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ABSTRACT

This thesis describes experimental investigations of organic molecules adsorbed on

diamond (001). This work has been conducted mainly using synchrotron radiation

based spectroscopic techniques, namely photoemission spectroscopy (PES) and near-

edge X-ray adsorption fine structure (NEXAFS), and complemented by other surface

analytical probes and first-principle calculations. Particular emphasis is placed upon

the interactions, electronic structures, and energy level alignments at the organic-

diamond interface. The structural and electronic properties of bare and hydrogen-

terminated diamond (001) have also been characterized as initial baseline studies.

Scanning tunneling microscope (STM) and low energy electron diffraction

(LEED) studies confirm the 2×1 reconstruction with orthogonally oriented domains

on both bare and hydrogenated diamond (001) surfaces. The electronic structures and

properties probed by the combination of PES and NEXAFS are consistent with

published work. In particular, the well-known negative electron affinity (NEA) of

hydrogenated diamond is determined to be -1.1 eV, leading to a sharp and intense

secondary electron emission peak in the low kinetic energy region of PES spectra.

The π-bonded surface dimers endow bare diamond surface with reactivity to-

wards unsaturated organic molecules, which is indeed confirmed by the PES and

NEXAFS studies of 1,3-butadiene adsorption. A reduction in diamond electron

affinity by up to 0.7 eV is observed, as well as a greatly enhanced secondary electron

emission yield accompanying the surface functionalization with 1,3-butadiene.

Density functional theory (DFT) calculations reveals that this tuning effect is due to

the surface dipole layer built up by the terminal heteropolar C—H bonds in the cova-

lently bonded organics via cycloaddition reactions.
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Copper phthalocyanine (CuPc), a prototypical organic semiconductor, is also in-

vestigated and compared on both bare and hydrogenated diamond (001). CuPc

interacts weakly with hydrogenated diamond, whereas it undergoes chemical reaction

with bare diamond dimers. A combination of interfacial charge transfer and intramo-

lecular interface dipole created by the covalently attached molecules transform bare

diamond surface from positive electron affinity (PEA) to NEA, with enhanced sec-

ondary electron emission intensity. A hot electron emission process from diamond

conduction bands through covalently attached molecules to vacuum is described.

Distinct supramolecular ordering and orientation within the CuPc films on both

diamond (001) surfaces are revealed by NEXAFS, which is explained in terms of the

interplay between intermolecular interactions and molecule-substrate interactions.

The last part of this thesis studies the p-type surface transfer doing of diamond,

which relies on electron transfer from hydrogenated diamond to surface molecular

adsorbates. The charge transfer and energy level alignments across the di-

amond/organic heterojunction is characterized by PES, which unambiguously

demonstrates controlled p-type surface transfer doping of diamond by molecular

acceptors. High areal hole density over 1013 cm-2 of diamond is readily achieved by

tetrafluorotetracyanoquinodimethane (F4-TCNQ) and highly fluorinated fullerene

(C60F48) adsorption, which acts as effective acceptors even in isolated molecular form.

Tetracyanoquinodimethane (TCNQ) and buckminsterfullerene (C60), in comparison,

induce moderate surface transfer doping (~ 1010 – 1012 cm-2) only after the formation

of condensed-phase molecular thin films. In contrast, CuPc films cause no observable

interfacial charge transfer. Our study correlates their distinct surface transfer doping

yields and efficiencies with their electron affinity values in both gas phase and

condensed phase.
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CHAPTER 1

INTRODUCTION

1.1 Carbon and its allotropes

Carbon (C), the sixth element in the periodic table, is the fourth most abundant

chemical element. The relatively small size of a carbon atom as well as its ability to

form strong covalent bonds with another carbon atom leads to a variety of carbon

allotropes (Figure 1.1). When bonded to other elements such as hydrogen, nitrogen

and oxygen, the carbon-based organic molecules constitute the great majority of all

known chemical compounds. Notably, deoxyribonucleic acid (DNA) and ribonucleic

acid (RNA), which are the very basis of all living organisms, are simply giant organic

molecules. In fact, carbon is so essential to all terrestrial life that people have conjec-

tured all life forms in the universe is carbon-based; this doctrine is known as carbon

chauvinism [1].

The large number of carbon-based allotropes or compounds stems from the hy-

bridizations of carbon valence orbitals. The ground state electronic configuration of

carbon is 1s22s22p2, of which four are valence electrons (two in 2s orbital and two in

2p orbital). Upon hybridization, the 2s orbital can hybridize with one, two or three 2p

orbitals to form sp, sp2, or sp3 hybridized orbitals respectively. The hybridized orbitals

from two carbon atoms can overlap to form σ bonds. Together with partial overlap-

ping of the unhybridized 2p orbitals, two carbon atoms can form a triple, double or

single bond between them, leading to a great variety of carbon compounds. In particu-

lar, the sp3 hybridized carbon forms the basis of one of the best known carbon

allotropes: diamond.
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1.2 Properties of diamond

1.2.1 General properties and applications

Diamond has been highly priced for centuries as a gemstone with exceptional

brilliance and lustre. It is a solid crystalline form of carbon in which all carbon atoms

are tetrahedrally coordinated and sp3-bonded (Figure 1.2). The diamond cubic crystal

structure is face-centered cubic (FCC) with a basis comprising two carbon atoms at

each lattice point: one at (0 0 0) and another at 1 1 1
4 4 4( ) , i.e. it can be viewed as two

interpenetrating FCC lattices with an offset along a body diagonal by 1/4 of cubic

length. The conventional cubic unit cell shown in Figure 1.2 has a lattice constant a0

of 3.57 Å at room temperature (RT) [3]. The C−C center-to-center distance d is

therefore one quarter of the cubic body diagonal length, where 03 / 4 1.54d a  Å.

Figure 1.1. Eight allotropes of carbon: a) Diamond, b) Graphite, c) Lonsdaleite, d) C60

(Buckminsterfullerene), e) C540, f) C70, g) Amorphous carbon, and h) single-walled carbon
nanotube [2].

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Diamond
http://en.wikipedia.org/wiki/Graphite
http://en.wikipedia.org/wiki/Lonsdaleite
http://en.wikipedia.org/wiki/Buckminsterfullerene
http://en.wikipedia.org/wiki/Amorphous_carbon
http://en.wikipedia.org/wiki/Carbon_nanotube
http://en.wikipedia.org/wiki/Carbon_nanotube
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Each conventional unit cell contains eight equivalent carbon atoms, giving an atomic

number density 8/a0
3 ≈ 1.76 × 1023 cm-3, which is the highest among all terrestrial

materials.

The extremely strong sp3 bonding and tight lattice structure endow diamond with

a long list of outstanding mechanical, electrical, thermal, optical and chemical

properties (cf. Table 1.1 and Table 1.2), enabling a broad range of applications,

particularly when these properties are combined. The incompressibility of C−C bonds 

and stability of the tetrahedral lattice arrangement lead to diamond’s most renowned

property of extreme hardness; this is used as the maximum (10, hardest) in the

calibration of the Mohs scale of mineral hardness. In fact, the name of diamond is

derived from ancient Greek ἀδάμας (adámas), literally meaning invincible or

indestructible. Its resistance to scratching (except by another diamond) underscores

diamond’s suitability as a gemstone because it can maintain its polish extremely well

against daily wear. Industrial use of diamond has historically been mainly associated

Figure 1.2. Ball-and-stick model of the conventional unit cell of diamond, where a0 is the
cubic lattice constant.

http://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
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with their hardness, which makes diamond the ideal material for cutting, grinding,

polishing, and drilling applications.

Diamond possesses the highest thermal conductivity (k) of any material known.

High k is very unusual for ordinary semiconductors due to the lack of electrons in

conduction band to transfer energy through the crystals. However, the rigid sp3

bonding is responsible for the extremely high thermal conductivity of diamond, as

they can transfer lattice vibrations with great efficiency. Consequently, the measured

k of natural diamond at RT is in the range of 900 ~ 2300 Wm-1K-1 [7-8], several times

higher than the metallic copper (~ 400 Wm-1K-1) [8]. This extremely high thermal

conductivity enables diamond-based devices to work under high power and high

temperature conditions. In particular, with its low thermal expansion coefficient

(Table 1.1), diamond serves as a superb window material.

Table 1.1. General properties of diamond [3-8].

Properties Value

Crystal structure Diamond Cubic

Space group Fd3m

Lattice constant (300 K) 3.56683 Å

Bond length (300 K) 1.54448 Å

Density (300 K) 3515.25 kg/m3

Relative hardness (Mohs scale) 10

Modulus of elasticity 700-1200 Gpa

Young’s modulus ([111]) 1223 Gpa

Coefficient of friction 0.05

Atomic number density (300 K) 1.763 × 1023 cm-3

Thermal expansion coefficient (300 K) 1.05 × 10-6 K-1

Melting point 3773 K

Debye temperature 2067 °C

Thermal conductivity (300 K) 2200 Wm-1K-1

Refractive index (visible range) 2.40 - 2.46

Dielectric constant (300 K, 1-10 KHz) 5.70
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The gorgeous luster of diamond, which results from its undistorted reflection

from properly cut diamond facets and flashes of prismatic colors, is probably the most

valuable optical property viewed from a jeweler’s perspective. Another exceptional

optical property of diamond is its superb optical transparency from deep ultraviolet

(UV), through the visible to far-infrared (IR), owing to its large, indirect band gap of

5.47 eV. This unique property is valued by scientists and engineers and used in

various optical applications such in IR laser windows.

Diamond also has remarkable chemical inertness due to its strong bonding energy,

making diamond an excellent material for devices that work in harsh chemical envi-

ronments. Furthermore, owing to its wide chemical potential window [9] and inherent

biocompatibility [10], diamond is an ideal platform material for hybrid bio-inorganic

interfaces in applications such as biosensors [11], biomedical implants [5], and

organic/biomolecular electronics [12].

1.2.2 Diamond as an electronic material

With rapid development in the synthesis of large diamond thin films (both polycrys-

talline and single crystalline) with very high quality by chemical vapor deposition

(CVD) technique [4, 13], diamond is increasingly recognized as a promising electron-

ic material [14-15] for active devices such as field-effect transistors (FETs). Although

intrinsic diamond is a bona fide insulator due to its wide band gap, its numerous

exceptional electronic properties (Table 1.2) endow doped-diamond with tremendous

potential as an electronic material capable of operating in extreme conditions beyond

the scope of conventional semiconductor materials such as silicon. In particular,

diamond-based electronic devices can potentially operate at high frequency, high

power, high temperature conditions, and can function under harsh chemical environ-

ments and severe radiation exposure. These unprecedented device possibilities are
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opened by diamond’s unique electronic properties such as high carrier mobility, high

saturation velocity, long carrier lifetime, high dielectric breakdown field and wide

band gap.

Single-crystal diamond possesses the highest electron and hole mobilities at RT

among common inorganic semiconductors. Extremely high electron mobility (4500

cm2V-1s-1) and hole mobility (3800 cm2V-1s-1) have been measured in intrinsic, single-

crystal CVD diamond at RT [16], far exceeding carrier mobilities in other conven-

tional semiconductor materials (Table 1.2). High carrier mobility is essential to realize

devices with fast switching speed. Diamond also exhibits very high saturation velocity

for both electrons and holes (vs ~ 0.8-2 × 107 cm/s under electric field of 10 kV/cm).

Such high saturation velocity is important for FETs working at high frequencies (>10

GHz). Another extraordinary electronic property of diamond is its high electric

breakdown field of 10 MV/cm [15]. Combined with its high thermal conductivity,

diamond is made a dream material for high voltage and high power devices, with

performance surpassing other competing wide gap materials such as SiC and GaN for

high-frequency and high power electronic device applications (Table 1.2).

Diamond’s wide band gap finds applications in diamond-based UV light emitting

diodes (LED) [17]. Combined with its radiation hardness and high breakdown field,

diamond is used for radiation detectors of UV radiation, X-rays, γ-rays to ultrahigh 

energy elementary particles [18]. For example, diamond is incorporated as core-

components into the detector system of the Large Hadron Collider (LHC) [19],

playing crucial roles in arguably the greatest experiment till today.
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Negative electron affinity (NEA), another unique property of diamond, leads to

the high electron emission yield of diamond, because electrons in the conduction

bands experience no energy barrier to escape into vacuum. This property makes

diamond an ideal material for electron-emitting devices such as field-emission devices

[20], electron multipliers [21] and cold cathodes [22]. The NEA property of diamond

is explored in detail in Chapter 3. In particular, the electron affinity (EA) and electron

emission properties of diamond can be tailored through interactions with organic

molecules, which are the central subjects of Chapter 4 and Chapter 5.

When terminated by hydrogen atoms, diamond exhibits unexpected p-type sur-

face conductivity by forming a quasi-two-dimensional hole gas at the surface [23].

Several surface conductive-channel devices based on this property have been realized,

such as surface-channel FETs [24]. Its sensitivity to pH variations of solutions is also

exploited in diamond-based pH sensors [25].

Diamond even finds application in the burgeoning field of quantum computation.

Because of the long decoherence time of its nitrogen-vacancy (NV) impurity center,

the electron spin state of individual NV center can be read out and manipulated even

Table 1.2. Important electronic properties of diamond in comparison with other commonly
used semiconductors [14-16].

Natural

diamond

CVD

diamond
Si 4H-SiC GaN

Band gap (eV) 5.47 5.47 1.1 3.2 3.44

Electron mobility (cm2V-1s-1) 200-2800 4500 1450 900 440

Hole mobility (cm2V-1s-1) 1800-2100 3800 480 120 200

Electron saturation velocity (cm/s) 2 × 107 2 × 107 0.86 × 107 3 × 107 2.5 × 107

Hole saturation velocity (cm/s) 0.8 × 107 0.8 × 107 N/A N/A N/A

Electric breakdown field (MV/cm) 10 10 0.3 3 5
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at RT [26]. This revolutionary property enables the construction of the most funda-

mental building block of a quantum computer, a quantum bit or qubit in reality.

Furthermore, a single NV center when deexcited, emits a single photon, which is

utilized in diamond-based single-photon source for applications such as quantum

cryptography.

With so many unprecedented properties and applications, there is no wonder that

diamond is called “a 21st century material” [13]. However, its own unique properties

also present a number of challenges for device applications. Among them, the lack of

reliable n-type dopant for diamond severely restricts diamond device designs to

unipolar devices in which holes are the only available charge carrier. Even the p-type

dopants for diamond suffer from low activation at RT, leading to low conductivity.

Moreover, the extreme hardness and chemical inertness of diamond requires uncon-

ventional fabrication processes. A novel surface transfer doping scheme that relies on

charge exchange between surface dopants and semiconductor surface holds the

promise for overcoming some of these challenges. Chapter 6 is devoted to this subject.

1.3 Objective and scope of this investigation

Studying molecules on solid surfaces is one of the major topics in surface science. It

is central to many surface phenomena with applications in heterogeneous catalysis,

tribology, surface functionalization, material engineering, etc. [27]. Earlier studies

mainly focused on the adsorption and chemical reaction kinetics of simple inorganic

molecules (e.g. H2, O2, N2) on a wide range of solid surfaces including metals, metal

oxides and semiconductors. More recently, there is growing interest in the adsorption

of complex organic molecules on solid surfaces, particularly on metal [28] and group

IV semiconductor surfaces [29], in view of potential applications such as organic

electronics [30] and hybrid organic/inorganic devices [31]. This is because the inter-
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face between the active organic layer and inorganic substrate plays a crucial role in

device performance.

The study of organic molecules on diamond has received less attention as com-

pared to its silicon or germanium counterpart, but is important for both fundamental

surface science and practical applications. Diamond can be viewed as a “big organic

molecule” [32], but in the solid state. Studying its interactions with organic molecules

can help us to answer some fundamental and compelling questions such as how the

solid state effect influences chemical reactions. Furthermore, coupling organic

molecules to diamond surfaces allows versatile organic functionalities to be integrated

with diamond’s extraordinary material properties, which can be harnessed to design

and fabricate diamond-based molecular electronic devices.

This thesis aims to investigate the interactions between diamond surface and dif-

ferent organic molecules. I will focus on how these interactions alter the electronic

structures and electronic properties at the interface by synchrotron-based spectrosco-

pies. The synopsis of this thesis are:

1. To characterize the surface reconstructions, electronic structures and elec-

tronic properties of diamond (001) with different surface terminations (i.e.

bare and hydrogen-terminated); this serves as a starting point for subsequent

adsorption studies. (Chapter 3)

2. Investigating the cycloaddition reaction on bare diamond (001) with a model

alkene-containing organic molecule (1,3-butadiene), To clarify how the co-

valent attachment of organic molecules onto diamond alters its electronic

structures, energy level alignment, work function, electron affinity and sec-

ondary electron emission yield. (Chapter 4)
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3. To compare the interactions of hydrogenated and bare diamond surfaces with

a prototypical organic semiconductor molecule (copper phthalocyanine), and

to address how the interplays between molecule-substrate interactions and in-

termolecular interactions influence the supramolecular organizations and

molecular orientations. (Chapter 5)

4. To examine surface transfer doping of diamond by organic molecules which

provides a novel route for engineering p-type surface conductivity of di-

amond. Spectroscopic insights of the charge transfer process at the interface

between hydrogenated diamond and several carefully selected molecular ac-

ceptors with varying electron-accepting capabilities are addressed. The

correlation between doping efficiency and molecular electron affinity is dis-

cussed. (Chapter 6)

The diamond sample used in this study is a single crystal diamond with (001)

orientation grown by the CVD technique. The (110) and (111) orientational sample

are not the subject of the present study, because diamond (001) is the most easily

grown crystallographic face by CVD with high quality and also the most technologi-

cally important single crystalline diamond surface.

This thesis emphasizes the electronic structures and energy level alignment at di-

amond/organic interfaces, therefore synchrotron based spectroscopies (i.e.

photoemission spectroscopy and X-ray absorption spectroscopy), which provide

complete information on the occupied and unoccupied electronic states, are employed

throughout. The working principles and instrumentations of these techniques, along

with the experimental stations where this study was carried out, are introduced in the

next chapter.



11

CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Principles of experimental techniques

2.1.1 Scanning tunneling microscopy

Scanning tunneling microscopy (STM) is a powerful technique for studying surface

structures with atomic resolution. It is also capable of manipulating a single atom or

molecule on a surface. In 1981, G. Binnig, H. Rohrer et al at the IBM Zurich Re-

search Laboratory invented the first STM system [33], the advent of which brings on

the era of nanoscience and nanotechnology.

The general principle underlying the operation of a STM is the quantum mechan-

ical tunneling effect. A voltage is applied between a sharp tip (e.g. tungsten) and a

conductive surface. Tunneling of the electrons through the vacuum barrier between

the tip and surface occurs when the tip is extreme close to the surface (~ 1 nm) yet not

touching. The tunneling current through the vacuum barrier can be expressed as:

exp( 2 )I V kd  (2.1)

where V is the voltage between the tip and the surface, d the distance between the tip

and the surface. The parameter k is
 


Em 2
, where  is the average work

function (WF) and E the energy of state with respect to the Fermi level. The average

WF can be calculated from the WF of the tip and the surface. From Eqn. (2.1), it is

easily seen that the tunneling current is extremely sensitive to the distance d. If the

distance is decreased by 0.1 nm, the tunneling current will be increased by approx-

imately one order of magnitude.

By scanning the tip over the surface while keeping the tunneling current constant

by means of a feedback loop, one can obtain a three-dimensional image of the surface
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corrugation by monitoring the vertical position of the tip as a function of the lateral

position. This imaging mode is referred as constant current mode. STM also can work

under constant height mode. During the scanning process, the vertical position of the

tip is kept constant and the topography of the surface is acquired through monitoring

changes in the tunneling current. When STM is working in constant height mode, the

surface must be quite flat with roughness smaller than 1 nm to avoid crashing the tip

into surface protrusions.

STM is capable of atomic level resolution: ~ 0.1 nm in the direction parallel to

the surface and ~ 0.01 nm in the direction perpendicular to the surface. Moreover,

when combined with scanning tunneling spectroscopy (STS), information on the

electronic structure of the surface, such as the density of states (DOS) of both occu-

pied and unoccupied levels, local charge density and band gap etc., can also be

obtained by STM.

2.1.2 Low energy electron diffraction

In contrast to STM which probes the local surface structures within a small area (from

several tenths of nm2 to thousands of nm2), the low energy electron diffraction

(LEED) technique reveals a long-range order in surface structures. The LEED elec-

tron gun emits a beam of electrons with a well-defined low energy (typically in the

range 20 - 200 eV) incident normally on the sample. The sample itself must have a

well-ordered surface structure in order to generate a back-scattered electron diffrac-

tion pattern. A typical LEED experimental set-up is sketched below.
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The backscattered electrons from the sample surface first encounter the meshes

which impose a series of retarding potentials to filter out inelastically scattered

electrons before falling on the fluorescent screen. The electron diffraction pattern

follows the Bragg diffraction condition:

sina n  (2.2)

where a is the surface lattice parameter, θ is the angle between surface normal and the

direction of reflected electron beams, and n is a integer. λ is the wave length of

electrons which is related to the pre-defined incident electron energy E,

2

h h

p mE
   (2.3)

Figure 2.1. Above: Schematic set-up of a LEED experiment. Below: a LEED optics assembly
produced by Omicron (picture courtesy of Omicron).
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In this way, the position of a diffraction pattern on the screen is explicitly related to

the 2-D surface lattice structure. In fact, the observed LEED pattern directly reflects

the reciprocal lattice of a surface structure.

Figure 2.2 shows a typical LEED pattern observed on the (100) surface of a FCC

single crystal covered with a c(2×2) overlayer. By analyzing the observed LEED

pattern, we can obtain qualitative information on the relative size, symmetry and

rotational alignment of the adsorbate superstructures with respect to the substrate unit

cell. Moreover, by recording the intensities of various diffraction spots as a function

of the incident electron beam energy to generate the so-called I-V profiles and com-

paring them with theoretical multiple scattering calculations, we can quantitatively

evaluate surface atom positions, interlayer spacings and other important structural

information [34].

Figure 2.2. Left: A schematic representation of (100) surface of a FCC single crystal covered
with an overlayer with c(2×2) superstructure. (a1, a2) and (b1, b2) are the surface lattice
vectors of the substrate and the adsorbate overlayer, respectively. Right: corresponding
diffraction pattern observed in LEED. (a1*, a2*) and (b1*, b2*) are the reciprocal lattices.
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2.1.3 Photoemission spectroscopy

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy [35],

refers to kinetic energy (KE) measurement of electrons emitted from solids, gases or

liquids by the photoexcitation at a specific photon energy, in order to determine the

binding energies (BEs) of electrons in a substance. The fundamental principle

underlying PES is the well-known photoelectric effect, contributed by Albert Einstein

[36]. It describes the phenomenon that when a photon with a specific energy (hv) is

incident on a material, the electrons in the materials that occupy a certain initial

energy state (Ei) can absorb the photon and escape from the material to vacuum as

photoelectrons with a certain KE (E'k). Defining the energy difference between the

initial energy state of electrons and the Fermi energy as electron binding energy (Eb),

or more precisely the energy difference of total energies between the final state

(excited state, N-1 electrons) and the initial state (ground state, N electrons), the

relationship between BE and the KE of emitted photoelectrons can be expressed

according to energy conservation as,

'b k sE h E    (2.4)

where s is the WF of the sample.

Several models have been proposed to theoretically treat the photoemission

process. Among them, a phenomenological description that splits the process into

three separate steps is the most commonly used model to understand the complex

photoemission process. In this three step model developed by Berglund and Spicer

[37], optical excitation between two Bloch states, transport of the excited electron to

the surface and escape of the electron from the surface to the vacuum are treated

separately (Figure 2.3). As a result, the total photoemission intensity is then given by

the product of the three independent probabilities associated with each step. Among
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them, the optical excitation of an electron is described by the Fermi Golden rule

transition probability [38], which is dependent on
2

,, kiHkf where ki, and

kf , are states with negligible change in wavevector k. The perturbation operator

H , is :  AppA
m

e
H 

2
where A is the vector potential of the incident light and

p the momentum operator. Therefore, by measuring the energy distribution of the

photoelectrons at fixed photon energy, the features of the occupied DOS weighted by

the matrix element are reproduced in PES. In addition to the three-step description of

the PES process, a more recent one-step process [39] which considers the excitation

from a one-electron Bloch wave state into a damped final state near the surface has

been widely accepted as an efficient model for photoemission related calculations.

The typical experimental set-up for PES measurements is schematically shown in

Figure 2.4. The main components of a PES system is a photon source which emits

photons at a specific energy, an electron energy analyzer (spectrometer) which is

s

Figure 2.3. Illustration of three-step model in photoemission process: (i) photoexcitation of a
electron from an initial state to a final state; (ii) transport of excited electrons to the surface;
(iii) escape from surface to the vacuum.
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aligned in a proper direction facing the sample surface and measures the KE of

emitted electrons, and a data collection system which records the measured electron

KE as well as photoelectron intensity simultaneously. The measurement system is

encapsulated in an ultra high vacuum (UHV) system to minimize the inelastic scatter-

ing of photoelectrons by gas molecules. The sample used in PES measurements can

be any solid as long as it has enough conductivity to avoid charge accumulation on

the surface. The photoelectron spectrum, or energy distribution curve (EDC), is

obtained by sweeping a range of KEs with the electron analyzer and keeping the

photon energy constant. It should be noted that the KE measured by the spectrometer

(Ek) is not directly equal to the KE of photoelectrons (E'k) in most cases due to the

WF difference between that of the spectrometer ( a ) and that of the sample ( s ), and

Eqn. (2.4) is then rewritten as:

b k aE h E    (2.5)

This eliminates the need of prior knowledge of the sample WF, and facilitates a direct

comparison of the BE of a specific element between different samples.

Figure 2.4. A typical experimental set-up for PES measurements. Shown at the right is the
energy level alignment between sample and the electron energy analyzer assuming sample
and analyzer are in good electric contact so their Fermi energies coincide with each other
[40].
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According to the photon energy of the exciting radiation source, PES can be di-

vided into two categories, namely ultraviolet photoelectron spectroscopy (UPS) and

X-ray photoelectron spectroscopy (XPS) as shown in Figure 2.5. They have different

applications in the characterization of materials. Laboratory-based UPS utilizes a

vacuum UV radiation source (hv = 10 ~ 100 eV) which is normally a noble gas

discharge lamp, such as a helium discharge lamp emitting He-I radiation at 21.2 eV or

He-II radiation at 40.8 eV. Because of the relatively low photon energy of UPS, it is

only capable of ionizing valence electrons from the outermost levels of the atom.

Therefore, UPS is sometimes referred as valence band spectroscopy as well. One

advantage of UPS is it can offer ultrahigh resolving resolution (several meV) owing to

the very narrow line width of the radiation light. Because UPS is optimized to probe

the valence electron states, by doing a detailed angle resolved study (ARUPS), the

complete valence band structures in the k-space can be mapped out. Another major

application of UPS is to study the bonding orbitals of molecules either absorbed on

solid surfaces or condensed as molecular solids. By sweeping the energy region close

to the Fermi level, various frontier molecular bonding orbitals including the highest

occupied molecular orbital (HOMO) can be resolved.
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UPS is also often used to measure the sample WF ( s ) for metals or ionization

potential (IP) for semiconductors by measuring the spectral width (W). As shown in

Figure 2.5, the spectral width W is defined as the energy distance between the cut-off

position of the secondary electron emission in the low KE region and the Fermi

energy position. For materials other than metals, there is no DOS at the Fermi energy,

and the upper edge of the spectra width is then replaced by the spectral feature that

has the highest KE (i.e. valence band maximum or HOMO edge). It is straightforward

to obtain the sample work function as s h W   for metals. For semiconductors this

gives the IP instead. It should be noted that when the sample WF is smaller than that

of the spectrometer ( s < a ), the low KE photoelectrons with energies just above the

vacuum level (VL) of sample cannot be detected by the electron analyzer (see Figure

2.4), and the spectral width measured by analyzer is underestimated, leading to

s

Figure 2.5. Schematic diagram of XPS and UPS. The spectra shown on the right side shows a
typical valence band density of states (DOS) and it corresponding UPS spectrum.
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incorrect value of sample WF or IP. In order for these low KE electrons to overcome

the WF of analyzer, a small negative bias (U ~ 3-10 eV) is usually applied to the

sample, which shifts the measured spectrum to higher kinetic energies. The WF or IP

measured in this way represents the intrinsic properties of samples, eliminating the

influence of the spectrometer.

Owing to the higher photon energy of X-rays, XPS can excite the core-level elec-

trons residing in much deeper energy states than those in valence bands. Because the

BEs of core-level electrons are usually element specific, each element gives rise to a

characteristic set of peaks with specific BE in the XPS spectrum (e.g. 1s, 2s, 2p …).

Therefore, XPS can provide information on the chemical composition of the studied

materials by examining the presence of characteristic peaks associated with different

elements. Furthermore, the intensity of the peaks is related to the concentration of the

element within the sampled region. Thus, the technique provides a quantitative

analysis of the surface composition and is so sometimes referred as Electron Spec-

troscopy for Chemical Analysis (ESCA). XPS can also distinguish between different

chemical states (or valence states) of a specific element. The local chemical (e.g.

number of valence electrons) or physical environment (i.e. crystal symmetry) around

the excited atom can alter the BE of its core-level electrons, and is represented in XPS

spectrum as a BE shift, termed the “chemical shift”. For example, oxidized atoms

which lose their valence electrons lead to higher BE of core-level electrons, while

adding electrons to the valence orbital lowers the core-level BE. This ability to

discriminate between different oxidation states and chemical environments is one of

the major strengths of the XPS technique. In principle, XPS can also excite electrons

from the valence bands, but the photoionziation cross section of valence band elec-
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trons at XPS photon energy is much lower than that in UPS, making it less suitable

for probing the valence band information of studied materials.

The most commonly employed commercial Lab-based X-ray sources in XPS ex-

periments are the Mg Kα radiation (hν = 1253.6 eV) as well as the Al Kα radiation (hν

= 1486.6 eV). However, they suffer from an inherent low energy resolution due to

large line width of X-ray source. The last several decades have witnessed a rapid

development in synchrotron radiation facilities, producing synchrotron radiation with

high brilliance, high energy resolution and wide energy range. In particular, the

tunable photon energy of synchrotron radiation source enables much improved

flexibility in PES measurements. For example, one can greatly enhance the cross

section for a specific energy level of an element by intentionally choosing a photon

energy close the BE.

One of the many advantages of PES is its surface sensitivity. As described in the

three-step model, an electron excited by absorbing a photon must travel to the surface

before escaping the solid surface. During the transport, the electron may lose its

energy due to inelastic scatterings. The inelastic scattering process is very complex

Figure 2.6. The typical inelastic mean free path of an electron as a function of its KE [35].
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and determined by many different mechanisms. At low kinetic energies, photoelec-

trons have insufficient energy to initiate scattering processes, and at high energies, the

cross section of scattering events is low. The escape depth of the electron, or the so-

called inelastic mean free path (IMFP) varies with its KE as shown in Figure 2.6, and

is extremely short (of the order of a few angstroms) when the KE of the electron is

just in the range 50-200 eV. Thus, photoemission spectra reflect the electronic and

chemical properties of the top few atomic layers rather than those in the bulk. In

addition, the surface sensitivity of the photoemission measurement can be further

enhanced by a proper choice of parameters such as the photoelectron emission angle.

These advantages have made PES an exceptionally important and powerful tool in the

surface and interface analysis.

2.1.4 Near edge X-ray absorption fine structure

While PES offers an experimental approach to the occupied electron states, NEXAFS

(near edge X-ray absorption fine structure) also named XANES (X-ray absorption

near edge spectroscopy) is another widely used surface characterization technique that

probes the unoccupied electronic states [41]. The fundamental principle underlying

NEXAFS is similar to the photoemission process, in which an electron residing in the

core-level of an atom (initial state) absorbs an incoming photon and is excited into an

unoccupied final energy state. But unlike the extended, free electron final state of the

emitted photoelectrons, the final state of the excited electron in NEXAFS is a bound

state. For an electron in a core level of an atom, a specific amount of energy is re-

quired to excite this electron to the unoccupied states near the Fermi level. In a simple

picture, when the incident X-ray photon energy just reaches the energy gap between

the core-level and the unoccupied state, the absorption of X-ray photons is significant-

ly enhanced due to the emergence of the corresponding excitation channel. However,
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the absorption will slowly decrease if the energy of the incident X-ray photon increas-

es further. It is reasonable to expect that absorption thresholds vary for different

chemical elements. Thus, X-ray absorption can also be used to detect elemental

composition.

In fact, the absorption of X-rays is more complicated than the simple picture out-

lined above. A real X-ray absorption spectrum is measured by sweeping the incident

photon energy (Figure 2.7). The structure close to the absorption edge (10 - 50 eV) is

known as the NEXAFS region. The structures located at higher photon energies (50 -

1000 eV above absorption edge) are the extended X-ray absorption fine structure

(EXAFS) that exhibits weak oscillations due to interference between back-scattered

electron waves with forward-propagating electron waves. We focus on NEXAFS

region in this study.

In NEXAFS, an electron is excited from the occupied state, the core level, to the

discrete unoccupied state by an X-ray photon. The density of the unoccupied states

dominates the measured spectrum. Moreover, the nature of the unoccupied state (e.g.

symmetry) also has a very important effect on the intensity of the transition through

the transition probability between these two states. In molecules, the relative direction

between the transition dipole moment of various chemical bonds (π* and σ*) and light 

polarization has a strong influence on the intensities of related resonant transitions.

Therefore, by performing angular-dependent NEXAFS measurements, the orientation

of absorbed molecules relative to the substrate can be determined [41].



Chapter 2 Experimental Techniques

24

In principle, NEXAFS may be measured directly by detecting the transmitted

radiation, according to the simple absorption relation:

0
zI I e   (2.6)

where μ is the absorption coefficient, and z is the sample thickness. However, the

necessity to prepare very thin samples makes this direct measurement approach

unrealistic for many samples. As shown in Figure 2.7, the electron in the excited state

created by photon absorption is unstable and will undergo certain decay processes to a

Figure 2.7. Schematic diagram of the X-ray absorption transition and the associated Auger
decay channel. Showing on the right is a typical XAS spectrum with distinguishable parts: the
low-energy NEXAFS region with discrete structure originating from core electron transitions
to unoccupied states (dotted lines shows the deconvolution fittings), the NEXAFS region with
multiple scattering processes in the continuum states (between E0 and Ec), and the EXAFS
region with single scattering processes at higher energies.
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state with lower energy. Auger decay is one of the most common decay processes:

after a valence electron falls into the core hole created by x-ray photon absorption, an

electron in another valence band state may be “kicked out” and its KE is independent

of the incident x-ray photon energy. An NEXAFS spectrum thus can be achieved by

measuring the flux of electrons from a particular Auger process as a function of

photon energy (Auger electron mode). Fluorescence is another process for core-hole

decay in which characteristic photons are emitted instead of electrons, but it occurs

with a much lower probability. NEXAFS with excellent signal to noise ratios are also

commonly achieved in so-called total electron yield (TEY) mode by detecting the

sample current or partial electron yield (PEY) mode by using an electron yield

detector.

The above techniques give yields proportional to the absorption coefficient.

However, the probing depth varies between different techniques. Transmission and

fluorescence modes have a large probing depth comparable to the X-ray penetration

depth, while the Auger electron mode and PEY are more surface sensitive (~ 1 nm).

The TEY signal is more bulk sensitive than AEY and PEY, but is still considered a

surface characterization technique. Finally, because NEXAFS measurements require

an intense and continuously tunable radiation source, they must be performed at a

synchrotron facility.

2.2 Sample preparation

2.2.1 CVD diamond (001)

The diamond sample used throughout the experiments is a 4 mm × 4 mm, 1 mm thick,

single crystal diamond grown epitaxially with (001) orientation on a High Pressure
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High Temperature (HPHT) synthetic type IIb1 single crystal diamond substrate. The

epitaxial layer with a thickness about 1 µm was grown by microwave plasma assisted

CVD (MPCVD) technique using 0.1% methane in hydrogen [4, 13]. To enhance the

film conductivity for the PES measurement, the CVD epitaxial layer is doped with

boron (1016 cm-3) by using diborane (B2H6) gas during the CVD process at a concen-

tration of 1 ppm relative to hydrogen.

2.2.2 Sample treatment-ex situ

Before experiments, the diamond sample is routinely cleaned and treated by acid and

hydrogen plasma. Metallic impurities are first dissolved in hot aqua regia

(HNO3:HCL = 1:3), followed by removing organic adsorbates from diamond sample

by hot “piranha” solution of 1H2SO4:3H2O2 for 10 minutes at 90 °C [42]. After acid

treatment, the sample is rinsed thoroughly in acetone solution to remove the acid.

After the sample dries, it is transferred to a microwave plasma chamber for hydrogen

plasma treatment. It is known that the hydrogen plasma treatment can etch away the

oxygen containing species left behind by acid and in the meantime makes the di-

amond surface atomically smooth with hydrogen-termination [43-45]. The hydrogen

plasma treatment (Figure 2.8) is performed at the microwave power of 1000 W, 30

torr hydrogen pressure, and 300 sccm of hydrogen gas flow with diamond heated

around 800-1000 °C (appearing red hot during treatment) for 10-15 minutes in a 2.45

GHz microwave plasma reactor (Astex). After sample temperature cools down to RT,

the diamond sample is taken out for the next step of experiments.

1 A type II b diamond contains very low or undetectable amount of nitrogen impurities so that the boron acceptors

are uncompensated and diamond behaves as a p-type semiconductor.
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2.2.3 Sample treatment-in situ

After the plasma treatment, the hydrogen termination of diamond surface protects it

from reacting with atmospheric species. The diamond sample is then clamped with Ta

foil on top of a diamond coated highly doped silicon substrate. Together they are

mounted on an Omicron direct-heating sample holder (upper left in Figure 2.9). When

annealing, the current will mainly pass through the underlying highly conductive

silicon (R ~ 1 - 2 ) to produce heat which anneals the diamond sample. The sample

is then transferred to our UHV (ultra-high vacuum) analysis chamber at the SINS

(acronym for Surface, Interface and Nanostructure Science) [46] beamline of SSLS

(Singapore Synchrotron Light Source) for further treatment. After pumping down to a

pressure of 10-9 mbar in the fast-entry load-lock system attached to the main chamber,

the sample is transferred to the sample stage of the manipulator inside the main

analyzing chamber with a base pressure of 1×10-10 mbar (right in Figure 2.9). Before

experiments, the sample is annealed by direct-heating at the current of 0.5 A (T ~

Figure 2.8. Left: microwave hydrogen plasma reactor. Right: diamond sample viewed
through one of the viewports during plasma treating.
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100 °C) for several hours or overnight to desorb water and other weakly adsorbed

contaminations. If required, the sample can be further annealed by direct-heating at

higher current with temperature as high as 1200 °C. The sample temperature is

monitored by two different methods. Below 400 °C, it is given by a thermocouple

attached to the back side the sample stage. It needs long time for the sample stage to

reach thermal equilibrium with the sample, and so the temperature reading is underes-

timated by around 50 °C. At higher temperatures, the silicon substrate becomes dim

red and the temperature is determined by an optical pyrometer that directly measures

the thermal radiation from silicon. This method is fast and accurate but limited to the

high temperature range.

2.2.4 Organic molecule adsorption and deposition

Depending on the type of organic molecules, two different approaches are adopted for

molecular adsorption or deposition on diamond. All chemicals are directly purchased

from chemical companies such as Sigma Aldrich with highest available purity. For

simple organic molecules in the form of compressed gas or liquid with high vapour

pressure (e.g. 1,3-butadinene), they are introduced into the UHV chamber as a vapour

through a precision leak valve without further purification. The dosing was usually

carried out at RT unless specified otherwise. During molecular dosing, the chamber

pressure is monitored by an ion gauge. The dosing pressures are normally in the range

of 10-8-10-6 Torr and are not corrected to account for the relative positions of the leak

valve with respect to the sample and ionization gauge. All dosages are expressed in

Langmuir (L), where 1 L = 1×10-6 Torr · s.
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A standard effusion cell (MBE Komponenten, Figure 2.10) is used to in-situ sub-

lime solid organic molecular sources (e.g. fullerene, copper phthalocyanine) which

are put into pre-degassed PBN or quartz crucibles. The diamond sample is directly

facing the effusion cell at a distance of around 20 cm, and is kept at RT during the

entire deposition process. The organic sublimation temperature varies with different

organic sources, and is usually in the range of 100 °C to 500 °C (c.f. Table 2.1).

Accurate temperature control is realized through a feedback loop, consisting of a

thermocouple inside the effusion cell and a power supply that controls the output

power of the heating elements. Upon loading into the effusion cell, the source is

thoroughly degassed around 100 °C overnight. Before actual deposition, the source

undergoes several heating-cooling cycles up to the sublimation temperature for further

Figure 2.9. Upper left: direct-heating sample plate with diamond sample mounted. Lower
left: rotational axis and translational axis of sample on sample stage. Right: key components
of the sample stage for sample handling in vacuum.
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purification. To avoid overheating the source which could lead to decomposition of

the molecules, the maximum output power is limited at slightly above the sublimation

power, and the temperature set-point in controller is increased stepwise in small

intervals until it reaches the desired sublimation temperature.

The nominal thickness of deposited organic films on diamond is estimated from

the attenuation of the PES intensity of diamond C 1s main line by assuming a near

layer-by-layer (Frank-van der Merve) growth mode for organic layers:

0( ) exp( )
cos

d
I d I

 
  (2.7)

where I0 is the initial C 1s intensity of pristine diamond, I(d) is the intensity after

deposition, d is the nominal thickness of organic films, and θ is the angle between

analyzer detecting direction and sample surface normal direction. λ (in nanometer) is

Figure 2.10. The effusion cell for solid organic molecular sources. In front are the crucibles
made from PBN and quartz (picture courtesy of MBE Komponenten).

Table 2.1. The sublimation temperature for organic molecule sources.

Molecules CuPc F4-TCNQ TCNQ C60 C60F48

Temperature 360 ~ 440 °C 100~150 °C 100~150 °C 350~450 °C 180~200 °C
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the IMFP of photoelectrons in organic films which depends on the KE of photoelec-

trons (Ekin in eV) and the density of organic films (ρ in g/cm-3) according to the

following empirical relation [47]:

2 1/ 2
kin kin(49 0.11 ) /E E   . (2.8)

2.3 Experimental system

2.3.1 Synchrotron radiation

Synchrotron radiation is an intense light source of electromagnetic radiation with

tunable photon energy. It utilizes the physical phenomenon that when charged par-

ticles (usually electrons) accelerated at velocities close to the speed of light are forced

to bend in their trajectories by strong magnetic fields, they emit extremely bright light

in a narrow cone in the forward direction tangent to the electron orbit. Synchrotron

radiation has numerous unique properties, such as high intensity and brilliance, wide

energy spectrum from infrared to hard X-rays, high polarization and very short pulse,

making it one of the most powerful scientific instruments with wide applications

spanning almost every scientific field. In particular, its wide energy spectrum enables

Figure 2.11. A schematic of synchrotron facility [48].
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us to continuously tune the wavelength of the photon beam to desired values, facilitat-

ing the PES and XAS measurements introduced above.

As shown in Figure 2.11, the central part of a synchrotron facility is the electron

storage ring, where electrons circulate for many hours. UHV is required to limit the

loss of electrons due to collisions with residual atoms or molecules in the ring. Along

the storage ring are the light emitting devices comprising of bending magnets or

undulators (Figure 2.12). To keep electrons traveling in closed trajectories around the

storage ring, a number of superconducting bending magnets are required to deflect the

trajectory of the electrons. Because of the defection, an electromagnetic wave is

generated and propagates. The bending magnet was the only emitting device in the

first and second generation synchrotron facilities.

To further boost the flux and brightness of synchrotron radiation, 3rd generation

synchrotrons use insertion devices known as undulators. An undulator is a periodic

magnet array inserted in a straight section of the storage ring. Each magnet slightly

deviates the moving electron and induces an oscillation of the electron in the plane

parallel to direction of motion of the electron. Compared to the bending magnet, the

undulator emission spectrum is quite sharp, emitting a narrow band around the

fundamental wavelength with several orders of magnitude higher flux.

Figure 2.12. Two common synchrotron light emitting devices: a bending magnet (left) and an
undulator (right) [49].
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2.3.2 Singapore Synchrotron Light Source

The Singapore Synchrotron Light Source (SSLS) is a second generation light source

comprising a compact 700 MeV superconducting storage ring (Helios 2) with 4.5 T

bending magnets to produce synchrotron radiation. The key parameters of the syn-

chrotron facility are listed in Table 2.2. The radiation spectrum extends from about 10

keV down to the far infrared at wavenumbers of less than 10 cm-1 .

Although the SSLS is smaller as compared to other major synchrotron facilities

in the world in terms of dimensions and beam energy, it has developed a broad scope

of research activities ranging from materials characterization, micro/nanofabrication,

environmental sciences, to archaeology and even forensic science. Till now, five

beamlines have been built and running in SSLS, with several new beamlines proposed

in the coming years. The five existing beamlines (Figure 2.13) include XDD beamline

Table 2.2. Key parameters of Helios 2 [50].

Parameter Unit Value

Electron Energy MeV 700

Magnetic Field T 4.5

Charateristic photon energy keV 1.47

Charateristic photon wavelength nm 0.845

Current (typical) mA 500

Circumference m 10.8

Lifetime h >10

Emittance µmrad 1.37

Source diameter horizontal mm 1.45-0.58

Source diameter vertical mm 0.33-0.38

Number of beam ports 20 + 1

Horizontal angular aperture of port mrad 60
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for X-ray diffraction and XAS, ISMI beamline for infrared spectroscopy, LiMiNT

beamline for X-ray deep lithography and LIGA process, PCI beamline for phase

contrast image, and finally SINS for surface and interface studies with soft X-ray

spectroscopies [51]. As this thesis work has been mainly carried out at the end station

of the SINS beamline, it will be introduced in more detail.

2.3.3 SINS beamline and end-station

The SINS beamline provides synchrotron radiation in the range of 50 eV to 1200 eV

for surface science experiments [46]. It is a typical dragon-type beamline (Figure

2.14) with a monochromator comprising four interchangeable spherical gratings

delivering tunable monochromatized photons in the range of 50-110 eV, 110-220 eV,

220-440 eV and 440-1200 eV respectively. Three mirrors are used for beam focusing:

two sit before the monochromator and decouple the focusing action into the horizontal

and vertical directions, while a re-focusing mirror (RFM) behind the monochromator

allows for small focusing adjustments at the experimental end-station. Two slits

(entrance and exit slits) along the beamline provide control over the photon flux and

Figure 2.13. Schematic layout for the storage ring and beamlines of SSLS [50].
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energy resolution. The radiation intensity of monochromatized light I0 is determined

by a Keithley which measures the photocurrent at the gold-coated RFM. The beam-

line has an energy resolving power better than 2000 with a photon flux of about 1010

photons/s/100 mA delivered into a spot size of 1.5 × 0.2 mm2 (FWHM). By adjusting

the polarization aperture and vertical position of the vertical focusing mirror, the

polarization of light can be tuned from linear polarization (parallel to incident plane)

to circular polarization (both left and right helicity).

The beamline has a fixed end-station consisting of an analytical chamber and a

preparation chamber (Figure 2.15). The two chambers are interconnected through a

gate valve and are pumped separately by turbo-molecular pumps, ion pumps and

sublimation pumps. The base chamber pressure after the baking out is better than 2.0

× 10-10 mbar. The end-station is equipped with a number of surface analytical instru-

ments that include an ion sputtering gun to clean the sample, LEED optics, twin anode

(Mg, Al) standard x-ray source (as back-up), Omicron STM/AFM, an Omicron

hemisphere energy analyzer with 7 channeltron electron multipliers for angular-

resolved photoemission. A sputtered clean gold foil in electric contact with the sample

is used to calibrate the photon energy. BE of all PES spectra are thus referenced to the

Figure 2.14. Schematic layout of the SINS beamline [50].
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Fermi level of the gold foil. The end-station also has in-situ material deposition

capabilities with two e-beam evaporators for molecular beam epitaxy (MBE) of

metals (Co, Fe, Ni, etc.), and several standard effusion cells (MBE Komponenten) for

the growth of organic materials. A transfer system with fast-entry load lock is in-

stalled in order to change samples without breaking the UHV condition. Another long

transfer arm allows the transfer of samples between the two end-station chambers.

Sample annealing can be achieved by direct heating as well as resistive heating using

heating filaments. The end-station has the capability to perform several synchrotron-

based spectroscopy measurements including angular-resolved PES, NEXAFS, XPD

(X-ray photoelectron diffraction), XMCD (X-ray magnetic circular dichroism). The

overall energy resolution for PES is better than 100 meV at a 5 eV analyzer pass

energy, and for NEXAFS is better than 300 meV.
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Figure 2.15. A schematic drawing (upper panel), and photograph (lower) of the end-station of
SINS beamline.
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CHAPTER 3

DIAMOND (001) SURFACE:
STRUCTURES AND PROPERTIES

3.1 Introduction

Surfaces are sometimes referred as the largest defects in real materials. The transition

from bulk material to vacuum, gas, liquid overlayers or other adsorbates inevitably

introduces dangling bonds, broken symmetry, impurity-atom termination, atomic

reconstruction or surface dipoles, which lead eventually to surface or interface states.

For semiconductors, these surface or interface states define the remarkable electronic

and structural properties of semiconductor surfaces, which are closely related to the

properties of semiconductor electronic devices. As a result, semiconductor surface

and interface science has become a fascinating field of research for both experiment

and theory.

A remarkable property of a semiconductor is its surface reconstruction (i.e. atom-

ic rearrangement of surface atoms), by which the ideally truncated semiconductor

surfaces reduces the density of dangling bonds and therefore its total surface energy

[52-53]. The surface adsorbates or overlayers can further lower the total surface

energy by forming chemical bonds with the remaining dangling bonds of semiconduc-

tor surface atoms.

Figure 3.1 shows the ball-and-stick models of the ideally terminated C (001) sur-

face, as well as the reconstructed bare and hydrogenated C (001) surfaces. On the

ideally-truncated diamond (001), each surface atom exhibits two dangling bonds as

illustrated in Figure 3.1a. As with surfaces of other IV-group semiconductor such as

Si(001) and Ge(001), the surface atoms of diamond (001) in neighboring rows pair up

to form C=C dimers in a 2×1 reconstruction symmetry as shown in Figure 3.1b [54-
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55]. The dimers on diamond are untilted and symmetric [55], in contrast to the tilted

dimers on silicon and germanium surfaces [53]. The formation of dimers on diamond

(001) reduces the number of dangling bonds by a factor of two and thus effectively

lowers the electronic surface energy. By bonding hydrogen atoms to the bare surface,

the double bonds of dimers are saturated and thus the surface electronic energy is

further lowered. The resulting monohydrogenated diamond (001) surface (Figure 3.1c)

has the same 2×1 reconstruction symmetry as the bare surface, but is relatively inert

and stable due to the elimination of surface dangling bonds. The introduction of

hydrogen as an impurity-atom termination on diamond (001) not only alters the

surface structures, but also brings about several unique electronic properties including

true NEA and p-type surface conductivity, which will be discussed in the following

sections.
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Figure 3.1. Perspective views of the atomic geometries for (a) the ideally-truncated, (b) the
2×1 reconstructured bare and (c) hydrogenated diamond (001) surfaces.
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3.1.1 Band bending

Band bending is a common phenomenon at semiconductor surfaces and interfaces. It

refers to the gradual changes in the electron energy levels from the surface/interface

region to the bulk interior. Band bending arises from the spatially extended space-

charge layers due to charge transfer at surfaces or interfaces. The width of band bend

region is usually large, which is a result of the large screening lengths of semiconduc-

tors (due to low densities of free charge carriers). Band bending also occurs on

diamond surfaces (bare and hydrogenated), and they are technologically important to

diamond based device applications that exploit diamond surface properties.

In general, the band bending mechanism can be understood as the following: for

n-type (p-type) semiconductors, the bulk Fermi energy (EF) is largely determined by

the bulk doping level. However, the surface electronic states, which are inherently

related to the surface reconstruction and geometry, are fixed within the band gap. As a

result, the surface Fermi energy ( sur
FE ) is also pinned at a relatively stable position

above the valence band maximum (VBM) irrespective of whether the samples are p-

type or n-type doped. Such pinning of the Fermi level at the surface causes sur
FE and

the bulk Fermi level EF to not typically coincide, facilitating electron transfer between

bulk dopant and surface states. The resulting charge residing at the surface states is

compensated by an equal amount of charge with opposite sign forming in a certain

extended depth into the semiconductor interior. At the same time, the electric field

created by the charge build-up alters the energy band from surface to bulk. The

mechanisms are illustrated more clearly in Figure 3.2 and Figure 3.3.
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sur
FE

sur
FE

Figure 3.2. Schematic of the mechanism for band bending in a typical n-type semiconductor.
(a) Bulk Fermi level EF is far above surface Fermi level, favoring electron transfer from
neutral donor impurities (D0) to unoccupied surface states (S0). (b) During charge transfer, an
electric field is thus created between the negatively charged surface states (S-) and ionized
donor states (D+), which bends the energy bands upward toward the surface. This process
ends after equilibrium is reached where the bulk and surface Fermi levels are aligned.

sur
FE

sur
FE

Figure 3.3. Schematic of the mechanism for band bending in a typical p-type semiconductor.
(a) Bulk Fermi level EF is far below surface Fermi level, favoring electron transfer from
neutral occupied surface states (S0) into neutral acceptor impurities (A0). (b) During charge
transfer, an electric field is thus created between the positively charged surface states (S+) and
negatively charged acceptor states (A-), which bends the energy bands downward toward the
surface. This process ends after equilibrium is reached where the bulk and surface Fermi
levels are aligned.
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In the above-mentioned n-type and p-type semiconductors, the band bending dep-

letes the majority carriers. The exact position of EF at the surface within the bands of

surface states, the amount of band bending and the depth of the space charge layer is

determined by charge neutrality and Poisson’s equation [52]. As described in

CHAPTER 2, the diamond sample used in this study is boron-doped (p-type). There-

fore, the expected band bending should be downward towards the surface as depicted

in Figure 3.3.

3.2 Hydrogenated diamond C(001)-2×1:H surface

3.2.1 Surface reconstruction

The monohydrogenated diamond C (001)-2×1:H surface is prepared by hydrogen

plasma treating in a microwave reactor as described in Chapter 2. Alternative surface

treatments for hydrogenated diamond surface include in-situ exposure of the surface

to atomic hydrogen produced by a hot tungsten filament as well as by acid etching;

however, the surface order and smoothness are not as good as in hydrogen plasma

treating. The atomic arrangement of the hydrogenated (001)-2×1:H diamond surface

is shown in Figure 3.4a, where the top view can better illustrate the 2×1 reconstruc-

tion symmetry. In general, the monohydride diamond dimers are symmetric,

analogous to its counterparts of monohydride Si and Ge (001) surface dimers. The

bond length of the hydrogenated C–C dimer is 1.60±0.05 Å as determined by I-V

LEED [56], as well as by theoretical calculations (1.61 Å) [55, 57], which is slightly

larger than a single C–C bond in a hydrocarbon molecule (e.g. d(C–C) = 1.55 Å). The

relaxed C–H bond length is determined to be 1.11 Å, with the angle between C–H

bond and surface normal at 24.5º [55, 57].
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The 2×1 reconstruction is formed by paring of adjacent rows of surface atoms;

therefore the periodicity is doubled either along the [110] or [1̄10] direction depend-

ing on which surface layer they belong to, and the dimer rows run along [1̄10] or [110]

accordingly as schematically shown in Figure 3.4b with different color shadings.

These two 2×1 domains are therefore rotated by 90º from each other and separated by

monoatomic step of height a/4 (a is the lattice constant of diamond). Since the domain

Figure 3.4. (a) Side view of atomic arrangement of the monohydrogenated diamond (001)-
2×1:H surface. The colored circles with different size represent hydrogen atoms and carbon
atoms belonging to the top four surface layers. The dimer bonds are represented by thick blue
sticks. (b) Top view of a two-domain 2×1 reconstructed surface containing a monoatomic step.
The domain labeled I and II represent the upper and lower terrace, respectively. The dimer
rows in each domain are highlighted by colored shadings. The dashed line schematically
indicates the domain boundary. The surface lattice meshes in each domain are indicated by a
rectangular with dotted border.
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sizes are usually much smaller than the LEED probing area, both orthogonally

oriented 2×1 domains can be observed in the diffraction patterns as shown by the (0,

1/2) and (1/2, 0) LEED spots with similar intensities (Figure 3.5). It should be noted

that the absence of the (1/2, 1/2) spots explicitly distinguishes it from a 2×2 recon-

structured surface.

The hydrogenated diamond (001)-2×1 surface is most clearly visualized by the

STM in Figure 3.6. The bright lines correspond to the CH–CH dimer rows. The

existence of two different surface domains (terraces) separated by a monoatomic step

is demonstrated by the dimer rows running in orthogonal directions. The distance

Figure 3.5. LEED pattern (upper panel) and its schematic representation of the hydrogenated
C(001)-2×1:H diamond surface (electron beam energy 165 eV). The dashed rectangular boxes
represent the reciprocal lattices of the two orthogonally oriented 2×1 domains.
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between the bright lines roughly corresponds to the expected inter-row distance (5.04

Å) of the surface dimers. However, due to limits to resolution, individual dimers in

the dimer rows cannot be resolved. Defects structures, such as the missing row

marked by the white arrow in Figure 3.6, are also commonly observed. The bright

features (as marked by blue arrows) which are most often observed at the step edges

might be due to dangling bonds caused by local hydrogen desorption [58].

3.2.2 Electronic structures

3.2.2.1 PES of hydrogenated diamond surface: surface core-levels and valence band
structures

Surface reconstruction not only alters the surface atomic arrangement, but it also

influences the electronic structures of the surface atoms, making them remarkably

different from those of corresponding bulk atoms. Hence, the surface atoms of semi-

conductors often exhibit surface-induced shifts of core-level BE as well as the

appearance of surface states within the bulk band gaps. Therefore, the study of surface

electronic structures can provide valuable information about the structure and bonding

Figure 3.6. STM topographies of the hydrogenated diamond C(001)-2×1:H surface (Ubias =
1.5 V, It = 1.0 nA). The scale bar indicates the length of 4 nm.
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Figure 3.8 shows the C 1s core-level PES spectra of hydrogenated diamond (001).

The spectra components are fitted with the sum of Gaussian and Lorentzian line

shapes (pseudo-Voigt functions) with Shirley background removed. The fitting results

are summarized in Table 3.1. The high surface sensitivity of PES spectra was

achieved by selecting a photon energy of 350 eV, which yields C 1s photoelectrons at

kinetic energy of about 65 eV with a short electron IMFP well below 10 Å. The upper

two spectra in Figure 3.8 show the C 1s core-level spectra of diamond (001) as-

prepared after hydrogen plasma treatment. In addition to the main bulk C 1s peak

(labeled B) at 284.30 eV, a component (labeled S) shifted by 0.9 eV towards higher
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Figure 3.8. C 1s core-level spectra of a hydrogenated diamond (001) surface (hν = 350 eV).
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sensitive). Bottom: annealed at 400~600 ºC in vacuum. Solid lines through experimental
points demonstrate the result of least-square fitting.
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BE is clearly distinguishable. By comparing the spectra at different electron emission

angles, it is evident that the S component relative to the total C 1s emission intensity

increases as the emission angle (θ) changes from normal emission (bulk sensitive) to

grazing emission (surface sensitive) (c.f. Table 3.1), which clearly confirms that this

additional component stems from the diamond surface. This surface component is

attributed to adsorbed hydrocarbons which are the by-products from hydrogen plasma

treatment [59]. These hydrocarbons are only weakly adsorbed on the diamond surface,

as in-situ mild annealing at 400~600 ºC is enough to remove these adsorbates, leaving

the C 1s bulk component B only (Figure 3.8c). It should be noted that although the

chemical environment of dimer carbon atoms bonded with hydrogen is slightly

different from that of subsurface bulk carbon atoms, they are essentially indistin-

guishable in the C 1s spectra due to their small BE difference (< 0.1 eV) [59].

Valence band structures of hydrogenated diamond surface after mild annealing

are probed by PES recorded with a photon energy in the ultraviolet energy range ( hν

= 60 eV ), as shown in Figure 3.9. Theoretical calculations of bulk diamond band

structures predict four occupied valence bands with different atomic-like characters

[6]. To distinguish the different atomic-like characters in the valence bands, Figure

Table 3.1. Summary of the C 1s core-level fitting analysis for the diamond (001) with
different surface conditions. θ refers to the photoelectron emission angle relative to the
surface normal, EB to the BE of each component, FWHM to the width of the component
line-shape, L/G to the Lorentzian- Gaussian mixing ratio of the fitted line-shape, and area
ratio to the relative contribution of each component to the total emission intensity.

(001) surface Emission
angle θ

Component EB

(± 0.05 eV)

FWHM L/G
(%)

Area
ratio (%)

as-prepared
hydrogenated

0º
Bulk B 284.30 0.61 27 75

Surface S 285.20 0.94 10 25

50º
Bulk B 284.30 0.61 33 66

Surface S 285.20 0.96 10 34
ann. at 400~600 ºC
hydrogenated

0º Bulk B 284.30 0.72 22 100

ann. at 1050 ºC
bare

0º
Bulk B 284.90 0.77 14 69

Surface SD 283.95 0.84 14 31
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3.9 is divided into different regions accordingly. The top two bands that extend to 11

eV below Fermi level (region I) have mostly p-character, and the lowest band after 15

eV in region III has mostly s-character, leaving a band of mixed sp character in region

II between 11 eV to 15 eV with a sharp peak centered around 13.2 eV (labeled sp in

spectra) reflecting the sp3 bonding nature of bulk diamond lattice. Although there

should be CH-CH dimer related occupied surface states as predicted by a number of

theoretical calculations [55, 57], they actually reside within the valence band, and

therefore are difficult to resolve in the valence band spectrum due to strong overlap-

ping with the bulk valence bands of diamond [60].

The determination of the position of the valence band maximum (VBM) relative

to the Fermi level can provide important information about the semiconductor elec-

tronic properties, such as degree of band bending, ionization potential (IP) and

electron affinity (EA). Although the VBM is not directly visible in the valence band

spectra, its separation from experimentally accessible spectral features such as the C
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Figure 3.9. Valence band spectra of hydrogenated diamond (001)-2×1:H surface recorded
with photon energy of 60 eV at normal emission angle. Different grey shading regions
represent different atomic-like character of valence band structures.
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1s core-level line (Figure 3.8) and the sp peak in the valence band spectrum (Figure

3.9) are constant and thus can be used to infer its energy position. The energy differ-

ence of the VBM from the C 1s core-level (EB = 284.30 eV) and sp peak (EB = 13.2

eV) were previously determined by an independent calibration experiment to be 283.9

± 0.1 eV and 12.8 ± 0.1 eV respectively [61]. The VBM is thus determined to be 0.4

± 0.1 eV below the Fermi level (EF) in the surface region. It is known that boron

forms an acceptor level in diamond with an ionization energy of EA = 0.36 eV. By

requiring charge neutrality, the bulk Fermi level EF was calculated by Bandis and

Diederich at 0.30 eV above the VBM (EVBM) for B doping level of 1016 cm-3 [62-63].

By comparison with the value of EF – EVBM as determined above, the band bending

(φBB) value of hydrogenated diamond (001) should be within 0.1 eV. Such a small

band banding is consistent with the model in Figure 3.3, since the surface states of

hydrogenated diamond lie within the bulk valence band and therefore electron transfer

from occupied surface states to boron acceptors level (EA) is not favored.

3.2.2.2 Negative electron affinity and energy level diagram

One remarkable property of diamond is its NEA when its surface is terminated by

hydrogen. The EA in a material is defined as the energy difference between the

vacuum level (VL) and conduction band minimum (CBM). For most materials, the

EA value is positive, which means that secondary electrons thermalized to the CBM

have to overcome an energy barrier equal to the EA in order to be emitted into va-

cuum, and as a result the secondary electron emission yield is relatively low. With the

lowering of the barrier height (EA), more and more secondary electrons can escape

from the surface resulting in increased secondary electron emission intensity. In

certain specially engineered materials, the CBM can even be above the VL. With this
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NEA, secondary electrons can be easily emitted into vacuum without experiencing

any energy barrier, leading to very strong secondary electron emission yield. There-

fore, semiconductors with NEA are widely used as photocathode and cold-cathode

emitters.

NEA semiconductor surfaces are normally prepared by combining strong down-

ward band bending with a monolayer cesium surface coating [64]. The band bending

forces the bulk CBM to lie above the VL, thereby producing an NEA surface (Figure

3.10a). Since there is still a potential barrier at the surface (χ), it is referred to as

effective NEA. The realization of effective NEA critically relies on a large enough

downward band bending (χeff = φBB –χ > 0) as well as a very short band bending

length l so that CBM electrons in the bulk can ballistically tunnel through the band

bending region without experiencing inelastic scattering. Therefore heavy p-type

doping is often required to fulfill these requirements. On a true NEA surface, the EA

(χ) is negative at the surface (Figure 3.10b), and bend bending is not a critical re-

quirement for NEA activation but it affects the emission efficiency.

0 BB

eff 0 

0 

Figure 3.10. Schematic energy level diagram of a semiconductor which exhibits (a) effective
negative electron affinity and (b) true negative electron affinity.
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The hydrogenated diamond surfaces exhibit true NEA [61, 65-69]. This NEA

arises from a surface dipole layer formed by the heteropolar bonds between surface

carbon terminated by hydrogen, where the C-H bonds are polarized with a positive

charge δ+ on the H atom side as hydrogen exhibits a lower electronegativity (χH = 2.20)

than carbon (χC = 2.55). This separation of charge over a distance of C-H bond length

(1.11 Å) naturally presents a dipole momentum pointing towards the vacuum side,

and eventually provides a potential step that pulls down the vacuum level below the

CBM [61, 68].

NEA in hydrogenated diamond is characterized by an intense and sharp second-

ary electron emission peak in the low KE part of the UPS or in the secondary electron

spectrum, as the majority of low kinetic energy electrons are directly emitted from
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diamond CBM to vacuum with a narrow energy distribution. The left panel in Figure

3.11 shows secondary electron emission in the low-kinetic energy part of the UPS

spectra. In order to detect those low KE electrons, a -5V bias was applied to the

sample to overcome the electron analyzer WF (4.3 eV). The emitted electrons are

collected by the analyzer at normal emission relative to the sample surface. Such a

set-up is chosen based on two considerations: first, the CBM is located in the [001]

direction (along Γ-Χ) [6] and therefore the emitted CBM electrons possess a momen-

tum perpendicular to the surface; second, the applied bias voltage tends to force these

low-kinetic-energy electrons normal to the surface [67]. The lower spectrum (a) in

Figure 3.11 is a typical low-KE electron distribution for the hydrogenated diamond

(001) surface, which exhibits fine structures within the KE range between 3.5 eV to 6

eV. The highest peak at around 5.1 eV is referred to as the NEA peak with high

intensity and narrow line-width (w~0.3 eV). The NEA peak comprises electrons

directly emitted from the CBM of diamond, and therefore is often regarded as a

signature of the NEA surfaces [63, 65-66, 70-71], although it was pointed out by

Yater that the sharply peaked low-kinetic energy electron emission can also be

attributed to a small but positive electron affinity (PEA) [72]. In addition to the NEA

peak, there is another peak located around 4.5 eV with its cut-off (4.0 eV) well below

the CBM, which in some cases is not so well resolved and merged into the high

intensity tail of the NEA peak as a shoulder (upper spectrum b in Figure 3.11). In both

cases, the cut-offs of this peak are at the same position. Two possible mechanisms

could contribute to such electron emission below the conduction band. One is the

inelastic scattering of the CBM electrons at the surface region, and the other is the

transitions of electrons from the CBM to unoccupied surface states. The latter me-

chanism, however, is favored, as theoretical calculations predict such unoccupied
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states related to CH-CH dimers fall below the bulk conduction band down to the VL

[57]. With either mechanism, the cut-off position of the lower energy peak reflects the

VL (Evac), which equals to the WF ( = 4.0 eV) when it is referenced to the Fermi

level.

The observation of a sharp and intense NEA peak, together with the observation

of electron emission originating from populated surface states down to the VL,

unambiguously demonstrate the NEA property of the hydrogenated diamond (001)-

2×1:H surface. However, a quantitative determination of the EA value χ still requires

knowledge of the position of CBM (ECBM) relative to the VL Evac. In the previous

section, the VBM of diamond (EVBM) is determined to be 0.4 eV below EF. With the

known band gap of diamond (Eg = 5.5 eV), the position of CBM can be deduced

relative to EF according to ECBM – EF = Eg – (EF – EVBM) = 5.5 – 0.4 = 5.1 eV with an

uncertainty of 0.1 eV. The position of the CBM coincides with the NEA peak position

as labeled in Figure 3.11, which is consistent with the nature of the NEA peak.

However, it should be pointed out that since both the process of electron transport to

the surface and the process of electron emission into vacuum play important roles in

the formation of the NEA peak [72], which is also highly dependent on the amount of

band bending at the surface [73], the NEA peak position cannot be exclusively taken

as the CBM position.

With the determination of the ECBM and Evac, the EA of hydrogenated diamond

(001) is easily calculated as χ = (Evac – EF) – (ECBM – EF) =  – (ECBM – EF) = 4.0 –

5.1 = -1.1 eV ± 0.1 eV. The obtained EA value of -1.1 eV is in good agreement with

reported values. Using PES, L. Diederich et al. [62, 67] obtained an EA value of -1.0

± 0.1 eV on hydrogenated diamond (001). F. Maier and Cui et al. reported an EA of -
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1.3 ± 0.1 eV for hydrogenated diamond (001) [61] and (111) [68] surfaces by combin-

ing PES with Kelvin probe measurements. More recently using total photoyield (TPY)

experiments, D. Takeuchi et al. [69] explicitly determined an EA value of -1.1 eV for

hydrogenated diamond regardless of the doping and face orientation. The results also

qualitatively agree with theoretical calculations made for diamond surfaces by Rutter

et al. [74], Zhang et al. [75] and Sque et al. [57], although the obtained EA values are

systematically larger than experimentally determined ones

With the knowledge of the positions of different energy levels in hydrogenated

diamond (001), the schematic energy band diagram is plotted in the right panel of

Figure 3.11. As can be seen, the surface dipole layer created by C-H bonds over a

distance of 1.0 Å effectively lowers the vacuum level down to 1.1 eV below the CBM.

In spite of the large band gap of diamond, NEA leads to an exceptionally low IP (I =

 + (EF – EVBM) = 4.0 + 0.4 = 4.4 eV), which is indeed the lowest among all semi-

conductors. As a consequence, when surface adsorbates with high enough EA are

present, electron transfer from the valence band to physisorbed adsorbates is energeti-

cally favorable. Such electron transfer at the hydrogenated diamond surface is the

mechanism underlying the p-type surface conductivity of hydrogenated diamond,

another unique property of diamond, which will be discussed in more detail in Chap-

ter 6.
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3.2.2.3 NEXAFS spectroscopy of hydrogenated diamond surface: probing the
unoccupied states

PES studies provide detailed information on the electronic structures of occupied

states, from core-levels to valence bands, but a comprehensive understanding of the

electronic structures requires knowledge of the unoccupied states. NEXAFS spectros-

copy, as described in the Chapter 2.1.4, monitors the resonant excitation of electrons

from core-level to unoccupied states of an atomic specie. Figure 3.12 shows the C K-

edge NEXAFS spectra of hydrogenated diamond with different detection modes

(TEY and AEY) and light incidence angles. The overall spectral shapes agree well

with previous studies [76-80]. The most noticeable features of all three spectra

include a dip at 302.4 eV which is caused by the absolute energy gap in the conduc-

tion-band structure of diamond and its position is used here to calibrate the photon

energy [76]. The sharp peak located at 289.2 eV is attributed to the creation of bulk
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Figure 3.12. C K-edge NEXAFS spectra of hydrogenated diamond (001) at different inci-
dence angle of incoming light. The inset illustrates relative positions and orientations of the
incident light, electron analyzer, and the sample surface.
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core excitons of diamond (i.e. electrons in the conduction band bounded to core holes)

[76]. Adding the diamond band gap to the known energy difference between C 1s and

VBM, the position of CBM is deduced at the photon energy of 289.4 eV (i.e. 5.5 eV +

283.9 eV), which is 0.2 eV above the excitonic peak at 289.2 eV. This 0.2 eV differ-

ence specifies the bulk core excitonic BE, in excellent agreement with the value of

0.19 ± 0.015 eV reported by Morar et al [76].

The appearance of the excitonic peak marks the onset of bulk excitations C

(1s)→σ*, whereas the pre-edge features below the bulk excitation threshold are

surface resonances in the band gap. The sharp peak SH at 287.2 eV is associated with

the transition to unoccupied σ* anti-bonding state of the surface C-H bonds [78-79],

which is theoretically predicted to be located within the diamond band gap [57]. The

intensity of this surface resonance is significantly reduced when the incident light

direction changes from θi = 60º to θi = 0º, due to the polarization dependence of the

optical transitions. When linearly polarized synchrotron light is incident at a grazing

angle (e.g. θi = 60º), its electric-field vector E has a larger component in the C-H

antibonding orbital direction which is out of the sample plane, therefore this reson-

ance is enhanced. At the photon energy of 284.5 eV, we also detect a broad absorption

resonance D at both normal and grazing incidence, and the energy position resembles

a C (1s)→π* transition commonly seen in graphite as well as molecules with π-

electrons [41]. Since single crystalline diamond contains sp3 bonding only, we

attribute this resonance to transitions into empty defect states not intrinsic to the

diamond surface [78].

In Figure 3.12 we also show NEXAFS in TEY mode. Compared to the spectrum

taken in AEY mode at the same incidence angle, the TEY spectrum exhibits very

different shape with most of the fine structures unresolved. This phenomenon can be
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attributed to the saturation effect in the XAS [81], which implies the measured current

signal is no longer proportional to the X-ray absorption coefficient as the photon

energy varies, and the intensities of prominent absorption features are reduced or

saturated. Saturation effect occurs when the probe depth of the detected signal is

comparable to or even larger than the X-ray penetration depth. It is known that in

TEY mode, the absorption signal is largely contributed by secondary electrons as a

result of secondary processes which fill the K-shell holes following the primary

absorption process. In hydrogenated diamond, these secondary electrons are mainly

comprised of CBM electrons which are emitted freely into vacuum due to diamond

NEA. Using TPY technique, it is determined that the CBM electrons in diamond have

a unusually large diffusion length between 150 and 250 μm [82], which is considera-

bly larger than the X-ray penetration depth of 1.5 μm at the C K-edge in diamond [83].

Therefore, this strong saturation effect suggests that TEY mode is not suitable as a

detection technique for NEXAFS measurements in hydrogenated diamond.

3.3 Bare diamond C(001)-2×1 surface

3.3.1 Surface reconstruction

Annealing the hydrogenated diamond in situ above 1000 ºC for several minutes leads

to the desorption of hydrogen, yielding a hydrogen free, bare diamond C(001)-2×1.

Although it has been reported that hydrogen starts to desorb at around 800 ºC, to

achieve a complete hydrogen-free surface, annealing temperatures above 1000 ºC is

necessary [59]. However, the annealing procedure should be performed with caution,

because overheating to 1250 ºC will lead to graphitization of the diamond surface [59].

In practice, the annealing procedure was started at 900 ºC for 10 minutes and UPS

measurements at photon energy of 60 eV were used to monitor the presence of the

NEA peak in the low KE part of the spectra (see Figure 3.11). If the NEA peak was
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observed, annealing was repeated at 50 ºC higher until the NEA peak disappeared

completely and the low KE electrons display a broad, low intensity distribution with

its cut-off at higher KE (see below). This careful annealing procedure with hydrogen

coverage monitoring, fully dehydrogenates the diamond surface while at the same

time avoids graphitization of diamond surface due to possible overheating. In addition

to the annealing temperature, the vacuum condition, which should be maintained

below 1×10-9 mbar, is also critical to obtain a high-quality bare diamond surface.

Hydrogen desorption leads inevitably to the reconstruction and relaxation of di-

amond surface. The two dangling bonds of each surface dimer due to hydrogen

desorption partially overlap and form a weak π bond. Together with the existing σ 

bond between surface dimer atoms, they form a strained C=C double bond. The

atomic arrangement of bare diamond (001) 2×1 is shown schematically in Figure 3.13,

and its top view is analogous to that of hydrogenated diamond surface (Figure 3.4b)

with orthogonally oriented 2×1 domains. The relaxed bond length of C=C dimer is

1.37 Å as determined by theoretical calculations [55, 57], resembling the length of the

C=C double bond in common unsaturated organic molecules such as C2H4 (d = 1.38

Å).

Figure 3.13. Side view of atomic arrangement of the bare diamond (001)-2×1 surface. The
colored circles with different size represent carbon atoms belonging to the top three surface
layers. The dimer double bonds are represented by blue sticks.
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Since the 2×1 reconstruction symmetry is still retained on bare diamond surface,

its LEED pattern (Figure 3.14) is essentially the same as that of hydrogenated di-

amond (Figure 3.5). However, we failed to image STM topographies on bare diamond

with resolved dimer rows. The loss of surface conductivity due to hydrogen desorp-

tion prevents the investigation of bare diamond surface by normal STM technique, but

it has been successfully imaged by STM with atomic-scale resolution using an uncon-

ventional resonant electron injection mode [84].

Figure 3.14. LEED pattern (upper panel) and its schematic representation of the bare C(001)-
2×1 diamond surface (electron beam energy 170 eV). The dashed rectangular boxes represent
the reciprocal lattices of the two orthogonally oriented 2×1 domains.
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3.3.2 Electronic structures

3.3.2.1 PES of bare diamond surface: surface core-levels and valence band
structures

Figure 3.15 shows the C 1s PES spectrum of bare diamond (001)-2×1, which com-

prises a bulk diamond C 1s line B and a surface component SD. The surface

component, which shifts by 0.95 eV towards lower BE, is attributed to the π-bonded 

surface dimers [59, 62, 67]. This rather large BE shift of the surface component SD, in

spite of the relatively small initial state difference between surface C atoms and bulk

C atoms, arises from the more effective final-state core-hole screening by the π-

electrons in surface dimers compared to the bulk [59]. The intensity of the surface

component accounts for about 31% of the total emission intensity. Comparing the BE

of the bulk components in bare diamond with that in hydrogenated diamond (Table

3.1), the bulk C 1s line is shifted 0.6 eV to higher BE during the transition from

hydrogenated to bare surface, indicating an increase of downward band banding of the

same amount [59, 85-86]. This large band banding on bare diamond, which signifies

further hole depletion in the p-type diamond surface region, arises from the fact that

the occupied surface states related to the π-bonded dimers reside above the valence 

band within the band gap [55, 57] and act as effective donor-type surface states as

depicted in Figure 3.3. Adding the 0.6 eV shift to the existing band bending in hydro-

genated diamond (0.1 eV), the band bending of bare diamond is estimated to be 0.7 ±

0.1 eV. The width of the band bending region could be estimated using the following

formula [7]:方程节 3

A2 /D qN (3.1)

where ε is the dielectric constant (ε = 5×10-11 F/m for diamond), φ is the band bending

in eV , q is the elementary charge, and NA is the acceptor concentration assuming
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complete ionization of dopants. For the doping concentration of 1016 cm-3 and band

bending of 0.7 eV in bare diamond, the band bending width is calculated to be around

2100 Å, which is much larger than the PES detection depth for C 1s signal (below 10

Å). Therefore, using PES we measure only the surface area of the whole band-

bending region, corroborating the effectiveness of using C 1s BE shift to estimate the

amount of band bending as presented above.

The occupied surface π bonding states of bare diamond can be clearly identified 

in valence band spectra using photon energy of 60 eV (Figure 3.16), where the

pronounced emission peak SD located 1.35 eV below Fermi level denotes the π-

bonding surface state originating from dimers. The rest of the emission peaks resem-

ble bulk valence band structures as seen in hydrogenated diamond (Figure 3.9) but

with a rigid shift to higher BE due to increased band bending. It should be noted that a

photon energy larger than 50 eV is critical in resolving the surface state emission SD

from the bulk valence band emission due to the degeneration of the surface state with

bulk states at the surface Brillouin zone center ( ) [57, 87]. For example, the pre-

viously reported surface state feature by Wu et al. [85] and Francz et al. [86] using a
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Figure 3.15. C 1s core-level spectra of a bare diamond (001) surface (hν = 350 eV) after
annealed at 1050 ºC at normal emission angle. Solid lines through experimental points
demonstrate the result of least-square fitting.
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photon energy of about 40 eV is a mixture of the surface state and bulk valence band

emission. Theoretical calculations predict the occupied π surface state resides in the 

bulk band gap with a heavy dispersion in the regions away from the zone center [55,

57]. The surface state dispersion is manifested by the different BE of the surface

emission peak SD when the electron emission angle changes from normal emission to

grazing emission, as shown in Figure 3.16, in qualitative agreement with angle-

resolved PES results [87]. In addition, the surface state emission is more prominent at

normal emission than at grazing emission. The position of the VBM in the valence

band spectra is simply determined by adding the 0.7 eV band bending amount to the

known energy difference of 0.3 eV between bulk Fermi level and VBM, giving 1.0

eV for the VBM below Fermi energy.
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Figure 3.16. Valence band spectra of bare diamond (001)-2×1 surface recorded with photon
energy of 60 eV at two emission angles. The spectra are all normalized to the same height for
better viewing.
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3.3.2.2 Work function, electron affinity and energy level diagram

The WF and EA of bare diamond are determined from the measurement of low-KE

part of the UPS spectra (Figure 3.17). The spectrum shape of secondary electrons

emission from bare diamond is characterized by a low intensity and relatively broad

distribution, in contrast to the sharp and intense emission from hydrogenated diamond

(see the inset of Figure 3.17 and Figure 3.11a). In fact, the secondary electron emis-

sion intensity from bare diamond is so low that it is merely comparable to the

background intensity of the emission from hydrogenated diamond (Figure 3.17 inset).

The emission threshold also shifts to higher kinetic energy by as much as 1.3 eV,

indicating a lifting of the VL after hydrogen desorption, and the WF of bare diamond

surface is therefore determined to be 5.3 eV. The position of the CBM is determined

according to ECBM – EF = Eg – (EF – EVBM) = 5.5 – 1.0 = 4.5 eV, clearly below the VL

of bare diamond. The EA χ of bare diamond is thus positive with a value of 0.8 ± 0.1

eV. This is in good agreement with theoretical predictions of 0.8 eV [75], and is also

in reasonable agreement with other measured values ranging from 0.5 eV [61], 0.75

eV [88], and to 1.3 eV [62]. The small deviations may be due to different diamond

quality, annealing temperature and measurement techniques. However, all measure-

ments explicitly indicate the PEA nature of bare diamond. Additional features located

at higher kinetic energy around 10–13 eV are identified and labeled as E1 and E2, and

are turning points or threshold energies representing rapid changes of intensity. These

two threshold energies, E1–first threshold energy for the creation of electron-hole

pairs with phonon assistance, and E2–second threshold energy for the creation of

electron-hole pairs without phonons, are inherently related to the position of CBM

through a consideration of electron scattering and emission mechanisms in the materi-

al (E1 = ECBM + Eg ; E2 = ECBM + 1.5Eg) [65, 72]. It is worth mentioning that these two
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features are also visible in emission spectra of hydrogenated diamond, although it is

largely masked by the ultra high NEA peak.

The schematic energy band diagram of bare diamond (001) is plotted in the right

panel of Figure 3.17. A large downward band bending of 0.7 eV towards the surface

is present, with its depletion layer extending 2100 Å into the bulk. Hydrogen desorp-

tion by annealing also eliminates the surface dipole layer along with its step potential.

As a result, the VL on bare diamond is lifted above its CBM, leading to a PEA surface.

Consequently, the majority of low KE electrons (hot electrons) that accumulate at

diamond CBM are now blocked by an energy barrier of 0.8 eV imposed by the VL,

resulting in the low intensity and broad secondary electron emission. The IP I increas-

es to 6.3 eV, much larger than that of the hydrogenated surface (4.4 eV). The change

of EA Δχ or IP ΔI of 1.9 eV from hydrogenated to bare surface highlights the magni-

Figure 3.17. Left: Low-kinetic energy part of the PES spectra for bare diamond (001) surface
recorded using photon energy of 60 eV at normal emission angle. The kinetic energy scale
has been corrected for the -5 V applied bias. The vertical lines represent the energy position
of vacuum level (Evac) and CBM (ECBM), respectively. The cut-off position of the emission
peak is determined by extrapolation of the rising edge to zero intensity. The inset shows both
low-kinetic energy electron emissions of both hydrogenated and bare diamond surface. Right:
schematic diagram of the energy level of bare diamond (001). All energy scales are estimated
within an error value of 0.1 eV.
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tude of the electrostatic potential step caused by the surface dipole layer due to

hydrogen termination. The surface dipole induced EA change could be theoretically

evaluated according to a simple electrostatic dipole model [61, 68]:

0( )
zep n

S n



  (3.2)

where pz is component of the dipole moment of an isolated surface bond (C-H in this

case) perpendicular to the surface, n is the areal density of surface dipoles, e and ε0 are

elementary charge and vacuum permittivity respectively. The denominator S(n) which

depends on dipole density n accounts for the mutual interaction of dipoles which

tends to reduce the contribution of each dipole to the total potential drop for high

dipole densities. It has a simple expression in the following form [89]:
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where α is the polarizability of C-H dipoles. The dipole moment pz of isolated C-H

bond could be estimated in the point charge approximation by pz = dzΔq where dz is

the C-H bond length projected perpendicular to surface (dz = 1.01 Å) and Δq is the

charge transfer from the C to the H atom due to their different electronegativity.

Using the Pauling electronegativities for C (2.55) and H (2.2), we can obtain Δq for

C-H bond as follows [53]:

2

C H C H(0.16 0.035 ) 0.07q e e         (3.4)

Together with dz we obtain pz = 0.07 e·Å = 1.13×10-30 A·s·m. Given n = 1.57×1015

cm-2 for fully hydrogenated diamond (001) surface, and polarizability α = 1.0×10-40

A·s·m2/V [61] to Eqn. (3.2) and Eqn. (3.3) , we arrive at the EA change Δχ = 1.4 eV

due to hydrogen termination, in reasonable agreement with the experimentally deter-

mined Δχ value of 1.9 eV.
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3.3.2.3 NEXAFS spectroscopy of bare diamond surface: probing the unoccupied
states

The C K-edge NEXAFS spectra of bare diamond are displayed in Figure 3.18 with

different light incidence angles. The spectra are all taken using AEY mode to achieve

maximum surface sensitivity. The overall spectra profiles resemble that of hydroge-

nated diamond with a sharp bulk core-exciton at 289.2 eV as well as the dip at 302.4

eV. However, the pre-edge region below the bulk excitonic peak exhibits dramatically

different structures. The absence of a resonance at around 287.2 eV related to surface

C-H bonds, as well as a peak at around 282.5 eV associated with single dangling

bonds of surface dimer atoms due to partial hydrogen desorption [77], confirm the

complete dehydrogenation of diamond surface by annealing at 1050 ºC. Two new

absorption resonances at 283.8 eV (Ex1) and 286.0 eV (Ex2) respectively, are ob-

served. These two surface resonances in the band gap were previously reported by

NEXAFS measurements made on bare diamond [77-78]. However, their assignments

of these two resonant features are controversial. Graupner et al. [78] interpreted both

resonances to be surface core excitons associated with the π-bonded dimers on bare 

diamond (001)-2×1, whereas Bobrov et al. [77] assigned Ex1 to a surface core-

excitonic state and Ex2 to the transition to the unoccupied π* anti-bonding state in the

band gap as predicted by theoretical calculations [55, 57].
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In order to correctly interpret the origins of these two surface resonances, the po-

sition of the Fermi level in the absorption spectra, which has important implications

on the excitation nature of the surface resonances, must be determined appropriately.

As demonstrated by Morar et al. [80], if the electronic states are lying below the

Fermi level, they are indisputably classified as surface core excitons whose energy is

highly influenced by the strong electron-hole Coulomb interactions. Alternatively, if

the states are lying above the Fermi level, they are most likely to be due to transitions

into unoccupied surface states, although their excitonic nature cannot be ruled out if

the exciton BE is relatively small. For hydrogenated diamond, it is straightforward to

determine the position of the Fermi energy as the BE of the bulk component (284.3
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Figure 3.18. C K-edge NEXAFS spectra of bare diamond (001) at different incidence angles
of incoming light. Spectra are taken in AEY mode by detecting the C Auger electrons at 265
eV. The energy position of VBM, CBM and Fermi level are marked by vertical arrows in the
bottom axis. The inset illustrates relative positions and orientations of the incident light,
electron analyzer, and the sample surface.
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eV) in the photon energy scale of NEXAFS spectra. However, for bare diamond, the

additional C 1s surface component is shifted by 0.95 eV to lower BE bringing ambi-

guity in determining the Fermi level. Intuitively, one may want to use the BE of the

surface C 1s component (283.95 eV) to set the Fermi level, since the transitions occur

at surface dimers. But such an assignment is only valid if the initial-state effect (i.e.

chemical shift) accounts for the surface component shift. As discussed above, the

surface component is indeed due to final-state effects (i.e. more effective core-hole

screening by π-electrons), and therefore the BE of the bare diamond bulk component 

(284.9 eV) should be used to determine the Fermi level exclusively. In this way, the

Fermi level, along with VBM (283.9 eV) and CBM (289.4 eV), are all determined and

labeled in Figure 3.18. Therefore, the surface resonance Ex2 lying above the Fermi

level most probably corresponds to the electronic transition into unoccupied π* anti-

bonding state of surface dimers as suggested by Bobrov et al. [77].

However, the assignment of the Ex1 resonance is more complicated. As shown in

Figure 3.18, the Ex1 state lies below the Fermi level, indicating its excitonic nature.

Two different scenarios could give rise to the Ex1 state. In one scenario, the Ex1

resonance is still associated with transitions into the π* anti-bonding state of the

surface dimers, but with a strong electron-hole bound by forming surface core exci-

tons. In this situation, the energy difference between Ex1 and Ex2 simply gives an

exciton BE of 2.2 eV. Such a large excitonic BE, which corresponds to rather loca-

lized Frenkel-type surface core excitons, are the result of the two-dimensional nature

of the surface excitons as well as the reduced screening at the surface with diamond’s

relatively low dielectric constant (ε = 5.7) [78]. In the other scenario, electron

transfer from occupied surface states to bulk boron acceptors should be taken into

account to explain the origin of Ex1 resonance. This charge transfer process inevitably
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empties or partially empties some of the original occupied π bonding states of surface 

dimers (c.f. Figure 3.3). These emptied or partially emptied π surface states could then 

be probed by NEXAFS as a resonant excitation (Ex1), whereas resonance Ex2 still

corresponds to the transitions to the relaxed π* surface state. In this case, the energy

difference of 2.2 eV between Ex1 and Ex2 should be equal to the average energy

splitting of the π–π* surface bands in the band gap region. The energy difference

between the maximum of the π surface state and the minimum of the π* surface state

was predicted by theoretical calculations to be 1.86 eV [57], which is in reasonable

agreement with our deduced value from the above scenario considering a large

dispersion of surface states and the excitonic nature of Ex1. However, at present it is

difficult to discriminate which of the two described scenario would be responsible for

the formation of Ex1, or it might be even a combination of both two scenarios. Future

NEXAFS measurements on n-type bare diamond (001) will be useful in identifying

the origins of these surface resonances, since the latter scenario would be ruled out in

n-type diamond.

Now we turn our attention to the polarization dependence of these surface reson-

ances. As shown in Figure 3.18, the intensity of Ex1 exhibits a strong polarization

dependence on the light incident angle. It has the highest intensity at grazing inci-

dence (θi = 67º) but becomes weakest at normal incidence. The polarization

dependence of the Ex1 signal is less prominent but with an opposite trend. Consider-

ing the π-electron (or π*) nature of the Ex1 state in either scenario mentioned above,

the π-orbital (or π*) formed by linear combinations of dangling p orbitals centered at

the two C atoms of each surface dimer is essentially out-of-plane. Therefore, when the

incident synchrotron light has a larger component projected on the π-orbital (or π*)

direction (i.e. grazing incidence), the resonant excitation Ex1 is enhanced. However,
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despite a similar π*-electron nature, the peculiar opposite angular dependence of

resonance Ex2 seems to be inexplicable. Graupner et al. observed a similar polariza-

tion dependence of these two surface resonances, which they describe as due to the

different point group symmetries of the excited states [78]. Whether the polarization

dependence follows the dipole selection rule of excited states orbital direction or the

specific point group symmetry remains an open question which is beyond the scope of

the present study.

3.4 Chapter summary

In this chapter, we focus on the surface reconstruction and electronic structures of

diamond (001) in two different surface conditions: hydrogenated and bare. LEED

patterns and STM topographies confirm the (2×1) reconstruction symmetry on both

surfaces with two orthogonally oriented (2×1) domains. In particular, hydrogen

termination on diamond, which passivates the dimer dangling bonds, leads to further

relaxations of the surface structures with elongated dimer bond length.

High surface sensitivity PES reveals different electronic structures on these two

surfaces. C 1s core-level spectra of freshly prepared hydrogenated diamond uncover

the existence of hydrocarbon residuals on the surface due to the hydrogen microwave

plasma treatment. In-situ mild annealing of the sample at 400~600 ºC removes these

adsorbates, and leaves the single bulk C 1s spectrum. Valence band structures of

hydrogenated diamond exhibit only bulk diamond valence band structures, while the

surface states related to CH-CH dimers resides below the VBM of bulk diamond and

therefore are unable to be resolved. The lack of occupied surface states within the

band gap also results in flat bands in hydrogenated diamond. In contrast, the unoccu-

pied σ* antibonding state of the surface C-H bonds, appearing in the band gap as

predicted by theoretical calculations, is identified by NEXAFS in the pre-edge region.
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Annealing hydrogen terminated diamond at 1050 ºC leads to desorption of hy-

drogen and conversion to bare diamond surface. The corresponding C 1s core-level

spectrum shows a surface component shifting to lower BE which is related to the π-

bonded dimers. The bulk C 1s component is also shifting to higher BE compared to

hydrogenated diamond, indicating an increased downward band bending towards

diamond surface. This large downward band bending is inherently related to the

emergence of occupied π-bonding surface states in the band gap, which shows up as a 

prominent emission peak close to the Fermi level in the valence band spectra.

NEXAFS exhibits two surface resonances in the band gap region. Two possible

scenarios are proposed to interpret these two resonant excitations, which involve

surface core excitons. In addition, their polarization dependence could be related to

the direction of bonding orbitals or to the point group symmetry of excited states.

Notably, the hydrogen termination creates a dipole layer with an electrostatic po-

tential step as large as 1.9 eV which effectively lowers the VL below the CBM and

thus transforms PEA of bare diamond surface to a true NEA surface, enabling a large

number of electrons accumulating at the CBM to escape into the vacuum without any

energy barrier in the electron emission processes. These electrons constitute a sharp,

intense peak in the low-kinetic energy region of the UPS spectra. Information about

various electronic properties (e.g. ECBM, EVBM, EVAC) are extracted from the PES

measurements and depicted schematically in the energy band diagram for hydroge-

nated and bare diamond surface, respectively.

In conclusion, the different surface conditions of diamond (001) result in distinct

electronic properties, providing us a versatile system to study the interactions of

organic molecules with diamond surfaces, as will be discussed in the following

chapters. On one hand, the π-bonded dimers on bare diamond are structurally analog-
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ous to those C=C bonds in organic molecules such as alkenes and olefins, and are

therefore expected to exhibit reactivities towards other unsaturated organic molecules,

which will be explored in Chapter 4 and 5. On the other hand, the very low IP due to

hydrogen termination will favor electron transfer from diamond valence band to

surface adsorbates. This surface transfer doping scheme, which is the underlying

mechanism for diamond surface conductivity, provides us opportunities to dope and

manipulate the surface conductivity of diamond. This possibility is explored in

Chapter 6.
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CHAPTER 4

CYCLOADDITIONS ON BARE DIAMOND (001) 2×1
SURFACE: TUNING THE ELECTRON AFFINITY AND

ELECTRON EMISSION BY SURFACE
FUNCTIONALIZATION

4.1 Introduction

With the rapid development of microelectronics and the continuing shrinkage of

device dimensions, hybrid organic-inorganic systems are expected to revolutionize

future technologies and devices [29, 90-91]. Through combining the best properties

and features of both inorganic and organic materials, we have an unparalleled oppor-

tunity to construct functional systems with tunable chemical, electric, mechanical and

biological properties. Based on this concept, a wide range of applications (biosensing,

optoelectronics, drug delivery etc.) are being developed, and many routes towards

such functional systems are being pursued. Among them, surface organic functionali-

zation, which incorporates organic materials onto semiconductors surfaces through

direct, covalent attachment is emerging as an important approach for the development

of robust, nonvolatile hybrid materials and devices. Unlike metals, the covalent nature

of semiconductor surface lattices permits suitable reactivity that can be exploited to

form covalent bonding with unsaturated organic molecules. In particular, the cycload-

dition reaction, a widely used reaction scheme in organic synthesis to form new

carbon-carbon bonds and rings [92], provides a powerful route to the controlled

organic functionalization of semiconductor surfaces [93].

Cycloaddition is a pericyclic chemical reaction mechanism, in which two π 

bonded molecules react to form a new cyclic molecule by losing two π bonds and 

forming two new σ bonds. According to the number of π electrons in each molecule 

involved in the reaction, cycloaddition reactions are classified into two types as
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shown in Figure 4.1, namely [2+2] cycloaddition and [4+2] cycloaddition (the latter is

also known as the Diels-Alder reaction). These two types of cycloadditions, however,

are subject to the so-called Woodward-Hoffmann selection rules, which rely on the

symmetry of the frontier highest occupied and lowest unoccupied molecular orbitals

(i.e. HOMO and LUMO) of the reactants [94]. As a result, [2+2] cycloadditions are

found to be “symmetry forbidden”, and the Woodward-Hoffmann selection rule

dictates that this reaction should not occur without significant energy activation such

as photochemical activation. In contrast, [4+2] cycloadditions are “symmetry al-

lowed” with much less activation barrier. Indeed, Diels-Alder reactions are more

commonly used in organic synthesis to than its [2+2] counterparts.

Inorganic semiconductor surfaces such as Si(001) and Ge(001) have surface di-

mers (Si=Si, Ge=Ge) resembling an alkene group, and cycloadditions with

unsaturated organic molecules are expected to proceed on these surfaces. However, a

solid surface dimer is not identical to a true double bond system, and the Woodward-

Hoffmann selection rules cannot be simply applied since distortion, tilting and solid

state effect of surface dimers need to be taken into consideration. Indeed, both [4+2]

and [2+2] cycloadditions with a number of different alkene-containing molecules (e.g.

ethylene, butadiene, cyclopentene) are found to readily occur on Si (001) and Ge (001)

surfaces [91, 93]. In particular, [2+2] cycloadditions, which are not allowed according

to the symmetry selection rules, can readily occur quite fast on both surfaces at RT

due to the tiled asymmetric surface dimers that relax the symmetry restrictions [93,

95-96].

As discussed in the previous chapter, the diamond (001) surface also exhibits a

2×1 reconstruction with surface dimers consisting of a highly strained double bond

with σ and π components. These strained alkene-like double bonds make diamond 
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surface reactive with unsaturated organic molecules. Indeed, the Diels-Alder reaction

with 1,3-butadiene on bare diamond C(001)-2×1 has been established by electron

energy loss spectroscopy (EELS) [97] and Fourier transform infrared spectroscopy

(FTIR) [71]; these studies show that 1,3-butadiene is readily chemisorbed on C(001)

predominantly via the [4+2] cycloaddition reaction route, whereas [2+2] cycloaddi-

tions are not favored because of a much higher activation barrier. The high activation

barrier for [2+2] cycloaddition is considered a result of the symmetric dimer geometry

of diamond which lacks the low-symmetry pathway to initiating a [2+2] cycloaddition

[98]. These findings are further supported by the FTIR study of the reaction of

cyclopentene with diamond by Hovis et al. [99]. They report a very low sticking

coefficient of cyclopentene on diamond surface of the order of 10-3, several orders of

magnitudes lower than that on silicon and germanium. Despite the low sticking

coefficient, Hovis et al.’s work still suggests the feasibility of [2+2] cycloadditions on

diamond. Indeed, combining high-resolution EELS (HREELS) and synchrotron-based

spectroscopies, Loh K. P. and co-workers, including the present author, unambiguous

demonstrated [2+2] cycloaddition of allyl organics (i.e. allyl alcohol, acrylic acid and

ally chloride) and acetylene on diamond (001) surface [100]. The successful attach-

ment of allyl group molecules via cycloadditions is particularly significant because it

provides a powerful and tunable route to functionalize diamond by simply varying the

functional group of allyl organics. The exceptions to the Woodward-Hoffmann rules

for surface [2+2] cycloadditions of diamond is not unexpected, because diamond is an

extended solid-phase system with continuum band structures, which is considerably

different from the discrete frontier molecular orbitals of gas phase reactants in regular

cycloadditions.
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Surface functionalization of diamond is especially promising from the surface

science point of view. Unlike germanium or silicon, both the diamond surface and the

functionalizing agents are carbon-based, and the interface formed by direct C—C

covalent coupling is therefore homogeneous. In this case, the diamond surface can be

considered as a solid organic template, and the bonding interface can be viewed as a

natural extension of the diamond surface lattice, leading to minimum influence on the

properties of diamond. It thus enables a perfect matching of organic functionality with

Figure 4.1. Examples of cycloaddition reactions. [2+2] cycloaddition between two alkenes
forms a four-membered ring, whereas [4+2] cycloaddition between a diene and alkene forms
a six-membered ring.
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the numerous exceptional properties of diamond. Although many studies have been

devoted to studying the cycloaddition reactions on diamond surface, most are focused

on understanding the chemical reaction mechanism and dynamics, while little atten-

tion is paid to the modification of surface electronic structures induced by

cycloadditions. It is known that the incorporation of organic layers at the interface can

significantly modify the surface electrostatic potential by giving rise to an interface

dipole layer [101-102]. Such a dipole layer, which either results from the internal

dipole moments of the grafted molecules themselves or from the charge transfer or

charge rearrangement between substrate and molecules, can in turn modulate the

surface electronic properties such as WF, EA as well as secondary electron emission

yield.

This chapter will discuss in detail the cycloaddition reactions of a prototypical al-

kene-containing molecule (1,3-butadiene) with bare diamond (001) surface. The

surface electronic structures will be investigated by synchrotron-based spectroscopies.

The tailoring of diamond surface electronic properties by surface functionalization

and its underlying mechanism will be explored by both experiments and density

functional theory (DFT) calculations. Choosing 1,3-butadiene as the model organic

molecule is based on two considerations. First, the Diels-Alder reaction of 1,3-

butadiene on bare diamond C(001)-2×1 surface is already well established by several

researchers [71, 97, 100], and shows the highest sticking coefficient among all the

functionalizing organics on diamond. Second, the relatively simple and symmetric

chemical structure of 1,3-butadiene reduces the complexity in modeling the reaction

product by DFT calculations.
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4.2 Diels-Alder reactions on bare diamond (001) 2×1 surface

The Diels-Alder reaction scheme of a 1,3-butadiene with a bare diamond surface

dimer is shown schematically in Figure 4.2. Upon reaction, the 1,3-butadiene mole-

cules break the diamond dimer π bonds and form cyclohexene-like structures on the 

surface [71, 97]. With dimer π bond breaking, its related π-bonding (occupied) and 

π*-antibonding (unoccupied) surface states are expected to diminish, which is indeed 

confirmed by PES (Figure 4.3) and NEXAFS (Figure 4.4) respectively. Figure 4.3(i)

shows the changes to the valence band spectra of bare diamond after exposures to 1,3-

butadiene. There is an obvious intensity decrease of the peak labeled SS with increas-

ing 1,3-butadiene dosage. As described in the previous chapter, this peak near the

Fermi energy represents the dimer  bond induced surface state. In contrast, the peak

at 13 eV which is a fingerprint of the sp3 bonding in bulk single crystalline diamond is

only slightly attenuated. Hence the gradual decrease of the SS peak directly indicates a

chemical reaction on diamond surface that breaks the dimer  bonds rather than a

simple attenuation of the SS peak photoemission intensity due to physisorbed molecu-

lar overlayers. Besides the surface state diminishing, there is a slight intensity

enhancement of the broad region at 5-10 eV, which originates from the C 2p states of

Figure 4.2. Diels-Alder reaction of 1,3-butadiene with bare diamond C(001)-2×1 surface.



Chapter 4 Cycloadditions on Bare Diamond (001) 2×1 Surface

81

absorbed molecules. Above the dosage of 1360 L, the valence bands barely change,

indicating the saturation dosage is reached.

Similarly, the surface component intensity in the C 1s core-level spectra (Figure

4.3ii) drops significantly with increasing dosage. The ratio of the surface component

intensity to the total C 1s PES intensity declines from 31% for bare diamond to about

9 % at saturation dosage (3300 L) as shown in the inset, which cannot be caused by

simple physisorption2. Meanwhile, the position of the surface component shifts to

higher BE after 60 L 1,3-butadiene dosing, and remain unchanged afterwards. It is

2 In a simple physisorption model, assuming the relative intensity ratio between surface component and bulk

component of diamond is invariant, from the attenuation of bulk component the thickness of 1,3-butadiene

physisorbed overlayers is then estimated to be over 10 Å which is equivalent to about 2-3 monolayers.
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known that the energy difference between the surface component and bulk component

arises from the more effective core-hole screening by the π-electrons in surface 

dimers [59]. The bonding of molecules on the surface, however, greatly reduces the π-

electron densities and hence the core-hole screening effect, resulting in decreased

energy separation. Even at saturation dosage, we are unable to resolve 1,3-butadiene

related emission signals due to large energy overlap with the diamond main line at

284.90 eV. However, the spectral width of this peak after deconvolution shows a

noticeable increase after reaction (FWHMbare = 0.75 eV, FWHMreacted = 0.85 eV),

indicating the incorporation of molecular components. Nevertheless, emission from

bulk diamond still dominates this peak, and its energy position remains unchanged

after the chemical reaction. Since the BE of diamond main line is related to the band

bending in bulk diamond associated with space charge layers, its invariance after

reaction thus indicates the cycloaddition on diamond surface involving homopolar

C—C bond formation does not induce interfacial charge transfer.

In addition to the changes brought to the occupied states by cycloaddition, the

unoccupied states of diamond surface are equally influenced. Figure 4.4 presents the

NEXAFS of the C K-edge before and after gas exposure of 1360 L in surface sensi-

tive AEY mode. Both spectra are characteristic of bulk diamond [76, 78-79] (also see

Chapter 3). However, they are different in the pre-edge region. In the bare diamond

spectrum, two surface excitonic peaks (Ex1 and Ex2) appear in the band gap below the

bulk core excitation threshold (289.3 eV). They are explicitly related to resonant

transitions to the π*-antibonding states of surface dimers (see Chapter 3.3.2.3). After 

exposure to 1,3-butadiene, the two surface resonances Ex1 and Ex2 disappear and a

new resonance peak at 285.0 eV appears which is at typical energy of the C(1s)→π* 

transition in C=C bonds [41]. This newly formed peak is attributable to the remaining
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C=C bonds of the cyclohexene-like products on the surface (see Figure 4.2). A subtle

shoulder at around 287.5 eV corresponds to the C(1s)→σ* resonance within the C-H 

bonds of surface products [41]. The present NEXAFS results are thus consistent with

the Diels-Alder reaction scheme shown in Figure 4.2.

4.3 Enhanced secondary electron emission and reduced electron
affinity by Diels-Alder reaction

Combining PES and NEXAFS, the chemisorption of 1,3-butadiene on diamond via

Diels-Alder reaction is successfully demonstrated. We now turn our attention to

analysis of the tuning effect of cycloadditions on several important surface electronic

properties of diamond. The secondary electron emission of the diamond surface under

different 1,3-butadiene dosages is investigated by recording the low KE regions of

UPS spectra at a photon energy of 60 eV, as shown in Figure 4.5a. The emission
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Figure 4.4. NEXAFS spectra of bare diamond (001)-2×1 and diamond surface exposed to
1360 L 1,3-butadiene. NEXAFS spectra were collected in AEY mode. The photon incidence
angle was 50º from surface normal, and the auger electron (C KVV) collection angle was in
normal direction.



Chapter 4 Cycloadditions on Bare Diamond (001) 2×1 Surface

84

spectra of the bare diamond surface as well as that exposed to 1,3-butadiene below 10

L dosage are almost identical, featuring a very broad and low intensity peak above 5.3

eV kinetic energy, which is typical of a PEA surface (see Chapter 3.3.2.2). At the

dosage of about 10 L, a very sharp and intense peak centered at 5.10 eV with a

FWHM of 0.23 eV appears, and the intensity of the emission peak, which is the

integrated area over the range 4 eV to 10 eV, is about 4 times larger than that from the

bare diamond. Meanwhile the onset of emission shifts about 0.42 eV to lower KE.

Considering this low KE cut-off as the position of the VL (Evac), the WF of the

reacted diamond is therefore reduced by 0.42 eV accordingly. With further dosages,

the secondary electron emission increases continuously but at a much slower rate, and

the WF decreases correspondingly as shown in Figure 4.5b. The FWHM of the

secondary electron peak increases from 0.23 eV at 10 L to 0.40 eV at 3300 L as well.

The effects of the emission peak intensity and WF by cycloadditions appear to

saturate above 3300 L from the trends in Figure 4.5b. At saturation dosage, the

secondary electron emission intensity experiences over 13 times enhancement as

compared to pristine bare diamond. However, even at the highest dosage, the WF of

the functionalized surface ( 4.6 eV  ) is still 0.6 eV higher than that of hydroge-

nated diamond, and the corresponding intensity of the sharp secondary electron

emission peak reaches 60% of the hydrogenated diamond surface after proper norma-

lization.
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Figure 4.5. (a): Low KE region of normal emission UPS spectra (hv=60 eV) of diamond
sample under different surface conditions. The KE scale is corrected for an applied bias
voltage of -5 V. The inset is a magnification of the onset of emission part illustrating the shift
of VL. The vertical dashed lines indicate the position of VL. The arrow represents the
position of CBM as discussed in text. (b): The dependence of the secondary electron emission
intensity (area of the sharp emission peak from 4 eV to 10 eV) and the WF on 1,3-butadiene
dosages.
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Table 4.1. The EA value χE and the WF E for different diamond surface conditions

determined by the low KE part of the UPS normal emission spectra in Figure 4.5. χC is the
EA value determined by DFT calculation.

Diamond E (eV) χE (eV) χc (eV)

C(001)-2×1 5.3±0.1 0.8±0.15 0.28

Dose 1L 5.3±0.1 0.8±0.15

Dose 10L 4.9±0.1 0.4±0.15

Dose 60L 4.8±0.1 0.3±0.15

Dose 360L 4.7±0.1 0.2±0.15

Dose 1360L 4.7±0.1 0.2±0.15

Dose 3300L 4.6±0.1 0.1±0.15

25% coverage -0.72

0.1 eV (3300 L) 

0.7 eV 0.8 eV (bare) 

Figure 4.6. Energy band diagram of bare diamond (001) with subsequent 1,3-butadiene
adsorption. An interface dipole of 0.7 eV after 1,3-butadiene saturation dosage is present
which lowers the VL by the same amount. All values are estimated to lie within an error of
0.10 eV. The secondary electron emission process is also schematically presented. The
internal energy distribution profile of secondary electrons as well as the experimentally
measured secondary electron emission spectra at different surface EA (blue curves) is
schematically presented.



Chapter 4 Cycloadditions on Bare Diamond (001) 2×1 Surface

87

This sharp and intense emission peak after reaction seems to suggest that the cyc-

loadditions with 1,3-butadiene transform bare diamond to a NEA surface, Indeed,

many earlier electron-emission studies interpreted the presence of a sharp peak in the

secondary electron emission spectra as the sole evidence of a NEA surface without

actually determining the EA χ [66, 70, 103]. However, it has been recently pointed out

by Yater et al. that the sharply peaked energy distribution can also be attributed to a

small but positive EA [72], because the internal energy distribution of the impact-

ionized secondary electrons may be sharply peaked above the CBM. Consequently,

the quantitative value of EA needs to be derived from experimental results in order to

clarify the tuning effect of cycloaddition.

The detailed procedure of deriving EA from the relative position of CBM and VL

is described in Chapter 3.2.2.2, which uses the BE of diamond C 1s bulk component

to indirectly deduce the position of CBM (ECBM) relative to the Fermi level (EF). It

should be noted that cycloadditions with 1,3-butadiene do not lead to shifts of the

diamond main line (Figure 4.3ii), indicating the position of CBM also remains un-

changed. Table 4.1 lists the as-determined WF and EA for bare diamond with

increasing molecular dosages. This explains how the EA quantitatively decreases with

increasing dosage of 1,3-butadiene, and a reduction of EA up to 0.7 eV is reached at

saturation dosage. However, the EA of diamond sample at the saturation dosage is

still about 1.2 eV higher than that of hydrogenated diamond. From the above analysis,

we are able to sketch the energy diagrams for bare diamond surface with 1,3-

butadiene adsorption. As shown in Figure 4.6, an interface dipole with magnitude up

to 0.7 eV brings down the VL very close to conduction band edge.

As discussed in the previous chapter, the EA in a material is defined as the ener-

gy difference between the VL and CBM. For most materials, the EA value is positive,
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which means that the secondary electrons thermalized to the CBM have to overcome

an energy barrier equal to the EA in order to be emitted into vacuum, and as a result

the secondary electron emission is relatively low as in the case for bare diamond.

With the lowering of the barrier height (EA), more and more secondary electrons can

escape from the surface with increased secondary electron emission intensity. In wide

band gap materials such as diamond, the conduction band can be close to or even

above the VL. With this small or even negative EA, secondary electrons can be

emitted into vacuum with little or no energy barrier, leading to very high secondary

electron emission in the form of a sharp peak as for hydrogenated diamond. It should

be noted that the band bending in diamond also play a role in the enhanced secondary

electron emission, because the downward band bending potential helps to accelerate

electrons that are excited into the conduction band toward the interface, leading to

increased electron density accumulated at surface CBM region. In such a case, the

emitted secondary electron energy distribution from UPS can be simply viewed as the

energy profile of the secondary electrons that reach the surface. This energy profile is

influenced by both the density of available states in the conduction band, band bend-

ing, and the complex multiple-scattering and recombination mechanisms during

diffusion to the surface [72]. Thus, the peak of the emission spectra may not coincide

with the position of CBM. Consequently, for diamond surfaces undergoing Diels-

Alder reaction with 1,3-butadiene, despite its small PEA, we could still observe sharp

and intense secondary electron peaks up to EA of +0.4±0.15 eV for 10 L dosage. This

is because the secondary electron energy distribution which is related to the internal

energy distribution of impact-ionized electrons is actually sharply peaked at ~0.3-0.7

eV above ECBM for reacted diamond surfaces (as seen from Figure 4.5a). The ability to

probe those electrons by the analyzer is highly dependent on the position of VL at the
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surface (see illustration in Figure 4.6). Therefore, as long as the VL Evac lies within or

below this distribution ( χ<0.7 eV ), the so-called NEA peak will be observed. As χ

increases and more secondary electrons are blocked by a higher energy barrier, the

peak becomes narrower and lower in intensity, until it finally vanishes with sufficient-

ly large EA.

The enhanced secondary electron emission process in the presence of a strong in-

terface dipole can be understood in a way similar to the field emission process which

is the emission of electrons from the surface of a condensed phase into another phase

due to the presence of high electric fields. The only difference is in field emission the

emitted electrons are from the Fermi level, while in this case the electrons are mainly

hot electrons accumulated at the CBM of diamond. The fundamental mechanism

underlying field emission is the quantum mechanical tunneling process called Fowler-

Nordheim tunneling [7]. The electric field, which helps to reduce the potential barrier

(WF) at the surface, should be on the order of 106 V/cm for efficient field emission.
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Figure 4.7. The secondary electron emission intensity I as a function of interface dipole
which is the change of EA (  ) compared with pristine bare diamond. The data points are

fitted by a dotted line, with the equation shown in the graph.
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The interface dipole of 0.7 eV over several Angstrom in the present case results in a

strong electric field of the order of 107 V/cm, which easily exceeds this requirement.

Consequently, the intensity of secondary electron emission I can be related to the

magnitude of interface dipole  (i.e. change of EA) by adopting the Fowler-

Nordheim tunneling relationship:

2 exp
b

I 


 
   

 
. (4.1)

The continuous tuning of diamond EA by cycloadditions provides a unique op-

portunity for us to quantitatively model the dependence of secondary electron

emission intensity on the EA. The data points extracted from Figure 4.5 and Table 4.1

is plotted in Figure 4.7, and they can be well fitted by Eqn. (4.1) with fitting parame-

ters listed in the graph. This relationship could be generally applied to other systems

as well.

4.4 Origin of the tuning effect of Diels-Alder reaction on electron
affinity

The WF (EA) variation induced by adsorbates (both physisorption and chemisorption)

on solid surfaces is a common phenomenon. The adsorbed atoms and molecules

generally have a significant influence on the electronic structure of a surface [52].

They can rearrange the electronic charge on the surface; they can induce interfacial

charge transfer that leads to charge separation; they can form chemical bonds with

electronic charge rearrangement within the bond; or they can add elementary dipoles

if the adsorbed molecule has its own static dipole moment [104]. In every scenario, an

interface (surface) dipole is present on the surface which abruptly shifts the VL. For

example, for close-shell adsorbates such as Xe atoms and most conjugated molecules

physisorbed on metal surfaces, an exchange-like Pauli-repulsion of electronic clouds
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of adsorbates pushes back the metal surface electron tailings leading to an interface

dipole layer with abrupt reduced WF [105]. However, this push-back effect is negligi-

ble on semiconductor surfaces due to the much more localized surface electron

densities, whereas chemical bond formation and interfacial charge transfer are the

leading causes.

For Diels-Alder reaction with 1,3-butadiene on bare diamond, the interfacial

charge transfer can be neglected since no energy shift of the diamond component is

observed. Furthermore, covalent bonds formed at their interface are homopolar C—C

bonds which should not induce any dipole moment. This argument is further corrobo-

rated by a control experiment of adsorption of fullerene (C60) adlayers on bare

diamond (Figure 4.8). A C60 molecule, being nothing more than a strained poly-

alkene, can react as both a diene or a dienophile in Diels-Alder reactions [106].

Therefore, they can react with bare diamond dimers in a way similar to 1,3-butadiene,

which is indeed experimentally verified [107]. But unlike 1,3-butadiene, C60 is made

up of carbon atoms only and has no internal dipole. As shown in Figure 4.8, the

adsorption of C60 induced a VL change of less than 0.1 eV. The shape and intensity of

the emission peak after reaction is also close to pristine bare diamond, in clear con-

trast to the absorption of 1,3-butadiene. This convincingly demonstrates that C—C

bond formation at the diamond/molecule interface by cycloadditions alone cannot

contribute to the observed tuning effect, whereas the internal dipole moment of the

reaction product is the most cause.

Inspection of the reaction scheme in Figure 4.2 suggests the cyclohexene-like

reaction product might provide such a dipole moment. If we view the attached mole-

cular adducts as an extension of the diamond surface lattice, its terminal C—H bonds

have dipole moments pointing from the more electronegative C (δ-) to less electro-
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negative H (δ+). For this interpretation to be plausible, the dipole moments must point

toward the vacuum side to give rise to a surface electrostatic potential drop in a way

similar to NEA of hydrogenated diamond. This argument would require a specific

geometry of the reaction product to contribute a net perpendicular component of the

dipole moment relative to the surface. Since the C—H bond orientation cannot be

derived from present spectroscopic studies, DFT calculations3 are needed to optimize

the geometries of the reaction products [108-109].

4.4.1 Optimization of surface geometry by DFT calculations

The optimized surface structure is shown in Figure 4.9, with the bond lengths and

angles listed in Table 4.2. The [4+2] product has a six-member ring containing one

3 The first-principles DFT calculations using the plane wave basis VASP code within the generalized gradient

approximation (GGA) is performed by Dr. Lei Liu in Department of Physics, NUS. Ultrasoft pseudopotentials

were employed as the ionic potential for all the elements. Sampling k-points with 0.05 Å-1 separation in the

Brillouin zone were used. All structures were optimized and relaxed such that the change in energy upon ion

displacement was less than 1 meV.
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double bond at the top. The C—C bond lengths are typical of molecular single and

double bonds with the exception of the reacted surface dimer bond, consistent with

previous calculations [55, 75, 98, 110]. The coverage of 1,3-butadiene used in the

calculation is 25%, corresponding to one adsorbed molecule for every four surface

dimer sites. A higher coverage was found to significantly increase the total energy due

to the steric repulsion between hydrogen atoms of adjacent molecules, and this causes

the system to become energetically unstable [110]. At 25% coverage, the plane of the

six member ring is perpendicular to the diamond surface at its energy minimum. This

vertical configuration is attributed to the repulsive interaction of adjacent unreacted

dimers with the  bond of the [4+2] cycloaddition product [98]. In this configuration,

the two terminal C—H bonds (C2—H2 and C3—H3) that lie in the six-member ring

plane are directly pointing to the vacuum side, with a tilting angle of 29.4º from

surface normal (Table 4.2), similar to that of the C—H bonds on hydrogenated

diamond (24.5º) [55, 57]. Therefore, the lowering of VL and EA through adsorption

of 1,3-butadiene molecules is indeed analogous to the hydrogenated diamond (001)

surface in which the dipole moments from terminal C—H bonds form a planar dipole

layer. With increasing coverage of adsorbed molecules, the planar average of the

electrostatic potential field of this dipole layer will continuously lower the VL until

the molecules reach saturation coverage, at which the total interface dipole due to

molecular adsorbates reaches 0.7 eV. It should be noted that the other four C—H

bonds (C1—H1, C1—H1', C4—H4, C4—H4' in Figure 4.9) lie parallel to the di-

amond surface and thus do not contribute to the surface dipole layer.
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Table 4.2. Bond lengths, angles for the Diels-Alder reaction product in Figure 4.9.

bond length (Å) angle(deg)

A-B C5-C6 C6-C1 C1-C2 C2-C3 C3-C4 C4-C5 C2-H2 C3-C2-H2

1.38 1.66 1.56 1.51 1.33 1.51 1.56 1.09 119.4

4.4.2 DFT calculations of the electron affinity

The lowering of VL via attachment of 1,3-butadiene molecules is further supported by

DFT calculations of the plane-averaged electrostatic potentials for the bare, hydroge-

nated and 1,3-butadiene adsorbed diamond surfaces. The diamond structure was

modeled by a supercell containing twenty layers of diamond and a 20 Å vacuum

region, to avoid interactions between periodically repeated slabs. Both surfaces of the

slab were kept equivalent, so the calculated electrostatic potentials can be well aligned

in the central bulk region.

Figure 4.9. Ball-and-stick models show the side view of Diels-Alder reaction of 1,3-
butadiene with C(001)-2×1 surface. Dark gray and light gray balls represent C and H atoms
respectively. These models have been relaxed so that the structure shown reflects the actual
geometry.
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In Figure 4.10, we plot the plane-averaged potential for different diamond (001)

surface conditions. All the potentials agree well inside the bulk and flatten out in the

vacuum region, indicating good convergence with respect to the number of diamond

layers and the size of the vacuum layers adopted in the calculation. The position of the

VBM (EVBM ) is computed using bulk diamond calculations. By adding the experi-

mental band gap Egap = 5.47 eV, the position of the CBM (ECBM) can be determined.

As seen in Fig. 5, the bare C(001)-2×1 has the largest potential barrier; its VL (indi-

cated by the flat potential region) lies above the CBM, giving an EA of +0.28 eV.

With the attachment of 1,3-butadiene, the VL is indeed significantly lowered by 1.0

eV with an EA of -0.72 eV. The hydrogenated surface has the lowest VL with a NEA

of -2.32 eV, in agreement with previous calculations [74-75] which are known to be

significantly overestimated. Moreover, the flattening out region for 1,3-butadiene

attached surface begins several Å father away from center than those of bare and
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hydrogenated diamond, consistent with the position of the outer C—H bonds of the

reaction product (Figure 4.9). When these calculated values are compared to the

experimentally determined EA values as listed in Table 4.1, large discrepancies can

be found. The inconsistency may arise from the following two reasons. First, the

positions of ECBM and EVBM labeled in Figure 4.10 are calculated using bulk diamond

lattices without considering possible band bending near the surface region. Figure 4.6

shows that the band bending is 0.7 eV for the bare diamond surface. Taking this band

bending into account, the calculated EA for bare diamond is increased to 1.0 eV, in

good agreement with the experimental value of 0.8±0.15 eV (Table 4.1). Second, the

change of EA due to the attachment of molecules is proportional to the potential step

caused by the surface dipoles and can be expressed by the basic electrostatics equa-

tion Eqn. (3.2). The depolarization factor S(n) which depends on n takes the mutual

electrostatic interaction of the dipoles into account and approximately equals to 1 at

present low dipole density. From Eqn. (3.2), it is obvious that the change of EA is

thus directly proportional to the surface dipole density, which in turn is proportional

to the 1,3-butadiene coverage. The coverage of butadiene used in the theoretical

calculations is 25%, which may be substantially higher than the actual coverage in the

experiments leading to the overestimated EA changes. By comparing the measured χ 

(0.70 eV) at saturation dosage with the calculated one (1.00 eV) for 1,3-butadiene

adsorbed surface, we can estimate the coverage of 1,3-butadiene to be about 17% at

saturation dosage. This low coverage is responsible for the higher EA and lower

secondary electron emission than that of the fully hydrogenated surface. It should be

noted that change in EA does not scale linearly with the coverage of the adsorbates at

high coverages (e.g. >50%). On one hand, at high dipole densities the depolarization

factor S(n) cannot be approximated to 1 any more and it tends to decrease the elec-
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trostatic potential drop induced by the dipole layer. On the other hand, at high cove-

rages the geometry of adsorbed molecules is reoriented due to the need to minimize

steric repulsion between neighboring molecules. This causes their terminal C—H

bonds to be tilted toward the surface plane, thus reducing the perpendicular compo-

nent of the dipole moments [110].

4.5 Chapter summary

In this chapter, the tuning of EA and secondary electron emission by Diels-Alder

reaction of 1,3-butadiene with bare diamond surface is investigated by synchrotron-

based spectroscopies and DFT calculations. A significant reduction in EA up to 0.7

eV and enhancement of secondary electron emission were observed after 1,3-

butadiene absorption. The lowering of VL via 1,3-butadiene is supported by DFT

calculations. It was found the terminal C—H bonds in the covalently bonded organics

on diamond contribute to the enhanced secondary electron emission and reduced EA

in a mechanism similar to C—H bonds on hydrogenated diamond surface with a field

emission-like emission process. This mechanism for tuning electron affinity by

cycloadditions can be applied to other hydrocarbon molecules on diamond as well,

where similar phenomenon have been observed [100].
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CHAPTER 5

ORGANIC SEMICONDUCTOR ON DIAMOND: A
COMPARATIVE STUDY OF COPPER

PHTHALOCYANINE ON HYDROGENATED AND BARE
DIAMOND (001) 2×1 SURFACES

5.1 Introduction

In the previous chapter, we examined the cycloadditions with 1,3-butadiene on bare

diamond surface and its tuning effect on surface electronic properties. Being a simple

organic molecule with two unsaturated double bonds, 1,3-butadiene serves as a simple

but good model organic system to investigate cycloadditions on solid substrates.

However, its structural simplicity also limits its functionalities. From a technological

point of view, functionalization of diamond with more complex organic molecules,

especially those with conjugated π-electron systems are of great interest. These 

organic molecules, when assembled into thin films or crystals, often behave as

semiconductors [111-112] and may therefore have the potential to function as active

components in diamond-based organic electronic devices.

In recent years, organic semiconductors have attracted much attention for low-

cost, large-scale and flexible electronic device applications [30, 113-118], encompass-

ing organic light emitting diodes (OLEDs), organic solar cells, organic field effect

transistors (OFETs) and organic spintronics. Intensive research effort has been

devoted to studying the growth of organic thin films with well-controlled properties,

such as molecular orientation [119-121], supramolecular organization [122-126] and

well-defined surface or interface morphologies or nanostructures [127-131]. It is

widely accepted that the interface between the active organic layers and the substrate,

i.e., molecule-electrode or molecule-dielectric interface, plays a crucial role in achiev-

ing good device performance. Consequently much effort has been spent to understand
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energy level alignment and the formation of interfacial dipoles at the interface be-

tween molecules and metals, semiconductor or conducting polymers [104, 132-133].

Moreover, the supramolecular organization at the interface, which can in turn influ-

ence the crystalline structure and orderliness of subsequent grown molecular films, is

found to be governed by a delicate interplay between the intermolecular interactions

and the molecule-substrate interactions [134-136]. Understanding their relationships

is crucial to optimize the morphology, structures and electronic properties of organic

thin films for device applications. Till now, most of the research efforts have been

devoted to studying the interfaces between organic semiconductors and several

technologically important substrates including metals and conducting polymer elec-

trodes, organic heterojunctions, and inorganic semiconductors such as silicon. Much

less attention has been paid to understanding interfacial interactions between organic

semiconductors and diamond.

Diamond (001) provides an excellent platform to examine how the interfacial in-

teraction strength influences the electronic structure, energy level alignment and

molecular organization at their interfaces. The surface reactivity of diamond can be

easily tuned by varying the surface termination. As discussed in the previous chapters,

bare diamond surface exhibits reactivity towards unsaturated molecules via cycloaddi-

tions; and hence this interface is dominated by strong covalent bonding interactions.

On the contrary, hydrogen termination passivates all the dangling bonds of reactive

dimers, rendering the hydrogenated diamond surface chemically inert. As a result, the

interfacial interactions between hydrogenated diamond surface and organic semicon-

ductors are expected to be dominated by weak Van-der-Waals-type interactions.

Diamond thus provides a unique opportunity to realize these two distinct interfa-

cial interactions on the same substrate, which can be exploited in different device
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architectures. Covalent interactions at interfaces can strongly couple the organics onto

the substrate lattice, integrating properties and features of both organic and inorganic

semiconductors. This is vital for the realization of organic-inorganic hybrid devices.

Weak van-der-Waals-type interactions at interfaces, on the other hand, can better

retain the structural and electronic integrity of organic semiconductor molecules,

which is important for devices that rely on the charge transport in organic active

layers close to the interface, such as OFETs. Clarifying the interfacial properties

between diamond and organic semiconductors, therefore, has important implications

for understanding and engineering organic/inorganic interfaces.

Copper(II) phthalocyanine (CuPc) is traditionally used as an organic pigment

[137]. It is now a widely adopted organic semiconductor with high chemical stability

and remarkable electronic properties (e.g. high hole mobility [138], superconducting

upon alkali doping [139]), and represents one of the most promising candidates for

organic electronics [140-143]; it therefore serves as an excellent archetypical organic

semiconductor for the present study. The CuPc molecule has a planar structure with

fourfold-symmetry, and is comprised of four aromatic rings around a porphyrin-like

central ring with a copper ion (Cu2+) at its center (Figure 5.1). It belongs to the

phthalocyanine family with different metal centers (or metal free Pc). The phthalo-

Figure 5.1. Chemical structure of CuPc.
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cyanine ligand has a complex electronic structure which is further complicated by the

introduction of the transition metal ion into the system. The overlapping of the Cu 3d

electronic states with ligand 2p states produces a combination of both localized and

delocalized molecular frontier orbitals near the Fermi level [144-145]. Among them,

the peculiar singly occupied molecular orbital (SOMO) is largely derived from Cu

3dx2-y2 orbital (with b1g symmetry), making CuPc distinct from the other metal-Pcs

[144-146].

Depending on the growth parameters, bulk CuPc molecular solids exist in several

different crystalline polymorphs, and the two most important monoclinic crystalline

forms are denoted α and β forms (c.f. Figure 5.2 and Table 5.1) [143]. In general,

films in α-form can be more easily grown by vacuum deposition on substrates at RT,

whereas the β-form is observed if the substrate is kept at elevated temperatures (>210

ºC) during deposition. Moreover, the α→β phase transition can be achieved by

annealing the film in N2 ambient at 350 ºC [147]. In both polymorphs, the molecules

form molecular columns along the b axis with molecular plane parallel to each other

(π—π stacking), while the adjacent columns are arranged into a herringbone-like 

structure. The major difference between the two polymorphs is the angle between the

normal direction of molecular plane and the stacking direction (b axis), which is about

26º in the α-form and 45º in the β-form. As a result, despite of different Cu-Cu

distances (equal to b), the interlayer distance (d) within the molecular column is

almost the same (~3.4 Å) for both forms. The herringbone packing of molecular

crystals often leads to anisotropic electronic properties, such as electric conductivity.

Along the π—π stacking direction (b axis), the intermolecular interactions are stronger

due to larger overlapping of π-orbitals between adjacent molecules than in the per-
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pendicular direction, resulting in more dispersed orbital-derived intermolecular

electronic bands with enhanced charge carrier mobilities [148].

Table 5.1. Lattice parameters of α and β form of CuPc crystals.

a (Å) b (Å) c (Å) β (deg) mol/unit cell

α-form 25.92 3.79 23.92 90.4 4

β-form 19.6 4.79 14.6 120.6 2

Figure 5.2. Crystalline structures of α and β forms of CuPc crystals.
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The electronic structures and growth mode of CuPc films on various substrates

(metals, inorganic and organic semiconductors) have been extensively investigated

[149-173]. Its numerous unsaturated bonds are expected to readily react with reactive

inorganic semiconductor surfaces with dangling bonds. This is already confirmed by

PES and STM studies of the adsorption and bonding of CuPc molecules on Si(111)

and Si(100) surfaces [149-152, 162]. However, to our knowledge no studies have

been carried out on diamond (001) 2×1 which bears similarities to the Si(100) 2×1.

In this chapter, I will discuss and compare the in-situ adsorption of CuPc mole-

cules on hydrogenated diamond C(001) 2×1:H as well as on bare diamond C(001)

2×1, focusing on the differences in interfacial electronic structures and supramolecu-

lar organizations. The different interactions between molecules and the two diamond

surfaces are mainly explored by synchrotron-based PES. I will also systematically

show how the different nature of molecule-substrate interactions influences the

ordering and molecular orientation at different coverages using angular-dependent

NEXAFS spectroscopy.
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5.2 CuPc on hydrogenated diamond surface

5.2.1 C 1s and N 1s core level PES spectra

The evolution of C 1s PES spectra with increasing CuPc thickness is shown in

Figure 5.3. The cleanliness of pristine hydrogenated diamond surface after mild

annealing (400 ~ 600 ºC) to desorb loosely adsorbed hydrocarbon molecules is

confirmed by the single C 1s bulk component located at 284.3 eV. Subsequent step-

by-step deposition of CuPc leads to continuous changes to the C 1s line shape from

that of the diamond substrate to that of the deposited CuPc film. At large thickness

(50 Å), the signal from diamond substrate is completely attenuated and the C 1s

spectrum is characteristic of CuPc films with three distinctive peaks (labeled C1, C2,

SC2 in Figure 5.3). Both the relative peak positions and area ratios of individual CuPc

components agree well with previous studies of CuPc films [151, 153-156]. They are

attributed to the aromatic carbon of the benzene rings (C1), pyrrole carbon linked to
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Figure 5.3. C 1s PES spectra (photon energy, 350 eV) of CuPc on hydrogenated diamond
with increasing thickness. C 1s spectra are all normalized to the same height for better
viewing. Solid lines through the experimental data points demonstrate the results of the least-
squares fitting.
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nitrogen (C2) and a shake-up satellite of C2 carbon (SC2) related to intramolecular π-

π* transitions, respectively. Although there should be an additional satellite feature 

associated with the aromatic carbon (C1) hidden within the C2 feature, the C2 peak

can be fitted very well using a single voigt-shape peak. During the fitting process, the

energy separations and the intensity ratio of individual peaks of CuPc were fixed,

whereas their absolute energy positions and widths were free fitting parameters. As

shown in Figure 5.3, the C 1s spectra measured after each deposition step of CuPc on

hydrogenated diamond surface can be satisfactorily fitted by a superposition of

spectra from diamond and CuPc with different spectral weights. Additional compo-

nents are not necessary in the fitting process. After each deposition step, there were no

observable BE shifts for both diamond component and CuPc components within

experimental error of 0.05 eV.

The corresponding N 1s spectra of CuPc on hydrogenated diamond appear as one

dominant peak with its corresponding satellite located at 1.6-1.7 eV higher in BE (N-
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Figure 5.4. N 1s PES spectra (photon energy, 500 eV) of CuPc on hydrogenated diamond
with increasing thickness.
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S), typical of CuPc bulk films (Figure 5.4) as well [156]. The FWHM of the main

peak is around 1.0 eV at all coverages of CuPc, indicating the integrity of Cu-N bonds

and hence the molecular structure. Its energy position also remains the same at

different thicknesses. It should be noted that the chemical states of the aza-bridging

nitrogens (the outer four nitrogens bonded with two carbon atoms) and the pyrrolic

nitrogens (the inner four nitrogens bonded with carbon atoms and the central Cu metal

atom, see Figure 5.1) are very similar and thus they cannot be separated in the main

peak [156].

In both the C 1s (Figure 5.3) and N 1s (Figure 5.4) spectra, the absence of addi-

tional components other than those from bulk diamond and CuPc films, especially at

the earliest stages of CuPc deposition, clearly indicates that no chemical reaction

occurs at the interface due to the hydrogen passivation. More importantly, the di-

amond C 1s main line exhibits no shifts upon CuPc deposition. This suggests that the

electronic levels of the hydrogenated diamond substrate remain essentially unper-

turbed by CuPc deposition. In particular, the interfacial charge transfer, which is

generally observed between semiconductor/metal or semiconductor heterojunctions

due to their Fermi energy difference [52], is negligible at this interface. Otherwise, the

charge redistribution across the interface would modify the space charge layer in

hydrogenated diamond, causing electrostatic band bending which would be mani-

fested as a BE shift of diamond core-level states.
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5.2.2 Valence band spectra and work function measurements

Valence band spectra of hydrogenated diamond with deposited CuPc films at different

thicknesses are shown in Figure 5.5a. The spectrum of hydrogenated diamond is

typical for a diamond C(100) 2×1:H surface (see Chapter 3.2.2.1). Subsequent deposi-

tions of CuPc lead to gradual attenuation of diamond-associated valence band features

and the emergence of several new components originating from CuPc. At a nominal

thickness of 50 Å, various molecular orbitals derived states can be clearly resolved,

while diamond features completely disappear. The spectrum of 50 Å CuPc film is

typical of that for bulk CuPc with the HOMO peak at 1.70 ± 0.05 eV and its edge at

1.25 ± 0.05 eV (indicated by the vertical dashed lines in Figure 5.5) [154, 156]. No

additional spectral structures close to the Fermi level, which would otherwise indicate
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the appearance of interfacial gap states associated with chemical bond formations or

strong charge transfer, can be identified in Figure 5.5a. Therefore, the evolution of the

valence band spectra is consistent with the non-reactive nature of the heterojunction

between CuPc and hydrogenated diamond as concluded from the core-level PES

spectra.

Figure 5.5b shows the secondary electron emission recorded in the low KE part

of the UPS spectra. Pristine hydrogenated diamond exhibits a strong and sharp

secondary emission peak with a WF of 4.0 ± 0.1 eV, which is typical of a NEA

diamond surface (also see Chapter 3.2.2.2). This cut-off position barely changes with

subsequent CuPc depositions, indicating a common VL alignment across the

CuPc/diamond interface, in contrast to most organic/metal interfaces where a pro-

nounced shift of VL is observed as a result of interface dipole formation [104, 132-

Figure 5.6. Schematic energy level diagram of CuPc on hydrogenated diamond surface. The
LUMO position of CuPc film is estimated by adding the CuPc transport band gap of 2.3 eV
[158]. All values are estimated to within an error of 0.1 eV.
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133]. Since the formation of interface dipole is commonly associated with charge

transfer and charge redistribution (e.g. chemical bond formation, Pauli-repulsion) at

the interface, the absence of an interface dipole barrier at the interface between

hydrogenated diamond and CuPc corroborates our previous conclusion that neither

chemical reaction nor charge transfer occur at the interface.

Figure 5.6 shows the energy level alignment across the heterojunction. The de-

termination of energy levels of diamond is described in Chapter 3. Hydrogenated

diamond surface exhibits a pronounced NEA of -1.1 eV, with nearly flat bands

towards the surface. After the deposition of CuPc molecules, a common VL is

achieved across the interface. The passivation of hydrogen effectively prevents

diamond from reacting chemically with adsorbed organic molecules, and the energy

levels in diamond are unperturbed. Meanwhile, the apparent large energy barrier

between the diamond VBM and molecule’s LUMO excludes electron transfer at the

interface. On the molecular side, there is also no observable bending of molecular

energy levels in the CuPc film. The IP, which is the distance between HOMO and VL

is estimated to be about 5.2 eV by adding WF (4.0 eV) to the HOMO-EF energy

difference (1.25 eV), in agreement with the literature [156]. It is interesting to note

that a downward molecular level bending in CuPc films on metal surface is usually

observed, which is due to the more effective screening effect of photoholes by the

metal substrate for molecules in the vicinity of the metal than those farther away from

the interface, thereby reducing the BE of molecular energy states [154, 156]. However,

this final state effect is almost negligible on hydrogenated diamond surface due to its

much lower density of conduction electrons (i.e. low dielectric constant) compared

with metals.
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5.3 CuPc on bare diamond surface

5.3.1 C 1s and N 1s core level PES spectra

As discussed in Chapter 4, the highly strained double bonds (π plus σ) of bare di-

amond (001) dimers are reactive towards alkene-containing organic molecules

through cycloaddition reactions. Similarly, a CuPc molecule can be viewed as a giant

alkene-like molecule with numerous unsaturated double bonds, thereby allowing

chemical reactions to proceed on bare diamond. The chemical reaction occurring at

the CuPc and bare diamond interface is confirmed by C 1s and N 1s PES spectra.

Figure 5.7 shows the C 1s PES spectra of bare diamond with increasing CuPc thick-

ness. Upon the deposition of CuPc molecules, there is an apparent intensity decrease

of the dimer related surface state, which totally disappears with the emergence of C1

and C2 peaks from CuPc at a thickness of 2.7 Å. Following the same rationale in the
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Figure 5.7. C 1s PES spectra (photon energy, 350 eV) of CuPc on bare diamond with
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discussion of Diels-Alder reaction with 1,3-butadiene in Chapter 4, the radical sup-

pression of the bare diamond surface state is attributed to the cycloaddition-like

reaction that breaks the dimer π-bonds. However, neither the CuPc component nor 

additional components related to newly formed bonds between diamond and CuPc

can be resolved below the thickness of 2.7 Å, possibly due to overlaps with the

dominant diamond components. Subsequent depositions lead to further attenuations of

the diamond main line, and CuPc components become dominant. The well-formed

CuPc components (C1, C2, and SC2), especially the existence of the -* shake-up

satellite of C2 carbon (SC2), clearly indicate the integrity of CuPc molecules deposited

after all diamond dimers are passivated by the first CuPc monolayer. During the least-

squares fitting procedure, it was found that fixing both the relative energy positions

and intensities of individual peaks of CuPc cannot yield satisfactory fitting results.

This is attributed to the reacted first monolayer of molecules which is expected to be

structurally different from unreacted molecular overlayers; therefore the intensity

ratios of CuPc components were treated as free fitting parameters in the fitting

process. In contrast to a constant intensity ratio between C1 and C2 (C1/C2 = 2.3) of

CuPc on hydrogenated diamond, the ratio of C1 to C2 on bare diamond increases

from 1.3 at low coverage of CuPc (2.7 Å) to 3.0 at high coverage (36 Å). The increase

in C1/C2 ratio is attributable to the change of CuPc molecular orientation, resulting in

different attenuations of the pyrrolic (C2) and aromatic carbon (C1) signals respec-

tively. When CuPc molecules lie flat on the surface, the C 1s PES signals from

pyrrolic and aromatic carbon atoms are similarly attenuated, whereas for molecules

standing up on the surface the electrons from the pyrrolic C atoms (C2) are attenuated

by aromatic rings (C1) closer to the vacuum interface [159, 171]. Therefore, the

apparent increase in C1/C2 ratio as a function of film thickness suggests a change of
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CuPc molecular orientation from lying-down at monolayer coverage to standing up in

multilayers.

The corresponding N 1s spectra are shown in Figure 5.8. The spectral shape of

sub-monolayer CuPc deposited on bare diamond contrasts strongly with those of the

multilayer films (right panel of Figure 5.8). The initial deposition of 0.15 Å CuPc

already leads to the formation of two distinct peaks located at around 397.8 eV (peak

N1) and 398.8 eV (peak N2), respectively. Subsequent depositions lead to gradual

diminishing of the N2 intensity until it completely vanishes at a thickness of 2.7 Å.

Beyond the thickness of 2.7 Å, the spectra is dominated by peak N1 with a small

shake-up satellite peak located at 1.7 eV higher BE (N-S), resembling that of CuPc on

hydrogenated diamond as well as bulk CuPc films [156]. The N1 component is hence

attributed to nitrogen atoms of pristine CuPc molecules, while N2 is related to the

interfacial species of nitrogen atoms covalently bonded to diamond surface dimers. It
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should be noted that the N1 and N2 components at submonolayer coverages may

originate from the two inequivalent types of nitrogen atoms (aza-bridging and pyrrolic)

within the same CuPc molecule. Indeed, nitrogen atoms at the aza-bridging sites are

known to exhibit a higher reactivity than the pyrrolic ones. This was demonstrated

previously in potassium-doped CuPc, where it was found the K+ ions are prone to be

bonded close to the aza-bridging sites [160]. More recently, using STM combined

with DFT calculations, Baffou et. al demonstrated the anchoring of phthalocyanine

(Pc) molecules on the 6H-SiC(0001)3×3 surface through the formation of Si-N bonds

between two adjacent Si dangling bonds of SiC and two opposite aza-bridging N

atoms of the Pc molecule, while the inner pyrrolic N atoms remain intact [161].

Therefore, in our case it is very likely that a few aza-bridging nitrogen atoms within a

CuPc molecule are directly forming covalent bonds with the diamond dimers at the

interface and constitute the N2 component in Figure 5.8, whereas the remaining

unreacted nitrogen species including both the pyrrolic and aza-bridging ones form the

N1 component. However, the involvement of pyrrolic nitrogen in the interfacial

chemical reaction cannot be completely ruled out at the present stage.

Previous studies on the adsorption of CuPc on Si(111) 7×7 and Si(100) 2×1 have

shown strong chemical interactions between molecules and silicon dangling bonds

through the formation of Si-C and Si-N bonds which lead to a planar adsorption

geometry of CuPc molecules [149-152, 162]. Similarly, our PES results also indicate

that chemical reactions occur between diamond and CuPc molecules. The reaction

breaks the highly strained π bonds of surface dimers and directly couples the dimer 

atoms to C and N atoms of CuPc molecules through cycloaddition-like reactions, thus

functionalizing the diamond surface. Although a detailed reaction scheme and confi-

guration of CuPc on diamond cannot be formulated at the present stage, the
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observation of covalent bonding between nitrogen atoms and diamond dimers clearly

points to a lying-down geometry of CuPc molecules upon adsorption [152, 162],

which is in agreement with the evolution of C1/C2 ratio in C 1s PES spectra discussed

previously.

Figure 5.9 summarizes the BE shifts of the CuPc and diamond core-level compo-

nents as a function of CuPc thickness. Below a thickness of 3 Å, the N1 peak shifts

abruptly by 0.5 eV (Figure 5.8). The N1 peak continues to shift to higher BE at a

much slower rate with increasing coverage, and stabilizes above the thickness of 18

Å. As the CuPc components can only be resolved beyond the thickness of 2.7 Å in the

C 1s spectra (Figure 5.7), data points for C1 peak are not available at submonolayer

coverage. Nevertheless, the trend of the C1 core-level shift is consistent with that of

the N1 peak in at higher thicknesses, indicating a downward “band bending” like

molecular level shift in the CuPc film away from the interface. Similar energy shifts

of the CuPc film have been previously observed on gold [154], and they are attributed

285.0

284.8

284.6

35302520151050

CuPc Thickness ( )

CuPc C1 peak
diamond peak

398.6

398.4

398.2

398.0

397.8
CuPc N1 peak

Å

B
in

d
in

g
E

n
e

rg
y

(e
V

)
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as a function of CuPc thickness on bare diamond.
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to the final state photohole screening effect [174]. But the screening ability of metal is

much greater owing to its infinitely large dielectric constant as compared to ordinary

semiconductors. Therefore this effect can be neglected on diamond surface. Instead, a

partial charge transfer across the interface accompanying covalent bond formation

should contribute to the observed energy shifts. It is clear from Figure 5.9 that the

core-level BE shifts occur most significantly within the submonolayer regime (below

4 Å), in agreement with the scenario of charge transfer induced by an interfacial

chemical reaction [104]. Moreover, the “band bending” direction within the CuPc

film indicates that electrons are transferred from CuPc to diamond, leaving the CuPc

layers at the interface positively charged (hole accumulation) which moves the Fermi

level in the gap towards the HOMO. Away from the reaction interface, the molecular

layers become neutral and the Fermi level moves back into the mid-gap region.

Similar interfacial charge transfer and p-doping of CuPc films has been observed on

certain organic substrates, such as on conducting polymers (CPs) [175] and on self-

assembled monolayers (SAMs) [176]. The proposed charge transfer direction is

further corroborated by the subtle increase in diamond C 1s BE after CuPc deposition

(Figure 5.7 and Figure 5.9) indicating electron accumulation. In retrospect, the

cycloadditions with 1,3-butadiene on bare diamond do not induce any interfacial

charge transfer or charge rearrangement. However, the chemical reaction with CuPc

involves the formation of heteropolar C-N bonds between CuPc and surface dimers.

The π-electrons of CuPc participating in the reaction are also delocalized on a much 

larger scale than those of 1,3-butadiene. Consequently, charge transfer and charge

rearrangement across the interface as a result of a chemical reaction are not surprising.
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5.3.2 Valence band spectra and work function measurements

Valence band spectra of bare and CuPc-covered diamond are shown in Figure 5.10.

Similar to its corresponding C 1s spectrum, the valence band spectrum of bare di-

amond is characterized by a significant surface state (ss) near the valence band edge

(1.2 eV from EF) attributed to the π-bonded surface dimers. Therefore, the rapid 

intensity decrease of the surface state after the initial depositions of CuPc is consistent

with an interfacial chemical reaction. Further depositions lead to an overall attenua-

tion of the diamond features and the emergence of CuPc orbitals with the HOMO

state resolved (above the thickness of 5.7 Å). A closer inspection of the HOMO state

also reveals a continuous shift towards higher BE with increasing CuPc deposition,

consistent with the shift of CuPc core-level components.

The position of VL across the interface is very sensitive to interfacial charge

transfer and the formation of interface dipoles which are expected to arise as a result
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of chemical reactions. Consequently, the surface WF serves as a useful indicator for

these processes. Figure 5.11a shows the secondary electron emission of bare diamond

with increasing CuPc thickness. The emission from bare diamond surface is characte-

rized by a broad and low intensity distribution with emission cut-off at 5.3 eV. In

contrast to the scenario of CuPc on hydrogenated diamond where the VL barely shifts

at all thicknesses, the initial deposition of CuPc (0.15 Å) on bare diamond already

significantly shifts the VL by 0.55 eV to lower KE, indicating a drastic reduction of

diamond WF by the same amount. Meanwhile, the secondary electron emission

becomes a sharp peak centered around 5.3 eV with its peak height enhanced over 3

times as compared to that of bare diamond. Subsequent depositions lead to further

reduction of the WF which eventually drops to 3.6 eV at the thickness of 36 Å, a

value lower than that of hydrogenated diamond (i.e. 4.0 eV). The emission peak has

the narrowest FWHM of about 0.5 eV at the thickness of 0.45 Å, and becomes

moderately broadened with subsequent depositions.

Following the same derivation procedure described in Chapter 3 and Chapter 4,

we determined the EA values χ after CuPc depositions (Table 5.2). The dependence of

EA against CuPc thickness is plotted in Figure 5.11b. It is obvious that both the WF

and the EA are continuously reduced with increasing CuPc coverage, and after the

deposition of 1.2 Å CuPc the bare diamond surface is transformed from PEA to NEA.

The lowest attained EA is -0.7 eV, slightly larger than that of the hydrogenated

diamond surface (χ = -1.1 eV). Figure 5.11b also displays the secondary electron

emission peak height as a function of CuPc thickness. In the submonolayer range

(below 4 Å), the emission intensity rises sharply with CuPc thickness and reaches

about 30-times that of bare diamond at the thickness of 1.2 Å. Further depositions

cause the emission intensity to decline quickly with the film thickness, and it becomes
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comparable to that of bare diamond after the formation of CuPc multilayers but with

the sharp emission peak still present, indicating of a narrow energy distribution for

secondary electron emission.
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Figure 5.11. (a) Secondary electron emission of bare diamond with increasing CuPc thick-
ness (photon energy, 60 eV). The KE scale is corrected for an applied bias voltage of -5 V.
The cut-off of emission (vertical line in graph) indicates the position of VL relative to Fermi
level (EF). The secondary electron emission peaks are all normalized to have the same height
for better viewing. The actual peak height varies significantly as reported in (b). (b) EA and
secondary electron emission intensity of bare diamond as a function of CuPc thickness.
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Table 5.2. Energy levels of bare diamond and organic functionalized diamond with increas-
ing CuPc thicknesses. CB(1s): C 1s BE of bulk diamond component; EF – EVBM: energy
distance between Fermi level and VBM; ECBM – EF: energy distance between CBM and Fermi
level;  : WF; χ: EA.

Diamond
Surface with

CuPc [Å]

CB(1s) EF – EVBM ECBM – EF  χ

[eV] [eV] [eV] [eV] [eV]

Bare 284.90±0.05 1.0±0.1 4.5±0.1 5.3±0.1 +0.8±0.15

0.15 Å 285.05±0.05 1.1±0.1 4.4±0.1 4.7±0.1 +0.3±0.15

0.45 Å 285.10±0.05 1.2±0.1 4.3±0.1 4.5±0.1 +0.2±0.15

1.2 Å 285.12±0.05 1.2±0.1 4.3±0.1 4.2±0.1 -0.1±0.15

2.7 Å 285.06±0.05 1.2±0.1 4.3±0.1 4.1±0.1 -0.2±0.15

5.7 Å 285.05±0.05 1.2±0.1 4.3±0.1 4.0±0.1 -0.3±0.15

9.0 Å 285.05±0.05 1.2±0.1 4.3±0.1 3.8±0.1 -0.5±0.15

18 Å 285.05±0.05 1.2±0.1 4.3±0.1 3.8±0.1 -0.5±0.15

36 Å N.A. 1.2±0.1 4.3±0.1 3.6±0.1 -0.7±0.15

It is apparent from Figure 5.11b that both the EA and secondary electron emis-

sion intensity change most significantly within the first CuPc monolayer coverage

(below 4 Å) where these molecules are in direct chemical bonding with bare diamond.

Recalling the Diels-Alder reaction of diamond with 1,3-butadiene and other small

organic molecules which continuously tunes the diamond EA and secondary electron

emission intensity through the surface dipole layer built within the reaction product

(c.f. Chapter 4), a similar phenomenon observed here can be understood in analogy.

We propose that the numerous C-H bonds of the outer benzene rings of CuPc poten-

tially contribute a dipole layer which modifies the electrostatic potential outside the

surface. Although the chemical reaction between diamond and CuPc molecules

constrains the initially deposited molecules to lie flat, the formation of new covalent
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bonds leads inevitably to the loss of conjugation of the molecular system and even-

tually distorts the molecular geometry [101, 162]. As a result, the terminal C-H bonds

of the outer benzene rings are possibly bent out of the molecular plane and point

towards the vacuum side to form such interface dipole. Additional dipoles may

originate from the charge rearrangement and interfacial charge transfer via newly

formed covalent bonds. With increasing coverage of adsorbed molecules, the planar

average of the electrostatic potential field of the dipole layer provides a potential step

that lowers the VL. In comparison with the scenario of CuPc on hydrogenated di-

amond where no interface dipole layer is present, the crucial role of interfacial

chemical reaction in inducing the interface dipole is unambiguously demonstrated.

Although the internal energy distribution of secondary electrons inside diamond

is largely unperturbed by the organic functionalization, the ability to detect these

electrons is highly dependent on the position of VL at the surface. As a result, the

majority of the photoexcited electrons which thermalize to the CBM of diamond now

have a lower barrier for vacuum emission, leading to a giant enhancement and nar-

rower distribution of secondary electron emission with CuPc deposition. After the

bare diamond surface is completely passivated, the subsequently deposited molecules

no longer react with diamond and retain their flat geometry. Consequently, the dipole

moments of the terminal C-H bonds average out in every direction owing to the

internal symmetry of molecules, resulting in no net perpendicular component of the

dipole moment. Therefore, the WF and EA changes very slowly in the later deposition

stage, and this relatively small change is attributed to the “band bending”-like energy

shift within the CuPc multilayer.

As hot electrons from diamond CBM travel through the molecular layers, they

are largely attenuated by the unreacted CuPc overlayers through inelastic scattering,



Chapter 5 Organic Semiconductor on Diamond

121

leading to a rapid decay of the secondary electron emission intensity. However, the

sharp emission peak feature is still retained for CuPc thickness below 9 Å, which

indicates secondary electrons originating from diamond CBM still dominate. The

slight shifting of the emission peak to lower kinetic energy direction is consistent with

the downward band bending of diamond after organic deposition. At large CuPc

thickness (e.g. 36 Å) the secondary electrons originally emitted from diamond CBM

are largely inelastically scattered down to molecular unoccupied states and its energy

distribution does not reflects the internal energy distribution of electrons in diamond

any more [177-178]. As a result, shape of the secondary electron emission of 36 Å

CuPc is very different from that from thinner films.

In order to quantitatively evaluate the interface dipole induced by the adsorbed

molecules, the “band bending” contribution to the measured WF variation should be

isolated [133]. It is noted that both band bendings in diamond and in the organic film,

manifested by the BE shifts of the corresponding core-level components in the PES
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Figure 5.12. WF and band bending magnitudes as a function of CuPc thickness on bare
diamond surface. The band bending is calculated as the sum of diamond C 1s peak BE shift
and CuPc N1 peak BE shift.
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spectra, contribute to the decrease in WF upon CuPc deposition. In Figure 5.12, the

decrease in WF is plotted together with the sum of band bending in diamond and

CuPc film (i.e. the BE shift of diamond C 1s peak and CuPc N1 peak) as a function of

CuPc nominal thickness. The change of WF can be clearly divided into two transition

regimes. In the submonolayer regime (< 4 Å), the abrupt decrease (Δ ~ 1.2 eV) in WF 

is predominantly induced by the intramolecular dipole moment due to reacted CuPc

molecules. In multilayer regime (> 4 Å), the WF decreases slowly (Δ ~ 0.5 eV) with 

CuPc thickness, concurrent with the band bending. For all film thicknesses, the

change in WF is substantially larger than the band bending, with the difference

gradually enlarging with increasing thickness and stabilizing at about 0.7 eV above 4

Å thickness. This value is indicative of the magnitude of the intramolecular interface

dipole induced solely by the reacted CuPc molecules. This evolution is consistent

with the scenario whereby the interface dipole is fully developed within the first

monolayer of CuPc and subsequent variations in WF as well as EA are mainly attri-

buted to “band bending” inside the CuPc film. The 0.7 eV interface dipole induced by

reacted CuPc is comparable to that caused by the Diels-Alder reaction with 1,3-

butadiene, and considerable less than that formed on hydrogenated diamond (i.e. 1.9

eV, see Chapter 3.3.2.2), implying a much lower density of effective C-H dipoles.

5.3.3 Energy level alignment

Figure 5.13 depicts the schematic energy level diagram across the heterojunction of

CuPc on bare diamond. Pristine bare diamond has a PEA of + 0.8 eV (c.f. Chapter 3).

The first monolayer CuPc molecules undergo chemical reactions with the underlying

diamond dimers by forming new covalent bonds. The reacted molecules also build an

intramolecular dipole layer which significantly lowers the surface VL even below the

CBM of diamond, transforming bare diamond into a NEA surface.
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The secondary electron creation and emission process in diamond can be de-

scribed by three consecutive steps [179]: (i) Hot electrons are mainly excited into

diamond conduction bands that lie outside the band bending region due to the large

penetration depth of light (several μm); (ii) Electrons lose their energy through 

inelastic scattering processes, and some are accelerated towards the interface in the

band bending potential and eventually accumulate in large numbers in the CBM at the

interface; (iii) Finally, these hot electrons travel across the diamond/CuPc interface.

When the CuPc film thickness is relatively low (i.e. submonolayer), most electrons

tunnel directly into vacuum almost ballistically due to the lowered emission barrier

and the strong electric field created by the surface dipole layer. Consequently, they

constitute the sharp and intense secondary electron emission peak observed in Figure

5.11. A small portion of electrons that travel across the interface may be inelastically

Figure 5.13. Schematic energy level diagram of CuPc on bare diamond surface. The LUMO
position of CuPc is estimated by adding a CuPc transport band gap of 2.3 eV to HOMO
position. All values are estimated to lie within an error of 0.1 eV.
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scattered into the unoccupied molecular states of CuPc with energies just below the

diamond CBM but still above the VL. They are also emitted into vacuum and make

up the rising edge of the secondary electron emission peak. However, as the CuPc

film thickness increases, more and more hot electrons are inelastically scat-

tered/relaxed into unoccupied molecular states below the VL and eventually the

secondary electron emission decreases in intensity, representing the intrinsic emission

from organic films.

A similar phenomenon of a sharp monochromatic emission peak in the low KE

part of UPS spectra after organic functionalization of a solid surface has been ob-

served recently in the system of self-assembled diamondoid monolayer (SAM) on

metal substrates [180]. This is attributed to the facilitated electron conduction from an

electron “reservoir” (i.e. metal) to the emission surface through the covalently at-

tached molecular layer, combined with the NEA property of diamondoid molecules.

By analogy to the metal-thiolate bonds formed between the SAM and metal substrate,

the covalent bonds between diamond and CuPc also play a crucial role in the electron

emission process by forming bridges facilitating electron conduction from diamond to

molecules. Together with the lowered EA on the surface, the emission intensity is

thus greatly enhanced.

After completion of the first monolayer, the subsequently deposited CuPc mole-

cules are shielded from chemical reaction and retain their integrity. A downward

energy shift in all molecular energy levels of CuPc which extends over 5 nm from the

interface is also observed. The IP of the thick CuPc film (I = 4.5 eV), obtained by

adding up the work function to HOMO-EF, is smaller than that on hydrogenated

diamond (I = 5.2 eV). This reduction in IP is probably related to the different molecu-

lar orientation of CuPc in thick molecular layers (i.e. standing-up on bare, lying down
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on hydrogenated surface). Indeed, the orientation-dependent IP has been observed in

ordered molecular assemblies of archetypical π-conjugated molecular systems [181-

183]. The intrinsic surface dipole, built by the negatively charged π-electron clouds 

and positively charged molecular plane below, give rise to the increased IP for the

flatlying molecular layers, whereas no such dipole occurs at the surface of standing

layers [183]. The difference between these two orientation phases can be as large as

0.8 eV. A similar effect is expected for the CuPc films in the present study.

5.4 NEXAFS and molecular orientation

In order to elucidate the effect of molecule-substrate interaction at the CuPc/diamond

interface on CuPc supramolecular organization, angular-dependent NEXAFS were

used to characterize the molecular orientation of CuPc on hydrogenated and bare

diamond surfaces respectively. The C 1s core-level fitting results discussed above

already suggest an orientation transition from lying-down to standing-up for CuPc on

bare diamond. Moreover, the different IPs for bulk CuPc on hydrogenated and bare

diamond surfaces also point to distinct molecular orientations. More accurate infor-

mation on the molecular orientation within molecular assemblies can be acquired by

angular-dependent NEXAFS [41].

In molecular systems, NEXAFS monitors the resonant excitations from the core-

level of a specific atomic species of a molecule (e.g. C 1s or N 1s) to its unoccupied

molecular orbitals (i.e. π* or σ*); the intensity of the resonances has a strong polariza-

tion dependence with the incident synchrotron light (i.e. the resonance is strongest

when the electric field vector E of the incident linear polarized light is parallel to the

π* or σ* molecular orbital, and weakest when E is perpendicular to the π* or σ* orbit-

al). For a flat, conjugated molecular system such as CuPc, the π* and σ* orbitals are

directed essentially out-of-plane and in-plane respectively [41]. Therefore, polariza-
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tion-dependent or angular-dependent NEXAFS is able to determine the molecular

orientation.

Figure 5.14a shows the angular-dependent NEXAFS spectra of the N K-edge at

various coverages of CuPc on hydrogenated diamond. The first four sharp absorption

peaks labeled A through D are assigned to the transitions from N 1s core level to

individual π* orbitals, while the broad absorption features at higher photon energies

correspond to transitions to σ* states [152, 159, 163]. At all CuPc thicknesses, the π*

resonances are always much higher at grazing incidence angle (θ = 70º) than those at

normal incidence (θ = 0º), whereas the σ* resonances show the opposite behavior. The

angular-dependence of these features clearly indicates that CuPc molecules are highly

Figure 5.14. Angular-dependent N K-edge NEXAFS spectra for CuPc film with increasing
thickness on (a) hydrogenated diamond and (b) bare diamond. The incidence angle θ is
defined as the angle between the direction of the incident light and the normal direction of the
substrate. All spectra are normalized to have the same adsorption edge step height. The insets
show the schematic film structures during growth.
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ordered and nearly parallel to the hydrogenated diamond surface at all thicknesses.

Using the intensity ratio of the most prominent π* resonance A at different incidence

angles R(πA
*) = IA(0º)/IA(70º) and adopting 100% linearly polarized light, the average

tilting angle (β) of molecular plane relative to the substrate can be calculated accord-

ing to the equation [41]:

2 21
( ) 1 (3sin 1)(3cos 1)

2
I       . (5.1)

The resulting tilting angle β of the molecular plane is plotted against film thickness as

shown in Figure 5.15 For comparison, the calculated values for the α and β poly-

morphs of CuPc single crystal are also shown in Figure 5.15, assuming that the

deposited crystallites lie with their cleavage plane on the surface as sketched in the

inset (also see Figure 5.2). As evident from Figure 5.15, CuPc molecules lie nearly

flat at all thicknesses on the hydrogenated diamond surface with an average tilting

angle around 27º ± 5º, close to the theoretical value (26º) for the α-form crystalline

structure of CuPc with it’s a-c plane parallel to the substrate. This indicates that the

deposited CuPc molecules possibly self-organize into α-phase crystalline domains or 

crystallites on top of the hydrogenated diamond surface.

The NEXAFS spectra from CuPc on bare diamond in Figure 5.14b are similar in

shape but display an entirely different angular dependence as compared to those of

CuPc on hydrogenated diamond. At sub-monolayer coverage (1.2 Å), the π* reson-

ances are strongest at grazing incidence (θ = 70º), whereas they become the strongest

at normal incidence (θ = 0º) at multilayer coverage. Moreover, at 5.7 Å thickness

which is around 1 monolayer coverage, the angular-dependence of both π* resonances

and σ* resonances almost vanishes. Considering that NEXAFS probes a large sample

area, the absence of angular-dependence actually indicates a disordered molecular
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organization [152]. This change of angular-dependence against film thickness clearly

suggests a reorientation of CuPc molecules from lying-down at sub-monolayer

coverage to standing-up in multilayers, consistent with conclusions from PES results.

The transition must start within the first monolayer resulting in the observed disor-

dered molecular orientation. After the bare diamond surface is completely passivated

by a monolayer of the molecules, the molecules subsequently grow standing up with

improved order. The calculated average molecular tilting angle β as a function of film

thickness shown in Figure 5.15 clearly reveals a gradual increase of the tilting angle

with increasing film thickness and its upper limit reaches around 75º ± 5º, which is

slightly larger than that of α-CuPc with a-b cleavage plane parallel to the substrate.

Therefore, multilayer CuPc on bare diamond are also likely to be in the α-phase. 

The organization and orientation of organic molecules, particularly conjugated

Figure 5.15. Molecular tilting angle as derived from the Eqn. (5.1) using the intensity
variation of resonance A in the angular-dependent NEXAFS spectra for various CuPc film
thicknesses on diamond substrates. The dotted lines through the data points serve as guides
for the eye only. The squares denote the theoretical values as found for the known α-form and
β-form single crystal structures of CuPc, assuming the crystals lie on different cleavage
planes as depicted in the inset illustrations.
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organic semiconductors, on solid substrates has been the subject of extensive research

due to its importance to device performance [135, 184]. In general, it is governed by a

complex balance between the intermolecular interactions and the molecule-substrate

interactions. There have been numerous investigations on the molecular orientation of

various phthalocyanine (Pc) systems on different substrates [152, 159, 167-173].

Summarizing briefly, Pc molecules tend to adopt a standing-up geometry on most

inert surfaces such as oxidized inorganic substrates (ITO and SiOx) as well as poly-

crystalline metal substrates, where the stronger van-der-Waals type intermolecular

interactions (e.g. π—π interactions due to intermolecular overlapping of π-orbitals, 

electrostatic quadrupoles interactions, London dispersion forces due to transient

multipole interactions) [112] dominate over the weaker molecule-substrate interac-

tions [166]. In contrast, a lying-down adsorption geometry is favored on most single

crystal metals [154, 167-168], alkali-halides [169, 173] and reactive semiconductor

surfaces [149-152, 161-162], where the molecule-substrate interactions are stronger

than the intermolecular interactions. As shown in this work, no covalent bonds are

formed between CuPc molecules and the hydrogenated diamond substrate. In spite of

this absence of strong covalent interactions, the CuPc molecule contains N atoms and

an extended π-conjugated electron system that allow it to form N···H−C [185] and 

π···H−C [186] hydrogen bonding with the terminal H atoms of the hydrogenated 

diamond. This directional hydrogen bonding energetically favors a planar or near

planar adsorption geometry, because the N atoms and especially the π-electrons of 

molecules can interact with more H atoms on the diamond surface due to the coopera-

tive effect of the π···H−C hydrogen bonding. As a result, the molecule-substrate 

(hydrogen bonding) interactions are at least comparable to the intermolecular interac-

tions. This competition between the intermolecular and molecule-substrate
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interactions results in a configuration that maximizes the intermolecular interactions

by π—π stacking in bulk-like herringbone structures, where at the same time the 

molecules tend to lie down on the substrate. The α-form CuPc crystal with its a-c

plane parallel to the substrate could satisfy these two requirements simultaneously and

therefore represents the most likely CuPc film structure on hydrogenated diamond

(see Figure 5.14a inset). A similar molecular arrangement was previously observed

for CuPc grown on other substrates as well [172].

In contrast, the strong chemical bonding at the bare diamond/CuPc interface

causes the first layer molecules to adopt a lying-down geometry (Figure 5.14b). While

approaching completion of the first monolayer, the subsequently deposited molecules

experience increasing difficulty adopting planar orientations due to steric hindrance of

neighboring adsorbed molecules and incline away from the substrate [152]. These

different molecular orientations result in the observed disordered molecular organiza-

tion within the first deposited monolayer. After the bare diamond surface is

completely wetted by the first monolayer, the substrate is well screened and behaves

like a weakly interacting van-der-Waals substrate such as oxidized substrates. Moreo-

ver, the disordered interfacial CuPc monolayer also induces a degree of roughness on

the length scale of the molecules, further weakening the molecule-substrate interac-

tions by reducing the effective adsorption site and preventing the lock-in of the initial

lying adsorption geometry [170]. As a result, at higher thicknesses the molecule-

substrate interaction becomes almost negligible, and the intermolecular interactions

and surface energy become the dominant parameters influencing the film structure.

In thicker films, the CuPc molecules preferentially grow with face-to-face stack-

ing in a standing up arrangement with respect to the substrate surface, forming a bulk-

like herringbone structure between adjacent layers (see Figure 5.14b inset) [171]. This
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maximizes the intermolecular π—π interactions and minimizes surface energy [152, 

170]. Hence, the molecular orientational order in thick films is significantly improved.

This self-ordering behavior is mainly driven by the dominant intermolecular π-π 

interactions between molecular aromatic rings.

5.5 Chapter summary

In this chapter, we have studied and compared a model organic semiconductor (CuPc)

on hydrogenated and bare diamond surfaces by synchrotron-based PES and angular-

dependent NEXAFS. Significant dissimilarities have been found between these two

substrates in terms of interactions, energy level alignment, and molecular organization.

On hydrogenated diamond, CuPc molecules are found to weakly interact with di-

amond substrate via van-der-Waals-type interactions. Neither chemical reactions nor

charge transfer are observed at the interface as indicated by PES. Molecules adopt a

lying-down geometry throughout growth with a high degree of order as a result of the

competing molecule-substrate interactions and intermolecular interactions. On bare

diamond, CuPc molecules undergo chemical reactions with the underlying diamond

dimers by forming new covalent bonds at the interface. The reacted molecules create

an intramolecular dipole layer through distortion of the molecular plane which

significantly lowers the surface VL even below the CBM of diamond, transforming

bare diamond to a NEA surface with greatly enhanced secondary electron emission

yield. The molecular orientation experiences a transition from lying-down at submo-

nolayer coverage to standing-up in multilayer films, accompanied by an order-

disorder-order transition during growth. These transitions are related to the switch

from the dominant molecule-substrate covalent interactions in the first monolayer to

weak intermolecular interactions in multilayers. These findings highlight the impor-

tance in understanding the complex interactions at the organic/inorganic
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semiconductor interface, and have important implications for the development of

diamond-based organic electronic devices.

In particular, organic functionalization of diamond by an organic semiconductor

results in a unique combination of NEA, high electron emission and electronic

functionality of organic semiconductor. This would facilitate the integration of

molecular electronics with diamond technology, a promise unparalleled by conven-

tional surface functionalization with small and simple organic molecules. In

particular, the strong C—C bonded interface by organic functionalization is more

resistant than C—H interface of hydrogenated diamond to degradation through

hydrolysis or moisture attack [187], making this an attractive route to fabricating

more stable diamond-based NEA cathodes. Our approach also provides an under-

standing of the utilization of organic semiconductor molecules to tailor the surface

electronic properties of conventional inorganic semiconductors via surface engineer-

ing, enabling the controlled tuning of device characteristics and functionalities.
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CHAPTER 6

SURFACE TRANSER DOPING OF DIAMOND BY
ORGANIC MOLECULES

6.1 Introduction

Doping of semiconductors, which is done to locally manipulate their charge carrier

density and conductivity, lies at the heart of modern semiconductor technologies.

Doping is conventionally achieved by incorporating impurity atomic-dopants with

appropriate properties into the host lattice of the semiconductor. Depending on their

number of valence electrons, the dopants (donors) can either donate excess electrons

as negative free charge carriers to the semiconductor conduction band at moderate

temperature (n-type doping), or they (acceptors) can take away additional electrons

from surrounding host atoms to complete their covalent chemical bonding, leaving

positively charged holes as charge carriers in the semiconductor valence band (p-type

doping). This is shown schematically in Figure 6.1 for a group-IV elemental semicon-

ductor. With the realization of both n and p type doping of semiconductors, the most

basic structure of semiconductor devices, the p-n junction, could be built.

Figure 6.1. Schematic bond diagram for n-type doping of group-IV elemental semiconductor
(Si, C, Ge, Sn) with group-V elements (N, P, As etc.) as dopants, and that for p-type doping
with group-III elements (B, Al, Ga etc.)
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6.1.1 Challenges of doping diamond

The large band gap of diamond inevitably leads to an extremely low charge carrier

density of intrinsic diamond at RT (ni = pi ~ 10-27 cm-3). In other words, a diamond

sample larger than earth is necessary to accommodate a single mobile charge at such

low carrier density. Consequently, despite its exceptionally high electron and hole

mobilities (Table 1.2), undoped diamond is considered a perfect electrical insulator.

Doping diamond to achieve desirable conductivity is therefore essential for the

successful application of diamond as an electronic material, utilizing its numerous

extraordinary electronic properties (see Chapter 1.2.2).

The most common p-type dopant for diamond is boron (B), which is naturally

present in type-IIb diamond. RT Hall measurements of type-IIb natural diamond with

boron concentration of about 1016 cm-3 show moderate p-type electrical conduction

with the hole concentration in the order of 1013 cm-3 and resistivity around 103 Ω·cm 

[188]. However, like other wide bandgap semiconductors, dopants in diamond suffer

from high ionization energies, resulting in very low dopant activation at RT. As listed

in Table 6.1, B has the lowest ionization energy among all the common dopants in

diamond. However, an activation energy as large as 0.37 eV for B is still considerably

high as compared to the thermal energy at RT (kT = 0.026 eV), therefore B acceptors

are only weakly activated inside diamond at RT. Similarly, efficient n-type doping of

diamond is much harder to achieve with common donor impurities. The exceedingly

deep donor level 1.7 eV below diamond conduction band makes nitrogen (N) imprac-

tical as an n-type dopant, even though they are readily incorporated into natural

diamond as one of the dominant impurities. The next candidate is phosphorous (P),

which has a relatively lower activation energy of 0.6 eV. But the close packing and

rigidity of diamond lattice result in very low solubility for P and other dopant atoms
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with radius larger than C [189], thereby ruling them out as effective donors. In recent

years, much effort has been paid in searching for alternative shallow donors, including

sulfur [190], sulfur-hydrogen centers [191], N2-H complex defects [192] and more

recent co-doping scheme using a boron-hydrogen complex [193-194]. However, due

to the lack of reproducibility of the claimed n-type conductivities as well as solid

theoretical support, their roles as effective n-type dopants remain elusive [195-196].

The second challenge is the lack of reliable processing methods to dope diamond

ultrathin films and nanostructures with controllable conductivity. Conventional

doping process using ion implantation followed by thermal diffusion becomes futile

in diamond owing to its extreme rigid and compact nature. In particular, ion implanta-

tion with high energy ion beams can lead to the graphitization of diamond surfaces [6].

Alternatively, impurity-containing molecules such as diborane (B2H6) and phosphine

(PH3) added to the gas mixture during CVD growth of diamond can successfully

incorporate dopants into diamond lattice [197-198]. However, a well-defined and

uniformly doped nanoscale layer for the realization of ultrashallow junction is hard to

be achieved by this means. Finally, the extreme hardness and chemical inertness of

Table 6.1. Common dopants and corresponding activation energy in diamond.

Element Activation

Energy (eV)

p-type Boron (B) 0.37[a]

n-type
Nitrogen (N) 1.7[b]

Phosphorous (P) 0.6[c]

[a] A. T. Collins and W. S. Williams, J. Phys. C.: Solid State Phys. 4, 1789 (1970).

[b] R. G. Farrer, Solid Stete Comm. 7, 685 (1969).

[c] M. Katagiri, J. Isoya, S. Koizumi, and H. Kanda, Phys. Status Solidi A 201, 2451 (2004).
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diamond makes it difficult to pattern diamond films with micro- or nanoscale features

[199].

In summary, bulk doping of diamond using conventional methods presents sever-

al technical challenges, which severely hampers the widespread commercialization of

diamond as an electronic material despite its numerous outstanding electronic, ther-

mal, and optical properties. In particular, the inability to effectively n-type dope

diamond hinders the development of ambipolar diamond-based electronic devices

such as the complementary circuits (i.e. CMOS) where both n-type and p-type transis-

tor channels are required [14-15]. Consequently, most diamond devices realized so far

are unipolar (p-type) and constructed in metal semiconductor field effect transistor

(MESFET) device structure [14]. Therefore a novel doping scheme, that can tackle

these challenges with controllable and reliable carrier densities in diamond, is needed

to bring diamond-based electronic devices into fruition.

6.1.2 Diamond surface conductivity and its origins

Although intrinsic diamond is highly insulating, an intriguing surface conductivity

(SC) of hydrogenated diamond was firstly discovered by Ravi and Landstrass on both

natural diamond surface [200] and on CVD diamond thin films [201] exposed to

hydrogen plasma. Through years of endeavour to study this peculiar SC of diamond

[202-206], it is generally understood as p-type in nature with a value in the order of

10-4 to 10-5 Ω-1 at RT. The measured areal hole density responsible for the p-type SC

lies in the range of 1012 — 1013 cm-2 with a Hall mobility between 10 and 100 cm2 V-

1s-1. It is hardly temperature dependent between 150 K to RT. Based on this unique p-

type SC several types of functional electronic unipolar devices have been successfully

fabricated and demonstrated, including surface-channel MESFETs [24, 207-210],
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surface-channel metal-oxide semiconductor field-effect transistors (MOSFETs) [211-

212], and a novel type of ion-sensitive field-effect transistor (ISFET) working in

electrolyte with potential applications such as pH sensors [25, 213].

Since the SC is only observed on hydrogenated diamond and disappears when the

surface undergo dehydrogenation or oxidation [214], it is intuitive to assume that

hydrogen plays a indispensible role in the formation of a surface hole accumulation

layer causing the SC. Based on this idea, several mechanisms focusing on hydrogen

have been proposed to explain the origin of diamond SC. Ravi and Landstrass initially

suggested that passivation of deep levels (e.g. trap states, gap states) by hydrogen

incorporated in the subsurface region caused the observed SC [200-201]. Maki et al.

later proposed that the SC was attributed to the formation of shallow acceptor states

by hydrogen incorporated into the diamond subsurface at a depth of around 0.6 μm 

[203]. This model was further developed by Hayashi et al. who suggested that the

subsurface hydrogen related point defects act as shallow acceptor states [202, 215]

within a region 20 nm below the surface. However, the depth distribution of such

hydrogen related shallow acceptors was disputed owing to the limited resolution of

secondary ion mass spectroscopy (SIMS) for hydrogen profiling [216-217]. Moreover,

no theoretical calculations could support the formation of such shallow acceptor states

by subsurface hydrogen [196].

Work has also been done on possible acceptor-type energy states residing on the

diamond surface. Shirafuji et al. and Kawarda et al. both proposed models in which

hydrogenated diamond had an upward band bending to form a hole accumulation

layer as a result of acceptor-type surface states related the surface C-H bonds with

energy level around diamond VBM [218-219]. Although this upward surface band

bending was later confirmed experimentally [220-221], the acceptor-type (unoccupied)
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surface states originating from surface C-H bonding were found residing far above the

valence band in the diamond band gap [57, 78], and therefore cannot withdraw

electrons from diamond valence band. Basing on the observation that the diamond SC

is very sensitive to the ambient conditions, Gi et al. proposed a model in which

solvated hydronium ions (H3O
+) in a water layer naturally adsorbed on diamond acted

as surface acceptors to induce electron transfer from diamond to these ions, with a

hole accumulation layer in diamond surface formed as a result [204-205]. This

primitive surface transfer doping model was further elaborated in 2000 by Maier et al.

[23], who explicitly specified the indispensable roles of both hydrogen termination

and air exposure in causing the SC.

Under the framework of the electrochemical surface transfer doping model [222],

the reduction/oxidation (red/ox) couples involved in an electrochemical reaction in the

adsorbed water layer provides the surface acceptor level necessary for initiating

electron transfer across the diamond/air interface. The charge transfer proceeds until

thermodynamic equilibrium is reached between the electrochemical potential of the

electrons in the red/ox reaction and the Fermi level of the diamond. The responsible

red/ox couple was initially suggested to be H3O
+/H2 by Maier et al. [23]. More

recently, alternative O2 red/ox couples (i.e. O2/H2O for acid condition, O2/OH- for

basic condition) were proposed [223] and experimentally verified as surface acceptors

that electrochemically facilitate interfacial electron transfer [224-225], owing to their

lower electrochemical window than that of H3O
+/H2 red/ox couple4 and the much

higher concentration of O2 dissolved in the adsorbed water layer.

4 The electrochemical potential window for electrons involved in the H3O
+/H2 red/ox reaction (2H3O + 2e- ↔ H2 +

2H2O) is -3.6 eV to -4.6 eV referring to vacuum level in the pH range from 14 to 0. For comparison, the electro-

chemical potential window for electrons involved in the O2 red/ox reaction (O2 + 2H2O + 4e- ↔ 4OH-) is -4.8 eV

to -5.6 eV in the same pH range.
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Although it is still under debate which red/ox couple is mainly responsible for in-

ducing the SC, the surface transfer doping model is gaining acceptance over other

competing models, due to considerable experimental evidence [226-233] as well as

theoretical calculations [234-237]. It explains the p-type SC of diamond, and more

importantly suggests a new route to dope diamond because of its obvious advantages

over conventional bulk doping. For example, the ultrashallow junction of less than 10

nm as required by nanoscale devices is naturally achieved by surface transfer doping

[212].

6.1.3 Surface transfer doping model and its applications

The surface transfer doping process is best illustrated by the schematic energy levels

shown in Figure 6.2. When diamond adsorbs surface acceptors such as solvated

electrochemical species (e.g. O2 red/ox couple), isolated atoms or molecules, or

adsorbates in condensed phase, the Fermi energy difference between diamond and

surface adsorbates (or electrochemical potential for aqueous solution) will drive

electrons from the diamond valence band to empty acceptor levels of surface adsor-

bates (i.e. red/ox couple for aqueous phase, LUMO for molecular adsorbates). As a

result of the interfacial charge transfer, surface adsorbates become negatively charged,

and compensating holes accumulate in the diamond valence bands. Together they

build up a space-charge layer with associated upward band bending toward the

diamond surface, which in turn raises the Fermi level (or electrochemical potential) of

surface adsorbates to eventually align with the Fermi energy of diamond in equili-

brium (Figure 6.2b). This upward band bending can be so strong that the Fermi level

of diamond is forced below diamond VBM at the surface [221], resulting in a degene-

rate situation. The accumulated holes in the diamond valence band are highly mobile

(μh ~ 70 cm2V-1S-1) parallel to the surface and lead to the substantial p-type SC of
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diamond, but they tend to be confined (squeezed) normal to the surface by the electric

field created by the interfacial charge separation. The resulting space-charge layer

width (of the order of several nm [222]) is much narrower than that of common

depletion layers in semiconductors that easily extend over 100 nm [52]. Therefore,

this hole accumulation layer in diamond surface is expected to behave as a quasi-2D

hole gas with discrete quantum electronic states, as confirmed experimentally by

Kalish et al. [238].

One prerequisite for effective p-type surface transfer doping of diamond is that

the adsorbate layer must have its lowest unoccupied electronic level (acceptor level)

below or close to the VBM of diamond, with their energy difference ∆ analogous to

the activation energy of conventional bulk dopants. Fulfilling this requirement is

readily helped by the NEA property of hydrogenated diamond. Its NEA χ of -1.0 eV ~

0 

Dia
FE

ads aq
F e( )E

ads aq
F e( )EDia
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Figure 6.2. Schematic energy levels for surface transfer doping process. (a) Before electron

transfer, the Fermi level ( ads
FE ) or electrochemical potential ( aq

e ) of the adsorbates is lower

than that of the diamond. Electron transfer from diamond valence band to adsorbates’
unoccupied acceptor states (e.g. LUMO) is energetically favored. (b) In equilibrium after
electron transfer, Fermi levels on both sides are aligned and the diamond has a layer of
accumulated holes at its surface, with equal amount of compensating electrons in adsorbates.
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-1.3 eV [61-62, 67-69] (c.f. Chapter 3.2.2.2) leads, in spite of the wide bandgap of

diamond, to the lowest IP (4.2 eV ~ 4.5 eV) among all the known semiconductors.

Therefore, diamond is much more amenable to surface transfer doping than other

semiconductors.

For surface acceptors dissolved in the adsorbed water layer on diamond under

ambient conditions, a pH level of 6 due to dissolved CO2 places the electrochemical

potential of the red/ox couple at 4.26 eV below VL for the H3O
+/H2 red/ox [23], or at

5.3 eV below VL for the O2 red/ox [225]. No matter which red/ox couple takes

dominance in the water layer, their electrochemical potentials are either close to or

lower than the VBM of diamond with reference to a common VL, thereby thermody-

namically favoring the electron transfer from diamond valence band to these aqueous

red/ox couples. For adsorbates in the molecular form or solid phase to act as effective

surface acceptors, this requirement dictates that the EA of molecules (defined general-

ly as the energy difference between VL and the LUMO) should be larger or close to

diamond’s IP (4.2~4.5 eV), which can be met by certain organic molecules with

strong electron withdrawing properties. It should be noted that EA of molecular

oxygen and other gas-phase oxidants (e.g.
2O 0.451 eV  [239]) in the absence of

water is much smaller than their corresponding aqueous red/ox couple. Therefore,

aqueous environment on a solid surface provides an essential condition for these gas-

phase oxidants to act as effective electron sinks.

Surface transfer doping by atmospheric adsorbates in a complex aqueous system

can readily induce substantial p-type SC in diamond. However, several problems are

encountered in making this a practical doping scheme for diamond electronic device

applications, such as the lack of the controllability of the induced hole concentration

in diamond and the volatile device performance due to the poor thermal-stability of
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the physisorbed aqueous layer. Therefore, using organic molecules as surface transfer

dopants would be a simpler and more reliable method [240-241] because of their good

thermal-stability, non-volatility after adsorption on solid surfaces, compatibility with

low-temperature or solution processing, ability to selectively dope and hence to

pattern the diamond surface via thermal evaporation, tunability of their electronic

properties by modifying the chemical structures, and the wide selection of molecules

with suitable electron affinities. Therefore, organic molecular dopants with all of

these advantages could overcome major challenges posed by conventional dopants

and atmospheric surface dopants, and enable surface transfer doping to become a

viable alternative to bulk doping for controlling the conductivity of diamond and other

semiconductors [240].

A number of organic molecules have already been demonstrated by first principle

calculations to be effective surface acceptors on diamond, including fullerene, fluori-

nated fullerene [242-244], CO3H [245], and 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (DDQ) [246]. Strobel et al. observed substantially increased SC of

diamond induced by deposition of fullerenes and fluorinated fullerenes [247-249].

However, to our best knowledge, no direct measurement of charge transfer between

diamond and surface adsorbates have been carried out so far, which would confirm

the validity of surface transfer doping. Detailed characterization of the electronic

structure at the diamond/adsorbate interface, crucial for both fundamental understand-

ing and device application, is still lacking. The number of organic molecules

investigated as surface acceptors is also limited. In this context, this chapter will

carefully examine and compare a series of organic molecules with varying EA (elec-

tron-withdrawing ability) including F4-TCNQ, TCNQ, fullerene, highly fluorinated

fullerene and CuPc. By providing direct spectroscopic evidences of interfacial charge
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transfer, we aim to clarify the interfacial electronic structure and energy level align-

ments. More importantly, we hope to correlate the doping efficiency with molecular

EA, thus paving the way for the selection of better organic molecular acceptors to

control the SC of diamond.

6.2 Surface transfer doping of hydrogenated diamond (001) by
organic molecules

6.2.1 Basic considerations

Figure 6.3 schematically displays the band edges of bare and hydrogenated diamond

surface, along with several other semiconductors. Hydrogenated diamond indeed

possesses the lowest IP among all semiconductors owing to its NEA. Placed on the

right side are the HOMO-LUMO splittings of a series of organic molecules. These

molecules have different EA in the range from 2.5 eV to 5.4 eV, which place their

LUMO at different positions relative to the VBM of hydrogenated diamond. Among

them, several molecules such as F4-TCNQ (tetrafluro-tetracyanoquinodimethane) and

C60F48 have very high EA (χ > 5 eV) with their LUMOs directly below diamond’s

VBM, so that they are expected to be effective surface acceptors on hydrogenated

diamond. It should be noted that the IP and EA of organic molecules listed in Figure

6.3 is only valid for the condensed phase comprising at least several molecular

monolayers. In the condensed state, the electronic polarization of molecules surround-

ing the ionized center molecule tends to screen the central charge, leading to a

lowered IP (by the amount of P+) and an increased EA (by P-) as compared to those

for isolated molecules in gas phase [104, 158, 247]. The electronic polarization

energy (P+ and P-) for organic molecules can be as large as 1~2 eV [250]. Conse-

quently, for certain organic molecules the formation of solid phase might be necessary

to yield a sufficiently high EA to withdraw electrons out of diamond.
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Figure 6.3. Band gaps of several semiconductors including bare diamond and hydrogenated
diamond, and HOMO-LUMO splitting of organic molecules (in condensed phase). All energy
levels are referenced to a common VL. The horizontal dashed line represents the energy
position of the VBM of hydrogenated diamond.

The band alignment schematically shown in Figure 6.2 provides us several im-

portant spectroscopic insights on the surface transfer doping process. First of all, the

upward band bending due to the hole accumulation in diamond should induce de-

creasing BEs in both the C 1s core-level and valence band features of diamond.

Secondly, the electron-accepting molecules in direct contact with diamond become

negatively charged anions. Excess electrons localized on certain atomic sites of the

molecules might modify the local electrostatic potential of the related atomic core-

level electrons, resulting in a lowered BE (i.e. chemical shift) [35]. Furthermore,

depending of the orbital degeneracy [251] and the Jahn-Teller distortion [252], the

excess electrons filling the LUMO of surface molecular acceptors can bring down the

LUMO across the Fermi energy for partially-filled LUMO, or well below the Fermi
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energy for completely-filled LUMO [251]. Together with the relaxed HOMO in the

new electronic configuration, they may form additional gaps states in the vicinity of

Fermi level, which can be probed by UPS [253]. Finally, a common vacuum level

alignment (Schottky-Mott limit) is no longer valid at this charge-transfer interfaces,

and an interface dipole should be formed accompanying interfacial charge separation

[104, 132-133, 254]. These phenomena can all be probed by PES experiments, and

they are employed through out this chapter as important indicators to check whether

surface transfer doping occurs.

However, it should be noted that the real situation may deviate from the ideal

case discussed above, due to the very different properties of organic molecules.

Depending on their electron-withdrawing abilities, the degree of charge transfer5 to an

individual molecule can vary from complete transfer (Z = 1) to only partial transfer (Z

<< 1) [255], resulting in very different interfacial electronic structure and energy

alignment [251]. These issues will be addressed in subsequent sections.

6.2.2 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ)

Tetracyanoquinodimethane (TCNQ), with its four terminal strong electron-accepting

cyano groups (–C≡N), represents one of the most widely used molecular acceptors in 

organic electronics. Its fluorinated derivative, tetrafluorotetracyanoquinodimethane

(F4-TCNQ) (Figure 6.4), possesses an even higher electron-accepting character with

an exceptionally high EA of 5.24 eV in condensed phase [256-257]. Therefore, F4-

TCNQ is frequently used as a p-type dopant to enhance the hole conductivity in

organic optoelectronic and photovoltaic devices [256, 258-260]. F4-TCNQ on di-

5 Degree of charge transfer Z is not a probability for a complete charge transfer. It should be understood as a

mixing coefficient for an electron that occupies an orbital which is a linear combination of the acceptor state and

donor state.
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amond represents excellent test system to examine surface transfer doping since the

diamond VBM lies directly above the LUMO of F4-TCNQ (Figure 6.3), thereby

thermodynamically favoring electron transfer from diamond to F4-TCNQ.

PES spectra of N 1s evolution with increasing coverage of F4-TCNQ is shown in

Figure 6.5a. Initial deposition up to 0.5 Å leads to the formation of a pronounced peak

Figure 6.4. Chemical structure of F4-TCNQ.
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Figure 6.5. PES core-level spectra of (a) N 1s (photon energy of 500 eV) and (b) C 1s
(photon energy 350 eV) of F4-TCNQ on hydrogenated diamond with increasing thickness. C
1s spectra are all normalized to the same diamond peak intensity for better viewing.
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at 397.50 eV (N-1) and a broad component at higher BE. At 1.0 Å nominal thickness,

the higher BE component (N-2, 398.90 eV) becomes stronger than N-1. Further

deposition results in a continuous increase in N-2 peak intensity and a decrease of N-1

which finally vanishes at the nominal thickness of 20 Å. The strong thickness depen-

dences of N-1 and N-2 components clearly indicate that they are associated with

interfacial and bulk molecular species respectively. In comparison with F4-TCNQ on

gold [261], the higher BE peak N-2 is assigned to neutral multilayer F4-TCNQ0 and

the lower BE peak N-1 to anion molecules (F4-TCNQ-) in direct contact with hydro-

genated diamond with their C≡N end groups withdrawing electrons from diamond 

[262-263]. Due to the high degree of electron localization within the molecule, the

extra electronic charges reside predominantly at the cyano ends [264-265]. Conse-

quently, the additional valence charges of N atoms in anion molecules give rise to a

lower BE, and the corresponding chemical shift of 1.4 eV is close to that observed in

the charge-transfer-complex involving its unfluorinated parent molecule TCNQ [266-

267]. Peak N-S centered at 2.60 eV higher BE than peak N-2 is attributed to the

shake-up processes of π-conjugated molecules [262]. The electrons transferred from 

diamond to the organic film remain localized at the interface, as shown by the rapid

attenuation of photoemission signal from anion species with further F4-TCNQ deposi-

tions. The charge localization also leads to the absence of a continuous molecular

level shift for both C 1s and N 1s (or band bending in analogy to conventional semi-

conductor jargon). Another feature of this particular interface is the presence of

neutral molecules even at the very early stage of molecular deposition where the

coverage of molecules is far less than one monolayer (ML). This suggests a Volmer-

Weber type growth mode of F4-TCNQ on diamond, whereby molecular islands form

from the very beginning without completely wetting the substrate surface first.
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The loss of electrons (accumulation of holes) in the diamond surface region is

further corroborated by the C 1s core-level spectra in Figure 6.5b. A substantial shift

(0.65 eV) of the diamond peak to lower BE is immediately observed at the initial

coverage as low as 0.2 Å. This shift continues to increase with subsequent deposition

and saturates at 0.80 eV at the coverage of 1.0 Å. The low KE of detected C 1s

photoelectrons (around 60 eV) limits the probing depth of our PES data to the surface

region of diamond (around 1nm). Therefore, the shift of diamond peak indicates an

upward band bending of 0.80 ± 0.05 eV towards the diamond surface, with hole

accumulation to balance the negatively charged anion molecules at the surface.

Further deposition leads to virtually no change of the diamond peak position, indicat-

ing a saturation of charge transfer. At large thicknesses, three new components (C-

1,C-2 and C-S) related to carbon atoms in F4-TCNQ can be clearly resolved after

thick molecular layers are formed. The C-2 peak centered at higher BE of 287.75 eV

is associated with fluorine bonded carbon atoms [268], whereas C-1 at lower BE of

286.50 eV is assigned to the rest C atoms within the molecule (Figure 6.4). The C-1 :

C-2 intensity ratio is about 2:1, in agreement with the stoichiometry of the corres-

ponding carbon atoms. Peak C-S, similar to N-S, is also related to shake-up processes

[262]. The appearance of the anion F4-TCNQ interfacial species together with the

upward band bending inside diamond, unambiguously reveals electron transfer from

diamond to the molecules, or p-type surface transfer doping.

More information on charge transfer and electronic structures at the interface can

be deduced from valence band spectra. Figure 6.6a shows the evolution of valence

bands of hydrogenated diamond with increasing F4-TCNQ thickness. After the initial

deposition of 0.2 Å, a rigid shift of 0.65 eV towards lower BE is observed, consistent

with that of the diamond C 1s peak (Figure 1b), and thus attributed to upward band
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bending. Further deposition leads to an overall attenuation of diamond features and

the emergence of new states from F4-TCNQ molecular orbitals at higher BE. At the

nominal thickness of 11.4 Å, various frontier orbitals of F4-TCNQ can be clearly

resolved, with its HOMO state centered at 3.20 eV ± 0.05 eV and its edge at 2.54 ±

0.05 eV, consistent with previous reports of F4-TCNQ on Au [261]. At submonolayer

coverage, additional intensities can be identified in the vicinity of Fermi level. Near

the Fermi level in Figure 6.6b, two additional features centered at about 0.4 eV and

1.4 eV are observed, more clearly seen in the difference spectrum after subtracting the

pristine diamond contribution (bottom spectrum in Figure 6.6b). These two gap states

have been previously observed when F4-TCNQ forms a charge-transfer-complex with

various organic or inorganic substances [261, 269-270], and are assigned to the

partially filled LUMO (LUMO΄) of anion molecules after accepting excess electrons 

and to the relaxed HOMO (HOMO΄) due to perturbation of the LUMO filling elec-

trons, respectively [253, 267]. The intensity of these two peaks disappear rapidly after

multilayer deposition (top spectrum in Figure 6.6b) where molecules are in their

neutral state, indicating exclusive correlation of these gap states with charge transfer.

Another consequence of interfacial charge transfer is the formation of an inter-

face dipole [104, 132-133, 254], usually indicated by an abrupt change in WF upon

molecular adsorption. For molecules on inert substrates such as conducting polymers

or passivated semiconductors where no interfacial chemical reactions are expected to

occur, the substrate WF is sensitive to the interfacial charge transfer after molecular

absorption. Hence, an upward shift of VL (increase of WF) occurs if electrons are

transferred from substrate to adsorbate overlayers, or a downward shift of VL (de-

crease of WF) occurs when electrons are transferred in the opposite direction. The
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interface dipole created by the resulting charge separation across the interface ac-

counts for this abrupt VL shift.

Figure 6.7a displays the low KE part of the UPS spectra in which the emission

peak cut-off indicates the VL (WF). Initial deposition of 0.2 Å causes a substantial

increase of 0.70 eV in WF, and subsequent deposition increases the WF only mod-

erately. The increase in WF upon F4-TCNQ adsorption is consistent with the direction

of interfacial charge transfer. However, the increase in WF after F4-TCNQ deposition

should also incorporate contributions from the band bending in diamond. To separate

the interface dipole contribution, the increase in WF is plotted together with the shift

of diamond C 1s peak as a function of F4-TCNQ nominal thickness (Figure 6.7b).

Throughout the deposition, the change of WF is substantially larger than the shift of

diamond C 1s peak, and the difference between them gradually enlarges with increas-

ing thickness and reaches a maximum of 0.6 eV, which is exclusively due to the

In
te

n
s
ity

(a
rb

.
u

n
it
s
.)

20 18 16 14 12 10 8 6 4 2 0

Binding Energy (eV)

C(100)2×1:H

0.2 Å

1.0 Å

4.8 Å

11.4 Å



3.2 eV

HOMO
2.54 eV

In
te

n
s
it
y

(a
rb

.
u

n
it
s
.)

2 1 0

Binding Energy (eV)

C(100)2×1:H

0.5 Å

4.8 Å

diff.

(a) (b)

HOMO' LUMO'
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interface dipole. As seen in Figure 6.7b, both WF and band bending change most

rapidly below 4 Å thickness, equivalent to submonolayer coverage (assuming lying

down molecules). This confirms that charge transfer only occurs at the diamond/F4-

TCNQ interface and the multilayer molecular film remains neutral.

Figure 6.8 schematically shows the energy level alignment before (panel a) and

after surface transfer doping (panel b). The EA and IP for pristine hydrogenated

diamond in vacuum is determined to be -1.1 eV (χ) and 4.4 eV (I) respectively, as

described in Chapter 3. On the molecular side, the EA and IP of F4-TCNQ molecule

in condensed phase are 5.24 eV and 8.34 eV respectively, as determined separately by

inverse photoemission spectroscopy (IPES) and UPS [257]. The corresponding

HOMO-LUMO splitting of 3.10 eV is used to deduce the energy position of LUMO

in the band alignment. After contact formation at the interface, the potential energy

drop between the VBM of diamond and LUMO of molecules drives electrons to

tunnel from the diamond valence band to the F4-TCNQ LUMO until thermodynamic

In
te

n
s
it
y

(a
rb

.
u
n

it
s
.)

141210864

Kinetic Energy rel. to EF (eV)

C(100)2×1:H

0.2 Å

1.0 Å

4.8 Å

11.4 Å

0.70 eV

1.5

1.0

0.5

0.0


(e

V
)

20151050

F4-TCNQ thickness ( )

C 1s
work function

interface dipole

band bending

Å

(a) (b)

Figure 6.7. (a) Secondary electron emission cut-off of hydrogenated diamond with increasing
F4-TCNQ thickness, indicating the shifts of VL; (b) diamond C 1s core-level BE shift and WF
change as a function of organic layer thickness.



Chapter 6 Surface Transfer Doping of Diamond by Organic Molecules

152

equilibrium is reached. This results in an upward band bending of 0.8 eV with hole

accumulation in diamond surface region and new gap states in anion molecules. The

thickness of the charged interfacial molecular layer responsible for surface transfer

doping is around 3~4 Å, and the strong interface dipole formed lifts the VL. On top of

the anion F4-TCNQ, the subsequent deposited molecules retain its neutrality. The IP

of the F4-TCNQ multilayer is determined to be 7.95 eV by simply adding WF to EF-

HOMO. This value is lower than the reported IP (I = 8.34 eV [257]) of F4-TCNQ

films, and this is possibly related to different film morphologies. In particular, mole-

cular orientations are known to have a large influence on the IP of molecular

assemblies [183].

It is evident from PES that significant charge transfer at the diamond/organic in-

terface occurs at very low coverage of F4-TCNQ, where molecules are still in

molecular form with few neighbors. Although the EA of gas phase F4-TCNQ is not

Figure 6.8. Schematic energy level diagram of (a) before surface transfer doping by F4-
TCNQ. (b) after surface transfer doping. LUMO΄ and HOMO΄ are the two gap states of the 
anion molecules at the interface. The position of LUMO is deduced by adding a band gap of
3.10 eV to the HOMO position.
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known, it is estimated to be around 4.4 eV by adopting an average electronic polariza-

tion energy (P+ = P- = 0.85 eV) for planar π-conjugated organic molecules [158]. 

Consequently, the EA of isolated F4-TCNQ molecules still matches the IP of hydro-

genated diamond, thereby fulfilling the requirement of surface transfer doping. The

highly efficient surface transfer doping ability of F4-TCNQ is also endorsed by the

appearance of anion molecule species as well as the gap state associated with partially

occupied LUMO, suggesting a complete charge transfer to F4-TCNQ (Z = 1). Similar

degree of charge transfer has been commonly observed in charge transfer complex

systems involving F4-TCNQ [260, 270]. The Fermi level at diamond surface is pushed

0.4 eV below the VBM of diamond after surface transfer doping, leading to a degene-

rate semiconductor surface. A detailed calculation of the doping yield and efficiency

which requires the knowledge of the areal acceptor molecule density as well as the

areal hole density accumulated in diamond surface is discussed later.

6.2.3 7,7,8,8,-Tetracyanoquinodimethane (TCNQ)

TCNQ (Figure 6.9) is another commonly used molecular acceptor. Without fluorina-

tion of the central aromatic ring, its molecular energy levels including HOMO and

LUMO are closer to the VL, leading to a smaller IP and EA than those of its fluori-

nated derivative (i.e. F4-TCNQ). Consequently, the electron accepting ability of

TCNQ is expected to be weaker than that of F4-TCNQ. The EA of TCNQ molecules

in gas-phase is determined to be 3.22 eV [271], which puts its LUMO far above the

VBM of hydrogenated diamond. When condensed into the solid phase, the EA

increases due to electronic polarization from surrounding molecules. Since an expe-

rimentally measured EA for TCNQ films is not available, it is estimated to be around

4.0 eV by adopting an average polarization energy of 0.85 eV for π-conjugated 

organic molecules [158]. The small activation energy (i.e. energy difference between
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molecular LUMO and diamond VBM) suggests that TCNQ films can potentially

induce surface transfer doping.

The N 1s and C 1s PES spectra of hydrogenated diamond surface with increasing

TCNQ coverages are shown in Figure 6.10. The spectral evolution differs considera-

bly with those of F4-TCNQ in Figure 6.5 in several aspects: (i) The N 1s spectra

(Figure 6.10a) comprises a single component along with its shake-up at all thick-

nesses, suggesting the absence of negatively charged TCNQ. This indicates that the

degree of charge transfer to individual TCNQ molecule, if any, is significantly less

than unity. (ii) Moderate hole accumulation is revealed by subtle shifts of the diamond

C 1s peak, as indicated by the dashed lines in Figure 6.10b. In contrast to the substan-

tial decrease of the diamond C 1s component upon F4-TCNQ deposition, the

corresponding C 1s peak shifts slightly to lower BE with increasing TCNQ thickness,

and the shift saturates at 11.8 Å with a value of 0.2 eV. Upward diamond band

bending being observed at relatively large TCNQ thicknesses indicates the formation

of TCNQ films is required to yield sufficiently high EA to induce electron transfer. In

the case of F4-TCNQ, significant surface transfer doping of diamond is observable at

very low coverage whereby the molecules are even isolated. The weaker doping

efficiency of TCNQ compared to F4-TCNQ is attributed to their distinct EAs in both

gas-phase and solid-phase, despite possessing the same electron-withdrawing cyano

Figure 6.9. Chemical structure of TCNQ.
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ends. It underlines the important role of EA in determining the transfer doping effi-

ciency.

Band bending of diamond is also revealed in Figure 6.11a which shows the evo-

lution of diamond valence band structures with increasing TCNQ coverage. The band

bending is clearly recognized by the subtle shift of the diamond sp band feature at

around 13 eV to lower BE. The BE shift is thus in line with the diamond core-level

shift due to the upward band bending. At large thicknesses, various orbitals originat-

ing from TCNQ are clearly resolved, with a HOMO peak at 3.2 eV and its leading

edge at 2.65 eV. No BE shift of TCNQ frontier orbitals is observed, in agreement with

the C 1s and N 1s core-level PES results (Figure 6.10). The absence of molecular

energy level shift in TCNQ films suggests that the transferred electrons are mainly

localized at the interface. Moreover, a close-up of the region near the Fermi level at

all TCNQ thicknesses (not shown here) excludes the existence of gap states, in
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contrast to the formation of two gap states in anion F4-TCNQ molecules (HOMO΄ and 

LUMO΄ in Figure 6.6b). The missing gap states suggest partial electron transfer to 

TCNQ (Z << 1). Consequently, the density of transferred electrons filling the molecu-

lar LUMO is too low to bring the LUMO below the Fermi level to form a gap state

[251].

Unlike the diamond PES features with subtle BE shift (Figure 6.10), the WF vari-

ation upon molecular depositions is substantial (Figure 6.11b). The WF increases

immediately from 4.0 eV for pristine hydrogenated diamond to 4.5 eV upon 0.6 Å

TCNQ adsorption. It increases continuously with subsequent deposition and saturates

at 5.2 eV at 20 Å thickness, with a net 1.2 eV WF increase. Although the overall WF

increase after deposition of TCNQ on diamond is only slightly smaller than that of F4-

TCNQ (1.4 eV), its dependence on molecular coverage is dissimilar. In the case of F4-

TCNQ (Figure 6.7b), over 90% of the overall WF increase is completed below the

thickness of 4 Å which roughly corresponds to a monolayer coverage. This suggests

that majority of the interface dipole is built up at submonolayer coverage due to the

large degree of electron transfer to F4-TCNQ. In contrast, the WF increase at a TCNQ

thickness of about 4 Å accounts for only about 60% of its total increase as shown in

Figure 6.11c. A substantial part of the interface dipole continues to develop in TCNQ

multilayers. This is in agreement with the conclusion from core-level PES that the

formation of condensed TCNQ films is necessary to initiate electron transfer out of

diamond. As the TCNQ overlayer thickness increases, its EA becomes lower due to

increased polarization screening of neighboring molecules and more electrons are

transferred from diamond to organic films. Consequently, charge separation conti-

nuously builds up across the interface, resulting in an interface dipole that extends

several monolayers into the organic film. Separating the contribution from substrate
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band bending to WF increase, the interface dipole formed between TCNQ and di-

amond is estimated to be about 1.0 eV.

The energy band alignment across the interface between hydrogenated diamond

and TCNQ is schematically shown in Figure 6.12. An EA of 4.0 eV and an IP of 7.4

eV [250] for neutral TCNQ before charge transfer are adpoted. Although the LUMO

of TCNQ is slightly higher than diamond VBM with an activation barrier of 0.4 eV,
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after TCNQ deposition of increasing thickness. (b) Secondary electron emission cut-off of
hydrogenated diamond with increasing TCNQ thickness, indicating the shifts of VL; (c) WF
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electron transfer from diamond to TCNQ is still thermodynamically feasible. At

equilibrium, the diamond side exhibits an upward band bending of 0.2 eV towards the

surface with a hole accumulation layer formed. As a result of charge separation across

the interface, an interface dipole of 1.0 eV forms, extending about 10 Å into the

molecular bulk. The IP of TCNQ film is determined to be 7.7 eV by adding WF (5.05

eV) to EF-HOMO (2.65 eV), consistent with the reported value [272].

In summary, TCNQ molecules can induce mild surface transfer doping of hydro-

genated diamond. However, both the doping efficiency and degree of charge transfer

of TCNQ as surface acceptor are much lower than its fluorinated counterpart F4-

TCNQ. The weaker surface transfer doping ability of TCNQ is directly related to its

smaller EA as compared to F4-TCNQ.

Figure 6.12. Schematic energy level diagram of (a) before surface transfer doping by TCNQ.
(b) after surface transfer doping. The position of LUMO is deduced by adopting EA of 4.0 eV.
All energy levels are estimated within an error of 0.1 eV.



Chapter 6 Surface Transfer Doping of Diamond by Organic Molecules

159

6.2.4 Fullerene (C60)

Fullerene (C60, Figure 6.13) and its fluorinated derivative molecules (e.g. C60F36,

C60F48) represent another group of molecular acceptors that can potentially dope

diamond (Figure 6.3). The two lowest lying unoccupied molecular orbitals of fulle-

rene with t1u and t1g symmetries respectively can each hold up to six electrons thanks

to their three-fold degeneracy. Hence, fullerene is regarded as a potent electron

acceptor [251]. Chemically modified fullerene molecules have been widely used as an

electron acceptor material together with electron donors (usually conjugated polymers

such as P3HT) in bulk heterojunction (BHJ) organic solar cells [273]. Surface transfer

doping of diamond using fullerene and fluorinated fullerene has been experimentally

demonstrated by Strobel et al. [247-249], who measured greatly increased SC of

diamond after fullerene and fluorinated fullerene deposition. The measured SC are

comparable (for C60) or even higher (for C60F48) than that induced by atmospheric-

adsorbates. The proposed electron transfer from diamond to fullerene and fluorinated

fullerene overlayers is further supported by DFT calculations [242-244], although no

detailed spectroscopic studies on this charge transfer system have been reported.

Compared with TCNQ and F4-TCNQ, fullerene has higher thermal and chemical

stability. It is also more easily synthesized at very high purity, and reliable deposition

Figure 6.13. Chemical structure of C60.
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techniques of fullerene in both solid phase and solution phase are readily available

[273]. Therefore, the use of fullerenes is a more feasible route to practical surface

transfer doping scheme.

Figure 6.14 shows the evolution of C 1s PES spectra with increasing C60 thick-

ness. The coverage of C60 in units of ML is converted from its nominal thickness by

assuming that C60 is arranged with its close-packed hexagon (111) plane of fullerene

crystal parallel to diamond surface with an interlayer distance of 8.2 Å. The hydroge-

nated diamond C 1s component, initially at 284.30 eV, exhibits a gradual shift to

lower BE within the first monolayer coverage, and approaches its saturation value of

0.35 eV at around 5 ML C60 coverage (also see Figure 6.14b). This shift, similarly to

those observed for F4-TCNQ and TCNQ, indicates an upward band bending toward

diamond surface due to hole accumulation. It is apparent that several monolayers of
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solid fullerite are necessary to induce sizable band bending and charge transfer. This

observation is consistent with the EA difference between isolated C60 molecules and

its condensed fullerite phase. Although gas-phase C60 has a relatively low EA of 2.7

eV [274] which is far smaller than diamond IP, the electronic polarization increases

EA to around 4.2 eV for a few monolayers of condensed C60 [275]. As a result,

condensed fullerene (fullerite) has a small enough energy barrier (<0.2 eV) for

electrons transferring from diamond valence band to molecular LUMO states. Surface

conductivity measurements made by Strobel et al. also reveal that high surface

conductivity only appears after at least several monolayers of fullerene is formed on

diamond [248].

At higher thickness, the C60 C 1s components can be clearly identified and well

separated from diamond component, comprising a main line with several shake-up

peaks at higher BE associated with π to π* or σ* intramolecular transitions [276]. 

Closer inspection of the energy position of fullerene C 1s main line and its shake-up

peaks reveals a gradual energy shift to lower BE as C60 thickness increases. The C60

main peak energy difference at smallest and largest coverage is 0.55 eV. Charging

effects commonly observed in thick organic films can be ruled out since charging

leads to a shift to higher BE. The change of electronic polarization energy used to

explain the observed energy shift in organics such as CuPc on gold [154] and hydro-

gen-terminated silicon surfaces [157], cannot account for such a large energy shift.

Therefore, this core-level energy shift explicitly indicates an upward electrostatic

energy level bending away from interface in the organic overlayers.

Analogous to conventional inorganic semiconductors, the upward energy band

bending is associated with an accumulation layer of negative space charges as a result

of electron transfer from diamond to the molecular layers. The transferred electrons
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diffuse deep into C60 film bulk, resulting in a space charge width of more than 20 nm.

This is quite different from the scenario of surface transfer doping of diamond by F4-

TCNQ and TCNQ, in which the transferred electrons remain localized at the interface

(< 10 Å) and no shifts of the N 1s or C 1s components were observed in the multilay-

ers. The apparent larger delocalization of transferred electron in fullerene films may

be related to enhanced band-like transport of electrons in solid C60 due to more

effective overlapping of molecular orbitals. Theoretical calculations [277] predict the

electronic band formation in crystalline fullerene solids governed by the weak over-

lapping of the π-derived molecular orbitals. The bandwidth of the LUMO-derived 

conduction band is calculated to be about 0.5 eV, large enough for band-like transport

of electrons in the conduction band with small effective mass and hence large mobili-

ty. Indeed, electron mobility of up to 6 cm2V-1s-1 has been measured for highly

crystalline C60 thin films [278]. In contrast, the electron mobility of TCNQ (μTCNQ ~ 3

× 10-5 cm2V-1s-1 [279]) is several orders lower.

The valence band photoemission spectra of hydrogenated diamond surface with

C60 deposition is shown in Figure 6.15a. The spectra exhibit a transition from the

valence band features of diamond to the molecular orbital-derived bands of fullerene

films. In thick fullerene films, a number of peaks originating from the occupied

molecular orbitals of C60 can be clearly indentified, resembling the valence band

structure typically measured from solid C60 [276]. The states lying below 5 eV to EF

have a purely π character including the five-fold degenerate HOMO state with hu

symmetry, whereas those above 10 eV are mainly C 2s-derived σ states and those 

lying in between 5 eV to 10 eV have a mixed π and σ character. All the molecular 

states move closer to the Fermi level with increasing fullerene thickness (Figure

6.16a), in the same direction and magnitude as C60 C 1s components. This systematic
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shift in all molecular energy levels is consistent with molecular band bending in the

fullerene thin films associated with negative space charge layers.

In Figure 6.16a, the molecular HOMO and LUMO onset energies at different

film thicknesses are shown together, clearly revealing the upward band bending. The

Fermi level is very close to C60 LUMO at small thickness (the interface region) with

an energy difference of less than 0.1 eV, indicating electron accumulation. Away

from the interface at large thickness, EF gradually moves back into the band gap at 0.4

eV below the LUMO, similar to that measured in bulk C60 films [280].

Although the electron transfer from diamond to C60 adsorbate layers has been

confirmed by electrostatic band bending both in diamond and organics, careful

examination of the valence band region close to the Fermi level excludes the exis-

tence of LUMO-derived gap states. Such states have been observed in alkali metal

doped fullerenes (AxC60) by PES [251], where one or more alkali metal atoms such as
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Figure 6.15. (a) UPS spectra (photon energy of 60 eV) of pristine hydrogenated diamond and
after C60 deposition of increasing thickness. (b) Secondary electron emission cut-off of
hydrogenated diamond with increasing C60 thickness, indicating the shifts of VL.
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potassium are intercalated into individual fullerene molecule and donate electrons to

its LUMO orbitals. Since the triply-degenerate fullerene LUMO can accommodate a

total of 6 electrons, up to 6 potassium atoms can be bonded to one fullerene, resulting

in a partially or completely-filled LUMO state close to Fermi level. However, the

appearance of gap states is only applicable to fullerene films with high potassium

doping concentration so that many electrons are transferred to each C60 molecule. For

fullerene films exposed to very low flux of alkali metal, a highly diluted solid solution

of potassium in C60 is formed. The Fermi level in this case is pinned at donor levels

close to the edge of LUMO-derived bands [280], thus causing a shift of the whole

spectrum to higher BE as compared with that of pristine fullerene film. This scenario

is similar to the present study where the degree of charge transfer to C60 should be

much lower than unity. Hence, the fullerene film is better viewed as a semiconductor

system with dispersive electronic bands instead of a simple collection of isolated

molecules. Consequently, the surface transfer doping model in Figure 6.2 depicted

under a molecular framework is no longer appropriate. Instead, a solid state picture in

which the diamond/fullerite system resembles an extreme type II heterojunction

formed between two semiconductors [53] should be adopted to describe the surface

transfer doping process [247]. A detailed band alignment after surface transfer doping

is discussed below.
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Figure 6.15b shows the low KE part of the UPS spectra. The VL shifts to higher

KE (i.e. an increase of WF) with increasing fullerene film thickness, consistent with

band bending and charge transfer. To evaluate the magnitude of the interface dipole

from the change of WF and band bending in both diamond and fullerite (Figure

6.16b), it is noted that the band bending is constantly larger than the change of WF by

about 0.2 eV. This differs from the results of F4-TCNQ (Figure 6.7b) or TCNQ

(Figure 6.11c) on diamond. At first glance, this deviation might indicate an interface

dipole of 0.2 eV pointing toward the fullerene side (i.e. positive charges at fullerene,

negative charges at diamond) that pulls down the vacuum level across the interface.

However, this contradicts the charge transfer direction determined by PES. It should

be noted that the calculation of interface dipole assumes that the IP (EA) of molecular

overlayers is unchanged at all thicknesses, and therefore the local VL inside the

molecular film has the same bending as that of HOMO (LUMO) states. In reality, the
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IP (EA) of a molecular system is influenced by the electronic polarizations, molecular

orientations, and packing structures, etc. [183]. The observed small deviation might

stem from small variations of the IP (EA) of fullerene films at different thickness. As

a result, the interface dipole might not form across the diamond/C60 heterojunction.

This conclusion is consistent with the delocalized nature of electron transfer in C60

layers. The electric field due to charge separation manifests as electrostatic band

bending extends into the bulk of diamond and fullerite, rather than induce an abrupt

and narrow interface dipole layer confined at the interface.

The energy level alignment diagram across the diamond/fullerene interface is

shown in Figure 6.17. The high EA of condensed fullerene molecular solids puts the

bottom edge of its LUMO derived band very close to the VBM of diamond with an

activation barrier less than 0.2 eV. As a result, spontaneous electron transfer from

diamond to fullerene overlayers occurs. After thermodynamic equilibrium is reached,

the diamond surface is p-doped with a hole accumulation layer and a 0.35 eV upward

-

Figure 6.17. Schematic energy level diagram of (a) before surface transfer doping by C60. (b)
after surface transfer doping. The position of LUMO is deduced by adding a band gap of 2.3
eV to the HOMO energy position.
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band bending. However, p-type surface transfer doping of diamond by C60 is only

effectively achieved with at least a complete fullerene layer. The accumulated holes

on the diamond side are counterbalanced by excess electrons in the C60 film. Due to

the high electron delocalization in C60 molecular solids, the transferred electrons are

delocalized over a relative long distance into the film bulk. The resulting electron

accumulation layer with a width over 20 nm in fullerite leads to a band bending of

0.55 eV. The VL is well aligned at the interface, but also bends systematically away

from interface, similar to other energy levels. The VL alignment differs from that of

F4-TCNQ or TCNQ on diamond where a substantial interface dipole is formed (see

Figure 6.8 and Figure 6.12).

6.2.5 Highly fluorinated fullerene (C60F48)

Similar to F4-TCNQ, the electron withdrawing ability of fullerene molecules can be

further promoted by fluorination. The inductive effects of electronegative fluorine

atoms move the molecular energy levels away from the vacuum level [283], leading

Figure 6.18. Relaxed molecular structure of the D3 isomer of C60F48. The remaining 6 double
bonds are indicated by bold lines. (Structure is taken from ref. [282])
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to increased EA and IP [284]. The large number of unsaturated C60 bonds results in all

kinds of fluorinated fullerenes with varying fluorine amount (C60Fx x = 2~48). Among

them, C60F48 is the most highly fluorinated fullerene that has been synthesized. It is

expected to have the largest EA and the electron withdrawing abilities among all the

fullerene derivatives.

The EA and IP of C60F48 in gas phase are experimentally determined to be 4.06

eV [285] and 12.0 eV [286] respectively, much larger than its parent fullerene mole-

cules (χfullerene = 2.65 eV, Ifullerene = 7.6 eV). The IP for C60F48 in the solid state is

experimentally determined by UPS to be 8.4 eV [283], while reliable experimental

value of EA for condensed phase C60F48 is still lacking. However, it can be deducted

from its gas phase value by adding the electronic polarization energy. Although the

experimental polarization energy P for an electron in fluorinated fullerene is not

available, we can assume it to be the same as the value for C60 (P- = 1.3 eV [247]).

This leads to the EA for solid C60F48 of 5.4 eV, a value significantly larger than the IP

of diamond. This EA is even slightly larger than the known value of F4-TCNQ films.

This suggests that C60F48 is potentially an excellent surface acceptor for diamond,

with surface transfer doping ability close to or even superior to F4-TCNQ. Indeed,

conductivity measurements conducted by Strobel et al. showed an increase in di-

amond SC by several orders when exposed to very small amounts of C60F48,

suggesting that this molecule is an effective surface acceptor even in isolated molecu-

lar form [248].

Figure 6.18 shows the relaxed molecular structure of the most stable isomer of

C60F48. The attachment of 48 fluorine atoms to the carbon cage breaks most π-bonds 

between carbon atoms, destroying the conjugation of C60. The remaining 6 double
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bonds are isolated. Therefore, the electronic structure of C60F48 should be significantly

different from that of C60.

Figure 6.19 shows the evolution of C 1s as well as F 1s PES spectra as a function

of C60F48 thickness. After a series of depositions, two new components in the C 1s

core-level spectra emerge on the left of the diamond peak. The component with higher

BE stems from carbon atoms in the fullerene cage bonded to fluorine atoms, and the

lower BE component is assigned to carbon atoms in threefold coordinated bonding

configuration which retains the double bonds [248, 283]. The 2.2 eV chemical shift

between these two components is the result of the reduced valence electron densities

surrounding the fluorine bonded carbon atoms due to partial electron transfer to

fluorine atoms. Furthermore, from the intensity ratio of these two components, we

estimate an average stoichiometry of C60F46±2, corroborating the integrity of C60F48
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Figure 6.19. PES core-level spectra of (a) C 1s (photon energy of 350 eV) and (b) F 1s
(photon energy 780 eV) of C60F48 on hydrogenated diamond with increasing thickness. C 1s
spectra are all normalized to have the same overall spectra height for better viewing.
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molecules. The small difference may come from the existence of a small amount of

lower fluorinated fullerene species in the organic source.

Inspection on the diamond C 1s main lines reveals a substantial shift of 0.65 eV

to lower BE at very low coverage6 of C60F48. The diamond band bending related shift

continues to develop at a slower pace with increasing coverage and approaches

saturation of 1.0 eV after 5 Å (~ 0.5 ML) deposition. The band bending behavior is

similar to that of diamond surface after F4-TCNQ adsorption but with a slightly larger

magnitude. Therefore, as with F4-TCNQ, C60F48 acts as a highly efficient surface

transfer dopant that can induce substantial hole accumulation on diamond. The larger

band bending suggests an even higher areal hole concentration on diamond than that

induced by F4-TCNQ doping. This strong surface transfer doping capability of C60F48

molecules is consistent with its high EA in both gas phase and condensed phase.

Although the band bending of diamond indicates electrons are transferred from

diamond to the molecules, a closer inspection of the C60F48 derived C 1s and F 1s

component (Figure 6.19) at low molecular coverages does not reveal any interfacial

state related to anion molecular species. Only small shifts of about 0.4 eV to lower BE

for both C 1s components and F 1s component are observed when the thickness of

deposited molecules increases from 2.5 Å to 5 Å. This appears to contradict the

conclusion drawn from diamond band bending that even isolated C60F48 molecules

accept significant numbers of electrons from diamond forming anions. However,

unlike F4-TCNQ, the high fluorination ratio of a C60F48 molecule breaks the conjuga-

tion of its carbon cage. As a result, even for complete charge transfer to C60F48, the

transferred electron may be highly localized within one or a few C-F bonds in direct

6 The coverage in the unit of ML for C60F48 is estimated in a similar way to C60. The interlayer distance (10 Å),

however, is slightly enlarged as a result of the larger lattice constant of fcc single crystal of C60F48 (a=1.716 nm)

than that of C60 single crystal (a=1.417 nm).
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contact with diamond, leaving the remaining carbon and fluorine atoms largely

unperturbed by the additional valence charges. Photoemission from the chemically

shifted carbon and fluorine atoms thus comprise a very small percentage of the total

atoms in the C60F48 molecule (estimated to be less than 3%). The observed 0.4 eV BE

shift of C60F48 components are attributed to the interface dipole field induced by

charge transfer.

The evolution of diamond valence band structures with increasing C60F48 thick-

ness is shown in Figure 6.20a. At the thickness of 0.7 Å, the diamond valence band

features above 5 eV are already largely suppressed by photoelectrons from adsorbed

molecules. Nevertheless, the prominent feature A of pristine diamond can still be

distinguished and exhibits a rigid shift towards the Fermi level, consistent with

diamond band bending. After further deposition, features originating from C60F48

orbitals dominate the spectra at high BEs. The most prominent peak C located around

9 eV is mostly derived from the 2p lone pairs of fluorine atoms. The two broad

features B and D located at each side of feature C are mainly attributable to the

molecular orbitals with hybridizations between F 2p and C 2p orbitals [282-283].

Although ab initio calculations predict the existence of HOMOs which are purely C

2p in nature and localize on the remaining double bonds [282], the corresponding

peak is missing in the UPS spectra at photon energy of 60 eV. This is due to the low

DOS of the HOMOs as well as the low photoionization cross section of loosely bound

π electrons [283]. The weak feature around 4 eV is believed to be the remnant intensi-

ty of diamond feature A rather than molecular HOMOs. It was reported that lower

excitation energy of 11.7 eV can indeed probe the HOMO-related features of C60F48,

with its threshold energy separated by 6.6 eV from the F 2p lone pair peak (C) [283].
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Using this energy separation, we are able to deduce the HOMO edge position at 2.1

eV below the Fermi level.

Although electron transfer from diamond to C60F48 has been confirmed by di-

amond band bending, closer inspection of the region close to the Fermi level in the

UPS spectra fails to reveal the existence of charge transfer states related to partially
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filled molecular LUMO and relaxed HOMO. This could also be due to the low

photoionization cross sections of these orbitals. It is not clear at present stage whether

we are able to observe these gap states using lower photon energy excitation due to

the limitation of photon source.

As expected from interfacial charge transfer, the WF of diamond increases sub-

stantially with C60F48 deposition (Figure 6.20b). The overall VL shift reaches as high

as 2.2 eV after deposition of 11 Å C60F48 molecules, which is much higher than the

saturated WF change induced by F4-TCNQ (Δ = 1.4 eV) and TCNQ (Δ = 1.2 eV). 

Since the change of WF is very sensitive to the amount of interfacial charge transfer,

this anomalously high WF change supports the high surface transfer doping capability

of C60F48. Figure 6.20c summarizes the change of WF as a function of C60F48 thick-

ness. By separating the contribution from band bending, the interface dipole induced

by charge transfer is estimated to be around 0.6 eV, similar to that of F4-TCNQ on

diamond.

The energy level alignment across diamond/C60F48 is schematically drawn in

Figure 6.21. The extreme high EA for solid phase C60F48 puts its LUMO far below the

diamond VBM. Even for C60F48 in isolated state, its gas phase EA of 4.06 eV results

in a relatively small activation barrier (~ 0.3 eV). Therefore, spontaneous charge

transfer occurs upon the adsorption of C60F48 even in molecular form. After thermo-

dynamic equilibrium is reached (Figure 6.21b), the large upward band bending of 1.0

eV toward diamond surface puts the Fermi level 0.6 eV below the VBM at the surface,

resulting in a highly degenerate surface region with large areal hole density. The VL

is up-shifted sharply in the interface region due to the charge transfer. The IP for

C60F48 layers is deduced from the HOMO position and work function to be 8.4 eV, in

excellent agreement with previous reports on C60F48 thin films [283].
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Figure 6.21. Schematic energy level diagram of (a) before surface transfer doping by C60F48.
(b) after surface transfer doping. The position of LUMO is deduced by adding a band gap of
3.0 eV to the HOMO energy position.

6.2.6 CuPc revisited

The molecules studied in this chapter have condensed-phase EA close to or higher

than the IP of diamond. To further investigate the influence of molecular EA on

surface transfer doping of diamond, we choose a model organic molecule with a much

smaller EA. CuPc serves this purpose very well, since its EA in condensed phase has

a value in the range of 2.7 ~ 2.9 eV [156-158], which places its LUMO 1.7 to 1.9 eV

above the VBM of diamond. The resulting activation barrier far exceeds the thermal

energy of electrons at RT (~0.026 eV). Consequently, electron transfer from diamond

VBM to CuPc LUMO is not energetically favored, and surface transfer doping of

diamond is therefore not expected to proceed.

In Chapter 5, the PES results of CuPc deposited on hydrogenated diamond sur-

face have been presented. In particular, the diamond C 1s peak remains at the same

BE throughout CuPc deposition (Figure 5.3). The absence of band bending indicates

that there is no hole accumulated region at the diamond surface. Moreover, as shown
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in Figure 5.5b, there is virtually no shift of the VL energy position within experimen-

tal error (~0.05 eV), indicating good VL alignment across the interface. The absence

of band bending and interface dipole at diamond/CuPc interface unambiguously

confirms that there is no charge transfer at the interface. CuPc thus does not serve as

an effective surface acceptor for diamond.

6.2.7 Areal hole density and doping efficiency

Except for CuPc, all the organic molecules discussed in this chapter (i.e. F4-TCNQ,

TCNQ, C60, C60F48) induce surface transfer doping of diamond. To compare their

doping abilities, it is necessary to quantify the doping yield (i.e. induced areal hole

density in diamond) as a function of molecular coverage.

The charge density and electrostatic potential profile of the space charge layers

inside a general semiconductor due to the presence of surface states or surface adsor-

bates can be analyzed by combining Poisson’s equation and Fermi-Dirac statistics [7].

Thus, the relationships between various important physical quantities such as the band

bending amount, space charge density, and surface charge density etc. can be quanti-

fied. For wide bandgap semiconductors such as diamond, using the Boltzmann

approximation and assuming a unipolar (holes only) semiconductor, a simple hole

accumulation layer profile in diamond can be obtained [222]:

2
s s 0 v s( ) 2 / exp( / 2 )p u kT N e u kT  (6.1)

This equation relates the integrated surface areal hole density ps with the potential us =

EVBM –EF at the diamond surface. k, T, ε, ε0, e are the Boltzmann constant, temperature,

relative dielectric constant (5.8 for diamond), vacuum permeability and elementary

charge, respectively. NV is the effective density of states at the valence band edge

which is 2.7×1019 cm-3 for diamond at RT [222]. Hence, the pre-exponential factor in

Eqn. (6.1) is calculated to be 2.1×1012 cm-2. It should be noted that Eqn. (6.1) is only
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valid for the non-degenerate case where the diamond valence band is below the Fermi

energy (us<0). For strong surface acceptors like F4-TCNQ, the associated surface

transfer doping can be so strong that the Fermi energy is well below the VBM at the

surface as a result of large upward band bending, and the diamond surface becomes

degenerate. In this case, the classical Boltzmann approximation is replaced by Fermi

statistics approximated as a step function, and eqn. (6.1) becomes [222]:

5/2

2 s s
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(6.2)

By combining Eqn. (6.1) and (6.2), the areal hole density induced by surface

transfer doping on diamond can be explicitly estimated with the knowledge of the

surface potential us. In practice, us is obtained by adding the band bending amount as

deduced from core-level PES to the us of pristine hydrogenated diamond (us = -0.4

eV). From the above equations, a larger band bending always leads to higher areal

hole density at the surface.

On the molecular acceptor side, excess electrons originating from diamond va-

lence band fill the LUMO of surface acceptors. By only considering the molecules

within the first monolayer in direct contact with diamond, the excess electron occu-

pancy in the surface acceptors follows the Fermi-Dirac statistics under molecular

framework and we have:

s LUMO F

A A
( ) / ( ) /1 e 1 eu kT E kT

n n
n

 
 

 
(6.3)

for areal electron density n in the surface acceptor layer under thermodynamic equili-

brium. nA is the density of surface acceptors; Δ is the acceptor activation energy

which equals the energy difference between molecular LUMO ( LUMO) and diamond

VBM. Δ is a constant which remains unchanged before and after the equilibrium. In

this way, the areal electron density is related to the surface potential us, which in turn
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is related with the areal hole density ps in diamond. The addition requirement of

overall charge neutrality in the system dictates that ps must be equal to n. Combining

with Eqn. (6.1) and (6.2), it is also possible to express us as a function of acceptor

coverage nA. It should be noted that the degeneracy factor was set to 1 in Eqn. (6.3),

which implies at most only one unoccupied LUMO state per molecule can accommo-

date an extra electron charge even in the case of degenerate LUMO. This assumption

is justified since the electron-electron repulsion (Coulomb repulsion) is very large

when more than one electron is forced into one isolated molecule [287].

It is now straightforward to derive the effective doping efficiency of the surface

acceptors using:

s LUMO F( ) / ( ) /
A

1 1

1 e 1 eu kT E kT

n

n 


 
  

 
(6.4)

For surface acceptors such as F4-TCNQ whose LUMO is a few kT below the Fermi

level at equilibrium (Figure 6.8), the doping efficiency is expected to approach 100%.

This is in agreement with our previous analysis that suggests the degree of charge

transfer to each F4-TCNQ molecule in the submonolayer regime is close to one.

In the top graph of Figure 6.22, we show the areal hole density (as well as sheet

conductivity) as function of molecular coverage for various molecular acceptors. The

areal hole density was calculated according to Eqn. (6.1) and (6.2). The sheet conduc-

tivity is then calculated according to σ□= e ps μh , where μh ≈ 70 cm2V-1s-1 [202] is the

average hole mobility of diamond SC. The molecular coverage is expressed in the

units of monolayer (ML, bottom axis) as well as in molecules/cm2 (top axis).
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The conversions from nominal thickness to ML for F4-TCNQ, TCNQ and CuPc

are achieved by assuming an average interlayer distance of 4 Å with lying down

molecular orientation. This conversion is approximate especially when the growth

mode deviates from layer by layer, but it nevertheless qualitatively illustrates the

dependence of surface transfer doping on molecular coverage. The molecular density

of 1 ML TCNQ has been estimated previously on Cu(111) to be about one molecule

for every 20 surface copper atoms [288], which amounts to 8.9×1013 cm-2. The

resulting density is several times smaller than that of TCNQ single crystals (e.g. ac

plane) [289], because the electrostatic repulsion between negatively charged anions

tends to increase the neighboring molecular spacing. We use this density value to

convert ML coverage to areal density for both TCNQ and F4-TCNQ. For C60 and

C60F48, a ML corresponds to a coverage of 1.15×1014 fullerene molecules/cm2 and

7.8×1013 C60F48 molecules/cm2 [248].

As seen in Figure 6.22, the doping behavior of different molecular acceptors stu-

died can be divided into three groups according to the maximum areal hole density

induced in diamond. In group I, F4-TCNQ and C60F48 represents highly effective

surface transfer dopants with the highest doping yield. The maximum areal hole

density induced by these dopants reaches as high as 4×1013 cm-2 (F4-TCNQ) and

6×1013 cm-2 (C60F48), over 4 orders of magnitude higher than the intrinsic hole con-

centration of boron-doped diamond. The saturated areal hole density induced by

C60F48, which is slightly larger than that of F4-TCNQ, is similar to the value derived

from direct sheet conductivity measurements on C60F48 covered diamond surface

[248], and is considerably higher than that observed under atmospheric conditions

[202-206].
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Group II consists of C60 and TCNQ with moderate surface transfer doping ability.

The doping yield is in the range of 1010 to 1012 cm-2. Although the induced hole

densities are several orders smaller than those in group I, they are still significantly

larger than that of pristine diamond. C60 has a higher doping yield; the saturated hole

density after the formation of several monolayers of fullerite reaches 1012 cm-2,

consistent with the conductivity measurements on the same system [248]. The in-

duced hole density and hence SC is at a level comparable to that induced by natural

atmospheric species.

CuPc belongs to group III, and cannot induce hole accumulation in diamond at

all. The distinct doping behavior of these three groups are consistent with their EA

values. Group I molecules have EAs (condensed phase) above 5 eV, much larger than

the IP of diamond, whereas group III molecules have EAs (condensed phase) smaller

than 3 eV, well below diamond IP. Group II molecules with intermediate doping

ability between group I and III, have EAs (condensed phase) close to diamond IP.

In addition to the different doping yield by these molecular adsorbates, their de-

pendences of hole density on molecular coverage also reveal significant dissimilarities.

The areal hole densities induced by F4-TCNQ and C60F48 rises sharply to 1013 cm-2 at

a few 10-2 of a monolayer, and reach saturation below 0.5 ML. Although the lowest

deposited coverage in the present study is limited to slightly over 0.01 ML, it is

reasonable to deduce that even smaller amounts of isolated molecules can induce

significant surface transfer doping of diamond. Their ability to accept electrons in

molecular form endorse their superior surface transfer doping efficiencies, and is

related with their large gas phase EA which is already close to diamond IP. In con-

trast, for group II acceptors such as TCNQ and C60, the induced areal hole densities in

diamond increase slowly with molecular coverage, and the saturation doping yield is



Chapter 6 Surface Transfer Doping of Diamond by Organic Molecules

181

reached only after several monolayers are formed. This observation is consistent with

the increase of EA that accompanies the formation of the solid phase [247]. Therefore,

for group II molecules, realizing effective surface transfer doping of diamond relies

on molecular ensembles rather than individual molecules.

The different doping abilities of the four studied molecular acceptors are best vi-

sualized by their doping efficiencies shown in the bottom panel of Figure 6.22. The

doping efficiency is calculated from the doping yield (after subtracting the intrinsic

hole density of pristine diamond) divided by the areal density of surface acceptors.

Figure 6.22 clearly separates the group I and group II acceptors. The doping efficien-

cy of group I molecules (F4-TCNQ and C60F48) is close to one as expected from the

complete charge transfer to individual molecules. Although the calculated doping

efficiency is larger than 1 at low molecular coverages, it is unlikely that each mole-

cules can accept more than one electron from diamond due to the large Coulomb

repulsion in molecular systems [281]. The discrepancy is attributed to the uncertainty

in the estimation of molecular coverage particularly at very low coverage.

In contrast, the doping efficiency of group II acceptors (C60 and TCNQ) is far be-

low one, in agreement with their doping behavior. The dependence of doping

efficiency on molecular coverage is also different for different molecules. For F4-

TCNQ and C60F48, the doping efficiency decreases with increasing coverage, whereas

it remains almost constant or even increases with increasing TCNQ or C60 coverage.

The different dependences on coverage is easy to understand since only molecules in

the submonolayer contribute to surface transfer doping for group I acceptors, whereas

the entire molecular films take part in the doping process for group II acceptors.

The above analysis points to the important relationship between surface transfer

doping ability of a molecular acceptor and its EA. The higher the EA for a molecular
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acceptor, the higher is its doping ability in terms of its doping yield and doping

efficiency. Furthermore, if the molecular EA in gas phase is close to diamond IP (Δ < 

0.4 eV), they can act as effective surface acceptors even in isolated molecular form.

Otherwise, the forming of molecular films is necessary to effectively dope diamond

surface. If the EA in condensed phase is more than 1 eV smaller than diamond IP, the

surface transfer doping cannot be achieved. It is, however, difficult to quantitatively

model this relationship from the present study. More studies on a wider range of

molecules with well determined EA values are needed to develop a reliable and

predictive model.

6.3 Chapter summary

In this chapter, we demonstrated the surface transfer doping scheme as a promising

route to achieve controllable and nanoscale doping of diamond surface. Five potential

p-type molecular acceptors (F4-TCNQ, TCNQ, C60, C60F48 and CuPc) adsorbed on

hydrogenated diamond (001) surface are carefully investigated by PES and classified

into three groups based on their doping behavior. F4-TCNQ and C60F48 induce sub-

stantial surface transfer doping of diamond even at submonolayer coverage, leaving a

hole accumulation layer with an high areal hole density of over 1013 cm-2 on diamond.

The interfacial charge transfer caused by TCNQ and C60 adsorption is lower than their

fluorinated counterparts, and the formation of molecular thin films with several

monolayer thicknesses is necessary to yield sufficiently high EA to initiate electron

transfer from diamond. Finally, the adsorption of CuPc up to several tens of monolay-

ers does not cause observable surface transfer doping of diamond, indicating its

inability as an effective surface acceptor. The distinct surface transfer doping efficien-

cies of these three representative molecular groups are closely related to their EA in
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both gas phase and condensed phase, which in turn determines the relative alignment

of molecular LUMO and diamond VBM.

Controllable surface transfer doping using carefully selected surface acceptors

opens a new route to engineer the SC of diamond for a wide range of applications.

Strong surface transfer dopants such as F4-TCNQ and C60F48 can efficiently induce

very high hole concentration in diamond with sheet conductivities well above 10-4 Ω-1.

On the other hand, moderate surface dopants such as C60 and TCNQ can achieve

controllable low doping levels with surface conductivities between 10-7 to 10-4 Ω-1.
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CHAPTER 7

CONLUSIONS AND OUTLOOK

7.1 Thesis summary

The work presented herein aims to study the adsorption of organic molecules on

diamond (001) by synchrotron based spectroscopies. Two important surface termina-

tions of diamond — bare and hydrogenated — are investigated, and exhibit distinct

interactions with adsorbed molecules. Focus is given to the electronic structure,

electronic properties and energy level alignment at different diamond/organic hetero-

junction interfaces, revealing important implications for the development of diamond-

based electronic devices.

First, the structural and electronic properties of hydrogenated and bare diamond

(001) surfaces are characterized in Chapter 3. LEED and STM confirm the 2×1

reconstruction due to surface dimers on both surfaces with two orthogonally oriented

2×1 domains. The surface states originating from π-bonded dimers of bare diamond 

are clearly revealed by PES in both core-level and valence band domains. The asso-

ciated unoccupied surface states with excitonic nature are also identified in the pre-

edge NEXAFS spectra with significant polarization-dependence. In contrast, the

surface states from hydrogenated surface dimers cannot observed by PES due to

overlap with bulk diamond components. Nevertheless, the surface resonance asso-

ciated with C1s→σ* resonant transitions within the surface C-H bonds is revealed by 

NEXAFS. The hydrogen termination passivates the π-bonded dimers of bare diamond, 

leading to the inert nature of hydrogenated diamond. The heteropolar C-H bonds

create a surface dipole layer with an electrostatic potential step as large as 1.9 eV

which effectively lowers the diamond vacuum level below the CBM, leading to the

unique NEA ( χ = - 1.1 eV) property of hydrogenated diamond. Consequently, hot
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electrons excited into diamond conduction bands accumulate at CBM through inelas-

tic scattering and escape into vacuum without experiencing any energy barrier at the

surface, giving rise to a sharp and intense secondary electron emission peak at the low

kinetic energy region of PES spectra.

The π-bonded dimers on bare diamond (001) suggest susceptibility towards cyc-

loaddition reaction with alkene-containing organic molecules, which is the topic of

Chapter 4. The surface functionalization of diamond by 1,3-butadiene, an archetypical

organic molecule, is studied by a combination of PES, NEXAFS and DFT calcula-

tions. The quenching of surface states (both occupied and unoccupied) upon

molecular adsorption confirms the Diels-Alder reaction which involves the breaking

of π-bonds and the formation of cyclohexene-like ring structures. Accompanying the 

interfacial chemical reaction is a significant reduction up to 0.7 eV of electron affinity

and an enhancement of secondary electron emission. With the help of DFT calculations,

we propose that the terminal C—H bonds in the covalently bonded organics on diamond

give rise to a surface dipole that contributes to the tuning effect on diamond electron

affinity and electron emission.

Functionalization of diamond with π-conjugated organic semiconductors 

represents a promising route to the integration of molecular electronics with diamond

technology. Chapter 5 investigates the model planar organic semiconductor CuPc on

hydrogenated and bare diamond surfaces. Significant dissimilarities have been found

between these two substrates in terms of interfacial interactions, energy level align-

ment, and supramolecular organizations. CuPc molecules interact weakly with

hydrogenated diamond surface via Van-der-Waals interactions without chemical

reactions and charge transfer occurring at the interface. NEXAFS reveals that the

molecules lie flat throughout growth with a high degree of order as a result of compet-
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ing molecule-substrate interactions and intermolecular interactions. In contrast, CuPc

are covalently attached to bare diamond dimers. PES shows the electron affinity of

diamond is transformed from positive to negative with greatly enhanced secondary

electron emission yield. This altering in diamond surface electronic properties is

proposed to be due to an intramolecular dipole layer created by reacted molecules

through distortion of the molecular plane, as well as the energy level bendings as a

result of interfacial charge transfer. A novel electron emission process from diamond

through covalently attached molecules to vacuum is described to explain the evolution

of secondary electron emission profiles. Finally, the molecular orientation on bare

diamond experiences a transition from lying-down at submonolayer coverage to

standing-up in multilayers, accompanied by an order-disorder-order transition during

growth. The switch from dominant molecule-substrate covalent interactions in the

first monolayer to weak intermolecular interactions in multilayers accounts for the

observed transition.

The last results chapter deals with charge transfer across the interface between

hydrogenated diamond (001) and organic molecules. Surface transfer doping by

organic molecules, which relies on this charge transfer, holds the promise of overcom-

ing the doping difficulties of diamond and to achieve controllable nanoscale doping of

the diamond surface. Five potential p-type molecular acceptors with varying electron

affinities (F4-TCNQ, TCNQ, C60, C60F48 and CuPc) adsorbed on hydrogenated

diamond (001) are carefully examined by PES and they are classified into three

groups based on their doping behaviors. F4-TCNQ and C60F48 can readily induce

substantial electron transfer from diamond valence bands to molecular LUMOs even

in their isolated molecular form, leaving a hole accumulation layer with an ultra-high

areal hole density over 1013 cm-2 on diamond surface. The interfacial charge transfer



Chapter 7 Conclusions and Outlook

187

caused by TCNQ and C60 adsorption is much less significant than their fluorinated

counterpart, and the formation of solid-phase molecular thin films is a prerequisite to

initiate electron transfer from diamond. Finally, the adsorption of CuPc up to several

tens of monolayers does not cause observable surface transfer doping, indicating its

ineffectiveness as molecular acceptors. The distinct surface transfer doping efficien-

cies of these three representative molecule groups are closely related to their electron

affinity in both gas phase and condensed phase, which determines the relative align-

ment of molecular LUMO and diamond VBM. It is also worth mentioning that we

have also successfully applied this novel doping scheme to achieve nondestructive,

controllable doping of other semiconductor system including graphene and organic

thin films [290-291], where conventional ion implantation method fails.

7.2 Future work

For pristine diamond surfaces, controversies still exist. Regarding the nature and

origins of two surface resonances which show opposite polarization dependences with

incident light direction, NEXAFS of n-type diamond would be helpful to discriminate

between surface core-excitons and normal resonant transitions.

Although the interfacial electronic properties of 1,3-butadiene on bare diamond

(001)-2×1 are now understood, the current understanding is based on macroscopic

measurement techniques which lacks atomic-scale insights. STM imaging of the

reacted surface with atomic resolution would be helpful to confirm the bonding

geometry as predicted by DFT calculations. Important information such as molecular

coverage and distribution would also be acquired. In particular, the diamond surface

dimers with 2×1 symmetry could potentially provide a template allowing ordered self-

assemblies of small organic molecules.
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Future work involving more sophisticated DFT modeling and molecular dynam-

ics (MD) simulation to understand the reaction scheme and bonding geometry of

CuPc on bare diamond is needed. Although the complex structure of CuPc molecule

and its numerous unsaturated bonds would apparently present many challenges to the

theoretical modeling of its interaction with diamond, STM imaging could reduce the

possible molecular configurations and reaction sites, thereby easing the calculation

complexity.

For simple organics and organic semiconductors absorption on bare diamond sur-

faces, we observed lowered electron affinities with enhanced and narrowly distributed

secondary electron emissions. This effect could potentially be exploited to develop

diamond-based cold cathode or field-emission devices as an alternative to conven-

tional hydrogenated diamond. Field-emission measurements would be needed to

characterize these functionalized surfaces, providing important device-related parame-

ters such as threshold voltage and emission current density. In particular, the stability

of the functionalized surface, especially after it is exposed to air, would be vital for

practical device operations.

Although we provide direct spectroscopic evidence for diamond p-type surface

transfer doping of diamond, the areal hole density in diamond is indirectly estimated

from diamond energy levels (i.e. the energy difference between VBM and Fermi

level). Transport measurements (e.g. Hall measurement) in a device-like architecture

would be necessary to reliably determine electrical characteristics (e.g. charge carrier

type and concentration, carrier mobility) of the surface conductive channel, so that the

surface transfer doping scheme can be validated in practice.

Future work on surface transfer doping should also involve the immobilization of

molecular acceptors on diamond surface in order to enhance their thermal stability.
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Although the charge transfer process by surface acceptors such as F4-TCNQ and

C60F48 is effective, a challenge for practical application is the rather weak bonding

(usually in the form of physisorption) between surface acceptors and diamond surface,

leading to thermal stability issues [249]. Strategies such as using dielectric capping

layers [249] and photon assisted polymerization of organic overlayers [292] can

potentially improve the thermal stability. A better solution would be to combine the

organic functionalization of diamond and surface transfer doping by covalently

attaching surface dopants on a hydrogenated diamond surface. This premise was

recently demonstrated on a hydrogen-terminated diamond surface with hydroxyl

functional groups [293].

Last but not least, only p-type surface conductivity of diamond is achieved in this

work. For the realization of more advanced diamond surface-channel bipolar devices

such LED and CMOS, n-type surface transfer doping is indispensible. Alkali metal

donors such as potassium, and novel molecular donors such as cobaltocene (CoCp2)

[294-295] and pyronin B (PyB) [296] are potential candidates.
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