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ABSTRACT

In the last decade, shared libraries have became popular commodities for

implementing essential services in many systems and application domains. The preva-

lence of shared libraries depends on not only their support for software reuse, but also

their allowance for sharing at both compile-time and run-time.

On the other hand, the reuse of libraries results in degradation of system perfor-

mance, primarily due to the adaption of the general-purpose libraries to the specific

contexts when they are deployed in various applications. To reconcile the conflicting

requirements of generality of shared libraries across all applications and high perfor-

mance for individual applications, shared libraries are subject to specialization.

This dissertation introduces a comprehensive framework for specialization of

applications using shared libraries. This framework preserves sharing of shared

libraries, enables reduction of code duplication during the entire specialization pro-

cess, and enhances existing specialization techniques through cross-fertilization be-

tween program slicing and partial evaluation.

Technically, we introduce a profitability analysis aiming at discovering all mean-

ingful specialization opportunities of a shared library without taking into considera-

tion its deployment context. We propose methodologies for constructing and execut-

ing a generic specialization component for a shared library catering to various

specialization opportunities. These methodologies enable code/memory reduction at

compile-time and run-time through sharing. Finally, we investigate the essence and

uniformity of program slicing and partial evaluation. The uniformity enables

cross-fertilization between program slicing and partial evaluation such that existing

specialization techniques can be enhanced.
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CHAPTER 1

INTRODUCTION

1.1 Shared Libraries

A library is a general-purpose program (existing in source form or binary form) which

can be reused to develop various applications. Libraries are commonly categorized

into two types, namely static libraries and shared libraries, according to the ways

they are linked with applications. The binaries of static libraries are copied into the

binary of an application at link-time to produce a stand-alone executable. On the

other hand, the binaries of shared libraries are only loaded into memory to execute

an application at load-time or run-time. In the last decade, shared libraries are

becoming popular commodities for implementing essential services in many systems

and application domains. For example, in the Windows system, many device drivers

and resource files are presented in the form of dynamically linked libraries, which are

Microsoft’s implementation of the shared libraries.

The prevalence of shared libraries depends on not only their support for software

reuse, but also their allowance for sharing; ie. (1) There is only one copy of a shared

library’s binary on the disk. The binary of an application that uses one or more

shared libraries, contains only references to the binaries of those shared libraries, and

(2) At run-time there is one single copy of the binary of a shared library in memory.

The executions of all applications that use the shared library refers to the same copy

of the binary of the shared library.

Overall, sharing aims at reducing code duplication and achieving reduction in

both disk and memory use. Furthermore, it enables transparent updating, i.e. all

applications that use the shared library immediately enjoy the bug fixing for that

1



shared library without having to be rebuilt since only one copy of the shared library

is maintained.

1.2 Program Specialization

The reuse of libraries results in degradation of system performance, primarily due to

the adaption of the general-purpose libraries to the specific contexts when they are

used in various applications. This degradation has been recognized in many areas

such as operating systems and graphics. There are two common sources of context-

related inefficiencies of a library. The first is the presence of useless computations in a

library when the library is used to solve a specific problem. The second is the presence

of partial inputs to a library that do not change very often but nevertheless cause

the libraries to repeatedly perform the computations dependent on this invariant

information.

To reconcile the conflicting requirements of generality of a library across all ap-

plications and high performance for individual applications, libraries are subject to

specialization. There have been many well-developed program specialization tools

used to tackle these two common inefficiencies. Program slicing, which was first in-

troduced as a debugging technique, can also be used to perform a kind of program

specialization, as argued by Reps in [67], by extracting from the original program a

semantics-preserving sub-program confined to a specific application. On the other

hand, partial evaluation specializes a program with respect to its invariant partial

input and produces a more efficient specialized program at compile-time.

We term the information that stipulates the context in which the program could

be specialized as specialization information. Furthermore, we term the program

transformer, such as a program slicer or a partial evaluator, which defines a set of

transformation rules and transforms the original program into a specialized program

2



materializing the specialization opportunities specified in the specialization informa-

tion as a specialization engine.

1.3 Specialization of Applications Using Shared Li-

braries

The importance of specialization of applications using libraries has been recognized

by the partial evaluation community and substantial progress has been made over the

past several years to make partial evaluation come true in practice. Tempo, which

is a successful partial evaluator for C language, advocates modular specialization as

explained in [1],

“... It is not usually practical or even desirable to apply specialization

to a complete application, i.e. from the main function down to all leaf

functions. Instead, specialization is usually applied to part of an applica-

tion (without altering the rest of the application) or to library functions.

Modular specialization supports specializing a fragment of an application

... ”

The specialization of applications using shared libraries to be studied in

this dissertation is different from conventional program specialization techniques,

which have been designed for specializing applications using static libraries. It has

the intention of preserving sharing during the entire specialization process, from spe-

cializing shared libraries at compile-time to executing specialized applications that

use the specialized shared libraries at run-time. Correspondingly, specialization of

applications using shared libraries can be divided into the following sub-problems.

The first sub-problem is called independent specialization information gen-

eration. The first step to ensure that specialization preserves sharing is to enable

independent specialization of shared libraries, i.e., shared libraries are specialized

3



independently, free from their deployment contexts confined to any specific applica-

tions. The focus of specialization is how best to prepare a library for specialization

such that the specialized library remains effective in as many applications as possible.

The specialization information can be abstracted from the context in which a library

interacts with other libraries or derived from the specialization opportunities residing

inside the library. The latter approach enables library developers to take advantage

of their knowledge of a library’s implementation and prepare suitable specialization

information for all possible future deployments.

The second sub-problem is called efficient specialized library construction

and execution. The original libraries will be replaced by their corresponding spe-

cialized libraries for specialization purpose that cater for various specialization oppor-

tunities. In this way, we minimize the need for repetitive and redundant specialization

of libraries at the application level. Given that normally several pieces of specializa-

tion information are produced in independent specialization information generation,

it becomes important to manage and balance the trade-off between the multiplicity

of specialized libraries generated with respect to those various pieces of specializa-

tion information, and the space required for keeping them, which demonstrates the

sharing property. In principle, we would like to be able to generate these specialized

libraries at compile-time, in order to enable maximal sharing before deploying them

in multiple applications. It is also desirable to exploit the specialized libraries at

run-time to minimize the footprints produced from them.

The third sub-problem is called specialization engine enhancement. The

specialization of applications using shared libraries leverages on the maturity of ex-

isting implementations of specialization techniques, in particular partial evaluation,

that have been under development for several years. It is desirable to enhance exist-

ing specialization techniques through cross-fertilization among different specialization

techniques. Typically, partial evaluation has been used in exploiting requirements,
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which constrain the kinds of input permissible for invoking a library. To specialize

a library, partial evaluation propagates invariant input information forward to the

library’s output. On the other hand, program slicing has been used to specialize

a library with respect to assertions, which stipulate the kind of output behavior

acceptable by the calling context. Program slicing performs backward specialization

which passes information from output back to the library’s input. Given the intimate

relation between the requirement and the assertion of a library as advocated by the

design by contract methodology [59], it is natural to study the relation between par-

tial evaluation and program slicing, and to explore their potential for improving upon

the existing specialization techniques.

1.4 Contributions

In this dissertation, we conduct a comprehensive study of specialization of applica-

tions using shared libraries. Our goal is to develop a framework that preserves sharing

of shared libraries, reduce code duplication during the entire process of specializing ap-

plications using shared libraries through sharing, and enhances existing specialization

techniques through cross-fertilization between program slicing and partial evaluation.

The technical contributions of this dissertation can be summarized as follows.

• To address the first sub-problem of independent specialization informa-

tion generation, we design a profitability analysis aiming at discovering

all meaningful specialization information of a shared library without taking its

deployment context into consideration. Specifically, we advocate profitabil-

ity declaration, a novel methodology to capture specialization opportunities

inside a library. This conceptual profitability declaration is translated into a

profitability signature which is expressed in the form of a binding-time con-

straint. A profitability signature stipulates a constraint enforced over library
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parameters in order to materialize the specialization opportunities within a li-

brary.

• To address the second sub-problem of efficient specialized library construc-

tion and execution, we propose methodologies to construct and execute a

generic specialization component (GSC for short) for a shared library. A

GSC caters for the various specialization opportunities of a library returned by

profitability analysis. These methodologies enable reduction of duplicated code

at both compile-time and run-time. Technically, we design a static transfor-

mation to detect sharable templates and eliminate duplicated templates when

constructing a GSC for a library at compile-time. We adopt a strategy for

template dumping that minimizes the footprints of shared libraries in the spe-

cialized applications by reducing the number of duplicated object templates

created in a dynamically allocated memory region at run-time. With this new

strategy, we propose a run-time specialization mechanism to manage the new

structure of the footprint.

• To address the third sub-problem of specialization engine enhancement,

we build a theoretical framework which captures the essence and uniformity

of program slicing and partial evaluation. The uniformity between these two

techniques enables cross-fertilization between slicing and partial evaluation to

enhance existing specialization techniques.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. The next chapter introduces

background on partial evaluation and program slicing to facilitate understanding the

technical details of our approach. Chapter 2 also presents an overview of the approach

taken in this dissertation. Chapter 3 surveys related research published in this domain
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prior to and during the course of our work. Chapter 4 to Chapter 6 describe in

detail the contributions of this dissertation. In Chapter 4 profitability analysis is

introduced along with a profitability-oriented binding-time analysis. This chapter

is largely based on the work done in 2006 and 2007, and reported in [82, 83, 84],

but extended here for clarification. Chapter 5 presents the approach to efficiently

constructing and executing a generic specialization component for a library. This topic

was covered in [85], but is again clarified and extended in this dissertation. Chapter 6

presents a theoretical unified framework in which we can cast both (forward and

backward) program slicing and partial evaluation, and develop a new specialization

framework that provides for cross-fertilization between existing program slicing and

partial evaluation techniques. This work was reported in [81]. Finally, Chapter 7

summarizes the contribution of the research and points out possible future directions.

1.6 Notational Conventions

The notation and font styles used throughout this dissertation are defined as follows.

• The generic entities and concrete entities (including constant values or plain

program fragments) are written math font and teletype font respectively. For

instance, in “v = e” v ranges over all variables and e ranges over all expressions;

in “v=v+1” the LHS is the concrete variable v and 1 is a constant value.

• The name of a type is written in bold font and its initial letter is capitalized.

A value x (either a data or a function) of type T is written as x ∈ T.

• The notation σ[x ← newx] represents an updating function which gets the

primary index x of the host data structure σ mapped to its new value newx.

• The notation [[p]] represents a semantic function of the underlying programming

language in which the code p is written.
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• Notation for some data structures: where ele1, . . . , elen are elements of those

data structures

– A set: {ele1, . . . , elen}

– A list: [ele1, . . . , elen]

A stack, which is a last-in-first-out list has the same representation as that

of a list with an extra requirement that the elements pushed into the stack

earlier will be at right hand side of the elements pushed into the stack

later.

– A tuple: 〈ele1, . . . , elen〉

– A record: 〈fld1 : ele1, . . . , fldn : elen〉 where {fldi} denote field names.

For the ease of presentation, the field names {fldi} of a record are omitted

in descriptions or algorithms that refer to the record.
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CHAPTER 2

OVERVIEW

In this chapter, we first introduce the subject language used in this dissertation.

Then we give the background information on program slicing and partial evaluation

to facilitate understanding the technical details of our approaches elaborated in Chap-

ters 4, 5 and 6. Finally we present our overall approaches to addressing the three

sub-problems: independent specialization information generation, efficient specialized

library construction and execution, and specialization engine enhancement, as stated

in Section 1.3.

2.1 Language

In this dissertation we choose a shared library to be a function definition, which may

be interrelated with other function definition.1 The terms shared library and func-

tion definition are treated as synonyms and used interchangeably in the remaining

part of the dissertation. The subject language is a subset of the C language and its

abstract syntax is defined in Figure 2.1.

The evaluation strategy of library calls is limited to call-by-value and every library

must return a value. We adopt an assumption that works well in practice that the

return value of a library must be (data- and control-) dependent on all the library’s

parameters. We also assume that all the programs written in this subject language

terminate.

Figure 2.2 presents a self-recursive library power, which computes the base b to

the power e.

1Each file or module contains only one function definition.
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c ∈ Const Numerals or Booleans
v ∈ Var Variables

f, g ∈ FName Library names

bop ∈ BOp Binary operators
::= + | − | ∗ | / | == | ! = |

< | > | >= | <= | && | ||

e ∈ Exp Expressions
::= c | v | f (e1, . . . , en) | e1 bop e2

s ∈ Stat Statements
::= s1; s2 | while e s | return e |

v = e | if e s1 else s2

decl ∈ Decl Declarations
::= int v

locals ∈ Locals Local variable declarations
::= decl;

paras ∈ Paras Parameter list
::= decl | decl, paras

fd ∈ FDef Libraries
::= int f (paras) {locals∗ s}

Figure 2.1: Syntax of the subject language

2.2 Background on Program Slicing

Program slicing, which was first introduced by Mark Weiser [80] as a debugging

technique, is a decomposition technique that extracts from an original program those

statements relevant to a particular computation. He defined that a program p′ is

a slice of an original program p if p′ is a syntactic subset of p and p′ is guaranteed

to faithfully represent p within the domain of specified subset of behavior, which is

referred to as a slicing criterion. A complete survey on program slicing can be

found in [76].
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int power (int b, int e) {
int z;

if (e == 0)

return 1;

else {
z = b * power(b, e-1);

return z;

}
}

Figure 2.2: Library power

Weiser’s program slicing has been known as static slicing, because the slicing

criterion contains no information about how the program is executed. For static

slicing, the slicing criterion is encoded as a pair 〈pp, V 〉 where pp is a program point

and V is an arbitrary set of variables appearing at program point pp.

A statement is included in a slice when it contains variables whose values are

involved either directly or indirectly in the computation of those variables declared in

the slicing criterion. We term these variables, including those in the slicing criterion,

residual variables. On the other hand, variables that cannot be affected by (or

affect) the residual variables are termed as transient variables. Note that such

a classification of variables is dependent on the program point. A variable may be

transient at one program point, and residual at another.

Normally, static slicing can be categorized into forward static slicing and back-

ward static slicing. Forward static slicing of a program simply extracts those state-

ments and/or predicates in the program that are affected by the slicing criterion. On

the other hand, backward static slicing extracts those statements and/or predicates

that can have effect on the slicing criterion.
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2.3 Background on Partial Evaluation

Jones [46] defined partial evaluation as a two-stage computation. In stage one, a

partial evaluator mix specializes a source program p with respect to invariant partial

input in1, and produces the specialized code pin1 . In stage two, pin1 is executed on the

remaining input in2 to produce the same result out as running the source program p

on all of its input, provided that all the computations involved terminate. Formally,

Computations in stage one: pin1 = [[mix]] [p, in1]

Computations in stage two: out = [[pin1 ]] in2

An equational definition of mix: [[p]] [in1, in2] = [[[[mix]] [p, in1]]] in2

The chief motivation for partial evaluation is speed: program pin1 is often faster

than the original program p because it does not need to perform the computations

that solely depend on the invariant in1.

2.3.1 Offline Partial Evaluation

Partial evaluation transforms program statements in two ways: It either reduces (a.k.a

evaluates) a program construct (an expression or a statement) whose computation is

solely based on invariant partial input, but keeps its effect within a partial evalua-

tion environment; or residualizes the program construct whose computation relies on

varying input to form the specialized program.

According to how the transformation decisions are made, partial evaluation is nor-

mally categorized into online partial evaluation and offline partial evaluation.

Online partial evaluation determines and performs the transformations in a single

pass in the presence of the concrete values of the invariant inputs. On the contrary,

offline partial evaluation typically involves a preprocessing phase called binding-

time analysis (BTA for short), in which the transformation decisions are made.
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BTA attempts to determine at each program point the binding time of the syn-

tactic construct, which asserts whether that program construct will be bounded to

a concrete value at stage one or stage two, and produces a two-level binding-time

annotated program [61]. The input to BTA is termed as a binding-time division

over program parameters [45], which specifies binding times of program parameters.

The syntax of the binding-time information used in this dissertation is defined in

Figure 2.3.

btv ∈ BTv Binding-time variables
bte ∈ BTe Binding-time expressions

::= s | d | btv | bte1 t bte2 | bte1 u bte2

Figure 2.3: Syntax of binding-time information

We consider three primitive binding-time expressions: Two binding-time constants

static (s) and dynamic (d) representing that values are bounded to variables at stage

one and stage two respectively, and a binding-time variable btv ranging over s and

d. s and d are ordered in decreasing staticness: s @ d. A composite binding-time

expression is formed using two operators: least upper bound t and greatest lower

bound u. The ordering can be naturally extended to partial ordering over tuples of

binding-time expressions.

For example, Figure 2.4 depicts a binding-time annotated library power produced

with respect to a binding-time division (btb = d ∧ bte = s), where btb and bte are

binding-time variables pertaining to the library’s parameters b and e, respectively.

Several popular partial evaluators such as Schism [20, 21] and Tempo [21, 22]

further employ action analysis after BTA to aid specialization. As pointed by

Consel et al in [21], the action annotations attached to program constructs are control-

based directives to drive the partial evaluators as to what to do for each expression

and therefore the partial evaluators are guided first by the action tree and then by

the abstract syntax tree of codes – instead of performing first a syntax analysis and
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int power (int bd, int es) {
int zd;

if (es == 0)

(return 1)d;

else {
zd = bd * power(bd, es -1);

(return z)d;

}
}

Figure 2.4: A binding-time annotated library power

then interpreting binding times. The action annotation domain ACval comprises

four values ev, rd, rb, and id, which represent four transformations evaluate, reduce,

rebuild and reproduce, respectively. The action annotation of each program construct

is strictly determined by its binding time. Figure 2.5 depicts an action annotated

library power produced by Tempo from the binding-time annotated code shown in

Figure 2.4. For clarity, we omit those action annotations that can be inferred easily.

For example, if an expression or a statement is annotated by ev (or id), the action

annotations of all the nested program constructs will also be ev (or id) and are thus

omitted.

int power (int bid, int eev) {
(int z)id;

ifrd (e == 0)ev

(return 1)id;

else {
(z = bid * power(bid, eev -1)rb)rb;

(return z)id;

}
}

Figure 2.5: An action annotated library power produced by Tempo

Figures 2.6, 2.7 and 2.8 define the rules of action computation of program
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constructs from the corresponding binding times. ACe takes in a binding-time an-

notated expression (of type Expbt), and returns an action-annotated expression (of

type Expaa). ACs takes in a binding-time annotated statement (of type Statbt),

and returns an action-annotated statement (of type Stataa). The operation outmost

extracts the outermost action annotation of an action-annotated expression (or state-

ment). Interested readers may wish to refer to [21] for the original motivation and

detailed implementation of action computation for program constructs from the cor-

responding binding times.

ACe ∈ Expbt → Expaa

ACe cbt ::= if (bt == s)
then cev

else cid

ACe vbt ::= if (bt == s)
then vev

else vid

ACe (ebt
1 bop ebt

2 ) ::= let eaa
1 = ACe ebt

1

aa1 = outmost eaa
1

eaa
2 = ACe ebt

2

aa2 = outmost eaa
2

in if (aa1 == ev) ∧ (aa2 == ev)
then (eaa

1 bop eaa
2 )ev

else if (aa1 == id) ∧ (aa2 == id)
then (eaa

1 bop eaa
2 )id

else (eaa
1 bop eaa

2 )rb

ACe f (ebt
1 , . . . , ebt

n ) ρ τ ctr ::= let {eaa
i = ACe ebt

i | 1 ≤ i ≤ n}
{aai = outmost eaa

i | 1 ≤ i ≤ n}
in if (aa1 == ev) ∧ . . . ∧ (aan == ev)

then f (eaa
1 , . . . , eaa

n )ev

else if (aa1 == id) ∧ . . . ∧ (aan == id)
then f (eaa

1 , . . . , eaa
n )id

else f (eaa
1 , . . . , eaa

n )rb

Figure 2.6: Action analysis over an expression
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ACs ∈ Statbt → Stataa

ACs (sbt
1 ; sbt

2 ) ::= let {saa
i = ACs sbt

i | i = 1, 2}
in (saa

1 ; saa
2 )

ACs (vbt1 = ebt) ::= let vaav = ACe vbt1

eaa = ACe ebt

aae = outmost eaa

in if (aav == ev) ∧ (aae == ev)
then (vaav = eaa)ev

else if (aav == id) ∧ (aae == id)
then (vaav = eaa)id

else (vaav = eaa)rb

ACs (int vbt1
1 , . . . , int vbtn

n ) ::= let {vaai
i = ACe vbti

i | 1 ≤ i ≤ n}
in (int vaa1

1 , . . . , int vaan
n )

ACs (return ebt) ::= let eaa = ACe ebt

aa = outmost eaa

in (return eaa)aa

Figure 2.7: Action analysis over a statement: Part 1

2.3.2 Run-time Partial Evaluation

According to when the concrete values of in1 and in2 are available, partial evaluation

is commonly divided into compile-time partial evaluation and run-time partial

evaluation. In compile-time partial evaluation, concrete values of in1 and in2 are

available at compile-time and run-time, respectively. For run-time partial evaluation,

values of in1 and in2 are only known at run-time though still in two stages. Such

a situation occurs, for example, when a set of functions implement session-oriented

transactions, as noted in [23].

In this dissertation, we do not specialize a shared library with respect to concrete

values, as it is rare to establish concrete specialization values for an off-the-shelf library

and such values are only provided at the application level. Instead, a binding-time
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ACs (if ebt sbt
1 else sbt

2 ) ::= let eaa = ACe ebt

aae = outmost eaa

{saa
i = ACs sbt

i | i = 1, 2}
{aai = outmost saa

i | i = 1, 2}
in if (aae == ev) ∧ (aa1 == ev) ∧ (aa2 == ev)

then if eaa saa
1 else saa

2 )ev

else if (aae == id) ∧ (aa1 == id) ∧ (aa2 == id)
then (if eaa saa

1 else saa
2 )id

else if (aae == ev)
then (if eaa saa

1 else saa
2 )rd

else if (aae == rb)
then (if eaa saa

1 else saa
2 )rb

ACs (while ebt sbt) ::= let eaa = ACe ebt

aae = outmost eaa

saa = ACs sbt

aas = outmost saa

in if (aae == ev) ∧ (aas == ev)
then (while eaa saa)ev

else if (aae == id) ∧ (aas == id)
then (while eaa saa)id

else if (aae == ev)
then (while eaa saa)rd

else if (aae == rb)
then (while eaa saa)rb

Figure 2.8: Action analysis over a statement: Part 2

division about library parameters is used in preparing shared libraries for future spe-

cialization. Thus, we employ run-time specialization techniques in the framework of

specialization of applications using shared libraries in order to deal with the intricacy

associated with maintaining dynamic linking of specialized libraries.

Run-time partial evaluation typically performs BTA over the original program

p to construct a binding-time annotated code pbt. A program generator generator

cogen accepts pbt and produces a program generator pgen at compile-time, which is

also termed generating extension in literature [35, 46]. pgen creates the code pfp
in1

at

run-time when the concrete values of in1 are available. We term this code produced
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by the generating extension as its footprint. Formally,

Generating extension construction: pgen = [[cogen]] pbt

Footprint construction: pfp
in1

= [[pgen]] in1

An equational definition of pgen: [[p]] [in1, in2] = [[ [[pgen]] in1 ]] in2

2.3.3 Structure of A Run-time Generating Extension

There are two notable partial evaluators supporting run-time specialization of the

C language, namely Tempo [2, 25, 62, 63] and DyC [39, 38]. They both adopt a

template-based approach to create generating extensions for libraries. A generating

extension produced by these run-time specialization systems is commonly comprised

of two parts: A template file and a run-time specializer. 2

• A template file that encodes the dynamic expressions in the binding-time

annotated code. It contains several program fragments each of which is (possi-

bly) parameterized by a hole variable denoting the result of a static expression.

Each program fragment is referred to as a source template and is delimited

by symbolic labels to make sure the templates are considered in isolation by the

compiler.

When the template file is compiled into a binary, the information about the

size and location of each compiled source template (which is termed as object

template in Tempo) and the offset of each hole variable within the template are

also extracted at compile-time to be used in constructing a run-time specializer.

• A run-time specializer that not only encodes the static expressions, but also

contains operations to manipulate object templates. These operations include:

2The terms template file and run-time specializer are adopted from Tempo. DyC used the
terms template code and setup code respectively
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– Template dumping: This operation copies instructions of an object tem-

plate into a dynamically allocated memory block and flushes the instruc-

tion cache to ensure its coherency.

Every template captured by the template file is a candidate for dumping.

The reason for dumping templates is that instantiated templates can be

different from their original ones, because the former replace holes in the

latter by values evaluated from static expressions.

– Hole filling: This operation writes the values evaluated from static ex-

pressions to the appropriate location of the hole variable in the dumped

template. Hole filling is also termed template instantiation in the liter-

ature.

– Memory block allocating: A memory block is dynamically allocated at run-

time to store all the templates that are selected, dumped and instantiated

by the run-time specializer. The memory block forms the footprint of the

generating extension.

The template file and run-time specializer are compiled and linked together to

create a binary of the generating extension of a library.

Figure 2.9 presents the source code of a generating extension (i.e. the combination

of a template file and a run-time specializer) of library power constructed by Tempo

for the binding-time annotated code presented in Figure 2.4. For readability of pre-

sentation, we omit some unimportant details of these two files, e.g., in the run-time

specializer the arguments of template dumping macro DUMP TEMPLATE are simplified

to the corresponding template identifier. Interested readers may wish to construct

a run-time generation extension by themselves using Tempo to see the unsimplified

source code.

The template file is parameterized by the dynamic parameter b. In this template

file, there are four source templates t0, t1, t2 and t3, as delimited by those symbolic
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/** A template file **/ /** A run-time specializer **/

int N0;

int CH0;

int tmp power (int b) { void *rts power (int e) {
int z; char *spec ptr;

t0 end: spec ptr = get code mem(65536);

if (N0) { DUMP TEMPLATE(t0);

t1 start: if (e == 0)

return 1; DUMP TEMPLATE(t1);

t1 end: else {
} DUMP TEMPLATE(t2);

else { PATCH CALL HOLE(rts power (e-1));

t2 start: }
z=b*((int (*)(int))(&CH0))(b); DUMP TEMPLATE(t3);

return z; return (void *)spec ptr;

t2 end: }
}
t3 start:

}

extern void tmp power () {
}

Figure 2.9: A run-time generating extension of library power constructed by Tempo

labels. The static conditional test e==0 is substituted by a dummy integer N0, whose

role is to separate the two templates t1 and t2. Either t1 or t2 is selected to be

dumped by the run-time specializer based on the truth value of the static conditional

test e==0. Template t2 contains a static call hole variable CH0 whose address is the

one returned by each invocation of the (recursive) run-time specializer.

The run-time specializer is parameterized by the static parameter e. In the run-

time specializer, the pointer *spec ptr points to the beginning address of a memory

block dynamically allocated by the instruction get code mem with a pre-fixed size

65536. The macros DUMP TEMPLATE and PATCH HOLE implement the dumping and

instantiating template operations introduced above.
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At run-time a footprint is created by executing the generating extension (more

specifically, the run-time specializer) with respect to the values of static inputs. More

specifically, a memory block is dynamically allocated to store all the templates that

are selected, dumped and instantiated by the run-time specializer. Consider the

generating extension of the power library depicted in Figure 2.9. Suppose the run-

time specializer is called with the value of e as 2. The memory block dynamically

allocated to form the footprint comprises the following sequence of object templates:

[t0, t21, t0, t20, t0, t1, t3, t3, t3]

where t21 and t20 are two object templates instantiated from original object template

t2 within which the static expression is filled with 1 and 0 respectively.

2.4 Our Framework for Specialization of Applica-

tions Using Shared Libraries

As mentioned in Section 1.3, there are three sub-problems of specialization of ap-

plications using shared libraries: independent specialization information generation,

efficient specialized library construction and execution, and specialization engine en-

hancement. The following subsections provide an overview of our approach to address

these problems.

2.4.1 Profitability Analysis

The perspective we adopt in independent specialization information generation is how

best to prepare a library for specialization such that the specialized libraries remains

effective in as many applications as possible. This perspective enables library devel-

opers to take advantage of the knowledge of the library implementation and prepare

suitable specialization information for future deployment. Since a library implemen-

tation typically performs a case analysis over its deployment contexts, it inhibits

effective specialization in the absence of information about its deployment contexts.
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We develop a profitability analysis to automatically discover all effective binding-time

divisions, which are termed as binding-time signatures, for a library without being

aware of its deployment context.

We advocate using the term profitability to indicate the opportunity for special-

ization of a library, specifically the ability to specialize conditional tests away at an

earlier stage. This is based on an effective heuristic that static reduction of condi-

tional tests of if statements and static unrolling of while statements are the primary

sources of profitable specialization both in terms of time and space. More specifically,

this profitability can be divided into two categories: (1) Direct profitability: The

ability to directly specialize away a conditional test inside a library; (2) Indirect

profitability: The ability to specialize a library call so that the (direct or indirect)

profitabilities inside the called library may be reaped.

Program Text Profitability Point Annotations

int power (int b, int e) {
int z ;
if (e == 0) /* profitability point 1*/

return 1 ;
else {

z = b ∗ power(b, e− 1) ; /* profitability point 2*/
return z ;

}
}

Figure 2.10: Library power annotated with profitability points information

Profitabilities residing inside a library can be identified by profitability points.

Consider the library power given in Figure 2.10. There are a direct profitability and

indirect profitability residing respectively at profitability points 1 and 2 in the library

power, as illustrated in Figure 2.10.

When a library f is deployed in an application, we aim to attain profitability

fulfillment which stands for the request that: (1) The binding time of one of the
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conditional tests within the body of f is static, or; (2) The binding-time state es-

tablished the library call site is deemed profitable with respect to the binding-time

signatures of f .

In summary, profitabilities are declared implicitly by identifying the profitability

points inside the library, and the conceptual profitability declaration denotes the re-

quest to fulfill all or part of the (direct or indirect) profitabilities in the library.

We have developed a modular profitability-oriented binding-time analysis whose

main task is to convert the conceptual profitability declaration into a binding-time

constraint, which is termed as profitability signature. A profitability signature of

a library stipulates a binding-time condition enforced over the library’s parameters

in order to fulfill all or part of the profitabilities within a library.

For example, the profitability signature ξpower derived for library power is:

ξpower ::= (bte == s)

where bte is a binding-time variable pertaining to the library’s parameter e. ξpower

states that as long as the binding time of the parameter e is s, the profitability at

points 1 and 2 can be fulfilled, regardless of the binding time of the parameter b.

ξpower can also be expressed equivalently as a set of binding-time signatures of the

library’s parameters, as follows

ss1 ::= (btb == s) ∧ (bte == s)

ss2 ::= (btb == d) ∧ (bte == s)

2.4.2 Generic Specialization Component

Our vision adopted in specialization of applications using shared libraries is to replace

the original shared library with its generic specialization component (GSC for short)

that caters for multiple specialization opportunities, while minimizing the need for
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repetitive and redundant specialization of libraries at the application level. Given that

various binding-time divisions are produced when independently specializing a library

through profitability analysis, a GSC inevitably accommodates different versions of

the specialized libraries that are generated with respect to different binding-time

signatures.

To achieve the objectives of efficient specialized library construction and execu-

tion we proposed in Section 1.3, it is important to manage and balance the trade-off

between the multiplicity of specialized libraries and the space required for keeping

them in order to exploit the sharing property.

GSC construction: The input to GSC construction is a set of action-annotated

codes that are produced with respect to all the binding-time signatures returned

by profitability analysis. The principle of constructing a GSC is to detect sharable

templates by looking up each action annotated statement in the different action-

annotated codes. Sharable templates are derived from identical action annotated

statements. All distinct templates derived from different action annotated codes

of library f are stored in a global template repository f tmps. We leverage the

traditional two-part structure of a generating extension in constructing the GSC.

A GSC fgsc constructed for a library f is composed of a set of local run-time

specializers {f rts
ssi
} and a global template repository f tmps; the latter is shared

by those local run-time specializers. Each local run-time specializer f rts
ssi

is created

from the corresponding action annotated code of a library with respect to a binding-

time signature ssi.

After a GSC fgsc is constructed for a library f , it is ready for deployment in vari-

ous applications. At compile-time fgsc is instantiated with respect to a binding-time

division ss established at application side. The instantiation returns a run-time gen-

erating extension fge
ss . The fge

ss is composed of the corresponding f rts
ss which contains
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pointers to f tmps.

Footprint construction and execution: At run-time, a footprint f fp
vals

is created

from the generating extension fge
ss through executing f rts

ss with respect to concrete

values vals for static input to f as specified in ss. f fp
vals

is executed in a late stage

with respect to concrete values vald for the dynamic inputs to f specified in ss to

produce the final output. The principle of constructing and executing a footprint is

to minimize the footprints of specialized shared libraries during execution.

The templates stored in the template repository f tmps can be divided into two

categories. The first type of template does not contain any hole variables denoting

results of static expressions and will remain unchanged during instantiation. The

second type of template contains at least one hole variable to be instantiated by con-

crete values evaluated from static expressions at run-time. We term these two types

of template as totally dynamic templates and hybrid templates respectively.

When creating a footprint at run-time from the generation extension fge
ss , we

maximize memory-sharing by choosing not to dump totally dynamic templates into

the dynamically allocated memory block since they can be located in the memory

block allocated for the global template repository. Only hybrid templates are dumped

into a dynamically allocated memory block and instantiated by filling concrete values

into their holes. Under this approach, the footprint is produced by linking the dumped

hybrid templates in the dynamically allocated memory block and the totally dynamic

templates found in the template repository.

As templates forming a footprint are not laid out in consecutive memory space,

we need to connect them together so that execution of the footprint can proceed

properly. We connect the templates in the following way:

1. The local run-time specializers build address tables when creating footprints.
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An address table records a sequence of addresses of the object templates, de-

picting the program execution control flow among these templates during the

execution of a footprint.

2. We add two types of operations for the purpose of passing program execution

control among templates. These two operations capture the interactions be-

tween object templates and the address table.

(a) The registration operation registers the address of an object template

in the address table. In other words, it is considered as a static com-

putation when concrete values of static inputs are available at run-time.

Registration operations are part of a local run-time specializer.

(b) The redirecting operation directs the program execution control to the

subsequent template at the end of execution of current template whose

address is recorded in the address table. In other words, it is considered

as a dynamic computation when concrete values of dynamic inputs are

available at run-time. Redirecting operations are inserted at the end of

all templates, including both totally dynamic templates and instantiated

hybrid templates.

Figure 2.11 gives an overview of the interactions between profitability analysis and

GSC construction/execution described above.3 The whole specialization process is

composed of three essential elements: Shared library specialization, application

specialization and specialized application execution

• Shared library specialization: This is a process that constructs a GSC for a

shared library f by performing profitability analysis and GSC construction over

f at compile-time. GSC materializes the profitability declaration and prepares f

3In a diagram, program or data values are in ovals, and processes are in boxes.
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Figure 2.11: An overview of the interactions between profitability analysis and GSC
construction/execution

for future specialization in various applications. It is an application-independent

process.

• Application specialization: This is a process that installs the GSC with

the applications and constructs a specialized application at compile-time with

respect to a programmer-provided binding-time division of inputs by perform-

ing conventional BTA, action analysis and specialization over the application.

Each action annotated library call is replaced by a call to the corresponding
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GSC parameterized by its binding-time context: the GSC determines the most

appropriate binding-time signature for this binding-time context, and returns a

generating extension indexed by the selected binding-time signature.

Application programmers may also specify binding-time conditions for the called

libraries at call sites inside the application as we proposed in [83]. If a relevant

binding-time information is not provided, then the application becomes another

shared library and thus we subject the application to the shared library spe-

cialization process.

• Specialized application execution: This is a process that runs the spe-

cialized application with respect to the concrete values for the whole input.

The technique briefly described in this subsection regarding footprint construc-

tion/execution is employed to ensure the construction of minimal footprints

throughout the execution.

It is permissible for the application programmer to specify relevant binding-

time information and the concrete values for the whole input all at once. For

this case, we still maintain two separate phases: application specialization and

specialized application execution.

2.4.3 Unification of Partial Evaluation and Program Slicing

We build a unified framework that theoretically captures the essence of both (static)

program slicing and (offline) partial evaluation, and shows that these two techniques

are intimately related.

This framework enables us to perceive both program slicing and partial evalu-

ation as a three-stage process, namely: residual analysis, action analysis and

transformation.

1. Residual analysis propagates specialization information throughout the pro-

gram. In offline partial evaluation, BTA plays this role. Similarly, we define a
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slicing analysis (either forward or backward) for this role in program slicing.

We claim that both BTA and slicing analysis are projection-based analyses [54]

on well-classified information. Specifically, BTA is a projection-based analysis

on static information, forward slicing analysis is a projection-based analysis on

transient data, and backward slicing analysis is a projection-based analysis on

residual data.

2. Action analysis uses information provided by residual analysis to determine the

action to be taken at each program point.

We associate static variables with transient variables, and dynamic variables

with residual variables. It is satisfying to observe that the decisions for re-

moving/retaining a syntactic construct in program slicing are identical to the

decisions for reducing/reconstructing a construct in partial evaluation. That

is, both program slicing and partial evaluation have identical action analysis,

modulo the equivalence between static/dynamic and transient/residual.

3. The final stage, transformation, specializes a program based on the action de-

cisions produced by the action analysis.

This unified framework enables us to assess both specialization techniques in a

consistent manner, and to facilitate cross-fertilization between them.
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CHAPTER 3

RELATED WORK

In this chapter, we review the literature published prior to and during the course

of our research on the following three topics: Independent specialization information

generation, management of specialized code, and unification of program slicing and

partial evaluation. They correspond to the three sub-problems for specialization of

applications using shared libraries, as introduced in Section 1.3.

3.1 Independent Specialization Information Gen-

eration

Schultz advocated the concept of black box program specialization in a position paper

[69]. He proposed that library developers are responsible for identifying specializa-

tion opportunities of the library without taking into consideration the library’s de-

ployment contexts. He further proposed the release of specialization opportunities as

an abstract specialization interface to application developers. He also advocated the

kinds of features that a specialization framework should possess, such as automatic

configuration based on the dependency information available in the library interface.

However, Schultz only reports his initial investigations and some proposed solutions

about this topic.

There have been several works that allow library developers to declare special-

ization information for libraries, free from their deployment contexts confined to any

specific applications.

• In Tempo, library developers manually express their desired degree of opti-

mization by declaring the expected specialization information for C function
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definitions in a specialization scenario [24, 56, 57]. This specialization scenario

is a binding-time information about external specialization parameters, which

include functions, global variables and data structure intended to be specialized.

A group of specialization scenarios for a C function definition are collected into

one file named a specialization module.

A consistency check of the specialization scenarios is performed in a pre-phase

analysis to ensure that the binding time information of external specialization

parameters defined in the specialization scenario can be inferred at each refer-

ence point. More specifically,

– if the check infers some data as dynamic but the library developer has

declared it to be static, the partial evaluator will abort the specializa-

tion process with an error message signalling this mismatch, rather than

producing an under-specialized program;

– if the check infers some data as static but the library developer has declared

it to be dynamic, the analysis considers the data to be dynamic, thus

following the library developer’s intentions rather than producing an over-

specialized program.

• DyC [39, 38] is an annotation-directed partial evaluator for the C language based

on a principled extension of partial evaluation. It allows library developers to

express their specialization intentions inside program code by using a set of an-

notations, such as specialization primitives (e.g., make static, make dynamic,

which specify the variables and code fragments on which dynamic compila-

tion should take place) and specialization policy annotations (e.g., polyvariant

or monovariant specialization, different caching policies, etc.). DyC does not

create binding-time information explicitly as Tempo does. Instead, the set

of internal annotations is compiled by DyC’s specific compiler into information

31



guiding the construction of a run-time specializer for each dynamically compiled

region. Most of the key cost/benefit trade-offs in the binding-time analysis and

the run-time specialization are open to the library developer’s control through

declarative annotations.

• For object-oriented languages, Consel et al. introduced a specialization class as

a language extension for Java language, aiming at expressing program special-

ization (not just specialization opportunities) in a separate and declarative way

[6, 26, 79]. A specialization class specifies what methods should be specialized

and what variables should be used for this specialization. Multiple specialization

classes can be attached to a single regular class, capturing different opportuni-

ties for specialization. If these opportunities define a sequence of incremental

specialization stages, the specialization classes can be extended step by step,

instead of being all defined from scratch. That is, the specialization of a class

is not fixed, but evolves as specialization values become available.

• Bobeff et al. [13, 14] proposed a brute force approach that systematically creates

an exhaustive list of specialization information for a library, then allows library

developers to intervene by manually removing those inconsistent specialization

information or unsuitable specialization information, taking into consideration

the benefits in terms of specialization opportunities. Unfortunately, this inter-

vention makes the process of generating suitable specialization information an

art only mastered by library developers with in-depth knowledge about partial

evaluation.

3.2 Management of Specialized Code

There have been several works on managing specialized libraries that have been pro-

duced from a library with respect to the various specialization information before
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deploying them in various applications.

• Bobeff et al. [13, 14] propose to collect all the specialized code created separately

with respect to various specialization information into a component generator .

This component generator is generated by a component generator generator ,

the input of which is a binding-time annotated code created with respect to a

particular binding-time input information, and the output of which is a gen-

erating extension, called service generator . The latter generates a stream of

strings representing the specialized code based on the specialization context.

Each service generator is created for a binding-time input information. All ser-

vice generators created with respect to various binding-time input information

separately for a library are collected into a component generator for that library.

• Bhatia et al. [10] describe a remote customization approach to automatically

generate highly optimized code that is then loaded and executed in the ker-

nel of an embedded device. There are two key elements in the customization

infrastructure:

– Context manager: On the client side, the context manager extracts the

customization values from the arguments of the application customization

request. The context manager can also be configured to keep the number

of specialized versions of a given module bounded. On the server side, the

context manager processes the customization values in preparation for the

customization phase. This task consists of storing these values in a cus-

tomization table. The index in this table is a hash number corresponding

to the original kernel memory address of the customization value.

– Code manager: On the client side, the code manager maintains a cache of

customized code indexed by the system call number and the customiza-

tion context. This cache is shared across the application processes of the
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device. The code manager runs in kernel mode and thus directly loads

the customized code into the kernel, without using intermediate storage or

buffering. Similar to the policies in the context manager, the code manager

can be configured with a cache-replacement policy. On the server side, the

code manager simply transmits the customized code to the device via the

customized code channel.

• Schultz et al. [6, 70, 71, 72, 73] adopte an aspect-oriented approach in managing

specialized code, which is an extension of the specialization class approach. This

approach encapsulates the methods generated by a given specialization of the

original object-oriented library into an aspect, and weaves the methods into the

application during compilation. The technique of weaving is used to redirect

existing function calls to calls to specialized functions. Access modifiers can

be used to ensure that specialized methods can only be called from specialized

methods encapsulated in the same aspect, and hence always be called from a

safe context. Furthermore, the specialized libraries are cleanly separated from

the original generic libraries, and can be removed from the library simply by

deselecting the aspect.

These existing techniques managing for specialized libraries, do not take into

consideration the issue of code duplication at either compile-time or run-time.

3.3 Unification of Program Slicing and Partial eval-

uation

Both program slicing and partial evaluation are well-developed specialization tech-

niques, and are extensively discussed in the research community. To the best of our

knowledge, the first work relating these two fields was done by Reps et al. [67].

They described a backward static slicing for strict functional programs through a
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projection-based backward analysis. Later, Reps and his student described a par-

tial evaluation using a dependence graph, thus placing both partial evaluation and

program slicing on the same program representation [30]. Ochoa et al. [64] pro-

posed a form of program specialization for lazy functional logic programs based on

dynamic slicing. However, neither of them develop a unified framework to formally

investigate the relation between these two techniques, and to produce new special-

ization technique that seamlessly combines the benefit of both partial evaluation and

specialization.

In [77], Venkatesh proposed quasi-static slicing , the motivation of which arises

from the situation that the values of some inputs are fixed while the behavior of

the original program must be analyzed when the values of other inputs vary. Quasi-

static slicing falls between static slicing and dynamic slicing, and is performed in a

similar spirit as partial evaluation. However, this technique remains at the realm of

program slicing, and fails to provide a uniform treatment on these two domains of

specialization techniques.

Binkley et al. [11] explored similarities and differences between the specialized

program of partial evaluation and a conditioned slice, [17, 19, 27, 28, 29, 42] and

established a formal relationship between them. They used a program projection

framework [40, 41] for the purpose of capturing the behavior of each transforma-

tion’s algorithm sufficiently strongly to distinguish it from other algorithms. They

claimed that the key semantic difference between program slicing and partial eval-

uation concerns the form of semantics preserved by each: program slicing preserves

lazy semantics while partial evaluation preserves strict semantics. They also observed

that the combination of partial evaluation transformations (i.e. reduce or residual-

ize) together with syntax-preserving slicing could almost produce amorphous slicing

[40, 41], in which the simplification is not limited to statement removal.
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CHAPTER 4

PROFITABILITY ANALYSIS

The perspective we adopt in independent specialization information genera-

tion is how best to prepare a library for specialization such that the specialized libraries

remains effective in as many applications as possible. This perspective enables li-

brary developers to take advantage of the knowledge of the library implementation

and prepare suitable specialization contexts for future deployment. Since a library

implementation typically performs a case analysis over its deployment context, the

library inhibits effective specialization in the absence of these deployment contexts.

In this chapter, we study the technique of exploring specialization opportunities of

a library and expressing these specialization opportunities via a programmer-friendly

mechanism. In Section 4.1 we introduce the profitability declaration which is

a novel methodology to capture specialization opportunities residing inside libraries

independent of how the libraries are deployed. In Section 4.2 we introduce profitabil-

ity signature which is a binding-time constraint stipulating a binding-time condi-

tion required for library parameters in order to fulfill the specialization opportunities

conveyed by the profitability declaration. Then, in Section 4.3 we elaborate the spe-

cialization policy which sets the guidelines for computing profitability signatures

and governs the specialization of a library in a specific application. In Section 4.4 we

present a profitability-oriented binding-time analysis which generates a prof-

itability signature for a library. We discuss termination aspect of partial evaluation

in Section 4.5

To begin with, we highlight two terminologies that represent two categories of

binding-time divisions under two different circumstances:
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• A binding-time signature: It is a binding-time division of a library’s param-

eters. It is derived at the library level and associated with the original library

independent of the library’s deployment contexts. This information serves as a

guard to the specializations performed over the library.

• A binding-time context: It is a binding-time division of a library call’s

arguments. It is established at library call sites.

4.1 Profitability Declaration

There can be various kinds of specialization opportunities for a library. For instance,

an application developer may wish to specialize a library handling generic array op-

erations only when the latter is deployed in a context that deals with bit-vectors.

In this dissertation, we investigate a technique of turning a specialization oppor-

tunity of a library into a sufficient context that is amenable to partial evaluation.

Specifically, we advocate the term profitability to indicate the specialization op-

portunity to specialize conditional tests away in an earlier stage. This is based on

an effective heuristic that static reduction of conditional tests of if statements and

static unrolling of while statements are primary sources of profitable specialization

both in terms of time and space. An example is specializing away the conditional

tests in network systems libraries [9]. Static conditional tests are also essential for

making function unfold decisions when specializing.

This profitability can be divided into two categories:

1. Direct profitability: The ability to directly specialize away a conditional test

inside a library;

2. Indirect profitability: The ability to specialize a library call so that the

(direct or indirect) profitabilities inside the called library may be reaped.

Profitabilities residing inside a library are identified by profitability points. A
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profitability point refers to a program segment that possesses a direct or indirect

profitability. According to the classification of profitability described above, there

are also two corresponding categories of profitability points: Conditional tests and

library calls.

Consider a contrived example given in Figure 4.1. In this example, there is a

direct profitability residing at profitability point 1 in the library foo, and a direct

and indirect profitability residing respectively at profitability points 2 and 3 in the

library bar, as highlighted in the comments.

Program Texts Profitability Point Annotations

int foo (int x, int y) {
if x > 0 /* profitability point 1*/

return y+1;

else

return y-1;

}

int bar (int x, int y) {
if y > 0 /* profitability point 2*/

return foo (x,y); /* profitability point 3*/
else

return 0;

}

Figure 4.1: A contrived example demonstrating profitability point identification

When there are nested library calls within a conditional test or another library

call, the nested library calls are identified as separate profitability points.

Consider a contrived example given in Figure 4.2. There are two profitability

points residing in the library g1: One is an indirect profitability associated with the

library call “f1(x,y)”; the other is a direct profitability for the whole conditional

test “f1(x,y) == 0”.

We term a library without any profitability point as a plain library.
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Program Texts Profitability Point Annotations

int g1 (x, y) {
if ( f1(x,y) == 0 ) /* two profitability points identified */

s1;

else

s2;

}

Figure 4.2: A contrived example demonstrating nested profitability points

When a library f is deployed in an application, we aim to attain profitability

fulfillment with the library f which stands for a binding-time request, such that:

1. The binding time of a conditional test in the library f is static, or;

2. The binding-time context established at a library call site in the library f is

deemed profitable with respect to a binding-time signature of the called library.

In summary, profitabilities are declared implicitly by identifying the profitability

points inside the library, and the profitability declaration denotes the request to fulfill

all or part of the (direct or indirect) profitabilities in the library . Correspondingly,

a specialization that fulfills all or part of the profitabilities available in a library

is called a profitable specialization. Otherwise, it is termed an unprofitable

specialization.

4.2 Profitability Signature

We convert the conceptual profitability declarations into a binding-time constraint.

This binding-time constraint stipulates a binding-time condition enforced over library

parameters in order to fulfill all or part of the profitability in a library . We term such

a binding-time constraint as a profitability signature of a library. In line with the

idea of design by contract [59], the profitability signature acts as a contract provided

by a library.
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4.2.1 Definition of A Binding-time Constraint

The syntax of a binding-time constraint is defined in Figure 4.3, where the definition

of binding-time expression BTe has been presented in Figure 2.3.

bte ∈ BTe Binding-time expressions
ξ ∈ BTc Binding-time constraints

::= true | false | bte1 == bte2 | ξ1 ∧ ξ2 | ξ1 ∨ ξ2

Figure 4.3: Syntax of binding-time constraint

There are three primitive binding-time constraints: Two binding-time constraint

constants true and false which have the same meaning as the conventional truth

values, and an equality constraint over two binding-time expressions bte1 and bte2 .

A composite binding-time constraint is formed using two logical operators: logical

conjunction ∧ and logical disjunction ∨.

We denote the set of binding-time variables occurring in a binding-time constraint

ξ by Var(ξ). We denote the set of binding-time variables that are of interest in for-

mulating the constraints (such as those pertaining to library parameters) by VarBT .

V ar(ξ) is understood to be a subset of VarBT .

A binding-time valuation ϑ is an assignment of either s or d to all binding-

time variables in VarBT . ϑ is of the type VarBT → {s, d}. Given two binding-time

valuations ϑ1 and ϑ2, ϑ1 v ϑ2 iff ∀btv ∈ VarBT , ϑ1(btv) v ϑ2(btv)

A satisfiable binding-time valuation ϑ of a binding-time constraint ξ is a

binding-time valuation such that ξ is evaluated as true. We denote the set of satis-

fiable binding-time valuations of a binding-time constraint ξ by V al(ξ).

The binding-time constraint constant false signifies that there is no satisfiable

binding-time valuation, and the binding-time constraint constant true signifies that

all 2n combinations of binding-time valuations (where n is the cardinality of VarBT )

are satisfiable.

40



4.2.2 An Example

For example, the profitability signatures derived for libraries foo and bar defined in

Figure 4.1 are:

ξfoo ::= (btx == s)

ξbar ::= (btx == s) ∨ (bty == s)

ξfoo states that as long as the binding time of the parameter x is static, the profitability

at profitability point 1 can be fulfilled, regardless of the binding time of the parameter

y. ξbar expresses a disjunctive condition in which the profitability at point 2 and point

3 can be fulfilled respectively: when the binding time of the parameter y is static,

the profitability at profitability point 2 can be fulfilled; when the binding time of the

parameter x is static, the indirect profitability at profitability point 3 can be fulfilled.

The profitability signature of a plain library is encoded as false. In other words,

there is no binding-time valuation that can make specialization of a plain library

profitable.

Note that a profitability signature of a library is not generated by a typical

forward-fashion BTA with respect to a concrete binding-time division of the inputs.

Instead, it is generated by propagating outwardly those binding-time requests at the

profitability points. The algorithm for generating profitability signature is presented

in Section 4.4.

4.3 Specialization Policy

Before detailing the algorithm of generating profitability signatures, we present the

idea of a specialization policy, which describes how the profitability signature of a

library is used when the library is deployed in various applications. The rationale for

discussing the policy is that it provides the direction in which we design and discover

profitability signatures.
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4.3.1 Minimal Profitable Contexts

Specializations of a library when, the library is deployed in various applications, are

governed by the binding-time contexts established at library call sites. A binding-time

context is a binding-time constraint of the form:

∧
{btvi

== s | d}

where {btvi
} is a set of binding-time variables pertaining to the library parameters.

The binding-time contexts are related to the profitability signature of the correspond-

ing library through an entailment relation and minimal profitable contexts re-

lation defined over binding-time constraints as follows.

Definition 4.1 (Entailment Relation). A binding-time constraint ξ1 is said to en-

tail another binding-time constraint ξ2, denoted by ξ1 ` ξ2, iff for any satisfiable

binding-time valuation ϑ1 ∈ V al(ξ1), there exists a satisfiable binding-time valuation

ϑ2 ∈Val(ξ2) such that ϑ1 v ϑ2.

The entailment relation is transitive, anti-symmetric and reflexive. As an example,

a binding-time constraint (btx == s)∧ (bty == s) entails another constraint (btx ==

s) ∧ (bty == d).

Since a binding-time valuation is an assignment of binding-time constants (s or

d) to binding-time variables, it can also be expressed as a conjunction of equality

constraints between binding-time variables and binding-time constants. This treat-

ment enables us to establish entailment relations between binding-time valuations

with other binding-time constraints. On the other hand, a binding-time context,

which is of the form
∧{btvi

== s | d}, can be treated as a binding-time valuation

i.e., {btvi
7→ s | d}. These treatments are used in the next definition:

Definition 4.2 (Minimal Profitable Context). Let ϑ be a binding-time context (i.e., a

binding-time valuation), ξ be a profitability signature (i.e., a binding-time constraint),
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and ϑ ` ξ. A minimal profitable context of ϑ with respect to ξ is a satisfiable binding-

time valuation ϑm such that:

ϑm ∈ V al(ξ) ∧ ϑ v ϑm ∧
∀ϑ′ ∈ V al(ξ) : (ϑm v ϑ′ ∨ ¬(ϑm v ϑ′ ∨ ϑ′ v ϑm))

Note that there may be multiple minimal profitable contexts of a binding-time

context with respect to a profitability signature. For example, for a binding-time

context ϑ ::= (btx == s) ∧ (bty == s) and a profitability signature ξ ::= ((btx ==

s)∧ (bty = d))∨ ((btx = d)∧ (bty == s)), we have ϑ ` ξ. The following ϑ1 and ϑ2 are

both minimal profitable contexts of ϑ w.r.t. ξ.

ϑ1 ::= (btx == s) ∧ (bty == d)

ϑ2 ::= (btx == d) ∧ (bty == s)

Now, the specialization policy is defined as: Given a library f and its associated

profitability signature ξf .

• If a binding-time context ξ1 for a call to f entails ξf , then the library call will

be specialized with respect to a minimal profitable context of ξ1.

• Otherwise, all the binding times of f -call’s arguments will be classified as dy-

namic. Thereafter, the binding time of f -calls returned value is dynamic.1

4.3.2 Two Examples in Applying a Specialization Policy

We now demonstrate how the specialization policy governs the specializations of li-

braries in applications by considering two examples.

1This is based on the assumption which has been introduced in Section 2.1 that: The return
value of a library must (data- or/and control-) dependent on all the library’s parameters
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Example 1. Suppose library foo defined in Figure 4.1 is called in a specific applica-

tion at two locations with different binding-time contexts c1 ::= (btx == s∧bty == d)

and c2 ::= (btx == s ∧ bty == s) respectively, where btx and bty are binding-time

variables pertaining to respectively the first and second parameters of library foo.

According to Definition 4.2, c1 and c2 are both minimal profitable contexts of ξfoo.

Thus each of the two calls will be specialized with respect to the exact binding-time

context correspondingly.

We do not collapse the specializations of these two calls into one specialized code,

even though the two contexts only differ in their binding-times for parameter y. Thus,

this policy allows us to explore static information as much as possible in the presence

of profitable specialization.

Example 2. Consider two inter-related libraries add and mul defined in Figure 4.4.

They implement the arithmetic addition and multiplication operations respectively.

They are labeled for convenient reference in Subsection 4.4.3.

Library add is a plain library and its profitability signature is false. The two

calls to add in the library mul can only be specialized with all their arguments as

dynamic regardless of the binding times that x, y and z hold before the calls. After

the call, the binding times of the arguments of add will be restored to those values

before the call.

This treatment of temporarily classifying the binding time of an argument to

dynamic is similar to the raise operation used in many existing partial evaluators,

such as [15]. We would like to highlight that the raise operation over the arguments

of library calls is only performed at the library side when the library accepts a binding-

time context. The interaction between libraries and applications will be explained in

detail in Chapter 5.
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Program Points Program Texts

int add(int m, int n) {
1 : return m + n;

}

int mul(int x, int y) {
1 : int z;

2 : if (x > 0) {
3 : z = mul(x-1,y);

4 : return add(z, y);

}
5 : if (x == 0)

6 : return 0;

7 : if (y > 0) {
8 : z = mul(x,y-1);

9 : return add(z,x);

}
10 : return mul(-x, -y);

}

Figure 4.4: Libraries add and mul

4.4 Profitability-oriented Binding-time Analysis

We have developed and implemented a modular profitability-oriented BTA (ab-

breviated as PA) to perform profitability analysis and compute a profitability signa-

ture of a library. The specifications of PA are defined in Figures 4.5, 4.6, 4.7 and

4.8. Before describing the analysis in detail, we highlight two essential features that

distinguish our PA from a conventional BTA, and then introduce the two primary

data structures used in the analysis.

• Feature 1 of PA: Our PA does not perform a conventional forward-fashion

BTA with respect to a concrete binding-time division of the inputs. Instead, the

analysis propagates binding-time requests at profitability points outwardly and

generates the profitability signature of the library. All binding-time information

generated by our PA is parameterized by the binding-time variables pertaining
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to the library’s parameters.

• Feature 2 of PA: The specialization policy also requires our PA to take into

consideration the condition for the raise operation (which is termed raise con-

dition) that: the condition fails when a library call is specialized with respect

to the minimal profitable context of a binding-time context; the condition suc-

ceeds when a library call is specialized with respect to a configuration that all

the binding times of library call’s arguments are dynamic.

• Two primary data structures used in the analysis:

– The first primary data structure is a binding-time environment ρ ∈ BTenv,

which is associated with each program point. ρ is a set of mappings of the

type Var → 〈bte : BTe, raise : BTc〉 where

∗ Var ranges over program variables occurring at the program point;

∗ The field bte records a binding-time expression of the variable, which

is computed solely based on the data- and control-dependencies;

∗ The field raise records a raise condition, which is expressed as a

binding-time constraint. Algorithmically, a raise condition fails (suc-

ceeds) when the binding-time constraint is evaluated to true (false).

Overall, the binding time of a variable is decided by not only its associated

binding-time expression bte but also its associated raise condition raise:

It is static iff the bte is evaluated to s and raise is evaluated to true

with respect to a concrete binding-time division of inputs; otherwise, it is

dynamic.

Again, as highlighted in the feature 1 of our PA, all binding-time infor-

mation stored in ρ is parameterized by the binding-time variables pertain-

ing to the library’s parameters.
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– The second data structure is a global library-name-indexed table τ ∈ Ftab,

which is needed to deal with inter-library analysis. τ is a set of mappings

of the type FName → 〈ps : P(Var), pro : BTc〉, where

∗ FName ranges over the library’s names;

∗ The field ps records the library’s parameters;

∗ The field pro records a binding-time constraint to form the library’s

profitability signature.

4.4.1 Specification of the Analysis

PAfs ∈ (FDef)n → (BTc)
n

PAfs fd1, . . . , fdn ::=
let τ0 = InitFTab fd1, . . . , fdn

for (i = 1; i + +; i ≤ n) {
fni = fdi.name;
si = fdi.body;
psi = fdi.paras;
ρi = InitBTEnv psi;
〈 , τi〉 = PAs si ρi τi−1 fni s }
F 〈btcv1, . . . , btcvn〉 = 〈τn(fn1).pro, . . . , τn(fnn).pro〉

in
⊔

n≥0Fn 〈false, . . . , false〉

InitFTab fd1, . . . , fdn ::= {fdi.name 7→ 〈ps :fdi.paras, pro : false〉 | 1 ≤ i ≤ n}

InitBTEnv ps ::= {vi 7→ 〈bte : btvi
, raise : true〉 | vi ∈ ps}

Figure 4.5: Profitability-oriented BTA over (inter-related) libraries

Description of PAfs (defined in Figure 4.5): The main specification PAfs takes in

a set of (interrelated) libraries fd1, . . ., fdn, and returns the profitability signatures

for each library. fd.name, fd.paras and fd.body retrieve respectively the name,

parameters and body (i.e., a sequence of statements) of a library fdi.

PAfs initializes a global table τ0 in the way that at each entry of τ0 the field pro

is assigned with false. Then, it performs profitability analysis PAs over each library

47



body, updates the corresponding entry in the global table τ with the binding-time

constraint denoting the library’s profitability signature.

After performing profitability analysis over the body of the last library fdn, the

binding-time constraints stored in the pro field of each entry of τn are retrieved

to form a function F . F takes in a tuple of binding-time constraint variables

btcv1, . . . , btcvn, each of which refers to the corresponding binding-time constraint

stored in τn(fni).pro. F returns a tuple of the binding-time constraints stored in the

pro field of each entry of τn, each of which may contain binding-time constraint vari-

ables since libraries may be mutually recursive. The introduction of the binding-time

constraint variables into a binding-time constraint denoting the library’s profitability

signature will be explained later in the description of PAe

Finally, PAfs performs a least fixed point computation over the function F to ob-

tain a set of binding-time constraints without binding-time constraint variables. Each

such binding-time constraint is the ultimate profitability signature for a library. The

least fixed point computation starts from the bottom value false, which represents

the profitability signature of a plain function. We will show an example of this least

fixed point computation in Section 4.4.3.

Description of PAs (defined in Figures 4.6 and 4.7): PAs takes in a statement s,

a binding-time environment ρ at the entry of s, a global table τ , the name fn of the

library in which s resides, a binding-time expression ctr of a conditional test for the

purpose of maintaining control-dependency information, and returns the updated ρ

and τ at the exit of s.

48



PAs ∈ Stat → BTenv → Ftab → FName → BTe → 〈BTenv, Ftab〉

PAs (v = e) ρ τ fn ctr ::=
let (bte, raisee, proe) = PAe e ρ τ

btv = bte t ctr
ρ′ = ρ[v ← 〈bte : btv , raise : raisee〉]
profinal = τ(fn).pro ∨ proe

τ ′ = τ [fn ← 〈ps : τ(fn).ps, pro : profinal〉]
in 〈ρ′, τ ′〉

PAs (int v1, . . . , int vn) ρ τ fn ctr ::=
let {btvi

= newBTV ar(vi) | 1 ≤ i ≤ n}
ρ′ = ρ ./ρ

⋃
1≤i≤n{vi 7→ 〈bte : d , raise : true〉}

in 〈ρ′, τ〉

PAs (return e) ρ τ fn ctr ::=
let 〈bte, raisee, proe〉 = PAe e ρ τ

ret be a fresh variable name
btret = bte t ctr
ρ′ = ρ ./ρ {ret 7→ 〈bte : btret , raise : raisee〉}
profinal = τ(fn).pro ∨ proe

τ ′ = τ [fn ← 〈ps : τ(fn).ps , pro : profinal〉]
in 〈ρ′, τ ′〉

Figure 4.6: Profitability-oriented BTA over a statement : Part 1

The operators ./ρ, ]ρ and ]τ used in PAs are defined as:

• ./ρ extends a binding-time environment (its left operand) with new entries (its

right operand).

• ρ1 ]ρ ρ2 ::= {x 7→ 〈bte : bte1 t bte2 , raise : raise1 ∧ raise2〉 | x 7→ 〈bte :

bte1 , raise : raise1〉 ∈ ρ1 , x 7→ 〈bte : bte2 , raise : raise2〉 ∈ ρ2}.

As mentioned in the introduction of the data structures used in the analysis (at

the beginning of Section 4.4), the binding-time constraints stored in the field

raise of a binding-time environment ρ are for the purpose of recording raise

conditions. At the exit of an if statement, the binding time of a variable x

is static only when the raise conditions in two branches of the if statement
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PAs (if e s1 else s2) ρ τ fn ctr ::=
let 〈bte, raisee, proe〉 = PAe e ρ τ

ctr′ = ctr t bte
〈ρ1, τ1〉 = PAs s1 ρ τ fn ctr′

〈ρ2, τ2〉 = PAs s2 ρ τ fn ctr′

ρ′ = ρ1 ]ρ ρ2

τmerg = τ1 ]τ τ2

proif = (bte == s) ∧ raisee /** profitability fulfillment condition
profinal = τmerg(fn).pro ∨ proif ∨ proe

τ ′ = τmerg[fn ← 〈ps : τmerg(fn).ps , pro : profinal〉]
in 〈ρ′, τ ′〉

PAs (while e s) ρ τ fn ctr ::=
let 〈bte, raisee, proe〉 = PAe e ρ τ

ctr′ = ctr t bte
〈ρ′, τ ′〉 = PAs s ρ τ fn ctr′

prowhile = (bte == s) ∧ raisee /** profitability fulfillment condition
profinal = (τ ′(fn).pro ∨ prowhile ∨ proe)

in if ρ = ρ′

then let τfinal = τ ′[fn ← 〈ps : τ ′(fn).ps , pro : profinal〉]
in 〈ρ, τfinal〉

else PAs (while e s) ρ′ τ ′ fn ctr′

PAs (s1;s2) ρ τ fn ctr ::=
let 〈ρ1, τ1〉 = PAs s1 ρ τ fn ctr
in PAs s2 ρ1 τ1 fn ctr

Figure 4.7: Profitability-oriented BTA over a statement : Part 2

both fails (i.e., the corresponding binding-time constraints are both evaluated

to true). So we calculate the conjunction of the two binding-time constraints

raise1 and raise2 of the same variable x.

• τ1]ττ2 ::= {fn ← 〈ps : ps , pro : pro1∨pro2〉 | fn 7→ 〈ps : ps , pro : pro1〉 ∈ τ1,

fn 7→ 〈ps : ps , pro : pro2〉 ∈ τ2}.

As mentioned in the introduction of the global library-name-indexed table τ ,

the binding-time constraints stored in the field pro of τ are for the purpose of
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recording a profitability signature. So we perform ∨ over two binding-time con-

straints pro1 and pro2 to express a disjunctive condition in which profitabilities

at two profitability points are fulfilled.

PAe ∈ Exp → BTenv → Ftab → 〈BTe, BTc, BTc〉

PAe c ρ τ ::= 〈s, true, false〉

PAe v ρ τ ::= 〈ρ(v).bte, ρ(v).raise, false〉

PAe (e1 bop e2) ρ τ ::=
let 〈bte1 , raisee1 , proe1〉 = PAe e1 ρ τ

〈bte2 , raisee2 , proe2〉 = PAe e2 ρ τ
in 〈bte1 t bte2 , raisee1 ∧ raisee2 , proe1 ∨ proe2〉

PAe fn (e1, . . . , en) ρ τ ::=
let {〈btei

, raiseei
proei

〉 = PAe ei ρ τ | 1 ≤ i ≤ n}
btfn = bte1 t . . . t bten

{v1, . . . , vn} = τ(fn).ps
pro = btcvfn ∧ (btv1 == bte1) . . . ∧ (btvn == bten)
profn = pro ∧ raisee1 ∧ . . . ∧ raiseen /** profitability fulfillment condition
profinal = profn ∨ proe1 ∨ . . . ∨ proen

in 〈btfn, profn, profinal〉

Figure 4.8: Profitability-oriented BTA over an expression

Description of PAe (defined in Figure 4.8): PAe takes in an expression e, a binding-

time environment ρ at the entry of a statement s where e occurs, a global table τ ,

and returns the binding-time expression of e which is computed solely based on data-

and control-dependencies, a binding-time constraint recording its raise condition, and

a binding-time constraint standing for a profitability fulfillment condition produced

at the exit of e.

Profitability fulfillment condition generation: PAs and PAe play central roles

in generating binding-time constraints, at each profitability point (i.e., a conditional

test or a library call) to establish a condition of profitability fulfillment as we have
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explained in Section 4.1. The binding-time constraints are expressed in terms of

the binding-time expressions of the variables appearing at those program points.

Specifically:

• For a conditional test e of an if or while statement: We request the binding

time of the conditional test e to be static. The profitability fulfillment condition

thus generated is (bte == s) ∧ raisee where bte is the binding-time expression

of e and raisee is the raise condition associated with this e.

• For a library call expression fn(e1, . . . , en): We request the binding-time con-

texts established at the library call site to be deemed profitable with respect to

the profitability signature of library fn. The profitability fulfillment condition

thus generated is btcvfn∧(btv1 == bte1)∧. . .∧(btvn = bten)∧raisee1∧. . .∧raiseen

where

– btcvfn is a binding-time constraint variable whose value is the binding-time

constraint stored in τ(fn).pro which is expressed in terms of {btvi
| 1 ≤

i ≤ n };

– {btvi
| 1 ≤ i ≤ n } are binding-time variables pertaining to library fn’s

parameters {vi | 1 ≤ i ≤ n } respectively;

– {btei
| 1 ≤ i ≤ n} are the binding-time expressions of fn-call’s arguments

respectively; and

– {raiseei
| 1 ≤ i ≤ n } are raise conditions generated for fn-call’s arguments

{ei | 1 ≤ i ≤ n } respectively.

All the binding-time constraints generated at the profitability points of a library

fn are collected in a form of disjunctive binding-time constraint and stored into

τ(fn).pro at the exit of the library fn. This disjunctive binding-time constraint
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expresses a disjunctive condition in which the profitability at various profitability

points can be fulfilled respectively.

4.4.2 Soundness of Profitability-oriented Binding-time Analysis

The soundness of profitability-oriented binding-time analysis can be expressed in

terms of profitable specialization which is defined as follows:

Definition 4.3 (Profitable Specialization). Specialization of a call to library f with

respect to a binding-time context ξ is said to be a profitable specialization if either of

the following conditions holds during specialization:

1. One of library f ’s direct profitability points will have the binding-time expression

of its conditional test evaluated to static, or

2. One of the library calls within the body of f will be specialized with respect to a

context ξ′ that will result in a profitable specialization.

Theorem 4.1 (Soundness). Given a program P = {fd1, . . . , fdn}, let PAfs(P ) = τ .

For any i between 1 and n, let fni be the name of the library fdi. For any binding-

time context ξ of a library call to fdi such that ξ ` τ(fni).pro, specialization of the

library fdi with respect to ξ will be profitable.

Sketch of Proof The proof of soundness of profitable specialization is formulated

as a proof of the profitability-oriented BTA which is defined in Figures 4.6, 4.7 and

4.8. More specifically, our claim is that:

∀ ξ ` τ(fni).pro ⇒ ∃ btc, which is a profitability fulfilment conditions

generated by PA for the library fdi, such that btc is evaluated to true

with respect to ξ

The sketch of the proof is as follows:
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1. For the case that a library fdi does not contain any library call:

As described in Figure 4.7, the profitability fulfilment conditions generated at

the direct profitability points (i.e., the conditional tests of if or while state-

ments) are of the following form, where e is a conditional test expression

(bte == s) ∧ raisee

These profitability fulfilment conditions can all be simplified to

(bte == s)

because raisee is always true in this case. Thereafter, τ(fni).pro is literally

identical as a disjunction of those simplified profitability fulfilment conditions,

which can be written as

τ(fni).pro ≡ (bte1 == s) ∨ . . . ∨ (bten == s)

ξ ` τ(fni).pro

⇒ ξ is a satisfiable valuation of the binding-time constraint τ(fni).pro

⇒ ∃i ∈ {1, . . . , n} : (btei
== s) is evaluated to true with respect to ξ

2. For the case that a library fdi contains library calls:

Without loss of generality, we assume there is only one call to a library fdj

in the body of the library fdi. As described in Figure 4.8, the profitabil-

ity fulfilment condition generated for a library call to fdj is of the following

form, where btcvfnj
refer to the corresponding binding-time constraint stored

in τn.(fnj).pro; v1, . . . , vn are parameters of the library fdj; and e1, . . . , en are

arguments of a call to the library fdj:

btcvfnj
∧ (btv1 == bte1) . . . ∧ (btvn == bten) ∧ raisee1 ∧ . . . ∧ raiseen

Each of the profitability fulfilment conditions can be rewritten as a conjunctive

normal form btcvfnj
∧ simpler btc by using the distributive and the absorp-

tion laws, where simpler btc is a binding-time constraint without binding-time
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constraint variables. A least fixed point computation is performed over the

function:

F 〈btcv1, . . . , btcvn〉 = 〈τ(fn1)pro, . . . , τ(fnn).pro〉

to resolve these binding-time constraint variables. This least fixed point com-

putation is formulated as follows2:

• Step 1: Let: btcv1
1 = τ 1(fn1).pro = false; . . ., btcv1

n = τ 1(fnn).pro =

false, then F is updated to:

F〈btcv1, . . . , btcvn〉 = 〈τ 2(fn1).pro, . . . , τ 2(fnn).pro〉

• Step m: Let btcvm
1 = τm(fn1).pro; . . . , btcvm

n = τm(fnn).pro, then F is

updated to:

F〈btcv1, . . . , btcvn〉 = 〈τm+1(fn1).pro, . . . , τm+1(fnn).pro〉

The following proof by induction is conducted over least fixed point computation

steps. The τ and btcv shown in the statement of the proof are the updated result

at the end of each step of the least fixed point computation.

(a) Base case: The binding-time constraint variables are initially assigned

the bottom value false, which represents the unprofitable specialization

of a library. Then, we have

ξ ` τ 1(fni).pro ≡ ξ ` btcvfni
≡ ξ ` false ≡ false

Our claim thus becomes vacuously true.

(b) Inductive hypothesis:

2a superscription Datn associated with a data structure Dat stands for the value of that Dat
computed at n-th step
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• ∀ ξi ` τn−1(fni).pro⇒ there exists a profitability fulfillment condition

btcvn−1
fnj

∧ simpler btc that is evaluated to true with respect to ξi

• ∀ ξj ` τn−1(fnj).pro ⇒ there exists a profitability fulfillment condi-

tion that is evaluated to true with respect to ξj

(c) Inductive case: Given ξi ` τn(fni).pro, we need to check if the prof-

itability fulfillment condition btcvn
fnj
∧simpler btc is evaluated to true with

respect to ξi. There are three sub-cases in the inductive case according to

how libraries fdi and fdj are interacted.

i. Sub-case 1: The library fdj is a leaf library, i.e., there are no library

calls within fdj: There is no binding-time constraint variable in the

τ(fnj).pro. Thereafter, the profitability fulfillment condition asso-

ciated with a call to fnj does not contain binding-time constraint

variable. Then similar to what we have discussed in the case “that a

library fdi does not contain any library call”, τ(fni).pro is literally

identical to a disjunction of its profitability fulfillment conditions. The

proof is similar with the previous one.

ii. Sub-case 2: fdj and fdi are identical, i.e., a library call to fdj within

the library fdi is a self-recursive function call: Then we need to check if

the profitability fulfillment condition btcvfni
∧simpler btc is evaluated

to true with respect to ξi.

btcvn
fni

≡ τn(fnj).pro

≡ (τn−1(fni).pro ∧ simpler btc) ∧ simplerbtc

≡ τn−1(fni).pro ∧ simpler btc

By induction hypothesis, τn−1(fni).pro ∧ simpler btc is evaluated to

true with respect to ξi. This proves the sub-case 2.

iii. Sub-case 3: fdj and fdi are mutually recursive:
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btcvn
fnj

≡ τn(fnj).pro ≡ τn−1(fnj).pro ∧ simpler btc

≡ btcvn−1
fnj

∧ simpler btc

btcvn
fnj

∧ simpler btc ≡ (btcvn−1
fnj

∧ simpler btc) ∧ simpler btc

≡ btcvn−1
fnj

∧ simpler btc

By induction hypothesis, btcvfnj ∧ simpler btc is evaluated to true

with respect to ξi. This proves the sub-case 3.

This proves the result.

4.4.3 An Example

Pp Binding-time environments of the library add

1 {m 7→ 〈btm, true〉, n 7→ 〈btn, true〉, ret 7→ 〈btm t btn, true〉}

Pp Binding-time environments of the library mul

1 {z 7→ 〈btz, true〉}
2 {x 7→ 〈btx, true〉}
3 {x 7→ 〈btx, true〉, y 7→ 〈bty, true〉, z 7→ 〈btx t bty, ξ1〉}
4 {y 7→ 〈bty, true〉, z 7→ 〈btx t bty, ξ1〉, ret 7→ 〈btx t bty, ξ1 ∧ ξ2〉}
5 {x 7→ 〈btx, true〉}
6 {ret 7→ 〈btx, true〉}
7 {y 7→ 〈bty, true〉}
8 {x 7→ 〈btx, true〉, y 7→ 〈bty, true〉, z 7→ 〈btx t bty, ξ1〉}
9 {x 7→ 〈btx, true〉, z 7→ 〈btx t bty, ξ1〉, ret 7→ 〈btx t bty, ξ1 ∧ ξ2〉}
10 {x 7→ 〈btx, true〉, y 7→ 〈bty, true〉, ret 7→ 〈btx t bty, ξ1〉}

where
ξ1 ::= btcvmul ∧ (btx == btx) ∧ (bty == bty)
ξ2 ::= btcvadd ∧ (btm == btx t bty) ∧ (btn == bty)

Table 4.1: Binding-time environments generated for libraries mul and add

Tables 4.1 and 4.2 depict the binding-time environments and profitability fulfill-

ment conditions generated for the libraries mul and add before conducting the least

fixed-point computation to compute the profitability signatures. The column Pp

contains the statement labels of the libraries mul and add.
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Pp Profitability fulfillment conditions of the library mul

2 btc1 ::= btx == s

3 btc2 ::= btcvmul ∧ (btx == btx) ∧ (bty == bty)
4 btc3 ::= btcvadd ∧ (btx t bty == btm) ∧ (bty == btn) ∧ ξ1
5 btc4 ::= btx == s

7 btc5 ::= bty == s

8 btc6 ::= btcvmul ∧ (btx == btx) ∧ (bty == bty)
9 btc7 ::= btcvadd ∧ (btx t bty == btm) ∧ (bty == btn) ∧ ξ1
10 btc8 ::= btcvmul ∧ btx == btx ∧ bty == bty

Table 4.2: Profitability fulfillment conditions generated for libraries mul

The global table τ generated before performing the least-fixed point computation

is:

τ ::= {add 7→ 〈{m, n}, false〉, mul 7→ 〈{x, y}, btc1 ∨ . . . ∨ btc8〉}

Binding-time constraints btc3 and btc7 can be simplified to false based on the

knowledge that btcvadd = τ(add).pro = false.

The other binding-time constraints can be simplified using the distributive and

the absorption laws. Correspondingly, the binding-time constraint btc1 ∨ . . . ∨ btc8

which denotes the profitability signature of mul is simplified to:

btcvmul ∨ (btx == s) ∨ (bty == s)

The function F thus constructed is

F 〈btcvadd, btcvmul〉 = 〈false, btcvmul ∨ (btx == s) ∨ (bty == s)〉

Finally, we conduct least fixed-point operation on F to obtain the ultimate prof-

itability signature of library mul without the binding-time constraint variables btcvadd,

btcvmul:

(btx == s) ∨ (bty == s)

The binding-time variables included in the set of binding-time environments,

which are produced by the profitability-oriented BTA, will be instantiated with re-

spect to the satisfiable binding-time valuations of the profitability signature. These
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instantiated binding-time information facilitate construction of the GSC which will

be described in the next chapter.

4.4.4 Binding-time Signatures in Practice

As required by the specialization policy, all the binding times of a library call’s ar-

guments are raised to dynamic if a minimal profitable context cannot be found for

a binding-time context for that call. Correspondingly, to prepare a library for all

possible cases (i.e., profitable and unprofitable) of specialization, we include the all-

dynamic binding-time signatures in the complete set of binding-time signature at-

tached with a library.

Table 4.3 at the end of this chapter lists the complete set of binding-time signatures

associated with other sample libraries. The profitable binding-time signatures are

underlined.

4.5 Termination Aspect of Partial Evaluation

Our development of profitability analysis is orthogonal to the issue of termination of

partial evaluation. In practice, termination of partial evaluation is usually controlled

by adjusting the binding-time signature of libraries. Certainly, existing techniques

in ensuring termination of partial evaluation (such as [7, 37]) can be added to our

analysis. Alternatively, annotations can be included in the library body to ensure

that the binding-time signature generated does not lead to non-termination of the

partial evaluation process. One such technique is to introduce an assert annotation

which asserts that the binding times of some (usually non-inductive) parameters of a

library should be more dynamic than other (inductive) parameters [83]. Consider a

contrived example given in Figure 4.9

When mc is specialized with respect to a specialization context “(btx == s) ∧
(bty == d)”, the second recursive call is placed under a dynamic control and the

binding-times of the two arguments of the second recursive call are inferred as s
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Program Points Program Text

1 int mc (int x, int y) {
2 if x > 0

3 return mc(x-1,y-1);

4 else if y > 0

5 return mc(x-1,y-1);

6 else return y;

}

Figure 4.9: A contrived example used to demonstrate the usage of assert annotations

and d respectively. Infinite specializations occur under this specialization context. A

snapshot of an infinite specialization, when the value of x is 1, is shown in Figure 4.10.

int mc 1(int y) { int mc 0 (int y) { int mc -1 (int y) { ....
return mc 0 (y-1); if y > 0 if y > 0

} return mc -1 (y-1); return mc -2 (y-1);

else return y; else return y;

} }
Figure 4.10: A snapshot of an infinite specialization

We introduce the notion of assert to curb such infinite specialization from arising.

An assert annotation declares a binding-time constraint over the variables available

at a particular program point. The syntax of the assert ξ is defined in Figure 4.11.

bte ∈ BTe Binding-time expressions
ξ ∈ Assert Assert annotation

::= true | false | bte1 == bte2 | bte1 <= bte2 |
ξ1 ∧ ξ2 | ξ1 ∨ ξ2

Figure 4.11: Syntax of assert annotations

For the mc library defined in Figure 4.9, we can provide an assert annotation

“btx == bty” at the function header. This assert annotation demands that the

binding-times of both parameters of the mc library should always be the same when
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specializing the mc library. For a specialization to take place, the related assertion

must be met. The use of assert annotations reflects our desire to control special-

ization effectiveness in a declarative fashion. In effective, these asserts capture the

decision of poor man’s generalization on library parameters, as described in [16, 43].

A more refined use of assert is also possible: placing different assert annotations

at different library calls occurring within a library. For the mc example, we can provide

two assert annotations at program points 2 and 4, respectively:

2 : btx <= bty

4 : bty <= btx

The above assert annotations state that in the first call, the second input should

be at least as static as the first input; in the second call, the first input should

be at least as static as the second input. Hence, given the specialization context

“(btx == s) ∧ (bty == d)”, we will allow the first call to be specialized aggressively,

but the second call will not be specialized. The specialized code thus produced is

presented in Figure 4.9.

int mc 1(int y) { int mc 0 (int y) {
return mc 0 (y-1); if y > 0

} return mc (x-1, y-1);

else return y;

}
Figure 4.12: Specialized code of the library mc

Note that the specialization policy described in Section 4.3 is a policy gener-

ally applied in independent library specialization, no matter how the profitability

signature is generated for a library. In other words, the specialization policy also

governs the usage of such refined profitability signature generated by adding those

extra binding-time constraints.
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4.6 Summary

Instead of manually declaring specialization opportunities as summarized in Sec-

tion 3.1, our profitability signatures are derived automatically through identifying

profitability points within a library. In this work, we choose to identify conditional

tests occurring in if and while statements as a source for profitable specialization.

This technique resembles that proposed by Mock [60] for his profiling tool Calpa.

Calpa automatically generates declarations for the specializer Dyc for C programs.

As Calpa handles C applications rather than libraries, it is able to perform dynamic

analysis over an application to discover specialization opportunities. Doing so for a

library could be more difficult, since analyzing an application that deploys a library

will only uncover part of the specialization opportunities of the library.

Our specialization policy, which only allows specialization when the specialization

context entails the profitability signature, may be perceived as a form of under-

specialization. There are certainly cases when a specialization context is not in

harmony with profitability signature and yet the specialization can be considered

effective. In fact, one may claim that profitability is a subjective concept that is

determined by the programmer’s specialization intention [31, 32]. We believe the

current definition of profitability, which guarantees elimination of conditional tests in

if and while statements, is acceptable as being practical by the partial evaluation

community.

We have implemented a prototype tool deriving profitability signatures of shared

libraries. The tool contains 12 files written in the OCaml language [3], and it has 1752

lines of code in total. This tool and analysis results of some testcases are publicly

available at the web site

http://www.comp.nus.edu.sg/~zhuping/prototype/pa
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Program texts Binding-time signatures
int power (int b, int e) {

int z;

if ( e==0 )

return 1; ss1 ::= (btb == s) ∧ (bte == s)

else { ss2 ::= (btb == d) ∧ (bte == s)

z = b * power(b, e-1); ss3 ::= (btb == d) ∧ (bte == d)

return z;

}
}
int power loop (int b, int e) {

int z;

z = 1;

while (e > 0) { loop ss1 ::= (btb == s) ∧ (bte == s)

z = b * z; loop ss2 ::= (btb == d) ∧ (bte == s)

e = e - 1; loop ss3 ::= (btb == d) ∧ (bte == d)

}
return(accum);

}
int ack (int m, int n) {

if ( m==0 )

return n+1;

else if (n==0) ack ss1 ::= (btb == s) ∧ (bte == s)

return ack(m-1, 1); ack ss2 ::= (btb == d) ∧ (bte == s)

else { ack ss3 ::= (btb == s) ∧ (bte == d)

int tmp; ack ss4 ::= (btb == d) ∧ (bte == d)

tmp = ack(m, n-1);

return ack(m-1, tmp);

}
}
int gcd (int m, int n) {

if (m<n) {
int tmp;

tmp = m;

m = n;

n = tmp; gcd ss1 ::= (btm == s) ∧ (btn == s)

} gcd ss2 ::= (btm == d) ∧ (btn == d)

if (n ==0)

return m;

else

return gcd(n, m % n);

}
Table 4.3: The complete set of binding-time signatures derived for other sample
libraries
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CHAPTER 5

GENERIC SPECIALIZATION COMPONENT

The vision adopted in efficient specialized library construction and execution

is to replace original libraries with their generic specialization components (GSC for

short) that cater for various specialization opportunities, while minimizing the need

for repetitive and redundant specialization of libraries at application level. Given that

multiple binding-time signatures may be produced when independently specializing

a library through profitability analysis as described in Chapter 4, the generic

specialization component typically accommodates different versions of the specialized

libraries which are generated with respect to different binding-time signatures.

Output: A GSC

Input: A set of action
annotated codes

poweraa
ss1 poweraa

ss2
poweraa

ss3

powerrts
ss1

+
powertmp

ss1

powerrts
ss3

+
powertmp

ss3

powerrts
ss2

+
powertmp

ss2

Figure 5.1: Traditional approach to construct a GSC for library power with respect
to three binding-time signatures

The most straightforward way to construct a GSC, as has been done by most of

the traditional approaches that have been surveyed in Section 3.2, is to create a set

of specialized libraries with respect to the various binding-time signatures. Figure 5.1

illustrates an example of a GSC constructed according to the traditional approach

for library power with respect to three binding-time signatures, where ss1, ss2 and

64



ss3 were defined in Table 4.3.

The template files powertmp
ss2 and power

tmp
ss3 are presented in Figure 5.2.1 Readers

are suggested to refer back to Section 2.3.3 for the introduction of template files

produced by Tempo. Note that the two different template files share several identical

templates, as underlined in the figure.

/** Template file power
tmp
ss2 **/

int N2, CH2;

int tmp power 2 (int b){
int z;

t0 end:

if (N2) {
t1 start:

return 1;

t1 end:}
else {

t2 start:

z = b * ((int (*)(int))(&CH2))(b);

return z;

t2 end:}
t3 start:

}

/** Template file power
tmp
ss3 **/

int CH3;

int tmp power 3 (int b, int e){
int z;

if (e == 0)

return 1;

else {
z = b * ((int(*)(int, int))(&CH3))(b, e - 1);

return z;}
}

Figure 5.2: Two template files adapted from Tempo

1The template file powertmp
ss1 is empty since there is no dynamic expression in the binding-time

annotated code generated with respect to the binding-time signature ss1.
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To achieve the objectives of efficient specialized library construction and execution

we set in Section 1.3, it is important to manage and balance the trade-off between

the multiplicity of specialized libraries and the space required for keeping them in

order to exploit the sharing property. As these specializable libraries are generated

beforehand at compile-time, they enable maximal sharing during compile-time before

being deployed in multiple applications. In addition, in this chapter we propose to

enable sharing both at compile-time when constructing a GSC for a library and at

run-time when executing the GSC inside applications.

The rest of this chapter is organized as follows. Section 5.1 and 5.2 elaborate

the principles we adopt to enable sharing when constructing and executing a GSC at

compile-time and run-time respectively through illustrative examples. The algorithms

for GSC construction and execution are detailed in Section 5.3. In Section 5.4 we

describe our experimental studies of GSC approach. We summarize our approach and

survey related work in reducing duplication in partial evaluation in Section 5.5.

For ease and readability of presentation, we define some notational conventions

used in this chapter and explain them as follows:

• fgsc: The GSC of a library f

• faa
ss : Action annotated code of the library f constructed with respect to a

binding-time signature ss

• fge
ss : A generating extension of the library f constructed with respect to a

binding-time signature ss

• f rts
ss : A run-time specializer of the library f constructed with respect to a

binding-time signature ss

• f fp
vals

: The footprint of the library f constructed by executing its corresponding

generating extension with respect to the values of static variables vals
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5.1 Principle of GSC Construction

The input to GSC construction is a set of action-annotated codes that are the re-

sult of performing conventional action-analysis over the set of binding-time annotated

codes returned by profitability analysis. The principle of constructing a GSC is to

detect sharable templates by looking up each action-annotated statement in the dif-

ferent action-annotated codes . Sharable templates are derived from identical action-

annotated statements.

5.1.1 Template Repository Construction

We build a global template repository f tmps which captures all distinct templates

derived from different action annotated codes of f . Table 5.1 lists all the distinct

templates derived from the three action annotated codes of the library power depicted

in Figure 5.3.

Label Template
gt0 int z;

gt1 return 1 ;

gt2 z = b * ((int (*)(int))(&CH2))(b);

gt3 return z;

gt4 if (e == 0)

gt5 z = b * ((int(*)(int, int))(&CH3))(b, e - 1);

Table 5.1: Distinct templates derived from the three action-annotated codes of li-
brary power

The algorithm to derive the distinct templates and the layout of the global tem-

plate repository file will be presented in Section 5.3.

5.1.2 Two-part Structure of GSC

We leverage the traditional two-part structure of a generating extension in construct-

ing a GSC. A GSC fgsc is composed of a set of local run-time specializers and a
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/ ∗ ∗ poweraa
ss1 ∗ ∗/ / ∗ ∗ poweraa

ss2 ∗ ∗/

int power (int bev, int eev) { int power (int bid, int eev) {
(int z)ev ; (int z)id ;
ifev (e == 0)ev ifrd (e == 0)ev

(return 1)ev ; (return 1)id ;
else { else {

(z = b ∗ power(b, e− 1))ev ; (z = bid ∗ power(bid, eev − 1)rb)rb ;
(return z)ev ; (return z)id ;
} }
} }

/ ∗ ∗ poweraa
ss3 ∗ ∗/ / ∗ ∗ Binding− timesignatures ∗ ∗/

int power (int bid, int eid) { ss1 :: (btb == s) ∧ (bte == s)
(int z)id ; ss2 :: (btb == d) ∧ (bte == s)
ifid (e == 0)id ss3 :: (btb == d) ∧ (bte == d)

(return 1)id;
else {

(z = b ∗ power(b, e− 1))id;
(return z)id;
}
}

Figure 5.3: Action-annotated code constructed for the library power with respect to
three binding-time signatures

global template repository; the latter being shared by all local run-time specializ-

ers. Each local run-time specializer pertains to the specialization of the library with

respect to a distinct binding-time signature.

Figure 5.4 depicts an illustrative example of a GSC constructed by our approach

for the library power with respect to three binding-time signatures: Each of those

three local run-time specializers powerrts
ss1

′
, powerrts

ss2
′
and powerrts

ss3
′
is responsible for

performing the static computations and manipulating templates stored in the sharable

template repository. The run-time specializers constructed in our approach are dif-

ferent from those produced by traditional run-time specialization techniques, as il-

lustrated by Figure 5.1, since we adopt different run-time specialization mechanisms
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in manipulating templates, which will be explained in Section 5.2 and presented in

more detail in Section 5.3.

Input: A set of action
annotated codes

Output: A GSC

powerrts’ ss1

powertmps

gt0; gt1; gt2; gt3; gt4; gt5

powerrts’ ss2 powerrts’ ss3

poweraa
ss1 poweraa

ss2 poweraa
ss3

Figure 5.4: Illustration of constructing GSC for library power in our approach

It is worth reminding the reader that a GSC is constructed to handle all uses of

the specialized shared library, rather than the uses relevant to a specific application.

Although this implies that a GSC can contain several local run-time specializers for

many different binding-time signatures, the size of the GSC is curbed by the fact

that:

1. The number of such binding-time signatures is limited to the profitable ones, as

explained in Chapter 4, and

2. Templates are shared in the global template repository.

Our GSC construction not only maximizes sharing at compilation-time, it also

paves the way for maximizing memory-sharing at run-time since the GSC exists in

shared library form and it is amenable to memory-sharing at run-time.

After a GSC fgsc is constructed for a library f with respect to a set of binding-

time signatures, it is ready for deployment in various applications. It is instantiated

with respect to a specialization context ss established at the application side before
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run-time and produces a generating extension fge
ss indexed by ss. fge

ss is composed of

the corresponding f rts
ss which refers to the templates in f tmps.

5.2 Principle of Footprint Construction and Exe-

cution

At run-time, a footprint f fp
vals

is created from the generating extension fge
ss through

executing f rts
ss with respect to concrete values vals for the static inputs to f as specified

in ss. f fp
vals

is executed in the late stage with respect to concrete values vald for

dynamic inputs to f specified in ss to produce the final output. The principle of

constructing and executing a footprint is to minimize the footprints of specialized

shared libraries during execution.

5.2.1 Methodology for Dumping Fewer Templates

The templates stored in the template repository can be divided into two categories.

The first type of template is not embedded with any hole variables denoting results of

static expressions and will remain unchanged during instantiation. The second type

of template contains at least one hole variable to be instantiated by concrete values

evaluated from static expressions at run-time. We term these two types of template

totally dynamic templates and hybrid templates respectively.

When creating a footprint at run-time from the generation extension returned

by fgsc(ss), we maximize memory-sharing by choosing not to dump totally dynamic

templates into the dynamically allocated memory block since they can be located in

the memory block allocated for the global template repository. Only hybrid tem-

plates are dumped into a dynamically allocated memory block and instantiated by

filling concrete values into their holes. Operationally, dumping of hybrid templates is

performed by dumping operations instrumented in the local run-time specializers of

a GSC. On the other hand, totally dynamic templates need not be associated with

dumping operations.

70



Figure 5.5 shows the layouts of memory blocks dynamically allocated for storing

the footprints of power generated with respect to inputs 2 and 3, respectively, by our

approach and by a traditional approach. gt22, gt21 and gt20 are three templates

instantiated from the original hybrid template gt2 within which the static holes are

filled with 2, 1 and 0 respectively.2

Layout of the footprints produced by our approach

powerrtsss1’

powerrtsss2’

powerrtsss3’

powergsc

dumped templates of powerfp
2
’

gt21; gt20

dumped templates of powerfp
3
’

gt22; gt21; gt20

powerrtsss2

powertmp
ss2

gt0; gt1; gt2; gt3

powerge
ss2

powertmps

gt0; gt1; gt2; gt3; gt4; gt5

dumped templates of powerfp
3

gt0; gt22; gt3; gt0; gt21; gt3; gt0;
gt20; gt3; gt0; gt1

dumped templates of powerfp
2

gt0; gt21; gt3; gt0; gt20; gt3; gt0; gt1

Layout of the footprints produced by traditional approach

Figure 5.5: Layouts of the footprints of the library power with respect to the concrete
value 2 produced by our approach and by a traditional approach

The traditional approach allocates a memory block at run-time to store all the

2For reasonable comparison, the template files produced by traditional run-time specialization
are represented in terms of the templates produced by our approach
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templates needed for the footprint. The templates gt0, gt1 and gt3 stored in the

memory blocks allocated for forming the footprints powerfp
2 and power

fp
3 are identical

to the original templates stored in the memory block allocated for the template file of

powertmp
pss2

. These three templates also appear multiple times in power
fp
2 and power

fp
3 .

On the other hand, in our approach, for each footprint the templates are split

and kept in two separate memory blocks: (1) A dynamically allocated memory block

keeps the instantiated hybrid templates which are dumped by execution of local run-

time specializers and instantiated from global template repository powertmps; (2) A

memory block keeps the global template repository powertmps. Under this approach,

the footprint is produced by linking templates from the two separate memory blocks.

Referring to Figure 5.5 again, a footprint is constructed by linking the dumped hy-

brid templates in the dynamically allocated memory block to the totally dynamic

templates found in the template repository.

By adopting this template dumping strategy, multiple occurrences of identical

templates in the dynamically allocated memory block, whether they originate from

a single file or from multiple template files, can be substituted by references to the

corresponding single copy of the templates residing in the global template repository

of a GSC.

5.2.2 Approach to Connecting Templates

As templates forming a footprint are not laid out in consecutive memory space, we

need to connect them together so that execution of the footprint can proceed properly.

A naive approach to connecting templates together would be to add a goto instruction

at the end of each template jumping to the subsequent template. However we notice

that when executing the footprint, even though instantiated hybrid templates residing

in the dynamically allocated memory block only need to be executed once, totally

dynamic templates residing in the global template repository may need to be executed
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multiple times. (Examples are, if a totally dynamic template is nested within a while

statement and the subsequent template is hybrid, or the original library is a recursive

library.) It is possible for a template to be connected logically to many different

subsequent templates. Thus it is undesirable to associate with each template a goto

instruction to connect them all together.

We tackle this problem as follows:

1. During the first phase at run-time when executing a local runtime specializer,

besides creating the footprint (i.e., dumping and instantiating the hybrid tem-

plates) we also build an address table. This address table records a sequence

of addresses of the object templates, depicting the program execution control

flow among these templates during the execution of the footprint.

The address table is constructed by the local run-time specializers, which are

aware of the size and location of each object template based on information

collected by the template compiler.

2. We add two types of operations for the purpose of passing program execution

control among templates. These two operations capture the interactions be-

tween object templates and the address table.

• The registration operation whose macro name is REGISTER. It registers

the address of an object template in the address table. Registration oper-

ations are part of a local run-time specializer and are executed during the

first phase to build the address table.

The address of a template is encoded as the beginning address of the mem-

ory + offset of the template to the beginning address of the memory . Here,

the memory refers to either dynamically allocated memory or the shared

memory of the GSC.
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• The redirecting operation whose macro name is REDIRECT. It redirects

the program execution control to the subsequent template at the end of

execution of the current template. The address of the subsequent template

is found in the address table.

Except for the templates derived from an action-annotated return state-

ment, redirecting operations are inserted at the end of all templates, includ-

ing totally dynamic templates and instantiated hybrid templates, so that

after reaching the end of a template, execution will flow to the template

pointed to by the current address indexed at the address table. Redirect-

ing operations are executed in the second phase to execute the footprint

properly.

Suppose the name of the address table is addr list, the name of the template

counter which acts as a “program” counter is tc, and the address of an object template

is template addr, then the REGISTER and REDIRECT macros are defined in Figure 5.6.

int tc;

void ** addr list;

#define REGISTER (template addr)

{
addr list [tc] = template addr;

tc = tc + 1;

}

#define REDIRECT

{
tc = tc + 1;

void *addr = addr list [tc];

goto *addr;

}

Figure 5.6: Design of registration and redirecting operations

The template counter tc is initialized to zero at the beginning of the second
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phase at run-time. The address of a footprint is the address of the first template to

be executed during the second phase of run-time; whether a hybrid template residing

in the dynamically allocated memory block or a totally dynamic template residing in

the memory block allocated for the global template repository of the GSC.

void *power rts ss2 (int e) {
int local init tc = tc;

REGISTER (&gt0);

if (e == 0)

REGISTER (&gt1);

else {
gt2’ = DUMP TEMPLATE (gt2);

REGISTER (&gt2’);

PATCH CALL HOLE (gt2’, CH2, (void *)power rts ss2(e - 1));

power rts ss2 (h0);

REGISTER (&gt3);

}
/* return address of first template been registered in this round

return addr list[local init tc];

}

Figure 5.7: The pseudo-code of a local run-time specializer derived from poweraa
pss2

gt0 ::= { int z; REDIRECT;}
gt1 ::= { return 1;}
gt2 ::= { tc = tc + 1; z = b * ((int(*)int))(&CH2)(b); REDIRECT;}
gt3 ::= { return z;}
gt4 ::= { if (e ==0) REDIRECT;

else{tc = tc + 2; void *addr = addr list[tc]; goto *addr;}
}

gt5 ::= { tc = tc + 1; z = b * ((int(*)(int, int)))(&CH3)(b, e-1);

REDIRECT; }

Figure 5.8: All distinct templates derived from three action-annotated versions of
library power (extended version)

In Figure 5.7 we present pseudo-code of a local run-time specializer instrumented

with registration operations. It is derived from the action-annotated code poweraa
pss2
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depicted in Figure 5.3. Figure 5.8 lists extended versions of the templates listed in

Figure 5.1, including redirecting operations.

DUMP TEMPLATE and PATCH CALL HOLE, which are macros of template dumping and

instantiating operations respectively, are defined in Figure 5.9. The design is the same

as Tempo’s.

/*

* code ptr points to dynamically allocated memory block

* tmp ptr points to beginning address of a template after dumping

* name points to the beginning address of a template before dumping

* size is the size of a template

*/

#define DUMP TEMPLATE(code ptr, tmp ptr, name, size)

{
memcpy(code ptr,name,size);

tmp ptr = code ptr;

code ptr = code ptr + size;

}

/*

* e is an expression whose value is used to instantiate call hole

* ho is the offset of call hole within dumped template

*/

#define PATCH CALL HOLE(tmp ptr, e, ho)

{
unsigned long addr = (unsigned long)e;

*((unsigned long *)(tmp ptr+ho))=(addr-(unsigned long)(tmp ptr+ho+4));

}

Figure 5.9: Design of template dumping and instantiating operations

5.2.3 Functional Specifications of GSC and Its Footprint

Before detailing the algorithm for constructing and executing a GSC, we formulate

the compile-time and run-time properties of a GSC and its footprint as follows.
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GSC instantiation: fge
ss = [[fgsc]] ss

Footprint construction: f fp
vals

= [[f rts
ss ]] vals

An equational definition of fgsc: [[f ]] (vals, vald) = [[f fp
vals

]] vald

= [[ [[fge
ss ]] vals ]] vald

= [[ [[ [[fgsc]] ss ]]vals ]] vald

A GSC fgsc can thus be deemed as a program generator generator cogen, which

has been introduced in Subsection 2.3.2, because fgsc(ss) returns a generating exten-

sion for the binding-time signature ss.

5.3 GSC Construction Algorithm

We have developed a modular static transformation algorithm (defined in Figures 5.10

through 5.15) to create a GSC for a library f .

GSCfs ∈ (FDefaa)n → 〈Reptemp , (Stat)n〉

GSCfs (faa
s1

, . . . , faa
sn

) ::=
let τ0 = ∅

{stasi
= (faa

si
).body | 1 ≤ i ≤ n}

{〈τi , f rts
si
〉 = GSCs stasi

τi−1 | 1 ≤ i ≤ n}
in 〈τn , (f rts

s1
, . . . , f rts

sn
)〉

Figure 5.10: Static transformation over action-annotated codes of a library

The input of the main specification GSCfs (defined in Figure 5.10) is a set of action-

annotated libraries faa
s1

, . . . , faa
sn

, which are the result of performing action analysis

(whose rules are defined in Figures 2.6, 2.7 and 2.8) over the set of binding-time

annotated variants produced by profitability analysis. GSCfs returns a set of local

run-time specializers f rts
s1

, . . . , f rts
sn

corresponding to the respective action-annotated
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codes at the input, and a global template repository τ ∈ Reptemp. τ is an action-

annotated code index table of the type Stataa → Stat.

The main specification GSCfs is defined in terms of two auxiliary specifications

GSCs and GSCe.

GSCs ∈ Stataa → Reptemp → 〈Reptemp,Stat〉

GSCs (saa
1 ; saa

2 ) τ ::= Seq-Rule
let 〈τ1 , rts1〉 = GSCs saa

1 τ
〈τ2 , rts2〉 = GSCs saa

2 τ1

in 〈τ2 , rts1; rts2〉

GSCs (int v)id τ ::= Decl-Rule
let saa = (int v)id

if mem (τ, saa)
then temp = get (τ, saa)
else temp = ( int v; REDIRECT; )
rts = REGISTER (&temp);

in 〈τ ./ {saa 7→ temp} , rts〉

GSCs (v = eid)id τ ::= Ass-Id-Rule
let saa = (v = eid)id

if mem (τ, saa)
then temp = get (τ, saa)
else temp = (v = e; REDIRECT; )
rts = REGISTER (&temp);

in 〈τ ./ {saa 7→ temp} , rts〉

GSCs (v = eev)ev τ ::= 〈τ , v = e; 〉 Ass-Ev-Rule

GSCs (return eev)ev τ ::= 〈τ , return e; 〉 Ret-Ev-Rule

Figure 5.11: Static transformation over an action-annotated statement : Part 1

Description of GSCs (defined in Figures 5.11 through 5.14): GSCs takes in an

action-annotated statement and a global template repository, and returns a (possibly)

updated template repository and code forming the local run-time specializer. The

template repository operators mem, get, ./ and ] used in GSCs are defined as follows:

• mem (τ, saa) returns true if τ has an entry with index saa, otherwise false.
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GSCs (v = eaa)rb τ ::= Ass-Rb-Rule
let 〈e′, rtse〉 = GSCe eaa

saa = (v = eaa)rb

if mem (τ, saa)
then temp = get (τ, saa)
else temp = ( v = e′; REDIRECT; )
rts = ( rtse;

temp′ = DUMP TEMPLATE (temp);
REGISTER (&temp′); )

in 〈τ ./ {saa 7→ temp} , rts〉

GSCs (return eid)id τ ::= Ret-Id-Rule
let saa = (return eid)id

if mem (τ, saa)
then temp = get (τ, saa)
else temp = ( return e; )

in 〈τ ./ {saa 7→ temp} , REGISTER (&temp); 〉

GSCs (return eaa)rb τ ::= Ret-Rb-Rule
let 〈e′, rtse〉 = GSCe eaa

saa = (return eaa)rb

if mem (τ, saa)
then temp = get (τ, saa)
else temp = ( return e′; )
rts = ( rtse;

temp′ = DUMP TEMPLATE (temp);
REGISTER (&temp′); )

in 〈τ ./ {saa 7→ temp} , rts〉

Figure 5.12: Static transformation over an action-annotated statement: Part 2

• get (τ, saa) retrieves the template saved as an entry of τ with the index saa.

• τ ./ {saa 7→ s} returns a new table τ ′ which is extended with a new entry

{saa 7→ s} if saa is distinct from all existing indexes of τ . Otherwise, it returns

the original τ .

The Seq-Rule dealing with action-annotated sequential statements enables the

transformation to descend recursively to the basic program constructs (i.e. assignment

statements, local declaration statement, return statements and conditional tests
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GSCs (if eev saa
1 else saa

2 )rd τ ::= If-Rd-Rule
let 〈τ1, rtss1〉 = GSCs saa

1 τ
〈τ2, rtss2〉 = GSCs saa

2 τ1

rts = ( if e rtss1 else rtss2 )
in 〈τ2 , rts〉

GSCs (if erb saa
1 else saa

2 )rb τ ::= If-Rb-Rule
let 〈e′, rtse〉 = GSCe erb

〈τ1, rtss1〉 = GSCs saa
1 τ

〈τ2, rtss2〉 = GSCs saa
2 τ1

if mem (τ, erb)
then temp = get (τ, erb)
else temp = ( if e′

REDIRECT;
else {
tc = tc + branch distance;
void ∗ addr = addr list[tc];
goto ∗ addr; } )

rts′e = ( rtse;
temp′ = DUMP TEMPLATE (temp);
REGISTER (&temp′); )

rts = ( rts′e; rtss1 ; rtss2 ; )
in 〈τ2 ./ {erb 7→ temp} , rts〉

Figure 5.13: Static transformation over an action-annotated statement: Part 3

in if or while statements) to build templates and local run-time specializers.

The If-Rb-Rule deals with action-annotated if statements with their conditional

tests annotated by id or rb. We first derive templates for the two branches, and then

build a template for the action-annotated conditional test. The latter template is an

if statement: Its true branch directs the program execution control to the subsequent

template, which is exactly the first template derived for action-annotated branch saa
1 ;

its false branch directs the program execution control to the first template derived

for action-annotated branch saa
2 , where branch distance is the number of templates

registered by the local run-time specializer. The value of branch distance is known

at compile-time. In this way the template derived for an action-annotated condi-

tional test is properly connected with the templates derived for its action-annotated
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GSCs (while eev saa)rd τ ::= While-Rd-Rule
let 〈τ ′, rtss〉 = GSCs saa τ

rts = ( while e rtss; )
in 〈τ ′, rts〉

GSCs (while erb saa)rb]] τ ::= While-Rb-Rule
let 〈e′, rtse〉 = GSCe erb

〈τs, rtss〉 = GSCs saa τ
if mem (τs, e

rb)
then temp = get (τ, erb)
else temp = ( while e′ REDIRECT;

tc = tc + branch distance;
void ∗ addr = addr list[tc];
goto ∗ addr; )

rts′e = ( rtse;
temp′ = DUMP TEMPLATE (temp);
REGISTER (&temp′); )

rts = ( rts′e; rtss; )
in 〈τs ./ {erb 7→ temp}, rts〉

Figure 5.14: Static transformation over an action-annotated statement: Part 4

branches. The If-Rb-Rule enables sharing of templates derived from identical action-

annotated statements found in different action-annotated libraries.

The While-Rb-Rule deals with action-annotated while statements where the con-

ditional tests are annotated by id or rb. We first derive templates for the while

body, and then build a template for the action-annotated conditional test. The lat-

ter template is a while statement: When the conditional test e′ evaluates to true,

execution is directed to the subsequent template which is the first template derived

for an action-annotated while body saa; when the conditional test e′ is evaluated to

false, program execution control is directed to the first template after while body,

where branch distance is the number of templates registered by the local run-time

specializer. The value of branch distance is known at compile-time. In this way the

template derived for the action-annotated conditional test is properly connected with

the templates derived for its action-annotated while body. The While-Rb-Rule also
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enables program execution to return correctly to the conditional test after executing

the final statement of the while body.

GSCe ∈ Expaa → 〈Exp,Stat〉

GSCe eev ::= Exp-Ev-Rule
let h be a fresh hole variable
in 〈h , PATCH CALL HOLE(h, e)〉

GSCe eid ::= 〈e , ; 〉 Exp-Id-Rule

GSCe (eaa
1 bop eaa

2 )rb ::= BinaryExp-Rb-Rule
let 〈e′1, rts1〉 = GSCe eaa

1

〈e′2, rts2〉 = GSCe eaa
2

in 〈(e′1 bop e′2) , (rts1 ; rts2)〉

GSCe f (eaa
1 , . . . , eaa

n ) ::= FCallExp-Rb-Rule
let {〈e′i, rtsi〉 = GSCe eaa

i | 1 ≤ i ≤ n}
h be a fresh call hole variable
rtse = PATCH CALL HOLE(h, rts f(. . .))
rts = (rts1 ; . . . ; rtsn ; rtse)

in 〈(tc = tc + 1, fp) , rts〉

Figure 5.15: Static transformation over an action-annotated expression

Description of GSCe (defined in Figure 5.15): GSCe takes in an action-annotated

expression, and returns a pair containing code that should appear in the run-time

specializer and the template file, respectively. We will explain in particular the rule

dealing with a library call in following subsection.

Highlights of our static transformation algorithm: The functionality of our

static transformation algorithm is similar to Tempo’s algorithm of abstractly inter-

preting action annotations [25] in that both aim to identify the code that should

appear in the run-time specializer and in the template file. The differences between

these two algorithms are:
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• Our static transformation derives a template at each basic language construct

whereas the templates identified by Tempo may include the code derived for a

sequence of statements, as shown in Figure 5.2.

• There are two more categories of operations used in our static transformation to

manipulate templates, namely registration and redirection, both for the purpose

of directing program execution among templates during execution through the

help of the address table.

• Our dumping operations are only used in dispatching hybrid templates rather

than all templates. The category of a template is clearly indicated by the

action annotations of the basic program construct from which the template is

derived: a totally dynamic template is derived from a program construct that is

annotated as id, while a hybrid template is derived from a program construct

that is annotated as rb.

5.3.1 GSC Construction for Inter-related Libraries

For inter-related libraries, the redirecting operation is not inserted in the templates

derived from action-annotated return statements, as illustrated by rules Ret-Id-Rule

and Ret-Rb-Rule of GSCs. This is because the program execution control flow for a

return statement conforms to the convention of call invocation and return, i.e., the

stack discipline.

The FCallExp-Rb-Rule that deals with a library call is defined in Figure 5.15.

Here, rtse is the call (to be made during the first phase when executing local run-

time specializers) to the corresponding local run-time specializer rts f . The rts f

is indexed by the binding-time signature ss which is clearly indicated by action-

annotated library call, and is parameterized by static inputs specified in ss. The

resulting template contains a comma expression: Before the comma is an expression

that increases the template counter tc by one; after the comma is a function pointer
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fp whose type is the same as rts f . fp points to the address of the corresponding

footprint constructed by executing [[rtse]] (i.e., the call to rts f). The use of a function

pointer is similar to the reference of traditional specialized function definitions . The

difference is that our technique enables sharing of some common program fragments

(i.e., those totally dynamic templates) among the specialized function definitions,

while the traditional techniques do not. When such template is executed, the function

pointer will ensure the program execution control is transferred to the first template

of the pointed footprint, following the convention of handling library call/return.

The rules dealing with action-annotated return statements and library calls en-

sure that the template counter tc obeys the following property throughout run-time

execution:

Regardless of whichever template is executed, tc+1 always points to the

address of the next template to be executed.

The above property holds regardless of how the next template will be reached.

Indeed, a template can be reached by executing either the redirecting operation at the

end of the current template, or a function pointer that jumps to the first template of

the function body, or a return statement that jumps to the code immediately following

the library call. In order to maintain this property, we increase the value of tc before

executing a function pointer, and refrain from calling redirecting operations during

the execution of the return statement.

The values of a call hole within a function pointer template is the address of the

first template (either a totally dynamic template or a hybrid template) that is needed

to construct the footprint of the corresponding function call. Moreover,

• For a function pointer template translated from an action-annotated library call

whose partial arguments are annotated as rd, this template must be dumped
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into a separate memory region. This is similar to the usual practice of instan-

tiating the function body during call execution.

• For a function pointer template translated from an action-annotated library

call whose arguments are all annotated as id, this template only needs to be

registered by the local runtime specializer. The reason is that at compile-time it

is known which template will be chosen at first to construct a footprint. Details

can be found by examining the rules If-Rb-Rule and While-Rb-Rule.

The binding-time signature of an embedded library call is either identical to

or different from that of the embedding library definition. We term the former

case as self-recursive specialization. Depending on whether specialization is self-

recursive, the call hole within such function pointer template can be instantiated

in following two ways:

– For a self-recursive specialization, the call hole is instantiated with a call

to corresponding local runtime specializer. By doing this, the templates

that are needed to construct a footprint for the library call are registered

in the address table.

– Otherwise, the call hole is directly filled with the address of the first tem-

plate. By doing this, we avoid non-terminating specialization.

In Figure 5.16 we present the pseudo-code of a local run-time specializers

derived from the action-annotated code poweraa
pss3

depicted in Figure 5.3.

(void *)template rep power is the name of a template repository con-

structed for the power example. It points to the address of the first tem-

plate.

• The call holes within the two categories of function pointer templates mentioned

above are both instantiated using the macro PATCH CALL HOLE (Figure 5.9).
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void *power rts ss2 (int e) {
int local init tc = tc;

REGISTER (&gt0);

REGISTER (&gt4);

REGISTER (&gt1);

REGISTER (&gt5);

PATCH CALL HOLE (gt5, CH3, (void *)template rep power);

REGISTER (&gt3);

/* return address of first template been registered in this round

return addr list[local init tc];

}

Figure 5.16: The pseudo-codes of a local run-time specializer derived from poweraa
pss3

5.3.2 Footprint Construction for Inter-related Libraries

As demonstrated in GSCs and GSCe, the operations that are responsible for building

the address table only exist in the code for the run-time specializers. The code in

the templates of a GSC, which is constructed for either an intra-procedural library

or an inter-procedural/recursive library, does not include any operations to build the

address table.

Specifically, during the process of constructing footprints by executing specialized

inter-related (or self-recursive) libraries, only one address table is built throughout

the execution of all invoked run-time specializers. Because of the sequential nature

of code execution, one template counter is adequate for the role of pointing to the

address table and controlling the flow among templates. For example, the address

table built after calling the run-time specializer powerrts
pss2

(presented in Figure 5.7)

with input 2 during the first phrase at run-time, comprises the following sequence of

template addresses:

[&gt0; &gt21; &gt0; &gt20; &gt0; &gt1; &gt3; &gt3]
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where gt21 and gt20 are two templates instantiated from their original hybrid tem-

plate gt2, within which the static holes are filled with 1 and 0, respectively.

Interested readers may wish to simulate the sequential execution of the templates

listed in Figure 5.7 to verify that the templates are connected properly at run-time

with the help of the dynamically-built address table.

5.3.3 Organizing and Compiling Template Repositories

In this subsection, we present in detail how we write valid compilation units for

template repositories.

In our approach, each individual template is derived from the basic action-annotated

program construct (i.e, assignment statements, local declaration statements,

return statements and conditional tests in if or while statements), possibly pos-

sessed by different action annotated libraries. The same statement with different

action annotations leads to the generation of different templates. The individual

templates are assembled to form the body of a template repository as follows (let

s be a basic program construct of the original library; stmp1 , stmp2 , . . . , stmpn be dis-

tinct templates derived from distinct action-annotated statements saa
1, saa

2, . . ., saa
n

respectively; tmp 1 start / tmp 1 end, . . ., tmp n start / tmp n end be pairs of sym-

bolic labels delimiting each source template):

• if s is an assignment statements or local declaration statement or condi-

tional tests in if or while statements), the code looks like:

tmp 1 start:

stmp1 ;
tmp 1 end:

...
tmp n start:

stmpn ;
tmp n end:
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• If s is a return statement: since we can not put one return statement after

another, as done for the other types of statement shown above, then the code

looks like:

if N1 {
tmp 1 start:

stmp1 ;
tmp 1 end:

} else if N2 {
tmp 2 start:

stmp2 ;
tmp 2 end:

}
...
else {

tmp n start:

stmpn ;
tmp n end:

}

where N1, N2 . . . are variables of integer type. They are dummy variables in the

sense that they are used only for the purpose of forming the structure of an if

statement correctly. Their values are not used at run-time.

To cater for the various specialization scenarios, a template repository is parame-

terized by all parameters of the corresponding original library. On the other hand, as

described in Section 5.3.1, the type of the function pointer appearing in a template

derived from an action-annotated function call is the same as that of a correspond-

ing local run-time specializer, which is parameterized by static parameters. At the

assembly level we know that the first several instructions of the assembly code of a

library marshal the parameters (i.e., allocate memory space for the parameters) of

that library. These instructions are called the prologue of a subprogram in the liter-

ature [18]. We resolve the difference in the number of parameters between the local

run-time specializer and the template repository as follows:
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Let para1, . . . , paran be the parameters of the original library. Then the

parameter list of the template repository is written as an array of integers

of size n. Suppose the name of the array is paras. Then para1 is now

referred as paras [0], . . ., paran as paras[n-1]. In this way, the parame-

ters of function pointers can be linked correctly with parameters of the

template repository.

5.3.4 Wrapped GSC

In order to facilitate the interaction between a GSC and multiple applications, we

wrap a GSC with other information, including multiple binding-time signatures and

two APIs. These APIs act as interfaces to GSC clients, throughout the entire spe-

cialization process from compilation to execution, through reception of binding-time

information (from clients) and return of the proper run-time generating extension to

be referred to by the specialized application.

Client access to a GSC is mainly guided by submitting a binding-time signature.

As a GSC maintains only the run-time specializers associated with the profitable

binding-time signatures and the totally dynamic binding-time signature, client ac-

cess via binding-time signatures not listed as profitable will have to be converted

to profitable ones (or the totally dynamic one) by the wrapped GSC. As mentioned

in Chapter 4, selection of the most appropriate profitable binding-time signature is

guided by the specialization policy, and the selected binding-time signature is called

the minimal profitable context.

For the convenience of referring to binding-time signatures, binding times s and d

are encoded as the digits 0 and 1 respectively, and a binding-time signature comprising

a tuple of binding times is encoded into an integer representing a concatenated string

of 0’s and 1’s. For example, the binding-time signatures ss1 and ss2 defined in
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Table 4.3 are encoded as 002 and 102 respectively. We term the value of a binding-

time signature as a binding-time signature value (BSV for short).

interface f wgsc {

private:

static int ss num;

static int ss [ss num];

static int temp rep (...);

static void *rts 1 (...);
...

static void *rts n (...); /** n is equal with ss num

public:

int gsc bt (int bsv);

void *gsc rtge (int bsv);

}

Figure 5.17: Interface of wrapped GSC

The interface of wrapped GSC for a library f is defined in Figure 5.17. In the

figure,

• ss num is an integer representing the number of binding-time signatures sup-

ported by GSC. ss [ss num] is an array of BSVs listing all acceptable (i.e.,

profitable or totally dynamic) binding-time signatures.

• static int temp rep (. . .) is the function prototype of the template repository

file.

• {static void ∗ rts i (. . .) | i = 1, 2, . . . , ss num}, are function prototypes of

the local run-time specializers, each of which is parameterized by the static

inputs specified in corresponding binding-time signatures.

• gsc bt takes in a BSV encoding of a binding-time signature, and returns an

BSV encoding of a minimal profitable context which will be used in the ensuing
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correspondence with this wrapped GSC, in replacement of the input binding-

time signature.

• gsc rtge takes in a BSV encoding bsv of a binding-time signature that was

returned by gsc bt and returns a pointer pointing to the run-time specializer

indexed by bsv.

In this way, we allow the interactions between the profitability signature and a

GSC to happen before the application link-time, thus making the specialization

more effective.

5.4 Experimental Study

We conduct experiments to evaluate the effectiveness of our GSC approach. The

benchmark used for experiments is the power library. We run the experiments on a

1.99 GHz Intel Core 2 Duo machine with 3-GB main memory. The operating system

is Red Hat Linux 3.2.2-5.

Comparison of execution times of a source power library and a specialized

power library:. The specialized power library is generated by specializing power

with respect to a binding-time information “btb == d ∧ bte == s” using our GSC

approach. Table 5.2 summarizes the speedups for our GSC approach. Column 2 tsource

contains execution times of source power library. Columns 3 to 6 contain information

about our GSC approach that include:

• trts: It is an execution time of constructing a footprint by executing a run-time

specializer at the first phase of run-time.

• tspe: It is an execution time of executing the footprint at the second phase of

run-time.

• Speedup = tsource / tspe
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• Breakeven point: It is the number of times the footprint must be executed

to amortize the cost of generation of the footprint. It is computed as:

Breakeven point = trts / (tsource − tspe)

Specialized power

Source power generated by our GSC approach
Parameter values tsource trts tspe Speedup Breakeven point
b = 3; e = 0 3 77 0.03 100 26
b = 3; e = 1 3 31 0.06 50 11
b = 3; e = 2 3 40 0.09 33.33 14
b = 3; e = 3 3 95 0.13 23.08 34
b = 3; e = 4 3 71 0.17 17.65 26
b = 3; e = 5 3 219 0.32 9.38 15
b = 3; e = 6 3 114 0.45 6.67 82
b = 3; e = 7 4 121 0.48 8.33 35
b = 3; e = 8 3 124 0.72 4.17 55
b = 3; e = 9 4 160 1.33 3.01 60
b = 3; e = 10 4 197 1.14 3.51 69
b = 3; e = 11 3 183 1.43 2.10 117
b = 3; e = 12 3 18 1.70 1.76 14
b = 3; e = 13 3 211 2.01 1.49 213
b = 3; e = 14 4 224 2.28 1.75 131
b = 3; e = 15 4 279 2.53 1.58 190

Table 5.2: Comparison of the execution times of unspecialized and specialized power

generated by our GSC approach (execution times in microseconds)

We find that the specialized power library generated by our GSC approach sur-

passes the source program in terms of execution times, despite the fact that global op-

timization is disabled when compiling the template repository. Most of the breakeven

points that range from 11 to 82 are low.

Comparison of our GSC approach and Tempo: We also compare the execution

effectiveness of Tempo and our GSC approach in executing specialized power libraries

generated by these two approaches, respectively. Table 5.3 summarizes the evaluation

results that include:
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• sfp: It is the total size of templates dumped by Tempo or GSC approach.

• saddr: It is the size of an address table built by our GSC approach.

• trts, tspe: Their meanings are the same as those used in Table 5.2.

Tempo GSC approach
Parameter values sfp trts tspe sfp saddr trts tspe

b = 3; e = 0 20 63 0.01 0 12 68 0.03
b = 3; e = 1 62 20 0.03 66 48 30 0.06
b = 3; e = 2 104 21 0.05 198 84 46 0.09
b = 3; e = 3 146 21 0.11 396 120 58 0.13
b = 3; e = 4 188 24 0.11 660 156 111 0.17
b = 3; e = 5 230 22 0.14 990 192 91 0.35
b = 3; e = 6 272 24 0.19 1386 228 110 0.41
b = 3; e = 7 314 24 0.22 1848 264 1576 1.08
b = 3; e = 8 356 25 0.02 2376 300 144 0.77
b = 3; e = 9 398 30 0.62 2970 336 157 1.05

Table 5.3: Comparison of Tempo and our GSC approach (execution times in mi-
croseconds, sizes in bytes)

The evaluation result demonstrates that: For this specific benchmark, the exe-

cution times and memory usage of our GSC approach are not as good as those of

Tempo. There is no chance of a breakeven in terms of memory usage for GSC ap-

proach as compared with Tempo. The cause of this situation is that under our current

implementation, the size of the codes involving redirecting operations and address ta-

bles are around 40 bytes. Thereafter, there is about 40 bytes additional of codes for

redirecting operations in a hybrid template as compared to the equivalent template

in Tempo. For this specific specialized power library, the size of a hybrid template,

which is involved in constructing the footprint by using our GSC approach, is bigger

than the total size of the templates that are involved in constructing the footprint by

using Tempo. The savings in space obtained by using our GSC approach is originated

from the mechanism of not dumping the totally dynamic templates.
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The increase of code size plus the generation of address tables by our GSC ap-

proach also accounts for the difference of execution times trts between Tempo and our

approach. As for the times of executing footprints generated by Tempo and our GSC

approach respectively, the evaluation result shows that there is not much difference

between Tempo and our GSC approach in executing templates, which include both

hybrid and totally dynamic templates, at the second phase of run-time.

The situation of memory usage and execution times incurred by our GSC approach

can be improved in following ways:

• Improve our current implementation of the redirecting operation and address

table to reduce the size of codes for redirecting operations.

• Design alternative ways of organizing templates to reduce memory usage at

run-time.

– Our current scheme of organizing and compiling template repository can

be improved by grouping adjacent hybrid templates or adjacent totally

dynamic templates into a cluster to enable global optimization. In this new

schema, there will be only one registration operation and one redirecting

operation associated with each cluster.3 The extra memory usage and

run-time overhead caused by executing redirecting operations can thus

be more efficiently amortized. Moreover, the new scheme enables some

global optimizations to be performed over each cluster of templates to

produce optimized object templates, the approach of which is similar to

what Tempo and other run-time specialization systems, such as DyC and

TickC [66, 65, 4], have done.

3The information conveyed by the web of action annotated codes [84] regarding the merging of
sharable action-annotated code segments can help us to perform the clustering operation.
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– The principle of “not dumping total dynamic template” can be compro-

mised by merging some total dynamic templates and their consecutive

hybrid templates into one template. Consequently, such merged templates

will be treated as hybrid templates and be dumped/instantiated at run-

time. This merger trades dumpling of some totally dynamic templates for

the reduction in spaces required for additional administrative codes. We

would like to investigate a way to decide when total dynamic templates

should be merged with the consecutive hybrid templates.

5.5 Summary

In this chapter, we have investigated the techniques used in constructing and execut-

ing a generic specialization component (GSC for short) for a library, with the vision

of replacing original libraries with GSC that cater for various specialization opportu-

nities, and minimizing the need for repetitive and redundant specialization of libraries

at the application level. Specifically, we proposed a static transformation to construct

a GSC for a shared library, aiming at eliminating the code duplication occurring at

compile-time. Instead of creating separate generating extensions with respect to dif-

ferent binding-time signatures as done by traditional specialization techniques, our

GSC is composed of a set of local run-time specializers, each of which pertains to a

specialization of the library with respect to a specific binding-time signature; and a

global template repository that is shared by those local run-time specializers. Spe-

cialization, in addition to analysis, is performed at the library level, decreasing the

amount of repeated specialization of the library at the application level. We also pro-

posed a novel run-time specialization approach to minimize the need to dump object

templates at run-time to form footprints of GSC and maximize sharing by sharing

the totally dynamic templates of a GSC among different footprints, at the expense

of building an extra address table at run-time.
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We have built GSC for several libraries. The source codes of these GSC can be

found at the web site

http://www.comp.nus.edu.sg/~zhuping/prototype/gsc/

Other researchers have also made efforts in reducing code (and/or computation)

duplication of partial evaluation. Related approaches from the literature include:

• Erik Ruf and Daniel Weise [68] explained how to avoid generating redundant

specialized code when specializing programs written in a subset of Scheme lan-

guage. They advocated the computation of a domain of specialization of a

specialized function definition. A domain of specialization is expressed in terms

of the arguments’ type information. It is comprised of different sets of argu-

ment values for which it is guaranteed to return the same specialized code from

the original function definition. This approach captures more opportunities to

share the reusable specialized code, compared with a traditional memoization

(or cache-based) approach in which the specialized code can be reused only

when the values of static parameters match exactly. The idea behind this ap-

proach can be exploited in our framework to further reduce code duplication at

run-time when creating various instances from hybrid templates.

• Soren Debois [33] devised a compile-time post-processing named rewinding to

remove duplicated code from a specialized program that is the result of perform-

ing loop-invariant code motion and strength reduction over a program written

in a flow chart language. The source of code duplication is that specialization

is based on a history of execution that is polyvariant. He defined that two basic

program blocks are equivalent (and thus redundant) if “they execute the same

assignments, perform the same test, and branch to similarly equivalent blocks”.

Then, code duplication is removed by rewinding the specialized program into a

minimal equivalent program.
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• Kedar Swadi et al. [75] designed a monadic combinator written in multi-stage

programming language MetaOCaml. This monad is used to avoid both code

duplication and duplication of computation. Our approach is very similar to

this approach in the sense that we do not dump all object templates to form

the footprint when the values of static parameters are available. Rather, we

maintain an address table to record the addresses of these templates.

• A hybrid specialization approach [8, 34, 47, 48, 49] has been proposed recently.

This approach relies on the observation that for some different argument values

within some range, the compiled code contains the same instructions and only

differ by some constants. Basically, this approach generates generic and highly-

optimized templates at compilation-time through exposing some unknown val-

ues to the compiler, At run-time specialization is performed for a limited number

of instructions in those generic binary templates, i.e. the templates are instan-

tiated with the parameter values. This is a heavyweight approach and involves

a complex analysis of the set of specialized code (most probably at the assembly

code level) to construct the generic templates.
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CHAPTER 6

A FRAMEWORK FOR UNIFYING PROGRAM

SLICING AND PARTIAL EVALUATION

The framework for specialization of applications using shared libraries elab-

orated in Chapters 4 and 5 leverages the maturity of existing implementations of

specialization techniques, in particular partial evaluation, that have been under de-

velopment for many years. It would be desirable to enhance various existing spe-

cialization techniques, such as partial evaluation and program slicing through cross-

fertilization among them. In this chapter, we investigate the relationship between

(offline) partial evaluation and (static) program slicing. We build a unified frame-

work that captures the essence of these two specialization techniques and enables a

consistent treatment of these two specialization techniques in both forward and back-

ward directions. This unified framework also develops new specialization techniques

through cross-fertilization between these two existing specialization techniques.

The rest of this chapter is organized as follows. In Section 6.1 we briefly explain

the motivation of this work, introduce the subject language used in this chapter and

set the scope of partial evaluation and program slicing to be studied in this work.

Section 6.2 presents a theoretical elaboration of the unified framework: We first pro-

vide a detailed account of the model used to formulate and compare program slicing

and partial evaluation, then we demonstrate how forward program slicing and partial

evaluation can be instantiated within the framework, and we next cast backward slic-

ing into the unified framework. In Section 6.3, we discuss the implications deriving

from the unified framework and show the benefits of the framework through some
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motivating examples.

6.1 Introduction

In an approach similar to design by contract [59], specialization information of a

library can be established from the requirements and assertions established among

a library’s interfaces interacting with other libraries. A requirement constrains the

kind of input permissible for invoking a library. On the other hand, an assertion

stipulates the kind of output behavior acceptable by the calling context.

Current research into library specialization has used two different techniques in

exploiting this specialization information: Partial evaluation has been used for library

specialization with respect to interface requirements; it propagates input information

forward to the library’s output. Program slicing has been used for library specializa-

tion with respect to interface assertions; it performs backward specialization which

passes information from output back to the library’s input. Given the intimate rela-

tion between the requirement and the assertion of a library, it is natural to consider

the relation between partial evaluation and program slicing, and to explore their

potential to enhance existing specialization techniques.

6.1.1 Scope of the Study

As both partial evaluation and slicing are well-developed techniques, they have ex-

isted in great variety. In this study we concentrate on comparing the essence of these

techniques, and choose a pair of specific variants for comparison to illustrate their

commonalities and differences. There are several variants of BTA. In relating partial

evaluation and slicing, we consider a variant of BTA called strong staticness BTA

[30]. Strong staticness BTA takes into consideration both the data dependence

information and the control dependence information in the program, which is con-

sistent with the idea employed by program slicing. Strong staticness BTA will

classify a variable as s iff it only depends on static variables and constants and it is
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not control dependent on any dynamic predicate; otherwise, it is classified as d.

We also ignore issues related to specialization termination for the following two

reasons: (1) Program slicing does not have a termination problem; and (2) Termina-

tion analysis can be considered an add-on to this unified framework.

6.1.2 Subject Language

The subject language used in this chapter is a subset of the language defined in

Figure 2.1 excluding function application. Its syntax is defined in Figure 6.1.2.

c ∈ Const Numerals or Booleans
v ∈ Var Variables

bop ∈ BOp Binary operators
::= + | − | ∗ | / | == | ! = |

< | > | >= | <= | && | ||

e ∈ Exp Expressions
::= c | v | e1 bop e2

s ∈ Stat Statements
::= s1; s2 | while e s | v = e | if e s1 else s2

Figure 6.1: Syntax of the subject language used in Chapter 6

Although function specialization forms a crucial part of partial evaluation, it does

not play a central role in the formation of the unified framework. Indeed, we view

such function specialization as a refinement of a particular transformation performed

by partial evaluation. An imperative language is chosen against other paradigms

because of its popularity in the domain of program slicing. Our unified framework

can be easily extended to handle other programming paradigms, such as functional

programming.
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6.2 The Unified Framework

We elect to base our comparison between partial evaluation and program slicing on

the characteristics of the specialized programs produced by these two techniques. This

in turn depends on how decisions are made at each program variable and program

point during the respective transformation. We restrict ourselves to relating partial

evaluation and forward program slicing, as both techniques transform programs for-

wardly (ie., from program input to output). Even though there is no corresponding

backward partial evaluation (except constraint-based ones [36, 44, 50, 53]), we will

show that backward program slicing can be cast into the same framework as partial

evaluation and forward program slicing.

This framework enables us to perceive both program slicing and partial evalu-

ation as three-stage processes, namely: residual analysis, action analysis and

transformation.

1. The first stage, residual analysis, propagates specialization information through-

out the program. It determines the residual information a variable may hold at

a program point.

In off-line partial evaluation, BTA plays such a role; similarly, we define a

forward (or backward) slicing analysis for such a role in forward (or back-

ward) static slicing. Specifically, we classify variables at a program point into

two categories: residual and transient. Residual variables contribute to the

residualization of program points during slicing. The specialization information

for forward slicing (i.e., the slicing criterion) defines a set of such residual vari-

ables at the beginning of the program. On the contrary, the other variables (not

included in the slicing criterion) are classified as transient at the beginning of

the program.
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2. The second stage, action analysis, uses information derived by residual anal-

ysis to determine the action to be taken at each program point. This is similar

to the action analysis phase defined in partial evaluators such as Schism [20]

and Tempo [22].

Program slicing treats a statement in two ways: it either removes the statement

from the resulting slice or retains the statement. We use the terms remove and

retain respectively to denote these two actions. Partial evaluation transforms

program statements in two ways: It either reduces a program construct (an ex-

pression or a statement) whose computation is solely based on invariant partial

input, but keeps its effect within a partial evaluation environment; or residual-

izes the program construct whose computation relies on varying input to form

the specialized program. We use the terms reduce and residualize respectively

to denote these two actions taken by partial evaluation.

3. The final stage, transformation, performs specialization on the program based

on the action decisions produced by the action analysis.

6.2.1 Safe Projections

The residual analysis counterparts of partial evaluation and program slicing are the

BTA and forward slicing analysis respectively, as introduced above. The relation

between BTA and forward slicing analysis can best be described by the notion of

domain projection, which specifies the capturing of a certain amount of information

[54].

Definition 6.1 (Launchbury’s Domain Projection). A domain projection γ on a

domain Dom is a continuous function γ : Dom → Dom such that (i) γ v ID and

(ii) γ ◦ γ = γ (idempotent).

Given a function f : Dom → Dom. Suppose we define a projection γ on Dom to

obtain a subset of f ’s results which are of interest. We can then consider the amount
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of information on Dom that is needed to obtain this γ’s result of interests. Let us

express this amount using a projection β on Dom. Then, the relation between the

function f and the projections γ and β possesses the following property, called the

safety condition [55]:

γ ◦ f = γ ◦ f ◦ β

A projection-based analysis is defined as a program analysis that determines

the appropriate projections on program states at each program point, such that these

projections and the respective program behaviors, perceived as functions mapping

from program states to program states, satisfy the safety condition.

One of our main theses is that: Both BTA and forward slicing analysis are

projection-based analyses on well-classified information. Specifically, BTA is a pro-

jection analysis on static information, and forward slicing analysis an equivalent

projection-based analysis on transient data.

6.2.2 Modeling Step-wise Program Behavior

To establish our claim about the relation between partial evaluation and program

slicing, we require a model for representing the effect of performing these two spe-

cialization techniques on a program. We elect to refine a program model originally

proposed by Jones [45], which models a program in terms of its step-wise behavior.

This model has been used to define the notion of congruence, which has enabled an

elegant and intuitive understanding of the correctness of binding-time analysis and

partial evaluation.

In Jones’ program model, a program p is regarded as a triple of the type 〈 P(PP),

P(Stos), NX 〉 where

• PP is a set of program points pp of integer type. Each program point represents

a control point during the computation. A program point is associated with

three basic program constructs, i.e., assignment statements and conditional
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tests of if or while statements.

• Stos is a set of program stores. A program store θ is a set of mappings of type

Var → N | B. A program store θ maps variables x1, . . . , xn to their current

values v1, . . . , vn, and is represented as {x1 7→ v1, . . . , xn 7→ vn}.

At each program point pp there may be multiple stores, denoted as {θpp, i | 1 ≤
i ≤ m} for some m.

• NX is a function space, each element of which is a step function nx of the type

〈 PP, Stos 〉 → 〈 PP, Stos 〉. From a program point pp and a program store

θ(pp, i), the computation by nx leads to a program point pp′ with a program

store θ′pp′, j. More specifically,

– When an assignment statement is executed, the store is updated and

program point pp is reset to the immediately successive program point;

– When a conditional test is executed, only the target program point is

updated: After evaluating the conditional test in an if statement, the

target program point is set to the program point associated with the first

statement in the true branch (if the conditional test is evaluated as true)

or the false branch (if the conditional test is evaluated as false); after

evaluating the conditional test in a while statement, the target program

point is set to the program point associated with the first statement in the

body of the while statement (if the conditional test is evaluated as true)

or the immediately successive program point of the while statement (if

the conditional test is evaluated as false).

The program is understood to have terminated with store θ whenever nx 〈pp, θ〉 =

〈pp, θ〉.

The choice of the targeted program point computed by nx depends, in general,
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on both the source program point and the program store. Therefore, at a program

point pp, we can partition the program store set stos ∈ P(Stos) into several subsets

stosi such that if θ ∈ stosi, then the targeted program point is ppi. Furthermore,

the new program store at ppi can be computed by a control transfer function ctfi

of type Stos → Stos on program stores in stosi. That is, ∀θ ∈ stosi, nx 〈pp, θ〉 =

〈ppi, ctfi θ〉.
A control transfer consists of program points pp and ppi, and its associated

function ctfi, denoted as 〈pp, ppi, ctfi〉. A control structure on a program as-

sociates with each program point pp a finite set of control transfers, denoted as

{〈pp, ppi, ctfi〉 | 1 ≤ i ≤ m} for some m such that each stosi, which is the domain of

ctfi, is a partition of the complete set of program stores stos at the program point pp

into disjoint subsets (i.e., stos = stos1 ∪ . . . ∪ stosm) and for θ ∈ stosi, nx 〈pp, θ〉 =

〈ppi, ctfi θ〉.
At this juncture, we introduce two refinements to the above model so that it can

capture the essence of specialization modularly.

The first refinement is the relaxation of control transfer. Launchbury pointed out

[54] that by defining functions ctfi above on a particular sub-domain stosi, the control

transfer becomes value dependent, a condition that is too restrictive for most partial

evaluators. He suggests relaxing the domain of ctfi to stos. Consequently, the control

transfer accepts value independent functions.

The second refinement is the capturing of control dependency in the model. As

pointed out by Das [30], the effect of partial evaluation or program slicing does not

only depend on static/transient data dependency, but also on dynamic/residual con-

trol dependency. Suppose we have the following contrived if statement,

During partial evaluation, if the test (x < 1) is dynamic, statements at both

program points p3 and p4 will be residualized. This decision is based on the binding

time of the conditional test which is control-related information, not on the value of
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Program Points Program Texts

p1 : if (v>1) {
p2 : if (x<1)

p3 : v = v+1;

else

p4 : v = v-1;

}

v. The effect of program slicing is similar.

In order to capture such control dependency, we augment a program store to

include control-flow information. We define a control tag as a boolean value that

get its value from the value of a conditional test of either an if or a while statement.

Under this refinement, a refined program store θ ∈ RefStos is represented as a record

of the type 〈vals : Var → N | B, ctrs : CtrStack〉 where the field vals records the

program store as usual, and the field ctrs records a stack of booleans representing

nested control tags.

In the above example, a possible program store upon entering the program point

p4 is 〈{v 7→ 2, x 7→ 2}, [false, true]〉; and upon entering p3, it can be 〈{v 7→ 2, x 7→
0}, [true, true]〉. In the remainder of this chapter, when we mention program store,

we will be referring this refined version.

To precisely reflect the status of nested control tags, we add three extra basic pro-

gram constructs into the domain ProgCons, which otherwise includes assignment

statements or conditional tests of if/while statements:

• exitIf represents the exit of an if statement. Its execution will set the target

program point to the program point immediately succeeding the if statement.

• exitWhile represents the exit of a while statement. Its execution will set the

target program point to the program point immediately succeeding the while

statement.
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• endWhilebody represents the end of the body of a while statement. Its execu-

tion will set the target program point back to the conditional test of the while

statement.

Figure 6.2 shows our control transfer function ctf for the subject language defined

in Figure 6.1.2.

ctf ∈ ProgCons → RefStos → RefStos

ctf (v = e) θ ::= let r = E e θ
in θ.vals[v ← r]

ctf (if e) θ
ctf (while e) θ

}
::=

let r = E e θ
in push (θ.ctrs, r)

ctf exitIf θ
ctf exitWhile θ
ctf endWhilebody θ



 ::= pop θ.ctrs

E ∈ Exp → RefStos → Const

E c θ ::= c

E v θ ::= θ.vals (v)

E (e1 bop e2) θ ::= (E e1 θ) bop (E e2 θ)

Figure 6.2: Control transfer function ctf over semantic domain

The control transfer function ctf takes in a basic program construct, a program

store at the entry of this program construct, and returns a updated program store at

the exit of the current program construct. The evaluation function E evaluates the

value of an expression e with respect to its current program store θ. The function

push pushes a new control tag r evaluated from the conditional test e into the field

ctrs of the program store θ; function pop pops the top control tag from the field ctrs

of the program store θ.
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The control transfer functions defined at program constructs exitWhile and end-

Whilebody guarantee the finiteness of the stack of control tags even in the presence

of infinite loops. In this way we accurately record the change of control tags over

every possible execution path.

While the control transfer function needs to update the field of ctrs of the program

store, it does not rely on the control tag values saved in θ.ctrs to compute the values

of the program variables at a targeted program point. However, this explicit inclusion

of control tags enables us to capture both control dependency and data dependency

in the modelling of specialization. This is described in Section 6.2.4.

6.2.3 Congruent Divisions

Jones [12] defines congruence in terms of his definition of control structure and a pro-

gram division. A program division consists of three functions indexed by program

points: static (σ), dynamic (δ), and pairing function (π). These three functions must

satisfy the following properties: For any θ ∈ Stos:

π(σ θ, δ θ) = θ σ(π(θs, θd)) = θs δ(π(θs, θd)) = θd

Intuitively, from the partial evaluation perspective, θs ranges over static values,

θd over dynamic values, and θ over the entire program store. The first condition

requires that dividing a program store using static and dynamic functions does not

lose any information – the divided information can be reconstructed using the pairing

function. The last two conditions require that the static data (constructed by the

static function) remains static, and the dynamic date remains dynamic.

The following definition of congruent division is given by Launchbury [54].

Definition 6.2. A division (σ, δ, π) is congruent at a program point pp with respect

to a control structure {(pp, ppi, ctfi : Stos → Stos} if for each i,

∀θ1, θ2 ∈ Stos : σp θ1 = σp w =⇒ σpi
(ctfi θ1) = σpi

(ctfi θ2)
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The implication above is that any two program stores with equal static parts are

mapped to new stores whose static parts are also equal. Consequently, the static part

of the new stores depends solely on the static parts of the original stores. Thus, if a

division is congruent, we will be able to, at partial evaluation, perform computation

on static data: At the beginning of the program, the static data are computed from

the static input; at every program point ppi, the static data are derived only from

the static data at pp following the control function ctfi.

Viewing static and dynamic functions as projections over program stores, this

construction of congruent division leads to the safety condition of the corresponding

projection-based analysis [54]:

Theorem 6.1. Let (σ, δ, π) be a division at a program point pp with respect to a

control structure {(pp, ppi, ctfi : Stos → Stos)}, then (σ, δ, π) is congruent iff for

each i,

σpi ◦ ctfi = σpi ◦ ctfi ◦ σp.

6.2.4 Residual Analysis

Both BTA and forward slicing analysis support congruent division of programs. A

division supported by BTA has both its σ and δ defined by the computation for static

and for dynamic information, respectively. A division supported by forward slicing

analysis, on the other hand, has its σ and δ defined by the computation of transient

and residual information, respectively.

Figure 6.3 shows our abstract control transfer function ĉtf for the subject language

over an abstract domain. The abstract values belong to a three-value abstract do-

main Ĉonst consisting of {⊥,4,∇} with the order ⊥ @ 4 @ ∇.1 The abstract pro-

gram store θ̂ ∈ ̂RefStos is represented as a record of the type 〈vals : Var → Ĉonst,

ctrs : ̂CtrStack〉 where the field vals saves the abstract values of the corresponding

1Note that the ⊥ in abstract domain is needed so that the static and dynamic functions (σ and
δ) are both well-defined projections on the refined program stores.
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variables, the field ctrs stores a stack of abstract values representing nested control

tags. Both are results of evaluating expressions using the abstract evaluation function

Ê .

ĉtf ∈ ProgCons → ̂RefStos → ̂RefStos

ĉtf (v = e) θ̂ ::= let r = Ê e θ̂

ctg = top θ̂.ctrs

in θ̂.vals[v ← (r t ctg)]

ĉtf (if e) θ̂

ĉtf (while e) θ̂

}
::=

let r = Ê e θ̂

ctg = top θ̂.ctrs

in push (θ̂.ctrs, r t ctg)

ĉtf exitIf θ̂

ĉtf exitWhile θ̂

ĉtf endWhilebody θ̂





::= pop θ̂.ctrs

Ê ∈ Exp → ̂RefStos → Ĉonst

Ê c θ̂ ::= 4

Ê v θ̂ ::= θ̂.vals (v)

Ê (e1 bop e2) θ̂ ::= (Ê e1 θ̂) t (Ê e2 θ̂)

Figure 6.3: Abstract control transfer functions over abstract domain

The abstract control transfer function ĉtf takes in a basic program construct, an

abstract program store at the entry of this program construct, and returns a updated

abstract program store at the exit of the current program construct. The abstract

evaluation function Ê evaluates the value of an expression e with respect to its current

abstract program store θ̂. Function top retrieves the top element from the stack saved

in θ̂.ctrs.
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To obtain an abstract control transfer function computing binding-time informa-

tion, we simply interpret 4 as static and ∇ to dynamic. To obtain an abstract

control transfer function that computes residual information for forward slicing, we

instantiate 4 to transient and ∇ to residual.

The relation between these two analyses can be formally described as follows:

Theorem 6.2. Both BTA and forward slicing analysis define projections over the

control structure {〈pp, ppi, ctfi〉} at each program point pp such that:

σpi ◦ ctfi = σpi ◦ ctfi ◦ σp.

The theorem states that computation of static/transient values depends solely on

the other static/transient values.

We have developed a syntax-directed residual analysis R, whose specifications are

defined in Figure 6.4.

The residual analysis function R takes a source statement s ∈ Stat and an ab-

stract program store θ̂ ∈ RefStos, and returns an residual-information annotated

statement denoted by s
bθ ∈ ResidualStat. The description of the specification of the

residual analysis is as follows:

1. Rule for an assignment statement: According to the definition of the abstract

evaluation function Ê given in Figure 6.3, if the abstract value of the RHS

expression is ∇, the abstract value of some variables in this RHS expression

must be ∇, i.e. these variables are classified as residual. Thus according to the

definition of forward slicing analysis or BTA, the LHS variable that is affected

by the use of the variables appearing in the RHS expression, is also classified

as residual.

2. Rule for if and while statements: According to the rule dealing with condi-

tional tests of if or while statements in the abstract control function (defined
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R ∈ Stat → ̂RefStos → ResidualStat

R (v = e) θ̂ ::= let θ̂1 = ĉtf (v = e) θ̂

in (v = e)
bθ1

R (if e s1 else s2) θ̂ ::= let θ̂1 = ĉtf (if e) θ̂

T1 = R si θ̂1

T2 = R si θ̂1

in (if eθ T1 else T2)

R (while e s) θ̂ ::= let θ̂1 = tn>0 fix f n(⊥)θ̂

θ̂′ = ĉtf (while e) θ̂1

T = R s θ̂′

in (while e
bθ1 T )

where fix f θ̂ = if Ê e θ̂ = ∇
then θ̂

else let T = R s θ̂
in f (getAbsSto T )

R (s1; s2) θ̂ ::= let T1 = R s1 θ̂

θ̂1 = getAbsSto T1

T2 = R s2 θ̂1

in (T1;T2)

Figure 6.4: Specification of residual analysis R

in Figure 6.3), if the abstract value of the conditional test is∇, then the abstract

value of some variables in this conditional test or the enclosing conditional tests

must be∇, i.e. these variables are classified as residual. Since the LHS variables

in the two branches of the if statement (or in the body of the while statement)

are (transitively) control dependent on their immediately enclosing conditional

test and the nesting conditional tests, the abstract values of those LHS variables

should be classified as ∇. The rule dealing with assignment statements in the

abstract control function (defined in Figure 6.3) guarantees this. If the abstract
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value of the conditional test is 4, we just step into the two branches respec-

tively and update their associated contexts based on current abstract program

store. In this way we capture the control dependency between the conditional

test and the statements in the two branches of an if statement (or in the body

of a while statement).

The least fix-point of the abstract program store before entering the while

statement is computed; this is then used to annotate the while statement.

3. Rule for sequential statements: This rule shows that in this analysis the spe-

cialization information is propagated forwardly, i.e. the state of a statement

will affect the states of its successive statements.

getAbsSto ∈ ResidualStat → ̂RefStos

getAbsSto (v = e)
bθ ::= θ̂

getAbsSto (if e
bθ T1 else T2) ::= let θ̂1 = getAbsSto T1

θ̂2 = getAbsSto T2

〈finalvals, 〉 = θ̂1 ]bθ θ̂2

finalctrs = θ̂.ctrs
in 〈vals : finalvals, ctrs : finalctrs〉

getAbsSto (while e
bθ T ) ::= let θ̂1 = getAbsSto T

〈finalvals, 〉 = θ̂1

finalctrs = θ̂.ctrs
in 〈vals : finalvals, ctrs : finalctrs〉

getAbsSto (T1; T2) ::= getAbsSto T2

Figure 6.5: Auxiliary function getAbsSto used in R

R depends on an auxiliary function getAbsSto (defined in Figure 6.5), which

obtains the final abstract program store of a statement. The operator ]bθ used in

getAbsSto is defined as:
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• θ̂1 ]bθ θ̂2 = 〈 {v ← abs1 t abs2 | v 7→ abs1 ∈ θ̂1.vals, v 7→ abs2 ∈ θ̂2.vals},
[ctri] | ctri ∈ θ̂1.ctrs ∪ θ̂2.ctrs 〉

The rule dealing with if statements in getAbsSto says that: The vals field of the

final abstract program store records the least upper bounds of the abstract values

of corresponding variables stored in the final abstract program stores θ̂1 and θ̂2 of

two branches of the if statement respectively; the ctrs field of the final abstract

program store is the same as the ctrs field of the abstract program store at the entry

of this if statement, since the rule dealing with exitIf in abstract control function

guarantees the abstract values of the conditional tests nested in the two branches,

which are pushed in the ctrs field of the abstract program store, when dealing with

the statements in two branches are all popped at the exit of the if statement. Similar

treatment is defined in the rule dealing with while statements in getAbsSto

Figure 6.6 demonstrates the residual analysis result on the following contrived

code with respect to an abstract program store θ̂ = 〈vals : {i 7→ 4, j 7→ ∇, k 7→
4}, ctrs : [ ]〉.

Program Text Residual Analysis Result (Abstract Program States)

while (i>2) { 〈vals : {i 7→ 4, j 7→ ∇, k 7→ ∇}, ctrs : [4]〉
if j > 0 〈vals : {i 7→ 4, j 7→ ∇, k 7→ ∇}, ctrs : [4]〉

k=1; 〈vals : {i 7→ 4, j 7→ ∇, k 7→ ∇}, ctrs : [∇,4]〉
else

k=2; 〈vals : {i 7→ 4, j 7→ ∇, k 7→ ∇}, ctrs : [∇,4]〉
i=i-1; 〈vals : {i 7→ 4, j 7→ ∇, k 7→ ∇}, ctrs : [4]〉
j=j-1; 〈vals : {i 7→ 4, j 7→ ∇, k 7→ ∇}, ctrs : [4]〉

}

Figure 6.6: An example residual analysis result

6.2.5 Action Analysis and Transformation

We now look at the decisions used by each technique to determine the actions needed

at each program point. Here, we associate static variables with transient variables,
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and dynamic variables with residual variables. It is then a pleasant surprise to observe

that the decisions for removing/retaining a syntactic construct in program slicing

are identical to the decisions for reducing/reconstructing a construct . That is, both

program slicing and partial evaluation have an identical action analysis, modulo the

relationship between static/dynamic and transient/residual.

The specification of the action analysis is defined in Figure 6.7.

A ∈ ResidualStat → AnnStat

A(v = e)
bθ = if θ̂.vals(v) = ∇

then (v := e)α1

else (v := e)α2

A(if e
bθ T1 else T2) = let U1 = A T1

U2 = A T2

in if Ê e θ̂ = ∇
then if eα1 then U1 else U2

else if eα2 then U1 else U2

A(while eθ T ) = let U = A T

in if Ê e θ̂ = ∇
then (while eα1 U)
else (while eα2 U)

A (T1; T2) = (A T1;A T2)

Figure 6.7: Specification for action analysis

The action analysis function A takes in a residual-analysis information annotated

statement s ∈ ResidualStat), and returns a statement s′ ∈ AnnStat in which

elementary statements are annotated with action-analysis information. The action-

analysis information belongs to a set DAct comprising two meta action variables

{α1, α2}. Action α1 will be instantiated to retain in program slicing and residualize

in partial evaluation. Action α2 will be instantiated to remove in program slicing

and reduce in partial evaluation.
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The result of action analysis, based on the information provided by residual anal-

ysis shown in Figure 6.6, is depicted in Figure 6.8.

Program Text Action Analysis Result

while (i>2) { α2

if j > 0 α1

k=1; α1

else

k=2; α1

i=i-1; α2

j=j-1; α1

}

Figure 6.8: An example of action analysis result

The last stage, transformation, produces a specialized program according to the

decisions provided by action analysis.

6.2.6 Backward Slicing

While backward slicing has been very popular, there is no corresponding backward

technique in typical partial evaluation (except for constraint-based partial evaluation

[50]). Nevertheless, we can still cast backward slicing into the unified framework

described above.

First and foremost, we observe that forward and backward slicing share identical

action analysis and the transformation stage. Hence, the only difference lies in their

slicing analysis specification. Just like the case of forward slicing, we continue to define

those variables declared in the (backward) slicing criterion as residual variables,

and the other non-declared variables are thus treated as transient variables.

Whereas forward slicing ensures that transient values rely solely on other tran-

sient values in its computation, backward slicing analysis ensures that residual values

are obtained solely from other residual values. Indeed, the goal of backward slicing

analysis is to deduce the set of variables, at each program point, that must be made
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residual in order to support the continual execution leading to the computation of

the values of those residual variables at the end of the program. If we define σ and

δ as the computation of transient and residual information, respectively, then back-

ward slicing analysis specifies that δ, instead of σ, ensures the congruent division of

programs.

Theorem 6.3. Backward slicing analysis defines a projection over control structure

{p− fi → pi : V → V } at each program point p such that:

δpi ◦ fi = δpi ◦ fi ◦ δp.

Algorithmically, the analysis for backward slicing analysis will be backward in

nature, and thus be distinct from that for forward slicing analysis.

6.3 Benefits of The Framework

In previous sections we have demonstrated that partial evaluation and (forward and

backward) program slicing are intimately related, despite the striking semantic dif-

ferences between the results produced by these techniques. The unified framework

theoretically captures the essence of program slicing and partial evaluation. In this

section, we show some implications of this unified framework.

6.3.1 Cross-fertilization between Slicing and Partial Evaluation

The value of uniformity between slicing and partial evaluation is not so much that

one analysis program may be used for the other, but that the techniques and theories

applicable to the one may be used in the other.

Various techniques invented in the past for improving BTA can automatically be-

come candidates for improving forward and backward slicing analysis. These include

techniques for bounded static variation and for partially static data. We can obtain

a version of backward slicing that handles partially-transient data; this is intimately
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related to the backward slicing technique proposed by Reps et al [67]. Vidal et al

have demonstrated how to use an existing online partial evaluator to compute (both

static and dynamic) slices for logic functional programs [58, 74, 78].

On the other hand, partial evaluation can also be inspired by the ideas in program

slicing. For example, the idea of how a constraint is used in backward conditioned

slicing [17, 19, 27, 28, 29, 42] (i.e. for each execution path in the program, we asso-

ciate a corresponding value with respect to the constraint) can be applied in partial

evaluation. For another example, the idea of defining (multiple) slicing criteria in the

middle of a program and propagating them outwardly leads to the profitability analy-

sis described in Chapter 4, i.e. we can also specify multiple binding-time information

in the middle and propagate this information outwardly.

6.3.2 Combining Partial Evaluation and Backward Slicing

We describe here a simple way to combine forward partial evaluation with backward

program slicing. That is, we consider specialization of a program with respect to both

a set of static input variables and a backward slicing criterion specified over program

outputs.

With two set of specialization contexts to be propagated in opposite directions,

we perform two different residual analyses separately to obtain a pair of residual

information for each variable: its binding-time value and its residual value. These

pairs can be used to drive the action analysis specifically for this specialization. The

following table describes their impact:

static dynamic

transient remove remove

residual reduce residualize

Since a variable with a transient value will not contribute to the construction of
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the final specialized program, a statement comprised of only such variables can be

safely removed from the specialized program. On the other hand, a variable with

static and residual values will be reduced by their actual values during specialization,

and a variable with dynamic and residual values can be residualized.

Off-line Dynamic Slicing Most existing approaches to dynamic slicing [5, 51, 52]

are performed based on user-provided execution history and dynamic dependence

graph. Construction of execution history usually requires a high consumption of both

space and time, especially for large programs. If we view the input values provided

in a dynamic slicing criterion as a form of static information in our framework, the

new transformation described above, which combines partial evaluation and backward

slicing, provides a fresh perspective on dynamic slicing; we term it off-line dynamic

slicing.

Off-line dynamic slicing brings the technique of partial evaluation into the realm of

program slicing, and replaces the provision of execution history by a partial evaluation

process. Being an off-line process, the partial evaluation can be performed very

efficiently. For example, given that the dynamic slicing criterion for the following

code P is ({i=4; j=1}↓, {k}↑), Figure 6.9 shows the results provided by typical

dynamic slicing and offline dynamic slicing.

Original Program Agrawal’s Dynamic Slice Off-line Dynamic Slice

while (i>2) {
if j > 0

k=1; k=1;

else

k=2; k=2; k=2;

i=i-1;

j=j-1;

}

Figure 6.9: Example of agrawal’s dynamic slice and off-line dynamic slice
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In traditional dynamic slicing, the execution history will record the information

that the while statement is executed twice and the true branch and the false branch

of the if statement will be chosen at the first and second iterations, respectively.

Using a typical dynamic slicing technique (such as that proposed by Agrawal [5]),

the false branch will be retained and the true branch removed in the final dynamic

slice. On the other hand, using offline dynamic slicing, the while statement will be

residualized, resulting in two unfoldings of the while statement (depicted in Figure

6.9). Finally, through code compression (as typically practised in partial evaluation),

only the false branch (i.e. k= 2)will be left in the final specialized code.

In this case, the slice thus produced will be identical to that produced by the

backward slicing approach proposed by Agrawal [5]. However, in general, the dynamic

slice produced by off-line dynamic slicing will be a superset of that produced by

Agrawal’s approach, since the decision to remove and retain statements is made off-

line.

The approach described in this section provides a feasible solution to quasi-static

slicing, which was firstly proposed in [77] and aimed to perform slicing in a similar

spirit as partial evaluation but remained at the realm of program slicing.

6.4 Summary

The primary role of this chapter is theoretical. We have developed a unified frame-

work to demonstrate that partial evaluation and program slicing can be uniformly

defined and compared: We used a refined model, originally proposed by Jones, to

represent the small-step behavior of programs; this model enables the co-existence

of both static/transient and dynamic/residual data. Based on the model we demon-

strated that forward slicing analysis and BTA are both projection-based analysis of

the same kind, while the backward slicing analysis is a projection-based analysis over

residual data. Interestingly, all three transformations make the same decisions about

120



transformation actions, modulo the kind of actions chosen.

Based on this unified framework, we demonstrated how partial evaluation and

backward slicing can be easily composed to form a new transformation, which mimics

the effect of dynamic slicing.

The importance of this result is likely to be application of the uniformity be-

tween these two different specialization techniques in work on practical approaches

for computing slices or specialized code more efficiently and accurately.

121



CHAPTER 7

CONCLUSION

In this concluding chapter, we summarize the contribution of this dissertation in

Section 7.1 and outline current directions of research in Section 7.2 .

7.1 Summary of the Dissertation

In the last decade, shared libraries are becoming popular commodities for implement-

ing essential services in many systems and application domains. The importance of

specialization of application using (shared) libraries has been recognized by the partial

evaluation community and substantial progress has been made over the past several

years to make partial evaluation feasible in practice. Existing specialization tech-

niques, such as partial evaluation, have been designed for specializing applications

using static libraries. When dealing with applications that use shared libraries, the

techniques are oblivious to the sharing property of these shared libraries.

In general, specialization of applications using shared libraries can be divided into

three sub-problems: (1) independent specialization information generation, which

aims to derive specialization information for a library independently, free from the

library’s deployment contexts, which are usually confined to some specific applica-

tions; (2) efficient specialized library construction and execution, the major concern

of which is to manage and balance the trade-off between the multiplicity of special-

ized libraries generated with respect to various pieces of specialization information,

and the space required for keeping them; and (3) specialization engine enhancement,

it is desirable to improve existing specialization techniques through cross-fertilizing

different specialization techniques.
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This dissertation introduces a comprehensive framework for specialization of appli-

cations using shared libraries. The framework consists of three techniques to address

the three sub-problems correspondingly.

First, to address the sub-problem of independent specialization information gen-

eration, we design a profitability analysis aiming at discovering all meaningful spe-

cialization information of a shared library without taking into consideration of its

deployment context. Specifically, we advocate the discovery of specialization oppor-

tunities by examining the body of the library, and introduce the notion of profitability

declaration to capture specialization opportunities independent of how libraries are

deployed. This conceptual profitability declaration is translated into a profitability

signature which is expressed in the form of the binding-time constraint. A prof-

itability signature stipulates a constraint enforced over library parameters in order to

materialize the specialization opportunities within a library.

Second, to address the sub-problem of efficient specialized library construction

and execution, we propose a static transformation technique to construct a generic

specialization component (GSC for short) for a shared library, aiming at eliminating

code duplication occurring at compile-time. Instead of creating separate generating

extensions with respect to different binding-time signatures as traditional special-

ization techniques do, our GSC is composed of a set of local run-time specializers,

each of which pertains to a specialization of the library with respect to a specific

binding-time signature; and a global template repository that is shared by these local

run-time specializers. We also propose a novel run-time specialization approach to

minimize the need to dump object templates at run-time and maximize sharing by

sharing the totally dynamic templates of a GSC among different footprints, at the

expense of building an extra address table at run-time.

Last, to address the third sub-problem of specialization engine enhancement, we

develop a unified framework on which partial evaluation and program slicing are
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uniformly defined and compared. We use a refined model, originally proposed by

Jones, to represent the small-step behavior of a program. This model enables the co-

existence of both static/transient and dynamic/residual data. Based on the model,

we demonstrate that forward slicing analysis and binding-time analysis are both

projection-based analysis of the same kind, while the backward slicing analysis is a

projection-based analysis over residual data. Interestingly, all three transformations

make the same decisions about transformation actions, modulo the kind of actions

chosen. Based on this unified framework, we demonstrate how partial evaluation and

backward slicing can be easily composed to form a new transformation, that mimics

the effect of dynamic slicing.

Overall, our framework preserves sharing of shared libraries, enables reduction of

code duplication during the entire specialization process, and enhances existing spe-

cialization techniques through cross-fertilization between program slicing and partial

evaluation.

7.2 Research Directions

We have identified the following directions to be pursued in the future.

Specialization of Applications Using Realistic Libraries: In this disserta-

tion we choose a shared library to be a function definition written in a subset of the

C language excluding features such as pointers, compound data structures, global

variables, etc. We would like to extend the library model to the full C language by

including these features since they are common and crucial in the implementation of

many system libraries. Correspondingly, the algorithms of our approaches (i.e., prof-

itability analysis, GSC construction and the unified framework for program slicing

and partial evaluation, which have been presented in this dissertation) will be refined

to cope with those extended features.
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Refined specialization techniques: From the perspective of specialization, a

typical backward slicing requires minimum information from the specialization in-

formation: it simply classifies the variables in a specialization information as either

transient or residual. We hope that with more specific specialization information,

such as the constancy of some output (transient) variables, a backward specialization

will produce a more refined specialized program. Some approaches to backward spe-

cialization, such as [67], have exploited static data construction at the output. For

general specialization information, we believe that the specialization must be ready

to handle constraints. There have been multiple works on constraint-based partial

evaluation/slicing [17, 19, 27, 28, 29, 36, 42, 44, 50, 53]. In these works, constraints

are propagated throughout a program via symbolic predicate transformers to enable

aggressive elimination of the branches of if statements. This is contrary to the for-

ward specialization which we have described so far, in which the residual information

of program variables is represented using two values. It will be interesting to study

how to use constraints to enrich and refine the existing three-point domain of the

off-line residual analysis.
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[25] Consel, C. and Noël, F., “A general approach for run-time specialization and

its application to c,” in Proceedings of ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 145–156, 1996.

[26] Cowan, C., Black, A., Krasic, C., Pu, C., Walpole, J., Consel, C.,

and Volanschi, E.-N., “Specialization classes: an object framework for spe-

cialization,” in Proceedings of 5th International Workshop on Object Orientation

in Operating Systems, 1996.

128



[27] Danicic, S., Daoudi, M., Fox, C., Harman, M., Hierons, R. M.,

Howroyd, J. R., Ourabya, L., and Ward, M., “Consus: a light-weight

program conditioner,” Journal of Systems and Software, vol. 77, no. 3, pp. 241–

262, 2005.

[28] Danicic, S., Fox, C., Harman, M., and Hierons, R. M., “Consit: A con-

ditioned program slicer,” in Proceedings of IEEE International Conference on

Software Maintenance, pp. 216–226, 2000.

[29] Daoudi, M., Ouarbya, L., Howroyd, J., Danicic, S., Harman, M., Fox,

C., and Ward, M. P., “Consus: A scalable approach to conditioned slicing,”

in Proceedings of 9th Working Conference on Reverse Engineering, pp. 109–118,

2002.

[30] Das, M., Partial evaluation using dependence graphs. PhD thesis, Computer

Sciences Department, University of Wisconsin, 1998.

[31] Dean, J., Chambers, C., and Grove, D., “Identifying profitable specializa-

tion in object-oriented languages,” in Proceedings of ACM SIGPLAN Workshop

on Partial Evaluation and Semantics-Based Program Manipulation, pp. 85–96,

1994.

[32] Dean, J., Chambers, C., and Grove, D., “Selective specialization for object-

oriented languages,” in Proceedings of ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pp. 93–102, 1995.

[33] Debois, S., “Imperative program optimization by partial evaluation,” in Pro-

ceedings of ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

Based Program Manipulation, pp. 113–122, 2004.

[34] Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.-

T., and Jalby, W., “Exploring application performance: a new tool for a

129



static/dynamic approach,” in Proceedings of Los Alamos Computer Science In-

stitute Symposium, October 2005.

[35] Ershov, A. P., “On the essence of compilation,” in Formal Description of

Programming Concepts (Neuhold, E., ed.), pp. 391–420, 1978.

[36] Futamura, Y. and Nogi, K., “Generalized partial computation,” in Partial

Evaluation and Mixed Computation: Proceedings of the IFIP TC2 Workshop,

Gammel Avernaes, Denmark (Bjørner, D., Ershov, A. P., and Jones,

N. D., eds.), pp. 131–151, October 18-24, 1987.

[37] Glenstrup, A. J. and Jones, N. D., “Termination analysis and specialization-

point insertion in offline partial evaluation,” ACM Transaction on Programming

Languages and Systems, vol. 27, no. 6, pp. 1147–1215, 2005.

[38] Grant, B., Mock, M., Philipose, M., Chambers, C., and Eggers, S. J.,

“Dyc: an expressive annotation-directed dynamic compiler for c,” Theoretical

Computer Science, vol. 248, no. 1-2, pp. 147–199, 2000.

[39] Grant, B., Philipose, M., Mock, M., Chambers, C., and Eggers, S. J.,

“An evaluation of staged run-time optimizations in dyc,” in Proceedings of ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pp. 293–304, 1999.

[40] Harman, M., Binkley, D. W., and Danicic, S., “Amorphous program slic-

ing,” Journal of System and Software, vol. 68, no. 1, pp. 45–64, 2003.

[41] Harman, M. and Danicic, S., “Amorphous program slicing,” in Proceedings

of 5th International Workshop on Program Comprehension, pp. 70–79, 1997.

130



[42] Harman, M., Hierons, R., Fox, C., Danicic, S., and Howroyd, J.,

“Pre/post conditioned slicing,” in Proceedings of IEEE International Conference

on Software Maintenance, pp. 138–147, 2001.

[43] Holst, C. K., “Poor man’s generalization,” August 1998. Working Note, DIKU.

[44] Jin, Y. and Jin, C., “Constraint-based partial evaluation for imperative lan-

guages,” Journal of Computer Science and Technology, vol. 17, no. 1, pp. 64–72,

2002.

[45] Jones, N. D., “Automatic program specialization: A re-examination from basic

principles,” in Partial Evaluation and Mixed Computation: Proceedings of the

IFIP TC2 Workshop, Gammel Avernaes, Denmark (Bjørner, D., Ershov,

A. P., and Jones, N. D., eds.), pp. 225–282, October 18-24, 1987.

[46] Jones, N. D., Gomard, C. K., and Sestoft, P., Partial Evaluation and

Automatic Program Generation. Prentice Hall International, June 1993.

[47] Khan, M. A., Charles, H.-P., and Barthou, D., “An effective automated

approach to specialization of code,” in Proceeding of the 20th International Work-

shop on Languages and Compilers for Parallel Computing, October 2007.

[48] Khan, M. A., Charles, H.-P., and Barthou, D., “Reducing code size explo-

sion through low-overhead specialization,” in Proceedings of 11th Annual Work-

shop on the Interaction between Compilers and Computer Architecture, February

2007.

[49] Khan, M. A., Charles, H.-P., and Barthou, D., “Hybrid specialization: A

trade-off between static and dynamic specialization,” in PACT ’07: In Proceed-

ings of the 16th International Conference on Parallel Architecture and Compila-

tion Techniques, p. 415, 2007.

131



[50] Khoo, S.-C. and Shi, K., “Program adaptation via output constraint spe-

cialization,” Journal of Higher-Order and Symbolic Computation, vol. 17 (1-2),

pp. 93–128, March - June 2004.

[51] Korel, B. and Laski, J., “Dynamic program slicing,” Information Processing

Letters, vol. 29, no. 3, pp. 155–163, 1988.

[52] Korel, B. and Laski, J., “Dynamic slicing of computer programs,” Journal

of System and Software, vol. 13, no. 3, pp. 187–195, 1990.

[53] Lafave, L., A Constraint-based Partial Evaluator for Functional Logic Programs

and its Application. PhD thesis, Department of Computer Science, University of

Bristol, 1999.

[54] Launchbury, J., “Strictness and binding-time analyses: two for the price of

one,” in Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation, pp. 80–91, 1991.

[55] Launchbury, J., Projection Factorisations in Partial Evaluation. PhD thesis,

Department of Computing, University of Glasgow, 1989.

[56] LeMeur, A.-F. and Consel, C., “Generic software component configuration

via partial evaluation,” in Proceedings of Product Line Architecture, August,

2000.

[57] LeMeur, A.-F., Lawall, J., and Consel, C., “Specialization scenarios: A

pragmatic approach to declaring program specialization,” Journal of Higher-

Order and Symbolic Computation, vol. 17, no. 1, pp. 47–92, 2004.

[58] Leuschel, M. and Vidal, G., “Forward slicing by conjunctive partial deduc-

tion and argument filtering.,” in Proceedings of European Symposium on Pro-

gramming, pp. 61–76, 2005.

132



[59] Meyer, B., “Applying design by contract,” IEEE Computer, vol. 25, pp. 40–52,

October 1992.

[60] Mock, M., Automating Selective Dynamic Compilation. PhD thesis, Depart-

ment of Computer Science & Engineering, University of Washington, August

2002.

[61] Mogensen, T. A., “Glossary for partial evaluation and related topics,” Journal

of Higher-Order and Symbolic Computation, vol. 13, no. 4, pp. 355–368, 2000.
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