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Abstract

Reordering in Statistical Machine Translation:

A Function Word, Syntax-based Approach

Hendra Setiawan

In this thesis, we investigate a specific area within Statistical Machine Trans-

lation (SMT): the reordering task – the task of arranging translated words from

source to target language order. This task is crucial as the failure to order words

correctly leads to a disfluent discourse. This task is also challenging as it may

require in-depth knowledge about the source and target language syntaxes, which

are often not available to SMT models.

In this thesis, we propose to address the reordering task by using knowledge

of function words. In many languages, function words – which include prepo-

sitions, determiners, articles, etc – are important in explaining the grammatical

relationship among phrases within a sentence. Projecting them and their depen-

dent arguments into another language often results in structural changes in target

sentence. Furthermore, function words have desirable empirical properties as they

are enumerable and appear frequently in the text, making them highly amenable

to statistical modeling.

We demonstrate the utility of this function word idea in a syntax-based

model, which we refer to as the function words, syntax-based (FWS) model, fol-

lowing the recent trend of using syntactic formalisms in modeling reordering. In



demonstrating the utility of the function word idea, we touch and address two prob-

lems of the existing syntax-based models, namely: the undergeneration and the

overgeneration problems. Our experimental results suggest that our syntax-based

approach performs well in the reordering task in perfect lexical choice scenarios

where no lexical ambiguities present as well as in the full translation task where

lexical noisy interferes, confirming the merit of our function words idea. We also

show the virtue of our function word idea when adapted into the state-of-the-art

Hiero model in large-scale experiments.

ii
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1

Chapter 1

Introduction

1.1 Background

The internet has literally shrunk the world. It connects people from different parts

of the world almost instantly. Today, people can easily fulfill their information need,

publish their own ideas or communicate with others - all by going to the internet.

However, even with this encouraging trend, the internet is still largely fragmented.

The hard fact is that internet users come from different linguistic background that

forbids them from accessing information written in foreign languages, communicat-

ing with foreigners speaking unfamiliar languages and disseminating their ideas to

people from different linguistic backgrounds. This fact demands the development of

automatic translation systems which can significantly decrease the language barrier,

thus providing the much needed access to a large amount of information published

in one language to significant parts of the internet population speaking some other

languages.

In the guise of Machine Translation (MT) research, the efforts to build au-

tomatic translation system have begun as early as late 1940s (Weaver, 1955) and

are still ongoing until today. MT’s long history serves as a silent witness as to how
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challenging the task is. We can find substantial evidence to this claim when we

examine how professional translators approach the translation process.

When translators perform their duties, they read the text and rewrite it in

the target language. Between reading and rewriting, translators try to comprehend

the text by relying on their knowledge about the source and the target language

syntaxes, the peculiarities and the idiomatic expressions of the two languages, as

well as other linguistics knowledge. More often than not, they have to go beyond

what is written to fully understand the text. Efforts to accommodate all these

relevant knowledge into the automatic translation process are often considered im-

practical, since these knowledge are difficult to model and their number is just too

large to fit the memory of any current, state-of-the-art computer.

Fortunately, recent advances in Statistical Machine Translation (SMT) re-

search have brought in some optimism. Unlike rule-based systems, SMT focuses

only on some parts of the knowledge and treats the translation process as a sta-

tistical decision problem. Specifically, it puts the dependencies into real numbers

that would be automatically learnt from parallel corpora - collections of transla-

tion examples prepared by humans. Benefitting from the growing availability of

multilingual corpora and computing resources, SMT researchers have been able

to develop statistical translation systems that produce translations of increasingly

higher quality, which is adequate to help internet users to get a gist of web contents

in unfamiliar languages (e.g. http://translate.google.com).

However by human standards, the output of SMT systems still has many

shortcomings. In particular, the translation output often appears out of order and

ungrammatical with respect to the target language syntax. The task of arranging

the translation output to match the target language order is known as the reorder-

ing task. This task is extremely challenging and perhaps even as difficult as the

translation task itself, since it requires the knowledge of the source and the tar-
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get language syntaxes as well as the difference between the two - all of which are

either little known or completely unknown to most SMT systems. In this thesis,

we focus on addressing this reordering task since better addressing this task would

significantly improve translation quality.

The main idea of this thesis is to use the knowledge that hinges on function

words. The motivation behind this idea is simple. In a great many languages, func-

tion words – which include articles, prepositions, auxiliaries, etc. – play important

roles in explaining the grammatical relationship among phrases within a sentence.

We particularly find a strong support from the Marker Hypothesis (Green, 1979),

which states that natural languages are “marked” for syntactic structure at surface

level, implying that there exists a closed set of words or morphemes that appear in

a very limited set of grammatical context. In some languages, such set corresponds

to function words.

We can also find more support for this function words idea from the concept

of syntactic heads in linguistics theory. The syntactic head refers to a lexical entity

that determines the syntactic categories of the phrase of which they are the member.

Although it is a matter of debate, there is a recent tendency toward equating

function words as heads of phrases. For instance, Abney (1987) suggested the use

of determiner as the head of a noun phrase in his Determiner Phrase analysis, as

opposed to the traditional way of equating noun as the head. In a number of

languages other than English, function words are also known to play pivotal roles

in the syntax. For instance, in Japanese and Korean, function words appear in

most, if not all, phrases, acting as case markers.

When we casually inspect data, we often see that projecting function words

and their arguments often results in a structural change in the realized sentences.

As a reference, Chinese function words involve in almost all the hand-crafted trans-

formational rules used to reorder the input Chinese sentence into the English order
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as defined in (Wang, Collins, and Koehn, 2007).

Moreover, function words also have many desirable empirical properties.

First of all, the member of this class of words is enumerable as it rarely accepts

new members. Furthermore, the frequency of function words in the corpus is also

very high, which eventually makes them easy to identify and more amenable to

statistical modeling.

In implementing this function word idea, we follow the recent syntax-based

approach. Specifically, we focus on a class of syntax-based approaches, namely:

formally syntax-based (FSB) approach. The FSB approach is unique, since it uses

a syntactic formalism that is not necessarily guided by any particular linguistic

theory, thus requires no linguistic annotation. We decide to focus on this approach

not only because it is simple and some of the state-of-the-art SMT systems, in fact,

belong to this class of approach, but also because we believe that the full benefit

of the function words idea can be better demonstrated in such a knowledge poor

environment. Nonetheless, the idea presented in this thesis may also be applicable

to other strand of SMT approaches, although it is not explored in this thesis.

One can think of our approach as a foreign language learner who has a limited

knowledge about the target language grammar but he or she is quite knowledgeable

about the role of function words. Such a person should be able to make an educated

guess about the target language order by looking at the function words alone.

Throughout this thesis, we refer to this proposal as the function word, syntax-

based (F W S) approach. In summary, the F W S approach is developed into a

specific variant of SCFG, which we call the head-driven SCFG where the heads are

equated with function words, and several statistical models inspired by the function

word idea. Note that since we decide to focus on a knowledge-poor environment,

the definition of function words may not always conform to any linguistic sense.

In this thesis, we also demonstrate the contribution of our function word idea
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in better addressing two important problems of FSB models: the overgeneration and

the undergeneration problems. In the coming Section 1.2, we discuss how the design

of the existing FSB models results in the overgeneration and the undergeneration

problems. In Section 1.3, we discuss the F W S model and describe how in principle

this model can address the two aforementioned problems. In Section 1.4, we end

this chapter with the guide to this thesis.

1.2 Overgeneration and Undergeneration

The recent move to syntax-based models has enabled SMT models to efficiently

address difficult reordering problems, such as certain non-local reorderings that

are deemed computationally too challenging for their predecessor, phrase-based

models (Koehn, Och, and Marcu, 2003). Unlike phrase-based models, syntax-based

models view the translation process as a joint process of generating a sentence pair

from smaller phrase pairs via the application of recursive, bilingual rewrite rules;

creating an intermediate hierarchical structure that resembles natural language

syntax. Modeling long-distance reordering is simple for syntax-based models, since

they treat long and short distance reorderings identically as rewrite rules, thus

modeling different kinds of reordering requires no additional parameter.

Depending on the source of knowledge from which rewrite rules are learnt,

syntax-based models can be broadly categorized into two classes: formally syntax-

based (FSB) and linguistically syntax-based (LSB) models. The latter learns rewrite

rules from parallel text with some linguistic annotation, thus the learnt rules are

fully adherent to some linguistic theories; while the former learns rewrite rules from

plain parallel text without any annotation, thus the learnt rules are not necessarily

in any linguistic sense. In this thesis, we adopt the FSB approach as it represents

the most realistic scenario since the majority of parallel corpora comes without any

annotation and we believe that the benefit of function words idea can be better
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demonstrated in this knowledge-poor approach.

In committing to the knowledge-poor approach, our main goal is to advance

the FSB models without the help of linguistic annotation. To achieve this goal, we

first identify problems that are common to the existing FSB models and focus our

effort to better address these problems using the function word idea.

Formally, all FSB models come in guise of Synchronous Context Free Gram-

mar (SCFG) (Aho and Ullman, 1969), which is a generalization of Context Free

Grammar to bilingual cases. In their abstract level, SCFG rules takes the following

generic form:

X → 〈γ, α,∼〉 (1.1)

where X is a nonterminal symbol while γ and α are the strings in the source

and target languages, respectively. The ∼ symbol indicates the correspondences

between symbols in γ and α, typically expressed via co-indexation.

Translating a source sentence for an FSB model is equal to applying a set

of rules in a certain order of application to cover all words in the source sentence,

producing a hierarchical structure, which is often known as derivation. The trans-

lation of a source sentence is then obtained by simply reading-off the target side of

the derivation.

Recently, there has been a growing interest to improve FSB models by in-

troducing syntactic information to the model, effectively relaxing the knowledge

approach. For instance, Zollman and Venugopal (Zollmann and Venugopal, 2006)

tries to introduce syntactic constraint from target language syntax into the original

FSB model. In this thesis, we hypothesize that we can improve the FSB model

while still maintaining the knowledge poor assumption via our function word idea.

Ideally, given a particular source sentence, an FSB model should suggest only

one derivation, i.e. the one gives the correct target reordering. However in practice,

the model often fail to generate the correct derivation or even it does, it sometimes
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generates several incorrect ones. We use the terms overgeneration and undergener-

ation to refer to these problems, as they are well known especially in monolingual

parsing community. Hence in reordering sense, the overgeneration problem refers

to cases where the model generates more derivations than appropriate for a given

source sentence; meanwhile, the undergeneration problem refers to cases where the

model fails to generate the one derivation that gives to the correct reordering.

The overgeneration and the undergeneration problems can be attributed to

many factors, including those related to the genuine ambiguity of the languages.

This means that eliminating these two problems is not a reasonable aim. However,

there are some other causes that are due to the characteristics of the model, which

we intend to focus on, especially those that are related to the design of the Hiero

model – the state-of-the-art FSB model (Chiang, 2005). Before discussing which

characteristics are problematic, we first briefly review the characteristics of the

Hiero model below.

Rules in the Hiero model follow the generic form described in Rule 1.1 with

several unique characteristics. First of all, Hiero rules comes only with one type of

nonterminal symbol, hereafter, referred to via the X symbol. Secondly, the source

and target language strings (γ and α respectively) in Hiero rules consists of a com-

bination between nonterminals (Xs) and lexical items (individual word and even

multi-word). This characteristic allows Hiero to capitalize on the phrase-based ap-

proach’s strength of modeling multi-word translation. Lastly, the correspondences

(∼) between the source string (γ) and the target string (α) are established only on

one-to-one basis and only between nonterminals.

Mainly for efficiency reason, Hiero also imposes several constraints, such as

limiting the maximum number of nonterminal to two and forbidding the creation

of rules with adjacent nonterminals. We are specifically interested in the second

constraint, which we will subsequently refer to as the non-adjacent nonterminal
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constraint. Rule 1.2 below is one example of a valid Hiero rule.

X → 〈 �
 Z X, computers and X〉 (1.2)

Which of the above characteristics may cause the overgeneration and the

undergeneration problems? We focus on three characteristics and discuss them in

more detail below. As throughout this thesis we consider the Hiero model as the

representative of the FSB models, we will consider the above characteristics as the

characteristics of the FSB models in general.

• The use of only one type of nonterminal symbol (X). In theory,

rewrite rules can have as many types of nonterminal symbols as possible and

ideally, these types should correspond to some linguistic categories. However,

due to the lack of exposure to linguistic annotation among many other rea-

sons, rewrite rules in FSB models come only with one type of nonterminal

symbol. Such a homogenous use of the generic nonterminal symbol X, un-

fortunately, is the main source of the overgeneration problem since it gives a

maximum flexibility that allows the model to generate many different deriva-

tions from the same set of rewrite rules; many of which unfortunately would

lead to incorrect translations. Overgeneration can be curb either by imposing

constraints, lexical items or developing strong models to reliably select the

correct derivation. In terms of the latter, the homogenous use of X leaves

the model only with the standard treatment via intersecting the grammar

with n-gram language model. This is suboptimal because it only looks at the

target language side and local information.

• The fine-grained modeling of lexical items. To curb the overgeneration

problem incurred by the homogenous use of the single nonterminal symbol,

FSB models introduce lexical items to their rewrite rules. This effectively

reduces the number of possible derivation for a given source sentence. While
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beneficial, the lexical items are introduced into rules in an agnostic manner,

ignoring the fact that lexical items may come from different lexical categories.

As such, both content words as well as function words are modeled identically

in a fine-grained manner. Unfortunately, in modeling content words, FSB

models may run into data sparsity issues since unlike function words, these

words appear in low frequency in training data. In some cases, modeling

content words might even be detrimental, because these words tend to have

different syntactic behavior depending on their context. The incurred low

generalization power would ultimately lead to the undergeneration problem,

since a slight lexical mismatch can make all rules learnt from training data

inapplicable to unseen test sentences, providing the model with inadequate

set of rules to generate the correct derivation.

• The use of non-adjacent nonterminals constraint. In addition to the

overgeneration and the undergeneration problems, FSB models have to deal

with spurious ambiguity, which refers to a situation where the model gen-

erates many derivations that lead to the same translation (Chiang, 2005) –

regardless of whether the translation is the correct or the incorrect one. This

ambiguity is often perceived as a decoding problem, as it introduces an un-

desirable crowding effect that complicates the decoding process (Liang and

Klein, 2008). To curb this ambiguity, Hiero forbids the creation of rules which

are deemed to be the major source of the ambiguity, i.e. rules with adjacent

nonterminals, by employing the non-adjacent nonterminals constraint. Un-

fortunately, this constraint reduces Hiero’s generalization power, as posited

by Menezes and Quirk (2007) since it limits the model’s ability to generalize

content words. This eventually aggravates the undergeneration problem, as

this constraint may filter outs rules that are essential to correctly translate

some unseen test sentences.
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In principle, the overgeneration problem (i.e. caused by the homogenous use

of one type of nonterminal symbol) is attributed to the fact that most of the work in

FSB models are inspired by Inversion Transduction Grammar (ITG) (Wu, 1997).

Although for ITG, overgeneration is an essential feature rather than a problem, as

its main purpose is for bilingual analysis, i.e. to verify the validity of a particular

reordering. Meanwhile, the undergeneration problem can be seen as undesirable

negative effects from the FSB models’ efforts to combat the overgeneration problem

since these efforts (both the fine-grained modeling of lexical items and the use of

non-adjacent nonterminals constraint) limits the model’s ability to learn essential

rules useful for creating the correct derivations for some unseen sentences.

1.3 Function Word, Syntax-based Approach

Here, we argue that our function words idea has largely-unexplored potentials that

can be used to better address the overgeneration and the undergeneration problems

of the existing FSB models without relying on linguistic knowledge. We develop

this idea on top of a formalism which we call the head-driven Synchronous Context

Free Grammar (head-driven SCFG), extending SCFG to include the notion of head.

The detail definition of this grammar will be discussed in Chapter 3 but a high level

overview is discussed here.

In a nutshell, the head-driven SCFG differs from the existing models in

several respects:

1. The head-driven SCFG comes with two types of nonterminal : Y and X,

where the former is used to denote the heads while the latter to denote the

arguments. An argument is basically any span of text whose reordering

is influenced by a head, where the head is equated with function words in

our implementation to reflect the main idea of this thesis. In essence, this
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grammar is inspired by a linguistic insight that words in a phrase are organized

around its head (Radford, 1998).

2. The head-driven SCFG views the expansion of rules as a head-outward process,

following Collins parsing model (Collins, 2003) where the head is considered

to be generated first and arguments are then generated one by one starting

from the one closest to the head.

3. The head-driven SCFG lexicalizes nonterminals with the information about

the heads (hereafter head-lexicalization), propagating such information from

lower level of the hierarchical structure to its higher level. Thus, in our

syntax-based model, the nonterminals carry a richer set of information than

its counterpart in the existing models.

How can a head-driven SCFG, in which heads are equated with function

words, better addresses the overgeneration and the undergeneration problems of

the existing FSB models? First of all, a head-driven SCFG can potentially address

the overgeneration problem caused by the homogenous use of the generic nontermi-

nal symbol since the model now contains two types of nonterminals and lexicalizes

the nonterminals that can be used to develop statistical models to select the correct

derivation. Second of all, a head-driven SCFG can also address the undergenera-

tion problem caused by the fine-grained modeling of lexical items since it focuses on

modeling function words that theoretically corresponds to words with high gener-

alization power. Finally, a head-driven SCFG can also address the undergeneration

problem due to the non-adjacent nonterminals heuristic since it effectively relaxes

the constraint by modeling the expansion of a rule as a head-outward process.

We develop the F W S approach in two stages, resulting in the basic Function

Word, Syntax-based (F W S) model, which we have reported in (Setiawan, Kan,

and Li, 2007) and the improved F W S model. In the basic F W S model, we
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concentrate on the feasibility of the F W S approach and focus on developing the

F W S idea into several stateless statistical models, which looks at no contextual

information. Meanwhile in the improved model, we focus on developing the F W S

models into stateful statistical models, which looks at rich contextual information1.

1.4 Guide to the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 reviews the related work on SMT starting from early models to

the more recent ones, focusing on their reordering components. In this chapter,

we review the issues that the current state-of-the-art models have and have not

addressed, expanding the discussion in Section 1.2.

Chapter 3 provides a general overview of the proposed function word, syntax-

based reordering. In this chapter, we develop the detail formalism of the head-driven

SCFG. More importantly, this chapter serves as a preview for understanding the

main part of this thesis in Chapters 5 through 8.

Chapter 4 describes the setup for the experiments conducted in this thesis

along with the detail of the baseline systems. In this chapter, we also describe a pilot

study to investigate about whether we can rely only on the knowledge embedded

in function words to reorder sentences.

Starting from Chapters 5 through 8, we present the Function Word, Syntax-

based (F W S) model, implementing the components discussed in Chapter 3. In

Chapter 5, we discuss the basic F W S model - a natural entry point to the overall

framework. Here, we focus on assessing the feasibility of the F W S approach. In

this chapter, we provide error analysis of the basic F W S model, which motivates

1An example of stateless model is the translation probability in the standard phrase-based
model, while an example of the stateful model is the n-gram language model, which estimation
requires the previous n− 1 words.
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the development of the subsequent models.

In Chapter 6, we focus on developing a variety of techniques to identify

function words. In Chapter 7, we propose an argument selection model as a way to

address the undergeneration problem, which is due to the non-adjacent nonterminal

constraint. Meanwhile, in Chapter 8, we focus on addressing the overgeneration

problem by proposing a pairwise dominance model utilizing the lexicalization pro-

vided by the head-driven SCFG. Chapter 9 describes the complete experimental

results and discusses error analyses of the improved F W S model, which is the

combination of the proposals developed in Chapters 6 through 8. We also show

that the virtue of the function word-based reordering idea extends by adapting some

statistical models into the state-of-the-art Hiero model in Chapters 10 and show

that the Hiero model can benefit from the adapted models in a large-scale experi-

ments. We end this thesis in Chapter 11 where we summarize its work, recapitulate

its contributions, point out its limitations and lay out future directions.
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Chapter 2

Related Work

Given a translated sentence still ordered in the source language order, the ultimate

goal of a reordering model is to assign a new location to the translation of each word

so that the reordered translation matches the target language order. This chapter

reviews the previous and the current state-of-the-art SMT models particularly in

terms of the reordering model they employ. Specifically, we look at some key issues

that have been and have not been tackled by the existing reordering models.

In our review, we discuss the existing models in chronological order, starting

from the first generation word-based models, to the phrase-based models and to the

more recent syntax-based models, expanding the discussion in Section 1.2. Readers

who are already familiar with SMT models may want to go directly to Section 2.3.2,

where we discus the key issues addressed by this thesis.

Throughout this chapter, we use the Chinese to English translation illus-

trated in Fig. 2.1 as our running example. For convenience, we consistently use

the terminologies of the distributional hypothesis (Harris, 1954) – although the

actual models may not use the same terminology or form – which views a reorder-

ing model as a model that estimates the following formula P (pattern|unit, context)

where unit represents the linguistic entity being moved, pattern refers to the param-
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a_form is a_collection of data entry fields on a_page

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Figure 2.1: An illustration of how words move when translated.

eters over the unit’s new location and context defines the circumstances in which

the unit moves to the new location specified by the pattern. The definition and

estimation of these three components, as shown throughout this chapter, dictate

the performance of the models.

2.1 Word-based Approach

The first generation word-based models, of which the IBM model series (Brown et

al., 1993) is the pioneer, define the granularity of the unit at the individual word

level. These models rely on positional information in modeling word reordering.

More specifically, they tie the unit’s parameter to the position of the word being

moved in the source sentence and the pattern’s parameter to the word’s new location

in the target sentence. For instance, the movement of the word �� (a page) in

Fig. 2.1 is formulated as P (j=9|i=3) where i is the word’s original position on the

source side while j is the word’s new location. Although simple, this formulation

is unfortunately suboptimal in several respects.

First of all, such reordering models are insensitive to the identity of the

unit and, let alone, the context in which the unit moves. The most sophisticated

IBM model (model 5), to a certain extent, addresses the first issue by conditioning
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the pattern on the word’s automatically-obtained class, while the HMM alignment

model (Vogel, Ney, and Tillmann, 1996) partially addresses the the second issue

by conditioning the pattern on the previous word’s new location. Toutanova et

al. (2004) combined these two pieces of information together and showed that the

combination improves the word alignment quality.

Second of all, tying the parameters to the positional information may not

generalize well since the position of the same word tends to be different across

different sentences. One can easily come up with many other sentences where the

word�� (a page) appears not at the third position in the sentence. Furthermore,

such a parametrization also complicates the modeling of the long-distance reorder-

ing phenomenon since the models would have to introduce (i,j) pairs which size

grows exponentially with respect to the distance the unit may travel (Och and Ney,

2003). Knight (1999) showed that allowing words to move freely to any position is

equal to solving an NP -hard problem, intractable even for current state-of-the-art

computers. To curb such a high computational complexity, the word-based models

often limit the maximum distance a word may travel (Berger, 1996) and rely on ap-

proximations such as (Germann, 2003; Och, Ueffing, and Ney, 2001; Germann et al.,

2001), thus incurring the corresponding loss in modeling long-distance reordering.

2.2 Phrase-based Approach

Learning from the weaknesses of the word-based approach, the phrase-based ap-

proach improves statistical machine translation formulation in at least two respects.

First of all, the phrase-based approach extends the granularity of the unit to

account for spans longer than one word, grouping several word translations into one

cohesive translation unit, which hereafter will be referred to as a phrase translation

(also known as a bilingual phrase). This phrase unit may not be a phrase in any

linguistic sense since the extraction process relies from parallel corpora without any
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genuine segmentation information using the consistent alignment heuristic (Och and

Ney, 2003) below.

PT (fJ
1 , eI

1, A) = (f j+jj;
j , ei+ii

i ) : ∀(i′, j′) ∈ A : j ≤ j′ ≤ j + jj ↔ i ≤ i′ ≤ i + ii

(2.1)

where PT stands for phrase translations, fJ
1 and eI

1 are the source and target

sentences of length J and I respectively, A is a set of alignments (i′, j′) between fJ
1

and eI
1 and i and j are used to indicate source and target word indexes respectively.

The consistent alignment heuristic basically specifies that a source phrase (f j+jj
j )

of length jj and its translation ei+ii
i of length ii is a valid phrase translation if the

source phrase is only aligned with the words inside its translation. Note that we

will reuse this consistent alignment heuristic in the parameter estimation of our

models.

Fig. 2.2 shows an example of how a phrase-based model would translate

the example in Fig. 2.1. Even without such information, the phrase-based models

benefit greatly from the introduction of this phrase translation, since it enables

the models to remember short-distance reordering phenomena that appear in the

training data. Here, the phrase-based model effortlessly captures the swap between

the word �� (a page) and the word Þ (on) since it has been memorized in a

phrase translation unit – the third one. In many evaluation exercises, relying on

such phrase translation unit has enabled the phrase-based models to outperform

the word-based models, as demonstrated by the Pharaoh system (Koehn, 2004a).

Secondly, the phrase-based approach simplifies the parametrization of the

pattern from the position-based parametrization to the orientation-based one. Till-

man (2004) introduced a three-valued orientation values: Left, Right and Neutral.

The Left value refers to the reordering pattern where the current phrase translation
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data entrya_form is a_collection of on a_page

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

fields

Figure 2.2: An illustration of how phrases move when translated.

under consideration ends up on the left, before the preceding one1, while the Right

refers to the other case where the current phrase translation ends up on the right,

after the preceding one. The Neutral value refers to a special case where there is

another phrase translation in between the current and the preceding phrase units.

According to this parametrization, the orientation value for the phrase­ (fields) is

Right, because its translation appears after the translation of its preceding phrase

jâ Q� (data entry).

Partly because of this simpler set of parametrization, the recent reordering

models can now afford a richer parametrization for the unit as well as for the

context. For instance, Tillman and Zhang (2005) introduced the Unigram Block

model while Kumar and Byrne (2005) introduced the Local Phrase Reordering

model; both of which basically use the lexical identity of the unit in the model.

This simple idea has been adopted by the current state-of-the art phrase-based

Moses (Koehn et al., 2007) system and has shown to significantly outperform its

predecessor, the Pharaoh system. In this unigram model, the movement of the

phrase ­ (fields) is in the form of P (orientation=Right|unit=­ (fields)). Note

1For consistency with subsequent discussions, we deliberately define the notion of the preceding
phrase along the source side. Readers should note that its actual definition may be defined along
the target side depending on the decoder implementation. Nevertheless, the idea is clear regardless
of the actual definition of this phrase since the orientation value is symmetric.



19

that now, there are a separate statistics for each phrase.

Also partly because of this simpler set of parametrization, more recent mod-

els are now able to afford a more complex context modeling. For instance, Tillman

and Zhang (2005; 2007) introduced the Bigram Block model which considers the

lexical identity of the preceding phrase translation as context. Along this same

idea, there are also some other proposals, such as (Zens and Ney, 2006; Nagata

et al., 2006; Al-Onaizan and Papineni, 2006) that differ from each other with re-

gard to the estimation of the context. Unfortunately, although these efforts enable

phrase-based models to address the word-based approach’s concerns, these models

are still problematic in several respects.

First of all, the long-distance reordering is still difficult to accommodate. In

particular, the models use the orientation-based parameters, which even though

simpler, still rely on positional information as a result, these models do not gener-

alize well.

Secondly, the flexible definition of the phrase translation unit creates lots of

modeling problems. For instance, such flexibility can make the orientation value of

a phrase unit to be different across context. For instance, the orientation value of

the phrase { ø\ (a collection of) at the end of the source sentence is Left if the

preceding phrase unit is a three-words phrase jâ Q� ­ (data entry fields) but

Neutral if the preceding phrase unit is a one-word phrase ­ (fields).

Thirdly, the rigid definition of context, i.e. always the preceding phrase,

is suboptimal. For instance, the context for the phrase { ø\ (a collection of)

at the end of the source sentence linguistically should be the whole head noun

phrase jâ Q� ­ (data entry fields), which spans two phrase translation units

in Fig. 2.2. Meanwhile, the context for the phrase �� Þ (on a page) naturally is

the succeeding phrase rather than the preceding one.

Lastly, the models are heavily lexicalized, thus susceptible to the sparse data
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issue. For instance, modeling the swap between the word�� (a page) and the word

Þ (on) is not useful to model other cases of post-positional to pre-positional shift.

Likewise, memorizing the lexical identity of the context may also not be useful since

the context of the same unit tends to have different wording in different sentences.

SMT researchers have long acknowledged these problems. Ideally, the phrase

movement should be driven by syntactic principles rather than lexical level informa-

tion. The Moses system has provided a framework, known as the factored transla-

tion model (Koehn and Hoang, 2007), that allows the translation process to exploit

richer set of linguistic information (e.g. lemma and morphological features). How-

ever, incorporating syntactic information into the phrase-based framework remains

an open problem.

To date, current efforts to incorporate syntactic information to phrase-based

models have met limited success – some even lead to performance deterioration.

For instance, Koehn et al. (2003) reported that restricting the phrase translation

unit only to that of syntactic phrase harms the performance. Birch et al. (2007)

experimented with rich syntactic information, such as part-of-speech (POS) tags

and supertags taken from Combinatorial Categorical Grammar (CCG) lexicons,

however, their experiments showed that using such linguistically-rich information

leads to no significant improvement when compared to the unigram lexicalized

reordering model.

2.3 Syntax-based Approach

The move to syntax-based approach allows some of the phrase-based models’ con-

cerns to be addressed elegantly. This approach views the reordering process as the

application of a series of bilingual rewrite rules, which recursively builds a hierar-

chical structure that resembles natural language syntax. In terms of the definition

of the unit, the syntax-based approach uses a special phrase translation unit, to
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which we subsequently refer to as a nonterminal translation (or nonterminal in

short). Different from the phrase translation, the nonterminal is typed (associated

with a label, thus equals to other phrases sharing the same label) and nested (may

be formed in a several intermediate steps, indicated by a subtree covering a phrase

covering a certain span of text).

In using rewrite rules, the syntax-based approach makes a domain of locality

assumption that specifies the contextual dependencies (and the independencies) of a

phrase. Two phrase translations are considered dependent if they share a common

parent; but independent if they do not share a common parent. This domain

of locality is particularly desirable for the pattern parametrization as well as the

context modeling. In terms of the former, the pattern parameters are defined locally

within the confine of a node, thus are no longer tied to positional information. In

terms of the latter, the definition of context is no longer tied rigidly to the preceding

phrase, but rather flexibly depending on the position of the sibling nodes.

However, developing a syntax-based model is non-trivial since it depends on

the models’ ability to induce the grammar rules in a situation that is far from ideal.

In an ideal situation, syntax-based models expect parallel corpora that are aligned

at phrasal level as the input to the grammar induction process, where both sides of

the corpora come with hierarchical structure and are connected to each other via

nodes in their respective structure. From such an ideal input, the grammar induc-

tion process can then just read off the grammar rules in a relatively straightforward

manner. Up to now there has been no such constituent-aligned corpora available in

a significant amount to the community, and manually constructing one would be a

daunting task since it involves dealing with the complexities of a pair of languages

(for a survey of ongoing work, see (Rambow et al., 2006)).

Without constituent-aligned corpora, researchers must accept more realistic

scenarios: relying on unannotated parallel corpora alone or on parallel corpora with
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some partial linguistic annotations. This roughly divides syntax-based models into

two groups (Chiang, 2005)2: formally syntax-based and linguistically syntax-based

models. The former takes the knowledge poor path, inducing the grammar entirely

from unannotated parallel corpora; while the latter takes the more knowledge rich

one, inducing the grammar from parallel corpora that first need to be annotated

with the parse trees at either or both sides of the parallel text.

Subsequently, since we implement our idea in the knowledge-poor path, we

will focus more on the formally syntax-based approach. But for completeness sake,

we first briefly cover the linguistically syntax-based approach to show several key

issues that differentiate this strand of approach from the other one.

2.3.1 Linguistically Syntax-based Approach

The linguistically syntax-based (LSB) approach assumes that the parallel text is

annotated with some linguistic information either on the source language, on the

target language or on both languages. The models that subscribe to this approach

attempt to capture linguistically-motivated learning bias embedded in the annota-

tion, using a syntactic formalism that is guided by a syntactic theory.

The first syntax-based model (Yamada and Knight, 2001) views the trans-

lation process as a tree transformation process. It expects the input sentence to be

annotated with the syntactic parse tree and reorders the text via reordering and

insertion operations over the parse tree. Although it performs better than word-

based systems, its performance is surprisingly lower than the simpler phrase-based

systems. This result runs counter with the intuition about the potential benefit of

having linguistically-motivated information, hinting that incorporating such a deep

2There has been no consensus about these terminologies as of this thesis writing. For in-
stance, the formally syntax-based model is also known as syntax-inspired, while the linguistically
syntax-based model is also known as syntax-directed. However, the distinction between these two
approaches is consistent.
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syntactic information into the reordering process is not trivial.

The benefit of annotating parallel text remains an open question for a few

reasons. First of all, the syntactic parse tree is typically obtained through an

automatic process, thus not perfect. Secondly, the estimation of the syntactic parse

tree is independent from the estimation of other components, thus mismatches are

very likely to occur. Thirdly, the genuine structural difference between the two

languages often makes it impossible for the model to get to the correct target

language order by using only simple node reordering operations.

The complexity of integrating deep syntactic knowledge has also been ex-

tensively studied. For instance, Fox (2002) showed that complex bilingual rewrite

rules are necessary even for a language pair that comes from the same language

family. Wellington et al. (2006) showed that syntactic parse tree imposes addi-

tional linguistic constraints that greatly reduce the ability of syntax-based models

to induce rewrite rules from the training examples. In the light of these issues,

some researchers have proposed several solutions along several different lines.

The most popular approach to address these issues is by employing a more

expressive grammar. One of the most widely-used formalism is the tree-transducer

formalism3 where rewrite rules store information about a parent node together with

all its successor nodes down several levels to the leaf nodes. Depending on which

side contains the syntactic information, these models employ different variants of

tree transducers, such as: 1) tree-to-string models (Liu, Liu, and Lin, 2006; Quirk,

Menezes, and Cherry, 2005), which assume a parse tree on the source side; 2) string-

to-tree models (Galley et al., 2004; Marcu et al., 2006), which assume a parse tree

on the target side; and 3) tree-to-tree models (Cowan, Kuc̆erová, and Collins, 2006;

Zhang et al., 2007; Zhang et al., 2008), which assume the parse trees on both sides.

Some other solutions have also been proposed in the guise of the so-called tree-

3For a survey, see (Knight and Graehl, 2005).
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sequence model (initially called the forest model) (Liu et al., 2007) that includes

allowing rewrite rules to model a sequence of nonterminals.

In parallel, some researchers have also proposed to tackle the problem from

a different point of view: addressing the tension between the word alignment and

the syntactic parse tree that is caused by the fact that the two are generated

independently from two noisy processes. For instance, Cherry and Lin (2006) and

DeNero and Klein (2007) attempted to reconcile the tension by integrating syntactic

information into the alignment process.

Models in this strand of approach also suffer from the overgeneration and

the undergeneration problems. However in linguistically syntax-based models, these

problems are mainly due to the genuine ambiguity in languages, rather than due

to the design of the grammar and they partly have been taken care of by the use

of linguistically-motivated phrase categories.

2.3.2 Formally Syntax-based Approach

The formally syntax-based (FSB) approach arguably represents the most realis-

tic strand of syntax-based approach. This strand of approach assumes minimal

information possible, relying only on the parallel corpora without any linguistic an-

notation to extract rewrite rules. Without any linguistic information, however, such

syntax-based models face a more challenging task since they work with a larger set

of unknown information than their counterpart linguistically syntax-based models.

To estimate unknown information, FSB models make several assumptions,

especially to approximate the shape and the content of the hierarchical structures

between the source and target sentences. All the FSB models that we review

here come in the guise of the Synchronous Context Free Grammar (SCFG) formal-

ism, previously known as the syntax-directed translation system (Aho and Ullman,

1969), which is the generalization of the Context Free Grammar (CFG) to the bilin-
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gual case. Different from the tree transducer formalism, the rewrite rules in SCFGs

only store the information about the parent node (nonterminals on the rules’ left

hand side) and its immediate children (nonterminals on the rules’ right hand side),

forcing the source and target parse trees to be isomorphic, i.e. aligned at every

node.

Additionally, FSB models typically follow the Inversion Transduction Gram-

mar (ITG) hypothesis (Wu, 1997), which assumes that the possible hierarchical

structures (also known as derivations) between the source and target sentences are

those that are binarizable, i.e. transformable to another hierarchical structure where

all the parent nodes have exactly two children nodes. This assumption directly de-

fines the shape of the possible hierarchical structures and confers syntax-based

models a desirable computational property. Some studies (Zens and Ney, 2003;

Wu, 1997; Wu, Carpuat, and Shen, 2006) also show that this assumption is indeed

reasonable for many language pairs, such as Chinese-English and Arabic-English.

Theoretically, syntax-based models can come with as many nonterminal la-

bels as possible. Ideally, these labels should correspond to some linguistic sense.

However, without access to linguistically-motivated information, FSB models can

only afford to use one generic type of nonterminal that is typically labeled as X.

Note that unlike the syntactic category used in linguistically syntax-based models,

this symbol imposes no constraint on what kind of text span can be denoted as X.

Unfortunately, the decision to use only this generic symbol causes the FSB

models to overgenerate, producing more derivations than appropriate. In particular,

the homogenous use of the generic nonterminal suggests that the parent nonterminal

on the LHS and its children on the RHS are identical, imposing no constraint about

the correct order of application for the rule. As such, one rule can be applied in a

flexible manner with an equal probability, i.e. before or after another rule.

A standard solution to address the overgeneration problem often involves
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intersecting the grammar with the target n-gram language model (Zollmann and

Venugopal, 2006). Thus, the correct order of rule application corresponds to the

most probable surface translation. However, this partial solution is suboptimal since

it only looks at local information and on the target side only. On top of employ-

ing language model, most successful proposals to curb the overgeneration problem

involve the introduction of lexical items into rewrite rules, using information from

noth the source and target languages.

Lexicalized ITG (LITG) and BiLexicalized ITG (BLITG) models use lexical

items through what we call the lexical propagation method. These grammar first

assume that there is one special token called the head in a sentence and then

propagate the information of this head from lower level structure to higher level

structure, equating the head as the backbone of the hierarchical structure. In both

models, the parent node contains two types of children: the head node and the

modifier node where the former is propagated from the lower level structure to the

parent node through the head node but the latter is not. BLITG differs from the

LITG with respect to the modifier node where the former associates the modifier

node with a lexical item while the latter does not.

Rule 2.2 represents an example of LITG rule while Rule 2.3 represents an

example of BLITG rule.

X(h) → 〈X1(h)X2, X2X1(h)〉 (2.2)

X(h) → 〈X1(h)X2(m), X2(m)X1(h)〉 (2.3)

where h refers to the head word, and m refers to the lexical item heading the

modifier node that is not propagated. Note that the nonterminals are co-indexed

to indicate reordering and not to introduce new type of nonterminals.

These two grammars offer a promising idea since their method of introduc-

ing lexical items provides an elegant way to address the overgeneration problem.

Specifically, it offers a rich set of information that can potentially be used to select
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the correct derivation. Our proposed head-driven SCFG, to some extent, draws its

inspiration from these two grammars. However, these two grammars are currently

designed as alignment models, thus, they cannot be directly used to address the

reordering task – at least not until they resolve the remaining non-deterministic

factors, such as which word should become the head word and which children node

represents the head node.

Meanwhile, the Bruin model (Xiong, Liu, and Lin, 2006) uses lexical item in

a method which we call nonterminal features. In particular, this model is essentially

a Maximum Entropy (ME) model (Berger, Pietra, and Pietra, 1996) where lexical

items are used as ME features to make a decision which reordering rule to be applied

at a certain context. More concretely, the Bruin model consists of the following two

rules, which are the rules of the Bracketing Transduction Grammar (BTG) (Wu,

1997):

X → 〈X1X2, X1X2〉 (2.4)

X → 〈X1X2, X2X1〉 (2.5)

and to decide whether Rules. 2.4 or 2.5 should be to applied, Bruin takes the lexical

items at the borders of X1 and X2 as the main features.

Finally, the state-of-the-art Hiero system uses lexical items through what

we call RHS lexicalization. More concretely, Hiero introduces the nonterminals,

which are known as the hierarchical phrases. In these hierarchical phrases, Hiero

introduces lexical items into the rule’s RHS. Rule 2.6 below represents one example

of hierarchical rule that can be extracted from the example in Fig. 2.1.

X(a) → 〈X1 jâQ�­ X2, X2 data entry fields X1〉 (2.6)

The ability to combine generic nonterminal symbols and lexical items is often con-

sidered as the Hiero system’s main strength since it enables Hiero to accommodate
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non-contiguous phrases and to emulate the phrase-based approach’s strength of

remembering short-distance reordering phenomena.

Empirical results show that these proposals are able to address the overgen-

eration problem. However, we argue that there are still rooms for improvements

since in addressing the overgeneration problem, since 1) the method still contains

unresolved non-deterministic factors (in case of LITG and BLITG), 2) the method

only uses local information (in case of Bruin); and the method causes the model to

undergenerate (in case of Hiero).

More importantly, common to these proposals is that they introduce lexical

items agnostically, ignoring the fact that most of these lexical items belong to con-

tent word class that is not particularly amendable to statistical modeling. Content

words appear rarely in the corpus and often have different behavior in different con-

text. Modeling content words unfortunately may create the sparse data concern, as

such it can prevent the models to generate the derivation that leads to the correct

reordering.

Specific to the Hiero model, undergeneration is aggravated by the non-

adjacent nonterminals heuristic. Essentially, this heuristic is employed by the Hiero

model to forbid the creation of rules with adjacent nonterminals, which are deemed

as the main source of spurious ambiguity (Chiang, 2007). This ambiguity refers

to cases where many derivations with the same probability lead to the same sur-

face translation and it is highly undesirable for its crowding out effect (Liang et

al., 2006) especially in the approximate decoding setting. However, as posited by

Menezes and Quirk (2007), this heuristic again reduces the generalization power of

the system, since it limits the model’s ability to generalize content words only in

certain patterns.
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2.4 Summary

The goal of this chapter is twofold. First, it provides an overview of the existing

work that address the reordering task. Second, it provides a background informa-

tion which relates our proposed F W S approach with other existing work. In our

review, we discussed the existing models in the chronological order, starting from

the first generation word-based models, to phrase-based models and to the recent

syntax-based models. In particular, we discussed the issues of the earlier models

and showed how the more recent models address them.

Our proposal is most closely related to the formally syntax-based models

discussed in Section 2.3.2, which assume minimum information possible in learning

the rewrite rules. We showed that the main characteristic shared by the existing

formally syntax-based models is that all the nonterminals are labelled uniformly

with a single label X. We emphasized that this assumption is problematic because

it makes the model overgenerates. We also showed that the current efforts to

address this issue are still suboptimal since they mostly rely on lexical level features,

which has generalization concerns and often makes the models undergenerate. As

mentioned earlier, we hypothesize that our proposal, which we will develop shortly,

can better address these two problems.
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Chapter 3

Function Word, Syntax-based

Reordering

Here, we describe our function word, syntax-based (F W S) approach, specifically

its formalism: the head-driven SCFG. In Section 3.1, we start with a recap about

the three differences between the head-driven SCFG and existing SCFGs, which will

then lead to a discussion about the grammar formalism. In Section 3.2, we show how

in principle how the head-driven SCFG would translate a concrete Chinese sentence.

In Section 3.3, we introduce five components of the F W S model, which would

facilitate a flexible approximation to the dependencies in the head-driven SCFG.

This section also serves as a mini summary for the whole thesis, as the content of

the subsequent chapters discusses the development of these five components.

3.1 A Sketch of the Head-driven SCFG

As a recap, the head-driven SCFG differs from the existing SCFG in three respects:

1) the use of two nonterminal symbols, where one signifies a head and the other

signifies the head’s argument; 2) the modeling of the expansion of a rule as a head-
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outward process, where the head is considered to be generated first followed by

the head’s arguments, starting from the ones closest to the head; and 3) the head-

lexicalization of nonterminals, where some lexical information (the heads) in the

span of the nonterminals are propagated from lower level hierarchy to the higher

level one.

We develop these three distinctive features in the following SCFG rule:

X(h−L, . . . , h−1, hY , h+1, . . . , h+R) → 〈γ, α,∼〉 (3.1)

where γ = X−L(h−L) . . . X−1(h−1)Y (hY )X+1(h+1) . . . X+R(h+R)

The first difference – the use of two nonterminal symbols – is clearly reflected

in the two nonterminal labels (Y and X) that appear on the rule’s right hand side

(RHS). The first label (Y ) is a symbol for a head, which will be equated with

function words to reflect the main idea of this thesis. Meanwhile, the second label

(X) is a symbol for an argument of a head, which represents any span of text whose

reordering is influenced by the head.

The second difference – the modeling of rule’s expansion as a head-outward

process – is partially reflected in the subscripts attached to the arguments (Xs),

which uses the head (Y ) as the point of reference. Negative indexes (-) are used

for those arguments to the left of the head, while the positive indexes (+) are used

for those to the right of the head. The magnitude of the index is proportional to

the distance between the argument and the head with L and R indicate the total

number of the left and the right arguments of the head respectively. Note that

here, we overload the index not only to indicate reordering but also to indicate

the arguments’ position. The modeling of the head-outward process will be more

articulated in one of the upcoming statistical models (named argument selection

model), which basically uses the above indexing scheme.

The third difference – the head-lexicalization of nonterminals – is reflected
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by the extra information attached to nonterminals, indicated by the h symbol inside

the bracket following the nonterminal labels, which represents a set of all the heads

in the span of the nonterminal. Note that at one level, there is only one active

head, which is indicated by hY in Rule 3.1, however we design the lexicalization to

propagate all the heads to provide richer information to the upcoming statistical

models. As shown, all the hs are subscripted according to the position of their

respective nonterminals as such they can be ordered based on their appearance on

the source text.

For clarity, the target language side (α and ∼) is concealed; but essentially,

it corresponds to one possible permutation of the source language side (γ), which

actual order will be determined by one of the upcoming statistical model (named

the orientation model and detailed later).

Additionally, the head-driven SCFG also includes the following rules:

X → 〈e, f〉 (3.2)

Y (e/f) → 〈e, f〉 (3.3)

S → X(•) (3.4)

Rules 3.2-3.3 are terminal rules that emit the actual source (e) and target

phrases (f), representing leaf nodes in the resulting hierarchical structure. The

difference is that the source phrases emitted by Rule 3.3 belong to the function

word class F , while those emitted by Rule 3.2 do not, splitting the entries in the

phrase translation table into two disjoint sets. Note that the source and target pair

in Rule 3.3 is propagated to the higher level structure as indicated by the bracket

following the nonterminal on the left hand side.

Meanwhile, Rule 3.4 represents the root node in the hierarchical structure.

In retrospect, this rule is similar to the glue rule in the Hiero model (Chiang, 2005)

except that the reordering of Rule 3.4 is not restricted to monotone reordering.

As this rule always appears at the highest level, the head-driven SCFG propagates
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no information from the lower level structure where the ignored information is

indicated by the • symbol (also used in Rule 3.5).

In general, the above four rules are adequate to cover most except a few

exceptional cases. These exceptions include cases where there is no function word

available in reordering certain span of text. To handle such an exception, the

head-driven SCFG use the following back-off rule:

Y (U) → X(•) (3.5)

which promotes an argument to act like a head. The head-driven SCFG uses

a special symbol U to represent such a promoted head, which will use a special

statistics in the upcoming statistical model (the upcoming orientation model).

In practice, the introduction of this back-off rules unfortunately aggravates

the overgeneration problem as now any phrase translation unit can become heads.

We avoid this problem by making sure that this back-off rule is applicable only in

cases where the first four rules are not applicable in our decoder implementation.

Note that the universal token is only active at its current level and not propagated.

3.2 The Head-driven SCFG in Action

How does the head-driven SCFG translate the Chinese example in Fig. 2.1,which

for browsing convenience, copied as Fig. 3.1 below?

In principle, to translate the Chinese sentence, the head-driven SCFG would

need the following rules:

X → 〈,\, a form〉 (3.6)

X → 〈��, a page〉 (3.7)

X → 〈jâ Q� ­, data entry fields〉 (3.8)

X → 〈ø\, a collection〉 (3.9)
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a_form is a_collection of data entry fields on a_page

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Figure 3.1: An illustration of how words move when translated, copied from Fig. 2.1.

Y (4/is) → 〈4, is〉 (3.10)

Y (Þ/on) → 〈Þ, on〉 (3.11)

Y ({5/ε) → 〈{5, ε〉 (3.12)

Y ({9/of) → 〈{9, of〉 (3.13)

X(Þ/on) → 〈X−1Y (Þ/on), Y (Þ/on)X−1〉 (3.14)

X(Þ/on,{5/ε) → 〈X−1(Þ/on)Y ({5/ε) X+1,

X+1 Y ({/ε)X−1(Þ/on)〉 (3.15)

X(Þ/on,{5/ε,{9/of) → 〈X−1(Þ/on,{5/ε)Y ({9/of) X+1,

X+1Y ({9/of)X−1(Þ/on,{5/ε)〉 (3.16)

X(Þ/on,{5/ε,{9/of,4/is) → 〈X−1Y ( 4/is)X+1(Þ/on,{5/ε,{9/of),

X−1Y (4/is)X+1(Þ/on,{5/ε,{9/of)〉(3.17)

where Rules 3.6 through 3.13 are the terminal rules, and Rules 3.14 through 3.17 the

nonterminal rules. Note that we attach the source word index to { to distinguish

the two occurrence of the function word.

The head-driven SCFG translates the Chinese example by applying this set of

rules in a top-down order, resulting in a derivation shown in Fig. 3.1. In particular,
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the head-driven SCFG applies the rules in the following order: Rules 3.4, 3.17, 3.6,

3.10, 3.16, 3.9, 3.13, 3.15, 3.8, 3.12, 3.14, 3.7, and 3.11.

Unlike the existing SCFG with one type of nonterminal label, this grammar

is better equipped to address the overgeneration problem since the lexicalization

of nonterminals prevents the application of the rules in any arbitrary order. This

grammar is also less susceptible to the undergeneration problem since the chance is

high to learn the reorderings that occur in the nonterminal rules from the training

data since they only involve high frequency words.

3.3 Architecture: Five Components

The head-driven SCFG is theoretically less susceptible to the undergeneration and

the overgeneration problems, as discussed in the previous subsection. However,

building such a grammar is largely non-trivial since although the head-driven SCFG

only focuses on high frequency words, the number of lexical items that can be at-

tached the nonterminals are unbounded. Thus sparse data issue may easily com-

plicate the process, as such estimations are crucial.

The head-lexicalization itself can be implemented in many different ways.

It can be hard-coded in the Xs as such each X(h) would become a new type of

nonterminal symbol. Or it can be treated as an attribute of X, where the value of h

can vary dynamically. In this thesis, we adopt the latter since it gives us flexibility

in estimating the head-driven SCFG. Note that in this case, the actual rules that

are applied are the un-lexicalized version the rules.

To facilitate the approximation of the head-driven SCFG, we first break down

the internal dependencies in the grammar into the following five components to be

developed independently later:

1. the identity of function words (FWID)
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2. the coherence of function words’ arguments (ARGCOH)

3. the selection of function words’ arguments (ARGSEL)

4. the order of the application of the function words (FWORDER)

5. the bilingual orientation of function words’ arguments (ARGORI)

In discussing these five components, we will relate each component with the

corresponding rule it involves as well as with the three differences between the

head-driven SCFG and the existing SCFGs to maintain the continuity with the

previous discussion. This upcoming discussion will also serve as a mini summary

for this thesis, as all the statistical models in the upcoming chapters can be seen the

approximation to one of the components discussed here. Also, the labels used to

refer to these components will be used frequently in the upcoming chapters. Note

that the term heads and function words are heavily exchangeable in this subsection

since their role in F W S model is identical.

The first component FWID is responsible for the labelling of all the terminal

rules of the head-driven SCFG. In particular, it generates a function word list FW ;

based on which, the rule for a particular span of source text (e) is labelled, i.e. those

that belong to the list e ∈ F are labelled as heads Y (represented by Rule 3.3),

otherwise e 6∈ F are labeled as arguments X (represented by Rule 3.2). In retro-

spect, since this first component is related to the first distinguished characteristic

of the head-driven SCFG, namely the grammar with two nonterminal labels.

Meanwhile, the second component ARGCOH is responsible for evaluating the

segmentation of the arguments. In essence, the ARGCOH component’s responsibility

resembles a typical preprocessing step in many natural language processing tasks of

identifying non-recursive and non-overlapping base phrases in the input sentence.

Ideally, this component has two inter-related roles. The first role is to penalize those

spans of text whose internal words would not cohere when translated. For instance,
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ARGCOH should penalize a phrase translation that spans the first three Chinese words

,\ 4 �� (a form is a page) since the correct reordering requires the translation

of the third Chinese word �� (a page) to be split from the translation of the

first two words. Meanwhile, the second role is to reward those spans of text that

represent maximum coherent units. Thus, for instance, ARGCOH should give a bonus

score to the nonterminal that emits the following three-words phrase jâ Q� ­

(data entry fields) but none to those that just emit a one-word phrase jâ (data)

or a two-words phrase Q� ­ (entry fields). Maximum coherent units should be

favored because they reduce the number of rules involved in the translation process,

thus reducing the possibility of errors.

Moving on to the third component ARGSEL, this component is responsible for

selecting the most appropriate set of arguments for a particular head (setting L and

R parameter in Rule. 3.1), among all other possible sets. In the illustration in the

previous subsection, ARGSEL correctly assigns one argument, i.e. the left neighbor,

to the prepositionalÞ (on) as shown in Rule 3.15 instead of the right neighbor, but

two arguments, i.e. both the left and the right neighbors, to the remaining function

words instead of only one argument. Note that arguments are not always positioned

next to the function words – they may include non-immediate neighbors, such as

the second or third neighbors. In our implementation, we develop this component

as the head-outward process similar to (Collins, 2003), thus exploiting the second

unique feature of the head-driven SCFG.

The fourth component, FWORDER, is responsible for assigning the order of

the rule’s application using the information available through lexicalization. In our

example, FWORDER applies the rules in the following correct bottom-up order: the

prepositional Þ (on), the first particle {5 (of), the second particle {9 and the

copula 4 (are). This component exploits the third difference of the head-driven

SCFG to select the correct derivation.
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Up to this point the model has built the underlying hierarchical structure,

but has yet to perform any reordering. This responsibility rests upon the final

ARGORI component. In the example, ARGORI suggests that the arguments of the

copula 4 (are) should keep their Chinese order, and that the arguments of the

other function words should be translated in the inverse Chinese order. This then

completes the reordering process.

Some of these components, if developed, will eventually become statistical

models, including the orientation and the argument selection model which have

been briefly mentioned earlier. In our implementation, we use these upcoming

statistical models as features alongside seven other standard SMT features in a log-

linear model, following (Och and Ney, 2002). The standard features are as follows:

1) language model lm(e); 2-3) phrase translation score φ(e|c) and its inverse φ(c|e);
4-5) lexical weight lex(e|c) and its inverse lex(c|e); 6) word penalty wp; and 7)

phrase penalty pp. We use this set of standard features as is and refer the interested

readers to (Koehn, Och, and Marcu, 2003; Vogel et al., 2003) for a more elaborate

discussion of these features.

The translation is then obtained from the most probable derivation of the

stochastic grammar. The formula for a single derivation T is shown in Eq. (3.18),

where X1, X2, ..., X|T | is a sequence of rules that involves in T with w(Xt) being the

weight of each particular rule Xt. w(Xt) is estimated through a log-linear model,

as in Eq. (3.19), where λj reflects the contribution of a feature fj. The value of λj

is obtained automatically through minimum error rate training (Och, 2003) on the

development set.

P (T ) =
∏|T |

t=1
w(Xt) (3.18)

w(Xt) =
∏

j
fj(Xt)

λj (3.19)

Throughout this thesis, we employ the standard bottom-up CKY beam

parser (Cocke, 1969; Kasami, 1963; Younger, 1967) to find the target language
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order which maximizes Eq. (3.18). The sketch of the decoding algorithm is dis-

cussed in Appendix A.
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Chapter 4

Experimental Setup, Baselines

and Pilot Study

This chapter details the data sets used, the scenarios ran and the baselines reported

for all the experiments in this thesis. Here, we also describe a pilot study on the

data set used to study the feasibility of our Function Words, Syntax-based (F W S)

approach.

4.1 Data

In this thesis, we evaluate all experiments on a Chinese to English translation

task. As our focus is on the reordering task, the standard sentence-aligned parallel

corpora (traditionally used in the translation task experiments) may not be suitable

to fairly evaluate the contribution of our proposal. When such parallel corpora are

used, we argue that it is difficult to separate reordering-related factors from lexical-

related ones. More specifically, we are unable to perform controlled experiments

with unambiguous lexical mappings and to evaluate our proposals with respect to

reordering-specific, intrinsic evaluations.
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Having unambiguous lexical mappings is important as it removes all lexical-

related problems from the decoding step, such as lexical selection ambiguity, phrase

segmentation ambiguity, and out-of-vocabulary (OOV) words. Being able to per-

form intrinsic evaluations is also important for assessing the contribution of each

proposed model to the whole reordering process. Without such evaluations, we are

forced to use the standard BLEU score (Papineni et al., 2002) that evaluates our

proposals with respect to the downstream translation task, in which lexical-related

factors may complicate the analysis. Fortunately, we have the access to a special

word-aligned parallel corpus that can leverage both unambiguous lexical mapping

and intrinsic evaluations.

For all experiments, we used a corpus in the computer manual domain. Sub-

sequently, we will refer to this corpus as the HIT corpus, since it was prepared by

the Harbin Institute of Technology. We consider this HIT corpus special because

it comes with manual word alignment, which refers to word-level correspondences

between the source and target sentences assigned manually by human annotators.

To the best of our knowledge, the HIT corpus represents the largest manually

word-aligned corpus available to the research community as of this thesis writing.

Table 4.1 shows a snapshot of one sentence pair with its annotation from the corpus,

which has been used as our running example.

Following the standard open-test setup, we divided this corpus into three

sets: the training set, the development set and the testing set. We randomly as-

signed the sentence pairs of each set, except that we forbid the sentences longer

than 30 words to be assigned to the development and the testing sets. In our exper-

iments, we used the training and the development sets to estimate the parameters

and the weighting factor of each proposed model, respectively. We evaluated the

performance of each proposed model on the testing set and reported the figure as

the final evaluation result. Table 4.2 shows the statistics of each individual set.
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a/1 form/2 is/3 a/4 collection/5 of/6 data/7 entry/8 fields/9 on/10 a/11 page/12

,\/1 4/2 ��/3 Þ/4 {/5 jâ/6 Q�/7 ­/8 {/9 ø\/10

(2:1); (3:2); (5:10); (6:9); (7:6); (8:7); (9:8); (10:4); (12:3);

Table 4.1: A snapshot of HIT corpus. The first line refers to the English sentence,
the second line to the corresponding Chinese sentence, while the third line to the
word alignment. The word alignment takes the format of (i :j ) where i refers to the
position of the English word while j to the position of the aligned Chinese word.

Note that the size of the testing and development sets is almost identical to

the standard corpora, although the size of the training set is smaller. Of course, we

expect to train the statistical models on a larger set of training set but we think

that this corpus is adequate for our purpose since the parameter size of our models,

as we will show later, is independent of the corpus size and we only focus on a

small set of very frequent words. The size of the training data is arguably also

appropriate for the baselines model (described shortly) since the vocabulary size of

our corpus is relatively modest (around 4,000 words).

Number of Number of words
sentence pairs Chinese English

training (train) 7,000 145,731 135,032
development (dev) 1,000 13,986 14,638
testing (test) 2,000 27,732 28,490

Table 4.2: Statistics of the HIT corpus.
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4.1.1 Gold Standard Function Words

In addition to the manually word-aligned corpus, we also obtained a list of genuine

Chinese function words, which is hereafter referred to as the gold standard func-

tion words. We asked a linguist to manually extract this gold standard list from

(Howard, 2002), which contains over 1,000 regularly used Chinese function words.

Throughout the thesis, we use this list extensively for experiments and eval-

uations. In particular, we use this list in the upcoming pilot study for assessing the

feasibility of the idea of using function words for reordering. Furthermore, we use

this list to measure the benefit of having a genuine list of function words on the re-

ordering quality in Chapter 6. Finally, we use this list to evaluate the performance

of our upcoming approximation to the FWORDER component in Chapter 8.

4.2 Two Scenarios: Perfect Lexical Choice and

Full Translation Task

Although we focus on the reordering task, we are also interested in evaluating

our proposals on the real translation task where the F W S approach has to deal

with lexical-related ambiguities and noisy word alignment. Thus, we devise two

scenarios: perfect lexical choice and full translation task, where the first scenario

reflects our focus on the reordering task while the second one reflects our interest

on the translation task.

In the perfect lexical choice scenario, the task is to rearrange the target

sentence which is originally translated in the source language order into the target

language order. In the context of the Chinese to English translation, the task is to

recover the correct order of the English sentence from the scrambled Chinese order.

In this scenario, we fully utilize the manual word alignment available in the HIT

corpus in training the model parameters. To ensure the absence of lexical-related
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ambiguities and out-of-vocabulary problem, we construct the phrase translation

table (which would become the terminal rules, i.e. Rules 3.2-3.3 in the head-driven

SCFG) from the alignment available in the testing set at the individual word level,

such that each word in the test set has exactly one possible lexical mapping – the

correct one. Note that in this scenario, we create the phrase translation table for the

development set in the same way. The absence of lexical-related ambiguities also

suggests that all the standard phrase-based features are turned off during decoding

time. We want to emphasize that even though it seems that we use the testing set

for the construction of the phrase translation table, the final evaluation results still

reflect a valid open test, since we train all other pertinent models entirely on the

training set.

Moving to the full translation task scenario, the task is more complex as our

proposed F W S approach has to deal with lexical-related ambiguities, representing

a real world translation task. Taking only the source sentence as input, the F W S

approach not only has to reorder the sentence into the target language order but

also has to find the appropriate translation for each source word. In this scenario,

we ignore the manual word alignment and rely on the automatically-obtained one

in training all the models parameters including the phrase translation table.

To automatically construct the word alignment, the standard procedure typ-

ically adopted by other phrase-based models is run. First, the automatic word

aligner GIZA++ (Och and Ney, 2003) is used to extract two uni-directional word

alignments over the training data: one from Chinese to English and the other

from English to Chinese. The two alignments are post-processed using the “grow-

diag-final-and” heuristic (Koehn et al., 2005) to form a symmetrical bi-directional

alignment. All the proposed models including the phrase translation table are all

trained on this symmetrized alignment.

Unlike the first scenario, each word in the testing set is now potentially
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subject to out-of-vocabulary, lexical mapping as well as segmentation ambiguity

problems. That is, one Chinese word may or may not have an English translation;

it can belong to many different segmentations and each segmentation can have more

than one possible lexical mapping.

These ambiguities complicate not only the reordering process but also the

evaluation and especially the error analyses. Specifically, they make it difficult to

pinpoint the exact cause of the the performance increase (or drop), simply because

too many factors are involved. To work around this issue, we follow Chan et al.

(2007). The idea is to use the intermediate results (p+, p−, p0) produced by the sign-

test comparing a system against a baseline. The p+ refers to the sentences where

the system performs better than the baseline, p− refers to the sentences where the

system performs worse than the baseline, while the p0 refers to the sentences where

the system and the baseline perform equally well.

To perform the sign-test, we follow (Collins, Koehn, and Kucerova, 2005).

Specifically, we start by calculating the BLEU score for the baseline system and

continue by substituting one sentence in the baseline with the corresponding sen-

tence in the system output. We classify the sentence into the p+, p− or p0 if the

BLEU score of the new set is better than, worse than or equal to the BLEU score

of the baseline. We do this procedure for every sentence in the testing set, by

keeping all other sentences the same. For analysis, we look at the sentences in

p+ and p− to assess whether the changes we propose affect the performance posi-

tively or negatively. As such, we consider our proposal contributes positively if the

changes appear more in p+ than in p−. Although stronger analysis is needed to

make a more rigorous conclusion, we consider such analysis provides an adequate

indication about the positive (or negative) contribution of our proposal.

For all experiments, we used the publicly available SRILM-Toolkit (Stolcke,

2002) in its default setting to train a trigram language model over the English side
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of the training data. We also ran David Chiang’s implementation of the minimum

error rate training procedure (Och, 2003) over the development set to estimate the

weighting factor, i.e. λ in Eq. 3.19.

4.3 Baselines

In order to meaningfully evaluate our proposed models, it is useful to have baseline

systems to situate the evaluation results. We describe the baseline systems below

and report their performance in the upcoming appropriate chapters. To facilitate

a fair comparison, we define the standard settings which are used consistently not

only by the baseline systems but also by our proposed system. The shared settings

are as follows: 1) the maximum beam size = 100; 2) the maximum number of words

in a phrase translation unit (also in a hierarchical phrase translation) = 5; and 3)

the bi-directional alignment heuristic = “grow-diag-final-and”.

4.3.1 Pharaoh

Pharaoh (Koehn, 2004a) represents the first state-of-the-art phrase-based system.

This system employs the distortion penalty model as its reordering model (Koehn,

Och, and Marcu, 2003), taking the following penalty-based formula:

d(a, b) = e|ai−bi−1−1| (4.1)

where a and b are the current and the previous translated English phrases, respec-

tively; while ai is the start position of a in the Chinese sentence and bi−1 is the end

position of b in the Chinese sentence. This model basically penalizes those non-

monotone reorderings that digress from monotone reordering. Although simple,

this system performs comparably well in many translation competitions (Koehn

and Monz, 2005; Koehn and Monz, 2006). For the full translation task scenario,
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we use the off-the-shelf decoder, while for the perfect lexical choice scenario, we

faithfully integrate the distortion penalty model into our decoder. Also, in the ex-

perimental section of Chapter 5, we use Eq. 4.1 as an evaluation metric and report

the log value of d of the whole testing set as dist. We use this metric to indicate

the aggressiveness of a system in reordering the input sentences, where high value

indicates an aggressive reordering.

4.3.2 Moses

Moses (Koehn et al., 2007) is a direct replacement of Pharaoh, representing the

current state-of-the-art phrase-based model. This system incorporates a more ad-

vanced reordering model, which pays attention to the lexical identity of the phrase

being moved (a), similar to the unigram lexicalized reordering model (Tillman,

2004). In particular, the reordering model of Moses takes the following form:

P (orientation|lex(a)) (4.2)

where lex(a) is the lexical identity of the phrase being moved and orientation is

one of these three orientation values: monotone, swap and discontinuous, which are

analogous respectively to the Left, Right and Neutral values, described in Section

2.2. Note that we can only fairly produce the performance of this baseline system

in the full translation task scenario, since in the perfect lexical choice scenario, the

definition of a and b is fixed at the word level, which makes the extraction of the

orientation value less reliable.

4.3.3 Hiero

The Hiero model (Chiang, 2005) represents the state-of-the-art syntax-based sys-

tem. It has performed significantly better than the phrase-based system and com-

parably better than other syntax-based systems (Chiang, 2007). Hiero represents
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a strong baseline for syntax-based models as the rank (the number of nontermi-

nals on the RHS) of Hiero rules can extend effectively to five if lexical items are

considered as (pseudo) nonterminals, which is higher than the rank of any other

formally syntax-based models, including our proposed approach. Following the

original setting, we specify the maximum length of the Hiero’s initial phrases to 12

and maximum number of lexical items in the sub-phrases to 5. Note that although

desirable, the performance for this model cannot be extracted for the perfect lexi-

cal choice scenario because the phrase translation table contains only single word

mappings, from which no hierarchical rules can be extracted.

4.4 A Pilot Study

Here, we want to assess the feasibility of our proposed function word idea on the

HIT corpus. We seek to do so by examining how often function words are involved

in non-monotone reorderings. We concentrate only on these cases since only in such

cases, phrases need to be reordered.

To facilitate this pilot study, we first develop simple approximations to the

FWID and the ARGSEL components. As a reminder, the FWID component is re-

sponsible for generating a function words list, based on which a phrase translation

unit is labelled; while the ARGSEL component is responsible for assigning the ap-

propriate arguments for a certain function word. In particular, we introduce the

most-frequent heuristic as the approximation to the FWID component which equates

function words to the N most frequent words; and the immediate-neighbor heuristic

as the approximation to the ARGSEL component which assumes that a function word

only influences their immediate arguments (thus L and R in Rule 3.1). In this pilot

study, we take full advantage of the manual word-alignment available in the HIT

corpus so that the non-monotone reorderings measured resemble true phenomena

in real languages.
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a_form is a_coll of data entry fields on a_page

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Figure 4.1: The running example that is partitioned into a sequence of max-mono
phrase translations. A max-mono phrase translation is indicated by one rectangular
box.

We start this pilot study by first segmenting the sentence pair into a sequence

of maximum monotone phrase translations (max-mono in short), which refer to

those phrase translations which internal word alignments are all monotone and

cannot be merged with any other phrase translations without violating the all-

monotone constraint. Fig. 4.1 illustrates how the running example is segmented

into a series of max-mono phrase translations. Note that we attach unaligned

words consistently to the left phrase translation when possible. In this study,

we consider two consecutive max-mono phrase translations as one case of non-

monotone reordering.

In total, there are 6,244 non-monotone reorderings in the testing set. We

consider a function word involved in a case of non-monotone reordering only if the

bordering words contain the function word. We define bordering words as follows:

suppose a is the current max-mono phrase translation and b is the preceding max-

mono phrase translation, then the bordering words are the union of those words

that range from b’s last aligned word to b’s last word and those words that range

from a’s first word to a’s first aligned word. For instance, the bordering words of

the third Þ { (on) and the fourth jâ Q� ­ (data entry fields) max-mono

phrase translations are Þ (on), { (a Chinese particle) and jâ (data).
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N #involvement % avg phrase length avg phrase length
when not involved when involved

1 2,017 32.30 5.23 5.91
4 3,727 59.69 5.09 5.7

16 4,706 75.37 4.55 5.75
64 5,610 89.85 3.68 5.65

128 5,942 95.16 3.14 5.57
256 6,115 97.93 2.92 5.5

gold (318) 5,387 86.28 4.07 5.67
1,024 6,232 99.81 2.08 5.45

all (2,352) 6,244 100 - 5.45

Table 4.3: Statistics of non-monotone reordering cases where function words are
involved.

Table 4.3 shows the statistics of non-monotone reorderings that are influ-

enced by function words. In this pilot study, we consider two types of function

words: 1) function words that are obtained from the gold standard list; and 2)

function words that are obtained from the most-frequent heuristic with different

cut-off value N – thus function words are the top N most frequent words in the

corpus.

As shown in Table 4.3, the number of non-monotone cases involving function

words is very high. If the gold standard function words are used, function words

are involved in more than 86% of cases. The proportion is also high when the

function words used are estimated from simple most-frequent heuristic. Some of the

function words that are involved in non-monotone reordering include the following

function words: � (for), { (of), t (to) and ó (at), which are also involved in

the transformational rules defined in (Wang, Collins, and Koehn, 2007).

As for the remaining cases, a closer inspection reveals that non-monotone

cases which do not involve function words mostly consist of base noun phrase con-

structions or adverb-verb constructions. For instance, no function word involves in
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the translation of the following Chinese noun phrase which consists of two words:

C, (chart) ¡n (type,kind) to “a kind of chart”. Similarly, no function word

involves in the translation of �Ä (automatically) éÄ (start) to “start automat-

ically”.

In such cases, we appeal to the strength of the phrase-based approach since,

as shown in Table 4.3, the average length of a and b combined is less than the maxi-

mum phrase length we set for our experiments. Nevertheless, the high proportion of

non-monotone reordering cases which involve function words strongly supports our

idea of using function words as the basis to address the reordering task, confirming

the feasibility of the proposed F W S approach.
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Chapter 5

The Basic F W S Model

In this chapter, we introduce the basic Function Word, Syntax-based (F W S)

model, which serves as a natural starting point for the development of our func-

tion word reordering idea to the syntax-based framework. In developing this basic

model, we essentially want to demonstrate the potential of the F W S approach by

developing some simple approximations for all the five components of the F W S

approach described in Chapter 3 and evaluate its performance through intrinsic

and extrinsic evaluations.

The outline of this chapter is as follows. We first describe the exact grammar

formalism for the basic F W S model in Section 5.1, influenced by the use of the

immediate-neighbor heuristic as the approximation to the ARGSEL component.

We then develop the approximations to ARGORI, FWORDER and ARGCOH components

in Section 5.2. We revisit the roles of these components when we discuss their

approximation.

As for the approximations to the FWID component which main responsibility

is to identify function words, we reuse the most-frequent heuristic. Thus, func-

tion words are equated with the top N most frequent words in the corpus. Like the

immediate-neighbor heuristic, the most-frequent heuristic have been described
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a_form is a_collection of data entry fields on a_page
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Figure 5.1: An illustration of how words move when translated.

and used in Section 4.4 about the pilot study. Subsequently, we discuss the param-

eter estimation method in Section 5.3. We report experimental results in Section

5.4. Finally, we end with error analysis of the result and a discussion in Section

5.5.

For illustrations, we use the same running example as in the previous chap-

ters, which we copy here for browsing convenience as Fig. 5.1.

5.1 The Grammar

Here, we discuss the head-driven SCFG rewrite rules used by the basic F W S

model. The head-driven SCFG rules used by the basic F W S model are shaped

by the immediate-neighbor heuristic which is the model’s approximation to the

ARGSEL component. Recall that this component is responsible for assigning the

appropriate arguments for a particular function word. This heuristic, introduced in

Chapter 4, specifies that the arguments of a head can only be the head’s immediate

neighbors, i.e. its left or right neighbors.

This immediate-neighbor heuristic sets the parameters L and R of Rule 3

to be at most 1, constraining the influence of Y only to either or both X−1 and X+1 .



55

Given this constraint, the non-terminal rules of the head-driven SCFG consists of:

X(h−1, hY , h+1) → 〈X−1(h−1) Y (hY ) X+1(h+1), α,∼〉 (5.1)

X(h−1, hY ) → 〈X−1(h−1) Y (hY ), α,∼〉 (5.2)

X(hY , h+1) → 〈Y (hY ) X+1(h+1), α,∼〉 (5.3)

X(hY ) → 〈Y (hY ), α,∼〉 (5.4)

where the subscripts of the arguments indicate the arguments’ position on the

source side with respect to the head (Y ) as described earlier in Section 3.1. In

short, the positive (+) and negative (-) signs indicate that the arguments are on

the left and the right of Y respectively, while the number indicates the distance

between the arguments and the head.

As shown, this heuristic allows four different rewrite rules. Rule 5.1 models

cases where the function word would influence the reordering of both its left and

right arguments. Meanwhile, Rules 5.2 and 5.3 model cases where the function word

only influences one argument, i.e. the left and the right one respectively. Finally,

Rule 5.4 models cases where the function word doesn’t influence any argument,

which useful in cases where there are two competing function words appear next to

each other thus one has to become the argument of the other.

In addition to Rules 5.1-5.4, the basic F W S model also uses all other head-

driven SCFG rules, i.e. Rules 3.2-3.4, as well as the back-off rule i.e. Rule 3.5, that

are sketched in Chapter 3. The α,∼ pair in the rules represents the target language

ordering, which will be determined by our upcoming approximation to the ARGORI

component.

Note that our decoder is a CKY-style decoder, which requires all the rules to

have the rank at most two. Since the rank of Rule 5.1 is three, we have to binarize

the rule into several intermediate rules. Since the intermediate binarized rules can

be reduced to either Rule 5.3-5.2, we reuse the above rules and attach an extra



56

information to indicate whether the rules are the final rule with rank two or the

intermediate rules to be merged to form rules of rank three. Appendix A provides

a more detail description of the decoding algorithm, including how to emulate rules

of rank higher than two. In retrospect, the basic F W S model uses the Bracketing

Transduction Grammar (BTG) similar to the Bruin model ((Xiong, Liu, and Lin,

2006; Deyi Xiong and Lin, 2008)), in the sense that both in essence consists the

BTG’s straight and inverted rules.

5.2 Statistical Models

In this section, we develop the statistical models for the ARGORI, FWORDER and

ARGCOH components. As a recap, the ARGORI component is responsible for assigning

the target language ordering (α,∼). the FWORDER component is responsible for

deciding the order of rule’s application, and the ARGCOH is responsible for rewarding

or penalizing a certain span of text based on whether it will be translated coherently

or not. We will start from the development of the ARGORI, FWORDER and finally

ARGCOH components. These three resulting models will be come three separate

features in the log-linear formula described in Eq. 3.19.

5.2.1 Orientation Model

We call our approximation to the ARGORI component, which responsibility is to

assign the target language order of source phrases, as the orientation model (ori).

In this model, we put our function word idea into practice by first developing

pORI function. Specifically, we define pORI as a function that takes two inputs – a

function word and its argument – and outputs the argument’s new location relative

to the function word’s position.

For the output, we adopt orientation values similar to those in (Nagata et
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al., 2006), with the exception that due to a different decoding process, the values

here refer to the orientation in the target sentence. As a case in point, we use X+1

(the first neighbor to the right of Y ) in the following discussion. But, this definition

is generalizable to other arguments at other locations since the orientation value is

symmetric, i.e. the same value still holds even if the positions of the function word

and the argument are swapped.

Formally, the pORI function takes the following form:

pORI(Y,X+1) = o, where o ∈ {MA,RA,MG,RG} (5.5)

mapping Y and X+1 into one of four different orientation values:

• Monotone-Adjacent (MA): Y and X+1 are in the same order as the source

side and there is no intervening phrase between them.

• Reverse-Adjacent (RA): Y and X+1 are in inverse source order and there is

no intervening phrase between them.

• Monotone-Gap (MG): Y and X+1 are in the same order as the source side

but there is an intervening phrase between them.

• Reverse-Gap (RG): Y and X+1 are in inverse source order but there is an

intervening phrase between them.

Basically, the four orientation values are the combination of directionality

(i.e. Monotone or Reverse) and adjacency aspect (i.e. Adjacent or Gapped). The

directionality aspect refers to whether the function word and its argument maintain

the source language order, while the adjacency aspect refers to the presence (or the

absence) of an intervening phrase between the function word and its argument in

the target language. Fig. 5.2 illustrates the four orientation values.

Table 5.1 shows the distribution of the pORI values for the some of the most

frequent words in the HIT corpus, including those words that are involved in the
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target
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Figure 5.2: An alignment matrix to illustrate the four orientation values, defined
in the text. Each gray box represents a phrase translation.
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Rank Word
X−1 X+1

MA RA MG RG MA RA MG RG

1 { 0.45 0.52 0.01 0.02 0.44 0.52 0.01 0.03
2 Ç 0.85 0.12 0.02 0.01 0.84 0.12 0.02 0.02
3 � 0.99 0.01 0.00 0.00 0.92 0.08 0.00 0.00
4 � 0.87 0.10 0.02 0.00 0.82 0.12 0.05 0.02
5 � 0.84 0.11 0.01 0.04 0.88 0.11 0.01 0.01
6 Z 0.95 0.02 0.01 0.01 0.97 0.02 0.01 0.00
7 �Ö 0.73 0.12 0.10 0.04 0.51 0.14 0.14 0.20
8 ,1 0.78 0.12 0.03 0.07 0.86 0.05 0.08 0.01
9 Ý 0.95 0.02 0.02 0.01 0.96 0.01 0.02 0.01
10 R 0.87 0.10 0.01 0.02 0.88 0.10 0.01 0.00
21 4 0.85 0.11 0.02 0.02 0.85 0.04 0.09 0.02
37 Þ 0.33 0.65 0.02 0.01 0.31 0.63 0.03 0.03
- U 0.76 0.14 0.06 0.05 0.74 0.13 0.07 0.06

Table 5.1: Orientation statistics of selected frequent Chinese words in the HIT
corpus. U denotes the universal token. Dominant orientations of each word are in
bold. The list is ranked according to the token’s unigram probability.

running example. We will describe the exact method to compute these statistics

in the subsequent section but discuss the statistics here. To some extent, these

statistics reflect our linguistic intuition about the syntactic difference that may be

encoded in function words. For example, the orientation statistics for 4 (to be)

overwhelmingly suggest that the grammar should preserve the Chinese order when

translating the arguments of the copula, reflecting the fact that the copula has

the same role in both languages, i.e. joining the left and the right noun phrases.

Meanwhile, the orientation statistics for the wordÞ (on) suggest that the grammar

should reorder the argument in the inverse Chinese order, reflecting the shift from

Chinese postposition construction to the English preposition one. Similarly, the

dominant orientation for the particle { (of) is equal to the noun-phrase shift from

modifier-modified to modified-modifier, which is common when translating Chinese

noun phrases into English.

Table 5.1 also includes a special token (U), which will be subsequently re-

ferred to as the universal token. Recall that this universal token is the token
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propagated by the head-driven SCFG when it promotes an argument to take the

role of a head, as modelled by Rule 3.5. We design the statistics of this token to

capture the orientation statistics at aggregate level, representing the tendency of

a word in the source language in reordering its neighboring phrases to a certain

orientation when translated to the target language. As shown in Table 5.1, the

universal token’s statistics strongly suggest that the English sentence should pre-

serve the Chinese language order most of the time – a similar preference as the one

reported by (Nagata et al., 2006). For our approach, this information is invalu-

able, particularly in cases where no function word is involved and some reordering

decisions must be made.

Once the pORI function is defined, the development of the orientation model

is straightforward. Taking Rule 5.1 as a case in point, we define the orientation

model (ori) of that rule as:

ori(X(h−1, hY , h+1) → 〈X−1(h−1) Y (hY ) X+1(h+1), α,∼〉) =

P (pORI(X−1, Y )|Y, pORI(X+1, Y ))× P (pORI(X+1, Y )|Y, pORI(X−1, Y ))

(5.6)

where the orientation model score for Rule 5.1 consists of two factors: the prob-

ability of X−1’s orientation given X+1’s orientation and the probability of X+1’s

orientation given X−1’s orientation. Conditioning the model on the other argu-

ment’s orientation is necessary to prevent the orientation model from allocating

probability mass to already occupied locations. The orientation model score for

Rules 5.2 and 5.3 share the same basic principle except that since these rules only

have one argument, its orientation model score only depends the probability of its

argument’s orientation.
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5.2.2 Preference Model

We develop the preference model (pref) as an approximation to the FWORDER com-

ponent. Given two rules, the primary responsibility of this model is to arbitrate

which rule should take precedence, i.e. to have a higher position in the hierarchical

structure. The preference model performs the arbitration in a simple manner by

looking at the frequency information of the heads of these two rules. More con-

cretely, this model gives precedence to higher frequency words, ensuring that they

always have the maximum number of arguments.

The intuition behind this model is that more frequent words have more

reliable statistics than less frequent ones, thus they should be given priority to

reorder more arguments. Taking Rule 5.1 as a case in point, we approximate its

preference model score as:

pref(X(h−1, hY , h+1) → 〈X−1(h−1) Y (hY ) X+1(h+1), α,∼〉) = uni(hY ) (5.7)

where uni is a function that outputs the unigram probability of a token. The

preference model score for all other rules are similar.

5.2.3 Phrase Boundary Model

We develop the phrase boundary model (pb) as a simple approximation to the

ARGCOH component. The responsibility of this model is to check whether a termi-

nal rule emits a coherent argument, i.e. the internal words stay or move together.

In general, the definition of coherent argument depends on many linguistic-related

factors, such as whether the arguments have the same syntactic category across the

two languages.

In this basic model, we propose a simple approximation by employing a shal-

low linguistic analysis via a text chunker. The idea is that coherent arguments tend

to occupy spans of text that observe the syntactic boundary of the source language.
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a_form is a_coll of data entry fields on a_page

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Figure 5.3: The running example which is annotated with syntactic boundary in-
formation. A syntactic phrase is illustrated as a sequence of Chinese words in a
rectangular box.

Fig. 5.3 shows the running example annotated with chunking information.

We develop this phrase boundary model as a penalty-based model, soft con-

straining the phrase translations to conform the source constituent boundary. The

pb model only applies to terminal rules (Rule 3.2) and takes the following form:

pb(X → 〈e, f〉) =





0 if the rule emits a syntactic Chinese phrase

−1 otherwise

(5.8)

Note that in this model we relax the knowledge-poor assumption as we are only

seeking for a simple approximation but we intend to seek a knowledge-poor solution

in the future.

5.3 Parameter Estimation

This section focuses only on the extraction of the terminal rules of the head-driven

SCFG and the parameter estimation for the orientation and the preference models,

since the parameters for the phrase boundary model can be estimated directly

from the output of a standard text chunker. In our experiments, we use (Chen,

Zhang, and Isahara, 2006). We train the orientation and preference models from the
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statistics of the training data by first deriving the event counts and then computing

the relative frequency for each event.

Since the nonterminal rules are pre-defined, we only need to extract the ter-

minal rules (i.e. Rules 3.2-3.3) from parallel data. To do so, we use the standard

method employed by the phrase-based models, which relies on the consistent align-

ment heuristic. The detail of the heuristic has been discussed in Chapter 2 and

copied below for browsing convenience.

PT (fJ
1 , eI

1, A) = (f j+jj;
j , ei+ii

i ) : ∀(i′, j′) ∈ A : j ≤ j′ ≤ j + jj ↔ i ≤ i′ ≤ i + ii

(5.9)

where PT stands for phrase translations, fJ
1 and eI

1 are the source and target

sentences of length J and I respectively, A is a set of alignments (i′, j′) between fJ
1

and eI
1 and i and j are used to indicate source and target word indexes respectively.

The consistent alignment heuristic basically specifies that a source phrase (f j+jj
j )

of length jj and its translation ei+ii
i of length ii is a valid phrase translation if the

source phrase is only aligned with the words inside its translation. For the perfect

lexical choice scenario, the length of the source phrase (jj) is limited to 1, while in

the full translation task scenario, it is limited to a certain predefined number.

The parameter estimation for the orientation model involves harvesting statis-

tics of (f/e, o) tuples for each source and target translation pair f/e where o ∈ {MA,

RA, MG, RG} is the orientation value of an argument. We pair f with its trans-

lation e in the hope that such a pairing would capture the different role f may

have. For instance,{ can act either as a noun phrase or as a prepositional marker.

Apparently, the translation of { would be different in each case. More concretely,

it translates to “of” if it acts as a noun phrase marker just as { at position 5 in

the running example, or it translates to nothing if it acts as a prepositional phrase

just as { at position 9 in the running example. Additionally, we restrict the defi-

nition of f only to word level to alleviate data sparsity concern. The distribution



64

in Table 5.1 is computed by marginalizing f over its all possible translations.

These tuples unfortunately are not directly observable in parallel corpora.

Thus here, we develop an algorithm to estimate the unseen events of (f/e, o). To

refer to the counts of the unseen events, we use the term soft count to refer to

the counts of unseen events that are obtained via a heuristic; as opposed to the

hard count that is computable only if the events (in this case, the annotation

about arguments) are observable. Note that for the basic F W S model, we must

extract two (f/e, o)s: one for the left and one for the right argument; however, we

omit references to them since both left and right statistics share identical training

steps. In fact, the same procedure is generalizable to all other arguments at other

locations.

As input, the algorithm expects parallel corpora with word-to-word align-

ments, obtained from either manual annotation or an automatic process. Then,

given an enumeration of all words in the corpora, it hypothesizes the left (X−1)

and the right (X+1) arguments of each f/e. This is done by using a heuristic called

Maximum Consistent Alignment (MCA), which is exactly the same as the

consistent alignment heuristic (Och and Ney, 2004) traditionally used to construct

the phrase translation table, except with the additional “maximum” condition. We

add the “maximum” condition since we are only interested in the largest consistent

phrase translations, as such each f/e has exactly one unique argument to its left

and to its right.

Additionally, the “maximum” condition helps to prevent overestimating the

gapped orientation (MG or RG) is not incorrectly suggested, which is important

to prevent many false non-monotone reorderings. Fig. 5.4 illustrates the case where

a loose definition of argument will lead to a different orientation value. Suppose we

want to extract the (f/e, o) for the left argument of the last function word { (of),

then defining only the neighboring word ­ (fields) as f/e’s left argument would
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result in the gapped orientation as illustrated in Fig. 5.4b with the phrase jâ

Q� (data entry) considered as a gap. In contrast, the MCA heuristic correctly

suggests the desired adjacent orientation since it considers the whole neighboring

phrase jâQ�­ (data entry fields) as f/e’s left argument, as illustrated in Fig.

5.4a.

of

data

entry

fields

of

data

entry

fields

RA

(a) (b)

RG

Figure 5.4: Illustrations of the correctly learnt (part a) and the incorrectly learnt
(part b) arguments of the function word {(of). The arguments are indicated by
the thickly outlined rectangular. The correct orientation, which is RA, is suggested
if the MCA (the box in part a) is used. The incorrect orientation, which is RG, is
suggested if only the immediate neighboring word (the box in part b) is used.

Once the arguments are estimated, the o value can be directly extracted by

inspecting the directionality (Monotone or Reverse) and the adjacency aspects (Ad-

jacent or Gapped) of the arguments with respect to their corresponding f/e. Con-

cretely, both the head and its argument are phrase translations. Formally, suppose

the head is f j2
j1

/ei2
i1

while the argument is f j4
j3

/ei4
i3
, then in terms of directionality, the

argument’s orientation is monotone if i2 < i3 and reverse if i1 < i4, while in terms of

the adjacency, the argument’s orientation is adjacent if (|i3−i2| == 1∨|i1−i4| == 1)

and gapped if (|i3 − i2| 6= 1 ∧ |i1 − i4| 6= 1).
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We record the occurrences of each particular (f/e, o) as their soft counts

C(f/e, o). Once all f/es have been enumerated and their corresponding soft counts

C(f/e, o)s are available, we can estimate the orientation model for a particular f/e

and the universal token U using the maximum likelihood principle as follows:

P (o|f/e) = C(f/e, o)/C(f/e, ·), Rank(e) ≤ N (5.10)

P (o| U) =
∑

Rank(e)>N

C(f/e, o)/
∑

Rank(e)>N

C(f/e, ·) (5.11)

Samples of these statistics are in Table 5.1 and applicable to the running example.

Meanwhile, the parameter estimation for the preference model is simple,

since the event of interest is directly observable. Given the unigram counts C(e),

we estimate the preference model for f/e and U as follows:

uni(e) = C(e)/C(·), Rank(e) ≤ N (5.12)

uni(U) = 1/(|V | −N)
∑

Rank(e)>N

C(e)/C(·) (5.13)

where |V | indicates the vocabulary size and Rank is a function that outputs the

rank of a word based on its unigram probability. Note that in estimating the

preference model, we are only interested in the source language side f of the head.

5.4 Experiments

In inquiring the potential of the F W S approach, we performed experiments with

these three specific purposes: 1) to study how well we approximate the ARGORI

component, 2) to study how our approximation affects the reordering quality, and

3) to evaluate the performance of the system in the full translation task. To achieve

this purpose, we evaluated the basic F W S model against the Pharaoh system1

1We provide the performance of the stronger baselines in the later chapters, since here we only
probe the feasibility of the F W S model.
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using intrinsic and extrinsic evaluations, namely pORI-acc and BLEU respectively.

The pORI-acc evaluates the basic F W S with regard to how well the model approx-

imates the pORI of the function words’ left and right arguments, while the BLEU

score evaluates the basic F W S with regard to how well the translation output

matches a reference translation. Here, we report the pORI-acc as the aggregate for

all the words in the corpus and the BLEU score as the case insensitive BLEU-4.

Besides these two metrics, we also used dist, which we mention in Section 4.3.1,

to indicate how aggressive a system is in reordering the input sentences, i.e. the

higher the value the more aggressive the system is. For pORI-acc and dist met-

rics, manual word alignment is essential. We use the methods described in Section

4.2 to construct the phrase translation tables for these two scenarios. Note that

entries in the phrase translation unit serve as terminal rules (Rules 3.2-3.3) in the

head-driven SCFG.

5.4.1 Perfect Lexical Choice

Here, the task is to recover the correct order of the English sentence from the

scrambled Chinese order, free from lexical-related ambiguities. We fully utilized the

manual word alignment provided by the HIT corpus to train the model parameters.

Table 5.2 compares pORI-acc and BLEU between the basic F W S model and

the baseline. As shown, we report several baseline models, which are all in N = 0

column. The first baseline (mono) represents a system that employs the distortion

penalty model only, preferring monotone reordering; while the second baseline (d)

represents a system that emulates the Pharaoh system, coupling together the lan-

guage model and the distortion penalty model. The third baseline (ori, N = 0)

represents a system that relies only on the language model component, which is

equivalent to our basic F W S with no active head. From this model, we study

the behavior of the F W S model with different numbers of heads N . To identify
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N= 0 1 4 16 64 128 256 1,024
p
O
R
I
-
a
c
c mono 66.39

d 73.52
ori 64.66 76.40 76.59 77.35 77.94 78.89 79.53 79.63

ori+pref 76.34 76.69 77.28 77.89 78.45 78.99 78.96
ori+pref+pb 76.33 76.74 77.34 77.82 78.43 78.87 78.96

B
L
E

U

mono 68.88
d 76.46

ori 68.39 77.68 77.78 78.44 79.00 79.58 80.11 80.07
ori+pref 77.77 78.23 78.65 79.41 79.69 80.07 80.17

ori+pref+pb 77.77 78.28 78.67 79.46 79.78 79.99 80.24

Table 5.2: Results using manual word alignment input. Here, the baselines are in
the N = 0 column; ori, ori+pref and ori+pref+pb are different F W S configura-
tions. The results of the model (where N is varied) that features the largest gain
are in bold, whereas the highest score is italicized.

the heads, we apply the most-frequent heuristic, developed in Chapter 4, which

equates the top N most frequent words as heads. Starting with the language model

alone (N=0), we incrementally add the orientation (ori), preference (ori + pref)

and phrase boundary models (ori + pref + pb).

As shown in Table 5.2, the lowest performing system is the third baseline

(ori,N = 0) which relies only on the language model component. A closer inspec-

tion on the translation output suggests that the language model component tends

to recommend non-monotone reorderings aggressively . Such a tendency hurts the

performance, since in the reference, the majority of reorderings (66.39%) are mono-

tone reordering as indicated by pORI-acc of the mono system. Thus, including a

distortion penalty model that discourages non-monotone reorderings increases the

accuracy to 73.52% as shown in row d. The dist value in Table 5.3 gives the

same insight, indicated by the dist value of the third baseline which is much lower

than the ground truth value. Table 5.3 also shows that incorporating the distortion

penalty model curbs the aggressivity of the language model.
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N= 0 1 4 16 64 128 256 1,024
mono 0

d 11,790
ori 35,182 19,238 18,928 20,752 21,868 23,214 23,784 23,988

ori+pref 20,166 20,556 21,104 20,816 21,632 21,270 20,826
ori+pref+pb 19,980 20,208 20,778 20,636 21,242 21,078 20,564
ground truth 31,789

Table 5.3: The dist value of all the systems reported in Table 5.2. The ground
truth is also reported in the last row in bold.

When we incorporate the orientation model, we can see improvements even

by just modeling the most frequent word ({). This model promotes non-monotone

reordering conservatively only around the function word (where the dominant statis-

tic suggests reverse ordering), while promoting monotone reordering in all other

cases. As shown, increasing the value of N leads to greater improvements. Among

these experiments, we obtain the most effective improvement by setting N to 128.

We can obtain additional but marginal improvements by increasing N further. The

highest improvement can be obtained at the expense of modeling an additional

900+ lexical items. Similarly, this trend is also observed for the BLEU score.

Lastly, we study the effect of the preference (pref) and the phrase boundary

(pb) models. Apparently, the inclusion of both statistical models has little effect on

the orientation accuracy, although it improves BLEU consistently – but by only a

small margin. These results suggest that perhaps although both models correct the

mistakes made by the orientation model, they make new errors. We will provide

more detailed error analyses in the last section.

5.4.2 Full SMT experiments

Here, we train all the models on noisy, automatically-obtained word alignment. We

employed the same baseline systems as the ones in the perfect lexical scenario. Note
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that for the second baseline, we employed the Pharaoh’s own decoder. Since the

Pharaoh decoder restricts long-distance reordering, we ran the minimum error rate

training for different distortion limits from 0 to 10 for a fair comparison and only

report the best parameter (dl=5).

For F W S model, we use the phrase translation table similar to the baseline

system and run an identical set of experiments as the perfect lexical choice scenario,

except that we report only the result for N=128 as this value gives the most effective

improvement. Table 5.4 reports the performance in BLEU scores.

The same trend similar to the perfect lexical choice is also observed here,

where the language model is too aggressive in recommending non-monotone reorder-

ings and coupling the language model with the distortion penalty model improves

the BLEU score.

More importantly, the same trend of improvement is also shown by the basic

F W S model over the baseline systems. In particular, the basic F W S model

improves the BLEU score over the baseline and the improvement is statistically

significant at p < 0.01. We also observe the same trend as the one in the perfect

lexical choice scenario for the preference and the phrase boundary models. The

fact that the phrase boundary model yields no noticeable improvement is similar

to the previous findings reported in (Chiang, 2005; Koehn, Och, and Marcu, 2003).

Nevertheless, this set of experiments shows that the simple F W S approach can

perform well even in the experiments with lexical-related ambiguities present.

Table 5.4 also shows the dist value of the systems. As shown, the dist value

of the Pharaoh system is much lower than the basic F W S model, suggesting the

Pharaoh’s bias toward monotone reordering. Note that the dist values here are not

comparable with the ones in the perfect lexical choice since variable-length phrase

translations are used and even may not be comparable to the other values in the

same table. Nevertheless, this value indicates that Pharaoh does not move phrases
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System BLEU dist

mono 21.51 0
ori, N = 0 21.40 43,174

Pharaoh (dl=5) 22.44 7,010

ori 24.92 18,408
ori + pref 25.06 18,304

ori + pref + pb 25.11 17,078

Table 5.4: Results for the full translation task scenario.

as much as it should. To some extent, this is confirmed by our casual inspection

on the Pharaoh output which reveals that some of the reordering mistakes made

by the Pharaoh system are due to its inability to accommodate the long-distance

reordering phenomena. This is partly due to the hard restriction imposed by the

distortion limit parameter but we suspect it is more due to the distortion penalty

model that discourages non-monotone reorderings.

5.5 Discussion

In this section, we provide some in-depth error analysis on the experimental results

to understand the strengths and weaknesses of the basic F W S model. We are

particularly interested in analyzing the output produced by the basic F W S which

parameter gives the most efficient improvement, i.e. N = 128. While such basic

model is able to correctly assign the pORI predicate in 78.89% of cases, it apparently

fails to assign the correct pORI value in 21.11% other cases. Here, we focus on

analyzing these 21.11% cases. The discussion in this section will eventually motivate

the development of the subsequent improved F W S model. In our discussion, we

try to relate the error as much as possible to the five components of the F W S

approach.

Table 5.5 visualizes in a matrix form, the discrepancy between the prediction
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made by the basic F W S model and the ground truth extracted from the manual

alignment. Based on this table and some casual inspections, we discuss our analyses

in the following subsections. The first three subsections discuss the three errors

which will be addressed in the subsequent three chapters, while the last subsection

discusses one other error which we reserve for future work. Note that we always

relate these errors to the components of the F W S approach.

5.5.1 Error 1: the number of heads that support non-monotone

reordering is too few

The overly conservative monotone reordering is as detrimental as the overly aggres-

sive non-monotone reordering. The dist value of the basic F W S model, which

is much higher than the ground truth, indicates that the basic F W S model is

still very conservative in suggesting the non-monotone reordering. Table 5.5 pro-

vides an insight that most of the mistakes are due to the model’s failure to predict

non-monotone reorderings; 77.5% to be more precise (considering all the columns

except the first column). Among these cases, the majority is due to the basic F W S

model’s strong tendency to suggest monotone reordering, which constitutes 57% of

cases (the total of the first row).

We find one possible reason behind such a strong tendency toward monotone

reordering when we inspect the orientation statistics of the words in the head list.

As indicated in Table 5.1, the orientation of most heads strongly prefer monotone

reordering. Among all the heads that support monotone reordering, we find that

most of them are content words, such as �Ö (task) which ranks 7th in Table 5.1.

We suspect that one possible reason behind the overly strong tendency toward

monotone reordering is because there is not enough function words that support

non-monotone reorderings in the top N most frequent words.

Thus, we hypothesize that we can improve the performance further by im-
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proving the approximation of the FWID component. We hope that a better approx-

imation of the FWID component can identify genuine function words that provide

stronger evidences toward non-monotone reordering. We detail our new proposal

for the the FWID component in Chapter 6.

To evaluate the upcoming proposal, we introduce a new metric, which we

call false-mono. This value refers to the number of cases where a system falsely

assigns monotone reordering, obtained by summing the first row of Table 5.5. The

false-mono value for the basic F W S model is 3,245. The goal is thus to reduce

the number of false-mono error.

5.5.2 Error 2: the type of arguments handled by the heads

is too limited

In total, there are 16 possible pairs of orientation value for the left and right ar-

guments of a head with 14 of which are observed as shown in Table 5.5. However,

there are only 6 possible pairs of orientation values that can be accommodated

by the basic F W S model. We refer to these 6 cases as handled cases while the

other 8 cases as unhandled cases. The basic F W S model is essentially an SCFG

which can only emit contiguous phrases on the source and target sides, while on

the other hand, some of the unhandled cases correspond to target phrases that are

non-contiguous. For example, the basic F W S model cannot modelled the orienta-

tion values MA and MG because it is not capable to emit a gap between the head

and the right arguments on the target language side. We illustrate the six cases of

handled argument in Fig. 5.5 and highlight them in Table 5.5 by presenting their

header in bold style.

Apparently, the total number of unhandled argument cases is quite signif-

icant. If we consider the union of the rows and the columns of the unhandled

cases (headers not bolded), it makes up around 36.69% of the total mistakes of the
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Y XX

Y XX

MA MA

Y XX

Y XX

RA RA

Y XX

X YX

MA RG

Y XX

X XY

RG MA

Y XX

X YX

MG RA

Y XX

X XY

RA MG

Figure 5.5: Six combinations of orientation values that can be accommodated by
the basic F W S.

model. In these cases, the model is at the mercy of the language model or other

heads to correctly position the unhandled arguments to the correct position. This

analysis argues for a better approximation to the ARGSEL component, since allowing

more flexible set of arguments (e.g. the second neighbor argument to the left or

the right) would allow the F W S model to accommodate the unhandled argument

cases. We will give more concrete illustrations and propose a new approximation

in Chapter 7.

To evaluate the upcoming new approximation, we introduce a new evaluation

metric, which we call the unhandled-arg. The unhandled-arg counts the number

of errors that is attributed to the arguments unhandled by the immediate-neighbor

heuristic. The value for the basic F W S model is 2,080, obtained by counting the

union of rows and columns which headers are not bolded. The goal is thus to reduce

the number of unhandled-arg.
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5.5.3 Error 3: the estimation of the FWORDER component is

too weak

The basic F W S model develops the preference (pref) model as the approximation

to the FWORDER component. This model hypothesizes that more frequent words

should influence the reordering of more arguments than less frequent ones, thus

appear higher level in the hierarchical structure. However, the experimental result

shows that this model is only able to give marginal improvement over the baseline

F W S model without the preference model.

When we analyze the results, we observe the following. Although there are

some cases where it is beneficial to have the more frequent words to influence more

arguments, there are also some cases where it is detrimental. Fig. 5.6 illustrates

such a case.

In Fig. 5.6, there are four heads involved: �Ö (task), I{ (assign), ý

Í (resources) and � (when); which ranks are 7, 83, 16 and 69 respectively. Out

of these four heads, only the dominant orientation of the fourth function words �

(when) is non-monotone. Arranging the ordering of the heads by unigram statistics

results in Fig. 5.6b, where � (when) is not allowed to take arguments because its

rank is one of the lowest.

A better approximation is clearly needed since such errors are quite common.

A conclusion can be drawn from the inaccuracies of the preference models: the

unigram formulation of the FWORDER component is too weak to suggest the correct

level a head should appear. A better formulation should include more contextual

information, perhaps by incorporating the competing word, i.e. the head word of

the arguments, into the model. We detail our new approximation to the FWORDER

component and a new intrinsic evaluation metric in Chapter 8.
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assign to a_taskresourceswhen_you

1 2 3 4 5

assign to a_taskresources when_you

1 2 3 4 5

#7 #83 #16 #69

#7 #83 #16 #69

(b)

(a)

Figure 5.6: An illustration where the preference model fails to produce the correct
vertical ordering of function words. The heads are Chinese characters in the box
and their ranks are indicated by the number in the box. The node’s label indicates
the head that is currently active reordering its arguments at that level. (a) repre-
sents the correct vertical ordering as a reference. (b) represents the wrong vertical
ordering where the vertical ordering of heads is arranged by the ranks of the heads.
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5.5.4 One other error

Here, we discuss and analyze another type of error that concerns with the weak

approximation of the ARGCOH component. Recall that the ARGCOH component has

two roles, i.e. 1) to penalize those phrase units that do not cohere when translated;

and 2) to reward those phrase translation units that are in the maximum sense. The

basic F W S model develops the phrase boundary (pb) model to approximate the

ARGCOH component. This model equates the coherence of a phrase translation with

whether the phrase translation observes the source syntactic boundary. Apparently,

the result shows that this model only produces marginal improvement over the

baseline model which does not employ the pb model. To understand the underlying

cause, we analyzed the chunking information and compared it with the max-mono

phrase translations which we used in the pilot study in Chapter 4.

In total, the text chunker partitions the test sentences into 21,636 segments,

from initially 27,332 words. When we verified these segments, we found out that

their quality is relatively good, i.e. violating the maximum-monotone constraint

only in 313 cases. However, the number of segments partitioned by the text chunker

is still too large if we compare it with the number of max-mono phrase translations

which is 6,244. This suggests that the pb model may fail to perform its second role

of grouping the words into a maximum coherent unit.

We performed a small experiment to understand the potential of having

perfect information about argument coherence. To do so, we utilized the max-

mono phrase translations but break them into smaller segments if they contain

function words. For instance, if a max-mono phrase translation consists of the

following words “f1f2f3f4” where only f3 is a function word, then we break this

unit into three phrase translations: “f1f2”, “f3” and “f4”. This procedure results

in 23,959 number of segments. For this small experiment, we use the same exact

setting as ori, N = 128, differing only in the phrase translation table. Note that
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unlike the pb model, here, we are imposing the segmentation information. When

we run this experiment, we can achieve 81.10 BLEU point or 1.50 BLEU point

above the baseline model. This result suggests that it is important to find a better

approximation to the ARGCOH model, perhaps by incorporating more sophisticated

linguistic information. We will return to this point again in the last chapter when

we discuss the future work.
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Chapter 6

Function Word Identification

This chapter concerns with improving the approximation of the FWID component,

which responsibility is to identify a list of function words which would become the

heads in the head-driven SCFG. Identifying heads represents the first step in the

F W S model, which needs to be accurate to ensure the success of downstream

processes. In Chapter 4, we introduce the simple most-frequent heuristic which

equates the top N most frequent words in the corpus as function words. This simple

heuristic is also used by the basic F W S model in Chapter 5, allowing the model to

achieve a relative good reordering quality on a Chinese to English reordering task.

However, our error analysis on the output of the basic F W S model in

Section 5.5.1 shows that one of the basic F W S model’s systematic error is due to

the weakness of this simple heuristic. To improve the function word identification

process, here, we propose a new heuristic called the deviate-frequent, which use

the so-called deviation statistics (detailed shortly) to complement the frequency

statistics used in the most-frequent heuristic. Note that since this heuristic still

has no access to linguistic annotation, the identified function words may not all

necessarily genuine, however, we hope that these words are more suitable for the

reordering purpose.
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6.1 Motivation

Error analysis in Section 5.5.1 suggests that one of the most prominent mistakes

made by the basic F W S model concerns with the model’s failure to correctly

recommend non-monotone reordering. Our casual observation suggests that this

mistake correlates with the number of heads in the function word list that rec-

ommend non-monotone reordering. This is evident in the orientation statistics of

the function words list created by the most-frequent heuristic that mostly sup-

port monotone reordering. Thus, our hope here is to generate a list that contains

as many function words that capture non-monotone reorderings as possible. We

develop this intuition into a new heuristic called the deviate-frequent heuristic.

Essentially, the deviate-frequent heuristic combines two statistics – the

frequency and the deviation statistics – that will be used to test whether a word

should belong to a function word class or not. The frequency statistics measure how

many times a word appears in the corpus and have been used by the most-frequent

heuristics. Meanwhile, the deviation statistics measures how different the orienta-

tion statistics of a word are from the orientation statistics of the universal token

U .

The idea behind the most-frequent statistics comes from our simple obser-

vation that the orientation statistics of content words are quite similar from those

of the universal token. For instance, Table 5.1 shows that the orientation statistics

of the content word�Ö (task) strongly suggest MA (monotone adjacent) orienta-

tion with roughly the same distribution as the orientation statistics of the universal

token. In this regard, modeling content words is redundant since if the words were

not modeled, the same reordering would still be suggested anyway.

We still keep the frequency statistics since we want to maintain the high

level of coverage over the data. The frequency statistics can also compensate the

adverse effects caused by unreliable deviation statistics as due to the low count,
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low frequency words tend to vary more from the universal token’s orientation. We

observe in our initial experiments that considering only the deviation statistic may

unfairly assign more weight to low frequency words, which can hurt the reordering

task. In summary, the words identified by the deviate-frequent heuristic are

those words that appear frequently and have non-trivial orientation statistics.

6.2 Ranking Words with Frequency and Devia-

tion Statistics

In this section, we first describe the method to estimate the deviation statistic and

then proceed to the complete description of the deviate-frequent heuristic. The

estimation of the frequency statistics can be done in a straightforward manner by

simple word counting, thus omitted.

Let the orientation vector of a word f be defined as follows:

−−→
orif =




ori(pORI(X−1, f) = MA|f)

ori(pORI(X−1, f) = RA|f)

ori(pORI(X−1, f) = MG|f)

ori(pORI(X−1, f) = RG|f)

ori(pORI(X+1, f) = MA|f)

ori(pORI(X+1, f) = RA|f)

ori(pORI(X+1, f) = MG|f)

ori(pORI(X+1, f) = RG|f)




(6.1)

where the elements are taken from the orientation model’s parameters. Note that

here, we are looking at the orientation statistics of an individual word at coarse

level, marginalized f over all of its possible translations.
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Let the same vector be defined for the universal token U as follows:

−−→
oriU =




ori(pORI(X−1,U) = MA|U)

ori(pORI(X−1,U) = RA|U)

ori(pORI(X−1,U) = MG|U)

ori(pORI(X−1,U) = RG|U)

ori(pORI(X+1,U) = MA|U)

ori(pORI(X+1,U) = RA|U)

ori(pORI(X+1,U) = MG|U)

ori(pORI(X+1,U) = RG|U)




(6.2)

Using these two vectors, we define the deviation statistic devf as the following

root mean square deviation (RMSD) formula:

devf =

√√√√
∑k=1

|−→ori|(
−−→
orif [k]−−−→oriU [k])2

|−→ori|
(6.3)

The denominator is constant for all words, thus can be safely ignore in practice.

Before combining, we normalize the deviation and the frequency statistics:

devnormf =
devf −min(∀′fdevf ′)

max(∀f ′devf ′)−min(∀f ′devf ′)
(6.4)

freqnormf =
log(uni(f))−min(∀f ′log(uni(f ′)))

max(∀f ′log(uni(f ′)))−min(∀f ′log(uni(f ′)))
(6.5)

where uni(f) is the unigram probability of a word, which has been introduced for

the preference model in the basic F W S model.

The final figure dff is obtained from the linear combination of the two statis-

tics using δ to control the contribution of each statistic:

dff = δ.freqnormf + (1− δ).devnormf (6.6)

where δ = 1 brings us back to the most-frequent heuristic while δ = 0 makes the

identification process relies entirely on the deviation statistics. We determine the

appropriate value for δ empirically.
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The function word identification process ends by sorting all words according

to its dff score and equating the top N best words as function words. Note that

we transform the frequency statistic to its log form because of the facts that we

combine the two statistics in a linear fashion and that the underlying distribution

of the frequency statistic is not linear but exponential.

6.3 Experiments

Here, we study the effect of modeling head words obtained from different heuristics.

The purpose of this section is as follows: 1) to evaluate the performance of the

deviate-frequent heuristic with respect to the reordering quality; 2) to validate

whether our proposal to remedy the basic F W S model’s first systematic error

is effective; and 3) to verify whether the success (or the failure) of our proposal

extends to the full translation task.

Before pursuing the above goals, we first establish the performance of using

the gold standard function word identities in Section 6.3.1 where we used the gold

standard function word list, described in Section 4.1.1. Then in Section 6.3.2, we

report our efforts of pursuing the first and the second purposes in the perfect lexical

choice scenario. To evaluate the impact of our proposal on the basic F W S model

first error, we used the false-mono metric discussed in Section 5.5.1, which counts

how many times the model falsely predict non-monotone reordering for monotone

reordering. Thus, the lower is the better. To evaluate the reordering quality, we use

the standard BLEU score. Finally in Section 6.3.3, we report our effort to pursue

the third goal in the full translation task scenario.
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6.3.1 Gold Standard Function Words

In this set of experiments, we wanted to establish the performance of having perfect

knowledge, where the model can correctly identifies all genuine function words. To

do so, we used the gold standard function word list, described in Section 4.1.1.

In total, there are 318 words in the testing set that belong to the gold standard

function word list. These words constitute 59.6% of all the words in the testing

set. For our first baseline, we used the top 318 most frequent words, representing a

model which has the same number of lexical items as in the gold standard function

word list. For the second baseline, we truncated this list to the top 152 most

frequent words, representing a model which roughly covers the same amount of

words in test set as the genuine function words do. The experiments reported here

share an identical setup as the ori setting in the basic F W S model, differing only

in the heads modeled.

System BLEU Coverage
ori, FW = gold 78.19 59.64
ori, N = 318 80.32 77.23
ori, N = 152 79.75 59.87

Table 6.1: Results of using the gold standard function word inventory versus using
those obtained from the most-frequent heuristic. The third column (Coverage)
refers to the words coverage over the testing set

We report the results in Table 6.1, where ori, FW = gold refers to the

experiments using the gold standard function word list, ori,N = 318 to the first

baseline and ori, N = 152 to the second baseline. As shown, using genuine function

words apparently performs worse than the two baselines. This result runs counter

with our intuition that using the gold standard function words should result in an

improvement.

Inspecting the results, we uncovered a couple of causes. First, there are
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some gold standard function words that appear only a few times in the training

data. Apparently, the orientation statistics of these genuine but low frequency

function words are not reliable, thus causing incorrect reorderings. For instance,

among the 318 function words modeled, only 120 words appear more than 5 times

in the corpus. In contrast, the lexical items modeled by the baseline model have

more reliable statistics since they always appear in high frequency. Second, the gold

standard function word list is still not as exhaustive as we hope. Unfortunately, the

missing function words include some important function words like the preposition

¥ (in) which strongly support non-monotone reordering. This is perhaps due to

the fact that the distinction between function words and content words is often

vague. For instance, the word ¥ (in) is possibly considered as a verb (to hit) by

(Howard, 2002); from which the list was extracted. Regardless of the results, this

set of experiments give an insight that having reliable statistics is vital.

6.3.2 Perfect Lexical Choice

Here, we study the effect of the proposed deviate-frequent heuristic on the re-

ordering task. Specifically, we study the effect of different value of δ in terms of the

BLEU score. We report the results in Table 6.2, which also includes the statistics

about the list’s coverage over the testing data and its intersection with the list

produced by original frequency-based heuristic as well as with the gold standard

function words.

In experiments reported in Table 6.2, the same number of function words is

used (N = 128). δ = 1.0 represents the baseline where only the frequency statistic is

used, while δ = 0.0 represents the performance where only the deviation statistic is

used. Respectively, inters1 and inters2 represent the number of words shared with

the words obtained by the most-frequent heuristic and with the gold standard

function words respectively. false-mono reports the number of errors attributed
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δ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
false-mono 3,068 3,087 3,029 3,057 3,067 3,052 3,048 3,030 3,057 3,092 3,245
(in %) 54.59 55.36 54.18 54.87 54.95 55.06 55.17 55.13 55.36 55.46 57.25
BLEU 79.45 79.68 79.92 79.95 79.91 79.97 79.84 79.89 79.89 79.64 79.58
cov. (%) s 38.22 44.85 50.50 53.94 54.99 56.58 57.31 57.48 57.91 57.90 58.13
inters1 61 69 77 84 93 102 110 115 121 124 128
inters2 39 42 45 49 50 50 47 49 49 49 46

Table 6.2: Results of using the deviate-frequent heuristic, reported over different
δ value. The baseline is in italics while the best result is in bold.

to the false monotone reordering. Our goal is to reduce this value.

We can see some encouraging results in Table 6.2. Modeling the func-

tion words identified by the deviate-frequent heuristic reduces the number of

false-mono errors as the contribution of the deviation statistics increases. The

same trend is also observed in terms of BLEU score, where the reduction of the

false-mono error leads to the increase in BLEU score. This trend continues up

to a certain value δ = 0.5, where the number of function words in the list is the

highest among all other values.

When we manually inspected the list of head words produced at δ = 0.5, we

found better quality heads. Table 6.3 shows some samples of added and removed

heads of that setting. As shown, the added words include some genuine function

words, such as: � (from), � (positional marker), b(but), ¤,(yet), �(within)

and� (each), which have some tendencies toward non-monotone reordering; while

the removed words mostly include nouns, verbs and adjectives, which statistics

are relatively similar to the universal token’s statistics. In summary, this set of

experiments shows that our new approximation to the FWID component corrects

some of the basic F W S model’s error of falsely recommending monotone reordering.
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Chi- English X−1 X+1

nese MA RA MG RG MA RA MG RG
Universal Tokens
U - 0.76 0.14 0.06 0.05 0.74 0.13 0.07 0.06
Removed Heads
�® supervise 79.70 7.43 4.46 8.42 83.66 2.97 8.42 4.95
|Ñ support 81.70 8.09 7.23 2.98 74.89 7.23 11.06 6.81
�G mail 78.98 10.80 5.68 4.55 55.68 12.50 15.91 15.91
ø: system 71.81 8.39 11.74 8.05 68.46 9.40 11.74 10.40
Ã� unable 76.05 3.59 4.79 15.57 94.01 4.79 1.20 0.00
�� require 74.19 9.68 11.61 4.52 79.68 11.94 4.52 3.87
Í� change 72.73 9.09 10.30 7.88 68.48 4.24 19.39 7.88
ÐÏ assist 85.63 5.99 4.19 4.19 80.24 0.60 13.17 5.99
Ëz connect 71.30 16.09 6.09 6.52 62.17 6.09 19.57 12.17
�Ä automatic 57.67 8.99 14.29 19.05 77.78 17.99 3.70 0.53
Added Heads
� from 39.29 5.95 52.38 2.38 89.29 5.95 2.38 2.38
kÝ consult 95.56 0.00 1.48 2.96 97.78 0.74 1.48 0.00
9 section 68.63 31.37 0.00 0.00 3.92 7.84 26.47 61.76
� after 45.74 44.96 3.10 6.20 44.96 43.41 10.08 1.55
U frame 84.78 3.26 11.96 0.00 17.39 5.43 71.74 5.43
� only 54.17 5.83 38.33 1.67 61.67 33.33 1.67 3.33
b but 94.56 2.72 1.36 1.36 94.56 4.08 0.68 0.68
¤ yet 60.99 15.60 21.99 1.42 60.28 35.46 2.84 1.42
� with 30.77 64.84 0.00 4.40 29.67 65.93 3.30 1.10
� each 48.76 3.31 40.50 7.44 90.08 4.13 3.31 2.48

Table 6.3: Samples of some removed words that are no longer considered and some
added words that are newly considered as heads by δ=0.5 as compared to δ=1.0.
The dominant orientation of each head’s arguments is in bold.
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System BLEU
ori, δ=1.0 24.92
ori, δ=0.5 25.29

Table 6.4: BLEU scores for the full translation task scenario. ori, δ = 1.0 represents
the baseline taken from Chapter 5 where the head identification only involves the
frequency statistics, ori, δ = 0.5 represents the system that combines the frequency
and deviation statistics with equal weight.

6.3.3 Full Translation Task

Here, we want to verify whether the same performance improvement in the previous

scenario also applies in the full translation task, where the deviation statistics

are calculated from the noisy orientation statistics. In particular, we compared

the translation performance of the basic F W S system using the most-frequent

heuristic versus the F W S system using the deviate-frequent heuristic. For

the proposed deviate-frequent heuristic, we used δ = 0.5, which produced the

best reordering quality in the perfect lexical choice scenario. Table 6.4 reports the

full translation task experiments. As shown, employing the deviate-frequent

heuristic improves the performance - although not statistically significant.

To further study the result, we analyzed the intermediate results of the

statistical significance test. In particular, we were interested in examining whether

our proposed approximation makes more changes in p+ (where ori,δ=0.5 performs

better than ori,δ=1.0 ) or in p− (where ori,δ=0.5 performs worse than ori,δ=1.0 ).

Table 6.5 shows the statistics of the testing sentences classified into the three

sets. We further analyzed the sentences by focusing on those sentences that contain

both the added and the removed heads. We assume that the performance of these

sentences would best represent the effect of having a different set of heads. In total,

there are 275 of such sentences, out of the 2,000 sentence pairs as indicated in the

intersection column. Although the sample size is relatively small, it is enough to
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Set Sign test intersection
Count Count %

p+ 637 124 45.10
p0 743 53 19.27
p− 620 98 35.63
Total 2,000 275 100

Table 6.5: The comparison between ori,δ=0.5 and ori,δ=1.0. p+ refers
to ori,δ=0.5>ori,δ=1.0 ; p− refers to ori,δ=0.5<ori,δ=1.0, while p0 refers to
ori,δ=0.5 = ori,δ=1.0. The column labeled ”intersection” refers to the number
of sentences in each set which source sentence contains both the added heads and
the removed heads. Between p+ and p−, the one with more sentences is in in bold.

indicate the effect of employing the deviate-frequent statistics. As shown, the

majority of the 275 sentences (45.10%) belongs to p+, which is higher than those

that belong to p−. We see this result as validating the effectiveness of combining

the deviation statistic with the frequency statistic to identify function words even

in the environment when the input word alignment is noisy.

6.4 Summary

In this chapter, we proposed a deviate-frequent heuristic to better approximate

the FWID component. Although the simple most-frequent heuristic works well, it

misses some important function words that would otherwise recommend important

non-monotone reorderings. The inability to identify good heads activates either the

statistics of the universal token or the content words that prefer monotone reorder-

ing. Error analyses in Chapter 5 revealed that one important type of mistakes made

by the basic F W S model are indeed due to the model’s overly strong bias toward

monotone reordering. This motivates us to look at the orientation statistics.

We have approximated the definition of a function word as a word that ap-

pears with high frequency and suggests non-monotone reordering. To incorporate
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such a hypothesis, we introduce the deviation statistic, which measures how differ-

ent the orientation statistics of a head word are from those of the universal token.

To get the final list of head words, we combine the frequency and the deviation

statistics in a linear fashion.

Our experimental results show that our new approximation of the FWID com-

ponent can improve the reordering performance both in the perfect lexical choice

scenario and full translation task scenario. The improvement correlates with the

number of genuine function words used by the model, reinforcing our hypothesis

that choosing function words as heads is suitable for the reordering task.
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Chapter 7

Argument Selection

This chapter concerns with improving the ARGSEL component, whose role in the

F W S approach is to select the appropriate arguments to the heads, among all other

possible sets. The basic F W S model approximates this component by employing

the immediate-neighbor heuristic, which restricts a head’s arguments only to those

immediately adjacent to the head, and sets the probability of selecting each set to

be equal. However, our error analysis suggests that this heuristic is suboptimal.

Unfortunately, one of the basic F W S model’s systematic errors concerns with the

model’s failure to accommodate arguments that are positioned beyond the head’s

immediate neighbor. This error analysis motivates us to improve the approximation

to the ARGSEL component, allowing the head to take a more flexible set of arguments,

and also to develop a statistical model to give bias toward certain set of arguments.

In retrospect, allowing a more flexible set of arguments to a head can be

seen as addressing the undergeneration problem in the existing FSB model that is

due to the non-adjacent nonterminal constraint, since it is equal to allowing the

creation of rules with adjacent nonterminals.
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7.1 Motivation

Here, we revisit our motivation to replace the immediate-neighbor heuristic, com-

plementing the error analysis in Section 5.5.2. Although restricting arguments only

to the head’s immediate neighbor is desirable for its simplicity, here we argue that

accommodating a more flexible set of arguments is important for two inter-related

reasons.

First of all, the immediate neighbor restriction makes the basic F W S model

asymmetric: some movements can be modeled only in one but not both sides of

language. More specifically, the basic F W S model captures the movement of a

function word’s immediate neighbors in the source language, relocating them to

the target language side as either immediate or non-immediate neighbors. How-

ever, when the translation direction is changed (i.e., swapping source and target

languages), the basic F W S model will not be able to model those arguments that

moved to non-immediate positions, as it is forbidden by the immediate-neighbor

heuristic.

Secondly, there are genuine cases in language where function words must

influence non-immediate neighbors. Fig. 7.1 illustrates one such case where the

immediate neighbor restriction is problematic. This example represents the verbal

phrase (VP) construction, which is one of the most prominent syntactic differences

between Chinese and English. In particular, Fig. 7.1 illustrates a VP construction

which is made up by joining a prepositional phrase (PP) and a simple VP (the one

at the lowest level). When translated to English, the simple VP ends up positioned

before the PP, indicating the shift from a pre-verbal construction in Chinese to a

post-verbal one in English. The only function word involves in this construction is

the preposition � (for), which – even after extending its influence to its left and

right neighbors – cannot properly reorder the simple VP. The simple VP can only

be reordered if the function word is allowed to take the second neighbor to its right
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P NP VP

PP

VP

to_specify_the_domain  for  computer_account

Figure 7.1: An example of the VP construction where it is vital to model non-
immediate arguments. The function word involved in each example is highlighted
as the Chinese character in the box. Without allowing the function word �(for)
to take non-immediate arguments, the movement of VP (�(for)’s second neighbor
to its right) cannot be modeled.
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as its argument.

These two reasons strengthen our motivation to replace the immediate-neighbor

heuristic to account for a more flexible set of arguments, bringing parity in the re-

ordering model in both source and target languages and handling real cases in

language.

However, accommodating a flexible set of arguments is simple but compu-

tationally challenging as the model now has to consider more sets of arguments.

Formally, letting a function word to influence its non-immediate neighbors is as easy

as allowing the values of L and R of the head-driven SCFG rule to extend to more

than one. Unfortunately, this effort would aggravate to the overgeneration problem,

since the F W S model now needs to compute a grammar with much larger number

of rules. Furthermore, it may also result in an increase in the spurious ambiguity

level since it introduces rules with adjacent nonterminal, known as the main source

of the spurious ambiguity (Chiang, 2005). Clearly, a new statistical model is neces-

sary to provide the much-needed bias to certain set of arguments. In this thesis, we

propose a statistical model, called the argument selection model, to curb both the

overgeneration and the spurious ambiguity problems. In particular, this argument

selection model would only encourage the grammar to choose rules with adjacent

nonterminals only if these rules represent judicious uses of adjacent nonterminals.

Here, we design the argument selection model to focus only on arguments that

benefit the phrase reordering task.

7.2 Argument Selection Model

We design the argument selection model to model the expansion of a rule as head-

outward process modeling, similar to Collins parsing model (Collins, 2003), where

the head is considered to be generated first followed by the head’s arguments,

starting from the ones closest to the head. This process fits nicely into our decoding
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implementation (see Appendix A) which requires the binarization of rules of rank

more than two as such arguments are attached to the head one at a time. In

particular, we refine the argument selection model into the following steps:

1. Determine Targ – the total numbers of arguments for a particular head f/e –

according to P (Targ|f/e). This probability is approximated by the number of

arguments model : noa(Targ), which captures the preference of (any) head to

generate Targ number of arguments.

2. Initialize l and r to 0, where the former is the counter for the number of left

arguments generated so far while the latter is the number of right arguments

generated so far.

3. If l + r equal to Targ, go to step 6.

4. Generate an argument X, either to the left or to the right. Update l and r

accordingly afterwards while keeping the previous values l′ and r′. Score the

generation according to grow model: grow(X, l, r|l′, r′, f/e).

5. Go to step 3.

6. Generate STOP symbols at l + 1 and at r + 1 with a score computed by the

following stop model: stop(l + 1|f/e) and stop(r + 1|f/e).

As shown, the proposed argument selection model consists of three mod-

els: the number of arguments (noa), the grow (grow) and the stop (stop) models.

The number of arguments model, as the name suggests, specifies the preference of

assigning a certain number of arguments to a head. Meanwhile, the grow model

specifies the preference of assigning an argument at a specific location, while the

stop model captures the preference of not generating arguments further from a

specific location onwards.

For the F W S approach, since e represents a function word, the maximum

number of arguments Targ should be restricted to a reasonable bound of arguments

for function words. Here, we limit Targ to [0, 1, 2] as we observe that both in
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the literature of some languages (Howard, 2002; Chino, 2001) and empirically, the

influence of function words is limited up to two neighbors. Limiting Targ to 2 also

allows the reordering of the arguments to be trivial, i.e. in the space defined by the

Inversion Transduction Grammar (ITG).

Thus, in addition to Rules 5.1-5.4 defined for the basic F W S model, the

F W S model with the argument selection model use the following two rules:

X(h−2, h−1, hY ) → 〈X−2(h−2) X−1(h−1) Y (hY ), α,∼〉 (7.1)

X(hY , h+1, h+2) → 〈Y (hY ) X+1(h+1) X+2(h+2), α,∼〉 (7.2)

As an illustration, the argument selection model’s score for Rule 7.1 is:

argsel(X(h−2, h−1, hY )) = noa(Targ = 2).grow(X−1, l = 1, r = 0|l = 0, r = 0, hY ).

grow(X−1, l = 2, r = 0|l = 1, r = 0, hY ).stop(l+1 = 3|hY ).stop(r+1 = 1|hY ) (7.3)

7.3 Parameter Estimation

The parameter estimation of the argument selection model involves estimating the

parameters of its three components: the number of arguments (noa), the grow

(grow) and the stop (stop) models. These models can be estimated easily if the

information about the arguments of the heads are available in the training data.

Unfortunately, this information is not available in the training data, thus an estima-

tion is needed. Here, we consider all neighbors as possible arguments of a head and

use the neighbors’ orientation statistics as the soft count, indicating the likelihood

of that neighbor to be considered the head’s argument – the higher the soft count

the more likely the argument is to be considered as an argument.

In using the orientation statistics, this heuristic reflects our bias towards

favoring those neighbors that have great importance to the reordering task, i.e.
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they move when translated just like the simpler VP in Fig. 7.1 which has to be

reordered to the beginning of the phrase.

To calculate the soft counts, we put the orientation statistics of an argu-

ment in vector form: O=[C(f/e, o = MA), C(f/e, o = RA), C(f/e, o = MG),

C(f/e, o = RG)] and assume that there exists a contribution vector: w = [wMA,

wRA, wMG, wRG], which would reflect the model’s bias towards certain orientation

values. Then, we calculate the soft counts simply by performing a dot product

between O and w.

The first and the second neighbors have different trivial reorderings, i.e. MA

for the first neighbor and MG for the second neighbor. Thus, we use a separate

contribution vector for each neighbor: w1 and w2, respectively. In this way, we cal-

culate the soft counts for every function word’s neighbor: D−2,D−1,D+1,D+2, from

which the model parameters can be directly estimated according to the following

formulas:

grow(X, l, r|l′, r′, f/e) ≈ grow(τ |f/e) ≈ Dτ∑
∀τ Dτ

, τ ∈ {−2,−1, +1, +2} (7.4)

stop(υ|f/e) ≈





(D−2 + D−1)/Z, υ ∈ {−3, +1}

(D−1 + D+1)/Z, υ ∈ {−2, +2}

(D+1 + D+2)/Z, υ ∈ {−1, +3}

(7.5)

where Z=2 ∗ (D−1+D+1+
∑

∀τDτ ) is the stop model’s normalization factor and τ is

the position of the currently generated argument. Here, υ extends to −3 and +3 to

account for the generation of the STOP symbol at n+1 and m+1. As stated, the

estimation of the grow model is proportional to each neighbor’s soft count, while

the likelihood of generating a STOP symbol is proportional to the soft counts of

those arguments that have been generated thus far, plus the soft counts of those

potential arguments that can be generated further.
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7.3.1 Parameter Estimation for Meta Parameters

The parameter estimation for the argument selection models can be performed in

a relatively easy way, since it uses the statistics that are already available. The

extra effort here is the estimation of the following meta parameters: the number

of argument model noa(Targ) and the contribution vectors w1 and w2. There are

many methods to assign the values of these parameters and here, we explore two

of them.

The first method is via intuition. For example, we can set the second element

of w1 to a very high value to give a preference toward selecting the first neighbor that

tends to end up at reverse adjacent (RA) orientation. This method is possible be-

cause the parameters size is relatively small and the role of each element is relatively

well-understood. We prepare the following sets of values: noa = [0.01, 0.14, 0.85],

w1 = [0.25, 2.00, 0.15, 0.15] and w2 = [0.3, 1.0, 0.1, 0.25], which reflect our bias to-

ward assigning as many arguments as possible and assigning the second neighbor

argument if it tends to move to a non-trivial orientation.

The second method explored is via automatic training, where we treat these

parameters as latent variables whose values will be estimated automatically from

the statistics of the development set. Eventually, such a procedure will find a set

of parameters that optimizes a certain training criterion. A standard method to

approach such a latent variable problem is to use Expectation Maximization (EM)

(Dempster, Laird, and Rubin, 1977). However, here we opt to use a much simpler

method since as shown in the experiments, the meta parameters produced by this

ad-hoc method performs on par with the meta parameters produced by human

intuition. Nevertheless, we intend to explore a more principled method to estimate

these parameters in the future.

In particular, we devise a simple training criterion that indicates the pa-

rameter’s contribution to the task of selecting arguments – which is the intended
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Annotation #fw #instances
- 54 90
-1 77 310
+1 421 1,546
-1 +1 140 1,321
+1 +2 27 40
M 21 57
M +1 2 2
Total 209 3,371

Table 7.1: Statistics of the annotation extracted from the 500 sentence pairs which
are part of the development set. The first column indicates the annotation, while
the second and third column indicate the number of distinct function words and
the number of instances that received the annotation specified in the first column,
respectively.

use of the argument selection model. Our automated approach needs access to gold

standard function word arguments to extrapolate the parameters. For this purpose,

we asked an expert Chinese linguist to annotate the genuine arguments of function

words in the first half of the development set (500 sentences). Here, we used the

gold standard function words, described in Chapter 4. The linguist then annotated

each function word with its arguments, by first identifying it and then labeling it

with one of the following position labels (...,−2,−1,+1,+2,...). The data collected

amounts to a total of 209 function words (inclusive of split function words; e.g. the

function word ,...Þ, translated to “from” in English).

Table 7.1 shows the statistics of the annotation while Table 7.2 shows an

excerpt of the annotation supplied by the linguist. Note that the label M refers

to the argument that is in the middle of a split function word, as exemplified in

Table 7.2. In Table 7.1, the linguist annotated 56.75% of all function words as

taking a single argument (either −1 or +1), 40.43% as taking two arguments, and

a small percentage (2.81%) to either having zero or three arguments. The table

also shows that the majority of function words take their immediate neighbors as
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their arguments and that only a small minority take the second neighbor.

Chinese: 
/0 ó/1 &~/2 YJ/3 yÏ/4 Õ�/5 �/6 Ç/7 Ã�/8
éo/9 �[/10 �O/11 {/12 ÷÷/13 �/14

English: you/0 do/1 not/2 need to/3 purchase/4 any/5 special/6
equipment/7 to/8 use/9 these/10 features/11 ./12

Alignment: (2-9); (3-10); (5-11); (8-2); (8-3); (9-4); (10-5); (11-6);
(13-7); (14-12);

Annotation: [
/0] : +1
[ó/1] : +1
[{/12] : -1 +1
[ó...�/1,6] : M

Table 7.2: A sample of sentence pair annotated with function words and their
arguments. Note that the English and Chinese words are indexed and their corre-
spondences are available in the third line. The last function word represents a split
function word. -1 refers to the first neighbor to the left, +1 the first neighbor to
the right, while M the argument in the middle of a split function word.

We then treat these annotation as a list of the following tuples: (f/e, a)

where a ∈ { ∅, −1, +1, −1 + 1, −2 − 1, +1 + 2, M , M + 1 }. The estimation of

the noa parameters is obtained from the tuple count C(f/e, a) as follow:

noa(a#arg) =





C
∀a0

(f/e, a0)/C(f/e, ·) = 0.0281 , a0 ∈ {∅}

C
∀a1

(f/e, a1)/C(f/e, ·) = 0.5674 , a1 ∈ {−1, +1,M}

C
∀a2

(f/e, a2)/C(f/e, ·) = 0.4043 , a2 ∈ {−2− 1,−1 + 1, +1 + 2,M + 1}
(7.6)

To estimate w1 and w2, we devise the following objective function:

w′
1, w

′
2 = argmax

w1,w2

∑

∀f/e,a

δ(a; m,n = argmax
l′′,r′′

argsel(l′′, r′′|noa, w1, w2, f/e)) (7.7)

In Eq. 7.7, l′′, r′′ is the annotation assigned by the argument selection for f/e given

certain contribution vectors (w1 and w2) and previously estimated noa models;
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while δ is a Kronecker delta function which outputs 1 if l′′, r′′ matches the human

annotation a, otherwise 0.

To find the optimum w1 and w2, we devise a simple grid search algorithm

that takes a single parameter and greedily optimizes it, repeating as necessary:

1. Define an initial value. Random values are used in our experiments.

2. Define a discrete space for each parameter by setting the minimum and max-

imum value together with their resolution. For the reported experiment, we

defined the minimum value to be 0.001, the maximum value to be 4.0, while

the resolution to be 0.001 for each parameter.

3. Define flags to keep a record of all unmodified parameters. The flags are all

initialized as unmodified.

4. For every remaining unmodified parameter p, explore the parameter space

defined for p while fixing the other parameters at the value stored in the

current state of w1 and w2. At any point, the algorithm evaluates the objective

function and records the point that gives the maximum value.

5. Pick the one parameter that gives the best improvement, update the flag of

that parameter to be modified and set the corresponding value in either w1

or w2 with the best point.

6. If there are still unmodified parameters, return to step 3; otherwise, terminate.

Finally, the algorithm outputs w1 and w2 which are the parameters that give

the optimal value with respect to the objective function.

In short, the algorithm updates the parameter that gives the best improvement,

one parameter at a time until all the parameters are visited.

The following values are the results: w1 = [2.993, 2.521, 0.202, 0.15] and

w2 = [0.144, 1.315, 0.25, 0.249]. When we manually checked the model output,
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we observed that most errors concern with cases of selecting two arguments. One

reason is evident in the value of noa(Targ = 1), which is higher than noa(Targ = 2).

Thus, this set of parameters gives a strong bias toward selecting only one argu-

ment. Unfortunately, such a bias greatly penalizes the F W S approach since fewer

arguments are then influenced by function words.

Thus, while being able to identify linguistically-motivated arguments is desir-

able, we opted to alter the definition of arguments to be reordering-centric. Specif-

ically, we performed the following transformations to the annotation:

1. Change all annotations of split function words to take zero-arguments.

2. Duplicate all instances of 1-argument function words (−1 and +1) and anno-

tate the copies as 2-arguments function words (−1 + 1).

By applying these transformations, we hope to make the heads to take as many

arguments as possible and to select the linguistically-motivated arguments as well.

When we ran the same procedure over the transformed set, the following

values were obtained: noa = [0.018, 0.291, 0.691], w1 = [0.249, 2.057, 0.15, 0.02] and

w2 = [0.206, 3.375, 0.001, 0.249]. As shown, these parameters are more in line with

the manually-set parameters, indicating the same bias toward assigning arguments

that exhibit non-monotonic reorderings. For instance, both in w1 and w2, the weight

for reverse orientation (the second element) is significantly larger than the weight

for monotone orientation (the first and the third elements). In w2, the weight of

the trivial orientation – which corresponds to monotone gap (the third element)

– is relatively small. We can interpret this value as the argument selection model

that would avoid selecting the second neighbor as an argument unless it exhibits a

non-trivial reordering. This also means that the F W S model would avoid applying

rules with adjacent nonterminals which target language order is exactly the same

as the source language order.
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7.4 Experiments

In this section, we evaluate our proposed approximation to the ARGSEL component

with the following goals: 1) to study whether our argument selection model is

able to fix the basic F W S model’s second error that concerns with the failure

of correctly reordering arguments beyond the head’s immediate neighbor; 2) to

evaluate whether our proposal improves (or decreases) the reordering quality; and

3) to verify whether our proposal gives the similar improvement (or drop) in the full

translation task scenario. Note that the experiments in this chapter are independent

of the experiments in Chapter 6.

We pursue the first and the second goals in the perfect lexical choice sce-

nario in Section 7.4.1, and the third one in the full translation task scenario in Sec-

tion 7.4.2. Specific to the pursuit of the second goal, we used the unhandled-arg

metric described in Section 5.5.2 which measures the number of pORI-acc mis-

takes that are due arguments beyond the immediate neighbor. For unhandled-arg

metric, lower is better; while for the pORI-acc, higher is better.

7.4.1 Perfect Lexical Choice

Table 7.3 shows the results of this set of experiments on different number of lexical

items N . We couple the results with Table 7.4 which shows the statistics of the

arguments assigned to the heads. Note that Table 7.4 only reports the statistics of

the systems where N=128.

In the tables, the ori row represents the baseline, taken from Chapter 5,

where only the immediate neighbors of the function words are considered; the

ori+noargsel row represents the F W S model which accommodates more flex-

ible arguments but employs no argument selection mechanism. Meanwhile, the

ori+argsel manu and ori+argsel auto represent the F W S models that accommo-
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N= 1 4 16 64 128 256 1,024
u
n
h
a
n
d
l
e
d

a
r
g

ori 2,251 2,210 2,167 2,153 2,080 2,042 2,044
ori+noargsel 2,282 2,283 2,242 2,146 2,067 2,072 2,065

ori+argsel manu 2,230 2,181 2,157 2,067 2,014 1,965 2,023
ori+argsel auto 2,253 2,184 2,152 2,044 1,975 2,018 2,018

B
L
E

U

ori 77.68 77.78 78.44 79.00 79.58 80.11 80.07
ori+noargsel 78.08 78.20 78.92 79.74 79.87 79.99 79.85

ori+argsel manu 77.94 78.33 79.08 79.83 80.17 80.33 80.13
ori+argsel auto 77.89 78.32 79.04 79.91 80.35 80.46 80.20

Table 7.3: The number of pORI-acc errors that are classified as unhandled-arg

of the perfect lexical choice for different argument selection mechanism along with
their BLEU scores. The best score is in bold.

date more flexible arguments which meta parameters are estimated from manual

(intuition) and automatic methods, respectively.

As shown in the baseline ori row, the number of unhandled-arg errors

decreases as N increases until a certain point where it reaches a plateau, suggesting

that increasing the number of lexical items modeled further cannot reduce this type

of error. This result suggests that modeling non-immediate arguments is beneficial

only for some small cases (related to function words) but not so for the majority of

cases. Additionally, data sparseness may interfere the performance of the system

as the orientation statistics for low frequency words may not be reliable enough to

capture the word’s true orientation statistics.

When we analyzed the impact of allowing a more flexible set of arguments

without employing the argument selection model, we observe only limited error

reduction, shown in the ori+noargsel row. In Table 7.4, the ori+noargsel as-

signs a significant amount of cases to the second neighbor arguments (the last two

columns), more than other systems. We suspect that such an aggressive assignment

contributes to the error increase in other cases.

Higher error reduction can be obtained by employing the argument selec-
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System ∅ X+1 X−1 X−1X+1 X+1X+2 X−2X−1

ori 2,878 2,622 1,855 8554 0 0
ori+noargsel 3,385 1,061 702 4,216 2,628 3,917
ori+argsel manu 4,475 1,636 1,679 5,540 1,682 897
ori+argsel auto 1,488 4,154 5,232 4,069 672 294

Table 7.4: Statistics of the arguments assigned by different argument selection
mechanism in the perfect lexical choice scenario. The number of heads used is
N = 128.

tion mechanism. Moreover, the most effective error reduction can be obtained by

employing the argument selection mechanism where the meta parameters are auto-

matically estimated at N = 128 as indicated by ori+argsel auto. The same trend

is also apparent in terms of BLEU score. Note that the performance difference

between the argument selection model with automatic and with manual estimation

of the meta parameters is relatively insignificant, although the latter seems to be

consistently better. We suspect that this is because the latter (ori+argsel auto)

assigned second arguments more conservatively than the former (ori+argsel manu)

as shown in Table 7.4. We see this result as validating our hypothesis that we

can improve the F W S model by allowing function words to take more flexible

arguments.

7.4.2 Full Translation Task

Here, we investigate whether our proposed argument selection model is robust

enough when the input word alignment is noisy. As the baseline, we employed

the basic F W S model with the N = 128 most frequent words as the heads, as

this setup gives the most efficient performance gain in the perfect lexical choice

scenario. Table 7.5 reports the performance of the proposal in this scenario.

As shown, the same performance trend as in the perfect lexical choice sce-
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System BLEU
ori 24.92
ori+noargsel 24.98
ori+argsel manu 25.44
ori+argsel auto 25.59

Table 7.5: BLEU scores for the full translation task where sets of flexible arguments
are used.

nario, is observed. The best performing system ori+argsel auto is able to produce a

modest improvement over the baseline ori system. To better understand the result,

we analyzed the output by looking at the three sets produced as the intermediate

results of the statistical significance test. Specifically, we analyzed the intermediate

results of the statistical significance test when we compare ori+argsel auto and ori

to look at the contribution of allowing the second neighbor argument.

Set Sign test 2nd neighbor
Count Count %

p+ 586 419 32.06
p0 939 534 40.86
p− 475 354 27.08
Total 2,000 1,307 100

Table 7.6: The comparison between ori+argsel auto and the baseline ori. p+

refers to ori+argsel auto>ori, p− refers to ori+argsel auto<ori, while p0 refers to
ori+argsel auto = ori. The column labeled ”2nd neighbor” refers to the number of
sentences in each set that uses rules with second neighbor arguments. Between p+

and p−, the one with more sentences is in bold.

We report our analysis in Table 7.6. In particular, we show the number of

translations involving the second neighbor arguments. In total, rules with second

neighbor arguments were involved in translating 1,307 test sentences. Out of these

sentences, the majority of them appears in p0 (40.86%) where the performance of
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the systems is equal. A sizable amount of sentences (32.06%) appears in p+ where

ori+argsel auto performs better than ori, higher than in p− (27.08%). To a certain

extent, this suggests that our proposed argument selection model correlates well

with the improvement gain reported in Table 7.5. We see this as validating our

claim that modeling a more flexible set of arguments is beneficial not only to the

reordering task but also to the translation task.

7.5 Summary

This chapter is centered around our effort to allow a more flexible set of arguments

to the head, improving the basic F W S model’s approximation to the ARGSEL

component, which rigidly specifies that the head can only take arguments that

are located next to the head. In summary, we have argued for a more flexible

set of arguments, i.e. allowing the function word’s arguments to take the position

of a non-immediate neighbor, empirically and using real examples. In retrospect,

this effort is equal to addressing the undergeneration problem of the existing FSB

models, since it allows the creation of rules with adjacent nonterminal.

While well-motivated, injecting flexibility in selecting the arguments unfor-

tunately raises the spurious ambiguity concern as it is equal to introducing rules

with adjacent nonterminals which are deemed as the spurious ambiguity’s main

source. Here, the model faces a trade-off between dealing with the undergeneration

problem or keeping the level of ambiguity as low as possible. In this thesis, we

prefer the latter by proposing the argument selection model that assigns arguments

to a head based on how the arguments move in the training data, utilizing the idea

of head-outward process from the Collins parsing model (Collins, 2003). Our idea

in developing such an automatic argument selection model is to select only those

arguments that are likely to move during translation process. Our experimental

results show that such modeling improves translation quality.
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Chapter 8

Order of Rule Application

In this chapter, we concern with improving the FWORDER component, whose respon-

sibility is to arrange the order of rule application. The basic F W S model uses

the function word’s unigram probabilities to approximate this component, favoring

to apply rules headed by more frequent words first. However, our error analysis

in Section 5.5.3 shows that such an approximation is suboptimal, partly because

resolving the order of rule application may require contextual information. In this

chapter, we propose to replace the preference model with a more context-sensitive

model, called the pairwise dominance model.

In developing the pairwise dominance model, our upcoming effort can be

seen as addressing the overgeneration problem, since the pairwise dominance model

gives bias toward selecting derivations that hopefully lead to the correct reordering.

This model also demonstrates the strength of the head-driven SCFG in its use of

the lexicalization of the nonterminals, which represents one key difference of the

head-driven SCFG with the existing SCFGs.
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8.1 Motivation

Fig. 8.1 illustrates a concrete example of the overgeneration problem. Suppose

a grammar is defined over the example, consisting of the following three rewrite

rules: (i) X → 〈X−1 Z X+1, X−1 and X+1〉; (ii) X → 〈X−1 4 X+1, X−1 are X+1〉;
and (iii) X → 〈X−1 { X+1, X+1 of X−1〉. This grammar has all other ambiguities

resolved with the exception of the application order of the rules. Note that this

grammar resembles rules in a typical FSB model.

Focusing on Rules (ii) and (iii), one can see that there are two possible orders.

The grammar can either apply Rule (iii) before Rule (ii), making Rule (ii) the parent

of Rule (iii), or vice versa. While the former leads to the correct translation (Fig.

8.1a), the latter creates an incorrect noun phrase that constitutes the copula 4

(are) (Fig. 8.1b). To resolve such ambiguities, clearly we must incorporate the

information from both rules, e.g. the head of the dominating rule and the head of

the dominated one.

Getting the information about the order of rule application is not possible

in the example grammar, as all the rules use a single generic nonterminal X ho-

mogenously and no information is available beyond the rule. In particular, this

notation exposes no information about the children nodes to the parent nodes.

Here, we exploit the fact that the head-driven SCFG propagates the information

about function words from child nonterminals to its parents, which can be used to

resolve the rules’ order of application.

In the head-driven SCFG, the two orders of application involve two differ-

ent sets of grammars. The head-driven SCFG equivalent for the above grammar

that would yield the incorrect order of application would consist of the following

rules: (iv) X(Z/and) → 〈X−1 Z X+1, X−1 and X+1〉; (v) X(Z/and, 4/are) →
〈X−1(Z/and) 4 X+1, X−1(Z/and) are X+1〉; and (vi) X(Z/and, 4/are, {/of) →
〈X−1(Z/and,4/are) { X+1, X+1 of X−1(Z/and,4/are)〉.
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X

X

X

computer  and handphone inventions

computer  and handphone   are   inventions

the_last_century   of   computer and handphone are inventions

X X

X

computer  and handphone inventions of   the_last_century

computer  and handphone   are   inventions of the_last_century

(a)

(b)

Figure 8.1: Instances of applying SCFG rules in a) the correct order and b) the
incorrect order.



112

Meanwhile, the head-driven SCFG equivalent for the above grammar that

would yield the correct order of application would consist of the following rules:

(vii) X(Z/and) → 〈X−1 Z X+1, X−1 and X+1〉; (viii) X(Z/and,4/are,{/of) →
〈X−1(Z/and) 4 X+1({/of), X−1(Z/and) are X+1({/of)〉; and (ix) X({/of) →
〈X−1 { X+1, X+1 of X−1〉.

Clearly, the two sets of rules are different. Comparing Rules vi and ix which

model the swapping of phrases around the word{(of), we notice that the function

word in Rule vi incorrectly takes a left argument that spans the other two func-

tion words: Z (and) and 4 (are) indicated in the lexicalization of X−1; while in

constrast, the function word in Rule ix takes a left argument whose span does not

include the two other function words. The upcoming pairwise dominance basically

exploits this information, i.e. that in this case, the rule headed by the function

word {(of) should be applied much latter (thus takes no argument that spans Z

(and) and 4 (are)).

8.2 Pairwise Dominance Model

Exploiting the lexicalization in the head-driven SCFG, we propose the pairwise

dominance model (dom) as an approximation of the FWORDER component. The goal

of this model is to specify the correct order of application given two competing

rules, i.e. which rule should become the parent of another.

We develop this pairwise dominance model by first developing the pORD

function. In particular, we design this function to output four dominance val-

ues pORD(h′, h′′) that takes the two rules’ set of heads (h′ and h′′ where h′ precedes

h′′ in the source text) as inputs and produces one of the following four dominance

values: {left, right, either, neither} as output. These four dominance values basically

specify which of the two rules should be applied first, thus appears higher than the

other in the hierarchical structure. For the left value, it is the rule headed by h′;
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for the right value, it is the rule headed by h′′; for the either value, it is either h′ or

h′′; while for the neither value, it is none of the two.

The left value is exemplified in Fig. 8.1a, where the rule headed by the copula

4 (are) must appear above the rule headed by the particle{ (of). Meanwhile, the

either is illustrated in Fig. 8.1a, where applying either Rule (i) or (ii) first does

not change the final word order. The neither value refers to cases where none of

the two rules should have dominance, which models cases where the two function

words do not share a common parent.

Once the pORD function is defined, we can directly develop the pairwise

dominance model. Specifically, the pairwise dominance score for a rule is equal to

the sum of the pORD probabilities between the rule’s head with each of its arguments.

Thus formally, the pairwise dominance model takes the following form:

dom(X(h−L, ..., h−1, hY , h+1, ..., h+R)) ≈
L∏

l=1

P (pORD(h−l, hY )|h−l, hY ).
R∏

r=1

P (pORD(hY , h+r)|hY , h+r) (8.1)

Note that the appearance of the lexical heads matters.

8.3 Parameter Estimation

Like all other models in this thesis, estimating the parameters of the pairwise dom-

inance model involves approximating information not directly seen in the training

data. Ideally, learning this model’s parameters would require information about

the hierarchical structure, from which the dominance relation can be counted, as

such the probability of a dominance value can be easily estimated. However, such

a hierarchical structure is unavailable in FSB models.

We approximate the dominance relationship by making several simplifying

assumptions. First of all, we approximate the formula in Eq.8.1 so that it only
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compute the dominance relationship between two bordering function words that

come from different rules. More concretely, we approximate the formula in Eq.8.1

into:

dom(X(h−L, ..., h−1, hY , h+1, ..., h+R)) ≈

∏L−1
l=1 P (pORD(last(h−(l+1)), f irst(h−l))|last(h−(l+1)), f irst(h−l)).

P (pORD(last(h−1), hY )|last(h−i), hY )).

P (pORD(hY , f irst(h+1))|hY , f irst(h+1))).

∏R−1
r=1 P (pORD(last(h+r), f irst(h+(r+1)))|last(h+r), f irst(h+(r+1))) (8.2)

where first and last are the functions that give the first and the last element

of h respectively. Because of this assumption, the dominance values between two

heads may not necessarily be an immediate parent-children relationship but ances-

tral. With this approximation, each factor is calculated whenever an argument is

attached to the head.

Secondly, we assume that we can recover the dominance relationship between

two function words using alignment information, which can be observed in the

training data. The idea is that each different dominance relationship correspond to

different phrase alignment configuration. Specifically, we return to the consistent

alignment heuristic, previously used for the orientation model training, as a way

to identify the different phrase alignment configuration caused by the different

dominance relationship.

More concretely, we first define Maximal Consistent Head Alignments (here-

after MCHA) which is the consistent alignment that starts from or ends with the

head in the source language. The maximal sense is required to ensure the unique-

ness of the phrase alignment of a head. Note that there are two MCHAs for each

function word: one that ends with the function word and the other that starts from

the function word.
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Given two function word heads f ′ and f ′′ in the source text, the pORD value

is defined by examining the MCHA of the two heads as follows

pORD(f ′, f ′′) =





left, f ′ 6∈ MCHA(f ′′) ∧ f ′′ ∈ MCHA(f ′)

right, f ′ ∈ MCHA(f ′′) ∧ f ′′ 6∈ MCHA(f ′)

either, f ′ ∈ MCHA(f ′′) ∧ f ′′ ∈ MCHA(f ′)

neither, f ′ 6∈ MCHA(f ′′) ∧ f ′′ 6∈ MCHA(f ′)

(8.3)

Fig. 8.3a illustrates the left value where the intersection of both MCHAs

contains only the second head (f ′′). Meanwhile, Fig. 8.3b illustrates the either

value where the intersection contains both heads. Similarly, right is represented by

an intersection that contains only the first head (f ′), while neither is represented

by an empty intersection.

Once the counts C(pORD(f ′, f ′′)) are computed, the pairwise dominance

model can be estimated according to a maximum likelihood principle as follows:

dom(pORD(f ′, f ′′) = ρ|f ′, f ′′) ≈ C(pORD(f ′, f ′′) = ρ)∑
∀ρ′

C(pORD(f ′, f ′′) = ρ′)
(8.4)

where ρ ∈ {left,right,either,neither}.

8.4 Decoding

This section concerns with the question of how this model actually works during de-

coding time? The answer to this question is simple: the pairwise dominance model

behaves like an n-gram language model since both are stateful features. Stateful

features refer to those features that require extra information beyond the span un-

der consider in their computation. In particular, the pairwise dominance model

can be seen as a bigram (n=2) model, except compared to the bigram language
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computer

and

handphone

are

innovations

of

the_last_century

computer

and

handphone

are

innovations

of

the_last_century

(a)

(b)

Figure 8.2: Illustrations for: a) the left value, where the rule headed by the copula
4(are) must be applied at the level higher than the rule headed by the particle
{(of); b) the either value, where the rules headed by either head tokens (Z(and)
and 4(are)) can applied in any order. The MCHAs of the two head tokens are in
thick outlined boxes while the two head tokens’ alignment points are indicated as
solid circles. The intersections of the two MCHAs are in the gray box.
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model, it requires extra information as context. The two differ in the terms of the

information they use as context.

In order to calculate a language model score of a word, the decoder needs

to the previous n − 1 words as context. Meanwhile, in order to calculate a pair-

wise dominance model score of a function word Y ′′, the decoder needs the previous

function word Y ′ as context as well as the relevant alignment information. Specifi-

cally, during decoding time, the decoder must pass the following information: the

first and the last function words given a particular span along with the relevant

alignment information – the first function word is the function word which dom-

inance score has yet to be computed, while the last function word is the context

for computing the dominance score of the next function word. Thus, employing

the pairwise dominance model requires no significant changes to the design of the

F W S decoder, i.e. the same CKY decoder as described in Appendix A is used.

8.5 Position-sensitive Pairwise Dominance Model

We can extend the pairwise dominance model to incorporate more diverse con-

textual information. Here, we explore one possible extension which looks at the

position of the head in the source sentence. The motivation is that function words

may have different roles in syntax and at a certain position, they tend to have only

a specific role. Before discussing the statistics that motivate this extension, we first

develop the model.

To take the positional information into account, we develop the position-

sensitive pairwise dominance model (domp). Recall that the head-driven SCFG

keeps the ordering of the heads in the source language when it propagates the

head information to the higher level of structure. As such, the root of the hierar-

chical structure contains the following information X(h−L, ..., h−1, hY , h+1, ..., h+R),

where each h is a list of function words or can be an empty list. Expanding the
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list, the information inside the bracket is equal to a sequence of function words

(f@0, f@1, f@2, ..., f@F ) where the order of appearance in the source text is main-

tained by the index following the “@” symbol. Note that this index is the function

word’s index with respect to the function word list and not to be confused with the

word’s position in the source sentence.

Here, we are interested in two groups of function words: the ones near the

beginning of the sentence and the ones near the end of the sentence. As we will show

shortly, these groups of function words often exhibit some interesting statistics,

which we will discuss soon. In particular, we observe that the dominance values

of these function word pair in the middle of the sentence are quite similar to the

original model, thus separate model is not needed.

Table. 8.1 shows the dominance statistics of the function word { (of) with

and without positional information. As shown, the prevailing statistic of the func-

tion word in the original model is the either value. However, when we incorporate

the positional information, we observe different more fine-grained statistics. For

instance, if we look at the statistics when the word acts as the preceding head and

appears near the end of the sentence (thus{@F −1), then its prevailing dominant

value is right, suggesting that the function word should appear at the level lower

than its succeeding function word. This takes into account that the last word in

almost all sentences in the corpus is a period (.) – the third most frequent word in

the corpus –, which is unlikely to move. Similarly, if we look at the statistics of the

same function word when it acts as the succeeding word and appears near the start

of the sentence (thus{@F−1), then its prevailing statistic is right, suggesting that

the word should appear at the level higher than the preceding word. This often

corresponds to the the corpus-specific tendency of creating a long noun phrase at

the end of the sentence, as we observe in the HIT corpus.

The formula as well as the parameter estimation of the position-sensitive



119

f ′ f ′′ neither right left either
{ f ′′ 4.74 25.87 15.98 53.41

{@0 f ′′@1 2.41 10.84 18.07 68.67
{@1 f ′′@2 4.60 23.40 15.80 56.20

{@F − 1 f ′′@F 0.25 68.70 1.27 29.78
{@F − 2 f ′′@F − 1 4.39 13.52 19.87 62.22

Y ′ { 3.62 29.58 13.93 52.86
f ′@0 {@1 1.54 19.12 25.05 54.29
f ′@1 {@2 3.55 26.35 17.06 53.04

f ′@F − 1 {@F 5.48 45.21 5.48 43.84
f ′@F − 2 {@F − 1 3.53 36.20 15.48 44.80

Table 8.1: The position-sensitive and the original pairwise dominance values for the
function word{(of). Here, the statistics are obtained by collapsing the competing
function words. The position of the word is indicated by the index following “@”
symbol. The most probable dominance value is in bold.

pairwise dominance model are exactly the original pairwise dominance model, ex-

cept that we attach additional positional information to the head and that we ignore

counting the statistics of those pairs that appears in the middle of the sentence.

8.6 Experiments

We set the goals for the experiments in this section as follows: 1) to study the

effect of our proposed dominance model on the third error of the basic F W S

model (incorrectly assign order of rule application), 2) to evaluate our proposal in

terms of the reordering quality; and 3) to verify whether the effect of the proposed

model resonates to the scenario where the input is trained on noisy word alignment.

We divide our inquiry into two sections where we concentrate on pursuing the first

two goals in Section 8.6.1 while reserving the last one to Section 8.6.2.

In pursuing the first goal, we specifically devised one metric which we sub-

sequently refer to as pORD-acc. This metric measures how accurate is the model in
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assigning the pORD predicate to every pair of function words in the source text. For

pORD-acc metric, higher is better. In our evaluation, we used the gold standard

function words described in Chapter 4 to facility fair comparison across different

systems. Note that the experiments reported here are independent of those in

Chapters 6 and 7.

8.6.1 Perfect Lexical Choice

Here, we compare the preference model with the proposed pairwise dominance

model to study the effect of our proposed model, in the case where the word align-

ment is correctly given. In Table 8.2, the baseline preference model is represented

by ori+pref, the dominance model by ori+dom while the position-sensitive domi-

nance model by ori+domp. We also show the performance of the basic F W S model

without the preference model in the ori row as a reference. Similar to the experi-

ments in the previous chapters, we evaluated the system with different number of

lexical items N .

Comparing the basic F W S model with and without the preference model,

i.e. the ori+pref and ori rows, we can observe that the pORD-acc of the preference

model drops across different N . However, when we employ the dominance model,

the pORD-acc increases quite significantly. Employing the position-sensitive dom-

inance model alone also gives an increase in accuracy but only modestly, perhaps

because this model only looks at smaller set of heads in each test sentence. Em-

ploying both the position-sensitive dominance model with the position-insensitive

one gives an additional increase in the accuracy. The same trend also applies to

the BLEU score. We are pleased with these results since they confirm that our ap-

proximation to order of rule application resolution leads to better overall reordering

quality.
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N= 1 4 16 64 128 256 1,024

p
O
R
D
-
a
c
c

ori 75.19 75.34 75.90 76.49 76.69 77.49 77.16
ori+pref 74.75 74.73 75.24 75.91 75.91 76.59 75.96
ori+dom - 75.47 77.66 77.87 78.65 78.40 77.55

ori+domp - 76.08 77.35 76.90 77.27 77.69 77.09
ori+dom+domp - 75.42 77.68 77.91 78.72 78.37 77.52

B
L
E

U

ori 77.68 77.78 78.44 79.00 79.58 80.11 80.07
ori+pref 77.77 78.23 78.65 79.41 79.69 80.07 80.17
ori+dom - 77.84 79.19 80.05 80.85 81.26 81.20

ori+domp - 77.88 78.96 79.34 79.80 80.17 80.05
ori+dom+domp - 77.82 79.20 80.13 80.90 81.25 81.13

Table 8.2: BLEU scores and pORD-acc of the F W S model with perfect lexical
choice for different experimental setups. The best score is in bold.

8.6.2 Full Translation

Here we replicated the same experimental settings as in the perfect lexical choice,

but with the added lexical-related ambiguities. We would like to understand

whether the same favorable improvement in the perfect lexical choice scenario also

applies to this scenario. As shown in Table 8.3, the same trend as in the perfect

lexical scenario is reported for the full translation task.

We analyzed the intermediate results of the statistical significance test to

better understand the improvement gain. In particular, we are interested in ana-

lyzing whether the dominance model is responsible for the performance gain given

by ori+dom+domp over ori+pref. To do so, we recorded the sentences where the

dominance values (pORD) of ori+dom+domp differ from those in ori+pref. Note

that we resorted to this approximation since the true dominance values in this

scenario could not be obtained.

Table 8.4 shows the statistics of the three sets together with the number of

sentences in each set which pORD values differ. In total, there are 871 sentences

where the two systems have different pORD values. Out of these sentences, the ma-
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System BLEU
ori 24.92
ori+pref 25.06

ori+dom 25.64
ori+domp 25.24
ori+dom+domp 25.79

Table 8.3: BLEU scores for the full translation task. ori represents the model taken
from Chapter 5, ori+pref represents the baseline model, coupling the orientation
model with the preference model; ori+dom the orientation model coupled with
the dominance model; ori+domp the orientation model coupled with the position-
sensitive dominance model; while ori+dom+domp the orientation model coupled
with the both dominance models.

Set Sign test pORD-diff
Count Count %

p+ 554 396 45.46
p0 1,012 177 20.32
p− 434 298 34.22
Total 2,000 871 100

Table 8.4: The comparison between ori+dom+domp and ori+pref. p+ refers to
ori+dom+domp>ori+pref, p− refers to ori+dom+domp < ori+pref, while p0 refers
to ori+dom+domp=ori+pref. The pORD-diff column refers to the number of sen-
tences in each set which pORD values differ.

jority of them (45.46%) belongs to p+, which is higher than the number of sentences

that belongs to p− (34.22%). We see this result as validating our hypothesis that

our approximation for resolving the order of rule application is beneficial in both

the perfect lexical choice and the full translation task scenarios.



123

8.7 Summary

This chapter centers around our effort to improve the approximation to the FWORDER

component. Our effort here is equal to addressing the overgeneration problem

in the existing FSB models, by providing a bias to the model toward selecting

the derivation with the most appropriate order of application. The basic F W S

model introduced the preference model which uses the unigram probability of the

dominating heads, but our previous analysis suggested that this model is suboptimal

as it only uses limited contextual information.

In this chapter, we utilized the lexicalization feature of the head-driven

SCFG, which propagates the head information to the higher level hierarchical struc-

ture. In particular, we developed a pairwise dominance model, which in a nutshell,

creates a topological order of rule by looking at the phrase alignment around every

pair of heads. We have shown through our experimental results that the proposed

pairwise dominance model performs well, confirming our hypothesis that resolving

the order of rule application is beneficial to the reordering task.
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Chapter 9

The Improved F W S model

In this chapter, we develop and report the experiments of the improved F W S

model. The improved F W S model replaces the basic F W S model’s approxima-

tion to the FWID, ARGSEL and FWORDER components with the deviate-frequent

heuristics, the argument selection and the pairwise dominance models respectively.

Thus after reporting the merit of each individual proposal, we now would like to see

whether the same effect remains when we combine them together. In other words,

we would like to understand whether the three proposals are orthogonal to each

other as such the combination can produce additional performance gain. Similar

to the previous chapters, we conduct the experiments in two scenarios: the perfect

lexical choice and the full translation task, and dedicate a section to each scenario.

Specific to the full translation task scenario, we compare the performance of the

improved F W S model with the other two baseline models (Moses and Hiero). In

analyzing the results, we use the statistical significance test, casual inspection on

the translation output and the parameters size needed by the model. We end each

section with a discussion of the results upon which our future work will be drawn.
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9.1 Perfect Lexical Choice

In this scenario, we would like to study the effect of combining the three models

(i.e. the deviate-frequent heuristic, the argument selection model and the pair-

wise dominance model) to the reordering quality and to the basic F W S model’

errors each model designs to address. To study the effect of these models to the

reordering quality, we use the BLEU score; while to study the effect of these models

to the basic F W S model’s error, we use the following intrinsic metrics: pORI-acc,

false-mono, unhandled-arg and pORD-acc. For the pORD-acc and pORI-acc, the

higher the score the better the performance is; while contrary for the false-mono

and unhandled-arg, the lower the error the better the performance is.

As a recap, pORI-acc measures the system’s accuracy in assigning the cor-

rect pORI value to the surrounding phrases. Meanwhile, false-mono refers to the

number of pORI-acc errors that correspond to the system’s false recommenda-

tion of monotone reordering, while unhandled-arg the number of pORI-acc errors

that are due to the arguments beyond the function word’s first neighbor. Finally,

pORD-acc refers to the accuracy of assigning the PORDER predicate between two com-

peting function words. Similar to the previous experiments, we consider all lexical

items in the computation of the pORI-acc, false-mono and unhandled-arg met-

rics, while we consider the gold standard function words in the computation of

the pORD-acc metric. Note that computing the ground truth for all these metrics

requires manual word alignment.

Table 9.1 reports the results of our experiments, which all use the same

number of lexical items (N = 128). In the table, ori represents the basic F W S

model described in Chapter 5. Meanwhile, the subsequent three rows represent the

basic F W S model with an improvement in one F W S component. In particular,

ori+δ=0.5 comes with the improvement in the FWID component, ori+argsel auto

the ARGSEL component, and ori+dom+domp the FWORDER component. The last row
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System BLEU
pORI-acc false- unhandled- pORD-acc

(#errors) mono arg

ori 79.58 78.89% (5,668) 3,245 2,080 76.68%
ori+δ=0.5 79.97 79.35% (5,543) 3,052 2,045 77.58%
ori+argsel auto 80.35 79.52% (5,496) 3,418 1,975 77.63%
ori+dom+domp 80.90 79.89% (5,397) 3,395 1,929 78.72%
improved 81.57 80.76% (5,166) 2,996 1,869 80.05%

Table 9.1: Performance of the basic F W S model, the three proposals and the
improved F W S models.

denoted as improved combines the improvement in all these three components.

Rows 2 to 4 shows that each model is doing a good job on its own task, bring-

ing improvement to the specific component assigned. For instance, ori+δ=0.5 gives

the biggest error reduction in terms of the false-mono metric as compared to other

two proposals. ori+argsel auto also reduces the number of the unhandled-arg er-

rors, although the reduction is less than the reduction of the unhandled-arg errors

given by the ori+dom+domp. Meanwhile, the ori+dom+domp gives the best im-

provement in terms of pORD-acc.

When we look at the statistics of the improved model, we see a desirable

result since it consistently gives the best results in all metrics, as shown in Table 9.3.

For instance, the improved model reduces the number of false-mono error further

from the best result given by ori+δ=0.5. Similarly, combining the dominance model

with the deviate-frequent heuristic and the argument selection model increases

the pORD-acc almost 1.50%, which doubles the increase given by the dominance

model alone. The same trend also applies to the unhandled-arg error reduction,

where the combination brings the error down further.

This incremental improvement translates to the increase in the pORI-acc as

well as in the BLEU score. The combination of the three proposed models are able

to produce a statistically significant improvement (p < 0.01) of 2.00 BLEU points
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absolute over the baseline ori model. These experimental results suggest that

the three improved models are orthogonal to each other, giving a complementary

performance gain when combined.

While the improved F W S model is able to fix some of the basic F W S

model’s reordering errors, it still makes some errors, which still leaves some rooms

for future improvement. We will elaborate our future work in the next chapter, but

here, we identify some cases where further improvement is necessary.

In particular, the majority of the errors (false-mono=57.99%) still con-

cern with the overly strong tendency toward recommending monotone reorderings.

When we look at the orientation values of the function words that support non-

monotone reordering, we notice that the probability mass for non-monotone re-

orderings is higher by only a small magnitude than the one for monotone reorder-

ings. For instance, the orientation values of the most frequent word { (of) shown

in Table 5.1 are divided almost equally between monotone and non-monotone re-

ordering. This may suggest that contextual information beyond the function word

is necessary.

9.2 Full Translation Task

Before comparing the improved F W S model with the state-of-the-arts phrase-

based and syntax-based models, we are interested in evaluating whether the same

incremental improvement observed in the perfect lexical choice scenario also applies

to the full translation task scenario. Table 9.2 reports the BLEU score of the

improved F W S model, in comparison with the basic F W S model and the three

individual proposed models. Similar to the perfect lexical choice scenario, we report

the improved F W S model with N = 128. As shown, the same incremental

improvement is also evident in this scenario where the input word alignment is

noisy.
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System BLEU

ori 24.92
ori+δ=0.5 25.29
ori+argsel auto 25.59
ori+dom+domp 25.79
improved 26.45

Table 9.2: Performance of the basic and the improved F W S models along with
the baseline models in terms of BLEU score.

Table 9.3 compares the improved and the basic F W S models with the state-

of-the-art phrase-based and syntax-based models in terms of BLEU score. Similar

to the Pharaoh system, we performed the minimum error rate training for Moses

for different distortion limit (dl) settings, starting from 0 to 10 and report only the

best result (dl=6).

As shown, the basic F W S model alone is able to outperform the two state-

of-the-art phrase based models, although the improvement over the Moses system

is not statistically significant. Meanwhile, the improved F W S model is able to

consistently outperform all the baseline models but only a modest improvement

over the Hiero system.

We then performed several analyses to highlight the benefit of our proposals.

First, we examine the parameter size needed by each system. Table 9.3 provides

such information. In reporting the parameter size, we produced not only the abso-

lute size of the model but also its growth rate in terms of the maximum sentence

length n and the lexical items N used. Note that we obtain the approximation for

the baseline models from (Quirk and Menezes, 2006).

The lowest performing system, Pharaoh, only requires n2 number of phrases,

since the distortion penalty model requires no parameters. The state-of-the-art

phrase-based models, Moses, requires n2 additional space for storing the parame-

ters of the unigram lexicalized model on top of the n2 numbers of phrases. In terms
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System BLEU p p+ p0 p− Model size
Pharaoh (dl=5) 22.44 < 0.01 1,112 291 597 phrases = 213,336 (n2)

Total = 213,336
Moses (dl=6) 24.87 < 0.01 582 1,316 102 phrases = 213,336 (n2)

reordering = 213,336 (n2)
Total = 426,672

Hiero 26.08 > 0.05 759 545 696 rules = 2,137,168 (n6)
Total = 2,137,168

basic F W S 24.92 < 0.01 911 573 516 phrases = 246,750 (n2)1

ori = 29,929 (|Y |)
Total = 276,679

improved F W S 26.45 - - - - rules = 246,750 (n2)
ori = 29,929 (|Y |)2
dom = 34,917 (|Y |2)
domp = 15,194 (|Y |2)
Total = 326,790

Table 9.3: Performance of the basic and the improved F W S models along with the
baseline models in terms of BLEU score. The statistical significance test measures
the performance gain of the improved F W S model over the other models. p+ refers
to sentences where the improved F W S performs better, p− refers to sentences
where the improved F W S performs worse, while p0 refers to sentences where the
improved F W S performs equally well.

of the space requirement, Hiero is the highest, demanding the storage of rules which

growth rate is in a high polynomial factor n6. On the other hand, our F W S model

only needs a modest space requirement. On top of the phrase translation table

which size grows quadratically, the F W S model only requires space which size

grows in a constant time with respect to the maximum sentence length, thus inde-

pendent of the corpus size. We find these statistics to favor our F W S models, since

it suggests that the models can achieve the state-of-the-art performance without

introducing too many parameters that may expose the systems to data sparsity

and over fitting problems.

As a final analysis, we are particularly interested in comparing the improved

F W S model with the Hiero system – the strongest baseline system. In particular,

we are interested in understanding the following two cases: 1) where the improved
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F W S model outperforms the Hiero system and 2) where the Hiero system outper-

forms the F W S model. To do so, we look at sentences that belong to p+ and p−,

where in p+ refers to the first case while p− to the second case. Table 9.3 shows

the statistics. While the majority of performance differences are attributed to the

lexical-related errors which are difficult to analyze, there are still some obvious

reordering-related errors.

When we looked at the sentences that belong to p+, we observed the adverse

effect of the undergeneration and the overgeneration problems. Fig 9.1 illustrates

Hiero’s first type of mistakes, which concerns with the FSB model’s low generaliza-

tion power. As shown, the second rule after the root node (X1) incorrectly swaps

the neighboring phrases of a content word �® (query). In total, it incorrectly

swaps the three-word phrase on the left and the four-word phrase on the right of

the word. On the other hand, the improved F W S model is able to produce the

correct translation by relying only on function words as anchors. This example also

shows Hiero’s vulnerability to the over fitting problem, since such a long-distance

reordering is perhaps valid in some cases that are found in the training data but

not to unseen cases.

Fig 9.2 illustrates Hiero’s second type of mistakes, which concerns with the

FSB model’s undergeneration problem due to the non-adjacent nonterminal con-

straint. This constraint, as mentioned earlier, forbids Hiero from creating rules

with adjacent nonterminals. Fig 9.2 basically shows a real case where this restric-

tion is problematic. The construction in Fig 9.2 bears a close resemblance to the

VP construction in Fig. 7.1 where the noun phrase, which is the second neighbor to

the right of� (for), moves to the beginning of the VP. In some cases, Hiero can ac-

commodate such VP constructions by remembering the actual wording of the noun

phrase. Unfortunately, it cannot do so in this example because the noun phrase is

not seen in the training data. On the other hand, the improved F W S model is
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Figure 9.1: The first type of Hiero’s mistakes that can be fixed by the improved
F W S model. (a) shows the output of the Hiero system. (b) shows the output of
the F W S system. The translation of each Chinese word is shown in the input box
(the topmost box) as an English word having the same superscript with its Chinese
counterpart.
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able to handle this construction since it allows rules to take adjacent nonterminals.

Fig 9.3 illustrates Hiero’s third type of mistakes, which concerns with the

overgeneration problem in the FSB model due to ambiguous order of application. In

particular, the figure shows that the ambiguous order of application causes Hiero

to reorder an incorrect span of text. As shown, while Hiero is able to correctly

predict that the left and the right nonterminals of the word { (genitive marker)

must be swapped, it fails to recognize that the span of the right nonterminal must

not include the comma. The correct reordering involves putting the comma at the

level higher than the rules involving the word {, such that the noun phrase is

created first before joined with the rest of the text by the comma, as illustrated by

the output of the F W S model in Fig 9.3b. In some cases, Hiero is able to fix this

type of mistakes if in the training data, the comma appears somewhere after the

marker {. But again, this solution would involve the introduction of additional

rules which may increase the risk of running into more severe over-fitting and data

sparsity issues.

While the improved F W S model is superior to Hiero in some cases, we

also observe some cases where Hiero performs better than the F W S model. Most

of the reordering mistakes made by the F W S are apparently related to the VP

construction similar to the one in Fig. 7.1, where the PP moves freely due to the

flexibility of the English language. Fig. 9.4 shows the error and contrasts it with the

output of the Hiero system which reordering is correct. As shown, while F W S is

able to position the object after the verb, it fails to move the PP to the beginning of

the sentence. Meanwhile, Hiero is able to do so since its hierarchical rules remember

the context of the PP movement.

Theoretically, the F W S model should be able to accommodate such move-

ments, for instance by treating the verb as the second neighbor of the preposition

¥ (on) as that is what we observe in the model’s output from the perfect lexi-
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Figure 9.2: The second type of Hiero’s mistakes which can be fixed by the improved
F W S model. (a) shows the output of the Hiero system. (b) shows the output of
the F W S system. The translation of each Chinese word is shown in the input box
(the topmost box) as an English word having the same superscript with its Chinese
counterpart.
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Figure 9.3: The third type of Hiero’s mistakes which can be fixed by the improved
F W S model. (a) shows the output of the Hiero system. (b) shows the output of
the F W S system. The translation of each Chinese word is shown in the input box
(the topmost box) as an English word having the same superscript with its Chinese
counterpart.
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Figure 9.4: The mistake of the F W S model where the PP ����h\¥(on
the insert menu) should be moved to the beginning of the sentence. (a) shows
the output of the F W S model. (b) shows the output of the Hiero system. The
translation of each Chinese word is shown in the input box (the topmost box) as
an English word having the same superscript with its Chinese counterpart.
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2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21 .2 on3 the4 file5 menu6 ,7 click8 save9 workspace10

Figure 9.5: An illustration of the alignment error that can hamper the orientation
model from learning its parameters. The Chinese character in the box represents the
head, which the orientation model is trying to estimate. The thick lines represent
the alignment errors that hamper the orientation model to learn the movement of
the verb.

cal choice scenario. Furthermore, we also observe that such movements appear in

a significant number in the training data, thus the statistics should strongly rec-

ommend the PP movement. When we carefully analyzed the training data, we

found out that the underlying reason is the alignment error. Fig. 9.5 shows the

automatically-obtained alignment of the sentence in Fig. 9.4 extracted from the

training data. As shown, there are some alignment errors where the punctuation

mark (“) is incorrectly aligned to the verb \â (click). We observed that such an

error constitutes a large part of all the alignment errors.

Due to this error, our orientation model is unable to learn the movement of

the second neighbor to the right of the preposition ¥ (on), since the orientation

model training requires the neighbor to be contiguous phrase translation. On the

other hand, Hiero is able to learn hierarchical rules needed to correctly reorder the

testing sentences from this training sentence since its grammar induction process

is more robust to alignment errors. We hope that we can address this error in the

future because we observed that they cause most of the reordering errors in this

full translation task. Nonetheless, this analysis suggests that the two systems make

different type of errors and that the two can complement each other to produce an

even better result.
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9.3 Summary

In this chapter, we have introduced the improved F W S model, which combines

the three models developed earlier. We study the results and are pleased to see

that the three models are orthogonal and combining them produces an incremental

improvement in both reordering and overall translation quality. Furthermore, this

conclusion applies not only in the perfect lexical choice scenario but also in the

full translation task scenario. We have also compared the improved F W S model

with the state-of-the-arts models, including the strongest model available as of this

thesis writing. The experimental results suggest that the improved F W S model

is able to outperform all the models – although only marginally over the strongest

baseline – with the advantage of using much less number of parameters, which

size is independent of the corpus size. We have also hinted some possible further

improvement that can be pursued in the future from our analyses of the output.
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Chapter 10

Adaptation to Hiero

In this chapter, we combine the strength of the state-of-the-art Hiero model and

the our F W S approach, given the evidence in Section 9.2 that the two models are

better than each other at orthogonal cases. In Section 10.1, we first discuss several

modifications necessary to allow adapting the F W S approach into the Hiero model

both in terms of the grammar formalism and the statistical models. In Section 10.2,

we discuss the experimental setup, especially the data used in the experiments. In

Section 10.3, we report the experiments and show empirically that adapting the

F W S idea improves the state-of-the-art Hiero model in a large-scale experimental

setup. In Section 10.4, we conclude with a summary.

10.1 Several Notes about Adaptation

The most striking difference between the F W S model and the Hiero model is

that in the F W S model, function words always appear individually in a separate

terminal rules, while in the Hiero model, they may appear together with other

non-function words. Thus, adapting the F W S model requires dealing with this

difference. Apparently, adapting the F W S approach into the Hiero model only
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requires one small modification to the Hiero model’s formalism, namely extend-

ing the correspondences between the source and target language strings to also

include lexical items. Recall that in the Hiero model, the correspondences between

the source and the target strings (represented by the ∼ symbol in Rule 1.1) are

restricted only between nonterminals.

To make the discussion more concrete, let’s consider the following Hiero rule

as a case in point:

X → 〈�
 Z X, computers and X〉 (10.1)

As shown, the co-indexation is applied only on the Xs but doesn’t involve the

lexical items.

The first step to adapt the F W S idea involves extending the correspondences

between the source and the target strings to also include the lexical items. Thus,

after such an extension, Rule 10.1 would become:

X → 〈�
1 Z2X, computers1 and2 X〉 (10.2)

This extension is relatively straightforward, only involving an additional

bookkeeping during the rule extraction process. To extract rules like Rule 10.2,

we basically use the same rule extraction method as described in (Chiang, 2005)

but instead of discarding the word-alignment information, we keep them. The ex-

tractor tools that come with the Hiero model already have the capabilities to keep

the word-alignment information in the extracted rules.

Essentially, with such an extension, we can estimate the parameters of the

F W S models even though function words are not treated exclusively. Since the

Hiero and the F W S models share the same log-linear architecture, the upcoming

adapted statistical models would act as features in the Hiero model along side

standard Hiero features. We refer the reader to (Chiang, 2005) for the complete

list of Hiero standard features.
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Another important bit of detail in adapting F W S idea involves the lexi-

calization of nonterminals as the design of the Hiero model doesn’t include lexical-

ization. To do so, we emulate lexicalization through the development of stateful

features (similar to what we’ve done for the F W S model) that are already accom-

modated by the implementation of the Hiero model. Stateful features refer those

features that require external information to compute their score, as opposed to

stateless features that only use internal information. In stateful features, rules can

carry and pass arbitrary information into another rules in addition to the current

score.

An example of stateful feature is the target n-gram language model, which

computation requires the context of n-1 words from the children rules. Thus, the

application of each rule produces not only the target language model score but also

the n-1 words context that will be used for the computation of the target language

model of other rules. Meanwhile, examples of stateless features are standard phrase-

based features like translation probability or lexical weight, which scores are fixed

regardless of the context of the rules.

10.1.1 Adapting Orientation Model

As a recap, the orientation model evaluates the reordering of phrases (Xs) with

respect to their neighboring function words (Y s) through pORI(X,Y ) function that

outputs one of the four orientation value given a particular X and a particular Y .

In the F W S model, the orientation value of a phrase can be evaluated directly

because there is a special treatment for those words that belong to function words,

i.e. function words always appear in individual units. In the Hiero model, function

words sometimes have been embedded inside the rule and treated like any other

lexical items as shown in the above example rules –Z (and) is a function word but

�
 (computers) is not.
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In the original Hiero rules, it is often impossible to determine the orientation

values of neighboring phrases of a function word. Let’s take Rule 10.1 as a case in

point. Identifying thatZ (and) is a function word is as easy as enumerating all the

source words in the rules and check whether any word belongs to the function word

list. However, estimating the arguments is non-trivial as they can span more than

one word. And even though the arguments can be perfectly estimated, estimating

their orientation is non-trivial since there is no information about where these

arguments end up in the target side, e.g. there is no information whether �
 is

translated to “computers” or “and”.

However in contrast, the orientation model score can be calculated straight-

forwardly in the Hiero rules extended with word-alignment information like Rule 10.2.

In principle, we apply the parameter estimation procedure which we described in

Section 5.3 to extract the orientation value of neighboring phrases of a function

word. With the word-alignment information ( Rule 10.2), we can estimate that the

orientation value of the left neighbor ofZ (and) is Monotone Adjacent (MA). Note

that since the right argument of Z (and) is a nonterminal X, we delay adding the

orientation model score for that argument until a concrete phrase substitutes the

nonterminal.

In the Hiero model, the orientation model is a stateful feature which requires

information about the function words and the word-alignment to be propagated up

to the structure. Since we focus only on evaluating the orientation model of the

neighboring phrases, we only propagate the information about word-alignment and

the information about those function words whose left and right arguments haven’t

been scored. Thus, once a concrete phrase has substituted the X in Rule 10.2

and the orientation score for the right argument of Z (and) has been computed,

Rule 10.2 doesn’t propagate the information aboutZ (and) and the word alignment

anymore.
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10.1.2 Adapting Pairwise Dominance Model

The role of the pairwise dominance model is resolve the order of rule application

based on the word-alignment between two function words that are the heads of

the competing rules. In this model, the word-alignment information is essential to

determine the dominance value between two function words. In short, the estima-

tion of the dominance value shares the same principle as the orientation value. In

the pairwise dominance model, we attach the information about all function words

with the corresponding word-alignment, except those function words whose left and

right dominance values have been scored.

10.1.3 Adapting Function Word Identification Method

The function word identification technique developed for the F W S model requires

no modification when adapted to the Hiero model as it is performed as a prepro-

cessing step.

10.1.4 (Not) Adapting Argument Selection Model (Yet)

The role of argument selection model is to select an appropriate set of arguments

for a particular function word based on how likely the arguments to move when

translated. In F W S model, the argument selection model uses the idea of head-

outward process similar to the Collins parsing model (Collins, 2003). Adapting

the head-outward process modeling in the Hiero model setting is unfortunately

non-trivial especially because function words are often embedded in the middle of

the rules. For this particular reason, we reserve the adaptation to the argument

selection model for future work.
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10.2 Experimental Setup

We tested the effect of adapting our function word-based reordering idea on Chinese-

to-English translation task. Similar to our previous experiments, we report perfor-

mance using the BLEU score, and assess the statistical significance of the results

of our experiments using the standard bootstrapping approach (Koehn, 2004b).

Following the best result in the previous chapters, we equate function words as the

N = 128 most frequent words in the corpus.

We trained the system on the NIST MT06 Eval corpus excluding the UN

data (approximately 900K sentence pairs). For the language model, we used a 5-

gram model with modified Kneser-Ney smoothing (Kneser and Ney, 1995) trained

on the English side of our training data as well as the whole portion Gigaword

v2 English corpus. We used the NIST MT03 test set as the development set for

optimizing interpolation weights using minimum error rate training (MERT). We

carried out evaluation of the systems on the NIST 2006 evaluation test (MT06) and

the NIST 2008 evaluation test (MT08). We segmented Chinese as a preprocessing

step using the segmenter from Harbin Institute of Technology (Zhao et al., 2001).

As for the Hiero model, we are grateful to the model’s author which provide all the

necessary tools including the decoder and the scripts to extract rules from parallel

text.

10.3 Results

Table 10.1 reports the result of our incremental experiments. We start with a

baseline experiment to evaluate the performance Hiero system without employing

any adapted model and then incrementally add new adapted models one at a time

before adding them all together. As shown in the first three rows of Table 10.1,

adding adapted models – both the orientation model (+ori) and the pairwise dom-
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System MT06 MT08

Hiero 29.29 22.15
+ori 30.14 22.84
+dom 30.15 23.10
+ori+δ=0.5 30.59 23.50
+dom+δ=0.5 30.84 23.56
+ori+dom+δ=0.5 31.10 23.98

Table 10.1: Performance of the baseline Hiero model and the Hiero model employing
adapted F W S model in terms of BLEU score. Systems’ performance that give
statistically significant improvement over the baseline Hiero model are in italics
while those that give the best performance are in bold.

inance model (+dom) – gives statistically significant gain in both MT06 and MT08

sets – except a not statistically significant but notable improvement given by the

orientation model in MT08 set.

In rows +ori+δ=0.5 and +dom+δ=0.5, we use the deviate-frequent heuristic

to construct the function word list, instead of simply equating function words as

the top 128 most frequent words in the corpus. Note that the number of lexical

items in this set of experiments is still 128. As shown in these two rows, improving

the quality of the function word list leads to a significant incremental gain. This

gain is consistent for both orientation and pairwise dominance models as well as

across the MT06 and MT08 sets.

The final row +ori+dom+δ=0.5 shows the performance of employing all

adapted models into the Hiero model. We are pleased to see the results as em-

ploying all adapted models together provides an incremental gain, consistent with

the experiments with the F W S model, scaling the F W S approach to large-scale

experiments.
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10.4 Summary

In this chapter, we focus on adapting our function word idea into the state-of-the-

art Hiero model and show the benefit of this idea beyond the framework we develop

in this thesis. We show that some of the models developed for the F W S model

can be adapted into the Hiero model by extending Hiero rules to include the word-

alignment information. We show the virtue of our function word-based reordering

idea in improving the performance of the state-of-the-art model in a large-scale

experiment.
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Chapter 11

Conclusion

The research presented in this thesis identifies weaknesses of the current approaches

to the reordering task in the context of Statistical Machine Translation (SMT)

and offers both theoretical and implemented solutions to address them. In this

chapter, we summarize the main research contributions of this work, then list the

main limitations of this work, discuss future research directions and conclude with

implications of this work on the field of SMT as a whole.

11.1 Main Contributions

The main contribution of this thesis is in the proposal of using function words

as the anchor to guide the reordering process. Function words are linguistically

vital in explaining the grammatical relationship among phrases within a sentence

and projecting them together with their dependant arguments to another language

often results in structural changes to the realized sentence.

In this thesis, we have developed this idea in the context of the syntax-based

approach, referred to as the Function Words, Syntax-based (F W S) approach. In

a nutshell, the characteristics of the F W S approach are as follows: 1) it comes
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with two types of nonterminal: function words and arguments; 2) it lexicalizes

nonterminals with function words; and 3) it models the generation of nonterminals

as a head-outward process. We exploited these characteristics to better address the

undergeneration and the overgeneration problems that are found in the existing

formally syntax-based models.

Under such a knowledge-poor environment, formally syntax-based models

approximate their rewrite rules from parallel texts which provide no structural

information. Without such knowledge, these models typically rely on a combination

of one generic nonterminal symbol, lexical items and some heuristics. While the

combination of these three features provides state-of-the-art performances, they

make the models susceptible to both the undergeneration and the overgeneration

problems.

As has been demonstrated in this thesis, the F W S approach is able to

alleviate both the undergeneration and the overgeneration problems. Instead of

relying on lexical items of any type, it relies on heads which are equated to function

words. In practice, function words correspond to a small, fixed set of lexical items,

making our approach not only linguistically-grounded but also relatively compact.

But more importantly, it makes the model scalable to incorporate more information

to provide a stronger structural preference. In our experiments, we show that our

proposed model outperforms the currently available statistical systems and the

performance gain is statistically significant.

Concretely, we use the function word idea to make the following contribu-

tions:

• The function word identification method.

• The argument selection model.

• The pairwise dominance model.
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We elaborate these three contributions individually in the following sections.

11.1.1 The function word identification method

One important aspect of the F W S approach is the identification of function words.

The successful identification of function words ensures the success of the down-

stream process in the F W S approach. One contribution of this thesis is on the

identification of function words. Specifically, we look at two easy to obtain statis-

tics, namely: the frequency and the deviation statistics. The former refers to how

frequent the word appear in the training data while the latter refers to how likely

is the word’s surrounding phrases to move. Thus, according to these statistics,

we classify words as function words if they appear with high frequency and their

surrounding words tend to move. We showed in our experiments in Chapter 6 that

we can obtain a high quality list of function words that can improve the reordering

quality.

We can also extend this idea beyond the F W S model. For instance, it can

be used to extend the Hiero system or even the phrase-based system to identify

the lexical items that give the most benefit to the reordering task. Or, we can

also use this simple idea to evaluate the usefulness of modeling different level of

abstraction. For instance, we can use this simple idea to decide whether a noun

should be modeled at the lexical level or at a more abstract level (a noun class or

a singular noun class).

11.1.2 The argument selection model

Another innovation of this thesis is the development of the argument selection

model. Specifically, we allow a function word to have a flexible set of arguments,

i.e. not restricted to the neighboring text; and use the statistics about where those

arguments are likely to move to select the most appropriate set of arguments. This



149

model removes the practical restriction imposed by the state-of-the-art syntax-

based models that forbid the creation of rules with adjacent nonterminals. In other

words, we prefer to accommodate more arguments but at the same time treat the

ambiguity by statistical means. We showed in our experiments that allowing a more

flexible arguments coupled with our argument selection model provides a significant

improvement gain.

This model can also be applied to other approaches. For example, it can

be used by the Hiero system to promote judicious uses of adjacent nonterminals,

alleviating its undergeneration problem. It can also be applied by a phrase-based

system to allow more flexible context modeling, beyond just the preceding phrase.

11.1.3 The pairwise dominance model

The third key contribution of this work is in the development of the pairwise dom-

inance model. Under a knowledge-poor environment where no structural informa-

tion is available, we developed this model to approximate the order of rule applica-

tion by looking at the phrase alignment around every neighboring function words.

We exploit the fact that different order of application produces different kind of

phrase alignment around the function words. We showed in the experiments that

our pairwise dominance model is able to give a significant improvement gain.

Again, this model is not restricted to the F W S approach but also to other

models, such as the Hiero system by perhaps extending the definition of head

beyond the function word class, although one may have to be careful with data

sparsity issue. It can also be applied as a phrase-based model since this model is

approximated only via phrase alignment.
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11.2 Limitations and Future Work

The development of the function word idea takes the reordering process a step

further. However, we acknowledge some limitations in the current implementation.

We examine these obstacles and make recommendations for future research that

can address these issues.

• The applicability of the idea of function words - Function words have

a significant grammatical role in analytical languages, such as Chinese and

English, where the syntactic and the semantic of the sentence are shaped by

the use of function words and embedded in the word order. However, this idea

may not be directly generalizable to heavily agglutinative languages, such as

Arabic, where the grammatical marker is attached to the semantic unit with

the use of affixes. We suspect that while function word centric reordering has

its linguistic ground in analytical languages, it requires some adaptation prior

to its implementation to agglutinative ones. To accommodate such languages,

the F W S approach probably has to go to a more finer-grained analysis, i.e.

morpheme units, by first performing morphological analyses to the source

sentence.

• The knowledge about argument boundary - In this thesis, we have ex-

perimented with a simple solution to approximate the argument boundary

knowledge using a shallow linguistic analysis based on text chunking. While

text chunking is good for bracketing the monolingual text, we found the out-

put is not suitable for our purpose of reordering phrases. It is often the case

that the phrase boundary of an argument in one language does not agree with

its projection in another language. Although we can achieve a considerable

good performance without the proper knowledge about the argument bound-

ary, we still see some obvious errors in the translation output that are directly
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attributed to the absence of such knowledge.

• The single function word head - In this thesis, we restrict the definition

of function words to single words. In many languages, there are cases where

one function word is not independent of each other, such as in the case of split

function words: ,...Þ which means “from above” in English. Currently, the

F W S approach has yet to cater these function words, treating them as two

separate entities. We observe through a casual inspection that some of the

mistakes made by our system are due to these cases.

Aside from the limitations of the function words-centric approach, there are some

natural extensions of this thesis in the direction of future research. Here, we look

briefly at several routes of future research:

• Enriching the representation of function words - Currently, the head-

driven SCFG only captures the reordering that is influenced by a single head.

We suspect that we can improve the performance of the F W S approach fur-

ther by enriching the heads with finer-grained information. One simple way

to enrich the function words is to complement the lexical information with

empirical evidence such as the position of the function words in the sentence.

Another way is by coupling two neighboring function words together, as do-

ing so may suggest a more precise reordering. For example, the orientation

statistics for the most frequent word { (of) give almost equal probability to

monotone and reverse reordering - with a little more probability mass to the

latter. Although it is useful in practice, this part of the model contains high

entropy, thus requires other components to add the additional discriminat-

ing power. We often can find more refined statistics when the word appears

next to another function word. For instance, we observe that when { (of)

appears next to Þ (on), it is most likely to swap the surrounding text. How-
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ever, when { (of) appears next to other heads, it is most likely to suggest

monotone reordering.

• Enriching the representation of arguments - Currently, little informa-

tion about arguments are involved in the reordering process. The F W S

model only uses positional information such as the argument’s location with

respect to the head. When reordered, the function words treat all arguments

similarly in different context. Obviously, extra information about the argu-

ments would be beneficial. For instance, the second neighbor argument of the

function word � (for) should be restricted only to verbal phrases for the VP

construction illustrated in Fig. 7.1. In the future, we hope to explore different

methods to exploit the evidence supplied by the arguments.

• Going beyond two labels - The previous two routes can be seen as intro-

ducing a new set of nonterminal labels into the grammar. If we relate the

syntax-based approach to the monolingual grammar induction process, the

introduction of function words represents the first effort to induce the com-

plete set of word classes from raw text. In the future, we hope to benefit

from the more mature field of monolingual grammar induction, particularly

to mimic a typical road map taken to induce the grammar in an unsupervised

way. As such, the resulting grammar contains richer information that encodes

stronger structural preferences.

• Moving to the knowledge-rich environment - We intend to integrate

the word class information (perhaps in terms of POS tag or lexical categories)

into our framework, which is similar in spirit with the previous route of future

work but here the knowledge source comes from linguistic annotation. The

additional layer information allow us to generalize the heads into a more

coarse-grained tokens and to abstract away from the arguments’ lexical items.
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The latter is extremely important as the generalized representation of the

arguments are still missing in the current implementation.

• Extending the idea to the full translation task - Although we show

that our model performs well in the full translation task, we believe that we

have only touched the surface benefit of the F W S approach, especially when

we observed that alignment errors intrude and hamper the full realization

of this idea. In the future, we hope to better scale up this approach to

the full translation task, which may include a better proposal for alignment

algorithms that is geared toward function word modeling. Another possible

route is to integrate some ideas from hierarchical phrases into our framework,

especially to make our model more robust to alignment errors.

11.3 Revisiting the Syntax-based Approach

The move to the syntax-based approach has since brought SMT research closer to

natural language formalism. However, two inter-related open research questions

arise as to what is the appropriate representation to model the structural differ-

ence between the source and target languages and how to estimate the parameters

of such a representation. As of this thesis writing, there is no consensus about

how to answer these two questions. The formally syntax-based approach strives

for portability, designing a system which can be adopted to a new language pair

with little effort. However, the structural difference is only represented by a single

generic nonterminal symbol coupled with lexical items. On the other hand, the

linguistically syntax-based approach strives for fidelity, designing the system to be

faithful to the linguistic annotation prepared by human linguists. In practice, such

a system has to work on an environment that is far from ideal where noise interfere.

Besides, it is unclear whether such linguistic annotation provides a suitable level of
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representation for the task – the same issue that also arises in the monolingual pars-

ing task. We view both approaches as two efforts that start from different starting

points, approaching the ideal syntax-based model somewhere in the middle.

In this thesis, we have engaged ourselves to seek the answer to these questions

when we touch on a specific subtask of the translation task: the reordering task.

Through the development of the function word idea, we hypothesize that the fact

that function words provide the essential syntactic information is beneficial for

reordering. We demonstrate the utility of such approach in the formally syntax-

based approach, where no linguistic annotation is available, but the identity of

function words is identifiable. We see our thesis as the one that brings formally

syntax-based approach one step closer to the ideal syntax-based model. It is our

hope that we have also provided some useful ideas about what does and what does

not work in this framework.
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Cowan, Brooke, Ivona Kuc̆erová, and Michael Collins. 2006. A discriminative

model for tree-to-tree translation. In Proceedings of the 2006 Conference on

Empirical Methods in Natural Language Processing, pages 232–241, Sydney,

Australia, July. Association for Computational Linguistics.

Dempster, A. P., N. M. Laird, and Donald B. Rubin. 1977. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society, Series B, 39:1–38.

DeNero, John and Dan Klein. 2007. Tailoring word alignments to syntactic machine

translation. In Proceedings of the 45th Annual Meeting of the Association

of Computational Linguistics, pages 17–24, Prague, Czech Republic, June.

Association for Computational Linguistics.

Deyi Xiong, Min Zhang, Ai Ti Aw Haitao Mi Qun Liu and Shouxun Lin. 2008.

Refinements in btg-based statistical machine translation. In Proceedings of

IJCNLP 2008, Hyderabad, India.

Fox, Heidi. 2002. Phrasal cohesion and statistical machine translation. In Proceed-

ings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 304–311, Philadelphia, July.

Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2004. What’s in a

translation rule? In HLT-NAACL 2004: Main Proceedings, pages 273–280,

Boston, Massachusetts, USA, May. Association for Computational Linguis-

tics.

Germann, Ulrich. 2003. Greedy decoding for statistical Machine Translation in

almost linear time. In Proceedings of the 2003 Human Language Technology

Conference of the North American Chapter of the Association for Computa-

tional Linguistics, pages 72–79, Edmonton, Alberta, Canada, May. Associa-

tion for Computational Linguistics.

Germann, Ulrich, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada.



158

2001. Fast decoding and optimal decoding for machine translation. In Pro-

ceedings of 39th Annual Meeting of the Association for Computational Lin-

guistics, pages 228–235, Toulouse, France, July. Association for Computa-

tional Linguistics.

Green, T.R.G. 1979. The Necessity of Syntactic Markers: Two Experiments with

Artificial Languages. Journal of Verbal Learning and Behavior, 18(4):39–71.

Harris, Zellig S. 1954. Distributional structure. Word, 10(23):146–162.

Howard, Jiaying. 2002. A Student Handbook for Chinese Function Words. The

Chinese University Press.

Kasami, Tadao. 1963. An efficient recognition and syntax analysis algorithm for

context-free languages. Report AFCRL-65-758, Air Force Cambridge Re-

search Laboratory, Bedford, MA.

Kneser, R. and H. Ney. 1995. Improved backing-off for m-gram language modeling.

In Proceedings of IEEE International Conference on Acoustics, Speech, and

Signal Processing95, pages 181–184, Detroit, MI, May.

Knight, Kevin. 1999. Decoding complexity in word-replacement translation mod-

els. Computational Linguistics, 25(4):607–615.

Knight, Kevin and Jonathan Graehl. 2005. An overview of probabilistic tree trans-

ducers for natural language processing. In Proceedings of the 6th Interna-

tional Conference on Computational Linguistics and Intelligent Text Pro-

cessing CICLing, volume 3406 of Lecture Notes in Computer Science, pages

1–24. Springer.

Koehn, Philipp. 2004a. Pharaoh: A beam search decoder for phrase-based sta-

tistical machine translation models. In Robert E. Frederking and Kathryn

Taylor, editors, Proceedings of the 6th Conference of the Association for Ma-

chine Translation in the Americas, volume 3265 of Lecture Notes in Com-

puter Science, pages 115–124. Springer.



159

Koehn, Philipp. 2004b. Statistical significance tests for machine translation evalu-

ation. In Proceedings of Empirical Methods in Natural Language Processing

2004, pages 388–395, Barcelona, Spain, July.

Koehn, Philipp, Amittai Axelrod, Alexandra Birch Mayne, Chris Callison-Burch,

Miles Osborne, and David Talbot. 2005. Edinburgh system description

for the 2005 IWSLT speech translation evaluation. In Proceedings of The

International Workshop on Spoken Language Translation 2005.

Koehn, Philipp and Hieu Hoang. 2007. Factored translation models. In Proceedings

of the 2007 Joint Conference on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning (EMNLP-CoNLL),

pages 868–876, Prague, Czech Republic, June.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard

Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst.

2007. Moses: Open source toolkit for statistical machine translation, June.

Koehn, Philipp and Christof Monz. 2005. Shared task: Statistical machine trans-

lation between European languages. In Proceedings of the ACL Workshop

on Building and Using Parallel Texts, pages 119–124, Ann Arbor, Michigan,

June. Association for Computational Linguistics.

Koehn, Philipp and Christof Monz. 2006. Manual and automatic evaluation of

machine translation between European languages. In Proceedings on the

Workshop on Statistical Machine Translation, pages 102–121, New York City,

June. Association for Computational Linguistics.

Koehn, Philipp, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based

translation. In Proceedings of the 2003 Human Language Technology Con-

ference of the North American Chapter of the Association for Computational



160

Linguistics, pages 127–133, Edmonton, Alberta, Canada, May. Association

for Computational Linguistics.

Kumar, Shankar and William Byrne. 2005. Local phrase reordering models for

statistical machine translation. In Proceedings of Human Language Technol-

ogy Conference and Conference on Empirical Methods in Natural Language

Processing, pages 161–168, Vancouver, British Columbia, Canada, October.

Association for Computational Linguistics.

Liang, Percy, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. 2006. An
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Appendix A

Decoding Algorithm

We describe the decoding algorithm used by the function word, syntax-based (F W S)

model to reorder source sentences. In essence, we employ the Cocke-Younger-

Kasami (CYK) algorithm (Cocke, 1969; Younger, 1967; Kasami, 1963) to produce

the translation given the source sentence F = f1,f2,...,fJ . We show the pseudo code

of the algorithm in Alg. 1 and describe the most relevant details in subsequent

sections.

Algorithm 1 function CYK(F: eJ
1 , P: phrase translation table, M: models) → T∗

(the best parse tree)

1: for start=0 to J-2 do do
2: for end=start+1 to J do do
3: chart[start,end].insert(initialize(F,start,end,P,M))
4: end for
5: end for
6: for |span|=2 to J do do
7: for start=0 to (J-|span|) do
8: for mid=start+1 to start+|span|-1 do do
9: chart[start,end].insert(merge(chart[start,mid],chart[mid,end],M))

10: end for
11: end for
12: end for
13: return best(chart[0,length])



167

A.1 The item and chart data types

The main data type in the algorithm is the item data type which holds the infor-

mation about a node in a parse tree. Table A.1 lists the elements of the item data

type.

Variables Description
idx1:integer starting index
idx2:integer ending index
lbranch:item left child
rbranch:item right child
prob:double probability score
type ∈ {X, Y, XY, YX } node type
op ∈ {mono,rev} operation type

Table A.1: A partial list of the variables and their descriptions of the item data
type

The item’s starting and ending indices (idx1 and idx2 respectively) refer to

the white space index instead of the word index. For instance, the first word f1 is

represented by an item which starting and ending indices are 0 and 1 respectively,

while the last word fJ by an item which starting and ending indices are J − 1 and

J respectively.

The node type is used to indicate the terminal rules’ label (in cases of X

and Y values) or to flag the partial expansion of a rule of rank three (in cases

of XY and YX values). We need the latter to emulate the rules of rank three,

since the CYK algorithm only creates a binary branching structure. The operation

type indicates the reordering operation that is performed upon the lbranch and the

rbranch children. This operation will affect the target language side of the node, i.e.

whether the lbranch will be rewritten before or after in cases of monotone (mono)

or reverse (rev) reordering, respectively.

Meanwhile, the chart data type is basically a strictly upper triangular matrix
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which index starts from 0 and ends at J . Each element of the chart contains a list,

which stores a collection of nodes of the same span. The insert() routine ensures

that all the items in the list are sorted according to the item’s probability score. In

the exact implementation, we restrict the number of nodes kept in each sorted list

and discard the others that fall beyond a certain threshold.

A.2 The initialize() routine

The initialize() routine prepares the chart data type by filling in the leaf nodes that

are created from the entries of the phrase translation table. Similar to some variants

of the phrase-based approach (such as the alignment template approach (Och and

Ney, 2004) or those that use alignment constellation features (Liang et al., 2006)),

we retain word alignment information for each phrase translation. This information

is essential for the pairwise dominance model, especially for the estimation of the

pORD predicate.

The initialize() routine basically enumerates all entries in the phrase transla-

tion table and performs the following operations:

• Checks whether an entry occupies a certain span in the source sentence. If it

indeed occupies a certain span, then an item is created. The variables idx1

and idx2 are initialized with the span’s starting and ending indices.

• Checks whether the newly created item belongs to either of the four item type.

Specifically, it checks the entry’s bordering word. It assigns X type if neither

of the entry’s bordering words is a head or Y if the entry contains only one

word and it is a head. Meanwhile, it assigns XY if the ending word is a head,

or YX if the starting word is a head. In cases where both the starting and

the ending word belong to the head class, it creates two items: one item of

XY type and another one of YX type.
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• Determines the op variable for each newly created item, if the type of the

newly created item is either XY and YX. Note that this step requires the

information about the word alignment.

• Initializes the prob score with the language model score according to the

model (M).

A.3 The merge() routine

This routine forms the main body of the decoding algorithm. Given two items of

smaller span X1 and X2, the merge routine creates a new node by joining the two

smaller nodes.

1: if X1.type • X2.type ∈ { XY, YX, XX, XYX, YXX, XXY } then

2: return create(join(X1,X2))

3: else

4: return create(join(backoff(X1),X2)) ∩ create(join(X1,backoff(X2)))

5: end if

The • operator in line 1 is the concatenation operator, used to check whether

the merging of X1 and X2 creates a legal sequence of symbols, i.e. whether there is

a rule that emits that sequence of symbols. If the merging creates a legal sequence,

then the routine continues with the execution of the create() subroutine. Every

time this routine is executed, the create() subroutine creates two items: one for

the monotone reordering and one for the reverse reordering, setting the item’s op

variable accordingly. Otherwise, the routine merges one item with the back off

version of the other item as specified in line 4. The backoff routine basically reverts

the item’s type to X.

The probability score of each newly created item can be calculated in a

straightforward manner. For instance, the language model score can be directly
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calculated as the target string can be constructed according to the concatenation

operation specified by op. Likewise, the orientation model score can also be calcu-

lated since the item data type already stores the item’s reordering operation. The

calculation of the dominance model is also straightforward, since the information

about the word alignment information is stored.

The calculation of the argument selection model requires more explanation.

While the calculation of the grow model is straightforward as it can be calculated

every time an argument is appended to a head, the calculation of the number of

arguments and the stop model requires prior information about the full range of

the item which is not known beforehand. In our implementation, we postpone the

calculation of these two models up to the point where: the item is backed off (line

3) or the merging produces the maximum sequence of nonterminal symbols, i.e. the

concatenation of X1 and X2 produces either XX, XYX, YXX, or XYY.
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Appendix B

List of Function Words

We list down the 128 most frequent words used in experiments in Chapter 5 below.

We mark the frequent words that are also function words with * symbol after the

words.
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