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Summary

Space-time block coding (STBC) is a well-known technology to exploit the spatial

diversity in multiple-input multiple-output (MIMO) systems, due to its good

performance and simplicity of decoding. The existing works on STBC, however,

are often based on ideal assumptions, such as channels are identically distributed, or

block-wise constant. These assumptions simplify the analysis and design of STBC,

but reduce their generality. Therefore, large gaps remain between the real application

and the theoretical analysis. The results of STBC obtained so far might not be readily

applicable in the real world. Therefore, one purpose of this thesis is to relax some

of these unrealistic assumptions, and study STBC in more general channel models.

In this thesis, we will examine STBC over general fading channels. Three channel

models, namely non-identical channels, time-selective channels and relay channels,

are considered.

For STBC over non-identical channels, the performance with both perfect and

estimated channel state information (CSI) is investigated. If perfect CSI is available,

we derive the exact bit error probability (BEP), together with an upper bound on

the BEP. The different effects of non-identical channel statistics on the performance

are examined, An optimum power allocation scheme is also proposed. On the other

hand, if the CSI is imperfect, we show that the structure of the maximum likelihood

(ML) detector is different from the conventional one for the identical channels. The

performance of the new ML decoder is analyzed. A new symbol-by-symbol (SBS)
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Summary

decoder is obtained from the new ML decoder, under certain conditions. A comparison

of the performance between the conventional and the new SBS decoders is provided.

For STBC over time-selective channels, we derive the exact BEP. More

importantly, we reveal the relationship between the inter-symbol interference (ISI) and

the row positions in the code matrix. One proposition is presented for searching for

the optimum code, which minimizes the ISI over a time-selective channel. For systems

with large numbers of antennas, the code search may become prohibitive, even with

the help of the proposition. We then propose two design criteria, following which,

the sub-optimum codes can be systematically designed by hand. These sub-optimum

codes have a performance close to the optimum one.

For STBC over relay channels, the amplify-and-forward (AF) strategy is

examined. Exact BEP results are obtained for the first time, with three different

transmission protocols. The exact BEP result is compared with the asymptotic result in

the literature, and a great improvement in the accuracy is observed. We also point out

that since the noise at the relay is also forwarded in the AF strategy, the relay should

keep silent under certain conditions. Adaptive cooperative STBC’s are, therefore,

proposed and analyzed. Finally, the energy efficiencies of these adaptive schemes are

discussed.
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Chapter 1

Introduction

Wireless communication has suffered from the fading problem ever since its first

appearance in 1897, when Guglielmo Marconi transmitted a wireless signal to a ship

in the English Channel. The following century witnessed the remarkable development

of wireless communication, especially in the last decade. Consequently, the demand

for bandwidth and capacity becomes more and more urgent, and the fading problem

has never been so critical.

The capacity of communication systems with a single antenna can be very low,

due to the multi-path propagations in wireless channels. The multi-path signals add

up constructively or destructively at the receiver antenna to give a fluctuating signal,

which can vary widely in amplitude and phase. When the amplitude of the signal

experiences a low value it is termed fading and the capability of the wireless channel

is severely limited.

Research efforts have focused on ways to make more efficient use of this limited

capacity and have accomplished remarkable progress. Efficient techniques, such

as frequency reuse and OFDM [1], have been invented to increase the bandwidth

efficiency; on the other hand, advances in coding techniques, such as turbo codes [2]

and low parity check codes [3,4] make it possible to almost reach Shannon capacity [5],

1



1. Introduction

the theoretical performance limit of the channel. However, the development of the

techniques for a single channel has yet to catch up with the increasing demand for the

capacity.

While transmitting over one ‘bad’ wireless channel cannot meet the requirement,

it is intuitive to transmit over several ‘bad’ channels, in order to hedge against the

possibility that all the channels are bad simultaneously. The technique of using

multiple channels is calleddiversity. Most generally used diversity techniques include

time diversity, frequency diversityand space diversity[6, 7]. In the time diversity

technique, replicas of the information are transmitted at different times that exceed the

coherence time of the channel, so that multiple repetitions of the signal will be received

with independent fading conditions, thus providing the diversity. In the frequency

diversity technique, replicas of the information are sent on different frequencies, which

are separated by more than the coherence bandwidth of the channel, so that diversity

is also archived. Space diversity, however, is different from the above two diversity

techniques. It exploits the independence of different antennas, which are spatially

separated or differently polarized. Since we need not send the replicas of the same

information over different times or different frequencies, the diversity is obtained

without loss of bandwidth efficiency and data rate.

If the system has one antenna at both the transmitter and the receiver, it is called a

SISO (single-input single-output) system. Multiple antennas were first deployed at the

receiver end, which form a single-input multiple-output (SIMO) system. The multiple

copies of the signal which arrive at the different receive antennas are combined

according to certain combination rules, such as selection combining (SC), equal gain

combining, (EGC) and maximum ratio combining (MRC). All of these combining

schemes show great improvement, compared with SISO system.

However, SIMO systems, which only utilize one side of the diversity in

2



1.1 MIMO Systems and Space-Time Coding

communication systems, are still not efficient enough. In the last two decades,

researchers started to apply multiple antennas at both the transmitter and the receiver

ends, which form multiple-input multiple-output (MIMO) systems. MIMO systems

greatly increase the capacity of a wireless channel [8–10], and have attracted great

research interests. Different kinds of MIMO systems have been invented ever since.

Among these systems, the space-time block coding (STBC) system is frequently used

now, due to its simple design and good performance.

In the rest of the chapter, we will first review different MIMO systems and then

focus on space-time coding (STC). The performance and the design of STBC over

various fading channels will be discussed. The discussion will lead to the objectives

and the contribution of this thesis.

1.1 MIMO Systems and Space-Time Coding

1.1.1 Background of MIMO Systems

The rudiment of the first MIMO system appeared in 1987, when two communication

systems, communicating between multiple mobiles and a base station with multiple

antennas, and communicating between two mobiles each with multiple antennas, were

proposed in [11]. This is the first paper that discusses the use of multiple antennas

at both the receiver and the transmitter. The capacity expression is given in terms

of the eigenvalues of the channel matrix. Later on, a communication system which

simultaneously transmits the same message with several adjacent base stations is

proposed in [12, 13]. In [14], a similar system, which transmits the same symbol

through multiple antennas at different times, is suggested.

Different from the earlier works which consider simulcasting the same symbol,

Foschini presented the analytical basis of MIMO systems in [8, 15], where different

3



1.1 MIMO Systems and Space-Time Coding

data streams are transmitted at the same time. Reference [15] is the first paper in

which Bell Labs proposed BLAST (Bell Labs Layered Architecture of Space-Time) as

the communication architecture for the transmission of high data rates, using multiple

antennas at both the transmitter and receiver. In the proposed BLAST system the

data stream is divided into blocks which are distributed among the transmit antennas.

In vertical BLAST sequential data blocks are distributed among consecutive antenna

elements, whereas in diagonal BLAST, they are circularly rotated among the antenna

elements. The core technologies of the BLAST systems are the signal processing

algorithms used at the receiver. At the bank of receiving antennas, high-speed signal

processors look at the signals from all the receive antennas simultaneously. The

strongest substreams are sequentially detected and extracted from the received signals.

The remaining weaker signals are then easier to recover since the stronger signals

have been removed as sources of interference. The ability to separate the substreams

depends on the slight differences in the way the different substreams propagate through

the environment.

Under the rich scattering environments with independent transmission paths, the

theoretical capacity of the BLAST architecture withMT transmit andNR receive

antennas grows linearly proportional tomin(NR,MT ) [8], even when the total

transmitted power is held constant. Thus, the capacity is increased by a factor of

min(NR,MT ) compared to a SISO system. The laboratory prototype [16] has already

demonstrated spectral efficiencies of 20 - 40 bits per second per Hertz of bandwidth,

numbers which are simply unattainable using standard SISO techniques.

If the channel state information (CSI) is known at the transmitter, the full

capacity of the MIMO system can be reached by transmitting the signal along the

eigen-channels and applying ’water filling’ principle [9] to allocate the transmitting

power to each eigen-channel. This scheme gives the theoretical limit of the channel

4



1.1 MIMO Systems and Space-Time Coding

capacity which can be attained by MIMO systems. However it is difficult to realize in

practice, due to the complexity and the restriction on the feedback channel. Lo [17]

proposed the maximum ratio transmission with MRC in 1999, which is also known

as MIMO beamforming. Beamforming schemes use the strongest eigen-channel for

transmission, and therefore reduce the complexity of a MIMO system in the sense

that they only require scalar decoding and feedback of the largest eigenvalue. It has

been proved that in certain scenarios, the capacity of beamforming is close to the

channel capacity [18]. Based on practical considerations, some modified versions of

beamforming are proposed. In order to reduce the feedback overhead, the receiver

can quantize the channel information and send back the label of the best beamforming

vector in a predetermined code-book to the transmitter [19, 20]. In the slow fading

channel, the statistics of the channel, such as the channel covariance matrix is fed

back [18,21]. In order to further reduce the complexity, sub-optimum MIMO schemes

are proposed with transmit antenna selection (TAS) and receive antenna selection

(RAS) [22]. MIMO systems with TAS, RAS or both can also achieve full diversity, but

with much simpler structure. As an example, a MIMO system, using TAS withMT

transmit antennas, only needslog2 MT bits to be fed back to indicate which transmit

antenna should be chosen. Moreover, it requires only one radio frequency chain at the

transmitter, thus reducing the complexity of equipment.

The advantage of MIMO systems is due to two effects. One is diversity gain

since it reduces the chances that several channels are in a deep fade simultaneously.

The other is the beamforming gain obtained by combining the signals from different

antennas to achieve a higher signal-to-noise ratio (SNR). Since multiple antennas

introduce a new dimension of space on top of the conventional time dimension at the

transmitter, this triggers tremendous research interests on multi-dimensional coding

procedures for MIMO systems, which are generally referred to as space-time coding
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schemes. More detailed literature reviews on space-time coding schemes will be given

in the next section.

1.1.2 Introduction to Space-Time Coding

Although [14] has attempted to jointly encode multiple transmit antennas, Tarokhet

al. [23] are the first to introduce the concept of space-time coding by designing codes

over both time and space dimensions. The original work in [23] proposes the well

known rank-determinant and product distance code design criteria of space-time codes

for quasi-static fading and rapid fading channels, respectively. For the quasi-static

fading case, the fading coefficients remain constant over an entire transmission frame,

whereas the coefficients vary independently from symbol to symbol for the rapid

fading case. Following Tarokh’s work, much research efforts have been made to

develop powerful space-time codes based on different design criteria or improved

search algorithms [24–37]. The family of space-time codes includes space-time trellis

codes (STTC) [24,25,27,28] and space-time block codes (STBC) [26,29–37].

It is shown in [23] that space-time coding achieves a pairwise error probability

(PEP) that is inversely proportional to SNRMT NR , so MT NR is called thediversity

gain of the code. Comparing with the PEP of SISO systems, which is inversely

proportional to the SNR, the error rate of MIMO systems is reduced dramatically.

Besides the diversity gain, the STTC also provides a coding gain which depends on

the complexity of the code, i.e., number of states in the trellis, without any loss in the

bandwidth efficiency. The STTC encodes on one input symbol at a time and produces a

sequence of vector symbols whose length represents the number of antennas. In order

to decode the STTC, it requires a multidimensional Viterbi algorithm at the receiver,

so the coding gain of STTC is achieved at the expense of a complex receiver.

In contrast to STTC, STBC encodes the whole block of input symbols together,
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and can offer full diversity with relatively simpler design. The first practical space-time

block code is proposed by Alamouti in [29], which works for systems with two transmit

antennas. It is one of the most successful space-time block codes because of its good

performance and simple decoding. Therefore, it has been included in several IEEE

standards, e.g. IEEE 802.11n. The STBC was later generalized to the cases for an

arbitrary number of transmit antennas in [30]. It was also pointed out in [30] that the

full-rate complex orthogonal designs (COD) only exist for two transmit antennas [29],

and COD for more than two transmit antennas must have a rate less than one. Based

on the generalized orthogonal code structure defined in [30], the designs of orthogonal

STBC were extensively studied in [32–37].

Space-time coding is a promising technology. However its performance in

different channel models is still not completely evaluated. Tarokhet al. [23] first

derived performance criteria for STC based on the PEP, for both slow and fast fading

channels. They made use of the Chernoff bound on theQ-function to derive a loose

upper bound on the PEP, which depends on the eigenvalues of the code difference

matrix. Fitz et. al. [38] proposed an upper bound on PEP, which is tighter than Tarokh’s

one, but it applies a high SNR approximation, so that it is loose at the lower SNR

region. The bounding technique is not unique. In other references, [39] gives both

upper and lower bounds on the PEP, [40] proposes a lower bound with a code design

criterion, and [41] summarizes several existing bounds in a general form and introduces

a new code design criterion as well. A more accurate performance evaluation can be

obtained by exactly calculating the PEP, rather than calculating the bounds. This can

be done by using residue methods based on the characteristic function technique [42]

or on the moment generating function method [43,44]. Generally, no closed form has

been achieved for exact PEP evaluation, thus the results in [42–44] provide limited

insight into the structure of STC systems.
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Most of the performance analysis for STC systems is in terms of PEP, as it is not

easy to obtain an exact bit error result, especially for STTC systems. But for STBC

systems, bit error probability (BEP) and symbol error probability (SEP) are preferred

over PEP, as they are relatively easier to derive and more accurate in describing the

performance of the systems. Some performance analysis results for STBC can be

found in [45–51]. Gaoet al. assumed that the CSI was perfectly known at the receiver

in [45], and obtained exact BEP expressions for both BPSK and QPSK with Alamouti’s

code [29] and one receive antenna. In [46], the author obtained a PEP expression

based on perfect CSI knowledge using the moment generating function method, and

the result is not in explicit form. SEP expressions for MPSK and MQAM constellations

over the keyhole Nakagami-m channel were presented in [47] assuming perfect CSI at

the receiver. More recently in [48], an accurate BEP upper bound is proposed for a

symbol-by-symbol (SBS) detector, but again, the result in [48] requires perfect CSI

for decoding. Channel estimation error was first taken into account in [49], but the

complex computation of the eigen-values for a correlation matrix made it difficult to

analyze the PEP in [49]. Alternatively, Cheonet al. used Alamouti’s code [29] and

pilot-symbol assisted modulation (PSAM) [52] for channel estimation, but the BEP

result obtained in [50] was given in an unsolved integral form that must be evaluated

by a numerical approach. In [51] Shanet al. extended the BEP analysis to general

STBC’s, where the channel was estimated by decision-feedback or PSAM method.

Exact BEP results are obtained in [51].

All the above works on STBC, however, are based on assumptions of STC

systems, which are inherited from the very first work [23]. These assumptions, on

the one hand, simplify the analysis and design of STBC, but on the other hand lose the

generality. Consequently, the results of STBC obtained might not be readily applied in

a more practical and more general case in the real world. Therefore, this thesis begins
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by relaxing these ideal assumptions and determines the performance of STBC under

more realistic channel assumptions. In the next section, we will consider some of the

ideal assumptions that have been made for the STBC systems in the existing works.

1.2 Space-Time Block Codes over General Fading

Channels

1.2.1 Non-identical Channels

The first ideal assumption of STBC system is the ‘identical channels’ assumption.

In most of the previous works on STBC, e.g. [23, 29, 45–51], we can explicitly or

implicitly find the preliminary condition that the channel gains of the links between

different transmit and receive antennas are independent and identically distributed

(i.i.d.). However, this assumption is somewhat contradictory to the nature of

MIMO systems in the first place. In MIMO systems, in order to enjoy the spatial

diversity, the antenna spacing needs to be sufficiently large to minimize the correlation

between channels. However, this large spatial channel separation implies that the

channels would encounter very different propagation environments. If we consider

the cooperative diversity scenario, where the antennas are not even co-located and

distributed STBC’s [53] are used, then we can expect that the channels are always

non-identically distributed. Thus, it is of great interest to examine STBC over

non-identical channels.

MIMO systems are not the first cases where the non-identical channel assumption

becomes an issue. Earlier in the SIMO systems, the effect of non-identical channels

was investigated in [54–56]. These works analyze the performance of SIMO systems

with diversity reception over independent, non-identical, Rayleigh fading channels.
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In MIMO systems, the non-identical channels first appeared in distributed STBC

systems [57–59], and then in the point-to-point MIMO systems [60, 61]. The

performance of STBC over non-identical channels was also implicitly discussed in

[62–64], as the issue correlated channels can be view as special case of non-identical

channels.

However, the existing works on STBC over non-identical channels are far from

complete. Since the non-identical channels not only change the performance of STBC,

but also affect the receiver structure, many questions remain unsolved.

1.2.2 Time-Selective Channels

In [23], design criteria are derived for STC, namely, rank-determinant criteria for

quasi-static channels, and product distance criteria for rapid fading channels. This

work divides the fading channels into two typical classes, either they remain constant

during one frame, or they change independently from symbol to symbol. STBC

are then designed on the base of the first class. As STBC assume that the channel

remains constant within one code block, the channels are also referred to as block-wise

constant. Based on this assumption, STBC shows its advantage that full diversity is

achieved with a simple maximum likelihood (ML) decoding structure [30].

Obviously, the ‘block-wise constant channels’ is an ideal assumption, as we

cannot make the channels change only when one block ends. The channels must

change continuously from symbol to symbol, more or less, and, therefore, it is more

natural to assume a time-selective channel model.

For a system with two transmit antennas, one STBC code block extends over two

symbols and the channels can change significantly within one block in some cases [65–

67] (and references therein). Systems with three or more transmit antennas are even

more vulnerable to channel variations than the systems with two transmit antennas, due
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to the longer code block length of STBC [68, 69]. If the channels vary from symbol

to symbol, the orthogonality will be corrupted and (inter-symbol interference) ISI is

introduced, so the linear ML decoder [30] is no longer optimum.

Consequently, the performance analysis of STBC’s over time-selective channels

differs from the conventional one when channels are block-wise constant. In the

existing references, however, only a few works [70, 71] obtained the exact error

performance, when the special case of Alamouti’s code [29] is applied. Other works

either presented conditional error performance based on one channel realization, or

simply obtained the error performance through simulations, especially for the STBC’s

with higher numbers of transmit antennas. More importantly, due to the lack of

theoretical analysis, little insight can be gained and it remains unclear how the code

structures affect the performance of STBC when the channels are time-selective.

1.2.3 Relay Channels

For conventional MIMO systems, the transmitters and the receivers are assumed to

have multiple antennas. However, if the communication systems involve small mobile

terminals, it is usually difficult to implement multiple antennas, due to the limited

size. In such scenarios, spatial diversity may be exploited through the cooperation of

neighboring nodes [72–74], such that multiple single-antenna nodes forms a virtual

MIMO system, on which the STBC can be applied in a distributed fashion.

In these cooperative scenarios, the STBC’s are first broadcast to the neighboring

nodes, which act as relays. And then the relays forward the information to the

destination nodes. Since the STBC’s experience two hops of transmission, it can be

viewed as the STBC’s being transmitted over two-hop relay channels.

A relay node can work either in full-duplex mode or half-duplex mode.

Full-duplex mode means the relay node receives and transmits at the same time on
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the same frequency band. The interference from its transmit antenna needs to be

cancelled from the received signals at its receive antenna. Therefore, the full-duplex

mode achieves high spectral efficiency, at the expense of high complexity. Half-duplex

mode, as the name suggests, does not allow the relay node to transmit and receive at

the same time on the same frequency band, so the transmitter and the receiver either

share the bandwidth, or work alternately. Because of its simplicity, half-duplex mode

is often used in cooperative scenarios.

Several strategies can be used to process and forward the received signals

at the relay. The most common strategies are amplify-and-forward (AF) and

decode-and-forward (DF). Other strategies include compress-and-forward (CF) and

selection relay (SR). Among these strategies, AF is sometimes preferred due to its

simpler requirements on the relay nodes.

In cooperative STBC systems, the relay node using AF strategy simply forwards

the received signals in analog form [59, 75–77], so the additive noise at the relay

is forwarded to the destination as well. As a result, the end-to-end performance is

difficult to analyze and existing works, e.g. [59, 75–77], have not obtained the exact

performance result.

1.3 Research Objectives and Contributions

As discussed in Section 1.2, the existing works on the STBC are based on certain

restrictions and ideal assumptions, which are not always true in the real world. There

are large gaps between the real applications of STBC and the theoretical results derived

from the ideal models. The purpose of this thesis is to investigate STBC in more

realistic models, over more general fading channels.

For the sake of illustration, the topic will be addressed in three aspects. This thesis
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will investigate STBC over

1. non-identically distributed fading channels: STBC’s over non-identical channels

with perfect CSI and estimated CSI are analyzed respectively. In the case

of perfect CSI, we analyze the BEP of orthogonal STBC over independent,

non-identically distributed, block Rayleigh and Ricean channels. Both an upper

bound and the exact BEP results are derived. The results are applicable to

both point-to-point and distributed STBC, with any number of transmit and

receive antennas for which orthogonal STBCs are defined. With the analytical

performance results, we also examine different effects of non-identical channel

statistics on the performance of STBC. The results show that the non-identical

channel distributions degrade the performance in Rayleigh channels. But in

Ricean channels, the non-identical distributions can have different effects on the

performance. Based on the BEP results, we propose optimum power allocation

schemes (OPAS) for STBC over non-identical channels. The performance of

OPAS is compared with the one of conventional equal power allocation scheme

(EPAS).

In the case of estimated channels, we show that the conventional SBS

decoder [30] for orthogonal STBC is no longer optimum in this situation. The

whole STBC system is re-examined, and a new optimum decoder is proposed.

This decoder can be simplified to a new SBS decoder under certain conditions.

Performance analysis is provided, and the analytical and simulation results show

that our new decoder provides a much better performance compared to the

conventional SBS decoder in this situation.

2. time-selective fading channels: We first introduce an approach to analyze the

performance of STBC’s over time-selective channels, with arbitrary numbers of
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antennas for which orthogonal STBC’s are defined. Exact error performances

are obtained in closed forms. Through the analysis, the relationship between the

ISI and the STBC code structure is revealed.

ConsideringGi systems [30], one proposition and two design criteria are then

introduced. Applying the criteria, it is easy to design modified code matrices

which have less ISI, compared with the original code matrix. Alternatively, we

show how to use the proposition to search for an optimum code matrix with

minimized ISI.

3. relay fading channels: We analyze the exact bit error performance of cooperative

STBC with AF strategy. Three existing transmission protocols are considered,

and exact BEP results are obtained in closed form for all of these protocols.

Based on the exact BEP, we compare our results with the existing asymptotic

BEP in [59]. Then, we compare the performances of the protocols in different

situations and examine the robustness of these protocols.

For cooperative STBC over relay channels with AF strategy, we also

address the key question of when the relay should stop forwarding signals.

We first examine the effect of the forwarded noise on the received SNR and

find a critical condition, under which the forwarded signal from the relay will

be deleterious. According to this condition, we propose adaptive forwarding

schemes for cooperative STBC with full CSI, partial CSI and no CSI available

at the relay. The exact BEP’s of these adaptive cooperative STBC schemes,

which are much better than that of the conventional cooperative STBC, are

also obtained in closed form. Finally, the energy efficiencies of these adaptive

schemes are discussed.

Viewed another way, this thesis has two major contributions. On the one hand,
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the mathematical method used for the performance analysis in this thesis is insightful.

It provides a way to investigate physical meaning of the theoretical results. Therefore,

it leads to better code design, receiver structures and transmission strategies. On

the other hand, the simple analytical performance results obtained in this thesis are

based on more realistic channel models, so they should be directly applicable to the

practical implementation of STBC in the real environments, providing a clear guide to

telecommunication engineers.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows

Chapter 2 analyzes the BEP of orthogonal STBC over independent,

non-identically distributed, block Rayleigh/Ricean fading channels with perfect CSI.

With symbol-by-symbol detection, exact BEP results are derived in both Rayleigh and

Ricean fading channels. A simple but insightful upper bound on the BEP is also

obtained. Using the BEP expressions, the effects of non-identical channel statistics

on the performance of STBC are investigated. Based on these results, an optimum

power allocation strategy is also proposed.

Chapter 3 extends the results in Chapter 2 by assuming estimated channels. It is

shown that the non-identical channel statistics lead to non-identical channel estimation

error variances, which consequently affect the structure and the performance of

orthogonal STBC. A new optimum decoder is derived, which can be simplified to a

new SBS decoder under certain conditions. Performance analysis and simulations are

also provided.

Chapter 4 analyzes the performance of STBC over time-selective channels. Exact

error performances are obtained in closed form. The analysis reveals the relationship
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between the ISI and the structure of STBC matrices, such that one proposition and two

design criteria are proposed accordingly. STBC’s, which have less ISI compared with

the original code matrix, are obtained using these criteria and proposition.

Chapter 5 analyzes the performance of cooperative STBC with AF strategy. Exact

BEP results are derived in closed form for three existing protocols. The effect of the

forwarded noise is examined and a critical condition, which indicates when the relay

should forward and when it should not, is proposed. Based on this condition, adaptive

forwarding schemes for cooperative STBC are proposed. The performances of these

schemes are also obtained in closed form. The energy efficiencies of these adaptive

schemes are discussed.

Finally Chapter 6 summarizes our work, and points out a number of future

research directions.
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Chapter 2

Space-Time Block Codes over

Non-identical Channels with Perfect

CSI

In this chapter, we analyze the bit error performance of orthogonal STBC over

independent, non-identically distributed, block Rayleigh/Ricean fading channels with

perfect CSI. With symbol-by-symbol detection, we derive the expressions of the

exact BEP in both Rayleigh and Ricean fading channels. The results are applicable

to any number of transmit and receive antennas, for which orthogonal STBC’s are

defined. A simple but insightful upper bound on the BEP is also obtained. Using

the BEP expressions, we investigate the effects of non-identical channel statistics on

the performance of STBC. Based on these results, we also propose an optimum power

allocation strategy, which provides better BEP performance compared with the original

equal power allocation strategy.
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2.1 Introduction

It is well known that STC [23] can greatly improve the performance of wireless

communication systems equipped with multiple transmit and receive antennas. In

practice, STBC [29, 30] are commonly used due to their simple decoder structures.

The decoding rules and the performance of STBC have been extensively studied in

many works, e.g. [45, 48, 51] and the references therein. Most of the previous works,

however, assume that the channels between different transmit and receive antennas

are i.i.d.. The assumption of identical channel statistics may simplify the design and

the analysis of STBC, but it does not always hold in real environments, especially in

MIMO systems.

Several factors may introduce a statistical imbalance between channels. For

example, in a MIMO system, the antenna spacing needs to be sufficiently large to

reduce the correlation between channels. Therefore, the channels may involve very

different propagation environments. In some cases, directional antennas are used at

a base station. The different pointing directions of the transmit antennas will also

cause non-identical channel statistics. (Here, we consider the down-links from the

base station to users.) As a third example, one may consider the cooperative diversity

scenario, where the antennas are not co-located and some distributed STBC [53] may

be used. Then, it is natural to expect that the channels are always non-identically

distributed. Therefore, it is of great practical and theoretical interest to examine the

effects of non-identical channels on the performance of STBC.

The effect of non-identical channels was first investigated in SIMO systems.

References [54–56] analyze the performance of SIMO systems with diversity reception

over independent, non-identical, Rayleigh fading channels. In point-to-point MIMO

systems, non-identical channels have only been addressed by [60] and [61] recently.
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In [60], Tao and Kam considered the optimal detection and the error performance of

differential STBC over independent and semi-identically distributed, block Rayleigh

fading channels, where the semi-identically distributed channels refer to the case that

the channel gains associated with a common receive antenna are identically distributed,

but the ones associated with a common transmit antenna are not. In [61], Li and

Kam examined the pair-wise error probability of space-time trellis codes (STTC)

over independent, non-identically distributed, rapid Rayleigh fading channels. A new

pilot power allocation scheme is also proposed based on the performance result. In

a cooperative diversity scenario, [57–59] have considered the performance of STBC

over non-identical channels to some extent, where they assume the STBC works in a

distributed manner. However, these last three works either approximate the average

BEP, or consider a system with only two transmit antennas, and all of them only

consider the case of non-identical Rayleigh channels.

In this chapter, we first analyze the BEP of orthogonal STBC over independent,

non-identically distributed, block Rayleigh and Ricean channels. Both an upper bound

and the exact BEP results are obtained in closed form. The results are applicable to

both point-to-point and distributed STBC, with any number of transmit and receive

antennas for which orthogonal STBC’s are defined. With the analytical performance

results, we examine the different effects of non-identical channel statistics on the

performance of STBC. The results show that the non-identical channel distributions

degrade the performance in Rayleigh channels, which is similar to the observation in

SIMO systems over non-identical Rayleigh fading channels [54–56]. But in Ricean

channels, the non-identical distributions can have different effects on the performance.

From the analytical BEP results, it can be seen that the original equal power

allocation strategy at the transmit antennas may not be an optimum way to apply

STBC over non-identical channels. Therefore, designing an optimum power allocation
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strategy is another goal of this chapter. Some existing works [78–82] also considered

unequal transmit power allocation for STBC, but they assume the transmitter has the

instantaneous CSI, which causes high overhead in the feedback channel, especially in

time-varying channels. Therefore, it may not be realistic to apply these techniques

in practice. If the feedback channel is not error-free, [78] and [82] propose some

error-tolerant algorithms to optimize the transmit weight. However, these error-tolerant

algorithms are not explicitly related to the BEP, and cannot guarantee an optimum

performance. Our analytical BEP results, on the other hand, give a simple and

direct way to optimize the transmit power allocation, in order to achive the minimum

BEP. Moreover, our scheme only requires the knowledge of channel statistics at the

transmitter. Therefore, it greatly reduces the feedback overhead. In the case of the

Rayleigh channels with two transmit and one receiver antenna, our OPAS tends to

allocate more power to the (statistically) stronger channel in the low SNR region.

The performance improvement is up to2 dB in SNR, compared with the equal power

allocation scheme. In the high SNR region, however, the OPAS converges to the EPAS.

In Ricean channels, on the other hand, our OPAS may need to put more power in the

statistically weaker channels for a better performance. (We will explain the meaning

of statistically weaker channelsin the following part of this chapter)

The rest of the chapter is organized as follows. Section 2.2 describes the system

model and the SBS detector structure. In section 2.3, the exact BEP together with a

simple, upper bound are derived for both Rayleigh and Ricean channels. Section 2.4

examines the effects of non-identical channel statistics on the BEP of STBC, with

different unbalanced channel parameters. Section 2.5 studies the optimal transmit

power allocation strategy. A summary is given in section 2.6.
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2.2 System Model and Receiver Structure

We consider a communication system withMT transmit andNR receive antennas. The

transmit/receive antennas can be co-located in one communication unit, or distributed

in several units. If the antennas are not co-located, we assume the synchronization is

perfect. The space-time block codeS is a P × MT matrix, where each row ofS is

transmitted throughNT transmit antennas at one time, and the transmission coversP

symbol periods. It has a linear complex orthogonal design, and can be represented

as [32]

S =
K∑

k=1

(skAk + s∗kBk). (2.1)

Here,Ak andBk areP × MT matrices with constant complex entries, andK is the

number of symbols transmitted in one block. Therefore, each entry ofS is a linear

combination of the data symbolssk, k = 1, 2, · · · , K, and their conjugatess∗k, where

eachsk is from a certain complex signal constellation. The rate of the orthogonal

STBC is defined asK/P .

For orthogonal STBC, we have [30]

SHS = diag

[
K∑

k=1

λ1,k|sk|2, . . . ,
K∑

k=1

λMT ,k|sk|2
]

= D (2.2)

whereD is a diagonal matrix and{λi,k}MT
i=1 are positive numbers. For an arbitrary

signal constellation, it requires that

AH
k Al + BH

l Bk = δk,ldiag[λ1,k, · · · , λMT ,k], (2.3)

AH
k Bl + AH

l Bk = 0, (2.4)

We assume hereM -ary phase-shift keying (MPSK) modulation and a constant

transmitted energy per information bitEb. Therefore, the total energy assigned to

one block isEbK log2 M . From the orthogonality condition (2.2), it can be seen that
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the total energy for one block is given by
∑MT

m

∑K
k λm,k|sk|2. Thus, the transmitted

energy per MPSK symbol is given by

Es =
EbK log2 M∑MT

m

∑K
k λm,k

. (2.5)

The received signalR is aP ×NR matrix, which is given by

R = SH + N. (2.6)

Here,N is aP ×NR noise matrix, whose entries are i.i.d., complex, Gaussian random

variables with mean zero and varianceNo/2 per dimension.H = [hmn] is a MT ×
NR channel matrix, where each entryhmn is the channel gain of the link fromm-th

transmit antenna ton-th receive antenna. We assume{hmn} are independent, complex,

Gaussian random variables, each with a deterministic meanMmn and variance2σ2
mn.

Since the channels are non-identical, each channel can have a different mean and a

different variance. We assume the channel matrixH is perfectly known at the receiver,

therefore, the ML decoding rule is given by

Ŝ = arg max
S

p(R| S, H) (2.7)

Now, the conditional probability density function (PDF) of the received signal is given

by

p(R| S, H) = detNR(πNoI p×p) exp
(−Tr

[
(R− SH)H(NoI p×p)

−1(R− SH)
])

. (2.8)

Thus, the ML decoding rule (2.7) simplifies to

Ŝ = arg min
S
‖R− SH‖2. (2.9)

Substituting equation (2.1) into the above equation, the ML decoder can be further

simplified to a SBS detector

ŝk = arg max
s∈MPSK

<[zk′s
∗],∀k′ = 1, · · · , K (2.10)

22



2.3 Bit Error Performance Analysis

where

zk = Tr[RHBkH + HHAH
k R]. (2.11)

The above equations show that, in the case of perfect CSI, the SBS decoder does

not depend on the statistics of the channel matrixH. Therefore, the SBS decoder can

be similarly applied as it is in the identical channel case.

2.3 Bit Error Performance Analysis

With PSK modulation, we havesk =
√

Ese
jφk , and the detector makes its decisionŝk

onsk as

ŝk = argmax<[zk′e
−jφk ],∀k′ = 1, · · · , K (2.12)

Here, we have

zk′ = xk′ + uk′ , (2.13)

where

xk′ =
K∑

k=1

[
s∗kTr[HHAH

k Bk′H + HHAH
k′BkH]

+skTr[HHAH
k′AkH + HHBH

k Bk′H]
]
, (2.14)

uk′ = Tr[NHBk′H + HHAk′N]. (2.15)

By applying (2.3) and (2.4) to (2.14), we can see that the expression forxk′ reduces to

xk′ = sk′

MT∑
m=1

NR∑
n=1

λm,k′|hmn|2. (2.16)

Conditioned on the transmitted signalsk′ and the channel matrixH, xk′ can be seen

from (2.16) to be a deterministic constant. Similarly,ul can be shown from (2.15)

to be a conditional, complex, Gaussian random variable with mean zero and variance
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2.3 Bit Error Performance Analysis

No

∑MT

m=1

∑NR

n=1 λm,k′|hmn|2. It then follows easily from (2.13) thatzk′ is a conditional,

complex, Gaussian random variable with meansk′
∑MT

m=1

∑NR

n=1 λm,k′|hmn|2 and

varianceNo

∑MT

m=1

∑NR

n=1 λm,k′|hmn|2.
For equally likely symbols, we can assumesk′ =

√
Es without loss of generality,

and the conditional BEP can be computed from the probabilityP (<[zk′e
−jα] < 0|sk′ =

√
Es, H) [83], whereα is some angle that depends on the modulation scheme. Thus,

the conditional BEP forsk′ is given by

Pk′(e|H) = Q




√√√√2Es

No

cos2 α

MT∑
m=1

NR∑
n=1

λm,k′|hmn|2

 . (2.17)

2.3.1 Rayleigh Fading Channels

If all the channels are Rayleigh distributed, the meansMmn’s are all zero. We can

rewrite the conditional BEP as

Pk′(e|H) = Q




√√√√
MT NR∑

q=1

γq


 (2.18)

where

γq =
2Esλm,k′|hmn|2 cos2 α

No

, m = 1, · · · ,MT , n = 1, · · · , NR. (2.19)

Obviously,γq has a chi-square distribution, which is given by [7]

pγq(x) =
1

γ̄q

exp

(
− x

γ̄q

)
(2.20)

where

γ̄q = E[γq]. (2.21)

Since,γq’s are independent of one another, the characteristic function of
∑MT NR

q=1 γq is

given by

ψPMT NR
q=1 γq

(jv) =

MT NR∏
q=1

1

1− jvγ̄q

. (2.22)
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2.3 Bit Error Performance Analysis

From the characteristic function above, we can obtain the PDF of
∑NT NR

q=1 γq as

pPNT NR
q=1 γq

(x) =

MT NR∑
q=1

πq

γ̄q

exp(− x

γ̄q

) (2.23)

where

πq =

MT NR∑

p6=q, p=1

γ̄q

γ̄q − γ̄p

. (2.24)

Averaging the conditional BEP (2.17) over
∑MT NR

q=1 γq with the PDF (2.23), the average

BEP is given by [7]

Pk′(e) =
1

2

MT NR∑
q=1

πq

[
1−

√
γ̄q

2 + γ̄q

]
. (2.25)

2.3.2 Ricean Fading Channels

The average BEP in (2.25) is exact, however, the closed-form BEP result can only be

obtained for Rayleigh channels via the method above. In the more general case where

the means of the channel gains are arbitrary, we first apply Craig’s alternative form of

the Q-function [84] and rewrite the conditional BEP (2.17) as

Pk′(e|H) =
1

π

∫ π
2

0

exp

(
−γ cos2 α

sin2 θ

MT∑
m=1

NR∑
n=1

λm,k′|hmn|2
)

dθ. (2.26)

Here,γ = Es/No is the input SNR per symbol. To average the above conditional

error probability, we take the expectation of the integrand in (2.26) over the entries of

H = [hmn], using the following lemma [85, eqn. 7.76].

Lemma 2.1. If x is a real Gaussian random variable with meanMx and varianceσ2
x,

we have

E
[
exp(wx2)

]
=

exp
(

wM2
x

1−2wσ2
x

)
√

1− 2wσ2
x

, (2.27)

wherew is any complex constant with real part less than1/2σ2
x.
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2.3 Bit Error Performance Analysis

Since|hmn|2 = |<[hmn]|2 + |=[hmn]|2, and<[hmn] is independent of=[hmn],

we can apply the above lemma to average the conditional BEP in (2.26). Defining

µm = γλm,k′ cos2 α, we obtain

Pk′(e) =
1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

exp
(
− µm|Mmn|2

sin2 θ+2σ2
mnµm

)

1 + 2σ2
mnµm

sin2 θ

dθ. (2.28)

The above expression (2.28) for the exact BEP is explicit. However, its evaluation

still involves numerical integration. The dependence of the BEP on the system

parameters can be shown more explicitly using a bound. A simple upper bound on

the BEP can be obtained by settingθ = π/2 in equation (2.28), giving

Pk′(e) <
1

2

MT∏
m=1

NR∏
n=1

exp
(
− µm|Mmn|2

1+2σ2
mnµm

)

1 + 2σ2
mnµm

. (2.29)

The product terms show that the total diversity order of the STBC isMT NR.

For the special case of Rayleigh fading, we have the meansMmn = 0 for all m

andn. The results (2.28) and (2.29) reduce, respectively, to

Pk′(e) =
1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

(
1 +

2σ2
mnµm

sin2 θ

)−1

dθ (2.30)

and

Pk′(e) <
1

2

MT∏
m=1

NR∏
n=1

(1 + 2σ2
mnµm)−1. (2.31)

Here, the BEP (2.30) is equivalent to the BEP (2.25).

Equations (2.25), (2.28) and (2.30) give the BEP for a single symbolsk′. As

there areK symbols in one block, the average BEP for one block is obtained from the

average probabilityΓ(α), which is given by

Pα(e) =
1

K

K∑

k′=1

Pk′(e). (2.32)

For BPSK, the BEP is given byPα=0(e), and for QPSK with Gray coding, byPα=π
4
(e)

[83].
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2.4 Effects of Non-identical Channel Parameters

2.4 Effects of Non-identical Channel Parameters

2.4.1 Rayleigh Channels

We first consider the orthogonal STBC’s, which satisfy

λm,k′ = λk′ , m = 1, · · · ,MT , (2.33)

e.g., Alamouti’s design [29], the4×4 and8×8 real designs [30], and the4×4 rate-3/4

STBC in [32]. A summary of those known STBC’s satisfying condition (2.33) is given

in Table 2.1. Therefore,µm = γλk′ cos2 α is a constant, which only depends on the

codes and signal constellation. We define the received SNR for each transmit-receive

pair asγmn = E [γ|hmn|2]. For Rayleigh channels, the total received SNRγRay is

given by

γRay =

MT∑
m=1

NR∑
n=1

γmn =

MT∑
m=1

NR∑
n=1

2σ2
mnγ. (2.34)

Applying the arithmetic mean-geometric mean inequality [86], we can obtain an

inequality

Q∏
i=1

(1 + xi) ≤ (1 + xam)Q (2.35)

wherexi ≥ 0 andxam is the arithmetic mean of allxi. Using this inequality, the BEP

(2.30) can be lower bounded as

Pk′(e) ≥ 1

π

∫ π
2

0

(
1 +

A1

sin2 θ

)−MT NR

dθ, (2.36)

where

A1 =
λk′ cos2 α

MT NR

MT∑
m=1

NR∑
n=1

2σ2
mnγ =

λk′ cos2 α

MT NR

γRay. (2.37)

The equality sign holds when all channel variances2σ2
mn’s are equal. Therefore, for a

fixed total received SNRγRay, the non-identical channel distributions can be seen to

degrade the bit error performance.
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STBC in Size(P ×MT ) Rate λk′

Real orthogonal designs 2× 2 1 1

satisfying condition (2.33) [30] 4× 4, 3 1 1

8× 8, 7, 6, 5 1 1

[29] 2× 2 1 1

[30] [32] 4× 4, 3 3/4 1

[35] 30× 6 2/3 1

56× 7 5/8 1

Complex orthogonal designs 4× 2 1/2 2

satisfying condition (2.33) [30] 8× 4, 3 1/2 2

16× 8, 7, 6, 5 1/2 2

[34] 7× 4 4/7 1

[36] [37] 15× 5 5/8 1

Designs which do not [34] 11× 5 5/8 {1, 2}k′=1,2,3

satisfy condition (2.33) 30× 6 3/5 {1, 2}k′=1,··· ,11

Table 2.1: List of STBC’s which satisfy, or do not satisfy the condition (2.33)
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2.4 Effects of Non-identical Channel Parameters

2.4.2 Ricean Channels

In Ricean channels, the total received SNRγRic consists of the direct line-of-sight

(LOS) component and the scattered component, and is given by

γRic =

MT∑
m=1

NR∑
n=1

γ
(
2σ2

mn + |Mmn|2
)

=

MT∑
M=1

NR∑
n=1

2σ2
mnγ (1 + Kmn) . (2.38)

whereKmn = |Mmn|2
2σ2

mn
is the RiceanK-factor of the channel from them-th transmit

antenna to then-th receive antenna. There are three cases of interest.

Non-identical Channel Variances, Identical RiceanK-factors

First, we assume all channels have the same RiceanK-factors, i.e.,Kmn = Ko for all

channels, whereKo is a constant. Since the channels are non-identical, these channels

can be seen as scaled versions of one another, in that the LOS component|Mmn|2 has

to bear a fixed relationship with the scattered component2σ2
mn. We can obtain a lower

bound from (2.28) as

Pk′(e) ≥ 1

π

∫ π
2

0

exp
(
−MT NRKoA1

sin2 θ+A1

)

(
1 + A1

sin2 θ

)MT NR
dθ, (2.39)

where, again, the equality sign holds when all channel variances2σ2
mn’s are equal.

The proof of the inequality (2.39) is given in Appendix A. Therefore, the result is

similar to the Rayleigh channel case in that for a fixed total received SNRγRic and

identical RiceanK-factors, the non-identical channel distributions degrade the bit error

performance. For the special case ofKo = 0, it reduces to the Rayleigh channel case

(2.36). This result also shows that for STBC over identical channels, the transmit

powers should be equally assigned to the transmit antennas, in order to obtain the best

performance.

29



2.4 Effects of Non-identical Channel Parameters

Non-identical RiceanK-factors, Identical Channel Variances

In this case, we assume all channels have the same channel variances, i.e.,2σ2
mn = 2σ2

for all channels, where2σ2 is a constant. However, the RiceanK-factors are different

for different channels. Now, equation (2.28) reduces to

Pk′(e) =
1

π

∫ π
2

0

exp

(
−A2

PMT
m=1

PNR
n=1 Kmn

sin2 θ+A2

)

(
1 + A2

sin2 θ

)MT NR
dθ, (2.40)

whereA2 = 2σ2γλk′ cos2 α. From (2.40), it is obvious that the BEP only depends

on
∑MT

m=1

∑NR

n=1 Kmn and not on eachKmn individually. Therefore, for a fixed total

received SNRγRic and identical channel variances, the non-identical RiceanK-factors

do not affect the bit error performance. For the special case of2σ2 = 0, all channels

become Gaussian channels, and the same results hold that the non-identical distribution

of Gaussian channels will not affect the performance.

Non-identical Channel Variances, Identical Channel Means

Now, we assume all channels have the same channel means, i.e.,Mmn = M for

all channels, whereM is a constant. The channel variances are different for each

channel. In Rayleigh channels, the unbalanced channel variances always degrade the

performance. However, this is not true in the Ricean case. If the channel means are

identical and nonzero, the unbalanced channel variances can either degrade or enhance

the performance. It may be difficult to see this observation from the analytical BEP

expression (2.28) directly, so we will illustrate this result in detail with numerical

examples in the next section.

The three cases above show that the imbalance of different channel parameters

can have different effects on the performance of STBC, and our analytical BEP results

(2.28) and (2.30) can easily be applied in practice. For the orthogonal STBC’s which

do not satisfy the condition (2.33), we can group the terms with the same value of
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2.4 Effects of Non-identical Channel Parameters

λm,k′ together, and the same analytical technique can be applied to each group. Similar

results can be easily obtained. A summary of those STBC’s is also given in Table 2.1.

2.4.3 Case Study I

For the purpose of illustration, we consider a MIMO system with two transmit and

one receive antenna. We use Alamouti’s code [29] with QPSK modulation. The code

matrix is given by

S =




s1 s2

−s∗2 s∗1


 (2.41)

and

A1 =




1 0

0 0


 , A2 =




0 1

0 0


 , B1 =




0 0

0 1


 , B2 =




0 0

−1 0


 , (2.42)

respectively. For this case, it is easy to see thatλm,k′ = 1, for all m andk′. We define

here the following parameters:

η =
2σ2

1,1

2σ2
1,1 + 2σ2

2,1

, (2.43)

θ =
|M1,1|2

|M1,1|2 + |M2,1|2 , (2.44)

ζ =
|M1,1|2 + |M2,1|2

2σ2
1,1 + |M1,1|2 + 2σ2

2,1 + |M2,1|2 . (2.45)

Here,η is the fraction of the scattered component received at the first channel,θ is the

fraction of the LOS component received at the first channel, andζ is the ratio of the

total LOS components to the total received SNR.
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Figure 2.1: Analytical BEP (2.30) and BEP upper bound (2.31) for Rayleigh channels

with η = 50%, 15% and5%, respectively.

We first consider Rayleigh channels withMmn = 0 for all m and n, and the

total received SNR,γ
∑MT

m=1

∑NR

n=1 2σ2
mn, is set to4γ for convenience. Fig. 2.1 plots

the exact BEP (2.30) and BEP upper bound (2.31) withη = 50%, 15% and 5%,

respectively.

The results show that the upper bound (2.31) on the BEP is tight, and within2 dB

from the exact BEP (2.30). They also show that the non-identical channel distributions

degrade the performance of STBC in Rayleigh fading channels. For instance, for a

BEP of10−4, the unbalanced channel variances (η = 5%) cause a loss in SNR of about

4 dB, compared to the identical channel case (η = 50%).
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Figure 2.2: Analytical BEP (2.28) for Ricean channels with identical RiceanK-factors

and non-identical channel variances.γ = 15 dB.

In Fig. 2.2, Ricean channels with identical RiceanK-factors and

non-identical channel variances are considered. The total received SNR,

γ
∑MT

m=1

∑NR

n=1 2σ2
mn (1 + K), is also set to4γ for convenience, whereγ = 15 dB.

We plot the exact BEP (2.28) with RiceanK-factor= 3, 2, 1, 0.5 and0, respectively.

Fig. 2.2 shows that for all values of the RiceanK-factor, if the total received SNR

is fixed, the best bit error performance is achieved whenη = 0.5. In other words, the

unbalanced channel variances degrade the performance of STBC over Ricean channels

in this case.
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Figure 2.3: Analytical BEP (2.28) for Ricean channels with identical channel variances

and non-identical RiceanK-factors.γ = 15 dB.

Fig. 2.3 considers Ricean channels with identical channel variances and

non-identical RiceanK-factors. With the same fixed, total received SNR given in the

last example, we plot the exact BEP (2.28) withζ = 25%, 50% and75%, respectively.

We can see that for identical channel variances, the non-identical channel means (or

the non-identical RiceanK-factors) do not affect the bit error performance. Whenζ

increases from25% to 75%, we can see from Fig. 2.3 that the bit error performance

also increases. This is similar to the single channel case in that the increase of LOS

component improves the quality of the channel, thus reducing the BEP.
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Figure 2.4: Analytical BEP (2.28) and the BEP upper bound (2.29) for Ricean channels

with identical channel means and non-identical channel variances.γ = 15 dB.

In the last example, we consider Ricean channels with identical channel means

and non-identical channel variances. With the same fixed, total received SNR, we

compare the BEP for non-identical channel variances (η = 10%) and identical

channel variances (η = 50%) in Fig. 2.4. It shows that, whenζ is small, the

bit error performance of the identical channel case is better, But whenζ increases,

e.g. ζ > 0.25, the bit error performance of the non-identical channel case is better.

Therefore, we can conclude that the bit error performance of the non-identical channel

case is not always worse than that of the identical channel case in Ricean channels. If

the channel means are identical, the unbalanced channel variances can either degrade
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2.5 Optimal Transmit Power Allocation

or enhance the performance, depending on the ratio of the total LOS components to

the total received SNR.

2.5 Optimal Transmit Power Allocation

2.5.1 The Weighted Transmit Power

In the previous sections, we considered orthogonal space-time block codes with EPAS

at transmit antennas. If the channels are identically distributed, EPAS is optimum

(which we will show in the following part of this section). However, if the channels

are non-identically distributed, we may have to allocate different transmit powers to

different transmit antennas, in order to improve the performance with an instantaneous

power constraint. Now, we consider that them-th transmit antenna sends each symbol

with power ofwm

√
Es for all m ∈ 1, 2, · · · ,MT , wherewm is a nonnegative scalar

and satisfies

MT∑
m=1

w2
m = MT . (2.46)

Therefore, the total transmit energy remains the same. The received signal matrixR

can be written as

R = SWH + N (2.47)

= SH̃ + N (2.48)

whereW = diag[w1, w2, · · · , wMT
] and H̃ = [wmhmn]MT ,NR

m=1,n=1. Equation (2.48) is

similar to (2.6), withH replaced by the ”effective” channel̃H. In order to keep the

orthogonal structure of the space-time codes, the receiver can useH̃ instead ofH, and

apply a similar symbol-by-symbol detector, which is given by

ŝk = arg max
k′=1,··· ,K

Re[z̃k′s
∗
k′ ], (2.49)
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where

z̃k′ = Tr[RHBk′H̃ + H̃
H

AH
k′R]. (2.50)

Following the same steps in section 2.3, the bit error probability is now given by

Pk′(e) =
1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

exp
(
− µmwm|Mmn|2

sin2 θ+2w2
mσ2

mnµm

)

1 + 2w2
mσ2

mnµm

sin2 θ

dθ. (2.51)

In the case of identical channels, whereMmn = M and 2σ2
mn = 2σ2 for all

m, n, it is easy to see that the bit error probability (2.51) is minimized by setting

w1 = w2 = · · · = wMT
= 1. Therefore, the EPAS is optimum in identical channels. In

the case of non-identical channels, we need to optimize the bit error probability (2.51)

subject to the constraints

0 ≤ wm ≤
√

MT , for all m,
MT∑
m=1

w2
m = MT . (2.52)

The constrained optimization problem above is nontrivial, and may require complex

computations. Fortunately, the statistics of channels change slowly in practice, so that

the computation for the optimum is not required frequently. The optimumwm’s can be

calculated for different system conditions in advance and stored in a table. Therefore,

the transmitter and receiver need only to look up for the optimumwm according to the

channels condition.

2.5.2 Case Study II

In this case, we first consider the same system as in case study I, with two transmit and

one receive antenna. Alamouti’s code [29] with QPSK modulation is also applied.
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Rayleigh Channels

The channels here are first assumed to be independent non-identical Rayleigh fading

channels. The BEP (2.30) is thus reduced to

Pk′(e) =
1

π

∫ π
2

0

(
1 +

w2
1σ

2
1,1γ

sin2 θ

)−1 (
1 +

(2− w2
1)σ

2
2,1γ

sin2 θ

)−1

dθ, (2.53)

where we replacedw2
2 with 2−w2

1, since the power constraint is
∑2

i=1 w2
i = 2. Before

calculating the integration overθ in the BEP (2.53), we first inspect the integrand of

(2.53) with the value ofθ fixed. Obviously, given a fixedθ, the optimumw1 is the

solution of the following equation

∂
((

1 +
w2

1σ2
1,1γ

sin2 θ

)(
1 +

(2−w2
1)σ2

2,1γ

sin2 θ

))

∂w2
1

= 0, (2.54)

subject the constraint

0 ≤ w2
1 ≤ 2. (2.55)

After some manipulations, equation (2.54) has the solution

w2
1 = 1 +

sin2 θ

2γ

(
σ2

1,1 − σ2
2,1

σ2
1,1σ

2
2,1

)
. (2.56)

From the above equation, it can be seen that the optimumw1 depends onθ and the

channel variances. However, if the SNR increases,sin2 θ/2γ approaches to zero, and

we obtain

w2
1|γ→∞ = 1. (2.57)

for any value ofθ. This observation means in the high SNR case, the optimum transmit

power should be equally allocated among all the antennas, even though the channels

are non-identically distributed.

On the other hand, if the SNR approaches zero, we have

sin2 θ

2γ

(
σ2

1,1 − σ2
2,1

σ2
1,1σ

2
2,1

)∣∣∣∣
γ→0, sin2 θ 6=0

= ∞. (2.58)
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Here, we assumeσ2
1,1 > σ2

2,1, without loss of generality. Therefore, the constraint on

w2
1 becomes a hard constraint, and we havew2

1 = 2. In this low SNR case, we can see

that the OPAS is to assign all the power to the stronger channel. This result implies

that space-time coding is not optimum in the case of low SNR with non-identically

distributed, Rayleigh channels. Selecting the (statistically) stronger channel with

single channel coding may outperform the space-time code. Note that the channel

selection here is different from the conventional transmit antenna selection [78–82].
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Figure 2.5: Values ofw2
1, with η = 95%, 90%, 80% and60%, respectively.

The optimum values ofw2
1 are given in Figure 2.5, withη = 95%, 90%, 80%,

and60%, respectively, whereη is defined in (2.43). Figure 2.5 validates the discussion

above that the OPAS tends to allocate more power to the (statistically) stronger channel

in the low SNR region (w2
1 → 2), but converges to the EPAS in the high SNR region

(w2
1 → 1).
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Figure 2.6: BEP for the optimum power allocation and the equal power allocation,

with η = 95%, 90%, 80% and60%, respectively.

The bit error performance of OPAS and EPAS is compared in Figure 2.6. It shows

that the performance of the OPAS can have a SNR gain of up to2 dB, whenη is
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2.5 Optimal Transmit Power Allocation

large and SNR is low. However, the difference becomes negligible ifη < 60%, or

SNR> 15 dB.
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Figure 2.7: Values ofw2
1, with η = 90% and ζ = 95%, 90%, 80% and 60%,

respectively.

Ricean Channels

Although in Rayleigh channels, the OPAS tends to allocate more power to the stronger

channel, this may not be the same in Ricean channels. Now, we assume the channel

means are not zero, andM1,1 = M2,1. Figure 2.7 gives the optimum value ofw2
1 with

ζ = 80%, 70%, 50%, and0%, respectively. Here,ζ is defined in (2.45) andη = 90%.

It can be seen that the OPAS allocates more power to the weaker channel (w2
1 < 1) in

some situations. The comparison of BEP between OPAS and EPAS is given in Figure
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2.5 Optimal Transmit Power Allocation

2.8, where the OPAS can achieve a SNR gain of up to 1dB in the high SNR region.
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Figure 2.8: BEP for the optimum power allocation and the equal power allocation,

with η = 90% andζ = 80%, 70%, 50% and0%, respectively.

Multiple Receive antennas

In the above two examples, we considered the system with only one receive antenna.

If the number of receive antennas increases, the problem becomes more complicated.

We cannot guarantee that all the channels linked with the same transmit antenna are

stronger or weaker than the ones linked with other transmit antennas, unless one of

the transmit antennas is heavily blocked, so that the channels linked with this transmit

antenna are all weakened.
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Figure 2.9: BEP for the optimum power allocation and the equal power allocation,

with η = 95% andNR = 1, 2 and3, respectively.

In Figure 2.9, we consider a system with two transmit and multiple receive

antennas. The channels linked with the first receive antenna are assumed to be

non-identical Rayleigh channels, andη is equal to95%. For all the other channels, we

assume identical channel variances. It can be seen that when we increase the number of

receive antennas, the performance gain of the OPAS gradually vanishes. If the number

of receive antennas is greater than three, the EPAS can be safely applied without much

loss in the performance. In Ricean channels, similar observations can be made.

43



2.6 Conclusions

2.6 Conclusions

We analyze the bit error performance for orthogonal STBC over independent and

non-identically distributed channels. The exact BEP and a simple upper bound on

the BEP are obtained for BPSK and QPSK modulations. The results show that

the non-identical channel distribution degrades the bit error performance of STBC

in Rayleigh channels. In Ricean channels, if the channel variances are identical,

the unbalanced RiceanK-factors do not affect the bit error performance. If the

RiceanK-factors are identical, the unbalanced channel variances can degrade the

performance of STBC. However, if the channel means are identical, the unbalanced

channel variances can either degrade or enhance the performance of STBC, depending

on the ratio of the LOS component to the total received SNR.

Based on the analytical BEP, we also propose the optimum transmit power

allocation for STBC over nonidentical channels. In the case of Rayleigh fading

channels with two transmit and one receive antenna, our OPAS tends to allocate more

power to the (statistically) stronger channel, and provides a performance gain of up to

2 dB in the low SNR region. On the contrary, in the Ricean case, the OPAS may need

to allocate more power to the (statistically) weaker channel in some situations. If the

number of receiver antennas increases, however, the performance gain of the OPAS

gradually vanishes.
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Chapter 3

Space-Time Block Codes over

Non-identical Channels with

Imperfect CSI

In Chapter 2, we have considered the STBC’s over non-identical channels. The model

used there is more realistic than the ones in most of the existing works. However, it

still makes an ideal assumption that the CSI is perfectly known at the receiver. In this

chapter, we will relax this assumption and extend our work to a more general model,

which involves the channel estimation and, inevitably, the channel estimation error.

In such a situation, the non-identical channel statistics lead to non-identical channel

estimation errors, which consequently affect the performance and even the existing

receiver structure of orthogonal STBC. We show that the conventional SBS decoder of

orthogonal STBC is sub-optimum in this situation. A new optimum decoder is derived,

which can be simplified to a new SBS decoder under certain conditions. Performance

analysis and simulations are provided, which show that our new decoder substantially

outperforms the conventional decoder.
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STBC identical channels non-identical channels

perfect CSI I III

imperfect CSI II IV

Table 3.1: List of STBC models with two assumptions

3.1 Introduction

At the beginning of this chapter, let us first classify different STBC models with

two assumptions: identical/non-identical channels and perfect/imperfect channel state

information, which is given in Table 3.1.

Obviously, class I represents the ideal model. The earlier works on STBC

belong to this class, which includes [45–48]. A natural extension of class I is to

introduce channel estimation, such as [50, 51] which fall into class II. Class III was

first addressed in cooperative diversity scenarios [57–59], where the distributed nodes

normally experience non-identical channel statistics. The performance of orthogonal

STBC over non-identical channels was also implicitly discussed in [62–64], as the

issue of non-identical channels can be viewed as a special case of the correlated

channels. Chapter 2, as well as our work in [87], has explicitly described the system

model for class III, and given a thorough study on the performance and the power

allocation schemes. Similar to the extension from class I to class II, the extension of

class III is to introduce channel estimation and channel estimation errors, so the entire

Chapter 3 here is devoted to class IV.

Before plunging into the technical details of class IV, let us first look at a practical

example in the real world, wireless vehicular communication, which fully reflects

the importance of the research on this general STBC model. Wireless vehicular

communications, e.g. vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
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communications, have attracted more and more attention [88–92] recently, as they

show substantial potential to enhance traffic safety [89], efficiency and information

availability [90]. Several standards are being developed for vehicular communications,

such as IEEE 802.11p - wireless access of vehicular environments (WAVE), or IEEE

802.20, which is designed for high-speed mobility situations, e.g. for a high-speed

train. The high mobility and the variation of the vehicular environment requires a

robust communication link. Fortunately, the size of a vehicle allows it to be equipped

with several antennas and to make use of MIMO systems. The orthogonal STBC [30]

is, therefore, a suitable technique in vehicular communication [88], since it provides

robust transmissions with very simple decoding schemes. In a vehicular environment,

both the transmit and receive antennas are mounted at heights of 1-3 meters [90]. The

surrounding reflectors of the signals consist of nearby vehicles and roadside buildings,

which can be very close to one antenna but far from the others. The link distances are

also instantly variable from less than 1-2 meters to several tens of meters. Therefore,

the channels are more likely to be non-identically distributed. Further more, the rapidly

variable environments and the Doppler shift caused by the moving vehicles make the

channel estimation problem nontrivial in vehicular environments. Therefore, a model

involving both non-identical channels and channel estimation error is needed in such a

situation.

Generally, non-identical channels will result in non-identical channel estimation

errors. These estimation errors will consequently affect the performance of the

current systems, and even the structure of the existing receiver. Therefore, in this

chapter we will re-examine the whole STBC system over non-identical channels

with imperfect CSI. We show that the conventional SBS decoder [31] for orthogonal

STBC is no longer optimum in this situation. The optimum decoder is obtained,

which can be simplified to a new SBS decoder under certain conditions. To the best
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of our knowledge, our work here is the first to consider the optimum decoder for

orthogonal STBC over non-identical channels with channel estimation. Our analytical

and simulation results show that our new decoder provides a much better performance

compared to the conventional SBS decoder in this situation.

The rest of the chapter is organized as follows. In Section 3.2, we describe the

system model. Section 3.3 examines the structure of the optimum and the SBS decoder.

Performance analysis is given in Section 3.4. Sections 3.5 and 3.6 are numerical

examples and conclusion, respectively.

3.2 System Model

The system considered in this chapter is similar to the one in Chapter 2. For the

convenience of the readers, we repeat some of the descriptions here.

We consider a communication system withMT transmit andNR receive antennas.

The transmit/receive antennas can be co-located in one vehicle/infrastructure,

or distributed in several. If the antennas are not co-located, we assume the

synchronization is perfect. The space-time block codeS is aP×MT matrix, where each

row ofS is transmitted throughMT transmit antennas at one time, and the transmission

coversP symbol periods. It has a linear complex orthogonal design, and can be

represented as [32]

S =
K∑

k=1

(skAk + s∗kBk). (3.1)

Here,Ak and Bk are P × MT matrices with constant complex entries, andK is the

number of information symbols transmitted in one block. Therefore, each entry ofS is

a linear combination of the symbolssk, k = 1, · · · , K, and their conjugatess∗k, where

eachsk is from a certain complex signal constellation. The rate of the orthogonal
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STBC is defined asK/P . For orthogonal STBC, we have [30]

SHS = diag

[
K∑

k=1

λ1,k|sk|2, . . . ,
K∑

k=1

λMT ,k|sk|2
]

= D (3.2)

where{λi,k}MT
i=1 are non-negative numbers. For an arbitrary signal constellation, it

requires that

AH
k Al + BH

l Bk = δk,ldiag[λ1,k, · · · , λMT ,k], (3.3)

AH
k Bl + AH

l Bk = 0, (3.4)

We assume here MPSK modulation and a constant transmitted energy per information

bit Eb. Therefore, the total energy assigned to one block isEbK log2 M . From the

orthogonality condition (3.2), it can be seen that the total energy for one block is given

by
∑MT

m

∑K
k λm,k|sk|2. Thus, the transmitted energy per MPSK symbol is given by

Es =
EbK log2 M∑MT

m

∑K
k λm,k

(3.5)

However, noting that the channels are now estimated and the estimations of

channels may vary from block to block, we introduce a parametert to indicate the

t-th block. Thus, the received signal at thet-th block is aP × NR matrix, which is

given by

R(t) = S(t)H(t) + N(t). (3.6)

Here, N(t) is a P × NR noise matrix, whose entries are i.i.d., complex, Gaussian

random variables with means zero and variancesNo/2 per dimension. H(t) is a

MT × NR channel matrix, where each entryhmn(t) is the channel gain of the link

from the m-th transmit antenna to then-th receive antenna. We assumehmn(t) is

a circularly complex Gaussian random variable with mean zero and variance2σ2
mn.
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It is also assumed that the channels are all block-wise constant. The autocorrelation

function of each channel is given as E[hmn(t)h∗mn(t′)] = 2σ2
mnR(t− t′), where

R(t− t′) = Jo(2πfdTb(t− t′)) (3.7)

for Jakes’ model [93]. Here, the autocorrelation functions are assumed to be identical

for different channels. If the antennas are co-located in one vehicle/infrastructrue, it is

easy to see that the assumption is valid. If the antennas are distributed in several units,

however, we can also assume identical autocorrelation functions for different channels,

considering one moving unit should choose other unit moving with same direction and

speed as a cooperative partner, in order to reduce the possibility of hand over.

In order to coherently detect the code matrixS(t) in (3.6), the channel matrix

must be estimated first. In this chapter, we apply pilot-symbol assisted modulation

(PASM) [52], such that a pilot block is inserted into the data stream everyLf blocks.

During the pilot block, each transmit antenna transmits a known pilot symbol at its

own designated time slot. The receiver estimates the channel matrixH(t) based on the

information setΛ(t), which contains the2Lp received pilot blocks nearest in time to

thet-th block.

Without loss of generality, we consider the componenthmn(t) of the channel

matrix H(t) and letpmn be the column vector storing the2Lp nearest received pilot

symbols from them-th transmit antenna to then-th receive antenna. Using the result

from [52], it can be shown that the minimum mean square error (MMSE) estimate of

hmn(t) is given by

ĥmn(t) = dH
mn(t)pmn, (3.8)

where

dmn(t) = G−1vmn(t) (3.9)
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represents a Weiner filter, withG = 1
2
E[pmnpH

mn] being the autocorrelation matrix of

the received pilot samplespmn, andvmn(t) = 1
2
E[h∗mn(t)pmn] being the correlation of

hmn(t) andpmn.

The channel estimation error, defined asemn(t) = hmn(t)− ĥmn(t), is a Gaussian

random variable with mean zero and variance2v2
mn(t) = σ2

mn−vH
mn(t)G−1vmn(t) [52].

Note thatemn(t) is independent of̂hmn(t). Therefore, given the information setΛ(t),

eachhmn(t) is a conditional Gaussian random variable with meanĥmn(t) and variance

2v2
mn(t). It is obvious that if the statistics of the channel gains on the different links

are different, the variances of the channel estimation errors are different in general.

3.3 Optimum and Symbol-By-Symbol Decoders

One important advantage of orthogonal STBC is that the ML decoder can reduce

to a SBS decoder, which greatly reduces the decoding complex. This conventional

SBS decoder is optimum when channels are identical with perfect CSI [30] or with

imperfect CSI [51]. It is also an optimum receiver in the case of non-identical channels

with perfect CSI [87]. However, if the channels are non-identical and the CSI is

imperfect, the conventional receiver is no longer optimum. Therefore, we need to

investigate the structure of optimum decoder first.

For ML decoding, we compute the likelihoodp(R(t), Λ(t) | S(t)) for each

possible value of the signal blockS(t). Since, we have

p(R(t), Λ(t) | S(t)) = p(R(t) | S(t), Λ(t))p(Λ(t) | S(t)) (3.10)

and the information setΛ(t) is independent ofS(t), the ML decoding rule simplifies to

Ŝ(t) = argmax
S(t)

p(R(t) | S(t), Λ(t)) (3.11)

whereR(t) is conditionally Gaussian with meanS(t)Ĥ(t), givenS(t) andΛ(t).
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The column vectors ofR(t) are independent of one another and each has

covariance matrix of

Cn(t) = S(t)Vn(t)SH(t) + NoI p×p , n = 1, · · · , NR, (3.12)

where

Vn(t) = diag[2v2
mn(t)]MT

m=1 , n = 1, · · · , NR. (3.13)

The PDF of the received signal is now given by

p(R(t) | S(t), Λ(t)) =

(
NR∏
n=1

det(πCn(t))

)−1

· exp

(
−

NR∑
n=1

(rn(t)− S(t)ĥn(t))HC−1
n (t)(rn(t)− S(t)ĥn(t))

)
. (3.14)

Therefore, the ML block-by-block receiver becomes

Ŝ(t) = argmin
S(t)

(
NR∑
n=1

(
rn(t)− S(t)ĥn(t)

)H

C−1
n (t)

(
rn(t)− S(t)ĥn(t)

))
. (3.15)

As we will show later, depending on whether the non-identical channels are

associated with transmit antennas or receiver antennas, there are different effects on

the OSTBC. For the sake of illustration, we will consider two typical cases in the

following sections.

Case I: Channels gains from different transmit antennas to a common receive antenna

are identically distributed, but the gains associated with different receive antennas are

non-identically distributed. Therefore, the variance ofhmn(t) reduces to2σ2
on, and the

variance of estimation error reduces to2v2
on(t).

Case II: Channels gains from a common transmit antenna to different receive antennas

are identically distributed, but the gains associated with different transmit antennas are

non-identically distributed. Therefore, the variance ofhmn(t) reduces to2σ2
mo, and the

variance of estimation error reduces to2v2
mo(t).
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Other more complex cases can be viewed as the combination of these two cases.

Here, notice that the variances of channel gains are constant, but the variances of the

estimation errors depend on the position of the code block.

3.3.1 Case I: Channels Associated with One Common Receive

Antenna are Identically Distributed

In this case, since2v2
mn = 2v2

on for all m, we have

Vn(t) = 2v2
onINT×NT

, n = 1, · · · , NR. (3.16)

If the STBC employed satisfies

S(t)SH(t) = βIP×P (3.17)

whereβ is a constant, then theCn(t)′s become constants proportional to an identity

matrix. Therefore, the ML receiver (3.15) simplifies to

Ŝ(t) = arg min
S(t)

∥∥∥R̃(t)− S(t)
˜̂H(t)

∥∥∥
2

(3.18)

where

R̃(t) =

[√
1

2v2
onβ + No

rn(t)

]NR

n=1

= R(t)diag

[√
1

2v2
onβ + No

]NR

n=1

, (3.19)

˜̂H(t) =

[√
1

2v2
onβ + No

ĥn(t)

]NR

n=1

= Ĥ(t)diag

[√
1

2v2
onβ + No

]NR

n=1

. (3.20)

Applying equations (3.3) and (3.4) to (3.18), the receiver can be further simplified to a

SBS detector, given by

ŝk(t) = arg max
s∈MPSK

<[zk′(t)s
∗(t)],∀k′ = 1 · · ·K (3.21)

where

zk′(t) = Tr
[
R̃

H
(t)Bk′

˜̂H(t) +
˜̂HH(t)AH

k′R̃(t)
]
. (3.22)
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Therefore, in case I, the ML decoding can also be achieved by a SBS decoder,

under the condition that the received signal matrixR(t) and the estimated channel

matrix Ĥ(t) are properly weighted column by column, according to the variances of

the channel estimation errors.

3.3.2 Case II: Channels Associated with One Common Transmit

Antenna are Identically Distributed

In case II, since the channels are identically distributed with a common transmit

antenna, each column vector ofR(t) has the same covariance matrix

C(t) = S(t)V(t)SH(t) + NoI p×p , (3.23)

where

V(t) = diag[2v2
mo]

NT
m=1 . (3.24)

It can easily be seen thatC−1(t) is not a diagonal matrix, because of the non-identical

2v2
mo’s.

Since, the variances of channel estimation errors,2v2
mo’s, are different for the

channels associated with one common receive antenna, the ML decoder

Ŝ(t) = argmin
S(t)

(
NR∑
n=1

(
rn(t)− S(t)ĥn(t)

)H

C−1(t)
(

rn(t)− S(t)ĥn(t)
))

(3.25)

cannot reduce to a SBS decoder, no matter how the received signals are weighted.

Fortunately, the most practical OSTBC used in actual communication systems is

Alamouti’s code [29], which only requires two transmit antennas. In such cases, the

ML decoder in case II only requires an affordable decoding complexity ofM2, where

M is the order of the modulation.
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3.4 Performance Analysis

In this section, we will examine the bit error performance of the new optimum SBS

decoder proposed for case I. For the sake of simplicity, we drop the block indext

hereafter, but note that the results obtained do depend on the positions of blocks.

3.4.1 Conditional Bit Error Probability

With PSK modulation, i.e.sk =
√

Ese
jφk , the decoding rule (3.21) is equivalent to

ŝk = arg max<[zk′e
−jφk ],∀k′ = 1 · · ·K (3.26)

where

zk′ = Tr
[
R̃

H
Bk′

˜̂H +
˜̂HHAH

k′R̃
]

= xk′ + µk′ , (3.27)

xk′ =
K∑

k=1

[
s∗kTr[H̃

H
AH

k Bk′
˜̂H +

˜̂HHAH
k′BkH̃]

+skTr[ ˜̂HHAH
k′AkH̃ + H̃

H
BH

k Bk′
˜̂H]

]
, (3.28)

µk′ = Tr
[
Ñ

H
Bk′

˜̂H +
˜̂HHAH

k′Ñ
]
. (3.29)

For equally likely symbols, we can assumesk′ =
√

Es without loss of generality, thus

the BEP depends on the probabilityPα(e) = P (<[zk′e
−jα] < 0|sk′ =

√
Es), whereα

is some angle depending on modulation order [83]. For BPSK modulation, the BEP

is obviously given byPb = Pα=0(e). For QPSK modulation with Gray mapping, the

BEP is given byPb = Pα=π
4
(e) [83].

Conditioning on the information setΛ andsk′, and substituting (3.3) and (3.4)

into (3.28), we can see thatxk′ is a Gaussian random variable, which is given by

(xk′|sk′ , Λ) ∼ CN

(
sk′

NR∑
n=1

H
Vn

, Es

MT∑
m=1

NR∑
n=1

2v2
on|ξmn|2
V2

n

)
(3.30)
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where

H =

MT∑
m=1

λm,k′|ĥmn|2, (3.31)

Vn = 2v2
onβ + No (3.32)

and

ξmn =
K∑

k=1

MT∑
i=1

(
(aH

k,mbk′,i + bH
k,mbk′,i)ĥmn + (aH

k′,ibk,m + aH
k′,iak,m)ĥ∗mn

)
. (3.33)

Here,ak,i andbk,i are thei-th column vectors of matricesAk andBk, respectively.

Similarly, the noise termµk′ in (3.29) is also a conditional Gaussian random variable,

which is given by

(µk′|sk′ , Λ) ∼ CN

(
0,

No

2

NR∑
n=1

H
V2

n

)
. (3.34)

Therefore, conditioning on the information setΛ, the probabilityPα(e) is given by

Pα(e|Λ) = Q




√√√√√ Es

(∑NR

n=1
H
Vn

)2

cos2 α

Es

∑MT

m=1

∑NR

n=1
v2

on|ξmn|2
V2

n
+ No

2

∑NR

n=1
H
V2

n


 . (3.35)

In the conditional probability above, since both the denominator and the

numerator contains the estimated channel gains{ĥmn}, it is difficult to average

equation (3.35) over{ĥmn} directly and obtain the exact BEP. Therefore, in the

following section we will first investigate the exact BEP in a special case, and then

introduce the performance bounds and approximations in general situations.

3.4.2 Exact BEP for the Special Case of Perfect CSI

If the CSI is perfect, such that2v2
mn = 0 for all m andn, we havêhmn = hmn. The

conditional probabilities (3.35) can be simplified to

Pα(e|Λ) =
1

π

∫ π
2

0

exp

(
−Es cos2 α

No sin2 θ

NR∑
n=1

NT∑
m=1

λm,k′|hmn|2
)

dθ, (3.36)
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which is the same as the result (2.26), as expected. Applying Lemma 2.1 to the

conditional BEP (3.36), we obtain the exact error probability, which is given by

Pα(e) =
1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

(
1 +

2σ2
mnEsλm,k′ cos2 α

No sin2 θ

)−1

dθ. (3.37)

3.4.3 Bounds and Approximations of BEP with Imperfect CSI

If the channels are estimated, as we mentioned above, the exact average BEP is difficult

to obtain. Therefore, performance approximations and bounds need to be applied. In

the following section, we will use Alamouti’s code [29] as an example to show how to

analyze the average BEP. The method used in this paper can similarly be extended to

other orthogonal STBC’s.

Using Alamouti’s code [29], the code matrix andAk andBk are given by

S =




s1 s2

−s∗2 s∗1


 : A1 =




1 0

0 0


 , A2 =




0 1

0 0


 ,

B1 =




0 0

0 1


 , B2 =




0 0

−1 0


 (3.38)

respectively. Thus,λi,k = 1 for all i andk. Substituting (3.38) into (3.33), we have




ξ11 ξ12

ξ21 ξ22


 =




ĥ11 ĥ12

−ĥ21 −ĥ22


 +




ĥ∗11 ĥ∗12

ĥ∗21 ĥ∗22




=




2<[ĥ11] 2<[ĥ12]

−2=[ĥ21] −2=[ĥ22]


 . (3.39)

Since the channel gainhmn is circularly Gaussian, it is easy to see thatĥmn is also

circularly Gaussian, and thus we make the approximation that

Es

MT∑
m=1

NR∑
n=1

v2
on|ξmn|2
V2

n

≈ 2Es

MT∑
m=1

NR∑
n=1

v2
on|ĥmn|2
V2

n

. (3.40)
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This approximation is justified on the grounds that the two terms have the same means,

which means that it can give a close approximation to the final BEP, when averaging

the conditional BEP over all possible values of the estimated channel gains.

Applying the above approximation, we first rewrite (3.35) as

Pα(e|Λ) = Q




√√√√√Es

(∑NR

n=1

∑MT

m=1
|ĥmn|2
Vn

)2

cos2 α

2EsI + No

2
N


 (3.41)

where the termsI =
∑MT

m=1

∑NR

n=1
v2

on

Vn

|ĥmn|2
Vn

andN =
∑NR

n=1

∑MT

m=1
1
Vn

|ĥmn|2
Vn

.

Upper and Lower Bounds on the BEP

The termsI andN can be upper and lower bounded as

MT∑
m=1

NR∑
n=1

|ĥmn|2
Vn

max
n=1,··· ,NT

[
v2

on

Vn

]
≥ I ≥

MT∑
m=1

NR∑
n=1

|ĥmn|2
Vn

min
n=1,··· ,NT

[
v2

on

Vn

]
,

NR∑
n=1

MT∑
m=1

|ĥmn|2
Vn

max
n=1,··· ,NT

[
1

Vn

]
≥ N ≥

NR∑
n=1

MT∑
m=1

|ĥmn|2
Vn

min
n=1,··· ,NT

[
1

Vn

]
. (3.42)

Consequently, the conditional probability can be bounded as

Pα(e|Λ) ≥ Q




√√√√√
Es

(∑NR

n=1

∑MT

m=1
|ĥmn|2
Vn

)
cos2 α

2Es min
[

v2
on

Vn

]
+ No

2
min

[
1
Vn

]


 , (3.43)

Pα(e|Λ) ≤ Q




√√√√√
Es

(∑NR

n=1

∑MT

m=1
|ĥmn|2
Vn

)
cos2 α

2Es max
[

v2
on

Vn

]
+ No

2
max

[
1
Vn

]


 . (3.44)

Since the random variables{ĥmn} in the denominator have been cancelled with the

common terms in the numerator, it is now possible to average over the estimated

channels.

Observing that the estimated channel gains{ĥmn} are also independent Gaussian

random variables with means zero and variances{2σ2
mn − 2v2

mn}, we can average the
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above inequalities following the same steps from (3.36) to (3.37), and obtain

Pα(e) ≥ 1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

(
1 +

(2σ2
mn − 2v2

mn)µl

Vn sin2 θ

)−1

dθ, (3.45)

Pα(e) ≤ 1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

(
1 +

(2σ2
mn − 2v2

mn)µu

Vn sin2 θ

)−1

dθ (3.46)

where

µl =
Es cos2 α

4Es min
[

v2
on

Vn

]
+ No min

[
1
Vn

] , (3.47)

µu =
Es cos2 α

4Es max
[

v2
on

Vn

]
+ No max

[
1
Vn

] . (3.48)

Approximations on the BEP

In order to obtain more accurate evaluations of the error performance, we propose

two close approximations on the BEP, namely, the geometric approximation and the

arithmetic approximation. The termsI andN can be closely approximated as

I ≈
MT∑
m=1

NR∑
n=1

|ĥmn|2
Vn

[
v2

on

Vn

]

g

, (3.49)

I ≈
MT∑
m=1

NR∑
n=1

|ĥmn|2
Vn

[
v2

on

Vn

]

a

(3.50)

and

N ≈
NR∑
n=1

MT∑
m=1

|ĥmn|2
Vn

[
1

Vn

]

g

, (3.51)

N ≈
NR∑
n=1

MT∑
m=1

|ĥmn|2
Vn

[
1

Vn

]

a

(3.52)

respectively. Here,

[
v2

on

Vn

]

g

=

(
NR∏
n=1

v2
on

Vn

)1/NR

,

[
v2

on

Vn

]

a

=
1

NR

NR∑
n=1

v2
on

Vn

(3.53)

and
[

1

Vn

]

g

=

(
NR∏
n=1

1

Vn

)1/NR

,

[
1

Vn

]

a

=
1

NR

NR∑
n=1

1

Vn

(3.54)
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denote, respectively, the geometric and arithmetic means of the sequences{v2
on

Vn
} and

{ 1
Vn
}. Following the same steps as above, the approximations of the probabilities are

given by

Pα(e) ≈ 1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

(
1 +

(2σ2
mn − 2v2

mn)µg

Vn sin2 θ

)−1

dθ, (3.55)

Pα(e) ≈ 1

π

∫ π
2

0

MT∏
m=1

NR∏
n=1

(
1 +

(2σ2
mn − 2v2

mn)µa

Vn sin2 θ

)−1

dθ (3.56)

where

µg =
Es cos2 α

4Es

[
v2

on

Vn

]
g
+ No

[
1
Vn

]
g

, (3.57)

µa =
Es cos2 α

4Es

[
v2

on

Vn

]
a
+ No

[
1
Vn

]
a

. (3.58)

Note that if the channel estimation error variances approach zero, the two bounds

(3.45), (3.46), and the two approximations (3.55), (3.56) all converge to the exact BEP

result (3.37) for the special case of perfect CSI. This further validates our derivations.

Note that although we omitted the block indext here, the BEP results obtained

above are based on thet-th block. The average BEP for all the blocks can be calculated

by averaging over theLf blocks within two adjacent pilot blocks.

3.5 Numerical Examples

In the numerical examples, we consider a vehicular communication system with

2 transmit and 2 receive antennas. The Alamouti’s code is applied with QPSK

modulation. As we mentioned in Section 3.2, since the channels are block-wise

constant, we use the block fade ratefdTb for the BEP computation and simulation.

One pilot block is inserted after every 9 data blocks, and the 4 nearest pilot blocks are

used to estimate the channel using PSAM.
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In Figure 3.1, we consider case I, where the variances of the channel gains related

to the first and second receive antennas are0.5 and5, respectively. The block fade rate

is set to0.1. The simulation results show that our optimum receiver provides a large

performance gain compared to the conventional receiver. The irreducible error floor

caused by the channel fading is also greatly reduced by the optimum receiver.

The analytical lower (3.45) and upper (3.46) bounds in Fig 3.1 show the same

trend as the exact BEP curve, meaning that they decrease in parallel with the increase

of SNR. The three curves converge in the high SNR region. Furthermore, both

the geometric (3.55) and arithmetic (3.56) approximations can closely approximate

the exact BEP performance in all SNR regions, with the latter being a closer

approximation, the difference being no larger than0.5 dB.
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Figure 3.1: Case I: BEP results for the conventional and the optimum SBS receivers,

2Tx and 2Rx Alamouti’s code with QPSK modulation,fdTb=0.1, channels variances

of 0.5 and 5, respectively.

In Figures 3.2 and 3.3, we change the channel variances and the block fade rate,

and similar observations can be made. Notice that in case I, the performance gain
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enjoyed by the optimum SBS receiver comes with little overhead, as it only requires

linear processing of the received signal and the estimated channel matrices.
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Figure 3.2: Case I: BEP results for the conventional and the optimum SBS receivers,

2Tx and 2Rx Alamouti’s code with QPSK modulation,fdTb=0.1, channel variances

are 0.9 and 9, respectively.
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Figure 3.3: Case I: BEP results for the conventional and the optimum SBS receivers,

2Tx and 2Rx Alamouti’s code with QPSK modulation,fdTb=0.06, channel variances

are 0.5 and 5, respectively.

Considering case II, we plot the simulation results of the conventional SBS

decoder and the proposed optimum decoder (3.25) in Figure 3.4. The block fade rate is
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set to0.1 and the variances of the the channels associated with the first and the second

transmit antennas are set to (9, 1), (5, 1) and (2, 1), respectively.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

SNR per symbol (E
s
/N

o
) in dB

B
E

P

 

 
Optimum receiver simulation
Conventional SBS receiver simulation

σ2
o1

:σ2
o2

=2,1

σ2
o1

:σ2
o2

=9,1

σ2
o1

:σ2
o2

=5,1

Figure 3.4: Case II: BEP results for the conventional SBS and the optimum receivers,

2Tx and 2Rx Alamouti’s code with QPSK modulation,fdTb=0.1.

All the simulation results show that the optimum decoder can provide a better
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performance than the conventional SBS decoder. If the difference between the channel

variances is larger, the performance gain is also greater. However, since the optimum

decoder has a higher decoding complexity ofM2, compared with the linear decoding

complexity ofM for the conventional SBS decoder, it is possible to trade off between

the performance and the complexity. The simulation results show that if the ratio of the

channel variances is smaller than 2 to 1, the conventional SBS decoder can be safely

applied.

3.6 Conclusions

This chapter considers orthogonal STBC over non-identical channels with imperfect

CSI. It is shown that the conventional SBS decoder is not optimum in this situation.

Two typical cases are considered for the case of non-identical channels with channel

estimation.

In the first case, where the non-identical channels are associated with one common

receive antenna, the optimum decoder is derived. We show that this optimum decoder

can be simplified to a SBS decoder, under the condition that the received signal and

the estimated channel matrices are properly weighted. In the second case, where the

non-identical channels are associated with one common transmit antenna, we also

derive the optimum decoder. But it is shown that no matter how the received signals

are weighted, the optimum decoder cannot be simplified to a SBS decoder.

The performance of the optimum decoder is also investigated. The upper/lower

bounds and close approximations of the BEP performance are obtained for case I. Both

the analytical and the simulation results show that our optimum decoder substantially

outperforms the conventional SBS decoder.
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Chapter 4

Space-Time Block Codes over

Time-Selective Channels

Many existing works on STBC assume the channels are block-wise constant, but

this assumption does not always hold. In the more general case of time-selective

channels, the channel matrix is no longer orthogonal, so inter-symbol interference

is generated and the performance can be greatly reduced. Several decoders have

been proposed to eliminate the ISI, but it remains unclear how and to what extent

the performance is affected by the ISI. In this chapter, we introduce an approach to

analyze the performance of STBC over time-selective channels, with arbitrary numbers

of antennas for which orthogonal STBC’s are defined. Exact error performances are

obtained in closed form. Furthermore, the analysis reveals the relationship between

the ISI and the structure of STBC matrices. ConsideringGi systems, we then propose

one proposition and two design criteria, following which it is easy to design or search

for better STBC’s that have less ISI compared with the original code matrix.
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4.1 Introduction

Orthogonal STBC [30] are commonly used in MIMO systems, due to the simple ML

decoding structure. However, this decoding structure is based on the assumption that

the channels are block-wise constant, which is not always true in practice. For a

system with two transmit antennas, one STBC code block extends over two symbols

and the channels can change significantly within one block in some cases [65–67]

(and references therein). Systems with three or more transmit antennas are even more

vulnerable to channel variations than the systems with two transmit antennas, due to

the longer STBC code block [68,69]. If the channels vary from symbol to symbol, the

orthogonality will be corrupted and ISI is introduced, so the linear ML decoder [30] is

no longer optimum.

Considering time-selective channels, [65–71,94–98] proposed different decoders

for orthogonal STBC. Assuming the channel variation between two adjacent symbols

is negligible, [66] and [67] propose a suboptimum detection scheme, in which

they treat the received signal as if the channels are quasi-static, and applied the

conventional linear decoder. The suboptimum scheme retains the simple decoding

structure, but has an irreducible error floor in the high SNR region. Therefore, it

greatly reduces the performance of orthogonal STBC over the time-selective channels.

Later, an elegant zero-forcing (ZF) decoder for two transmit antennas is presented

in [65], where the ISI is completely removed and full diversity is obtained with

the same decoding complexity as the conventional linear decoder for the orthogonal

STBC over quasi-static channels. The ZF decoder was extended to three- and

four-transmit-antenna cases in [69, 94, 95]. Besides the linear decoders above, there

are also non-linear decoders, including the parallel interference cancellation (PIC)

decoder [68, 69, 96], ML decoder [70, 96], successive interference cancellation (SIC)
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decoder [97] and decision-feedback decoder [70, 71, 98]. Instead of designing a new

decoding scheme, a modified orthogonal STBC was developed in [99]. Keeping the

full diversity order and the orthogonality, the modified STBC reduces the ISI to a much

lower level, compared with the original orthogonal STBC [30].

Obviously, the performance analysis of STBC’s over time-selective channels

differs from the conventional one where the channels are assumed quasi-static. In

the existing references, however, only a few works [70, 71] obtained the exact error

performance, when the special case of Alamouti’s code [29] is applied. Other works

either presented conditional error performance based on one channel realization, or

simply obtained the error performance through simulations, especially for the STBC’s

with higher numbers of transmit antennas. More importantly, due to the lack of

analytical results, little insight can be gained and it remains unclear how the code

structures affect the performance of STBC when the channels are time-selective. In

this chapter, we introduce an approach to analyze the performance of STBC’s over

time-selective channels, with arbitrary numbers of antennas for which orthogonal

STBC’s are defined. Exact error performances are obtained in closed form. Through

the analysis, the relationship between the ISI and the STBC code structure is revealed.

ConsideringGi systems, one proposition and two design criteria are then introduced.

Applying the criteria, it is easy to design modified code matrices which have less ISI,

compared with the original code matrix. Alternatively, we can use the proposition to

search for an optimum code matrix with minimized ISI.

The rest of the chapter is organized as follows. Section 4.2 describes the system

model. Section 4.3 first analyzes the BEP forG4 systems with MPSK modulation, and

then extends the approach to other modulation schemes and systems. Code design for

Gi systems is discussed in Section 4.4. Section 4.5 provides numerical examples and a

summary is given in Section 4.6.
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4.2 System Model

We consider a point-to-point communication system withNT transmit andNR receive

antennas, transmitting with orthogonal STBC. For the purpose of illustration, we first

suppose the system has four transmit (NT = 4) and one receive (NR = 1) antenna, with

a modifiedG4 encoder [30]. Transmitting four information symbolss = [s1, s2, s3, s4]
T

in one STBC block, the originalG4 encoder generates an8 × 4 code matrix, which is

given by [30]

G4 ==




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 s∗4 s∗1 −s∗2

−s∗4 −s∗3 s∗2 s∗1




. (4.1)

However, the above code matrix generates high ISI over time-selective channels

(which we will explain later), and therefore, we use a modifiedG4 encoder in this

chapter. The modified encoder simply interchanges the rows of the original code
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matrix, and is given by

Gop
4 =




s1 s2 s3 s4

−s∗4 −s∗3 s∗2 s∗1

−s∗2 s∗1 −s∗4 s∗3

−s3 s4 s1 −s2

−s∗3 s∗4 s∗1 −s∗2

−s2 s1 −s4 s3

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4




. (4.2)

This modified encoder is optimum in the sense that it minimizes the ISI of theG4

code over time-selective channels. Further explanation will be given in Section 4.4.

Defining the manipulated received signal vector asr = [r1, r
∗
2, r

∗
3, r4, r

∗
5, r6, r7, r

∗
8]

T ,

the received signals can be written as

r = Hs + n (4.3)

where n is the noise vector whose elements are i.i.d., complex Gaussian random

variables, each with mean zero and varianceNo. The channel matrixH is given by

H =




h1(1) h2(1) h3(1) h4(1)

h∗4(2) h∗3(2) −h∗2(2) −h∗1(2)

h∗2(3) −h∗1(3) h∗4(3) −h∗3(3)

h3(4) −h4(4) −h1(4) h2(4)

h∗3(5) −h∗4(5) −h∗1(5) h∗2(5)

h2(6) −h1(6) h4(6) −h3(6)

h4(7) h3(7) −h2(7) −h1(7)

h∗1(8) h∗2(8) h∗3(8) h∗4(8)




. (4.4)

Here, we assume all the channels undergo frequency-flat, time-selective Rayleigh

fading and the channel gains{hi(t)}4, 8
i=1,t=1, are identical complex Gaussian random
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variables with means zero and autocorrelation function1
2
E[hi(t)h

∗
i (t + l)] = σ2

hR(l).

We normalize the average power of the fading processσ2
h to 1

2
in this chapter.

According to Jakes’ model [93], we have

R(l) = Jo(2πfdTsl), (4.5)

whereJo(·) is the zeroth-order Bessel function of the first kind,fd is the maximum

Doppler shift andTs is the period of each symbol. Here, we assume the time-selectivity

is caused by Doppler shift and the frequency offset is perfectly compensated for. We

also assume that the channel fading processes in different transmit-receive links are

i.i.d., i.e., the autocorrelation fucntionR(l) is common for all links, and for anyi 6= j,

we haveE[hi(t)h
∗
j(t)] = 0. Finally, the knowledge ofH andR(l) are assumed to be

perfectly known at the receiver end.

4.3 Performance Analysis

4.3.1 The Performance ofG4 System

The beauty of orthogonal STBC is that the optimum decoder can be reduced to a linear

decoder, and thus we can use a symbol-by-symbol (SBS) detector. If the same linear

decoder is applied in the case of time-selective channels, the decision vector is formed

by multiplying the received vectorr by HH to give

HHr = HHHs + HHn. (4.6)

It is obvious that the off-diagonal elements of

HHH =




‖h1‖2 β12 β13 β14

β21 ‖h2‖2 β23 β24

β31 β32 ‖h3‖2 β34

β41 β42 β43 ‖h4‖2




(4.7)
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are non-zero, i.e.,βij 6= 0, i, j = 1, · · · , 4. Therefore, they cause ISI. Due to symmetry,

eachsi, i = 1 · · · 4, has the same BEP, so we can focus ons1 and the decision metric

is given by

z1 = ‖h1‖2s1︸ ︷︷ ︸
effective signal

+ β12s2 + β13s3 + β14s4︸ ︷︷ ︸
inter-symbol-interferences

+ñ, (4.8)

whereh1 is the first column of the code matrixH and

β12 = (h∗1(1)h2(1)− h2(3)h∗1(3)) + (h4(2)h∗3(2)− h∗3(4)h4(4))

+ (−h3(5)h∗4(5) + h4(7)h∗3(7)) + (−h∗2(6)h1(6) + h1(8)h2(8)) , (4.9)

β13 = (h∗1(1)h3(1)− h3(5)h∗1(5)) + (h2(3)h∗4(3)− h∗4(7)h2(7))

+ (−h4(2)h∗2(2) + h∗2(6)h4(6)) + (−h∗3(4)h1(4) + h1(8)h∗3(8)) , (4.10)

β14 = (h∗1(1)h4(1)− h4(2)h∗1(2)) + (−h2(3)h∗3(3) + h∗3(4)h2(4))

+ (h3(5)h∗2(5)− h∗2(6)h3(6)) + (−h∗4(7)h1(7) + h1(8)h∗4(8)) . (4.11)

Here,ñ is a complex Gaussian random variable with mean zero and variance‖h1‖2No.

Since the channel gainshi(t) and hi(t + l) are jointly Gaussian for anyi =

1, · · · , 4, conditioning onhi(t), hi(t + l) is a complex Gaussian random variable with

meanmi(t + l) and variance1 − E [mi(t + l)]2 [7]. Here, the meanmi(t + l) is

proportional to the channel gainhi(t), and is given bymi(t+l) = R(l)hi(t). Therefore,

conditioning on the channel gainhi(t), we have

hi(t + l)|hi(t) ∼ CN
(
R(l)hi(t), 1− |R(l)|2) . (4.12)

Similarly, conditioning on the channel gainhi(t + l), hi(t) is also a complex Gaussian

random variable given by

hi(t)|hi(t+l) ∼ CN
(
R(l)hi(t + l), 1− |R(l)|2) . (4.13)

In (4.9)-(4.11), we have expressed each of the interference parametersβ1i, i = 2, 3, 4,

as the sum of four terms. Applying (4.12) and (4.13) to each of these terms, we find
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that they are conditional Gaussian random variables. Therefore, conditioning onh1,

i.e.

[h1(1), h∗4(2), h∗2(3), h3(4), h∗3(5), h2(6), h4(7), h∗1(8)]T , (4.14)

β1i, i = 2, 3, 4, are given by

β12| h1 ∼ CN(0, ‖h1‖2(1− |R(2)|2)), (4.15)

β13| h1 ∼ CN(0, ‖h1‖2(1− |R(4)|2)), (4.16)

β14| h1 ∼ CN(0, ‖h1‖2(1− |R(1)|2)). (4.17)

MPSK Modulations

For MPSK modulation with equal symbol probabilities, we can lets1 =
√

Es without

loss of generality. The BEP ofs1 can be computed from the probabilityPα(e) =

P
(<[z1e

−jα] < 0|s1=
√

Es

)
[83], whereα is an angle that depends on the modulation

scheme. For BPSK modulation, the BEP is obviously given byPb = Pα=0(e).

For QPSK modulation with Gray mapping, the BEP is given byPb = Pα=π
4
(e).

And for 8-PSK with Gray mapping, the BEP can be closely approximated byPb =

Pα= 3π
8
(e)

(
1− Pα=π

8
(e)

)
[83].

Conditioning onh1, the total interference term,β12s2 + β13s3 + β14s4, is a

zero-mean, complex Gaussian random variable, whose variance is independent of

si, i = 2, 3, 4, as thesi’s have the same amplitude. Sinceβ12s2 + β13s3 + β14s4

is also independent of the effective signal‖h1‖2s1 and the noisẽn, we can treat the

interference as additional noise. The probabilityPα(e) conditioning onh1 is thus given

by

Pα(e|h1)

=
1

π

∫ π
2

0

exp

( −Es‖h1‖2 cos2 α

((3− |R(1)|2 − |R(2)|2 − |R(4)|2)Es + No) sin2 θ

)
dθ, (4.18)
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where we use the Craig’s alternative form of the Q-function [84] and cancel the

common term‖h1‖2 in the denominator and the numerator.

In order to take the average of the conditional BEP above,‖h1‖2 can be split into

two parts as

‖h1‖2 = |h1(1)|2 + |h4(2)|2 + |h2(3)|2 + |h3(4)|2︸ ︷︷ ︸
first part

+ |h3(5)|2 + |h2(6)|2 + |h4(7)|2 + |h1(8)|2︸ ︷︷ ︸
second part

. (4.19)

Conditioning on the first part, i.e.h1(1), h2(3), h3(4) and h4(2), the second part

contains four complex Gaussian random variables, whose conditional means and

variances can be calculated as in (4.12) and (4.13). Since these four random variables

are independent of one another, we can average over them one by one with the help of

Lemma 2.1, and obtain

Pα(e| h1(1), h2(3), h3(4), h4(2))

=
1

π

∫ π
2

0

exp
(
−γ|h1(1)|2

sin2 θ
− γ|R(7)|2|h1(1)|2

sin2 θ+(1−|R(7)|2)γ

)

1 + γ(1−|R(7)|2)

sin2 θ

exp
(
−γ|h2(3)|2

sin2 θ
− γ|R(3)|2|h2(3)|2

sin2 θ+(1−|R(3)|2)γ

)

1 + γ(1−|R(3)|2)

sin2 θ

·
exp

(
−γ|h3(4)|2

sin2 θ
− γ|R(1)|2|h3(4)|2

sin2 θ+(1−|R(1)|2)γ

)

1 + γ(1−|R(1)|2)

sin2 θ

exp
(
−γ|h4(2)|2

sin2 θ
− γ|R(5)|2|h4(2)|2

sin2 θ+(1−|R(5)|2)γ

)

1 + γ(1−|R(5)|2)

sin2 θ

dθ (4.20)

where we have

γ =
Es cos2 α

(3− |R(1)|2 − |R(2)|2 − |R(4)|2)Es + No

. (4.21)

Noting that|h1(1)|2, |h2(3)|2, |h3(4)|2 and|h4(2)|2 are independent, central chi-square

distributed random variables, whose probability density functions are given by [7]

p|hi(t)|2(x) = exp

(
− x

2σ2
h

)
, i = 1, · · · , 4, (4.22)

we average over|hi(t)|2, i = 1, · · · , 4, and finally obtain

Pα(e) =
1

π

∫ π
2

0

3∑
i=0

(
sin2 θ

sin2 θ + γ (1− |R(2i + 1)|)

)

(
sin2 θ

sin2 θ + γ (1 + |R(2i + 1)|)

)
dθ. (4.23)
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Applying the result in [100, eqn. (5A.75)], the above average BEP can be integrated

out, and the closed-form BEP result is given by

Pα(e) =
1

2

8∑

l=1

(
1−

√
cl

1 + cl

) 8∏

n=1,n6=l

(
cl

cl − cn

)
(4.24)

where

cl =





γ (1− |R(l)|) , l = 1, 3, 5, 7,

γ (1 + |R(l − 1)|) , l = 2, 4, 6, 8.
(4.25)

By settingθ = 0, a simple Chernoff bound is obtained from (4.23), which is given

by

Pa(e) ≤
3∑

i=0

(
(1 + γ)2 − γ2|R(2i + 1)|2)−1

=
3∑

i=0

(
(1 + 2γ + (1− |R(2i + 1)|2)γ2

)−1
. (4.26)

Here, it is interesting to note that the order of diversity is not four, as was in the block

fading channels. On one hand, the (modified)G4 encoder transmits the same symbol

(si ands∗i ) twice from the same antenna in one block, and the channel varies from one

symbol to another, so more degrees of diversity is produced. On the other hand, the

performance degrades due to the interferences, which are also caused by the variations

of the channels. Since the interferences dominate the overall performance, therefore,

the order of diversity is less than four, which will be seen in the numerical examples.

Because of the ISI, an irreducible error floor is expected when SNR is high, i.e.

whenEs À No. The analytical result of the irreducible error floor is the same as

(4.24), withcl’s replaced bŷcl’s which are given by

ĉl =





(1−|R(l)|) cos2 α
3−|R(1)|2−|R(2)|2−|R(4)|2 , l = 1, 3, 5, 7,

(1+|R(l−1)|) cos2 α
3−|R(1)|2−|R(2)|2−|R(4)|2 , l = 2, 4, 6, 8.

(4.27)

If multiple antennas are applied in the receiver, the performance analysis can be

easily carried out in the same way. Since the channel gains of different links are
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independent of one another, we can similarly integrate over the channel gains as in

(4.20), resulting in more exponential terms. Therefore, the increased number of receive

antennas increases the order of diversity.

PAM and MQAM Modulations

For PAM and MQAM modulations, the transmitted symbols have different amplitudes,

so the variance of the interference term,β12s2 + β13s3 + β14s4, is dependent on the

transmitted symbols. The performance analysis of these modulation schemes is similar

to the one we introduced for MPSK modulation, except that the BEP is now to be

averaged over all the possible combinations of the transmitted symbols.

Considering rectangular MQAM with the Gray mapping of bits, for example, the

BEP conditioning onh1 ands can be closely approximated by [101, eqn. 18]

P (e|h1, s) ≈ 4

log2 M

(
1− 1√

M

)√
M/2∑
i=1

Q

(
(2i− 1)

√
3Eb‖h1‖2 log2 M

(M − 1)(ζ + No)

)
,(4.28)

whereζ = (1− |R(2)|2)|s2|2 + (1− |R(4)|2)|s3|2 + (1− |R(1)|2)|s4|2 is the variance

of the interferenceβ12s2 + β13s3 + β14s4, depending on the value ofsi, i = 2, 3, 4,

andEb = Es/ log2 M is the transmit energy per bit. Averaging overh1 ands, the exact

BEP can be expressed as

P (e) ≈ 4

log2 M

(
1− 1√

M

)

∑

l∈φ

pl

√
M/2∑
i=1

E

[
Q

(
(2i− 1)

√
3Eb‖h1‖2 log2 M

(M − 1)(ζl + No)

)]
, (4.29)

whereζl is one possible value of the variance belonging to the set of all possible

combinationsφ, andpl is the probability that the variance takes on the valueζl. It

it easy to see that the expectation of the Q-functions over the channel gains can be
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similarly evaluated as in (4.18)-(4.24), giving

P (e) ≈ 2

log2 M

(
1− 1√

M

)

∑

l∈φ

pl

√
M/2∑
i=1

8∑
t=1

(
1−

√
ct
li

1 + ct
li

)
8∏

n=1,n6=t

(
ct
li

ct
li − cn

li

)
, (4.30)

where

ct
li =





γli (1− |R(t)|) , t = 1, 3, 5, 7

γli (1 + |R(t− 1)|) , t = 2, 4, 6, 8
(4.31)

and

γli =
3(2i− 1)2Eb log2 M

(M − 1)(ζl + No)
. (4.32)

4.3.2 Extension to Other Systems

G3 system

By settingh4(t) and h∗4(t) to zero, fort = 1, · · · 8, in (4.4) and all other related

equations, we can similarly derive the BEP performance ofsi, i = 1, · · · , 4, in a

G3 system. Since the positions ofh4(t) andh∗4(t) are different in the four columns of

H, the BEP resultsP i
α(e) of the different symbolssi

′s are, therefore, different, so the

overall BEP is given by

Pα(e) =
1

4

4∑
i=1

P i
α(e). (4.33)

Here, eachP i
α(e) has a similar expression to the one of theG4 system. The only

difference betweenP i
α(e) and the BEP in (4.24) is the order of diversity.
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G2 system

If Alamouti’s code [29] is used with two transmit antennas, the received signal is given

by



r1

r∗2


 = H




s1

s2


 +




n1

n∗2


 , (4.34)

where the channel matrix is now defined as

H =




h1(1) h2(1)

h∗2(2) −h∗1(2)


 . (4.35)

Following the same procedure as given from (4.6) to (4.18), we first obtain the

conditional probability for MPSK modulation as

P (α)| h1 =
1

2
erfc

(√
Es‖h1‖2 cos2 α

(1− |R(1)|2)Es + No

)
. (4.36)

The result in (4.36) is similar to the one in [66, eqn. (14)]. However, [66] applies an

approximation technique by neglecting some fourth order terms, whereas our result

here is an exact expression. Since there is only one interference term,(1−|R(1)|2)Es,

in (4.36), the exact average BEP can be obtained for BPSK and QPSK in simple closed

form, which is given by

Pα(e) =
1

2
− 1

2

√
Es cos2 α

((1− |R(1)|2) Es + No)π
·

1∑
i=0

Γ[(2i + 1)/2]
(
1 + Es cos2 α

(1−|R(1)|2)Es+No

) 2i+1
2

.(4.37)

AssumingEs À No, there also exists an irreducible error floor, which is given by

P irr
α (e) =

1

2
− 1

2

√
cos2 α

(1− |R(1)|2)π
1∑

i=0

Γ[(2k + 1)/2]
(
1 + cos2 α

(1−|R(1)|2)

) 2i+1
2

. (4.38)

Hi Systems

Besides the generalizedGi design, there is another important generalized design for

complex orthogonal STBC, theHi design [30, eqn (39-40)]. In order to analyze the
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performance ofHi systems over time-selective channels, the key step is to find the

corresponding channel matrix for the manipulated received signals [69, eqn. (3)].

Unlike the channel matrix (4.4) for theG4 system, it is not straightforward to obtain the

channel matrix forHi systems, since bothsi ands∗i appear in the same row of the code

matrix. Therefore, the transmitted symbols need to be treated in real and imaginary

parts, separately. Consequently, the corresponding channel matrices are also obtained

for the real and imaginary parts of the transmitted symbols [69, eqn (4a-4f)]. Having

obtained these channel matrices, the performance ofHi systems can be analyzed with

a similar method used forGi systems. However, sinceHi code matrices contain more

than one information symbol in one entry, so the code structure is more involved and

the analysis method is not a direct extension from the one forGi systems. Therefore,

we are not going to cover the performance analysis forHi systems in this chapter.

4.4 Modified orthogonal STBC with Minimized ISI

As mentioned in Section 4.2, the original code matrix (4.1) introduces high ISI. It

is important to reduce the ISI, while keeping the orthogonality of the code matrix.

One simple but effective method is by changing the positions of the rows in the code

matrix [99]. However, the question of how to obtain an optimum code matrix, in

the sense that the ISI is minimized is not addressed in [99], where only an intuitive

‘every-other-line’ scheme is introduced.

One way to find the optimum code is to simulate the performances of all the

code matrices, which is difficult, if not impossible. Alternatively, we can evaluate the

performance of each code matrix, using the method presented in the previous section.

This method is still too complex, since it requires some derivations by hand. For

example, there are16! possible code matrices for aG8 system. Even though we can
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reduce this number due to some symmetric equivalent matrices, the derivation burden

is still prohibitive. Therefore, it is necessary to investigate the relationship between ISI

and the structure of the code matrices, so as to enable the computer search, or simplify

the design of the code with better performance. In this chapter, we will focus on the

Gi codes, as they are systematically designed and have similar structures. SinceHi

systems have different and more involved code structures, the issue of code design for

Hi systems over time-selective channels will be covered in future research.

As an illustration, we still use theG4 code here, but the results obtained can be

applied to otherGi systems, as will be shown later. We first rewrite the original code

matrix (4.1) in the form of row vectors, which is given as

G4 = [sT
1 , · · · , sT

4 , sH
1 , · · · , sH

4 ]T , (4.39)

and the corresponding channel matrix is given by

Ho = [hT
1 (1), · · · , hT

4 (4), hH
1 (5), · · · , hH

4 (8)]T (4.40)

wheres(∗)
i andh(∗)

i (t) are 1×4 row vectors, andt is the symbol time slot which also

can be viewed as the row number of eachh(∗)
i (t).

Lemma 4.1. The sequence of rows in the channel matrix is the same as the one in the

code matrix. When we interchange the positions of two rows in the code matrix, the

channel matrix changes accordingly.

Proof. This can be easily seen through the construction of the channel matrix. As an

example, the modified code matrix (4.2) we used in the last section can be written as

Gop
4 = [sT

1 , sH
4 , sH

2 , sT
3 , sH

3 , sT
2 , sT

4 , sH
1 ]T , (4.41)

while the corresponding channel matrix (4.4) can be rewritten as

H = [hT
1 (1), hH

4 (2), hH
2 (3), hT

3 (4), hH
3 (5), hT

2 (6), hT
4 (7), hH

1 (8)]T . (4.42)
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Notice that the row vectorh(∗)
i (t) here is different from the column vector defined in

(4.14).

For the SBS decoder, since eachsi is decoded independently with similar

interferences, we can takes1 as an example without loss of generality. From (4.6)

and (4.8), it can be seen that the effective signal‖h1‖2s1 and noisẽn are independent

of the row positions in the code matrices. Therefore, no matter how we change the row

positions, only the ISI terms will be affected.

For aG4 system, there are twenty four interference terms (as can be seen from

(4.9) to (4.11)), since each row of the channel matrix generates three interference terms

from s2, s3 ands4, respectively. For example, the first row of channel matrixH in

(4.42) is given by

h1(1) = [h1(1), h2(1), h3(1), h4(1)] (4.43)

and the interferences generated areh∗1(1)h2(1)s2, h∗1(1)h3(1)s3 and h∗1(1)h4(1)s4,

respectively. Similar to what we did in (4.9) to (4.11), we can group these twenty

four terms into twelve pairs, each of which is a conditional Gaussian random variable.

For the same example above, we find three more terms from the rowsh∗2(3), h∗3(5) and

h∗4(2), and we group them with three terms from the first row, which are given by

(h∗1(1)h2(1)− h2(3)h∗1(3)) s2, (4.44)

(h∗1(1)h3(1)− h3(5)h∗1(5)) s3, (4.45)

(h∗1(1)h4(1)− h4(2)h∗1(2)) s4, (4.46)

respectively. Conditioning onh1 in (4.14), it is easy to see that these interference terms
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are complex Gaussian random variables with means zero and variances

(|h1(1)|2 + |h2(3)|2)(1− |R(2)|2)Es, (4.47)

(|h1(1)|2 + |h3(5)|2)(1− |R(4)|2)Es, (4.48)

(|h1(1)|2 + |h4(2)|2)(1− |R(1)|2)Es, (4.49)

respectively. Since the variances of the channel gains are normalized to 1, the

mean values of these ISI’s are obtained as2(1 − |R(1)|2)Es, 2(1 − |R(4)|2)Es and

2(1 − |R(4)|2)Es, respectively. Notice that these valuesdepend on and only onthe

difference of row numbers betweenh1(1) and each ofh∗2(3), h∗3(5) andh∗4(2). The

same observation can be made for the rest of the interference terms. Following the

discussion above and applying Lemma 4.1, we have Proposition 4.1 below:

Proposition 4.1. The mean ISI is minimized by minimizing

I =
P∑

i=1

P∑

j=1,j 6=i

(
1− ∣∣R(D[si, s∗j ])

∣∣2
)

(4.50)

where2P is the number of rows andD[si, s∗j ] is the distance between rowssi ands∗j ,

given by the difference of their row numbers.

Proposition I can be applied to anyGi system. Now, the design of the modified

code matrix is simplified to a2P -rows and2P -positions problem, i.e., how to arrange

2P rows in 2P positions in order to minimize the value ofI in Proposition 4.1. A

computer search can be easily applied to find the optimum code. For theG4 system,

the optimum code matrix we found has been given in (4.2) and (4.41). For aG8 system,

similarly, if we rewrite the original code given by [30] as

G8 = [sT
1 , sT

2 , sT
3 , sT

4 , sT
5 , sT

6 , sT
7 , sT

8 , sH
1 , sH

2 , sH
3 , sH

4 , sT
5 , sH

6 , sH
7 , sH

8 ]T , (4.51)

the optimumG8 code we found is given by

Gop
8 = [sT

1 , sH
4 , sH

6 , sT
7 , sH

5 , sT
2 , sT

3 , sT
8 , sH

8 , sH
3 , sH

2 , sT
5 , sH

7 , sT
6 , sT

4 , sH
1 ]T . (4.52)
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As mentioned above, the number of possible code matrices is proportional to

(2NT )!. Although the calculation ofI in Proposition 4.1 is easy, it is still time

consuming to implement an exhaustive search, when the number of transmit antennas

is large. From Proposition I, we can observe that only the distance between conjugate

rows and non-conjugate rows with different subscripts will affect the ISI, therefore, we

propose below two design criteria for the modified code matrix.

Criterion 4.1. Conjugate rows and non-conjugate rows should be adjacent to one

another.

Criterion 4.2. Based on criterion I, the rows with the same subscript should be put as

far apart as possible.

Using these two criteria, we can easily design code matrices by hand. In Figure

4.1, we show how to systematically design aG4 code. The design procedure starts

from s1 ands∗1. In each of the steps, we put two rows with the same subscript into

current vacancies, according to the criteria above. After completing all the rows, the

hand-designedG4 code matrix is given by

Gh
4 = [sT

1 , sH
2 , sT

3 , sH
4 , sT

4 , sH
3 , sT

2 , sH
1 ]T . (4.53)
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Figure 4.1: Systematical design ofG4 code.

Following the same steps, a hand-designedG8 code is given by

Gh
8 = [sT

1 , sH
2 , sT

3 , sH
4 , sT

5 , sH
6 , sT

7 , sH
8 , sT

8 , sH
7 , sT

6 , sH
5 , sT

4 , sH
3 , sT

2 , sH
1 ]T . (4.54)

As we can see, the design of the code matrix is straightforward. In the next section,

we will show that the performances of these hand-designed code matrices are close to

optimum.

Notice that although we analyze the ISI with the conventional linear decoder, ISI

is independent of the decoding structure. All the other decoders can only mitigate the

effect of ISI, but not change the amount of ISI generated. Therefore, with reduced

ISI, the modified code matrix not only improves the performance of the conventional

linear decoder, but also benefits the PIC, SIC, decision-feedback and other decoders in

85



4.5 Numerical Examples and Discussion

existing works.

4.5 Numerical Examples and Discussion

In the numerical examples, we use conventional linear decoders with both BPSK and

16QAM modulations. In order to compare the performances of different systems, we

normalize the SNR by the code rate, the number of transmit antennas and the order of

modulation, such that the SNR per information bit,E/No, is the same. For example,

we have the transmit SNR’sEs/No = E/2No, Es/No = E/6No andEs/No = E/8No

for the G2, G3 andG4 systems, respectively, with BPSK modulation, andEs/No =

E/2No for theG4 system with16QAM.

In Figures 4.2-4.4, we compare the analytical BEP results with the simulation

results for the optimumG4 system with BPSK modulation, the optimumG4 system

with 16QAM modulation and theG2 system with BPSK modulation. The normalized

channel fade ratefdTs is set to0.02 0.03 and0.04, respectively. The analytical results

of irreducible error floors are also plotted in these three figures.
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Figure 4.2: The analytical and simulation results for the BEP of the optimumG4 code

matrix against SNR with different channel fade rates and BPSK modulation.
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Figure 4.3: The analytical and simulation results for the BEP of the optimumG4 code

matrix against SNR with different channel fade rates and16QAM modulation.
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Figure 4.4: The analytical and simulation results for the BEP ofG2 system against

SNR with different channel fade rates and BPSK modulation.

As shown in Figures 4.2-4.4, our analytical results agree well with the simulations

for bothG4 andG2 systems, with different modulations and channel fade rates. It also

shows that the channel fade rate has a significant effect on the BEP, such that a higher

fade rate results in a smaller diversity order and a larger error floor. Comparing Figures

4.2 and 4.3, we can see that the channel fade rate has a greater impact on the system

with a higher order of modulation.
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Figure 4.5: BEP comparison ofG2 and the optimumG4 systems with BPSK

modulation.

As we can see from (4.24) and (4.37), theG4 system generates more ISI than

the G2 system. Therefore, it is obvious that theG4 system is more sensitive to the

channel fade rate. In Figure 4.5, we compare the performances of the two systems

with different channel fade rates. When the channel is quasi-static, i.e.,fdTs = 0,

the diversity orders of the two systems are four and two, respectively. However, as

the channel fade rate increases, theG4 system loses its transmit diversity advantage

faster than theG2 system. It is interesting to see that the performance of theG4 system

becomes worse than that of theG2 system in the high SNR region, when the fade rate

is greater than0.05.
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Figure 4.6: BEP comparison of the optimumG3 and SISO systems with BPSK

modulation.

In Figure 4.6, we compare the BEP of the optimumG3 system (4.33) with that of

a SISO system. As the channel fade rate increases, theG3 system also loses more and

more of its transmit diversity advantage. Therefore, in time selective channels, it is not

always beneficial to have a large number of transmit antennas.
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Figure 4.7: The normalized ISI of originalG4 code matrix (4.39), hand-designed

code matrix (4.53) and the optimum code matrix (4.41), compared with that of

’every-other-line’ code matrix

In Figure 4.7, we compare the normalized ISI of the originalG4 code matrix

(4.39), the hand-designed code matrix (4.53) and the optimum code matrix (4.41).

As a reference, we also compare with the ISI of theG4 code designed by the

‘every-other-line’ scheme, which is given by [99]

Gr
4 = [sT

1 , sH
2 , sT

3 , sH
4 , sH

1 , sT
2 , sH

3 , sT
4 ]T . (4.55)

As shown in Figure 4.7, the original code matrix has a much larger ISI compared with

the other three. The optimum code matrix has the smallest ISI, and the hand-designed
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code matrix has a near-optimum ISI level. Both our hand-designed and our optimum

code matrices perform better than the one from [99].
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Figure 4.8: The BEP of originalG4 code matrix (4.39), hand-designed code matrix

(4.53) and the optimum code matrix (4.41), compared with that of ’every-other-line’

code matrix, forfdTs = 0.03 and BPSK modulation.

In order to further show the effects of reduced ISI of the modified code matrices,

we plot the BEP of the optimum code matrix (4.41), the hand-designed code matrix

(4.53), the originalG4 code matrix (4.39) and the code matrix from [99] in Figure 4.8.

Here, we use the same method to approximate the performances of the latter three code

matrices, as introduced in Section 4.3.1 (see also Appendix B). It can be seen that our

approximations to the BEP are very close to the simulation results. Figure 4.8 also
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shows that the code matrix with less ISI has a better BEP performance.
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Figure 4.9: BEP comparison of the optimumG4 code matrix (4.41), the originalG4

code matrix (4.39) and SISO system with BPSK modulation

In Figure 4.9, we compare the BEP’s of the optimumG4 code matrix and the

original G4 code matrix, with different values of the channel fade rate. The BEP of

the SISO system is also plotted as a reference. As expected, the performances of the

two code matrices are identical to each other when the channel is static, i.e.,fdTs = 0,

since there is no ISI introduced in this case. However, if the channel fade rate becomes

larger, the performance of the original code matrix degrades much faster than that

of the optimum code matrix. And both code matrices lose their transmit diversity

advantage compared to the SISO system as fade rate increases.
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Figure 4.10: The normalized ISI of originalG8 code matrix (4.51), hand-designed

code matrix (4.54) and the optimum code matrix (4.52), compared with that of

’every-other-line’ code matrix.

In Figure 4.10, we compare the normalized ISI of the modifiedG8 code matrices.

Here, the one designed by ‘every-other-line’ scheme is given by [99]

Gr
8 = [sT

1 , sH
2 , sT

3 , sH
4 , sT

5 , sH
6 , sT

7 , sH
8 , sH

1 , sT
2 , sH

3 , sT
4 , sH

5 , sT
6 , sH

7 , sT
8 ]T . (4.56)

Similar phenomena can be observed as in Figure 4.7.

Finally, we would like to mention that the decoders for the optimum and the

hand-designed code matrices remain the same as the one for the original code matrix,

therefore, no extra costs are incurred by using these code matrices.
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4.6 Conclusions

We have derived the bit error performance of orthogonal STBC’s over time-selective

Rayleigh channels with the conventional linear decoder. The exact average BEP results

are derived for theG4, G3 andG2 systems in closed form. The analysis of the irreducible

error floors is also provided. With the exact BEP result, we can easily compare the

performances of different systems. Interesting observations show that the diversity

advantage of STBC reduces when the channel fade rate increases, and systems with

larger numbers of transmit antennas suffer more performance degradations than the

ones with fewer antennas. Therefore, it is important to note that it is not always

beneficial to have a large number of transit antennas in real environments. The

performance analysis method can be applied to other systems, e.g.Hi systems, for

which orthogonal STBC’s are defined.

In the second part of the chapter, we examined the relationship between the ISI

and the row positions of the STBC code matrix. In order to minimize the ISI, we have

proposed one proposition and two design criteria. Following the criteria, it is easy to

design near-optimum code matrices, which have less ISI compared with the original

code matrices. Applying the proposition, we also can easily search for an optimum

modified code matrix. Finally, numerical examples are provided to verify our results.
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Chapter 5

Space-Time Block Codes over Relay

Channels

Cooperative STBC is a distributed way to exploit spatial diversity. Because of its

simplicity, the amplify-and-forward (AF) strategy is often used at relays. However, the

exact performance of this strategy is not available in the existing works. Therefore,

in the first part of this chapter, we will analyze the performance of cooperative STBC

with the AF strategy. Exact BEP results are derived in closed form for three existing

protocols.

Since the AF strategy simply forwards the signals at the relays, the noise at the

relay is also forwarded to the destination, and it degrades the received signals from

both the relay and the source, due to the receiver structure of STBC. In the second part

of this chapter, we examine the effect of the forwarded noise and propose a condition

under which the relay should stop forwarding the signals. Based on this condition,

adaptive forwarding schemes for cooperative STBC are proposed. The performances

of these schemes are studied and the exact BEP’s are also obtained in closed form.

Finally, the energy efficiencies of these adaptive schemes are discussed.
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5.1 Introduction

The MIMO technique is a well known way to exploit spatial diversity and mitigate

the fading problem in wireless communication. However, it is sometimes difficult to

install multiple antennas in one mobile communication node, due to its limited size. In

such scenarios, we can exploit spatial diversity through the cooperation of neighboring

nodes [72–74]. Therefore, the information can be cooperatively transmitted by several

single antenna users, e.g. [53,102–104], by creating a “virtual array” of antennas.

If the space-time coding technique is applied with the virtual array, the space-time

codes can be viewed as being transmitted over relay channels. More specifically, the

transmission is completed in two phases. In the first phase, the source node sends

information to relay nodes, and in the second phase, the relay nodes and the source

node transmit together using STC. The relay nodes can either amplify and forward,

or decode and forward the received signal. The DF strategy can provide a better

performance [105] compared with the AF strategy, but it has a higher complexity in

decoding the signals. Therefore, the simpler AF strategy is also an attractive choice.

The performance of cooperative STC has been studied in many works. For

example, [57, 58, 106] have studied the performance of cooperative STC with DF

strategy. At the same time, many works, e.g. [59,75–77], have investigated cooperative

STBC with AF strategy. Under a high SNR assumption, [75] obtained an upper

bound on the pair-wise error probability; [59] derived asymptotic BEP results with

both perfect and imperfect CSI; [76] generalized the cooperative STBC to the case

of an arbitrary number of relays and hops, and presented an asymptotic symbol error

probability result. Reference [77] also derived the asymptotic SEP, which was used to

optimize the power allocation.

However, none of the above mentioned works has obtained the exact error
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performance. Therefore, the first target of this chapter is to analyze the exact bit

error performance of cooperative STBC with AF strategy. Three existing transmission

protocols are considered, and exact BEP results are obtained in closed form for all of

these protocols. Based on the exact BEP, we compare our results with the existing

asymptotic BEP in [59]. Then, we compare the performances of the protocols in

different situations and examine the robustness of these protocols.

For the cooperative STBC with AF strategy, since the relay simply forwards

the received signals, the additive noise at the relay is also forwarded. Due to the

decoder structure of STBC, the forwarded noise degrades the received signals from

both the relay and the source. If the forwarded noise is too large, then the advantage

of cooperative diversity vanishes, and even an error floor can be observed [59, 105].

Therefore, in the second part of this chapter, we address the key question of when

the relay should stop forwarding signals. We first examine the effect of the forwarded

noise on the received SNR and find a critical condition, under which the forwarded

signal from the relay will be deleterious. According to this condition, we propose

adaptive forwarding schemes for cooperative STBC with full CSI, partial CSI and

no CSI available at the relay. The exact BEP’s of these adaptive cooperative STBC

schemes, which are much better than that of the conventional cooperative STBC, are

also obtained in closed form. Finally, the energy efficiencies of these adaptive schemes

are also discussed.

The rest of this chapter is organized as follows: Section 5.2 describes the system

model. The exact BEP results of the conventional cooperative STBC are derived in

Section 5.3. A comparison of different protocols is also provided in this section.

Section 5.4 proposes and analyzes the adaptive cooperative STBC schemes, together

with numerical examples and discussion. A summary is given in Section 5.5.
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5.2 System Model

5.2.1 Protocols

We consider a cooperative transmission scenario with three nodes, where each node

only has one antenna. The sourceS transmits information to the destinationD,

with the assistance from the relayR. We assume all the nodes are half duplex,

such that they cannot transmit and receive simultaneously. Therefore, we use a

time-division multiple-access strategy here, and the transmission is completed in two

phases. According to different settings of the source and the destination, three existing

protocols are listed in Table 5.1.

Protocol I: The source broadcasts the information to the relay and the destination

in the first phase. In the second phase, the source and relay transmit together to the

destination using STBC. The destination combines the signals from the first and second

phases before decoding.

Protocol II: The source only transmits in the first phase, and the relay transmits in the

second phase. The destination listens in both phases and combines the signals.

Protocol III: Similar to protocol I, the source transmits in both phases and relay

forwards the signals in the second phase. But, the destination only listens in the second

phase.

Notice that the settings of the relay are the same in all of the three protocols,

such that it listens in the first phase and forwards in the second phase. However,

the source/destination can choose to transmit/listen in one or both phases. These

protocols are essentially the same as they all try to exploit spatial diversity through

relays. The different settings for the source and the destination can be viewed as

adaption to different scenarios. For example, if the channel between the source and

the destination varies fast, protocol I should be preferred, since the destination listens
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Phase Protocol I Protocol II Protocol III

1 S → R, D S → R, D S → R

2 S → D, R → D R → D S → D, R → D

Table 5.1: List of three protocols

to the source in both phases and enjoys greater orders of diversity. Protocols II and III

free the source/destination in the second/first phase, so that the latter can be involved

in other transmissions, which is an advantage in multi-hop transmission. The further

comparison of protocols will be detailed later in Section 5.3.3. In Section 5.3, we will

first focus on the performance of protocol III. The results will be extended to protocols

I and II later.

We denote the link fromA to B asA → B. And the channel gains ofS → D,

S → R andR → D links are denoted ashSD, hSR andhRD, respectively. They are

independent, complex, Gaussian random variables with means of zero and variances

of 2σ2
SD, 2σ2

SR and2σ2
RD, respectively. Here, the channel variances can be different

due to the different propagation environments and the distances between nodes. The

channels are block fading such that they remain constant for at least one space-time

block. The CSI is perfectly known at the receivers of the relay and the destination.

For this scenarios with one relay, we apply Alamouti’s code [29] for two transmit

antennas, which is given by



s1 s2

−s∗2 s∗1


 , (5.1)

wheres1 ands2 are from a certain complex signal constellation. Here, we assume

MPSK modulation such that eachsi, i = 1, 2, can be written assi = ejφi, whereφi

takes on, with equal probabilities, the values in the set{2nπ/M}M−1
n=0 .

For protocol III, the source transmits the first column of the code matrix to the
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relay in the first phase. The received signal,rRi, is given by

rRi =
√

ESRhSRxi + nR,i, i = 1, 2 (5.2)

wherex1 = s1 andx2 = −s∗2 are transmitted with power
√

ESR, and the noisenR,i is

the AWGN with mean zero and varianceNo. In the second phase, the relay amplifies

and forwards the received signals to the destination, while the source transmits the

second column of the code matrix. Therefore, the received signals at the destination

are given by

r1 =
√

ERD

√
ESRhRDhSRs1 +

√
ESDhSDs2 +

√
ERDhRDnR,1 + nD,1, (5.3)

r2 = −
√

ERD

√
ESRhRDhSRs∗2 +

√
ESDhSDs∗1 +

√
ERDhRDnR,2 + nD,2 (5.4)

where
√

ERD and
√

ESD are the transmission powers of the source and relay in the

second phase, andnD,i, i = 1, 2 is the AWGN at the destination, with mean zero and

varianceNo.

5.2.2 Signal Normalization at the Relay

After receiving the signals from the source, the relay usually needs to normalize them

by some factors before amplifying and forwarding, in order to keep a constant transmit

energy or power . We list here two common normalization schemes used in the

literature.

Scheme I[59, 75, 107] has been proposed to maintain a long term average energy, so

that the transmit energy is normalized by a factor ofE[|rRi|2], and is given by

ERD =
Eavr

RD

E[ESR|hSD|2 + No]
=

Eavr
RD

2σ2
SDESR + No

, (5.5)

whereEavr
RD is the long term average transmit energy per symbol at the relay.

Scheme II[72,76,108] intends to keep a constant transmit power at the relay, and the
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normalized transmit energy is given by

ERD =
Eavr

RD

ESR|hSR|2 + No

. (5.6)

However, the denominator of (5.6) consists of the instantaneous energy of the effective

signal and the long term average energy of the noise. Due to the noise variation, the

transmit power is, actually,not constant, especially in the low SNR region. On the

other hand, the average transmit energy at the relay is given by

E

[∣∣∣
√

ERDrRi

∣∣∣
2
]

= Eavr
RDE

[ |√ESRhSR + nRi|2
ESR|hSR|2 + No

]
, (5.7)

which changes with different values of SNR,ESR/No, at the relay. Therefore, scheme

II can neither provide a constant transmit power, nor a constant average transmit

energy.

In the rest of this chapter, we will normalize the received signal at the relay

following scheme I, and keep the average transmit energy asEavr
RD. The average

transmit energy on theS → D andS → R links areEavr
SD = ESD andEavr

SR = ESR,

respectively. We also assume that all the transmitting nodes, i.e. the source and the

relay, only have two status, such that they either transmit with fixed average energies,

or keep silent. Therefore, no adaptive power allocation is applied among the nodes, so

the structures of the nodes and the network are simple, which is usually the requirement

of a wireless senor network with cheap sensors.
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5.3 Performance Analysis

5.3.1 Performance of Protocol III

Applying the symbol-by-symbol detector for orthogonal STBC [29, 30], the decision

metrics fors1 ands2 are given, respectively, as

ŝ1 =
√

ERD

√
ESRh∗RDh∗SRr1 +

√
ESDhSDr∗2, (5.8)

ŝ2 =
√

ESDh∗SDr1 −
√

ERD

√
ESRhRDhSRr∗2. (5.9)

The BEP ofs1 ands2 are the same, due to symmetry. For equally likely symbols,

we can assumes1 = 1 without loss of generality, and the conditional BEP can be

computed from the probabilityPα(e) = P (<[ŝ1e
−jα] < 0|s1 = 1, hSR, hSD, hRD)

[83], whereα is some angle that depends on the modulation scheme. Therefore, the

conditional BEP fors1 can be written as

Pα(e|hSR, hSD, hRD) = Q

(√
ESRERD|hSR|2|hRD|2 + ESD|hSD|2

(ERD|hRD|2 + 1)No

2 cos2 α

)
.(5.10)

Applying Craig’s alternative form of theQ(·) function [84], the above conditional BEP

can be rewritten as

Pα(e|hSR, hSD, hRD) =
1

π

∫ π
2

0

exp

(
−ESRERD|hSR|2|hRD|2 cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)

· exp

(
− ESD|hSD|2 cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)
dθ.(5.11)

We notice that the above equation contains two exponential terms, which involve the

random variables,hSD andhSR, separately. Conditioning on the channel gainhRD, we

first take the expectation overhSD andhSR independently, giving

Pα(e|hRD) =
1

π

∫ π
2

0

(
1 +

2σ2
SDESD cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)−1

·
(

1 +
2σ2

SRESRERD|hRD|2 cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)−1

dθ. (5.12)
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After some manipulation, the conditional BEP (5.12) can be further written as

Pα(e|hRD) =
1

π

∫ π
2

0

b · (ERD|hRD|2 + 1)2

(ERD|hRD|2 + a) (ERD|hRD|2 + b)
dθ, (5.13)

where

a = 1 +
2σ2

SDESD cos2 α

No sin2 θ
, (5.14)

b =

(
1 +

2σ2
SRESR cos2 α

No sin2 θ

)−1

. (5.15)

Noting thatERD|hRD|2 is a central chi-square random variable with2 degrees of

freedom, its probability density function (PDF) is given by [7]

pERD|hRD|2(x) =
1

f
exp

(
−x

f

)
, (5.16)

where

f = 2σ2
RDERD. (5.17)

Averaging the conditional BEP (5.13) overhRD, we can obtain

Pα(e) =

∫ π
2

0

b

fπ(b− a)

∫ ∞

0

(x2 + 2x + 1)

(
1

x + a
− 1

x + b

)
exp

(
−x

f

)
dxdθ. (5.18)

In order to evaluate the above integral, we now introduce Lemma 5.1 [86, eqn. (3.383),

(8.356)]

Lemma 5.1.
∫ ∞

0

1

x + µ
exp

(
−x

v

)
dx = e

µ
v Γ

[
0,

µ

v

]
, (5.19)

∫ ∞

0

x

x + µ
exp

(
−x

v

)
dx = v − µe

µ
v Γ

[
0,

µ

v

]
, (5.20)

∫ ∞

0

x2

x + µ
exp

(
−x

v

)
dx = v(v − µ) + µ2e

µ
v Γ

[
0,

µ

v

]
(5.21)

where<[v] > 0, <[µ] > 0 andΓ
[
0, µ

v

]
is the incomplete Gamma function, which is

given by

Γ
[
0,

µ

v

]
=

∫ ∞

µ
v

exp(−t)t−1dt. (5.22)
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Applying Lemma 5.1 to (5.18), the average BEP is now given by

Pα(e) =

∫ π
2

0

b

fπ

(
f +

(a− 1)2

b− a
exp

(
a

f

)
Γ

[
0,

a

f

]

− (b− 1)2

b− a
exp

(
b

f

)
Γ

[
0,

b

f

])
dθ. (5.23)

5.3.2 Extensions to Protocols I and II

Protocol I allows the destination to listen in both phases and combine the received

signals with maximal-ratio combining. We consider here two cases, where the channel

gain hSD changes independently between phases (fast block fading channel), or

remains the same in the two adjacent phases (slow block fading channel). These two

cases can serve as the lower and upper bounds for the case with an arbitrary channel

fade rate. Similar to (5.10), the conditional BEP of protocol I is given by

Pα(e|hSR, hSD, hRD)

= Q

(√(
ESD|h1

SD|2
No

+
ESRERD|hSR|2|hRD|2 + ESD|hSD|2

(ERD|hRD|2 + 1)No

)
2 cos2 α

)
, (5.24)

where h1
SD is the channel gain in the first phase which can be the same as, or

independent ofhSD, according to different cases. Following the same procedure from

(5.11) to (5.23), the average BEP results of protocol I are given by

Case one, fast block fading channel:

Pα(e) =

∫ π
2

0

b

afπ

(
f +

(a− 1)2

b− a
exp

(
a

f

)
Γ

[
0,

a

f

]

− (b− 1)2

b− a
exp

(
b

f

)
Γ

[
0,

b

f

])
dθ, (5.25)

(5.26)

Case two, slow block fading channel:

Pα(e) =

∫ π
2

0

b

afπ

(
f +

(â− 1)2

b− â
exp

(
â

f

)
Γ

[
0,

â

f

]

− (b− 1)2

b− â
exp

(
b

f

)
Γ

[
0,

b

f

])
dθ, (5.27)
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respectively. Here,

â = 2− 1

a
. (5.28)

For protocol II, the source only transmits in the first phase, so the conditional BEP

is given by

Pα(e|hSR, hSD, hRD)

= Q

(√(
ESRERD|hSR|2|hRD|2
(ERD|hRD|2 + 1)No

+
ESD|h1

SD|2
No

)
2 cos2 α

)
. (5.29)

Therefore, the average BEP of protocol II is given by

Pα(e) =

∫ π
2

0

b

afπ

(
f + (1− b) exp

(
b

f

)
Γ

[
0,

b

f

])
dθ. (5.30)

For all the exact BEP results in (5.23), (5.25), (5.27) and (5.30), we setα = 0 for

BPSK modulation andα = π
4

for QPSK modulation with Gray coding [83].

5.3.3 Comparisons of Protocols and Discussion

Comparison with Existing Results

In this section, we first compare our exact BEP result (5.23) with the one in [59], where

protocol III is applied. Under a high SNR assumption1, the asymptotic BEP results for

protocol III is obtained in [59, eqn. (15)]. The channel variances2σ2
SD = 2σ2

SR =

2σ2
RD are normalized to one, therefore, the values of SNR’sEavr

SR /No, Eavr
SD/No and

1In [59], the SNR’s defined in equations(7) and(8) are the effective SNR’s of two arrival branches

at the destination, which is given by

γ̄1 =
Eavr

SR /No · Eavr
RD/No

1 + Eavr
SR /No + Eavr

RD/No
|hRD|2, (5.31)

γ̄2 =
(1 + Eavr

SR /No) · Eavr
SD/No

1 + Eavr
SR /No + Eavr

RD/No
, (5.32)

and it is not the same SNR definition we use in this chapter.
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Eavr
RD/No will reflect the environmental differences, such as distance, shadowing, etc.

Here, BPSK modulation is applied.
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Figure 5.1: Exact BEP result (5.23) and asymptotic BEP, withEavr
SR = Eavr

RD = Eavr
SD .

In Figure 5.1, we first assume the same average energy per symbol, such that

Eavr
SR = Eavr

SD = Eavr
RD. It is shown that the asymptotic BEP results are not very tight,

especially in the low to moderate SNR (Eavr
SD/No) region. Next, we assumeEavr

SR is

fixed andEavr
RD = Eavr

SD . In Figure5.2, we plot the asymptotic and exact BEP results

for Eavr
SR /No = 10 dB. In this situation, we can see that the asymptotic results are

neither tight in the low SNR (Eavr
SD/No) region, nor in the high SNR (Eavr

SD/No) region.

The reason is that whenEavr
SR is fixed, we cannot guaranteeγ̄1 in (5.31) and̄γ2 in (5.32)

are always much greater than1, therefore the high SNR assumption in [59] is not valid.
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The two cases above clearly show that the asymptotic BEP is not always reliable, and

an exact and simple BEP result is of great importance to both theoretical and practical

applications.
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Figure 5.2: Exact BEP result (5.23) and asymptotic BEP, withEavr
RD = Eavr

SD , and

Eavr
SR /No =10 dB.

Comparison of Protocols

In Section 5.2, we mentioned that the three protocols can be applied in different

situations. Now, we will examine their performances based on the exact BEP results.

As in the previous section, we assume here all the channel variances are normalized to

one, and BPSK modulation is used.
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Figure 5.3: Exact BEP for three protocols withEavr
SR = Eavr

RD = Eavr
SD .

We plot the exact BEP of the three protocols in Figure 5.3, withEavr
SR = Eavr

RD =

Eavr
SD . In the fast block fading channels, it is shown that protocol I has the best

performance, since the diversity order of three is obtained. Protocols II and III both

have the diversity order of two. As a matter of fact, the channel fade rate will not affect

protocols II and III, since they only receive once from the source. Therefore, in the

slow block fading channels, all the three protocols have the same diversity order of

two, and their BEP curves have the same slope.

In the slow block fading case, protocol I still has a better performance than the

other two, since the destination receives two copies of the same signal from the source.

Protocol I is2 dB better than protocol II, and about3 dB better than protocol III.
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Although protocols II and III both receive once from the source and the relay each,

protocol II is slightly better than protocol III. This is because the signals from the

source and the relay arrive at the destination separately in protocol II. But in protocol

III, both of the signals arrive at the second phase, and the forwarded noise from the

relay degrades the signal from the source, as can be seen in (5.10).
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Figure 5.4: Exact BEP for three protocols withEavr
RD = Eavr

SD andEavr
SR /No = 10 dB.

In Figure 5.4, we setEavr
RD = Eavr

SD andEavr
SR /No = 10 dB. The BEP of all three

protocols are plotted, together with two dashed lines which indicate the diversity orders

of two and three, as a comparison. We can see that protocol III shows an error floor

whenEavr
SD/No is greater than a certain value. It is easy to understand that when SNR

Eavr
SD/No is high, the relatively weakerS → R link becomes a bottleneck, and the
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forwarded noise from the relay limits the final SNR at the destination. Similarly, the

diversity orders of protocols I and II also reduce to one, since both of them have one

diversity order from the directS → D link , which is not affected by the relay’s noise.

Similar phenomena can be observed, when we changeEavr
SR /No to other fixed values.

From the discussion above, we can see that protocol I has the best performance,

especially in the fast block fading channel. Protocol II on the other hand, only requires

the source to transmit once, which is an advantage when a node’s battery lifetime is a

concern. And both protocols I and II are quite robust to the deep fading on theS → R

link. Protocol III appears to be the worst one among the three.

5.4 Adaptive Forwarding Schemes

In the last section, we mentioned that if both the source and the relay transmit in the

second phase (Protocol I and III), the forwarded noise from the relay will degrade the

total received SNR at the destination. In this section, we first re-examine the received

SNR in the second phase. From (5.8) and (5.9), we can see that the received SNR’s for

s1 ands2 are the same, and are given by

γSTBC =
ESRERD|hSR|2|hRD|2
(ERD|hRD|2 + 1)No︸ ︷︷ ︸

SNR from theR → D link

+
ESD|hSD|2

(ERD|hRD|2 + 1)No︸ ︷︷ ︸
SNR from theS → D link

. (5.33)

The above equation shows that the received SNR consists of two parts, which are from

the S → D and R → D links, respectively. We can also see that both parts are

degraded by the noise from the relay. On the other hand, if there is only the direct

transmission in the second phase, the received SNR is given by

γDirect =
ESD|hSD|2

No

. (5.34)

Therefore, the key question we want to address is:how should the relay decide whether

to forward the signals and cooperate to form an STBC?In the rest of this section, we

112



5.4 Adaptive Forwarding Schemes

will discuss this problem based on different levels of CSI feedback to the relay. More

specifically, we consider three cases.(1) Full CSI feedback: the destination feeds back

the instantaneous value of the channel gainhSD to the relay.(2) Partial CSI feedback:

the destination feeds back the statistics of the channel gain, i.e. the variances ofhSD

andhRD, to the relay.(3) No CSI feedback: the relay does not require any form of

CSI feedback from the destination.

5.4.1 Adaptive Cooperative STBC with Full CSI at the Relay

Based on the received SNR’sγSTBC andγDirect, the BEP results are given by [7]

P STBC
b =

1

2
erfc

(
(βγSTBC)

1
2

)
(5.35)

and

PDirect
b =

1

2
erfc

(
(βγDirect)

1
2

)
, (5.36)

respectively. Here,β is some constant that depends on the modulation scheme. Since

the erfc(·) function is a monotonically decreasing function, it requires

γSTBC > γDirect (5.37)

to guarantee that the cooperative STBC has a smaller BEP. The above inequality can

be rewritten as

ESR|hSR|2 > ESD|hSD|2. (5.38)

In the case when the source transmits with the same energy in the first and second

phases, i.e.ESR = ESD, the cooperative STBC outperforms the direct transmission

simply when theS → R link is stronger than theS → D link.

Therefore, in an adaptive forwarding scheme, the relay needs to determine

whether the condition (5.38) is satisfied before forwarding the signal. If not, the relay
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keeps silent in the second phase of transmission and only the source transmits. The

BEP of the adaptive forwarding strategy is given as

Pα(e) = PDirect
α

(
e|ESR|hSR|2 ≤ ESD|hSD|2

)

+ P STBC
α

(
e|ESR|hSR|2 > ESD|hSD|2

)
. (5.39)

Conditioning on the channel gainshSR, hSD andhRD, the second term of (5.39) can

be similarly rewritten as (5.11), which is given by

P STBC
α

(
e|hRD, hSR, hSD, ESR|hSR|2 > ESD|hSD|2

)

=
1

π

∫ π
2

0

exp

(
−ESRERD|hSR|2|hRD|2 cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)

· exp

(
− ESD|hSD|2 cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)
dθ. (5.40)

Averaging over channel gainshSR, hRD andhRD, we obtain (see Appendix C)

P STBC
α

(
e|ESR|hSR|2 > ESD|hSD|2

)

=
1

π

∫ π
2

0

(
bg

1 + ag
+

bg(1− b)

f(1 + ag)
exp

(
b

f

)
Γ

[
0,

b

f

])
dθ (5.41)

wherea, b andf are defined in (5.14), (5.15) and (5.17), respectively, and

g =
2σ2

SRESR

2σ2
SDESD

. (5.42)

Similarly, the conditional BEP of the direct transmission is given by

PDirect
α

(
e|hRD, hSR, hSD, ESR|hSR|2 ≤ ESD|hSD|2

)

=
1

π

∫ π
2

0

exp

(
−ESD|hSD|2

No sin2 θ
cos2 α

)
dθ, (5.43)

which is independent ofhRD. After averaging over the channel gainshSD andhSR, we

have (see Appendix D)

PDirect
α

(
e|ESR|hSR|2 ≤ ESD|hSD|2

)
=

1

π

∫ π
2

0

1

a

b

1 + bg
dθ. (5.44)
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Substituting (5.41) and (5.44) into (5.39), the BEP of adaptive cooperative STBC is

given by

Pα(e) =
1

π

∫ π
2

0

(
bg

1 + ag
+

1

a

b

1 + bg
+

bg(1− b)

f(1 + ag)
exp

(
b

f

)
Γ

[
0,

b

f

])
dθ. (5.45)

From the discussion above, it can be seen that the relay requires the instantaneous

knowledge ofhSD, even if we assumeESD is known previously. Therefore, the

destination needs to sendhSD to the relay on a feedback channel. If theS → D

link varies fast, the overhead of the feedback channel will be high.

5.4.2 Adaptive Cooperative STBC with Partial CSI and no CSI at

the Relay

Alternatively, the relay can make the decision based on its own CSI of theS → R

link. If the channel gainhSR is higher than a thresholdhth, the relay will forward the

signals. Here, the parameterhth can be chosen based on the statistics of theS → R

link only, e.g.|hth|2 = 2σ2
SR, such that no feedback of CSI is required. Or an optimum

value ofhth can be calculated with the partial knowledge of CSI’s, i.e., the variances

of hSR, hSD andhRD, using (5.49). Since the statistics of the channels change slowly,

the overhead of the feedback channel is low.

With a certain thresholdhth, the BEP of the adaptive cooperative STBC is given

by

Pα(e) = PDirect
α

(
e| |hSR|2 ≤ |hth|2

)
+ P STBC

α

(
e| |hSR|2 > |hth|2

)
, (5.46)

where the first term is given as

PDirect
α

(
e| |hSR|2 ≤ |hth|2

)
=

1− exp
(
− |hth|2

2σ2
SR

)

π

∫ π
2

0

1

a
dθ. (5.47)

It is difficult to calculate the second term in (5.46) directly. However, under a high

SNR assumption thatERD|hRD|2 À 1, the asymptotic BEP is given as (see Appendix
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E)

P STBC
α

(
e| |hSR|2 > |hth|2

)

≈
exp

(
− |hth|2

2σ2
SR

)

π

∫ π
2

0

(
b +

b(a− 1)2

f(b− a)
exp

(
a

f

)
Γ

[
0,

a

f

]

−b(b− 1)2

f(b− a)
exp

(
b

f

)
Γ

[
0,

b

f

])
exp

(
−ESR|hth|2 cos2 α

No sin2 θ

)
dθ.(5.48)

Therefore, the average BEP of cooperative STBC with partial CSI is given by

Pα(e) ≈
(

1− exp

(
−|hth|2

2σ2
SR

)) (
1

2
− 1

2

√
2σ2

SDESD cos2 α

No + 2σ2
SDESD cos2 α

)

+
exp

(
− |hth|2

2σ2
SR

)

π

∫ π
2

0

(
b +

b(a− 1)2

f(b− a)
exp

(
a

f

)
Γ

[
0,

a

f

]

−b(b− 1)2

f(b− a)
exp

(
b

f

)
Γ

[
0,

b

f

])
exp

(
−ESR|hth|2 cos2 α

No sin2 θ

)
dθ.(5.49)

Here, all the BEP results we obtained for the adaptive forwarding schemes are

based on protocol III. It is straightforward to extend the results to protocol I, the only

difference is that protocol I has one more direct transmission in the first phase, which

will not change the adaptive scheme in the second phase. Therefore, we will omit the

detailed results for protocol I here.

5.4.3 Energy Efficiency

In all of the three adaptive forwarding schemes, the relay keeps silent in certain

cases. Besides the improvement in the performance, another obvious advantage of the

adaptive forwarding schemes is the energy efficiency, which is especially important in

wireless sensor networks, or ad hoc networks.

For the adaptive cooperative STBC with full CSI, the relay will stop forwarding

the received signal when condition (5.38) is not satisfied. Therefore, normalizing the

energy consumption of the conventional cooperative STBC at the relay to one, the
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energy consumption of the adaptive cooperative STBC is given byP (ESR|hSR|2 >

ESD|hSD|2). Averaging over channel gains|hSR|2 and|hSD|2, the energy consumption

at the relay is

2σ2
SRESR

2σ2
SRESR + 2σ2

SDESD

(5.50)

for the adaptive cooperative STBC with full CSI. Similarly, the energy consumptions

of the schemes with partial and no CSI can be calculated asP (|hSR|2 > |hth|2) times

the one with conventional cooperative STBC. And the normalized energy consumption

at the relay is given as

exp

(
−|hth|2

2σ2
SR

)
. (5.51)

5.4.4 Numerical Examples and Discussion

As in section 5.3.3, we normalize all the channel variances2σ2
SR, 2σ2

SD and2σ2
RD to

one and apply BPSK modulation. In the first example, we setEavr
SD = Eavr

RD. The

BEP results of the conventional cooperative STBC (5.23) and the adaptive cooperative

STBC with full CSI (5.45) are plotted in Figure 5.5. Here, we consider three cases:

(i) Eavr
SR /No = Eavr

SD/No,

(ii) Eavr
SR /No = Eavr

SD/No − 5dB,

(iii) Eavr
SR /No = Eavr

SD/No − 15dB.

It can be seen that when theS → R link is (statistically) as strong as theS → D

link, the adaptive cooperative STBC provides a small gain. However, when the

S → R link becomes weaker, our adaptive cooperative STBC can provide about

2 dB gain in case(ii) and 7 dB gain in case(iii). Similar phenomena can be

observed whenEavr
SR /No takes on other values, which are smaller thanEavr

SD/No. On

the other hand, ifEavr
SR /No < Eavr

SD/No, the adaptive cooperative STBC can guarantee

that the performance is not worse than that of conventional cooperative STBC. It
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can be easily proved by the underlying structure of our adaptive cooperative STBC.

Therefore, our adaptive cooperative STBC scheme can be effectively applied to relieve

any potential shadowing or deep fading problem in theS → R link. Substituting

the parameters of cases(i), (ii) and (iii) into (5.50), we can obtain the normalized

energy consumptions as50%, 23.5% and3.1%, respectively, in comparison with that

of conventional cooperative STBC. Therefore, the lifetime of the relay node is greatly

extended.
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Figure 5.5: Conventional cooperative STBC v.s. adaptive cooperative STBC with full

CSI.Eavr
SD = Eavr

RD, andEavr
SR /No = Eavr

SD/No, Eavr
SD/No− 5 dB andEavr

SD/No− 15 dB,

respectively.

For the conventional cooperative STBC, we have observed an irreducible error
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floor for protocol III in Figure 5.4, whenEavr
SR /No is set to a fixed value. In Figure 5.6,

again, we setEavr
SR /No to fixed values of5 dB, 10 dB and20 dB, respectively, with all

the other parameters remaining the same. It is shown that the BEP of our adaptive

cooperative STBC decreases along with the increase ofEavr
SD/No, which shows its

superiority over the conventional cooperative STBC.
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Figure 5.6: Conventional cooperative STBC v.s. adaptive cooperative STBC with full

CSI.Eavr
SD = Eavr

RD andEavr
SR /No = 5 dB, 10 dB and20 dB, respectively.

The normalized energy consumptions at the relay for the adaptive cooperative

STBC are plotted in Figure 5.7. For a fixedEavr
SR /No, as we can see, the energy

consumptions decrease, when the SNREavr
SD/No increases. This is because the relay is

more likely to keep silent, if it cannot provide any help in this situation.
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Figure 5.7: The normalized energy consumption at the relay for the adaptive CSTBC

with full CSI. Eavr
SD = Eavr

RD andEavr
SR /No = 5 dB, 10 dB and20 dB, respectively.

In Figure 5.8, we plot the BEP performance of the adaptive cooperative STBC

with full, partial and no CSI at the relay. We setEavr
SD = Eavr

RD as above, andEavr
SR /No =

Eavr
SD/No−10 dB. According to (5.49), we first search for the optimumhth with partial

knowledge of CSI. Using the optimumhth, the performance of adaptive cooperative

STBC with partial CSI is only about1 dB less than the one with full CSI. If we do not

require any feedback of CSI, we can set|hth|2 = 2σ2
SR as in Figure 5.8. The underlying

idea is that if the received SNRESR|hSR|2/No is less than the average received SNR

2σ2
SRESR/No, the signal is considered weak and will be discarded. The performance

of this scheme is very close to the one with partial CSI in the low to moderate SNR
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(Eavr
SD/No) region. However, since this scheme uses a fixed threshold, which does not

change according to different situations, it becomes unreliable in some cases (such as

in the high SNR region in Figure 5.8).
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Figure 5.8: BEP of the conventional cooperative STBC and the adaptive cooperative

STBC with full/partial CSI.Eavr
SD = Eavr

RD andEavr
SR /No = Eavr

SD − 10 dB.

The normalized energy consumptions at the relay for the three adaptive

cooperative STBC schemes are plotted in Figure 5.9, where we can see all the adaptive

schemes are energy efficient, compared with the conventional cooperative STBC.
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In summary, we have proposed adaptive cooperative STBC with full CSI, partial

CSI and no CSI. The performances of these three schemes are ordered from high to

low, but the complexities and the overheads of the feedback channel are also ordered

from high to low.

5.5 Conclusions

In this chapter, we have analyzed the performances of cooperative STBC with AF

strategy. Three existing protocols are considered and exact BEP results are obtained
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in closed forms. Based on the BEP results, we first show that our exact result is more

reliable than the existing asymptotic BEP results. We also compare the performances

of the three protocols in different situations. It is shown that protocol I has a better

performance than the other two; protocols I and II are robust to deep fades on the

S → R link; and protocol III appears to be the worst one among the three protocols.

In second part of the chapter, we have proposed an adaptive cooperative STBC

scheme with full CSI, partial CSI and no CSI available at the relay. The exact BEP

results of these adaptive schemes are also obtained in closed form. Through the

numerical results, we have shown that our adaptive scheme with full CSI provides

significant gain when theS → D link is stronger than theS → R link. Moreover,

the conventional cooperative STBC scheme shows an error floor, whenEavr
SR /No is

equal to some fixed value, but our adaptive scheme does not have such a problem. The

performance gains of the other two adaptive schemes are relatively small compared

with the first one, but they require less/no feedback of the CSI. Finally, we compare the

energy consumption of the conventional and the adaptive cooperative STBC schemes,

and show that the energy efficiency is another advantage of the adaptive cooperative

STBC schemes.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we studied the performance of STBC over general fading channels.

We examined three different kinds of fading channels with diversity: non-identical

channels, time-selective channels and relay channels. Exact bit error performance

results were derived in closed-form, based on which we proposed new designs of

codes, new optimum receiver structures, and adaptive transmission schemes.

For the STBC over non-identical channels, we investigated the performance with

both perfect and estimated CSI. If the perfect CSI was available, it was shown that the

ML detector is the same as the conventional detector for the case where the channels

are identically distributed. With the help of the exact BEP derived, the effects of

different degrees of imbalance between channels were studied. These results and

observations are helpful to applying STBC’s in real environments. Unlike most of the

previous works on STBC which assumed that the channels were identically distributed,

the OPAS in this study may not be coincidental with EPAS anymore. Therefore, the

optimization of power allocation among antennas was necessary. Since the objective

function is a convex function, the optimum value can be calculated directly. Depending
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on whether the imbalance was caused by the means or the variances of the channel

gains, the OPAS emphasized the weaker links, or the stronger links, respectively. The

exact BEP results clearly showed that the performance of STBC with OPAS is much

better than the one with EPAS, even when the channels are slightly non-identical.

Therefore, the OPAS is of considerable value, as the channels in a real environment

are mostly non-identical.

On the other hand, if the CSI was imperfect, the structure of the ML detector

is different from the case where the channels are identically distributed. Our results

showed that the received signals and the estimated channel matrices have to be

weighted row-by-row if the channels are non-identically distributed at the receiver

end, or weighted column-by-column if the non-identical channels are at the transmit

end. This modification of the structure can be attributed to the non-identical channel

estimation errors, which lead to non-identical equivalent Gaussian white noise at

the receiver. Therefore, the variances of the received signals are not identical when

conditioned on the estimated channels. In order to isolate the influences from different

sources, we investigated the effects of non-identical channels at the receiver and the at

transmitter separately. This study does not include the case when both the transmitter

and the receiver are related to non-identical channels, since the performance analysis

of this case would be more complex, and closed-form results might not be available.

Therefore, further work is needed to obtain the bounds and approximations for the

performance in this case. It is also interesting to know whether we should adjust power

allocation for the pilot symbols, so as to make the variances of channel estimation

identical.

For the STBC over time-selective channels, we also derived the exact BEP. More

importantly, based on the BEP, the relationship between the ISI and the row positions

in the code matrices was revealed. Since the exact error performance of STBC
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over time-selective channels was not available before, it was hard to compare the

performances of different designs of STBC. One way to search for the optimum code

was to simulate the performances of all the codes, which was time consuming, if not

impossible. Having our exact expressions of the error probabilities, it is much easier

to obtain the performances of different STBC matrices by numerical computation.

Moreover, since the performance results depend on and only on the row positions of

the code matrices, the code design problem can be further simplified by obviating

the tedious calculation. One proposition and two design criteria were also proposed to

design or search for better STBC designs that have less ISI, compared with the original

code matrix. The results may be of great importance, not only because the exact BEP

results are obtained for the first time, but also because of the standards it built for the

code designs in the time-selective channels. In this case, channel estimation was not

included, since the channel estimation error is an independent source of performance

degradation, which is not expected to change the observations made in this thesis. In

future work, the effect of channel estimation errors on the performance of STBC over

time-selective channels needs to be studied.

For the STBC over relay channels, the AF strategy was examined. Three existing

protocols were considered and exact BEP results were obtained in closed form for

the first time. It was shown that our exact result is more accurate than the existing

asymptotic BEP results. We also compared the performances of the three protocols in

different situations. It was shown that protocol I has the best performance, especially in

the fast block fading channel. Protocol II on the other hand, only requires the source to

transmit once, which is an advantage when a node’s battery lifetime is a concern. And

both protocols I and II are quite robust to the deep fading on theS → R link. Protocol

III appeared to be the worst one among the three, and even an irreducible error floor

was observed. We found that the error floor is caused by the noise forwarded from
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the relay to the destination, therefore, the condition under which the relay should stop

forwarding was carefully checked. Following this condition, we proposed adaptive

cooperative STBC schemes with full CSI, partial CSI and no CSI available at the

relay. The exact BEP results of these adaptive schemes were also obtained in closed

form. The numerical results showed that our adaptive scheme with full CSI provides

significant gain when theS → D link is stronger than theS → R link. Moreover, the

irreducible error floor observed with conventional cooperative STBC was eliminated

completely. The performance gains of the other two adaptive schemes are relatively

small compared with the first one, but they require less/no feedback of the CSI.

Finally, we compared the energy consumptions of the conventional and the adaptive

cooperative STBC schemes, and showed that the energy efficiency is another advantage

of the adaptive cooperative STBC schemes.

In this thesis, the performance of the STBC over three different kinds of diversity

fading channels was examined. The analytical results obtained are exact and in

closed-form, and can be used to facilitate the implementation of the STBC in a real

environment. In this thesis, we considered only one of these three fading channels

in one case, therefore, the interaction of two or more kinds of channels in one case

remains unknown. And further work is needed to investigate this problem.

6.2 Future Work

6.2.1 STBC with Non-identical Channels at both the Transmitter

and the Receiver, with imperfect CSI

As we mentioned above, in Chapter 3, we studied the performance of STBC over

non-identical channels with imperfect CSI in two cases: the non-identical channels
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are related to receive antennas, and the non-identical channels are related to transmit

antennas. By examining the two cases separately, we showed that they have different

effects on the ML receiver structure, and lead to different performances as well.

Naturally, the next step is to examine the general case with non-identical channels

related to both the transmit and the receive antennas. However, this general case is not

a simple combination of the two cases studied in this thesis. For the general case, the

ML decoder may have a more complicated form and the performance results may not

be in closed-form. Therefore, deriving the ML decoder and analyzing the performance

for this case can be a direction of future work.

6.2.2 The Optimum Power Allocation for STBC over

Non-identical channels with imperfect CSI

Also in Chapter 3, it is assumed that the transmitted energy per symbol is the same for

both the information symbols and the pilot symbols. It is interesting to know whether

we can improve the performance by optimizing the power allocation. Here, the power

allocation can be done in one of two ways.

Optimum Power Allocation for the Pilot Symbols

As we showed that the non-identical channels result in non-identical channel

estimation errors, which finally change the structure of the ML decoder. Therefore,

the first possibility is to allocate different powers to the pilot symbols, in order to

obtain identical channel estimation errors. If identical channel estimation errors can

be achieved, then we can use the conventional SBS decoder as the ML decoder. This

method is especially attractive for Case II in Chapter 3, as the ML decoder of that

case cannot be simplified to a SBS decoder. However, there are two problems we need

to solve. First of all, the identical channel estimation errors are not obtained without
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cost. We need to feed back the CSI to the transmitter, so the overhead of a feedback

channel needs to be considered. Second, this power allocation does not guarantee that

the performance will be improved, so we need to carefully compare the performance

with that of an equal power allocation scheme.

On the other hand, since the BEP result is a function of the variances of channel

estimation errors, the second possibility is to minimize this BEP value by adjusting the

powers of the pilot symbols. In this way, we can guarantee that the optimum BEP is

obtained. Similarly, we also need a feedback channel here.

Optimum Power Allocation for the Data Symbols

Like what we did in Chapter 2, we can also optimize the power for the data symbols and

minimize the BEP value. However, the optimization problem here is more involved,

since more parameters need to be taken care of. In this case, the channel estimates are

time dependent, so the BEP results also depend on the time. The average BEP needs to

be obtained by calculating all the BEP results for the data blocks between two adjacent

pilot blocks. Besides, the BEP results obtained for STBC over non-identical channels

with imperfect CSI are all bounds and approximations, so the issue of how to minimize

the real BEP by minimizing these results should also be considered in future works.

Finally, both the power allocations for pilot symbols and data symbols can be

considered together.

6.3 Code Design forHi Systems over Time-Selective

Channels

In Chapter 4, we have proposed a proposition and design criteria for theGi Systems.

There is another important generalized design for complex orthogonal STBC, theHi
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design, which can be covered in future works. In order to analyze the performance

of Hi systems over time-selective channels, the key step is to find the corresponding

channel matrix for the manipulated received signals. Unlike the channel matrix for the

Gi system, it is not straightforward to obtain the channel matrix forHi systems, since

both si ands∗i appear in the same row of the code matrix. So, we may need to treat

the real and imaginary parts of the transmitted symbols separately. Consequently, the

corresponding channel matrices need to be obtained for the real and imaginary parts of

the transmitted symbols. Having obtained these channel matrices, the performance of

Hi systems may be similarly analyzed as forGi systems, and the relationship between

ISI and the code matrices may be obtained.

6.4 STBC over More General Channels

In this thesis, we considered STBC over three different kinds of channels. In the real

world, however, two or more kinds of channels may appear together in one single

situation. For example, it is possible that the channels are both non-identical and

time-selective in the vehicular communications. In the cooperative scenario, if the

relays are moving fast, the channels can be time-selective as well. Therefore, analyzing

STBC over more general channels can be part of the future work.
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Appendix A

Proof of Inequality (2.39)

We first bound the BEP (2.28) with inequality (2.35) as

Pk′(e) ≥ 1

π

∫ π
2

0

exp
(
−∑MT

m=1

∑NR

n=1

(
µm|Mm,n|2

sin2 θ+2σ2
m,nµm

))

(
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sin2 θ

)MT NR
dθ. (A.1)

Now the numerator term can be further written as
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−
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MT∑
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NR∑
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(
1

sin2 θ + 2σ2
m,nµm
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. (A.2)

Applying the arithmetic mean-harmonic mean inequality [86], we can obtain the
inequality

Q∑
i=1

1

a + xi

≥ Q

a + xam

, (A.3)

wherea and thexi’s are positive numbers andxam is the arithmetic mean of thexi’s.
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A. Proof of Inequality (2.39)

Therefore, the numerator term is lower bounded as

exp
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−

MT∑
m=1

NR∑
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≥ exp
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)
, (A.4)

and inequality (2.39) is proved.
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Appendix B

Performance Approximation of Some

G4 Systems

In section 4.3.1, we use the optimumG4 code matrix. The variance of the interference
contains the common term‖h1‖2, therefore, we can cancel this common term in the
denominator and the numerator in (4.18). If otherG4 code matrices are used, the
variance of the interference may not be directly related to‖h1‖2. For example, for the
hand-designedG4 code (4.53), the variance of the interference is given by

(
1− |R(1)|2) (‖h1‖2 + |h2(2)|2 + |h2(7)|2 + |h3(3)|2 + |h3(6)|2) Es

+
(
1− |R(3)|2) (|h1(1)|2 + |h1(8)|2 + |h2(2)|2 + |h2(7)|2 + 2|h4(4)|2 + 2|h4(5)|2) Es

+
(
1− |R(5)|2) (|h1(1)|2 + |h1(8)|2 + |h3(3)|2 + |h3(6)|2) Es.

In such a case, however, we can approximate this variance. Noting that the
|hi(t)|2’s are identically distributed and‖h1‖2 is the sum of eight different|hi(t)|2’s,
we approximate each|hi(t)|2 as‖h1‖2/8. Thus, the variance of the interference can be
approximated as

3

2

(
1− |R(1)|2) ‖h1‖2Es +

(
1− |R(3)|2) ‖h1‖2Es +

1

2

(
1− |R(5)|2) ‖h1‖2Es.(B.1)

All the remaining steps are then similar to those from (4.18) to (4.24). This method
leads to a very close approximation to the average BEP, as shown in Fig 4.8.
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Appendix C

Derivation of Equation (5.41)

The conditional BEP (5.40) has two exponential terms, which include variables|hSR|2
and|hSD|2, separately. Therefore, we can average over them one by one. Noticing that
|hSD|2 and|hSR|2 are central chi-square distributed, we first average overESR|hSR|2
from ESD|hSD|2 to infinity, and obtain

P STBC
α

(
e|hRD, hSR, ESR|hSR|2 > ESD|hSD|2

)

=
1

π

∫ π
2

0

exp
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(ERD|hRD|2 + 1)No sin2 θ

)

·
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)

ESR2σ2
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(ERD|hRD|2+1)No sin2 θ
+ 1

dθ. (C.1)

Similarly, averaging over|hSD|2, we have

P STBC
α

(
e|hRD, ESR|hSR|2 > ESD|hSD|2

)

=
1

π

∫ π
2

0

g
1+ag

ESR2σ2
SRERD|hRD|2 cos2 α

(ERD|hRD|2+1)No sin2 θ
+ 1

dθ (C.2)

wherea andg are defined in (5.14) and (5.42), respectively. Averaging equation (C.2)
with the help of Lemma 5.1, the average BEP is given by (5.41).
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Appendix D

Derivation of Equation (5.44)

Since equation (5.43) is independent of|hRD|2, we first average overESD|hSD|2 from
ESR|hSR|2 to infinity, and obtain

P STBC
α (e|hSR, hSR < hSD)

=
1
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∫ π
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)
dθ. (D.1)

Averaging the above equation over|hSR|2, the average BEP is given by (5.44).
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Appendix E

Derivation of Equation (5.48)

Averaging over|hSR|2 and|hSD|2, the conditional BEP is given as

P STBC
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=
exp
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We need to average the above equation over|hRD|2, but it is hard to obtain a
closed-form result. Under the high SNR assumptionERD|hRD|2 À 1, we have

exp

(
−ESRERD|hRD|2|hth|2 cos2 α

(ERD|hRD|2 + 1)No sin2 θ

)
≈ exp

(
−ESR|hth|2 cos2 α

No sin2 θ

)
. (E.2)

Now, the average of (E.1) can be approximated with the help of Lemma 5.1, which is
given in (5.48).
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