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SUMMARY 

 
 The present research focuses on the optimization of penicillin and amino acids 

production. Penicillin is the first microbially produced antibiotics to be discovered, 

and its production technology is a paradigm for the biopharmaceutical industry. It is 

the first and most important active pharmaceutical ingredient produced commercially 

by an aerobic submerged fermentation. 

 Amino acids such as serine and tryptophan are active pharmaceutical 

ingredients and nutrients for livestock. Their high commercial values are not matched 

by their total production rates worldwide. Engineering the enzyme kinetics of multi-

product microbial cell factories such as Escherichia coli through gene knockout and 

manipulation has great potential in enhancing the biosynthesis of amino acids.  

 The main objective of this research is to model and optimize penicillin 

bioreactor train and desired biosynthesis rates in Escherichia coli for multiple 

objectives. Pareto search was successfully carried out using the non-dominated sorting 

genetic algorithm (NSGA-II) in conjunction with exhaustive search, interactive 

branch-and-bound and pattern recognition heuristics.   

 In the first study, modelling of the penicillin V bioreactor train was done to set 

the stage for optimization. One Penicillium chrysogenum fermentation model was 

carefully selected based on available industrial information and research works. The 

bioreactor train model was developed to allow a targeted continuous production rate 

where each bioreactor operates semi-continuously in a synchronized manner. There 

were two cases of bi-objective optimization: simultaneous maximization of yield and 

penicillin concentration, and simultaneous maximization of yield and minimization of 

batch cycle time. The tri-objective case involves simultaneous maximization of yield, 

profit and penicillin concentration. Pareto-optimal fronts were obtained for both             

bi- and tri-objective scenarios using six decision variables.  

 In the second study, optimization of the central carbon metabolism of 

Escherichia coli was performed for dual objectives to maximize the desired flux ratios 

of three enzyme kinetics − PEP carboxylase (PEPCxylase), 3-deoxy-D-arabino-

heptulosonate-7-phosphate synthase (DAHPS) and serine synthesis (SerSynth). The 

Pareto obtained in simultaneous maximization of DAHPS and PEPCxylase fluxes, 

and in simultaneous maximization of DAHPS and SerSynth fluxes provided a 
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template for metabolic pathway recipe. The metabolic pathway recipe is a form of a 

priori knowledge for experimental research to improve the multi-product capability of 

microbial cell factories for conflicting objectives.  

  In the third study, an augmented model for optimizing serine and tryptophan 

flux ratios simultaneously, was developed by linking the dynamic tryptophan operon 

model and aromatic amino acid-tryptophan biosynthesis pathways to the central 

carbon metabolism. Six new kinetic parameters of the augmented model were 

estimated with considerations of available real data and other published works. Major 

differences between calculated and reference concentrations and fluxes were 

explained. Sensitivities and underlying competition among fluxes for carbon sources 

were consistent with intuitive expectations based on visual metabolic network and 

preceding results.  

 In the final study, biosynthesis rates of serine and tryptophan were 

simultaneously maximized using the augmented model via concurrent gene knockout 

and manipulation. The optimization results were obtained using NSGA-II supported 

by pattern recognition heuristics. Possible existence of local Paretos was discussed. 

One Pareto branch was obtained using NSGA-II for the wide gene multiplier range of 

0-1.5. The remaining Pareto was obtained through simulations following the Pareto 

pattern recognition. Missing Pareto solutions have been explained wherever possible. 

The results obtained concur with the reported microbial cell fermentation studies and 

known dynamic behaviour of the tryptophan operon.  

 In summary, simulation and optimization of multiple bioreactors for penicillin 

V production for conflicting objectives provided many optimal and practicable 

solutions for the decision maker. Concurrent gene knockout and manipulations of 

Escherichia coli based on complex nonlinear kinetics show the feasibility of 

enhancing multi-product biosynthesis rates in one microorganism within certain 

technological and physiological limits for the first time. These findings are useful in 

designing new bioprocesses involving multiple products and re-configuring a complex 

metabolic network for valuable and novel products by probing their performance 

limits. The current work can be extended to four related areas in systems 

biotechnology of multi-product fermentation plant and microbial cell factories − 

modelling, optimization, Pareto ranking and decision making, and techniques to 

minimize numerical difficulties.  
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Chapter 1   

 INTRODUCTION 

 

1.1   Multi-Objective Optimization 
 Multi-objective optimization (MOO) involves the search for tradeoffs (or 

Pareto-optimal front or equally good solutions) when there are two or more 

objectives. When there are conflicting objectives, it is not possible to obtain a single 

solution which is simultaneously optimal for all the objectives (utopia point). The 

concept of MOO was conceived by the economist, Pareto in 1896. A solution 

dominates another one if the first solution is no worse than the second solution in all 

objectives and it is strictly better than the second solution in at least one objective. 

Solutions in the non-dominated set are better than the rest of the solutions. There are 

tradeoffs within the non-dominated set. A compromise or tradeoff is reached when 

one solution cannot be made better without making another solution worse. The non-

dominated set is given a special term: Pareto-optimal set or front. The approach taken 

here is the ideal MOO where the Pareto is obtained without assigning preferences to 

any of the objectives. The non-dominated set of the entire search space is the globally 

Pareto-optimal set. Local Pareto may exist when the objectives are non-linear and the 

Pareto-optimal front is discontinuous. 

 Available methods for MOO can be classified in several ways. One of them is 

based on whether many Pareto-optimal solutions are generated or not, and the role of 

the decision maker in solving the MOO problem. This particular classification, 

adopted by Miettinen (1999) and Diwekar (2003), is shown in Figure 1.1. 

 A classical way to make an MOO problem tractable is to combine several 

objective functions into a single/scalar objective function, using either arbitrary or 

user-preferred weight factors. Unfortunately, this “scalarization” of what is really a 

vector objective function suffers from several drawbacks (Bhaskar et al., 2000). 

Firstly, the results are sensitive to the values of the weighting factors used, which are 

difficult to assign on an a priori basis. More importantly, there is a risk of losing some 

optimal solutions (Chankong and Haimes, 1983; Haimes, 1977). The “scalarization” 

method, also known as weighted sum method, is intuitive and easy to use. For 

problems having a convex Pareto-optimal front, this method guarantees finding 

solutions on the entire Pareto-optimal set.  
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Non-convexity of the objective function gives rise to a duality gap. 

Numerically, the duality gap is the difference between the primal and dual objective 

values. The original mathematical problem is called the primal. Dual is another 

mathematical problem with the property that its objective is always a bound on the 

primal. This non-convexity is illustrated using Figure 1.2. The objective functions are 

denoted as F1 and F2. The task is to minimize F1 and F2. Multiplying F1 and F2 by 

user-specified weights, the multiple objectives are converted into a single objective 

function. The contour lines marked S and T represent two different weight vectors. A 

given weight vector results in a contour line of a particular gradient. Different weight 

vectors can result in different contour lines having the same gradient. 

 The Pareto-optimal front refers to the regions AB, BC and CD. The minimum           

value of the single objective function corresponds to a Pareto-optimal solution (e.g., 

point A for F1 and point D for F2 in Figure 1.2). Unfortunately, there is no contour 

line that will be tangent to a point in the region BC. In nonlinear MOO problems, a 

uniformly distributed set of weight vectors need not necessarily lead to a uniformly 

distributed set of Pareto-optimal solutions. The relationship between weight vectors 

and the distribution pattern of Pareto-optimal solutions is not usually known. Multiple 
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Fig. 1.1.   Classification of multi-objective methods. 
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minima (or maxima) may be found for a given weight vector. Search effort can be 

wasted if these multiple solutions are weakly dominated to each other. 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 If “scalarization” does not suffer from the risk of losing some optimal 

solutions, then a vast array of single objective optimization methods can be used such 

as direct search methods, gradient based methods and sequential quadratic 

programming. One common difficulty in applying the above classical methods (Deb, 

2001) to MOO is the convergence to an optimal solution depends on the chosen initial 

guess. Most algorithms tend to get stuck to a suboptimal or local solution. 

Evolutionary techniques such as genetic algorithm exploit the advantages of parallel 

search for multiple solutions.  

 Non-dominated sorting genetic algorithm (NSGA) is one modified version of 

the simple genetic algorithm for MOO. NSGA differs from a simple genetic algorithm 

only in the way the selection operator works. The crossover and mutation operators 

remain as usual (Srinivas and Deb, 1995). NSGA uses a ranking selection method to 

emphasize the good chromosomes and niche method to create diversity in the 

population without losing a stable sub-population of good chromosomes. NSGA-II 

(Deb et al., 2002), an improvement of NSGA, is an elitist NSGA using an elite-

preservation strategy as well as an explicit diversity-preserving mechanism.  

 

F1 

F2 

S 

T 

Pareto-optimal front 

A 
B 

C D 

Feasible objective space 

Fig. 1.2.   Pareto and non-convexity in the search space. 
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1.2   Multi-Objective Optimization in Bioprocesses 
 MOO of bioprocesses particularly in the biopharmaceutical and multiproduct 

microbial cell fermentation industries is attracting increasing interest from 

researchers. A recent work in biopharmaceuticals involved the MOO of an industrial 

penicillin V bioreactor train for dual and triple objectives (Lee et al., 2007) focusing 

on fermentation using Penicillium chrysogenum. MOO in biopharmaceutical areas 

tend to be allied with batch plant design (e.g. optimizing the multiple options in 

equipment selection for a plant producing vitamin C by Mŏsať et al., 2008) or a 

particular chemical unit operation (e.g. waste solvent recovery in pharmaceutical 

industry by Kim and Smith, 2004); there is a scarcity of MOO studying the biological 

reactions per se.  There have been isolated studies in the area of multi-objective 

bioprocess synthesis (e.g. penicillin plant synthesis by Steffens et al., 1999) and 

multiproduct batch plant design (e.g. batch plant design for the production of insulin, 

vaccine, chymosin and protease subject to fuzzy demands  by Dietz et al., 2008). The 

close association of MOO in bioprocesses with design and chemical unit operations 

reflects the familiarity and competencies of chemical engineers in these areas. In 

another area within bioprocesses, little work has been done in optimizing living 

micro-organism metabolic pathways for multiple objectives. 

 Biologists and biochemists have a solid foundation in experimental research 

methods of life sciences. Much of their studies rely on a priori knowledge, heuristics 

and intuition. Biochemists have compiled S-system (or synergistic system) models 

related to various metabolic pathways (Voit, 2000). S-system, which is similar to 

power laws found in generalized mass action (GMA) modelling framework, is used to 

represent the kinetics of various bioprocesses such as ethanol fermentation pathway in 

Saccharomyces cerevisiae (yeast) and citric acid metabolism in Aspergillus niger 

(mold). There have been a few multi-objective optimization of metabolic processes in 

Saccharomyces cerevisiae using linear programming (e.g. Link et al., 2008, Vera et 

al., 2003); none in Escherichia coli (bacteria) using highly nonlinear model. In their 

work (Link et al., 2008, Vera et al., 2003), the S-system representation of the original 

Saccharomyces cerevisiae kinetics was linearized. Multi-objective linear 

programming was used to obtain the Pareto-optimal set where ethanol production rate 

was maximized and various intermediate metabolite concentrations were minimized. 

 There is one recent study on the use of MOO in inferring biochemical 
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networks such as metabolic pathways modelled through the S-system (Liu and Wang, 

2008). Experimentally measured data from batch fermentation of Saccharomyces 

diastaticus LORRE 316 (high-ethanol tolerance yeast) to produce ethanol were used 

to infer the S-system structure and its parameters by minimizing simultaneously the 

concentration error, slope error and interaction measure. Another recent work 

combined flux balance analysis and energy analysis, and applied normalized normal 

constraint to multiple liver-specific objectives such as ATP synthesis and urea 

secretion (Nagrath et al., 2007).  

 

1.3   Motivation and Scope of Work 
 Continuous processes in petroleum, petrochemical and chemical 

manufacturing have traditionally occupied a disproportionate part of MOO studies. 

There have been increasing applications of process systems engineering techniques to 

bioprocesses. The broad objective of this study is to investigate MOO for 

bioprocesses and in metabolic engineering taking penicillin production and 

Escherichia coli as the respective example. 

 There was no attempt made to optimize the penicillin production at the 

fermentation stage for multiple objectives though there have been isolated studies on 

designing a penicillin plant conceptually using multiple economic and environmental 

impact criteria (e.g. Steffens et al., 1999). This provides the motivation and scope to 

model an existing penicillin V bioreactor train for simultaneous optimization of key 

performance indicators of interest to decision makers in Chapter 2.  

 There has been no work reported on MOO of the central carbon metabolism of 

Escherichia coli using a highly nonlinear detailed model though a few studies were 

carried out for the single objective cases (Schmid et al., 2004; Visser et al., 2004; 

Vital-Lopez et al., 2006). The complex model provides opportunities to study two 

types of problems separately, discrete gene knockouts and combinatorial gene 

manipulation, to maximize the fluxes of desired biosynthesis pathways as discussed in 

Chapter 3.  

 An augmented model was developed in Chapter 4 by integrating the aromatic 

amino acids biosynthesis pathway and tryptophan operon dynamics with the central 

carbon metabolism of Escherichia coli. New kinetic parameters of the aromatic 

biosynthesis pathway were carefully evaluated based on measured and theoretical data 
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and intuitive expectations of the behaviour of metabolic network in microbial cell 

factories. Existing tryptophan operon kinetics were adapted in order to be compatible 

with the specific growth rate of the central carbon metabolism model. 

  Serine and tryptophan synthesis rates have been optimized separately in the 

past (serine – Vital-Lopez et al., 2006; tryptophan – Schmid et al., 2004) but not 

concurrently. In Chapter 5, serine and tryptophan synthesis rates in the augmented 

model were maximized concurrently through simultaneous gene knockout and gene 

manipulation to obtain a Pareto-optimal front. This is a potentially challenging 

application of the augmented model which has embedded non-convexities, 

nonlinearities and isolated or disjointed Pareto in the entire search space. 

 The best objectives to consider for optimization have the most impacts on a 

high-level aim defined a priori. A high-level aim such as an environmental aspect or 

sustainability reflects its importance in industrial practice. The best objectives may be 

tacit knowledge of the decision maker. Alternatively, ranking the Pareto with respect 

to the high-level aim arguably identifies the best objectives to pursue. In the absence 

of a high-level aim as in this study, one is still able to choose several objectives that 

are known to be important to the decision maker. 

 

1.4   Organization of the Thesis 
 Following the introductory material in this chapter, Chapter 2 critically 

reviews the various fermentation models before a model for penicillin V bioreactor 

modelling and optimization is selected, and then describes MOO of this bioreactor 

train for multiple objectives. Chapter 2 describes the counteractions among decision 

variables in generating the Pareto. MOO of various biosynthesis fluxes of the central 

carbon metabolism of Escherichia coli is discussed in Chapter 3. An iterative branch 

and bound technique is used as an alternative to the manual exhaustive search to 

generate the Pareto obtained from gene knockouts in Chapter 3. The augmented 

model developed in Chapter 4 provides the platform for optimization study in Chapter 

5.  The ability of the augmented model in Chapter 4 to channel carbon into tryptophan 

biosynthesis is described through a two-stage evaluation. Numerical difficulties   and 

Pareto results consistency with reported fermentation studies are highlighted in 

Chapter 5. Appropriate conclusions from this research and recommendations for 

future study are presented in Chapter 6.   
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Chapter 2   

 OPTIMIZATION OF AN INDUSTRIAL PENICILLIN V 

BIOREACTOR TRAIN 

 

2.1   INTRODUCTION 
 Penicillin belongs to the family of hydrophobic β-lactams. The main 

commercial penicillin G and penicillin V are produced by Penicillium chrysogenum. 

In 1995, the global production of penicillin G and penicillin V amounted to 24,100 

and 8,100 metric tons, respectively, with an estimated value of US$ 1.06 billion        

(van Nistelrooij et al., 1998); and the annual global production in 2001was estimated 

at 65,000 metric tons (Lowe, 2001). The bulk of penicillin V is converted into               

6-aminopenicillanic acid (6-APA), which is used to make amoxicillin and ampicillin. 

Rising demand in countries such as China and India drives the annual growth for 

penicillin production. Given these developments, improvement in the production of 

penicillin is of considerable importance to both industries and consumers. This work 

presents a multi-objective optimization study, carried out to find a range of better 

design and operating conditions for improving the performance of penicillin 

production units using Penicillium chrysogenum. This is perhaps the first study on 

multi-objective optimization of an industrial penicillin V bioreactor train. The rest of 

this section reviews the motivation and scope of this study. 

 Up to now, there has been little work done in multi-objective optimization of 

biopharmaceuticals (Chapter 1). Biochemists such as Voit (2000) has compiled a list 

of mathematical modelling works related to bioprocesses using S-system                       

(or synergistic system). S-system, which is similar to power law models, is used to 

represent the kinetics of various bio-processes. Torres and Voit (2002) have 

documented the single objective optimization of citric acid production in Aspergillus 

niger, ethanol production in Saccharomyces cerevisiae and tryptophan production in 

Escherichia coli. Vera et al. (2003) have studied the mathematical multi-objective 

optimization in metabolic processes leading to the production of ethanol by 

Saccharomyces cerevisiae. In their work, multiple linear objective functions were 

obtained from the S-system model by applying natural logarithms to the influx and 

efflux terms of the equations when pseudo steady state is assumed. Ethanol 

production was maximized and the various intermediate metabolite concentrations 
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were minimized using multi-objective linear programming. Sendin et al. (2006) 

studied the effectiveness of using various techniques (weighted sum, goal attainment, 

normal boundary intersection, multi-objective indirect optimization and multi-

objective evolutionary algorithm) to simultaneously maximize ethanol production and 

minimize five dependent metabolite concentrations for Saccharomyces cerevisiae. 

The optimal results were first evaluated with reference to total pathway enzyme 

concentration and biosynthetic effort efficiency for the unconstrained and constrained 

cases. In the latter case, homeostatic and total enzymatic flux constraints (Section 3.3) 

were imposed.  Mandal et al. (2005) studied the bi-objective optimization of protease 

and catalase selectivity during Aspergillus niger fermentation using ε-constraint 

facilitated by differential evolution. Halsall-Witney and Thibault (2006) have applied 

evolutionary algorithms to investigate the multi-objective optimization of gluconic 

acid production by Pseudomonas ovalis in a batch stirred tank reactor. In the area of 

multi-protein batch plant design (Dietz et al., 2008) for producing insulin, vaccine, 

chymosin and protease, a fuzzy multi-objective algorithm has been applied to 

simultaneously optimize net present value, production delay/advance and flexibility 

index in terms of potential plant capacity to the actual plant capacity ratio.   

 Recent work by Biwer et al. (2004) dealt with the impact of uncertain model 

parameters on the economic and environmental performance of Penicillin V 

production. However, there was no attempt made to optimize the penicillin plant 

operation. Another recent work (Kookos, 2004) described the single-objective 

economic potential maximization of penicillin production in a bioreactor using 

simulated annealing.  Araúzo-Bravo et al. (2004) investigated the use of soft sensors 

and an adaptive controller based on neuro fuzzy systems in a commercial penicillin 

production plant. Thus, there has been no study on the multi-objective optimization of 

an industrial penicillin plant. This motivated the thesis author to model an industrial 

penicillin V bioreactor train and then optimize it for multiple objectives using the non-

dominated sorting genetic algorithm, which was successfully employed for many 

chemical engineering applications (e.g., Agrawal et al., 2006; Bhutani et al., 2006; 

Nandasana et al., 2003; Oh et al., 2001; Sarkar and Modak, 2005; Tarafder et al., 

2005; Yee et al., 2003).  

 Single objective optimizations such as maximization of economic profit result 

in trade-offs in other aspects such as larger amount of solvent used and greater 

volume of biologically active wastes generated.  
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2.2   Process Description 
 Penicillin V (and G) is produced through fermentation using the mycelium 

known as Penicillium chrysogenum; a simplified process flow sheet is shown in           

Figure 2.1. The preferred mode for fermentation is fed-batch since it allows a far more 

accurate control of feed policy and operating parameters compared to simple batch 

fermentation (van Nistelrooij et al., 1998). Continuous culture, which in the 1950’s 

aroused much enthusiasm among academic investigators, has failed to find its way 

into manufacturing due to instability of the strain (or its production potential) over 

longer time spans (van Nistelrooij et al., 1998). It is much more difficult to maintain a 

sterile fermentation environment for penicillin production using a continuous process.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The broth in a holding tank is sterilized by heating it with high pressure steam. 

Inoculum containing the initial biomass is prepared in a separate set of holding tanks. 

The cooled broth and inoculum are then transferred to the bioreactors. The bank of 

identical bioreactors is run semi-continuously in a synchronous fashion (Figure 2.2), 

while the downstream units are operated continuously, in order to meet the targeted 

production rate. There is a constant phase difference between any two bioreactors in 

the train to ensure a continuous stream of broth leaving the train to downstream units.  
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Fig. 2.1.   Simplified process flowsheet of a penicillin plant. 
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Rotary filter removes the biomass and transfers the liquid containing penicillin V to 

the continuous counter-current Podbielniak centrifugal extractor. The inlet liquid 

stream to the extractor is mixed with sulphuric acid to obtain a pH of 2 for efficient 

extraction. A suitable organic solvent such as butyl acetate is used to extract the 

penicillin from the product stream. The penicillin-rich extract stream is sent to the 

carbon treatment unit (not shown in Figure 2.1) to remove pigments and other 

impurities. The butyl acetate in the raffinate stream is recovered via distillation. The 

stream from the carbon treatment unit enters the crystallizer where penicillin V 

sodium (or potassium) salt is formed. Wet crystals separated using the centrifuge, are 

then dried before packaging and storage. 

  

2.3   Fermentation Models 
 Penicillin production remains a trade secret and no models are available from 

industrial producers. The thesis author reviewed the open literature since 1990 and 

identified four different models (Birol et al., 2002; Menezes et al., 1994; Paul and 

Thomas, 1996; Zangirolami et al., 1997) for this study. The model proposed by Paul 

and Thomas (1996) is a structured model comprising more than 20 parameters for 

hyphal differentiation and penicillin production. The thesis author was not able to 

validate and use the model since several parameter values were not available. The 

model by Birol et al. (2002) is an assembly of earlier models proposed by Bajpai and 

tswitch 
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Broth volume (L) 

Time (h) 

Initial broth volume 

Final broth volume 

tsteril tdischarge 

Start of a new batch cycle 

Batch  
mode 

Batch cycle time 

Fig. 2.2.   Typical fed-batch profile.  
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Reuß (1980), Nielsen (1993) and Jørgensen et al. (1995). However, Birol et al. (2002) 

did not conduct any fermentation experiments to justify their model parameters. In 

particular, the parametric constants taken from the work by Bajpai and Reuß (1980) 

seem to be arbitrarily assigned. The thesis author’s simulations of the model proposed 

by Birol et al. (2002) gave a maximum penicillin concentration of 0.048 g/L, which is 

about 500 times lower than those reported in Menezes et al. (1994) and Zangirolami et 

al. (1997). Such low penicillin concentrations were encountered in the past. The 

highest concentration reported for the year 1946 was around 220 U/ml or 0.12 g/L 

(Hersbach et al., 1984).  Due to continual improvement in industrial strain selection, it 

is possible for penicillin concentration to fall within the 10 to 70 g/L range (Biwer et 

al., 2004; Hersbach et al., 1984).  

 The model by Zangirolami et al. (1997) uses a penicillin V producing strain 

and the model by Menezes et al. (1994) uses a penicillin G producing strain. Both 

models were formulated based on the respective authors’ experimental results. The 

penicillin V model (given later in this section) was formulated based on experimental 

work using a 41-L bioreactor with a maximum broth volume of 25 L. The penicillin G 

model was formulated based on a study using a 1000-L bioreactor. The penicillin V 

model is morphologically structured around the metamorphosis and growth reactions 

of the Penicillium chrysogenum hyphal element. It uses an inhibition constant to 

account for the suppression of penicillin V production at high substrate concentration. 

The penicillin G model is not morphologically structured and does not use an 

inhibition constant.  

 The transient profiles obtained using the models proposed by Menezes et al. 

(1994) and Zangirolami et al. (2002) are similar (Figure 2.3) even though the two 

models were formulated using different industrial Penicillium chrysogenum strains, 

mathematical structures and bioreactor sizes. Unlike the model formulated by Birol et 

al. (2002), the predicted penicillin concentration by both models in their original 

forms is comparable to what is expected of current commercial production strain. The 

transient profiles are similar to the typical profile of fed-batch penicillin fermentation 

(Hersbach et al., 1984; Lowe, 2001). Panlabs Inc., a firm which supplies its penicillin-

producing clients with improved strains, has published results obtained in the late 

1970’s, which show penicillin concentration averaging 45,000 U/ml or 25.4 g/L (van 

Nistelrooij et al., 1998). Later data are not publicly available, but it seems safe to 

assume that a further doubling is feasible (van Nistelrooij et al., 1998). Simulations 
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results using models of Menezes et al. (1994) and Zangirolami et al. (2002) show 

penicillin concentration increasing steadily beyond the initial biomass growth phase. 

Continuous glucose feed sustains the metabolism needed for maintenance and 

penicillin formation. The model proposed by Zangirolami et al. (1997) is selected for 

the current work since it is formulated from experimental work using relatively recent 

industrial mycelium strain.  
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Menezes et al. (1994) 

Zangirolami et al. (1997) 

Menezes et al. (1994) 

Zangirolami et al. (1997) 

Fig. 2.3.   Transient profiles obtained from simulations when the fed-batch policy and initial 
conditions (Menezes et al., 1994) are applied to the models of Menezes et al. (1994) and 
Zangirolami et al. (1997). The biomass concentration  refers to live cells concentration. 
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 Figure 2.4 shows a hyphal element of the mycelium Penicillium chrysogenum. 

In the model of Zangirolami et al. (1997), penicillin production occurs within the 

subapical compartment and the active part of the hyphal element.  

 

 

 

 

 

 

 

 

  

 The differential balance equations describing the metamorphosis and growth 

reactions occurring in the various morphological compartments, total biomass, 

penicillin V production, glucose consumption, consumption of nutrients in corn steep 

liquor and broth volume, are summarized below.  

 

Morphological compartments 

Apical cells:           μZμZuu
dt

dZ
aaa21

a −+−=                          (2.1) 

Subapical cells:     μZμZuuu
dt

dZ
sss312

s −+−−=                           (2.2) 

Hyphal cells:         hhhh3
h μZμZfu

dt
dZ

−+=                             (2.3) 

Metamorphosis reactions and kinetics 

Branching:             su11as Zku     ZZ =→                               (2.4) 

Tip extension:        au22sa Zku     ZZ =→                                    (2.5) 

Differentiation:      
1KS

Zku     ZZ
u3T

su3
3hs +
=→                              (2.6) 

                            CSLCSLGLUT SαSS +=                                 (2.7) 

 

Apical cells 

Subapical cells 

Hyphal cells 

Transient zone 

Fig. 2.4.    A hyphal element of Penicillium chrysogenum.  
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Growth kinetics 

The growth of apical, subapical, and the active fraction fh of hyphal cells is described 

by Monod kinetics. 

sT

T
aa KS

Skμ
+

=                                             (2.8) 

sT

T
ss KS

Skμ
+

=                                  (2.9) 

sT

T
hh KS

Skμ
+

=                                   (2.10) 

hhhssaa ZμfZμZμμ   ++=                           (2.11) 

Total biomass 

X
V
FμX

dt
dX

⎟
⎠
⎞

⎜
⎝
⎛−=                                (2.12) 

Penicillin V production 

P
V
FXr

dt
dP

p ⎟
⎠
⎞

⎜
⎝
⎛−=                                             (2.13) 

( )hhs

I

2
GLU

2GLU

GLU
2p ZfZ

K
SKS

Sk   r +
++

=                             (2.14) 

Glucose consumption 

XrS
V
F

V
FS

dt
dS

GLUGLUF
GLU −⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=                             (2.15) 

p2s
CSLCSLGLU

GLU
1GLU rαmμ

SαS
Sα     r ++
+

=                             (2.16) 

Consumption of the nutrients in the corn steep liquor 

Corn steep liquor is the major nitrogen source for the mycelium. About 42%                 

(by weight) of the corn steep liquor consists of nutrients such as free amino acids, 

proteins, vitamins and lactate. The remaining 58% of the corn steep liquor cannot be 

metabolized during fermentation. In contrast, 100% of the glucose can be metabolized 
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during fermentation. Equation (2.7) represents the concentration of the total glucose 

equivalents. Corn steep liquor, spores (initial biomass), glucose and precursors (such 

as phenoxyacetic acid) are added to the bioreactor at the start of the batch mode           

(Figure 2.2). Glucose solution is then fed continuously to the broth to sustain the 

mycelium metabolism.  

XrS
V
F

dt
dS

CSLCSL
CSL −⎟

⎠
⎞

⎜
⎝
⎛−=                                      (2.17) 

μ
SαS

Sα     r
CSLCSLGLU

CSL
1CSL +

=                                           (2.18) 

Broth volume 

fedGLU,

GLU

S
VF     

dt
dV •

=                                           (2.19) 

 

 Values of parameters in the above equations are taken from Zangirolami et al. 

(1997); they are: ku1 = 2.3 h-1;  ku2 = 0.7 h-1; ku3 = 0.19 h-1; Ku3 = 20.0 L/g glucose; fh = 

0.13 g active Zh/g Zh; α1 = 2.2 g glucose/g dry weight; α2 = 0.6858 g glucose/g 

penicillin; αCSL = 0.42 g glucose/g corn steep liquor; k = 0.14 h-1; Ks = 0.0015 g 

glucose/L; ms = 0.0281 h-1; k2 = 1.35 h-1; K2 = 0.0132 g glucose/L; and KI = 0.0101g 

glucose/L. The ordinary differential equations in the above model equations were 

solved using the DIVPRK program in the IMSL software. 

 

2.4   Formulation of the Multi-Objective Optimization Problem 

2.4.1  Profit, Yield and Bioreactor Train Model 
 The industrial penicillin V bioreactor train comprises certain number of 

identical fermenters designed for a targeted penicillin production rate. The 

Podbielniak centrifugal extractor and crystallizer are sized to accommodate the given 

production rate. The key performance indicators selected in this study are batch cycle 

time, yield, profit and penicillin concentration. Minimizing the batch cycle time          

(Figure 2.2) for a bioreactor train reduces the time needed to prove the operability of 

the fermentation process, and also creates greater flexibility in coping with the 

frequent changes in process operating conditions and sequence of equipment used. 

Yield refers to the mass of penicillin produced per unit mass of total glucose 
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equivalents added. Maximizing the yield is equivalent to maximizing the mass of 

penicillin produced and minimizing the mass of total glucose equivalents 

concurrently. Maximizing the yield involves minimizing the accumulation of 

fermentation waste materials, which is desirable since disposal of fermentation waste 

material such as the fungal mycelium and the biologically active waste liquid is a real 

problem (Ohno et al., 2003).  

 The difference between revenue and cost constitutes the profit. Cost comprises 

the operating cost and the installed cost of the bioreactor train. Stirred tank bioreactors 

up to 400 m3 in volume are used in antibiotics production (Schuler and Kargi, 2002). 

In this study, the volume (Hersbach et al., 1984) of each bioreactor is set at 250 m3 of 

which the working volume (i.e. maximum broth volume) is 200 m3. As shown later in 

section 2.6, the maximum broth volume ranges from around 170 m3 to 200 m3. The 

excess bioreactor volume is needed to accommodate rising foam during fermentation. 

The amortized installed cost of the bioreactor train designed to cater to a targeted 

penicillin production rate does not vary much, and will not be included in the profit 

objective function. The operating cost is for raw materials (glucose, corn steep liquor, 

and water) and utilities (electricity, sterile air, and chilled water). Both the penicillin 

price and the bioreactor train production rate are fixed in this study. Owing to the 

latter, the size and amortized installed cost of downstream processing units such as the 

Podbielniak centrifugal extractor and crystallizer do not vary much.  

 Maximizing penicillin concentration embeds an implicit minimization of the 

operating cost of downstream processing units such as the Podbielniak centrifugal 

extractor and crystallizer. For a given extractor size, maximizing the penicillin 

concentration for a targeted penicillin fraction in the penicillin-rich extract stream 

assists in minimizing the extractor rotational speed (lower electricity cost) and solvent 

consumption. Handling large amount of solvent requires one to contend with the 

issues of solvent recovery, handling, storage, spillage, disposal as well as impact on 

the environment. The installed cost of the crystallizer is dependent on its volume, 

which in turn depends on the volumetric flow rate of the product and the residence 

time. The volumetric flow rate is proportional to the targeted penicillin V production 

rate. The residence time is slightly dependent on the narrow temperature range of 0 to 

4°C which exists within the crystallizer. In other words, the bioreactor train 

production rate determines the crystallizer size. From the above discussion, it then 
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follows that maximizing the profit is equivalent to minimizing the operating cost of 

bioreactors. 

 The price of penicillin V is $17/kg and the targeted production rate for the 

train is 248 kg/h (Biwer et al., 2005). Assuming overall product loss of 15% (Lowe, 

2001), the penicillin production rate of the bioreactor train is 292 kg/h. Taking into 

account the overall product loss, the expected revenue is $4,216/h. The number of 

bioreactors in the train is 20 (Section 2.6). Profit ($/h) can then be computed as 

follows: 

Profit  = ( )( )
cyclebatch  cyclebatch  

finalfinal

t
Cost 20

t
f(1VPn 17 −

−                                                               (2.20) 

The first term on the right side is the revenue, whose derivation is outlined below. The 

second term is the operating cost and accounts for raw materials and utilities during 

sterilization, batch/semi-batch operation and discharge of bioreactors. The cost 

components are discussed in the following sub-section. Note that amortized installed 

cost and operating cost of downstream units should also be subtracted from the 

revenue to find the actual profit. Further, prices of utilities taken from the literature 

(mainly, Turton et al., 2003) are not adjusted to the present time since they vary with 

supply and demand, geographical location, government tariffs, currency exchange 

rates and other factors. Overall, profit given by equation (2.20) is reasonable for use 

as an objective. 

 The yield can be computed from: 

Yield  = ( )( ) ( )( )fedGLU,infinalinCSL,CSLinGLU,in

finalfinal

SVVSαSV
VP

−++
                                      (2.21) 

 The broth mass and volumetric flow rate from the bioreactor train are 

respectively, n(ρbrothVfinal)/tbatch cycle and Qvol = n(Vfinal)/tbatch cycle. Assume that the batch 

cycle time and the discharge time are the same for all bioreactors in the train, and that 

the broth is transferred from the train continuously for a targeted penicillin V 

production rate. The discharge time is Vfinal/Qvol which simplifies to tbatch cycle/n. The 

batch cycle time (Figure 2.2) is the sum of tfermentation, tdischarge and tsteril, and the 

fermentation time is equal to tswitch + tcontinuous. Thus, the batch cycle time is:  

n
11

ttt sterilonfermentati
cyclebatch  

−

+
=                                                                                      (2.22) 
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If n is one, the batch cycle time is infinite since a single bioreactor does not permit 

broth to be transferred to another unit continuously. Since both the sterilization time 

and number of bioreactors are constant, the batch cycle time is only dependent on the 

fermentation time. If R is the targeted penicillin V production rate and f is the overall 

product loss, then we have 

( ) ( )f1
t

VPn
R

cyclebatch 

finalfinal −⋅= .  

Combining this with equation (2.22) gives 

( )( )( )
sterilonfermentati

finalfinal

tt
f1VP1nR

+
−−

= .  

The model equations (2.1) to (2.19) are integrated until  

( )( )( )
sterilonfermentati

finalfinal

tt
f1VP1n

+
−−   

equals to or slightly exceeds R. The revenue ($/h) is simply the price of penicillin 

($17/kg) times ( )( )( )
sterilonfermentati

finalfinal

tt
f1VP1n

+
−− . 

 

2.4.2  Cost Components 
 The operating cost equations are formulated based on the following premises: 

(1) electricity to stir the broth, sterile air to aerate the broth and chilled water to 

remove metabolic heat are not required during sterilization; (2) cost related to 

sterilizing steam and inoculum preparation is assumed to be unaffected by bioreactor 

train design and hence not included in the profit objective; (3) precursors are part of 

the corn steep liquor; (4) as the industrial glucose feed rate is expressed as kg/m3 of 

broth/h, higher broth volume necessitates higher glucose volumetric flow rate, and the 

broth volume profile with respect to time under continuous glucose feed phase is 

exponential as shown in Figure 2.2; (5) no change in penicillin concentration during 

broth discharge at the end of fermentation. 

 Stirred tank bioreactors up to 400 m3 in volume are used in antibiotics 

production, with electric power input up to 5 kW/m3 (Schuler and Kargi, 2002). 

Generally, a bioreactor or fermenter has a height-to-diameter ratio of 2 to 3 (Schuler 

and Kargi, 2002). In the design of the fermenter, a ratio to 2.5 to 1 is used. The broth 

volume takes up 80% of the bioreactor volume (Hersbach et al., 1984). Consider a 
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bioreactor using flat-blade turbine under aerated non-Newtonian turbulent conditions. 

The electric power input (kW), Pg is derived from a correlation proposed by Wang et 

al. (1979) and its final form is given by: 3.15
p

0.252
p

1.698
pg nQ0.0064809VP −=  where Vp 

is the broth volume (m3), Qp is the sterile air aeration rate (m3 of air/m3 of 

broth/minute) and np is the stirring rate (revolutions per second). Using Qp of 1 m3 of 

air/m3 of broth/minute and a stirring rate of 2 revolutions per second, the calculated 

electric power input per unit volume (kW/m3 of broth) is 2.43 for a broth volume of 

100 m3 and 3.94 for a broth volume of 200 m3. This is comparable to the input power 

of 3 − 4 kW/m3 stated by Hersbach et al. (1984). Similarly, Perry et al. (1997) states a 

typical value of 2.5 kW/m3. Using the sterile air aeration rate and stirring rate stated 

earlier, the equation describing electric power input (kW) simplifies to: 
1.698

Pg 0.0575VP = . The price of electricity is $0.06/kWh (Turton et al., 2003).  

The broth volume at time t is given by: 

αt
in

 t
fed,S

F

inp eVeVV GLU

GLU

==
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

  

where Vin is the initial broth volume. Here α is the ratio of glucose feed mass flow 

rate (FGLU kg/m3/h) to the glucose feed concentration (SGLU,fed kg/m3).  

The cost of electricity ($/h) can be computed as follows:  

Batch mode: Costel,batch = (0.06)(0.0575)(tswitch)(Vin)1.698                                       (2.23) 

Continuous feed mode:  

Costel,cont  =  (0.06)(0.0575) ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞⎜

⎝
⎛ −

1.698α
11.698

inV1.698
finalV                                       (2.24) 

Discharge mode: Costel,disch = (0.06)(0.0575) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2.698
V1.698

final
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

t cyclebatch                          (2.25) 

Note that discharge time is tbatch cycle/n (Section 2.4.1).  

 The price of sterile air is $5.25/1000 standard m3, which is 50% higher than 

the one stated by Turton et al. (2003) for 50 psig air. The sterile air flow rate is                 

1 m3/m3 of broth/minute. The cost of sterile air ($/h) can be computed as follows; note 

that aeration is needed during the discharge mode also, in order to maintain 

metabolism even though there is no further substrate feeding. 

Batch mode: Costair,batch  =0.00525)(60)(Vin)(tswitch)                                               (2.26) 

Continuous feed mode:  Costair,cont =  ( )
α

)V-60(V0.00525 infinal                              (2.27) 
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Discharge mode: Costair,disch =   (0.00525)(30)(Vin) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

t cyclebatch                              (2.28) 

 Chilled water flowing through the jacket of the bioreactor removes the 

metabolic heat evolved during fermentation. The oxygen uptake rate during 

metabolism is given by: Na = ( ∗
LC - CL)kLa. At 25 °C and 1 atmosphere (absolute), the 

saturated oxygen concentration ( ∗
LC ) in the broth at equilibrium with the bulk gas 

phase is 0.263 mol/m3. If CL is less than 5-10% of ∗
LC , irreversible damage adversely 

affects the productivity of the mycelium (Hersbach et al., 1984). In this study, the 

oxygen concentration in the broth (CL) is taken to be 20% of ∗
LC . The overall oxygen 

transfer coefficient (kLa) is 200 h-1 (Hersbach et al., 1984). Therefore, the oxygen 

uptake rate is 42.6 mol/(m3.h). In aerobic fermentation, the rate of metabolic heat 

evolution can be correlated to the oxygen uptake rate: qH = 0.12Na (Schuler and 

Kargi, 2002). The rate of metabolic heat evolution (W) can be calculated from: QH = 

5944V. The chilled water is supplied at 5 °C and returned at 15 °C. The price of 

chilled water is $0.185/1000 kg (Turton et al., 2003). The cost of chilled water can be 

computed as follows: 

Batch mode:  Costchill,batch =  ( )( )( )
 waterchilledp,

switchin

10C
tV59440.000185                                      (2.29) 

Continuous feed mode: Costchill,cont =    ( )( )( )
 waterchilledp,

infinal

C 10α
V-V59440.000185                   (2.30) 

Discharge mode: Costchill,disch =  ( )( )( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

t
10C

V59440.50.000185 cyclebatch 

 waterchilledp,

final              (2.31) 

 The price of potable water is $0.26/1000 kg (Turton et al., 2003). The cost of 

potable water can be computed as follows: 

Costwater = 0.26 Vfinal                               (2.32) 

The price of corn steep liquor is $0.2/kg (internal estimate). The cost of corn steep 

liquor can be computed as follows: 

Costcsl = 0.2 Vin SCSL,in                                                                                            (2.33) 

The price of glucose is $0.216/kg (Biwer et al., 2005). The cost of glucose can be 

computed as follows: 

Costglu = 0.216 Vin SGLU,in + 0.216(Vfinal-Vin) SGLU,fed                                      (2.34)    



 

  21

 Summing the above equations (2.22) to (2.33) gives the operating cost of a 

bioreactor for one batch cycle. 

Cost = Costel,batch + Costel,cont + Costel,disch + Costair,batch + Costair,cont + Costair,disch +  

           Costchill,batch + Costchill,cont + Costchill,disch + Costwater + Costcsl + Costglu        (2.35) 

The cost defined by equation (2.35) is in the second term of the right side of the profit 

equation (2.20). 

 

2.4.3  Cases  
 Based on the above discussion on the performance indicators, the current 

study covers the following two cases of bi-objective optimization.     

         

(a)    Max Yield   

         = ( )( ) ( )( )fedGLU,infinalinCSL,CSLinGLU,in

finalfinal

SVVSαSV
VP

−++
                                     (2.36) 

          

         Max  Pfinal                                                                  (2.37) 

 

 

(b)    Max Yield 

            = ( )( ) ( )( )fedGLU,infinalinCSL,CSLinGLU,in

finalfinal

SVVSαSV
VP

−++
                                     (2.38) 

         

 Min 

n
11

ttt sterilonfermentati
cyclebatch 

−

+
=                                                                   (2.39) 

In addition, a tri-objective optimization for maximizing yield, Pfinal and profit 

(equation (2.20)) simultaneously is studied. Maximizing profit for the bioreactor train 

may reveal possible trade-offs vis-à-vis yield and penicillin concentration.  

The above objective functions are subject to bounds on decision variables 

given in Table 2.1 and the model equations (2.1) to (2.19). Further, broth volume is 

constrained to below 200 m3 for a 250-m3 bioreactor. When the model equations (2.1) 

to (2.19) are integrated, it is possible for the state variables (Za, Zs, Zh, V, X, P, SGLU 

and SCSL) to become negative or physically inadmissible. When the broth volume 

breaches the constraint or when a state variable is inadmissible, the objective function 
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value is penalized by setting it to an arbitrarily high (or low) level; under such 

conditions, yield, penicillin concentration and profit are set to 10-10, and batch cycle 

time is set to 1010. 

 

Table 2.1  Decision variables and their ranges used in the multi-objective optimization 
of bioreactor train. 
 

Decision variable                  Range used in optimization         Basis                          

Switchover time                    1 to 60 h                                       less than 100 h 
                                                                                                    (Biwer et al., 2004; 
                                                                                                    Hersbach et al., 1984)               
 
Initial glucose                 10 to 600 g/L                                less than 1000 g/L 

concentration                                                                         (Biwer et al., 2004; 
(batch mode)                                                                               Hersbach et al., 1984) 
                
Continuous glucose               10 to 600 g/L                               500 g/L (optimum) 

feed concentration                                                                      (Hersbach et al., 1984) 
 
Initial biomass                       0.1 to 3 g/L                                  1 to 2 g/L 

concentration                                                                              (Hersbach et al., 1984) 
(batch mode) 
 
Initial corn steep            10 to 600 g/L                               less than 1000 g/L 

liquor concentration                                                               (Biwer et al., 2004; 
(batch mode)                                                                               Hersbach et al., 1984) 
 
Initial broth volume               5000 to 60000 L                          less than 100,000 L for  
(batch mode)                                                                              the industrial fermenter      
                                                                                                   (Biwer et al., 2004) 

 

 

2.5   Method Used in the Multi-Objective Optimization (MOO) 
 Evolutionary algorithms such as genetic algorithm (GA) can be applied to 

complex bio-processes. GAs mimic the principles of natural genetics and natural 

selection in solving optimization problems. These algorithms use a population of 

chromosomes; each chromosome is associated with a particular set of values 

pertaining to the decision variables and fitness (related to objective) function. The 

randomly-generated initial population of chromosomes undergo reproduction, 

crossover and mutation to create a new population, which is evaluated and tested for 

its fitness. One cycle of these operations and the subsequent evaluation procedure is 
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known as a generation. The above procedure is repeated for several generations until 

the termination criterion (such as maximum number of generations) is met.  

 Non-dominated sorting GA (NSGA) is a modified version of the simple GA, 

for multiple objectives. Non-domination refers to a solution being better in at least 

one objective than another solution. NSGA differs from the simple GA only in the 

way the selection operator works. The crossover and mutation operators remain as 

usual (Srinivas and Deb, 1995). NSGA uses a ranking selection method to emphasize 

the good chromosomes and niche method to create diversity in the population without 

losing a stable sub-population of good chromosomes. NSGA-II is a further 

improvement of NSGA (Deb et al., 2002); it is an elitist NSGA using an elite-

preservation strategy as well as an explicit diversity-preserving mechanism.   

 GA operators can be implemented with binary or real coding for the decision 

variables in the problem. Representation of real numbers with binary coding limits the 

precision that can be achieved, requires alteration of many bits for slight change in 

decision variable value and can retard the search for the optimum. Considering these 

and similar to Tarafder et al. (2005) who opted for the real-coded NSGA-II for better 

results, this study too employed the real-coded NSGA-II for the bioreactor train 

optimization for multiple objectives. The parameters in this algorithm (with values 

used in this study in brackets) are maximum number of generations (up to 500), 

population size (100 chromosomes), probability of crossover (0.85), probability of 

mutation (0.05), distribution index for the simulated crossover operation (10), 

distribution index for the simulated mutation operation (20) and random seed (0.6). 

Except for the first and last parameter listed in the previous sentence, the rest of the 

NSGA-II parameter values are taken from the recent work by Tarafder et al. (2005). 

Values for maximum number of generations and random seed are obtained by trial 

and error, as discussed in next section. 

 In this work, each bioreactor in the train is treated as identical with broth 

volume constrained to below 200,000 L. The targeted production rate of the 

bioreactor train is 292 kg/h after taking into account an overall product loss of 15% 

(Lowe, 2001). The value of tsteril is arbitrarily set at 24h to ensure that there is no cross 

contamination between batches. The model equations (2.1) to (2.19) are integrated 

until   ( )( )( )
sterilonfermentati

finalfinal

tt
f1.VP1n

+
−−  
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converges to or slightly exceeds 292 kg/h. The step size used in integration is 0.1 

hour; the same results were obtained with a smaller step size which confirms 

adequacy of 0.1 hour step size without requiring large computational time. The entire 

study was done using Pentium (R) 4 computer with 2 GHz CPU and 1.00 GB RAM, 

and Windows XP Professional. Each simulation took not more than 10 seconds of 

CPU time; each optimization run for 500 generations required around 5 hours and 7½ 

hours of CPU time for the bi-objective and tri-objective scenarios, respectively.  

 

2.6   Optimization Results and Discussion 

2.6.1  Decision Variables 
 In the preliminary study for simultaneous maximization of yield and 

minimization of batch cycle time, both the number of reactors and glucose feed mass 

flow rate (kg of glucose/m3 of broth/h) converge towards the respective upper bound. 

Also, in the study for simultaneous maximization of yield and penicillin 

concentration, both these variables converge towards the respective lower bound. The 

batch cycle becomes shorter  as the number of bioreactors (see equation 2.22) and/or 

glucose feed mass flow rate increase; higher glucose feed mass flow rate generally 

shortens the fermentation time and batch cycle. Longer batch cycle time                          

(or equivalently longer fermentation time when tsteril is constant) linked to a smaller 

number of bioreactors and/or lower glucose feed mass flow rate, results in higher 

penicillin concentration. Since the number of reactors is actively constrained if it were 

used as a decision variable, the number of reactors in the train is set at 20. Likewise, 

instead of postulating glucose feed rate profile with undetermined coefficients as 

decision variables, the glucose feed rate is set at 1.8 kg/m3 of broth volume/hour 

(Hersbach, et al., 1984). With these choices, there are six decision variables: 

switchover time from batch mode to continuous mode, initial glucose concentration 

(batch mode), continuous glucose feed concentration, initial biomass concentration, 

initial corn steep liquor concentration and initial broth volume. Table 2.1 shows the 

bounds on these decision variables and the basis for them. 

 

2.6.2  Bi-Objective Optimization  

 Two cases: (a) simultaneous maximization of yield and penicillin 

concentration and (b) simultaneous maximization of yield and minimization of batch 
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cycle time, are considered for bi-objective optimization. Figure 2.5 shows the results 

obtained for case (a) at 100, 300 and 500 generations with the random seed set at 0.6. 

Higher penicillin concentration driven by greater availability of glucose substrate 

inhibits penicillin formation as fermentation continues. Thus, the yield decreases 

when the selectivity with respect to penicillin formation declines at higher penicillin 

concentration typically associated with longer fermentation time. Results at 300 and 

500 generations in Figure 2.5 indicate convergence of the Pareto within 500 

generations; further, results at 400 generations (not shown) are almost identical to 

those of 500 generations. Another trial is made with the random seed set at 0.7, which 

affects the initial population of chromosomes and also subsequent generations. The 

solutions obtained at 100 generations with the random seed of 0.7 (not shown in 

Figure 2.5) are at greater distances from the Pareto-optimal front compared to the 

corresponding solutions obtained for a random seed of 0.6. Although random seed 

influences results at lower generations, the same Pareto-optimal fronts are generated 

for two different random seed values, as displayed in Figure 2.5. 
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Fig. 2.5. Pareto-optimal fronts obtained at 500 generations for the simultaneous 
maximization of yield and penicillin concentration using random seed: 0.6 (•) and         
0.7 (○). Also shown are the solutions at (a) 300 generations using random seed:            
0.6 (▲) and 0.7 (Δ), and (b) 100 generations using random seed of 0.6 (■). 
 



 

  26

 

0.17

0.175

0.18

0.185

0.19

0.195

450 500 550 600 650 700
Fermentation time (h)

Yi
el

d 
(g

/g
)

 
Fig 2.6. The yield versus calculated fermentation time corresponding to the             
Pareto-optimal fronts in Fig. 2.5 (Δ, random seed of 0.6) and Fig. 2.11 (• , random 
seed of 0.5). 
 

 

 Figure 2.6 shows the calculated fermentation time corresponding to the Pareto-

optimal fronts in Figures 2.5 and 2.11. The decision variables corresponding to the 

Pareto-optimal fronts of Figure 2.5 are shown in Figure 2.7. Among the decision 

variables, glucose feed concentration has strong influence on the Pareto-optimal fronts 

shown in Figure 2.5. Initial broth volume is actively constrained at the lower bound of 

5000 L in order to stretch the fermentation time and raise the penicillin concentration 

as glucose feed concentration increases from about 219 g/L to about 323 g/L. As 

noted earlier, the gain in penicillin concentration due to longer fermentation time is 

accompanied by the decline in yield (Figure 2.6). The switchover time, initial glucose 

concentration, initial biomass concentration and initial corn steep liquor concentration 

form two distinct groups for the two random seeds. Results in Figure 2.7 suggest that 

these variables have marginal effect on the Pareto, and that the effect of switchover 

time and initial glucose concentration on the yield and penicillin concentration is 

counter-acted by those of initial biomass and corn steep liquor concentrations. This is 

discussed in the next paragraph. Typically, most of the nutrients will be consumed 
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during the initial biomass growth phase. Beyond this phase, continuous glucose feed 

is required to sustain the mycelium metabolism and penicillin formation. However, 

excess glucose inhibits penicillin formation resulting in lower yield and declining rate 

of increase of penicillin concentration.  
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Fig. 2.7. Decision variables corresponding to the Pareto-optimal fronts in Fig. 2.5 for 
two random seeds: 0.6 (• ) and 0.7 (). 
 

The four decision variables – switchover time, initial glucose concentration, 

initial biomass concentration and initial corn steep liquor concentration – seem to 

have opposing effects on the objectives resulting in identical Pareto-optimal front but 

with different values for them. This is confirmed as the same Pareto-optimal front was 

obtained when switchover time and initial glucose concentration are fixed (at 15 h and 

100 g/L, respectively) in the bi-objective maximization of yield and penicillin 
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concentration. Also, the initial biomass concentration and initial corn steep liquor 

concentration are relatively constant (Figure 2.8). Similar observation applies to the 

total glucose equivalents (not shown) comprising glucose and 42% of corn steep 

liquor. A certain critical biomass built up within the batch mode is achievable through 

various means of manipulating the above four decision variables. Glucose feed 

concentration and initial broth volume have no influence within the batch mode, 

where no continuous feeding is involved. In contrast, they have great influence on the  

Pareto-optimal results due to significant product formation when glucose is fed 

continuously to a bioreactor. Recently, Tarafder et al. (2007) discussed multiple 

solution sets producing very comparable Pareto-optimal fronts in chemical 

engineering applications. 

 Results for case (b) – simultaneous maximization of yield and minimization of 

batch cycle time – are shown in Figure 2.9, where the yield approaches a distinct 

plateau as the batch cycle time rises beyond 200 hours. This is because penicillin 

formation is inhibited by glucose accumulation in the bioreactor; this can be seen  

from the yield versus calculated batch cycle time shown as crosses in Figure 2.9 

corresponding to the Pareto-optimal front in Figure 2.5. Note that crosses, except the 

left extreme cross (yield = 0.1935, batch cycle time = 515.6 h and initial broth volume 

= 5000.8 L), are not Pareto-optimal solutions for maximizing yield and minimizing 

batch cycle time. The right extreme point on the Pareto-optimal front in the left of the 

plot corresponds to: yield = 0.1905, batch cycle time = 292.8 h and initial broth 

volume = 5002.3 L. The initial broth volume is very close to its lower bound. The gap 

between these two points indicates the difficulty in finding the Pareto-optimal points 

due to closeness to the lower bound and flat nature of the front. 

Among the decision variables, initial broth volume has the greatest influence 

on the yield-batch cycle time Pareto (Figure 2.10). Higher (lower) initial broth volume 

results in shorter (longer) batch cycle time and lower (higher) yield. When the batch 

cycle lengthens and yield approaches the peak, the initial broth volume converges 

towards its lower bound. A relatively constant glucose feed concentration of 78.3 g/L 

drives the yield from 0.123 to 0.183 when the batch cycle time increases from 141 to 

200 hours. As the batch cycle time increases from 200 to 293 hours, the glucose feed 

concentration rises steadily from 78.3 to 112.2 g/L. For batch cycle that lasts longer 

than 200 hours, the initial biomass and initial glucose concentrations generally 

increase to allow accumulation of sufficient biomass to a level that sustains metabolic 
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activities and penicillin formation in the longer run. Unlike the influence of initial 

broth volume and glucose feed concentration on the optimal Pareto, the impact of 

switchover time and initial corn steep liquor concentration is relatively short-term and 

confined within the initial biomass growth phase. 
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Fig. 2.8. Decision variables corresponding to the Pareto-optimal fronts in Fig. 2.5 
when switchover time and initial glucose concentration are fixed at 15 h and 100 g/L, 
respectively, for two random seeds: 0.6 (• ) and 0.7 (). 
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Fig. 2.9. Pareto-optimal front obtained at 500 generations (• ) for the simultaneous 
maximization of yield and minimization of batch cycle time using random seed of 0.6. 
Also shown are: solutions at 400 generations (Δ), and yield and calculated batch cycle 
time corresponding to the Pareto-optimal front in Fig. 2.5 (×).  
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     Fig. 2.10. Decision variables corresponding to the Pareto-optimal front in Fig. 2.9. 
 

 

2.6.3  Tri-Objective Optimization 
 In the next part of the study, yield, profit and penicillin concentration are 

maximized simultaneously using NSGA-II. As before, almost identical Pareto-optimal 

fronts are obtained regardless of the random seed used. For tri-objective optimization, 

we decided to use 0.5 as the random seed after several preliminary runs, to balance 

computation time and accuracy of the solutions obtained. The results obtained at 400 

generations (not shown) are very close to the Pareto-optimal front at 500 generations 

(Figure 2.11). Profit is understandably higher when there is a greater selectivity of 
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penicillin formation relative to biomass formation and maintenance, which means 

higher yield and lower raw material cost. Yield and profit are hence positively and 

strongly correlated (Figure 2.11a) for the Pareto-optimal solutions from both tri- and 

bi-objective optimization. As explained in the bi-objective optimization study above, 

higher yield is obtainable at the expense of penicillin concentration. The same pattern 

is observed in the Pareto-optimal front for tri-objective optimization (Figure 2.11b). 

Nevertheless, operating cost is driven down by shorter fermentation time (meaning 

lower cost) typically associated with lower penicillin concentration. Hence, lower 

penicillin concentration results in greater profit as shown in Figure 2.11c. On the 

contrary, operating cost increases and profit decreases as broth volume and penicillin 

concentration rise. Both yield and profit fall as penicillin concentration (Figure 2.11) 

and fermentation time (Figure 2.13) increases.    

 The Pareto-optimal front obtained in the bi-objective maximization of yield 

and penicillin concentration is almost identical to that obtained in the tri-objective 

maximization of yield, profit and penicillin concentration (Figure 2.11). For a given 

profit, yield of the tri-objective optimization is marginally higher than that from the 

bi-objective optimization (Figure 2.11a). In both cases, glucose feed concentration is 

the main factor contributing to the Pareto-optimal solutions (Figure 2.12), and the 

initial broth volume is actively constrained at the lower bound. In contrast, influence 

of switchover time, initial glucose concentration, initial biomass concentration and 

initial corn steep liquor concentration on Pareto-optimal yield, profit and penicillin 

concentration is relatively short term. Differences in decision variable values in           

Figure 2.12 from bi- and tri-objective optimization may be due to multiple solutions. 

The switchover time from batch to continuous mode for bi-objective optimization is 

longer than that for tri-objective optimization (Figure 2.12), and its marginal effect on 

fermentation time to achieve a particular penicillin concentration is clear from              

Figure 2.13. The broth volume from bi-objective optimization at a particular 

fermentation time is higher than that from tri-objective optimization (Figure 2.14). 

This could be due to non-explicit intention to maximize profit in the bi-objective 

optimization. Thus, for a given fermentation time in the Pareto set (Figure 2.13),         

tri-objective optimization requires a lower broth volume than that in bi-objective 

optimization. 
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Fig. 2.11. Pareto-optimal front obtained at 500 generations for the simultaneous 
maximization of yield, profit and penicillin concentration (• ). Also shown are Pareto-
optimal front in Fig. 2.5 along with calculated profit for comparison (Δ). 
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 In Figure 2.12, the initial broth volume is actively constrained at its lower 

bound of 5000 L. The glucose feed concentration increases steadily from 217.7 to 

325.4 g/L (219.3 to 322.9 g/L for the bi-objective optimization when the random seed 

is 0.6). The final broth volume in a bioreactor is constrained at 200,000 L when the 

fermentation time is about 690 hours (Figure 2.14). The lowest broth volume occurs at 

177,562 L (point M1 in Figure 2.14) when the fermentation time is 504.1 hours. 

However, it does not correspond to maximum profit. Although broth volume rises 

gradually to 178,830 L (point M2 in Figure 2.14) when the fermentation time 

decreases from 504.1 to 465.8 hours, the cost does not increase in line with broth 

volume. Detailed calculations indicate that glucose is the major cost component.  

 

0

10

20

30

40

50

60

40 45 50 55 60

Penicillin concentration (g/L)

Sw
itc

ho
ve

r t
im

e 
(h

)

        

0

100

200

300

400

500

600

40 45 50 55 60

Penicillin concentration (g/L)

In
iti

al
 g

lu
co

se
 c

on
ce

nt
ra

tio
n 

(g
/L

)

 

0

100

200

300

400

500

600

40 45 50 55 60

Penicillin concentration (g/L)

G
lu

co
se

 fe
ed

 c
on

ce
nt

ra
tio

n 
(g

/L
)

        

0

0.5

1

1.5

2

2.5

3

40 45 50 55 60

Penicillin concentration (g/L)

In
iti

al
 b

io
m

as
s 

co
nc

en
tr

at
io

n 
(g

/L
)

 

0

100

200

300

400

500

600

40 45 50 55 60

Penicillin concentration (g/L)

C
or

n 
st

ee
p 

liq
uo

r c
on

ce
nt

ra
tio

n 
(g

/L
)

   

0

10000

20000

30000

40000

50000

60000

40 45 50 55 60
Penicillin concentration (g/L)

In
iti

al
 b

ro
th

 v
ol

um
e 

(L
)

 

Fig. 2.12. Decision variables corresponding to the Pareto-optimal fronts in Fig. 2.11 
(• ) and the Pareto-optimal front in Fig. 2.5 ().  
 

The glucose feed concentration corresponding to M1 and M2 are 239.25 g/L 

(with profit of $3525.1/h) and 220.30 g/L (with profit of $3527.0/h) respectively.  The 
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relatively lower glucose cost and to some extent shorter batch cycle time at M1 

countervails the relatively higher cost encountered in batch and continuous modes. 

Hence, a particular broth volume (178,812 L) on the left of M1 (M3 in Figure 2.14), 

corresponds to a profit of $3528.4/h, as depicted by the chromosome “P3” in Figure 

2.11(c). In the tri-objective optimization, the lowest broth volume (point L1 in Figure 

2.14) corresponds to a profit of $3525.8/h, as depicted by the chromosome “Q1” in 

Figure 2.11(c). Although glucose feed concentrations pertaining to the points on the 

left side of L1 are lower than that of L1, the glucose cost differences are slightly 

overridden by other cost components linked to broth volume. 
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Fig. 2.13. Penicillin concentration versus the fermentation time corresponding to the 
Pareto-optimal fronts in Fig. 2.5 (Δ) and Fig. 2.11 (• ).   
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Fig. 2.14. The broth volume and fermentation time corresponding to the Pareto-
optimal fronts in Fig. 2.5 (Δ) and Fig. 2.11 (• ).  
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2.7   Conclusions 
 Optimization of an industrial penicillin V bioreactor train with a targeted 

continuous production rate was successfully performed using NSGA-II, for both            

bi- and tri-objective scenarios. The bi-objective maximization of yield and penicillin 

concentration results show that higher penicillin concentration is obtainable at the 

expense of lower yield by stretching the batch cycle time. In another case involving 

the concurrent minimization of batch cycle time and maximization of yield, higher 

yield is linked to longer batch cycle time. In maximizing yield, penicillin 

concentration and profit simultaneously, higher profit is associated with higher yield 

and lower penicillin concentration. Results of bi-objective maximization of yield and 

penicillin concentration are similar to those of tri-objective maximization of yield, 

profit and penicillin concentration. Glucose feed concentration has the greatest 

influence on the simultaneous maximization of yield and penicillin concentration and 

on the tri-objective optimization. In both scenarios, initial broth volume is actively 

constrained at its lower bound. In contrast, initial broth volume dictates the optimal 

Pareto of the simultaneous maximization of yield and minimization of batch cycle 

time. The optimization study reported here demonstrates the potential of MOO for 

penicillin production; but, owing to model accuracy and variation of cost data, it is 

necessary to fine tune model parameters and update cost data for optimizing any 

penicillin plant for multiple objectives. 
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Chapter 3   

 OPTIMIZATION OF A MULTI-PRODUCT MICROBIAL CELL 

FACTORY FOR MULTIPLE OBJECTIVES – USING CENTRAL 

CARBON METABOLISM MODEL 

 

3.1   Introduction 
 Emerging mathematical models for multi-product microbial cell factories such 

as Escherichia coli, Corynebacterium glutamicum and Saccharomyces cerevisiae 

enable chemical engineers to extend the reach of their competencies in systems area 

such as optimization and process control to biotechnology and biochemical 

manufacturing. Corynebacterium glutamicum is used commercially to produce amino 

acids (Bongaerts et al., 2001; Eggeling et al., 2006) such as L-glutamate (leading to 

monosodium glutamate, MSG), L-lysine (an animal feed additive), L-phenylalanine  

(a nutraceutical, a flavour enhancer and an intermediate for synthesis of 

pharmaceuticals), tryptophan (an animal feed additive and a nutritional ingredient in 

milk formula for human infants) and L-aspartate (a food additive and a sweetener). 

Likewise, Saccharomyces cerevisiae (yeast) is used commercially to produce ethanol 

and carbon dioxide (for the baking process in the food industry) as well as bio-fuel. 

Depending on the bacteria strain, E. coli is potentially capable of producing more than 

twenty types of amino acids (Eggeling et al., 2006; Lee et al., 2009; Leuchtenberger et 

al., 2005).  

 Optimization of a multi-product microbial cell factory, a systems 

biotechnology specialty, is increasingly useful in predicting feasible outcomes that 

fulfill specified objectives, in tandem with rising reliability of the mathematical 

models for describing the microbial cell metabolic pathways (Lee et al., 2005a). This 

methodology complements the well-developed experimental procedures in classical 

strain development, genomic techniques and intra-cellular flux analysis, used in 

engineering a microbial cell factory targeted for industrial production. Rising demand 

is driving the annual growth for amino acids. Hence, improvements in the production 

of amino acids are of considerable importance to both industries and consumers 

(Scheper et al., 2003). This chapter proposes a mixed-integer multi-objective 

optimization (MIMOO) study to find a range of better metabolic pathway recipe for 

improving amino acids production using E. coli. 
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 In the area of bioprocess modelling and optimization, biochemists such as Voit 

(2000) have compiled a list of modelling works related to bioprocesses using                  

S-system (or synergistic system) to represent the metabolic kinetics of cell factories. 

The S-system models were then adopted for single objective optimization of citric 

acid production in Aspergillus niger, ethanol production in Saccharomyces cerevisiae 

and tryptophan production in E. coli (Torres and Voit, 2002). Conflicting objectives 

are commonly encountered in bioprocesses (Lee et al., 2007; Chapter 1). Up to now, 

there have been several works in the MOO of bioprocesses but none, to the best of the 

thesis author’s knowledge, on the MOO of a multi-product microbial cell factory in 

the form of E. coli. See Chapter 1 for the reported applications of MOO in 

bioprocesses.  

 Almost all works on optimization of a multi-product microbial cell factory 

focussed on a single objective (e.g., Schmid et al., 2004; Visser et al., 2004; Vital-

Lopez et al., 2006). A common feature in these works is the pseudo-stationary 

assumption. Enzymatic reaction kinetics in a microbial cell factory are reversible and 

interdependent. In reality, the fluxes due to enzymatic reactions are never stationary. 

Given the limitations of a model, it is necessary to assume a pseudo-stationary state 

where some variables fluctuate about an averaged steady state within certain bounds.

 Schmid et al. (2004) used a nonlinear kinetic model to maximize tryptophan 

production via enzyme modulations. In their study, the results obtained from             

piece-wise optimization were combined selectively to form the results of the 

integrated optimization. Visser et al. (2004) used a lin-log kinetic model of E. coli to 

determine the optimal glycolytic (Section 3.2) enzyme modulations required to either 

maximize glucose uptake through phosphotransferase sub-system (PTS) or the 

production of serine. In this study, only ten (and eleven in the case of maximizing 

serine production) out of the thirty enzymatic fluxes present in the complete model 

were the decision variables. These two recent works of nonlinear programming (NLP) 

illustrate the potential applications of systems biotechnology in generating metabolic 

pathway recipe. 

 Vital-Lopez et al. (2006) used a linearized kinetic model, possibly anticipating 

a complex problem to be solved, as the basis for maximizing serine production.             
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In   their study, gene overexpression/repression and knockout1 are considered for the 

whole model – an example of mixed-integer nonlinear programming (MINLP). 

Uncertainty of their results generally increases due to approximation when the 

optimization search domain recedes further from the initial steady state conditions. 

Though they have proposed a procedure for unconstrained optimization incorporating 

both linearized and non-linear kinetic models, its applicability and effectiveness for 

multi-objective MINLP remain untested. 

 There has been little work on MOO of multi-product microbial cell factories. 

Vera et al. (2003) have studied MOO in metabolic processes leading to ethanol 

production by Saccharomyces cerevisiae. Ethanol production which is driven by the 

enzyme sub-system pyruvate kinase (PK) was maximized and the concentrations of 

various intermediate metabolites (intra-cellular glucose, g6p, fdp, pep and atp – full 

form of all abbreviations used is given in the List of Symbols) were minimized under 

pseudo-stationary conditions where the five metabolite concentrations are assumed to 

be time-invariant. This allows the system of six differential equations to be converted 

into an equivalent S-system (synergistic system) which is then linearized by applying 

natural logarithms to PK kinetic expression (an objective function) and the various 

influx and efflux terms associated with each of the five metabolites (pseudo-stationary 

constraints). While searching for a Pareto-optimal set, the metabolites concentrations 

and enzymes activities – temporally invariant under pseudo-stationary conditions – 

vary within their respective lower and higher bounds. Enzymes levels (equivalently 

genes overexpression or repression) and metabolites concentrations were manipulated 

in the study of Vera et al. (2003) without explicit consideration of the impact of gene 

knockout – a case of multi-objective linear programming (MOLP).  

Lee et al. (2005b) evaluated the correlation between maximum biomass and 

succinic acid production for various combinatorial gene knockout strains. This sets 

the stage for the simultaneous maximization of biomass and succinic acid production 

using the ε-constraint method. In this method, an MOO problem is converted into an 

equivalent single objective problem by constraining all objectives except one to be 

within specified limits, and then the resulting single objective problems are solved 

using a suitable NLP or MINLP method.  
                                                 
1 Gene expression is the process by which DNA sequence of a gene is converted into functional 
proteins. Many proteins are enzymes that catalyze biochemical reactions vital to metabolism. Gene 
overexpression (e.g. copying genes) creates larger quantity of an enzyme. Gene repression or 
knockdown reduces the quantity of an enzyme; gene knockout deletes an enzyme-producing gene. 
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 In contrast to the widely used continuous processes to produce large quantities 

of a few products, the strategic importance of MOO of a microbial cell factory is 

elevated as the challenge to dynamically cater to various market segments and the 

competition increase. MOO as a first line predictor, has the potential to shorten the 

time to develop new commercial strains when used in conjunction with the well-

established experimental procedures. Clearly, there has been very little MIMOO study 

of a multi-product microbial cell factory. This motivated the thesis author to optimize 

a multi-product microbial cell for multiple objectives using the elitist non-dominated 

sorting genetic algorithm (NSGA-II, Deb et al., 2002), which has been successfully 

employed for many chemical engineering applications. 

 

3.2   Central Carbon Metabolism of Escherichia coli 
 Figure 3.1 shows the metabolic network of the central carbon metabolism of 

Escherichia coli. It depicts 30 enzymatic sub-systems (shown in rectangles),                     

18 metabolites or precursors in between the enzymatic sub-systems and                       

7 co-metabolites (amp, adp, atp, nadp, nadph, nad and nadh). Enzymes are shown in 

rectangles; precursors (balanced metabolites) are in bold between enzymes; allosteric 

effectors (atp, adp and fdp), activators (positive sign), inhibitors (negative sign) and 

regulators (without sign) are given in circles/ellipses. The glycolytic (consisting of 

PTS, PGI, PFK, ALDO, TIS, GAPDH, PGK, PGluMu, ENO, PK and PDH enzymatic 

sub-systems) and pentose-phosphate (consisting of G6PDH, PGDH, Ru5P, R5PI, 

TKa, TA and TKb enzymatic sub-systems) metabolic pathways are central channels 

of carbon fluxes. The fluxes of the enzymatic sub-systems have strong influences in 

the form of feedback regulation (example: changes in PEPCxylase flux affect both the 

serine and aromatic amino acids synthesis, which occur earlier in the pathway) and 

feedforward regulation (example: changes in G6PDH flux affect the aromatic amino 

acids synthesis, which occurs later in the pathway). Higher order effects such as 

cascade and combined feedback-feedforward regulations are also embedded in the 

model. Further, metabolites and co-metabolites regulate the enzymatic sub-systems 

(example: pep has negative regulatory effect on PFK flux whereas adp and amp have 

positive regulatory effects on PFK flux); these effects are shown in circles next to the 

enzymatic sub-systems. 
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 The nonlinear dynamic model of the central carbon metabolism of E. coli 

formulated by Chassagnole et al. (2002) is selected, to study the effects of 

genes/enzymes knockouts, overexpression and repression on amino acids synthesis. 

This detailed model consists of 18 nonlinear differential equations (arising from mass 

balances) and 30 nonlinear rate equations for the enzymatic sub-systems, which take 

into account the impacts of gene expression. No differential mass balance equations 

are available for the 7 co-metabolites; and concentrations of these co-metabolites are 

assumed to be constant. The co-metabolites (also known as co-factors) contain the 

food and energy needed to sustain the metabolism of E. coli. Co-metabolites are non-

protein chemical compounds that are bound to enzymes and can be considered as 

helpers in biochemical reactions. The microbial cells consume as well as re-generate 

the co-factors. Due to the biological need of the cell to maintain the concentration of 

the co-factors and the cyclic nature of co-factor consumption and re-generation, we 

assume constant concentration for co-metabolites. Amounts of co-metabolites needed 

are likely to change following gene manipulations, but their total concentrations 

remain fairly constant at given gene expression levels. Future optimization studies 

may account for the effects of gene manipulations on co-metabolite concentrations.  

 Model equations in Chassagnole et al. (2002) are not repeated for brevity.  

However, these equations along with values of parameters in them are available from 

the thesis author and the CD of the recent book (Rangaiah et al., 2009). The kinetic 

parameters (except for the maximum enzymatic reaction rates), experimentally 

measured initial steady state values of the metabolites/co-metabolites and fed-batch 

process parameters are available in Chassagnole et al. (2002). The maximum 

enzymatic reaction rates are taken from an online resource 

(http://jjj.biochem.sun.ac.za/database/index.html; accessed in May 2007). The thesis 

author solved the model equations using DIVPRK program in the IMSL software, 

with an integration step of 0.1 sec and a glucose pulse (height = 16 mM; width = 0.1 

sec). The transient profiles of the metabolite concentrations and enzymatic reaction 

fluxes shown in Appendix A generally agree with those in Chassagnole et al. (2002). 

Initial steady state values of the 18 metabolites computed using the nonlinear equation 

solver, DNEQNF of the IMSL software, are shown in Table 3.1. They are close to the 

experimentally measured initial steady state values of Chassagnole et al. (2002). All 

these confirm the validity of the model equations, parameters and programs used in 

this study.  
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Fig. 3.1. Metabolic network of the central metabolism of 
Escherichia coli. Enzymes are shown in rectangles; precursors 
(balanced metabolites) are in bold between enzymes; allosteric 
effectors (atp, adp and fdp), activators (positive sign), inhibitors 
(negative sign) and regulators (without sign) are given in 
circles/ellipses. All abbreviations are defined in the List of 
Symbols.  
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3.3   Formulation of the MOO Problem 
 The DAHPS enzymatic sub-system is the first among a series of steps in the 

aromatic amino acids (tryptophan, phenylalanine and tyrosine) synthesis pathways. 

The PEPCxylase enzymatic sub-system produces the oxaloacetate (oaa precursor in 

Figure 3.1) to generate the aspartate precursor (not shown in Figure 3.1) needed for 

the lysine, methionine, threonine and isoleucine synthesis. The SerSynth enzymatic          

sub-system governs the steps leading to serine synthesis pathways. The complex 

interactions among the DAHPS, PEPCxylase and SerSynth enzymatic sub-systems 

exert definite and possibly conflicting influences on the synthesis of three distinct 

groups of amino acids (Figure 3.1). 

 Maximizing DAHPS, PEPCxylase and SerSynth enzymatic flux ratios are 

expected to enhance the desired amino acids synthesis rates. Here, enzyme flux refers 

to the reaction rate facilitated by that enzyme. Two bi-objective scenarios are studied 

in the current chapter. 

Case A: Maximize DAHPS flux ratio and PEPCxylase flux ratio                (3.1)   

Case B: Maximize DAHPS flux ratio and SerSynth flux ratio                     (3.2)    

The flux ratio is the ratio of a flux after genetic engineering (to knock out, 

overexpress and/or repress the genes regulating the enzymatic sub-systems) to that of 

the reference system before genetic engineering (referred to as wild strain by 

biotechnologists). The calculated initial metabolite/co-metabolite concentrations and 

steady-state fluxes (given in Table 3.1) are used as reference values in the MIMOO 

study, by setting the time derivatives of the metabolites to zero. 

 The two crucial system constraints in the optimization are homeostasis and 

total enzymatic flux (Schmid et al., 2004). First is the homeostatic constraint: 

             0.3
C

CC 

m
1 m

1i refi,

refi,i
≤

−
∑
=

                              (3.3) 

 
The summation is over all metabolites (m in number, 18 in our case). Ci is the 

concentration of ith metabolite. Ci,ref is the reference concentration of the ith metabolite 

given in Table 3.1.  The principle of homeostasis requires the microbial cell to 

maintain intra-cellular metabolite concentrations within certain bounds (± 30% in our 

study) - a physiological constraint so that the microbial cell does not suffer from 
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Metabolite/Co-metabolite 

with serial number 
Concentration 

(mM) 
Enzyme with 
serial number 

Flux (mM/s) 

Metabolite 1. PTS 0.2000 

1. Glucose (extracellular) 0.05549 (0.0556) 2. PGI 0.05825 

2. g6p 3.4767 (3.48) 3. PFK 0.1410 

3. f6p 0.5994 (0.60) 4. ALDO 0.1410 

4. fdp 0.2703 (0.272) 5. TIS 0.1394 

5. gap 0.2173 (0.218) 6. GAPDH 0.3199 

6. dhap 0.1665 (0.167) 7. PGK 0.3199 

7. pgp 0.00798 (0.008) 8. PGluMu 0.3023 

8. 3pg 2.1268 (2.13) 9. ENO 0.3023 

9. 2pg 0.3982 (0.399) 10. PK 0.03811 

10. pep 2.6648 (2.67) 11. PDH 0.1878 

11. pyr 2.6689 (2.67) 12. PEPCxylase 0.04312 

12. 6pg 0.8138 (0.808) 13. PGM 0.002319 

13. ribu5p 0.1108 (0.111) 14. G1PAT 0.002301 

14. xyl5p 0.1378 (0.138) 15. RPPK 0.01031 

15. sed7p 0.2760 (0.276) 16. G3PDH 0.001658 

16. rib5p 0.3974 (0.398) 17. SerSynth 0.01749 

17. e4p 0.09776 (0.098) 18. Synth1 0.01421 

18. g1p 0.6520 (0.653) 19. Synth2 0.05355 

  20. DAHPS 0.006836 

Co-metabolite 21. G6PDH 0.1393 

1. amp 0.955 (0.955) 22. PGDH 0.1393 

2. adp 0.595 (0.595) 23. Ru5P 0.08370 

3. atp 4.27 (4.27) 24. R5PI 0.05559 

4. nadp 0.195 (0.195) 25. TKa 0.04527 

5. nadph 0.062 (0.062) 26. TKb 0.03843 

6. nad 1.47 (1.47) 27. TA 0.04526 

7. nadh 0.1 (0.1) 28. MurSynth 0.00043711 

  29. MetSynth 0.0022627 

  30. TrpSynth 0.001037 

 

 

Table 3.1  Initial metabolite/co-metabolite concentrations and steady-state fluxes of 
enzymes used as reference values in the homeostasis and total enzymatic flux 
constraints. Experimentally measured values of Chassagnole et al. (2002) are in 
brackets. The co-metabolite concentrations are assumed to be constant. 
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toxic or inhibitory effects - to avoid impediment of cellular functions and undesirable 

flux diversions. Large changes in metabolite concentrations cause unforeseeable 

effects on gene expression (and hence kinetic rate parameters) that are not captured in 

the existing model. 

 The second is the total enzymatic flux constraint: 

                                                      0.1
r
r

z
1 z

1i ref i,

i ≤∑
=

                                                      (3.4) 

This is a technological constraint, where the summation covers all enzyme fluxes (z in 

number, 30 in our case). ri,ref is the ith reference enzymatic reaction rate given in Table 

3.1. Total enzymatic activity is constrained not to exceed 1.0 to avoid diffusion 

problem (due to increased cytoplasm viscosity), protein precipitation, secondary 

kinetic effects (due to steric hindrance) and excessive intracellular stress leading to 

unpredictable regulatory effects. When either one of these two constraints is breached, 

the objective function value is penalized by setting it to an arbitrarily low level; under 

such conditions, the DAHPS, PEPCxylase and SerSynth fluxes are set to 10-20.

 Metabolite concentrations and enzymatic fluxes change from one steady state 

to another due to gene knockouts, overexpression and/or repression. Redistribution of 

the fluxes presents opportunities for optimizing the metabolic pathways subject to 

physiological and technological constraints. Translation of gene knockouts, 

overexpression and repression into decision variables is described in the next section. 

In this chapter, gene knockouts and overexpression/repression are considered 

separately. Simultaneous knockouts and manipulation of genes is discussed in Chapter 

5. 

 

3.4   Techniques Used in Solving MIMOO Applications 
 By setting the time-derivative of each metabolite concentration to zero under 

pseudo-stationary assumption, the set of differential equations for mass balance 

equations is converted into a system of algebraic equations. Each nonlinear equation 

contains several rate expressions and terms. The glucose impulse term, fpulse, in the 

mass balance equation ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−+−=
xρ
PTSrxC

  pulsef    larextracellu
glcC    feed

glcCD    
dt

larextracellu
glcdC  in the work of 

Chassagnole et al. (2002) is used to generate transient profiles using the original 

system of differential equations, and hence it is not relevant to the MIMOO study. 
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The system of 18 algebraic equations is solved for 18 metabolite concentrations, using 

the DNEQNF program in the IMSL FORTRAN libraries. The entire study was done 

using a personal computer with 2 GHz Pentium(R) IV CPU, 1 GB RAM and Windows 

XP Professional. Each solution of the system of algebraic equations took no more 

than 3 seconds of CPU time on this computer; each optimization run for 500 

generations (using NSGA-II as described later in this section) required less than 20 

minutes of CPU time for each of the bi-objective cases.  

 One main difficulty encountered in the optimization of the microbial cell 

factory is to identify the enzymes to be knocked out. Enzymes cannot be deleted 

arbitrarily – certain enzymes are essential for the metabolic network integrity and 

stability. An attempt to delete essential enzymes results in the termination of the 

DNEQNF program and consequently the optimization program too. To overcome this 

problem, feasible sets of 1-enzyme, 2-enzyme and 3-enzyme knockouts are identified 

through a manual combinatorial exercise (by setting the maximum reaction rates of 

the selected enzymatic sub-systems to zero and solving the model equations). 

Although this takes considerable effort and time, identifying enzymes which can be 

deleted, whether singly or in groups, circumvents numerical difficulties in the 

MIMOO study where simultaneous gene manipulation and knockouts is applied.          

The number of feasible sets (with all combinations in brackets) of 1-, 2- and                    

3-enzyme knockouts are 15 (30), 114 (435) and 665 (4060) respectively. These sets 

are neither available in the literature nor known a priori. This manual combinatorial 

exercise provides the Pareto-optimal sets by enzyme knockouts as well. An alternative 

to the manual exhaustive search in gene knockouts optimization is the interactive 

branch-and-bound (Section 3.6) technique. A strategy to identify a subset of genes 

that could be knocked out prior to simultaneous gene manipulation and knockouts is 

through heuristics (Chapter 5). The subset of gene obtained by heuristics is more 

targeted for the simultaneous gene manipulation and knockouts optimization. Many of 

the genes within the larger feasible sets obtained through a manual exhaustive search 

breach the homeostatic and/or total enzymatic flux constraints.    

 Gene manipulations (overexpression and/or repression) are optimized using 

the NSGA-II and the FORTRAN program containing the model and its solution. 

Decision variables can be implemented with binary or real coding in the NSGA-II 

program. Decision variables in the form of integers from 1 to 30 are used to denote 

the enzymatic sub-systems (or simply enzymes). A 5-bit binary variable which covers 
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integers ranging from 1 to 32 (where 31 and 32 are not used) is used as a decision 

variable for 1-enzyme manipulation. Two or more 5-bit variables are needed in the 

multi-enzyme manipulation. For gene overexpression/repression, real decision 

variables in the range 0.5 to 2.0 are also used to multiply the maximum enzymatic 

reaction rates; these bounds are selected after preliminary optimization runs with 

several ranges for these decision variables. In this study, the number of gene 

knockouts or expression for optimization is limited to a maximum of 3 due to 

potential difficulties in achieving more knockouts/expression experimentally. 

Translation of gene knockouts and expression into decision variables and their 

implementation in the optimization can easily be done without any concern on 

continuity since evolutionary algorithms such as NSGA-II are applicable to                        

non-differentiable functions. 

 Using the glucose-6-phosphate dehydrogenase (G6PDH) enzymatic                

sub-system as an example, reaction rate of G6PDH (i.e., rate of reaction facilitated by 

G6PDH) is given as: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ++++

=

nadpC     
nadpinh nadph, G6PDH,K

nadphC
    1nadp G6PDH,K

g6pinh nadph, G6PDH,K
nadphC

    1g6p G6PDH,K   g6pC

nadpC g6pC max
G6PDH

G6PDH

r
r                          (3.6) 

where the maximum enzymatic reaction rate is max
G6PDHr . The integer number 

representing an enzyme follows the sequence given in Table 3.1. Therefore, G6PDH 

is numbered 21. The integer number which is a discrete decision variable is selected 

randomly by NSGA-II. For a selected enzymatic sub-system, its maximum reaction 

rate is set to zero in gene knockout. In 1-enzyme manipulation study, two decision 

variables are involved: an integer number representing an enzymatic  sub-system and 

a real number representing gene overexpression or repression. If G6PDH (numbered 

21) were selected, its maximum reaction rate will be multiplied by a real number in 

the range from 0.5 to 2.0, selected by NSGA-II. Gene is overexpressed or repressed if 

the chosen real number is greater or less than 1.0 respectively. 

 NSGA-II parameters used in this study are: maximum number of generations 

(up to 500), population size (100 chromosomes), probability of crossover (0.85), 

probability of mutation (0.05), distribution index for the simulated crossover 

operation (10), distribution index for the simulated mutation operation (20) and 

random seed (0.6). Except for the first and last parameter listed here, rest of the 

NSGA-II parameter values are taken from Tarafder et al. (2005). Values for 
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maximum number of generations and random seed are obtained by trial and error. Our 

preliminary gene manipulation optimization runs show convergence within 500 

generations for the random seed of 0.6.  

 

3.5   Optimization of Gene Knockouts 
 The Pareto-optimal metabolic pathway recipe through multi-gene knockout 

combinations shows that the triple-gene knockout has the best non-dominated flux 

ratios due to greater flexibility in manipulating fluxes for the various pathways           

(Figure 3.2). Deleting PGM in the single-gene knockout generates the Pareto-optimal 

flux ratios for both the bi-objective scenarios (Figure 3.2) subject to the homeostatic 

and total enzyme activity constraints. No flux appears in PGM, and the fdp activation 

results in negligible G1PAT flux. Fluxes of the glycolytic (consisting of PTS, PGI, 

PFK, ALDO, TIS, GAPDH, PGK, PGluMu, ENO, PK and PDH) and pentose-

phosphate pathway (starting from G6PDH) undoubtedly increase.  

 PGM and G6PDH are the main catalysts that channel carbon sources for the 

polysacharride synthesis and pentose-phosphate pathway respectively. The pentose-

phosphate pathway has a higher carbon utilization rate and level than that needed in 

polysacharride synthesis. Under unconstrained condition, deleting G6PDH which is a 

major user of carbon sources, leads to a significant increase in the Pareto-optimal 

fluxes. However, knocking out G6PDH violates the total enzymatic flux constraint. If 

another gene is also knocked out, the total enzymatic flux and homeostatic constraints 

are breached in 54% and 77% of the cases, respectively. 

 Deleting PK and G1PAT (Figure 3.2 – chromosome B1) or G6PDH and 

MetSynth (Figure 3.2 - chromosome B2) in the double-gene knockout generates 

Pareto-optimal flux ratios for Case B of the bi-objective scenarios; deleting G6PDH 

and MetSynth (Figure 3.2 – chromosome A1) generate Pareto-optimal flux ratios for 

Case A also. Deleting G6PDH and MetSynth increases fluxes (Table 3.2) of the 

glycolytic pathway. In contrast, most of reactions in the pentose-phosphate pathway 

were not actively utilized as exhibited by zero fluxes of G6PDH and PGDH, largely 

attenuated fluxes of R5PI, TKa and TA, and inverse fluxes of RU5P and TKb. The 

inverse (or negative) fluxes are the result of product formation rate being greater than 

the reactant influx rate. Inverse fluxes signify that carbon sources are being drained 

from the pentose-phosphate pathway by the glycolytic pathway (since the first entry 
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point of the pentose-phosphate pathway G6PDH is deactivated) more quickly than 

they are replenished via the same pathway – this is equivalent to the backflow of 

carbon sources. TKb is a gateway supplying carbon from the pentose-phosphate 

pathway to the glycolytic precursors (f6p and gap). Inverse flux of TKb allows e4p to 

back up in the network. Accumulations of e4p (0.1306 mM) and pep (3.4248 mM) 

through inverse fluxes elevate the DAHPS flux to a large extent. Constant PTS flux 

and to a smaller extent MetSynth deletion assist in maintaining PK, PDH and Synth2 

flux levels.  

 The DAHPS flux ratio is the highest among the three objectives due to 

relatively greater increase in its precursor concentrations (28% for pep and 33% for 

e4p) in comparison to the enhancing effects of precursors dictating the flux of 

PEPCxylase (28% for pep coupled with activation via fdp) and SerSynth (28% for 

3pg). Double knockout (PK and G1PAT) results in an overall increase of the 

concentration levels of glycolytic precursors, slightly attenuating the glycolytic fluxes. 

The concentration levels of 3pg and pep, precursors for the three amino acids 

synthesis pathways, increase by 41%; the concentration level of e4p (a precursor of 

DAHPS) increases by 29%. SerSynth flux ratio increases as its precursor (3pg) 

concentration level increases from 28% to 41%. However, both the DAHPS and 

PEPCxylase flux ratios decrease due to self-regulatory effects, as their precursor 

concentration levels increase beyond the corresponding levels obtainable from 

deleting G6PDH and MetSynth. 

 Triple knockout of PK, G1PAT and G3PDH generates Pareto-optimal flux 

ratios in Case B of the bi-objective scenarios while deleting G1PAT, RPPK and 

DAHPS generates Pareto-optimal flux ratios in Case A. Similar to that of the double-

gene knockout, deleting PK, G1PAT and G3PDH results in an overall increase of the 

glycolytic precursors concentration levels and a slight attenuation of the glycolytic 

fluxes. Also, the concentration levels of the three precursors (3pg, pep and e4p) 

increase by almost the same percentage points as those of the double-gene knockouts. 

In Case A, deleting G1PAT, RPPK and DAHPS maximizes the PEPCxylase flux ratio 

as the DAHPS flux ratio is set to zero. The glycolytic and pentose-phosphate pathway 

fluxes are amplified and the carbon sources of e4p and pep are diverted from DAHPS 

to the glycolytic pathway and PEPCxylase, respectively. Another Pareto-optimal 

metabolic pathway recipe in Cases A and B is obtained by deleting G6PDH, 

MurSynth and TrpSynth (chromosomes adjacent to A1 and B2 in Figure 3.2). Similar 



 

  49

to that of the 2-enzyme knockout, the DAHPS flux ratio is the highest among all the 

three scenarios. Except for the zero concentration of 6pg, the concentration levels of 

the remaining metabolites are elevated. There is an overall flux increase in glycolytic 

pathway, polysaccharide synthesis, nucleotide synthesis and glycerol synthesis. The 

pentose-phosphate pathway exhibits zero fluxes (G6PDH and PGDH), largely 

attenuated fluxes (R5PI, TKa and TA) and inverse fluxes (RU5P and TKb). 
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Fig. 3.2. Pareto results for gene knockouts (single-gene ; double-gene Δ; triple-gene 
○) in simultaneous maximization of (a) DAHPS and PEPCxylase flux ratios, and (b) 
DAHPS and SerSynth flux ratios. The chromosomes in double-gene knockouts are 
labelled. 
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Table 3.2 Pareto-optimal metabolic pathway recipe for 2-enzyme knockouts 
represented by the three labelled chromosomes in Fig. 3.2. The flux ratios are listed in 
the second and third column for (chromosomes A1, B1 and B2) for each enzyme. The 
same enzymes (G6PDH and MetSynth) are knocked out in both chromosomes A1 and 
B2. 
 
 

Enzyme with serial 
number 

Flux ratios of 
chromosomes A1 and B2 

Flux ratios of 
chromosome B1 

1. PTS 1.000 1.000 

2. PGI 3.348 0.772 

3. PFK 1.294 0.964 

4. ALDO 1.294 0.964 

5. TIS 1.294 0.960 

6. GAPDH 1.098 0.971 

7. PGK 1.098 0.971 

8. PGluMu 1.099 0.963 

9. ENO 1.099 0.963 

10. PK 1.024 0 (knocked out) 

11. PDH 0.993 0.802 

12. PEPCxylase 1.500 1.460 

13. PGM 2.078 0.0093 

14. G1PAT 2.086 0 (knocked out) 

15. RPPK 1.022 1.034 

16. G3PDH 1.340 1.291 

17. SerSynth 1.077 1.104 

18. Synth1 1.064 1.087 

19. Synth2 0.999 0.983 

20. DAHPS 1.982 1.843 

21. G6PDH 0 (knocked out) 1.112 

22. PGDH 0 1.112 

23. Ru5P − 0.138 1.098 

24. R5PI 0.208 1.132 

25. TKa 0.022 1.154 

26. TKb − 0.327 1.032 

27. TA 0.022 1.154 

28. MurSynth 1.000 1.000 

29. MetSynth 0 (knocked out) 1.000 

30. TrpSynth 1.000 1.000 
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3.6   Interactive Branch-and-Bound Facilitated By NSGA-II 
 By reducing the manipulation factors in steps and applying NSGA-II, it is 

possible to identify potential genes that can be deleted by pattern recognition. At each 

step of the gene manipulation, the user decides which genes are likely to be knocked 

out subject to the homeostatic and total enzymatic flux constraints. The user then tests 

this conjecture by stepping down the manipulation factors of the genes of interest.            

A new conjecture is formed based on the last results. The process is repeated until the 

genes are completely deleted. The Pareto will consist of the completely knocked out 

genes in the last step that fulfill the constraint requirements. Heuristics method 

(Chapter 5) uses similar technique to identify genes that could be deleted prior to 

simultaneous gene manipulation and knockouts. The triple enzyme knockout 

optimization for Case A is described below in this section. 

 Using a random seed of 0.6, the manipulation factors for all the three genes are 

stepped down.  If the manipulation factors are decreased to below 0.32, there will be a 

forced termination of the IMSL program. Results suggest that G1PAT (number 14) 

and G6PDH (number 21) could be deleted. Similar pattern is also observed if a 

random seed of 0.7 were used. To test this conjecture, G1PAT (number 14) is fixed as 

a deleted gene by setting its manipulation factor to 0.0. The manipulation factors of 

the remaining two floating genes are set at 0.35 and 0.50 to identify the next gene that 

could be deleted. The next gene with the potential of being knocked out is DAHPS 

(number 20). Other intermediate results suggest that there could be two Pareto-

optimal solutions. Next, fixing G1PAT (number 14) as a deleted gene and fixing 

DAHPS as a gene to be deleted by gradually reducing its manipulation factor will 

help to narrow the search domain for Pareto.  One of the three gene triplets in the 

penultimate step is a Pareto-optimal solution.  Using manual gene knockout, only the 

G1PAT-RPPK-DAHPS (number 14-15-20) knockout is Pareto-optimal subject to 

both the homeostatic and total enzymatic flux constraints. This is indeed one of the 

two Pareto solutions in Figure 3.2. The G1PAT-DAHPS-Ru5P knockout is infeasible 

while the G1PAT-SerSynth-DAHPS knockout breaches the homeostatic constraint.   

  It is possible to find the second Pareto using the interactive branch-and-bound 

technique. G6PDH can be deleted as noted above. By setting the manipulation factor 

of G6PDH to 0.0 and reducing the manipulation factors of the two remaining floating 

genes, two distinct groups of genes are obtained. By further branching of the 
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identified repressible genes and reducing their manipulation factors, six distinct gene 

triplets are obtained. Applying manual gene knockout to the six gene triplets, only the 

G6PDH-TrpSynth-G3PDH (number 21-30-16) knockout is feasible. The other five 

triplets cannot be knocked out. Knocking out G6PDH-TrpSynth-G3PDH breaches the 

homeostatic constraint by 0.00888. The Pareto solution (Section 3.5) G6PDH-

MurSynth-TrpSynth (number 21-28-30) does not breach both homeostatic and total 

enzymatic flux constraints. This means that the G6PDH-TrpSynth-G3PDH (number 

21-30-16) triplet is identified by NSGA-II as a non-dominated solution subject to both 

constraints when G6PDH and TrpSynth are deleted and the multiplier for G3PDH is 

set to 0.25. To obtain the second Pareto solution, the last gene MurSynth is identified 

manually (out of 28 genes) by fixing G6PDH-TrpSynth as deleted genes. 

  

3.7   Optimization of Gene Manipulation 
 The optimization of the Pareto-optimal metabolic pathway recipe by genetic 

manipulations shows that the triple-enzyme manipulation has the best non-dominated 

flux ratios due to the flexibility in changing enzymatic reaction rates to enhance the 

desired flux ratios (Figures 3.3A and 3.4A). The left and right Pareto-optimal 

segments of single-enzyme manipulation (Figures 3.3A and 3.3B) are governed 

respectively by PEPCxylase and DAHPS in Case A, and SerSynth and DAHPS in 

Case B (Figures 3.4A and 3.4B). The single chromosome in between the two 

segments is the result of manipulating PFK in both Cases A and B. Fluxes of the 

polysaccharide and glycerol synthesis, and to a lesser extent pentose-phosphate 

pathway and nucleotide synthesis are continually attenuated on ascending the left 

Pareto-optimal segment and descending the right Pareto-optimal segment when the 

governing gene of each segment is being overexpressed. As a result, the fluxes are 

redistributed among DAHPS, PEPCxylase and SerSynth.  Metabolite concentrations 

follow similar trend as carbon sources are diverted towards building gene molecules. 

The in-between chromosomes, with manipulation factors set to an upper bound of 2.0, 

are pivotal to the generation of the two distinct Pareto-optimal segments when a 

governing enzyme is being switched. 

 In the double-enzyme manipulation, the left and right Pareto-optimal segments 

(Figures 3.3A and 3.3B) in Case A are governed by PEPCxylase/G6PDH and 

DAHPS/G6PDH, respectively. The manipulation factor of G6PDH is actively 
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constrained at 0.5 (lower bound) to divert fluxes away from the pentose-phosphate 

pathway (the concentration of 6pg decreases by about 50%), thus resulting in higher 

fluxes in glycolytic pathway (PGI flux is the highest), polysaccharide synthesis, 

nucleotide synthesis and glycerol synthesis. The PEPCxylase flux ratio increases as 

PEPCxylase manipulation factor approaches 2.0 (upper bound) on ascending the left 

Pareto segment (Figures 3.3A and 3.3B). Similarly, the DAHPS flux ratio increases as 

DAHPS manipulation factor approaches the upper bound on descending the right 

Pareto segment. Interestingly, when the paired enzyme is switched from A1 to A2, 

fluxes from other pathways are drawn towards DAHPS instead of PEPCxylase (Table 

3.3), indicating a distinct change in the metabolic pathway recipe. 

 The leftmost Pareto-optimal segment (Figures 3.4A and 3.4B) in Case B of the 

double-enzyme manipulation is governed by SerSynth and GAPDH. The 

manipulation factor of SerSynth hardly deviates from its upper bound of 2.0 (Figures 

3.4A and 3.4B) and the manipulation factor of GAPDH changes from 2                          

(at chromosome B1) to 1.27 (Figures 3.4A and 3.4B). Fluxes are drained from 

DAHPS, polysaccharide synthesis and glycerol synthesis to sustain high SerSynth 

reaction rate. The concentrations of fdp and gap, both   precursors being the proximate 

carbon sources of 3pg (SerSynth precursor), substantially decrease by 70% and 50% 

(at chromosome B1), respectively, thereby leading to the enhanced production of 

serine. The three leftmost chromosomes consisting of SerSynth and PFK on the same 

Pareto segment furthest from chromosome B2 are pivotal to the generation of the two 

distinct Pareto-optimal segments containing chromosomes B1 and B2 which are 

governed by the paired enzymes SerSynth/GAPDH and DAPHS/SerSynth, 

respectively. The DAHPS flux ratio increases and the SerSynth flux ratio decreases 

(Table 3.3) as the manipulation factor of DAHPS approaches 2.0 (1.07 for SerSynth) 

on moving towards chromosome B2. The concentrations of fdp and gap decrease by 

23% and 13% (at chromosome B2) respectively as serine production declines. The 

three chromosomes on the right side of chromosome B2 consisting of DAHPS and 

G6PDH (manipulation factor of 0.5) represent high DAHPS production rate and 

relatively constant serine production rate. The DAHPS flux ratio increases 

considerably when the DAHPS manipulation factor approaches 2.0 resulting in 

simultaneous increase of glycolytic and decrease of pentose-phosphate fluxes. 
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Table 3.3 Pareto-optimal metabolic pathway recipe for 2-enzyme manipulations 
represented by the four labelled chromosomes in Figs. 3.3A and 3.4A. The flux ratios 
are listed in second, third, fourth and fifth column (chromosomes A1, A2, B1 and B2, 
respectively) for each enzyme. 
 
 

Enzyme with 
serial number 

Flux ratios of 
chromosome 

A1 

Flux ratios of 
chromosome 

A2 

Flux ratios of 
chromosome 

B1 

Flux ratios of 
chromosome 

B2 

1. PTS 1.000 1.000 1.000 1.000 

2. PGI 2.117 2.139 1.037 1.096 

3. PFK 1.143 1.137 1.024 1.008 

4. ALDO 1.143 1.137 1.024 1.008 

5. TIS 1.143 1.137 1.030 1.010 

6. GAPDH 1.051 1.035 1.033 0.996 

7. PGK 1.051 1.035 1.033 0.996 

8. PGluMu 1.052 1.036 0.978 0.994 

9. ENO 1.052 1.036 0.978 0.994 

10. PK 1.011 1.007 0.996 0.985 

11. PDH 1.002 1.001 0.999 0.997 

12. PEPCxylase 1.287 1.067 0.962 0.907 

13. PGM 1.383 1.242 0.455 0.782 

14. G1PAT 1.385 1.244 0.450 0.781 

15. RPPK 1.009 1.002 0.959 0.985 

16. G3PDH 1.146 1.095 0.558 0.889 

17. SerSynth 1.034 1.022 1.978 1.022 

18. Synth1 1.029 1.018 0.991 0.961 

19. Synth2 1.000 1.000 1.000 1.000 

20. DAHPS 1.378 2.077 0.316 1.498 

21. G6PDH 0.526 0.520 0.994 0.964 

22. PGDH 0.526 0.520 0.994 0.964 

23. Ru5P 0.463 0.437 1.015 0.947 

24. R5PI 0.621 0.643 0.962 0.988 

25. TKa 0.533 0.561 0.962 0.989 

26. TKb 0.382 0.291 1.077 0.898 

27. TA 0.532 0.561 0.962 0.989 

28. MurSynth 1.000 1.000 1.000 1.000 

29. MetSynth 1.000 1.000 1.000 1.000 

30. TrpSynth 1.000 1.000 1.000 1.000 
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Fig. 3.3A.  Pareto-optimal fronts for gene manipulations (1-enzyme ; 2-enzyme Δ;    
3-enzyme ○) in simultaneous maximization of DAHPS and PEPCxylase flux ratios     
(Case A). 
 

 In the triple-enzyme manipulation, the left Pareto segment in Case A with 

comparatively high PEPCxylase flux ratio (Figures 3.3A and 3.3B) is obtained by 

repressing the activities of genes for PK and G6PDH and by overexpressing gene for 

PEPCxylase, which result in largely attenuated pentose-phosphate pathway (50% 

decrease in 6pg concentration) and PK fluxes. The leftmost chromosome of the 

central optimal Pareto segment, which is obtained by repressing genes related to 

GAPDH and G6PDH and overexpressing gene related to PEPCxylase, is pivotal in 

switching the flux control to genes related to DAHPS, PEPCxylase and G6PDH. The 

enzyme manipulation factors of G6PDH and DAHPS are actively constrained at 0.5 

and 2.0, respectively. On descending the central segment of the Pareto-optimal front, 

the enzyme manipulation factor of PEPCxylase decreases from 1.79 to 1.11               

(Figures 3.3A and 3.3B) to generate successively higher DAHPS flux ratio. Even 

higher DAHPS flux ratio is obtained by switching the flux control to genes related to 

SYN1, G6PDH and DAHPS. The enzyme manipulation factors of SYN1 and G6PDH 

are actively constrained at 0.5 to restrict competing fluxes in the chorismate and 

mureine synthesis, and pentose-phosphate pathways respectively. Under such 

conditions, the right Pareto-optimal segment is formed as the enzyme manipulation 

factor of DAHPS increases from 1.75 to 2.0. 

A1 

A2 
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Fig. 3.3B.  Pareto-optimal enzyme manipulation factors in simultaneous maximization 
of DAHPS and PEPCxylase flux ratios (Case A) (a) 1-enzyme () and 2-enzyme (Δ) 
manipulation factor and (b) 3-enzyme manipulation factor (○). 
 

 Except for the few leftmost chromosomes in Case B (Figures 3.4A and  3.4B) 

obtained by overexpressing genes related to PFK and SerSynth and repressing gene 

related to G6PDH, the metabolic pathway recipe on descending the Pareto-optimal 

segment is formed by simultaneously reducing, increasing and constraining the 

enzyme manipulation factors of SerSynth, DAHPS and G6PDH, respectively. Similar 
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to that of Case A, the relatively flat profile on the right is formed by manipulating 

genes related to SYN1, G6PDH and DAHPS. 

 In general, optimization results are as good as the model used in the study. 

Some uncertainty in any model and its parameters is unavoidable, particularly in case 

of complex biological systems such as E. coli and after genetic engineering of living 

organisms. Hence, results of optimizing multi-product microbial cell factories will 

have to be confirmed through experimental studies. These will be explored in future 

work. 
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Fig. 3.4A. Pareto-optimal fronts for gene manipulations (1-enzyme ; 2-enzyme Δ; 3-
enzyme ○) in simultaneous maximization of DAHPS and SerSynth flux ratios (Case 
B). 
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Fig. 3.4B.  Pareto-optimal enzyme manipulation factors in simultaneous maximization 
of DAHPS and SerSynth flux ratios (case B) (a) 1-enzyme () and 2-enzyme (Δ) 
manipulation and (b) 3-enzyme manipulation (○). 
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3.8   Conclusions 
 In this chapter, MOO of fluxes of desired enzymatic sub-systems in E. coli 

was described; two cases -  maximization of DAHPS and PEPCxylase fluxes, and 

maximization of DAHPS and SerSynth fluxes, by 1-, 2- and 3-gene knockout and 

manipulation2 were considered. Optimal Pareto solutions were successfully obtained 

using the NSGA-II program wherein integer and/or continuous decision variables can 

be used; this flexibility allowed seamless use of both types of variables in the MOO of 

enzyme fluxes in E. coli. Identical Pareto sets were obtained in 1-, 2- and 3-gene 

knockout using interactive branch-and-bound assisted by NSGA-II and manual 

exhaustive search. Triple gene knockout was discussed in this study to demonstrate its 

efficiency in obtaining Pareto sets for gene knockout.   

 Knocking out PGM gives the 1-enzyme Pareto-optimal set. In 1-enzyme 

manipulation cases, the gene that generates the Pareto-optimal set is directly related to 

the desired enzymatic activity. In paired and triple enzyme knockout or manipulation, 

G6PDH is instrumental in diverting fluxes to the desired metabolic pathways. The 

triple enzyme knockout/manipulation gives the best Pareto-optimal set due to greater 

flexibility in redistributing fluxes to the desired pathways. In the triple enzyme 

knockout, DAHPS and PEPCxylase fluxes increase by 51% and 99% respectively in 

one case while DAPHS and SerSynth fluxes increase by around 95% and 9% 

respectively in another case. In the triple enzyme manipulation, the DAHPS and 

PEPCxylase fluxes increase up to 247% and 96% respectively in one case while 

DAHPS and SerSynth fluxes increase up to 247% and 203% respectively in another 

case.  

  

 

 

 

 

 

                                                 
2 In gene knockout, a foreign sequence is inserted into an existing gene to interrupt the normal DNA sequence. The 
altered gene in most cases will either translate into a non-functional protein or deleted following DNA 
recombination. The techniques for overexpression in E. coli are well known. They work by either increasing the 
number of copies of the gene or increasing the binding strength of the promoter of an operon (Chapter 4) to assist 
transcription. In gene repression (also known as gene knockdown), the gene expression is reduced through either 
DNA modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide. 
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Chapter 4   

 DEVELOPMENT OF AN AUGMENTED MODEL FOR 

MICROBIAL CELL FACTORY 

 

4.1   Introduction  
 Increasingly sophisticated mathematical models for multi-product biosynthesis 

factories such as Escherichia coli (E. coli) (Chassagnole et al., 2002; Degenring et al., 

2004), Corynebacterium glutamicum (Wendisch et al., 2006), Saccharomyces 

cerevisiae (Rizzi et al., 1997; Teusink et al., 2000) and Penicillium chrysogenum 

(Zangirolami et al., 1997) enable chemical engineers to extend the reach of their 

competencies in systems area such as modelling and optimization to knowledge-based 

biologics and fermentation industry (Lee et al., 2009). Microbial metabolomics aided 

by automated sub-second stopped-flow sampling technique used successfully by 

Chassagnole et al. (2002), advanced chromatographic techniques and mass  

spectrometry in stimulus response experiments using glucose pulse, have begun to 

unravel the intricate metabolic pathways and structures in the cell. The transient 

metabolite concentration data obtained through modern metabolomics enable the 

construction and validation of new models. Validation and optimization of the central 

carbon metabolism (through the kinetic parameters) obtained by combining existing 

models for enzymatic sub-systems of a microbial cell factory such as E. coli  

(Chassagnole et al., 2002; Degenring et al., 2004) are feasible through modern 

microbial metabolomics.  

However, gathering transient data and modelling the aromatic amino acids          

(L-tryptophan, L-tyrosine and L-phenylalanine) biosynthesis pathways in E. coli 

remains a formidable challenge for modern metabolomics (Mashego et al., 2007), 

mainly because metabolomics research relies on the isolation of metabolites from a 

biological sample (i.e. in vitro analysis). Prokaryotic cells such as E. coli tend to leak 

intracellular metabolites through damaged cell membrane during the quenching 

process typically carried out at around −50°C. Alternatively, the simpler simultaneous 

quenching and direct extraction procedure creates data that are not easily 

decomposable into individual metabolite concentrations. Recent stimulus response 

experiments (Oldiges et al., 2004; Wahl et al., 2006) have generated concentration 

profiles of temporal metabolites from the first metabolite of the common aromatic 



 

  61

amino acids pathway 3-deoxy-D-arabino-heptulosonate 7-phosphate (dahp) to 

shikimate 3-phosphate (s3p). Transient metabolite concentration data further 

downstream of the shikimate pathway (which is also known as the common aromatic 

amino acids pathway) leading to the production of aromatic amino acids are not yet 

available (Wahl et al., 2006) due to experimental difficulties such as signal dilution 

and loss of intracellular metabolites (Oldiges et al., 2007). Signal dilution is a possible 

result of complex in vivo (i.e. intracellular) controls of enzymatic activities and gene 

expressions regulating aromatic amino acids biosynthesis.  

 Independently, data for tryptophan biosynthesis modelling in E. coli are 

mostly drawn from well-developed experimental approaches of microbiology and 

genomics. An example of experimental microbiology involves varying independent 

variables (e.g. temperature, specific cell growth rate and L-tryptophan concentration 

in the growth medium) to obtain a set of equilibrated data (e.g. intracellular trp 

repressor concentration) under controlled experimental conditions (Gunsalus et al., 

1986). The direct measurement of the tryptophan operon transcription rate of E. coli 

using electron microscopy (Gotta et al., 1999) following addition of rifampin to           

log-phase cultures is an example of experimental genomics. The tryptophan 

biosynthesis models constructed using microbiology and genomics data focus on 

operon regulation and stability with hardly any consideration of the central carbon 

metabolism as being capable of carbon flux control through its enzymatic activities. 

This presents an opportunity to develop an augmented model (Section 4.2) by linking 

the central carbon metabolism of E. coli to tryptophan biosynthesis. The augmented 

model serves as a platform for the mixed-integer MOO study that involves concurrent 

gene knockouts and manipulations and a recombinant DNA technique that alters the 

copy number of plasmids containing operons and genes encoding aporepressors. 

Modern metabolomics attempt to model the entire aromatic amino acids biosynthesis 

semi-empirically with no regards for macromolecular synthesis mechanisms (such as 

transcription and translation) and gene expression that occur within the longer time 

horizon. Linking an operon-based model for tryptophan synthesis that accounts for the 

well-studied macromolecular synthesis and regulatory effects of operon repression, 

transcriptional attenuation and enzyme inhibition to the central carbon metabolism of 

E. coli, enables the thesis author to formulate metabolic pathway recipe for 

engineering a wild strain targeted for industrial production of desired amino acids via 

mixed-integer MOO. 
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4.2   Model 

4.2.1  Aromatic Amino Acids Pathways 
 DAHPS enzymatic sub-system is the starting point of the common pathway 

for the aromatic amino acids biosynthesis (Figure 4.1). The condensation of 

phosphoenolpyruvate (pep) and erythrose 4-phosphate by DAHP synthase (DAHPS) 

to form dahp is tightly regulated via the transcriptional and allosteric controls exerted 

by the aromatic amino acid end products. DAHPS consists of three different 

isofunctional enzymes (isoenzymes) that catalyze the first reaction in the aromatic 

amino acids pathway. Each isoenzyme – encoded by the aroF, aroG and aroH genes 

– is feedback-inhibited independently by each of the three different end products 

consisting of L-tyrosine, L-phenylalanine and L-tryptophan, respectively. The 

shikimate pathway downstream of dahp (Figure 4.2) is catalyzed by various enzymes 

to form in sequence 3-dehydroquinate (3dhq), 3-dehydroshikimate (3dhs), shikimate 

(shik), shikimate 3-phosphate (s3p) and 5-enolpyruvoylshikimate 3-phosphate (epsp). 

Chorismate synthase which is encoded by the aroC gene catalyzes the conversion of 

epsp into chorismate (cho). This last reaction of the common pathway appears to be 

rate limiting. The chorismate precursor is at the crossroad of three terminal pathways 

leading to the biosynthesis of aromatic amino acids. Chorismate is also the substrate 

for the biosynthesis pathways of ubiquinone, menaquinone, folate and enterochelin 

(not shown in Figure 4.2). 

 The first reaction of the tryptophan biosynthesis terminal pathway (Figure 4.2) 

involves the conversion of chorismate and glutamine to anthranilate (anta), glutamate 

and pyruvate. The enzymatic complex that facilitates this reaction is anthranilate 

synthase (ANTAS). The anthranilate synthase complex is a heterotetramer composed 

of two molecules of each of the polypeptides encoded by the trpE and trpD genes. 

These are known as component I and component II, respectively. Component I 

contains the binding site for chorismate. In the absence of component II, component I 

cannot catalyze the formation of anthranilate using glutamine (produced internally) as 

a nitrogen source. Component II – encoded by the trpD gene – facilitates two 

activities. The first one, glutamidotransferase activity, is required to activate 

component I in the anthranilate synthase reaction. This activity channels the nitrogen 

from glutamine to the active site for anthranilate production. Only the anthranilate 

synthase complex exhibits this activity using chorismate as a precursor. The second 
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activity of Component II converts anthranilate to anthranilate-5-phosphoribosyl 

pyrophosphate (pra). This second catalysis is known as anthranilate phosphoribosyl 

transferase (ANTAP). 
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Fig. 4.1. Metabolic network of the central carbon metabolism of 
Escherichia coli. Enzymes are shown in rectangles; precursors 
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Fig. 4.2. Metabolic network of the aromatic amino acids 
biosynthesis of Escherichia coli. The shikimate pathway between 
dahp and chorismate is common for all the three end products. The 
terminal pathway for tryptophan biosynthesis starts from 
chorismate and ends at tryptophan. The terminal pathways of the 
other two end products L-tyrosine and L-phenylalanine are also 
shown. To indicate various types of control, different lines are 
used:        transcriptional and allosteric controls exerted by the 
three end products;      allosteric controls only;      transcriptional 
controls only. The genes are in italics, enzymes are shown in 
rectangles and metabolites are in between the enzymes. 
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 Tryptophan exerts negative feedback control on the activities of both 

anthranilate synthase (up to 100%) and anthranilate phosphoribosyl transferase (not 

exceeding 70%) by binding to the enzymes allosteric sites (Pittard, 1996). This action 

changes the geometrical conformation of the enzymes and prevents efficient binding 

of precursors (such as chorismate) to the active sites of the same enzymes.                  

The binding of chorismate and tryptophan to sites present in anthranilate synthase are 

competitive. Feedback inhibition of anthranilate synthase is the most important 

control among those exerted on the terminal tryptophan pathway enzymes because it 

is limiting the rate of tryptophan biosynthesis. Therefore, anthranilate synthase is 

taken as the dominant (i.e. representative) enzyme in the tryptophan biosynthesis 

model.  

 Anthranilate-5-phosphoribosyl pyrophosphate is converted to 1-(o-

carboxyphenylamino)-1-deoxyribulose 5-phosphate (cdrp) with the help of 

phosphoribosyl anthranilate isomerase (PPAI), and cdrp is in turn converted to indole 

3-glycerolphosphate (i3gp) by a single enzyme indolglycerol phosphate synthetase 

(IPS). Both PPAI and IPS are encoded by the trpC gene. The multi-enzyme complex, 

tryptophan synthase (TRPS) which is encoded by the trpA and trpB genes catalyzes 

the conversion of i3gp and L-serine to L-tryptophan and glyceraldehyde 3-phosphate 

(gap). While L-serine is consumed in the final step of tryptophan biosynthesis, it is 

manufactured by converting the central carbon metabolite 3-phosphoglycerate (3pg) 

in three steps. In the first step, 3-phosphoglycerate dehydrogenase (serA gene product) 

oxidizes 3pg to 3-phosphohydroxypyruvate (3php). Following this, 3-phosphoserine 

aminotransferase (serC gene product) converts 3php to 3-phosphoserine (3ps). In the 

third step, 3ps is dephosphorylated to L-serine by 3-phosphoserine phosphatase (serB 

gene product). Besides being consumed during tryptophan biosynthesis, L-serine is 

used in the synthesis of cysteine and phospholipids.  

 

4.2.2  Controls in Tryptophan Operon 
 The term “operon” first proposed in 1960 refers to a cluster of genes under the 

control of a single DNA operator. An operon resides in a chromosome of the wild E. 

coli strain. Multicopy plasmids containing tryptophan operons can be introduced into 

a cell through recombinant DNA technology. The tryptophan operon (trp operon) 

consists of promoter, DNA operator, leader sequence and structural genes (Figure 
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4.3a). According to the Central Dogma in molecular genetics, a gene composed of 

deoxyribonucleic acid (DNA) is transcribed into ribonucleic acid (RNA), which is 

then translated into a polypeptide that is subsequently processed to become a protein 

such as enzyme. The transcription of genetic information from trp operon to RNA is 

carried through the action of the enzyme mRNA (messenger RNA) polymerase. 

Under normal circumstances, the sigma factor of the mRNA polymerase (mRNAP) 

recognizes the promoter and transcription initiation site. Once the mRNAP is bound to 

the promoter, the process of transcription can proceed. In transcription, an mRNA 

molecule complementary to one of the two strands of a double-stranded DNA 

molecule is synthesized. Once a small portion of the mRNA has been formed, the 

sigma factor disengages and the rest of the mRNA chain elongation will be conducted 

by the core mRNA polymerase as it moves along the trp operon.  

 Feedback inhibition described in Section 4.2.1 is a form of post-translational 

control of pre-existing enzymes such as anthranilate synthase. Repression and 

transcriptional attenuation are two other types of control exerted on the trp operon that 

affect the synthesis of mRNA. The active holorepressor (Figure 4.3b) is formed when 

two tryptophan molecules bind independently to the two sites of an originally inactive 

aporepressor molecule encoded by the trpR gene. The trpR gene resides in the 

chromosome of the wild E. coli strain. Plasmids containing the trpR gene can be 

inserted into the E. coli cell. The inactive aporepressor protein is unable to bind to the 

DNA operator itself. However, once the tryptophan concentration increases, the active 

holorepressor molecule is formed. Transcription process is blocked at an early stage 

when the active holorepressor binds to the DNA operator. The tryptophan 

concentration resulting in repression (Koh et al., 1998) ranges from around 1 μM 

(practically no repression) to 100 μM (repression exceeding 90% of all the trp 

operons being considered).  

 In addition to the promoter and DNA operator regions, there is a sequence 

called the leader sequence (specified by the trpL gene), which codes for a polypeptide 

that contains tandem tryptophan codons (Figure 4.3a) near its terminus and functions 

as an attenuator. If the tryptophan concentration is high (greater than 5 μM), the 

transfer RNA will be charged (tryptophanyl-tRNATrp or tRNATrp). The charged 

tRNATrp is brought to the ribosome (molecular machinery for protein synthesis) by a 

protein factor. As the ribosome moves along the mRNA chain, the complete 

tryptophan-rich leader peptide is synthesized by a translation process. However, if the 
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tryptophan concentration is low (less than 1 μM), the tryptophan-rich leader peptide 

will not be synthesized (Koh et al., 1998). While transcription of the downstream 

DNA sequences of the trp operon is still proceeding, translation of sequences already 

transcribed has begun. As the mRNA is being released from the DNA, the ribosome 

binds to mRNA and translation begins. Attenuation occurs (i.e. mRNAP stops 

transcription) because a portion of the newly formed mRNA folds into a double-

stranded loop that signals termination of mRNAP action. When tryptophan is 

abundant, the ribosome will translate the leader sequence until it comes to the stop 

codon. The remainder of the leader mRNA can then assume a terminator stem-loop,            

a transcription pause site, which is followed by a uracil-rich sequence that actually 

causes termination. In contrast, if tryptophan concentration is low, the ribosome 

pauses at a tryptophan codon (a sequence of three bases in mRNA encoding 

tryptophan) and translation to form the complete tryptophan-rich leader peptide 

ceases. The presence of the stalled ribosome at this position allows an alternative anti-

terminator stem-loop to form. The mRNAP then moves past the non-folded 

termination site and begins transcription of the structural trpEDCBA genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. (a) Structure of the tryptophan operon in Escherichia coli.   
              (b) Sequence showing the formation of the active holorepressor TrpR**. 
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4.2.3  Tryptophan Operon Model 
 The original central carbon metabolism model assumes tryptophan synthesis 

rate to be constant. In the augmented model, the tryptophan synthesis mechanism is 

expanded using a tryptophan operon model. Mureine and methionine synthesis rates, 

which are constant in the central carbon metabolism, remain unchanged in the 

augmented model.   

 Several tryptophan operon models incorporating control mechanism during the 

last 10 years were reviewed. Earlier models did not consider some of the control 

mechanisms (namely, feedback inhibition exerted on an enzyme, repression of the 

operator and transcriptional attenuation) described in Sections 4.2.1 and 4.2.2. A 

model proposed by Xiu et al. (1997) considered both feedback inhibition of the 

enzymes and repression of the trp operon by tryptophan but not transcriptional 

attenuation. The model takes into account the effects of growth rate and demand of 

tryptophan for protein synthesis. Subsequent enhancements to the model by the same 

researchers (Xiu et al., 2002) incorporate the switching on and off of the trp operon 

due to repression and transcriptional attenuation in response to different intracellular 

tryptophan concentrations.  

 A detailed mechanistic model proposed by Santillán and Mackey (2001a) for 

dynamic regulation of the trp operon takes into account for the first time repression, 

feedback enzyme inhibition and transcriptional attenuation. Bhartiya et al. (2003) 

used the Hill equation to model transcription and translation processes considered 

earlier by Santillán and Mackey (2001a). Model of Santillán and Zeron (2004) is 

essentially an expansion of the repression and transcriptional attenuation mechanisms 

incorporated earlier in the work of Santillán and Mackey (2001a). The two models 

give comparable fit between experimental data and simulated results following a 

nutritional shift (minimal + tryptophan medium to minimal medium) with wild E. coli 

strain. Santillán and Mackey (2001b) have confirmed that their models are globally 

stable for wild type E. coli as well as for three different mutant strains. The detailed 

model proposed by Santillán and Mackey (2001a), where special attention is given to 

parameter estimation based on experimental data and inherent time delays during 

tryptophan biosynthesis, is linked to the central carbon metabolism (Chassagnole et 

al., 2002) to create the augmented model. 
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 Equations (4.1) to (4.9) describe the dynamics of a trp operon (Santillán and 

Mackey, 2001a). 
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The parameters in equations (4.1) to (4.9) are defined in Table 4.1. Equation (4.1) 

represents the repression dynamics. The mRNA synthesis rate described by equation 

(4.3) incorporates a transcription attenuation function. Feedback inhibition is built 

into equation (4.4).  Tryptophan biosynthesis, uptake and consumption are represented 

by equation (4.9). The cellular specific growth rate acts as a dilution factor in the 

nonlinear operon dynamics. 
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      Table 4.1   Santillán and Mackey (2001a) model parameters.     

Parameter Description 

A Transcription attenuation function 

b Asymptotic value of transcription attenuation function 

c First order time constant of transcription attenuation function 

d, e, f Constants for the tryptophan uptake 

D mRNA destroying enzyme concentration 

E Total enzyme concentration 

EA Active enzyme concentration 

F Tryptophan uptake rate 

g Maximum tryptophan consumption rate 

G Tryptophan internal consumption rate 

kd Rate constant for mRNA degradation 

kP Rate constant for mRNA polymerase binding to operator site 

kρ Rate constant for ribosome binding to a free trpE related site on an mRNA 
K Tryptophan biosynthesis rate constant 
Kg Saturation constant for tryptophan internal consumption 

Ki Enzyme inhibition equilibrium constant 

Kr Dissociation constant of the holorepressor-DNA operator complex 

Kt Tryptophan aporepressor activation constant at equilibrium 

MF Free mRNA concentration 

nH Hill coefficient 

O Total operon concentration 

OF Free operon concentration 

P mRNA polymerase concentration 

RA Active repressor (holorepressor) concentration 

T Tryptophan concentration 

Text Extracellular tryptophan concentration in the growth medium 

γ Enzyme degradation rate 

μ Cellular specific growth rate 

ρ Ribosome concentration 

eτ  Time taken by a ribosome to synthesize a trpE polypeptide 

mτ  Time taken for an mRNA polymerase to assemble trpE related binding site 
on a ribosome 

Pτ  Transcription initiation periodic time 

ρτ  Translation initiation periodic time 
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Equation (4.1) shows that the mRNAP enzyme initiates transcription at every 

τp time interval. It also indicates active repression depresses the free operon 

concentration. The active repressor (holorepressor) concentration modelled by 

equation (4.6) is dependent on the availability of both the free tryptophan and 

aporepressor (inactive repressor) molecules. The free mRNA synthesis rate in 

equation (4.3) is dependent on the mRNAP concentration, rate of mRNAP binding to 

free operator sites, mRNA release time interval (τm), free operator binding sites 

availability subject to transcriptional attenuation, translation initiation time interval 

(τρ), ribosome availability to initiate translation and rate of ribosome binding to 

mRNA. The transcriptional attenuation is modelled as a first order system in equation 

(4.2). The enzyme (represented by anthranilate synthase) synthesis rate in equation 

(4.4) is dependent on the supply of free mRNA, translation completion time interval 

(τe), ribosome availability, rate of ribosome binding to a free trpE related site on an 

mRNA and the possibility of enzyme degradation. Tryptophan biosynthesis rate in 

equation (4.9) depends on the supply pool of active enzyme, internal consumption rate 

of tryptophan in cellular protein synthesis and availability of tryptophan in the growth 

medium.  

Equation (4.8) is not applicable because this study uses glucose (minimal 

growth medium) substrate to ensure compatibility with the central carbon metabolism 

(Chassagnole et al., 2002) model; F(T, Text) is zero in the current study. Feedback 

inhibition of enzyme activity in equation (4.5) is modelled as a Hill equation. Binding 

of two tryptophan molecules to each of the subunits of anthranilate synthase inhibits 

the enzyme activity. A pioneer tryptophan molecule bound to an allosteric site 

changes the geometrical configurations of an enzyme molecule in favour of other 

tryptophan molecules over the chorismate molecules. Because the tryptophan binding 

is sequential and cooperative, the Hill coefficient (nH) is greater than 1. The internal 

consumption of tryptophan is described using Michaelis-Menten model in equation 

(4.7). Notably, exponential biomass growth that results in protein dilution is 

accounted for in equations (4.1), (4.3), (4.4) and (4.9). 

 This study uses a specific growth rate of 0.1 doublings per h for minimal 

growth medium in order to be consistent with the central carbon metabolism model. 

The parameter estimates in Santillán and Mackey (2001a) are based on 0.6 doublings 

per h. Parameters dependent on the specific growth rate are affected by changes in the 

number of mRNA molecules in a cell, number of ribosomes in a cell, mRNA 
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elongation rate and dry weight of a cell. Appendix B contains the detailed method to 

adapt operon, aporepressor and total repressor concentrations in a cell, rate constant 

for mRNAP binding to a free DNA operator site, rate constant for ribosome binding to 

a free trpE related site on an mRNA, and the time taken by a ribosome to synthesize a 

trpE polypeptide to match the  specific growth rate of 0.1 doublings per h. As 

explained in parameter estimation (Section 4.3), equations (4.5), (4.7) and (4.9) are 

replaced by equations (4.20) to (4.22) (given later) because of inadequate linkage 

between equation (4.9) purportedly describing the terminating steps of tryptophan 

biosynthesis and central carbon metabolism. As pointed out in section 4.3, the 

terminating steps of tryptophan biosynthesis involving several other key metabolites − 

chorismate, 5-phosphoribosyl-α-pyrophosphate (prpp) and serine − are not reflected in 

equation (4.9). Equations (4.1), (4.2), (4.3), (4.4) and (4.6) are retained in the revised 

augmented model. 

 

4.2.4  Augmented Model Description 
 Mass balance equations (4.10) to (4.14) link the tryptophan operon dynamics 

and metabolites in the shikimate and terminal tryptophan biosynthesis pathways 

(equations 4.1 to 4.9) to the nonlinear central carbon metabolism model (Chapter 3). 

pepMurSynthChoSynthDAHPSPEPCxylasePTSPKENO
pep μCrrrrrrr

dt
dC

−−−−−−−=          (4.10) 

dahpChoSynthDAHPS
dahp μCrr

dt
dC

−−=                         (4.11) 

chorisSynth3TrpSynthChoSynth
choris μCrrr
dt

dC
−−−=                      (4.12) 

prppTrpSynthSynth4RPPK
prpp μCrrr

dt
dC

−−−=              (4.13) 

serSynth5TrpSynthSerSynth
ser μCrrr

dt
dC

−−−=              (4.14) 

The central carbon metabolism model (Chassagnole et al., 2002) has 25 

metabolites consisting of 18 balanced metabolites and 7 unbalanced co-metabolites. 

The new metabolites added in the augmented model are the enzyme for tryptophan 

biosynthesis, 3-deoxy-D-arabino-heptulosonate 7-phosphate (dahp), chorismate 

(cho), tryptophan (trp), 5-phosphoribosyl-α-pyrophosphate (prpp) and serine (ser). 
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Equation (4.10) accounts for chorismate and mureine synthesis separately, which 

were aggregated in the original central carbon metabolism model. Enzymatic fluxes of 

the shikimate pathway are condensed into equation (4.11) where dahp is the starting 

precursor of the common aromatic amino acid biosynthesis pathway heading towards 

chorismate. Equation (4.12) recognizes chorismate as the carbon flux director of the 

three separate terminal pathways, its pivotal role in a series of sequences leading to 

tryptophan biosynthesis and its internal consumption during cellular protein synthesis. 

The reactions involving chorismate and prpp to form precursors (leading to 

tryptophan production), and the internal consumption of prpp are reflected in equation 

(4.13).  The final set of reactions between serine and indole 3-glycerolphosphate to 

form tryptophan and gap, and serine internal consumption are collated in equation 

(4.14). Serine synthesis and RPPK enzymatic sub-system to regenerate prpp are given 

elsewhere in Chassagnole et al. (2002). 

 Chorismate synthesis and the internal consumption processes are modelled as 

first order kinetics in equations (4.15) to (4.18). 

nadphe4ppepdahp
max
ChoSynthChoSynth CCCCrr =               (4.15) 

chorischorisSynth3 Ckr =                 (4.16) 

prppprppSynth4 Ckr =                 (4.17) 

serserSynth5 Ckr =                 (4.18) 

Liao et al. (1996) suggested that e4p is the first limiting precursor for DAHP synthase, 

followed by phosphoenolpyruvate (pep). Chorismate synthesis originally presented as 

equation (10) in Schmid et al. (2004) has been modified in this study to incorporate 

erythrose 4-phosphate (e4p) as shown in equation (4.15).  

There are four new parameters consisting of maximum rate of chorismate 

synthesis max
ChoSynthr , rate constant of chorismate consumption chorisk , rate constant of 

prpp consumption prppk  and rate constant of serine consumption serk . These four 

parameters are estimated by minimizing the sum of squares of errors (equation (4.19)) 

where error refers to the fractional difference between reference and predicted 

metabolite concentrations. 

Minimize ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

reference
i

predicted
i

reference
i

C
CC

              (4.19) 
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The reference concentrations are those of the 18 metabolites taken from the central 

carbon metabolism model of Chassagnole et al. (2002) and serine concentration 

determined from Piperno and Oxender (1968). The predicted concentrations are 

determined by solving the steady-state equations of the augmented model comprising 

the entire mass balances and kinetic expressions of the central carbon metabolism and 

equations (4.1) to (4.18) above. The steady-state concentration of serine is estimated 

in Appendix C as 0.04872 mM. The parameter estimates are discussed in the 

following section. 

 

4.3  Parameter Estimation 
 The operon model parameters given in Santillán and Mackey (2001a) are 

based on a specific cell growth rate of 0.6 doublings per h. To be consistent with the 

central carbon metabolism of Chassagnole et al. (2002), our augmented model too 

uses a specific cell growth rate of 0.1 doublings per h (Appendix B) for the trp operon 

kinetics. The kinetic parameters of the central carbon metabolism are unchanged since 

experimental metabolomics data that are essential for re-calibrating the entire set of 

kinetic parameters in conjunction with the four new kinetic parameters estimation are 

not available in the published literature.       

 NSGA-II is used to estimate the four new parameters (Section 4.2.4) using 

equation (4.19) as the objective function. No steady-state measured concentrations of                              

3-deoxy-D-arabino-heptulosonate 7-phosphate (dahp), chorismate (cho), tryptophan 

(trp) and 5-phosphoribosyl-α-pyrophosphate (prpp) and pooled enzyme (represented 

by anthranilate synthase in equation (4.4)) for the wild E. coli strain are available in 

the published literature. Preliminary estimates of the four parameters give sufficiently 

close values for the rate constant of serine synthesis for various random number seeds. 

The remaining three rate constants could not be uniquely determined. An alternative 

approach is to treat the chorismate and prpp internal consumption fluxes as constant; 

then, the two unknown parameters to be estimated are the respective chorismate and 

serine synthesis rate constants. While the rate constant for serine synthesis remains 

largely unchanged for various random number seeds, the same is not true of the rate 

constant for chorismate synthesis.    

 Preliminary simulations of the augmented model shows that DAHPS flux is 

invariant to changes in the gene expression levels even though some of the 
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manipulated genes such as G6PDH (in the pentose-phosphate pathway) and 

PEPCxylase (in the glycolytic pathway) are known to be capable of redirecting or 

reducing carbon sources (Chapter 3) to the aromatic amino acid pathways. 

Preliminary studies on the simultaneous maximization of tryptophan and serine flux 

ratios using 2-gene manipulation (multiplier range 0.5-1.5) showed that tryptophan 

synthesis flux ratio is almost identical to 1.0 while serine synthesis flux ratio varies 

between 1.0 and 2.0.  

On closer examination, it can be seen that equation (4.9) incorporates the 

effects of tryptophan and active pooled enzyme concentrations on the tryptophan 

synthesis rate without regard for the other key metabolites in the terminal tryptophan 

biosynthesis pathway. To provide a tighter link between the central carbon 

metabolism and the terminal tryptophan biosynthesis, it is necessary to replace 

equation (4.9). The pooled enzyme of the terminal tryptophan biosynthesis pathway, 

chorismate, prpp and serine are important precursors for the terminating steps in 

tryptophan biosynthesis. This forms the basis for the terminal tryptophan biosynthesis 

kinetics modelled using equation (4.20). 

serprppchoenz
max
TrpSynthTrpSynth CCCCrr =                             (4.20) 

Chorismate is consumed at the beginning and serine is consumed in the final step of 

the terminal tryptophan biosynthesis pathway.  The conflicts between tryptophan and 

serine synthesis provides the motivation for the subsequent application of the 

augmented model for MOO in Chapter 5. 

The internal consumption of tryptophan for cellular metabolism is modelled 

using first order kinetics. 

trptrpSynth6 Ckr =                                                                                                        (4.21) 

The mass balance for tryptophan is written as: 

trpSynth6TrpSynth
trp μCrr

dt
dC

−−=                                                   (4.22) 

In the revised augmented model, this mass balance for tryptophan together with 

kinetic rate expressions (4.20) and (4.21) replace the earlier equations (4.5), (4.7), 

(4.8) and (4.9).  

 In the revised augmented model (equations (4.1) – (4.4), (4.6), (4.10) – (4.18) 

and (4.20) – (4.22) and the central carbon metabolism), there are six kinetic 

parameters to be estimated (see Table 4.2). The two additional kinetic parameters 
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among these six are the maximum rate of tryptophan synthesis ( max
TrpSynthr ) and the rate 

constant of tryptophan consumption (ktrp). Tryptophan concentration for the E. coli 

wild strain is estimated as 4.091 μM (Santillán and Mackey, 2001a). The theoretical 

yield of dahp without pyruvate recycling to pep is 0.43 mole per mole of glucose 

(Liao et al., 1996). Since the steady-state glucose concentration is 0.0556 mM 

(Chassagnole et al., 2001), the estimated steady-state concentration of dahp is 0.43 of 

0.0556 i.e. 0.0239 mM. In estimating 6 kinetic parameters, the reference 

concentrations are those of the 18 metabolites in the central carbon metabolism, 

serine, tryptophan and dahp. The last three metabolites are part of the shikimate and 

terminal tryptophan biosynthesis pathways.          

 In estimating the 6 parameters, data on only three reference metabolite 

concentrations (i.e. dahp, serine and tryptophan) are available for the shikimate and 

terminal tryptophan biosynthesis pathways. The steady-state concentrations of 

chorismate and prpp are not available. The concentrations of pooled enzyme in the 

terminal tryptophan biosynthesis pathway, dahp, serine and tryptophan are almost 

constant. Though there are variations in the chorismate and prpp concentrations when 

different random number seeds are used, fluxes of chorismate and prpp consumptions 

are practically constant at 0.00749 mM/s and 0.01036 mM/s respectively. This 

accounts for the variations in the rate constants of chorismate and prpp consumption. 

Note that fluxes of chorismate and prpp consumption vary in the optimization of 

concurrent gene knockout and manipulation (Chapter 5) to determine Pareto-optimal 

front. The estimated parameter values are shown in Table 4.2. They are selected by 

assuming that the concentration of chorismate is around 0.1 mM (Schmid et al., 

2004). The minimal objective function value is constant at 0.028 for various random 

number seeds.  

Table 4.2   Estimated parameters of the augmented model. 
 

Parameter Description Estimated Value 
    max

ChoSynthr  Maximum rate of chorismate synthesis 17.657000 mM-3s-1 

max
TrpSynthr  Maximum rate of tryptophan synthesis 63.193038 s-1 

chorisk  Rate constant of chorismate consumption 0.086983 s-1 

prppk  Rate constant of prpp consumption 10.269372 s-1 

serk  Rate constant of serine consumption 0.365393 s-1 

trpk  Rate constant of tryptophan consumption 0.000103 s-1 
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 Table 4.3 gives steady-state metabolite/co-metabolite concentrations and 

fluxes following the estimated parameters of Table 4.2. The calculated values are 

subject to the homeostasis and total enzymatic flux constraints. Experimentally 

measured and estimated metabolite concentrations of Chassagnole et al. (2002), 

endogeneous serine concentration measured by Piperno and Oxender (1968), 

tryptophan concentration estimated by Santillán and Mackey (2001a) and theoretical 

dahp concentration of Liao et al. (1996) are in brackets. The co-metabolite 

concentrations are assumed to be constant. The calculated fluxes of the original 

central carbon metabolism model are in brackets. The synthesis rates of mureine and 

methionine are assumed to be constant in both the augmented and original central 

carbon metabolism models. Tryptophan synthesis rate, which is assumed to be 

constant in the central carbon metabolism model, is calculated in the augmented 

model. Nevertheless, the concentrations and fluxes of the augmented model are 

comparable to those given by the references above except for several relatively 

appreciable differences (more details in the later part of this section). Synth1 flux that 

collectively represents chorismate and mureine synthesis is assumed to be dependent 

on the concentration of pep but not that of e4p in the central carbon metabolism. 

Synth1 flux is not pertinent in the augmented model. Chorismate synthesis flux 

calculated by subtracting mureine synthesis flux from Synth1, instead of using 

equation 4.15, causes inconsistency in the results.   

 The parity plot (Figure 4.4) shows good agreement between the simulated 

metabolite concentrations using the estimated parameters and their respective 

measured (Chassagnole et al., 2001; Piperno and Oxender, 1968) and source (Liao et 

al., 1996; Santillán and Mackey; 2001a) values.  The overall goodness-of-fit measure 

is 0.9992. The maximum normalized deviation, which is the ratio of the absolute 

difference (between the calculated and reference concentrations) to the reference 

concentration, is 8.26% for the metabolite fructose-1,6-bisphosphate (fdp). The 

normalized deviations for 3-phosphoglycerate (3pg), phosphoenolpyruvate (pep),           

2-phosphoglycerate (2pg) and 1,3-diphosphoglycerate (pgp) are 5.70%, 5.66%, 5.65% 

and 5.62% respectively. The normalized deviations for the remaining metabolite 

concentrations are below 5.0%. The deviations are reasonable given the parametric 

uncertainties and structural assumptions (such as the mass balances used in the 

aromatic amino acid pathways) used in developing the augmented model.   
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 The calculated enzyme synthesis rate in Table 4.3 is of the same order of 

magnitude (i.e. 10-5 μM/s) as the one calculated using the simplified trp operon model 

in Schmid et al. (2004). The trp operon model in Schmid et al. (2004) ignores the 

mechanisms of transcription and translation, and does not incorporate feedback 

inhibition of enzyme in the terminal tryptophan biosynthesis pathway. The augmented 

model developed here provides a platform for wider and deeper study (Chapters 5 and 

6) of flux engineering interventions. Tryptophan synthesis flux shows the greatest 

normalized deviation (i.e. ratio of the absolute difference between the calculated and 

reference fluxes to the reference flux). The DAHPS flux deviates by 9.64% since dahp 

is the starting precursor of the aromatic amino acid biosynthesis pathways instead of 

being accumulated as were the case in the central carbon metabolism model. G1PAT 

flux deviates by 9.30%; varying DAHPS flux when tryptophan biosynthesis 

(TrpSynth) is considered in the augmented model has rather strong impact on G1PAT 

flux. PEPCxylase flux deviates by 4.27%. SerSynth flux deviates by 1.77% and its 

significance is not immediately obvious until the next chapter. The relatively 

appreciable differences in the fluxes obtained from the augmented model and central 

carbon metabolism model reflect the sensitivities of various pathways with respect to 

tryptophan biosynthesis. Such sensitivities point to underlying competition for carbon 

sources and provide opportunities for optimization study involving multiple objectives 

in the next chapter. The synthesis and consumption rates for chorismate, prpp, serine 

and tryptophan are relatively balanced as this is critical for the cellular metabolism.   
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Fig. 4.4. Parity plot of the metabolite concentrations. 
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Table 4.3   Steady-state metabolite/co-metabolite concentrations and fluxes of the 
augmented metabolic network formed by integrating Figs. 4.1 and 4.2. Reference 
concentrations are in brackets: measured (meas), estimated (est) and theoretical (theo)  
are indicated. Calculated fluxes (except for MurSynth, MetSynth and TrpSynth which 
are constant) of the original central carbon metabolism are in brackets.  See Section 
4.3 for more details. 

  
Metabolite/          

Co-metabolite with 
serial number 

Concentration (mM) Enzyme with serial 
number Flux (mM/s) 

Metabolite 1. PTS 0.2000 (0.2000) 
1. Glucose 
(extracellular) 

0.05612 (0.0556, 
meas) 

2. PGI 0.05584 (0.05825) 

2. g6p 3.5447 (3.48, meas) 3. PFK 0.1398 (0.1410) 
3. f6p 0.6112 (0.60, meas) 4. ALDO 0.1398 (0.1410) 
4. fdp 0.2945 (0.272, meas) 5. TIS 0.1381 (0.1394) 
5. gap 0.2276 (0.218, meas) 6. GAPDH 0.3166 (0.3199) 
6. dhap 0.1740 (0.167,est) 7. PGK 0.3166 (0.3199) 
7. pgp 0.00845 (0.008, est) 8. PGluMu 0.2988 (0.3023) 
8. 3pg 2.2513 (2.13, est) 9. ENO 0.2988 (0.3023) 
9. 2pg 0.4216 (0.399, est) 10. PK 0.03833 (0.03811) 
10. pep 2.8212 (2.67, meas) 11. PDH 0.1870 (0.1878) 
11. pyr 2.6657 (2.67, meas) 12. PEPCxylase 0.04496 (0.04312) 
12. 6pg 0.8268 (0.808, meas) 13. PGM 0.002533 (0.002319) 
13. ribu5p 0.1136 (0.111, est) 14. G1PAT 0.002515 (0.002301) 
14. xyl5p 0.1414 (0.138, est) 15. RPPK 0.01036 (0.01031) 
15. sed7p 0.2783 (0.276, est) 16. G3PDH 0.001722 (0.001658) 
16. rib5p 0.4077 (0.398, est) 17. SerSynth 0.01780 (0.01749) 
17. e4p 0.1015 (0.098, est) 18. Synth1 0.01443 (0.01421) 
18. g1p 0.6622 (0.653, meas) 19. Synth2 0.05354 (0.05355) 
19. pooled enzyme 0.00200 20. DAHPS 0.007495 (0.006836) 
20. dahp 0.0239 (0.0239, theo) 21. G6PDH 0.1415 (0.1393) 
21. cho 0.08612 22. PGDH 0.1415 (0.1393) 
22. trp 0.004091 (0.004091, 

est) 
23. Ru5P 0.08490 (0.08370) 

23. ser 0.04872 (0.04872, 
meas) 

24. R5PI 0.05657 (0.05559) 

24. prpp 0.0010087 25. TKa 0.04620 (0.04527) 
  26. TKb 0.03870 (0.03843) 

Co-metabolite 27. TA 0.04620 (0.04526) 
1. amp 0.955 (0.955, meas)  28. MurSynth 0.00043711 (0.00043711) 
2. adp 0.595 (0.595, meas)  29. MetSynth 0.0022627 (0.0022627) 
3. atp 4.27 (4.27, meas) 30. TrpSynth 0.000000535 (0.001037) 
4. nadp 0.195 (0.195, meas) 31. TrpConsumed 0.000000421364 
5. nadph 0.062 (0.062, meas) 32. EnzSynth 0.000000055562 
6. nad 1.47 (1.47, meas) 33. EnzDegraded 0.0 
7. nadh 0.1 (0.1, meas) 34. ChoSynth 0.007494 
  35. ChoConsumed 0.007491 
  36. PrppConsumed 0.01036 
  37. SerConsumed 0.01780 
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4.4   Conclusions 
 Kinetic parameters of enzymatic sub-systems of the central carbon metabolism 

obtained through experiments and supported by theories in microbiology and 

biochemistry have been calibrated using stimulus response technique where a glucose 

pulse is injected into a culture of E. coli.  The central carbon metabolism model has 

been used successfully in MOO in an earlier study (Chapter 3). What is lacking is the 

integration of the central carbon metabolism and the dynamic trp operon model. This 

provides the prime motivation for developing the augmented model presented in this 

chapter. The ability of the augmented model to channel carbon fluxes through the 

common aromatic amino acid and terminal tryptophan biosynthesis pathways is 

achieved by substituting the tryptophan biosynthesis kinetics of the dynamic trp 

operon model with one which reflects the key metabolites and representative enzyme 

of the terminal tryptophan biosynthesis pathway. Since it is not possible to uniquely 

estimate the six new kinetic parameters of the augmented model due to certain 

unavailable reference concentrations in the published literature, estimates are selected 

from the various parameter estimation runs to minimize the sum of squares of 

fractional errors.  Since the existing trp operon model is independent of the central 

carbon metabolism, there is a need to carefully evaluate the augmented model in 

terms of reproducibility of metabolite concentrations and enzymatic fluxes. Steady-

state concentrations and fluxes were calculated using the newly developed augmented 

model. Calculated and reference metabolite concentrations were compared via parity 

plot. Larger deviations between calculated and reference concentrations and fluxes are 

explained wherever possible. It is possible to discern underlying competition among 

DAHPS, TrpSynth, G1PAT and PEPCxylase fluxes for carbon sources. Concurrent 

gene knockout and manipulation for multiple objectives using the augmented model 

are studied in the next chapter.  
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Chapter 5   

 OPTIMIZATION OF A MICROBIAL CELL FACTORY FOR 

MULTIPLE OBJECTIVES – USING AUGMENTED MODEL 

 

5.1   Optimization Studies of Microbial Cell Factories 
 

 Strain improvement traditionally relies on well-developed iterative classical 

mutagenesis and screening procedures. While these efforts have resulted in the 

creation of potent producer strains, the mutagenic approach has limited usefulness 

since desirable gene knockouts and manipulations are difficult to achieve and 

undesirable mutations are unavoidable. The availability of recombinant DNA 

techniques allows genetic interventions that will further improve existing producer 

strains. Optimization of a multi-product microbial biosynthesis factory such as E. coli 

via a suitable mathematical model, a systems biotechnology specialty, has the 

potential to complement the classical procedures used in improving producer strains. 

The metabolic pathway recipe formulated via mixed-integer multi-objective 

optimization can suggest desirable gene knockouts and manipulations and optimal 

mix of plasmid and aporepressor copy number for maximizing targeted amino acids 

production rates. Although amino acids are now among the classical products in 

biotechnology, rising demand is driving their annual growth enormously. 

Improvements in the production of amino acids, which are widely used in food, 

pharmaceutical and livestock sectors, are of significant interest to industries and 

consumers (Scheper et al., 2003). 

 Conflicting objectives are commonly encountered in bioprocesses              

(Halsall-Whitney et al., 2006; Lee et al., 2007; Sendin et al., 2006). Most of the 

optimization of a multi-product microbial cell factory focussed on a single objective 

(e.g., Schmid et al., 2004; Visser et al., 2004; Vital-Lopez et al., 2006). Numerical 

difficulties associated with the highly nonlinear central carbon metabolism model is 

circumvented through piecewise optimization (Schmid et al., 2004), linlog 

approximation (Visser et al., 2004) and Lagrange linearization (Vital-Lopez et al., 

2006). By setting the time derivatives of the metabolite concentration to zero in a 

system of differential mass balances, stationary fluxes and metabolite concentrations 

can be calculated when engineering interventions in the form of gene knockouts 
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and/or manipulations are introduced. In all cases, desirable interventions divert carbon 

sources to maximize the production of a targeted end-product.    

 Schmid et al. (2004) used a nonlinear central carbon metabolism model for          

E. coli linked to several first order kinetic expressions for tryptophan biosynthesis 

pathway and an equation for enzyme synthesis to maximize tryptophan production via 

enzyme modulations. They also studied the flux distributions and flux control 

coefficients. Metabolic control analysis (MCA) can suggest enzymes to be modulated 

to drive the metabolic pathway recipe towards a given objective function. As noted by 

Schmid et al. (2004), there are trends in their calculated flux control coefficients that 

do not correlate with the optimal enzyme activity changes and thus MCA can never 

replace optimization of a detailed model. The number of flux and concentration 

control coefficients accessible through MCA in a complex nonlinear central carbon 

metabolism model is so large that the challenge of identifying the Pareto-optimal 

result through MCA is yet to be surmounted. 

 Visser et al. (2004) used a linlog approximation of the central carbon 

metabolism model of E. coli to determine the optimal glycolytic enzyme modulations 

required to maximize glucose uptake through phosphotransferase sub-system (PTS) in 

one case and the production of serine in another case. Tryptophan production rate is 

assumed to be constant. Serine is a precursor for tryptophan biosynthesis, and the 

linkage between tryptophan and serine production rates is subsumed under the central 

carbon metabolism. Only ten (and eleven in the case of maximizing serine production) 

out of the thirty enzymatic fluxes present in the central carbon metabolism model 

were used as decision variables. It is not known whether the single objective optima 

obtained by Schmid et al. (2004) and Visser et al. (2004) are global or local when 

piecewise optimization results were combined. 

  Multi-objective optimization of multi-product microbial cell factories is 

relatively new in chemical engineering. Vera et al. (2003) have studied multi-

objective optimization in metabolic processes leading to ethanol production by 

Saccharomyces cerevisiae; this was most recently reiterated by Link et al. (2008).  

Sendin et al. (2006) have compared the multi-objective optimization of ethanol 

production in Saccharomyces cerevisiae applied separately using weighted sum 

method, goal attainment method, normal boundary intersection (NBI), multi-objective 

indirect optimization method (MIOM) and multi-objective evolutionary algorithm 

(MOEA). The MIOM approach is workable when a nonlinear model is converted into 
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an equivalent S-system (synergistic systems) by aggregating all reactions contributing 

to generation or consumption of a given metabolite as a product of power functions. 

The power functions of the generation (influx term) or consumption (efflux term) of a 

given metabolite are formed by multiplying the rate constant and each contributing 

metabolite concentration raised to its own real exponent. The power-law 

approximation in the form of S-system and generalized mass action (GMA) provide 

the modelling framework under biochemical systems theory (BST). The S-system is 

converted into a system of linear equations at steady-state by logarithmic 

transformation of the influxes and effluxes. Applying multi-objective linear 

programming (MOLP) to S-system is numerically less daunting than applying other 

multi-objective optimization methods to the original highly nonlinear model. BST 

model is not available for the central carbon metabolism of E. coli.  

Producing tryptophan and serine in one organism rather than two different 

organisms is a case for flexible multi-product biosynthesis factory. The flexibility is 

scalable through engineering interventions of the metabolic pathways to respond to 

changes in types of products and their quantities demanded in a highly competitive 

market. On a broader perspective, manufacturers will be able to shorten the research 

and development time using a multi-product biosynthesis factory serving as a re-

configurable biocatalytic template to produce novel and useful products of the future. 

Organisms such as Escherichia coli and Corynebacterium glutamicum have similar 

central carbon metabolism and branched pathways such as those leading to aromatic 

amino acids and serine biosynthesis. Therefore single-product technologies 

accumulated through the studies of an individual organism can be channeled towards 

the singular purpose of studying a multi-product biosynthesis factory. Our current 

research is a step in exploring the challenges of designing a multi-product factory via 

Escherichia coli from metabolic engineering viewpoint. The thesis author selects 

Escherichia coli motivated primarily by the availability of detailed models and 

extensive literature. Advances in post-fermentation separations will be less of an issue 

when costs and substrate availability for fermentation are relatively more important.      

 L-serine and L-tryptophan have a symbiotic relationship in Escherichia coli. 

In the final step of the terminal tryptophan biosynthesis pathway, the conversion of L-

serine and indole into L-tryptophan and water is catalyzed by the β2 subunit of 

tryptophan synthase. The manufacturer determines the relative amounts of serine and 

tryptophan to be produced using a single fermenter based on a high-level aim such as 
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economic demand. Serine is soluble in the aqueous fermentation broth. Tryptophan is 

sparingly soluble in the aqueous solution and appears as solid crystals towards the end 

of fermentation. Post-fermentation steps for tryptophan include filtration and 

crystallization. Ion-exclusion chromatography can be used to extract serine from the 

same post-fermentation solution. Using two fermenters rather than one fermenter 

potentially increases the post-fermentation separation steps needed to achieve 

products of desired quality. 

  Similar to the earlier study (Chapter 3) on the multi-objective optimization of 

the central carbon metabolism of E. coli (Figure 3.1), the present study uses the highly 

nonlinear augmented model developed in Chapter 4. The next section describes the 

optimization problem and solution strategy. 

 

5.2   Optimization Problem and Solution 

5.2.1  Problem Formulation 
 Gene repression and overexpression (i.e. gene manipulation) as well as gene 

knockouts help to redistribute the various metabolic fluxes in the central carbon 

metabolism (Chapter 3). The challenge lies in identifying the genes to be manipulated 

or knocked out so as to simultaneously optimize the desired fluxes leading to the 

production of useful amino acids as end-products. Concurrent gene knockout and 

manipulation will naturally amplify the targeted fluxes to a greater extent than using 

either one technique due to the increased system-wide flexibility in debottlenecking 

and enhancing fluxes of various enzyme-catalyzed reactions. In the targeted 

tryptophan and serine bi-objective optimization through concurrent gene knockout 

and manipulation using the augmented model, maximizing tryptophan flux ratio 

replaces that of the DAHPS flux ratio in the earlier study (Chapter 3). Maximizing 

serine flux ratio remains as the other objective.  

 Besides concurrent gene knockout and manipulation, inserting multicopy 

plasmids carrying tryptophan operon into a wild E. coli host cell, which is a 

recombinant DNA technology, has the potential of increasing tryptophan biosynthesis 

rate. Assuming one DNA operator site per tryptophan operon in an independent 

plasmid, the number of DNA operator sites can be multiplied by inserting multicopy 

plasmids into the wild E. coli strain. Preliminary bi-objective optimization trials show 

that multiplying the plasmids carrying tryptophan operon in the augmented model 
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leads to severe numerical difficulties. This suggests that the stability of the microbial 

cell system cannot be maintained or regulated in the absence of repressors due to 

difficulties in controlling the dynamic expression of genes. This is slightly alleviated 

by inserting multiple copies of plasmids carrying trpR gene encoding the 

aporepressors into the wild E. coli host cell.  Difficulties in controlling the microbial 

cell system when plasmids were inserted into the wild E. coli host cell have been 

reported in various experiments (Azuma et al., 1993; Ikeda, 2006).  

The numerical difficulties associated with multicopy plasmids in the 

augmented model are attributed to complex cellular regulatory actions in the presence 

of inserted plasmids carrying tryptophan operon and trpR genes. Carefully constructed 

multicopy plasmids carrying tryptophan operon with other modifications (such as 

deregulated trpE and trpD genes) have been inserted into wild E. coli and 

Corynebacterium glutamicum (C. glutamicum) strain (Ikeda, 2006) to produce higher 

tryptophan titre at the end of fermentation. In the pursuit of ever higher tryptophan 

titre, sustainability of the inserted plasmids in the E. coli host cell throughout the 

entire course of fermentation to produce tryptophan remains a practical challenge till 

now (Ikeda, 2006). Thus parallels between experimental and computational work are 

manifested in the need for a microbial cell to maintain metabolic network integrity 

and stability. 

 Tryptophan operon and trpR plasmids multiplications are not decision 

variables in the current optimization study though preliminary simulations (data not 

shown) show that multicopy plasmids are capable of enhancing tryptophan 

biosynthesis rates several times; this is supported by fermentation experiments 

(Azuma et al., 1993; Chan et al., 1993) using various growth media. The two decision 

variables are not included in the current study as they merit special metabolic network 

integrity and stability considerations that form part of future study. The augmented 

model does not incorporate detailed mathematical mechanisms of the various gene 

deregulations by the aromatic amino acids due to lack of relevant published kinetics. 

Another potential decision variable is the cellular specific growth rate. Tryptophan 

flux ratio increases as specific growth rate increases since more tryptophan is needed 

for internal cellular consumption at higher biomass growth rate. On the other hand, 

tryptophan concentration decreases as specific growth rate increases due to the 

dilution effect of higher biomass growth rate. The specific growth rate of the 

augmented model is fixed at 0.1 h-1 in order to maintain kinetic parameters 
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consistency throughout. Tryptophan synthesis and consumption rates remain coupled 

although the specific growth rate is constant.      

 A summary of the objectives, constraints and decision variables are given 

below.  

Objectives 

TrpSynthrMax                     (5.1) 

SerSynthrMax                    (5.2) 

This is equivalent to maximizing their respective flux ratios (Chapter 3). 

 

Steady-state constraints 

They are obtained by setting the time derivatives of the mass balances of the 

augmented model (equations 4.1, 4.3, 4.4, 4.10 to 4.14, 4.22 and equations found in 

Table 1 (Chassagnole et al., 2001)) to zero. 

 

Homeostatic constraint 

0.3
C

CC 

m
1 m

1i refi,

refi,i
≤

−
∑
=

                    (5.3) 

This is a physiological constraint. The summation is over all metabolites (m in 

number) and Ci is the concentration of ith metabolite. The value of m is 23, consisting 

of 18 central carbon metabolites (Table 4.3) and 5 metabolites (3-deoxy-D-arabino-

heptulosonate 7-phosphate (dahp), chorismate (cho), tryptophan (trp),                              

5-phosphoribosyl-α-pyrophosphate (prpp) and serine (ser)) of the common aromatic 

amino acids and terminal tryptophan biosynthesis pathways (Figures 4.1 and 4.2). The 

constraining value of 0.3 is the same as the one used in the earlier optimization of the 

central carbon metabolism. 

 

Total enzymatic flux constraint 

0.1
r
r

z
1 z

1i ref i,

i ≤∑
=

                   (5.4) 

This is a technological constraint, where the summation covers all enzyme fluxes (z in 

number). The value of z is 36 consisting of fluxes in the central carbon metabolism 

(except Synth1) and common aromatic amino acid and terminal tryptophan 

biosynthesis pathways. The constraining value of 0.1 is the same as the one used in 
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the earlier optimization of the central carbon metabolism. The initial steady-state 

(reference) values for the concentrations and fluxes are given in Table 4.3.  

 

Decision variables  

There are 30 genes (PTS, PGI, PFK, ALDO, TIS, GAPDH, PGK, PGluMu, ENO, PK, 

PDH, PEPCxylase, PGM, G1PAT, RPPK, G3PDH, SerSynth, Synth2, DAHPS, 

G6PDH, PGDH, Ru5P, R5PI, TKa, TKb, TA, MurSynth, MetSynth, ChoSynth and 

TrpSynth – refer to the List of Symbols for the definition of these abbreviations and 

Table 4.3) subjected to manipulation using a multiplier in the range of 0.8-1.25 during 

the gene identification process and a multiplier in the range of 0-1.5 during concurrent 

knockout and manipulation. 

 

5.2.2  Solution Strategy 
 It is not practical to use a manual exhaustive search method for concurrent 

gene knockout and manipulation due to the large number of possibilities. A branch -

and-bound method (Section 3.6) works relatively well for up to three gene knockouts 

where only integer decision variables are involved. It is not suitable where real 

decision variables in the form of gene multiplier, whether continuous or 

discontinuous, are involved. Identification of potential genes for knockout and 

manipulation solely by intuition risks missing parts of the search domain with high 

nonlinearity.   

 A heuristics method is applied to the current optimization study by drawing on 

the strengths of the branch-and-bound (pattern recognition) and manual exhaustive 

search (checking of metabolic network integrity and exclusion of genes that breach 

constraints) techniques discussed in Chapter 3. The strategy is to first use NSGA-II to 

identify potential genes for concurrent knockout and manipulation. In the first stage of 

gene manipulation, two (or three) genes are randomly selected from the universal set 

of 30 genes, via a relatively narrow multiplier range of 0.8-1.25 to identify a subset 

that is responsible for the Pareto. The finally selected subset of genes from the first 

stage is then considered with multiplier in the range between 0 and 1.5 to generate 

Pareto-optimal front via concurrent knockout and manipulation. Single objective 

optimization is used to check the upper bounds of the Pareto-optimal front. By 

recognizing the Pareto patterns and genes obtained via the narrow multiplier range of 
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0.8-1.25, simulations are used to obtain part of the Pareto which cannot be generated 

using NSGA-II. The main focus is on two and three gene manipulations and 

knockouts. The computer used and the NSGA-II parameters (except for random 

seeds) in this chapter are the same as those in Chapters 2 and 3. 

 

5.3   Gene Identification 

5.3.1  Two-gene Identification Using Multiplier of 0.8 to 1.25 
 Pareto-optimal results obtained using NSGA-II (Figure 5.1a) reveal the 

existence of two separate segments and two isolated chromosomes C1 and C2. 

Discontinuity between the two separate Pareto segments indicates an on-off switching 

mechanism with forward and backward paths favouring tryptophan and serine 

biosynthesis respectively. The sharp on-off pattern is a result of switching between 

two sets of genes (Figure 5.1b) responsible for enhancing tryptophan and serine 

biosynthesis. Transcription termination by attenuation is relaxed to allow higher 

tryptophan synthesis rate when tryptophan concentration decreases to a sufficiently 

low value. Attenuation is more severe at higher tryptophan concentration in order to 

retard tryptophan synthesis rate. One reported tryptophan concentration range for 

effective attenuation is 1 to 5 μM (Koh et al., 1998). It is interesting to note that the 

initial steady-state concentration of tryptophan is 4.091 μM (Table 4.3). Regulation by 

repression at the DNA operator site of the tryptophan operon is effective over a wider 

tryptophan concentration range of 1 to 100 μM (Koh et al., 1998).  

Unlike the sharp on-off switch function of attenuation, repression uses a 

gentler variable gain method (relatively more effective for tryptophan concentration 

less than 10 μM) to control tryptophan synthesis rate. In the concurrent gene knockout 

and manipulation (Section 5.3.2), tryptophan synthesis rate and concentration vary in 

the same direction. While the regulatory actions of attenuation, repression and 

feedback inhibition of enzyme maintain tryptophan synthesis rate and concentration 

within precise bands for given gene expression levels, it is the gene manipulation 

and/or knockouts that largely determine the tryptophan flux ratio and concentration at 

various gene expression levels. As a whole, the augmented model is able to 

demonstrate the balancing of contrasting needs of synthesis and internal consumption 

at various gene expression levels to sustain a given specific growth rate. The small 

difference (less than 1%) between synthesis and internal consumption rates accounts 
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for the dilution effect of biomass growth. Mass transport of tryptophan and serine 

across the cell membrane is not part of this study. 
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 Maximum serine synthesis rate (serine flux ratio = 1.271541; tryptophan flux 

ratio = 0.999243) is obtained when the multipliers of SerSynth and GAPDH are 

Fig. 5.1. (a) Pareto-optimal front obtained by two-gene manipulation with seed 0.6 
                   and multiplier range of 0.8 to1.25.   
              (b) Optimal gene multipliers for the Pareto-optimal front in (a). 
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actively constrained at 1.25 (Figure 5.1b). Maximum tryptophan synthesis rate 

(tryptophan flux ratio = 1.135159; serine flux ratio = 1.002157) is obtained when the 

multipliers of TrpSynth and G1PAT are actively constrained at 1.25 and 0.8 

respectively. Not all of the random number seeds used with NSGA-II are capable of 

finding the respective global upper bounds of serine and tryptophan synthesis rates 

(Figure 5.1(a)). One such case (seed = 0.5) is when both RPPK and R5PI are 

multiplied 1.25 times (not shown in Figure 5.1), and one would expect that greater 

availability of carbon sources in the pentose-phosphate pathway results in higher 

tryptophan synthesis. The resulting tryptophan flux ratio is 1.076906. It is less than 

that obtained through manipulation of genes encoding TrpSynth and G1PAT. 

Repressing gene encoding G1PAT by 0.8 times effectively draws carbon sources from 

polysaccharides synthesis and directs them to pentose-phosphate and glycolytic 

pathways (Figure 4.1). Overexpressing gene encoding TrpSynth by 1.25 times 

increases carbon fluxes in the terminal tryptophan biosynthesis pathway. In the earlier 

study (Chapter 3), repressing gene encoding G6PDH (multiplier = 0.5) and 

overexpressing gene encoding DAHPS (multiplier = 2.0) maximizes DAHPS flux 

ratio at 1.498. G6PDH flux ratio decreases slightly to 0.964. In the augmented model, 

overexpressing gene encoding DAHPS which is at the start of the common aromatic 

amino acid pathway does not increase tryptophan flux ratio to the same extent as the 

one obtained by overexpressing gene encoding TrpSynth. Note that the gene encoding 

TrpSynth collectively represents all the genes (after ChoSynth) in the terminal 

tryptophan biosynthesis pathway.    

 In another case (seed = 0.8; not shown in figure), repressing gene encoding 

DAHPS by 0.8 times and overexpressing gene encoding SerSynth by 1.25 times gives 

a serine flux ratio of 1.250442. While repressing gene encoding DAHPS is intuitive, 

higher flux ratio is possible via overexpressing gene encoding GAPDH. In the 

augmented model, repressing gene encoding DAHPS reduces demand for serine as an 

immediate precursor in the final step of tryptophan biosynthesis of the longer 

branched aromatic amino acid pathway. This suggests that GAPDH is more effective 

in increasing carbon sources to the short branched serine synthesis pathway due to its 

greater proximity. This is congruent with the earlier results (Chapter 3) where 

maximum serine flux ratio is obtained by overexpressing genes encoding SerSynth 

and GAPDH at the multiplier upper bound. 
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 GAPDH (Figures 4.1 and 5.1(b)) is central in channelling carbon sources to 

serine synthesis. Repressing gene encoding G1PAT certainly increases the carbon 

availability for serine and tryptophan synthesis through the respective glycolytic and 

aromatic amino acid pathways, as indicated by chromosomes C1 and C2.  Knocking 

out gene encoding G1PAT is a possibility in the concurrent gene knockout and 

manipulation (Section 5.4). While it appears intuitive to manipulate genes encoding 

DAHPS and ChoSynth so as to enhance tryptophan flux ratio, they do not contribute 

to the Pareto (Figure 5.1(b)). This suggests that the limiting precursors reside in the 

central carbon metabolism rather than the branched aromatic amino acid pathway.  

 It is likely that a local Pareto (Figure 5.2(a)) is obtained for seed 0.7 with the 

two isolated Pareto chromosomes C1 and C2 absent. This means, when a chromosome 

such as L (Figure 5.2a) in the local Pareto set is perturbed in the decision variable 

space, no dominating solution in the neighbourhood can be found. The local Pareto is 

perpetuated by extending the multiplier ranges of TrpSynth and GAPDH (Figure 

5.2(b)) beyond those of the Pareto-optimal front. Similar local Pareto is also obtained 

for seed 0.8 (results not shown for brevity). An isolated local Pareto chromosome on 

the left of the local Pareto segment is obtained by manipulating PK (multiplied by 0.8 

times) and GAPDH (multiplied 1.25 times). Other seeds used in NSGA-II result in 

either incomplete parts of the Pareto-optimal front or a local Pareto. 

 Genes that are potentially capable of generating the Pareto-optimal front in the 

concurrent knockout and manipulation are SerSynth, TrpSynth, GAPDH, G1PAT and 

PK. The subset of genes consisting of SerSynth, TrpSynth, GAPDH and G1PAT are 

being manipulated with a multiplier range of 0.8 to 1.25. Using this subset of genes 

only, NSGA-II (with seeds 0.6, 0.7 and 0.8) reproduces the same Pareto-optimal front 

as that obtained using the universal set of 30 genes. Further optimization runs were 

made for another subset of genes consisting of PK, SerSynth, TrpSynth, GAPDH and 

G1PAT. Pareto-optimal front is obtained for seeds 0.6 and 0.8. Local Pareto identical 

to the one shown in Figure 5.2(a) is obtained for seed 0.7. 

 The four genes consisting of SerSynth, TrpSynth, GAPDH and G1PAT will be 

used in the concurrent gene knockout and manipulation with a wider multiplier range 

of 0 to 1.5. While it is intuitive to manipulate SerSynth and TrpSynth to increase 

serine and tryptophan synthesis rates, manipulating GAPDH and G1PAT are not 

obvious. This is due to the complex dynamic interactions of the flux channels existing 

in the central and branched pathways. The heuristics method successfully identifies 
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the genes and their respective multipliers contributing to global and local Pareto. The 

reduced set of genes and Pareto patterns provide more specific guidance to the search 

for converged Pareto-optimal solution in concurrent gene knockout and manipulation 

(Section 5.4). Inability to find the global Pareto could be due to various reasons such 

as early convergence that reduces the probability of finding non-dominated solution(s) 

in other parts of the feasible search space resulting in bypass of isolated solution or 

disjointed Pareto segment, difficulties in accessing certain parts of the feasible search 

space, and non-convexities in the objective and decision variable spaces. Therefore, 

there is a need to try a number of values for the random number seed in the 

optimization runs to obtain the global Pareto-optimal front. In all the optimization 

runs, the Pareto-optimal solution converges within 500 generations. Heuristics 

technique alleviates (though not completely) the daunting numerical difficulties in the 

single step search for the Pareto when concurrent knockout and manipulation is 

applied to 30 genes. 
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5.3.2  Three-gene Identification Using Multiplier of 0.8 to 1.25 
 The Pareto-optimal front for three-gene manipulation (Figure 5.3a) is 

generated by genes encoding SerSynth, TrpSynth, GAPDH, RPPK, G1PAT and PK                     

(Figure 5.3b). The maximum serine synthesis rate (serine flux ratio = 1.300026; 

tryptophan flux ratio = 1.088622) indicated by chromosome C3 is obtained by 

overexpressing genes encoding GAPDH and SerSynth (multiplier 1.25) and 

repressing gene encoding PK (multiplier 0.835276). Repressing another gene besides 

the one encoding PK either breaches the total enzymatic flux constraint                         

(e.g. multiplying gene encoding PEPCxylase by 0.8 times) or does not result in the 

highest serine flux ratio. The maximum tryptophan synthesis rate (serine flux ratio = 

0.992493; tryptophan flux ratio = 1.214460) indicated by chromosome C4 is obtained 

by overexpressing genes encoding RPPK and TrpSynth (multiplier 1.25) and 

repressing gene encoding G1PAT (multiplier 0.8). Although higher tryptophan flux 

ratios (e.g. repressing gene encoding PEPCxylase by 0.8 times and overexpressing 

genes encoding RPPK and TrpSynth by 1.25 times) than those of chromosome C4 are 

obtainable, they violate the total enzymatic flux constraint.    

SerSynth 

TrpSynth 

TrpSynth 

GAPDH GAPDH 

Fig. 5.2. (a) Pareto front obtained by two-gene manipulation with multiplier in the range 
                    0.8 to1.25 and seeds: 0.6 (●) and 0.7 (Δ).   
              (b) Optimal gene multipliers for the Pareto-optimal front in (a). Gene labelling   
                    is for seed 0.7. 

(b) 
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 Overexpressing gene encoding TrpSynth creates high demand for serine as a 

precursor in the final step of tryptophan biosynthesis. This is achieved by 

overexpressing genes encoding SerSynth and GAPDH to increase carbon availability 

in the glycolytic pathway (Segment 1 in Figure 5.3a). An analogous collaborative 

demand and supply of precursor occurs when experimental amplification of gene 

encoding SerSynth increases tryptophan production in Corynebacterium glutamicum 

(Ikeda, 2006) where serine is a limiting precursor. As overexpression of gene 

encoding GAPDH slides, greater carbon flux available for TrpSynth helps to increase 

tryptophan flux ratio. Continual decrease in gene expression encoding SerSynth 

combined with continual increase in gene expression encoding TrpSynth and 

repression of gene encoding G1PAT enhance the tryptophan flux ratio. The 

competition between TrpSynth and SerSynth supported by diversion of carbon fluxes 

away from polysaccharide synthesis generate segment 2 in Figure 5.3a.   

 Further increase in tryptophan flux ratio, indicated by segment 3, is possible 

through repressing gene encoding G1PAT (to divert carbon fluxes to glycolytic and 

pentose-phosphate pathways), maximizing gene expression encoding TrpSynth and 

continually increasing gene expression encoding RPPK. This is different from the 

objective of increasing DAHPS flux ratio (Chapter 3) where repressing gene encoding 

G6PDH, decreasing gene expression encoding SerSynth and maximizing gene 

expression encoding DAHPS is more effective. In the augmented model, increasing 

RPPK flux helps to increase the production rate of prpp which is a precursor of 

ANTAP enzymatic sub-system (Figure 4.2) in the terminal tryptophan biosynthesis 

pathway. Repressed gene encoding G6PDH (to increase DAHPS flux in Chapter 3) 

does not appear in the Pareto-optimal front for seed 0.6 in Figure 5.3a. Repressing 

gene encoding G6PDH (multiplier 0.845845) and overexpressing genes encoding 

GAPDH (multiplier 1.25) and SerSynth (multiplier 1.214800) are responsible for an 

isolated Pareto chromosome between chromosome C3 and segment 1 (not shown in 

Figure 5.3a) favouring serine production (serine flux ratio = 1.288708; tryptophan 

flux ratio = 1.101746) if random number seed 0.3 were used.  

 Besides gene encoding G6PDH, other genes pertaining to the pentose-

phosphate pathway do not contribute to the Pareto-optimal fronts for dual and triple 

gene manipulation. Several independent studies (Ikeda and Katsumata, 1999; Kim et 

al., 2000) using tryptophan producing C. glutamicum or E. coli, have shown that 

overexpressing genes encoding transketolase (TKa and TKb) using high copy number 
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plasmids imposes a metabolic burden leading to retarded growth and segregation of 

plasmids. When glycolysis is blocked by deleting gene encoding PGI in the glycolytic 

pathway and carbon flux is diverted into the pentose-phosphate pathway 

(Mascarenhas et al., 1991), tryptophan production rate doubled but the cellular growth 

rate is reduced. Since the specific growth rate is constant in the augmented model, the 

ability to manipulate genes in the pentose-phosphate pathway is limited to moderate 

gene overexpression. This suggests that repressing or even knocking out gene 

encoding G6PDH (Chapter 3) which is at the start of the pentose-phosphate pathway, 

does not limit the availability of erythrose-4-phosphate (e4p) as a precursor for 

DAHPS to synthesize 3-deoxy-D-arabino-heptulosonate 7-phosphate (dahp). This is 

possible since glyceraldehyde-3-phosphate (gap), a precursor for synthesizing e4p, is 

produced in glycolytic pathway and the final step of tryptophan biosynthesis.         

 Local Pareto (not shown in Figure 5.3) is observed for various seeds (i.e. 0.1, 

0.2, 0.4, 0.5, 0.7, 0.8 and 0.9) or variations of the multiplier range such as 1.0 to 1.25. 

The subset of genes that are potentially capable of generating the Pareto-optimal front 

in the concurrent three-gene manipulation and knockouts are SerSynth, TrpSynth, 

GAPDH, RPPK, G1PAT, PK and G6PDH. Numerical difficulties are significantly 

greater in the case of concurrent three-gene manipulation and knockouts than those of 

the two-gene case due to larger number of metabolic pathways subjected to 

engineering interventions that result in infeasible solutions. This is also true in 

practice (personal comments from experts e.g. Christian Wandrey; Ikeda and 

Katsumata, 1999) where maintaining metabolic control and stability in E. coli 

subjected to gene manipulation and/or deletion is a challenge, particularly during 

fermentation. Concurrent two-gene manipulation and knockout is discussed in the 

next section.   
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Fig. 5.3. (a) Pareto-optimal front obtained by triple gene manipulation with seed  
                   0.6 and multiplier range of 0.8 to1.25.   
              (b) Optimal gene multipliers for the Pareto-optimal front in (a). 
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5.4 Concurrent Two-gene Knockouts and Manipulations Using 

Multiplier 0 to 1.5 

5.4.1  Pareto and Practical Issues 
 In this case, two randomly selected genes from the subset consisting of 

GAPDH, G1PAT, SerSynth and TrpSynth, are simultaneously deleted and 

manipulated for optimizing the objectives. The optimizer, NSGA-II generates the 

leftmost Pareto segment bounded by chromosomes A1 and A2 (Figure 5.4a) for 

random number seeds 0.1, 0.6 and 0.7; local Pareto is absent in all the three 

optimization runs. The rest of the Pareto results (A3, B1-B2 and B3) are obtained 

through selective simulation built upon the Pareto patterns and decision variables 

behaviour observed during the gene identification step. The homeostatic and total 

enzymatic flux constraints are satisfied in all the Pareto results in Figure 5.4. Similar 

to the Pareto trends in the earlier study (Chapter 3), there is an overall increase in flux 

ratios due to greater gene amplification, where serine and tryptophan flux ratios 

increase up to 53.5% and 30.5% respectively. An on-off switching mechanism allows 

switchover to TrpSynth to increase tryptophan synthesis rate in the forward path. The 

backward path allows switchover to SerSynth if greater serine synthesis rate is 

desired. The gene encoding GAPDH regulates the amount of carbon sources through 

the glycolytic pathway.  

 Neither genes in the pentose-phosphate pathway nor gene encoding DAHPS 

are responsible for the Pareto (Figure 5.4b). Though overexpressing genes encoding 

transketolase (TKa and TKb) in the pentose-phosphate pathway can increase the 

production of e4p in practice (Bongaerts, 2001), there is a conjecture supported by 

experimental fermentation data (Ikeda and Katsumata, 1999) that accumulation of 

small amount of pentose phosphates within a microbial cell inhibits cell growth. 

Experimentally, it was demonstrated (Patnaik and Liao, 1994) that overexpressing 

genes encoding DAHPS, transketolase and PEP synthase (to convert pyruvate (pyr) 

back to phosphoenolpyruvate (pep)) to increase the supply of pep and e4p lead to 

production of dahp close to the theoretical yield (obtained from metabolic flux 

analysis by the same authors) of 0.86 mole per mole of glucose. While this strategy 

works well for high-density cell resuspension cultures under non-growth conditions in 

laboratories (Ikeda and Katsumata, 1999), such genetic modifications leading to 

growth impairment during fermentation in industrial bioreactors are practically 
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undesirable. The augmented model which is based on a constant specific growth rate 

of 0.1 doublings per hour has demonstrated its ability to balance synthesis and 

consumption to give Pareto results that generally concur with the work described 

above and the earlier study using the central carbon metabolism model (Chapter 3).         

 Chromosome A1 marks the upper bound of serine flux ratio and it is also the 

optimal point for the single objective maximization of serine synthesis rate. 

Chromosome A2 is actively constrained by the total enzymatic flux requirement. The 

Pareto segment will extend uninterrupted to the right of chromosome A2 if not for the 

total enzymatic flux constraint. Chromosome A3 is obtained from simulating 

simultaneous manipulation of SerSynth (by 1.5 times) and knockout of G1PAT. 

Chromosome A2 and its several adjacent chromosomes are dominated by 

chromosome A3. The number of dominated chromosomes depends on the seeds – 

four chromosomes for seed 0.1, two chromosomes for seed 0.6 and five chromosomes 

for seed 0.7. Chromosome A3 will be dominated due to simultaneous decline in serine 

and tryptophan flux ratios if a non-zero multiplier is applied to gene encoding G1PAT 

while maintaining the multiplier for SerSynth at 1.5. The domination of A2 and its 

adjacent chromosomes is caused by the inability of NSGA-II to generate chromosome 

A3 and the proximity of the numerical values. It is likely that other chromosomes are 

rejected once sufficient number of lower (better) rank chromosomes are obtained 

through non-dominated sorting leaving out the chromosomes in the less crowded 

region. This happens when the emerging region which eventually becomes the left 

most Pareto segment is so densely populated with lower (better) rank chromosomes 

that no other solution can be accommodated within a fixed population size. 

Effectively, NSGA-II simply rejects the remainder of the solutions including the short 

Pareto segment bounded by chromosomes B1 and B2.  

 In the optimization runs using three seeds (0.1, 0.6 and 0.7), the skeletal Pareto 

segment bounded by A1 and A2 was constructed within the first 10 generations. The 

sets of genes encoding GAPDH/TrpSynth, G1PAT/SerSynth and G1PAT/TrpSynth 

easily breach the total enzymatic flux constraint during the first three generations due 

to various reasons such as repression of either one of the genes encoding GAPDH and 

TrpSynth, and simultaneous repression of genes encoding G1PAT and TrpSynth. The 

available slots are quickly filled through non-dominated sorting by genes encoding 

GAPDH and SerSynth after the third generation. The elitist preservation mechanism, 

which precedes the crowding distance sorting, rapidly increases the density of better 
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rank chromosomes that fulfilled the homeostatic and total enzymatic flux constraints 

to form the offspring population. In NSGA-II procedure, each parent and offspring 

population is of size N, for instance. The combined parent and offspring population 

size is 2N. Chromosomes of non-dominated rank 1 (best) fill the first slot. 

Chromosomes of non-dominated rank 2 (next to best) fill the second slot. This 

continues until the last slot results in a population size greater than or equal to N. No 

other chromosomes can be accommodated beyond the last slot. Following this, the 

crowding distance sorting is applied to the chromosomes which belong to the last slot 

where a solution that is located in a lesser crowded region is preferred. This creates a 

new population of size N. The new population (which is now the parent) is used for 

selection, crossover, and mutation to create an offspring of size N. After the third 

generation, the combined parent and offspring population consists entirely of local 

neighbouring chromosomes and the crowding distance sorting mechanism to increase 

diversity of the search is rendered ineffective.  For the narrow multiplier range of 0.8 

to 1.25, the probability of breaching the total enzymatic flux constraint is lower during 

the first few generations. It is likely that the density of the local Pareto increases 

rapidly during the first few generations when manipulating genes encoding the yet to 

be developed isolated chromosome G (Figure 5.2a) results in breaching of the total 

enzymatic flux constraint.  

 Extension of the Pareto segment bounded by chromosomes B1 and B2 

towards the left results in domination. The same Pareto segment will extend 

uninterrupted after chromosome B2 if not for the total enzymatic flux constraint.  

Chromosome B3 is obtained by simulating simultaneous manipulation of TrpSynth 

(multiplied 1.5 times) and knockout of G1PAT. This Pareto point also maximizes the 

TrpSynth flux ratio for the single objective. Chromosome B3 will be dominated due 

to simultaneous decline in TrpSynth and SerSynth flux ratios if the G1PAT multiplier 

is non-zero while maintaining the TrpSynth multiplier at 1.5. 

  

5.4.2  Flux Distribution and Tryptophan Operon Control 
 The key flux ratios and concentrations (extracted from Tables 5.1 to 5.6) show 

several (Figures 5.5 and 5.6) interesting patterns. In generating the leftmost Pareto 

branch (Figure 5.4a), greater serine flux ratio is obtained by reducing the flux ratios of 

PGM and G1PAT (Figure 5.5) to 0.6566-0.8282 and 0.6538-0.8270 respectively. 
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High serine concentration (Figure 5.6) of chromosome A1 at 0.07477 mM (SerSynth 

flux ratio = 1.5346) is concomitant with slightly lowered tryptophan concentration at 

0.003950 mM (TrpSynth flux ratio = 0.9657; DAHPS flux ratio = 0.6178; ChoSynth 

flux ratio = 0.6178). This results in slight relaxation of tryptophan operon repression 

with a small increase in the free DNA operator sites and free mRNA concentration. 

As serine concentration of chromosome A2 (Figure 5.6) slides to 0.07195 mM 

(SerSynth flux ratio = 1.4767) and tryptophan concentration rises to 0.004498 mM 

(TrpSynth flux ratio = 1.0996; DAHPS flux ratio =0.8192; ChoSynth flux ratio = 

0.8192), the applied repression of tryptophan operon results in a small decrease in the 

free DNA operator sites and free mRNA concentration. The pooled enzyme 

concentration decreases due to feedback inhibition as tryptophan concentration 

increases. Since e4p concentration is lower than its initial steady-state value and the 

opposite is true of pep concentration, it implies that e4p (a central carbon metabolite, 

refer to section 5.3.1) is the first limiting precursor for DAHPS enzymatic sub-system 

(Liao et al., 1996) followed by pep.       

 High serine concentration (Figure 5.6) of chromosome A3 at 0.07204 mM 

(SerSynth flux ratio = 1.4786) is needed to meet and sustain the demand (Section 

5.3.2) from tryptophan synthesis (TrpSynth flux ratio = 1.1901; DAHPS flux ratio = 

0.9474; ChoSynth flux ratio = 0.9474). Otherwise, overflow of indole (a last precursor 

in the final step of the terminal tryptophan biosynthesis) due to severe shortage of 

serine results in decline of glucose consumption, loss of plasmids and microbial cell 

death (Ikeda et al., 1994) in the last stage of fermentation using C. glutamicum where 

the common aromatic amino acid and terminal tryptophan biosynthesis pathways are 

very similar to those in E. coli. The flux ratios of DAHPS and ChoSynth being less 

than 1.0 for chromosome A3 suggest that the precursors dahp and chorismate (cho) in 

the common aromatic amino acid pathway are not retarding the production of 

tryptophan. While GAPDH flux ratios are largely resilient to its gene amplification, 

GAPDH acts as a significant conduit primarily for the glycolytic pathway with 

influential cascading effect on the fluxes of the pentose-phosphate and aromatic 

amino acid pathways.    

 The serine concentration for the Pareto segment bounded by chromosomes B1 

and B2 is maintained above initial steady state value when it is supported by serine 

synthesis fluxes which are between 1.5% and 2% higher than the initial steady state 

flux. This ensures a steady availability of serine as a precursor together with indole for 
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the final conversion to tryptophan. The flux ratios of PGI are relatively well regulated 

at between 3.5% (Table 5.5) and 4.5% (Table 5.4) below the initial steady state flux. 

Cellular growth inhibition discussed earlier (Sections 5.3.2 and 5.4.1) is avoided. The 

slight increases in the fluxes of the pentose-phosphate pathway (Tables 5.4 and 5.5) 

are desirable for enhancing tryptophan production (Ikeda and Katsumata, 1999) 

without affecting the stability of entire metabolic network. The concentration of e4p is 

relatively constant at 0.0978 mM which is slightly below that of the initial steady 

state. The flux ratios of DAHPS and ChoSynth increase gradually from 0.9142 to 

0.9342 as tryptophan biosynthesis rate rises in moving from chromosome B1 to 

chromosome B2. 

 The maximum tryptophan flux ratio of 1.3052 exhibited by chromosome B3 

(Figure 5.5 and Table 5.6) is obtained through very moderate amplification of the 

fluxes in the pentose-phosphate pathway of less than 2% (e4p and pep concentrations 

are moderately above those of initial steady state), maintaining SerSynth flux ratio 

slightly above 1.0 and increased DAHPS and ChoSynth flux ratios at 1.0946. The 

dahp, cho and serine concentrations are higher than the ones at initial steady state. The 

net result is a continual non-rate limiting supply of carbon to the pathways leading to 

tryptophan biosynthesis. Since the tryptophan concentration is highest at                

0.005339 mM, repression of the tryptophan operon and feedback inhibition (Table 

5.6) of the pooled enzyme are greatest. 

  

5.5   Conclusions 
 The heuristics method uses pattern recognition and multiple random number 

seeds to identify genes for the concurrent manipulation and knockout, and alleviate 

the daunting numerical difficulties encountered in the optimization study using the 

complex augmented model. NSGA-II alone may not always generate the global 

Pareto or the complete Pareto-optimal front. There are opportunities to combine other 

means with NSGA-II or modify NSGA-II to improve its efficacy. In the concurrent 

two-gene knockout and manipulation, genes encoding SerSynth, TrpSynth, GAPDH 

and G1PAT have been identified using the narrow multiplier range of 0.8-1.25. 

Existence of local Pareto was noted. In the next stage, the wide multiplier range of          

0-1.5 creates one part of the Pareto-optimal front when genes encoding GAPDH and 

SerSynth were manipulated. Genes that cannot be manipulated desirably using a 
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narrow multiplier range are not likely candidates for concurrent gene knockouts and 

manipulations. The probability for sub-optimality in the detailed optimization using a 

wider multiplier range is remote after initial genes screening using a narrow multiplier 

range. The maximum SerSynth flux ratio of 1.5346 is obtained when genes encoding 

GAPDH and SerSynth are amplified 1.5 times. The remainder of the Pareto consisting 

of two isolated chromosomes due to one gene knockout and another gene 

manipulation, and a Pareto branch for high tryptophan biosynthesis rate range could 

not be found using NSGA-II. It is obtained through simulations following the Pareto 

patterns recognized during the gene identification stage. Missing Pareto solutions are 

possibly due to the sorting procedure and elitist preservation mechanism of NSGA-II, 

and the probability of breaching homeostatic and total enzymatic flux constraints 

during the first few generations. The maximum TrpSynth flux ratio of 1.3052 is 

obtained when genes encoding GAPDH and TrpSynth are amplified 1.5 times. The 

results obtained by optimization are consistent with the fermentation studies in the 

literature and with the dynamic behaviour of the tryptophan operon. In the concurrent 

three-gene knockout and manipulation, genes encoding SerSynth, TrpSynth, GAPDH, 

RPPK, G1PAT, PK and G6PDH have been identified using a narrow multiplier range 

of 0.8-1.25. The maximum serine and tryptophan flux ratios are 1.3000 and 1.2145 

respectively. The various parts of Pareto solutions have been explained in terms of 

collaborative and competitive supply and demand among the contributing fluxes. The 

triple-gene manipulation could not be extended to the wide multiplier range of 0-1.5 

due to the existence of large number of infeasible solutions leading to severe 

numerical computing difficulties. 
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Fig. 5.4. (a) Pareto-optimal front obtained by concurrent two-gene manipulation  
                    and knockouts with multiplier range of 0.0 to1.25.   
              (b) Optimal gene multipliers for the Pareto front in (a). 
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Fig. 5.5.  Flux ratios of the chromosomes depicted in Figure 5.4. The flux ratios 
indicated for each chromosome, in descending order of bar position; correspond to 
TrpSynth, SerSynth, ChoSynth, DAHPS, GAPDH, PGI, G1PAT and PGM. Refer to 
List of Symbols for the definitions of the abbreviations. Refer to Tables 5.1 to 5.6 for 
complete flux data.  
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concentrations indicated for each chromosome, in descending order of bar position; 
correspond to trp, ser, cho, dahp, e4p and pep. Refer to List of Symbols for the 
definitions of the abbreviations. Refer to Tables 5.1 to 5.6 for complete concentration 
data.  



 

  107

Table 5.1 Concentrations and fluxes of chromosome A1 in Fig. 5.4. The initial steady-
state values of the augmented model in Table 4.3 are in brackets.   

 

Metabolite/Co-metabolite 
with serial number 

Concentration (mM) Enzyme with serial 
number 

Flux ratio (flux, mM/s) 

Metabolite 1. PTS 1.0000 (0.2000)  
1. Glucose (extracellular)  0.05796 (0.05612) 2. PGI 0.9537 (0.05584)  
2. g6p 3.6531 (3.5447) 3. PFK  1.0054 (0.1398) 
3. f6p 0.6299 (0.6112) 4. ALDO 1.0055 (0.1398) 
4. fdp 0.1664 (0.2945) 5. TIS 1.0084 (0.1381) 
5. gap 0.1666 (0.2276) 6. GAPDH 1.0159 (0.3166) 
6. dhap 0.1290 (0.1740) 7. PGK 1.0159 (0.3166) 
7. pgp 0.0091(0.00845) 8. PGluMu 0.9850 (0.2988) 
8. 3pg 2.4293 (2.2513) 9. ENO  0.9850 (0.2988) 
9. 2pg 0.4549 (0.4216) 10. PK 1.0073 (0.03833) 
10. pep  3.0448 (2.8212) 11. PDH 1.0015 (0.1870) 
11. pyr  2.6668 (2.6657) 12. PEPCxylase 1.0211 (0.04496) 
12. 6pg  0.8474 (0.8268) 13. PGM 0.6566 (0.002533) 
13. ribu5p 0.1071 (0.1136) 14. G1PAT 0.6538 (0.002515) 
14. xyl5p 0.1316 (0.1414) 15. RPPK 0.9866 (0.01036) 
15. sed7p 0.3260 (0.2783) 16. G3PDH 0.7708 (0.001722) 
16. rib5p 0.3814 (0.4077) 17. SerSynth 1.5346+ (0.01780) 
17. e4p 0.08345 (0.1015) 18. Synth1 Not applicable (0.01443) 
18. g1p 0.6936 (0.6622) 19. Synth2 1.0001 (0.05354) 
19. pooled enzyme 0.00206 (0.00200) 20. DAHPS 0.6178 (0.007495) 
20. dahp 0.01665 (0.0239) 21. G6PDH 1.0244 (0.1415) 
21. cho 0.0532 (0.08612) 22. PGDH 1.0244 (0.1415) 
22. trp 0.003950 (0.004091) 23. Ru5P 1.0394 (0.08490) 
23. ser 0.07477 (0.04872) 24. R5PI 1.0018 (0.05657) 
24. prpp 0.0009952 (0.0010087) 25. TKa 1.0052 (0.04620) 
  26. TKb 1.0802 (0.03870) 

Co-metabolite 27. TA 1.0052 (0.04620) 
1. amp 0.955 (0.955)   28. MurSynth 1.0000 (0.00043711) 
2. adp 0.595 (0.595)  29. MetSynth 1.0000 (0.0022627) 
3. atp 4.27 (4.27) 30. TrpSynth 0.9657+ (0.000000535) 
4. nadp 0.195 (0.195) 31. TrpConsumed 0.9657 (0.000000421364) 
5. nadph 0.062 (0.062) 32. EnzSynth 1.0323 (0.000000055562) 
6. nad 1.47 (1.47) 33. EnzDegraded Not applicable (0.0) 
7. nadh 0.1 (0.1) 34. ChoSynth 0.6178+ (0.007494) 

  35. ChoConsumed 0.6177 (0.007491) 
Tryptophan operon 36. PrppConsumed 0.9866 (0.01036) 

37. SerConsumed 1.5346 (0.01780) Molecule or binding site 
with serial number 

Concentration (μM) 

1. Total repressor 0.8509 (0.8527) 
2. Active repressor 0.05228 (0.05414) 
3. Free DNA operator site 0.0001547 (0.0001499) 
4. Free mRNA 0.0003446 (0.0003338) 

 + The chorismate, serine 
and tryptophan synthesis 
rates are greater than their 
respective internal 
consumption rates. 



 

  108

Table 5.2 Concentrations and fluxes of chromosome A2 depicted in Fig. 5.4.                 
The initial steady-state values of the augmented model in Table 4.3 are in brackets.   

 

Metabolite/Co-metabolite 
with serial number 

Concentration (mM) Enzyme with serial 
number 

Flux ratio (flux, mM/s) 

Metabolite 1. PTS 1.0000 (0.2000)  
1. Glucose (extracellular)  0.05561 (0.05612) 2. PGI 1.0409 (0.05584)  
2. g6p 3.4873 (3.5447) 3. PFK  1.0112 (0.1398) 
3. f6p 0.6013 (0.6112) 4. ALDO 1.0112 (0.1398) 
4. fdp 0.2385 (0.2945) 5. TIS 1.0125 (0.1381) 
5. gap 0.2030 (0.2276) 6. GAPDH 1.0114 (0.3166) 
6. dhap 0.1559 (0.1740) 7. PGK 1.0114 (0.3166) 
7. pgp 0.00804 (0.00845) 8. PGluMu 0.9837 (0.2988) 
8. 3pg 2.1415 (2.2513) 9. ENO  0.9837 (0.2988) 
9. 2pg 0.4010 (0.4216) 10. PK 0.9949 (0.03833) 
10. pep  3.6840 (2.8212) 11. PDH 0.9990 (0.1870) 
11. pyr  2.6650 (2.6657) 12. PEPCxylase 0.9562 (0.04496) 
12. 6pg  0.8158 (0.8268) 13. PGM 0.8282 (0.002533) 
13. ribu5p 0.1091 (0.1136) 14. G1PAT 0.8270 (0.002515) 
14. xyl5p 0.1353 (0.1414) 15. RPPK 0.9915 (0.01036) 
15. sed7p 0.2843 (0.2783) 16. G3PDH 0.9102 (0.001722) 
16. rib5p 0.3907 (0.4077) 17. SerSynth 1.4767+ (0.01780) 
17. e4p 0.0935 (0.1015) 18. Synth1 Not applicable (0.01443) 
18. g1p 0.6567 (0.6622) 19. Synth2 0.9999 (0.05354) 
19. pooled enzyme 0.00183 (0.00200) 20. DAHPS 0.8192 (0.007495) 
20. dahp 0.0223 (0.0239) 21. G6PDH 0.9869 (0.1415) 
21. cho 0.07055 (0.08612) 22. PGDH 0.9869 (0.1415) 
22. trp 0.004498 (0.004091) 23. Ru5P 0.9915 (0.08490) 
23. ser 0.07195 (0.04872) 24. R5PI 0.9801 (0.05657) 
24. prpp 0.0010002 (0.0010087) 25. TKa 0.9775 (0.04620) 
  26. TKb 1.0082 (0.03870) 

Co-metabolite 27. TA 0.9775 (0.04620) 
1. amp 0.955 (0.955)   28. MurSynth 1.0000 (0.00043711) 
2. adp 0.595 (0.595)  29. MetSynth 1.0000 (0.0022627) 
3. atp 4.27 (4.27) 30. TrpSynth 1.0996+ (0.000000535) 
4. nadp 0.195 (0.195) 31. TrpConsumed 1.0996 (0.000000421364) 
5. nadph 0.062 (0.062) 32. EnzSynth 0.9168 (0.000000055562) 
6. nad 1.47 (1.47) 33. EnzDegraded Not applicable (0.0) 
7. nadh 0.1 (0.1) 34. ChoSynth 0.8192 (0.007494) 

  35. ChoConsumed 0.8192 (0.007491) 
Tryptophan operon 36. PrppConsumed 0.9915 (0.01036) 

37. SerConsumed 1.4766 (0.01780) Molecule or binding site 
with serial number 

Concentration (μM) 

1. Total repressor 0.8581 (0.8527) 
2. Active repressor 0.05953 (0.05414) 
3. Free DNA operator site 0.0001374 (0.0001499) 
4. Free mRNA 0.0003060 (0.0003338) 

 + The chorismate, serine 
and tryptophan synthesis 
rates are greater than their 
respective internal 
consumption rates. 
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Table 5.3 Concentrations and fluxes of chromosome A3 depicted in Fig. 5.4.                 
The initial steady-state values of the augmented model in Table 4.3 are in brackets.   

 

Metabolite/Co-metabolite 
with serial number 

Concentration (mM) Enzyme with serial 
number 

Flux ratio (flux, mM/s) 

Metabolite 1. PTS 1.0000 (0.2000)  
1. Glucose (extracellular)  0.05608 (0.05612) 2. PGI 1.0712 (0.05584)  
2. g6p 3.4992 (3.5447) 3. PFK  1.0226 (0.1398) 
3. f6p 0.6033 (0.6112) 4. ALDO 1.0226 (0.1398) 
4. fdp 0.2811 (0.2945) 5. TIS 1.0231 (0.1381) 
5. gap 0.2217 (0.2276) 6. GAPDH 1.0194 (0.3166) 
6. dhap 0.1698 (0.1740) 7. PGK 1.0194 (0.3166) 
7. pgp 0.00807 (0.00845) 8. PGluMu 0.9920 (0.2988) 
8. 3pg 2.1501 (2.2513) 9. ENO  0.9920 (0.2988) 
9. 2pg 0.4026 (0.4216) 10. PK 0.9954 (0.03833) 
10. pep  2.6945 (2.8212) 11. PDH 0.9991 (0.1870) 
11. pyr  2.6650 (2.6657) 12. PEPCxylase 0.9686 (0.04496) 
12. 6pg  0.8181 (0.8268) 13. PGM 0.0075 (0.002533) 
13. ribu5p 0.1119 (0.1136) 14. G1PAT 0.0 (0.002515) 
14. xyl5p 0.1392 (0.1414) 15. RPPK 0.9969 (0.01036) 
15. sed7p 0.2763 (0.2783) 16. G3PDH 0.9796 (0.001722) 
16. rib5p 0.4013 (0.4077) 17. SerSynth 1.4786+ (0.01780) 
17. e4p 0.0993 (0.1015) 18. Synth1 Not applicable (0.01443) 
18. g1p 0.6856 (0.6622) 19. Synth2 0.9999 (0.05354) 
19. pooled enzyme 0.00170 (0.00200) 20. DAHPS 0.9474 (0.007495) 
20. dahp 0.0242 (0.0239) 21. G6PDH 0.9897 (0.1415) 
21. cho 0.08159 (0.08612) 22. PGDH 0.9897 (0.1415) 
22. trp 0.004869 (0.004091) 23. Ru5P 0.9903 (0.08490) 
23. ser 0.07204 (0.04872) 24. R5PI 0.9887 (0.05657) 
24. prpp 0.0010056 (0.0010087) 25. TKa 0.9868 (0.04620) 
  26. TKb 0.9945 (0.03870) 

Co-metabolite 27. TA 0.9868 (0.04620) 
1. amp 0.955 (0.955)   28. MurSynth 1.0000 (0.00043711) 
2. adp 0.595 (0.595)  29. MetSynth 1.0000 (0.0022627) 
3. atp 4.27 (4.27) 30. TrpSynth 1.1901+ (0.000000535) 
4. nadp 0.195 (0.195) 31. TrpConsumed 1.1901 (0.000000421364) 
5. nadph 0.062 (0.062) 32. EnzSynth 0.8522 (0.000000055562) 
6. nad 1.47 (1.47) 33. EnzDegraded Not applicable (0.0) 
7. nadh 0.1 (0.1) 34. ChoSynth 0.9474 (0.007494) 

  35. ChoConsumed 0.9474 (0.007491) 
Tryptophan operon 36. PrppConsumed 0.9968 (0.01036) 

37. SerConsumed 1.4786 (0.01780) Molecule or binding site 
with serial number 

Concentration (μM) 

1. Total repressor 0.8630 (0.8527) 
2. Active repressor 0.06443 (0.05414) 
3. Free DNA operator site 0.0001277 (0.0001499) 
4. Free mRNA 0.0002845 (0.0003338) 

 + The chorismate, serine 
and tryptophan synthesis 
rates are greater than their 
respective internal 
consumption rates. 
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Table 5.4 Concentrations and fluxes of chromosome B1 depicted in Fig. 5.4.                 
The initial steady-state values of the augmented model in Table 4.3 are in brackets.   

 

Metabolite/Co-metabolite 
with serial number 

Concentration (mM) Enzyme with serial 
number 

Flux ratio (flux, mM/s) 

Metabolite 1. PTS 1.0000 (0.2000)  
1. Glucose (extracellular)  0.05734 (0.05612) 2. PGI 0.9557 (0.05584)  
2. g6p 3.6290 (3.5447) 3. PFK  0.9967 (0.1398) 
3. f6p 0.6257 (0.6112) 4. ALDO 0.9967 (0.1398) 
4. fdp 0.2591 (0.2945) 5. TIS 0.9973 (0.1381) 
5. gap 0.2126 (0.2276) 6. GAPDH 1.0016 (0.3166) 
6. dhap 0.1628 (0.1740) 7. PGK 1.0016 (0.3166) 
7. pgp 0.00900 (0.00845) 8. PGluMu 1.0005 (0.2988) 
8. 3pg 2.3983 (2.2513) 9. ENO 1.0005 (0.2988) 
9. 2pg 0.4491 (0.4216) 10. PK 1.0061 (0.03833) 
10. pep 3.0055 (2.8212) 11. PDH 1.0012 (0.1870) 
11. pyr  2.6666 (2.6657) 12. PEPCxylase 1.0266 (0.04496) 
12. 6pg  0.8429 (0.8268) 13. PGM 0.9148 (0.002533) 
13. ribu5p 0.1134 (0.1136) 14. G1PAT 0.9140 (0.002515) 
14. xyl5p 0.1407 (0.1414) 15. RPPK 0.9992 (0.01036) 
15. sed7p 0.2946 (0.2783) 16. G3PDH 0.9448 (0.001722) 
16. rib5p 0.4062 (0.4077) 17. SerSynth 1.0192+ (0.01780) 
17. e4p 0.0978 (0.1015) 18. Synth1 Not applicable (0.01443) 
18. g1p 0.6807 (0.6622) 19. Synth2 1.0000 (0.05354) 
19. pooled enzyme 0.00170 (0.00200) 20. DAHPS 0.9142 (0.007495) 
20. dahp 0.0213 (0.0239) 21. G6PDH 1.0190 (0.1415) 
21. cho 0.07873 (0.08612) 22. PGDH 1.0190 (0.1415) 
22. trp 0.004869 (0.004091) 23. Ru5P 1.0237 (0.08490) 
23. ser 0.04966 (0.04872) 24. R5PI 1.0119 (0.05657) 
24. prpp 0.0010080 (0.0010087) 25. TKa 1.0148 (0.04620) 
  26. TKb 1.0343 (0.03870) 

Co-metabolite 27. TA 1.0148 (0.04620) 
1. amp 0.955 (0.955)   28. MurSynth 1.0000 (0.00043711) 
2. adp 0.595 (0.595)  29. MetSynth 1.0000 (0.0022627) 
3. atp 4.27 (4.27) 30. TrpSynth 1.1901+ (0.000000535) 
4. nadp 0.195 (0.195) 31. TrpConsumed 1.1901 (0.000000421364) 
5. nadph 0.062 (0.062) 32. EnzSynth 0.8522 (0.000000055562) 
6. nad 1.47 (1.47) 33. EnzDegraded Not applicable (0.0) 
7. nadh 0.1 (0.1) 34. ChoSynth 0.9142 (0.007494) 

  35. ChoConsumed 0.9142 (0.007491) 
Tryptophan operon 36. PrppConsumed 0.9992 (0.01036) 

37. SerConsumed 1.0192 (0.01780) Molecule or binding site 
with serial number 

Concentration (μM) 

1. Total repressor 0.8630 (0.8527) 
2. Active repressor 0.06443 (0.05414) 
3. Free DNA operator site 0.0001277 (0.0001499) 
4. Free mRNA 0.0002845 (0.0003338) 

 + The chorismate, serine 
and tryptophan synthesis 
rates are greater than their 
respective internal 
consumption rates. 
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Table 5.5 Concentrations and fluxes of chromosome B2 depicted in Fig. 5.4.                 
The initial steady-state values of the augmented model in Table 4.3 are in brackets.   

 

Metabolite/Co-metabolite 
with serial number 

Concentration (mM) Enzyme with serial 
number 

Flux ratio (flux, mM/s) 

Metabolite 1. PTS 1.0000 (0.2000)  
1. Glucose (extracellular)  0.05704 (0.05612) 2. PGI 0.9659 (0.05584)  
2. g6p 3.6095 (3.5447) 3. PFK  0.9974 (0.1398) 
3. f6p 0.6224 (0.6112) 4. ALDO 0.9974 (0.1398) 
4. fdp 0.2671 (0.2945) 5. TIS 0.9979 (0.1381) 
5. gap 0.2161 (0.2276) 6. GAPDH 1.0012 (0.3166) 
6. dhap 0.1654 (0.1740) 7. PGK 1.0012 (0.3166) 
7. pgp 0.00887 (0.00845) 8. PGluMu 1.0004 (0.2988) 
8. 3pg 2.3643 (2.2513) 9. ENO 1.0004 (0.2988) 
9. 2pg 0.4427 (0.4216) 10. PK 1.0048 (0.03833) 
10. pep 2.9628 (2.8212) 11. PDH 1.0009 (0.1870) 
11. pyr  2.6664 (2.6657) 12. PEPCxylase 1.0202 (0.04496) 
12. 6pg  0.8392 (0.8268) 13. PGM 0.9342 (0.002533) 
13. ribu5p 0.1134 (0.1136) 14. G1PAT 0.9335 (0.002515) 
14. xyl5p 0.1409 (0.1414) 15. RPPK 0.9994 (0.01036) 
15. sed7p 0.2907 (0.2783) 16. G3PDH 0.9577 (0.001722) 
16. rib5p 0.4066 (0.4077) 17. SerSynth 1.0149+ (0.01780) 
17. e4p 0.0987 (0.1015) 18. Synth1 Not applicable (0.01443) 
18. g1p 0.6764 (0.6622) 19. Synth2 1.0001 (0.05354) 
19. pooled enzyme 0.00169 (0.00200) 20. DAHPS 0.9342 (0.007495) 
20. dahp 0.0219 (0.0239) 21. G6PDH 1.0146 (0.1415) 
21. cho 0.08046 (0.08612) 22. PGDH 1.0146 (0.1415) 
22. trp 0.004914 (0.004091) 23. Ru5P 1.0182 (0.08490) 
23. ser 0.04945 (0.04872) 24. R5PI 1.0092 (0.05657) 
24. prpp 0.0010082 (0.0010087) 25. TKa 1.0114 (0.04620) 
  26. TKb 1.0263 (0.03870) 

Co-metabolite 27. TA 1.0114 (0.04620) 
1. amp 0.955 (0.955)   28. MurSynth 1.0000 (0.00043711) 
2. adp 0.595 (0.595)  29. MetSynth 1.0000 (0.0022627) 
3. atp 4.27 (4.27) 30. TrpSynth 1.2011+ (0.000000535) 
4. nadp 0.195 (0.195) 31. TrpConsumed 1.2011 (0.000000421364) 
5. nadph 0.062 (0.062) 32. EnzSynth 0.8450 (0.000000055562) 
6. nad 1.47 (1.47) 33. EnzDegraded Not applicable (0.0) 
7. nadh 0.1 (0.1) 34. ChoSynth 0.9342 (0.007494) 

  35. ChoConsumed 0.9342 (0.007491) 
Tryptophan operon 36. PrppConsumed 0.9994 (0.01036) 

37. SerConsumed 1.0149 (0.01780) Molecule or binding site 
with serial number Concentration (μM) 

1. Total repressor 0.8636 (0.8527) 
2. Active repressor 0.06503 (0.05414) 
3. Free DNA operator site 0.0001266 (0.0001499) 
4. Free mRNA 0.0002821 (0.0003338) 

 + The chorismate, serine 
and tryptophan synthesis 
rates are greater than their 
respective internal 
consumption rates. 
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Table 5.6 Concentrations and fluxes of chromosome B3 depicted in Fig. 5.4.                 
The initial steady-state values of the augmented model in Table 4.3 are in brackets. 

 

Metabolite/Co-metabolite 
with serial number 

Concentration (mM) Enzyme with serial 
number 

Flux ratio (flux, mM/s) 

Metabolite 1. PTS 1.0000 (0.2000)  
1. Glucose (extracellular)  0.05731 (0.05612) 2. PGI 1.0120 (0.05584)  
2. g6p 3.6024 (3.5447) 3. PFK  1.0116 (0.1398) 
3. f6p 0.6211 (0.6112) 4. ALDO 1.0116 (0.1398) 
4. fdp 0.3225 (0.2945) 5. TIS 1.0113 (0.1381) 
5. gap 0.2388 (0.2276) 6. GAPDH 1.0104 (0.3166) 
6. dhap 0.1824 (0.1740) 7. PGK 1.0104 (0.3166) 
7. pgp 0.00877 (0.00845) 8. PGluMu 1.0104 (0.2988) 
8. 3pg 2.3371 (2.2513) 9. ENO 1.0104 (0.2988) 
9. 2pg 0.4376 (0.4216) 10. PK 1.0037 (0.03833) 
10. pep 2.9284 (2.8212) 11. PDH 1.0007 (0.1870) 
11. pyr  2.6663 (2.6657) 12. PEPCxylase 1.0342 (0.04496) 
12. 6pg  0.8378 (0.8268) 13. PGM 0.0077 (0.002533) 
13. ribu5p 0.1163 (0.1136) 14. G1PAT 0.0 (0.002515) 
14. xyl5p 0.1449 (0.1414) 15. RPPK 1.0047 (0.01036) 
15. sed7p 0.2793 (0.2783) 16. G3PDH 1.0406 (0.001722) 
16. rib5p 0.4176 (0.4077) 17. SerSynth 1.0114+ (0.01780) 
17. e4p 0.1054 (0.1015) 18. Synth1 Not applicable (0.01443) 
18. g1p 0.7058 (0.6622) 19. Synth2 1.0001 (0.05354) 
19. pooled enzyme 0.00156 (0.00200) 20. DAHPS 1.0946 (0.007495) 
20. dahp 0.0243 (0.0239) 21. G6PDH 1.0130 (0.1415) 
21. cho 0.09427 (0.08612) 22. PGDH 1.0130 (0.1415) 
22. trp 0.005339 (0.004091) 23. Ru5P 1.0113 (0.08490) 
23. ser 0.04928 (0.04872) 24. R5PI 1.0156 (0.05657) 
24. prpp 0.0010134 (0.0010087) 25. TKa 1.0181 (0.04620) 
  26. TKb 1.0032 (0.03870) 

Co-metabolite 27. TA 1.0181 (0.04620) 
1. amp 0.955 (0.955)   28. MurSynth 1.0000 (0.00043711) 
2. adp 0.595 (0.595)  29. MetSynth 1.0000 (0.0022627) 
3. atp 4.27 (4.27) 30. TrpSynth 1.3052+ (0.000000535) 
4. nadp 0.195 (0.195) 31. TrpConsumed 1.3052 (0.000000421364) 
5. nadph 0.062 (0.062) 32. EnzSynth 0.7823 (0.000000055562) 
6. nad 1.47 (1.47) 33. EnzDegraded Not applicable (0.0) 
7. nadh 0.1 (0.1) 34. ChoSynth 1.0947 (0.007494) 

  35. ChoConsumed 1.0947 (0.007491) 
Tryptophan operon 36. PrppConsumed 1.0047 (0.01036) 

37. SerConsumed 1.0114 (0.01780) Molecule or binding site 
with serial number Concentration (μM) 

1. Total repressor 0.8693 (0.8527) 
2. Active repressor 0.07066 (0.05414) 
3. Free DNA operator site 0.0001172 (0.0001499) 
4. Free mRNA 0.0002611 (0.0003338) 

 + The chorismate, serine 
and tryptophan synthesis 
rates are greater than their 
respective internal 
consumption rates. 
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Chapter 6   

 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1   Conclusions 
 The present research has been driven by the scarcity of published works on the 

MOO of bioprocesses particularly in biopharmaceuticals and microbial cell factories, 

with the intention of developing multiple optimal solutions for penicillin V bioreactor 

train and metabolic pathway recipe in microbial cell factories. Of critical importance 

to the present research is the availability of models validated through experiments, 

and published or industrial fermentation results to check the Pareto-optimal results 

obtained in the current research.    

 Four Penicillium chrysogenum fermentation models since 1994 were 

considered and one from Zangirolami et al. (1997) was finally selected based on 

published industrial information and academic work. Optimization of an industrial 

penicillin V bioreactor train with a targeted continuous production rate of 248 kg/h 

(Biwer et al., 2004) was successfully obtained using NSGA-II, for both bi- and tri-

objective scenarios using six decision variables. In the bi-objective maximization of 

yield and penicillin concentration, higher penicillin concentration was obtainable by 

stretching the batch cycle time at the expense of lower yield due to higher glucose and 

nutrients consumption. In the concurrent minimization of batch cycle time and 

maximization of yield, batch cycle time and yield vary in the same direction before 

biomass degradation sets in. In maximizing yield, penicillin concentration and profit 

simultaneously, higher profit was obtained from higher yield and lower penicillin 

concentration.  

Bi-objective and tri-objective optimization results were very similar for 

penicillin V bioreactor; hence, bi-objective optimization may be adequate for this 

application. Glucose feed concentration has the most effect on the simultaneous 

maximization of yield and penicillin concentration, and also in the tri-objective case. 

Multiple optimal values of the decision variables were obtained for the same Pareto, 

which was also seen in chemical engineering applications (Tarafder et al., 2007). 

When two of the six decision variables – switchover time from batch mode to 

continuous glucose feeding and initial glucose concentration − were fixed, only one 
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set of optimal decision variables was obtained. This showed the interdependence of 

certain decision variables in contributing to the Pareto.   

 Optimization of fluxes of desired enzymatic sub-systems in the central carbon 

metabolism of E. coli (Chassagnole et al., 2002), a microbial cell factory was 

performed for two cases − maximization of DAHPS and PEPCxylase fluxes, and 

maximization of DAHPS and SerSynth fluxes, by 1-, 2- and 3-gene knockout or 

manipulation. Deleting PGM gene gives the 1-enzyme Pareto-optimal set for both    

bi-objective cases. In paired and triple enzyme knockout or manipulation, G6PDH 

diverts fluxes to the desired metabolic pathways. Pareto sets obtained in 1-, 2- and 3-

gene knockout using a manual exhaustive search were identical to those obtained via 

an interactive branch-and-bound technique facilitated by NSGA-II. The triple enzyme 

knockout/manipulation gives the best Pareto-optimal set. Triple enzyme manipulation 

enhances the DAHPS/PEPCxylase and DAHPS/SerSynth fluxes more than the triple 

gene knockout. Except for SerSynth flux which has a more immediate impact on 

serine biosynthesis rate, the effects of DAHPS and PEPCxylase fluxes on the 

respective biosynthesis rates of aromatic amino acids (tryptophan, phenylalanine and 

tyrosine) and aspartate-threonine pathway products (lysine, methionine, threonine and 

isoleucine) were less discernible. Partitioning of carbon flux into diverging pathways 

such as the aromatic amino acids branch is assumed to be constant. Expanding the 

aromatic amino acid pathways and linking it to the central carbon metabolism 

permitted an in-depth study of conflicting objectives in serine and tryptophan 

biosynthesis.  

 The dynamic tryptophan operon model (Santillán and Mackey, 2001a) and the 

common aromatic amino acid-terminal tryptophan biosynthesis pathways were linked 

to the central carbon metabolism (Chassagnole et al., 2002) to form the augmented 

model. The ability of the central carbon metabolism to channel carbon fluxes through 

the common aromatic amino acid and terminal tryptophan biosynthesis pathways was 

achieved by substituting the tryptophan biosynthesis kinetics of the dynamic trp 

operon model with certain key metabolites (3-deoxy-D-arabino-heptulosonate 7-

phosphate (dahp), chorismate (cho), tryptophan (trp), 5-phosphoribosyl-α-

pyrophosphate (prpp) and serine (ser)) and representative enzyme (i.e. anthranilate 

synthase) of the terminal tryptophan biosynthesis pathway.  

Since it was not possible to obtain unique estimates of the six new kinetic 

parameters of the augmented model due to limited published data, estimates were 
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selected with justification from a number of parameter estimation runs to minimize 

the sum of squares of fractional errors. The augmented model was carefully evaluated 

in terms of goodness-of-fit of calculated metabolite concentrations with the reference 

data. Differences between the calculated enzymatic fluxes of the augmented model 

and those of the central carbon metabolism are more appreciable for DAHPS (9.64%), 

G1PAT (9.30%) and PEPCxylase (4.27%) due to diversion of carbon fluxes into 

aromatic amino acid pathways. Steady-state concentrations and fluxes were calculated 

using the newly developed augmented model to form the reference values in the 

optimization study. Larger deviations between calculated and reference concentrations 

and fluxes were due to kinetic parameter uncertainties and structural assumptions 

(such as mass balances in the aromatic amino acid pathways) used in developing the 

augmented model. However, the augmented model captures the sensitivities of fluxes 

to tryptophan biosynthesis and underlying competition among DAHPS, TrpSynth, 

G1PAT and PEPCxylase fluxes for carbon sources. 

 Pattern recognition and multiple values for the random number seed were used 

in the heuristics approach to identify genes for the concurrent knockout and 

manipulation, for optimizing serine and tryptophan flux ratios. In the two-gene 

manipulation, genes encoding SerSynth, TrpSynth, GAPDH and G1PAT were 

identified using a narrow multiplier range of 0.8-1.25. Not all random seeds were 

capable of generating the global Pareto, and existence of the local Pareto was 

attributed to domination by an isolated global Pareto solution. One Pareto branch was 

obtained using NSGA-II for a wider multiplier range of 0-1.5 when genes encoding 

GAPDH and SerSynth were manipulated. The remaining Pareto was obtained through 

simulations following the analysis of Pareto patterns in both objective and decision 

variable space. Missing Pareto solutions were attributed to the rapid accumulation of 

certain non-dominated solutions at the expense of others. The results obtained were in 

line with the reported fermentation studies (Ikeda and Katsumata, 1999; Ikeda et al., 

1994) and consistent with the known dynamic behaviour of the tryptophan operon.  

In the concurrent three-gene knockout and manipulation, genes encoding 

SerSynth, TrpSynth, GAPDH, RPPK, G1PAT, PK and G6PDH were identified and 

the various Pareto-optimal solutions were explained in terms of collaborative and 

competitive supply and demand among the contributing fluxes. DAHPS and 

ChoSynth fluxes were not part of the Pareto for both the dual and triple gene cases 

thus suggesting the efficient transport of carbon sources to the terminal steps of 
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tryptophan biosynthesis. Central carbon precursors such as erythrose 4-phosphate 

(e4p) and phosphoenolpyruvate (pep) rather than DAHPS or ChoSynth, are limiting 

the partitioning of carbon flow into the aromatics pathways; this is supported by 

fermentation experiments (Berry, 1996; Ikeda and Katsumata, 1999) where 

recombinant DNA technology was applied to the microbial cell factory. The triple 

gene application could not be extended to the wider multiplier range of 0-1.5 due to 

the existence of large number of infeasible solutions.   

The present study brings out the many options available for optimizing 

bioprocesses, to the decision maker to make the best judgements subject to additional 

information (such as economic conditions and environmental impact) which are 

impossible to quantify or could not be quantified accurately. It also highlights 

challenges in modelling and optimizing complex bioprocesses. In general, core 

competencies in chemical engineering can be extended to systems biotechnology to 

complement experimental work in bioprocesses.      

  

6.2   Recommendations for Future Study 
 The current work can be extended to four related areas in systems 

biotechnology − modelling, optimization and stability considerations, Pareto ranking 

and decision making, and techniques for minimizing numerical difficulties. 

Experimental validation of the augmented model and optimization results obtained 

would provide insightful feedback to future systems biotechnology study. In the 

following, recommendations for future studies on these are presented outlining the 

motivation, scope and challenges based on the experience gained from the doctoral 

research and prior knowledge.  

 Besides tryptophan biosynthesis, threonine biosynthesis can be added to the 

augmented model. The aspartate-threonine pathway diverging from PEPCxylase 

leading to threonine biosynthesis can be developed taking into account the key 

metabolites such as oxaloacetate, aspartate, aspartyl phosphate, aspartate 

semialdehyde, homoserine and homoserine phosphate and their respective enzyme 

kinetics. New mass balances are required for the aspartate-threonine pathway. The 

existing mass balance for phosphoenolpyruvate (pep) can be modified to cater for the 

conversion of pep into oxaloacetate. The kinetic parameters can be estimated by 
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concurrent minimization of the sum of squares of the fractional errors of 

concentrations and fluxes. 

 Stability of the microbial cell that involves multicopy plasmids carrying trp 

operon and trpR genes inserted through recombinant DNA technology, can be studied 

starting with copy number between 3 and 10 (Ikeda, 2006). The plasmid copy number 

is an integer decision variable. Stability of the model should be evaluated through the 

characteristic polynomials using suitable stability tests (Chang et al., 2005). By 

drawing on the insights gained from metabolic network stability analysis and the 

present research, optimization for two objectives (serine and tryptophan biosynthesis 

rates) and three objectives (serine, tryptophan and threonine biosynthesis rates) can be 

performed where multicopy plasmids are introduced with an additional constraint to 

enforce stability within a prespecified neighbourhood of a given solution. 

Optimization is likely to be more challenging when the range of the plasmid copy 

number is widened. Optimization for dual and triple objectives can also be performed 

without considering stability in the neighbourhood of a solution. The two sets of 

results, with and without stability constraints, should be analyzed in terms of 

metabolic network integrity. 

 Pareto ranking can be performed using the net flow and rough set methods 

(Thibault, 2008). A comparative study of net flow and rough set methods could lead 

to interesting insights of the Pareto obtained through optimization with and without 

stability considerations, similar to chemical process applications in Renaud et al. 

(2007). In another study, the four parameters of the net flow method – weighting of 

each objective, indifference threshold, preference threshold and veto threshold – could 

be stochastic instead of fixed values selected by the decision maker. The entire Pareto 

set can be transferred to Microsoft Excel and analyzed via Monte Carlo simulation 

using Crystal Ball software (originally supplied by Decisioneering – 

http://www.oracle.com/crystalball/index.html; accessed in March 2009). Crystal Ball 

combined with Excel allows definition of the probability functions of the four 

stochastic variables, generates random numbers based on these probability 

distributions, and stores the results for each trial. The probability distribution need not 

be Gaussian; other distributions such as Poisson could be used to reflect the stochastic 

process of decision making in which events occur continuously and independently of 

each other. An example of the Poisson process is the arrival of “customers” in a 

queue. With automated Pareto ranking, the progression of Pareto ranking can be 
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observed and studied. Interesting but currently unknown insights into decision making 

process would be the prime motivation for this study. The nature of decision making 

need not necessarily follow Gaussian distribution since selection of the best Pareto 

chromosome is affected by many factors such as economic demand and supply for the 

multiple end-products. 

 The existing NSGA-II algorithm gave disjointed Pareto-optimal front in the 

present study using the augmented model subject to homeostatic and total enzymatic 

flux constraints. This provides the motivation to modify the NSGA-II algorithm. One 

possibility is to accept dominated chromosomes as part of the new parent population 

provided that the dominated chromosomes create diversity. Dominated chromosomes 

which remain so after certain number of generations can be deleted from the parent 

population and substituted with another set of dominated chromosomes. Elitist 

preservation mechanism retains good chromosomes which are not dominated by 

others. This continues until a given criterion such as the final generation number is 

met. The optimizer will report whether the final solutions are completely non-

dominated or not. The modified sorting procedure in NSGA-II can be tested using 

augmented model for bi-objective maximization of serine and tryptophan flux ratios 

when concurrent 2- and 3-gene knockout and manipulation is applied. There is a risk 

that the suggested strategy may not work as well as expected. It is not known whether 

other algorithms are able to give whole Pareto-optimal front in one optimization run, 

which is a great advantage and prime motivation for future work, without resorting to 

other means as were the case for heuristics technique.  

 Experimental validation of the augmented model and/or optimization results 

provides real data that could be used to develop new kinetic rate equations and 

improve the accuracy of the kinetic parameters of the augmented model. Though there 

are limitations to “black box” approach in stimulus response experiments, they 

complement the experimental insights of microbiology and genetics. Future 

applications should be targeted at novel and valuable products in the 

biopharmaceutical industry. 
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Appendix A 

Transient Enzymatic Reaction Fluxes and Metabolite Concentrations 

Profiles  
 

The transient profiles shown here are calculated following an injection of glucose 

pulse (height = 16 mM; width 0.1 sec) into steady-state wild strain E. coli culture. The 

“fpulse” term in ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−+−=
xρ
PTSrxC

  pulsef    larextracellu
glcC    feed

glcCD    
dt

larextracellu
glcdC has a height of 16 mM. 

Integration step of 0.1 sec is used throughout the simulations to match the sampling 

period of 0.2 second (Chassagnole et al., 2002) in the automated stopped-flow 

techniques for measuring metabolite concentrations at fixed points in time. No 

measurements of the fluxes were done. Constant co-metabolite concentrations are 

assumed in all the simulations shown below.    
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Fig. A.1. Simulated metabolite concentrations in a steady-state E. coli culture after 
a glucose pulse. They are comparable to the measured concentrations 
(Chassagnole et al., 2002). Refer to List of Symbols for the definitions of the 
abbreviations. 
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Fig. A.2. Simulated sub-second metabolite concentrations in a steady-state E. coli 
culture after a glucose pulse. They are comparable to the measured concentrations 
(Chassagnole et al., 2002) using stopped-flow techniques. Refer to List of Symbols 
for the definitions of the abbreviations.  

Fig. A.3. Simulated fluxes in a steady-state E. coli culture after a glucose pulse. 
Refer to List of Symbols for the definitions of the abbreviations.  
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Appendix B 

Tryptophan Operon Model Parameters Adaptation 
 

Specific Growth Rate 

 The specific growth rate of the central carbon metabolism (Chassagnole et al., 

2002) is adopted in the augmented model. This appendix shows the adjustments 

needed for the parameters in equations (4.1)-(4.4) and (4.6) when a specific cell 

growth rate of 0.1 doublings per h is used instead of the original 0.6 doublings per h 

used by Santillán and Mackey (2001a). 

 

Cell Volume 

E. coli are rod-like bacteria 3-5 μm long and 0.5 μm in diameter (Santillán and 

Mackey, 2001a). They have a volume in the range from 5.9 x 10-16 litres to 9.8 x 10-16 

litres. Mean volume is 7.8 x 10-16 litres (compared to 8.0 x 10-16 litres in Santillán and 

Mackey, 2001a). 

 

Specific cell growth rate = μ = 0.1 doublings per h = 0.1/60 doublings per min 

(compared to 0.6/60 doublings per min in Santillán and Mackey, 2001a). 

 

Rate Constant for mRNA Polymerase (mRNAP) Binding to a Free Operon DNA 

Operator Site 

 Polynomial curve fitting is applied to the data in Table B.1 (Bremer and 

Dennis, 1996). 

 

Table B.1   Number of mRNA polymerase molecules in a cell and specific growth ate. 

Specific growth rate (doublings per h) 0.6 1.0 1.5 2.0 2.5 

Number of mRNA molecules (103) 1.5 2.8 5.0 8.0 11.4 
 

The number of mRNA polymerase molecules in a cell is given by: 

-191.1(0.1)3 + 2161.5(0.1)2 + 57.804(0.1) + 738.77 = 765.97 

mRNA polymerase concentration in a cell = 16

23

108.7
1002.6
97.765

−x
x  = 1.63126 μM. (compared to 

2.6 μM in Santillán and Mackey, 2001a). 
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Tryptophan operon allows transcription initiation every 0.1 minute (Landick et al., 

1996). 

The rate constant ( )( )1.631260.1
1

Pτ
1k
p

p ==  = 6.13023 per μM per min (compared to 

3.9 per μM per min in Santillán and Mackey, 2001a). 

 

Rate Constant for Ribosome Binding to a Free trpE-related Site on an mRNA 

 Polynomial curve fitting is applied to the data in Table B.2 (Bremer and 

Dennis, 1996). 

 

Table B.2   Number of ribosomes in a cell and specific growth rate. 

Specific growth rate (doublings per h) 0.6 1.0 1.5 2.0 2.5 

Number of ribosomes (103) 6.8 13.5 26.3 45.1 72.0 
 

The number of ribosomes in a cell is given by: 

2238.6(0.1)3 + 2415.7(0.1)2 + 8674.8(0.1) + 224.96 = 1118.8356 

Ribosome concentration in a cell = 16

23

108.7
1002.6
8356.1118

−x
x  = 2.3827 μM (compared to 2.9 μM in 

Santillán and Mackey, 2001a). 

 

Efficient mRNAs have been observed to initiate translation every 0.05 minute 

(Kusher 1996). 

The rate constant ( )( )2.38270.05
1

ρτ
1k
ρ

ρ == = 8.39384 per μM per min (compared to 

6.9 per μM per min in Santillán and Mackey, 2001a). 

 

Time Taken by a Ribosome to Synthesize a trpE Polypeptide   

 Polynomial curve fitting is applied to the data in Table B.3 (Bremer and 

Dennis, 1996). 

Table B.3   mRNA elongation rate and specific growth rate. 

Specific growth rate (doublings per h) 0.6 1.0 1.5 2.0 2.5 

mRNA chain elongation rate (Nucl./s) 39 45 50 52 55 
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The mRNA chain elongation rate is given by:  

2.9741(0.1)4 - 15.485(0.1)3 + 22.79(0.1)2 + 2.4152(0.1) + 32.306 = 32.76 nucleotides 

per s (compared to 39 nucleotides per s in Santillán and Mackey, 2001a). 

 

 The trpE polypeptide (a subunit of the enzyme anthranilate synthase) is 520 

amino acids long. This means that the length of the trpE gene is 1560 nucleotides 

long. eτ is the time it takes for a ribosome to synthesize a TrpE polypeptide. 

Therefore, eτ = 1560/32.76 = 47.6 s = 0.79 min (compared to 0.66 min in Santillán 

and Mackey, 2001a). 

 

Operon, Aporepressor and Total Repressor Concentrations in a Cell 

 Let R, RI and T be the total repressor, aporepressor (inactive repressor) and 

tryptophan concentrations, respectively. RI reacts with T to form the active repressor. 

The total repressor concentration is the sum of the aporepressor and active repressor 

(holorepressor) concentrations. The two binding sites on an aporepressor molecule are 

independent and identical. Binding of two tryptophan molecules to an aporepressor 

molecule is modelled as Michaelis-Menten type where the Hill coefficient is 1.0.  

 At equilibrium, I
t

t R
K

TKR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=  where Kt is the ratio of the backward rate 

constant to the forward rate constant. The tryptophan concentration (T) in the wild 

type E. coli is taken to be 4.1 μM (Santillán and Mackey, 2001a). The equilibrium 

constant Kt is obtained experimentally by Schmitt et al. (1995).   

 From Gunsalus et al. (1986), the normal concentration of aporepressor in a 

tryptophan free culture medium is 375 molecules per cell, which is equivalent to 

 
 x107.8

10 x 6.02
375

16

23

−  or 0.7986 μM (compared to 0.75 μM in Santillán and Mackey, 2001a). 

R = ( )0.7986
60.34

4.160.34
⎟
⎠
⎞

⎜
⎝
⎛ +  = 0.85 μM (compared to 0.8 μM in Santillán and Mackey, 

2001a). 

 

In normal E. coli, there is only one tryptophan DNA operator site per genome. The 

average number of genome equivalents per cell, according to Bremer and Dennis 
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(1996), is around 1.6. Therefore, normal operon concentration is  
 x107.8

10 x 6.02
1.6

16

23

− i.e. 3.41 

x 10-3 μM (compared to 3.32 x 10-3 μM in Santillán and Mackey, 2001a). 

 

Rate Constants of Tryptophan Production and Internal Consumption  

The operon model parameters in equations (4.5), (4.7), (4.8) and (4.9) are not 

required since these equations are replaced by equations (4.20), (4.21) and (4.22). 

Reasons for this are given in Section 4.3. 
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Appendix C 

Estimating Steady-state Concentration of Serine 

 

The total dry weight of a cell is 2.8 x 10-13 g based on an average of 

measurements (Neidhart and Umbarger, 1996). Assuming that 70% of the cell is 

water, the water content is 6.7 x 10-13 g. Total wet weight of one cell is 9.5 x 10-13 g. 

Density of a cell = 9.5 x 10-13 g/7.8 x 10-16 L  = 1.218 kg wet weight per litre of cell 

volume. It is unlikely that the assumed 2.2 kg wet weight per litre of cell volume in 

Schmid et al. (2004) is applicable in practice. The intracellular serine concentration, 

which is among the 14 amino acids (and tryptophan is not one of them), measured by 

Piperno and Oxender (1968), is 0.04 mmoles per kg wet weight. Serine concentration 

in wild E. coli. K12 strain is calculated as 0.04 mmoles/kg wet weight = 0.04 x 1.218 

mmoles/L cell volume = 0.04872 mM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


