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Summary

The main contribution of this thesis is the development of three blind channel esti-

mation and one blind source separation algorithms for MIMO-OFDM systems. The

first proposed channel estimation algorithm is a subspace based method. We study

the inherent structure of autocorrelation matrices of the system output and construct

a new criterion function, minimizing which leads to a close form solution of the chan-

nel matrices. The second algorithms is based on the assistance of a non-redundant

linear precoder, which brings in cross-correlations between the signals transmitted

on different subcarriers. For the third one, we exploit the spectra correlation of the

system output. It is shown that when the source signals have distinct spectra corre-

lation, then the channel matrix can be estimated up to a complex scalar and column

permutation. Therefore, the problem of the ambiguity matrix in many of the exist-

ing blind channel estimation algorithm can be avoided. The blind source separation

algorithm proposed in this thesis is a geometric based non-iterative algorithm based

on the assumption that the source signal has finite alphabet. The proposed algo-

rithm compares favorably with the existing hyperplane-based and kurtosis-based

algorithms.
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Chapter 1

Introduction

1.1 Towards Fourth Generation Mobile Systems

Comparing with the traditional wired communication technologies, wireless commu-

nication is an emerging field, which has seen enormous growth in the last several

years. Market demands for higher cellular density in urban areas, broadband inter-

net wireless, and better data security, while using a minimum amount of frequency

spectrum is driving wireless developments forward at an amazing speed. Ubiquitous

connectivity (i.e., connectivity anytime and anywhere) to the internet, to company’s

intranets, or to other data services is creating room for applications that might not

even be thought of today.

The mobile communication systems are often categorized as different generations

depending on the services offered. Figure 1.1 shows the evolution routine of the

mobile communication systems. The first generation (1G) comprises the analog

frequency-division multiplexing access (FDMA) systems such as the NMT (Nordic

Mobile Telephone) [1] and AMPS (Advanced Mobile Phone Services) [2]. The second

1
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Figure 1.1: Current and Future Wireless Communication Systems

generation (2G) consists of the first mobile digital communication systems such as

the time-division multiple access (TDMA) based GSM (Global System for Mobile

Communication) [8], D-AMPS (Digital AMPS) [1], PDC (Pacific Digital Cellular) [2]

and the code-division multiple access (CDMA) based system IS-95 [9]. In 1999,

the International Telecommunication Union (ITU) approved an industry standard

for third generation (3G) of mobile communication systems. This standard, called

International Mobile Telecommunications-2000 (IMT-2000) [2], strives to provide

higher data rates than current second-generation (2G) systems. 2G systems are

mainly targeted at providing voice services, while 3G systems will be able to support

a wide range of applications including internet access, voice communications and

mobile videophones. In addition to this, a large number of new applications will

emerge to utilize the permanent network connectivity, such as wireless appliances,

notebooks with built in mobile phones, remote logging, wireless web cameras, car
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navigation systems, and so forth [10]- [13].

In Europe auctions of 3G licenses of the radio spectrum began in 1999. In the

United Kingdom, 90 MHz of bandwidth [12] was auctioned off for £22.5 billion [13].

In Germany the result was similar, with 100 MHz of bandwidth raising $46 billion

(US) [11]. This represents a value of around $450 Million (US) per MHz. The

length of these license agreements is 20 years [12] and so to obtain a reasonable rate

of return of 8% on investment, $105 Million (US) per MHz must be raised per year.

It is therefore vitally important that the spectral efficiency of the communication

system is maximised, as this is one of the main limitations to providing a low cost

high data rate service.

In parallel to the development of the 3G systems, there has been an increasingly

interesting in high-speed wireless local area networks (WLANs). The WLAN sys-

tems do not offer the same wide area coverage as the 3G mobile systems do, but

within their limited coverage area they provide much higher data rates.

Since the beginning of the 1990’s, WLANs for the 900 MHz, 2.4 GHz and 5

GHz license-free ISM (Industrial, Scientific and Medical) bands have been avail-

able, based on a range of proprietary techniques [6]. In June 1997 the Institute of

Electrical and Electronics Engineers (IEEE) defined an international interoperabil-

ity standard, called IEEE 802.11 [34]. This standard specifies a number of Medium

Access Control (MAC) protocols and three different Physical Layers (PHYs) which

support data rates of 1 Mbps and optionally 2 Mbps. In July 1998 IEEE extended

the IEEE 802.11 standard to IEEE 802.11b which describes a PHY providing a

basic rate of 11 Mbps and a fall-back rate of 5.5 Mbps. Meanwhile, the European
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Telecommunication Standards Institute (ETSI) specified the European WLAN stan-

dard, called HIPERLAN/1 [35], which defines data rates ranging from 1 Mbps to

20 Mbps. However, in contrast to the IEEE 802.11b, no commercial products have

been developed that support the HIPERLAN/1 standard.

Motivated by the demand for even higher data rates, a new standard called IEEE

802.11a was ratified in 2000, which is based on the OFDM as the transmission

technique for the newly available spectrum in the 5 GHz band. It defines data

rates between 6 and 54 Mbps [59]. To make sure that these data rates are also

available in the 2.4 GHz band, mid 2003 IEEE standardization group issued a similar

standard for this band named IEEE 802.11g [34]. At the same time, the ETSI

working group named Broadband Radio access Networks (BRAN) in Europe and

Multimedia Mobile Access Communication (MMAC) group in Japan published their

new generation of WLAN standards, called HIPERLAN/2 [5] and the MMAC [6]

respectively. Following the selection of OFDM by the IEEE 802.11a standardization

group, both the ETSI BRAN and MMAC working group adopted OFDM for their

PHY.

While the roll-out of 3G systems is under progress, research activities on the

fourth generation (4G) have already started [14]- [17]. According to the increasing

demand of wireless data traffic, it is obvious that the main goal in developing next

generations of wireless communication systems are increasing the link throughput

(i.e., bit rate) and the network capacity. Few of the aims of 4G networks have yet

been published, however it is likely that they will be to extend the capabilities of 3G

networks, allowing a greater range of applications, and improved universal access.
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Ultimately 4G networks should encompass broadband wireless services, such as High

Definition Television (HDTV) (4-20 Mbps) and computer network applications (1-

100 Mbps). This will allow 4G networks to replace many of the functions of WLAN

systems. In fact, a popular vision suggests to combine WLAN systems for high peak

data rates with cellular systems for wide area-coverage, and to allow inter-system

handovers [18]. On the other hand, cost of service must be reduced significantly

from 3G networks. The spectral efficiency of 3G networks is too low to support

high data rate services at low cost. As a consequence one of the main focuses of 4G

systems will be to significantly improve the spectral efficiency [17].

In addition to high data rates, future systems must support a higher Quality Of

Service (QoS) than current cellular systems, which are designed to achieve 90-95%

coverage [19], i.e. network connection can be obtained over 90-95% of the area of the

cell. This will become inadequate as more systems become dependent on wireless

networking. As a result 4G systems are likely to require a QoS closer to 98-99.5%. In

order to achieve this level of QoS it will require the communication system to be more

flexible and adaptive. In many applications it is more important to maintain network

connectivity than the actual data rate achieved. If the transmission path is very

poor, e.g. in a building basement, then the data rate has to drop to maintain the link.

Thus the data rate might vary from as low as 1 kbps in extreme conditions, to as high

as 20 Mbps for a good transmission path. Alternatively, for applications requiring a

fixed data rate, the QoS can be improved by allocating additional resources to users

with a poor transmission path.



Chapter 1. Introduction 6

1.2 OFDM

1.2.1 Wideband Air-interface Design Using OFDM

Multipath propagation is the primary issue in the air-interface design for wideband

(high data-rate) communication systems. Multiple replicas of the transmitted sig-

nal arrive at the receiver with various propagation delays, due to reflections on all

kinds of objects and obstacles in the environment. Therefore, if a high-rate data

stream is transmitted on such a channel, multiple data symbols interfere with each

other, making the data recovery difficult. This phenomenon is called “inter-symbol-

interference” (ISI). The standard solution to the ISI problem is to design a linear

filter at the receiver side that employs a means for compensating or reducing the ISI

in the received signal. This compensation method is called equalization. The main

challenge is to adapt the filter coefficients to the time-variant channel conditions.

The adaptation could be computationally extremely demanding, particularly if long

filters are required as in the case where the channel impulse response spans many

data symbols.

Fortunately, Orthogonal Frequency Division Multiplexing (OFDM) can drasti-

cally simplify the equalization problem [6]. In OFDM, the high-rate serial data

stream is split up into a number (several dozens up to a few thousand) of paral-

lel data streams at a much lower (common) symbol rate, which are modulated on

a set of subcarriers (frequency division multiplexing). High spectral efficiency is

achieved by selecting a specific (orthogonal) set of subcarrier frequencies. Inter-

carrier-interference is avoided due to the orthogonality, although the spectra of the

subcarriers actually overlap (see Figure 1.2) [6]. The idea is to make the symbol
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Figure 1.2: Spectrum overlap in OFDM

period long with respect to the channel impulse response in order to reduce ISI.

This implies that the bandwidth of the subcarriers gets small (with respect to the

channel’s coherence bandwidth [25]), thus the impact of the channel is reduced to

an attenuation and phase distortion of the subcarrier symbols (“flat fading”), which

can be compensated by efficient one-tap equalization.

Thus, it is quite attractive in the robustness against frequency selective fading,

especially for high-speed data transmission [26]. In practice, OFDM has already

been used in European digital audio broadcasting (DAB), digital video broadcasting

(DVB) systems and high performance radio local area network (HIPERLAN) [23]-

[24], [27]. Furthermore, combined with Multiple-Input Multiple-Output (MIMO)

wireless technology, OFDM has been recognized as one of the most promising tech-

niques for the future 4G systems [10].

The first study of OFDM was published by Chang in 1966 [24]. He presents
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a principle for transmitting messages simultaneously through a linear bandlimited

channel without interchannel (ICI) and intersymbol interference (ISI). In 1971, a

major contribution to OFDM was presented by Weinstain and Ebert [25], who

used the discrete Fourier transform (DFT) to perform baseband modulation and

demodulation. This technique involved assembling the input information into blocks

of Nc complex symbols, one for each subchannel. An inverse FFT is performed on

each block, and the resultant transmitted serially. At the receiver, the information is

recovered by performing an FFT on the received block of signal samples. This form

of OFDM is often referred to as Discrete Multi-Tone (DMT). The most significant

advantage of this DMT approach is the the efficiency of the FFT algorithm. An

Nc-point FFT requires only on the order of Nc logNc multiplications, rather than

N2
c as in a straightforward computation.

Another important contribution was due to Peled and Ruiz in 1980 [26], who

introduced the cyclic prefix (CP) or cyclic extension, solving the orthogonality prob-

lem. Instead of using an empty guard space, they filled the guard space with a cyclic

extension of the OFDM symbol. This effectively simulates a channel performing

cyclic convolution, which implies orthogonality over dispersive channels when the

CP is longer than the impulse response of the channel [24], [26]. This introduces an

energy loss proportional to the length of CP, but the zero ISI generally motivates

the loss.
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1.2.2 Main Advantages and Disadvantages of OFDM

The advantages of OFDM, especially in the multipath propagation, interference

and fading environment, make the technology a promising alternative in digital

communications including mobile multimedia. The advantages of OFDM are:

• Efficient use of the available bandwidth since the subchannels are overlapping.

• Spreading out the frequency fading over many symbols. This effectively ran-

domizes the burst errors caused by the Rayleigh fading, so that instead of

several adjacent symbols (in time on a single-carrier) being completely de-

stroyed, (many) symbols in parallel are only slightly distorted.

• The symbol period is increased and thus the sensitivity of the system to delay

spread is reduced.

On the other hand, there are also problems associated with OFDM system design:

• OFDM signal is contaminated by non-linear distortion of transmitter power

amplifier, because it is a combined amplitude-frequency modulation (it is nec-

essary to maintain linearity).

• OFDM is very sensitive to carrier frequency offset caused by the jitter of carrier

wave and Doppler effect caused by moving of the mobile terminal.

1.2.3 MIMO-OFDM

Research in the information theory, performed in the early 90’s, has revealed that

important improvement in spectral efficiency can be achieved when multiple anten-

nae are applied at both the transmitter and receiver side, especially in rich-scattering
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environments. This has been shown for wireless communication links in both nar-

rowband channels [28] as well as wideband channels [29], and it initiated a lot

of research activity to practical communication schemes that exploit this spectral-

efficiency enhancement. The resulting multiple-transmit multiple-receive antenna,

i.e., Multiple-Input Multiple-Output (MIMO), techniques can basically be split into

two groups: Space-Time Coding (STC) [30]- [32] and Space Division Multiplexing

(SDM) [28], [29], [33]. STC increases the robustness / performance of the wire-

less communication system by transmitting different representations of the same

data stream (by means of coding) on the different transmitter branches, while SDM

achieves a higher throughput by transmitting independent data streams on the dif-

ferent transmitter branches simultaneously and at the same carrier frequency.

The highest spectral efficiency gains are achieved when the individual channels

from every transmit antenna to every receive antenna can be regarded to be inde-

pendent. In practice this is the case in rich-scattering environments with no Line

of Sight (LOS) path present between transmitter and receiver. So, especially for

enhancement of the throughput of wireless applications in rich-scattering environ-

ment, MIMO techniques are appealing. In general, MIMO can be considered as an

extension to any Single-Input Single-Output (SISO), Single-Input Multiple-Output

(SIMO), i.e., receiver diversity, or Multiple-Input Multiple-Output (MISO), i.e.,

transmit diversity, system operating in these environments.

The WLAN standards IEEE 802.11b, IEEE 802.11a/g indicate that they are

usually deployed in an indoor environment, while the probability of having no direct

communication path between transmitter and receiver is high [34]. So, we can
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conclude that the deployment conditions of WLAN systems are most favorable for

applying MIMO. In fact, these standards are the WLAN standards that currently

gain the most momentum. They are both based on OFDM. Thus the robustness

of OFDM against frequency-selective fading and the favorable properties of indoor

radio channels for MIMO techniques lead to the very promising combination of

MIMO-OFDM as potential solution to satisfy the main goals in developing next

generations of wireless communication systems. As such, MIMO-OFDM techniques

are attractive candidates for high data rate extensions of the IEEE 802.11a and

802.11g standards. As an example the IEEE 802.11 Task Group ’n’ (TGn) can be

mentioned which is planning to define high-data rate WLAN extensions up to 250

Mbps [34].

1.3 Blind Channel Estimation

As mentioned in the previous section, multipath propagation is the primary issue in

the wideband wireless communication systems. In order to recover the transmitted

signal at the receiver, it is essential to know some information about the channel.

The cancellation of channel effects is referred to as equalization. It is possible

to construct the equalizer directly without explicitly estimating the channel, or

indirectly, by first estimating the channel. In either case, the transmitter should

send a signal known a priori by the receiver which is called training. However, most

wireless devices will be battery powered. Hence the transmission of training signals

will seriously affect the longevity of such devices. Moreover, training increases the

overhead of the transmitted signal, thus reducing the net data transmission rate.
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Thus, it is reasonable to use blind channel estimation methods to possibly reduce

the amount of training required significantly. Typically, some special property of

the transmitted signal is exploited for blind channel estimation.

Blind equalization methods provide attractive solutions since they do not re-

quire any known transmitted data for channel estimation and equalization pur-

poses [4], [39]- [42]. Instead, they use the statistical and structural properties of the

communication signals (Finite alphabet, constant modulus, sub-spaces orthogonal-

ity). Channel identification or equalization requires that information about both the

channel amplitude and phase responses can be acquired from the received signal.

A symbol rate sampled communications signal is typically wide sense stationary

(WSS). Second order statistics from a WSS process contain no phase information.

Hence one can not distinguish between minimum phase and non-minimum phase

channels. Therefore, other statistical properties of the signal have to be used to

extract the phase information.

The communication signals are typically non-Gaussian. Hence, the Higher Order

Statistic (HOS) of the signals are non-zero and may also be exploited in equalization.

HOS retain the phase information as well [36]. Early blind algorithms were either

implicitly or explicitly based on HOS. In time domain, HOS are represented by

higher than second order cumulants and moments. However, Higher order statistics

and spectra may not provide a feasible approach for constructing practical equal-

izers. They have a large variance and consequently large sample sets are needed

in order to obtain reliable channel estimates. This is a severe drawback, in partic-

ular in applications where the channel is time varying, data rates are high or low
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computational complexity is needed [37].

In case a multiple-output model resulting from oversampling or employing mul-

tiple receivers is used, the received signal typically possesses the cyclostationarity

property, i.e. signal statistics such as the autocorrelation function are periodic.

Gardner discovered in [38] the fact that non-minimum phase channel equaliza-

tion/identification may be obtained from the Second Order Statistics of the received

signal because the cyclic autocorrelation function preserves the phase information.

Hence, smaller sample sizes than for HOS are required for the convergence of the

estimated statistics. The main drawback is that some channel types may not be

identified [39]. In particular, the channel cannot be identified if the subchannels

resulting from oversampling share common zeroes. If the mutiple-output model is

obtained by using an antenna array at the receiver with antenna elements well sep-

arated this limitation is less severe. This is because the resulted sub-channels are

uncorrelated.

The channel impulse responses can be blindly identified and equalized under

certain conditions, usually up to a complex scalar ambiguity. The identification

conditions, the inherent ambiguities as well as the slow convergence, may limit

the applicability of blind equalization methods in practical communication systems.

Because of their high potential in providing higher effective data rates it is of great

interest to study their feasibility in particular communication systems. Using a

limited number of training symbols may solve their problems. Limited training

data in conjunction with blind algorithms leads to semi-blind methods. Semi-blind

methods are a more feasible solution for practical communication systems since
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they combine the benefits of both training based and blind methods. They usually

achieve better performance than the traditional training based algorithms whilst

using a smaller amount of training data [40]. They have a larger sample support,

since both known symbols and statistical information are used. Consequently they

exhibit a lower variance of the estimates.

1.4 Blind Source Separation

Blind source separation (BSS) refers to the problem of recovering signals from sev-

eral observed linear mixtures. In a large number of cases, statistically independent

sources are mixed through an unknown channel where only the channel outputs (ob-

served signals) are measurable. The objective is: based on the information contained

in observed signals design a separation network to extract the original sources. In

this thesis, some channel estimation algorithms are introduced, which enables blind

channel estimation of MIMO-OFDM systems up to a unitary ambiguity matrix,

which need to be further removed by using source separation processes. Hence, BSS

may be regarded as the extended work of blind channel estimation.

There appears to be something magical about blind source separation: we are

estimating the original source signals without knowing the parameters of mixing

and/or filtering processes. It is difficult to imagine that one can estimate this at

all. In fact, without some a priori knowledge, it is not possible to uniquely estimate

the original source signals. However, one can usually estimate them up to certain

indeterminacies. In mathematical terms these indeterminacies and ambiguities can

be expressed as arbitrary scaling, permutation and delay of estimated source signals



Chapter 1. Introduction 15

[55]. These indeterminacies preserve, however, the waveforms of original sources.

Although these indeterminacies seem to be rather severe limitations, in a great

number of applications these limitations are not essential, since the most relevant

information about the source signals is contained in the temporal waveforms or time-

frequency patterns of the source signals and usually not in their amplitudes or order

in which they are arranged in the output of the system.

Although many different source separation algorithms are available, their prin-

ciples can be summarized by the following four fundamental approaches:

• The most popular approach exploits as the cost function some measure of sig-

nals statistical independence, non-Gaussianity or sparseness. When original

sources are assumed to be statistically independent without a temporal struc-

ture, the higher-order statistics (HOS) are essential (implicitly or explicitly)

to solve the BSS problem. In such a case, the method does not allow more

than one Gaussian source [43]- [45].

• If sources have temporal structures, then each source has non-vanishing tem-

poral correlation, and less restrictive conditions than statistical independence

can be used, namely, second-order statistics (SOS) are often sufficient to es-

timate the mixing matrix and sources. Along this line, several methods have

been developed [46]- [50]. Note that these SOS methods do not allow the sep-

aration of sources with identical power spectra shapes or i.i.d. (independent

and identically distributed) sources.

• The third approach exploits non-stationarity (NS) properties and second order

statistics (SOS). Mainly, we are interested in the second-order non-stationarity
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in the sense that source variances vary in time. The non-stationarity was first

taken into account by [51] and it was shown that a simple decorrelation tech-

nique is able for wide class of source signals to perform the BSS task. In

contrast to other approaches, the non-stationarity information based methods

allow the separation of colored Gaussian sources with identical power spectra

shapes. However, they do not allow the separation of sources with identical

non-stationarity properties. There are some recent works on non-stationary

source separation [52], [53]. Methods that exploit either the temporal struc-

ture of sources (mainly second-order correlations) and/or the non-stationarity

of sources, lead in the simplest scenario to the second-order statistics BSS

methods. In contrast to BSS methods based on HOS, all the second-order

statistics based methods do not have to infer the probability distributions of

sources or nonlinear activation (score) functions (see next sections).

• The fourth approach exploits the various diversities of signals, typically, time,

frequency, (spectral or “time coherence”) and/or time-frequency diversities,

or more generally, joint space-time-frequency (STF) diversity. Such approach

leads to concept of Time-Frequency Component Analyzer (TFCA) [20]. TFCA

decomposes the signal into specific components in the time-frequency domain

and computes the time-frequency representations (TFRs) of the individual

components. Usually components are interpreted here as localized, sparse

and structured signals in the time-frequency plain (spectrogram). In other

words, in TFCA components are estimated by analyzing the time-frequency

distribution of the observed signals. TFCA provides an elegant and promising
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solution to suppression of some artifacts and interference via masking and/or

filtering of undesired - components.

1.5 Outline

The structure of the thesis is organized as follows.

• In Chapter 2, first the principle of OFDM is explained. Second, the combina-

tion of MIMO and OFDM is described. The core idea is that the wideband

frequency-selective MIMO channel by means of the MIMO-OFDM processing

is transferred to a number of parallel flat-fading MIMO channels [6].

• In Chapter 3, we present a novel subspace based blind channel estimation

algorithm for MIMO-OFDM systems driven by either white or colored source.

This algorithm is efficient and works in ill conditioned environments.

• In Chapter 4, we design a nonredundant linear precoder for MIMO-OFDM

which enables blind channel estimation. The identifiability of the proposed

algorithm is guaranteed even when the channel matrices share common zeros

at subcarrier frequencies.

• In Chapter 5, we propose a geometric based blind source separation method

to resolve the ambiguity matrix which is yet to be removed by using the blind

channel estimation methods proposed in the previous chapters. Moreover, this

proposed separation method is also a general blind separation method for all

flat fading channels.
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• In Chapter 6, we exploit the second-order spectra correlations of the system

output to blindly estimate the FIR channel matrix of the MIMO-OFDM sys-

tems, which are driven by stationary or cyclostationary and nonwhite inputs

with distinct but known correlations. By using this method, the ambiguity

matrix problem which indeed exists in many existing methods can be avoided.

• In the last chapter, we draw the conclusions of this thesis, and present some

prospective work in order to address future key problems in MIMO-OFDM

communication systems.



Chapter 2

MIMO-OFDM System Model

2.1 Introduction

In general, a MIMO system takes advantage of the spatial diversity obtained by

spatially separated antennae in a dense multipath scattering environment. It may

be implemented in a number of different ways to obtain either a diversity gain to

combat signal fading or to obtain a capacity gain. One of the potential application

areas is that of Wireless Local Area Networks (WLANs).

The current WLAN standards IEEE 802.11a and IEEE 802.11g [34] are based

on Orthogonal Frequency Division Multiplexing (OFDM) [6], [56]. A high-data-rate

extension of these standards could be based on Space Division Multiplex (SDM) [28].

That is, the OFDM-based transmission system can be extended to a MIMO architec-

ture, which leads to the promising combination of the data rate enhancement of SDM

with the relatively high spectral efficiency and the robustness against frequency-

selective fading and narrowband interference of OFDM. An advantage of wireless

LAN systems is that they are mainly deployed in indoor environments. These en-

19
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vironments are typically characterized by richly scattered multipath. As explained

in [57], this is good condition for having a high MIMO capacity.

In this chapter, we review the basic principles of the OFDM systems. The

mathematical system model of the OFDM systems using the IFFT technique is

derived. Then we extend it to the general MIMO-OFDM case. Although the blind

channel estimation algorithms proposed in this thesis are mainly designed for the

CP-OFDM systems, the ZP-OFDM system model is also studied in this chapter as

a reference.

The rest of this chapter is organized as follows. First the multipath fading chan-

nel in a typical wireless communication system is discussed in Section 2.2, second

the brief introduction to OFDM is given in Section 2.3. We review the block dia-

gram of a “classic” OFDM system, which employs a guard interval to mitigate the

impairments of the multipath channel. Then the combination of MIMO and OFDM

is described in Section 2.4, where the relation between the transmitted and received

MIMO-OFDM symbols are captured in matrix form.

2.2 The Multipath Fading Channel

Due to the presence of reflecting, scattering, relative motion between transmitters

and receivers, etc., two or more versions of the signal waveforms transmitter by the

receiver arrive at the receiver at slightly different times. This is known as multipath

fading. Figure 2.1 shows the diagram of multipath fading in wireless communication

systems. Consider the channel with a total of P paths. Each signal path has its

own individual path length and complex valued gain. Since the resultant signal at
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Figure 2.1: Diagram of Multipath Fading

the receiver is a superposition of the signals from all P paths, we may write the

baseband impulse response of a multipath channel as [2]

h(t, τ) =

P∑

p=1

ap exp {j(2πfcτp(t) + φp)} δ(τ − τp(t)) (2.1)

where ap, τp(t) and φp are gain coefficient, delay, and phase of the pth path respec-

tively, while fc is the carrier frequency. It is clearly seen that the baseband channel

impulse response is not only affected by the properties of the delayed path but also

the carrier frequency. Hence, under the worst case where one or more of the delays

τp, p = 1, 2, · · · , P exceed the two sided bandwidth of the transmitted signal 2B,

and there is relative motion between the transmitter and receiver, then the baseband

received signal can be written as

r(t) = h(t, τ) ∗ s(t) (2.2)
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where s(t) and r(t) are the baseband transmitted and received signal respectively,

and ∗ denotes the convolution. In such case, the channel is commonly referred

to as time- and frequency-selective, frequency-selective fading or dispersive fading

channel.

In digital communication systems, it is convenient to use a discretized version of

the channel model.The most common mathematical model used for such channel is

the tapped delay line (TDL) model [2]. When the Nyquist sampling criterion [3] is

satisfied, the kth sample of the received signal is expressed by

r[k] , r(kTs) = h(kTs, τ) ∗ s(kTs) (2.3)

where Ts is the sample duration. Since the continues time band limited source signal

can be interpolated by the sinc function, i.e.

s(t) =
∞∑

l=−∞
s[l]sinc

(
t− lTs

Ts

)

(2.4)

where s[l] , s(lTs). Substitute Eqn.(2.4) to Eqn.(2.3), we get

r[k] =

∞∑

l=−∞
s[k − l]

(

h(kTs, τ) ∗ sinc

(
t− lTs

Ts

))

(2.5)

Hence we define

h[k, l] , h(kTs, τ) ∗ sinc

(
t− lTs

Ts

)

(2.6)

and we may then write the received samples in terms of discrete transmitted samples

and channel samples as

r[k] =

∞∑

−∞
h[k, l]s[k − l] (2.7)

When channel is time invariant, the above Eqn.(2.7) can also be written as

r[l] =
∞∑

−∞
h[l]s[k − l] =

L∑

l=0

h[l]s[k − l] (2.8)
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Figure 2.2: Discrete Time TDL Channel Model

where L is the channel order, which is defined as the maximum sample duration of

the the channel delay.

2.3 Orthogonal Frequency Division Multiplexing

2.3.1 Background

In classical data systems in which more data rate was sought by exploiting the

frequency domain, parallel transmissions were achieved by dividing the total sig-

nal frequency band into Nc non-overlapping frequency subchannels. This technique

is referred to as Frequency Division Multiplexing (FDM). In this technique, each

subchannel or subcarrier is modulated with a separate symbol and then the Nc sub-

channels are frequency multiplexed. Spectral overlap is avoided by putting enough

guard space between adjacent subchannels. In this way Inter Carrier Interference

(ICI) is eliminated. This method, however, leads to a very inefficient use of the

available spectrum. A more efficient use of bandwidth can by obtained with parallel
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transmissions if the spectra of the individual subchannels are permitted to partly

overlap. This requires that specific orthogonality constraints are imposed to facili-

tate separation of the subchannels at the receiver.

Orthogonal Frequency Division Multiplexing (OFDM) is an example of a multi-

carrier technique that operates with specific orthogonality constraints between the

subcarriers. With OFDM transmission, a high-rate serial data stream is split up into

a set of low-rate sub-streams, each of which is modulated by a separate subcarrier.

These multiple subcarriers overlap in the frequency domain, but do not cause ICI

due to the orthogonal nature to the modulation. Hence, the orthogonal nature of the

OFDM makes it very attractive by reducing the guard band required by normal FDM

transmissions, greatly improving the spectral efficiency (see Figure 1.2 in Chapter 1).

As a result, more and more systems that operate in the Gigahertz bands are based

on OFDM, such as wireless LANs [58], [59], Digital Video Broadcasting (DVB) [60],

and Digital Audio Broadcasting (DAB) [61].

2.3.2 Principles of OFDM

In an OFDM system, a block of Nc serial data symbols, each of duration Ts, is

converted into a block of Nc parallel data symbols, each of duration T = NcTs.

These Nc parallel data symbols modulate the Nc orthogonal subcarriers respectively.

Consider a set of subcarrier frequencies {fn}, where 0 ≤ fn ≤ Nc−1
T

. Let one of the

subcarrier signal be φn1(t) = exp{j(2πfn1t)+ θn1} with the subcarrier frequency fn1

and a random phase θn1 . Let another subcarrier signal be φn2(t) = exp{j(2πfn2t +

θn2)} with the subcarrier frequency fn2 and a random phase θn2 . Then orthogonality
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Figure 2.3: OFDM Modulation

in [0, T ] is achieved if

∫ T

0

φn1(t)φ
∗
n2

(t)dt = 0

⇔
∫ T

0

ej(2πfn1 t+θn1 )e−j(2πfn2 t+θn2 )dt = 0

⇔ ej(2π(fn1−fn2 )T+(θn1−θn2 )) − ej(θn1−θn2 )

j2π(fn1 − fn2)
= 0 (2.9)

When 2π(fn1 −fn2)T is a multiple of 2π, then Eqn.(2.9) will be true for any value of

θn1 −θn2 . Thus, we choose the subcarrier frequencies separated by 1/T to guarantee

the orthogonality with the presence of random phase offsets.

Hence the complex envelope of an OFDM signal is given by

ũ(t) =
∑

k

ha(t− kTtotal)
Nc−1∑

n=0

s(k, n)ej2π(k−Nc−1
2

)(t−kTtotal)/T (2.10)

where s(k, n) is element of the kth block of complex source symbols modulating

the nth subcarrier, which are often chosen form a constellation such as QAM, PSK

etc. [3], e−jπ(Nc−1)(t−kTtotal)/T is the fixed frequency offset to make sure that the band
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pass signal is centered about the center frequency, ha(t) is the pulse shaping function,

and Ttotal is the symbol duration including the effective part of the OFDM symbol

T , the guard interval (GI) Tg, and the window interval Tw for pulse shaping.

The guard interval, a cyclic prefix (CP), is a copy of the last part of the OFDM

symbol, which is transmitted before the so-called “effective” part of the symbol. Its

duration Tg is selected larger than the maximum excess delay of the radio channel.

Therefore, the effective part of the received signal can be seen as the cyclic con-

volution of the transmitted OFDM symbol by the channel impulse response. This

is attractive because the frequency selective channel is thus transferred to a set of

parallel flat fading channels. However, the transmitted energy increases with the

length of CP. The Signal-to-Noise Ratio (SNR) loss due to the insertion of CP is

given by

SNRloss = −10 log10

(

1 − Tg

T + Tg

)

(2.11)

Also, the bandwidth efficiency is decreased to T
T+Tg

of that without CP. Hence, the

CP should not be made longer than strictly necessary. Fortunately, when making

Tg equal to the length of the channel impulse response, the relative length Tg

T+Tg
is

typically small, so that the ISI free transmission motivates the small SNR loss.

To avoid out of band radiation, the pulse shaping (or equivalently called window-

ing) technique is deployed to fasten the roll off of side lobes. Raised cosine window

is a wildly chosen option [34]. Figure 2.4 depicts schematically the implementation

of the pulse shaping in an OFDM symbol [6]. The power spectrum of an OFDM

signals with 48 subcarrier and different windowing length is simulated in Figure 2.5.

The effective OFDM symbol length is T = 4.8 seconds, the GI length is Tg = 1.6
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Figure 2.4: Cyclic extension and pulse shaping of the OFDM symbol
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Figure 2.5: OFDM Power Spectrum with Different Window Length

seconds, and the windowing lengthes are set Tw = 0, 0.2, and 0.8 second respectively

to compare the effecting of the windowing on OFDM power spectrums.

2.3.3 FFT Based OFDM and System Model

Although the continuous time system model in Eqn.(2.10) is conceptually simple and

straightforward, they cannot be realized in its entirety in a digital system, especially

a real time system, due to the computational cost. This bottleneck problem is
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Figure 2.6: OFDM System Block Diagram

settled in 1971 by Weinstain and Ebert [25], who used the discrete Fourier transform

(DFT) to perform baseband modulation and demodulation. A block diagram of the

equivalent complex-valued baseband core of an OFDM system is depicted in Figure

2.6. The two main principles incorporated are:

• The inverse fast Fourier transform (IFFT) and the fast Fourier transform

(FFT) are used, respectively, modulating and demodulating the data con-

stellations on the orthogonal subcarriers [56]. The input of the IFFT, Nc

data constellation points {si(k)} are present, where Nc is the number of IFFT

points, i is an index on the subcarrier, and k is an index on the OFDM symbol.

These constellations can be taken according to any PSK or QAM signaling set.

Usually, M is taken as an integer power of two, enabling the application of the

highly efficient IFFT and FFT algorithm for modulation and demodulation.

• The introduction of a cyclic prefix as a guard interval (GI), whose length

should exceed the maximum excess delay of the multipath propagation channel

[6]. Due to the cyclic prefix, the transmitted signal becomes “periodic”, and

the effect of the time-dispersive multipath channel becomes equivalent to a
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cyclic convolution, discarding the guard interval at the receiver. Due to the

properties of the cyclic convolution, the effect of the multipath channel is

limited to a point-wise multiplication of the transmitted data constellations

by the channel transfer function, the Fourier transform of the channel impulse

response, i.e., the subcarriers remain orthogonal [25], [26].

The equalization required for detecting the data constellation is an element-

wise multiplication of the FFT output by the inverse of the estimated channel

transfer function. For phase modulation schemes, multiplication by the com-

plex conjugate of the channel estimate can do the equalization.

In the previous sections, we use the square brackets “[·]” and the parentheses

“(·)” to represent the time index for the digital and analog systems respectively to

distinguish these two systems. However, we will consider the digital system only

in the rest of this thesis. Therefore, we replace the square brackets “[·]” by the

parentheses “(·)” to make the notations in this thesis to be consistent with the

popular literatures, e.g., Eqn.(2.8) will be rewritten as

r(l) =

∞∑

−∞
h(l)s(k − l) =

L∑

l=0

h(l)s(k − l) (2.12)

Consider the source data sequence s(0), s(1), s(2), · · · , which are often chosen

form a constellation such as QAM, PSK etc. [3]. In the OFDM system where Nc

subcarriers are used, every Nc data symbols are collected as a group for further

processing. Define the kth block of source data symbols as

s(k) ,

[

s(k, 0) · · · s(k,Nc − 1)

]T

(2.13)
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where

s(k, n) , s(kNc + n), n = 0, 1, · · · , Nc − 1 (2.14)

which is the element of the kth block of complex source symbols modulating the nth

subcarrier. Since the elements of s(k) are amplitudes modulating subcarriers, they

are often interpreted as frequency domain values. s(k) is therefore called frequency

domain OFDM symbol or simply OFDM symbol [25]. As shown in Figure 2.6, the

source data is serial-to-parallel (S/P) converted, and fed to an Nc-point FFT unit.

The corresponding kth time-domain vector is given by

ū(k) =
1√
Nc

IFFT {s(k)} = FH
Nc

s(k) (2.15)

where FNc
is the Nc ×Nc FFT matrix which can be written as

FNc
=

1√
Nc















1 1 · · · 1

1 e−j2π 1
Nc · · · e−j2π Nc−1

Nc

...
...

. . .
...

1 e−j2π Nc−1
Nc · · · e−j2π (Nc−1)2

Nc















(2.16)

The resulting vector ū(k) is then appended with a Cyclic Prefix (CP) of length

Ng, which is the copy of the last Ng elements of ū(k), resulting in a size N = Nc+Ng

signal vector

u(k) , Tcpū(k) = Fcps(k) =

[

u(k, 0) · · · u(k,N − 1)

]T

(2.17)

where Tcp is the corresponding CP insertion matrix, which is defined as follows

Tcp ,







0Ng×(Nc−Ng) INg

INc







(2.18)
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where INc
and INg

are the Nc ×Nc and Ng ×Ng identity matrices respectively, and

Fcp is constructed by appending the last Ng rows of FH
Nc

to its beginning, i.e.,

Fcp , TcpF
H
Nc

(2.19)

Then, the resulted signal is parallel-to-serial (P/S) converted, resulting in a serial

data data sequence u(0), u(1), u(2), · · · , where

u(kN + n) , u(k, n), for n = 0, · · · , N − 1 (2.20)

This serial data sequence is called the “OFDM chip sequence”, and is pulse shaped

to the corresponding continuous time signal, i.e.,

uc(t) =
∞∑

n=−∞
u(n)ϕc(t− nT ) (2.21)

where T is the chip period and ϕc(t) is the chip pulse. The transmitted waveform

uc(t) propagates through a dispersive channel hc(t) and is filtered by the receive

filter ϕ̄c(t). Define the overall impulse response of the transmitter, channel, and

receiver as

hg(t) = ϕc(t) ∗ hc(t) ∗ ϕ̄c(t) (2.22)

Then, the received signal xc(t) sampled at the chip rate can be written as

x(n) , xc(t)|t=nT

=

∫ ∞

−∞
h(τ)uc(nT − τ)dτ + v(nT )

=

L∑

l=0

h(l)u(n− l) + v(n) (2.23)

where

h(l) ,

∫ ∞

−∞
hg(τ)sinc(

lT − τ

T
)dτ (2.24)
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which is the equivalent discrete time channel impulse response, and v(n) = v(nT )

is the filtered additive white Gaussian noise (AWGN) with zero-mean and variance

σ2
v .

To recover the signal by FFT demodulation, every N received symbols are col-

lected to form a group. Define the kth block of received signal as

x(k) ,

[

x(k, 0) · · · x(k,N − 1)

]T

(2.25)

where

x(k, n) , x(kN + n), n = 0, · · ·N − 1 (2.26)

Based on the assumption that the length of CP is greater than or equal to the

channel order L, and define the channel vector as

h , [h(0), h(1), · · · , h(L)]T (2.27)

Then the relations of the kth received and transmitted OFDM symbol can be derived

as follows

x(k) = ṪN(h)u(k) + T̈N(h)u(k − 1) + v(k)

= ṪN(h)Fcps(k) + T̈N (h)Fcps(k − 1) + v(k) (2.28)
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where v(k) is the kth block of discrete AWGN noise. ṪN (h) and T̈N(h) are the N×N

lower and upper triangular Toeplitz matrices constructed by h respectively, i.e.

ṪN(h) ,























h(0) 0 · · · · · · · · · 0

...
. . .

. . .
...

h(L)
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 h(L) · · · h(0)























(2.29)

T̈N(h) ,























0 · · · 0 h(L) · · · h(1)

...
. . .

. . .
. . .

...

...
. . .

. . . h(L)

...
. . . 0

...
. . .

...

0 · · · · · · · · · · · · 0























(2.30)

As shown in Figure 2.6, the received serial sequence is then S/P converted, and

the CP (i.e. the first Ng elements of x(k)) is removed. The remaining samples are

collected into the Nc-dimensional vector x̄(k):

x̄(k) = Rcpx(k)

= RcpṪN (h)Fcps(k) + Rcpv(k)

= CNc
(h)FH

Nc
s(k) + v̄(k) (2.31)
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where Rcp = [0Nc×Ng
, INc

], v̄(k) is the Nc × 1 truncated noise vector, and CNc
(h) is

the Nc ×Nc circulant channel matrix constructed by h, i.e.

CNc(h) ,




























h(0) 0 · · · 0 h(L) · · · h(1)

h(1)
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . h(L)

h(L)
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 h(L) · · · h(1) h(0)




























(2.32)

According to the properties of the circulant matrix, FNc
CNc

(h)FH
Nc

is a Nc ×Nc

diagonal matrix [62], i.e.,

FNc
CNc

(h)FH
Nc

= D(H) (2.33)

where D(H) denotes the diagonal matrix with the elements of vector H along its

diagonal, and the Nc × 1 vector H is Nc-point FFT output of the channel vector h,

i.e.

H ,

[

H(0) H(1) · · · H(Nc − 1)

]T

= FFT {h} (2.34)

Hence, the FFT output of the received symbols can be expressed as

y(k) = FNc
x̄(k)

= FNc
CNc

(h)FH
Nc

s(k) + FNc
v̄(k)

= D(H)s(k) + n(k) (2.35)

where n(k) = FNc
v̄(k).
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Finally, the received OFDM symbols are P/S converted to the serial vector y(n),

where

y(kNc + n) , y(k, n) for n = 0, · · · , Nc − 1 (2.36)

and y(k, n) is the nth element of the kth demodulated OFDM symbol y(k). Thus,

by using the CP, the FIR convolutive channel is converted to parallel flat-fading

sub-channels independent with each other.

2.3.4 Zero Padded-OFDM

Padding zero samples to the end of each modulated OFDM symbol is an alternative

way to suppress the ISI caused by the FIR channel. This is referred to as the Zero

Padded OFDM (ZP- OFDM). In this subsection, we briefly introduce the system

model of ZP-OFDM as a comparison to the CP-OFDM. Note that through out this

thesis, without any further annunciation, the term OFDM means CP-OFDM, and

the zero padded-OFDM is denoted as ZP-OFDM.

In ZP-OFDM, the mathematical model for the source signal s(k) and the IFFT

modulated OFDM symbol ū(k) are the same as in CP-OFDM system, which are de-

scribed in Eqn.(2.13) and Eqn.(2.15) respectively. However, the modulated OFDM

symbol ū(k) is padded with zero sequence of length Ng ≥ L, resulting in a length

N = Nc +Ng vector as

u(k) = Fzps(k) (2.37)

where Fzp , [FNc
, 0Nc×Ng

]H , FNc
is the FFT matrix defined by Eqn.(2.16), and

0Nc×Ng
is the Nc ×Ng zero matrix.
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At the receiver side, due to the effect of FIR channel and the AWGN noise, the

kth block of received signal can be written as follows

x(k) = ṪN (h)u(k) + T̈N(h)u(k − 1) + v(k)

= ṪN (h)Fzps(k) + T̈N (h)Fzps(k − 1) + v(k)

= ṪN (h)Fzps(k) + v(k)

= TNc
(h)FH

Nc
s(k) + v(k) (2.38)

where ṪN (h) and T̈N (h) are lower and upper triangular Toeplitz matrices defined

by Eqn.(2.29) and Eqn.(2.30) respectively. TNc
(h) is the Toeplitz matrix defined as

TNc
(h) ,



































h(0)

... h(0) 0

h(L)
...

. . .

h(L)
. . .

. . . h(0)

0 h(L)

0 · · · 0

...
...

0 · · · 0



































(2.39)

Note that the elements of the last Ng − L row of TNc
(h) are all zeros.

To construct the circulant channel matrix as in Eqn.(2.32), we add the last Ng

elements of x(k) to its first Ng elements, through the matrix Rzp , [INc
Izp], where

Izp denotes the matrix containing the first Ng columns of the Nc×Nc identity matrix
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INc
. Then we obtain:

x̄(k) = Rzpx(k) = RcpT (h)FH
Nc

s(k) + Rzpv(k)

= CNc
(h)FH

Nc
s(k) + v̄(k) (2.40)

The notations in Eqn.(2.40) is the same as in Eqn.(2.31), except that v̄(k) is slightly

different, obtained by adding the last Ng elements of v(k) to its first Ng elements.

This leads to the result that the noise in ZP-OFDM is cyclostationary, and noise

power level is slightly higher than the CP-OFDM in a same transmission environ-

ment.

Once x̄(k) is obtained through Eqn.(2.40), then the consequential steps are the

same as CP-OFDM.

2.4 MIMO-OFDM System Model

2.4.1 Basic Concept

In recent years, key techniques related to the combination of MIMO with OFDM

have been studied for larger capacity, higher data rate and better performance in

wireless communications [63]- [68].

Figure 2.7 shows a simplified schematic representation of a MIMO-OFDM trans-

mitter. The source bitstream is encoded by a forward error correction (FEC) en-

coder. After that, the coded bitstream is mapped to a constellation by the digital

modulator, and encoded by a MIMO encoder. Then each of the parallel output

symbol streams corresponding to a certain transmit antenna follows the same trans-

mission process. Then the symbol sequence in the frequency domain is modulated
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by IFFT to an OFDM symbol sequence. A cycle prefix (CP) is attached to every

OFDM symbol to mitigate the effect of channel delay spread, and a preamble is

inserted in every slot for timing. Finally, the constructed data frame is transferred

to RF components for transmission.

Data

Source


Channel

Encoder


Digital

Modulator


MIMO

Encoder


OFDM

Modulator


OFDM

Modulator


OFDM

Modulator


Figure 2.7: A Simplified Schematic Representation of a MIMO-OFDM Transmitter
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Figure 2.8: A Simplified Schematic Representation of a MIMO-OFDM Receiver

Figure 2.8 shows a simplified schematic representation of a MIMO-OFDM re-

ceiver. The received symbol stream from RF components over the receive antennae

are first synchronized, including coarse frequency synchronization and timing aided

by the preamble. After that, the preambles and CP are extracted from the received

symbol stream, and the remaining OFDM symbol is demodulated by FFT. Then



Chapter 2. MIMO-OFDM System Model 39

frequency synchronization and channel estimation are carried out for the following

processing. The estimated channel matrix aids the MIMO decoder in decoding the

refined OFDM symbols. The estimated transmit symbols are then demodulated and

decoded. Finally, the decoded source bitstreams are transmitted to the sink.

Finally, note that OFDM has as advantage that it introduces a certain amount

of parallelism by means of its Nc subcarriers. This fact can be exploited by MIMO-

OFDM. Namely, if MIMO detection is performed per subcarrier, then a given de-

tector is allowed to work Nc times slower than the MIMO detector of an equivalent

single carrier system with comparable data rate. Although in the case of MIMO-

OFDM Nc of such detectors a required, they can work in parallel, which might ease

the implementation.

2.4.2 MIMO-OFDM System Model

In this subsection, a signal model is introduced for a MIMO-OFDM system in which

the relation between the transmitted and received MIMO-OFDM symbols is cap-

tured in matrix form. With this concise matrix notation we mathematically show

that the signal model per subcarrier equals the narrowband signal model.

Consider a MIMO-OFDM system with Mt transmit (TX) and Mr receive (RX)

antennae respectively, as shown in Figure 2.9. Similar to the SISO-OFDM system

model described in Section 2.3, the OFDM system utilize a maximum of Nc subcar-

riers per antenna to deal with the frequency selectivity of the channel. To combat

the ISI, a guard interval of Ng samples is added per OFDM symbol. Thus an OFDM

including the guard interval consists of N = Nc + Ng complex symbols. Based on
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Figure 2.9: Block Diagram of a MIMO-OFDM

this, the collection of complex symbols to be sent on the kth MIMO-OFDM symbol

can be denoted by the NcMt × 1 vector s(k) as follows

s(k) =











s(k, 0)

...

s(k,Nc − 1)











(2.41)

where the Mt × 1 vector

s(k, n) ,

[

s1(k, n), s2(k, n), · · · , sMt
(k, n)

]T

(2.42)

represents the chips of the kth MIMO-OFDM symbol to be transmitted through the

nth subchannel, and

si(k, n) , si(kNc + n), (n = 0, · · · , Nc, i = 1, · · · ,Mt) (2.43)

denotes the element of the kth block of the source signal carried by the nth subcarrier

and transmitted by the ith transmit antenna.
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Firstly, the IFFT is applied at each transmit antenna, which transforms the

frequency domain vector s(k) into the time domain. Hence, the output of the IFFT

modulation is denoted by

ū(k) = (FH
Nc

⊗ IMt
)s(k) (2.44)

where ⊗ represents the Kronecker product, FNc
is the FFT matrix defined by

Eqn.(2.16), and IMt
denotes the Mt ×Mt identity matrix.

Secondly, the CP is added and P/S converted. This is done by taking the last

MtNc elements of ū(k) and stacking them on top of ū(k) to produce the vector u(k).

In matrix notation this can be written as

u(k) = (Tcp ⊗ IMt
) ū(k) = (Fcp ⊗ IMt

) s(k) (2.45)

where the CP insertion matrix Tcp and the OFDM modulation matrix Fcp are re-

spectively defined by Eqn.(2.18) and Eqn.(2.19) in the previous section. Meanwhile,

we define the modulated OFDM symbols as

u(k) ,

[

uT (k, 0) · · · uT (k,N − 1)

]T

(2.46)

where

u(k, n) ,

[

u1(k, n) · · · uMt
(k, n)

]T

(2.47)

These parallel data blocks are then P/S converted to Mt serial data sequences

ui(n), (i = 1, · · ·Mt, n = 0, 1, 2, · · · ) which are to be transmitted by the Mt transmit

antennae respectively, where

ui(kN + n) , ui(k, n), n = 0, · · · , N − 1, i = 1, · · · ,Mt (2.48)
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Finally, the signal is transmitted over the dispersive channel. Define the time

domain MIMO channel impulse response matrix as

h ,

[

hT (0) hT (1) · · · hT (L)

]T

(2.49)

where

h(l) =











h1,1(l) · · · h1,Mt
(l)

...
. . .

...

hMr ,1(l) · · · hMr ,Mt
(l)











for l = 0, 1, · · ·L (2.50)

while hj,i(l) represents the lth tap of tap coefficient of the FIR channel between the

ith transmit antenna and the jth receive antenna.

Similar to the case of SISO-OFDM, at the MIMO-OFDM receiver side, every

N data symbols received by each antenna are collected to form a group. The kth

group of received data group, or namely kth received OFDM symbol, can expressed

as follows

x(k) = ṪN (h)u(k) + T̈N (h)u(k − 1) + v(k) (2.51)

where

x(k) ,

[

xT (k, 0) · · · xT (k,N − 1)

]T

(2.52)

x(k, n) =

[

x1(k, n) · · · xMr
(k, n)

]T

(2.53)

xj(k, n) = xj(kN + n), j = 1, · · · ,Mr (2.54)

while ṪN (h) and T̈N (h) are NMr ×NMt block lower and upper Toeplitz triangular
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matrices constructed by the channel matrix h respectively, i.e.

ṪN(h) ,























h(0) 0Mr×Mt
· · · · · · · · · 0Mr×Mt

...
. . .

. . .
...

h(L)
. . .

. . .
. . .

...

0Mr×Mt

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . . 0Mr×Mt

0Mr×Mt
· · · 0Mr×Mt

h(L) · · · h(0)























(2.55)

T̈N(h) ,























0Mr×Mt
· · · 0Mr×Mt

h(L) · · · h(1)

...
. . .

. . .
. . .

...

...
. . .

. . . h(L)

...
. . . 0Mr×Mt

...
. . .

...

0Mr×Mt
· · · · · · · · · · · · 0Mr×Mt























(2.56)

where 0Mr×Mt
denotes the Mr ×Mt zero matrix, and v(k) is the AWGN noise vector

defined by

v(k) , [vT (k, 0) · · ·vT (k,Nc − 1)]T (2.57)

where

v(k, n) , [v1(k, n) · · ·vMr
(k, n)]T (2.58)

where vj(k, n) , vj(kN + n); (n = 0, · · · , N − 1) is the nth element of the kth block

of AGWN noise sequence according to the j th receive antenna.

At each receive antenna, the received signal sequence is S/P converted, the CP

is removed by discarding the first NgMr samples of x(k), the FFT demodulation is



Chapter 2. MIMO-OFDM System Model 44

performed to the resulted vector, and the resulted signal is P/S converted in the

end. Together, this results in

y(k) = (FNc
⊗ IMr

)Rcpx(k)

= (FNc
⊗ IMr

)

([

0Nc×Ng
INc

]

⊗ IMr

)

x(k) (2.59)

where Rcp and y(k) are respectively defined as

Rcp ,

[

0Nc×Ng
INc

]

(2.60)

y(k) ,











y(k, 0)

...

y(k,Nc − 1)











(2.61)

where

y(k, n) , [y1(k, n) · · · yMr
(k, n)]T (2.62)

and

yj(k, n) , yj(kNc + n), n = 0, · · · , Nc − 1 (2.63)

which is the nth element of the kth block of demodulated signal associated with the

jth receive antenna.

Combining all above steps and assuming that no ISI occurs on a MIMO-OFDM

symbol basis (i.e., L 6 Ng), this leads to the following relation between s(k) and

y(k):

y(k) = (FNc
⊗ IMr

)RcpṪN(h)Fcps(k) + (FNc
⊗ IMr

)Rcpv(k)

= (FNc
⊗ IMr

)CNc
(h)(FH

Nc
⊗ IMt

)s(k) + n(k) (2.64)
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where CNc
(h) is an NcMr × NcMt block circulant matrix constructed by the time

domain channel matrix h, i.e.

CNc
(h) ,



























h(0) 0Mr×Mt
· · · 0Mr×Mt

h(L) · · · h(1)

h(1)
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . h(L)

h(L)
. . .

. . .
. . . 0Mr×Mt

0Mr×Mt

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . . 0Mr×Mt

0Mr×Mt
· · · 0Mr×Mt

h(L) · · · h(1) h(0)



























(2.65)

and n(k) represents the frequency domain noise, which is given by

n(k) = (FNc
⊗ IMr

)Rcpv(k) (2.66)

According to the properties of the block circulant matrix, CNc
(h) in Eqn.(2.64)

can be block-diagonalized, i.e.

(FNc
⊗ IMr

)CNc
(h)(FH

Nc
⊗ IMt

) = D(H) (2.67)

where D(H) is the block diagonal matrix constructed by H, and H is the frequency

domain channel matrix defined as follows

H =

[

HT (0) HT (1) · · · HT (Nc − 1)

]T

(2.68)

where

H(n) =
L∑

l=0

h(l)e−j2π nl
Nc for n = 0, 1, · · · , Nc − 1 (2.69)

Hence, (2.64) can be rewritten as

y(k) = D(H)s(k) + n(k) (2.70)

and for the nth subcarrier we may write

y(k, n) = H(n)s(k, n) + n(k, n) (2.71)
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2.4.3 Zero Padded MIMO-OFDM

In this subsection, we briefly introduce the system model of zero padded-MIMO-

OFDM (ZP-MIMO-OFDM) as the comparisons. Similar to the SISO case, the

modulated MIMO-OFDM symbol with ZP can be written as follows

u(k) = (Fzp ⊗ IMt
)s(k) (2.72)

where Fzp and s(k) are defined by Eqn.(2.37) and Eqn.(2.41) respectively. Under

the assumption that the length of ZP is larger than the maximum channel order, it

can be verified that the received ZP-MIMO-OFDM symbol can be written as

x(k) = TNc
(h)(FH

Nc
⊗ IMt

)s(k) + v(k) (2.73)

where

TNc
(h) ,



































h(0)

... h(0) 0

h(L)
...

. . .

h(L)
. . .

. . . h(0)

0 h(L)

0 · · · 0

...
...

0 · · · 0



































(2.74)

By adding the lastNgMr elements of x(k) to its firstNgMr elements, and perform

the FFT demodulation to the received symbols according to the Mr receive antennae

respectively, then we get r(k) which is defined the same as Eqn.(2.64), with only

the slight difference that the noise before FFT is circular stationary.
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2.5 Summary

In this chapter, we derived the basic theory behind OFDM and its applications.

The mathematical system models for both SISO and MIMO cases are introduced.

The derivation of the OFDM system model has confirmed that data symbols can

be transmitted independently over multipath fading radio channels. It has to be

assumed, however, that the channels maximum excess delay is shorter than the

guard interval. On the other hand, it is essential that the channel is known at

the receiver in order to perfectly recover the transmitted signal. In the following

chapters, we present some novel blind channel estimation methods for MIMO-OFDM

systems.



Chapter 3

Subspace-Based Blind Channel

Estimation for MIMO-OFDM

Systems

3.1 Introduction

In the previous chapter, we introduced the mathematical model of the MIMO-

OFDM systems. In this and the following chapters, we present some blind channel

estimation algorithms for MIMO-OFDM systems. Although by properly designing

the cyclic prefix (CP), successive OFDM symbols will not interfere and can be reli-

ably recovered at the receiver end, the channel impulse responses between transmit

and receive antennae are still required for coherent signal detection. The channels

can be estimated by sending training sequences. However, it is shown that esti-

mating MIMO channels can require a significant amount of training sequences [68].

48
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Furthermore, training is infeasible for some certain communication systems [84,85].

Thus, blind channel estimation for MIMO-OFDM systems has been studied exten-

sively in recent years.

Among various known blind channel estimation algorithms, the so called sub-

space (SS) based algorithm is most attractive due to its special properties [4]. This

algorithm was originally developed in [69] for single-input multi-output (SIMO) sys-

tems. The SS method has simple structure and achieves good performance, but it

also has some requirements, which make it difficult to be applied in general MIMO-

OFDM systems. Firstly, the receive antennae must be strictly more than the trans-

mit antennae [71, 78], which may not be satisfied by many existing standards, e.g.

the IEEE 802.11n [76] standard defines the 2 × 2 transmit and receive antennae

pairs. Besides, in the case of SISO systems, the equal number of transmit and re-

ceive antennae is obviously used, which does not satisfy the requirement. Secondly,

the precise knowledge of the channel order must be obtained, which is very difficult

in practice. The channel order over-estimation may cause significant performance

degradation.

Recently, some SS methods have been proposed for OFDM systems. A subspace

based method for SISO-OFDM systems was developed by utilizing the redundancy

introduced by the CP insertion [72]. In [73], a SS based method was proposed

which can be applied for OFDM systems without CP. Both of these two methods

are designed for SISO-OFDM systems. In [74], a zero padding (ZP) OFDM system

was suggested. Instead of using the CP, consecutive zeros are padded at the end of

each OFDM symbol, and the general SS method is applied to blindly estimate the



Chapter 3. Subspace-Based Blind Channel Estimation for MIMO-OFDM Systems 50

channel. However, this method is not suitable for most of the existing MIMO-OFDM

system which use CP as the guard interval. Another way to apply the SS method in

MIMO-OFDM systems is to precode the source signal before transmission. In [81], a

SS method is proposed for MIMO-OFDM systems with the assistance of the properly

designed redundant linear precoder. In some practical cases, the OFDM systems are

not fully loaded, i.e., some of the subcarriers are set to zero without any information

[6]. These subcarriers are referred to as virtual subcarriers (VCs). In fact, this can

also be viewed as a special case of redundant precoding and can be used for blind

channel estimation [83]. In [70], the authors unified and generalized the SISO-OFDM

SS methods to the case of MIMO-OFDM systems with any number of transmit

and receive antennae, by exploiting the redundancy induced by the CP and/or

VCs. However, this method still suffers the problem caused by the channel order

over-estimation, and the computational inefficiency caused by the singular-value

decomposition (SVD) of the large-sized correlation matrix of the channel outputs.

In this chapter, we present a novel SS method for blind channel estimation of

MIMO-OFDM systems. We study the inherent structure of the correlation matrices

of the channel output and develop a new criterion function, minimizing which leads

to the estimate of the time domain channel matrix. The proposed estimation method

is capable for MIMO-OFDM systems driven by either white or colored sources. It

does not requires the number of the receive antennae to be strictly larger than the

number of the transmit antennae either. Furthermore, it even doesn’t require the

length of the CP to be greater than the maximum channel order. This property

makes the proposed channel estimator to be attractive in the ill conditioned envi-
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ronments. Unlike the SS method in [70], where multiple consecutive OFDM symbols

are collected and observed, the proposed algorithm is more efficient because the size

of observation window is fixed to be exactly one single OFDM symbol.

The remaining of this chapter is organized as follows. First, the statistical sys-

tem model described in Chapter 2 is recalled in Section 2.2. Then a subspace-based

blind channel estimation algorithm is proposed in Section 3.3. The identifiability,

comparison with the existing algorithm and the asymptotic performance of the pro-

posed algorithm are discussed in Section 3.4. The numerical results by computer

experiments are presented in Section 3.5. Lastly, the summary of this chapter is

given in Section 3.6.

3.2 System Model and Basic Assumptions

Without unnecessarily repeating the system modeling, we directly recall the base-

band representation of the MIMO-OFDM systems described by Eqn.(2.51) as follows

x(k) = ṪN(h)F̃cps(k) + T̈N (h)F̃cps(k − 1) + v(k) (3.1)

where s(k) is the kth block of the MIMO source signal before OFDM modulation,

x(k) is the kth block of the received signal before removing the CP, v(k) is the AWGN

noise, h is the time domain channel matrix, while ṪN (h) and T̈N(h) are respectively

the lower and upper block triangular Toeplitz matrices constructed from h, and

F̃cp , Fcp ⊗ IMt
(3.2)

where Fcp is the IFFT and CP adding matrix defined by Eqn.(2.19), and ⊗ denotes

the Kronecker product.
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In the remaining of this chapter, we adopt the following assumptions:

A1) All the sources are wide sense stationary, and spatially uncorrelated.

A2) Additive noise are spatially and temporally white noise, and they are statisti-

cally independent of the sources.

A3) ṪN(h)F̃cp and T̈N (h)F̃cp are tall matrices, i.e., MrN > MtNc.

A4) There exists an l ∈ [0, L] such that h(l) is of full column rank.

3.3 Subspace-Based Blind Channel Estimator

3.3.1 Second Order Statistics of the MIMO-OFDM Symbols

Consider the autocorrelation matrix of the source signal with block lag κ, which is

defined as follows

Rs(κ) , E{s(k)sH(k + κ)} (3.3)

Consequently, the autocorrelation matrix of the received signal before removing the

CP can be expressed as

Rx(κ) , E{x(k)xH(k + κ)}

= ṪN(h)F̃cpRs(κ)F̃
H
cpṪ H

N (h) + T̈N(h)F̃cpRs(κ)F̃
H
cpT̈ H

N (h)

+ṪN(h)F̃cpRs(κ− 1)F̃H
cpT̈ H

N (h) + T̈N (h)F̃cpRs(κ + 1)F̃H
cpṪ H

N (h)

+δ(κ)σ2
vINMr

(3.4)

where σ2
v is the noise power.
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Next, we exploit the structures of the autocorrelation matrices of the received

signals to estimate the MIMO channel. Construct the following two matrices from

the autocorrelation matrices of the transmitted and received symbols respectively

Rx(κ) ,

κ∑

j=−κ

Rx(j) (3.5a)

Rs(κ) ,

κ∑

j=−κ

Rs(j) (3.5b)

and substitute them to Eqn.(3.4), we have

Rx(κ) =
κ∑

j=−κ

(

ṪN(h)F̃cpRs(j)F̃
H
cpṪ H

N (h) + T̈N (h)F̃cpRs(j)F̃
H
cpT̈ H

N (h)

+ṪN(h)F̃cpRs(j − 1)F̃H
cpT̈ H

N (h) + T̈N(h)F̃cpRs(j + 1)F̃H
cpṪ H

N (h)
)

+ σ2
vINMr

= CN(h)F̃cpRs(κ− 1)F̃H
cpCH

N (h) + Φκ + σ2
vINMr

(3.6)

where

Φκ = CN(h)F̃cpRs(−κ)F̃H
cpT̈ H

N (h) + T̈N (h)F̃cpRs(κ)F̃
H
cpCH

N (h)

+T̈N(h)F̃cpRs(κ+ 1)F̃H
cpṪ H

N (h) + ṪN (h)F̃cpRs(−κ− 1)F̃H
cpT̈ H

N (h)

+T̈N(h)F̃cp [Rs(κ) + Rs(−κ)] F̃H
cpṪ H

N (h) (3.7)

and

CN (h) , ṪN(h) + T̈N(h) (3.8)

It should be noted that CN (h) is an NMr ×NMt block circulant matrix constructed

from the time domain channel matrix h by the similar way as CNc
(h), which is

defined by Eqn.(2.65).

Without loss of generality, we can assume that the source OFDM symbols are

correlated only when the lag κ 6 κmax (where κmax > 0), or in other words, Rs(k) =
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Rs(−k) = 0 for κ > κmax. Under this assumption, we have Φκmax+1 = 0. Thus, by

substituting κ = κmax + 1 into Eqn.(3.6), we have

Rx = CN (h)F̃cpRsF̃
H
cpCH

N (h) + σ2
vINMr

(3.9)

where we let Rx , Rx(κmax + 1), and Rs , Rs(κmax).

Lemma 3.3.1 For Mr ≥ Mt, if there exists an l ∈ [0, L] such that h(l) is of full

column rank, then CN (h) is of full column rank.

The proof of this lemma is obvious and is omitted for brevity. It should be

noted that Lemma 3.3.1 only provides a sufficient condition. In most cases, signal

propagation from each of the transmitters is most likely independent, and hence the

full column rank is almost surely guaranteed. Under assumption A4), we presume

that the full column rank condition for CN(h) holds in the rest sections of this

chapter.

3.3.2 Proposed Channel Estimation Algorithm

Under the assumptions A1) ∼ A4), CN(h)F̃cp is a tall matrix with full column rank,

and Rs is of full rank. Thus, we can apply the MUSIC algorithm which exploits the

special structure of Rx to estimate the channel. Specifically, express the SVD of Rx

as follows

Rx = UΛUH =

[

Us Un

]







Λs 0

0 Λn













UH
s

UH
n







(3.10)

where

Λs = diag[λ0 · · ·λNcMt−1] (3.11a)

Λn = diag[λNcMt
· · ·λNMr−1] (3.11b)
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and

λ0 ≥ · · · ≥ λNcMt−1 ≥ λNcMt
= · · · = λNMr−1 = σ2

v (3.12)

The NcMt × NMr matrix Us spans the signal subspace of Rx, while the (NMr −

NcMt) ×NMr matrix Un spans the noise subspace of Rx. Given Rs is of full rank,

then according to the standard subspace (SS) method, the matrix Un is orthogonal

to every column of CN (h)F̃cp. This can be equivalently expressed as

UH
n CN (h)(Tcp ⊗ IMt

)(FH
N ⊗ IMt

) = 0 (3.13)

Note that (FH
N ⊗ IMt

) is obviously of full rank. Thus the above equation can be

further derived as

UH
n CN(h)(Tcp ⊗ IMt

) = 0 (3.14)

Meanwhile, the block circulant matrix CN(h) can be written as

CN (h) = [ C̄0h C̄1h · · · C̄N−1h ] (3.15)

where C̄n, n = 0, · · · , N − 1, is defined as the matrix containing the first (L+ 1)Mr

columns of Cn, where Cn is the NMr ×NMr circulant matrix with the first column

being enMr
, and enMr

is defined as the (nMr)
th column of the identity matrix INMr

.

On the other hand, due to the structure of Tcp, it can be verified that

CN(h)(Tcp ⊗ IMt
) = [ C0h C1h · · · CNc−1h ] (3.16)

where

Cn =







C̄n+Ng
for n = 0, · · · , Nc −Ng − 1

C̄n+Ng
+ C̄n+Ng−Nc

for n = Nc −Ng, · · · , Nc − 1

(3.17)
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Define

K , [ C
H
0 Un C

H
1 Un · · · C

H
Nc−1Un

] (3.18)

and substitute to Eqn.(3.14), thus the channel matrix h can be estimated from

K
Hh = 0 (3.19)

Therefore, the channel matrix h can be estimated as the left singular vectors of

K. In practice, the autocorrelation matrices of the received signal Rx(κ) is unknown

and must be estimated from the observed data via time averaging, i.e.

Rx(κ) ≈ R̂x(κ) =
1

K

K∑

k=1

x(k)xH(k + κ) (3.20)

where K is the total number of samples collected to estimate Rx(κ). We also note

that Rx(κ) = RH
x (−κ). Hence the estimation of the matrix Rx(κ), say R̂x(κ), is

calculated by

R̂x(κ) = R̂x(0) +
κmax+1∑

κ=1

[

R̂x(κ) + R̂H
x (κ)

]

(3.21)

Therefore, the SVD is applied to R̂x, resulting in

R̂x = [ Ûs Ûn
]







Λ̂s 0

0 Λ̂n













ÛH
s

ÛH
n







(3.22)

where Ûs, Ûn, Λ̂s, and Λ̂n are the noisy estimates of Us, Un, Λs, and Λn, respec-

tively. Consequently, the noisy estimates of K is estimated accordingly, i.e.,

K̂ , [ CH
0 Ûn CH

1 Ûn · · · CH
Nc−1Ûn

] (3.23)

Ideally, if K̂ = K, the eigenvalues of KK
H are positive except the smallest one,

which is equal to 0. In such case, the channel matrix can be estimated exactly by
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solving Eqn.(3.19). However, in practice, the estimation error in K̂ may result in a

positive perturbation in the smallest eigenvalue of KK
H , and Eqn.(3.19) does not

have a nontrivial solution. Hence, we consider the following optimization criterion

function instead:

ĥ = arg min
‖h‖=1

‖hH
KK

Hh‖2 (3.24)

which is equivalent to obtain ĥ as the Mt eigen vectors according to the smallest

eigenvalue of KK
H .

Thus, we summarize our estimation algorithm as follows

1. Estimate the autocorrelation matrices of the received signal, Rx(κ) (κ =

0, · · · , κmax + 1), by Eqn.(3.20).

2. Calculate the correlation related matrix Rx by Eqn.(3.21).

3. Apply the SVD to the calculated Rx, and construct K̂ by Eqn.(3.23).

4. Apply SVD to KK
H , and take the estimated channel matrix as the Mt eigen-

vectors according to the Mt smallest eigenvalues.

3.4 Discussion

3.4.1 Identifiability

In the previous section, the subspace-based blind channel estimation method is

proposed, and the criterion function has a close-form solution which can be obtained

using the SVD method. In this subsection, we discuss the uniqueness of the proposed

estimation algorithm. I.e., we consider the problem whether or not the solution to
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to the criteria function Eqn.(3.24) is unique (up to an unitary ambiguity matrix)

and under what condition the solution will be unique.

It is not difficult to verify that if there exists a matrix ĥ which satisfies Eqn.(3.24),

then

span(CN (h)F̃cp) = span(CN(ĥ)F̃cp) (3.25)

which directly follows that

CN (h)F̃cp = CN (ĥ)F̃cpQ (3.26)

where Q is an unknown NMt ×NMr ambiguity matrix.

Define the cyclic prefix adding matrix as

Tcp ,







INc
(Nc −Ng : Nc − 1, :)

INc







(3.27)

where INc
(Nc −Ng : Nc − 1, :) denotes the submatrix of INc

which contains its last

Ng rows. Then, Eqn.(3.26) can be rewritten as

CN(h)
[(

TcpF
H
Nc

)
⊗ IMt

]
= CN(ĥ)

[(
TcpF

H
Nc

)
⊗ IMt

]
Q (3.28)

Theorem 3.4.1 Let h be a (L+1)Mr×Mt “tall” matrix with full column rank, and

CN(h) be the NMr ×NMt block circulant matrix constructed from h. If N 6= kNg

(k is an arbitrary positive integer greater than 1), and Eqn.(3.26) is satisfied, then

Q = INc
⊗ Q (3.29)

where Q is an invertible ambiguity matrix.

Proof : According to the matrix multiplication property of the Kronecker product,

Eqn.(3.28) can be rewritten as

C†
N (ĥ)CN (h) (Tcp ⊗ IMt

) = (Tcp ⊗ IMt
) F̃H

Nc
QF̃Nc

(3.30)



Chapter 3. Subspace-Based Blind Channel Estimation for MIMO-OFDM Systems 59

where F̃Nc
, FNc

⊗ IMt
. Define

C , C†
N (ĥ)CN (h) (3.31)

We note that C is a block circulant matrix. Without loss of generality, we can

assume C is constructed from the NMr ×Mt matrix ϑ, which can be divided into

blocks with size Mt ×Mt, and we denote the nth (n = 0, 1, · · · , N − 1) Mt ×Mt

block of ϑ as ϑn. Eqn.(3.30) also indicates that the first MtNg rows of of C̃ , CTcp

are identical to last MtNg rows of itself respectively. Thus, we have the following

equations






ϑ1 = ϑ1+Ng
= ϑ1+2Ng

= · · ·

ϑ2 = ϑ2+Ng
= ϑ2+2Ng

= · · ·
...

ϑNg
= ϑ2Ng

= ϑ3Ng
= · · ·

(3.32)

and

ϑ1 = ϑN−2Ng+1; ϑ2 = ϑN−2Ng+2; · · · ; ϑ2Ng−1 = ϑN−1
(3.33)

Thus, it can be verified that if N 6= kNg (k is an arbitrary positive integer greater

than 1), then ϑ1 = ϑ2 = · · · = ϑN−1.

On the other hand, recall the condition that N ≥ L + 1 and Mr ≥ Mt, which

means that hN−1 = ĥN−1 = 0. Hence, we have

0ϑ0 + hN−2ϑ1 + · · · + h0ϑN−1 = (h0 + · · ·+ hN2)ϑ1 = 0

⇒ ϑ1 = ϑ2 = · · · = ϑN−1 = 0 (3.34)

Substitute to Eqn.(3.31), we have

CN (h) = CN (ĥ)(IN ⊗ ϑ1) = CN (ĥ)(IN ⊗ Q) = CN (ĥ)Q (3.35)
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where Q = IN ⊗ ϑ1, and Q = ϑ1. �

According to Theorem 3.4.1, if ĥ the estimated channel matrix by the proposed

algorithm, then it must be satisfied that

CN (h) = CN (ĥ)(IN ⊗ Q) (3.36)

which is equivalent to

h = ĥQ (3.37)

Thus, we can conclude that the proposed estimation algorithm can uniquely esti-

mate the channel matrix up to an unitary ambiguity matrix Q. The ambiguity

matrix indeed exists in all kinds of blind channel estimators and can be remedied by

introducing extra constraints, e.g., using the blind source separation [86,87]. Thus,

we assume that the unitary ambiguity matrix is known exactly in the rest of this

chapter.

3.4.2 Comparison with the Existing Algorithm

In this subsection, we compare the proposed algorithm with the existing subspace-

based algorithm proposed in [70]. In common, both algorithms make use of the

redundancy induced by the CP. Based on the fact that the channel matrix is or-

thogonal to the noise subspace of the correlation matrix of the channel output, the

time domain channel matrix can be blindly estimated up to an ambiguity matrix.

However, despite the similarities mentioned above, the proposed algorithm differs

from the previously existing algorithm in the following aspects:

Firstly, the way to construct the criterion functions are different. The existing al-

gorithm collects multiple consecutive OFDM symbols, and calculates the correlation



Chapter 3. Subspace-Based Blind Channel Estimation for MIMO-OFDM Systems 61

matrix of the resulted “long” symbols. On the other hand, the proposed algorithm

constructs the target matrix Rx by taking the summation of the autocorrelation

matrices of the received OFDM symbols with different delay lags (See Eqn.(3.9)).

Secondly, the computational costs are different. The existing algorithms require

the correlation matrix of the collection of multiple consecutive OFDM symbols.

Therefore, the size of the correlation matrix is (KNMr − LMr)× (KNMr − LMr),

where K ≥ 2 is the number of consecutive OFDM symbols. Since the length of the

OFDM symbols N is usually quite large, it suffers the inefficiency caused by the SVD

of the large-sized correlation matrix. However, the proposed algorithm fixes the size

of the target matrix Rx to be NMr × NMr. Thus the computational costs of the

existing algorithm for calculating the correlation matrix and the SVD decomposition

are both higher than those of the proposed algorithm. Furthermore, according to

Eqn.(3.9), for the proposed algorithm, we only need to calculate the autocorrelation

matrices Rx(κ) for κ ≥ 0, since those for κ < 0 can be easily obtained by taking

Rx(−κ) = RH
x (κ). Therefore, the computational cost can be further reduced.

Lastly, the conditions for estimation are different. To benefit from the CP re-

dundancy, KNMr − LMr > KNcMt is required for the existing algorithm. Thus,

the upper bound of the channel order must be known, and K must be selected such

that

K >
LMr

NMr −NcMt
(3.38)

If there exists channel order over estimation, or the transmission environment changes,

then the existing algorithm, may not work properly. On the contrary, for the pro-

posed algorithm, besides the other common conditions, we only need Ng > 0. Obvi-
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ously, satisfying this condition is easier than satisfying Eqn.(3.38). Even when the

channel order changes, it does not influence the proposed estimator.

3.4.3 Asymptotic Performance Analysis

In this subsection, we investigate the asymptotic performance of the proposed blind

channel estimation algorithm due to the finite received data samples and the AWGN

noise. Recall Eqn.(3.22), and rewrite the noisy estimates of Us and Un as

Ûs , Us + ∆Us (3.39a)

Ûn , Un + ∆Un (3.39b)

where ∆Us and ∆Un are the perturbation in the estimated signal and noise sub-

spaces. From Eqn.(3.9) we have the following

Ξ = Rx − σ2
vINMr

=

[

Us Un

]







Λs 0

0 0













UH
s

UH
n







(3.40)

where Ξ , CN (h)F̃cpRsF̃
H
cpCH

N (h). By substituting the above estimated subspaces

components into Eqn.(3.40), we obtain

Ξ + ∆Ξ = R̂x − σ2
vI

=

[

Ûs Ûn

]







Λ̂s 0

0 ∆Λn













ÛH
s

ÛH
n







(3.41)

where ∆Ξ denotes the perturbation of Ξ and σ2
v is the noise power. In a noise free

case, we have ∆Λn = 0. Next, we consider the first order perturbation of the noise

subspace of Rx. We first introduce the following lemma in [88].
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Lemma 3.4.2 The perturbed noise subspace ∆Un is spanned by UsW and the per-

turbed signal subspace ∆Un is spanned by UnT, where W and T are the matrices

whose norms are of the order of ‖∆Ξ‖. The matrix norm can be any submultiplica-

tive norm such as the Euclidean 2-norm.

Proof : See [88]. �

At high SNR, the first order perturbation expansion of ∆Us and ∆Un can be

expressed as a linear approximation form. First, the perturbed signal subspace Ûs

and the perturbed noise subspace Ûn can be expressed as follows respectively

Ûs , Us + UnT (3.42a)

Ûn , Un + UsW (3.42b)

Left multiplying both side of Eqn.(3.41) by ÛH
n , we have

ÛH
n (Ξ + ∆Ξ) = ÛH

n (ÛsΛ̂sÛ
H
s + Ûn∆ΛnÛ

H
n )

= ∆ΛnÛ
H
n (3.43)

The second equality follows from the fact the Ûs⊥Ûn and ÛH
n Ûn = I. By substi-

tuting Eqn.(3.42a) and Eqn.(3.42b) into Eqn.(3.43), we get

(Un + UsW)H(Ξ + ∆Ξ) = ∆Λn(Un + UsW)H (3.44)

Neglect the second-order terms and use the fact that UH
n Ξ = 0, then we get

W
.
= −Λ−1

s UH
s (∆Ξ)HUn (3.45)

and consequently,

∆Un = −UsΛ
−1
s UH

s ∆ΞHUn

= −
(

CN (h)F̃cpRsF̃
H
cpCH

N (h)
)† [

∆
(

CN(h)F̃cpRsF̃
H
cpCH

N (h)
)]H

Un(3.46)
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According to the proposed estimation algorithm, the channel matrix is taken as

the Mt left singular vectors according to the smallest singular values. Thus, apply

Lemma 3.4.2 again, we get

∆h , ĥ − h = −(KH)
†
∆K

Hh (3.47)

where

∆K = [ CH
0 ∆Un CH

1 ∆Un · · · CH
Nc−1∆Un

]

= −[ CH
0 Ξ†∆ΞUn CH

1 Ξ†∆ΞUn · · · CH
Nc−1Ξ

†∆ΞUn
] (3.48)

Finally, the covariance matrix of the channel estimation error can be obtained as

E
{

∆~h∆~hH
}

=
[
IMt

⊗ (KH)†
]
E
{(

IMt
⊗ ∆K

H
)
~h~hH (IMt

⊗ ∆K)
} [

IMt
⊗ K

†] (3.49)

where ~h denotes the column vector constructed by concatenating the columns of the

matrix h.

The covariance matrix of the channel estimation error expressed in Eqn.(3.49) is

not easy to be resolved further. However, it can be assumed that it can be assumed

that κmax = 0, which greatly simplifies the derivation. This assumption is reasonable

because in many practical cases, the source signals are independent and identically

distributed (i.i.d.), or colored signals which are block precoded from the i.i.d. source.

Thus, we can model the source signal s(k) as

s(k) = Pd(k) (3.50)

where P is the MtNc ×MtNc precoding matrix, and d(k) is the i.i.d. source with

unit power such that

Rd(κ) , E
{
d(k)dH(k + κ)

}
= IMtNc

δ(κ) (3.51)
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The assumption that the source signal d(k) has unit power is reasonable, because

the transmission power can be absorbed in the precoding matrix P. Especially,

when the transmitted source signal s(k) is i.i.d., the precoding matrix must satisfy

that PPH = σ2
sIMtNc

, where σ2
s is the transmission power. Under this assumption,

we derive the covariance matrix of the channel estimation error.

Theorem 3.4.3 Assume that the noise is zero-mean i.i.d with covariance σ2
v , and

the transmitted signal is modeled as s(k) = Pd(k), where d(k) is the i.i.d. source

signal with unit power, and P is the non-redundant precoding matrix. Then the

covariance matrix of the channel estimation error is approximated by

E
{

∆~h∆~hH
}

≈
[
IMt

⊗ (KH)†
]
E
[
IMt

⊗ K
†] (3.52)

and the channel estimation MSE is

E
{

‖∆~h‖2
}

= tr{
[
IMt

⊗ (KH)†
]
E
[
IMt

⊗ K
†]} (3.53)

where the corresponding notations are defined in Appendix A.

Proof : See Appendix A. �

The channel estimation error is mainly caused by two factors: the AWGN noise

and the estimation error of the correlation matrix. On one hand, The estimation

error caused by the AWGN noise is common in the existing subspace-based chan-

nel estimation algorithms. On the other hand, the proposed estimation algorithm

prospects Φκmax+1 in Eqn.(3.7) to be a zero matrix. However, its estimation by time

averaging is perturbated by ∆Φκmax+1, which trends to be zero when the number of

the observation samples K is large.
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3.5 Simulation Results

In this section, we consider three simulation examples to illustrate the performance

of our proposed algorithm.

Example 1

In this example, we compare the NRMSE and BER performances of the proposed

estimation algorithm with the existing subspace-based algorithm in [79] and the

training based LS algorithm in [68]. The theoretical asymptotic NRMSE perfor-

mance of the proposed algorithm discussed in Section 3.4.3 is also demonstrated.

The system is driven by the white source signals which are extracted form the QPSK

constellations. The number of subcarriers for each OFDM symbol is Nc = 64, and

the length of the CP is Ng = 4 for the existing algorithm and the training based

algorithm, which are labeled as “MUSIC” and “Training Based” respectively. For

the proposed algorithm, we set the length of CP to be Ng = 4 and Ng = 1, to show

the performances in the normal and ill conditioned environments respectively.

The simulated OFDM system is equipped with 2 transmit and 2 receive antennae

respectively, and the channel is modeled as a 4-tap FIR filter with tap coefficients

independently chosen from a white Gaussian process. We simulate 30 independent

channels and each for 100 Monte Carlo runs. To evaluate the channel estimation

error, we employ the normalized-root-mean-square-error (NRMSE), which is defined

as

NRMSE =

√
√
√
√

1

N1N2

N1∑

t1=1

N2∑

t2=1

‖ĥ(t1 ,t2) − h(t1)‖2
F

‖h(t1)‖2
F

(3.54)

where ‖.‖F denotes the Frobenius norm, N1 and N2 are the number random channels
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Figure 3.1: NRMSE performance as a function of SNR
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and the number of Monte Carlo runs for each simulated channel respectively. h(t1)

is the true channel matrix, and ĥ(t1 ,t2) is the estimation of h(t1) for the tth2 Monte

Carlo run.

Figure 3.1 illustrates the NRMSE as a function of the signal-to-noise ratio (SNR).

For the subspace based algorithms, both existing and proposed, the number of the

observed OFDM symbols is set to be 1000, while 2 optimized training OFDM sym-

bols are used for the training based LS algorithm. The number of the consecutive

OFDM symbols for the existing algorithm is K = 2. From the figure, we see that

performances of these algorithms are very close to each other. Although the perfor-

mance of the proposed algorithm has an error floor when SNR is high, it does not

impact the motivation of the proposed algorithm which relies on the computational

efficiency and the identifiably. In this example, K is set to be 2 for the existing

algorithm. Therefore, when Ng = 1, Eqn.(3.38) is not satisfied, and the estimation

fails. However, from the figure, we see that the proposed algorithm works properly

regardless the length of the CP. The similar conclusion can be drawn from Figure

3.2, which illustrates the BER as a function of the SNR. The detected symbols are

the outputs of the Zero Forcing equalizers using the estimated channel coefficients.

Example 2

In this example, we evaluate the NRMSE and BER performances of the proposed

algorithm subject to different SNR and number of observed symbols (NOS), as

shown in Figure 3.3 and Figure 3.4 respectively. The parameter setting is the same

as Example 1, except that the length of CP, Ng = 4 only. Similar to the previous

example, the theoretical asymptotic NRMSE performance is as shown. We illustrate
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Figure 3.3: NRMSE performance as a function of SNR
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the performances where the number of the observed OFDM symbols being 100, 400,

700 and 1000, and the SNR from 0 to 50 dB. From these two figures, it is obvious

that the proposed estimator achieves better performances when more number of

received OFDM symbols are observed, i.e., NOS is higher. The reason is simple.

When more OFDM symbols are observed, then the estimate of the target matrix Rx

is more accurate, and consequently we get better NRMSE and BER performances.

Example 3

In this example, the simulated system is driven by the colored source. The colored

source symbols s(n) are drawn from a 4-QAM constellation according to the follow-

ing rule. Let bn be the input stream of independent and identically distributed bits,

i.e., bn ∈ {0, 1}. Then

s(n) =







−
√

(2)

2
+

√
2

2
j if (bn bn−1) = (0 0)

+

√
(2)

2
+

√
2

2
j if (bn bn−1) = (0 1)

−
√

(2)

2
−

√
2

2
j if (bn bn−1) = (1 0)

+

√
(2)

2
−

√
2

2
j if (bn bn−1) = (1 1)

(3.55)

This generates a colored symbol sequence with autocorrelation

E{s(n)s∗(n+ τ)} =







1 if τ = 0

∓1
2
j if τ = ±1

0 else

(3.56)

Therefore, in this example, κmax = 1, and hence

R̂x , R̂x(κmax + 1) =

2∑

κ=−2

R̂x(κ) (3.57)
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Figure 3.5: NRMSE performance as a function of SNR
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Figure 3.5 and Figure 3.6 illustrate the NRMSE and BER performance of the

proposed estimation algorithm, together with the existing SS method [79] and the

training based algorithm [68]. The parameter setting is the same as Example 1,

except that the number of the observed OFDM symbols for proposed and existing

SS methods are both 2000. Comparing these two figures with Figure 3.1 and Figure

3.2, we see that there exists performance degradation of the proposed algorithm

when source signals are changed to colored. This performance degradation is due

to the inaccuracy of the estimation of the target matrix Rx. In this example, the

maximum delay lag of the nonzero correlation matrix Rx(κ) is κmax = 1. Thus, two

more correlation matrices, Rx(±2), need to be involved into Rx, which brings in

extra estimation error. On the other hand, the existing MUSIC algorithm does not

face such problem. Thus the performance of the proposed algorithm is worse than

the existing MUSIC algorithm in this case. It must be pointed out that if the delay

lag τ is bigger, then the performance of the proposed algorithm will depredate even

more. However, although the proposed algorithm faces the performance degradation

problem, it is still valuable because its motivation relies on its computation efficiency

comparing with the existing MUSIC algorithm. Moreover, the source signals are

white in many practical cases. Therefore, the proposed estimation algorithm still

achieves fairly attractive performance in practice.

3.6 Summary

In this chapter, we proposed a new SS based method that admits a closed-form

solution for blind channel estimation of MIMO-OFDM systems. The uniqueness of
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the solution and the asymptotic performance analysis are presented. This proposed

estimation algorithm does not require the number of the receive antenna to be

greater than the transmit antenna. It neither requires the length of CP to be

greater than the channel order. It is also more computationally efficient than the

existing SS method for MIMO-OFDM systems. These properties make the proposed

channel estimator to be attractive, especially in the ill conditioned environment. The

analytical and the simulated NRMSE and BER performance were both presented.

The existing SS algorithm and the training based LS algorithm were also simulated

as comparisons. The simulations were carried out in two environments, where the

systems were driven by white and colored source signals respectively. It was shown

that the proposed estimation algorithm is more attractive when the source signal is

white.



Chapter 4

Blind Channel Estimation For

Linearly Precoded MIMO-OFDM

Systems

4.1 Introduction

In the previous chapter, we proposed a subspace (SS) based method for blind channel

estimation of MIMO-OFDM systems, which exploits the redundancy introduce by

the CP. In general, most of the existing SS algorithms for MIMO-OFDM systems

are processed in the time domain before removing the guard interval. Hence, they

are either designed for CP based OFDM [70] or ZP based OFDM [74], and are not

suitable for both simultaneously. Besides, some strict requirements must be satisfied

for the SS methods [4].

Using the precoding based algorithm is a way to solve these problems. Fre-

74
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quency domain linear precoding is an effective method to compensate the lack of

the multipath diversity for OFDM systems so as to avoid the catastrophic effects of

channel zeros at certain subcarriers [108]. It also motivates an alternative method

for blind channel estimation. There are mainly two types of the precoding schemes,

redundant [81, 109, 113] and nonredundant [83, 114–116]. The algorithms for the

redundantly precoded OFDM systems exploit the noise subspace freedom of the sig-

nal correlation matrix, and directly apply the existing SS algorithms. In [81], a SS

method was proposed for space-time coded (STC) MIMO-OFDM systems with the

assistance of properly designed redundant linear precoding. In [109], a SS method

was proposed for the ZP based MIMO STC-OFDM system extended from the system

in [111]. In [83], a SS method was proposed by considering the existence of virtual

subcarriers (VCs). In fact, using VCs can be viewed as a special case of linear pre-

coding. On the other hand, the nonredundant precoding provides cross correlations

between the signals transmitted on different subcarriers. Based on the assumption

that the transmitted symbols are independent and identically distributed to each

other, a new type of blind channel estimation method for SISO-OFDM systems has

been proposed in [114–116], where a nonredundant linear precoder is used at the

transmitter, and the CSI is possessed in all entries of the signal covariance ma-

trix. In [117], a SS method was proposed by using the second order cyclostationary

statistics induced by employing a periodic nonconstant-modulus antenna precoding.

In this chapter, we propose a novel approach for blind MIMO-OFDM channel

estimation. A nonredundant linear precoder is applied to each source data block

before the conventional OFDM transmission. Due to the structure introduced by
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the precoding matrix, the channel can be estimated at the receiver based on general

SVD operations. In many existing algorithms, the assumption that the channel

transfer functions share no common zeros at subcarrier frequencies is necessary.

However, our proposed algorithm can still work even when this assumption is not

fulfilled. The asymptotic performance analysis of the proposed algorithm and the

SNR degradation caused by the precoding scheme are also discussed.

The rest of this paper is organized as follows. In Section 4.2, we review the

MIMO-OFDM system model and formulate the problem. In Section 4.3, we pro-

pose the blind estimation algorithm with the assistance of linear precoder. The

identifiability, precoder designing, SNR degradation due to the precoder, and the

asymptotic performance are discussed in Section 4.4. Simulations results are demon-

strated in Section 4.5, and summary of this chapter is presented in the last section.

4.2 System Model

Figure 4.1: Linearly Precoded MIMO-OFDM System Block Diagram
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Consider the above MIMO-OFDM system equipped with Mt and Mr transmit

and receive antennae respectively. Define the kth block of data stream to be trans-

mitted by the ith (i = 1, · · · ,Mt) transmit antenna as

di(k) ,

[

di(k, 0) di(k, 1) · · · di(k,Nc − 1)

]T

(4.1)

where Nc is the number of subcarriers. We assume that the transmitted signals are

independent and identically distributed (i.i.d.) with zero-mean and unit variance.

A Nc ×Nc precoding matrix P is applied to each block, mapping them as

si(k) = Pdi(k) (4.2)

Then the coded blocks are then transmitted through conventional MIMO-OFDM

systems as shown in Figure 4.1. Let hj,i(l), (i = 1, · · · ,Mt, j = 1, · · · ,Mr, l =

0, · · · , L) denote the lth tap of the time domain channel impulse response between the

ith transmit antenna and the jth receive antenna, where L is the maximum channel

order. We assume that the channel stays the same for a number of successive symbol

blocks. Hence, the received signals after removing CP and FFT demodulation at

the jth receive antenna is given by

yj(k) =
Mt∑

i=1

D(Hji)si(k) + nj(k) (4.3)

where nj(k) is the zero mean white Gaussian noise vector with variance σ2
nINc

,

D(Hji) denotes the diagonal matrix with the elements of vector Hji along its di-

agonal, and Hji represents the frequency domain channel vector for each transmit-

receive antenna pair, which is mathematically defined as

Hj,i ,

[

Hj,i(0) · · · Hj,i(Nc − 1)

]T

(4.4)
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where

Hj,i(n) =

L∑

l=0

hj,i(l)e
−j 2π

Nc
nl (4.5)

for n = 0, · · · , Nc − 1, i = 1, · · · ,Mt, and j = 1, · · · ,Mr.

Our task is to estimate the channel matrices Hji, (for i = 1, · · · ,Mt, j =

1, · · · ,Mr), through the received OFDM symbols yj(k).

4.3 Proposed Blind Channel Estimation

Without loss of generality, we focus on the wireless channels associated with the j th

receive antenna. Consider the correlation matrix of the received signal

Ryj
, E

{
yj(k)y

H
j (k)

}

= E







(
Mt∑

i1=1

D(Hj,i1)si1(k) + nj(k)

)(
Mt∑

i2=1

D(Hj,i2)si2(k) + nj(k)

)H






=
Mt∑

i=1

D(Hj,i)PPHD(Hj,i)
H + σ2

nI (4.6)

According to the properties of the diagonal matrices, it is not difficult to verify that

D(Hji)PPHDH(Hj,i) = Hj,iH
H
j,i � PPH (4.7)

where � denotes the element-by-element multiplication of two matrices with iden-

tical size. Assume P is of full rank, and Φ has unit diagonal entries and no zero

entries, where we define Φ , PPH. Hence, we can perform the element-by-element

division of Ryj
by Φ

Ryj
, Rrj

� Φ =
Mt∑

i=1

Hj,iH
H
j,i + σ2

nI (4.8)
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Note that the noise correlation matrix E
{
nj(k)n

H
j (k)

}
= σ2

nI keeps unchanged after

the element-by-element division since all the diagonal entries of Φ are ones.

Define the Nc ×Mt matrix Hj as

Hj ,

[

Hj,1 · · · Hj,Mt

]

(4.9)

Then Eqn.(4.8) can be rewritten as

Ryj
= HjH

H
j + σ2

nI (4.10)

In fact, matrix Ryj
forms the outer-product of the channel matrix Hj [42]. Hence,

the singular-value decomposition (SVD) of Ryj
can be used to estimate the channel

matrix [7]. Let the SVD of Ryj
given in Eqn.(4.10) be denoted as

Ryj
=

[

Us Un

]













Λs

0







+ σ2
nI













UH
s

UH
n







(4.11)

Then Hj can be estimated by

Ĥj = UsΛ
1
2
s = HjQj (4.12)

where Qj is the constant unitary ambiguity matrix. The ambiguity matrix indeed

exists in all kinds of blind channel estimators and can be remedied by introducing

extra constraints, e.g., using the blind source separation methods proposed in [119,

120]. Thus, we assume that the unitary ambiguity matrix is known exactly in the

rest of this chapter. Later in Chapter 5, we discuss the problem of blind source

separation to remove this ambiguity matrix.

By repeating the above procedures to each receive antenna, all the channels can

be estimated up to different unitary ambiguity matrices, which need to be “syn-

chronized”. This is very inefficiency. To avoid this, we introduce another method
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to estimate the remaining channels so that this “synchronizing” requirement can be

avoided.

Consider the cross-correlation matrix of the noisy signals received by the tth and

the jth receive antenna respectively, for t = 1, · · · ,Mr and t 6= j, we have

Ryt,j
, E

{
yt(k)y

H
j (k)

}

=

Mt∑

i=1

D(Ht,i)AAHDH(Hj,i)

=
Mt∑

i=1

Ht,iH
H
j,i � Φ (4.13)

Similar to Eqn.(4.8), we perform the element-by-element division of Ryt,j
by Φ,

hence we get

Ryt,j
, Ryt,j

� (PPH) = HtH
H
j (4.14)

Multiply Ryt,j
with the pseudo-inverse of ĤH

j , where Ĥj is the estimated channel

matrix associated with the jth receive antenna, which is given by Eqn.(4.12). Thus

we have

Ĥt = Ryt,j
(ĤH

j )† = HtH
H
j (QH

j HH
j )† = HtQj (4.15)

By repeating the above procedure to all the Mr − 1 remaining receive antennae, the

channel matrices can be estimated up to the same unitary matrix Qj. Since all of the

channel matrices associated with the remaining receive antennae are estimated based

on the previously estimated matrix Hj, the jth receive antenna is therefore referred

to as the “reference” antenna. Meanwhile, we name the other receive antennae as

“normal” antenna.
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In practice, the auto and cross correlation matrices are estimated by the time-

domain average of the received symbol blocks, i.e.,

R̂yj
=

1

K

K−1∑

k=0

yj(k)y
H
j (k) (4.16a)

R̂ytj
=

1

K

K−1∑

k=0

yt(k)y
H
j (k) (4.16b)

where K is the total number of OFDM symbols collected to calculate the auto-

and cross- correlation matrices. It is evident that the above estimate of the corre-

lation matrices converges in the mean-square sense to Ryj
and Rytj respectively.

Thus, in practice, the channel estimation is obtained by the above procedures after

substituting Ryj
and Rytj with R̂yj

and R̂ytj respectively.

Eqn.(4.15) also implies that for any subcarrier, the ambiguity matrices are all

identical. Hence, it is not difficult to verify that the kth block of equalized signal

on the nth subcarrier is ŝ(k, n) = Qs(k, n). Thus, the transmitted signal can be

recovered by applying any source separation algorithm. Note that we only need to

identify Q for one out of Nc subcarriers, since Q is identical for all subcarriers.

Therefore we can summarize our estimation algorithm as follows

1. Select a receive antenna j and calculate the auto-correlation matrix Ryj
by

Eqn.(4.16a).

2. Perform the element-by-element division to Ryj
by Φ , PPH as Eqn.(4.8),

and get the matrix Ryj
.

3. Apply SVD to Ryj
, and get the estimation of the channel matrix associated

with the jth receive antenna, Ĥj, (up to an unitary matrix Qj) as Eqn.(4.12).
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4. Check whether Ĥj is of full column rank. If yes, continue; otherwise, choose

another receive antenna, and go to step 1.

5. Calculate the cross correlation matrix Ryt,j
and hence Ryt,j

for all t 6= j.

6. Estimate Ht (up to the same unitary matrix Qj) by right multiplying Ryt,j

with the pseudo inverse of ĤH
j as Eqn.(4.15).

4.4 Discussion

4.4.1 Identifiability

The proposed algorithm can identify any channel up to a unitary ambiguity matrix as

long as Φ has unit diagonal entries and no zero entries, and Hj is of full column rank.

Note that we need only one out of Mr channel matrices to be of full column rank.

Once Hj is estimated, the other Ht (t 6= j) can be estimated regardless of the rank of

Ht. The uniqueness of the proposed estimator is guaranteed by the uniqueness of the

SVD. Moreover, the traditional blind channel estimation algorithms for MIMO- or

SIMO-OFDM usually require the channel transfer functions do not share common

zeros at the subcarrier frequencies [109]. However, this assumption may not be

satisfied necessarily. On the other hand, according to the uniqueness of the SVD,

the identifiability of our proposed algorithm is guaranteed even when this assumption

is not fulfilled.
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4.4.2 Precoder Design

As discussed in Section 4.2, the precoding matrix P should satisfy that Φ , PPH

has unit diagonal elements and no zero elements. Assume P is an arbitrary M ×M

full rank and symmetric matrix with unit diagonal elements. Denote the SVD of Φ

as

Φ = UΛVH (4.17)

Since Φ is of full rank, then UΛ
1
2VH is also full rank. Thus, the precoding matrix

can be designed as

P = UΛ
1
2 VH (4.18)

Without loss of generality, we can enforce all of the non-diagonal elements of Φ

being the real number φ, (φ 6= 1), i.e.,

Φ =















1 φ · · · φ

φ 1
. . .

...

...
. . .

. . . φ

φ · · · φ 1















(4.19)

In this situation, the precoding matrix P is a circulant matrix. It should be noted

that the precoder proposed in this section is only one of the possible precoders. The

optimization of the precoder design is yet to be studied.

4.4.3 SNR Analysis

In this subsection, we focus on the SNR degradation caused by the precoder. We

assume that the channel is perfectly estimated, while the signal is detected by the
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zero forcing criterion. In the conventional MIMO-OFDM system without precoding,

the kth detected OFDM symbol is given by

d̂(k) = d(k) + [D(H)]† n(k) = d(k) + e(k) (4.20)

where the channel matrix H and the block diagonal matrix D(H) are defined by

Eqn.(2.73) and Eqn.(2.67) in Chapter 2 respectively, and e(k) = [D(H)]† n(k) is the

detection error. According to the structure of n(k) and P, e(k) can be written as

e(k) =

[

eT (k, 0), · · · , eT (k,Nc − 1)

]T

(4.21)

where

e(k, n) =

[

e1(k, n), · · · , eMt
(k, n)

]T

(4.22)

and ei(k, n) is the detection error of element the kth OFDM symbol associated with

the nth subcarrier and the ith transmit antenna. Define

ei(k) =

[

ei(k, 0), · · · , ei(k,Nc − 1)

]T

(4.23)

Substitute to Eqn.(4.20), then the detected signal of the ith user can be written as

d̂i(k) = di(k) + ei(k) (4.24)

Thus, the SNR of signal transmitted on the nth subcarrier through the ith transmit

antenna is given by

SNRu(i, n) =
E{|di(k, n)|2}
E{|ei(k, n)|2} =

βi(n)

γi(n)
(4.25)

On the other hand, the detected and decoded signal in the precoded MIMO-

OFDM system is

d̂i(k) = di(k) + P−1ei(k) (4.26)
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Hence, the SNR is modified as

SNRc(i, n) =
E{|di,n(k)|2}

∑Nc−1
m=0

(
|p′n,m|2E{|ei,m(k)|2}

)

=
β(i, n)

∑Nc−1
m=0

(
|p′n,m|2γ(i,m)

) (4.27)

where p′n,m is the (n,m)th element of P−1.

Lemma 4.4.1

minn SNRu(i, n)

ϕn
6 SNRc(i, n) 6

maxn SNRu(i, n)

ϕn
(4.28)

where ϕn is the nth diagonal element of (PHP)−1.

Proof : One can verify that
∑Nc−1

m=0 |p′n,m|2 = ϕn, which is the nth diagonal element

of (PHP)−1, thus we have

ϕnγmin(i, n) 6

Nc−1∑

m=0

(
|p′n,m|2γ(i,m)

)
6 ϕnγmax(i, n) (4.29)

Substitute Eqn.(4.29) to Eqn.(4.27), we have

β(i, n)

ϕnγmax(i, n)
6 SNRc(i, n) 6

β(i, n)

ϕnγmin(i, n)
(4.30)

which is equivalent to Eqn.(4.28). �

Particularly, if the circulant precoding matrix which satisfies Eqn.(4.19) proposed

in Section 4.4.2 is used, then it can be verified that

ϕn =
1

Nc

[
1

1 + (Nc − 1)φ
+
Nc − 1

1 − φ

]

(4.31)

for n = 0, · · · , Nc−1. Since ϕn is a function of φ, then the SNR and hence the BER

performance can be controlled by carefully selecting φ.
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4.4.4 Asymptotic Performance Analysis

We derive the asymptotic performance of the proposed channel estimator based

on the first order perturbation theory of SVD [88]. From Eqn.(4.11) we have the

following equation

HjH
H
j = Ryj

− σ2
nI

=

[

Us Un

]







Λs

0













UH
s

UH
n







(4.32)

Define the noisy estimates of the signal and noise subspace of Ryj
as follows respec-

tively

Ûs , Us + ∆Us (4.33a)

Ûn , Un + ∆Un (4.33b)

where ∆Us and ∆Un are the perturbation in the estimated signal and noise subspace

respectively. Hence we obtain

HjH
H
j + ∆(HjH

H
j ) = R̂yj

− σ2
nI

=

[

Ûs Ûn

]







Λ̂s

∆Λn













ÛH
s

ÛH
n







(4.34)

where ∆(HjH
H
j ) = ∆Ryj

denotes the perturbation of HjH
H
j due to the limited

number of observation symbols and the AWGN noise. In the noise free case, we

have ∆Λn = 0.

According to Lemma 3.4.2, the first order perturbation expansion of ∆Us and
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∆Un can be expressed as a linear approximation form, i.e.,

Ûs , Us + UnT (4.35a)

Ûn , Un + UsW (4.35b)

Left multiplying both side of Eqn.(4.34) by ÛH
n , we have

ÛH
n

[
HjH

H
j + ∆(HjH

H
j )
]

= ÛH
n (ÛsΛ̂sÛ

H
s + Ûn∆ΛnÛ

H
n )

= ∆ΛnÛ
H
n (4.36)

The second equality follows from the fact the Ûs⊥Ûn and ÛH
n Ûn = I. By substi-

tuting Eqn.(4.35a) and Eqn.(4.35b) into Eqn.(4.36), we get

(Un + UsW)H(Ξ + ∆Ξ) = ∆Λn(Un + UsW)H (4.37)

Neglect the second-order terms and use the fact that UH
n Hj = 0, then we get

W
.
= −Λ−1

s UH
s

[
∆(HjH

H
j )
]H

Un (4.38)

and consequently,

∆Un ≈ −UsΛ
−1
s UH

s

[
∆(HjH

H
j )
]H

Un (4.39)

Using the orthogonality between the perturbed signal and noise subspace, we have

ÛH
n Ûs = (Un + UsW)H(Us + UnT) = 0 (4.40)

Since UH
n Us = 0, the above equation can be simplified as

T = −WH (4.41)

which directly leads to the result that

∆Us = UnU
H
n ∆Ryj

VsΛ
−1
s (4.42)
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Since the channel is estimated up to an unitary ambiguity matrix, then it is not

meaningful to compare the estimated channel Ĥj with the true channel Hj directly.

Instead, we compare Ĥj and H̃j, where

H̃j , HjQ
−1 (4.43)

and Q is the ambiguity matrix, which is assumed to be known. Define the channel

estimation error associated with the jth receive antenna as

∆Hj , Ĥj − H̃j (4.44)

Next we consider the bias and the mean-square error (MSE) of the proposed esti-

mator, which are defined as follows respectively,

Bias , E{∆Hj} (4.45a)

MSE , E{‖∆Hj‖2
F} = tr

(
E{∆HjH

H
j }
)

(4.45b)

The following Theorem 4.4.2 and Theorem 4.4.3 settles the asymptotical perfor-

mance analysis of the “reference” and “normal” channel matrices respectively.

Theorem 4.4.2 The proposed blind channel estimator of the “reference” channel

matrix, Ĥj, is asymptotically unbiased (i.e. E{∆Hj} = 0 and the estimated channel

MSE is

MSE =
1

K

Mt∑

i=1

tr
(
UH

n Ei,iUn

)
(4.46)

Proof : See Appendix B. �

Theorem 4.4.3 The proposed blind channel estimator of the “normal” channel

matrices, Ĥt (t = 1, · · · ,Mt, t 6= j), is asymptotically unbiased (i.e. E{∆Ht} = 0),
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Figure 4.2: NRMSE as a function of parameter φ

and the estimated channel MSE is

MSE =
1

K

Mt∑

i=1

tr
{

Ξ̈i + Ψi + Υi + Ωi

}

(4.47)

where the notations are defined in Appendix C accordingly.

Proof : See Appendix C. �

The above two theorems figure out the theoretical mean-square error (MSE) of

the proposed channel estimator, which is related to the choice of the precoder. The

mathematical expression of these two theorems may not be intuitive. Therefore,

we present Fig. 4.2, which illustrates the theoretical normalized-mean-square-error

(NMSE) [110] as the function of φ in a noise free 2I2O-OFDM system. It is shown

that when φ is closer to 1, the estimation performance is better. This is not strange

because φ is the cross correlation of source data carried by different subcarriers.
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When they are more correlated, the more redundant information is brought in.

However, this also causes the SNR degradation. Hence, we need to balance them.

4.5 Simulation Results

In this section, we provide some simulation results to illustrate the performance of

the proposed estimator. The simulated OFDM system is modeled containing 64

subcarriers, i.e. M = 64. Each OFDM symbol consists of 68 elements including

the guard interval of length 4, i.e. Mg = 4. The system is equipped with 2 trans-

mit antennas and 2 receive antennas, and the channel model used is a 3-tap FIR

filter with tap coefficients independently chosen from a white Gaussian process. As

discussed, the proposed algorithm is suitable for both CP and ZP based OFDM sys-

tem. Therefore, both of these two kinds of OFDM systems are simulated, and their

performances are both illustrated for comparison. Additionally, we also simulate a

training based LS channel estimation algorithm.

To evaluate the channel estimation error, we employed the normalized-root-

mean-square-error (NRMSE) [110], which is defined as

NRMSE =

√
√
√
√

1

N1N2

N1∑

t1=1

N2∑

t2=1

‖Ĥ(t1,t2) − H(t1)‖2
F

‖H(t1)‖2
F

(4.48)

where ‖.‖F denotes the Frobenius norm, N1 and N2 are the number random channels

and the number of Monte Carlo runs for each simulated channel respectively. H(t1)

is the true channel matrix, and Ĥ(t1,t2) is the estimation of H(t1) for the tth2 Monte

Carlo run.

Figure 4.3 and Figure 4.4 illustrate the NRMSE and BER performance as func-

tions of SNR respectively. We simulate 30 independent channels and each for 100
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Figure 4.3: NRMSE performance as a function of SNR
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Figure 4.4: BER performance as a function of SNR
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Figure 4.5: NRMSE performance as a function of NOS
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Figure 4.6: BER performance as a function of NOS
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Monte Carlo runs. The number of the observed OFDM symbols (NOS) is fix to be

500. From Figure 4.3 We can see that our proposed estimator can achieve a lower

NRMSE than the training-based LS algorithm at moderate or low SNR. The figure

also indicates that NRMSE performance of the proposed method can be controlled

by carefully selecting φ, as discussed in the previous section. On the other hand, as

shown in Figure 4.4, the proposed estimation algorithm can achieve a BER perfor-

mance close to the LS estimator if φ is small. As discussed in Section 4.4.4, when φ

is small enough, the SNR degradation caused by the precoding is suppressed. Thus,

the proposed BER performance can improved. However, this will cause the NRMSE

performance degradation. Thus, we need to balance them.

As discussed, the auto-correlation and cross-correlation matrices, R̂yj
and R̂ytj

,

are estimated by Eqn.(4.16a) and Eqn.(4.16b) respectively, where the estimation

accuracy depends on the number of observed OFDM symbols (NOS). Figure 4.5

and Figure 4.6 illustrate the NRMSE and BER performances as functions of NOS

respectively. From these two figures, we see that the proposed estimation algorithm

achieves better performance when NOS is increased. The reason is obvious. When

NOS is larger, the estimation of R̂yj
and R̂ytj

are more accurate, which leads to a

better performance. Meanwhile, as same as the last two figures, Eqn.(4.16a) and

Eqn.(4.16b) prove again that φ is a key parameter which influences the NRMSE and

BER performance of the proposed estimator.

In Figure 4.7, we examine the NRMSE performance of the “reference” and “nor-

mal” channel matrices for CP based MIMO-OFDM systems. The overall perfor-

mance is also shown. We select the parameter of the precoding matrix to be φ = 0.72,
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Figure 4.7: NRMSE performance of “reference” and “normal” channels as functions

of SNR

and the other parameter settings are the same as those for Figure 4.2. It can be seen

from the figure that when SNR is high, the computer experiment result is close to

the theoretical performance proposed in Theorem 4.4.2 Theorem 4.4.3. The figure

also indicates that the estimation error of “normal” channel matrix is higher than

that of the “reference” channel matrix. The reason is obvious. Since the “normal”

channel matrix is estimated based on the estimated “reference” channel matrix, the

estimation error of the “reference” channel is thus accumulated into the error of the

“normal” channel.
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4.6 Summary

We presented a novel blind channel estimation method for MIMO-OFDM system

where the source data is linearly precoded. With the assistance of a nonredundant

linear precoder, the channel can be estimated blindly by exploiting the correlation

matrix of the received signal. The proposed algorithm can identify the channel even

when the channel transfer functions share zeros at subcarrier frequencies. Simula-

tions show that the proposed algorithm compares favorably to the training based LS

algorithm in both NRMSE and BER performance. The performance of the proposed

algorithm could be further improved by optimizing the precoder, which is an open

question.



Chapter 5

A Geometric Method for BSS of

Digital Signals with Finite

Alphabets

5.1 Introduction

Blind deconvolution is a problem of considerable interest in diverse fields including

seismology, radio astronomy, underwater acoustics [118]. The goal of blind decon-

volution is the recovery of signals transmitted through an unknown channel based

solely on the channel’s output without access to its input. The two most common

applications of blind deconvolution in communication systems are channel identifi-

cation and source separation. The former deals with the recovery of the signal with

the inter-symbol interference (ISI) caused by the channel distortion. The latter deals

with the simultaneous recovery of a number of signals with inter-user interference

96
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(IUI) that are caused by the multiple antenna transmission.

In the previous chapters, the problem of blind channel identification is discussed,

and three blind channel estimation methods are proposed for the MIMO-OFDM

systems. It is shown that the first two methods can blindly estimate the MIMO-

OFDM channels up to an invertable ambiguity matrix which need to be further

removed. Unfortunately, this ambiguity matrix can not be directly removed by the

proposed estimation algorithms. In fact, this is a common problem in many of the

existing blind MIMO channel estimation methods.

The problem of removing the ambiguity matrix can be referred to as the problem

of blind source separation (BSS), which is discussed in this chapter. This BSS prob-

lem has been of considerable interest in wireless digital communications and other

fields. Past work on this problem include [119–126]. Among them, [119, 122, 123]

are iterative methods and suffer from local optima. They, usually, require a good

initialization in order to minimize the problem of local minima. In [121], an ana-

lytical method based on a generalized eigenvalue decomposition was developed for

the constant modulus sources. Some techniques that rely directly on HOS cumu-

lants were introduced in [124–126]. In [124], an adaptive separation algorithm which

is free of undesired stationary point for an arbitrary number of users was derived

from a constrained multiuser kurtosis optimization criterion. However, the HOS

technique often requires a large number of observation samples for the accuracy of

the numerical result, and the computational cost is comparably large. Furthermore,

the source signal must be non-Gaussian, and their kurtosis must have the same

sign [128]. A geometric approach for the blind separation of instantaneous mixtures
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of digital signals was proposed in [120]. However, this method is specific only to the

BPSK signals.

In this chapter, we propose a geometric non-iterative method that separates

signals with the M-ASK or QAM digital format. We focus on the non-iterative

algorithm development for the whitened real case. We compare our proposed method

to the hyperplane-based algorithm [122] which has been shown to be a fast algorithm

with similar performance as iterative least squares with projection (ILSP) [119]. The

kurtosis-based algorithm [124] is also simulated as a comparison. It is shown that

our proposed algorithm achieves a lower SER that both [122] and [124].

5.2 Problem Formulation

Consider a general MIMO FIR system which is equipped with Mt and Mr transmit

and receive antennae respectively. We assume that no intersymbol interference is

present, and the transmitted signals are M-ASK or QAM digital signals with are

spatially independent. Thus the array output vector is an instantaneous mixture

of the Mt transmitted source signals. Hence, the array output vector x(n) can be

written as

x(n) = Hs(n) + w(n) (5.1)
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where

x(n) ,

[

x1(n) x2(n) · · · xMr
(n)

]T

(5.2a)

s(n) ,

[

s1(n) s2(n) · · · sMt
(n)

]T

(5.2b)

w(n) ,

[

w1(n) w2(n) · · · wMr
(n)

]T

(5.2c)

where s(n) is the vector of symbols from the alphabet S generated by the Mt sources,

w(n) is a vector of Mr dimensional additive noise, H is an Mr × Mt unknown

instantaneous mixture matrix. To recover all source signals, it is assumed that H is

full column rank. If we concatenate N snapshots of the received data as

X ,

[

x(1) x(2) · · · x(N)

]

(5.2b)

then we have

X = HS + W (5.2c)

where we define

S , [s(1) · · · s(N)] (5.4a)

W , [w(1) · · · w(N)] (5.4b)

Here we assume that N is large enough to satisfy the so-called “sufficient excitation

condition”, i.e. every combination vector of length Mt with elements from M-ASK

or QAM alphabet S appears at least once in S. Our objective is to recover H and S

up to a permutation matrix and a diagonal matrix from the received data X only.
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5.3 Proposed Source Separation Algorithm

5.3.1 Real Case: M-ASK Alphabets

We first consider the M-ASK signals, i.e.

SM−ASK = {±1,±3, · · · ,±(M − 1)}

Also, we assume that the channel matrix H and the noise matrix W are real since

the complex equation X = HS + W can be easily converted into the following real

equation







XR

XI







=




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





S +







WR

WI







(5.5)

where the superscripts [·]R and [·]I denote real and imaginary parts of the matrices,

respectively. We now enumerate the steps for our source separation algorithm.

Clustering

In the presence of channel noise w(n), the observed data constellation is a union of

clusters centered around the points x̃i = Hs̃i; i = 1, . . . , d, where d is the number

of clusters. Without loss of generality, the channel matrix H is assumed to be full

column rank, and hence the number of clusters is d = M p. Define Sd
4
= [̃s1 · · · s̃d]

which represents the p× d matrix containing exactly d distinct column vectors with

elements from the M-ASK alphabet. The cluster centers x̃i can be extracted by

using the unsupervised clustering algorithms such as the Neural gas algorithm [127]

and the smallest distance clustering algorithm [120] (See [127] for a comprehensive

treatment of unsupervised clustering methods). If we concatenate the extracted
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cluster vectors x̃i as

Xd
4
= [x̃1 · · · x̃d] (5.6)

then, theoretically, the matrix has the form:

Xd = HSd (5.7)

Whitening

We now whiten the data set Xd by utilizing the following easily verified property:

SdS
T
d = KrI, where Kr = 2M (p−1)(12 + 32 + · · · + (M − 1)2). Let H = UDVT be

the singular value decomposition (SVD) of H, thus we have

XdX
T
d

Kr
= HHT = UDDTUT = ŪΣŪT (5.8)

where Ū denotes the submatrix of U from 1st column to pth column, Σ
4
= diag(σ2

1 , · · · , σ2
p),

σi denotes ith singular value of H. The whitening matrix is defined as W
4
= Σ− 1

2 ŪT .

We can then form the whitened data set as

Zd = WXd = WHSd = QSd (5.9)

where Q is a p× p real unitary channel matrix to be determined.

Geometric Approach for Channel Estimation and Source Recovery

The objective of this step is to estimate Q from the whitened data set Zd. Let

dis(z̃i, z̃j)
4
= ‖z̃i−z̃j‖ denotes the Euclidean distance in Rp between two constellation

points. It is clear that we have the following

dis(z̃i, z̃j) = ‖z̃i − z̃j‖ = ‖Q(̃si − s̃j)‖ = ‖s̃i − s̃j‖

= dis(̃si, s̃j) (5.10)
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Notice that for any i 6= j, dis(̃si, s̃j) is minimized if and only if s̃i and s̃j differ only

in one bit by 2, i.e. s̃i − s̃j = ±2ek, k ∈ {1, . . . , p}, where ek denotes the unit vector

with its kth entry equal to one, and its other entries equal to zero. Therefore, for

each pair of {z̃i, z̃j} that minimizes dis(z̃i, z̃j), we have

z̃i − z̃j = Q(̃si − s̃j) = ±2Qek k ∈ {1, . . . , p} (5.11)

Thus some column of the unitary matrix Q can be determined up to a sign. It is

clear that for each constellation point z̃i, there exist p nearest neighboring vectors

z̃jk
; k = 1, . . . , p that allow us to recover all p distinct columns of Q up to a sign

and a permutation of the columns. This implies that the received data constellation

geometry is very rich in information pertaining to the channel. In this case, it is

desirable to find a way that can extract the channel information from the constel-

lation geometry more accurately at a moderate or low SNR. Notice that we have

‖z̃i‖ = ‖s̃i‖ and usually, the constellation points with maximum vector norm con-

tains the highest signal power, and hence achieves the highest SNR. Thus, these

points are less likely to be confused. Therefore we can summarize our geometric

approach as follows

1. Choose 2p vectors z̃ik , k = 1, . . . , 2p that have maximum vector norm.

2. Choose one vector from z̃ik , k = 1, . . . , 2p as a reference vector such that

‖z̃iref
‖ − √

p(M − 1) is minimal.

3. Choose p nearest neighboring vectors z̃nbk
, k = 1, . . . , p of z̃iref

from z̃ik , k =

1, . . . , 2p by computing the Euclidean distance between z̃iref
and z̃ik .
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4. The unitary matrix Q is then estimated as

Qe =

[

z̃iref
− z̃nb1 · · · z̃iref

− z̃nbp

]

(5.12)

The column normalized Qe is an estimate of Q up to a sign and a permutation

of the columns.

5. The input symbols are estimated as Se = Q−1
e WX.

5.3.2 Extension to The Complex Case: QAM Alphabets

We now discuss the extension of our source separation algorithm to the QAM alpha-

bets, i.e. SQAM = {α+ jβ : α, β ∈ SM−ASK}. The complex extension is described as

follows. As for the QAM alphabets, we still have SdS
H
d = KcI, where Kc is a con-

stant implicitly determined by the alphabets and the number of sources p. Therefore

the observed data set Xd can be whitened by following the same way as in the real

case. We have Zd = QSd, where Q is a p × p complex unitary matrix (note that

H is allowed to be a complex matrix). In order to apply the geometric approach

presented in previous subsection, we transform the complex equation Zd = QSd into

the following real equation
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(5.13)

where QT is a 2p× 2p real unitary matrix. Thus we have successfully converted the

QAM source separation problem into M-ASK source separation problem and can

further estimate QT by using our proposed geometric approach. The construction

of Q from the estimated QT is detailed in [122].
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5.4 Discussion

Our work can be considered as a further development of work [120] where the lat-

ter only permits BPSK signals. Both works are clustering-based and operate on

a whitened data space. However, in contrast to the work [120] that is essentially

an assignment algorithm, our work focuses on extracting the rich channel informa-

tion hidden in the constellation geometry, as developed in [122]. This fundamental

difference accounts for the wider applicability of our geometric approach. It has

been shown that, in our work, the channel information is only related to the relative

difference between two constellation points while irrespective of the exact positions

of the constellation points. In contrast, when assigning the received constellation

points to the corresponding source vectors, the constellation points themselves as

well as their relationship with other points have to be considered. In other words,

we conclude that the information needed for channel estimation is less than that

needed for an appropriate assignment algorithm.

Computational Complexity

We consider the computational complexity of our proposed algorithm. The pro-

posed algorithm involves three steps: clustering, whitening and geometric approach

for channel identification and signal recovery. The clustering algorithm adopted

in our simulations is the smallest distance clustering algorithm [120], which is self

starting, uses each received data vector only once and works very well at moderately

high SNR. The complexity for clustering is NCp, where Cp are the computations

required per iteration. Treating addition and multiplication equally, i.e. counting
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the flops, we find that the computations required per iteration are O(qd2). Thus

the complexity for clustering is O(Nqd2). The complexity of step 2 and step 3

are respectively dominated by the correlation matrix XdX
T
d and signal recovery

Se = Q−1
e WX, which have complexity O(q2d) and O(Nqp), respectively. There-

fore, by combining all these steps, our proposed algorithm has an overall complexity

O(Nqd2 + q2d+Nqp). Since d = M p, the computational complexity is exponential

with respect to p. This suggests that our proposed algorithm is practical for sep-

arating a small number of discrete sources. In fact, the computational complexity

is the most prohibitive issue in almost all geometric methods. On the other hand,

the hyperplane-based algorithm does not need to do the clustering. The cost for

signal whitening is identical to our proposed algorithms, O(q2d), while the cost for

all the iterations is O(Iq2d), where I is the total number of iterations till the global

convergence. Hence, the total computational cost of the hyperplane-based algorithm

is O(q2d+ Iq2d+Nqp).

Applications in MIMO-OFDM Systems

Suppose we have the MIMO-OFDM system equipped with Mt and Mr transmit

and receive antennae respectively, where Mr ≥ Mt. The transmitted signals are

M-ASK or QAM digital signals which are spatially independent. At the receiver

side, the channel matrices are estimated by the proposed channel estimators, and

the received signals are then equalized. According to the discussions in the previous

chapters, the channel estimators proposed in Chapter 3 and 4 can blindly estimate

the channel matrices up to an unitary ambiguity matrices, which need to be further

removed. This is essentially the BSS problem.
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Recall the system model of the MIMO-OFDM systems

y(k, n) = H(n)s(k, n) + n(n, k) (5.14)

where k is the OFDM symbol index and n is the subcarrier index. According to

the previous chapters, the proposed estimation algorithms can blind estimate the

channel up to an unitary ambiguity matrix Q, i.e.,

Ĥ = HQ (5.15)

Obviously, it follows that

Ĥ(n) = H(n)Q (5.16)

where H(n) is the Mr ×Mt channel matrix associated with the nth subcarrier, and

Ĥ(n) is the corresponding estimated channel matrix. In other words, the estimated

channel matrix according to all the Nc subcarriers have the identical ambiguity

matrix. Since the equalization of the OFDM system is performed subcarrier by

subcarrier, then the equalized signals according to different subcarriers have the

identical mixture matrix Q, i.e.,

ŝ(k, n) = Qs(k, n) , for n = 0, · · · , Nc − 1 (5.17)

where ŝ(k, n) is the kth block of equalized signal block according to nth subcarrier.

Therefore, we apply the BSS algorithm to the equalized signals associated with one

subcarrier only, and the mixture matrix Q can be identified blindly.

5.5 Simulation Results

We now present simulation results to illustrate the performance of our proposed

algorithm. We compare our method to the iterative hyperplane-based algorithm



Chapter 5. A Geometric Method for BSS of Digital Signals with Finite Alphabets 107

proposed in [122] and the kurtosis-based algorithm proposed in [124]. For the

hyperplane-based and kurtosis-based algorithms, the gradient search may converge

to local minima. The magnitude of the residual 1
Nq

‖X−HeSe‖2
F is a good measure

to test the converged solution of the gradient search [119]. For the cases where the

residual is not reduced to the noise power level, we restart the gradient search until

the residual is decreased to the noise power level. In our simulations, we consider

Mt = 2 source signals drawn from the 4-ASK alphabet {−3,−1, 1, 3} arriving at

Mr = 2 sensors. The entries of the tested channel matrices are independently cho-

sen from a white Gaussian process. We totally test 100 independent channels, with

300 Monte Carlo runs for each channel realization. The symbol error rate shown in

the figure is the overall average of all the 300 runs. In each run, we collect 100 data

samples the perform the separation process. Figure 5.1 shows the symbol error rate

(SER) of the respective algorithms as a function of SNR. We can see that our pro-

posed algorithm achieves a slightly lower SER than the hyperplane-based algorithm

and the kurtosis-based algorithms, especially at a moderately high SNR. In fact, the

performance of our proposed algorithm is closely related to the adopted clustering

algorithm. Hence, more accurate clustering techniques, particularly at low SNR,

result in better performance of our proposed algorithm.

5.6 Summary

It has been shown that the received data constellation geometry contains rich infor-

mation pertaining to the channel. Based on this observation, we develop a practi-

cal non-iterative algorithm for blind separation of digital signals with M-ASK and
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Figure 5.1: Symbol Error Rate (SER) Versus SNR

QAM alphabets. The proposed algorithm compares favorably with the existing

hyperplane-based and kurtosis-based algorithms. Since only a small fraction of the

constellation geometry is exploited in our geometric approach for channel estima-

tion, it is desirable for us to devise an efficient and more accurate geometric channel

estimation approach in the future by utilizing the constellation geometry to a full

extent.



Chapter 6

Blind MIMO-OFDM Channel

Estimation Based on Spectra

Correlations

6.1 Introduction

Blind estimation of the multi-input multi-output (MIMO) finite-impulse-response

(FIR) channel has been a very attractive research area for many years. For this

problem, a variety of techniques has been developed based either on higher order

statistics (HOS) [89,96–98] or second order statistics (SOS) [94–96] of the observed

signals. The estimation methods based on SOS are more attractive because they

require far fewer samples than the traditional estimation methods based on HOS.

In Chapter 3 and 4, we proposed two blind channel estimation algorithms which

can estimate the MIMO-OFDM channels up to an unknown ambiguity matrix which

109
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must be further resolved. Therefore, a blind source separation (BSS) algorithm is

proposed in Chapter 5 to resolve the ambiguity matrix. On the other hand, the

MIMO FIR channel driven by colored source may provide us with advantages in

developing a complete closed-form SOS-based method without an extra BSS algo-

rithmic step. If the input sources have distinct power spectra, then the MIMO FIR

channel can be blindly estimated up to a scaling by using the SOS of the chan-

nel output [106]. One successful algorithm which applies to nonstationary signals

was proposed in [91]. It has been shown that the cyclostationarity induced at the

receiver side by over or fractionally sampling the received waveform permits blind

estimation of most FIR channels under certain conditions [99]. In [93], by inducing

cyclostationarity in the input signal, a closed-form solution was obtained based on

the SOS of the channel outputs. In [92], a special structure was imposed on each in-

put and the resulting MIMO problem with colored inputs was solved using the SOS.

In [107], the authors proposed a blind MIMO FIR channel identification algorithm

by exploiting the second-order spectra correlations of the system outputs.

Second-order cyclostationary statistics has also been used for blind channel es-

timation in MIMO-OFDM systems. A subspace-based approach for blind channel

estimation using cyclic correlations at the OFDM receiver was proposed in [90]. This

approach is robust to the presence of stationary noise and channel order overesti-

mation error and does not require the cyclic prefix to be longer than the channel

memory [102]. However, this approach is proposed for the single-input single-output

(SISO) CP-OFDM systems only. In [105], a blind MIMO-OFDM channel estimation

algorithm using a periodic nonconstant modulus precoding scheme was introduced.
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The basic idea of this method is to provide each transmit antenna with a differ-

ent signature in the cyclostationary domain to null out the influence of all but one

transmit antenna at a time, and blindly estimates the subchannels individually.

In this chapter, we exploit the second-order spectra correlations of the system

output to blindly estimate the FIR channel matrix of the MIMO-OFDM systems,

which are driven by stationary or cyclostationary and nonwhite inputs with known

correlations. We follow the idea of [107] and generalize it to the MIMO-OFDM

case. In OFDM systems, the source signals before IFFT modulation and the re-

ceived signals after FFT demodulation are called frequency domain signals, while

the transmitted signals after IFFT modulation and the received signals before IFFT

demodulation are called time domain signals. In [107], the criterion function in-

volves the spectra correlation of the received signal which must be calculated using

the FFT. In addition, the number of the FFT points must be carefully selected to

make the equality of the essential principle equation hold. On the contrary, our

proposed algorithm directly uses the correlations of the frequency domain signals to

construct the criterion, minimization of which yields the system impulse response

within a scalar ambiguity. Therefore, our proposed algorithm is simpler and more

efficient.

The rest of this chapter is organized as follows. First, the system model is

reviewed in Section 6.2. Then in Section 6.3, we exploit the spectra correlation

of the system output to blindly estimate the FIR channels. We propose a closed-

form solution for the channel matrix. The identifiability of the proposed channel

estimator and two practical casea are discussed in Section 6.4. The simulations of



Chapter 6. Blind MIMO-OFDM Channel Estimation Based on Spectra Correlations 112

the proposed algorithm are presented in Section 6.5. Finally, the summary of this

chapter is given in the last section.

6.2 Problem Formulation

Consider the MIMO-OFDM system shown in Figure 2.9, which is equipped with

Mt and Mr transmit and receive antennae respectively. The notations are the same

as those in Subsection 2.4.2. The source information symbols to be transmitted by

the ith antenna, si(n); (n = 0, 1, 2, · · · ), are divided into groups of length Nc, where

Nc is the number of subcarriers, and each symbol of every group is transmitted on

one subcarrier. Denotes the collection of the source symbols to be sent on the kth

MIMO-OFDM symbol by

s(k) =











s(k, 0)

...

s(k,Nc − 1)











(6.1)

where

s(k, n) ,

[

s1(k, n), s2(k, n), · · · , sMt
(k, n)

]T

(6.2)

and

si(k, n) , si(kNc + n), i = 1, · · · ,Mt, n = 0, · · · , Nc − 1 (6.3)

represents the source symbol that is carried by the nth subcarrier in the kth MIMO-

OFDM symbol, and transmitted by the ith transmit antenna.

Let hj,i(l) (l = 0, · · · , L, i = 1, · · · ,Mt, j = 1, · · · ,Mr) denotes the discrete

time channel impulse response between the (i, j)th transceiver pair, where L is the
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maximum channel order. Then, as discussed in Chapter 2, the kth received MIMO-

OFDM symbol can be written as

y(k) ,











H(0) 0

. . .

0 H(Nc − 1)











s(k) + n(k) (6.4)

where

H(n) =

L∑

l=0

h(l)e−j 2π
Nc

nl for n = 0, · · · , Nc − 1 (6.5)

h(l) =











h1,1(l) · · · h1,Mt
(l)

...
. . .

...

hMr ,1(l) · · · hMr ,Mt
(l)











for l = 0, 1, · · ·L (6.6)

and n(k, n) represents the frequency domain noise vector whose elements are zero

mean complex AWGNs with the variance σ2
n, and are all spatially and temporally

independent form each other. So, for the nth subcarrier we may write

y(k, n) = H(n)s(k, n) + n(k, n) (6.7)

where

y(k, n) =

[

y1(k, n), y2(k, n), · · · , yMr
(k, n)

]T

(6.8)

and

yj(k, n) , yj(kNc + n), i = 1, · · · ,Mr, n = 0, · · · , Nc − 1 (6.9)

is the received symbol that is carried by the nth subcarrier in the kth MIMO-OFDM

symbol, and received by the jth receive antenna.

For this system model, we adopt the following basic assumptions:
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A1) The colored source signals are zero mean, wide sense stationary or cyclosta-

tionary with known statistics.

A2) The input colors are known and pairwise nonidentical.

A3) The time domain channels hj,i(l) are in general complex, and the maximum

channel order L is known apriori.

A4) The scalar subchannel matrices H(k) is full column rank for k = 0, · · · , Nc.

Assumptions A1) and A3) are generally required by most of the existing algo-

rithms. It should be noted that we only require the upper bound of the channel

orders to be known. Assumptions A2) and A4) are required to guarantee that the

channels can be uniquely estimated up to scalar ambiguities. Assumption A4) im-

plies that the number of outputs is greater than or equal to the number of the

inputs. Unlike some existing estimation methods which require the guard intervals

must be some specified type, the proposed estimation method is capable for both of

the CP-based and ZP-based OFDM systems.

Our goal is to blindly estimate the channel matrices H(n) based on the spectra

correlations of the observed channel outputs. However, direct estimation of these

H(n) would be very inefficient since it requires the estimation of NcMtMr parame-

ters, which can be a significant number in practical systems. Rather, we propose an

algorithm which estimates the time domain channel taps h(l) (l = 0, · · · , L) instead,

which greatly reduces the number of parameters need to be estimated. Thereafter,

the subchannel matrices H(n) can be calculated from h(l) by using the FFT.
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6.3 Proposed Blind Estimation Algorithm

Consider the autocorrelation of the source signal si(n) which is defined as follows

Rsi
(n, τ) , E{si(n)s∗i (n + τ)} (6.10)

Note that si(n) is the frequency domain signal in the OFDM system. Thus, Rsi
(n, τ)

is also referred to as the spectra correlation. If si(n) is cyclostationary, then we have

Rsi
(n, τ) = Rsi

(n+ κN ′, τ) for n = 0, 1, · · · , N ′ − 1 (6.11)

where κ is an arbitrary integer, and N ′ is the period of the cyclic spectra correlation.

Especially, if the source signal is stationary, then

Rsi
(n, τ) = Rsi

(τ) = Rsi
(n+ κ, τ) (6.12)

Thus, it can be looked as a special case of cyclostationary source such that the period

N ′ = 1. We assume that all the users have the identical cyclic spectra correlation

period N ′, and they are pairwise uncorrelated. Then we have

Rs(n, τ) , E{s(n)sH(n + τ)}

= Rs(n+ κN ′, τ)

=











Rs1(n, τ) 0

. . .

0 RsMt
(n, τ)











(6.13)

Thus, according to Eqn.(6.7), the auto correlation matrix of the received signals

before FFT demodulation, which is referred to as the spectra correlation matrix of
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the received signals, can be written as

Ry(n, τ) , E{y(n)y(n+ τ)}

= H (n mod Nc)Rs (n, τ)HH ((n+ τ) mod Nc) + σ2
nIδ(τ)

= Ry(n+ κN ′′, τ) for n = 0, 1, · · · , N ′′ − 1 (6.14)

where (n mod Nc) denotes the remainder of n divided by Nc, N
′′ equals to the least

common multiple of Nc and N ′, and σ2
n is the noise power.

In Eqn.(6.5), we defined the frequency domain channel matrix H(n) for n =

0, · · · , Nc − 1. Now we extend this definition to n = 0, · · · , N ′′ − 1, i.e.,

H(n) =
L∑

l=0

h(l)e−j 2π
Nc

nl for n = 0, · · · , N ′′ − 1 (6.15)

Obviously, it always holds that

H(n) = H(n mod Nc) (6.16)

Therefore, Eqn.(6.14) can be rewritten as

Ry(n, τ) = H (n)Rs (n, τ)HH (n + τ) + σ2
nIδ(τ)

for n = 0, 1, · · · , N ′′ − 1 (6.17)

If we consider two different nonzero values of τ , and substitute to Eqn.(6.17), we

can form the following equation which admits a closed form solution for h(l):

Rs (n, τ1)H
H (n+ τ1)R

†
y(n, τ1) = Rs (n, τ2)HH (n+ τ2)R†

y(n, τ2) (6.18)

Note that by choosing the nonzero values of τ , the influence of the AWGN noise is

completely removed. We also note that the source signals are pairwise uncorrelated.

Thus, according to Eqn.(6.17), Rs (n, τ1) and Rs (n, τ2) are diagonal matrices. Take
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every row of both the left and right hand sides of the above Eqn.(6.18), we have Mt

equations associated with the Mt transmit antennae respectively, i.e.,

Rsi
(n, τ1)H

H
i (n+ τ1)R†

y(n, τ1) = Rsi
(n, τ2)HH

i (n + τ2)R†
y(n, τ2)

for i = 1, · · · ,Mt (6.19)

where Rsi
(n, τ) is the ith diagonal elements of Rs (n, τ) and Hi (n+ τ) is the ith

columns of H (n+ τ) (for τ = τ1, τ2). Substitute Eqn.(6.5) to Eqn.(6.19), we have

L∑

l=0

hH
i (l)

[

Rsi
(n, τ1)e

−j 2π
Nc

τ1lR†
y(n, τ1) −Rsi

(n, τ2)e
−j 2π

Nc
τ2lR†

y(n, τ2)
]

= 0 (6.20)

where

hi(l) ,

[

h1,i(l), · · · , hMr ,i(l)

]T

(6.21)

is the ith column of the time domain channel matrix h(l). Evaluating Eqn.(6.20)

for different ns (n = 0, · · · , N ′′ − 1), we can set up a system of equations with the

unknown elements of hi, i.e.,

FH
i hi = 0 (6.22)

where

hi ,

[

hT
i (0) · · · hT

i (L)

]T

(6.23)

and Fi consists of the submatrices Fi(l, n) for l = 0, · · · , L, n = 0, · · · , N ′′ − 1,

where Fi(l, n) denotes the (l, n)th submatrix, which is defined as follows

Fi(l, n) , Rsi
(n, τ1)e

−j 2π
Nc

τ1lR†
y(n, τ1) − Rsi

(n, τ2)e
−j 2π

Nc
τ2lR†

y(n, τ2) (6.24)

Thus, the unknown channel matrix hi must satisfy the following optimization

equation

ĥi = min
‖hi‖=1

‖FH
i hi‖2 for i = 1, · · · ,Mt (6.25)
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In practice, the spectra correlations of the received signals are unknown and

must be estimated as follows

R̂y(n, τ) =
1

T

T−1∑

n=0

y(n)yH(n+ τ) (6.26)

and consequently the matrix Fi(l, n) in the criterion function is estimated by

F̂i(l, n) , Rsi
(n, τ1)e

−j 2π
Nc

τ1lR̂†
y(n, τ1) − Rsi

(n, τ2)e
−j 2π

Nc
τ2lR̂†

y(n, τ2) (6.27)

Thus, the unknown channel matrix hi can be found by solving the optimization

problem

ĥi = min
‖hi‖=1

‖F̂H
i hi‖2 for i = 1, · · · ,Mt (6.28)

It is well known that the solution of the above optimization problem is the eigenvec-

tor of the matrix F̂iF̂H
i associated with its smallest eigenvalue. We will show later

that the channel can be estimated up to a complex diagonal ambiguity matrix.

6.4 Discussion

6.4.1 Identifiability

In this subsection, we discuss the identifiability of the proposed blind channel esti-

mation method. We show that the channel vectors associated with each transmit

antenna can be estimated up to a complex scalar, i.e., the ambiguity matrix for the

whole channel matrix is a complex diagonal matrix.

Lemma 6.4.1 Under the assumptions A1)-A4), if there exists a matrix Ĥ(n) such

that Eqn.(6.17) is satisfied, then

Ĥ(n) = H(n)Λ (6.29)
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where Λ is a constant complex diagonal ambiguity matrix.

Proof : According to Proposition 1 of [106], if the assumptions A1)-A4) are sat-

isfied except that the spectra correlations of the source signals are unknown, then

the channel matrix H(n) can be reconstructed from Eqn.(6.17) up to a column

permutation matrix P(n) and a complex diagonal matrix Λ(n), i.e.,

Ĥ(n) = H(n)P(n)Λ(n) (6.30)

If there exists such a solution, then according to Eqn.(6.17), for some τ 6= 0 we have

Ry(n, τ) = H (n)Rs (n, τ)HH (n + τ)

= H (n)P(n)Λ(n)Rs (n, τ)ΛH(n+ τ)PH(n+ τ)HH (n + τ)(6.31)

Since H(n) is assumed to be full column rank, then Eqn.(6.31) is equivalent to

P(n)Λ(n)Rs (n, τ)ΛH(n+ τ)PH(n + τ) = Rs (n, τ) (6.32)

We note that Rs (n, τ) is a diagonal matrix of full rank, and P(n) and P(n + τ)

are both column permutation matrices for any τ and n. Hence, taking two different

nonzero values of τ , say τ1 and τ2, yields the following equation

Rs(n, τ1)Λ
H(n+ τ1)P

H(n+ τ1)R
−1
s (n, τ1)

= Rs(n, τ2)Λ
H(n+ τ2)P

H(n+ τ2)R
−1
s (n, τ2) (6.33)

Define en as the column vector with the nth element being 1, and all other elements

being 0. Let

eT
p1

= eT
1 PH(n+ τ1) (6.34a)

eT
p2

= eT
1 PH(n+ τ2) (6.34b)
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It should be noted that since P(n+τ1) and P(n+τ2) are permutation matrices, then

ep1 and ep2 are row vectors with only one element being nonzero, and the positions

of the nonzero elements, which are indexed by p1 and p2, depend on P(n+ τ1) and

P(n+ τ2). By taking the 1st row of the both side of the above Eqn.(6.33), we have

λ1(1)γ1(p1)e
T
p1

= λ2(1)γ2(p2)e
T
p2

(6.35)

where λi(1) is the 1st diagonal elements of Λ(n+ τi) for i = 1, 2, and

γ1(p1) , Rs(n, τ1)(1)R−1
s (n, τ1)(p1) (6.36a)

γ2(p2) , Rs(n, τ2)(1)R−1
s (n, τ2)(p2) (6.36b)

where Rs(n, τ1)(1) andRs(n, τ2)(1) are the 1st element of the diagonal matrix Rs(n, τ1)

and Rs(n, τ2) respectively, while Rs(n, τ1)(p1), Rs(n, τ2)(p2) are the pth
1 and pth

2 diag-

onal elements of Rs(n, τ1) and Rs(n, τ2) respectively. Since the diagonal elements of

Λ(n+ τ1), Λ(n+ τ2), Rs(n, τ1) and Rs(n, τ2) are obviously nonzero, then Eqn.(6.35)

implies that ep1 = ep2 . By repeating the above steps for every row of the both sides

of Eqn.(6.33), we can conclude that the permutation matrices P(n+ τ) is constant

for any n and τ . Therefore, Eqn.(6.32) can be re-expressed as

PΛ(n)Rs (n, τ)ΛH(n+ τ)PH = Rs (n, τ) (6.37)

Note that Rs (n, τ) and Λ(n)Rs (n, τ)ΛH are both diagonal matrices. To make the

above equation hold, P must be an identity matrix.

Now we consider the solution of the form Ĥ = H(n)Λ(n). Substitute to Eqn.(6.32),

it follows that

Λ(n)Rs (n, τ)ΛH(n+ τ) = Rs (n, τ)Λ(n)ΛH(n+ τ) = IMt
(6.38)
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where IMt
is the Mt × Mt identity matrix. Since this must hold for all n and τ ,

then Λ(n) must be independent of n, i.e., Λ(n) = Λ, where Λ is a complex diagonal

matrix. �

Note the difference of our proposed algorithm and the existing algorithms pro-

posed in [106] and [107], which also exploit the spectra correlations of the system

outputs. Firstly, these two existing algorithms are both proposed for common MIMO

FIR systems, while our algorithm is proposed for the MIMO-OFDM systems and is

capable for both CP and ZP based OFDM. Secondly, in [106] and [107], the channel

estimation is performed in the frequency domain, where the FFT is employed to cal-

culate the spectra correlation matrix. On the other hand, our proposed algorithm

directly use the frequency domain OFDM symbols to compute the spectra corre-

lation. This makes our proposed algorithm more efficient and simpler. Lastly, to

make the essential principle equation hold, [106] focus on the cyclostationary sources

and [107] requires the number of the FFT points satisfying certain condition. In

contrast, our proposed work is capable with both the cyclostationary and stationary

source. In addition, we consider two different nonzero values of τ to suppress the

influence of the AWGN noise.

6.4.2 Two Practical Examples

In this subsection, we consider two examples, where the systems are driven by the

source that is convolutionally or block coded respectively. These two examples are

very common in practice. As will be shown, due to the inherent structure of the

spectra correlations of these two sources, the channel estimation procedures are
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slightly different.

Convolutional Coding

Consider the source signals which are linear processes generated as follows

si(n) =
Lc∑

l=0

ci(l)di(n− l) (6.39)

where di(n) is a white process, ci(l), l = 0, · · · , Lc, is the corresponding coding

process, or in other words, the color of the corresponding transmitted signal, and

Lc denotes the maximum color length in case the colors have different lengths.

Obviously, the generated signal si(n) is stationary, and according to assumption

A4), ci(l) are known and pairwise distinct. Thus, the spectra correlation of the

transmitted signal can be written as

Rs(n, τ) = Rs(τ) = E{s(n)sH(n+ τ)}

=
Lc∑

l1=0

Lc∑

l2=0

ci(l1)c
∗
i (l2)δ(l2 − l1 − τ) (6.40)

where we assume that the white processes di(n) have unitary powers. Consequently,

the spectra correlation of the received signals are cyclic with period Nc, and can be

rewritten as follows

Ry(n, τ) , E{y(n)y(n+ τ)}

= H (n)Rs (τ)HH ((n + τ) mod Nc) + σ2
nIδ(τ)

= Ry(n + κNc, τ) for n = 0, 1, · · · , Nc − 1 (6.41)

The remaining steps of the proposed blind channel estimation algorithm for this

convolutional coding case is the same as the general case expressed in Section 6.3.
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It should be noted that in this case, the spectra correlation of the transmitted

signal is independent of the time index n, i.e., the transmitted signal is stationary.

Unlike some of the existing algorithms based on the non-stationarity of the source

signals, the proposed algorithm is capable with the system driven by the stationary

source.

Block Coding

In this subsection, we consider the practical application of the proposed blind chan-

nel estimation algorithm in the circumstance where the source signals are block

coded. Denote the kth block of the coded source symbols as

si(k) = Pidi(k) (6.42)

where

di(k) ,

[

di(k, 0), · · · , di(k,Nc − 1)

]T

=

[

di(kNc), · · · , di(kNc +Nc − 1)

]T

(6.43)

is the kth block of the uncoded source symbols to be transmitted by the ith transmit

antenna, which is assumed to be i.i.d. with unit power, Pi is the corresponding

block coding matrix, which is distinct for different users (transmit antennae), and

si(k) ,

[

si(k, 0), · · · , si(k,Nc − 1)

]T

=

[

si(kNc), · · · , si(kNc +Nc − 1)

]T

(6.44)

is the kth block of the coded source symbols, which constitute the kth OFDM symbol

corresponding to the ith user (transmit antenna). Note that we don’t require the

coding scheme introduce any redundancy.
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Thereafter, the autocorrelation matrix of the kth OFDM symbol can be written

as

Rsi,j
(k, γ) , E{si(k)s

H
j (k + γ)}

= PiP
H
j δ(γ)δ(i− j) (6.45)

This equation indicates that the coded signals belonging to different OFDM symbols

are mutually uncorrelated. More specifically, the spectra correlation of the coded

source signal can be written as

Rsi
(n, τ) = E{si(n)s∗i (n+ τ)}

=







Pi(n, :)P
H
i (n+ τ, :) for 0 ≤ n ≤ Nc − 1, − n ≤ τ ≤ Nc − n− 1

0 otherwise

(6.46)

where Pi(n, :) denotes the nth row of the precoding matrix Pi. From Eqn.(6.46),

we know that the coded source signal is cyclostationary with period Nc. Therefore,

the relation between the spectra correlations of the transmitted and received signals

can be reconstructed as

Ry(n, τ) = H (n)Rs (n, τ)HH (n+ τ) + σ2
nIδ(τ)

for n = 0, 1, · · · , Nc − 1, − n ≤ τ ≤ Nc − n− 1 (6.47)

Following the remaining steps in Section 6.3, one could construct the optimization

problem described in Eqn.(6.28), settling which yields the closed-form solution for

the channel matrix, i.e.,

ĥi = min
‖hi‖=1

‖F̂H
i hi‖2 (6.48)

where F̂i consists of the submatrices F̂i(n, l) for l = 0, · · · , L, and n = nmin, · · · , nmax,
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where






nmin = max{−τ1, − τ2, 0}

nmax = min{Nc − 1 − τ1, Nc − 1 − τ2, Nc − 1}
(6.49)

One should notice the slight difference between Eqn.(6.47) and Eqn.(6.17), which

leads to the difference of the criterion functions displayed by Eqn.(6.48) and Eqn.(6.28).

Since we need the evaluated criterion function satisfying that Rs(n, τ) 6= 0, then once

τ is selected, the number of equations derived from Eqn.(6.47) is less than the gen-

eral case. This may cause the performance degradation. Fortunately, the number

of subcarriers in practical OFDM systems, Nc, is fairly large. Thus, we still have

enough equations derived from Eqn.(6.47) to construct the criterion function and

get an acceptable performance.

6.5 Simulation Results

In this section, we consider two simulation examples to illustrate the performance

of our proposed algorithm. In both examples, the simulated MIMO-OFDM system

are modeled containing 64 subcarriers, i.e. M = 64. Each OFDM symbol consists

of 68 chips including the guard interval (CP / ZP) of length 4, i.e. Mg = 4. The

system is equipped with 2 transmit antennae and 2 receive antennae respectively,

and the channel model used is a 3-tap FIR filter with tap coefficients independently

chosen from a complex white Gaussian process.

To evaluate the channel estimation error, we employed the normalized-root-

mean-square-error (NRMSE), which is defined as

NRMSE =

√
√
√
√

1

N1N2

N1∑

t1=1

N2∑

t2=1

‖ĥ(t1 ,t2) − h(t1)‖2
F

‖h(t1)‖2
F

(6.50)
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where ‖.‖F denotes the Frobenius norm, N1 and N2 are the number random chan-

nel realizations and the number of Monte Carlo runs for each channel realization,

respectively; h(t1) is true channel matrix for the tth1 realization, which is randomly

generated, and ĥ(t1,t2) is the estimation of h(t1) for the tth2 Monte Carlo run. In both

of the two examples, we simulate 30 channel realizations, each for 100 Monte Carlo

runs.

Example 1: Convolutionally Coded Source

In this example, we consider the system that is driven by the colored source which

is generated by convolutionally coded white sources. More specifically, the colored

source symbols s(n) are drawn from a 4-QAM constellation according to the follow-

ing rule. Let bn be the input stream of independent and identically distributed bits,

i.e., bn ∈ {0, 1}. Then

s(n) =







−
√

(2)

2
+

√
2

2
j if (bn bn−1) = (0 0)

+

√
(2)

2
+

√
2

2
j if (bn bn−1) = (0 1)

−
√

(2)

2
−

√
2

2
j if (bn bn−1) = (1 0)

+

√
(2)

2
−

√
2

2
j if (bn bn−1) = (1 1)

(6.51)

This generates a colored symbol sequence with autocorrelation

E{s(n)s∗(n+ τ)} =







1 if τ = 0

∓1
2
j if τ = ±1

0 else

(6.52)

Figure 6.1 illustrates the NRMSE as a function of SNR. We collect 500 and 1000

received OFDM symbols to estimate the spectra correlation of the received signals

respectively, and thus the criterion functions. We also simulate the training based
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Figure 6.1: NRMSE performance as a function of SNR
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Figure 6.2: BER performance as a function of SNR
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LS algorithm proposed in [68] as a comparison. Figure 6.2 illustrates the BER

as a function of SNR. The detected symbols are the outputs of the Zero Forcing

equalizers using the estimated channel coefficients. Moreover, the BER performance

of the training-based LS algorithm and equalization output using the true channel

coefficients are also simulated as comparisons. Both of the CP and ZP based OFDM

systems are simulated. From the figures, we see that the CP-OFDM system achieves

better performance than the ZP-OFDM system. This is not strange, because at the

step removing the guard interval, the ZP-OFDM injects extra noise.

Example 2: Block Coded Source

In this example, we consider the system that is driven by the colored source which

is generated by block coded white sources, i.e.,

si(k) = Pidi(k) (6.53)

where si(k) is the kth block of white source drawn from a 4-QAM constellation and

to be transmitted by the ith antenna, and Pi the coding matrix associated with the

ith transmit antenna. In this example, we define

P1 =



















1 1
2

0 · · · 0

1
2

1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 1
2

0 · · · 0 1
2

1



















P2 =



















1 1
2
j 0 · · · 0

−1
2
j 1

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 1
2
j

0 · · · 0 −1
2
j 1



















(6.54)

Figure 6.3 illustrates the NRMSE as a function of SNR. Similar to the Example

1, we collect 500 and 1000 received OFDM symbols to estimate the spectra corre-

lation of the received signals respectively, and thus the criterion functions. We also
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Figure 6.3: NRMSE performance as a function of SNR
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simulate the training based LS algorithm proposed in [68] as a comparison. Figure

6.4 illustrates the BER as a function of SNR. The detected symbols are the outputs

of the Zero Forcing equalizers using the estimated channel coefficients. The BER

performance of the training-based LS algorithm and equalization output using the

true channel coefficients are also simulated as comparisons. Both of the CP and ZP

based OFDM systems are simulated. We see that the performance of the proposed

algorithm in this example is worse than that in Example 1. This is due to the lack

of the constraints to construct the criterion function (See Section 6.4).

6.6 Summary

In this chapter, we proposed a closed-form solution for blind channel estimation of

MIMO-OFDM systems by exploiting the spectra correlations of the system output.

Due to the structure of the OFDM symbols, the channel vectors associated with

each transmit antenna can be uniquely estimated up to a complex scalar. Thus,

the source separation step which are usually required by some of the existing blind

channel estimation algorithms can be avoided. The proposed estimation algorithm is

capable with both the CP and ZP based OFDM systems. The computer simulations

show that the proposed algorithm can achieve an attractive performance.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we proposed three blind channel estimation algorithms for MIMO-

OFDM systems, and one blind source separation algorithm which is designed to

resolve the ambiguity matrices remaining in the estimated channel matrices. Each

chapter is briefly summarized below.

In Chapter 2, mathematical models are presented for both CP and ZP based

MIMO-OFDM systems. It is shown that, by properly designing the guard intervals

to combat the inter-symbol interference (ISI), either using cyclic prefix (CP) or zero

padding (ZP), the OFDM system can successfully transfer the frequency-selective

channel into a set of flat fading subchannels [6]. Therefore the equalization process

in OFDM systems is greatly simplified.

In Chapter 3, we present a novel subspace (SS) based algorithm for blind channel

estimation of CP based MIMO-OFDM systems. The proposed estimation method

is capable for MIMO-OFDM systems driven by either white or colored sources. It

131
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does not requires the system to be equipped with strictly more receive antennae than

transmit antennae either. Furthermore, it even doesn’t require the length of the CP

to be greater than the maximum channel order. This property makes the proposed

channel estimator to be attractive in the ill conditioned environments. The computer

experiments show that the proposed algorithm achieve attractive performance for

systems driven by white source. Although there exists performance degradation

when colored source presents, it is still attractive, considering its efficiency and

identifiability.

The estimation algorithm presented in Chapter 4 is in fact an extension of [114]

which was designed for SISO-OFDM. We design a nonredundant linear precoder for

MIMO-OFDM systems which enables blind channel estimation. The identifiability

of the proposed algorithm is guaranteed even when the channel matrices share com-

mon zeros at subcarrier frequencies. The theoretical performance analysis is also

derived.

In Chapter 5, we proposed a geometric based blind source separation method

to resolve the ambiguity matrix which is yet to be removed by using the blind

channel estimation methods proposed in Chapter 6 and 3. Moreover, this proposed

separation method is also a general blind separation method for all flat fading chan-

nels. It has been shown that the received data constellation geometry contains rich

information pertaining to the channel. Based on this observation, we develop a

practical non-iterative algorithm for blind separation of digital signals with M-ASK

and QAM alphabets. The proposed algorithm compares favorably with the existing

hyperplane-based and kurtosis-based algorithms. Since only a small fraction of the
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constellation geometry is exploited in our geometric approach for channel estima-

tion, it is desirable for us to devise an efficient and more accurate geometric channel

estimation approach in the future by utilizing the constellation geometry to a full

extent.

In Chapter 6, we proposed a closed-form solution for blind channel estimation of

MIMO-OFDM systems by exploiting the spectra correlations of the system output.

The system is assumed to be driven by stationary or cyclostationary and nonwhite

inputs with distinct but known correlations. Under this assumption, the channel can

be uniquely estimated up to a complex scalar. Therefore, the problem of the ambi-

guity matrix which indeed exists in many existing channel estimation algorithms is

avoided without any further process.

7.2 Future Research

In this section, a list of possible extension of the research work presented in this

thesis is provided.

• The estimation error of the algorithm presented in Chapter 3 is raised when

the system is driven by colored source. The main contribution of the estima-

tion error comes from the estimation of the target matrix Rx, which is the

summation of channel output correlation matrices with different delay lags.

There may be a possibility to develop some solution to improve the perfor-

mance under such situation.

• In Chapter 6, we proposed a blind channel estimation algorithm with the assis-
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tance of non-redundant linear precoder. It has been shown that the estimation

performance is closely related with the designing of the precoder. Generally,

when the precoder delivers more correlations between the subcarriers, the es-

timator achieves better NRMSE performance. However, this may decrease the

SNR which leads to a BER performance degradation. How to balance them

and find out an optimized precoder is a possible research direction.

• The algorithms presented in Chapter 3 requires large number of observed sym-

bols. This may cause problem in fast fading environments. Therefore, it is

possible to design an adaptive method to solve this problem.

• Combination of the idea proposed in Chapter 4 and 6 may leed to a new re-

search direction. In Chapter 4, we proposed a precoded MIMO-OFDM system

where the precoder is identical for every user. If each user is assigned a distinct

precoder which induces distinct source color, then the ambiguity matrix may

be removed without any further process following the idea in Chapter 6.



Appendix A

The Proof of Theorem 3.4.3

A.1 Preliminaries

Before we proceed to prove the theorem, we propose the following two lemmas first.

Lemma A.1.1 Let d(k) be the i.i.d. source signal with unit signal power such that

Rd(κ) , E{d(k)dH(k + κ)} = Iδ(κ), and

x1(k) = A1d(k) (A.1a)

y1(k) = B1d(k) (A.1b)

x2(k) = A2d(k) (A.1c)

y2(k) = B2d(k) (A.1d)

where A1, A2, B1 and B2 are arbitrary coding matrices with proper sizes. Define the

cross correlation matrices Rx1y1(κ), Rx2y2(κ) and their estimates by time averaging

135
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as the following Eqn.(A.2a) to Eqn.(A.2d) respectively,

Rx1y1(κ) , E
{
x(k)1y

H
1 (k + κ)

}
(A.2a)

R̂x1y1(κ) ,
1

K

K∑

k=1

x1(k)y
H
1 (k + κ) (A.2b)

Rx2y2(κ) , E
{
x2(k)y

H
2 (k + κ)

}
(A.2c)

R̂x2y2(κ) ,
1

K

K∑

k=1

x2(k)y
H
2 (k + κ) (A.2d)

Then the estimation of the cross correlation matrices are unbias, and given any

matrix G with proper size, we have

E
{

R̂x1y1(κ)GR̂x2y2(κ)
}

(A.3)

=







1
K

tr(BH
1 GB2)A1A

H
2 (κ 6= 0)

A1B
H
1 GB2A

H
2 + 1

K

[
tr(BH

1 GB2)A1A
H
2 − A1diag(BH

1 GB2)A
H
2

]
(κ = 0)

Proof : The proof of this lemma is straightforward. Let’s consider

E
{

R̂x1y1(κ)
}

=
1

K

K∑

k=1

x1(k)y
H
1 (k + κ) = A1B

H
1 δ(κ) = Rx1y1(κ) (A.4a)

E
{

R̂x2y2(κ)
}

=
1

K

K∑

k=1

x2(k)y
H
2 (k + κ) = A2B

H
2 δ(κ) = Rx2y2(κ) (A.4b)

which implies that the estimation of the correlation matrices are unbias.

On the other hand,

E
{

R̂x1y1(κ))GR̂H
x2y2

(κ)
}

=
1

K2

K∑

k1=1

K∑

k2=1

E
{
A1d(k1)d

H(k1 + κ)BH
1 GB2d(k2 + κ)dH(k2)A

H
2

}
(A.5)

Without loss of generality, we define

Φ(k1, k2, κ) , E
{
A1d(k1)d

H(k1 + κ)BH
1 GB2d(k2 + κ)dH(k2)A

H
2

}
(A.6)

Consider the following two situations:
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• κ 6= 0:

It can be verified that if κ 6= 0, Φ(k1, k2, κ) 6= 0 only when k1 = k2, i.e.,

Φ(k1, k2, κ) = A1tr
(
BH

1 GB2

)
AH

2 δ(k1 − k2) (A.7)

Thus

E
{

R̂x1y1(κ)GR̂x2y2(κ)
}

=
1

K2

K∑

k1=1

K∑

k2=1

A1tr
(
BH

1 GB2

)
AH

2 δ(k1 − k2)

=
1

K
tr
(
BH

1 GB2

)
A1A

H
2 (A.8)

• κ = 0:

When κ = 0, we have

E
{

R̂x1y1(κ)GR̂x2y2(κ)
}

=
1

K2

K∑

k1,k2=1

E
{
A1d(k1)d

H(k1)B
H
1 GB2d(k2)d

H(k2)A
H
2

}

=
1

K2

K∑

k1,k2=1,k1 6=k2

Φ(k1, k2, 0) +
1

K2

K∑

k=1

Φ(k, k, 0) (A.9)

The two terms on the right hand side of Eqn.(A.9) can be derived as follows respec-

tively.

When k1 6= k2

Φ(k1, k2, 0) = A1E
{
d(k1)d

H(k1)
}

BH
1 GB2E

{
d(k2)d

H(k2)
}
AH

2

= A1B
H
1 GB2A

H
2 (A.10)

Thus

1

K2

K∑

k1,k2=1,k1 6=k2

Φ(k1, k2, 0) =
K − 1

K
A1B

H
1 GB2A

H
2 (A.11)

When k1 = k2, we consider the (m,n)th element of Φ(k, k, 0), which is denoted

as φm,n. We also define ωi,j as the (i, j)th element of the matrix Ω , BH
1 GB2, and
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write d(k) as

d(k) , [d0(k), · · · , dN−1(k)] (A.12)

Thus it can be verified that

φm,n =

N−1∑

i,j,p,q=0

ωi,ja1(m, p)a
∗
2(n, q)E{d∗i (k)dj(k)dp(k)d

∗
q(k)} (A.13)

=

N−1∑

i,p=0

ωi,ia1(m, p)a
∗
2(n, p)

︸ ︷︷ ︸

i=j, p=q

+

N−1∑

i,j=0

ωi,ja1(m, i)a
∗
2(n, j)

︸ ︷︷ ︸

i=p, j=q

−
N−1∑

i=0

ωi,ia1(m, i)a
∗
2(n, i)

︸ ︷︷ ︸

i=j=p=q

where a1(m, p), a2(n, q) and ωi,j respectively denote the (m, p)th, (n, q)th and (i, j)th

element of A1, A2 and Ω. It can be verified that Eqn.(A.13) is equivalent to the

following equation, which is written in the matrix form

Φ(k, k, 0) = tr(BH
1 GB2)A1A

H
2 + A1B

H
1 GB2A

H
2 − A1diag

(
BH

1 GB2

)
A2 (A.14)

where diag(BH
1 GB2) denotes the diagonal matrix which contains the diagonal ele-

ments of the matrix Ω = BH
1 GB2.

Substitute Eqn.(A.10) and Eqn.(A.14) into Eqn.(A.9), we can conclude that,

when κ = 0

E
{

R̂x1y1(κ)GR̂x2y2(κ)
}

=
1

K

[
tr(BH

1 GB2)A1A
H
2 − A1diag

(
BH

1 GB2

)
AH

2

]

+A1B
H
1 GB2A

H
2 (A.15)

The proof ends here. �

Lemma A.1.2 Let the length N column vector x(k) = Ad(k), where A is an

arbitrary coding matrices with proper sizes, and d(k) is i.i.d. source signal with

unit power such that Rd(κ) = Iδ(κ). Let v(k) be the AWGN noise vector which

is uncorrelated with x(k), and the noise power is σ2
v . Define the cross correlation
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matrices Rxv(κ) and Rvx(κ) and their estimation by time averaging as the following

Eqn.(A.16a) to Eqn.(A.16d) respectively,

Rxv(κ) , E
{
x(k)vH(k + κ)

}
(A.16a)

R̂xv(κ) ,
1

K

K∑

k=1

x(k)vH(k + κ) (A.16b)

Rvx(κ) , E
{
v(k)xH(k + κ)

}
(A.16c)

R̂vx(κ) ,
1

K

K∑

k=1

v(k)xH(k + κ) (A.16d)

Then the estimation is unbias, and given any matrix G with proper size, we have

E
{

R̂xv(κ)GR̂H
xv(κ)

}

=
σ2

v

K
tr(G)AAH (A.17)

E
{

R̂vx(κ)GR̂H
vx(κ)

}

=
σ2

v

K
tr(AHGA)I (A.18)

Proof : Firstly, the unbias property of the estimation can be proved exactly by the

same method for Lemma A.1.1, and is omitted for brevity.

Secondly, since x(k) and v(k) are uncorrelated, then Eqn.(A.17) and Eqn.(A.18)

can be rewritten as follows respectively

E
{

R̂xv(κ)GR̂H
xv(κ)

}

=
1

K2

K∑

k=1

E
{
Ad(k)vH(k + κ)Gv(k + κ)dH(k)AH

}

=
1

K2

K∑

k=1

E
{
Ad(k)tr(I)σ2

vd
H(k)AH

}

=
σ2

v

K
tr(G)AAH (A.19)

E
{

R̂vx(κ)GR̂H
vx(κ)

}

=
1

K2

K∑

k=1

E
{
v(k)dH(k + κ)AHGAd(k + κ)vH(k)AH

}

=
1

K2

K∑

k=1

E
{
v(k)tr(AHGA)vH(k)

}

=
σ2

v

K
tr(AHGA)I (A.20)
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The proof ends here. �

A.2 Proof of Theorem 3.4.3

Now, we derive the proof of Theorem 3.4.3.

Theorem 3.4.3 Assume that the noise is zero-mean i.i.d with covariance σ2
v , and

the transmitted signal is modeled as s(k) = Pd(k), where d(k) is the i.i.d. source

signal with unit power, and P is the non-redundant precoding matrix. Then the

covariance matrix of the channel estimation error is approximated by

E
{

∆~h∆~hH
}

=
[
IMt

⊗ (KH)†
]
E
[
IMt

⊗ K
†] (A.21)

and the channel estimation MSE is

E
{

‖∆~h‖2
}

= tr{
[
IMt

⊗ (KH)†
]
E
[
IMt

⊗ K
†]} (A.22)

Proof : According to the definition of Ξ (see Eqn.(3.40)), we can express the per-

turbation of Ξ as

∆Ξ = Ξ̂ − Ξ

= R̂x − σ2
vI

=
1

K

1∑

κ=−1

K+1∑

k=1

x(k)xH(k + κ) − Ξ − σ2
vI

= R̂ + Φ̂ + Υ̂ − (Ξ + σ2
vI) (A.23)

where

R̂ ≈ 1

K

K∑

k=1

CN (h)F̃cps(k)s
H(k)F̃H

cpCH
N (h) (A.24)
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where the approximation in the above Eqn.(A.24) is based on the fact that when K

is large,

1

K

K∑

k=1

s(k)sH(k + κ) ≈ 1

K

K∑

k=1

s(k − 1)sH(k − 1 + κ) (A.25)

and

Φ̂ =
1

K

K∑

k=1

{

CN (h)F̃cps(k)s
H(k − 1)F̃H

cpT̈ H
N (h) + T̈N(h)F̃cps(k − 1)sH(k)F̃H

cpCH
N (h)

+T̈N(h)F̃cps(k − 1)sH(k + 1)F̃H
cpṪ H

N (h) + ṪN(h)F̃cps(k + 1)sH(k − 1)F̃H
cpT̈ H

N (h)

+ṪN(h)F̃cp

[
s(k + 1)sH(k) + s(k)sH(k + 1)

]
F̃H

cpṪ H
N (h)

}

(A.26)

Υ̂ =
1

K

K+1∑

k=1

{

CN(h)F̃cps(k)v
H(k) + CN(h)F̃cps(k − 1)vH(k) + ṪN(h)F̃cps(k + 1)vH(k)

+v(k)sH(k)F̃H
cpCH

N (h) + v(k)sH(k − 1)F̃H
cpCH

N (h) + v(k)sH(k + 1)F̃H
cpṪ H

N (h)

+T̈N(h)F̃cps(k − 1)vH(k + 1) + v(k + 1)sH(k − 1)F̃H
cpT̈ H

N (h)

+v(k)vH(k) + v(k)vH(k + 1) + v(k + 1)vH(k)
}

(A.27)

It is assumed that the transmitted signal s(k) = Pd(k), where d(k) is the i.i.d.

source signal, and s(k) is uncorrelated with the noise vector v(k). Then it is obvious

that E{s(k)sH(k + κ)} = 0 for κ > 0, and E{s(k)vH(k + κ)} = 0 for any κ. Thus,

we have

E
{

R̂ + Φ̂ + Υ̂
}

= Ξ + σ2
vI (A.28)

and consequently, the expectation of the perturbation of Ξ can be expressed as

E {∆Ξ} = E
{

R̂ + Φ̂ + Υ̂
}

− (Ξ + σ2
vI) = 0 (A.29)

which indicates that the estimation of Ξ is unbias.
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Next, we consider the covariance matrix of the channel estimation error. Define:

Ei1,i2(m,n) , E
{

∆ΞH(ΞH)
†
Cmh(:, i1)h

H(:, i2)C
H
n Ξ†∆Ξ

}

= E

{

∆ΞH
(
CH

N (h)
)†
(

F̃H
cp

)†
R

−1
s F̃Nc

emMt+i1e
H
nMt+i2

F̃H
Nc

R
−1
s F̃†

cpC†
N(h)∆Ξ

}

= E
{

(R̂ + Φ̂ + Υ̂)Gi1,i2(m,n)(R̂ + Φ̂ + Υ̂)H
}

−(Ξ + σ2
vI)Gi1,i2(m,n)(Ξ + σ2

vI)
H (A.30)

where i1, i2 = 1, · · · ,Mt, m,n = 0, · · · , Nc −1, and the matrix Gi1,i2(m,n) is defined

as

Gi1,i2(m,n) ,
(
CH

N (h)
)†
(

F̃H
cp

)†
R

−1
s F̃Nc

emMt+i1e
H
nMt+i2

F̃H
Nc

R
−1
s F̃†

cpC†
N (h) (A.31)

Besides, we also define the following notations to simplify the discussion

A , ṪN(h)F̃cpP (A.32a)

B , T̈N(h)F̃cpP (A.32b)

C , A + B = CN (h)F̃cpP (A.32c)

Thus, according to Lemma A.1.1 and Lemma A.1.2, we have

E
{

R̂Gi1,i2(m,n)R̂H
}

= ΞGi1,i2(m,n)ΞH +
1

K

[
tr
(
CHGi1,i2(m,n)C

)
Ξ − Cdiag

(
CHGi1,i2(m,n)C

)
CH
]

= ΞGi1,i2(m,n)ΞH +
1

K

[

tr
(

P−1F̃Nc
emMt+i1e

H
nMt+i2

F̃H
Nc

(P−1)H
)

Ξ

−Cdiag
(

P−1F̃Nc
emMt+i1e

H
nMt+i2F̃

H
Nc

(P−1)H
)

CH
]

(A.33)

E
{

Φ̂Gi1,i2(m,n)Φ̂H
}

=
1

K

[
tr(BHGi1,i2(m,n)B)CCH + tr(CHGi1,i2(m,n)C)BBH + tr(AHGi1,i2(m,n)A)BBH

+tr(BHGi1,i2(m,n)B)AAH + tr(AHGi1,i2(m,n)C)ACH + tr(AHGi1,i2(m,n)B)ABH

+tr(CHGi1,i2(m,n)A)CAH + tr(BHGi1,i2(m,n)A)BAH
]

(A.34)
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E
{

Υ̂Gi1,i2(m,n)Υ̂H
}

=
σ2

v

K
tr(Gi1,i2(m,n))

(
2CCH + AAH + BBH

)
+

2σ4
v

K
tr(Gi1,i2(m,n))I

+
σ2

v

K

[
2tr(CHGi1,i2(m,n)C) + tr(AHGi1,i2(m,n)A) + tr(BHGi1,i2(m,n)B)

]
I

+σ4
vGi1,i2(m,n) +

σ4
v

K
[tr(Gi1,i2(m,n))I − diag(Gi1,i2(m,n))] (A.35)

E
{

R̂Gi1,i2(m,n)Υ̂H
}

= σ2
vΞGi1,i2(m,n) (A.36)

E
{

Υ̂Gi1,i2(m,n)R̂H
}

= σ2
vGi1,i2(m,n)ΞH (A.37)

and

E
{

R̂Gi1,i2(m,n)Φ̂H
}

= E
{

Φ̂Gi1,i2(m,n)R̂H
}

= E
{

Υ̂Gi1,i2(m,n)Φ̂H
}

= E
{

Φ̂Gi1,i2(m,n)Υ̂H
}

= 0 (A.38)

Thus, Eqn.(A.30) can be written as

Ei1,i2(m,n) = E
{

∆ΞH(ΞH)
†
Cmh(:, i1)h

H(:, i2)C
H
n Ξ†∆Ξ

}

=
1

K

[

X (1)
i1,i2

(m,n) + σ2
vX

(2)
i1,i2

(m,n) + σ4
vX

(3)
i1,i2

(m,n)
]

(A.39)

where

X (1)
i1,i2

(m,n) = tr
(
CHGi1,i2(m,n)C

)
Ξ − Cdiag

(
CHGi1,i2(m,n)C

)
CH

+tr(BHGi1,i2(m,n)B)CCH + tr(CHGi1,i2(m,n)C)BBH

+tr(AHGi1,i2(m,n)A)BBH + tr(BHGi1,i2(m,n)B)AAH

+tr(AHGi1,i2(m,n)C)ACH + tr(AHGi1,i2(m,n)B)ABH

+tr(CHGi1,i2(m,n)A)CAH + tr(BHGi1,i2(m,n)A)BAH (A.40a)

X (2)
i1,i2

(m,n) =
[
2tr(CHGi1,i2(m,n)C) + tr(AHGi1,i2(m,n)A) + tr(BHGi1,i2(m,n)B)

]
I

+tr(Gi1,i2(m,n))
(
2CCH + AAH + BBH

)
(A.40b)
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X (3)
i1,i2

(m,n) = tr(Gi1,i2(m,n))I − diag(Gi1,i2(m,n)) (A.40c)

Hence, the covariance matrix of the channel estimation error can be expressed as

E
{

∆~h∆~hH
}

=
[
IMt

⊗ (KH)†
]
E
[
IMt

⊗ K
†] (A.41)

and the channel estimation MSE can be expressed as

E
{

‖∆~h∆~hH‖2
}

=
Mt∑

i=1

tr
{
(KH)†Ei,iK

†} (A.42)

where

E =











E1,1 · · · E1,Mt

...
. . .

...

EMt,1 · · · EMt,Mt











(A.43)

and

Ei1,i2 =











UH
n Ei1,i2(0, 0)Un · · · UH

n Ei1,i2(0, Nc − 1)Un

...
. . .

...

UH
n Ei1,i2(Nc − 1, 0)Un · · · UH

n Ei1,i2(Nc − 1, Nc − 1)Un











(A.44)

The proof ends here. �



Appendix B

The Proof of Theorem 4.4.2

Theorem 4.4.2 The proposed blind channel estimator Ĥj is asymptotically unbi-

ased (i.e. E{∆Hj} = 0), and the estimated channel MSE is

MSE =
1

K

Mt∑

i=1

tr
(
UH

n Ei,iUn

)
(B.1)

Proof : According to the discussion in Section 4.4.4, the first order perturbation of

Us can be written as

∆Us = UnU
H
n ∆Ryj

VsΛ
−1
s (B.2)

where ∆Ryj
= ∆Ryj

� Φ, and ∆Ryj
, R̂yj

− Ryj
is the estimation error of the

autocorrelation matrix of the received signal. Note that Ryj
is Hermitian, which

indicates that Us = Vs. Substitute to Eqn.(4.44), the channel estimation error can

be written as

∆Hj , Ĥj − H̃j = UnU
H
n ∆Ryj

UsΛ
− 1

2
s (B.3)

and

∆Hji , Ĥji − H̃ji = UnU
H
n ∆Ryj

us,iλ
− 1

2
s,i (B.4)
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where λs,i is the ith diagonal entry of Λs, and us,i is the corresponding eigenvector.

Thus, when Ryj
is estimated by Eqn.(4.16a), we have

E{∆Ryj
} = 0 ⇒ E{∆Ryj

} = 0 (B.5)

and consequently,

Bias = UnU
H
n E{∆Ryj

� P}UsΣ
− 1

2
s = 0 (B.6)

Next, we consider the covariance matrix

E
{
∆Hji1∆HH

ji2

}
=

1
√
λs,i1λs,i2

UnU
H
n E

{

∆Ryj
us,iu

H
s,k∆R

H
yj

}

UnU
H
n

= UnU
H
n

[

E
{

R̂yj
µi1µ

H
i2 R̂

H
yj

}

− Ryj
µi1µ

H
i2 R

H
yj

]

UnU
H
n

= UnU
H
n E

{

R̂yj
µi1µ

H
i2

R̂
H
yj

}

UnU
H
n (B.7)

where i1, i2 = 1, · · · ,Mt, µi1 and µi2 are the Nc × 1 vectors defined as

µi = λ
− 1

2
s,i us,i for i = i1, i2 (B.8)

Note that the last step of the above Eqn.(B.7) is based on the fact that

UnU
H
n Ryj

µi1µ
H
i2

R
H
yj

UnU
H
n

= UnU
H
n HjH

H
j µi1µ

H
i2HjH

H
j UnU

H
n + σ2

nUnU
H
n HjH

H
j µi1µ

H
i2UnU

H
n

+σ2
nUnU

H
n µi1µ

H
i2
HjH

H
j UnU

H
n + σ4

nUnU
H
n µi1µ

H
i2
UnU

H
n

= 0 (B.9)
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According to Eqn.(4.16a), we have

E
{

R̂yj
µi1µ

H
i2 R̂

H
yj

}

=
1

K2

K∑

k1,k2=1

E
{[(

yj(k1)y
H
j (k1)

)
� Φ

]
µi1µ

H
i2

[(
yj(k2)y

H
j (k2)

)
� Φ

]}

=
1

K2

(
∑

k1 6=k2

E
{(

yj(k1)y
H
j (k1)

)
� Φ

}
µi1µ

H
i2
E
{(

yj(k2)y
H
j (k2)

)
� Φ

}

+

K∑

k=1

E
{[(

yj(k)y
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
yj(k)y

H
j (k)

)
� Φ

]}

)

(B.10)

where yj(k) is the kth OFDM symbol received by the jth receive antenna, which is

defined in Eqn.(4.3). Note that

E
{(

yj(k)y
H
j (k)

)
� Φ

}
= HjH

H
j + σ2

nI (B.11)

Hence, the first term of the right hand side of Eqn.(B.10) can be derived as

1

K2

∑

k1 6=k2

(
E
{(

yj(k1)y
H
j (k1)

)
� Φ

}
µi1µ

H
i2
E
{(

yj(k1)y
H
j (k1)

)
� Φ

})

=
K − 1

K

(
HjH

H
j µi1µ

H
i2
HjH

H
j + σ2

nµi1µ
H
i2

)
(B.12)

According to Eqn.(B.9), we have

UnU
H
n

(
HjH

H
j µi1µ

H
i2
HjH

H
j + σ2

nµi1µ
H
i2

)
UnU

H
n = 0 (B.13)

Thus, substitute Eqn.(B.12) to Eqn.(B.7), and we get

E
{
∆Hji1∆HH

ji2

}

=
1

K
UnU

H
n E

{[(
yj(k)y

H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
yj(k)y

H
j (k)

)
� Φ

]}
UnU

H
n

=
1

K
UnU

H
n

(
E
{[(

ỹj(k)ỹ
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
ỹj(k)ỹ

H
j (k)

)
� Φ

]}

+E
{[(

ỹj(k)n
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
nj(k)ỹ

H
j (k)

)
� Φ

]}

+E
{[(

nj(k)ỹ
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
ỹj(k)n

H
j (k)

)
� Φ

]}

+E
{[(

nj(k)n
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
nj(k)n

H
j (k)

)
� Φ

]})
UnU

H
n (B.14)
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where ỹj(k) is defined as the k noise free OFDM symbol received by the j th receive

antenna, i.e.,

ỹj(k) =

Mt∑

t=1

D(Hjt)st(k) (B.15)

Define

Ξi1,i2 , E
{[(

ỹj(k)ỹ
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
ỹj(k)ỹ

H
j (k)

)
� Φ

]}
(B.16a)

Ψi1,i2 , E
{[(

ỹj(k)n
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
nj(k)ỹ

H
j (k)

)
� Φ

]}
(B.16b)

Υi1,i2 , E
{[(

nj(k)ỹ
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
ỹj(k)n

H
j (k)

)
� Φ

]}
(B.16c)

Ωi1,i2 , E
{[(

nj(k)n
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
nj(k)n

H
j (k)

)
� Φ

]}
(B.16d)

Then we consider the (m,n)th elements of Ξi1,i2, Ψi1,i2, Υi1,i2 , and Ωi1,i2 which are

denoted as ξi1,i2(m,n), ψi1,i2(m,n), υi1,i2(m,n) and ωi1,i2(m,n) respectively.

Calculation of Ξ

According to the definition, Ξi1,i2 can be expressed as

Ξi1,i2 , E
{[(

ỹj(k)ỹ
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
ỹj(k)ỹ

H
j (k)

)
� Φ

]}

=

Mt∑

t1 ,t2,t3,t4=1

E
{[(

D(Hjt1)st1(k)s
H
t2

(k)DH(Hj,t2)
)
� Φ

]

·µi1µ
H
i2

[(
D(Hjt4)st4(k)s

H
t3 (k)D

H(Hjt3)
)
� Φ

]}
(B.17)
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Then, the (m,n)th element of Ξi1,i2 , ξi1,i2(m,n) can be written as

ξi1,i2(m,n) =

Mt∑

t1,t2,t3,t4=1

Nc−1∑

p,q=0

%i1,i2(p, q)

φm,pφq,n
Hjt1 [m]H∗

jt2
[p]Hjt4 [q]H

∗
jt3

[n]

·E
{
st1(k,m)s∗t2(k, p)st4(k, q)s

∗
t3(k, n)

}

.
=

Mt∑

t1,t2=1

Nc−1∑

p,q=0

φm,nφq,p

φm,pφq,n

Hjt1[m]H∗
jt2

[p]Hjt2 [q]H
∗
jt1

[n]%i1,i2(p, q)

+

Mt∑

t1,t3=1

Nc−1∑

p,q=0

Hjt1[m]H∗
jt1 [p]Hjt3 [q]H

∗
jt3[n]%i1,i2(p, q)

−
Mt∑

t=1

Nc−1∑

p,q=0

β(m,n, p, q)

φm,pφq,n

Hjt[m]H∗
jt[p]Hjt[q]H

∗
jt[n]%i1,i2(p, q) (B.18)

where %i1,i2(p, q) is defined as the (p, q)th element of the matrix (µi1µ
H
i2 ), which can

be expressed as

%i1,i2(p, q) =
1

√
λs,i1λs,i1

us,i1[p]u
∗
s,i2

[q] (B.19)

and

β(m,n, p, q) ,
Nc−1∑

i=0

pm,ip
∗
p,ipq,ip

∗
n,i (B.20)

where pm,n is the (m,n)th element of the precoding matrix P.

Eqn.(B.18) also implies that

Ξi1,i2 = Ξ̇i1,i2 + Ξ̈i1,i2 (B.21)

where

Ξ̇i1,i2 = HjH
H
j µi1µ

H
i2
HjH

H
j (B.22)

and Ξ̈i1,i2 is the matrix with the (m,n)th element, ξ̈i1,i2(m,n), being

ξ̈i1,i2(m,n) =

Mt∑

t1,t2=1

Nc−1∑

p,q=0

φm,nφq,p

φm,pφq,n
Hjt1 [m]H∗

jt2 [p]Hjt2[q]H
∗
jt1 [n]%i1,i2(p, q)

−
Mt∑

t=1

Nc−1∑

p,q=0

β(m,n, p, q)

φm,pφq,n

Hjt[m]H∗
jt[p]Hjt[q]H

∗
jt[n]%i1,i2(p, q) (B.23)
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where us,i(p) (i = i1, i2) denotes the ith element of the eigenvector us,i. Meanwhile,

it should be noted that according to Eqn.(B.9)

UnU
H
n Ξ̇UnU

H
n = 0 (B.24)

Calculation of Ψ

According to the definition, Ψi1,i2 can be expressed as

Ψi1,i2 , E
{[(

ỹj(k)n
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
nj(k)ỹ

H
j (k)

)
� Φ

]}

=

Mt∑

t1,t2=1

E
{[(

D(Hjt1)st1(k)n
H
j (k)

)
� Φ

]

· µi1µ
H
i2

[(
nj(k)s

H
t2 (k)D

H(Hjt2)
)
� Φ

]}
(B.25)

Thus, the (m,n)th element of Ψi1,i2, ψi1,i2(m,n) can be written as

ψi1,i2(m,n) =
Mt∑

t1,t2=1

Nc−1∑

p,q=0

%p,q

φm,pφq,n

Hjt1 [m]H∗
jt2

[n]

·E
{
st1(k,m)s∗t2(k, n)

}
E
{
n∗

j(k, p)nj(k, q)
}

= σ2
n

Mt∑

t=1

Nc−1∑

p=0

φm,n

φm,pφn,p
Hjt[m]H∗

jt[n]%i1,i2(p, q) (B.26)

Calculation of Υ

According to the definition, Υ can be expressed as

Ψi1,i2 , E
{[(

nj(k)ỹ
H
j (k)

)
� Φ

]
µi1µ

H
i2

[(
ỹj(k)n

H
j (k)

)
� Φ

]}

=
Mt∑

t1,t2=1

E
{[(

nj(k)s
H
t1

(k)DH(Hjt1)
)
� Φ

]

· µi1µ
H
i2

[(
D(Hjt2)st2(k)n

H
j (k)

)
� Φ

]}
(B.27)
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Thus, the (m,n)th element of Υi1,i2, υi1,i2(m,n) can be written as

υi1,i2(m,n) =

Mt∑

t1,t2=1

Nc−1∑

p,q=0

%i1,i2(p, q)

φm,pφq,n
H∗

jt1[p]Hjt2 [q]

·E
{
st1(k, p)s

∗
t2
(k, q)

}
E
{
n∗

j(k,m)nj(k, n)
}

= δ(m− n)σ2
n

Mt∑

t=1

Nc−1∑

p,q=0

φp,q

φm,pφq,m

H∗
jt[p]Hjt[q]%i1,i2(p, q) (B.28)

which indicates that Υi1,i2 is a diagonal matrix.

Calculation of Ω

According to the definition, the (m,n)th element of Ωi1,i2 , ωi1,i2(m,n) can be written

as

ωi(m,n) =







σ4
n

∑Nc−1
p=0,p6=m %i1,i2(p, q)/(φm,pφp,m) (m = n)

σ4
n%i1,i2(p, q) (m 6= n)

(B.29)

Thus, according to all above derivations, the covariance matrix of the channel

estimation error can be expressed as

E
{

∆~Hj∆~HH
j

}

=
1

K
[IMt

⊗ (UnU
H
n )]E [IMt

⊗ (UnU
H
n )] (B.30)

where ∆~Hj denotes the column vector constructed by concatenating the columns of

the matrix ∆Hj.

E ,











E1,1 · · · E1,Mt

...
. . .

...

EMt,1 · · · EMt,Mt











(B.31)

and the (m,n)th element of Ei1,i2 is defined as

ei1,i2(m,n) , ξ̈i1,i2(m,n) + φi1,i2(m,n) + υi1,i2(m,n) + ωi1,i2(m,n) (B.32)
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where ξ̈i1,i2(m,n), ψi1,i2(m,n), υi1,i2(m,n) and ωi1,i2(m,n) are defined by Eqn.(B.23),

Eqn.(B.26), Eqn.(B.28), and Eqn.(B.29) respectively.

Consequently, the MSE of the channel estimator is

MSE = E
{

tr
(

∆~Hj∆~HH
j

)}

=
Mt∑

i=1

E
{
tr
(
∆Hji∆HH

ji

)}

=
1

K

Mt∑

i=1

tr
(
UH

n Ei,iUn

)
(B.17)

The proof ends here. �



Appendix C

The Proof of Theorem 4.4.3

Theorem 4.4.3 The proposed blind channel estimator of the normal channel ma-

trices, Ĥt (t = 1, · · · ,Mt, t 6= j), is asymptotically unbiased (i.e. E{∆Ht} = 0),

and the estimated channel MSE is

MSE =
1

K

Mt∑

i=1

tr
{

Ξ̈i + Ψi + Υi + Ωi

}

(C.1)

Proof : According to Eqn.(4.15), the channel matrix associated with the tth received

antenna is estimated based on the reference channel matrix Ĥj as follows

Ĥt = R̂yt,j
(ĤH

j )† (C.2)

Obliviously, E{R̂yt,j
} = HtH

H
j and according to Theorem 4.4.2, the estimator Ĥj

is unbias, i.e., E{Ĥj} = Hj, then

E{Ĥt} = E{R̂yt,j
}E
{

(ĤH
j )†
}

= HtH
H
j (HH

j )† = Ht (C.3)
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which indicates that the estimator is unbias. Next, we consider the covariance matrix

of the estimated channel matrix Ĥt.

Cov , E{∆Ht∆HH
t } = E{ĤtĤ

H
t } − HtH

H
t

= E

{

R̂yt,j

(

ĤjĤ
H
j

)†
R̂

H
yt,j

}

− HtH
H
t (C.4)

where similar to Eqn.(4.43) and Eqn.(4.44), ∆Ht is the estimation error defined as

∆Ht , Ĥt − H̃t = Ĥt − HtQ
−1 (C.5)

where Q is the ambiguity matrix, which is assumed to be known.

According to Eqn.(4.16b), we have

E

{

R̂yt,j

(

ĤjĤ
H
j

)†
R̂

H
yt,j

}

=
1

K2

K∑

k1,k2=1

E

{
[(

yt(k1)y
H
j (k1)

)
� Φ

] (

ĤjĤ
H
j

)† [(
yj(k2)y

H
t (k2)

)
� Φ

]
}

=
1

K2

(
∑

k1 6=k2

E
{(

yt(k1)y
H
j (k1)

)
� Φ

}
E

{(

ĤjĤ
H
j

)†
}

E
{(

yj(k2)y
H
t (k2)

)
� Φ

}

+

K∑

k=1

E

{
[(

yt(k)y
H
j (k)

)
� Φ

] (

ĤjĤ
H
j

)† [(
yj(k)y

H
t (k)

)
� Φ

]
})

(C.6)

where yj(k) and yt(k) are the kth OFDM symbol received by the jth and tth receive

antenna respectively. On the other hand, according the Theorem 4.4.2 again, the

perturbed channel matrix Ĥj can be written as

Ĥj
.
= Hj + UnU

H
n ∆Ryj

UsΛ
1
2
s (C.7)

where Us and Un are the signal and noise subspace of the matrix Ryj
, HjH

H
j

respectively, and the diagonal matrix Λs contains the singular-values of Ryj
on its

diagonal. Thus, it follows that

(

ĤjĤ
H
j

)†
=
(
Us + UnU

H
n ∆Ryj

UsΛ
−1
s

)
Λ−1

s

(
Us + UnU

H
n ∆Ryj

UsΛ
−1
s

)H
(C.8)
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and consequently

HH
j E

{(

ĤjĤ
H
j

)†
}

Hj

= HH
j E

{(
Us + UnU

H
n ∆Ryj
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s
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(
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= HH
j UnU

H
n E
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−2
s UH

s Hj + HH
j UsΛ

−2
s UH

s E
{

∆R
H
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}

UnU
H
n Hj

HH
j UsΛ
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s UH
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j UnU

H
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H
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UnU
H
n Hj
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= IMt
(C.9)

Note that

E
{(

yt(k)y
H
j (k)

)
� Φ

}
= HtH

H
j (C.10)

Hence, the first term of the right hand side of Eqn.(C.6) can be derived as

1

K2

∑

k1 6=k2

E
{(

yt(k1)y
H
j (k1)

)
� Φ

}
E

{(

ĤjĤ
H
j

)†
}

E
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yj(k2)y
H
t (k2)

)
� Φ

}

=
K − 1

K
HtH

H
t (C.11)

Meanwhile, according to Eqn.(C.8),
(

ĤjĤ
H
j

)†
can be written as

(

ĤjĤ
H
j

)†
=

Mt∑

i=1

µ̂iµ̂
H
i (C.12)

where µ̂i is defined as

µ̂i , λ
− 1

2
s,i (us,i + ∆us,i) (C.13)

Substitute Eqn.(C.11) and Eqn.(C.12) into Eqn.(C.6), we get

E

{
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Consider

E

{
[(

yt(k)yH
j (k)

)

�Φ
]

µ̂iµ̂
H
i

[(
yj(k)yH

t (k)
)
�Φ
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= Ξi + Ψi + Υi + Ωi (C.15)

where we define

Ξi = E
{[(

ỹt(k)ỹ
H
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)
� Φ

]
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H
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(C.16a)

Ψi = E
{[(
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H
j (k)

)
� Φ
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H
i

[(
nj(k)ỹ

H
t (k)
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� Φ
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(C.16b)

Υi = E
{[(

nt(k)ỹ
H
j (k)

)
� Φ

]
µ̂iµ̂

H
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[(
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H
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(C.16c)

Ωi = E
{[(

nt(k)n
H
j (k)

)
� Φ

]
µ̂iµ̂

H
i

[(
nj(k)n

H
t (k)

)
� Φ
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(C.16d)

where ỹj(k) and ỹt(k) are defined as the kth noise free OFDM symbol received by

the jth and tth receive antenna respectively.

Then we consider the (m,n)th elements of Ξi, Ψi, Υi, and Ωi, which are denoted

as ξi(m,n), ψi(m,n), υi(m,n) and ωi(m,n) respectively. The derivation of these

parameters is very similar to those appear in Theorem 4.4.2, we hereby only give

out the final results without unnecessary repeating of the derivation.

ξi(m,n) =

Mt∑

t1,t2=1

Nc−1∑

p,q=0

φm,nφq,p

φm,pφq,n
Htt1 [m]H∗

jt2 [p]Hjt2[q]H
∗
tt1 [n]E{µ̂i[p]µ̂

∗
i [q]}

+
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∗
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∗
i [q]}
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t1=1
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p,q=0
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φm,pφq,n
Htt1 [m]H∗

jt1 [p]Hjt1 [q]H
∗
tt1 [n]E{µ̂i[p]µ̂

∗
i [q]} (C.17a)

ψi(m,n) = σ2
n

Mt∑

t1=1

Nc−1∑

p=0
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[n]E{µ̂i[p]µ̂
∗
i [p]} (C.17b)

υi(m,n) = δ(m− n)σ2
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t1=1
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∗
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ωi(m,n) = δ(m− n)σ4
n

Nc−1∑

p=0

1

φm,pφp,m

E{µ̂i[p]µ̂
∗
i [p]} (C.17d)
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where

β(m,n, p, q) ,
Nc−1∑

i=0

pm,ip
∗
p,ipq,ip

∗
n,i (C.17e)

and pm,n is the (m,n)th element of the precoding matrix P. Note that Eqn.(C.17a)

suggests that

Ξi = Ξ̇i + Ξ̈i = HtiH
H
ti + Ξ̈i (C.18)

where Ξ̇i = HtiH
H
ti , and the (m,n)th element of the matrix Ξ̈i is

ξ̈i(m,n) =
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In the above equations, E {µ̂i[p]µ̂
∗
i [q]} is the (p, q)th element of the matrix E

{
µ̂iµ̂

H
i

}
,

where

E
{
µ̂iµ̂

H
i

}
= µiµ

H
i + E

{
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i

}

= λ−1
s,i us,iu

H
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1

K ′λ
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s,i UnU

H
n Ei,iUnU

H
n (C.20)

where us,i is the ith column of left singular matrix of Ryj
, λs,i is the corresponding

singular-value (see Eqn.(B.8)), Ei,i is defined by Eqn.(B.32), and K ′ is the NOS for

estimating the “reference” channel matrix Hj.

Thus, by substituting Eqn.(C.16a) - Eqn.(C.17d) into Eqn.(C.4), we can derive

the covariance matrix as

Cor =
K − 1

K
HtH

H
t +

1

K

Mt∑

i=1

(

Ξ̈i + Ψi + Υi + Ωi

)

+
1

K
HtH

H
t − HtH

H
t

=
1

K

Mt∑

i=1
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Ξ̈i + Ψi + Υi + Ωi

)

(C.21)
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which directly leads to the channel estimation MSE

MSE =
1

K

Mt∑

i=1

tr
{

Ξ̈i + Ψi + Υi + Ωi

}

(C.22)

The proof ends here. �
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