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Summary 

Many microdevices such as MEMS, pressure sensors, accelerometers, gyroscopes, 

micromechanical sensors and actuators have been fabricated by conventional 

micromachining techniques such as surfacing / bulk machining, lithography, electro-

discharge machining and etching etc. Although more complex micron-scale structures 

needed in MEMS can be fabricated by LIGA and wafer bondings, these techniques, 

however, are not capable of making complex 3D micron-scale structures (e.g. photonic 

crystals) as they utilize sequential planar process. In addition, they are also not able to 

produce high aspect ratio objects, and are also very tedious. This is a shortcoming as 

many applications in precision engineering and electronic devices require high aspect 

ratio structures. 

 

Lithography is a standard silicon based technique used in the semiconductor industry for 

fabricating IC chips (ICs) and printed circuit boards (PCBs). The complexity of these 

subtractive techniques can be described by their photomask count. i.e. the more complex, 

the more the number of photomask needed.  

 

In this research work, a novel process based on Rapid Prototyping (RP) principles of 

layer-by-layer, for fabricating three-dimensional micron-scale structures with 

micromoulds via vacuum casting / electro-deposition processes was performed. The 

process consists of photomask (pattern) preparation and excimer (UV) laser lithography, 

and vacuum casting / electro-deposition. With the ultra-fine material solidification 

capability of the excimer (UV) laser and the high replicating accuracy of vacuum casting, 
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3D micron-scale structures have been fabricated. Using NOA 60 and SL5510 

photopolymer as well as SU8 photoresists, a 3-layered 500 µm diameter micron-scale 

structure was fabricated, thereby demonstrating that this technique has the potential of 

fabricating complex 3D micron-scale structures. 

 

Instead of using typical silicon wafer as substrate, metal brass substrates machined to a 

nano surface finishing by diamond turning machine were employed. Together with pulse 

electro-deposition in nickel solution, a nickel micromould was fabricated. This technique 

helps to eliminate the time and money needed to deposit seed layer on a typical silicon 

substrate in order for electro-deposition to take place.  

 

Another technique, using vacuum casting with silicone rubber in the micromould 

fabrication, can produce the micromoulds in a single step by doing away with the 

fabrication of the mould insert, thus giving a competitive advantage over many existing 

techniques.  

 

A total of ten silicone rubber micromoulds were also fabricated and evaluated for its 

repeatability. The small deviation among the ten micromoulds themselves, as well as 

small deviation from the master pattern, demonstrated that this technique is suitable for 

mass productions. 
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1. INTRODUCTION 

1.1 Background 

Microfabrication processes have been widely used for producing miniature components 

such as pressure sensors, accelerometers and micro-structured orifices for ink-jet printing 

and fuel injection applications. Such technologies originate from the microelectronics 

industry, and the devices are commonly made on silicon substrates (wafers) even though 

glass, plastic and many other substrates are becoming more widespread. Microfabricated 

devices include integrated circuits (ICs), microsensors (e.g. air bag sensors), inkjet 

nozzles and flat panel displays, etc. 

 

The miniaturisation of devices is gaining importance especially with the growing 

demands of rapidly advancing technologies such as medical technology, biotechnology, 

microelectronics and drive technology. Minimisation through microfabrication is 

necessary as it not only improves performance, increases integration of Micro-Electro-

Mechanical-System (MEMS) devices, but more importantly, it reduces per unit cost with 

volume manufacturing. 

 

Microfabrication of such micro-components is actually a collection of technologies which 

are utilised in making microdevices. Some of them, like lithography or etching, have very 

old origins that were not connected to manufacturing. Polishing was borrowed from 

optics manufacturing, and many of the vacuum techniques come from 19th century 
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research in physics. Electroplating is also a 19th century technique adapted to produce 

micrometer scale structures, as are various stamping and embossing methods. 

 

To fabricate a microdevice, often many processes must be performed, one after another, 

with repeated steps. Typically, in the fabrication of a memory chip, there are 

approximately 30 lithography steps, 10 oxidation steps, 20 etching steps, 10 doping steps, 

and many additional sub-processes.  

 

Established microfabrication methods such as lithography and surface / bulk 

micromaching commonly used in MEMS, use subtractive methods to create micron-scale 

structures. Over the past decade, new manufacturing technologies that build parts on a 

layer-by-layer basis have emerged. These time-saving technologies are known as rapid 

prototyping (RP) [1]. This term simply suggests ‘speedy fabrication’ of sample parts for 

demonstration, evaluation or testing. These consist of numerous manufacturing processes 

by which a solid physical model of a part is fabricated from a three-dimensional (3D) 

computer aided design (CAD) data part file. Materials such as liquid resins or powders 

are cured or sintered using laser to build the part required. Examples of typical 

applications include micro pump propellers and micro valves [2]. The term RP is 

interchangeable with the term ‘solid free form fabrication’ (SFF).  

 

Unlike conventional machining which uses subtractive methods, RP, is an additive 

process of building up 3D structures by adding material layer-by-layer. RP is widely used 

for part fabrication in the macro (or normal) scale. This report introduces a 
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microfabrication technique using the RP principle, where layered manufacturing is 

combined with mask-based microlithography, a method usually used in the 

semiconductor industry. As there is a need to explore more novel methods to achieve 

structures of micron to sub-micron dimensions to remain competitive, therefore, 

integrating lithography to the RP concept is one area worth exploring.  

 

Due to the increasing demands of advancing microtechnology, the RP process has also 

recently branched into microfabrication. The most successful RP process is the 

microstereolithography (µSLA), invented by Professor Ikuta in 1993 [2]. Another 

successful RP-like process is the two photon absorption (TPA) microlithography which 

was first developed by Maruo [3]. 

 

Laymen treat any object (cube, box, container etc) with length, width, and breadth as 3-

dimensional. However, in the eyes of RP, object such as a cube, is only considered as 

2.5D. 2.5D refers to the projection of a planar surface into the third dimension – thereby 

creating an object that is 3-dimensional. 

 

A true complex 3D microfabricated object should be freely manipulated, i.e. can be 

fabricated without any necessary attachments to substrates. An example of a real 3D 

object can be seen in Fig.1.1. Real 3D micron-scale structures have huge application in 

the area of photonics such as waveguides. 
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Fig. 1.1: SEM image of microscale model of Sydney opera house [4] 

It is difficult for many of the existing microfabrication techniques to create real complex 

3D micron-scale structures (See Fig.1.2) and even if they can, the required numbers of 

processing steps will be numerous.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2: SEM image of Micro-bunny [5] 
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1.2 Objectives 

This research project aims to develop a novel process for fabricating 3D micrometer scale 

parts using the layered manufacturing mechanism similar to those used in RP 

technologies. The objective of this research work is to: 

 

• develop a novel method to fabricate complex 3D micron-scale structures and  

• develop an alternative moulding method that is simple to implement, has fewer 

processing steps, and reduces cost and lead time compared to existing moulding 

methods 

1.3 Organisation 

Chapter 1 covers the background information of 3D microfabrication as well as the 

objectives of this research study. Chapter 2 will cover the literature review of existing 3D 

fabrication methods and the SU8 photoresists, while Chapter 3 will describe the 

experimental setup and procedure. Chapter 4 will discuss the outcome of the lithography 

experiments and micromoulds fabrication which will be followed by conclusions and 

recommendations in Chapter 5 and 6 respectively. A list of papers published from this 

research work will also be reported. 
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2. LITERATURE REVIEW 

2.1 Introduction to 3D Microfabrication Methods 

The 3D microfabrication technique is broadly classified into 2 categories: direct and 

indirect methods. The following sections below will briefly describe the reported 3D 

microfabrication methods and the SU8 photoresist used in many microfabrication 

techniques. 

2.2 Direct 3D Microfabrication Methods 

The direct method system consists of an automated translation stage which moves a 

pattern generation device such as ink jet head or laser writing optics [6]. The term ‘direct-

write’ describes fabrication methods that employ a computer-controlled translation stage, 

which moves a pattern-generating device, e.g. ink deposition nozzle or laser writing 

optics, to create materials with controlled architecture and composition [7]. Several 

direct-writing techniques capable of patterning materials in 3D will be mentioned in the 

following sections. 

 

 

 

 

 

 



Chapter 2: Literature Review 

National University of Singapore  7  

2.2.1 Lithography 

Lithography (also known as photolithography), is one of the most established processes 

used in microfabrication to selectively remove parts of a thin film or the bulk of a 

substrate. The process begins with using an UV lamp (which was later advanced to UV 

laser) to transfer a geometric pattern through a photomask to a light sensitive chemical 

(photoresists) that is spin-coated on the substrate. The substrate is usually silicon wafer, 

to make integrated chips or copper coated board for printed circuit board (PCBs) in the 

semi-conductor industries. Lithography is used because it affords precise control over the 

shape and size of the objects it creates, and can create patterns over an entire surface 

simultaneously. It is a very established process but the main disadvantage, is that it 

requires clean room conditions and a very flat substrate to start with, which can very 

expensive to build, depending on the class type of the clean room. 

2.2.2 Laser 

Using laser instead of UV lamp (in the early lithography) as the energy source to expose 

various materials such as photopolymer, powders and photoresists, those materials that 

are compatible with the wavelength of the selected laser will be polymerized (for 

photopolymer and photoresists) or sintered (for powders). Two RP techniques, selective 

laser sintering (SLS) and sterolithography (SLA), use lasers as their energy source. The 

main difference between them is the wavelength of the laser and their material type, i.e. 

SLS uses metal and thermoplastic powder while SLA uses liquid photopolymer. SLA is 

the most accurate process among the RP techniques and it is the only RP technique that 
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has been extended to micron-scale fabrication. A new method of using UV LED (light 

emitting diode) lamp to replace UV laser in SLA was first attempted by Loose, K., 

Nakagawa, T. and Niino, T. [8]. The advantage is that this process costs much less as 

compared to the UV laser, since no maintenance is needed for UV LED lamp. However, 

the resolutions would not be as fine as the laser and the diversion of the LED is not as 

narrow as laser. 

2.2.2.1 Micro Sterolithography (µSLA) 

Many µSLA use UV light together with liquid crystal display (LCD) or Spatial Light 

Modulator (SLM) Technology (Fig.2.1a) as a dynamic mask generator to generate the 

cross section of each layer. The advantages of this method is that complex shapes (Fig. 

2b) can be built and the time to build one layer is the same regardless of what the pattern 

may be, but the resolution is limited by the pixel of the LCD. Furthermore, only a certain 

range of UV is suitable for this method due to the limitation of the LCD [9]. 

 

Fig. 2.1: a) Schematic diagram of the µSLA using dynamic mask generator b) micro car 
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Central Microstructure Facility uses digital mirror devices (DMD) to control the laser 

beam [10]. In this technique (See Fig. 2.2), uniform UV light is modulated by switching 

individual micromirrors, where a reduction lens reflects a pattern which is then projected 

onto the surface of the UV photopolymer.  The cost of this DMD is high and the control 

of it is much more complicated since there are thousands of individual small mirrors in 

the DMD. 

 

 

 

 

 

 

Fig. 2.2: Micro clip fabricated by this µSLA using DMD  
 

This process is greatly dependent on the properties of the materials and many efforts have 

been made on the material research to suit the wavelength of the energy source as well as 

the required properties of the material. One such example is the ceramic teapot (Fig. 2.3) 

fabricated by µSLA [11]. 

 

Fig. 2.3: Micro ceramic components [11] 
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A high-resolution prototype machine (Fig.2.4) that allows the production of microparts in 

small and medium-sized series was developed at the Laser Zentrum Hannover e.V. 

(LZH). Their machine (Fig. 2.4) is  capable of building a movable micromechanic [12], 

as shown in Fig. 2.5 below. 

  

 

Fig. 2.4: Prototype µSLA by LZH  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.5: Movable micromechanic manufactured by LZH [12] 

 

A good compilation of information on µSLA can be found in [2]. 
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2.2.3 Electron Beam 

 
Electron beam melting (EBM) uses electron beam as the energy source to melt metal 

powder in a layer-by-layer process. 

In this technique, a vacuum environment is required in the EBM machine to maintain the 

chemical composition of the material and to provide an excellent environment for 

building parts with reactive materials such as titanium alloys.  

The high power of the electron beam ensures a high rate of deposition and an even 

temperature distribution within the part, which gives excellent mechanical and physical 

properties.  

Since this technique can fabricate titanium alloys, it is being used for the rapid 

manufacturing (RM) of medical implants and a range of products for the Aerospace and 

Automotive industries [13]. Another related RP recently developed that can fabricate 

titanium and chromium-cobalt is Selective Laser Melting (SLM) but it uses laser instead 

of electron beam [14]. 

 

2.2.4 Proton Beam 

Protons are more massive than electrons and therefore have deeper penetrations in 

materials while maintaining a straight path. This enables proton beam writing to fabricate 

3D, high aspect ratio structures with vertical, smooth sidewalls and low line-edge 

roughness. By using suitable energy of proton beam for direct writing, micro stonehenge 
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on SU8 photoresist (Fig.2.6a) and silicon (Fig. 2.6b), can be achieved. Many published 

journals papers and details of using proton beam by NUS Physics Department can be 

found in [15]. The diameter of the stonehenge pillar is 80 µm. 

  

Fig. 2.6: Microstructure by proton beam a) SU8 photoresist b) silicon 
 

No other energy source can fabricate 3D micron-scale structure in silicon. However, 

generating a proton beam requires a synchrotron, (Fig. 2.7) which is very costly to build 

and maintain. The control of the proton beam is also much more difficult when compared 

to laser. This technique was reported in [16]. 

 

Fig. 2.7: Schematic layout of a synchrotron source 

 

This break through technique was reported in [16] 
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2.2.5 Ink Writing Techniques 

Ink writing techniques rely on the deposition of materials (colloid-, nanoparticle-, or 

organic-based inks) to create structures layer-by-layer and can be divided into two 

approaches; droplet-based (Fig.2.8a) or continuous (filamentary) inks (Fig. 2.8b). The 

material requirement of this technique is usually a low viscosity fluid (otherwise a high 

force will be needed) that must be removed by absorption and evaporation or wax-based 

inks that are heated during droplet formation and then solidified upon impact cooling. 

 

The fluid dynamics involved in drop formation, wetting, and spreading play a vital, but 

also limiting, role in defining the surface roughness and minimum size of the features 

deposited by ink-jet printing. This technique is not suitable to build structures that need 

support structures and the mechanical properties of the built artifacts are not as good due 

to the nature of the material used. 

 

 

  

Fig. 2.8: Ink writing techniques a) demand based b) continuous 
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Fig. 2.9: Optical image of 3D radial array assembled by robotic deposition 

 

However, robotic deposition techniques offer new opportunities for 3D patterning of 

materials at finer length scales. Inks are extruded through a fine cylindrical nozzle to 

create a filamentary element that is patterned layer-by-layer. By controlling the ink 

rheology, 3D structures that consist of continuous solids and high aspect ratio e.g. parallel 

walls or spanning features can be constructed. Fig. 2.9 above is an example build by this 

technique. [7]. More information on ink jet printing of different materials can be found in 

[7] and [17]. 

2.2.6 Two Photon Absorption (TPA) 

TPA is the simultaneous absorption of two photons of identical or different frequencies in 

order to excite a molecule from its ground state to an excited state. Its principle is 

somewhat similar to the µSLA technique, but TPA provides much better structural 

resolution and quality. 

 

UV photopolymer materials are highly absorptive in the UV range but are transparent in 

the IR (infrared) region. As a result, TPA can initiate polymerisation only at the focal 

point due to nonlinear nature of the excitation (See Fig. 2.10) and fabricate 3D micron-
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scale structures, whereas with UV laser radiation, due to single photon absorption, 

polymerization occurs at the surface. Therefore, µSLA is a planar technology, with layer-

by-layer polymerization steps, whereas TPA is a truly 3D high-resolution technology. 

Hence, TPA is very attractive for fabricating complex 3D micron-scale structures. The 

main system-level distinction between the TPA and µSLA technologies is that TPA uses 

ultrafast near IR laser (Ti:sapphire) instead of UV laser. 

 

 

 

 

 

 

 

Fig. 2.10: Difference between TPA (left) and 1PA (right) 
 

Using ultrafast IR laser, a group of Japanese scientists managed to directly fabricate a 

microbull (made of a commercially available resin called SCR 500) that is smaller than 

the size of a red blood cell (See Fig. 2.11). This outstanding result was first reported in 

the Nature journal [18, 19].  
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Fig. 2.11: Microbull fabricated by TPA [18] 
 

A spin-off company of the German research lab, LZH, Micreon GmbH, is the first 

commercial company to use ultra short pulse lasers for the manufacture of highly-precise 

components. Many materials can be processed by ultra short pulse lasers without any 

damage, and, in addition, precision of one micrometer can be achieved. The designer 

glasses for a fly shown below (Fig.2.12) was fabricated by LZH. 

 

 

Fig. 2.12: Designer glasses for a fly by LZH 
 

2 µm 

2 µm 2 µm 
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By using a specially designed material called ORMOCER (trademark of Fraunhofer-

Gesellschaft) [20], LZH can fabricate even more complex micron-scale structure as 

shown below [21]. The manufacture process of ORMOCER can be found in [22]. 

 

 

 

 

 

 

Fig. 2.13: Microdevices by LZH a) micro venus on a human hair b) micro dragon 
 

However, this technique requires an expensive ultrafast laser as compared to the UV laser, 

as the common µSLA materials have weak sensitivity to TPA excitation and therefore 

require high laser intensities and exposure duration. In addition, the condition to keep 

ultrafast laser stable is also much more difficult than other common lasers.  

 

As a result, several research groups [24, 25, 26, 27, 28] have started to design new 

materials that have large TPA absorption cross section so that these photopolymers can 

be processed by common lasers. Two common lasers used are Nd:YAG and CO2 laser. 

 

One French group has designed new stable materials that are sensitive to the Nd:YAG 

laser [26], thereby, allowing this technique to be extended to the industry. Fig. 2.14 

below is one example of the micron-scale structures fabricated by them. 
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Fig. 2.14: 1 Euro coin a) illustration b) SEM image c) enlarged view 
 

The principle of TPA have already been applied to optical 3D data storage [25, 29,30,31] 

and TPA microscopy [32] where 3D optical data storage is the term given to any form of 

optical data storage in which information can be recorded and/or read with 3D resolution. 

More information on TPA theory and principle can be found in [33, 34, 35]. 

2.3 Indirect 3D Microfabrication Methods 

Moulds are generally used to mass produce components, which must consistently 

produced dimensional that are very close to the master pattern. This is even more critical 

in the case of micron-scale parts. The most commonly used substrates are glass and 

silicon wafer. Regardless of the material of the substrates, many of these fabricated 

moulds still need to be integrated into the injection moulding machine for mass 

production. 

 

Powder injection moulding (PIM) [36] has emerged as a viable method for producing 

complex shaped parts at a competitive cost. The PIM process, which consists of 

feedstock preparation, injection moulding, debinding and sintering, uses a combination of 

powder metallurgy and plastic injection moulding technologies to produce net-shape 
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metal, ceramic or hard materials components. By using fine powders such as ceramic 

microcomponents of alumina (Al2O3), and a modified feedstock and injection process, 

PIM can also be applied to micron-scale structures and microcomponents (µPIM) [37]. It 

is one of the common methods employed to mass-produce microparts.  Hence, many 

different types of micromaching techniques have been developed in an attempt to mass-

produce microparts through the microinjection molding process. Some of the techniques 

are laser ablation [38], micro wire electric discharge machining (µWEDM) [39], deep 

reactive ion etching (DRIE) [40], Lithographie Galvanoformung Abformung (LIGA) 

process [41], the ‘poor man’ LIGA process: UV-LIGA process [42], Electrochemical 

fabrication (EFAB) [43], soft lithography [44] and electroplating [45]. 

 

However, many of these techniques possess certain limitations pertaining to the 

fabrication of micromoulds and often require two discrete steps: making the micromould 

insert and integrating the insert into a moulding machine.  

 

Vacuum casting, on the other hand, is able to produce the micromoulds in a single step by 

doing away with the fabrication of the mould insert, thus giving it a competitive 

advantage over many existing techniques. Hence, it is able to derive savings in resources 

and lead time, by combining two discrete steps into one. 
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2.3.1 Laser ablation 

The process of laser ablation, also known as laser machining, works on the principle that 

a high frequency pulsed laser can ablate material by removing it directly in the form of 

vapor or fine particles from a substrate, without melting. When the laser beam is focused 

onto the substrate surface, the temperature is raised rapidly and the polymer is vaporised. 

By moving either the laser or the material in a controlled fashion, laser ablation is capable 

of machining the desired microcavities precisely into the substrate [38]. Lasers like 

neodymium-doped yttrium aluminium garnet (Nd:YAG) and krypton fluorine (KrF) 

excimer allow for the rapid manufacturing of microstructured mould inserts made of 

plastics, steel, cemented carbide or ceramics [46, 47].  

 

Once the desired microstructure is machined into the polymer substrate, a sacrificial 

metallic seed layer is then deposited onto the polymer. Electrodeposition is then carried 

out on that seed layer. Once the desired thickness is met, the seed layer is etched away 

and the polymer substrate is removed to form the metallic mould insert. 

 

While laser ablation has the potential to be a useful tool for the production of precise 

microcavities for use in micromoulds, it still has some limitations. For example, 

conventional long pulse (nanosecond) solid-state laser ablation results in collateral 

heating and shock-wave damage (e.g. heat affected zone) to the surrounding area (Fig 

2.15).  The only way to overcome this is to employ ultrafast (picoseconds and 

femtosecond) pulses laser [48], but this type of laser is very much more expensive and 

the requirement to keep the laser stable is also a lot more stringent. 
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Fig. 2.15: Effect of various pulse width laser on substrate 

2.3.2 Surface / bulk micromachining 

These are some of the earliest methods for fabricating micron-scale structures and are 

still being used today to fabricate MEMS.  

 

Surface micromachining starts typically with a silicon wafer and grows layers on top, 

based on the deposition. These layers are selectively etched by photolithography, either 

by a wet etch involving an acid or a dry etch involving an ionised gas, or plasma. Dry 

etching can combine chemical etching with physical etching, or ion bombardment of the 

material. As the structures are built on top of the substrate and not inside it, the substrate's 

properties are not as important as in bulk micromachining. Therefore, expensive silicon 

wafers can be replaced by cheaper substrates, such as glass or even plastic. As a result, 

the size of the substrates can also be much larger than a silicon wafer, and is used to 

produce thin film transistors (TFTs) on large area glass substrates for flat panel displays. 

This technology can also be used for the manufacture of thin film solar cells, which can 

be deposited on glass, PET substrates or other non-rigid materials. 
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Bulk micromachining also starts with a silicon wafer but instead of growing layers by 

deposition, it defines micron-scale structures by selectively etching inside a substrate. 

Similar to surface micromachining, bulk micromachining can be performed with wet or 

dry etches, although the most common etch in silicon is the anisotropic wet etch. Because 

the silicon has a crystal structure, certain planes have weaker bonds and are more 

susceptible to etching. The etch results in pits that have angled walls, with the angle 

being a function of the crystal orientation of the substrate. This type of etching is 

inexpensive and gives a very precise angle. Chun-Jung Chiu et al [49] demonstrated the 

feasibility of fabricating 3D micron-scale structures by using a combined silicon mould 

insert and micro hot embossing process. 

2.3.3 Micro Wire Electric Charge Machining (µWEDM) 

The operating concept of µWEDM is similar to that of laser ablation. However, instead 

of a laser, it employs a series of electrical discharges to melt and remove material from 

the surface of a conductive work piece. µWEDM is able to produce microcavities of 3D 

micron-scale structures [39] by slicing the 3D structure and cutting out the negative 

image of each slice in a metal plate. By assembling the metal plates, a microcavity 

bearing the negative form of the original structure was obtained. The metal plates were 

subsequently mounted in an injection moulding machine to produce the micron-scale 

structures. 

 

One limitation of µWEDM is that the accuracy of the microcavities formed in the micro 

mould inserts is highly dependent on the control system as well as the diameter of the 
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EDM wire. Furthermore, due to the circular profile of the wire, it is almost impossible to 

machine some sharp edges and internal corners in the work piece. However, it is able to 

produce an excellent surface finish by carefully controlling the discharge current. 

 

2.3.4 Deep Reactive Ion Etching (DRIE) 

Deep Reactive Ion Etching (DRIE) is a highly anisotropic etching process used to create 

deep, steep-sided holes and trenches in wafers, with aspect ratios of 20:1 or more. It 

involves the use of sulphur hexafluoride (SF6) which supplies highly reactive fluorine 

radicals to etch silicon wafer in an isotropic manner. Fluorocarbon plasma is 

subsequently introduced to deposit a layer of fluorocarbon polymer on the substrate 

before the next etching step proceeds. Thus, by alternating between the stages of etching 

and deposition, deep, vertical micro features can be formed. It was developed for MEMS, 

which require these features, but is also used to excavate trenches for high-density 

capacitors for DRAM. 

 

 

 

 

 
Fig. 2.16: Deep reactive ion etching (DRIE) process 

 

Fig. 2.16 illustrates how the DRIE process can cause ripples (or scallops) in the vertical 

walls of the substrate. Since the degree of scalloping depends on the duration and number 

of etching and deposition cycles, the smoothness and texture of the side walls is 

After 1 cycle of etch and 
deposition 

After 2 cycles of etch 
and deposition 

 

Final product after 
cleaning 
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inevitably affected. Also, this process is dependent on the etching rate on the aspect ratio 

of the microfeatures, as the etching rate is controlled by the flux of the fluorine radicals 

which decreases significantly when high aspect ratio micro features are being formed. 

This slows down the etching process to less than 1µm per minute [40], thereby increasing 

the time-to-market. 

2.3.5 LIGA 

LIGA is a German acronym which stands for Lithographie (lithography), 

Galvanoformung (electroplating), Abformung (moulding). The LIGA process was 

developed in the 1980s and it combined X-ray lithography with electroforming to create 

moulds which was then used to mass produce plastic, metal [50] and ceramic parts. 

Repeatability can be achieved by LIGA [51]. 

 

In this lithography technique, extreme shortwave length (therefore very dangerous) X-

rays replaced UV laser to pass through the transparent region of x-ray lithographic mask 

and penetrate a polymer layer which is subsequently removed by a developing chemical. 

This leaves behind a template that can be electroplated and used as a mould insert for 

injection moulding.  

 

LIGA is capable of producing high aspect ratio micron-scale structures. Heights of 

hundreds of micron to millimeters (mm) can be achieved while the diameter is kept at a 

submicron level. This is only made possible with the use of X-ray as the energy source 

but the high cost (special photomask is needed for x-ray wavelength) and lack of 
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synchrotrons to produce X-rays make the process unattractive and uneconomical [52]. 

Furthermore, LIGA is not a true 3D process and is effectively only 2.5D. Although 

theoretically, 3D micron-scale structures can still be formed by curing multiple layers of 

photoresists using different photomasks, but this introduces additional problems like 

mask alignment, thereby increasing the difficulty of the overall process. Recently 

research on LIGA can be found in [53]. 

2.3.6 UV-LIGA 

 
To resolve the limitations mentioned earlier, the original “LIGA” concept has since been 

modified, using another cheaper energy source such as UV laser to replace X-ray. Hence, 

the UV-LIGA process is also known as poor man’s LIGA and was developed to use UV-

rays to cure photosensitive resists, such as SU8 photoresists, and produce the template to 

be electroplated. This new process is able to reduce the cost of fabrication while retaining 

the capability to produce micron-scale structures of high aspect ratio. 

 

2.3.7 Electrochemical fabrication (EFAB) 

EFAB is a unique and patented microfabrication technology, EFAB™, which can create 

complex 3D micron precision metal structures with unprecedented flexibility. It is owned 

by Microfabrica, which is a private company founded to commercialize work that began 

with DARPA (Defense Advanced Research Projects Agency) at the University of 

Southern California (USC). 
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The EFAB technology, like the RP process, is an additive microfabrication process based 

on multi-layer selective electrodeposition of metals and its selective process generates 

micron-scale structures quickly and makes it possible to rapidly deposit an unlimited 

number of independently patterned layers. Together, these form virtually arbitrarily, 

complex 3D shapes, overcoming the geometrical limitations of conventional 

microfabrication. As a result, new Radio Frequency (RF), optical, and inertial 

microdevices can be created in less time, have greater functionality, and are far easier to 

design than previously possible. Hence this technology allows a designer to go from idea 

and CAD design to production of a 3D microdevice in a very direct and rapid fashion. 

See Fig. 2.17 below for some examples. 

  

Fig. 2.17: Microdevices fabricated by EFAB 
 

Although EFAB is the first microfabrication technology that relies on quick, successive 

deposition of tens of precision metal layers to create 3D micromachines which are robust 

and require little-to-no assembly, it is interesting to note that not many research projects 

using this technique have been reported in journals. More information and illustrations 

can be found in [43] and [54]. 
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2.3.8 Electrodeposition 

Electrodeposition is the process of using electrical current to coat an electrically 

conductive object with a relatively thin layer of metal (nanometers to a few micrometers 

thick). The primary application of electroplating was to deposit a layer of a metal on a 

metal surface having some desired improved property (e.g., wear resistance, corrosion 

protection etc.) onto a surface lacking that property. It can also be used to fabricate 

micromoulds [45]. 

 

Many micromoulds created by various lithography methods (except for LIGA) use non-

conductive material such as silicon wafer as substrates. Since silicon is a semiconductor, 

it cannot be electroplated as easily as a metal substrate. Therefore, a thin metallic seed 

layer needs to be deposited onto the wafer surface first before the structure is built. After 

the structure is created, another conductive layer has to be deposited over the surface of 

the structure to make it conductive for electrodeposition to take place.  

 

When the electrodeposition has covered the entire structure, the micromould has to be 

separated from the substrate through dissolution of the seed layer (Fig. 2.18). This 

requires additional steps of mechanically tooling and polishing in order to insert the 

micromould into the injection-moulding frame [68]. If a metal substrate is used directly 

instead of silicon, several steps such as depositing and dissolution of the seed layer can be 

eliminated. Although LIGA uses metal as its substrate, the cost for a synchrotron 

radiation makes commercial applications unfeasible. 
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Fig. 2.18: Seed layer deposit needed on non metal substrate for electrodeposition to take place 

 

Using pulse electroplating current on a diamond turned brass substrate, instead of the 

typical silicon wafer, a nickel micromould (Fig. 2.19) was directly fabricated on a brass 

substrate [55]. 

 

Fig. 2.19: Nickel micromould by pulse electrodeposition on diamond turned brass substrate 
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2.3.9 Vacuum Casting 

Vacuum casting is a copying technique characterised by the use of a vacuum during the 

processes of mould fabrication. It is currently one of the most popular and flexible forms 

of rapid tooling for consumer products [56] when combined with a silicone rubber mould. 

 

As this technique requires a master pattern before a mould tooling can be formed, and the 

fact that a silicone rubber mould is soft and can only support castings in small batches 

before breaking down [56], it is known as indirect soft tooling. Using vacuum casting has 

the following advantages over existing microfabrication techniques described in the 

previous sections with regard to the production of microparts: 

 

• Silicone rubber moulds can be fabricated directly from the master pattern, 

whereas most existing micromoulding methods require the additional step of 

producing the micromould insert first before integrating into a mould base. 

• Very fine geometrical details of the master pattern can be faithfully reproduced in 

the micromould cavities [57].  

• The master patterns can thus be fabricated using the most cost effective method. 

• Silicone rubber possesses high chemical resistance due to the low interfacial 

energy of its surface [58]. This property allows a wide range of resins, including 

wax, plastic and metals, to be cast, without any possible reaction with the surface 

of the silicone rubber mould. 
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• Vacuum casting uses cheaper tools, materials and is simpler to implement and 

allows the possibility of harnessing the potential of silicone rubber moulds in the 

batch production of functional prototypes.  

• The flexibility and elasticity of silicone rubber, along with the potential to 

replicate 3D parts by vacuum casting gives silicone rubber tooling a competitive 

edge over hard tooling. The elastomeric moulds can be flexed to release the parts 

(Figure 2.20). 

 

 

 

Fig. 2.20: Flexibility of elastomeric silicone rubber mould 

 

The two most popular materials that vacuum casting use are Poly(dimethylsiloxane) 

(PDMS) and silicone rubber. M Denoual et.  al. uses PDMS [59, 60] while Sungil Chung 

et. al.  use silicone rubber [61, 62, 63].  

 

The drawback of PDMS is that it is generally incompatible with non-polar solvents such 

as toluene and hexane [64] which leads to swelling of PDMS. The deformation and 

distortion of the elastomeric stamp/mould during soft lithography has yet to be fully 

understood and controlled. For example, PDMS shrinks by 1% upon curing due to 

fabrication processes leading to dimensional inaccuracies of the part [60]. Hence, the 

properties of the elastomer would have to be optimised to make pattern transfer 

reproducible. 

 

Mould 3D Part Release of part without breakage Flexing the mould  
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The flexibility and elasticity of silicone rubber, along with the potential to replicate 3D 

parts by vacuum casting, gives silicone rubber tooling a competitive edge over hard 

tooling as these elastomeric moulds can be flexed to release the parts without damaging 

the parts. 

 

Recently, Chung et. al. [61] have evaluated silicone rubber transferability while Denoual 

et. al. [59, 60] demonstrated the use of vacuum casting as an alternative method for bio-

microsystems. In addition, vacuum casting has also been shown to be capable to cast 3D 

micro helical gear with bismuth [62] and epoxy-aluminum [63]. Furthermore, silicone 

rubber mould has recently been used to electroplate micro patterned tools [45] and as a 

mould for low-pressure injection moulding process in fabrication of ceramic micro 

components [65]. 

2.3.10 Soft lithography 

Soft lithography refers to a set of methods for fabricating or replicating structures using 

elastomeric stamps, moulds, and conformable masks. Because it uses elastomeric 

materials, it is therefore called "soft". It includes the technologies of Micro Contact 

Printing (µCP), replica moulding (REM), microtransfer moulding (µTM), micromoulding 

in capillaries (MIMIC) and solvent-assisted micromoulding (SAMIM). However, these 

soft lithography techniques will not be discussed in this thesis. 
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2.3.11 Hot Embossing 

Micro hot embossing is a method for reproducing high quality micron-scale structures. It 

is essentially a process that involves pressing a mould tool into a semi-finished polymer 

material that is held above its glass transition temperature.  

 

Depend on the size and geometry of the micron-scale structures, the mould tool can be 

fabricated in a number of ways. From machining of stainless steel for micron-scale 

structures with dimensions in hundred micrometer range to LIGA technologies for 

micron-scale structures with dimensions in few micrometers range and high aspect ratios. 

Nickel and silicon are the most commonly used for mould insert. 

 

The advantages of hot embossing are low material flow, avoiding internal stress which 

induces e.g. scattering centers infavorable for optical applications, and low flow rates. 

Hence, more delicate structures such as free standing thin columns or narrow oblong 

walls can be fabricated. Another advantage is the simple setup of the machine, which 

results in very short setup times due to the easy exchangeability of the mould insert or 

polymer material.  

 

It is often applied to the Bio-MEMS for fabrication of microfluidic chip. Micro optical 

components such as LIGA-micro spectrometer, micro lens arrays and optical wave guides 

are just some examples that can be produced by hot embossing. Many prototypical 

micron-scale structures have been fabricated by this technique in laboratories but not in 

industries because it is believed to be too slow and to be associated with too much 
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manual work. Yet in [66], it was shown that hot embossing has more potential than 

merely for use in the laboratory. 

 

2.4 SU8 Photoresists 

SU8 is a negative, epoxy type, near-UV photoresists developed and patented by IBM 

[67]. It has been used widely in MEMS applications and for mould making [68, 38]. SU8 

can also be exposed by various energy sources such as X-ray, e-beam sources [69], 

infrared laser [70, 71], and ion beam [72]. The excellent thermal and chemical properties 

of SU8 make it very suitable for micromould making. However, removing the well cross-

linked SU8 structure after electrodeposition is extremely difficult as it is insoluble to 

most chemicals. Hence, extracting the cavity is a challenge, often requiring special and 

expensive equipment. Methods such as using high-pressure water jet, excimer laser 

ablation [38], O2/SF6 plasma etching [73], and chemical removal such as reactive ion 

etching (RIE) have all been reported [74]. Each method is effective in its own case and 

all of them require a significant amount of specialized costly equipment to do the removal. 

Various techniques have been reported in numerous journals [70, 72, 76 – 78] ever since 

it was invented by IBM. A PhD research on SU8 photoresists can be found in [75].  

 

SU8 is very sensitive to its process parameters in a practical way and much research was 

conducted to find out which of its parameters is the most important. The interesting thing 

to note is that the key parameters involved to fabricate perfect micron-scale structure 

differ from paper to paper. [79, 80, 81] reported that prebake is the most important 

parameter while [82] reported that cooling rate is the most critical parameter. Ronald A. 
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Lawes investigates the variation of the key parameters that affect the tolerances which 

lead to the reproducibility [83]. 

 

A. Mata et. al. [89] fabricated multi-layer (up to six layers) SU8 micron-scale structures 

by using multiple coating and exposure steps but in a single developing step. The 

multiple SU8 layers create patterned micron-scale structures with overall thicknesses of 

up to 500 µm and minimum lateral feature size of 10 µm. However, closed structures are 

hard or impossible to achieve directly achievable in such multi-layer lithography because 

the irradiation of the top film induces cross linking of the layer [90]. Single-step 3D 

lithography and single-step electroplating was reported in [91]. 

2.4.1 New SU8 Formulation 

Recently, a Swiss company, Gersteltec Engineering Solutions, formulated a new SU8 

photoresists. Using nanomaterial added into SU8 photoresists, conductive SU8 was 

invented and the result was published in [92]. Low stress SU8 for microfabrication 

application was reported in [93]. Even colours such as Black, Red, Blue, Yellow, Violet, 

and Green have also been formulated by them. More details can be found in the company 

website [94]. 

2.5 Application of 3D microstructures 

 
 
Complex 3D micron-scale structures have recently received a significant amount of 

attention within, as well as beyond the scientific community, because of the promise they 
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hold for exciting new applications in a variety of areas especially in photonics. Since 

photonic crystals can manipulate the flow of light, this makes them attractive materials 

for new types of optical components. 

 

These 3D micron-scale structures may serve as mechanical or optical microdevices (e.g. 

waveguides) in micro environments or even nano environments. For example, diagnosis 

or surgery inside the human body may become more efficient because of micromovers 

and pumps that can interact on the cellular level. In addition to mechanical characteristics, 

these structures can be fabricated to have interesting optical properties and can be used as 

photonic devices [95 - 98] in applications such as telecommunications [99] and optical 

information processing. 

 

Combining biology with MEMS (BioMEMS) is targeted to have the fastest growth rate 

within the MEMS market, particularly for drug discovery and delivery, diagnostics, 

biotelemetry, and genomics [100]. However, manufacturing of BioMEMS devices differs 

from IC manufacture because the market requires a diversity of materials, physical 

structures, input/output methods, products, and initially lower volumes per product [101].
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3. EXPERIMENTAL EQUIPMENT, SETUP AND 

PROCEDURES 

There are two types of setup used in this work: one for the lithography and the other, for 

the vacuum casting machine, which uses silicone rubber to fabricate micromoulds. Hence, 

there are also two sets of equipment and materials used in each setup. 

3.1 Materials and Equipment Used 

3.1.1 Materials and Equipment used for Lithography 

Materials used: 

• Norland optical adhesive, NOA 60 photopolymer,  

• Vantico SL5510 photopolymer and  

• Microchem SU8 photoresists. 

Solvents used: 

• Microchem SU8 developer 

• Acetone  

• Alcohol  

Equipment used: 

• Lambda Physik COMPex 205 multigas (KrF) excimer laser (λ = 248 nm) 

• Laser filter 

• UV reflecting mirrors  

• 3 inch and 4 inch quartz photomask 



Chapter 3: Experimental Equipment, Setup & Procedure 

National University of Singapore  37  

• Machined fixture to hold the photomask 

• Newport XY linear micropositioner and a rotation stage 

• XYZ micropositioner stage 

• Laurell single wafer spin coater (WS-400A-6NPP) 

• LabTech  Hotplate (LSM-2003D) 

• Machine vision system consists of PC, CCD camera (JAI CV-A11) and LCD 

monitor. 

• Microscope rectangle glass slide and diamond turned brass substrates 

 

Figures of these equipments can be seen in Appendix A. Some of the descriptions can be 

found in following section 3.2. 

3.1.2 Materials and Equipment used for Micromoulds via Vacuum 

Casting 

Materials used : 

• VTV 750 Silicone Rubber 

• CAT 750 Catalyst  

 

Equipment used : 

• MCP 5/01 Vacuum casting system 

• Shel Lab 1330FX Oven  
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Figures of these equipment and details regarding the interface controls during degassing 

are covered in Appendix B. 

3.2 Experimental Setup 

3.2.1 Lithography Experimental Setup 

There are two types of setup; single layer and multi-layers setup. It is vital that the air gap 

between photomask and substrate is kept to a minimum so as to reduce the diffraction 

effect. 

 

A single layer lithography experimental setup is shown in Fig. 3.1. An excimer laser 

mirror was used to reflect the energy of the laser beam downward onto the photomask 

with the coated substrate placed below it. The substrate would be spin coated with the 

material (photopolymer or photoresists) using the Laurell coater. 

 

 

 

 

 

 

 

 

Fig. 3.1: Setup for single layer lithography a) 3D view b) Side view. 
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A multi-layer lithography experimental setup is shown in Fig. 3.2. Two linear (xy axis) 

and one rotating stage positioner within the fixture, were used to align the substrate to the 

photomask. The difference between a single and multi-layers setup is the addition of a 

mask translation stage (not shown), a CCD (Charge-coupled devices) camera and two 

additional deflecting mirrors for alignment purposes. 

 

 

 

 

 

 

 

 

Fig. 3.2: Setup for multi-layers lithography a) 3D view b) Side view. 

3.2.2 Light source  

A Lambda Physik COMPex 205 multigas (KrF) excimer laser was used for the 

experiment. The wavelength of the laser is 248 nm, which is in the deep UV range. This 

laser is usually used for precision machining, producing features down to 40 nm in 

resolution with virtually no heat-affected zone [102]. Therefore, medical doctors make 

use of this property to correct myopia in refractive eye surgery, such as LASIK (Laser in 

situ Keratomileusis). In principle, a shorter wavelength allows the beam to be focused to 
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smaller spots and thus, excimer lasers have also been used in high-resolution material 

processing and surface modification [103]. 

 

The maximum energy output of this laser is 600 mJ per pulse with pulse duration of 25 

nanoseconds (ns). Hence the peak power can reach as high as 24 MW. With a rectangular 

beam of 24 × 6 mm, the power density achievable is 16.7 MW/cm2. This level of energy 

is powerful enough to induce photopolymerisation for most commercial UV liquid 

photopolymers. 

3.2.3 Photomask 

A 3 inch and a 4 inch quartz square photomask were made (by IGI) for this project. The 

photomask had to be made of quartz instead of soda lime glass (commonly used for UV 

light lithography) because soda lime glass does not have high transmitted ability at 248 

nm. The only difference between these two photomasks is the diameter of the microgear, 

in which the 3 inch photomask is 1mm in diameter while the 4 inch photomask is 0.5 mm. 

Basic information on the fabrication of photomasks can be found in Appendix C.  

 

Fig.  3.3a shows the 4 inch square photomask of a microgear. The whole photomask 

consists of two positive (darker portion of the photomask) and two negative (top portion 

of the photomask) columns of 30 patterns; each 5 rows by 6 columns. There is a rotating 

angle of 0.5 degrees between each pattern of microgear. Therefore, the whole microgear 

has a rotating angle of 15 degrees for the total of 30 layers. 
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The enlarged view of one pattern is shown in Fig. 3.3b. The pattern is a 0.5 mm diameter 

(measured from tooth to tooth) gear with 16 teeth and 4 alignment marks at its corners. 

The alignment marks are to assist in the alignments with the previous layers. The width 

of each tooth is 30 µm. The quality and accuracy of the photomask is extremely 

important, as the outcome of the developed pattern depends on it. 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Quartz photomask a) 4 inch quartz photomask b) enlarge view of a microgear pattern 
with alignment marks c) 500 µm microgear. 

3.2.4 Manual micrometer positioner 

A manually actuated linear micro-positioner of 3 µm resolutions was used to position the 

substrate in the xy axis for alignment to the photomask. An additional rotation positioner 

was placed on top of the linear positioner to correct any misalignment due to rotation. 

The whole process of the alignment was monitored by the machine vision system.  

 

3.2.5 Machine Vision 

Semiconductor industries use either expensive automatic alignment systems or split-field 

microscopes to carry out the alignment. Automatic alignment systems are expensive and 

meant for large volume of production, while using the microscope will strain the eyes 
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even for low-volume productions. A machine vision system compromising a CCD 

camera and a LCD monitor screen for display was used for this research. This method is 

compact, low cost, and comfortable to the eyes. 

 

3.2.6 Vacuum Casting Experimental Setup 

 

 

 

 

 

 

Fig. 3.4: Micromould experimental setup 
 
It is first necessary to assemble an acrylic casting frame (Fig. 3.4) to contain the liquid 

silicone rubber. The master pattern to be copied was fabricated onto a substrate (brass or 

glass) and carefully glued to a metal rod and toothpick, which was used to create the 

sprue and the risers in the mould respectively. The master pattern was then suspended in 

the casting frame by means of a retort stand so that silicone rubber can be poured around 

the pattern to embed it. A parting line has to be formed by a tape along the perimeter of 

the substrate so as to facilitate the splitting of the micromould into two halves after the 

silicone rubber was taken out of the oven during the curing process. To secure the master 

pattern in place during subsequent degassing and curing operations, the retort stand was 

custom made to fit into the small vacuum chamber (Fig. 3.5). 
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Fig. 3.5: Degassing process in MCP 5/01 system 

3.3 Procedure for Lithography 

 
The experiments included both single layer and multi-layer lithography. The single layer 

lithography experiments were conducted to test the material suitability. The parameters 

for the single layer lithography were also optimised by a series of experiments, which 

were aimed for multi-layer lithography. Two kinds of materials were tested. Two 

photopolymers : Norland optical adhesive; NOA 60 and Vantico SL5510, and one 

photoresists namely SU8. The flow chart (Fig. 3.6) illustrates the difference of the single 

layer procedure between photopolymer and photoresists: 
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Fig. 3.6: Flow chart for single layer between photopolymer and photoresists 

3.3.1 Procedure for Single Layer Lithography 

This procedure is the same for both NOA 60 and SL5510, since both materials are liquid 

photopolymer. The only significant differences are their viscosity and wavelength 

absorption graph. The developing solvent for photoresists was the SU8 developer while 

alcohol was suitable for the selected photopolymers (SL5510 and NOA 60). See 

Appendix D for more information on these two materials. 

 

The substrate was first cleaned under ultrasonic bath and baked, if necessary, to 

dehydrate the substrate before dispensing the liquid photopolymer onto the substrate. 

After that, it was spin coated to a thin layer by the spin-coating machine. Various 

thicknesses throughout the whole substrate can be obtained, as thickness of the layer is 

dependent on the viscosity of the material and speed of the rotation. The coated substrate 
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was then placed under the photomask and exposed to different energy levels of the 

excimer laser. After the layer was exposed, the glass slide (substrate) was put into a 

suitable solvent for developing. The unsolidified (unexposed) material would then be 

dissolved by the alcohol, leaving the solidified pattern stuck to the substrate. The solid 

pattern was then observed and analysed by using an optical microscope.  Results and 

discussion can be found in section 4.1. 

 

3.3.2 Procedure for Single Layer of SU8 Lithography 

The difference between photopolymers and photoresist is that the former can be 

polymerised without the need of any baking process. Hence two additional baking steps 

were required for photoresists: Soft bake (SB) was carried out immediately after spin-

coating and post exposure baking (PEB) was only carried out after the laser exposure. 

 

Similar to the photopolymer material, the substrate has to undergo ultrasonic cleaning to 

ensure it was free from contaminates before the dehydrate baking. The SU8 was 

dispensed onto a substrate and spin coated at certain rpm to achieve a certain thickness 

according to the given graph in Appendix E. The next step was to SB the substrate at 

650C for 1 min (time varies with thickness). The spin coated substrate was then affixed 

onto a fixture via contact printing with the quartz photomask placed over it. The excimer 

laser was then activated to pass through the mask and expose the SU8 that was coated 

onto the substrate.  
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After the exposure, photopolymerisation occurred in the photoresists and the pattern on 

the photomask was transferred onto the photoresist. A second baking PEB was required 

at 950C for 1 min. The substrate was then dipped into a developing solvent to wash away 

unexposed SU8 (under yellow light), leaving the pattern of the exposed SU8 on the 

substrate. The substrate was then blown with nitrogen to prevent staining from the 

solvent. Ultrasonic vibration could be used to speed up the development but care had to 

be taken not to agitate it too much to avoid delamination (peeling). The developed single 

layer was then analysed under an optical microscope and scanning electronic microscope 

(SEM), if necessary. Results can be seen and discussed in section 4.1.3.  

 

A detailed map of the experiment process with required parameters are mapped in a 

flowchart under Appendix F.  

3.4 Procedure for Multi-layer Lithography 

 

NOA 60 was not chosen for multi-layers experiments as the alcohol used in its 

development stage did not give a satisfactory outcome. See the results shown in section 

4.1.1. 

 

The multi-layer photolithography process basically consists of repeated single level 

photolithography process. Based on the optimised parameters obtained from single layers, 

the obtained parameters will be used in the multi-layers. The flow chart below illustrates 

the procedure for multi-layers of SL5510 photopolymer and SU8 photoresists: 
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Fig. 3.7: Flow chart of multi-layers of photopolymer (left side) and SU8 (right side) 

3.4.1 Procedure for Multi-layer of SL5510 Photopolymer 

In this part of the work, the same particular microgear pattern on the photomask was 

used throughout, in other words, there is no need to shift the substrate to the next 

precedent pattern for the next layer exposure. 

 

The substrate was spin coated with the first layer of SL5510 followed by exposure to the 

excimer laser using the optimum parameters. After ensuring that the first layer of 

photopolymer was well solidified and stuck to the glass slide, the substrate was spin 

coated again with the second layer of liquid photopolymer without developing at this 

stage. The substrate was then exposed to the laser again and the second solidified layer 

would be obtained. The process was repeated until a 3D microgear was created, layer by 

layer, in the liquid photopolymer. Finally, the substrate was put into the alcohol for 
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developing, where the uncured liquid photopolymer was dissolved, displaying a solidified 

3D micropart. The results can be seen and discussed in section 4.2.1. 

3.4.2 Procedure for Multi-layers of SU8 Photoresist 

The procedure for performing a multi-layer lithography on SU8 photoresist is similar to 

the single layer lithography. The process is repeated after each PEB (See Fig. 3.7).  

 

After the first layer of photoresists was exposed through the photomask, another layer 

was spin coated onto the substrate. However, before the next exposure take place, an 

alignment of the first pattern to the next pattern needs to take place. Thus, an additional 

xyz stage was used to align the successive required gear pattern on the photomask to the 

precedent mask pattern, with the use of CCD camera system. Development was only 

carried out after the required numbers of layers have been achieved. Results can be seen 

and discussed in section 4.2.2. 

3.5 Procedure for Fabricating Micromould via Vacuum 

Casting 

The procedure for fabricating micromoulds is divided into four main steps: 

1) Analysis of master pattern, 

2) Cleanliness of master pattern, 

3) Preparation of silicone rubber mixture, and 

4) Fabrication of micromould. 

Step by step illustrations can be found in Appendix G. 
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3.5.1 Analysis of the Master Pattern 

The master pattern was first checked under an optical microscope for any form of 

contamination and presence of defects in the microgear. Then, the dimensions were 

measured by the white light interferometer (WLI), where a 3D profile can be generated, 

showing all the critical dimension of the master pattern. Fig. 3.8 shows an example of the 

3D data generated by WLI. This data will be used to compare with the dimensions of the 

micromould later. Details of WLI can be found in [104]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.8: 3D profile of master microgear by WLI 
 

3.5.2 Cleanliness of Master Pattern  

 

Because the vacuum casting technique is capable of reproducing every detail on the 

master pattern, it is vital that the surface of the master pattern and substrate are free from 

any contamination. If there are any contaminates, cleaning without damage to the master 

pattern can be achieved by dipping into Isopropyl Alcohol (IPA) for glass substrate, or 

400µµµµm 
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dilute hydrochloric acid (HCL) for brass substrate. Care has to be taken during the 

cleaning process so as not to damage the master pattern as well as affecting the adhesion 

of the master pattern to the substrate. Ultrasonic cleaning should only be used if there are 

any stubborn contaminates.  

 

3.5.3 Preparation of Silicone Rubber Mixture  

 

The amount of silicone rubber required was calculated by multiplying the desired volume 

of the micromould to be made by the density of the silicone rubber (1.09kg/dm3 at 23oC). 

This calculated amount was then mixed with a catalyst having 10 percent the weight of 

the silicone rubber used for 2 to 5 minutes. After the mixing was completed, the silicone 

rubber mixture was degassed (see Appendix B) to remove any air bubbles. The duration 

of the degassing process could last from 10 to 15 minutes, depending on the extent of air 

bubbles in the mixture. After the degassing, the silicone rubber mixture was poured into 

the casting frame (Fig. 3.4) to embed the master pattern. 

 

3.5.4 Fabrication of Micromould  

 

After pouring the silicone rubber mixture into the casting frame, the setup undergoes 

another degassing step, since air may be introduced into the mould during the pouring 

process. This second degassing process typically takes longer than the first degassing, 

around 25 to 35 minutes. After degassing, the entire setup was transferred to the oven for 
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the curing process, where the silicone rubber is heated from 400C to 450C for a duration 

of 10 to 12 hours, for maximum dimensional accuracy. After the curing process, the 

whole setup was removed from the oven, and the casting frame was disassembled. The 

silicone rubber mould was separated into the core and cavity halves by cutting along the 

parting line (Fig. 3.9) with a scalpel. The parting line should be cut in zigzag form 

(instead of a straight line) so that the original orientation of the core half relative to the 

cavity half upon closing can be preserved easily. Hence, the micromould of the master 

pattern was obtained (Fig 3.9) after removing the master pattern. 

 
 
 
 
 
 
 
 
 

 
Fig. 3.9: Core and cavity of silicone rubber mould 

 

3.6 Difficulties Encountered  

• The energy level of excimer laser only becomes consistent at high frequency. 

Every laser pulse generated yielded a different energy reading at low frequency. 

This issue was minimized by using a UV laser filter at high frequency. 

• The air gap between the photomask and the coated substrate has to be maintained 

at a very small distance (in tens of micrometer or less), so as to reduce diffraction 

effects.  
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• An UV lamp was used to replace the excimer laser to fabricate a thicker master 

pattern, as there is very high absorption of SU8 photoresists at 248 nm 

wavelength. High UV absorption of the material cannot lead to thick structures.  

 

• The current alignment method is not automated and as advanced like those being 

used in the semiconductor industry. Using the alignment marks, manual 

translation stages and vision equipment on hand are the best that I can do to get 

accurate alignment of the layers. 
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1 Analysis of Single Layer 

The first material tested was the Norland optical adhesive NOA 60 photopolymer 

followed by Vantico liquid photopolymer SL 5510 and then the microchem SU8 

photoresists. For all the materials, the experiments started off with single layer formation 

and followed by multi-layers experiments if promising results were obtained from the 

single layer experiments. 

4.1.1 Single Layer of NOA 60 Photopolymer 

Fig. 4.1a shows the micron-scale structure pattern on the photomask under a microscope. 

This pattern was a typical alignment mark, used in a stepper machine for auto alignment. 

The whole pattern was made up of four squares: two squares made up of vertical lines 

and two squares made up of horizontal lines, placed diagonally to each other. The width 

of each line was 23 µm. 

 

After exposing the photomask pattern to a range of different energy levels and pulses 

onto coated glass substrate, the best combination of parameters found was: 18KV, 10 

shots, 100-110 mJ. The thin solid layer was formed and the substrate was developed in 

alcohol solution. After the development, the amplified micron-scale structure of the solid 

layer is shown in Fig. 4.1b. 
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Fig. 4.1: Pattern for NOA 60 a) Alignment mark on a photomask b) Single layer of NOA on glass    

substrate.   
 
From Fig 4.1, it can be seen that the NOA 60 was photopolymerised under the irradiation 

of excimer laser and a solid micron-scale structure was formed. The dimensions of the 

solid lines were close to 23 µm (measured by optical microscope). However, the solid 

structure was not sharp and clear, as there were still some uncured photopolymer left, 

covering the solid structure. Since the structure could not be developed cleanly, 

experiments to form multi-layers was not continued. 

4.1.2 Single Layer of SL5510 Photopolymer 

This SL5510 liquid photopolymer was designed for RP processes, i.e., stereolithography 

apparatus (SLA). To determine the optimal energy level for SL5510, it was exposed to a 

series of different levels of energy as well as a number of shots using the 3 inch 

photomask (microgear diameter of 1mm). 

 

Figures 4.2 to 4.8 show the series of outcomes that correspond to the various 

combinations of energy levels (64 to 180 mJ) and number of shots (1 to 10 shots). From 

the figures, all the various energy combinations were able to solidify the photopolymer 

coated on the glass substrate. The results indicated that a lower energy level and a low 
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number of shots produce better sharpness (Fig. 4.2), whereas higher energy levels and 

higher number of shots resulted in an over-reaction of the photopolymer and the shape of 

the solid layer became fuzzy (Fig. 4.3 ∼ 4.8). 

 
 
 
 
 
 
 
 
 

Fig. 4.2: Single layer of 1 shot at a) 64mJ b) 112 mJ 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3: Single layer of 1 shot at c) 144mJ d) 168 mJ 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4: Single layer of 2 shots at e) 120mJ f) 170 mJ 
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Fig. 4.5: Single layer of 3 shots at g) 120mJ h) 170 mJ 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.6: Single layer of 4 shots at i) 130mJ j) 170 mJ 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.7: Single layer of 5 shots at k) 130mJ L) 180 mJ 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.8: Single layer of 10 shots at m) 160mJ n) 180 mJ 
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Hence, several attempts were made to expose the SL5510 at even lower energy levels (< 

64 mJ) and the optimal combination obtained was two shots at 16 mJ, as shown in Fig. 

4.9 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.9: Single layer of 2 shots at 16 mJ 
 
 
Therefore, it was proven that SL5510 liquid photopolymer can be photopolymerised 

under excimer laser with the correct selection of energy level and number of laser shots. 

4.1.3 Single Layer of SU8 Photoresists 

The SU8-5 photoresists was spin-coated on a glass substrate at 5000 rpm to achieve a 

thickness of about 2µm and exposed to various energy levels with the 4 inch photomask. 

The SB and PEB were fixed at 65oC and 95oC for 2 and 5 min respectively. After several 

trials, the optimal parameter for a single SU8 layer was a single exposure of 72mJ. Fig. 

4.10 shows the outcome. The teeth and alignment mark can be seen clearly after the 

development.  
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Fig. 4.10: Optical view of a developed SU8 after exposure to single shot of 72mJ. 

4.1.4 Important Parameters of Single Layer Experiments 

The important parameters for both photopolymer and photoresists are substrate 

cleanliness, exposure dosage, development duration and air gap (between the photomask 

and coated substrate).  

 

Cleanliness would affect the adhesion of the coated material to the substrate. Higher 

exposure dosage would give better adhesion but resolution may be compromised, i.e. 

overexposed. See Fig 4.2 to 4.9. 

 

Prolonged development and insufficient exposure may result in delamination or peeling 

of the thin layer from the substrate.  

 

Air gap between the photomask and substrate would cause diffraction and hence, loss of 

resolution (sharpness) would result. Therefore, it was important to keep the air gap as 

small as possible to reduce the diffraction effect. Gaps that are greater than 100 µm 

 500 µm 
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would cause loss of sharpness. Fig. 4.11 shows one example, captured by optical 

microscope. See Appendix H for more illustrations of the diffraction effect.  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.11: SU8 on glass with 20mJ exposure of 500 µm gap 

 

4.2 Analysis of Multi-layers 

 

The parameters obtained from the single layer experiments were used in the multi-layered 

experiments. As the viscosity of SL5510 was lower than NOA 60, it was easier to spin-

coat for multiple layers. Furthermore, lower viscosity makes development much easier 

than NOA 60. Therefore, SL5510 was selected as the material for the multiple-layer 

experiment. 

 

4.2.1 Multi-layers of SL5510 Photopolymer 

 

Based on the single layer experiments, the multiple-layer lithography was therefore 

conducted using the photopolymer SL5510 and the optimal parameters, obtained in 

section 4.1.2.  
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After the first layer was solidified by first exposure, the substrate was recoated with the 

second layer and placed into the exact original position under the photomask by using a 

special fixture, for another round of exposure. The process was repeated and a total of 

five layers were cured, resulting in a five layered microgear being fabricated. The SEM 

result is shown in Fig. 4.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.12: SEM view of a 5 layered microgear a) overview b) 300x magnification of highlighted 

area. 
 
The result showed that the 2.5D micron-scale structure of the microgear was rather good 

with sharp features, like the gear teeth. The alignment marks (in four corners) were also 

well formed in a 2.5D micron-scale structure, with a cross sign in the center (Fig. 4.12a). 

This result proved that the mask-based lithography for 3D layered microfabrication was 

feasible, although only a 2.5D object was fabricated in this case.  

4.2.2 Multi-layers of SU8 Photoresists 

In the earlier section, a 2.5D microgear was fabricated using the SL5510 photopolymer, 

as the same microgear pattern was used throughout the five layers. In an attempt to prove 

a complex 3D micron-scale structure could also be fabricated by this method,  different 
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microgear patterns (0.50 differences between each microgear pattern as mentioned in 

section 3.2.3) on the photomask would be used. 

 

Hence, it was necessary for the subsequent layer to be aligned to the previous layer in this 

multi-layer experiment. After the final layer was post baked, the substrate was put into 

the developing solvent for development, where the unexposed photoresists was dissolved, 

displaying a solidified 3D micropart. Fig. 4.13 show a three layered “twisted” 3D 

microgear on a glass substrate. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.13: SEM view of 3 layered SU8 microstructure a) overview b) magnification of microgear. 
 
 

From Fig. 4.13b and Fig 4.14, we can see that the hub was not aligned to the previous 

layers. Although the three layers of SU8 were not aligned to each other, the three 

individual layers could be clearly seen in Fig 4.14b. This was due to the limitation of 

current alignment method and equipment (Refer to section 3.2.1 and 3.4.2).  Therefore, 

with better alignment equipment, this misalignment issue can be overcome. The key 

difference between the commercial contact aligner and our current set up is the precision 

control. Detailed discussion of the misalignment would be discussed in section 4.2.4.2. 

After many experiments and analysis, the optimal exposure energy for each layer was 
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between 60 mJ to 80 mJ. A taller microgear could also be obtained by building up more 

layers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.14: 3D SEM view of a) 3 layered microgear b) 1000X magnification of highlighted area  

 
 

4.2.3 Key Parameters for Multi-layers SU8 

In a comparison of SU8 photoresists and SL5510 photopolymer, it was found that 

building the multi-layers of SU8 was more complicated and more time consuming, due to 

the fact that each SU8 layer needed to have two baking processes; SB before and PEB 

after each exposure. 
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The key parameters for SU8 photoresists was the same as those in single layer 

experiments, which was mentioned in section 4.1.4. i.e. substrate cleanliness, exposure 

dosage, duration of developing and air gap. However, in multi-layers of SU8, the baking 

parameter played a more critical part. Section 4.2.4.3 will explain in greater detail.  

4.2.4 Defects in SU8 Photoresists 

The following defects happened in both single and multi-layers SU8, except for 

misalignment which only occur in multi-layers. 

 

4.2.4.1 Delamination 

Fig. 4.15 below shows the edges of the teeth being delaminated from the substrate. 

Delamination can happen for the following four reasons: 

• Substrate not clean properly 

• Underexposure 

• Prolong development especially in ultrasonic condition 

• Uneven UV distribution of the lamp / laser 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.15: Delamination of SU8 on glass substrate 
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2nd layer 

1st layer 

4.2.4.2 Misalignment  

The reason for the misalignment in multi-layers SU8 photoresists is explained below.  

 

Fig. 4.16 below shows an example of the misalignment of the 2nd layer to the 1st layer at 

the key hub. 

 
 
 
 
 
 
 
 
 
 

Fig. 4.16: Misalignment of the microgear keyway 
 
Fig 4.17a shows the blurriness of alignment marks after the second layer of SU8 was spin 

coated onto the first layer, while Fig. 4.17b shows sharp features of the marks on the 

photomask.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4.17: Alignment marks a) on brass substrate after second layer b) on the photomask 
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When the photomask (Fig 4.17b) is moved over the coated substrate (Fig. 4.17a) for 

alignment, it will appear like Fig. 4.18. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.18: Visibility of  alignment marks for aligning process 
 
Hence, it was difficult to get an accurate alignment of the photomask to the coated 

substrate which thereby resulted in the misalignment.  This was due to the slight 

difference in the reflective index of the uncured and cured SU-8, which makes the  

“bending” light too minimal for us to see two separate mediums. 

4.2.4.3 Loss of Resolution  

 

Baking parameters (SB and PEB) play an important role in the resolution. To learn the 

effect of baking, all parameters were kept the same except for the parameter of SB and 

PEB. The results are shown in the Fig. 4.19 to 4.22. 
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Fig. 4.19: Effect of under SB on SU8 on brass 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.20: Effect of over SB on SU8 on brass 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.21: Effect of under PEB of SU8 on brass 
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Fig. 4.22: Effect of over PEB of SU8 on brass 
 
The duration of SB and PEB were determined by the layer thickness. Hence, accurate 

baking duration was difficult unless the thickness of the layers could be measured 

accurately.  

 

Therefore, both these baking requirements and the blurriness (Fig 4.18) made SU8 multi-

layers difficult to achieve.  

 

4.3 Analysis of Micromoulds  

 

In order to determine if the micromould fabricated by vacuum casting was repeatable, a 

total of ten silicone rubber micromoulds were fabricated from a single master SU8 

microgear. This master microgear (38 µm thick) is shown in Fig. 4.23. However, it was 

fabricated by UV lamp lithography instead of excimer laser since the number of layers to 

build a thick microgear via excimer laser would be too tedious. 

 
 

Not sharp features : 
“Burrs” of the tooth 

Not sharp features : 
“Burrs” along the hub 
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Fig. 4.23: Master microgear by UV lamp lithography 

 
White light interferometry (WLI) was used to analyse the dimensional accuracy and 

repeatability of both the micromoulds and master microgear. Full details of WLI can be 

found in [104]. 

 

 A set of measurements has been defined for the measurement of master microgear and 

micromould. Fig. 4.24 below illustrates the definition: 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4.24: Defined measurement for master microgear and micromould 
 

 

 

Outer 

diameter 

Hub diameter 

Cavity depth 

Outer 

diameter 
Orientation 1 

Orientation 8 Hub diameter 

Height 
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4.3.1 Methods of Determining the Dimensions 

 

Many possible errors (by machine or operator) could occur during measurement. In order 

to capture consistent and accurate dimensions by the WLI, the temperature was fixed at 

25oC in a clean room environment, as any dirt particles may affect the readings. 

 

4.3.1.1 Measurement of Outer Diameter 

 

From Fig. 4.24, the outer diameter for both the microgears and micromoulds was defined 

as the average tooth-to-tooth distance of two oppositely-facing gear teeth. Fig. 4.25 

shows the sample image of the dimension of the master microgear outer diameter for 

orientation 1 by WLI. The outer diameter is 1.013 mm as highlighted.  

 

Since this was a microgear with 16 teeth, there were therefore, eight possible orientations 

which the tooth-to-tooth distance can be measured. Measurements were taken from these 

eight orientations to account for any non-uniformity or roundness in the gear. The 

measurement at each orientation was repeated a second time to reduce the operator’s 

error and the error imposed by the equipment tolerance. To maintain consistency, the 

microgear diameter was measured with reference to the top surface of the microgear 

specimen. The tabulated results of the master microgear is shown in section 4.3.2. 
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Fig. 4.25: Outer diameter of the master microgear in orientation 1 

 

4.3.1.2 Measurement of Hub Diameter 

 

Similarly, the hub diameter for both the micromould and microgears was defined as the 

average of sixteen diameter values taken from eight orientations. Measurements were 

again, taken from the eight possible orientations to account for any non-uniformity in the 

hub. A second measurement at each orientation was also conducted so as to reduce the 

operator’s error and the error imposed by the equipment tolerance. 

 

4.3.1.3 Measurement of Microgear Height / Micromould Depth 

 

The average dimension for the microgear height and micromould depth was calculated 

automatically by the software. Details on how this data was capture by WLI can be found 

in Appendix I. 
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4.3.2 Master Pattern SU8 Microgear 

 

The calculated average dimension of the outer diameter SU8 master microgear captured 

by WLI is shown below: 

 

Table 1: Average calculation of outer diameter dimension of master SU8 microgear 

Orientation Reading 1/µµµµm Reading 2/µµµµm Average/µµµµm 

1 1013 1011 1012.0 

2 1011 1011 1011.0 

3 1012 1013 1012.5 

4 1014 1013 1013.5 

5 1014 1014 1014.0 

6 1015 1016 1015.5 

7 1012 1013 1012.5 

8 1012 1012 1012.0 

Average outer diameter 1012.875 
 
Using the same method to calculate the hub diameter of the master microgear, it was 

determined that the average hub diameter was 333.375µm,  

Table 2: Average calculation of hub diameter dimension of master SU8 microgear 

Orientation Reading 1/µµµµm Reading 2/µµµµm Average/µµµµm 

1 331 330 330.5 

2 335 336 335.5 

3 335 333 334.0 

4 334 334 334.0 

5 334 333 333.5 

6 332 331 331.5 

7 337 336 336.5 

8 331 332 331.5 

Average hub diameter 333.375 
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Using the software in the WLI to generate the average microgear height, the average for 

the master microgear is 38.46µm, as shown in Fig. 4.26 below.  

 

 
Fig. 4.26: Average height of SU8 master microgear 

 
Hence, the final average dimension of the master microgear is : 

Table 3: Average dimension of master SU8 microgear 

 

 

Outer 
Diameter 

(µµµµm) 

Hub 
Diameter 

(µµµµm) 

Gear 
Height/Cavity 

Depth (µµµµm) 
Master 

microgear 1012.87 333.38 38.46 
 

4.3.3 Silicone Rubber Micromould  

 

Using the definition set in section 4.3.1 and method illustrated in section 4.3.1.1 to 

measure the respective dimension for the micromoulds, the overview results of the ten 
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silicone rubber micromoulds (specimen A to J) is shown in the form of a graph (Fig. 

4.27).  

 

Overview of 10 Silicone Rubber Micromoulds
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Fig. 4.27: Overview of the dimension of 10 micromoulds 

 
 

The reproducibility of the micromoulds via vacuum casting can be described by plotting 

the ten specimen values for a particular dimension, such as the outer diameter, on a graph 

and calculating their standard deviation. By calculating their standard deviation, which is 

a standard measure of spread, reproducibility would be demonstrated. The smaller the 

value, the higher the level of dimensional consistency in the microcavities produced, and 

hence the greater the reproducibility of the microcavity dimensions. When examined 

closely into each of the specific dimensions, the following graphs for outer diameter 

(Fig.4.28), hub diameter (Fig. 4.29) and depth of the micromould (Fig.4.30) were 

obtained.  
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Outer Diameter of 10 Silicone Rubber Micromoulds
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Fig. 4.28: Comparison between actual and average dimension of outer diameter 

 
 

Hub Diameter of 10 Silicone Rubber Micromoulds
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Fig. 4.29: Comparison between actual and average dimension of hub diameter 
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Fig. 4.30: Comparison between actual and average dimension of cavity height 
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From Fig. 4.28 to Fig. 4.30, although the actual specific dimension (outer diameter, hub 

diameter, depth of micromould) appears to deviate alot from their average line, the 

largest difference is only 1.6 µm for the hub diameter while the smallest difference is 0.1 

µm for hub diameter. The standard deviation works out as 0.421, 0.693 and 0.0968 for 

outer diameter, hub diameter and cavity depth respectively. Hence this proved that the 

vacuum casting is capable of producing repeatable micromoulds (standard deviation < 1). 

Some SEM images of the micromould are shown in Fig. 4.31. The data table used to 

generate the above graphs can be found in Appendix J. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 4.31: SEM images of silicone rubber micromould 

4.3.4. Comparison of Master Microgear with Micromoulds 

 
After knowing that there was good consistency among the 10 micromoulds, it would be 

pointless if the dimension of the micromoulds were not close to the master pattern 

microgear, since moulds are meant to reproduce many specimens that are dimensionally 

close to the master. 
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The results below show the respective micromould dimension against the dimension of 

the master microgear. The calculation of the average micromould specimens can be 

found in Appendix J. 

 
Table 4: Comparison between master microgear and ten specimens 

 

 

Outer 
Diameter 

(µµµµm) 

Hub 
Diameter 

(µµµµm) 

Gear 
Height/Cavity 

Depth (µµµµm) 

Master SU8 Microgear 1012.9 333.4 38.46 

Average Micromoulds Specimens 1005.6 327.0 38.34 

Deviation (%) 0.72 1.92 0.31 
 
 
Table 4 gives a comparison between the master microgear and the micromoulds produced 

in the ten specimens. Generally, the results showed that the micromould cavities are 

physically smaller than the master gear used to fabricate them, with average dimensions 

smaller than that of the master gear. This result confirmed the occurrence of mould 

shrinkage due to a drop in mould temperature which comes from the curing temperature 

of around 400C to the room temperature of around 250C where micromoulds were 

measured and stored.  

 

From Table 4, it shows that the average micromould diameter differs from that of the 

master microgear by 0.72%, while the average hub diameter differs by 1.92%. The 

average micromould depth is comparable to the master microgear height, deviating by 

only 0.31%. These highlight the dimensional accuracy of the microcavities in relation to 

the master gear. 

 



Chapter 4: Experimental Results 

National University of Singapore  77  

It should be noted that since the micromould cavities had experienced some form of 

shrinkage when the measurements were taken, it was possible that the actual dimensions 

of the micromoulds produced may be even closer to the corresponding dimensions of the 

master microgear if the micromoulds were preheated to 40oC before the measurements 

were performed. 

 

4.4. Key Parameters for Micromould Fabrication 

4.4.1 Amount of Catalyst 

 

The recommended catalyst (for VTV 750) dosage was ten percent the weight of the 

silicone rubber used. After many extensive tests, it was observed that a slightly heavier 

dosage of up to fifteen percent was still acceptable without compromising the mould 

quality. However, excessive use of catalyst would shorten the mould life and make it 

susceptible to tearing [105]. On the other hand, partial curing would occur should there 

be an inadequate dosage. This was evident from the stickiness and softness of the 

catalyst-deficient regions on the mould surface as shown in Fig 4.32.  

 

  
 

Fig. 4.32: Partial curing at mould surface (left) and micro gear cavity (right) 
 

Sticky and soft 
region due to 

incomplete curing 

Distorted micro 
features 
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The features of the micromould would be distorted, thereby rendering the micromould 

defective where the vicinity of the micromould was not fully cured. Another factor was 

the poor mixing of the silicone rubber and the catalyst, causing catalyst-deficient regions 

to be form and leading to incomplete curing of the silicone rubber, similar to the case in 

which insufficient catalyst was added to the silicone rubber. 

 

4.4.2 Mixing and Degassing Duration 

 

The bulk of the micromould fabrication time consisted of the mixing and degassing 

duration. This duration had to be controlled carefully to ensure that the total processing 

time does not exceed the pot life of the silicone rubber. Pot life is defined as the time that 

it remains fluid [106]. If the pot life is exceeded during degassing, formation of voids 

would occur in the micromould. This is because the silicone rubber would start to cross-

link and harden at the same time when air was being removed from the silicone rubber 

mixture. The hardening silicone rubber would trap the remaining air bubbles inside and 

cure around them to form voids permanently in the mould (Fig 4.33b). These voids would 

distort the features of the micromould.  

 

Furthermore, the hardening silicone will cure around the air bubbles that collect on the 

top surface of the silicone rubber in the casting frame during degassing. This will result in 

a permanently rough mould surface upon curing as shown in Fig 4.33a.  
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Fig. 4.33: Void formation in mould due to degassing beyond silicone pot life 

 
Therefore, the solution to produce a void-free micromould with smooth surface was to 

ensure that the degassing process was completed before the pot life of silicone rubber was 

exceeded. The mixing time must be kept to a minimum yet a thorough mix must be 

ensured between the silicone rubber and catalyst.  

 

From the experiments, it was generally observed that a duration of 2 to 5 minutes of 

mixing using a high speed mixer was good enough to ensure the thorough mixing and 

complete curing of the silicone rubber. It was also empirically found that a duration of 10 

to 15 minutes for the first degassing process was able to remove most of the air in the 

silicone rubber while ensuring that it was still fluid enough to be poured into the casting 

frame to make the micromould. For the second degassing process, a maximum degassing 

time of 25 to 35 minutes was found to be permissible before silicone rubber started to 

show signs of hardening.  

4.4.3 Curing Duration and Temperature  

The curing temperature was found to have an influence over the curing time of the 

silicone rubber. In the moulding industry, higher temperatures are used to cure the 

silicone rubber in order to reduce the curing time [105, 106]. For VTV 750 silicone 

Rough mould 
surface 

Void in the micro mould 
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rubber, the experimental curing temperatures and their approximate curing times are 

shown in Table 5. These experimental results proved to be consistent with the general 

observation that a higher curing temperature leads to a shorter curing time. 

Table 5: Experimental cure times/temperatures for VTV 750 silicone rubber 

Cure Temperature (0C) 25 40 55 70 

Approximate Cure Time (hours) 24 10-12 4-6 2-3 

 

By convention, it has been recommended that the silicone rubber mould be cured at 400C 

to achieve “extreme dimensional accuracy in the castings” [107]. Since dimensional 

accuracy was crucial, experiments were done to ascertain any relationship between the 

curing temperature and the dimensions of the micromould in the silicone rubber mould.  

 

Table 6: Micromould cavity under different cure temperatures 

Cure 
Temperature 

(0C) 

Outer 
Diameter 

(µµµµm) 

Hub 
Diameter 

(µµµµm) 

Cavity Depth 

(µµµµm) 

25 1005.7 326.4 38.39 

40 1005.6 326.1 38.20 

55 1005.4 326.4 38.47 

70 1005.7 326.9 38.41 
 
From Table 6, we can see that there was no obvious relationship between the curing 

temperature and the dimensions. Hence, this implied that curing temperature was not a 

major factor and that micromoulds are producible from a wide range of curing 

temperatures without compromising the dimensional quality. Nevertheless, it would be 

good to conduct more tests to check for any relationship between the cure temperature 

and other properties, like the material properties of the micromoulds made. Taking other 
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factors like lead time savings into consideration, the cure temperature was fixed at 

between 400C to 450C, so that a micromould can be produced within a day. 
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5. CONCLUSIONS 

The objective of this research is to develop a novel method to fabricate 3D micron-scale 

structures as well as to develop an alternative moulding method that is simple to 

implement, has fewer processing steps, and reduces cost and lead time compared to many 

existing moulding methods. In order to demonstrate that this vacuum casting (with 

silicone rubber) method is a viable alternative to existing moulding techniques, a total of 

ten silicone rubber micromoulds were fabricated from a single master SU8 photoresists 

microgear  (38µm thick). 

 

For single layer lithography, the optimum process parameters to fabricate single layer 

microgear for all three materials (NOA 60, SL5510 and SU8) were realised. The 

optimum parameters for NOA 60 is 10 shots of 100 to 110mJ range (See section 4.1.1), 

while the optimum parameters for SL5510 is 2 shots of 16mJ (See section 4.1.2). As an 

additional step of baking is needed for SU8 photoresists, the optimum parameter is a 

single shot of 72mJ, with SB baking of 650C and PEB at 950C, for 2 and 5 min 

respectively (See section 4.1.3).  

 

In the case of NOA 60, multi-layer experiments were not performed because of the 

residual photopolymer that still remained after developing with alcohol. However, NOA 

60 may still be suitable for multi-layer fabrication if a better solvent is found to fully 

develop the microgear cleanly. 
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Based on the RP principle of building layer-by-layer, a novel method was proposed to 

create a 3D micron-scale structure via the multi-layered lithography. The process can be 

used for creating 3D microparts or even metal micromould via electroforming [55]. 

 

An experimental setup was constructed successfully according to the principle of the 

process, and a photomask which carries multiple layers patterns was built and used in the 

experiment. The single and multi-layers lithography experiments of SL5510 

photopolymers demonstrated that the mask-based lithography for 3D layered micro-

fabrication is feasible. A five layered microgear of 1 mm in diameter with 60 µm features 

has also been fabricated successfully using the proposed method. The results can be seen 

in Fig. 4.12.  

 

We have also shown that liquid SU8 photoresists can be photopolymerised by excimer 

laser (248nm) instead of the usual UV lamp. A series of single layer lithography has been 

tested, and multi-layer fabrication via the RP principle has also been demonstrated. 

Although the 3-layered 500 µm diameter micron-scale structure created was not aligned 

accurately due to the current alignment method, nevertheless, it still demonstrated that it 

is possible to create 3D micron-scale structures with the RP principle combined with 3D 

lithography. With better equipment and alignment method, an accurate 3D micron-scale 

structure with more layers is certainly possible.  

 

The important parameters for both photopolymer and photoresists are substrate 

cleanliness, exposure dosage, development duration and diffraction caused by the air gap 
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between the photomask and coated substrate. In the case of SU8 photoresists, additional 

baking parameters (SB and PEB) are paramount to obtain a good resolution, since the 

baking process is needed during the microfabrication process. 

 

We have also successfully demonstrated the use of the vacuum casting technique in 

fabricating micromoulds. The small deviations between the master pattern and the ten 

micropart specimens have proven that the proposed method is capable of consistently 

producing microparts that are dimensionally accurate with respect to the master pattern. 

In addition, this technique is much faster and cheaper than many existing micromoulding 

techniques. Therefore, we believe that the simplicity of this vacuum casting technique 

would encourage its wider use in microfabrication and is more suitable than current 

moulding methods for casting 3D microparts (since the mould is flexible). 

 

Hence, the objective of this project has been achieved since a novel method has been 

setup and successfully fabricated two micron-scale structures (1mm with SL5510 

photopolymer and 3-layered 500 µm diameter with SU8 photoresists) while the silicone 

rubber micromoulds fabricated by the vacuum casting technique has shown very small 

standard deviation (0.1% to 0.7%) among itself and are very close to the dimension of the 

master pattern. 
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6. RECOMMENDATIONS 

To overcome the misalignment of the 3-layered (SU8 photoresists) micron-scale structure, 

better equipment for alignment such as a commercial aligner should be used. This should 

be possible since alignment to previous layers using photomask via aligner is already 

very established in the semi-conductor industries.  

 

The current master pattern (SU8 microgear) used is not sufficiently complex and since 

vacuum casting is able to cast complex 3D microparts, the master pattern can be a 

complex 3D part. This will demonstrate the power of the method. 

 

To prove metal micron-scale structure can also be cast with the silicone rubber 

micromould, a low melting metal such as bismuth can be used and with the subsequent 

specimen compared with the master pattern.  

 

Since shrinkage of PDMS has been investigated by several researchers [59 – 60], 

shrinkage of silicone rubber should be investigated, so that comparison can be done 

between PDMS and silicone rubber, in terms of accuracy. 

 

Lastly, it would be ideal if the experiments are conducted in clean room environment to 

ensure that particles do not contaminate the parts. 
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Appendices 

Appendix A 

 
Materials used for lithography 

 

     
 
NOA 60 photopolymer  SU8 Photoresists 
 

Equipments used for lithography 
 

 
 

Lambda Physik COMPex 205 multigas (KrF) excimer laser 
 

 

UV reflecting mirrors 
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Quartz Photomask (left) and pattern on the photomask (right) 

                   

Fixture used to mount substrate and stage 

 

Newport XY linear micropositioner and a rotation stage 
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XYZ micropositioner stage 

 

 

Laurell single wafer spin coater (WS-400A-6NPP) 

        

LabTech  Hotplate (LSM-2003D) 
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Machine vision : CCD camera 

 

Diamond turned brass substrate kept in a petri dish 
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Appendix B  

Materials used for micromould via vacuum casting 
 

MCP VTV 750 Silicone Rubber. The RTV (Room Temperature Vulcanisation) 

silicone rubber is the mould material for all the micromoulds produced in this work. 

  

   

VTV 750 silicone rubber  

 

MCP CAT 750 Catalyst. This catalyst is used in conjunction with the VTV 750 

silicone rubber to accelerate its curing during the micromould fabrication process.  

 



Appendices 

National University of Singapore  103  

  

CAT 750 silicone rubber catalyst 

 

 

Equipment used for micromould via vacuum casting 
 

MCP 5/01 Vacuum Casting System. The vacuum casting system generates a vacuum 

in its chamber by means of a mechanical pump. This allows it to execute the 

degassing operation during the mould fabrication and casting processes. It also 

controls the heating, mixing and casting of the resins under vacuum conditions.  

 

   

MCP 5/01 vacuum casting system  

Shel Lab 1330FX Oven. This oven provides temperature and timing controls, and is 

capable of controlling the curing conditions of silicone rubber and moulded parts. It 



Appendices 

National University of Singapore  104  

provides convection heating and an air valve at the top controls the amount of air 

intake. 

 

   

Shel Lab 1330FX (left) and interior heating compartment (right) 
 

 
Various tools for micromould fabrication 

 

Degassing Process 
 
The vacuum casting machine is operated during the degassing process of the micromould 

fabrication. The main controls on the vacuum casting machine are presented on the 

touch-screen panel to the right of the vacuum chamber. 
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Control panel during micro mould fabrication and casting 

 

Important controls for micro mould fabrication 

 

There are two degassing processes for micromould fabrication. Primary degassing is 

carried out after mixing the silicone rubber mixture in a container, while secondary 

degassing is carried out after pouring the mixture into the casting frame. Degassing is 

controlled manually, as indicated by the word “Manual” on top of the interface screen.  

 

 

 

 

4 

2 

1 

3 
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Description of interface buttons 

Indicators/Buttons Functions 

1 ‘Pump’ 
Pressing this button will activate the pump to reduce the 
air pressure and achieve vacuum conditions in the 
vacuum chamber by pumping out air from the chamber. 

2 Pressure bar 
The pressure bar provides an indication of the air 
pressure in the vacuum chamber at any point in time. 
Zero bars represent vacuum conditions. 

3 ‘Slow’/’Fast’ 
These two buttons determine the speed at which air is 
introduced into the vacuum chamber once vacuum 
conditions are no longer desired. 

4 Timer 
The timer provides an indication of the time that the 
degassing operation has gone through. 

 

Degassing Procedures 
 

1. Place the silicone rubber mixture into the vacuum chamber. 

 

2. Activate the vacuum casting machine by turning the red ‘power’ knob at the side 

of the machine (figure C-3). Once activated, the introduction screen appears. 

  

Red ‘Power’ knob on vacuum casting machine 
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Introduction screen (left) and main menu (right) 

 

3. Tap the screen to skip the introduction screen and go to main menu. 

 

4. Press the ‘Manual’ button on the main menu to go to the interface screen for 

degassing operations. 

 

 

Interface screen for degassing operations 

5. Press the ‘Pump’ button to begin the degassing process. The pressure in the 

vacuum chamber will begin to drop as air is pumped out of the vacuum chamber. 

This is indicated by the value on pressure bar which will drop from 1000 mbar 

(atmospheric) to 0 mbar (vacuum) as shown below.  

Press to go 
to interface 

screen 

Press to begin 

degassing  
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Reduction in air pressure during degassing 

 

6. During degassing, the level of the silicone rubber mixture will rise due to the 

expansion of air in the mixture itself. Should the level of the silicone rubber 

mixture reach the top of the container or casting frame, press the ‘Fast’ button to 

let air leak into the vacuum chamber to reduce the level of the silicone rubber 

mixture in the container or casting frame. Once the level has dropped 

substantially, proceed with degassing by pressing the ‘Fast’ button again. 

7. After degassing is complete, press the ‘Pump’ button to stop degassing and the 

‘Slow’ button to reintroduce air into the vacuum chamber. The silicone rubber 

mixture can be removed from the vacuum chamber and placed in the oven after 

atmospheric pressure (1000 mbar) is achieved in the chamber. This is indicated by 

the pressure bar on the interface screen as shown below. 

 

Removing vacuum conditions after completing degassing 

Press to 
remove 
vacuum 

conditions 

Atmospheric 
pressure  
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Appendix C  

(from www.photronics.com) 
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Appendix D 

 
NOA 60 and SL5510 photopolymer information 
 

Typical Properties of NOA 60 

 Solids 100% 

Viscosity at 25° C 300 cps 

Refractive Index of Cured Polymer 1.56 

Elongation at Failure 35% 

Modulus of Elasticity (psi) 135,000 

Tensile Strength (psi) 2,800 

Hardness - Shore D 81 

Water Absorption 0.15% 

 

 
 

NOA 60 transmission graph 
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Appendix E  

 
 

SU-8 Spin Speed Curves
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Appendix F  
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Hard bake (optional) 
Bake temperature: 150-200˚C 



Appendices 

National University of Singapore  118  

Appendix G 

Steps for Micromould Fabrication 
 

 

Step 1 (Prepare mould-making setup) 

 

 

Step 2 (Weigh the silicone rubber) 
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Step 3 (Add the catalyst to the silicone rubber) 

 

Step 4 (Mix the silicone rubber and the catalyst) 

 

 

Step 5 (Degas the silicone rubber mixture) 
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Step 6 (Pour the silicone rubber mixture into the casting frame) 

 

Step 7 (Degas the silicone rubber mixture in the vacuum chamber) 

 

Step 8 (Reintroduce air into the vacuum chamber) 
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Step 9 (Cure the silicone rubber mixture in the oven) 

 

 

Step 10 (Remove the mould from the casting frame) 

 

 

Step 11 (Separate the mould into the core and cavity halves) 
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Appendix H   

Diffraction Effects 

                  

 

 

               

 

 

 
 

SU-8 on glass, 8mJ, 100-200 µm gap SU-8 on glass, 20 mJ, below 500 µm gap 

SU-8 on glass, 8 mJ, and 1000-2000 µm gap 
 

SU-8 on glass, 20 mJ, below 1000 µm 
gap  
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Appendix I 

 
 
Basically the average gear height can be defined as the average distance of the top 

surface of the gear with respect to the base region immediate to the micro gear. Using the 

Vision 32 software designed for the Veeco white light interferometer, numerous data 

points are taken from the top surface of the gear and a histogram analysis is performed by 

categorising all the points taken into equally spaced intervals called bins.  

 

Figure H1 shows the histogram generated for the SU8 master microgear. The vertical axis 

represents the number of data points contained within the equally spaced intervals (bins), 

while the horizontal axis represents the surface height. Using this information, the gear 

height can be derived by drawing a distribution curve. For the measurements done 

throughout the course of this research, 200 bins, the default value for the field of view of 

the white light interferometer are used. 
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Figure H1: Histogram to characterise surface data points of SU-8 gear 

 

In the same way, the depth of the gear cavity of a micromould can be generated by taking 

numerous random data points from the top surface of the region immediate to the cavity 

and measuring the average distance of the top surface from the bottom of the cavity 

surface. 

 

 

Figure H2: Measurements to determine average height of SU8 microgear 

 

As shown in Figure H2, the circled value gives the average height of the SU8 microgear, 

which is 38.46µm. This represents the average distance of the red region (top surface) of 

the gear with respect to the blue (base) regions immediate to the gear.  
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Appendix J 

 
 

Average dimensions of ten silicone rubber micromould cavities 

Specimen 
Outer 

Diameter  

(µµµµm) 

Hub Diameter 

(µµµµm) 

Cavity Depth 

(µµµµm) 

A 1005.4 326.5 38.29 

B 1005.2 326.9 38.33 

C 1006.0 327.6 38.32 

D 1006.3 327.3 38.43 

E 1005.6 326.8 38.45 

F 1006.1 326.9 38.18 

G 1005.6 326.2 38.21 

H 1005.2 326.9 38.38 

I 1005.8 326.4 38.35 

J 1005.0 328.6 38.47 

Average 1005.6 327.0 38.34 

Std Dev 0.421 0.693 9.68x10-02 
 
 
 

 

 

 

 
 


