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Summary

In this thesis, a general method for joint trajectory generation to achieve optimized sta-
ble locomotion for bipedal robots is first proposed and referred to as Genetic Algorithm
Optimized Fourier Series Formulation (GAOFSF). This method is used to generate the
basic motion patterns for joint motion coordination. Then, a soft motion control strategy
which makes use of the reaction torques at the stance leg is proposed and investigated.
Based on this motion control applied on the basic motion trajectories that the GAOFSF
generated for walking on various terrains and for three dimensional walking motions,
stable and robust limit cycle behaviors have been achieved. In achieving such a stable
limit cycle behavior, the robot is also capable of overcoming certain perturbations and
returning to the stable walking gait if the perturbations do not move it out of its stabil-
ity region. Furthermore, a high-level motion adjustment agent based on the Truncated
Fourier Series (TFS) formulation has been also developed to adjust the stride-frequency,
step-length and walking posture in a very straightforward manner. Given these mo-
tion adjustment functionalities, human walking behaviors such as the rhythmic walking
behavior and motion adaptation to the environment change can be achieved to a good
extent. In addition, two motion-balance strategies based on the TFS formulation have
been proposed and demonstrated to be able to achieve long-distance 3D human-like
walking motions. From the results obtained, the damping behavior is found to be more
important for motion balance as it can result in a smoother lateral behavior and natu-
rally confine the motion into a sinusoidal profile. The entire bipedal walking control
algorithm proposed in this thesis has shown to be general for different walking postures

and for robots with different mechanical and geometrical properties.
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Chapter 1

Introduction

1.1 Background

Animal locomotion research has been around for more than one century. Bipedal loco-
motion is associated with animals that use exactly two limbs to achieve locomotion. As
humans are bipedal, it is always desirable for us to replicate a machine with the same
mobility as ourselves as such a machine will enjoy tremendous mobility advantage when
placed in human environments. Such machines will be particularly useful in environ-
ments which pose great hazards for human beings. Research on bipedal walking control
will provide greater insights to the biomechanics of both robots and humans and a better
understanding of the limitations to walking in both humans and robots. A greater under-
standing of how humans walk will also aid the development of leg prostheses and help

those who lost their lower extremities have a better chance to walk again.

However, it is a great challenge to build a bipedal robot that has agility and mobility
similar to that of a human. There are several characteristics of bipedal walking robots

that make them seemingly difficult to control:

e Non-linear dynamics.
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1.1 Background 2

e Multi-variable dynamics.

Naturally unstable dynamics.

Limited foot-ground interaction.

Discretely changing dynamics.

Subjective performance evaluation.

The first three of the above characteristics make synthesizing a controller using tradi-
tional linear control techniques difficult while the last three further move bipedal walk-
ing out of the range of traditional control techniques for which much have been devel-

oped.

A bipedal robot generally comprises multiple rigid links driven at its joints simulta-
neously. The system is a complex non-linear multiple-input multiple-output control
system. In addition, the locomotion posture of the biped, unlike that for the quadruped
or hexapod, has difficult stability issues since the biped is comparable to the inverted

pendulum model.

The limited foot-ground reaction forces that can be generated is a distinctive feature of
normal walking robots. This under-actuated joint is what makes the control of walking
robots different from that of robotic arms fixed rigidly to the ground at their bases for
which several traditional control methods are available. The torques that can be applied
to the foot is limited as the foot will rotate over its toe or its heel if these are too large.
Because of this, the extent of the control action which can occur during a walking stride
is limited. In particular, the forward velocity of the robot cannot be quickly changed as

this is limited to the reaction forces that the foot-ground interface can sustain.

The dynamics of a bipedal walker changes as it transitions from the single support phase
to double support phase and back again. Since the continuity of the equations represent-

ing the dynamic motion can be broken by the foot-ground interactions at the instant of
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switching of these phases, determining the Lyupanov functions or applying other tradi-

tional control techniques poses a challenge.

Furthermore, the performance measure of a bipedal walker is not as well-defined as that
of typical robotic systems. For example, the performance of an industrial robot arm is
often measured by how well it can follow a given desired trajectory. In bipedal walking,
due to the under-actuated joint at the foot, it may not be physically possible to control
the biped to strictly follow the desired trajectory if large foot-ground reaction forces
and torques are required. Because of this, many researcher simply use a performance
measure based on a binary measure, whether a stable locomotion is achieved or whether

the robot topples over while incorporating the dynamics errors.

Because bipedal walking is a challenging control problem, the approach for bipedal
walking control usually has to be based on the specific physics of bipedal walking,
rather than attempting to develop a general approach which is applicable to other classes

of robots.

1.2 Objectives and Scope

In this thesis, the survey scope of the bipedal locomotion generation and control covers

algorithms developed from static walking to dynamic walking.

Static walking refers to the walking motions for which the biped’s vertically projected
Center of Gravity (CoG) always lies within the footprint polygon, which refers to the
boundary of the supporting foot during the single support phase or the smallest con-
vex hull containing the two feet during the double support phase. With this constraint
condition and for sufficiently slow walking motions, the biped is, at all instant of time,
statically stable and the biped will be able to achieve stable walking without falling
over. This type of walking is generally only applicable for robots with large footprints
and only with slow walking speeds so that the dynamic forces do not affect the stability

of the robot significantly.
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1.2 Objectives and Scope 4

Dynamic walking, on the other hand, does not require the vertically projected CoG to be
always within the footprint polygon and also provides for more realistic, agile and faster
walking motions similar to that in human walking. In this type of walking motion, the
biped is almost always not statically stable and will topple over because of its momen-
tum if all its joints should suddenly be frozen at any time. Instead of the CoG, the Zero
Moment Point (ZMP) is a more important consideration in dynamic walking [19][20].
The ZMP is the point in the ground plane about which the momentum of all the forces
applied on the foot or feet by ground reaction forces is zero. However, the ZMP does
not have direct implications for walking stability. It only suggests that the prescribed
motion will be physically possible if the ZMP lies within the footprint polygon at all
times. Dynamic walking allows for larger step lengths, faster locomotion and greater
efficiency than static walking. Unfortunately, the stability margin of dynamic walking

is much harder to quantify.

Based on the survey, which will be detailed in Chapter 2, the objective of this thesis is
then designed to synthesize and investigate a general bipedal walking motion control
architecture based on a unified motion generator for different biped robots to achieve
2D and 3D dynamic walking. In addition to achieving stable walking, feedback of
certain walking parameters is also incorporated to cater for real-time motion transitions
and pattern regulations on level and multi-slope terrains. In the subsequent chapters,
the walking task refers to the dynamic walking case unless otherwise specified. The
control architecture developed is based on a divide-and-conquer approach in which the
dynamic walking task is first decomposed into smaller subtasks. The Genetic Algorithm
(GA) technique is first used to generate a suitable basic walking pattern and a learning
method is subsequently applied to those subtasks that do not have simple solutions. In

general, the characteristics desired of resulting algorithm include:

e Stability. The biped should not fall when challenged with disturbances from foot-

ground interactions or other external forces from the environment.

o Versatility. Depending on the application, the biped should have be able to ma-

noeuvre, vary its speed, and walk on rough-terrains.
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1.3 Methodology 5

e Generality. The algorithm should be applicable to bipeds with different geometri-

cal and dynamic parameters.

e Naturalness. The biped should achieve more or less human-like natural motions.

The work presented in this thesis covers 2D rhythmic walking on level and multi-slope

terrains and 3D rhythmic walking on level grounds.

1.3 Methodology

The key philosophy adopted in this thesis is to seek a simpler control algorithm that
satisfies the specifications stated in the previous section. One of the ways to reduce
the complexity of biped control is by task decomposition or the divide-and-conquer
approach. For example, 3D bipedal walking can be broken down into motion controls
in the transverse, sagittal and frontal planes (see Figure 1-1). Each of these can then be

considered individually.

This thesis firstly proposed a simple mathematical model, referred to as the Truncated
Fourier Series (TFS) model, to generate suitable basic walking patterns for different
walking requirements. Here, the generated basic walking pattern does not mean the ideal
pattern for the joint controllers to exactly follow. Rather, considering the fact that it is
very difficult to achieve the high precision motion control, which represents the planned
optimal pattern in a good accuracy, for biped systems, here the basic walking pattern
therefore only means some motion pattern to coordinate and guide the robot motion into
some physically stable and robust limit cycle behavior and excite more natural dynamics
for the steady-state motion. For the sagittal plane motion control, key parameters such
as the fundamental frequency, series amplitude and constant-shift contained in the TFS
model are prepared for the composition of subtasks as: 1) stride-frequency adjustment;
2) step-length adjustment; and 3) walking environment adaptation. Through the use of
feedback of walking state and a learning agent, the overall control algorithm for the

sagittal plane motion adjusts the system towards achieving a stable rhythmic walking
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Figure 1.1: Robot motion plane and Degree of Freedom (DOF).
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1.4 Simulation Tool 7

pattern for a range of perturbations due to the external environment. In the frontal plane,
based on the TFS formulation, two force generators which balance the frontal plane
motion have been proposed and compared. One generates the spring and damper forces
concurrently and the other only generates the damper force. Through the application
of reinforcement learning, both force generators are aimed to regulate online the lateral

behavior and to achieve a stable rhythmic 3D walking motion.

1.4 Simulation Tool

In this thesis, the dynamic simulation tool Yobotics! has been used to test the developed
walking algorithms and prove the motion stability throughout the work. Yobotics! is
a commercial dynamic simulation package developed by Yobotics, Inc [1]. It is a full-
featured software package intended the simulations of robots, biomechanical systems,
and mechanical devices. It is based on Newtonian mechanics for interconnected rigid

bodies.

The dynamic interaction between the biped and the terrain is established by specifying
four ground contact points (two at the heel and two at the toe) beneath each of the
feet. The ground contacts are modelled using three orthogonal spring-damper pairs.
If a contact point is below the terrain surface, the contact model will be activated and
appropriate contact force will be generated based on the parameters and the current
deflection of the ground contact model. If a contact point is above the terrain surface,
the contact force is zero. (Note: any ground contact will result in the contact point below

the terrain surface, even just a very small value.)

Before a simulation is run, the user needs to add the control algorithm and joint con-
trollers to the simulated robot. In the control algorithm, only information that is avail-
able to the physical robot is used. The body orientation in terms of the roll, pitch, and
yaw angles and the respective angular velocities are assumed to be available. All the

joint angles and angular velocities are also known. The contact points at the foot pro-

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



1.6 Thesis Organization 8

vide information about whether they are in contact with the ground or not.

The outputs of the control algorithm are all the joint torques applied to the simulated
robot. Only the dynamics of the biped is taken into account in the simulations while that
of the joint actuators are considered to be comparatively negligible and thus ignored in

the simulation. Thatis, the actuators are considered to be perfect torque or force sources.

1.5 Thesis Contributions

The contributions of this thesis are summarized:

A general motion pattern generator, GAOFSF, for bipedal walking control is de-
veloped. It is applicable for bipeds that have similar degrees-of-freedom but of

different inertia and geometrical parameters.

e The objective functions of generating a basic walking pattern which can achieve
stable walking with softer controllers have been studied. Guided by the generated
basic walking pattern, and applying the lower control gains, the resulting motion

converges to the steady-state walking smoothly.

e The GAOFSF generated pattern can easily guide the robot to walk in different

stride-frequency, step-length and on undulating terrains.

e Successful applications of robot learning algorithms for perturbation adaptation

and motion balance control.

e The synthesis of a general motion control architecture for 3D dynamic bipedal

walking.

1.6 Thesis Organization

This thesis is organized as follows:
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Chapter 2 gives a literature review of the bipedal locomotion research that is relevant
to this thesis. It groups bipedal walking research into different categories and examples

of each of the these are discussed.

In Chapter 3 the proposed motion control architecture is presented together with a de-
scription of the methods or tools utilized to formulate the walking control algorithms
contained in the proposed control architecture. It includes the Truncated Fourier Series
(TFS) model which is used as the core walking pattern generator. It also introduces
strategies for optimizing the walking pattern generated according to some desired char-

acteristics through the use of Genetic Algorithm and Reinforcement Learning.

Chapter 4 develops a sagittal plane motion control algorithm based on the approach of
coordinating the robot motion for stabilizing a basic walking pattern without having to
critically depend upon adjusting the joint control gains, considering the difficulties of
accurately tracking a planned bipedal motion as an under-actuated system with highly
nonlinear dynamics. The motion stability of the sagittal motion control is achieved
by the entrainment towards a stable limit cycle walking behavior when the biped is
perturbed because of external factors but remains within a region of attraction. This
range of attraction has been also investigated for various walking scenarios on different

terrains and with different walking postures.

The motion adjustment modes contained in the TFS model for the sagittal plane motion
is discussed irChapter 5. A high-level motion supervision module is developed for

rhythmic walking control and pattern transitions when there are external perturbations
which include the foot-ground interaction, external force disturbances and changes in

the terrain.

In Chapter 6, a TFS-based motion balance control strategy based on reinforcement
learning to achieve stable walking is described. The results of the simulations for various
walking examples demonstrating the successful application of this strategy for variable

speed 3D walking motions are presented.

The same motion balance control strategy describe@hapter 6 but enhanced with
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the introduction of damping is presentedGhapter 7. Here again the results of sim-
ulations for various walking examples for variable speed 3D locomotion are presented
and comparisons made with that obtainedCimapter 6 in which the spring effect is

dominant.

Chapter 8 presents the conclusions for the work done here with some suggestions of

areas for further development.
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Chapter 2

Literature Review

For a biped robot to achieve a stable and feasible walking gait, the control algorithm
needs to comply with the constraints of the bipedal system. One important constraint
is the unpowered DOF between the foot and the ground [2]. This constraint, which
depends entirely upon the nature of the foot-ground interface, limits the use of the much-
studied trajectory tracking approaches used commonly in fixed-base manipulators and
is one of the major reasons making the control of bipedal locomotion such a challenging

research area.

Many algorithms have been proposed for the bipedal walking task [3]-[18]. As discussed
in Chapter 1 bipedal locomotion is a complex problem with a wide range of issues that
need to be investigated and in order for an autonomous bipedal robot to be developed
which can achieve stable and natural locomotion. As a result, many research works are
restricted to only certain aspects of a larger problem. For instance, some works concen-
trated on the area of mechanical analysis and design, some on various areas of control of
the individual links or of the multiple-link mechanism, and some on energetics of biped
locomotion. Other researchers further simplify matters by partitioning the biped gait

and restricting their analysis either to the sagittal plane or the frontal plane [81] [83].

The various control approaches that have been adopted for dynamic bipedal walking
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can generally be classified into five basic categories: 1) ZMP-based; 2) model-based; 3)
biologically inspired; 4) learning; and 5) divide-and-conquer. The classification is not
fully restrictive. Some approach mainly belongs to a specific category but also interacts

with the others to some extent.

2.1 ZMP-based

A popular approach used for joint trajectory planning for bipedal locomotion is based on
the ZMP (Zero Moment Point) stability indicator [19][20]. ZMP was first introduced by
Vukobratovic [2]. Based on this concept, Takanishi et al. conducted a series of work at
Waseda University using a stabilization through trunk motion approach [21][22]. In this
series of work, the control strategy is to confine the ZMP to be within the single-support
or double-support footprint polygon so as to achieve stable locomotion. When the lower
limbs move according to the prescribed trajectory, the error which resulted between the
desired ZMP and the actual ZMP is to be minimized by adjustments to the body trunk’s
motion. This approach has been demonstrated to achieve successful stable walking on
inclined terrains as well as on stairs. However, the algorithms derived are not applicable

to a biped that does not have the extra waist joint on the body.

The humanoid robot (P2 and P3)[23] developed by Honda Motor Company, Limited,
are state-of-the art 3D bipedal walking systems. The control approach used is based
on playing back trajectory recordings of human walking on different terrains and then
modify the joint trajectories through iterative parameter tunings and data adaptation
according to the ZMP. Due to the fundamental differences between the robots and their
human counterparts, for example, the actuator behaviors, inertias, and dimensions, such

reverse engineering becomes rather computation intensive and tedious.

Many other typical works [24] [25] in this category approach the walking control by
planning a bipedal walking motion whose ZMP is fully inside the supporting polygon

and then to minimize the ZMP trajectory error through some strategies, such as a high
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tracking accuracy motion controller design based on a precise robot model to achieve the
walking to be very close to the prescribed motion and then minimize the ZMP location
error [25].

The advantage of the ZMP-based approaches is that robot stability is more clearly en-
sured based on a proven and sound dynamic basis. The main disadvantage of the ZMP-
based control is that the resulting walking motions will be quite restricted. This is be-
cause in order to achieve the prescribed motion well, stiff motion controllers are required
for good tracking accuracy. Then, robot motion will be rather sensitive to the perturba-
tions, i.e. ground contact impact and terrain surface adjustment. As a result, motions
need to be slowed and motion agility will be constrained to some extent. Besides, mo-
tion transition may need to be particularly planned to avoid any sudden change at the

stance ankle joint torque resulting in motion instability.

2.2 Model-based

Typical model-based control algorithm synthesis is based on a mathematical model of
the biped derived from an understanding of the underlying physics of the robot. The
massless-leg model is the simplest model used in which the biped is assumed to be a
point mass and considered as an inverted pendulum with discrete changes in its support
links. This model is applicable only to a biped that has small leg inertia which can
be considered as insignificant compared with that of the body, for example when the
walking speed is slow and the dynamics of the legs can be neglected without much loss

of accuracy.

Kajita et al. [26] derived a massless-leg model for a planar biped that follows a linear
motion. During the single-support phase, the resulting motion of the model is treated
as an inverted pendulum with a point mass and with a variable pendulum length. With
this simplified model, the dynamic equations of the resulting linear motion can be easily

solved analytically. Inverse kinematics is used to specify the desired joint trajectories
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and a simple control law is used at each joint for trajectory tracking. Although the walk-
ing stability of Kajita’s work is also ensured by the ZMP location inside the supporting
polygon, the various dynamic walking motions are all derived based on a massless-leg
model. Therefore, Kajita’s series of work is considered as a typical research in the

model-based category.

When the leg inertia is not insignificant and cannot be ignored, this then needs to be con-
sidered in the dynamic model for the biped. One such model is the Acrobot model [27].
It is based on a double pendulum with no actuation between the ground and the base
link corresponding to the stance leg. Although the Acrobot model has not been directly
applied to the bipedal robot walking control, it is quite commonly used to characterize

the single-support motion of the bipedal locomotion study.

In addition to the inverted pendulum model and the Acrobot model, linearization have
been also used with respect to selected equilibrium points to simplify the multi-joint
models. Mita et al proposed a control method for a planar seven-link biped using a
linear optimal feedback regulator [11]. The model of the biped was linearized about a
commanded posture. Then, linear state feedback control was used to stabilize the system
to be not much deviated from the commanded posture. However, the work assumed that
the biped had no reaction torque limitations at the stance ankle and the biped was given

large feet so that the assumption was valid.

The advantage of model-based control approaches is that some analytical walking solu-
tions can be obtained by simplifying to a dynamic model that can be solved by known
analytical methods. However, the major disadvantage is that with the simplifying as-
sumptions, the control strategy that is derived using this approach may not work well
in actual implementation unless either the simplified dynamic model still represent the
actual model to a good degree of accuracy or if the actual robot is fabricated accord-
ing to the model used. For example, with the massless-leg model, the target robot for

implementation will need to have very light legs.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.3 Biologically Inspired 15

2.3 Biologically Inspired

Recently, the biologically inspired based walking control started to get more and more
attentions. For example, one important biological concept, Central Pattern Generators
(CPG)[28]-[33] has triggered many interests for locomotion control. Another typical
biological inspired walking approach, passive walking control, is based on the observa-
tion that human beings do not need high muscle activities to walk. Note only approaches
inspired by some proved biological findings and concepts are classified into the biologi-
cally inspired category. Approaches such as migrating the recorded human gaits to robot

walking are not considered to be inclusive.

2.3.1 Central Pattern Generators (CPG)

CPG is defined based on the findings that certain legged animals seem to coordinate their
muscles through some kind of central motion generator without using their brains. It was
first proposed by Grillner [34] who found from experiments on cats that the spinal cord
generates the required signal for the muscles to perform coordinated walking motion.
The existence of a central pattern generator that is a network of neurons in the spinal

cord was thus hypothesized.

The typical approach using the idea of CPG is the composition of a system of coupled
nonlinear equations which can generate signals for the joint trajectories of bipeds. The
biped is expected to achieve a stable limit cycle walking pattern with the use of these

equations.

Started from Matsuoka’s work about neuron oscillator for walking locomotion study
[35], Taga has conducted a series of work [31] about a neural rhythm generator for the
approximation of human locomotion. The neural rhythm generator was composed of
artificial neural oscillators which received sensory information from the bipedal system
and generated as output signals to the actuators in the system. Based on numerical sim-

ulations, a stable limit cycle behavior was entrained. Recently, the neuron oscillator
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based motion generator has been further investigated and successfully applied to adap-

tive dynamic walking of a quadruped robot on irregular terrain by Fukuoka et al[36].

Bay and Hemami[3] demonstrated that a system of coupled van der Pol oscillators could
generate suitable periodic signals for bipedal locomotion. These generated periodic
signals were applied to the walking task to produce rhythmic locomotion. However,

in their analysis, the dynamics of the biped such as the force interactions between the
support leg and the ground were not considered. The van der Pol oscillator based motion
pattern generator has been further studied and explored by many researchers, i.e. Teresa
[37][38].

One weakness of the reported works based on the CPG approach [28]-[31] is that the
suitability for use of the coupled nonlinear equations for bipedal locomotion was based
on the extent of the similarity of the generated joint trajectory signal profiles to that
obtained from experiments on human gaits. The essence is the search for a set of coupled
equations which can more or less mimic the joint trajectories profiles of human walking
without any other consideration based on proven concepts of the physics, mechanics or
dynamics of the robot and its motion. Therefore, it is difficult to find systematically a set

of parameters that can enable entrainment of the overall system applicable for different
walking situations. Even if a periodic stable walking behavior can be obtained, it is still
difficult to predict the walking behavior when the robot is subjected to disturbances or
changes in the locomotion because the causality between the parameters involved in the

nonlinear equations and the resulting motion has not been clearly defined.

2.3.2 Passive Dynamics

The study of passive dynamics in walking provides an interesting natural dynamic model
for the mechanics of human walking [39][40][41]. It was partly inspired by a bipedal
toy that was capable of walking down a slope without any power source other than
gravity. The toy rocked from left and right in a periodic motion. When a leg lifted off

the ground at the end of a half-period motion, it would swing freely forward, acted on by
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gravitational forces, and arrived in a forward position to support the toy for the next half
period of the motion. If the slope is within a certain range, a stable limit cycle walking
motion can be achieved. When this occurs, the work done on the toy by the gravitational

force will be equal to the energy loss in the biped.

Then, Goswami et al [42] and Thuilot et.al [43] studied nonlinear dynamics of a compass-
like biped robot. The model included two variable length members with lumped masses
representing the upper body and two limbs. The authors observed limit cycles as well as
chaotic trajectories. They primarily focused on the following parameters: ground slope,
mass distribution and limb length. Later, the work of Garcia et al [44] and Coleman et

al [45] represent a step forward in the research of passively walking bipeds. Robotic
models with rounded and point feet were used. Furthermore, kneed and straight-legged
bipeds have been also considered in passive dynamics. They also showed the existence

of walking gaits on arbitrarily small slopes.

Although passive walking has properties like being able to achieve a minimum energy
gait without active control, it is rather sensitive to parameter variations [40] such as mass

distribution and joint friction.

2.4 Learning

Learning is commonly applied to systems where known analytical approaches cannot be
used and when the dynamic models cannot be accurately derived. In many cases, learn-
ing is also used to modify a nominal behavior that are generated based on a simplified

model.

Benbrahim and Franklin [46] applied reinforcement learning for a planar biped to achieve
dynamic walking. They adopted a "melting pot” and modular approach in which a cen-
tral controller used the experience of other peripheral controllers to learn an average
control policy. The central controller was pre-trained to provide nominal trajectories

to the joints. Peripheral controllers helped the central controller to adapt to any dis-
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crepancy during the motion. A dynamic model for the system was not required in the
implementation. One disadvantage of this approach is that the nominal joint trajectories

applicable for the central controller training may not be easily obtainable.

Russ et.al [47] developed a stochastic policy gradient reinforcement learning on a simple
3D biped robot to quickly and robustly obtain a feedback control policy. The robot was
modelled after a passive walker to reduce the complexity level for the learning process.
Then it allows to learn with only a single output which controlled a 9DOF system.
Furthermore, by such a modelling of the robot, the motion can be formulated on the
return map dynamics which dramatically increased the number of policies in the search
space for the generation of stable walking. The learning algorithm worked well on
simple robot, but whether it can also work well on more complicated robots is still left

for exploration.

Chew [48][49] built up a general control architecture achieved by reinforcement learn-
ing, using the CMAC network as the function approximator. There is no joint trajectory
pre-planned or pre-defined. The proposed motion control was to learn the walking stride
and an offset value defined in balancing control with a local controller incorporated. The
derived local controller was found to be effective for reducing the computation cost. The
limitation of this control approach is that the resulting walking posture may not be very
periodical although they are all feasible. Also, the strategy does not allow for the ad-
justments to the stride-frequency during motion because the local controller does not

incorporate any parameter which can be varied with respect to time.

With the development of computation technologies, the Artificial Intelligence (Al) based
computation methods become more and more popular but the common issues for the Al
based techniques is the computation cost is high and the tolerance for the computation
reliability is still rather limited. Currently learning is generally more reliable for small

state-space tasks.
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2.5 Divide-and-Conquer

Due to the complexity of the bipedal walking robots, many algorithms break the problem
into smaller sub-problems that can be solved more easily. However, experience and
intuition is usually required for such an approach, both in deciding how to break down
the problem and how to solve the smaller sub-problems. Intuition can be obtained by

observing the behavior of bipedal animals or by analyzing simple dynamic models, etc.

Pratt et al. [50][51] presented a control algorithm called "Turkey Walking” based on a
divide-and-conquer approach for the planar bipedal walking problem in a biped called
"Spring Turkey”. The walking cycle was first partitioned into two main phases: double
support and single support. A simple finite-state machine was used to keep track of the
currently active phase. In the double support phase, the task of the controller consisted
of three sub-tasks: 1) body pitch control; 2) height control, and 3) forward speed control.
In the single support phase, the task of the controller consisted of two sub-tasks: 1) body
pitch control and 2) height control. The resulting algorithm was simple without the need

to use dynamic equations.

Raibert’s control algorithms [52] for hopping and running machines also mostly utilized
the divide-and-conquer approach. The control algorithm for a planar one-legged hop-
ping machine was decomposed into: 1) the hopping motion (vertical), 2) the forward
motion (horizontal), and 3) the body posture. These sub-tasks were considered sepa-
rately and each was solved by using simple control algorithms. This resulted in a simple

set of algorithms for the hopping task.

The divide-and-conquer approach has been proven to be simple and effective for prac-
tical implementations. However, not all bipedal systems can be easily be decomposed
with the sub-tasks solved using simple, direct or analytic solutions. Often, when de-

composed improperly, these sub-tasks may be coupled to and affect one another which

resulted in the decomposed systems not accurately representing the total system.
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2.6 Summary

This chapter provides a review of past works on dynamic bipedal locomotion, giving a

classification of the research that has been done with details on each of these.

Motion feasibility is more ensured using the ZMP-based approach, given the motion
controller can track the planned motion precisely. However, the pure ZMP-based ap-
proach walking control may be sensitive to the environment perturbations due to the
applied stiff control gains. Therefore, the resulting motion is not very compliant to

transitions.

The model-based approach can be an excellent approach if a simple and accurate-enough

model can be used and for which well-developed solutions are available.

The biologically-inspired Central Pattern Generator (CPG) approach to joint trajectory
generation has been studied and shown to be capable of generating periodic motions
which can be used in bipedal locomotion. Its weakness is that the motions generated
cannot be easily further developed or adjusted based on known the underlying physics
and mechanics of the system in order to adapt to robots of different inertia or geometrical
characteristics, to desired changes in stride frequency or length, to perturbations from
the external environment. As such, their applications to the bipedal robot locomotion

may be limited.

Studies in passive walking has given good insight to how robots can be made to walk
like human beings without the need for active actuators or additional energy input other
than that due to the potential energy due to gravity. Such walking style, unfortunately,
is applicable only to walking down slopes of a limited range for robots of a certain
structure. Still, the insights gained form such studies can greatly help the development

of more energy- and effort-efficient bipedal locomotion.

With the rapid development of high speed computers and computation technologies,

the learning approach has become a very promising area for further study, research and
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development. However, these approaches can become intractable if there are too many
learning agents or when the bipedal walking task is not broken down into smaller and

less-complex sub-tasks.

The divide-and-conquer approach has been demonstrated to be effective in breaking the
complex walking problem into smaller and more manageable sub-tasks. These sub-
tasks can then be more easily solved using established control techniques. Some sub-
tasks, however, may still not have easy analytical or other solutions and will need some

computational methods to achieve suitable solutions.

Based on the above literature survey, each method has shown some advantages but
also posed some limitations. In this thesis, the proposed approach uses the divide-and-
conquer approach but, in the implementation of the sub-tasks, it also makes use of the
other control approaches mentioned earlier, including the use of the ZMP for motion
stability considerations, the CPG concept for low-level motion convergence behavior
and the learning approach to achieve good control of the locomotion without the need

for rigorous analytical approaches with accurate dynamic models.
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Chapter 3

Control Architecture and Algorithm

Implementation Tools

In this chapter, a general view of the proposed walking motion control structure is
first presented. Then, the core component of the motion control strategy, a basic mo-
tion pattern generation method, is then introduced. Here, the proposed motion gen-
eration method is named as Genetic Algorithm Optimized Fourier Series Formulation
(GAOFSF) [53][54] and the mathematical formulation involved in the GAOFSF method
is named as the Truncated Fourier Series (TFS) formulation. In addition to the introduc-
tion of the walking control architecture, necessary algorithm implementation tools such
as the Genetic Algorithm (GA) and Reinforcement Learning (RL) are also presented.
GA is used to search for an optimal motion pattern defined in the GAOFSF, and rein-
forcement learning is applied to the subtasks of motion adjustment on an as-needed ba-
sis. A reinforcement learning algorithm called Q-learning [55] is adopted, working with

a function approximator called Cerebellar Model Articulation Controller (CMAC)[56]

to generalize the learning experience for real-time correcting motions when perturba-

tions occur.
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3.1 Control Architecture

A 3D bipedal walking system can be very complex to analyze if it is not partitioned
into smaller components or sub-tasks. It is difficult to apply a unified control algorithm
for such a complex system. In this thesis, a divide-and-conquer approach is adopted
in the formulation of the dynamic walking algorithm. By studying each subtasks sepa-
rately, the problem becomes less complex. Appropriate control algorithms can then be
applied to each of them. This section presents the framework for such a task decompo-
sition approach. The following subsections define the subtasks considered in the three

orthogonal motion planes and the whole control architecture that is composed.

3.1.1 Sagittal Plane

Sagittal plane motion is usually the largest during normal forward walking. The sub-
tasks important for sagittal plane motion control are considered as: 1) maintaining body
pitch [53], 2) maintaining desired walking speed (stride-frequency and step-length) [53],
and 3) walking adaptation on uneven terrains [57][58][59]. It is not difficult to achieve
the first subtask in the sagittal plane as it can be directly assigned to the joint control
scheme. However, the second and the third subtasks become much more complex since
they are directly associated with gait stabilization. Therefore, these two subtasks are
particularly determined by the composition of a motion generator and control strategy
which should take the flexibility and generality issues into account and achieve the en-

vironment entrained motions.

In this thesis, the total sagittal plane motion control is divided into two levels [60]. The
low level control maintains the motion stability through a limit cycle behavior based on

a generated basic walking pattern and the high level control modifies the basic walking
pattern based on sensed dynamics and environment feedback. Therefore, in the low-
level control part, conditions of the basic walking pattern to be generated to coordinate

a walking motion and converge the motion into a feasible limit cycle behavior are inves-
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tigated. Then, for the high-level motion adjustment part, key parameters contained in
the TFS formulated motion generator are discussed on their particular applications for
real-time gait adjustment, such as the stride-frequency, step-length and walking posture

adjustments.

3.1.2 Frontal Plane

For normal walking along a straight path, frontal plane motion is smaller than sagittal
plane motion. In the frontal plane, the dynamic walking task can be decomposed into:

1) maintaining the body roll angle [61] and 2) maintaining lateral balance [61].

The major control difficulty of the frontal motion control comes from the bigger ac-
celeration component in changing the direction of the lateral motion. In the situation
that only limited torque can be applied to the stance foot, such change of the motion
direction makes the desired frontal motion trajectories less trackable. In addition to the
trajectory tracking issue, ground contact behavior cannot be perfect as assumed. Due
to the above difficulties, to achieve a long distance 3D walking locomotion, the motion
control applied to the robot needs to incorporate a feedback loop. Therefore, the the-
sis explores two strategies using reinforcement learning algorithm for online dynamics

compensation and the achievement of the prolong 3D walking motions.

Similar to the sagittal plane motion control, the motion control applied to the frontal
plane motion is also a two-level based control. The low level control aims to maintain the

basic motion pattern and the high level control executes adjustment when it is necessary.

3.1.3 Transverse Plane

For normal walking along a straight path, transverse plane motion is usually the simplest
to control. In this case, the walking task can be decomposed into: 1) maintaining the

body yaw angle and 2) maintaining the swing foot yaw angle. Both the body yaw angle
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Figure 3.1: Proposed control architecture.

and the swing foot yaw angle can be set to zero if walking is facing forwards. Both

subtasks can be easily achieved.

Based on the above illustrated sub-tasks of each orthogonal plane, the overall control

architecture is summarized as shown in Figure 3.1.

3.2 GAOFSF Motion Generation Method

As mentioned, the sagittal motion is the major component of the entire walking control
algorithm, and the basic walking pattern generation for the sagittal motion control is the
most critical part for achieving the desired motion behavior and locomotion stability.
Therefore, this section details the proposed motion generation method, the Genetic Al-
gorithm Optimized Fourier Series Formulation (GAOFSF) approach [53]. It is aimed to
be general for motion pattern generation according to user-defined performance indices.
In this GAOFSF method, the Truncated Fourier Series (TFS) formulation is used to ap-
proximate the joint trajectories, and the GA is used to search for the optimal values of

the parameters in these formulations describing the desired pattern. Furthermore, this
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Figure 3.2: Examples of common function approximation using Fourier series [Quoted
from Wolfram MathWorld].

GAOFSF approach is flexible for different walking patterns and general for robots of dif-
ferent mass and inertia properties. The following illustration of the GAOFSF approach

starts from the basic mathematic formulation TFS.

3.2.1 Truncated Fourier Series Formulation

A Fourier series is an expansion of a periodic functf@r) in terms of an infinite sum

of sines and cosineéd/olfram MathWorld[87]. It can make use of the orthogonality
relationships of the sine and cosine functions to approximate any profile provided the
order of Fourier series can be high enough. Figure 3.2 (Quoted from MathWorld) shows

the way of approximations to common functions using Fourier series.

The Fourier series of a function is defined as:
1 ® 0
fx¥) =5 brsi 3.1
() 2a0+n;ancos(nx) +n; nsin(nx) (3.1)

wheren = 1,2 3,.... For a functionf(x) periodic on an interva|—-L,L]| instead of
[— 11, 11, a simple change of variables can be used to transform the interval of integration

from [—m, 1] to [—-L,L]. Let
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T[XI
X= T (3.2)
ax— "X (3.3)
L
Solving forx’ givesx’ = Lx/m, and plugging this in gives
L1 i nx', 2, . nmX
f(X)= 580+ z ancoy C )+ z bnsin( C ) (3.4)
n=1 n=1

If a function is even so that(x) = f(—x), thenb, = 0 for all n. Similarly, if a function

is odd so thaff (x) = — f (—x), thena, = O for all n.
Since a stable walking locomotion has the following motion characteristics as:

1. Joint trajectories are periodical and the shapes, especially the hip joint trajectories

resemble sinusoidal profiles [32] [33].

2. Any of the joint trajectories can be divided into phases such as positive and negative
with respect to some off-set value, or constant and variable according to typical shapes
from literatures [32] [33].

Therefore, given phase identifications, trajectory during each phase can be regarded as
an odd function. Thusa, can be just assigned to be zero for all the cosine series.
For those sine series start from an off-set value, it is defined as the Truncated Fourier
Series formulation. In this thesis, this TFS formulation is used as the basic module for
generating an optimal motion pattern according to the user defined objective functions.
The applications for the generation of different basic walking patterns are presented in

Chapter 4.
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3.2.2 GAOFSF Motion Generator

For sagittal plane motion, the gait synthesis for this bipedal robot involves first determin-
ing the hip-pitchOs — Zs, and knee-pitchQ — Z4, joint trajectories for each of the legs
referring to Figure 1.1. The ankle-pitch angle of the swing leg is then determined based
on the condition that it is always parallel with the ground surface. The ankle-pitch joint
trajectory of the stance leg is not planned as the foot is allowed to interact naturally with
the ground in the motion controller that is presented in Chapter 4. The following sub-
section starts the desired motion generation from the elaboration of features of human
gaits because one of the research objectives of this thesis is to achieve the human-like

walking pattern.

For a deeper insight into human motion propertiesMDON motion registration sys-

tem andPOLYGONhuman motion analysis software were used to record and process
human gaits. Figure 3.3 shows the hip and knee trajectories f8Banltall person (74kg
weight). The reference frames are the same as what is defined for the biped model, as
shown in Figure 1.1 (Coordinaté€3; — Z3, O4 — Z4 and Os — Zs without considering

the toe jointO; — Z; at one side). The gait analysis software verified the obtained data
comparing it with norms stored. From the gaits recorded/ByON, considering the

fact that human body is physically different from the robot’s rigid links, Figure 3.4 is
derived in a general form applicable to different robots by capturing the main features
of Figure 3.3. The trajectories for both legs are identical in shape but are shifted in time
relative to each other by half of the walking period. For exam@jefor the left hip

is identical to that for the right hip, except th@, is time shifted by(ts —tp)/2 w.r.t.

6. Itis also noted that the joint angle trajectories can be referenced by "offsets”. The
values of the defined offsets actually influence the biped’s posture during waltjng.
denotes the hip angle offset. This is the value of both hip joint angles at the point they
become equal, or at which the two thighs cross each othellenotes the knee angle
offset. This is the value of the knee angle when the knee is locked during part of the
support phaset; andt, denote the start and end time, respectively, of the lock phase.

Such a lock phase is comparable to the physical pattern of the stance leg lifting up the
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Joint angles

-------- left knee
== right knee
— lefthip
==u right hip

angle [degrees]

Figure 3.3: Human gaits recorded by VICON motion registration system.
body and then straightening, corresponding$o0.14sto 0.4sin Figure 3.3.

Consider first the hip angle trajectories. They can be divided into an upper pcﬁpﬁon,
for which 6, > ¢y, and a lower portiong, ", for which 8, < c,. Thus, referring to Figure
3.3 for the two portions of the walking cycle, the hip joint angles for the two legs are

given by

(3.5)

where6, and g, are the right and the left hip joint angles, respectively.

Similarly, the right knee joint angle trajectory for different portions of the walking cycle

is given by

t € [to,ts) Bk = B (t+ts—ts)
t € [ta,ts) B = Oo(t) (3.6)
tets,ts) Bk = B (t —ts)
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Figure 3.4: Uniform gaits elaborated from human gaits features.
Right support]t2,t5); Right swing:[t0,t2) and[t5,t6];
Left support:[t0,t2) and[t5,t6]; Left swing: [t2,t5).

wherefy; is the knee joint trajectory from the beginning of swing phase, denotégl by
for the right knee in Figure 3.4, to the instant in the support phase when the knee joint

is locked, denoted bty in Figure 3.4.6, is the locked knee joint angle.

Similarly, referring to Figure 3.4, the joint angle for the left knee is given by

tefto,tr) Bk = B(t+ts—1t2)
t € [tr,t2) Bk = Beo(t) (3.7)
tefto,ts) B = Ba(t—1t2)

wheret; is the instant when the stance knee is locked tand the instant when the

walking phases of the two legs are switched.

Joint Trajectory Representation using the TFS

As discussed above, the Fourier Series of a periodic function offtiecan be written

as
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f(t)= %ao-i-ia;sin(gt) -l—ibicos(gt) (3.8)

whereg; andb; are constant coefficients afds the period. The fundamental frequency

is given by, = I,

As mentioned in the previous section, all the joint trajectories during a gait cycle can
be divided into two portions. Each portion can be viewed as an odd function output
according to the intersection with the angle axis. Therefore the sine series in the Fourier
series function, in Equation (3.4), is simplified to be the Truncated Fourier Series (TFS)

used to model each portion as:

£(t) :ia;sin(iwt)Jrcf, w:%T (3.9)

wherea;, andcs are constants to be determined amnds the fundamental frequency
determined by the desired period of the gait. The parammetesich determines the
number of terms in the Fourier series, is chosen as a trade-off between the accuracy of
the approximation required and the computational load. The formulation as shown in
Equation (3.9) is used for the joint angl@s (t), 6, (t) and6y (t) as given in Equations

(3.5) to (3.7). Although the function is periodic, only the first half of the period is
needed for the joint angles. It is noted here that since the shapes of the upper and
the lower portions are not symmetrical about tBecy,) point, even if the full Fourier
series is used, this cannot automatically give an equal time period for the upper and
the lower portions of a walking motion. The use of the full Fourier series, as with
other approximation functions, will therefore also require an additional mathematical
constraint to fix the profile so that the upper and the lower portions intersect at the points
(0,cn) and(Ts, cn), Ts being the step period. As can be seen from the foregoing, the use
of the TFS allows for a reduced series with fewer parameters for the same approximation

accuracy, and with fewer constraints required. This significantly reduces the subsequent
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computational load in the search for feasible and optimal solutions using GA.

Using Equation (3.9) and based on Figure 3.3, the TFS for the hip pitch angles are then

formulated as:

67 =y, R-Asinian(t —t7) +cn
0, = > R-Bjsiniows(t —t. ) +cn

Brh, Bn = (3.10)

wherew, = ts%to = te%ts A andB; are constant coefficient,” and 6, the upper and
the lower portion respectively of the hip joint angle trajectory, $andth* are time-
shift values according to Equation (3.93.is an amplitude scaling parameter used for

changing the step-length. InitiallR is set to be 1.

Similarly, the trajectories for the knee joint angles are expressed as:

=3 ;R-Cisiniay(t —tx) +¢
BB — 4T 2 @t —t) + & (3.11)
Bo=0c>0

wherewy = W’M C; are constant coefficients ahds the time-shift.

Compared with other trajectory synthesization approaches[22] [77] [78], the advantages
of using the TFS to synthesize the walking gait generator for bipedal robots are as fol-

lows:

e With only a few terms in the series, it can represent quite accurately the shapes
of the required joint trajectories for human walking inspired biped robot gait, for
which the upper and the lower portions are not symmetrical but individually are

similar to half a sinusoid.

e Each TFS used here is a simple expression that makes no mathematical assump-

tion when considered as half of an odd function. The gait period is included
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directly. Other functions, such as the Spline, Gaussian or the full Fourier Series

Function will add additional constraints to regulate the motion period.

e Motion planning is directly conducted in joint space. Thus, the resulting body
motion is a direct representation for a robot CG motion, i.e., motion smoothness.
Also, mathematical singularity is not an issue needs to be considered in the motion

generation as it avoids the inverse-kinematics in motion planning.

e Key parameters of the TFS can be easily adjusted on-line during walking to
change the walking gait, either of the desired pace, or in response to terrain ir-

regularities. (This will be discussed in Chapter 5).

Gait Synthesis

In the gait synthesis, a suitable set of coefficieltB;, C; and parameters;, ¢, t1, to
(as indicated in Figure 3.4) need to be obtained using the GA {6 the instant when
the knee of the stance foot starts to lock &nid the instant when the walking phases of

the two legs are switched.

Through experimentation, it was found that a valuerfon both Equation (3.10) and
(3.11) as low as 5 can give good performance. This value was thus used. In this case,
there will be altogether 19 parameters to be determined for the sagittal plane motion.
For the GA, these parameters are coded in a chromosome which has 19 genes. The
format of the chromosome is set as= [A;,B;,Ci,ch, Ck, t1,t2]. Here, the real number
chromosome representation was adopted which, from experiments performed, is more
efficient than the other representations. It takes about 1 minute on a PentiurB IV 2

GHz computer to come up with the solution fulfilling all motion requirements.

The key component of the GA is the formulation of the fitness function. GA opti-
mization is based on the minimization or maximization of the fitness which conducts a
trade-off among multiple motion behaviors important for stable walking. The objective

function is (to be minimized) as formulated in the form:
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f= iwi fi (3.12)

wherew;,i = 1,2,...n are the weighting factors, arfgli = 1,2, ...n are the performance
indices for optimization. In this thesis, two motion optimization strategies have been
applied: 1) motion symmetry optimization, programme c@ge and 2) motion robust-

ness optimization, programme co@g. The reasons for the derived objective func-
tions are presented in the later sections where the corresponding optimization is used.

Here, only the objective and constraint functions are listed.

For optimization programme codep;, the following motion objective functions are

derived for motion symmetry optimization:

f1 = the absolute difference between the positive and negative angular momentum gen-
erated by the stance ankle joint torque. Here, positive is for the stance ankle joint torque

larger tharnrg which occurs at the center line positi¥n= 0, and vice versa for negative,

t~ t+
fi=||S"|—|S || where S :/ T13dt and S :/ T1adt (3.13)
0 0

wherery3 is the stance ankle joint torque.

f, = the distance between the poiftg, 0) and(Ts/2,0) where(ty, 0) is the intersection
point of the line:T13 = t13(Min) + (| T13(maX | — |t13(Min)|) /Tt with the time axis, and

(Ts/2,0) indicates the half step-period.

Here the stance ankle joint torque is computed by:

n

T13 =M% — Hoy = _Z(mxag— (Hay + M (26 X6 — %G Z5,))) (3.15)
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wherexg,, Yg,, andzg, are the coordinates of the centroid of linkm; the mass of link

i; Hei, the rate of angular momentum about pdBt

f3 = standard deviation of the trunk velocity from the desired average velocity over a

walking cycle,

e | (Vi=VB1)?+ (v2—Vi1)? + ... (Vi —Ve1)? (3.16)
3 = .
+ (Vg —VB2)2 + (Vimy.., — VBB2)? + -+ (Vm, — VB2)?
My — My
wherev; , i = 1,2,...mp, are the trunk’s velocity at thé" sampling instant an¥g;

andVg, are the desired average walking speed over the first and the second half of a
step referring to the center liné = 0, respectively. For the generation of dynamically
symmetrical walking pattern¥g; = Vo, but for the asymmetrical walking pattervg;

andVg, will be assigned to be different.

For optimization programme cod2p,, the performance optimization indices are listed

as follows:

f1 = standard deviation of the trunk velocity from the desired average velocity over a

walking cycle, same as the abofseby settingVs1 = Vg».

f, = the body CG displacement before and after crossing the centex kn@ is being

comparable.

f2 = [[Xcgl — Xl (3.17)

f3 = minimization of the distance between the average ZMP loc&ipover a walking

step and the centé& of the stance foot-print, formulated as

f3 = |Pn—F| (3.18)
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If the frontal plane motion is incorporated, one more motion performance objective
function will be added:f4 to minimize the angular momentum generated by the rolling

joint of the stance foot.

fo= Min(/OT T dt) (3.19)

whereT,, is the rolling joint torque of the stance ankle.

In addition to the above objective functions to be minimized, there are five penalty func-
tions used as motion constraints to ensure a valid walking posture. Motion constraints
work differently from the previous motion objectives. For a motion constraint, there is
no penalty if the constraint is not violated. A penalty is only imposed when the mo-
tion violates the constraint. The five motion constraint penalty functions are described

below.
For optimization cod®©p;:
S constrains the motion symmetry to be within a certain level, formulated as:

s1 = max(f1 —amax), 0) +max (amin— f1),0) +max( f2—bmax), 0) +max (bmin— f2),0)
(3.20)

whereamax amin andbmax, a8min describe the symmetry level that is considered in the GA.

For the symmetrical motion generati@in = 0, bmin = 0.
For optimization cod®© py:

S1: constrains the average ZMP locatiBg to be always inside the supporting polygon

of the stance foot:
s1 = max (|OR,— 00| —L¢/2),0) (3.21)

whereOO is the length from the center of the supporting polygon to the ZMP coordi-
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nate,L¢ the foot-length of the robot.
The followings, to s5 are the common motion constraints for both co@¢s andOpy.

S: constrains the swing height to be above a specified minimum value except for the
phase-switch moment so that the swing foot does not hit the ground prematurely or drag

on the ground. Let:
m be the number of the sampling instances within one walking step.

di andd, be the sums of the differences between the desired swing height and the actual

height for one walking step.

H, andH, be the length projections of the right and the left leg respectively onto the

vertical plane with respect to the terrain surface.

Hmin be the minimum swing height. With this constraint, although the swing height
cannot be always above the minimum height, the problem of the swing foot dragging on

the ground for a long time will be avoided.

fori=1:m (3.22)
(i) <t2)
di; = di + max (Hr — H; — Hmin), 0);
elseif(t(i) > tp)
dy = dy + max (H; — Hy — Hmin), 0);
end
S = dp +dy;

end

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.2 GAOFSF Motion Generation Method 38

s3. constrains the swing foot's velocity to be always positive except during the short

time period before or after the touchdown moment,

3 = max —Vvz,0) (3.23)

wherevs is the swing foot velocity and the max function is taken over the sampling

instances for the walking step except for the ones before or after the touchdown moment.

S4. constrains the deviation of the step length from the desired to be within a small

specified value,

whereL andLg are the actual and the desired step length, respectively.

ss: constrains the deviation of the touch-down instant of the swing tgpfrom the

planned phase switching time, to be within a small specified value,

S5 = [tz — | (3.25)

Based on these constraints, the penalty function is defined as

5
P= Zx pis (3.26)

wherep;,i = 1,2,...5, are assigned penalty weighting factors.
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Using Equations (3.12) and (3.26), the fithess function for the GA algorithm is estab-

lished as

0, if L |Al=0o0r 3y ,|Bi|=00r 3',|C|=0
Cmax— f—P

fithess= (3.27)

The first expression of Equation (3.27) is used to avoid the possible situation of standing
still which can give a very good performance on stance foot stable on the ground. The
parameteCnax is chosen to be as small as possible in order to have a better differenti-
ation among various possible solutions. However, it should also be such that the fitness
value for most, if not all, possible solutions are positive, (because the selection method
used in this thesis is based on probabilities, not ranking). Suitable values are chosen by

trial and error.

In selecting the values for the weight factaws and p;, consideration was given to
balance all objectives and constraints, usually through estimdtiagd s values of
a motion with all the objectives and constraints achieved at the average level and then

estimating the weight factors to make them about equally important.

3.3 Implementation Tools

In order to achieve the proposed motion control architecture, some computation meth-
ods are needed to get the numerical solutions because the analytical solution of a biped
system is very difficult to derive currently. In this thesis, Genetical Algorithm (GA)[62]
and Reinforcement Learning (RL)[53][54] are used on a necessary basis. In this sec-
tion, important computing methods that have been used in the proposed bipedal walking

control algorithm are described.
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3.3.1 Genetic Algorithm

A genetic algorithm (GA) is a search technique used in computing to find exact or ap-
proximate solutions to optimization and search problems. Genetic algorithms are cate-
gorized as global search heuristics and considered as a particular class of evolutionary
algorithms (also known as evolutionary computation) that use techniques inspired by

evolutionary biology[62].

Genetic algorithm search the solution space of a function through the use of simulated
evolution, i.e., the survival of the fittest strategy. In general, the fittest individuals of any
population tend to reproduce and survive to the next generation, thus improving succes-
sive generations. Genetic algorithms have been shown to be effective in solving linear or
nonlinear problems by exploring all regions of the state space and exploiting promising
areas through mutation, crossover, and selection operations applied to individuals in the

population [62]. A genetic algorithm (GA) is summarized as follows:
(1) Supply a solutiori? of N individuals and respective function values.
(2)i 1.

(3) P — selection functior{P_1).

(4) B — crossover and mutation functioRS

(5) evaluatgR).

6)i —i+1.

(7) Repeat step 3 until termination.

(8) Pick up the best solution found.

The use of Genetic Algorithm requires the determination of six fundamental issues:
chromosome representation, selection function, the genetic operators making up the

reproduction function, the creation of the initial population, termination criteria, and the
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evaluation function.

Chromosome Representation

For any GA, a chromosome representation is needed to describe each individual in the
population of interest. The representation determines how the problem is structured
in the GA and also determines the genetic operators that are used. Each individual or
chromosome is made up of a sequence of genes from a certain alphabet. An alphabet
could consist of binary digits (0 and 1), floating point numbers, integers, symbols (i.e.
A, B, C, D), matrices, etc. One useful representation of an individual or chromosome
for function optimization involves genes or variables from an alphabet of floating point
numbers with values within the variables upper and lower bounds. Michalewicz [62]
has done extensive experimentation comparing real-valued and binary GAs. The results
show that the real-valued GA is an order of magnitude more efficient in terms of CPU
time. Also, a real-valued representation moves the problem closer to the problem repre-

sentation which offers higher precision with more consistent results across replications.

Selection Function

The selection of individuals to produce successive generations plays an extremely im-
portant role in a genetic algorithm. A probabilistic selection is performed based upon
the individual's fitness such that the better individual in the population can be selected
more than once with all individuals in the population having a chance of being selected
to reproduce into the next generation [62]. There are also several other schemes for the
selection process: roulette wheel selection and its extensions, scaling technigues, tour-
nament, elitist models, and ranking methods [65] [66]. In the work presented in this

thesis, the probabilistic selection method is used for the selection function.
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Genetic Operators

Genetic Operators provide the basic search mechanism of the GA. The operators are
used to create new solutions based on existing solutions in the population. There are
two basic types of operators: crossover and mutation. Crossover takes two individuals
and produces two new individuals while mutation alters one individual to produce a
single new solution. The application of these two basic types of operation and their

derivatives depends on the chromosome representation that is used.

Let X andY be two m-dimensional row vectors denoting individuals (parents) from the
population. For real-valued representation, the following operators have been used: uni-
form mutation, non-uniform mutation, multi-non-uniform mutation, boundary mutation,

simple crossover, arithmetic crossover, and heuristic crossover in this thesis.

Uniform mutation randomly selects one variapknd sets it equal to an uniform random
numberU (g, b;):
, U(a,bi), ifi=]

X = (3.28)
X, otherwise

Boundary mutation randomly selects one variapénd sets it equal to either its lower
or upper bound, whene=U (0, 1):
g, iIfi=],r<05b
X=14 a, ifi=j,r>05 (3.29)

X, otherwise

Non-uniform mutation randomly selects one varialpland sets it equal to an non-
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uniform random number:

Xi+ (b —x)f(G), ifry<0.5
X =14 %—(x+a)f(G), if r,>05 (3.30)

X, otherwise

wheref(G) = (ro(1— %ax))b; r1, r2: a uniform random number betweéd 1); G: the

current generatiorGmax the maximum number of generatios;a shape parameter.

The multi-non-uniform mutation operator just applies the non-uniform operator to all of

the variables in the pareit

Simple crossover generates a random numliiem a uniform distribution from 1 ton

and creates two new individualx/(andY’)[62]:

J = X, ifi<r (3.31)

yi, otherwise

gl ifi<r 5.3

Xi, otherwise

Arithmetic crossover [62] produces two complimentary linear combinations of the par-
ents, where =U(0,1):

X' =rX+(1-r)Y (3.33)
Y =(1—1)X+rY (3.34)

Heuristic crossover [62] produces an linear extrapolation of the two individuals. This
is the only operator that utilizes the fithess information. A new indiviciaé created

using Equation (3.36), where=U(0,1) andX is better tharY in terms of fitness. If
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X' is infeasible, i.e., feasibility equals zero as given by Equation (3.38), then generate a
new random numbaearand create a new solution using Equation (3.36), otherwise stop.

To ensure halting, afterfailures, let the children equal the parents and stop.

X' =X+r(X-Y) (3.35)

Y =X (3.36)

. 1, if x{ >a,x <b,Vi
feasibility= (3.37)
0, otherwise

Initialization, Termination, and Fithess Function

The GA must be provided an initial population as indicated in step (1) mentioned above.
The most common method is to randomly generate solutions for the entire population.
However, since GAs can iteratively improve existing solutions, the beginning population
can be seeded with potentially good solutions, with the remainder of the population

being randomly generated solutions.

The GA moves from generation to generation selecting and reproducing parents until a
termination criterion is met. The most frequently used stopping criterion is a specific
maximum number of generations. The maximum number of generations can be tuned
through a few trials. Usually the convergence rate appears to be quite stable is the setting
of GAis not dramatically changed. The algorithm can also be terminated due to a lack of
improvement in the best solution over a specified number of generations. Alternatively,
a target value for the evaluation measure can be established based on some arbitrarily
"acceptable” threshold. The termination condition for the work in this thesis is simply

based on a specific maximum number of generations.

Fitness functions of many forms can be used in a GA, subject to the minimal requirement
that the function can map the population into a partially ordered set. As stated, the

evaluation function is independent of the GA.
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3.3.2 Reinforcement Learning

This subsection describes a learning paradigm known as reinforcement learning [63]
[64]. Reinforcement learning is a class of learning algorithms in which an agent learns
to achieve a goal through trial-and-error interactions with the environment. The learning
agent learns only from reward information, and it is not told how to achieve the task.
From failure experience, the learning agent reinforces its knowledge so that success can

be attained in future trials.

Most reinforcement learning analyses assume that the learning problems can be posed
as Markov decision processes (MDPs) with finite states and finite action sets. MDP is a
discrete-time dynamic system in which the state transition depends only on the present
statei and the actiomw taken. That s, if an actione U (i) is chosen in state the system

will go to the next statg with probability P (j|i,u). For each transition, say froirto j

due to the actiom, an immediate reward(i, u, j) is received.

A MDP problem can be classified into either a finite horizon problem or an infinite

horizon problem [68]. In the former case, there is a finite number of sets, whereas there
is an infinite number of sets in the latter case. In this thesis, the bipedal walking task
is posed as a discounted problem. This is a class of the infinite horizon problem which

aims to maximize the discounted retiRpassociated tothe stage:
R= Z)ykrtmk (3.38)
k=

wherer is the reward received; € [0,1) is called the discount factor which indicates
how much emphasis is put on the future reward, and the subscript denotes the stage

number.

The actionu is selected based on a polieywhich is a function of the present state
i. The aim of reinforcement learning techniques is to learn a policy that can achieve a
given goal. When applied to control problems, the agent indirectly learns a policy by

estimating a value function callgg-factors that is a function of the state and the action
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[63]. For MDPs, theQ-factor of a state-action pair under policyQ'(i,u)) represents
the expected returR; when the actiom is taken at the state thereafter, following the

policy 1. For a discounted probler@™(i,u) att the stage can be expressed as follows:
Q"(i,u) = EMRefie =i, u = u = E™[Y y¥repapulie =1i,ue =] (3.39)
K=0

wherey € [0,1) is a discount factor; denotes the immediate reward received after the

(t —1)th stage.

In most problems, the aim is to obtain optimal Q-fact@¥gi,u) which are defined as

follows:
Qx (i,u) = max@'(i,u),Vi € U(i) (3.40)

Q*(i,u)gives the expected return when the agent takes the agtinrthe state and
adopts an optimal policyt* thereafter. Based o®*(i,u), an optimal policyr* can

easily be derived by simply taking any actiothat maximize€Q*(i,u) overU (i).

The major issue in reinforcement learning algorithm is how to efficiently find the optimal
Q-factors [69]. In many practical problems, the environment models is usually unknown
in advance. In the following subsection, a reinforcement learning algorithm called Q-
learning which does not need the environment model is presented. In this thesis, it
is used in all the reinforcement learning problems. Q-learning algorithm is a model
free approach in that it does not try to learn the environment model. It simply tries to
iteratively improve the estimation of the optimal Q-factors from the immediate reward
received for each action taken. And based on these estimated optimal Q-factors, an

optimal policy can be gradually derived.

There are several algorithms have been proposed for the model-free reinforcement learn-
ing (RL) approach. One popular algorithm that is applicable to such an environment is
the Q-learning algorithm developed by Watkins [55]. The following subsection briefly

introduced the Q-learning algorithm.
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Q-learning

Let’s first assume that the environment is a fully observable Markov decision process
that has finite state and action sets. Also, the environment is assumed to be stationary;
that is, the state transition probabilities are not correlated with the stage number. The Q-
learning algorithm recursively estimates the optimal Q-facfi@§,u) from experience
obtained at every state. The experiences are in the form of immediate reward sequence,
r(it,W,itr1) (t=0,1,2,...). The aim is to obtain the optimal Q-factors for all state-

action pairs based on which an optimal policy can be derived.

The Q-learning algorithm is analogous to the value iteration method of dynamic pro-
gramming. However, it does not "sweep” through all the subsequent possible states
when updating the estimate of the optimal Q-fad@dr, u) of present state-action pair.

For the discounted problem, the single-step sample update equatiQ(i faj is given

as follows:

Qta(it, ur) «— Qu(it, U) + o (it, e ) [r (it U, it 1) (3.41)

+ YmMaX,eu iy, ) Qt (it+1, U) — Qe (i, W)

where the subscripts indicate the stage numi{@r;u, it+1) denotes the immediate re-
ward received due to the actioptaken which causes the transition from stiate i, 1;
a € [0,1) denotes the step-size parameter for the upgete0, 1) denotes the discount
rate. Equation (3.40) updat€Xit, u;) based on the immediate rewar@, u, it1) and
the maximum value o(it+1,u) over allu € U (it11). This form of update is also called

the bootstrapping [63].

For finite state and action probler®(i,u) can be represented by a lookup table. The

table is initialized with some values (e.g., zeros) before the beginning of the learning
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process. The Q-learning algorithm is summarized as in Figure 3.5. The convergence of

Q-learning has been proved by several research works [70] [71] and defined as [55]:

Theorem: For a stationary Markov decision process with finite action and state spaces,
and bounded rewardsi;, U, it+1). If the update Equation (3.42) is used amde [0,1)
satisfies the following criteriaZ> ; at(i,u) = o and Z* ; [o (i, u)]? = =, V(i,u); then

Qt(i,u) — Q*(i,u) ast — oo with probability 1,V(i,u).

However, the above theoretical convergence criteria is hard to be accomplished in prac-
tical implementation. Especially for large state and action spaces, the convergence rate
for the Q-factors may be very slow because each state-action pair needs to be visited
infinitely often in order to satisfy the convergence conditions. Nevertheless, in practice
Q-learning works fine if the goal of the learning problem can be achieved without having

a precise estimate of the optimal Q-factor for each state-action pair.

In addition to the exploitation process presented above, reinforcement learning also fo-
cus on on-line performance, which involves finding a balance between exploitation (of
current knowledge) and exploration (of uncharted territory). One method that allows
a structured exploration is called tlsegreedy method [63]. However, it may not be
feasible for control applications in which most states have failure actions to explore
randomly over the action set. For the bipedal walking example, the biped may have to
fall frequently if the exploration mode is not turned off or somehow limited. Therefore,
the exploration method used in the work presented here is called passive exploration
[63] which means initializing Q-factors for all state-action pairs to optimistic value. At
any given state, the learning agent selects an action that has the maximum Q-factor. If
a failure is encountered or a penalty is given, the learning agent then downgrades the

particular Q-factor of the state-action pair and selects other actions.

Furthermore, similar to neural networks, reinforcement learning also involves the credit
assignment during learning. In the Q-learning algorithm, the discount faateter-
mines the credit assignment structure. Wlyaa zero, only immediate reward is con-

sidered. Such credit structure is considered myopic. That is any rewards generated by
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subsequent states will not have any influence on the return computed at the present state.
Usually, if a reinforcement learning problem can be posed suchytaad works fine,

it is much simpler and can be solved more quickly. Wiyas large (close to one), the
future rewards have significant contribution to the return computation for the present
action. The agent is then said to be farsighted since it looks far ahead of time when

evaluating a state-action pair.

Normally, reinforcement learning works with a function approximator for represent-
ing Q-factorsQ(i,u). The purposes of using a function approximator are as follows
[63][72]:

1) To reduce memory requirement; this is especially critical for high-dimensional and

continuous state-action space.

2) To enable generalization; generalization enables estimation of the Q-factors in those

locations which are not explored.

Gaussian Radial Basis Function (GRBF) networks and Cerebellar Model Articulation
Controller (CMAC) are common function approximators used in reinforcement learning
algorithms. Both have local generalization property. Compared with CMAC, GRBF
Network is more computationally costly. Therefore, the CMAC function approximator
is incorporated for all the reinforcement learning problems derived in this thesis. The Q-
learning algorithm using CMAC as the Q-factor function approximator is summarized
as in Figure 3.5, and the following subsection describes the working mechanism of the
CMAC.

Cerebellar Model Articulation Controller

Cerebellar Model Articulation Control (CMAC) is a mathematical model proposed by
Albus [56] for efficient computation in manipulator control. It is based on the neuro-
physiological theory of the cerebellum. It has been adopted as a type of neural networks

for supervised learning.
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INITIALIZE weights of CMAC
REPEAT (for each trial) :
Initialize |
REPEAT (for each step in the trial)
Select action U under state | using policy (say &- greedy) based on Q
Take action U
Detect new state | 'and reward I
IF| ' not a failure state
0 —r+ymax, Q@ 'u)-Q(u)
Update weights of CMAC based on J
ELSE (r =r,)
0 « r,—Q(i,u)
Update weights of CMAC based on &
UNTIL failure encountered or target achieved
UNTIL target achieved or number of trials exceed a preset limit

Figure 3.5: Q-learning algorithm using CMAC to represent Q-factors.

The Albus’s CMAC implementation mainly consists of an addressing scheme followed
by a single-layered network. The addressing scheme maps the input vector to a proper
subset withC elements oM weights of the single-layered network. By summing up

the weights addressed, an output is calculated. The addressing scheme is usually static
throughout the training process. A supervised training algorithm is applied to adjust the

weights of the single-layered network.

The addressing scheme consistColayers of partitioning of the input space. Each

segment of a partitioning layer represents a receptive field. The partitioning layers are
offset from one another. For a given input state, only one receptive field is activated for
each partitioning layer. The total number of the receptive fields is thus equal to the total

numberC of the partitioning layers.

The shape of the receptive field adopted in this thesis is rectangular type, which is the
same as the original Albus’s CMAC implementation. This can be illustrated by con-
sidering a three-dimensional and continuous input spece,,xs). Partition the state
space uniformly to create grid-like receptive fields. Each of the receptive fields is linked
to an index. This is like a lookup table if there is only one partitioning layer. If other lay-
ers (layer two and layer three) of receptive fields is overlapped and offset from the base

layer as shown in Figure 3.6, a state in the input space will activate the corresponding
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Figure 3.6: An addressing scheme for a three-dimensional input CMAC implementa-
tion.

three receptive fields.

The widths ¢y anddy,) of the rectangular receptive fields are selected to match the
desired generalization widths. The wider the receptive field, the greater is the general-
ization width. The number of partitioning layers corresponds to the desired accuracy
in approximating a function. More layers means finer discretization. However, having

more layers also results in greater computational cost.

Once the indices from the addressing scheme are generated, theyooft@NMAC can
be obtained by summing weights @' : i = 1,2,3...C) linked to the indices:
y=3"0 (3.42)
If the desired outpuyy is given, these weights can be adjusted as follows, which is
similar to the LMS (Widrow-Hoff) algorithm [73]:

Yd—Y

ow' =
waC

L i=1,23.C (3.43)
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wheredw' is the adjustment tow' anda is the training rate. That is, the adjustment is
the same for all the weights. & is large, the adjustment will also be large. Usualtly
is small as largexr may lead to instability in the overall Q-learning algorithm that uses

CMAC to approximate the Q-factors.

3.4 Summary

In this chapter, a general control architecture is synthesized for dynamic bipedal walk-
ing based on the divide-and conquer framework discussed earlier. The dynamic walking
task is partitioned into the three orthogonal planes: frontal, sagittal and transverse. In
the sagittal and frontal motion planes, the motion control is further split into two levels:

a low-level motion controller and a high-level motion monitor. The low-level motion
controller is designed to achieve the walking stability and the high-level motion mon-
itor is aimed to execute certain motion adjustment strategies, which are difficult to be
derived by an analytical solution, in real-time to prevent motion from falling. Besides,
the core motion generation method GAOFSF is introduced as well as all the necessary

computation tools used for algorithm implementations.

The following chapters present the algorithms for low-level, high-level, sagittal plane
and frontal plane motion control strategies for the achievement of the dynamically stable

and smooth bipedal walking motions.
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Chapter 4

Sagittal Plane Walking Algorithm

This chapter presents the algorithm for sagittal plane walking control. The major objec-
tive of this algorithm is based on a soft motion controller to achieve motion convergence
towards a stable limit cycle walking behavior which is physically achievable and robust.
With the achievement of such a limit cycle behavior under the soft motion control, the
robot will then be able to smoothly damp the perturbations from environment to some

extent, and self-converge the motion to the steady-state walking pattern.

4.1 Motion Control Strategy

In this section, the motion control law that is used in the sagittal plane motion control is
discussed. For bipedal walking control, the challenges mainly come from the following

two aspects:

(1) The root coordinate that describes the robot motion is attached with the body link.
However, the robot body usually is not actively actuated. Therefore, if the conventional
PD position control is applied to the two legs, it is difficult to maintain the robot body to

be just upright stably. Besides, the pitching body motion will also cause the swing foot

not to land much as planned. Then the motion will be more perturbed by the ground
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impact effect.

(2) Stable motion with the ZMP always inside the supporting polygon must involve
a larger acceleration component especially for faster but also robust walking motions,
referring to Equation (4.1) for constraining the ZMP location to be close to the center
of the supporting foot-print [74]-[79]. However, joint controllers may only follow such

a motion better by applying stiff joint control gains, but for bipedal locomotion control,
the ground perturbation always exists and disturbs the motion. Given a stiff motion
controller, the limited actuated stance foot may quickly flip due to the environment

disturbances and then cause the instability during transitions.

_ Mg —Hoy _ 313 (MXeg— (Hay+M(Ze%s —X6Za)))

ZMR - =
T om(g+Z) mg+ 3 miZai

(4.1)

wherexg,, Yg,, andzg, are the coordinates of the centroid of linkm; the mass of link

i;and HGi, the rate of angular momentum at pofatwhich is computed as:
HGi :Ri(lGiOq_(lGim>Xm) (4-2)

whereR; is the rotation matrix associated with ttik solid, Ig, its inertia matrix,c its

rate of rotation, andy its angular acceleration.

To solve the first issue discussed above, the joint control strategies for the stance and

swing legs have been separately considered.

The motion control for the stance leg is formulated based on the reaction torques, as

formulated in Equation (4.2). The coordinates are defined in Figure 4.1.
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(6 6, 6]

Coordinate related to the
vertical line

[0y G G

Stance leg joint
coordinate

[0 G Gu

Swing leg joint coordinate

o D\ SD

(
(
(
= Kpa(G11 — 011) + Kaz(G11 — 11) (4.3)
( .
(
(

\

The definition of all the symbols are indicated in Figure 4.1. It can be seen that the
motion control for the stance leg is based on the world coordifaté, 6s. This is
because the robot walking posture, including the upright body, is to be maintained with
respect to the world coordinate. Besides, using such a joint control, body pitch motion
can be directly controlled and the motion planning for the stance ankle joint can be
omitted as the stance ankle joint will be allowed to naturally interact with the ground.
Furthermore, it should be also noted that the posture is maintained sequentially, because

the set-point is given aé+1 = 6+ {y instead ofé,+1 =6+ §1. Therefore, given the
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b
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Stance ankle: | setpoint ; —_Z I ) Shank P
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Basic Adjustment
Pattern: B(t) Function: A(t)

Figure 4.2: Control Block-diagram for stance leg control.

body can be controlled to be upright, the whole walking posture can be still achieved but
the stance motion control becomes rather analogous to be a single link model actuated
at the bottom. Then, the entrainment of a walking limit cycle behavior, if existed, is

supposed to be unique.

Compared to tracking a statically planned basic walking patternfg.g—= 6 + Gai, the
difference is there will be two feedback pathways included in between the hip-and-knee

and the knee-and-ankle, as shown in Figure 4.2.

Here, the motion control for the swing leg is just the conventional PD position control, as
formulated in Equation (4.3). The joint control block diagram for the swing leg motion

is shown in Figure 4.3.

T21 = Kp1 (G21 — 021) + ka1 (G1 — G1)
122 = Kp2(Go2 — 022) + Kaz2(Go2 — 022) (4.4)
To3 = Kp3(G23 — O23) + kaa(Go3 — 23)

To solve the second issue about motion sensitivity to the environment changes as listed
above, instead of tracking a prescribed motion as precisely as possible using very stiff

control gains, the motion control strategy proposed in this thesis is developed based on
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Basic
Pattern: B(t)

Figure 4.3: Control Block-diagram for swing leg control.

the logic: guided by a basic walking patteB(t) and applying a soft motion controller

with low control gains, the actual robot motion can converge to an "optimum” steady-
state walking motion. Here, the low control gains are roughly tuned to only achieve the
end body CG magnitude (referring to the center ke 0), which in reverse is also the
initial CG magnitude for the subsequent step, given some initial push or velocity that can
drive the motion forward. Based on this motion control logic, the objective functions for
generating a basic walking pattern that can guide the actual motion to smoothly converge

to the steady-state walking become rather important to study first.

Inspired by the characters of human walking gaits, such as the walking phases in the
sagittal plane are roughly symmetrical according to the centeXlige0 and the walk-

ing motion is rather smooth, a uniform basic walking pattern (velocity is planned to be
uniform) that has the symmetrical walking phases according to the centeX kn@®

([Xeg—| = |Xcg+|) is selected to be the first attempt for the study. This walking pat-
tern is defined as the dynamically symmetrical basic walking pattern. Intuitively, when
the step-frequency is close to the robot’s natural frequency, it will not be challenging to
achieve the desired end-step stance phase using low control gains guided by this dynam-
ically symmetrical basic walking pattern. This is because the pattern does not involve
any major system CG accelerations and the angular momentum caused by gravity force

is roughly compensated by the symmetrical magnitudes of the robot CG.
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Table 4.1: Geometrical and inertial properties of NUSBIP-I.

Link | Mass kg) Length M) Moment of inertia kgnt)
Trunk 12 0.5 0.97
Thigh 6 0.3 0.04546
Shank 0.3 0.038

Foot 1 forward=Q15;backward=1 0.03012

Figure 4.4: Simulated Robot NUSBIP-I.

Note in this thesis, all the generated motion patterns are targeted to be human-like as

such patterns are more challenging at the stability issue. The GAOFSF method pre-

sented in Chapter 3 is used for generating different desirable patterns according to the

user-defined performances. The target robot is modelled according to the mechanical

properties of robot NUSBIP-I, as shown in Figure 4.4. This robot was developed by

the Control and Mechatronics lab, National University of Singapore. The mechanical

properties measured for the sagittal plane are shown in Table. 4.1.
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4.2 Walking Guided by Dynamically Symmetrical Basic
Walking Pattern

In this section, the defined symmetrical basic walking pattBgpt) is first generated

to test the proposed control strategy. Walking specifications for this dynamically sym-
metrical walking patterBsym are given as: step-lengthdBm and the average walking
speed 5m/s on the flat-terrain. The walking speed is set based on the estimation
of the natural frequency of the modelled robot. Here, the natural frequency for the
NUSBIP-I robot is obtained roughly at298 Mz Therefore, the step-period will be at
0.77s. Given the step-length is.83m, the walking speed is thus specified a4®n/s.

(The estimation of the natural frequency is conducted in the simulation environment by
making all the joints rigid and then push the robot to fall. The time period that the robot
CG bypasses the desired CG magnitude for a step motion is estimated as the natural
step-period which will lead to the estimation of the natural frequency of this particular
robot). Note, even if this step-length is not achievable in the actual motion control, the
step-length can be always reduced by tuning the scaling paraRetdtquation (3.1)

and (3.2).

To achieve a natural human-like gait but not taking the small stance knee angle change
as significant, the knee joint angle offset value in the TFS formulation was getad.

Table 4.2 gives the set-up of the GAOFSF including the objective functions, constraint
functions, the necessary parameters for the GA initialization and the weights for the

objective and penalty functions referring to Chapter 3.

After the GA evolutionary computation, the fitness function for this solution was found
to be 1309 as shown in Figure 4.5, indicating a good optimization performanCgaas
value is just set at 1400. The chromosome solutiags, obtained for the flat-terrain

symmetrical walking is:
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Table 4.2:

GAOFSF Set-up for symmetrical motion pattern generation (flat-terrain)

Description

Remark

Objective components

CodeOpl: f]_, fz, f3

Constraint components

CodeOps: s1 — S5

Chromosome representatign real-valued GA
Initial population M 150
Generation number T 250

Crossover operators

heuristic crossover
simple crossover
arthritic crossover

Mutation operators

multi-non-uniform mutation
Uniform mutation
Boundary mutation

Weights for objectives

w; = [10,10,10]

Weights for constraints

pi = [60,20,20,20,70]

Chromosome format

[Ai? Bi7Ci7Ch7Ck7tl;t2]
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Figure 4.5: GA fitness profile of the symmetrical walking pattern generation.

Xsym= [0.277 —0.087 Q022 —0.008 —0.000 —0.397 —0.118 (4.5)
—0.024 - 0.017 —0.006 0457 0200 —0.038 —0.077
—0.046 —0.036 Q000 Q050 0440

with the stride-frequency assigned to g = 4.36rad/s based on the estimation of

robot natural frequency.

From the solutiorxsymobtained, the corresponding hip and knee joint angle trajectories,
generated using the TFS, are shown in Figure 4.6(a). Figure 4.6(b) shows the trajectory
of the ZMP over one walking cycle. The periodical two steps in the generated walk-
ing cycle shows the constraist for the touchdown momerng=t, is satisfied by the

GA. Then, it can be noted that the ZMP is outside the supporting poljg0ri, 0.15m
indicated by the horizontal lines but the shape of the ZMP trajectory is rather symmet-
rical for the positive and negative walking phases referring to the centeiXlia€e0.

The stance ankle joint torques usually has a similar trajectory shape compared to
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the ZMP trajectory as the vertical acceleration of walking is very minor. As shown in
Figure 4.6(c), the stance ankle joint torquig has been optimized to be also symmetri-
cal according to the center line. Referring to Figure 4.6(d), uniform walking velocity of
0.45m/shas been achieved well via the estimation of the inclination of the position-time
plot. Figure 4.6(e) shows the landing velocity of the swing foot. The touchdown strike
velocity [y, V7] is found to be around [0.15, -0.2] m/s and the swing foot velocity profile
(Figure 4.6(e)) shows the velocity has been constrained before landing. Although the
touchdown impact is not particularly optimized, the touchdown impact can be naturally
constrained when motion is optimized to be rather symmetrical. The resulting ground
impact is found to be quite small from the subsequent dynamic simulations to be dis-
cussed in a later section. Figure 4.6(f) shows the stick diagram of the final generated
motion pattern which has a rather uniform stick density. The step length is found to be

equal to 0328m, very close to the target set.

The above results show that the basic walking patBggr(t) generated by the GAOFSF
method satisfies the walking specifications and the motion requirement as being dynam-
ically symmetrical, although the ZMP is outside the supporting polygon. Since the
ZMP is no longer always inside the supporting polygon, conventional PD position con-
trol with stiff and critical control gains to track the planned motion precisely will result

in quick rotations of the stance foot. Instead, using the proposed motion control strat-
egy, given various initial walking velocities, Figure 4.7 shows the motions, through their
forward walking velocities, have all converged to the same limit walking cycle pattern
after a certain period of motion transition. Besides, the achieved steady-state walking
velocity is also in a rather symmetrical and smooth "U” shape. The highest walking
velocity Vimax happens at the touchdown moment while Yhg, occurs in the middle

of a step, roughly at th& = 0 position. Therefore, in the motion stick-diagram of the
achieved stable walking(Figure 4.8), the stick-density is symmetrically distributed with
the highest stick-density in the middle but the lowest stick-density at the touchdown

moment.

In addition, it can be also observed that during transitions a lower initial velocity resulted
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Figure 4.6: Generated joint angle trajectories of the symmetrical walking p&tern
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in a higher initial velocity for the subsequent step, but a higher initial velocity instead
resulted in a lower initial velocity for the following step, as shown in Figure 4.7(a) and
Figure 4.7(c), respectively. Only when the initial velocity is assigned to be similar as
the highest velocity appeared in the steady-state, the transition becomes not obvious, as
shown in Figure 4.7(b). Note, the difference to the motion steady-state was always being
reduced until eliminated. This indicates the motion convergence has been achieved by
the proposed motion control strategy. Furthermore, for each step in the steady-state,
the initial velocity of a stef)p; is the same as the end velocity of a step, yielding a
one-step period limit cycle behavior. This means the left stance step is exactly the same

as the right stance step.

Figure 4.9 shows the detailed data of the resulting walking dynamics. It can be seen
that the actual motion trajectories still resembled the shape of the basic walking pattern
Bsyn(t) but with some position deviation during a step, as shown in Figure 4.9 [d] and

[e]. Nevertheless, the deviation of the CG magnitude at the touchdown moment was
almost recovered to be zero, as indicated by the dash-dot lines in Figure 4.9 [d] and [e].
This shows the planned step-magnitude can be still maintained well by the applied low
control gains. From all the results obtained, the achieved walking is found to be quite

desirable in the sense of motion smoothness and stability.

To sum up, the achieved stable walking guided by the symmetrical basic walking pattern

Bsyn(t) has the following characteristics:

e The walking steady-state is shown of one-step period limit cycle behavior which
meansVp = Vii = Vimax With the desired step-magnitude maintain®&g. andV;
are the initial and end velocities of a step in the steady-state motigg, the
maximum walking velocity which occurs at the touch-down moment in the steady-

state.

¢ Vmin is in the middle of a step. This indicates the velocity profile is also rather

symmetrical in the motion steady-state.

¢ The highest stick-density is shown in the middle of the step but the lowest stick-
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density occurs at the touchdown moment, showing the actual ZMP location is in

a sub area of the planned ZMP location in the basic walking pai@é&in

e Control convergence behavior is found to be: compared tovghg a higher
initial velocity — a lower initial velocity for the subsequent step; a lower initial
velocity — a higher initial velocity for the subsequent step; and the difference to
the steady-state motion is quickly reduced to be zero, while the step-magnitude is

well maintained in transitions.

Based upon the desirable walking behaviors obtained from the walking control guided
by the symmetrical basic walking pattern, in order to further understand the correlation
between the basic walking pattern and the resulting steady-state walking, the study of
objective functions for the generation of a desirable basic walking pattern is further

extended to the dynamically asymmetrical basic walking patterns.

4.3 Walking Guided by Dynamically Asymmetrical Ba-

sic Walking Patterns

Similar to the symmetrical motion pattern generation, the asymmetrical basic walking

patterns are also generated by the GAOFSF method.

Since the asymmetrical pattern can be referred to position asymmetry or velocity asym-
metry, the dynamically asymmetrical motions are further divided into the following two

categories:

Category 1: velocity is still maintained to be uniform, which can be considered as sym-
metrical according to the center liné= 0, but the end configuration of a step is less

symmetrical.

Category 2: the end configuration of a step is still maintained to be rather symmetrical,

but the average walking velocity before and after crossing the centeXlia® is less
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Table 4.3: GAOFSF Set-up for asymmetrical motion pattern generation, Category 1
(flat-terrain)

Description Remark
Objective components CodeOp;: f1, fo, f3
Constraint components CodeOpi: st — S5

Equivalent level amin = 10,bmin="6
Chromosome representation real-valued GA
Initial population M 150
Generation number T 250
Crossover operators heuristic crossover

simple crossover
arthritic crossover

Mutation operators multi-non-uniform mutation
Uniform mutation
Boundary mutation

Weights for objectives w; = [10,10,10]
Weights for constraints pi = [60,20,20,20,70|
Chromosome format (A, Bi,Ci,ch, Ck, t1, 2]

equivalent.

4.3.1 Walking Results of Category 1

Walking specifications for thiBasym Category 1 are: similar step-length as that of the
Bsym uniform walking velocity, but the stance ankle joint torque during the positive
and negative phases are not supposed to be in an equivalent level to get some dynamics
asymmetry. Therefore, non-zero valuesgf, andbmyi, are assigned ts; to specify the

motion asymmetry, referring to Chapter 3. Table 4.3 gives the set-up of the GAOFSF

for the generation of asymmetrical motion patterns that belong to the Category 1.

The following two representative walking solutions are then generated:
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Xasymi = [0.262 —0.062 Q013 —0.005 Q000 —0.388 —0.047 (4.6)
0.047 Q004 —0.003 0516 Q082 —0.055 Q008
—0.018 —0.016 Q001 Q07 0470

Xasyne = [0.255 — 0.074 0019 —0.003 Q000 —0.379 —0.031 4.7)
0.050 0014 Q000 Q468 0102 —0.014 —0.026
—0.035 -0.010 Q000 Q062 0480

Figure 4.10 shows the generation results of the above two solutigip§, Xasyne In

terms of the ZMP trajectory, stance ankle torque trajectory and the body position w.r.t
the base frame. It can be observed that the ZMP trajectories of both solutions are outside
the supporting polygon, and the needed stance ankle joint torque is in a similar shape
of the ZMP trajectories, showing the vertical motion is minor. From the ZMP or the
stance ankle joint torque trajectory, it can be seen that the trajectories are a bit shifted
up according to the center line compared to the symmetrical walking pattern, as shown
in Figure 4.10(a) and (b). Figure 4.10(e) and (f) show that the walking velocity of the
two solutions are both optimized to be uniform over the walking cycle, but the end

configurations are less symmetrical|&s| is not this equal tox™ |, where|x | and|x™|

are the initial and end body CG position of a step motion w.r.t the base frame.

For the generated motion pattetgyyn, given different initial velocitiesp (0.4m/s —

—1.2m/s), the motion responses are shown in Figure 4.11. It can be seen that the limit
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Figure 4.12: Stick-diagram of the dynamic walking controlled by pattgggn .

cycle behavior can be still achieved when motion is initialized by a range of initial
velocitiesvg. Also, the resultingvy is almost the same a4, being the maximum
velocity Vimax.  Such behavior is the same as the symmetrical walking motion, having
the one-step period limit cycle behavior. However, compared to the results obtained
from the symmetrical walking pattern (Figure 4.7), it can be observed that the minimum
velocity Vimin in Figure 4.11 is a bit biased, not having Mg, in the middle of a step-
period. Nevertheless, the minimum walking velocity still occurs at the centeXlin®
although the resulting motion is a bit forward compared to the previous symmetrical

walking motion, as shown in the stick-diagram, Figure 4.12.
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Furthermore, from the range of the given initial walking velocitig€0.4m/s— —1.2m/s),
compared to that of the symmetrical patterrb(@/s— —1.35m/s), it can be seen that
walking motionxasyny is more tolerant to the smaller initial walking velocities, but less

for the larger initial walking velocities. This means the center of the actual ZMP location
of the resulting limit cycle pattern was shifted to be slightly forward. Thus, it becomes
more tolerant for the lower initial velocities. Referring to Figure 4.10(a), the ZMP of the
basic patternasym is also shifted in the same direction, compared with Figure 4.6(b).
These results show that the ZMP of the resulting limit cycle pattern is correlated with
the ZMP planned in the basic walking patté(t). This will be particularly discussed

in the later section. Figure 4.13 shows the actual dynamics data. It can be still seen that

the step-magnitude is maintainable as indicated in Figure 4.13 (d)(e) by dash lines.

Similarly, solutionxasyne Shows the maximum walking veloci¥max also occurs at the
touchdown moment as desired and the minimum walkifg still occurs close to the
center lineX = 0, as shown by the stick-density in Figure 4.15. Also, the adjustment
range of the initial walking velocityg assigned is observed to be further biased as

Vo : 0.3m/s— —1.1m/s, as shown in Figure 4.14.

From the results obtained from this walking under the dynamically asymmetrical basic
patternBasyn{t) Category 1, the resulting walking pattern has the characteristics sum-

marized as:

The steady-state is shown of one-step period limit cycl&/@s= Vij = VmaxWith

the desired step-magnitude maintainable.

Vmin Still occurs close to the center line positi¥n= 0 although the position con-

figuration is no longer symmetrical.

The center of the actual ZMP location is associated with that of the planned ZMP

location in the basic walking patteBt).

Control convergence behavior is still found to be: compared t&¥thg a higher

initial velocity — a lower initial velocity for the subsequent step; a lower initial
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Figure 4.15: Stick-diagram of the motion und@gyne.

velocity — a higher initial velocity for the subsequent step; and the difference to
the steady-state motion was quickly reduced and eliminated eventually, while the

desired step-magnitude is maintainable in transitions.

4.3.2 Walking Results of Category 2

For Basym Category 2, average walking velochg; andVg, are given to thefz (Op;
code) in the GAOFSF for generating asymmetrical walking velocity during the negative
and positive walking phases, referring to Chapter 3. Table 4.4 gives the set-up of the

GAOFSF.

Also two representative walking solutions in this category have been generated:

Xasyng = [0.259 — 0.05 —0.013 0016 —0.007 —0.448 —0.173 (4.8)
—0.037 0010 0014 0382 01800079 —0.034
—0.019 —0.021 Q000 Q056 0420
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Table 4.4: GAOFSF Set-up for asymmetrical motion pattern generation, Category 2
(flat-terrain)

Description Remark
Objective components | CodeOp;: f1, fo, f3 + CodeOpy: fs
Constraint components CodeOps: s1 — S5
Equivalent level amin = 10,bmin =6
Average walking velocity vi = 3.5m/s,vo = 4.5m/s
Chromosome representatign real-valued GA

Initial population M 150

Generation number T 250

Crossover operators heuristic crossover

simple crossover
arthritic crossover
Mutation operators multi-non-uniform mutation

Uniform mutation
Boundary mutation

Weights for objectives w; = [10,10,10, 10|
Weights for constraints pi = [60,20,20,20,70|
Chromosome format (A, Bi,Ci,ch, Ck, t1, 2]
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Xasynt = [0.297 Q074 Q006 Q009 —0.008 —0.474 —0.116 4.9
0.045 Q030 Q011 @675 Q176 —0.065 —0.012
—0.033 —0.015 Q001 Q050 Q440

The planned ZMP and the needed stance ankle joint torque are shown in Figure 4.16 for
the above two solutions. The ZMP trajectories of both patterns get outside the support-
ing polygon. Also, from the ZMP or the stance ankle joint torque, it can be observed
that neither of the two motions is dynamically symmetrical referring to the center line
(X =0), and the first motion is further more asymmetrical in dynamics. Figure 4.16(e)
and (f) show that the end configuration of the above two patterns are rather symmetrical
as|x~| = |x"|, however, the inclinations of the body position plots show that the velocity
pattern during one-step is less symmetrioglyng is even more obvious in the velocity

asymmetry, as shown in Figure 4.16(e).

Applying the proposed motion control strategy, given various initial walking velocities
Vo to the patterxasyng, Figure 4.17 shows the velocity profiles during motion transitions
and the resulting limit cycle behavior. It can be seen that the controller still can take
this level of motion asymmetry and achieve the limit cycle behavior. Generally, the
walking velocity is still first reduced and then increased, and the resulting limit cycles
are almost the same to each other although they are excited by different initial velocities.
Furthermore, it can be observed that the first step getting into the limit cycle behavior can
be changed by giving different initial velocities. This is because different initial velocity
may lead a different leg first to get into any one step in the cyclic pattern. Nevertheless,
the walking results further confirm the existence of the limit cycle behavior using the

proposed motion control strategy.

Figure 4.18 shows the stick-diagram of the resulting walking motion. As expected, the
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Figure 4.18: Stick-diagram of the dynamic walking. SolutiGgyns.

real motion is still shrunk inside the planned motion observed from the density of the
stick-diagram. This indicates that the walking velocity is generally lower in the middle
of a step but higher near the touch-down phase. Figure 4.19 gives the detailed dynamics
of this walking motion. The step-magnitude was still maintained well, as errors were

reduced at the touchdown moment, as indicated in Figure 4.19(d) and (e).

However, compared with the results obtained frBgm and Basym in Category 1, the
primary difference is the limit cycle composed under thigg is shown to be of two-

step period, beingo; = Voi 1, Vii = Vi1 butVgi # V4, as shown in Figure 4.17. Further
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Figure 4.20: Walking velocity profile of motions with further bigger velocity asymmetry
under different initial walking velocityy.

increasing the magnitude of this locomotion for 1.1 times, the differé&negvy — i

is also accordingly increased, as shown in Figure 4.20. Due to the higher asymmetrical
behavior, the adjustable range f that can result in the limit cycle becomes more
restricted. Noteyy range is reduced fron0.6,1.25)m/s to (0.8,1.2)m/s. The first

four rows of Figure 4.20 show that whep = 1.0m/s, the robot took a long time, as
indicated about 66marked by the dash line, to get into the limit walking cycle pattern.
Given another initial velocityg = 1.2m/s, walking quickly converged to the limit cycle
pattern, as shown in the last row of Figure 4.20. Although the transition periods for
the two cases are quite different, the final steady-state walking motions of both cases
appeared to be exactly the same. The reason for the long period transition found in

walking excited by = 1.0m/swill be explained in the later section.

Such a two-step period limit cycle behavior is also confirmed by the pattgyh.

Furthermore, it can be seen that: with the walking velocity being less asymmetrical, the
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Figure 4.21: Walking velocity profile of motions under different initial walking velocity
Vo, SolutionXasym-

resulting difference between the two steps in a walking cycle is also reduced, referring
to Figure 4.17 and Figure 4.21.

Based on the results obtained from this walking under the dynamically asymmetrical
basic patterBasyn{t) Category 2, the resulting walking pattern has the following char-

acteristics:

Voi # VWi but the step-magnitude can be still well maintained, yielding a two-step

period limit cycle behavior.

o With the difference betweevls; andVgy getting smaller, the difference between

the two steps in the limit cycle pattern is also accordingly reduced.

e The stick-density is generally higher in the middle of a step, but lower for the
swing-in and swing-out phases, as shown in Figure 4.18. This indicates the actual
ZMP location has been also shrunk compared to the ZMP location of the planned

basic walking pattern.

e Control convergence behavior is still found to be: with the step-magnitude being

well maintained in transitions, compared with the initial and end walking veloci-
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ties in one step motion in the steady-state, a higher initial veloeeity lower end
velocity, which is also the initial velocity for the subsequent step; a lower initial
velocity — a higher end velocity instead; and the difference to the steady-state

was eventually eliminated.

4.4 Analysis of The Limit Cycle Patterns

Based on the obtained dynamic simulation results, it can be clearly seen that the pro-
posed motion control is able to achieve the desired stable limit cycle walking behavior

excited by quite a large range of initial velocities (or pushes).

However, two types of limit cycle behaviors have been found when walking velocity in
the basic walking pattern is changed from unifonm £ v, = cons) to be less equiva-

lent (v1 # V). The limit cycle behavior of the walking motion under the basic walking
patterns with the uniform walking velocity all appear to be of one-step period. This
means the left stance step is the same as the right stance step. However, when the walk-
ing velocity in the basic walking pattern becomes rather inequivalent before and after
the positionX = 0, the resulting limit cycle behavior is shown to be of two-step period.
This means the walking cycle is repeated but the left-stance step is a bit different from
the right-stance step. In addition, with the differedce: |v; — v,| getting smaller, the
difference of the two steps in a walking cycle was also accordingly reduced. Therefore,
uniform walking velocity is shown to be very correlated with the achievement of the
one-step period limit cycle walking behavior. The following gives a possible reason
why the basic walking patterns with uniform walking velocity achieved the one-step

limit cycle behavior.

Thanks to the following three characters of the generated basic walking pattern: 1) walk-
ing velocity is uniform, 2) the gravitational momentum is about compensated referring
to the center liné&X = 0 over a step-period, and 3) stride-frequency is selected to be close

to the natural frequency, the following control behaviors have been achieved:
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1. Even if the low and non-critical control gains are applied, still a rather wide range
of initial conditions can result in the robot reaching the desired end configuration of the

planned step motion.

2. Given the low control gains, more natural dynamics [80] can be excited, resulting in
the the forward velocity profile smoothly reduced during the swing-in phase and then
increased during the swing-out phase. Such a "U” shape velocity profile is desirable for
walking locomotion stability, as it indicates the resulting ZMP location is shrunk inside

the planned ZMP area.

3. Compared to the steady-state motion, the higher initial velocities cause the CG mag-
nitude overlap with the planned motion a bit forward than the centerXire0 and

vice versa for the assigned lower initial velocities. Therefore, a motion with the center
line positionX = 0O fully responded\{min occurs at the positioiX = 0) is found to be

included in the range that the step-magnitude is maintainable.

Based on the above control behaviors contained in the soft motion control, the following
explains why the resulting motion is eventually stabilized at a motion that the desired
step-magnitude is maintained and the velocity appears to be the "U” shape with the

minimum walking at the center line positioh= 0.

Referring to a basic walking pattern with the uniform walking velocity, it can be noted
that the basic walking pattern automatically entrains the sub-basic walking patterns
B(t)sup inside theB(t) with the same dynamics correlation before and after the center
line X =0, as illustrated in Figure 4.22(a). ( Line pad®— OB, OC— OD, OE — OF

before and after the center line= 0 (OO indicate the sub-basic walking patterns).
Then, the motion, which can have the CG position overlap with the prescribed motion
at the center lin&X = 0 and achieve the desired step-magnitude, can be considered as a
compound motion based on a linear motion base (the smallest sub-basic walking pattern
OE — OF in Figure 4.22(a)) adding equivalent acceleration modifications to the linear
base ébcin Figure 4.22(b)) by all the sub-basic walking patterns. In Figure 4.22(b),

slopeab andbc represent the acceleratioas; anda, - in the linear base for slowing
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(@)

Figure 4.22: The resulting motion compounded on the linear base.

down and speeding up before and after the momgniTherefore, the correlation be-
tween the positive and negative accelerations in each sub-basic walking pattern then is

considered to be fixed for the resulting motion, as illustrated in Figure 4.22(b).

Based on Figure 4.22(b), the relationship of the acceleradpnanda » in the linear

base can then be derived as Equations (4.10) to (4.13):

/1T = Spmt/Saome = MT /M ™ = Sagmib/Soemb (4.10)
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_ Vimin(te —tm) + %aLZ(tc _tm)z ~ VB(T —tm)

o = (4.11)
Vimin(tm —ta) + %aLl(tm - ta)z Vatm
le—tm= k(T—tm) and h—ta= ktm (412)
Tt
s (4.13)
a2 tm

Hence, incorporating all the equivalent acceleration modifications to the linear motion
base, the relationship between the actual average acceleratiamsl a, for slowing

down and speeding up will be also maintained as:

a . T—tm
&

(4.14)

resulting in the same initial and end walking walking velocity of the steady-state motion

pattern. Thus,

Voi = Vi (4.15)

Furthermore, the ratio of the positive and negative magnitude of all the actual sub-
motions, including the linear base, will be the same asM* /M~ illustrated in Figure
4.22(a).

Based on the above features of the motion that the centeXliaed was responded,

it can be seen that this motion is rather correlated with the basic motion pattern in the
aspects: 1) the same average position displacement and the same average walking ve-
locity; 2) the same dynamics correlation before and afterXhe O position, as the
magnitude ratio is always beirrgand the corresponding velocity ratio is always being

1. Therefore, this motion is supposed to be the least deviated motion under the set of
low control gains. Since the general control behavior of the proposed motion control
law is still to resemble the planned motion pattern through achieving the desired relative
joint angles, all the other motions aside from the least deviated motion pattern will then

converge to the least deviated motion pattern. Because the desired step-magnitude can
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be well maintained for a wide range of initial conditions around the initial condition

of the steady-state motion, the velocity response to the least deviated motion pattern is
then sketched as shown in Figure 4.23(a), where the AiBeandCD denote the least
deviated motion pattern, and the dash arrows indicate the change of the starting velocity

when motion is in transitions to the stable limit cycle pattern.

Referring to the convergence behavior, given an initial walking velocity which is in the
range that the step-magnitude is still maintainable, the resulting motion will just follow
the illustrated velocity response behavior, transiting to the least deviated motion pattern
which has the end dynamics of a step motion equal to the initial’s. This explains why
the appeared limit cycle pattern under the basic walking patterns with uniform walking
velocity are all of the one-step period type and the minimum walking velagiy
roughly occurs at the center line positidh= 0, referring to the simulation results of

BsymandBasym Category 1.

Following the same logic, it can also explain why the two-step limit cycle pattern occurs
when the walking velocity in the basic walking pattern is less symmetrical (inequivalent)

according to the center line = 0.

In this work, the velocity of the negative and positive phases for the asymmetrical walk-
ing patterndB,symCategory 2 are planned to be closé/g andVa,, respectively. Then

the basic walking patterB(t) also entrains the approximated sub-basic walking pat-
terns according to the center like= 0. Then, the pattern that = 0 position is roughly
responded can then be identified as the least deviated motion pattern under the current

gain setting.

Since the positive and negative step-magnitude are about the same for motions in Cate-
gory 2, aredagmo andScpewm in the velocity-time plot will then be equal to each other.
With Vg1 > VB2, tm < (T —tm), the initial velocity of the least deviated motion pattern

Vp shall then be higher than its end velocdiky asVp > V; illustrated in Figure 4.24.

Based on the motion convergence behaviors observed from the above study about basic

walking patterns, it can be derived that in Figure 4.23(b)
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Figure 4.23: Explanations for the resulting one-step limit cycle and two-step limit cycle
patterns.With the step-magnitude being maintained, the higher initial velogjtpfva

step results in the end velocity lower than that of the steady-state motion; the lower
initial velocity w; results in the end velocity;jvhigher than that of the steady-state
motion; the difference to the steady-state motion converges to zero eventually.
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Figure 4.24: Walking velocity sketch for the basic walking patterns with uneven walking
velocity Vg1 # Vao.

(1) if vo > Va, thenvy < Vg and|vs — Vg| < Vo — Va|
(2) if vi <V, thenvo > Vp and|v, —Vp| < |v1 — V5|
(Note, forvg < Va, itis just the same as (2) states).

Therefore, when the assigned initial walking velocity is higher tanvhich results

in the least deviated motion pattern, the pathway of the velocity transition will be just
similar to what is shown in Figure 4.23(a), havimg< vo. This is because when >

Va, the two steps in a walking cycle respond to the least deviated pattern in different
directions as indicated in Figure 4.23(b). Therefore, there is no conflict in between,
same as the walking guided by a basic walking pattern with uniform walking velocity.
Taking one walking cycle as a whole, the highest velogjtyf the right stance step
would be lower than the initial velocity of the left stance step. Therefore, there must
be a moment that the initial velocity of the left stance step is equal or smalleKihan

just the same as assigning an initial velocigy< Va.

Whenv is assigned to be smaller theR asvy < Va, the direction of the left stance step
responds to the least deviated motion pattern will be changed, as indicated in Figure
4.23(b), and cause some mutual inhibition between the two steps in a walking cycle.

Since the inclination oAB andBE are in different directions, there must be an initial
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velocity vg yielding vo = VF = Vo = Vg, as indicated in Figure 4.23(b). Also, referring
to the (2) above, the length 8f shall be longer than the length Bfc. Therefore, there
must be a limit cycle entrained in the areaA#¥ GE, and the entrained limit cycle can

be shown as eitheabcor FOG, as indicated in Figure 4.23(b).

However, compared to Figure 4.23(a), it can be notedAkat- OB (referring to the (2)
above) for walking guided by a velocity asymmetrical walking patternAlsut OB=0

for walking guided by a uniform walking velocity pattern. Therefore, if the difference

A = Vg1 — Vg2 is more observable, the entrained limit cycle is believed to be shown of
the two-step period type provided the desired step-magnitude is still maintainable, as

represented bgbcin Figure 4.23(b).

Furthermore, with the velocity differend&g; — Vg2 getting increased or decreased, the
sketch of the two-step limit cycle would be also roughly scaled. This explains the trend
found in the simulations, including those with the uniform walking veloeiy = Vg>:

the morevg; is deviated fromg, planned in the basic walking pattern, the more velocity
difference would be shown in the two steps in the entrained two-step limit cycle pattern

provided the step-magnitude is maintainable.

In addition, as seen from the sketch of the two-step period limit cycle, Figure 4.23(b), the
resulting two-step period limit cycle is like a stretched limit cycle of the one-step period
limit cycle. Therefore, the area in between the stretched limit cyaide éndb/'c’b’) is

also a transitional region although there is a state With= Vo = Vg included. Back

to the results obtained fromysyng, this explains why the higher velocity :> 1.1m/s

got the highest velocitymax occur to the right leg (odd-step) but the lower veloaigy:
0.6m/s— —1.1m/sgot the highest velocitymaxoccur to the left leg (even-step) instead.
Furthermore, Figure 4.20 shows with the pattern being proportionally enlargedifor 1
times, given the initial velocityp = 1.0m/swhich is in this middle transitional region,

it took a long time to converge the robot motion to the limit cycle pattern. Also, the steps
in the transition did have similar initial and end velocity for each step. However, with the
error being accumulated, walking eventually still converged to the two-step period limit

walking cycle. This validates the above sketch about the two-step limit cycle pattern.
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4.5 Derived GAOFSF Objective Functions for Basic Walk-

ing Patterns

Based on the results of the objective function study for basic walking pattern generation
that allows low gain motion control for the achievement of a smooth, natural and stable

locomaotion, the following three motion behaviors have been found to be important.

(1) The accumulated gravitational momentum of the planned basic walking pattern is

supposed to be close to zero over a step-period.
(2) Uniform walking velocity of the planned basic walking pattern.
(3) The stride-frequency should be selected to be close to the robot natural frequency.

The above three conditions combined together make it rather easy for the controller to
maintain the desired average walking speed and the desired landing configuration with-
out using critical and stiff control gains. Also, the target motion pattern (the least devi-

ated motion pattern) can be identified as a step motion whose initial and end dynamics

are rather equivalent.

Therefore, given the stride-frequency is already set to be closer to the robot natural
frequency, to achieve the desired one-step period limit cycle behavior using the proposed
soft motion controller, the objective functions that will be sent to the GAOFSF method

are derived as:

(1) Make the walking velocity uniform as much as possibfe.irf the GAOFSF method,
codeOpy)

(2) Make the motion as symmetrical as possible with respect to the bodyAL&:
IX~| = |XT]|. (f2 in the GAOFSF method, codep,)

From the perspective of motion robustness, the resulting "U” shape walking velocity

has already indicated the actual ZMP location displaced from the prescribed ZMP (com-
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puted based on the basic walking pattern) to the centeiXlige0. The maximization

of the ZMP displacement from the planned ZMP is related with the joint control gains
applied to the robot. This can be always separately done by fine tuning the joint con-
trol gains. Then, the optimization of the ZMP of the actual motion is really about the
optimization of the average ZMP location over a step period. In this case, if there is
any correlation between the average ZMP position over a step of the generated basic
walking pattern and that of the actual walking motion, the optimization of the average
ZMP position in basic walking pattern will then indirectly lead to a safe ZMP location

of the actual motion.

Given that the desired one-step period limit cycle walking pattern is achievable, the av-
erage ZMP position displacement from the prescribed one due to the position deviation
will be just zero. Then the acceleration components play a major role for the ZMP

displacement to the center like= 0. The displacement can be computed as:

AZMPRy(t) = % (4.16)
AZMPy(t) = % (4.17)

at any instant; wheray, andagy, are the accelerations at some moment before and after
the Vimin, respectively;as, and agm, are the accelerations of the basic walking pattern
before and after theyn, respectively. Then the total displacement of the actual ZMP
from the ZMP of the basic walking pattern towards ¥e- O position can be computed

as:

K(Jg"(a1n — asn)dt)

tm

/OAZMPl(t)dt: o T (4.18)
T—tm . K(ﬁl_tm(aZm — asm>dt)

/tm AZMPy(t)dt = ot T (4.19)

Since the velocity in the basic walking pattern is rather uniformigast) = Vpa(t) =

const
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t T—tm
/ agdt = / agydt — 0 (4.20)
0 tm

Note the one-step limit cycle pattern has the initial walking velocity of a step equal to

the end velocity of this step, a8y = V4, yielding

tm T—tm
0 tm

Apply the Equations (4.20) and (4.21) to Equations (4.18) and (4.19), it can be derived
that the total displacement of the actual ZMP from the ZMP of the basic walking pattern

towards the center lin¥ = 0 in periods of(0,ty,) and(tm, T) are the same, as:

/O AZMPR(t)dt :/ AZMP(t)dt (4.22)
tm

This indicates the average ZMP value of the actual robot motion will be the same as
the average ZMP value of the basic walking patt(t). This also explains why with

the center of the planned ZMP of the motiaxgyns andXasyne shifted forward, the
center of the actual ZMP is observed to be also shifted in the same direction, as seen
from the shift of the range of the initial walking velocitigg. Therefore, to achieve a
better motion robustness, the objective function (3) will be also added for performance

trade-off.

(3) Make the location of the average of the ZMP close to the center of the stance foot-

print.(f3 in the GAOFSF method, codep,)

Since the optimization of the average ZMP location is based on the condition that the
one-step period limit cycle walking pattern is achievable, it leads to the logic that if
performance (3) greatly conflicts with the performances (1) and (2), the optimization

strategy will not work. However, if performance (3) does not much conflict with the
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performances (1) and (2), the optimization strategy will then be able to conduct a per-

formance trade-off and give an overall "optimum”.

As seen from the simulation results, a certain level of posture bias or inequivalent walk-
ing velocity can still result in the feasible limit cycle behavior with the desired step-
magnitude being well maintained. Also, the ZMP of this planned pattern will be rather
overlapped with the robot CG position if the walking velocity of the basic walking pat-
tern is optimized to be uniform. Therefore, performance index (3) will not much conflict
with (1) or (2). To testify the derived motion optimization strategy, the following sec-
tion applies the objective function$;( f, and f3 codeOp, in the GAOFSF method) to
basic walking pattern generations for up- and down-slope walking motions. The applied

motion controller is still soft.

4.6 Algorithm Generalized to Slope-terrain Walking

In this section, the sagittal motion control algorithm is generalized to slope-terrain walk-
ing control. The basic walking patterns generated are for walking o af-8lope and

down-slope terrains.

4.6.1 Up-slope Walking

In the first slope walking example, the GAOFSF approach was used to generate a ba-
sic walking pattern, with walking velocity and the center of the ZMP optimized, for
the simulated NUSBIP-I robot to walk up a®6lope. The desired step length is set

to 0.26m and the average walking speed along the horizontal plane is se2 /G

(ar, = 3.2623. Note if this frequency or step-length is not very applicable for the ac-
tual dynamic walking control, the stride-frequency and step-length can be tuned directly
through the parameten, andR respectively without any other changes of the motion

joint trajectories, as the parameter tuning will not affect the unform walking velocity, the
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Table 4.5: GA Set-up for up-slope walking

Description Remark
Objective components CodeOpy: f1, fp, f3
Constraint components CodeOpp: 51 — S5

Chromosome representatign real-valued GA
Initial population M 150
Generation number T 250
Crossover operators heuristic crossover

simple crossover
arthritic crossover

Mutation operators multi-non-uniform mutation
Uniform mutation
Boundary mutation
Weights for objectives w; = [50,10,40]
Weights for constraints pi = [15,50,20,30,500

average ZMP location or the posture correlation before and after the centr i@

The GA environment set-up and weighting parameters are shown in Table 4.5.

The best chromosomg, B;,C;, ¢y, Ck, 1, t2], was found by GA to be

x=[0.222 —0.041 —0.011 Q014 —0.005 — 0.5 —0.035 (4.23)
0.097 Q039 0004 0650 —0.096 —0.087 Q085
0.024 —0.144 0267 Q001 Q540

Figure 4.25 shows the motion generation result in terms of the joint angle trajectories,
ZMP trajectory, body position profile and pattern stick-diagram. It can be seen that the

planned ZMP is still outside the supporting polygon for this step-length walking, but
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Figure 4.25: Motion generation result for°L0p-slope walking.

the center of the ZMM,, is near the center of the supporting polygon. The inclination
of the body position profile, Figure 4.25(c), shows that the walking speed has been
optimized to be uniform. Figure 4.25(d) shows the stick-diagram of the locomotion

with the desired step-length well achieved.

When the control algorithm was applied using the basic pagyrthe resulting walk-

ing pattern converged to a stable steady-state. This is shown in the stick-diagram, Figure
4.26. Compared to Figure 4.25(d), the real walking pattern is also shrunk inside with the
minimum walking velocity occurring roughly at the positi&n= 0, as shown in Figure

4.27. Figure 4.28 shows the walking velocity profile for the motion in transitions and
the achieved limit cycle pattern. The limit cycle is shown to be just the one-step period

type. The convergence behavior of the controller can be still observed the same as that
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Figure 4.26: Stick-diagram of the dynamic®lp-slope walking motion.

of all the walking results presented above. Figure 4.29 provides the resulting dynamics

of this up-slope walking.

4.6.2 Down-slope Walking

The generated down-slope walking pattern is specified as: the step leBgtinahd the
average walking speed@n/s (w, = 2m). The GA parameters used are shown in Table

4.6. The best chromosome obtained by GA, in the forfAaB;,Ci, ¢y, Ck, t1,t2], is

x=1[0.312 —0.076 Q018 —0.005 —0.004 —0.327 —0.190 (4.24)
—0.096 —0.031 —0.009 0144 Q118 —0.007 —0.114
—0.033 -0.194 Q799 Q147 0220

Figure 4.30 shows the motion generation result in terms of the joint trajectories, ZMP
trajectory, body position profile and the pattern stick-diagram. Still, the ZMP is outside
the supporting polygon for this step-length walking but the center of the ZMP trajectory
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Figure 4.27: Posture having the minimum walking velo®iy, shown in the Yobotics!
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Figure 4.28: Walking velocity profile under different initial velocity. 10° up-slope.
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Figure 4.29: Resulting dynamics of the®lip-slope walking.
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Table 4.6: GA Set-up for down-slope walking

Description Remark
Objective components CodeOpy: f1, fp, f3
Constraint components CodeOpp: 51 — S5

Chromosome representatign real-valued GA
Initial population M 150
Generation number T 250
Crossover operators heuristic crossover

simple crossover
arthritic crossover

Mutation operators multi-non-uniform mutation
Uniform mutation
Boundary mutation
Weights for objectives w; = [50,20,30]
Weights for constraints pi = [15,80,20,30,800

is near the center of the supporting polygon. The inclination of the body position profile,
Figure 4.30(c), shows the walking velocity has been optimized to be uniform. The
desired walking speed and step length have been both achieved well, as shown in the

position profile and the pattern stick-diagram, Figure 4.30(d).

The achieved dynamic walking pattern is shown in the stick-diagram, Figure 4.31. Com-
paring with Figure 4.32, in this case, the minimum walking velocity also occurs at about
the vertical lineX = 0. Figure 4.33 shows the walking velocity profile for motion in

transitions and the achieved limit cycle pattern. The limit cycle is also of the one-step
period. Figure 4.34 provides the actual dynamics of this down-slope walking, and the

magnitude of a step is still shown to be maintainable.

From the results, it can be also noted that although the general shapes of the joint angle
trajectories obtained are similar in form to that shown in Figure 3.3, there is a significant
difference in the value of;, the instant when the stance knee starts to lock for the

different slopes. For both flat terrains and for up-slope walkings negligible but for
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Figure 4.30: Motion generation result of the®Xdbwn-slope walking.

Distance (m)

Figure 4.31: Stick-diagram of the actual’l@bwn-slope walking motion.
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Figure 4.32: Posture having the minimum walking velo®, shown in the Yobotics!
simulation.
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Figure 4.33: Walking velocity profile of motions given different initial velooity
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Figure 4.34: Resulting dynamics of the®ldbwn-slope terrain walking.
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Figure 4.35: Orientation and the magnitude of reaction force in human walking recorded
by VIOCON.

down-slope walking, the period frotg to t; is quite significant. This shows that, in the
latter case, the stance knee joint is locked for only a very short duration and may also
not be locked at all. Such behavior is also similar as what has been found in human
gaits[86]. The following section particularly compares the generated walking gaits with

human gaits.

4.7 Comparison With Human Gaits

As mentioned eatrlier, the target of the motion control is to be human-like. To show that

the proposed motion generation method GAOFSF and the joint control altogether can
resultin the human-like walking behaviors, the ground reaction forces were investigated.
Here the flat-terrain walking is used to give a comparison between the robot gaits and
human gaits. The human gaits were recorded byAIZON system. Figure 4.35 shows

the measured orientation and the magnitude of reaction force. For a better illustration of
the orientation and magnitude changing of the ground reaction force, the human walking
experiment is displayed at once with two different timings (dark gray and light gray), as

shown in Figure 4.35.
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Referring to Figure 4.36(a), the reaction forces (shear force and vertical reaction force)
of the flat-terrain walking guided bBsym is found to be quite acceptable based on the
human-gaits analysis [86]. The length of vector is related to its force magnitude. Com-
paring the orientation and the magnitude of the reaction force in human walking, a good
match between the generated gaits and the human counterpart can be noted. The force
vectors’ orientations rotate clockwise with the progress of the supporting phase. The
value of vertical ground reaction force is about the same as the body weight in most of

the time during the supporting phase. This confirms that the robot was stably supported.

Furthermore, the shear forces are negative at first and then becomes positive, as shown
in Figure 4.36(a). This is exactly what is measured in human gaits. The negative part is
the braking phase of touching down and the positive part is the motion propulsion phase
when the supporting leg pulls the ground to drive the body. The peak value of the shear

forces is about 15% of body weight, comparable te-1% in human walking.

From Figure 4.36(b), it can be noted that the calculated friction coefficient that is re-
quired is small < 0.25). It means that normal surfaces (PCV floor, wooden floor, brick
path, asphalt) towards robot feet with shoe type sole (for those materials friction coef-
ficient ranges from @ to 09)[85] can easily satisfy the compensation of shear force

without slip.

Similarly, the orientation and magnitude of the ground reaction force for up-slope and
down-slope motions are shown in Figures 4.36(c) and (e), respectively. For going down
a slope, it is quite natural to have a larger impact when the swing foot touches the
ground comparing with up-slope or flat-terrain motions [86]. Figure 4.36(d) and Figure
4.36(f) show the required friction coefficient for the up-slope and down-slope motions,
respectively. The small values in these figures indicate that walking can be realized by

most ground situations.

From the above comparisons, it can be seen that the generated gaits have great similari-

ties with human gaits and the required friction can be satisfied by most ground materials.
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Figure 4.36: Ground reaction forces and required minimum friction coefficient for the
generated walking on the flat-terrain, up-slope and down-slope.
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4.8 Summary

In this chapter, the proposed motion control strategy has been shown effective and the
limit cycle walking behavior is achievable. The objective functions for the basic walking
patternB(t) have been studied and derived for the GAOFSF method. The generated
walking patterns using the derived objective functions successfully guided the up-slope
and down-slope walking in the simulation environment. The resulting walking behavior

is stable, smooth and human-like.

Corresponding to the earlier mentioned motion control challenges, using the proposed
motion strategy, the robot body motion has been controlled to be upright without any
obvious pitching behavior. Also, low gain motion control has been achieved, resulting in
the motion insensitive to the environment perturbations while converging to the desired

walking behavior as well.

Besides the motion control strategy, the GAOFSF method using a Truncated Fourier
Series (TFS) to model the joint trajectories for human-like walking patterns has been
demonstrated. The generation method is shown to be general, with full dynamics in-
corporated. Therefore, it can be readily applied to different motions and robots with

different geometrical and inertial properties.

The next Chapter will focus on the motion adjustment modes contained in the optimized
TFS formulated basic walking patterns, and further show the advantages of using the

TFS model and the robustness of the entrained limit cycle walking patterns.
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Chapter 5

Sagittal Plane Motion Adjustment

Based on the knowledge obtained from human gaits research on CPG in rhythm genera-
tion and motion adaptation towards the environment, it can be summarized that walking
is controlled by a basic function stored in human biological neural networks. During
walking in different situations, this function is modified automatically according to hu-

man senses about the nature of the terrain and walking environment.

From the results obtained from Chapter 4, it can be seen that the TFS formulated motion
pattern together with the proposed motion control law can automatically damp a range of
motion perturbations and converge the robot walking into a limit cycle behavior. It thus
provides the fundamental, which can also be compared to a CPG pattern stored in the
low level, for further building up a walking network achieving the human-like rhythmic
walking behavior and environment adaptation. Therefore, in this chapter, these human
walking functions are explored based on the TFS formulated motion pattern using the

proposed motion control law.

The key parameters that have been investigated in the TFS formulated motion pattern
are: the fundamental frequenayin Equations (3.10) and (3.11), the scaling parameter
R of the Truncated Fourier series and the constaaitached at the end of the Fourier

series. All these parameters have straightforward physical meanings related with walk-
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ing behaviors such as walking stride-frequency, step-length and locomotion patterns.
The following sections develop the motion adjustment modes for the stride-frequency,
step-length and walking posture adjustments. The basic walking motion patterns used
in this chapter are the symmetrical walking pattern on the flat-tersgim 10° up- and

down-slope walking patterng,p andxqown generated in Chapter 4.

5.1 Stride-frequency Adjustment Mode

Referring to Equations (3.10) and (3.11), the fundamental frequency in the TFS formu-
lation directly reflects the step frequency. Then, the basic pattern for a new frequency
walking pattern can be directly derived from the basic walking paBérhgenerated by

the GAOFSF method by varying the stride-frequency paramaielSimply adjusting

this wy, (ax has a fixed relationship witty,), the actual gait frequency will be simulta-

neously varied, suppose a stable limit walking cycle can be still entrained.

To explore the robustness of the limit cycle behavior, the adjustable range of the stride-
frequency based on the GAOFSF generated basic walking patterns presented in Chapter
4 isfirstinvestigated. Here, the safe range of the stride-frequency adjustment is obtained

from dynamic simulations:
(1) The achievable minimum and maximum stride-frequency for steady-state walking.

(2) The largest instantaneous stride-frequency transition without any external force act-

ing on the robot.

Flat-terrain walking is used for robustness study. Figure 5.1 shows the walking veloc-
ity profile of a motion starting from the lowest permissible stride-frequengy= 3 to
the highestw, = 5.1, and then recovering back to the lowest. All the transitions are

instantaneous.

It can be seen that the stride-frequency can be simply varied by tuning the fundamental

frequency component in the TFS formulation. Also, it can be noted that the instan-
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Figure 5.1: Walking velocity profile with instantaneous stride-frequency transitions be-
tween the highest and the lowest values.

taneous transitions do not lead to instability. Figure 5.2 shows the stick-diagram of
the dynamic walking motion, from which it can be noted that the step magnitude is
not very well maintained for the high-frequency walking using the same set of control
gains. Due to the relatively softer control for this high frequency walking, the step-
length is observed to be increased with the stance and swing phases both enlarged, but
rather synchronized. However, a stable limit walking cycle can be still achieved and the
steady-state is still of the desired one-step period type. As mentioned in Chapter 4, when
walking under a higher frequency resulting in certain motion deviation from the planned
step-magnitude, the least deviated pattern can be analogous to be a pattern maintained
at a new step-magnitude level, have the neighboring position of the centet #n8é
responded. Thus, the end velocity might be slightly deviated from the initial velocity in
the least deviated pattern, but after the mutual inhibition as illustrated in Figure 4.23(b),
the resulting limit cycle may still appear to be of the one-step period. However, the lo-
cation that the minimum walking velocity occurs could be a bit deviated from the center
line X = 0 position. As seen from Figure 5.1, the minimum walking velocity during the
high-frequency walking is shown to be slightly biased to the right side while that of the

low frequency walking is almost in the middle of a step-period.

The direct adjustment of the stride-frequency has also been successfully applied to the
10° up- and down-slope walking. The robustness of the basic walking pattern for slope

terrains will be discussed in the later section. Table 5.1 shows the adjustable range of
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Figure 5.2: Stick diagram of the walking motion with instantaneous stride-frequency
transitions between the lowest and the highest values.

Table 5.1: Adjustable range of the stride-frequency.

Terrain type|| thmin | Whmax | @h
Flat-terrain 3 51 4.36

10° slope 2 55 4
—10°slope | 5.8 7 6.28

the stride-frequency for all the generated pattergg{Xup, Xdown)-

It can be seen that, taking the flat-terrain adjustment range as an example, these values
are about 70% and 120% of the nominal vadiye= 4.36 obtained by the GAOFSF. This
shows the robustness of the generated walking pattern. Furthermore, the nominal values
show lower stride-frequency is more suitable for going up slopes while higher frequency

is better for going down slope. Such behavior is also observed in human walking gaits
[32].

The following subsection presents a learning agent for robot self-adjustment of the

stride-frequency properly under external force perturbations.
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5.1.1 Learning-Based Variable Stride-frequency Walking Under Per-

turbations

This subsection develops the application of reinforcement learning (RL) for online ad-
justment of the stride-frequency under external force perturbations. This is also a test of
robustness for achieving the stable walking behavior using the generated basic motion

pattern.

Affected by the external force perturbations, the robot stance leg will need to make some
additional effort to maintain the current walking pattern if the stride-frequency is not
adjusted. When the external perturbations become excessive, the robot stance foot may
not be able to maintain the walking posture well enough because the torque that can be
applied to the stance foot is limited. Even if the robot is able to successfully overcome
the perturbation during the current step, the kinetic energy of the motion may not be
enough for the subsequent walking when the external perturbation is suddenly removed.
Consequently, the subsequent step may still fail the motion stability. Therefore, it is

suggested to adjust the stride-frequency in response to external force perturbations.

From observations of human walking, the rhythmic walking behavior that adapts well
to the environment seems to be a balanced performance between achieving the walking
stability and minimizing the energy consumption. On one hand, for example the robot
is being pushed, a walking pattern which consumes the least energy may just get to
the maximum stride-frequency quickly. This means the motion is too compliant to the
environment whereas the maximum stride-frequency is very limited by the robot phys-
ical system. On the other hand, a walking pattern staying the original frequency will
also cost more energy to maintain balance under perturbations. Therefore, the desir-
able stride-frequency adjustment becomes a trade-off between the two motion indices:
energy consumption and motion adaptation. This means the stride-frequency adjust-
ment should not require the robot to walk completely compliant to the perturbation with
less energy consumption or to stubbornly stick to the original walking pattern hereby

requiring more energy consumption.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.1 Stride-frequency Adjustment Mode 112

Since the feasible limit cycle behavior for various stride-frequency walking motions
have already been entrained by the basic walking pattern in the low-level motion control,
reinforcement learning method can then be applied in the high-level motion control to
decide the appropriate frequency which balances the energy consumption and motion
adaptation. The following presents the modules included in the Reinforcement Learning
(RL) based agent.

State Variables

To have a better motion identification, the state variables are selected as:

(1) Standing phasépr = atan(X/H), whereX is the body displacement referring to the
center lineX = 0 andH is the body height.

(2) Current velocity/,, of the body measured along walking slope.
(3) External disturbance forcd,, applied at the CG of the robot body.

The action that the reinforcement learning agent will give is a proper stride-frequency

oy, that balances the energy consumption and the motion adaptation.

Based on the above state variables, whether the robot body lags behind or moves too
forward in the current state can be identified by (1) and (2) together; and the subsequent
robot motion trend due to the acceleration given by the external forces is also incorpo-

rated in deciding the stride-frequenay.

Reward Function

The reward function gives rewards to motions which satisfy the motion objectives. At

the same time, it also punishes a wrongly selected action. Equation (5.1) is the reward
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function used for this study:

k- (C—|Awy|) forthe successful actions
reward = (5.1)

—ke|E| —k¢|Tg| for the failed actions

wherek, ke, k; are the weighting parameterS.is a positive constant which stands for
a fixed rewardE and1q are the stance phase error and the torque that is in excess of
a preset torque limitation, respectively. In addition, the successful actions which cause

the actual motion to be closer to the original walking pattern will be more encouraged.

Learning Tasks

In reinforcement learning (RL), the learning agent can only be more reliable after gain-
ing more experience. The advantage of reinforcement learning is that once a suitable
learning agent has been established, it can keep learning the different tasks that have
been specified and reinforce the obtained experience without any manual intervention.
However, it may not be easy to learn enough experience in a short period. To reduce the
probability that the robot might encounter situations which have not been explored, six

representative walking tasks have been assigned to the RL, as follows:

1) ap = ws and f = randon{ fs) with the objective: continuous walking for at ledst

period with the frequency increasedas.

2) oy = ws and f = randon( fr,) with the objective: continuous walking for at ledst

period with the frequency increasedds.

3) wp = ws and f = randon{ f,) with the objective: continuous walking for at ledst

period with the frequency increaseddas.

4) ap = wy and f = —randon fs) with the objective: continuous walking for at ledgt

period with the frequency decreasedug

5) wp = wy and f = —randon( fy,) with the objective: continuous walking for at least
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Ts period with the frequency decreasedg

6) wp = wy and f = —randon( fy) with the objective: continuous walking for at ledgt

period with the frequency decreasedug

Ws:wh€1[2942 = w=35 wn:whe 4356 =wu=49

@ oh€[5.7,7.0) = w =63 fs: f €[10,30) = f; = 20
fm: f €[30,50) = fy =40 f : f € [50,70) = f; = 60

where,subscript 0 denotes the current walking step-frequency and subbsieipbtes
the dynamic information sent to the learning agemt, wy, and w denote the small,
medium and large walking stride-frequencies, respectively. Similarly for the applied

external forceds, fm, andf;.

Based on simulations, the time limits that the robot can take the perturbation contin-
uously without any stride-frequency adjustment are obtained for each of the walking
tasks. The corresponding perturbation peridgsTg are chosen to be larger than the
corresponding limits. Here, the assigned valuegfarTg are 4.0s, 3.0s, 1.2s, 1.5s, 1.0s

and 0.7s, respectively.

The common motion constraints are as follows: the absolute error of the trunk CG
position from the basic walking pattef| < 0.05m, (height of the trunk CG is 0.925m);

the sum of all the joint torque§i6 T; is less than 408 and the stance foot not to have

any rotational angle according to the ground surfa8e larger than &°. Given these
specifications, with the torque constraint getting stricter, the energy consumption can
be reduced and motion becomes more compliant to the perturbation. On the contrary,
extending the desired walking time, the stride-frequency adjustment would be nearer
to the original frequency in the basic walking pattern. Therefore the RL balances the

energy consumption and motion adaptation.
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Momentum Estimation

Together with the reinforcement learning agent, momentum estimation is another mod-

ule for stride-frequency adjustment. This module is used to increase the confidence for
the stride-frequency online adjustment, especially for states that have not been explored
by the RL. Therefore, momentum estimation will be only used when the Q-value of the

current state is lower than a preset threshold.

According to the sensed or the computed external force and the time-step for stride-
frequency update, the input momentum given by the perturbation can be estimated by
Equation (5.2) to (5.4).

M=f-At=3"m-Av (5.2)
AV =0;Avo =1p/L- Av; Avg =11 /L- Av (5.3)
AVg = AVs = AVg = Av7 = AV (5.4)

wherelq, I> andL are the effective lengths of the upper, lower and the whole leg re-
spectively. i is the link number starting from the stance foot to the swing foot. The
velocity change of the robot center of maAs,is estimated by substituting Equations
(5.3) and (5.4) into Equation (5.2). Then, the change of stride-frequency is estimated
using Equation (5.5):

- AV

Don =~ (5.5)

whereSis the step-length.

R Update Function

As found in previous variable stride-frequency walking, the step-length given by the

stance motion can be naturally increased when increasing the stride-frequency, without
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Figure 5.3: An illustration oBg; 6, in the standing phase.

scheduling the control gains. Since the stance motion is rather important for maintaining
the stability of a dynamic robot walking pattern, the motion magnitude of the stance
leg is better to be maintained, so as to reduce the perturbation affecting the motion
convergence to the limit walking cycle pattern. TherefdRewill be adjusted at each
touch-down moment to update the step-length. A stance gh#&B&gure 5.3) is defined

as Equation (5.6) for describing the standing posture.
R = Ost+0.5(6, — Ost) (5.6)

wherebs; and 6, are the angles formulated using the TFS model, as indicated in Figure
5.3 for describing the stance leg posture more precisely. Supposéprigdyconcerned
without taking the knee configuration into account, the identification of the stance phase
may not be this representative when the stance leg is bent more obviously. On the other
hand, if the hip joint anglé}, is only considered, the posture identification may overlook
the position relation to the stance foot. The update dscaling parameter of the stance

leg) used in the work is the interpolated value in the adjustable range.

5.1.2 Training of the Reinforcement Learning Controller

The parameters of the reinforcement learning agent that was used in learning the as-
signed tasks is shown in Table 5.2. Figure 5.4 and Figure 5.5 show the learning results

of the aforementioned walking tasks. Note that the training did not have many iterations
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Figure 5.4: Learning performance of task 1 to 3.

to achieve the learning tasks. It can be noted that the training did not take much time
to achieve the learning tasks and derive a policy for optimizing the trade-off between
energy consumption and motion adaptation. This could be attributed to the regulation

and optimization of the basic walking pattern.

5.1.3 Walking Results in Simulation

Incorporating the trained reinforcement learning agent and the momentum estimation
module, the simulated NUSBIP-I robot was placed into a new environment. Then, some

random force perturbations were applied. The environment is described as follows:

Forward external forces 20) 40N, 60N were applied to the robot froin= 2stot = 5s;
t=6stot =6.8s; andt = 9stot = 9.25s, respectively; and reversed external forces
—20N,—40N,—60N were applied fromt = 11.2stot = 11.6s;t = 137stot = 14.1s;
andt = 16stot = 16.3s, respectively. The robot has no prior knowledge of the distur-

bances. For motion recovery, whenever there is no perturbation sensed or the current
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Table 5.2: Reinforcement Learning Set-up for stride-frequencsdjustment

Description
Basic sagittal walking patter
Learning output (actiony

Remark

1 Flat-terrain walking example 1 in chapten 4

parameteAw,
Reward function Equation (5.1)
Emax 0.01rad
Emin —0.01rad
I, 0.09ad/s
Ot —0.09rad/s
501 < 400N -m
Discount factory 0.5
Action setU (0.001n|2.9 < 0.00In < 7.0)
andne Z
Policy modifiede-greedy(e = 0)
CMAC parameters
Width: receptive field foiBp 0.02m
Width: receptive field folp 0.1m/s
Width: receptive field forf; 0.1N
Width: receptive field fou 0.1rad/s
Receptive fields layers n@ 128
Learning step-size 0.25
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Figure 5.5: Learning performance of task 4 to 6.

motion state shows the walking satisfies all the requirements set in the learning agent,
the recovery module will be called. The recovery module follows a linear way recover-

ing to the desired walking pace.

Figure 5.6 shows the stick-diagram of the resulting walking motion in the prescribed
walking environment without any step-frequency adjustment. It shows that the walking
was finally disrupted due to the shortage of the kinetic energy after the external distur-

bances.

With the stride-frequency adjustment mode applied, the robot successfully went through
all batches of the perturbations, as shown in Figure 5.7. The plots of the key data are
provided in Figure 5.8, shows that the average walking velocity is always maintained at
about 045m/s. Also, the stride-frequency is observed to gradually increase for all the

perturbations acting in the positive direction and reduce under the perturbations acting
in the opposite direction. Furthermore, the simulation result shows the stride-frequency
can be gradually recovered once the external force perturbation is not present. After

all the external force perturbations were removed, the motion could converge to the
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Figure 5.6: Stick-diagram of walking without the stride-frequency adjustment.
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Figure 5.7: Stick-diagram of walking with online stride-frequency adjustment.Before
dash linel, always perturbations in the positive direction. Betwéeandll: always
perturbations in the negative direction. After dash lineno perturbation.

original walking pattern. As indicated in Figure 5.8, the velocity profile of the initial

several steps is the same as the velocity profile after the dash line

To further compare the performance of walking with and without the stride-frequency
adjustment mode, the performances of walking under tiibatch of perturbations are
compared. Figure 5.9(a) shows the resulting walking velocity and their desired average
walking velocity for walking with and without the stride-frequency adjustment mode.
Figure 5.9(b) shows the trunk CG position deviation from the basic walking pattern for
both walking motions. It can be observed that the CG position errors of these two walk-

ing motions are quite comparable and both can be considered as small. This means the
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Figure 5.8: Resulting motion dynamics: walking velocity, external forces, stride-
frequency, step-scale. Before dash linalways perturbations in the positive direction.
Betweenl andll: always perturbations in the negative direction. After dashllin@o

perturbations.
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Figure 5.9: Walking velocity and trunk CG error of walking with and without stride-
frequency adjustment (2nd batch of perturbation).

AB: Actual walking velocity withw, adjustment.

A'B": Updated desired average walking velocity.

CD: Actual walking velocity withoutw, adjustment.

C'D’: Fixed average walking velocity.

ab: Resulting trunk CG error witly, adjustment.

cd: Resulting trunk CG error withouty, adjustment.

applied joint control maintains the desired motion posture and step magnitude. How-
ever, referring to the area that cunaB andA’B’ enclose which shows the accumulation

of the difference between the actual velocity and the desired average velocity for walk-
ing which has the stride-frequency adjustment. Similarly, the cuB2sndC’'D’ are

the actual velocity and the prescribed velocity for walking without the frequency ad-
justment, respectively. It is observed that walking with the step-frequency adjustment
has smaller area than the one which does not have the adjustment. Using the stance
leg to maintain the walking posture, position error and velocity error both contribute to
the final energy consumption. From the simulation, the total energy that the stance leg
consumes is smaller for the case which has the step-frequency adjustment. This is also

confirmed by the data as shown in Table 5.3.

It is observed that although walking without the stride-frequency adjustment passed the

1st and 2hd batches of the perturbations, the robot stance leg actually gave a relatively
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Table 5.3: Stance leg energy consumption during a batch of perturbation

Perturbation No. 1st 2nd 3rd
Without wy, adjustment| 134425 | 42272 | NIL
With w, adjustment || 112984 | 31589 || 166.83

bigger effort to pull the robot back when it tended to speed up under the push forces.
Then, the resulting kinetic energy is maintained by both external force perturbation and
the joint torques during the motion. Therefore, once the external force was removed, the
robot did not have enough actuation force to generate kinetic energy driving the motion
forward. This is why after two batches of perturbation, the robot could no longer drive

itself to walk forward. Nevertheless, the robustness of the control law has been shown

by successfully overcoming thetland 2hd batches of perturbation.

However for robot walking with the stride-frequency adjustment mode, as long as the
motion constraints can be satisfied, the robot will be allowed to vary its frequency in
real-time to maintain an appropriate kinetic energy level for the next step. Besides, the
simulation result also shows the advantages of the low gain motion control for walking

in transitions and the convergence behavior of the proposed motion control strategy.

5.2 Step-length Adjustment Mode

In this section, the step-length adjustment mode is investigated. Under some circum-
stances, the step-length has to be adjusted in order to maintain a stable walking motion.
For example, the ground may have ditches or the robot may land its swing foot earlier

or later due to some environment perturbations. It can be observed from human walk-
ing gaits for walking over a ditch, as shown in Figure 5.10 recordedION system,

knee and hip joint trajectories are roughly scaled. To mimic such a behavior, the scal-

ing parameteR of the TFS formulation (Equations (3.10) and (3.11)) is used for the

adjustment.
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Figure 5.10: Human gaits for stepping over a ditch. Arrows indicate the motion of
stepping over the ditch with both hip and knee joint trajectories roughly scaled.

Before discussing the step-length adjustment mode in detail, the stance phase-shift func-

tion is first introduced.

5.2.1 Phase-shift Function

The phase-shift function is used to connect different basic walking patterns to reduce

the perturbation. The phase-shift function is described as follows:

Based upon the defined, the whole period of a stance phase can be dividednnto

portions a3 (i = 1,2---n). Then the phase-shift function is defined as:

(R <Ry)andR >R)) §=i-05T

elseif(R < Pnin) $=0;
elseif(R > Pnay s=05-T;

whereT is the walking cycle periohmin andPyax are the maximum and the minimum
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stance phase values, respectively, for the new updated basic walking patisrthe

output of this phase-shift function in second.

5.2.2 Step-length Adjustment Methods

In the step-length adjustment mode, the adjustment is set at the following two time

instants:
1. When the robot stance leg reaches the centerXne Q).
2. When the swing foot lands on the ground.

The reason for choosing the first moment is: there is no obvious stance phase difference
for different step-length walking motion at this instant. Also, the center line area has a
larger stability region for transitions. AdjustmentRfapplied at this moment usually is

for walking situations in which the robot is forced to change its step-length in the midst

of the single support phase.

Updating the stance leg scaling paramé&eat the second moment is aimed to reduce
the stance phase error for the subsequent step, as mentioned in the above experiment for

variable step-frequency walking under force perturbations.

In this subsection, two methods of step-length adjustment are discussed. These two step-

length adjustment methods are respectively for the following two walking situations:
Situation 1: walking environment has no limit for the step-length.
Situation 2: walking environment has some limit for the step-length.

For situation 1, the scaling parameter of the swing leg md#gns adjusted to be the
same value as the stance leg’s scaling paramRetérhis step-length adjustment method
is named as step-length adjustment method 1. Since motions of the stance leg and the

swing leg are equally scaled, the relative motion between the stance leg and the swing
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leg will not be changed with respect to the optimized basic walking motion. If the
walking environment is not specified, this step-length adjustment method 1 will be the

default step-length adjustment method.

Similar to the investigation of the boundary for the step-frequency adjustment, the safe
range for the step-length is also obtained by the following results directly obtained from

the dynamic simulations:
(1) The minimum and maximum step-length for steady-state walking motions.

(2) The largest immediate increase or decrease of the step-length without any help from

the external force acting on the robot.

Figure 5.11 shows the velocity profile of a successful variable step-length flat-terrain
walking with the immediate transitions between the step-lefth= R, = 0.5) to the
step-lengtiR = R; = 1.2). It can be seen that the transitions are smooth and the result-
ing walking motions converge to the same steady-state motion. Furthermore, by simply
varying the scaling paramet& of the basic walking pattern, the basic walking pat-
terns of other step-length walking can be directly derived, achieving the corresponding
steady-state behavior. In addition, the immediate transition is also found to be stable for
up to 240% changes in step-length, showing the robustness of the basic walking patterns
implemented by the proposed motion control law. Figure 5.12 shows the stick-diagram

of this variable step-length walking.

The same procedure was also successfully applied to thai8lope and down-slope
walking patterns obtained from the previous chapter. Based on the original step-frequency,
all the obtained step-length adjustment boundaries for the flat-terrain, up-slope and
down-slope walking are shown in Table 5.4. Then, based on the obtained step-length
range, Table 5.4 also gives the corresponding range of the step-frequency adjustment.
The wide range of the adjustable step-frequency reflects the robustness of the generated

basic walking patterns.

The step-length adjustment method used for the situation 2 is named as step-length

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.2 Step-length Adjustment Mode 127

=
3z

T T
Vo 0.4m/s —— 1.0m/s

=
T

Walking V((eDIocily (m/s)
o 3]

I
o
3

0 2 4 6 8 10
Time (sec)

Figure 5.11: Walking velocity profile of the dynamic walking with immediate step-
length transition between the largest and the smallest step-lengths.
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Figure 5.12: Stick-diagram of the dynamic walking with immediate step-length transi-
tion between the biggest and the smallest step-lengths.

Table 5.4: Adjustable step-length range and its min. and max. stride-frequency

R(min) || cn(min) || cn(max | R(max | wh(min) || wh(max)
flat-terrain || 0.5 1 8 12 4 5.5
10° slope 0.5 1 7 13 2 5.8
—10°slope| 0.7 3 9 11 5.6 7
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adjustment method 2. This method 2 is used when robot is suddenly forced to inhibit
its motion and walk in a fixed smaller step-length. Under such a situation, the relative
motion between the stance leg and swing leg should be adjusted gradually instead of
scaling the bigger step motion to a smaller one immediately. This nieanall be
different fromR;; during the adjustment, and the rule for this step-length adjustment

(method 2) is given as follows:

In a one-step period, before the stance leg crosses the cent¥rir the step-length
adjustment method 1 will be used together with the above illustrated stance phase-shift
function. After the stance leg crosses the center line, the swing leg scaling parBmeter
will then be adjusted by a look-up table. In this look-up table, the record is in an index
of the desired step-length), stance leg scaling paramefgy, time-instanty whenR,

is updated, the landing time estimatiband the swing leg scaling parameRy. The
following paragraph presents the generation of such a look-up table using numerical

computations.

Look-up Table for Step-length Adjustment Method 2 A swing foot motion can be
described by two constraints. They are the horizontal distance between of the swing foot
with reference to the stance fo&t), and the vertical distance from the bottom of the
trunk to the swing footH, (t). From the kinematic§(t) andH (t) can be computed

by Equations (5.7) and (5.8), respectively (Subscii@sdll denote the stance leg and

swing leg respectively).

S(t) = l1-sin(R B (1))
+12-Sin(R (6h (1) + B (1))
—l1-sin(Ry 6hii (1))
—l2-sin(Ri (Bhii (t) + B (1))

(5.7)
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Hij (t) =11 - cos(Ry B (1))
+15- COS(R” (6hll (t) + B (t>>)

(5.8)

6n and 6y, denote the stance hip and swing hip joint angle, respectivelySanand

6«1, the stance knee and swing knee joint angles, respectively.

Suppose at=to, the scaling parameter of the stancefRegs adjusted tdR| as required.

The scaling parameter of the swing |8 should be updated accordingly B, to
achieve a specified walking step-length. To calculate the valu®, ofthe estimated
time f for the landing of the swing leg has to be considered. At the moment when
the swing leg touches the ground, Equations (5.7) and (5.8) become (5.9) and (5.10),

respectively:

S(to+f) =l sin(H 9h|(to+f))
+12-sin(R (Bni (to+1) + B (to +1)))

) (5.9)
—I1-sin(R, 6y (to+1))
—l2-sin(R, (Bnii (to +) + Bkl (to+1)))

Hyj (to+f) = 13- cos(R, Oy (to+ 1)) (5.10)

+15-cos(R, (61 (to+) + B (to +1)))

Once the swing foot fully lands on the ground, the horizontal distance between the two
legs should be approximately equal to the desired step-length, and the vertical distance

from the bottom of the trunk to the swing foot should be equal to the stance height.

Sto+f) =S (5.11)

Hii (to+) = Hi (to +1)
=11 -cos(R 6 (to +1)) (5.12)
+15-siN(R (Bhi (to+F) + B (to+1)))

From Equation (5.9) to (5.12), the kinematic equations at the moment of swing foot
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landed on the ground are formulated as (5.83)s the desired step-length.

( l1-sin(R; Bnii (to+ 1))
+l2-sin(R; (61 (to+t) + B (to+ 1))
) =SR.0-% (5.13)
|1 coS(R, 6 (to+))
+l2-cos(R}, (i (to+ ) + B (to+1)))

=Hy (R,

where

([ S(RL) =11-sin(R 6 (to )
+12-sin(R{ (6h (to + 1) + Bk (to +1)))

Hi (Rf,f) =11-cos(R 6 (to+ 1))
+12-cos(R (6 (to + ) + 6k (to +1)))

(5.14)

Given the values 0%, R andtp, the solution of (5.13) will be:

22)... (5.15)

where all the; the estimated landing period. The solutid¥g1i),i = 1,2... are numer-

ically computed by horizontal foot placement constraint and the soluBii&i),i =

1,2... are numerically computed by the constraint of body height when both feet are on
the ground. However there should be only one final solution selected from (5.13). There-

fore, the next step will be the selection of the appropriifevhich gets the minimum
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value of (R}, (2j) — Ry, (1k)), whereR}; (1k) and R}, (2j) are the solutions of Equation
(5.13) referring tdS(t) andH (t), respectively. The final solution & is in a pair with
. Note that the selected value Bfi should also avoid any other time instant before

t =to+{ thatH,(R/,t) = Hj; (R ,t). This motion will result in premature foot landing.

5.2.3 Variable Step-length Walking

Based on the above two step-length adjustment methods, a simulation has been con-
ducted to demonstrate the step-length adjustment methods and the robustness of the
basic walking patterns generated by the GAOFSF method. In the simulation: the robot
is first required to reduce its step-length step-by-step following the sequenedR;; =

10— R =R =08— R =R, =0.65 and then t&} = R,; = 0.5. After this, a big
external force perturbatiofR = 30N is applied to the robot for.6s. Then, the robot is

forced to walk with the largest step-lendi = R, = 1.3. Right after this, the robot

will be required to fix its step-length ta®m and walk until the moment th&, is again

equal toR;; and then adjust the step-length to B £ R, = 1.1) for the final steady-

state walking. This inclusion of gradual and sudden changes is to test the robustness and

adaptivity of the variable step-length walking motion.

In this simulation, the adjustment for the first 5 steps is based on the method 1. There-
after method 2 is applied until the step with equivalent scaling pararfRetand R
occurs. From there, method 1 will again be used to achieve the final steady-state mo-

tion. Table 5.5 shows part of the look-up table that is applicable for this simulation.

Figure 5.13 shows the resulting data of the variable step-length walking motion. It is
observed that the step-length adjustment method 1 successfully reduced the walking
step-length through the initial four adjustments. Also, from the walking velocity profile,
method 1 is observed to effectively reduced the kinetic energy with the reduction of the
assigned step-length. Given the sudden kinetic energy injection by the external force

(30N for 0.5s), the subsequent large step was found to successfully maintain the stable
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Table 5.5: Part of the look-up table

S || 03 0.3 0.3 0.3 0.3
to || 0.01| 0.01 0.01 | 0.01 | 001
R | 125| 1.17 1.08 1.0 0.9
R || 0.85] 0.8438| 0.8563| 0.865| 0.9
t 0.3 0.32 0.35 | 0.38 || 0.44

motion. The gradual transition for the following fixed step-length walking was also
shown to be stable and smooth. After the big step, the step-length of the subsequent
5 steps were seen to be well constrained to BenQusing the step-length adjustment
method 2 and the walking velocity is gradually reduced. Although method 1 may also
be applicable for this step-length reduction t8r, the sudden motion inhibition given

by equally adjustindr, andR;; might result in motion instability. Also, the resulting

motion may not be smooth.

After all the transitions, walking is observed to converge to the basic walking motion

with R = R = 1.1. Figure 5.14 shows the stick-diagram of this simulated trial.

From this study, both step-length adjustment method 1 and method 2 have been shown
to be effective for the sagittal plane walking adjustment. The initial few steps using
method 1 shows the robustness of the limit cycle behavior excited by the GAOFSF
generated basic walking pattern. Then, the gradual release of the kinetic energy shows

the step-length adjustment method 2 is applicable for smooth and stable transitions.

5.3 Leg Pattern Adjustment Mode

The above sections described the real-time walking speed adjustment modes (walking
speed can be varied either by the stride-frequency or the step-length). In this section,
real-time pattern adjustment for lower extremities’ motion, which can be used for walk-

ing on undulating terrain is discussed.
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Figure 5.13: Results of the dynamic walking with the step-length online adjusted.
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Figure 5.14: Stick diagram of the resulting motion pattern of the simulation trial.
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In the TFS formulationgy, indicates the point where the hip joints coincide with each
other. This intersection point is dependent on the terrain profids the knee joint
angle during the stance lock phase. This value will also be dependent on the terrain
profile, as highlighted by human gait analysis [84]. Therefogegndcy values can be

considered as key parameters for walking on undulating terrains.

Inspired by human gaits on rough terrains, the relative motion between the two hips
and that between the thigh-shank will also be maintained the same as that of the ba-
sic optimized walking motion. Therefor¢A;, B;,C,t1,t2) is not adjusted in the TFS

formulation for walking on undulating terrains.

Hence, tuningc, and ¢k values while keeping the values o4, B;,Ci,t1,t2) fixed, is
adopted as the strategy for adjusting the walking gaits on some irregular terrain. To
optimize walking motions on slope terrains other than thdlfd —10° slopes by the

TFS parametergcy, ck), the soft motion constraint: step-length constraint, is released.
(Note, step-length can be always adjusted by the scaling parameters individually). If
necessary, to further improve the motion stability, a trunk pitch angle can be varied.

Here, the body trunk’s pitch is still set at zero.

For a target range of slopes, i..29,15°] and[—15°, —2°] that the robot can walk stably,

the optimized 10 up-slope and down-slope motions are selected as the basic up- and
down-slope walking motions. In the GAOFSF environméiat, cx) can be searched

by the GA for slope rangf°,15°] or [—15°, —2°]. Figure 5.15 shows the relationship
between the optimized values [u,, c| versus the terrain slope (up-slope). It can be
seen that with the increase of the gradient of the up-slope terrain, the motion’s hip offset
valuecy, decreases monotonously. However, the knee joint angle in the lock phisse
increased. These behaviors resemble the human walking behaviors such as: 1) two hips
cross each other in a more positive angle position when the up-slope gets steeper; 2) knee
joint bends lesser on gentle slopes but more on steeper ones. Simple regressions using
the cubic function can be adopted for the relation betwegro( c,) and the ground

inclination, as shown in Equation (5.16), for real-time parameter adjustment:
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Figure 5.15: Function regression for climbing up: ¢gand (b)cx.

ch = 6.3e %03 — 1.2 302 — 1.8e 2a +0.039
(5.16)
o= —1.2e *a®+25e3a2+2.6e %a+0.12

wherea is the slope gradient. Residuals of these two regressions@883« 102 and

3.8512x 103, respectively, which are considered to be very small.

For down-slopes, the hip offset valagis observed to increase when the slope becomes
steeper. However, the change is just within a rang@,&035rad, as shown in Figure
5.16(a). Compared to the hip joint, the lock phase anglef the knee joint decreases
much more obviously for walking on uneven slopes, as shown in Figure 5.16(b). The
change oty is in a range of0, 0.2]rad which is almost 70% more than the variation of
thec, value. Therefore, the knee joint motion is found to be very important for giving a
stable locomotion on down-slope terrains. From the results obtained, walking patterns
on various down-slopes are seen to resemble the human walking gaits, particularly the
behavior that the knee will be bent more for going down a steeper slope but less on

gentle slopes. The regressed functionsyolindcy versus the down-slope gradients are
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Figure 5.16: Function regression for going down: ¢aand (b)cy.

given by Equation (5.17). Residuals of theandc, regressions are.917x 102 and
7.5059x 103, respectively.

ch, = 1.8e a3+ 3.7e %a?+4.0e 3a —0.22
(5.17)

o = 1.2e 503 —4.5e 502 — 2e 2q +0.69

Based on the achieved basic walking patterns for different up-slopes and down-slopes,
the following subsection presents the control results of walking on undulating terrains.

The aforementioned stance phase-shift function is again incorporated for terrain adap-

tation.

5.3.1 Dynamic Simulations of Undulating-terrain Walking

This subsection gives a series of walking demonstrations on uneven terrains using the
developed leg pattern adjustment mode. The followings are the uneven-terrain walking

simulations that have been conducted:
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1) Walking up from @ — 10° — 5° — 15°.
2) Walking up from 18 — 10° — 15° — Q°.
3) Walking down from @ — —10° — —15° — —5° — —10° — 0°.

In the implementation, the robot swing-foot ankle joint will be loosened so as to allow
the foot to adjust to the new terrain surface and detect the new slope once the toe or heel
of the swing foot touches the ground. Here, the slope sensed by the robot is computed
by Equation (5.18):

) —Z
X1 —X

a = atan( ) (5.18)

wherex andz are the actual position of the ankle joint.

The walking velocity profile of the above three undulating-terrain walking motions are
shown in Figure 5.17(a), (b) and (c), respectively. It can be seen that walking can always
converge to a stable steady-state motion on different slopes. The transitions are observed
to be quick and stable showing the robustness of the limit cycle behavior excited by the

basic walking pattern.

Stick-diagrams of the rough terrain walking simulations (1), (2) and (3) are shown in
Figure 5.18, Figure 5.19 and Figure 5.20 respectively. Figure 5.21 to Figure 5.23 show
the key data of the achieved walking motions. The change of the joint trajectories can be
clearly observed while the stable gaits are also achieved for walking on all the terrains.
This demonstrates the robustness of the generated basic walking patterns, especially for

the up-slopeq,p and down-slope&gown Mmotions generated in Chapter 4.

5.4 Summary

Based on the results obtained from the three developed basic motion adjustment modes,

the following human-like behaviors have been achieved:
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Figure 5.17: Walking velocity profile of the walking motions on the rough-terrain 1,2,3,
respectively for the 1st, 2nd and 3rd plots. All the dash lines indicate when the terrain
slope is changed.
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Figure 5.20: Stick diagram of walking on the rough-terrain 3.
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Figure 5.23: Dynamics of walking on the rough-terrain 3.

1) The human-like rhythmic walking motion with environment entrainment has been

demonstrated. Figure 5.24 shows the overall control architecture.

It can be seen that the basic walking pattB(h) generated by the GAOFSF method is
comparable to a central pattern stored in the spinal cord (low-level). For walking on
any fixed sloped terrain, in order to get the motion into a stable walking steady-state,
it may not be necessary to incorporate any high level modules such as step-frequency
adjustment, step-length adjustment or terrain adaptation. It is because the derived basic
walking pattern and motion controller presented in Chapter 4 can ensure stable walking
provided the perturbations are not significant. The high-level modification for the basic
walking patterrB(t) is required only when the robot gets some sensory feedback that the
external force perturbations, ground ditches, or terrain adjustment occurs. In a certain
way, the high-level motion control which modifies the basic walking pattern through the
TFS parametersan, R, Ch, Ck, ) is analogous to how the brain moderates the walking

motion.

2) The human-like up-slope and down-slope motions can be achieved by the proposed
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Figure 5.24: Two-level walking network: low-level: CPG model, high-level: Brain.

Table 5.6: The resulting fastest and slowest walking

Waking speed| fastest | slowest
Flat-terrain || 0.95m/s || 0.16m/s
10° slope || 0.78m/s || 0.1m/s
—1(0° slope || 1.01m/s || 0.3m/s

approach: The stance leg tends to be straighter for gentle slopes but bents more on
steeper slopes. Such a trend shows that the knee joint motion is correlated to the gradient
of the terrain, and the motion stability is more associated with the knee-joint motion,

especially for down-slope motions.

Furthermore, faster speed walking can be achieved by changing the stride-frequency
and the step-length concurrently. Table 5.6 gives the fastest and slowest walking speeds
achievable for stable locomotion on different terrains in the dynamic simulation environ-
ment. Since the walking down motion is the most challenging, Figure 5.25 and Figure
5.26 show the stick-diagrams of the walking-down motions on-thé° slope with the

minimum and maximum speeds, respectively. It can be seen that compared to the lowest
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0z

Figure 5.25: Smallest pace 48own-slope walking.

Figure 5.26: Biggest pace 1down-slope walking.
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speed walking motion, the highest speed walking motion swings much higher using a
bigger stride. Here, the sampling time of the slowest walking and the fastest walking

motions are (L5s and Qlsrespectively.

Based on all the results obtained in Chapter 4 and Chapter 5, the robustness of the
developed sagittal plane motion control algorithm is demonstrated. The next Chapter
will then explore the application of the TFS formulation for 3D bipedal walking control

especially for the lateral motion balance behavior.
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Chapter 6

Frontal Motion Balance Strategy 1

In comparison with those for sagittal plane motion control, much fewer strategies for
frontal plane motion control have been proposed. Goddard et al.[81], and Hemami
and Wyman [82] used a three-link planar model to study the frontal plane motion of a
biped. Igbal et al.[83] presented a model for studying the involvement of the central
nervous system in the execution of voluntary movements in the frontal plane. In this
chapter, the proposed motion control law based on the reaction torque and the TFS
motion generation model have been further investigated for its application in lateral
motion balance control for 3D walking locomotion. Here, the frontal plane motion is
separately considered assuming that the motion in the three orthogonal planes (sagittal,
frontal and transverse) are weakly coupled. The sagittal plane motion is still maintained
human-like (stance leg is straightened during part of the stance phase), generated by the

GAOFSF method presented in the previous chapters.

6.1 Joint Control Scheme for 3D Walking

Similar to the 2D motion control strategy, the 3D walking control algorithm is also

aimed to maintain the robot body to be upright. In the meantime, the stance foot is not
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planned so as to naturally interact with the ground. The joint control method presented

in Chapter 4 is generalized to the 3D space.

First, a notation for variables used in the joint controller formulations is given,
1) Subscripts 1 and 2 refer to the stance and swing legs, respectively.

2) Subscriptd, k, a, b denote the hip, knee, ankle and body. respectively.

3) X andY represent the sagittal plane and frontal plane, respectively.

3) Subscripty, r, y refer to the pitch, roll and yaw, respectively.

4) 1 is the generated torque applied to the joints.

5) kp andky are the proportional and derivative gains for the joint controllers, respec-

tively.

Based on the joint control for 2D walking, the sagittal plane motion control for 3D

walking is generalized as:

(
_Rp(Tlhp +T2hp>x - Rr(T:I-hr +T2hr)x = PDbp
PDop = Kp, (Bop — Bhp) + K (b — bhop)

Body Control: (6.1)
Rp = RnzRhxRny,  Re = RazRix
Tip=[0Tp 0", Tor=[Tiny 007, =12
71, = —ko, (81, — 61 ) — K, (61, — 0
Stance Leg Contral { ™ pa (01 — B1y) — K (B, _1h> (6.2)

Tlap = _kpal(élk - elk) - kdal(élk - elk)
2y, = kph2<é2h - 62h) + kdhz(‘ A2h - éZh)

Swing Leg Controf T2, = Kpo (B2, — 62) + Ko (B2, — 62, (6.3)
Tzap = kpaz(éza - 62a) + kdaz(éza - éza)

whereR,,, Ray, Ry are the rotational matrices along they andx axis, respectively.
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The body’s pitch is controlled to the desired position through Equation (6.1). Here,
the desired body-pitch is set at zero as a vertical position. The controllers of the other
joints of the stance leg are formulated in Equation (6.2). The joints of the swing leg are

controlled by the conventional PD position controller, formulated in Equation(6.3).

Similar to the joint control for the sagittal plane, the reaction torque is also used for
the frontal plane motion control. The desired body’s roll motion is set at zero using the
controller formulated in Equation (6.4). The other controllers applied to the stance leg
on the frontal plane are formulated as Equation (6.5). The swing leg control still uses the
conventional PD position controller formulated as Equation (6.6). Here, since the two
legs of the target robot are rather close to each other, the swing leg motion is maintained

to be parallel with the stance leg motion avoiding any hit between the two legs during

walking.
(
_Rp(Tlhp + T2hp)Y —R (Tlhr +T2hr)Y = PDbr
PDor = Kp, (6 — 6) + ka(6 — 6
Body Control: br = Kpy (6 — 6) +ka(6r — &) (6.4)
Rp = hathRhw R = RnzRnx
Thp=[0Tinp O, Thr=[tnr 00T, =12
Stance Leg Contral Ty, = —kp,, (61, — 64, ) — kdarl(élhr —6y,) (6.5)
To =Ko, (6o, — 65 ) +ky, (85 — 0
Swing Leg Control 2 = Kong (O2n, = O ) + Kt <.62hr 2) (6.6)

T2ar = Kpura (O, — O ) + Ka (O, — 02,
Note the torques involved in the stance leg control and the swing leg control can be
directly computed, but the torques applied to the body control are coupled in 3D space.

Aligning the Equations (6.1) and (6.4), torqueg, andty, can then be computed.

For the transverse plane motion, the aim is just to maintain the two hip joints’ yaw at

the desired value which is also set at zero. Therefore, the joint control is formulated as
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Equation (6.7):

Tty = kphy(élhy - 61hy) + kdhy(élhy - é1hy)

] L (6.7)
T2y = Kpny (62, — 02, ) + Kg, (62, — 62, )

6.2 TFS Formulated Lateral Motion Optimization

Compared to the basic walking pattern planned for the sagittal plane motion, the major

difference of the frontal plane motion are summarized as:

1) The overall angular momentum along the X-axis accumulated over one step-period
can not be compensated. For example, it will be always negative for the step that the

right leg is the stance leg.

2) Due to the change of direction of the lateral movement, the lateral walking velocity

in the basic walking pattern cannot be planned to be uniform.

Due to the differences of the motion behavior, the low gain motion position control may
not be applicable for the frontal motion to converge to the lateral steady-state pattern.
Nevertheless, it can be seen that the formulated control law still aims to maintain the
desired walking pattern through achieving the relative joint motions. Then, given higher
and more stiff motion control gains, the response of the formulated motion control will
be just similar to the reaction torque based PD position control tracking the absolute joint
motion based on the world coordinate. Thus, the desirable lateral motion characters for
the generation of the frontal plane basic walking pattern is directly based on the typical

lateral motion behaviors listed as the follows:

1) The lateral velocity is supposed to be the highest as it passes through the middle

body’s position between the two legs.
2) The body’s motion should be symmetrical about the middle position, and

3) To avoid undue force perturbations, the body'’s trajectory should be continuous in its
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first and second derivations during the single leg supporting phase.

Based on the above basic motion characters, the lateral motion reference is thus formu-
lated as (6.8) in the form of a TFS:

6 = RZX Disin(iwt)+¢, k=1,23..., w=m/T (6.8)

where6; is the desired hip joint’s roll trajectory); the amplitude value of the series,
R the scaling factor for the motion reference in the frontal planéhe walking stride-
frequency,T the step-period or the time taken to complete a single step; amdnstant
attached with the TFS formulation. For symmetrical motiaris,set to be zero assum-

ing the motion is well tracked.

Again, the GAOFSF method [53] is used for 3D walking motion generation and opti-
mization. The performance optimization index for the frontal plane motidn (€ode:
Opm)given in Chapter 3, which minimizes the accumulation of the stance ankle’s torque
during the single support phase. The performance objective functions for the sagittal
plane motion are exactly the same as for that for the previous 2D space walking motion.
The detailed set-up of the GAOFSF method is shown in Table 6.1 using the optimization

code:Op, which optimizes the sagittal plane and frontal plane motions concurrently.

To test the generality of the GAOFSF method and the proposed motion control law,
the target robot for 3D walking algorithms is selected as the Fujitsu HOAP-I robot,
whose mechanical properties are quite different from the NUSBIP robot. The GAOFSF
generated walking solutiox,= [Dj, A;, Bi,Ci, ch, Ck, t1,t2], based on this HOAP-I robot

is given as follows:
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Table 6.1: GA Set-up for 3D walking

Description Remark
Objective components CodeOpy: f1, fp, f3, s
Constraint components CodeOpp: 51 — S5

Chromosome representatign real-valued GA
Initial population M 150
Generation number T 250
Crossover operators heuristic crossover

simple crossover
arthritic crossover

Mutation operators multi-non-uniform mutation
Uniform mutation
Boundary mutation
Weights for objectives w; = [50,5,10,100
Weights for constraints pi = [15,80,20,30,800

XHoap = [0.2298 — 0.0002 — 0.0042 00003 00001 02336 — 0.0639 (6.9)
0.0095 00035 —0.0021 —0.3338 —0.0791 00159 00103
0.0053 04676 01932 —0.006 —0.0369 —0.0412
0.000 Q000 Q001 Q430

It can be seen from the results obtained that the frontal motion can, without much loss
of accuracy, be represented by a pure sinusoidal profile, as the amplitudes ofithe 2
to the 3h order components were found to be relatively small compared with that of
the fundamental. The sagittal walking posture is generated as shown in Figure 6.1 for

the above 3D walking motion. It can be noted, the human-like motion pattern for the
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HOAP-I walking pattern

0
-0.1 -0.05 0 0.05 0.1
Distance (m)

Figure 6.1: The generated HOAP-I's human-like basic walking pattern in the sagittal
plane.

HOAP-I robot is shown to be similar to the 2D human-like walking posture for the

NUSBIP-I robot, as shown in Figure 4.6(f).

6.2.1 3D Walking Control Results

Given suitable motion trajectories have been successfully generated using the GAOFSF
method, the obtained motion trajectories were then applied to the HOAP-I robot directly
in the dynamic simulation environment to check the dynamic behavior of the robot. The
dynamic simulation takes into account dynamic behaviors such as the robot’s inertia and

ground contact forces.

The results of the dynamic simulation show that such a direct implementation of the
walking motion can only achieve walking up to a certain distance (about 15 steps contin-
uously for a human-like walking pattern), and the failure mainly comes from the frontal
plane motion control. Figure 6.2 shows the resulting motion of the HOAP-I robot pro-
jected to the sagittal plane. Good walking posture was maintained, as compared with
that in Figure 6.1, with the body properly controlled and maintained in an upright posi-

tion, and the stance foot being stable on the ground. The resulting dynamics are shown
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Figure 6.2: Stick-diagram of Hoap-I robot during 3D walking without reference adjust-
ment.

in Figure 6.3. It can be noted from Figure 6.3 that, except for the hip roll, the rest of
the joint trajectories are shown to be very periodical. This indicates that the generated
motion pattern achieved a good motion coordination for the sagittal motion plane. For
the hip roll in the frontal motion plane, while the shape of the resulting trajectory (solid
line) follows closely the reference trajectory (dashed line), there is a certain difference

in the amplitude of the motion.

In addition, particularly checking the forward walking velocity profile of the 3D walking
motion, it is found that the velocity profile is no longer just shaped as a "U” profile, first
reduced and then increased, as shown in Figure 6.4. Instead, the velocity profile contains
more terms of fluctuation, but the distribution is shown to be comparable before and
after crossing the center liné = 0, as indicated at the marked step-motion. The solid
line shows the velocity when robot body is located at the centerXire0, and the

dash lines indicate the walking velocity at the touch-down moment. Here, the main
reason for the unnatural walking velocity profile because when the formulated control
is applied to the frontal plane motion control, the applied joint control gains have to be
higher and more stiff to maintain the desired lateral motion. Then, in order to match
with the frontal plane motion, the sagittal motion should also be given higher and more
stiff control gains. Since the sagittal plane motion is generated according to the same
motion objective functions for the 2D walking motion, the generated sagittal pattern

will be rather symmetrical referring to the center like= 0 with the uniform walking

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



6.2 TFS Formulated Lateral Motion Optimization 153

velocity. Therefore, even if the higher control gains caused the motion velocity more
fluctuated, the resulting velocity profile still appeared to be comparable for the swing-in

and swing-out phases.

Because the velocity profile, although more fluctuated, is still comparable before and
after the center lin&X = 0, the least deviated motion pattern can be still identified as a
step motion whose end dynamics are close to the initial dynamics. Here, although the
motion stability of the sagittal plane motion is still maintainable, the higher control gains
already make the resulting motion rather close to the planned basic walking pattern.
Note here the basic walking pattern is used to coordinate the real motion but itself is
not a robust motion as the ZMP will be rather overlapped with the CG position when
the walking velocity is optimized to be uniform. Due to the short step-length given
to the above motion example, the ZMP of the planned motion can be still confined in
the supporting polygon. Therefore, applying an initial condition close to the planned
dynamics is still able to maintain the sagittal motion stability referring to the dynamics

as shown in Figure 6.3.

However, compared to the sagittal motion, the frontal motion plane is more difficult to
control as the angular momentum in the frontal motion plane cannot be compensated
during a one step motion. Also, the acceleration of the basic lateral motion pattern is

rather major. Therefore, motion failure eventually occurs to the frontal motion plane.

Based on the obtained 3D walking results, it can be seen that a fixed basic walking
pattern given by the GAOFSF motion generation and optimization is applicable for the
3D walking control to some extent. The joint controllers are shown able to resemble
the motion pattern given suitable control gains. However, the resulting frontal plane
motion is not robust enough to achieve the long distance walking. Therefore, in order to
achieve a prolong 3D walking motion, some kind of frontal motion adjustment strategy
must be incorporated. The following sections present a strategy which online stabilizes

the walking motion based on the TFS formulation.
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Figure 6.3: Hoap-I robot 3D walking dynamics without reference adjustment.
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Figure 6.4: Walking velocity profile in the sagittal motion plane. The solid line indicates
the velocity when robot body is located at the center ke- 0, and the dash lines
indicate the touch-down moment walking velocity.
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6.3 Frontal Plane Motion Balance Control

In this section, an approach which makes use of a method of learning to find appropriate
parameters to close the motion control loop and achieve stable locomotion is inves-
tigated. Previous work have been done on the application of reinforcement learning
for bipedal locomotion control [46][49]. The work presented here also adopted rein-
forcement learning to explore the potential of a simple optimized motion generator, the
proposed Truncated Fourier Series Model (TFS), for 3D bipedal locomotion control. In
the TFS model applications for 2D walking presented in Chapter 5, three key parame-
ters determine the locomotion - the fundamental frequency which determines the pace
of walking, the amplitude of the functions which determines the stride, and the con-
stant terms used to adjust to different inclinations of the terrain. The following presents
a motion balance strategy which is also based on the TFS model for the frontal plane

motion.

In previous sections and chapters, the sagittal motion is shown stable without any pa-
rameter adjustment during walking. Because of assured stability of locomotion in the
sagittal plane, using the GAOFSF generated trajectories, it only now remains to consider
the frontal plane motion to achieve good stable 3D walking. For this purpose, the robot
control model is simplified as a one-link model actuated by the stance ankle joint, as
shown in Figure 6.5. The controller applied to the stance ankle joint in the frontal plane

is considered as a pair of virtual sprikgand dampekg.

The walking results presented in the previous section without reference adjustment show
that it could be difficult to achieve a long distance walking motion by using a symmetri-
cally planned motion reference. Therefore, it is necessary to incorporate some real-time

motion adjustment mode to online correct and balance the walking motion. In order to
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Stance ankle
joint controller
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§ ? (kp, kd)
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Figure 6.5: Robot Model for balancing control.

achieve that, the formulation of the lateral motion’s reference is modified as:

(

e+ RZ*IDysin(iont), k=1,2,3..., t<€[0,Tn]

Co+ Rz Dyisin(iawp(t — Tm)), te T, T
S S o] (6.10)
W =77 @2 57—

¢+ Ri(ZXDy) = c2 + Ro(2] D)

\

This modified TFS formulation for frontal plane motion comprises two TFS functions
joined and having the same valued at T, or the point at which the lateral motion
changes direction. The reference continuity is thus not affected and all solutions given
by Equation (6.8) can also be approximated. In Equation (R2AndR, are the scaling
factors for the &t and 2hd halves of the lateral motion respectivetys andwy, are their
corresponding fundamental frequenciesandc, are the constants attached in the TFS
formulation. Theoretically, through the adjustment of parameters,, Tm, D1, D2i),

all the lateral motion patterns can be generated.

As discussed in the previous section when the motion trajectories were optimized by
minimizing the time integral of the stance foot torque, the optimum lateral motion can
be represented by just the fundamental component in the TFS without much loss of accu-

racy. To reduce computational cost, higher order terms in Equation (6.10) are neglected

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



6.3 Frontal Plane Motion Balance Control 157

in this work leading to the simplified formulation given by (6.11):

(
c1+ RiDjsin(wit) te[0,T/2

6 Cz—i—RleSin(wz(;—T/Z)) te([T/2,T] (6.11)

w=7, W=7
| C1+RiD1 =c+RoDg

The basic frontal plane motion is now completely defined by only the three parameters
(c1,R1,c2). Here, these three parameters are tuned by trial-and-error to define a basic
frontal pattern. In adjusting the TFS generated lateral reference trajectory for stable
long-distance 3D walking, the target of these adjustments will be the basic frontal plane
motion, whose dynamics are very similar between the initial state and the end state of a

step.

Based on the three parametécs, R1, c2) which specifies the TFS motion, one motion
balance strategy is investigated here. It is through the adjustmentfof dynamics
error regulation. Reinforcement Learning then is assisted to establish the robot self-

learning mechanism for walking balance behavior.

6.3.1 TFS Motion Balance Strategy:c; adjustment

Dynamics perturbations from ground contact behavior occur at the instant that the swing
foot lands on the ground. Compared to the sagittal motion, the frontal motion is more
difficult to be controlled as the desired motion. Therefore, there is a need to adjust the
reference trajectory to compensate for this disturbance so as to maintain stable locomo-

tion.

Referring to the TFS formulation of (6.11), of the three parameters which specify the
basic motion, the approach here is to adjust the first half of the basic step by adjusting
c1 while keepingR, andcy, which together specify then2l half, constant. Referring to
Figure 6.6 and Equation (6.12) to ensure continuity at the middle of the step®Bf2,

Ry will be adjusted according to the relationslaipt+ RiD1 = ¢ + RoDj.
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Figure 6.6: lllustration of the reference adjustment throcgadjustment.

Assuming the highlighted solid line is the selected basic motion’s lateral reference, by
varyingc; the initial value of the reference position can be shifted. Therefore, if there is
no under-actuation issue, there will always be a valug @fhich will make the motion
converge to the target frontal plane motion. Incorporating the foot-ground interactions,
the learning agent is assigned the task to learn the appropriate vatijebated on

the dynamics states without toppling over the stance foot. In the course of learning,
the CMAC network always updates the state-action pair locations based on the walking
experience so as to give a better function approximation. In this way, after a period of
training, the trained CMAC network will be able to provide a better estimatian et

the state of each step so as to achieve stable walking. This will be especially so in the
region of the starting states of each step in which there had been more previous walking

experience.

State variables Based on the assumption that the dynamics in the sagittal plane and
the frontal plane are weakly coupled, the state variables chosen for the reinforcement
learning are the deviation of the robot rolling positidd and veIocityAé from the

basic pattern motion taken at the end of a step which also corresponds to the beginning
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of a new single support phase. The errors are defined as follows:
1. A8 = 6 — 6, 6, being the basic walking pattern’s initial rolling position.

2. MO = 6 — 6y, B, being the initial rolling velocity of the basic walking pattern.

Reward function and return computation For the frontal plane balance control, a
"myopic” learning agent ¥ = 0) [63], which only tries to maximize the immediate
reward, is used for reinforcement learning. The immediate reward need not be very
precise. However, it must roughly represent how well the desired walking behavior is
maintained after each step’s balance control has been executed [49]. Such myopic learn-
ing applied to the bipedal locomotion control has also been successfully implemented
in the work by Chew and Pratt [49]. Here, the performance of the walking behavior is

evaluated by hip motion’s dynamics ert®iformulated as Equation (6.12):

E = A6% 11106 (6.12)

wherer is the weight for the errors from different sources affecting the motion’s balance

behavior.

Using the "myopic” learning agent, the reward function is therefore computed mainly

in the form of the lateral motion’s dynamics error as (6.13):

—E  For: (A8 CUpg) and (A8 C Uy
[ — (A6 C Une) (A6 C AG) (6.13)
Ry otherwise( failure).

whereR; is a negative constant value assigned as a large penalty.
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Learning implementations With the initial conditions set a, = 0, ér =1.32rad/s
andD; = 0.22 from the GAOFSF method, a suitable frontal basic pattern is found at:
c1 = 0.15, cp = 0.003, w = 3.2 andR; = 0.675 through trial-and-error. This basic

3D walking pattern results in similar initial and end dynamic conditions including both
position and velocity of the robot. In that case, the basic motion becomes the motion

target for the consequent steps trying to repeat.

Before reinforcement learning is executed, a pre-learning process is conducted to ob-
tain some heuristics of the boundaries of the dynamics and weighting of the position
error and velocity error in the reward function (6.13). This pre-learning is based on an
exhaustive searching for actia for each step under different position and velocity
boundaries. Once the boundary is satisfied, the robot will just proceed to the next step.
After obtaining a suitable number of successful and failed walking experience (say 50
states), the rolling position and velocity boundaries can be roughly sketched as shown
in Table 6.2. Based on the selected boundariewill be assigned a value that balances
the weighting of position error and velocity error. The description of this implemen-
tation is summarized in Table 6.2. The width of the receptive field has to be tuned
through trial-and-error for a better action estimation. The nun@eof receptive field

is chosen based on some experience selection of previous works [49]. Usually, function
approximation behaves better with a larger valueddout the computation cost is also

accordingly increased. The learning step-size commonly is a small value [63].

Results Implementing the reinforcement learning algorithm as discussed in the previ-
ous section, Figure 6.7 to 6.12 show the walking results with the lateral motion balance
agent. Figure 6.7 shows the length of time the robot was able to walk before falling
versus the number of the trials. The learning experience is accumulative meaning that
what is learned in all previous attempts is also applicable and used for each current at-
tempts. Therefore, with the number of walking trials increased, the state-action function

approximation behaves to be more reliable.

The experiment was terminated when the target of 50 steps of stable walking was
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Table 6.2: Reinforcement Learning Set-up for balance control throughjustment

Description Remark
Basic frontal walking pattern ¢; = 0.15,R; = 0.675,¢c, = 0.003
Learning output (actiorny parametec;
Reward function Equation (18)
ABmax 0.01rad
ABmin —0.01rad
ABrmax 0.2rad/s
ABrmin —0.2rad/s
r 2.5
Discount factory 0 (myopic)
Action setU (0.001n| — 0.02< 0.001In < 0.02)
andne Z
Policy modifiede-greedy(e = 0)
CMAC parameters
Width: receptive field fon@ 0.2rad/s
Width: receptive field foAO 0.02m
Width: receptive field foAcy 0.0Im
Receptive fields layers n@ 128
Learning step-size 0.25
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achieved. This tempt was achieved after 252 iterations as attempts. The walking pattern
for the final 50-step walk is shown in the stick diagram in Figure 6.8, with the dynamics

for the first period of the walk in Figure 6.9.

From the result, it can be seen that the walking pattern still maintains the human-like
posture in the sagittal plane with the body held in an upright position with only small

periodic variations. In Figure 6.9, it should be noted that without any parameter ad-
justment, the sagittal plane motion still can be maintained well, as seen from the very
periodical actual joint trajectories (Figure 6.9 (d)). Also because the generated walk-
ing motion is optimized to be quite symmetrical according to the center line, the actual
velocity profile will be also maintained rather equivalent before and after crossing the
center line. Due to the higher joint control gains, the resulting velocity is still shown to

be more fluctuated but the velocity profile in the positive and negative walking phases

are rather equivalent according to the center ne 0.

Figure 6.9(b) shows the actual hip joint roll angles for the stance and the swing legs.
It can be seen that the two joint angles are almost overlapped showing the swing leg is
well maintained to be parallel to the stance leg during walking. Furthermore, using rein-
forcement learning, data as shown in Figure 6.9 (f), the subsequent steps are controlled
to be stable and very similar to the initial basic frontal plane motion. Figure 6.10 and
Figure 6.11 show the frontal plane motion behavior in the Yobotics dynamic simulation
environment. (Notegd,, lateral velocity; Istate, value of 1: left support, and value of

0: left swing,qy, lateral motion displacement referring to the middle Ne- 0 in the

frontal motion plane). It can be seen that the maximum lateral velocity occurs at the
moment that the swing foot landed on the ground and the lateral velocity reduced to be

zero about in the middle of a step,tat T /2.

Relation of parameter ¢, and the frontal dynamics Referring to the learning states
obtained, within a fixed speed walking motion, the general relation of parameded
the frontal plane motion dynamics is found to logwill be increased with the combined

dynamics indicatod = Py+ &|vy| decreased, whegeis a weighting parameter balances
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Figure 6.7: Learning profile for the simulated HOAP-I 3D walking.
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Figure 6.8: Stick-diagram of 3D dynamic walking under actgn
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Figure 6.9: The resulting 3D motion dynamics under action
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Figure 6.11: Frontal motion control behavior: maximum lateral velocity occurs at the
touch-down moment.
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Figure 6.12: Relation between the actmnand dynamics at the touch-down moment.

the dynamics effect given by the position and velocity component, as shown in Figure
6.12.

The relation can be easily understood that when the lateral motion energy is not enough,
c1 needs to be properly increased to generate the driving force and vice versa for the

situation when the motion energy is a bit excessive.

From the results obtained, it can be concluded that the parametethe TFS model

can be used for motion balance control and the application through reinforcement learn-
ing is effective. However, as seen from the lateral position and velocity trajectories, the
lateral behavior is not of good motion smoothness. This is mainly because the resulting
motion is controlled by stiff control gains instead of the incorporation of more natural

dynamics using a soft motion controller.
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6.4 Variable Speed 3D Walking Results

The application of the proposed balance control approach is further extended to the 3D
variable speed walking to explore the potential or limit of this balance control strategy.
The posture transition is mainly handled by the sagittal plane motion adjustment and the

frontal plane motion is to maintain the motion balance.

Variable speed walking can be achieved through the adjustment of stride-frequency or
step-length. To accurately identify a dynamic state for 3D variable speed walking,
the learning agent should be further provided with information on the desired walking
step-lengthRy, the desired stride-frequenay, the change of the step-lenghiiry and

the change of the stride-frequenfiyy in addition to the frontal plane dynamics state
(AB,AB). Therefore, the input state becon|&g, wy, ARy, Awy, A8, AB] with subnet-
workscy = fe, (Rg, g, ARy, Ay ), Ry = fr, (Ry, wy, ARy, Aty ), C2 = fe, (Ry, y, ARy, Awy).
However, this will greatly enlarge the state-action space. Due to the current limitation of
the state-action space for reinforcement learning, in the work here each walking pattern

is just assigned a CMAC network still with the input state{z}sﬁ,Aé)].

Before conducting the action searching for variable speed walking, a series of basic
walking patterns for different stable walking and speed transitions were firstly found by
trial-and-error. To change from one basic walking pattern to another, a transition pattern
is also needed. This transition pattern can be found through the optimization of energy
consumption or the least change from the previous basic patteri (&t Ry) be the
desired frontal plane walking patternand f (Aay,ARy) be the basic transition pattern

to be used when changing from patt&rto F,. The following are some demonstrations

of variable speed walking achieved by this balance motion control strategy.

The first demonstration of walking speed transition is through the adjustment of the de-
sired stride-frequencyy. The stride-frequency is required to be changed frgm=
3.2rad/sto wy = 4.14rad /s at the @h step with the step-length fixed. The basic pattern

Fy is found at:c; = 0.15,c, = 0.003 andR; = 0.675. The transitional frontal plane pat-
tern f(0.9,0) is found as:c; = 0.159,R; = 0.625 andc; = 0.0036 through minimizing
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the accumulation of the stance ankle joint torque during the stance phase. The basic pat-
ternF, is found at:.c; = 0.16,R; = 0.6 andc, = 0.0035. The learning conditions are the
same as Table 6.2. Walking motion before transition has its reward based on the dynam-
ics error formulation of the gt basic pattern, and walking in transition and afterwards

are both based on the dynamics formulation of the final motion after transition.

Figure 6.13 shows the resulting dynamics from which it can be seen that the robot body
is still maintained to be upright referring to Figure 6.13(a). The walking velocity is
successfully transited to a slightly higher level of walking as shown in Figure 6.13 (e).
Still, the resulting walking velocity contains more fluctuations compared to the "U”
shaped velocity profile appeared in the 2D walking motions, but with the end velocity
not very varied from the initial velocity. Therefore, the sagittal plane motion is still
maintained stable for all the steps. Incorporating the developed balance strategy through
c1 adjustment, the frontal plane motion maintains the similarity of the dynamic behavior
compared to their corresponding basic walking pattern in the frontal motion plane. The
resulting walking posture in the sagittal plane is shown in the stick-diagram, Figure 6.14.

The frequency change can be observed from the change of the stick-density.

The second demonstration of speed transition is through a step-length adjustment. The
step-length is reduced frofRy = 0.77 to Ry = 0.6 with the stride-frequency fixed at

wy = 4.14. The basic pattern fdf; is theF, used in the previous demonstration and
f(0,—0.17) = (c1 = 0.124 Ry = 1.27577,c, = 0.005). Similar to the previous demon-
stration of the stride-frequency adjustment, the transition pattern is selected by opti-
mizing the integral of the stance ankle’s torque, and then leaing (c; = 0,R; =

1.5,c, = 0.0015. Figure 6.15(d) and (e) show that the sagittal plane motion is still
well controlled for all the steps. Referring to the resulting walking velocity shown in
Figure 6.15(e), it can be noted that the walking velocity was successfully transited to a
lower level but the velocity profile is still not of a natural "U” profile. Same as the pre-
vious demonstration, the frontal plane motion of this variable step-length walking also
has achieved similar dynamic behavior for all the steps, however, the resulting motion

is shown certain jerkiness especially in the frontal plane motion. The actual walking
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Figure 6.13: The resulting dynamics of walking with frequency changed finsa
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NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



6.5 Summary 170

pitch, roll, yaw

(rad)

Body motion

trajectories (rad)
o
§

|
o
0

T

|

Sagittal motion Lateral velocity Frontal motion
rajectories (rad) (m/s)
o
o wm o
E T
I Il J

o
N
4 e
IS
4
o
4 e
©
HEN)
o
NN
N
EEN]
IS
HEN)
o

o
-
|

Forward walkin

Learning state velocity (m/s)
[

0 I I P | I I I
14 16 1 18 20 22 24 26
.5f T T — T T T T
® L - -
1 - B Y e —
== = =
05 I I 1 I I I I
14 16 118 20 22 24 26

Time (sec)

Figure 6.15: The resulting dynamics of walking: walking step-length is reduced.

posture in the sagittal plane is shown in the stick-diagram, Figure 6.16.

6.5 Summary

The application of the proposed TFS model for 3D bipedal walking control, especially
for the lateral balance behavior has been demonstrated by several examples. Directly
applying the optimized walking motion generated by the GAOFSF method to the sim-
ulated "HOAP-I" robot without taking any dynamics feedback, stable 3D human-like
walking can be maintained, but only for a certain distance. In order to achieve longer dis-
tance stable walking, a reference adjustment strategy, which is based on the TFS frontal
plane modelci, Ry, Cy), has been investigated and shown to be effective for maintain-
ing motion stability. The walking control results show that the paramétry, cy)

are sufficient to determine the basic balance pattern and the parametertained in
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Figure 6.16: Stick-diagram of the sagittal motion: walking step-length is decreased.

the TFS lateral formulation can be adjusted in real-time to achieve stable long-distance
fix-speed or rhythmic 3D walking. In addition, reinforcement learning has been success-
fully applied to the proposed balance control strategy. Therefore, it can be concluded
that based on the TFS model, the biped robot can be given some intelligence to self-train

the locomotion balance network and then achieve stable 3D dynamic walking.

Through the above examples of fixed or variable speed walking, the TFS model shows
its use for balancing the 3D multi-speed bipedal walking. However, the major concern
of using this balance strategy is the control gains have to be relatively high and crit-
ical so as to converge the motion to the planned motion pattern as much as possible.
This may inhibit the excitation of natural dynamics, as noted from the change of the
forward walking velocity profile. Since the planned basic motion is of a rather uniform
walking velocity, in order to prevent the stance foot from toppling over, the achievable
step-length will then be quite limited. Furthermore, although walking can be maintained
stable as demonstrated above, the resulting motion is shown with certain jerkiness, es-

pecially for the frontal plane motion control.

In order to maintain the natural sagittal plane motion behavior as presented in the 2D
walking experiments, the lateral motion control should be also more natural dynamics
incorporated. Therefore, the subsequent chapter will focus on how damping behavior

can be contributed to the frontal plane motion balance control.
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Chapter 7

Frontal Motion Balance Strategy 2

In research into bipedal locomotion control, a major challenge is posed by the fact that
the bipedal system is an under-actuated system with the stance-foot always interacting
with the ground. Because of this under-actuation, motion trajectories generated without
taking account the dynamic environment, i.e ground contact behavior, may not be feasi-
ble and the generated reference trajectories will not be properly tracked, especially for

the frontal plane motion.

This is mainly because the frontal plane motion has a higher acceleration component for
changing the lateral velocity’s direction. Even if the generated motion trajectories can be
followed to some extent through restricting the trajectory of the ZMP [75]-[79], it will be
still difficult to achieve stable 3D walking for a long distance if some form of feedback

is not incorporated to adjust to the disturbances caused by the robot-ground interaction
or imperfect control gains. This actually has been shown by the results obtained in the

previous chapter.

In the previous chapter, although three dimensional long distance dynamic walking has
been achieved through the adjustment of the TFS paramgtiérs still shown difficult
to achieve the natural and smooth sagittal plane walking motion as presented in the 2D

walking control due to the stiff controls gain applied to the robot. Using the stiff control
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gains, the planned motion will be more approximated. However, when the velocity
of the basic walking pattern is being uniform, it is not desirable to track the planned
basic walking pattern very accurately because less acceleration can then be naturally
generated by the formulated motion control law. Therefore, the result of the previous
chapter shows even if walking motions can be maintained or adjusted, the adjustment
range is quite limited and the resulting walking is of certain jerkiness, losing the good

motion adaptation as shown in the 2D walking results.

In order to excite more natural dynamics which can smoothen the walking motion, a
damping based frontal motion balance control strategy is investigated for achieving good
motion stability and motion adaptation as well. In this chapter, a TFS formulation based
damping model is proposed for the lateral velocity regulation. Note in the subsequent
balance control strategy, only the damping component will be applied to the frontal

motion plane. This means the spring fackgr= 0 will be applied at the stance ankle

joint torque.

7.1 Damping Based Frontal Plane Motion Control

Referring to previous research work [49], it can be known that damping behavior plays
an important role for achieving the natural and smoother motion behavior. Since the
previous chapter shows the direct open-loop joint trajectory tracking does not achieve
a robustness locomotion. Also, a more active control based motion adjustment strategy
failed to realize a smooth or natural locomotion, a TFS formulation based damping force
generator, Equation (7.1) to (7.3), is therefore proposed for the real-time adjustment of
the actuation force which balances the frontal plane motion during walking. This time,
it can be noted that the TFS is eventually applied to the velocity planning instead of the
position planning after the differentiation of Equation (7.1). Figure 7.1 illustrates the

lateral position profiles when variabdeis zero, positive and negative.
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Figure 7.1: Lateral motion (position) profile for the balance control strategy 2.

y = Rysin(wt) + ¢t (7.1)

wherew is equal to the stride-frequency value for the sagittal motion. Differentiating the
Equation (7.1), the desired velocity profile can then be obtained as shown in Equation
(7.2).

¥ = Rywcog wt) + ¢ (7.2)

Referring to the reference velocity profile, the damper force generator which balances

the lateral motion is formulated as Equation (7.3).

Ti3=ka(y—Y) (7.3)

whereT; 5 is the reaction torque of the stance ankle joint torque.
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From Equations (7.1), (7.2) and Figure 7.1, it can be seen that varying paragntter
correlation of the average lateral velocity of the& and the Ad half lateral motion can

be adjusted and achieve the time instant that the robot CG returns back to the middle line
in the frontal motion plane to be the same as the moment that the swing foot lands on the
ground. Since the frontal plane motion is barely controlled by the damping force, the
velocity profile for the phases - swinging from the middle line to one side and swinging
back from the side to the middle line - will be rather symmetrical and smooth, provided
the body height is not much varied during walking. Then, once the end configuration of
a step motion is about the same as the initial configuration in the frontal motion plane,
the resulting lateral velocity will be also close to the initial velocity. Therefore, the end
dynamics will not be much deviated from the initial dynamics if the end configuration

of each step can be regulated well.

Since the adjustment of parametgiis able to adjust the average velocity correlation
between the swing-away and the swing-back phases, the strategy for this damping force
based balance control can be then just based on the real-time adjustment of parameter
¢ by reinforcement learning algorithm. Similar to the selection of the basic frontal
plane motion pattern presented in Chapter 6, the target motion pattern in the frontal
motion plane in this chapter is allocated by parametBys¢) which can result in the

end dynamics (position and velocity) similar to the initial dynamics, together with an

assigned initial lateral velocityg and a damping factdd.

Similar to the last chapter for motion balance learning through the TFS paracagter
the major modules contained in the established reinforcement learning agent for the

real-time adjustment of the parametgare the same, briefly presented as follows:

State variables Based on the assumption that the dynamics in the sagittal plane and
the frontal plane are weakly coupled, the state variables chosen for the reinforcement
learning are still the deviation of the robot rolling positid® and velocityA8 from

the basic pattern motion measured at the end of a step which also corresponds to the

beginning of a new single support phase, based on the definitions in Chapter 6.
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Reward function and return computation The performance of the walking behavior
is also evaluated by hip motion’s dynamics elffoformulated in Equation (6.12). Still,
a "myopic” learning agent is used with= 0. The reward function is formulated the

same as that for they adjustment balance control strategy, using Equation (6.13).

Pre-learning Before reinforcement learning was executed, a pre-learning process was
also conducted to obtain some heuristics of the boundaries of the dynamics and weight-
ing relation between the position error and velocity error in the reward function. The

boundaries were obtained in the same way as presented in Chapter 6.

7.2 Fixed Speed 3D Walking

The implemented reinforcement learning algorithm is set up as shown in Table 7.1 for
a fixed-speed 3D walking motion control. The basic walking pattern in the sagittal
motion plane is still selected as the solutignyap given in Chapter 6. Figure 7.2 shows

the length of time the robot was able to walk before falling versus the number of the
trials. The learning experience is also accumulative meaning that what is learned in all
previous attempts is also applicable and used for each current attempt. The experiment
was terminated when the target of 50 steps of stable walking was achieved. This tempt
was achieved after 128 iterations as attempts. The resulting walking motion mapped in
the sagittal motion plane is shown in Figure 7.4 in the form of stick-diagram. Figure 7.3

shows the dynamics for the first period of the walk.

Results of the Frontal Plane Motion Referring to the actual dynamics of the frontal
plane motion as shown in Figures 7.3(b) and (c), it can be clearly seen that the lateral
motion displacement is naturally confined into a sinusoidal-like profile and it remains
guite the same from step to step. Compared to Figures 6.9(b) and (c), the lateral velocity
is obviously much smoother under this damping force based balance control. The result-

ing velocity also has the maximum value when the robot body gets back to the middle
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Table 7.1: Reinforcement Learning Set-up for balance control throughjustment

Description Remark
Basic frontal walking pattern Ry=04,9=0
Learning output (actiorny parameterp
Reward function Equation (18)
ABmax 0.01rad
ABnin —0.01rad
ABrmax 0.2rad/s
ABrmin —0.2rad/s
r 2.5
Discount factory 0 (myopic)
Action setU (0.001n] — 0.05< 0.001In < 0.05)
andne Z
Policy modifiede-greedy(e = 0)

CMAC parameters

Width: receptive field fono
Width: receptive field foAO
Width: receptive field fowp
Receptive fields layers n&
Learning step-size

0.2rad/s
0.02m
0.0lrad
128
0.25
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Figure 7.4: Stick-diagram of the resulting 3D walking pattern mapped into the sagittal
motion plane.

line with the swing foot landed on the ground at the same time, as shown in Figure 7.5,
and the zero lateral velocity occurs at about the indtanT /2 as shown in Figure 7.6.
Therefore, the average velocity of the 1st and the 2nd half of the lateral motion are about
the same, but in different directions, and the overall average lateral velocity is about zero
for each step motion. These behaviors, such as a smooth lateral motion displacement
and overall average walking velocity > 0 of each step-motion, are exactly as desired

as good robot balancing behaviors.

Results of the Sagittal Plane Motion Based on the dynamics obtained, as shown

in Figure 7.3, it can be seen that under this damping force based balance control, the
sagittal motion of the 3D walking motion has the same features as those observed from
the previous 2D walking motions. The robot body can be held in an upright position
with only small periodic variations, referring to Figure 7.3(a), and the sagittal motion
can successfully converge to the desired one-step period limit cycle pattern with the

forward walking velocity shaped into a "U” profile, referring to Figure 7.3(e). Also, the
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maximum walking velocity occurs at the touch-down moment and the minimum walking
velocity occurs close to the center liXe= 0, as observed from the stick-density of the

stick-diagram in Figure 7.4.

Relation of parameter ¢ and the frontal dynamics Referring to the learning states
obtained, within a fixed speed walking motion, the general relation of parapeied

the frontal plane motion dynamics is found to lgewill be increased with the increment
of the combined dynamics indicator = Py +r|vy|, wherer is a weighting parameter,

and vice versa, as shown in Figure 7.7.

The relation can be easily understood that when the lateral motion energy is not enough,
¢ should be reduced a bit to generate a larger driving force for swinging away and vice
versa for the situation when motion energy is excessive. (Note, when the set point sent
to the stance ankle joint controller is based on the cartesian spacstead of an angle

in the joint space, the desired displacement must be inside the actual displacement to
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Figure 7.8: Resulting 3D walking dynamics under the proposed damping force based
motion balance control and sagittal motion control algorithm (NUSBIP robot).

generate a torque to drive the motion to move in the desired direction. Therefore, here

reducingp means to generate more driving forces).

To test the algorithm generality for robots of different mechanical properties, this damp-
ing based balance control strategy has also been applied to the larger size robot, NUSBIP-
l. Figure 7.8 shows the resulting dynamics of the NUSBIP-I robot's 3D walking motion.

It can be seen that the forward walking velocity profile is still achieved as expected:
smoothly first reduced and then increased with the minimum velocity occurring roughly

at the positionX = 0 and the maximum velocity occurring at the touch-down moment.
Figure 7.9 shows the frontal motion behavior of the motion. The swing leg is shown

to be parallel to the stance leg during walking. The maximum lateral velocity occurs at
the touch-down moment and the zero lateral velocity is about at the inistait/2, as

shown in Figure 7.9 and Figure 7.10, respectively. All these motion control behaviors

confirm the generality of the sagittal motion control algorithm and further validate the

frontal motion balance strategy as well.
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7.3 Damping Based Variable Speed Walking Control

The proposed damping behavior balance control has also been applied to the variable
speed 3D walking control. Since the full motion state for walking on a fixed terrain is
supposed to b, Vx, R, Vy, AL, Awy|, where[R,Vy| and [R,,Vy| represent the dynam-

ics in the sagittal and frontal motion plane, respectively, taking account of the cross
coupling behavior during the 3D walking. Heff&L,Acy] indicates the change of the
desired walking pace. However, currently this big state is not very applicable for the
used reinforcement learning algorithm. Therefore, each motion pattern is still separately
given a CMAC network, assuming in each fixed speed motion, the cross coupling be-
havior is rather minor. The following shows the control results when the damping force
based balance control is applied to the variable step-length and variable stride-frequency

walking.

The first demonstration of speed transition is through a variable step-length robot walk-
ing motion. The step-length is first increased for 20% while the stride-frequency is
maintained atu, = 4rad/s. The basic frontal plane pattern of the first step-length walk-
ing is found atF; = (R, = 0.4,¢ = 0) and the basic frontal plane pattern of the new
step-length walking is selected Bt = (Ry = 0.4, ¢ = 0.2) with the transition pattern
f(0,-0.2) = (Ry=0.4,¢ = 0.11). Here, the basic frontal plane motion patterns are all
obtained by trial-and-error when achieving the similar lateral motion dynamics at the

initial and end instant of a step motion.

Observed from the walking results, the robot body is maintained to be upright at the
desired posture during walking, as shown in Figure 7.11(a). Also, the resulting forward
velocity profile is again confined into the graceful "U” shape, as shown in Figure 7.11(e).
The entrained limit cycle behavior is also shown of the desired one-step period type, as
defined in Chapter 4. Therefore, the sagittal motion trajectories are concluded to be very

periodical, referring to Figure 7.11(d).

The desirable sagittal motion behavior can be also observed from Figure 7.12 which

shows the stick-diagram of the resulting 3D walking motion mapped into the sagittal
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Figure 7.11: 3D variable-step length walking dynamics under the damping force based
balance control. (Hoap-I robot).

motion plane. Compared to the stick-diagram, Figure 6.16, it can be clearly seen the
differences that the highest stick-density here back to the moment that the robot CG
reaches the center lireé= 0 while the maximum walking velocity occurs at the touch-
down moment for all the involved walking patterns. This indicates the resulting motion
still remains the motion features presented in 2D walking part, and the resulting 3D

motion is natural and smooth.

In addition, the frontal plane motion is also controlled to be periodical through adjusting
the variablep in real-time. The resulting frontal motion is much smoother compared to
the frontal motion obtained in Chapter 6. There is no obvious jerkiness observed under

this damping force based balance control, as shown in Figure 7.11(b) and (c).

The second demonstration of the variable speed walking is through the adjustment of
the walking stride-frequencgyy. The stride-frequency is required to be changed from

wy = 4rad/sto wy = 4.8rad/sand then reduced t@y = 3.4rad/s as an example. The
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Figure 7.12: Stick-diagram of the conducted variable step-length 3D walking mapped
into the sagittal motion plane.

learning conditions are set the same as provided in Table 7.1. Figure 7.13 shows the
resulting dynamics from which it can be seen that the robot body is also maintained
at the upright position. The forward walking velocity is also observed to be smoothly
transited and then converge to the steady-state, as shown in Figure 7.13(e). Therefore, it
shows that incorporating the damping based balance control, the dynamics in the sagittal
motion plane can easily achieve the natural motion transitions as presented in the 2D
walking part. Referring to Figure 7.13(b), the online adjustment of parangestso
achieved the smooth lateral motion balance and naturally confined the lateral position

into a sinusoidal-like profile.

7.4 Summary

From the results obtained, it can be concluded that pararpatethe simple TFS for-
mulated damping force generator is applicable for adjusting the motion actuation force
SO as to balance the walking motion stably. Furthermore, the application through rein-

forcement learning algorithm is again shown to be effective.

Compared to the previous balance control strategy through the adjustment of parameter
c1, the damping based balance control strategy can maintain the natural dynamic walk-
ing behavior in the sagittal motion plane. Furthermore, the resulting motion profile in

the frontal plane motion is shown to be smooth, naturally of a sinusoidal profile.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.4 Summary

187

o
N

@

Body pitch,
roll, yaw (rad)
o

-0.24

o
o
a

Body lateral
o

Lateral

|
o
)

o
2

o

I
o
w0

© o

velocity (m/s) trajectories (rad) velocity (m/s) displacement (m)

o N
T T
E I

Forward walking Sagittal motion

Learning state
o = N

Il
18 20
" Time (sec)

Figure 7.13: 3D walking dynamics of the variable-stride-frequency walking under the

damping force based balance control. (Hoap-I robot).

0.4 T

0.3

= 0.2 '

l
SR

NN

M
An/

1
kil

1
1
17
L

u
Al

0

il

, N\.

|

)’Zl‘ MIM

b/"\:/

0.5 1

Figure 7.14: Stick-diagram of the variable stride-frequency 3D walking pattern
into sagittal motion plane.

| 1

Distance (m)

, mapped

NATIONAL UNIVERSITY OF SINGAPORE

SINGAPORE



7.4 Summary 188

Furthermore, the variable speed 3D walking achieved by this damping based balance
strategy is much less restricted by the step-length or stride-frequency. Compared to the
walking speed achieved in Chapter 6, the achieved 3D walking speed has increased for

about 70% in Chapter 7, as noted by the velocity plot in Figure 6.9 and Figure 7.3.
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Chapter 8

Conclusion

Using a "divide-and-conquer” approach, the 3D dynamic bipedal walking control task is
partitioned into sub-tasks in the three orthogonal planes: sagittal, frontal and transverse.
The combination of the sagittal motion algorithm and the frontal motion algorithm has
been shown successful for achieving the stable 3D walking motion. The main strategy
of the robot locomotion control presented in this thesis is to guide the actual walking
motion to converge to a steady-state using low control gains based on a generated basic
walking pattern. This is different from the typical motion control strategies: tracking an
"optimal” walking pattern precisely as much as possible. The advantage of this motion
control strategy has been found as it can achieve more natural walking dynamics as well
as the motion stability. Since the motion control is rather soft, the resulting motion ap-
peared to be smooth and not very sensitive to the environment perturbations. Through
the successful applications of walking in different situations, the derived objective func-
tions for the generation of a basic walking pattern that allows low gain motion control
appear to be robust. Furthermore, using the proposed joint control scheme, the robot
body can be easily maintained at the desired upright position and thus the prescribed

walking posture can be achieved well.

Besides the achievement of motion stability, motion versatility for walking on differ-

ent terrains or walking under external force perturbations has been achieved to a good
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extent. Through the adjustment of the key parameters defined in the TFS motion formu-
lation, the step-length and the stride-frequency can be easily adjusted and then result in
a wide range of adjustment of walking pace in response to the perturbations. Also, the
regressed functions for the constant component in the TFS motion formulation success-

fully guided the robot to walk on the undulating terrains compliantly.

Furthermore, human-like robot walking has been achieved to a good extent. The human-
like behavior can be observed from the following aspects: 1) The human-like ground
reaction force pattern and knee motions on terrains of different slopes; 2) The achieved
sagittal steady-state walking with a smooth "U” shape velocity pattern as that measured
in human gait analysis; 3)The imitation of the CPG function to some extent. (The low
level control can make itself converge to the steady-state walking under some range
of perturbations automatically. The high level supervision is only required when the
change of environment is rather obvious); 4) Two-level motion control (analogous to the

relation between brain and spinal cord).

In addition, in the 3D walking space, reinforcement learning has also shown its potential
applications for motion balance control. Two strategies of motion balance control have
been successfully implemented on 3D long distance walking control. One is mainly
based on an active motion control using the spring and damper components concur-
rently. Through the adjustment ofdefined in the TFS formulation for the lateral mo-

tion balance, the motion energy can be well compensated at each touch-down moment.
However, there is certain motion jerkiness incorporated in the achieved motion. It is
because in this case as discussed in Chapter 6, the joint control gains for the 3D walking

have to be rather stiff.

The second strategy completely based on the damping component not only successfully
maintained the frontal motion energy through the online adjustment of the parameter
¢ formulated in the TFS, but also achieved motion smoothness in both the sagittal and
frontal motion planes. The resulting forward walking velocity profile appeared to be
graceful in a "U” shape, and the lateral motion was naturally confined to be a sinusoidal-

like profile.
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Last but not least, the proposed motion generation method - GAOFSF method and the
soft motion control strategy are shown to be effective and general for robots of different
mechanical properties, as tested on two different bipedal robots, NUSBIP-I and HOAP-I

in this thesis.

8.1 Future Work

Based on the work done in this thesis, the followings are some suggestions for the future

research work.

Foot Placement StrategiesCurrently in this thesis, for the sagittal plane motion, the
stride-frequency, step-length and walking pattern adjustment modes have been devel-
oped. Some demonstrations for real-time adjustment of walking pace and postures
in response to the perturbations have been demonstrated using reinforcement learning.
Nevertheless, it will be also interesting to have a robust prediction for where and when
the swing foot should land, i.e. what are the appropriate values for the step-length
and stride-frequency parameters in the TFS motion model, to maintain stable and to
continue with stable locomotion based on some nonlinear dynamics analysis. This is

because learning based computation method is still tedious in implementations.

In addition, the foot placement strategies can be further extended in both the sagittal and
frontal Planes concurrently. Currently in this thesis, the swing leg is always controlled
to be parallel to the stance leg during walking. This definitely restricted the motion
balancing behavior in response to the perturbations occur in the lateral direction. There-
fore, strategies for giving suitable foot placement in the frontal motion plane will also

be needed.

Strategies to Allow the Robot to Change Direction during Locomotion In this the-
sis, there is no consideration for walking while changing motion directions. If the walk-
ing directions are changeable, the robot will be more flexible with the environment. This

is also especially good for applications such as rescuing in a hazard environment.
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Learning Algorithms : As discussed in the motion balance control strategies, the com-
mon assumption is made as assuming the cross coupling behavior is minor under a
fixed-speed motion pattern. This is mainly to reduce the size of the state in the rein-
forcement learning algorithm. However, the disadvantage is the motion identification
could be less accurate and the variable speed walking may need more CMAC networks
to separately work for each walking pattern. Therefore, learning algorithms is needed
to be further explored and compared for a better tolerance solving the larger state-space
problems. Then, the learning agent will become more powerful in the sense of hu-
man brain’s function imitation for walking adaptively in response to the environment

changes.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



193

Bibliography

[1]
2]

MIT Leg Laboratory 2000. Yobotics, Inc. Online introduction: http://yobotics.com/.

M. Vukobratovic, B. Borovac and V. Potkonjak. ZMP: A Review of some basic
misunderstandings$nternational Journal of Humanoid Robotics (IJHR3)2), 153-

175, 2006.

[3] J. S. Bay and H. Hemami. Modelling of a neural pattern generator with coupled

[4]

[5]

[6]

[7]

[8]

[9]

nonlinear oscillatorslEEE Transactions on Biomedical EngineerjlRME-34(4):

297-306, 1987.

S. Kagami, A Fast Dynamically Equilibrated Walking Trajectory Generation
Method of Humanoid Robofutonomous Robot? (2002) 71-82.

J. A. Golden and Y. F. Zheng. Gait synthesis for the sd-2 biped robot to climb stairs.
International Journal of Robotics and Automatjd{4): 149-159, 1990.

K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of honda hu-

manoid robotlEEE International Conference on Robotics and Automati®98.

Y. Hurmuzlu. Dynamics of bipedal gait: Part i - objective functions and the contact

event of a planar five-link bipedournal of Applied Mechani¢$0: 331-336, 1993.

Y. Hurmuzlu. Dynamics of bipedal gait: Part ii - stability analysis of a planar five-
link biped.Journal of Applied Mechani¢$0: 337-343, 1993.

S. Aoi and K. Tsuchiya, Stability analysis of a simple walking model driven by an
oscillator with a phase reset using sensory feedd&tkE Transactions on roboti¢s
\Vol.22(2), 391-397, 2006.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 194

[10] K. Harada, S. Kajita, K. Kanekoan and H. Hirukawa, Analytical Method for
Real-time gait planning for humanoid robotiternational Journal of Humanoid
Robotics (IJHR)3(1), 1-19, 2006.

[11] T. Mita, T. Yamaguchi, T. Kashiwase, and T. Kawase. Realization of a high speed
biped using modern control theompnternational Journal of Contrgl40(1): 107-
119, 1984.

[12] R. Katoh and M. Mori. Control method of biped locomotion giving asymptotic
stability of trajectoryAutomatica 20(4): 405-414, 1984.

[13] Jerry E. Pratt and Gill A. Pratt. Exploiting natural dynamics in the control of a
planar bipedal walking roboRroceedings of the Thirty-Sixth Annual Allerton Con-

ference on Communication, Control and COmputing9-748, 1998.

[14] Rowel O. Atienza and Marceloh. Ang Jr. A Flexible Control Architecture for Mo-
bile Robots: An Application for a Walking Robatournal of Intelligent and Robotic
Systems\ol 30, 29-48, 2001.

[15] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal and M. Kawato. Learning
from demonstration and adaptation of biped locomoRmtotics and Autonomous
Systemgs\ol. 47, 79-91, 2004.

[16] Y. Fukuoka, H. Kimura, A. H. Cohen. Adaptive Dynamic Walking of a Quadruped
Robot on Irregular Terrain Based on Biological Conceple International Journal
of Robotics Researghol.22, No. 3-4, 187-202, 2003.

[17] A. Khoukhi, Neural based RSPN multi-agent strategy for biped motion control.
Robotica \Vol. 19, 611-617, 2001.

[18] Y. Ogura, et al. A Novel Method of Biped Walking Pattern Generation with Prede-
termined Knee Joint MotiorRroc. of the 2004 IEEE/RSJ International Conference
on Intelligent Robots and Syster2904.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 195

[19] P. Sardain and G. Bessonnet. Forces Acting on a Biped Robot. Center of Pressure-
Zero Moment PoIintlEEE Trans. on Systems, Man and Cybernetics-part A:systems
and humans\Vol. 34, No.5, 2004.

[20] A. Goswami, Postural Stability of Biped Robots and the Foot-Rotation Indicator
(FRI) Point, The International Journal of Robotics Researtol. 18, No.6, 523-
533, 1999.

[21] A. Takanish, H. Lim, and M. Tsuda, Realization of Dynamic Biped Walking Sta-
bilized by trunk motion on a saggitally uneven surface Aroc. of the IEEE Inter-
national Workshop on Intelligent Robots and Syste388-330, 2000.

[22] Hun-ok Lim and A. Takanishi. Compensatory motion control for a biped walking
robot.Robotica Vol.23, 1-11, 2005.

[23] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of honda

humanoid robot EEE International Conference on Robotics and Automati®98.

[24] J. H. Park, Fuzzy-logic zero-moment-point trajectory generation for reduced trunk
motions of biped robotdzuzzy Sets and Systerisl.134, 189-203, 2003.

[25] H. K. Lum, M. Zribi, Y.C. Soh. Planning and control of a biped roboternational
Journal of Engineering Sciengc®ol.37, 1319 - 1349, 1999.

[26] S. Kajita, O. Matsumoto and M. Saigo, Real-time 3D walking pattern generation
for a biped robot with telescopic legBroc. of the IEEE Int. Conf. on Robotics and
Automation Seoul, Korea. May 21-26, 2001.

[27] Mark W. Spong. The swing up control problem for the acrobBEE Control
Magazing 49-55, 1995.

[28] M. S. Dutra, A. C. de P. Filho and V. F. Romano, Modeling of a bipedal locomo-
tor using coupled nonlinear oscillators of Van der RRiblogical Cybernetics\Vol
88(4), 286-292, 2004.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 196

[29] S. Kotosaka and S. Schaal. Synchronized robot drumming by neural oscillator,
Proc. of the International Symposium on Adaptive Motion of Animals and Maghines
2000.

[30] T. Zielinska, Biological Inspirations in Robotics: Motion PlannirRypc. of 4th
Asian Conf. on Industrial Automation and RobotiBaingkok, Thailand, 2005.

[31] Matthew M. Williamson, Neural control of rhythmic arm movememNsural Net-
works Vol. 11, 1379-1394. 1998.

[32] T. Zielinska. Coupled Oscillators Utilised as Gait Rhythm Generators of Two
Legged Walking MachineBiological CyberneticsVol. 4 No. 3 263C273, 1996.

[33] G. Taga. A model of the neuro-musculo-skeletal system for human locomotion: 1.

emergence of basic gaBiological Cybernetics73: 97-111, 1995.

[34] S. Grillner. Locomotion in vertebrates: Central mechanisms and reflex interaction.

Physiological Review455):247-304, 1975.

[35] K. Matsuoka. Mechanism of frequency and pattern control in the Neural Rhythm

GeneratorsBiological Cybenetics56:345-353, 1987.

[36] H. Kimura and Y. Fukuoka. Biologically Inspired Adaptive Dynamic Walking in
Outdoor Environment Using a Self-contained Quadruped Robot: "Tekké&n@-.
ceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems 1, 986 - 991, 2004.

[37] T. Zielinska. Biological Aspects of Locomotion. In Walking: Biological and Tech-
nological AspectsCISM Courses and Lectures n. 467. Ed. by F.Pfeiffer, T.Zielinska.
Springer Verlagpp.1-30, 2004.

[38] T. Zielinska , C. M. Chew. Biologically Inspired Motion Planning in Robotics.
Robot Motion and Control, Lecture Notes in Control and Information Sciences
no.335, Ed. Kozlowski K. SpringeChapter 13, pp.201-219, 2006, ISBN-13-
9781846284045.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 197

[39] M. Garcia, A. Chatterjee, and A. Ruina. Speed, efficiency, and stability of small-
slope 2d passive dynamic bipedal walkingEE International Conference on
Robotics and Automatio2351-2356, 1998.

[40] Tad McGeer. Passive dynamic walkinigiternational Journal of Robotics Re-
search 9(2): 62-82, 1990.

[41] Tad McGeer. Passive walking with kne&soceedings of the IEEE Conference on

Robotics and Automatiori640-1645, 1990.

[42] A. Goswami, B. Thuilot and B. Espiau. Compass-like biped robot, Part 1: Stability
and bifurcation of passive gaithiRIA Research RepgriNo.2996, 1996.

[43] E. Borzova and Y. Hurmuzlu. Brief paper: Passively walking five-link robai-
tomatica Vol.40, 621-629, 2004.

[44] M. Garcia, A. Chatterjee, A. Ruina and M. Coleman. The simplest walking model:
Stability, complexity and scalingASME Journal of Biomechanical Engineerjng
120(2), 281-288. 1998.

[45] M. Coleman, M. Garcia, A. Ruina, J. Camp and A. Chatterjee. Stability and chaos
in passive dynamic locomotiorProceedings of the IUTAM symposium on new
applications of nonlinear dynamics and chaos in mechan@snell University,
Ithaca, NY, 1997.

[46] H. Benbrahim and J. A. Franklin. Biped dynamic walking using reinforcement

learning.Robotics and Autonomous Systes 283-302, 1997.

[47] R. Tedrake, T. Zhang and H. S. Seung. Stochastic Policy Gradient Reinforcement
Learning on a Simple 3D BipedProceedings. 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systeg&19 - 2854. 2004.

[48] C. M. Chew and G. A. Pratt, dynamic bipedal walking assisted by learRiolgot-
ica, Vol.20, 477-491, 2002.

[49] C. M. Chew, and G. A. Pratt, Frontal plane algorithms for dynamic bipedal walk-
ing, Robotica Vol. 22, 29-39, 2004.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 198

[50] J. Pratt, P. Dilworth, and G. Pratt. Virtual model control of a bipedal walking robot.
IEEE International Conference on Robotics and Automati®8-198, 1997.

[51] Jerry E. Pratt. Virtual model control of a biped walking robllaster’s thesis,
Massachusetts Institute of Technolpgygust 1995.

[52] Marc. H. RaibertLegged Robots That Balanc®IIET Press, Cambridge, MA.,
1986.

[53] L. Yang, C. M. Chew, T. Zielinska, and A. N. Poo. A Uniform Biped Gait Gener-
ator with Off-line Optimization and On-line Adjustable Paramet&gboticaVol.
25, No. 5, 549-565, 2007.

[54] L. Yang, C. M. Chew, A. N. Poo and T. Zielinska Adjustable Bipedal Gait Gen-
eration using Genetic Algorithm Optimized Fourier Series Formulat®BE/RSJ

Int.I Conf. on Intelligent Robots and Syste#435 - 4440, 2006.
[55] C.J.C. H.Watkins and P. Dayan. Q-learniMachine Learning8:279-292, 1992.

[56] J.S. Albus. Brain, Behaivor and Robotics, (BYTE Books. McGraw-Hill, Peterbor-
ough, NH, 1981). Chapter 6, pp. 139-179.

[57] L. Yang, C. M. Chew, A. N. Poo and T. Zielinska. Autonomous Stride-Frequency
and Step-Length Adjustment for Bipedal Walking ContiStudies in Computa-
tional Intelligence, Autonomous Robots and Age@ginger, Vol. 76, 189-198.
2007.

[58] L. Yang, C. M. Chew, A. N. Poo. Autonomous Bipedal Walking Pace Supervision
under PerturbationsEEE Int. Conf. on Systems, Man and CybernetMentreal,
Canada, 765 -770, Oct. 2007.

[59] L. Yang, C. M. Chew, A. N. Poo. Real-time Bipedal Walking Adjustment Modes
using Truncated Fourier Series FormulatidBEE-RAS Int. Conf. on Humanoid
Robots Pittsburgh, Pennsylvania, USA. Dec. 2007.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 199

[60] L. Yang, C. M. Chew, A. N. Poo and T. Zielinska. Real-time Bipedal Walking Gait
Adjustment Modes Based on a Truncated Fourier Series Model. To be appeared in

International Journal of Humanoid Robotics

[61] L. Yang, C. M. Chew, Y. Zheng and A. N. Poo. Truncated Fourier Series Formula-

tion for Bipedal Walking Balance Control. To be appeare®abotica

[62] Z. Michalewicz. Genetic Algorithms+Data Structures = Evolution Programs. Al

SeriesSpringer-Verlag1994.

[63] R. S. Sutton and A. G. Barto. Reinforcement Learning: An IntroductMii.
Press Cambridge, MA, 1998.

[64] L.P.Kaelbling, M. L. Littman, and A. W. Moordreinforcement learning, A survey
Journal of Artificial Intelligence Researcfd): 237-285, 1996.

[65] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesleyl989.

[66] L. Davis. The Handbook of Genetic Algorithm¥an Nostrand ReingoJdNew
York, 1991.

[67] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve
constrained optimization problems with genetic algorithdB<EE International

Symposium Evolutionary Computatjddrlando, 579-584, 1994.

[68] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,

Belmont, MA, 1996.

[69] D. P. Bertsekas. Dynamic Programming and Optimal Control: Volume One.
Athena Scientific, Belmont, MA, 1995.

[70] T. Jaakkola, S. P. Singh, and M. I. Jordan. On the convergence of stochastic itera-

tive dynamics programming algorithni§eural Computation6:1185-1201, 1994.

[71] John N. Tsitsiklis. Asynchoronous stochastic approximation and g-learning. Ma-
chine Learning, 16(3): 185-202, 1994.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 200

[72] G. A. Rummery. Probelm Solving with Reinforcement Learning. PhD dissertation,

Cambridge University, UK, 1995.

[73] B. Widrow and M. Hoff. Adaptive swing circuitd960 IRE WESCON Convention
Record 96-104, 1960.

[74] H. K. Lum, M. Zribi and Y. C. Soh. Planning and control of a biped rothater-
national Journal of Engineering Sciencéol. 37, 1319-1349, 1999.

[75] C. Chevallereau and Y. Aoustin. Optimal reference trajectories for walking and
running of a biped roboRobotica Vol. 19, 557-569, 2001.

[76] J. H. Park. Fuzzy-logic zero-moment-point trajectory generation for reduced trunk
motion of biped robotdruzzy Sets and Systerisl. 134, 189-203. 2003.

[77] X. P. Mu and Q. Wu. Synthesis of a complete sagittal gait cycle for a five-link
biped robotRobotica Vol. 21, 581-587, 2003.

[78] Q. Huang, K. Yokoi, S.Kajita, K. Kaneko, H. Arai, N. Koyachi and K. Tanie.
Planning Walking Patterns for a Biped RobtEEE transactions on robotics and
automationVol.17, No. 3, 280-289, 2001.

[79] K. Harada, S. Kajita, K. Kanekoan, and H. Hirukawa. Analytical Method for
Real-time gait planning for humanoid robotsternational Journal of Humanoid
Robotics (IJHR)Vol: 3 Issue: 1, 1 -19, 2006.

[80] Jerry E. Pratt and Gill A. Pratt. Exploiting natural dynamics in the control of a
planar bipedal walking roboRroceedings of the Thirty-Sixth Annual Allerton Con-

ference on Communication, Control and COmputing9-748, 1998.

[81] R. E. Goddard Jr. and H. Hemami and F.C. Weimer. Biped side step in the frontal
plane.lEEE Transactions on Automatic Conty&ol.28, No. 2, 179-186, 1983.

[82] H. Hemami and B. F. Wyman. Modeling and control of constrained dynamic sys-
tems with application to biped locomotion in the frontal plaiteEE Transactions

on Automatic Contrgl\Vol.24, No. 4, 526-535, 1979.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



BIBLIOGRAPHY 201

[83] K. Igbal, H. Hemami and S. Simon. Stability and control of a frontal four-link
biped systemlEEE Transactions on Biomedical Engineerjr@ME-40, No. 10,
1007-1017, 1993.

[84] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. Lim, and A.
Takanish, Development of a New Humanoid Robot to Realize Various Walking Pat-

tern Using Waist MotionsRoManSy2006.

[85] T. Nagasaki, S. Kajita, K. Yokoi, K. Kaneko and K. Tanie, Running Pattern Gener-
ation and Its Evaluation Using a Realistic Humanoid Mo&ebc. of the 2003 IEEE

International Conference on Robotics and Automatitapet, Taiwan, 14-19, 2003.

[86] "Biomechanics of motion”, CISM COURSES AND LECTURES, International

centre for mechanical science. No. 263, 79-129. 1980.

[87] "Fourier Series”, Wolfram MathWorld, http://mathworld.wolfram.com/FourierSeries.html.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



202

Author’s Publications

Journal Papers

e L. Yang, C. M. Chew, Y. Zheng and A. N. Poo, "Truncated Fourier Series Formu-

lation for Bipedal Walking Balance ControlRobotica accepted for publication.

e L. Yang, C. M. Chew, A. N. Poo and T. Zielinska, "Real-time Bipedal Walking
Gait Adjustment Modes Based on a Truncated Fourier Series Model”, to be ap-

peared innternational Journal of Humanoid Roboticaccepted for publication.

e L. Yang, C. M. Chew, T. Zielinska and A. N. Poo, "A Uniform Biped Gait Gen-
erator With Offline Optimization and Online Adjustable ParameteR&ihotica
Vol.25(05), pp549-565. 2007.

Book Chapters

e L.Yang, C. W.de Silva, A. N. Poo and C. M. Chew "Kinematic Design Optimiza-
tion of Acrobot”, Mechatronic Systems : Devices, Design, Control, Operation and

Monitoring. CRC Press, ISBN-10: 0849307759, 2007.

e L.Yang, C. M. Chew, A. N. Poo and T. Zielinska, "Autonomous Stride-Frequency
and Step-Length Adjustment for Bipedal Walking Contr@tudies in Computa-
tional Intelligence, Autonomous Robots and AgeStsinger, Vol. 76, pp. 189-
198. 2007.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



AUTHOR'’S PUBLICATIONS 203

Conference Papers

e L.Yang, C. M. Chew, A. N. Poo and T. Zielinska "Adjustable Bipedal Gait Gener-
ation using Genetic Algorithm Optimized Fourier Series FormulatiteEE/RSJ
Int.I Conf. on Intelligent Robots and Syster@6806, pp.4435 - 4440.

e L. Yang, C. M. Chew, T. Zielinska and A. Neow Poo, "Reliable and Adjustable
Biped Gait Generation for Slopes using a GA Optimized Fourier Series Formula-
tion”, Romansy 16: Robot design Dynamics and Con8pringer, 2006, pp.187-
194.

e L. Yang, C. M. Chew and A. N. Poo, "Autonomous Bipedal Walking Pace Super-
vision under PerturbationsfEEE Int. Conf. on Systems, Man and Cybernetics
2007, pp.765 -770.

e L. Yang, C. M. Chew and A. N. Poo, "Real-time Bipedal Walking Adjustment
Modes using Truncated Fourier Series FormulatidBEEE-RAS Int. Conf. on
Humanoid Robot2007, pp.379 - 384.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



