.4.1. The simulations were performed using the commercial software 

package IE3D [52]. The simulation model assumed an ideal feed network and an 

infinite ground plane was assumed for pattern calculations. 
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Figure 5.28 Measured S-parameters of the 2×2 array with matched external ports of 

the modal feed network. 
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Figure 5.29 Radiation pattern (normalized) of the 2×2 array for eigenmode 1. 
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Figure 5.30 Radiation pattern (normalized) of the 2×2 array for eigenmode 2. 
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Figure 5.31 Radiation pattern (normalized) of the 2×2 array for eigenmode 3. 
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Figure 5.32 Radiation pattern (normalized) of the 2×2 array for eigenmode 4. 

 

Large discrepancies were found between the above simulated and measured radiation 

patterns of the 2×2 array. It was analyzed that the discrepancies might be due to 

several aspects. Firstly, the simulation model used direct excitation of the eigenmodes 

and therefore did not include effects of discrepancies in the feed network response. 

The modal feed network was analysed to obtain a more accurate estimation of its 

response. The respective output voltages for each mode were then used to excite the 

array elements during the pattern simulations. Secondly, infinite ground plane was 

assumed in IE3D simulation, which is not the case in practical. Therefore, to get more 

accurate results, the simulations were then performed using the commercial software 

package HFSS [63]. This finite element based code was chosen due to its ability to 

model the asymmetric, finite ground plane. 

 

In addition, it was noted that for the prototype shown in Figure 5.23, connection 

between the upper and lower ground planes was provided by four metal screws which 
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clamped the substrate layers between the ground planes. This resulted improper 

grounding at the feed points. Thus, the upper ground plane was redesigned to include 

L-shaped metal tabs to which the connecters were secured, as illustrated in Figure 

5.33. This ensured the proper excitation of stripline mode at the feed points and also 

improved the integrity of the measured radiation patterns. With above analysis and 

improvements, good agreement between the simulated and measured results was 

obtained. The updated results are shown in Figures 5.34 – 5.38. 

 

 

Figure 5.33 Redesigned prototype of 2×2 monopole array with decoupled ports 
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Figure 5.34 Measured S-parameters of the redesigned prototype array. 
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Figure 5.35 Radiation pattern (normalized) of the redesigned prototype 2×2 array for 

eigenmode 1. 
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Figure 5.36 Radiation pattern (normalized) of the redesigned prototype 2×2 array for 

eigenmode 2. 
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Figure 5.37 Radiation pattern (normalized) of the redesigned prototype 2×2 array for 

eigenmode 3. 
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Figure 5.38 Radiation pattern (normalized) of the redesigned prototype 2×2 array for 

eigenmode 4. 

 

Again from a weighted linear combination of the modal patterns, it is possible to 

construct an arbitrary pattern within the 4-dimensional space of radiation patterns 

available from the original array. With the modal feed network introduced in this 

paper, the decoupling circuit no longer determines the overall size of the array. This 

makes it suitable for future application in mobile devices. The fact that the diameter 

of the feed network is only 0.32λ also opens up the possibility of using this compact 

array as an adaptive element in a larger array with conventional λ/2 inter-element 

spacing, i.e. an array of arrays. 
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Chapter 6 Conclusions 

 

Multiport antenna arrays are widely used in space-time techniques like diversity 

reception, adaptive beamforming or nulling and direction finding. A multiport array 

with isolated ports has the ability to provide duplexing functions. As a result, 

multiport antennas usually have the design goal of isolated ports and uncorrelated 

radiation patterns. For antenna diversity on size-limited platforms (e.g. in mobile 

applications), restrictions on the available space demand the use of an element 

spacing significantly smaller than λ/2. The small element spacing introduces strong 

mutual coupling between the ports of such compact arrays. Due to the coupling, the 

input impedance of the array changes when element excitations are varied. 

Consequently, the array cannot be matched for an arbitrary excitation. The strong 

coupling can cause significant system performance degradation. A decoupling 

network may compensate for the mutual coupling effects to yield decoupled ports and 

a fixed input impedance. 

 

For an n-port array, the decoupling network is a 2n-port network with n ports 

connected to the array elements, while the remaining n ports represent the isolated 

input ports. It generally consists of a symmetrical network of interconnected reactive 

elements and/or transmission line sections and stubs. Various implementations of 

decoupling networks have been described in the literature. In its simplest form, the 

decoupling network consists of reactive elements connected between neighboring 

array elements, which effectively cancel the external mutual coupling between them. 

However, this technique is only applicable in special cases where the off-diagonal 

elements of the admittance matrix of the original array are all purely imaginary.  
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As related work to this thesis, reviews on characteristics of dense array and modal 

model were presented in Chapter 3. Decoupling network design using eigenmode 

analysis for 3-element and 4-element arrays with arbitrary complex mutual 

admittances were also described. The values of lossless components in the circuit 

were obtained by solving a number of complicated equations. The decoupling 

network design becomes increasingly more complicated as the number of array 

elements grows. However, for maximum versatility, the number of elements in an 

adaptive array needs to be as large as possible. The design of decoupling networks for 

larger arrays with 4 or more elements was explored in Chapter 4. This new systematic 

design approach involves the step-by-step decoupling of the characteristic 

eigenmodes of the array. The procedure would theoretically be applicable to arrays of 

various sizes. However, implementation of the decoupling network for the examples 

of 6-element and 8-element array would require the use of multilayer circuits, which 

is not surprising for arrays with large number of elements. 

 

The decoupling networks proposed previously contain only lossless components such 

as inductors or capacitors. In practical implementation, the lossless reactive 

components are usually converted to microstrip lines or striplines. These networks are 

sometimes much larger in size than the array itself, which makes the concept less 

suitable for applications where the available space for the antennas is limited. 

Therefore, novel alternative approach to realize port decoupling was presented in 

Chapter 5. Antenna elements are fed via a modal feed network where isolation 

between the new input ports is achieved by exploiting the inherent orthogonality of 

the eigenmodes of the array. The input ports can then be matched independently. For 
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beam forming, the required element weights are obtained as a linear combination of 

the orthogonal eigenvectors. This new approach is easy to understand and provides a 

simple design procedure of decoupling. For a symmetrical 2×2 array, the required 

modal feed network basically consists of an 8-port comparator and impedance 

matching circuits. In the first design example, the modal feed network was realized 

using four -3dB 90º branchline couplers. While this circuit produced the desired 

response, it was again substantial in size compared to the area required for the array. It 

would therefore be desirable to be able to reduce the size of the feed network while 

retaining the attractive properties of such an antenna system. The planar ring-type 

8-port comparator with four broadside coupled line sections has a circumference of 

only 1 wavelength and thus is a good choice for the feed network. This results in a 

significant reduction in size. The dimensions of the adaptive array are determined by 

the radiating elements and element spacing, since the feed network no longer imposes 

a lower limit on the overall size. This makes it suitable for future application in 

mobile devices. 

 

In conclusion, this thesis has deeply investigated different decoupling techniques and 

successfully developed novel decoupling network design concepts. 
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APPENDIX A 

PROGRAM CODE IN MATHEMATICA FOR CLOSED-FORM DESIGN 

EQUATIONS OF 6-ELEMENT ARRAY 

 

(* Closed-form design equations for decoupling network *) 
(* of circulant symmetric 6-element array *) 
(* IE3D 6mono_3: example used in Chapter 4 *) 
 
Sa11 = -0.4283+0.1619i; 
Sa12 = 0.3987+0.03147 i; 
Sa13 = 0.1021-0.1373 i; 
Sa14 = -0.02532-0.1243i; 
 
Sa ={{Sa11, Sa12, Sa13,Sa14,Sa13, Sa12}, 
      {Sa12, Sa11, Sa12, Sa13,Sa14,Sa13}, 
      {Sa13, Sa12, Sa11, Sa12,Sa13,Sa14}, 
      {Sa14,Sa13,Sa12, Sa11, Sa12, Sa13}, 
      {Sa13, Sa14, Sa13, Sa12,Sa11,Sa12}, 
      {Sa12,Sa13,Sa14, Sa13, Sa12, Sa11}}; 
Ind = IdentityMatrix[6]; 
A1 = Ind+Sa; 
A2 = Inverse[Ind-Sa]; 
Z0 = Rin= 50; 
Za=Z0×Dot[A1,A2]; 
Za11 = Extract[Extract[Za,1],1]; 
Za12 = Extract[Extract[Za,1],2]; 
Za13 = Extract[Extract[Za,1],3]; 
Za14 = Extract[Extract[Za,1],4]; 
Zma = Za11 +2×Za12+2×Za13+Za14 
Zmb = Za11 - 2×Za12+2×Za13-Za14 
Zmc = Za11 - Za12-Za13+Za14 
Zme = Za11 + Za12-Za13-Za14 
 
(* Decouple modes (c, d) and (e, f) *) 
Rmc = Re[Zmc]; 
Xmc = Im[Zmc]; 
Rme = Re[Zme]; 
Xme = Im[Zme]; 
Aa = Rmc- Rme; 
Bb = 2×(Rmc×Xme - Rme×Xmc); 
Cc = Rmc×(Rme2+Xme2) - Rme×(Rmc2+Xmc2); 

2-Bb- Bb 4 Aa CcX11=
2 Aa
− × ×
×

 

( ) ( )2 22 2

1 Xmc X11 Xme X11B21=
3-1 Rmc Xmc X11 Rme Xme X11

⎛ ⎞+ +
× −⎜ ⎟
⎜ ⎟+ + + +⎝ ⎠
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Z1={{X11×i, 0,0, 0,0,0}, 
      {0, X11×i,0, 0,0,0}, 
      {0, 0, X11×i, 0,0,0}, 
      {0, 0, 0, X11×i,0,0}, 
      {0,0,0, 0, X11×i, 0}, 
      {0, 0,0,0, 0, X11×i}}; 
Y2={{2×B21×i, -B21×i,0,0,0, -B21×i }, 
      {-B21×i, 2×B2×i,-B21×i, 0,0,0}, 
      {0, -B21×i,2×B21×i, -B21×i,0,0}, 
      {0,0,-B21×i, 2×B21×i, -B21×i,0}, 
      {0,0,0, -B21×i,2×B21×i, -B21×i }, 
      {-B21×i,0,0,0, -B21×i, 2×B21×i }}; 
Zp = Inverse[Inverse[Za+Z1]+Y2] 
Zp11 = Extract[Extract[Zp,1],1]; 
Zp12 = Extract[Extract[Zp,1],2]; 
Zp13 = Extract[Extract[Zp,1],3]; 
Zp14 = Extract[Extract[Zp,1],4]; 
Zpma = Zp11 +2×Zp12+2×Zp13+Zp14 
Zpmb = Zp11 - 2×Zp12+2×Zp13-Zp14 
Zpmc = Zp11 - Zp12-Zp13+Zp14 
Zpme = Zp11 + Zp12-Zp13-Zp14 
 
(* Decouple modes b and (c, d, e, f)*) 
Rpmb = Re[Zpmb]; 
Xpmb = Im[Zpmb]; 
Rpmc = Re[Zpmc]; 
Xpmc = Im[Zpmc]; 
Aaa = Rpmb - Rpmc; 
Bbb = 2×(Rpmb×Xpmc-Rpmc×Xpmb); 
Ccc = Rpmb×(Rpmc2+Xpmc2) - Rpmc×(Rpmb2+Xpmb2); 

2-Bbb- Bbb 4 Aaa CccX31=
2 Aaa
− × ×
×

 

( ) ( )2 22 2

1 Xpmb X31 Xpmc X31B41=
0-3 Rpmb Xpmb X31 Rpmc Xpmc X31

⎛ ⎞+ +
× −⎜ ⎟
⎜ ⎟+ + + +⎝ ⎠

 

Z3={{X31×i, 0,0, 0,0,0}, 
      {0, X31×i,0, 0,0,0}, 
      {0, 0, X31×i, 0,0,0}, 
      {0, 0, 0, X31×i,0,0}, 
      {0,0,0, 0, X31×i, 0}, 
      {0, 0,0,0, 0, X31×i}}; 
Y4={{2×B41×i,0, -B41×i,0, -B41×i,0}, 
      {0, 2 B41×i,0,-B41×i,0,-B41×i}, 
      {-B41×i,0,2×B41×i, 0,-B41×i,0}, 
      {0,-B41×i,0, 2×i41×i, 0,-B41×i}, 
      { -B41×i,0,-B41×i,0,2×B41×i,0 }, 
      {0,-B41×i,0,-B41×i,0, 2×41×i}}; 
Zpp = Inverse[Inverse[Zp+Z3]+Y4] 
Zpp11 = Extract[Extract[Zpp,1],1]; 
Zpp12 = Extract[Extract[Zpp,1],2]; 
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Zpp13 = Extract[Extract[Zpp,1],3]; 
Zpp14 = Extract[Extract[Zpp,1],4]; 
Zppma = Zpp11 +2×Zpp12+2×Zpp13+Zpp14 
Zppmb = Zpp11 - 2×Zpp12+2×Zpp13-Zpp14 
Zppmc = Zpp11 - Zpp12-Zpp13+Zpp14 
Zppme = Zpp11 + Zpp12-Zpp13-Zpp14 
 
(* Decouple modes a and (b, c, d, e, f) *) 
Rppma = Re[Zppma]; 
Xppma = Im[Zppma]; 
Rppmb = Re[Zppmb]; 
Xppmb = Im[Zppmb]; 
Aaaa = Rppma - Rppmb; 
Bbbb = 2×(Rppma×Xppmb-Rppmb×Xppma); 
Cccc = Rppma×(Rppmb2+Xppmb2) - Rppmb×(Rppma2+Xppma2); 

2-Bbbb- Bbbb 4 Aaaa CcccX51=
2 Aaaa

− × ×
×

 

( ) ( )2 22 2

1 Xppma X51 Xppmb X51B61=
0-1 Rppma Xppma X51 Rppmb Xppmb X51

⎛ ⎞+ +
× −⎜ ⎟
⎜ ⎟+ + + +⎝ ⎠

 

Z5={{X51×i, 0,0, 0,0,0}, 
      {0, X51×i,0, 0,0,0}, 
      {0, 0, X51×i, 0,0,0}, 
      {0, 0, 0, X51×i,0,0}, 
      {0,0,0, 0, X51×i, 0}, 
      {0, 0,0,0, 0, X51×i}}; 
Y6={{5/6×B61×i, -1/6×B61×i , -1/6×B61×i , -1/6×B61×i , -1/6×B61×i , 
-1/6×B61×i }, {-1/6×B61×i, 5/6×B61×i , -1/6×B61×i , -1/6×B61×i , -1/6×B61×i , 
-1/6×B61×i },{-1/6×B61×i, -1/6×B61×i , 5/6×B61×i , -1/6×B61×i , -1/6×B61×i , 
-1/6×B61×i },{-1/6×B61×i, -1/6×B61×i , -1/6×B61×i , 5/6×B61×i , -1/6×B61×i , 
-1/6×B61×i },{-1/6×B61×i, -1/6×B61×i , -1/6×B61×i , -1/6×B61×i , 5/6×B61×i , 
-1/6×B61×i },{-1/6×B61×i, -1/6×B61×i , -1/6×B61×i , -1/6×B61×i , -1/6×B61×i , 
5/6×B61×i }}; 
Zppp = Inverse[Inverse[Zpp+Z5]+Y6] 
Zppp11 = Extract[Extract[Zppp,1],1]; 
Zppp12 = Extract[Extract[Zppp,1],2]; 
Zppp13 = Extract[Extract[Zppp,1],3]; 
Zppp14 = Extract[Extract[Zppp,1],4]; 
Zpppma = Zppp11 +2×Zppp12+2×Zppp13+Zppp14 
Zpppmb = Zppp11 - 2×Zppp12+2×Zppp13-Zppp14 
Zpppmc = Zppp11 - Zppp12-Zppp13+Zppp14 
Zpppme = Zppp11 + Zppp12-Zppp13-Zppp14 
 
Rpppma = Re[Zpppma]; 
Xpppma = Im[Zpppma]; 
 
(* Matching network *) 

2 2

2 2

Xpppma+ Rpppma Rin Rpppma Xpppma Rin Rpppma
B71=

Rpppma Xpppma
÷ × + − ×

+
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1 Xpppma Rin RinX81=
B71 Rpppma B71 Rpppma

×
+ −

×
 

Y7 = {{B71×i, 0,0, 0,0,0}, 
      {0, B71×i,0, 0,0,0}, 
      {0, 0, B71×i, 0,0,0}, 
      {0, 0, 0,B71×i,0,0}, 
      {0,0,0, 0, B71×i, 0}, 
      {0, 0,0,0, 0, B71×i}}; 
Z8 = {{X81×i, 0,0, 0,0,0}, 
      {0, X81×i,0, 0,0,0}, 
      {0, 0, X81×i, 0,0,0}, 
      {0, 0, 0, X81×i,0,0}, 
      {0,0,0, 0, X81×i, 0}, 
      {0, 0,0,0, 0, X81×i}}; 
Z4p = Inverse[Inverse[Zppp]+Y7]+Z8 
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APPENDIX B 

CIRCUIT MODEL IN IE3D TO CALCULATE THE S-PARAMETERS OF 

THE DECOUPLED 6-ELEMENT ARRAY 

 

The “6mono_3” is the geometry model in IE3D of the 6-element array in Chapter 4. 

Values of capacitors and inductors are calculated according to Table 4.4. 
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APPENDIX C 

CIRCUIT MODEL IN IE3D TO CALCULATE THE RADIATION PATTERN 

OF THE DECOUPLED 6-ELEMENT ARRAY 

 

The “6mono_3” is the geometry model in IE3D of the 6-element array in Chapter 4. 

Values of capacitors and inductors are calculated according to Table 4.4. 
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APPENDIX D 

CIRCUIT MODEL IN ADS TO CALCULATE THE S-PARAMETERS OF THE 

DECOUPLED 6-ELEMENT ARRAY 

 

The data item “6mono_3.sp” is the S-parameters of the 6-element array in Chapter 4. 

Values of capacitors and inductors are calculated according to Table 4.4. 
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APPENDIX E 

ARRAY MODEL IN HFSS TO CALCULATE THE RADIATION PATTERN 

WITH FINITE GROUND PLANE 

 

To include the effect of finite ground plane during radiation pattern calculation, this 

model was created in HFSS for the array (without decoupling network) in Figure 5.33. 

The dimensions of the monopole array are as in Section 5.4.3. The array ports are 

excited by respective output voltages of the modal feed network for each mode, which 

are obtained by feeding one of the input ports of the modal feed network while other 

input ports are terminated in matched load. The results with this model were discussed 

in Section 5.4.3. 

 

 

 


