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Summary 
 

Causal knowledge is essential for comprehension, diagnosis, prediction, and control 

in many complex situations. Identification of causal knowledge is an important 

research topic with a long history and many challenging issues. The majority of 

existing approaches to causal knowledge discovery are based on statistical 

randomized experiments and inductive learning from observational data.  

This thesis proposes a three-step iterative framework for causal knowledge 

discovery with Bayesian networks under a manipulation criterion. Its goal is to exploit 

available resources, including observational data, interventional data, topological 

domain knowledge, and interventional experiments, to discover new causal 

knowledge, and minimize the number of interventional experiments required to 

validate the causal knowledge. The main challenges are in automatically generating 

new hypotheses of causal knowledge, systematically incorporating domain knowledge 

for hypothesis refinement, and effectively selecting hypotheses for verification. 

Direct causal influence relationships between variables are regarded as 

hypotheses and are modeled as edges of causal Bayesian networks. The statistical 

significance of the hypotheses of the direct causal influence relationships between 

variables can be estimated from data with Bayesian network structure learning. We 

propose variable grouping as a new method for hypothesis generation; this method 

partitions the variables with similar conditional probabilities into groups to support 

learning of the Bayesian network structures simultaneously. 
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Domain knowledge is specified as topological constraints in Bayesian network 

structure learning for hypothesis refinement. We propose two canonical formats to 

model topological domain knowledge. The effects of different topological constraints 

are examined experimentally. 

The hypotheses of the direct causal relationships between variables from data can 

be verified with interventional experiments. The situation with multiple data instances 

collected in each intervention step is first considered. We propose node-based 

interventions to establish the causal ordering of variables and edge-based 

interventions to examine the direct causal relationships between variables, propose 

non-symmetrical entropy from the available data as a selection measure to rank the 

hypotheses for verification, and propose structure entropy as a criterion to stop the 

active learning process.  

The proposed methods build on and extend various well-established algorithms 

for the respective tasks. The different tasks are integrated in a systematic way to 

support cost-effective causal knowledge discovery. Promising results are shown in a 

set of synthetic and benchmark Bayesian networks with practical implications. In 

particular, we illustrate the effectiveness of the proposed methods in a class of 

problems where: i) variable grouping groups the similar variables together and 

generates relevant hypotheses; ii) hypothesis refinement with topological domain 

knowledge improves the relevance of the generated hypotheses; and iii) 

non-symmetrical entropy from the data reduces the computational cost and leads to 

minimal interventional experiments to validate causal knowledge. The proposed 
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framework is applicable to many domains for causal knowledge discovery, such as in 

reverse engineering tasks. 

 

Keywords: Causal knowledge, Bayesian networks, knowledge discovery, 

hypothesis generation, hypothesis refinement, hypothesis verification, observational 

data, interventional data, non-symmetrical entropy, active learning 
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Chapter 1  Introduction 

[“... Knowledge Discovery is the most desirable end-product of computing. Finding new 

phenomena or enhancing our knowledge about them has a greater long-range value than 

optimizing production processes or inventories, and is second only to task that preserve our 

world and our environment. It is not surprising that it is also one of the most difficult 

computing challenges to do well. ...”] – Gio Wiederhold (1996) [170] 

 

Knowledge is used in every scenario of our life for comprehension, diagnosis, 

prediction and control. Causal knowledge is important for dealing with complex 

problems and representing knowledge more logically, and especially useful in 

manipulating current systems for expected effects or re-engineering current systems to 

create new systems. Discovering new causal knowledge from observations is a 

sustaining and continuing effort of human beings. Generally, knowledge discovery 

involves several steps such as data (or observation) analysis and hypothesis 

generation. Usually, these steps are studied separately in the literature and the 

connections among them are harder to identify. A unified framework that would 

integrate these steps and facilitate knowledge discovery is needed. 

My research is about knowledge discovery with observational data, interventional 

data, domain knowledge and interventional experiments. A three-step framework for 

causal knowledge discovery with Bayesian networks is proposed. The steps include: 

hypothesis generation, hypothesis refinement, and hypothesis verification. In this 

framework, hypotheses are the direct causal influence relationships between variables 
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and are modeled as edges of Bayesian networks. Observational data and 

interventional data are used to generate hypotheses (selecting the possible causal 

relationships between variables with statistical significance), domain knowledge is 

used to refine the generated hypotheses, and interventional experiments are suggested 

to verify the top-ranked hypotheses for knowledge discovery. 

The application of this framework is shown on problems in biomedical domains. 

The experiments show that for this class of problems, the framework and its 

algorithms can make use of all available resources and facilitate the knowledge 

discovery process: sound hypotheses can be generated from data with Bayesian 

network structure learning, domain knowledge can improve the validity of hypotheses 

generated from data, and non-symmetrical entropy can minimize the number of 

interventional experiments to verify the hypotheses in a domain. 

1.1 Background and Motivation 

With advanced information technology, we are using more sensors and electronic 

recording devices in various fields, collecting and storing more data in databases. 

With these accumulated data, people are able to utilize them to unearth patterns in the 

domain, which can be used as new knowledge after verification. This process is 

known as knowledge discovery in databases. 

There are different definitions for knowledge discovery in database. According to 

the widely-cited definition by Fayyad, Piatetsky-Shapiro and Smyth [54]: “knowledge 

discovery in database (KDD) is the nontrivial process of identifying valid, potentially 
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useful, and ultimately understandable patterns in data”. This definition is well-known 

for its emphasis on the properties of new knowledge discovered from data. 

Research in Computer Science, Statistics, Database and other disciplines has led 

to various techniques for knowledge discovery. Classification, regression, clustering 

and association rule mining are four representative tasks in knowledge discovery and 

the discovered knowledge is represented in different patterns based on the tasks. 

Patterns in classification and regression reflect the relationships between one target 

variable and all other variables1. Patterns in clustering reflect the similarities among 

some part of the data to distinguish them from other parts of the data. Association rule 

mining is used to identify items frequently occurring together in different scenarios. 

In practice, the majority of these tasks are often applied to correlational relationship 

discovery from observational data. 

Besides the patterns mentioned above, an important pattern in many domains is 

causal relationships between variables – the entire set of direct influence2 

relationships between variables in a domain. Causal relationship is an indispensable 

part of our life and causal knowledge is essential to dealing with complex situations 

and summarizing results more logically [143]. Causal knowledge is the superset of 

the causal relationship between variables. It is crucial for the manipulation of the 

system to achieve the expected effects and crucial for the re-engineering process to 

                                                        
1 The target variables in classification are categorical variables and the target variables in regression 

are continuous variables. 
2 In this thesis, the “influence” means the “causal influence”. If variable A  influences variable B , it 

means that variable A  is a cause of variable B . Refer to the definition of causal knowledge in 

Section 1.1.1 for details. 
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create new systems from the existing systems, such as in Engineering, Biology and 

Economics. A critical problem in the re-engineering process is to predict the behavior 

(or property) of the new system before re-engineering. Such prediction cannot be 

done merely with the correlation relationships between variables from observational 

data. We need to know which properties of the system will remain unchanged after 

re-engineering and how other properties will change. Causal knowledge can model 

these properties as the structural invariance and the manipulation invariance of the 

system, and tell us how the properties change after manipulation.  

The focus of this thesis is on the discovery of patterns that can be represented as 

causal relationships – direct causal influence relationships between variables in a 

domain. Correlational relationships are mainly the association between variables 

from observational data, and are not causal relationships in general, although such 

information may be used as the initial hypotheses of causal knowledge before 

verification with interventional experiments.  

One approach to modeling causal influence relationships between variables in a 

domain is Bayesian networks (BNs). The goal of this work is to discover causal 

knowledge represented by Bayesian networks from observational data, interventional 

data, topological domain knowledge and interventional experiments. The main 

challenges are to generate the hypotheses of causal relationships from data, to refine 

the hypotheses with domain knowledge and to minimize the number of interventional 

experiments needed to verify the hypotheses. I argue that the combination of 

observational and interventional data can effectively and economically discover 
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causal relationships. 

1.1.1 Causal Knowledge 

Causal knowledge captures the cause-and-effect relationship between different 

events. The study of causal knowledge has a long history. Aristotle spoke of the 

doctrine of four causes, while others proposed different forms of causality afterwards 

[90,106,130,155,171]. In this thesis, I follow the definition from Spirtes et al. [155] 

and consider causal knowledge from a probabilistic perspective with a manipulation 

criterion  (refer to [155], Section 3.7.2):  

Definition of causal relationship (Spirtes et al. [155]): Suppose we can 

manipulate the variables in a domain and A  and B  are two variables in the 

domain; If 1) we manipulate variable A  to different values 1a  or 2a , 2) 

measure the effects on variable B , and 3) observe the changes in the probability 

distribution of variable B  under different values of variable A, 

))(|())(|( 21 aAdoBpaAdoBp =≠= , 

we say that variable A  causally influences variable B , variable A  is a 

(direct or indirect) cause of variable B , and variable B  is an effect of variable 

A. The operator ()do  is from Pearl’s book “Causality” [130], and )( 1aAdo =  

means that variable A  is manipulated to a specific value 1a , rather than 

observed with value 1a  from observational data. 

The reason I adopt this definition of causal relationship is that this definition is 

general and operational, and this kind of causal knowledge can be verified by 
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experiments with manipulation.  

The main scientific method for causal knowledge discovery from data relies on 

randomized experiments in statistics discipline [58,125,144]. The interventional data 

is collected in randomized experiments to infer causal strength of the randomized 

variables on other variables. However, the problem of hypothesis generation is not 

discussed in experiment design in statistics, even though the hypothesis is most 

important as the starting point of the experiment design. 

1.1.2 Causal Knowledge Discovery with Bayesian Networks 

Bayesian networks are graphical models that can be used to represent causal 

knowledge as the probabilistic causal relationships between variables in a domain and 

model multiple direct causal influence relationships simultaneously. Judea Pearl 

[130,131] and Spirtes et al. [155,156] have developed a comprehensive theory for 

causal knowledge discovery from observational data with Bayesian networks. There 

are many applications of their work on causal knowledge discovery [73,145,151].  

The previous work on Bayesian networks [38,87,132,156] mainly focused on 

hypothesis generation from data as Bayesian network structure learning problem, 

which is the process to infer the Bayesian network structure from data with a certain 

criterion to best explain the data. In this thesis, I will use Bayesian networks to model 

causal knowledge in a domain, to generate hypotheses of causal relationships from 

data, to model domain knowledge as topological constraints in Bayesian networks and 

to select hypotheses for verification with interventional experiments. 
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It is widely accepted that causal knowledge can be extracted from intervention 

(when intervention is possible), such as randomized experiments. It is debatable 

whether causal knowledge can be inferred from observational data alone with 

Bayesian networks. Spirtes et al. [155,156], Pearl [130], and Korb and Wallace [100] 

are examples of proponents of Bayesian networks for causal knowledge discovery, 

while CartWright [19,20], Humphreys and Freedman [91], and McKim and Turner 

[118] represent the opponents. The arguments are more on the assumptions in 

Bayesian networks – causal Markov assumption and faithfulness assumption, and 

whether these assumptions are reasonable. In this thesis, I will not discuss this 

controversial issue – I will take Bayesian networks as a knowledge discovery 

framework for granted.  

1.1.3 Why Bayesian Networks? 

The reasons I chose Bayesian networks as the model for knowledge discovery are: 

i) Bayesian networks can be used to generate hypotheses of causal relationships from 

data for causal knowledge discovery, while randomized experiments do not consider 

hypothesis generation for causal inference in mathematical form; 

ii) Bayesian networks can model multiple hypotheses of causal relationships with 

many target variables simultaneously, while randomized experiments and 

classification and regression methods only consider one target variable; 

iii) Bayesian networks can model joint probability distribution in a domain with fewer 

parameters, by exploiting conditional independence relationships among variables; 
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iv) Bayesian networks can explicitly model uncertainty and address noisy and missing 

data; 

v) It is easy to combine prior knowledge (such as causal knowledge) into the structure 

and parameters of Bayesian networks; 

vi) Results from Bayesian network structure learning algorithms can be extended for 

causal knowledge discovery, especially when interventional data is considered; and 

vii) Manipulation methods are available in many domains (such as Biology or 

Electrical Engineering) to verify the hypotheses generated from Bayesian networks. 

1.1.4 Data 

The data for knowledge discovery can be divided into two categories by the 

observation conditions: observational data and interventional data. 

i) Observational data – This category of data is observed when the system of 

interest evolves autonomously and there is no manipulation on the system. A 

typical example is the system of the Sun, the planets and the stars. Currently (or 

even in the near future), humans can only observe the movements of the Sun, the 

planets and the stars and cannot manipulate the system. In Biology, we can 

observe the expression level of proteins without any reagents added. In Electrical 

Engineering, we can observe the system working without external signals added. 

ii) Interventional data  – This category of data is observed when some variables 

in the system have been manipulated to specific values and other variables evolve 

simultaneously by following the system’s causal mechanism. In Biology, we can 
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manipulate the expression levels of some genes by knock-out or over-expression 

experiments, and observe the expression levels of other genes. In Electrical 

Engineering, we can cut connections in the circuit or add some external signals at 

some points of the system, and observe the effect on other parts of the system.  

The main difference between observational data and interventional data is whether 

some variables in the system are under manipulation when the data is collected. A 

manipulation3 is represented by the introduction of an exogenous variable into the 

current causal system as a cause of the variable to be manipulated. When there is no 

manipulation, the system functions as normal. When there is manipulation, the 

relationships between the manipulated variable and its original causes in the system 

will be changed – the values of the manipulated variables are determined by the 

manipulation while the values of other variables will be determined by the mechanism 

of the system. In this way, the relationship between two variables, whether causal or 

merely correlational, can be verified with interventional data. 

Here we need to distinguish the probabilities from different types of data: 

)|( 1xXYp =  from observational data and ))(|( 1xXdoYp =  from interventional 

data. )|( 1xXYp =  means the conditional probability distribution of variable Y  

given that variable X  is observed with value 1x . ))(|( 1xXdoYp =  means the 

conditional probability distribution of variable Y  given that variable X  is 

manipulated to value 1x . 

Compared to interventional data, observational data can be collected economically. 

                                                        
3 For more details of manipulability, refer to the book by J. Woodward, Making things happen: a 

theory of causal explanation, Oxford University Press, 2003. 
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In some domains, such as in Social Science or Clinical Science, only observational 

data can be obtained, and intervention on some variables is infeasible due to financial, 

legal or ethical reasons. This is why most traditional methods for knowledge 

discovery in database [53,86] only consider observational data, leading to some 

researchers developing methods to discover causal relationships with observational 

data [130,143,155]. 

1.1.5 Hypotheses 

The knowledge discovered from data can be represented in different forms, such as 

rules, differential equations, structural equation models and more [28,81,136,172]. 

The interest in this thesis is the direct causal influence relationships between 

variables, which can be represented as Bayesian network structures. The process used 

to discover new knowledge is equivalent to learning of Bayesian network structures. 

Directed edges in the learned Bayesian networks will be regarded as hypotheses of 

causal relationships generated from data and domain knowledge. 

1.1.6 Domain Knowledge 

In every domain, we have certain domain knowledge, such as the number of variables 

and the meanings of these variables. Such domain knowledge could come from 

scientific laws, expert opinions, accumulated personal experience, as well as other 

sources [37]. From common sense, we know that domain knowledge is usually correct, 

since it has been verified by experiments or real applications. 
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In the applications of Bayesian network structure learning from data, it is not 

uncommon to observe that some edges in the learned Bayesian network structures are 

inconsistent with domain knowledge. The potential reason for the inconsistency is that 

the available data is inadequate or not representative of the probability distribution in 

the domain. To resolve this inconsistency, one should consider incorporating the 

available domain knowledge in the knowledge discovery process.  

Representation of domain knowledge in Bayesian networks can be quantitative 

and qualitative. The quantitative domain knowledge is conditional probabilities or 

constraints on conditional probabilities, and the study on quantitative domain 

knowledge can be referred to [11,94,95,126]. The qualitative domain knowledge can 

be represented as topological constraints in Bayesian networks [38,87]. This work 

will provide a detailed discussion of topological constraints in Chapter 4 for refining 

the hypotheses generated from observational data. 

1.2 The Application Domain 

While the issues in knowledge discovery I have addressed are general, the 

applications I examined were mainly from biomedical domains. The purpose of 

knowledge discovery in biomedical domains is not merely to predict the values of 

some variables based on their correlation with other variables from observational data 

– the purpose is to predict the behaviors of the system after the manipulation of some 

variables in the system, like the responses after treatments in the medical domain or 

system properties after gene sequence changes in Biology.  



 12 

 In biomedical domains, there are sufficient observational data, interventional data, 

domain knowledge and possible ways of manipulation to verify the hypotheses. All 

these make biomedical domains an ideal area to explore the idea of combining 

observational and interventional data for causal knowledge discovery. 

1.3 Contributions 

This thesis focuses on causal knowledge discovery with Bayesian networks. The 

objective is to identify direct causal influence relationships between variables in a 

domain. The main challenges are how to effectively exploit the available resources 

and minimize the number of interventions for causal knowledge discovery. Utilizing 

the available resources will improve the relevance of the generated hypotheses, and 

minimizing the number of interventions will reduce the cost and resources required 

for causal knowledge discovery. From our best knowledge, no work has combined 

observational data, interventional data, domain knowledge and interventional 

experiments for causal knowledge discovery. 

A three-step framework of knowledge discovery with Bayesian networks is 

proposed. The steps are: 

1) Hypothesis generation from data; 

2) Hypothesis refinement with topological domain knowledge; and 

3) Hypothesis verification with interventional experiments. 

The input-output model of the framework can be illustrated as 

Data + domain knowledge + experiment + algorithm���� new knowledge 
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The flowchart of knowledge discovery framework is shown in Figure 1. 

 
Figure 1  Diagram for the proposed knowledge discovery framework 

1) Hypothesis generation from data 

The hypotheses are the direct influence relationships between variables in a 

domain as edges in Bayesian networks in this thesis. Hypothesis generation in 

the proposed framework is equivalent to learning of Bayesian network 

structure from data. The probabilities of individual edges and complete 

Bayesian networks can be estimated from data with Bayesian network 

structure learning as the statistical significance of the hypotheses. 

In this step, a new algorithm is proposed to learn Bayesian networks with 

variable grouping in a domain with similar variables. Group variables are 

introduced to represent groups of variables with similar conditional 

probabilities and are used to learn Bayesian networks. Variable grouping can 

reduce the number of variables and Bayesian network search space, which can 

Data 

Hypothesis generation as Bayesian network structure learning 

Hypothesis refinement 

Hypothesis ranking for verification 

Domain knowledge 

Real experiments 

New knowledge 
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lead to speed up the learning process. The experiments with synthetic 

examples and a real microarray data show that this algorithm is capable of 

generating reasonable hypotheses in the domain of interest. 

2) Hypothesis refinement with topological domain knowledge 

Topological domain knowledge contains known root nodes, leaf nodes, edges, 

and so on, and is used in Bayesian network structure learning to resolve the 

possible inconsistency between the learned structure and domain knowledge. 

Two canonical forms, i) the rule format and ii) the matrix format, have been 

proposed to represent topological domain knowledge. The rule format is 

general and easy to extract from domain experts, while the matrix format is 

easy for domain knowledge consistency checking and easy to combine in the 

Bayesian network learning. From our best knowledge, the matrix format of 

topological domain knowledge has not been discussed in other work. 

Topological domain knowledge has been used in Bayesian network structure 

learning. However, the effects of different kinds of topological constraints 

have not been comprehensively studied. Experiments in this thesis show that 

topological constraints such as roots, leaves and distribution-indistinguishable 

edges are important in hypothesis refinement with Bayesian network structure 

learning.  

The application of Bayesian network structure learning in a real heart disease 

domain shows the inconsistency between the learned Bayesian network and 

domain knowledge, which suggests the requirement of topological domain 
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knowledge for hypothesis refinement in real applications. With topological 

domain knowledge, Bayesian network structure learning can generate more 

justifiable hypotheses from data and the learning process can be sped up. 

3) Hypothesis verification with interventional experiments 

The generated hypotheses are not the final product of causal knowledge 

discovery. They have to be verified with interventional experiments to ensure 

their effectiveness for causal diagnosis, prediction and control.  

The objective of hypothesis verification is to select the appropriate hypotheses 

for verification and to minimize the number of interventional experiments 

required. Node-based and edge-based interventions are proposed for 

hypothesis verification. In node-based interventions, some variables are 

manipulated to specific values and their effects on other variables are 

measured to evaluate the influence relationships between variables learned 

from the previous data. In edge-based interventions, 2−n  variables in the 

domain are fixed to specific values by manipulation and one of two remaining 

variables is manipulated to different values to observe its effect on the last 

variable. To my knowledge, this thesis is the first to discuss the edge-based 

intervention for hypothesis verification under the Bayesian network 

framework.  

Hypothesis verification starts with a data set collected in each active learning 

step. Node entropy and edge entropy from the current available data are used 

to rank the hypotheses for intervention to reduce the computational complexity. 
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A new criterion, non-symmetrical entropy, is first proposed to select 

hypotheses for verification, and a new entropy-based criterion is proposed to 

stop the active learning process. Non-symmetrical entropy considers the 

probabilities of two states between two variables (say, A  and B ): an edge 

from A  to B  and the state without such an edge. In contrast, symmetrical 

entropy considers the probabilities of three states between two variables: an 

edge from A  to B , an edge from B  to A  and the state of no edge 

between A  and B . 

Since intervention is non-symmetrical in nature, non-symmetrical entropy is 

better than other methods to rank hypotheses for verification. Experiments 

show that, on average, non-symmetrical entropy minimizes the number of 

interventional experiments required to verify the direct causal influence 

between variables in interventional experiments. 

The proposed framework is interactive and iterative, which involves the repeated 

application of specific Bayesian network structure learning algorithms and 

interpretation of hypotheses generated by these algorithms ([54], page 4). The reason 

for an iterative framework is that knowledge discovery in a domain cannot be 

completed in one round, and there is no closed-loop framework formalized for 

knowledge discovery with causal Bayesian networks, although the idea of a 

closed-loop framework for causal knowledge discovery is implicitly used in practice. 

The structure of the framework is stable, and the details of the three components 

of the framework can be updated or further extended in future. The two main 
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components to be emphasized in the framework are: i) hypothesis refinement and ii) 

hypothesis verification. The general knowledge discovery process has been discussed  

for expert systems [74,133] and data mining [13,23] (more references in the survey 

[101]). However, hypothesis refinement and hypothesis verification have not been 

sufficiently taken into account. Little work has been done on hypothesis selection for 

verification with interventional experiments. The proposed framework can be a step in 

the right direction for hypothesis verification. More detailed comparisons between our 

methods and related work can be referred to Section 7.2. 

The framework is implemented using MATLAB with Bayes Net Toolbox [122]. 

Some preliminary results of the work have been published before [107,108]4.  

1.4 Structure of the Thesis 

This chapter briefly summarizes the research motivations and objectives of this work. 

The remainder of the thesis is organized as follows: 

Chapter 2 summarizes the background and related work of this thesis. 

Chapter 3 discusses methods for hypothesis generation in three situations: 

                                                        
4 Some of the results have appeared in the following papers. Reprinted with permission from IOS 

Press. 

G. Li, T.-Y. Leong, A framework to learn Bayesian Networks from changing, multiple-source 

biomedical data,  Proceedings of the 2005 AAAI Spring Symposium on Challenges to Decision 

Support in a Changing World Stanford University, CA, USA, 2005, pp. 66-72. 

Q. Chen, G. Li, T.-Y. Leong, C.-K. Heng, Predicting Coronary Artery Disease with Medical Profile 

and Gene Polymorphisms Data, World Congress on Health (Medical) Informatics (MedInfo), IOS 

Press, Brisbane, Australia, 2007, pp. 1219-1224. 

G. Li, T.-Y. Leong, Biomedical Knowledge Discovery with Topological Constraints Modeling in 

Bayesian Networks: A Preliminary Report,  World Congress on Health (Medical) Informatics 

(MedInfo), IOS Press, Brisbane, Australia, 2007, pp. 560-565. 
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individual Bayesian networks, individual edges in Bayesian networks and Bayesian 

networks learned with variable grouping. 

Chapter 4 discusses hypothesis refinement. Two canonical formats are proposed 

to represent domain knowledge as topological constraints in Bayesian networks.  

Chapter 5 discusses hypothesis verification with node-based interventions and 

edge-based interventions. Non-symmetrical entropy criterion is proposed to select 

hypotheses for verification, and entropy-based criterion is proposed to stop the active 

learning process.  

Chapter 6 demonstrates the complete process of knowledge discovery with 

Bayesian networks on a protein signal network as a working example.  

Chapter 7 summarizes the achievements, the limitations of this study and the 

potential future work. 

1.5 Declaration of Work 

During my PhD study, I have worked on different topics, including Bayesian network 

structure learning, translation initiation site prediction from human cDNA sequences, 

and ancestral state accuracy analysis in phylogenetics. I have published four papers in 

the leading international journals and nine papers in the leading international 

conferences. The details of the selected publications are available in Appendix A.D. 
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Chapter 2  Background and Related Work 

There are two categories of high-level tasks in knowledge discovery ([73], preface, 

page xi). The first category of the tasks is to predict the values of some variables from 

the values of other variables based on correlation information from observational data, 

such as classification and regression with observational data, or to summarize 

observational data, such as density estimation, clustering and association rule mining. 

The second category of the tasks in knowledge discovery is to predict the causal 

change of some variables based on causal relationships between variables from 

interventional data when other variables are manipulated to different values.  

In this chapter, I first briefly summarize the methods using observational data for 

correlational knowledge discovery. Next, I discuss randomized experiments to collect 

interventional data for causal knowledge discovery. Lastly, I survey the methods for 

Bayesian network learning, which are the fundamentals of this thesis and can be 

applied to both categories of tasks in knowledge discovery.  

2.1 Knowledge Discovery with Correlation Information 

Knowledge discovery with correlation information is based on observational data. 

The representative tasks in this category include classification, regression, clustering, 
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and association rule mining with observational data5. These methods are useful and 

important in many applications, such as marketing [2], investment [80], fraud 

detection [149], manufacturing [116], and biomarker prediction [109]. 

2.1.1 Classification 

Classification is a kind of supervised learning [81]. With the available data and the 

class labels, we need to find a function that maps the features to class labels as 

accurately as possible. The features, extracted from the data, can be discrete, 

continuous, or mixed. The mapping function can be expressed explicitly in some 

models or implicitly in the data. Some representative methods for classification are 

decision trees [136], Naïve Bayes [83], K nearest neighbors [4], artificial neural 

networks [9], and support vector machines [17], to name a few. 

Decision tree methods [136] use a tree structure to classify the instances6. The 

classification process starts from the root of the tree. In the root of the tree, one 

feature (or some combinations) of the instance is compared to a specified function to 

decide which branch to follow. In the next internal node encountered, another feature 

will be compared to a new specified function. This comparison process will continue 

until the instance reaches a leaf node, where the associated class label is assigned to 

the instance.  

Naïve Bayes [83] is a probability-based method. It assumes that the features are 

                                                        
5 Usually, classification and regression can also be applied to interventional data for causal knowledge 

discovery. 
6 In this thesis, an “instance” is the same as a case, a sample, or an example in a data set. An instance 

includes the values of all the variables in a specific case. 
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independent of each other given the class label. The advantage of Naïve Bayes 

classifier is that it is easy to build and it is robust in prediction. However, the 

independence assumption between features given the class label is sometimes strong. 

Some extensions of Naïve Bayes relax the independence assumption, such as 

Tree-Augmented Naïve Bayes [62] and Aggregating One-Dependence Estimators 

(AODE) [169], to improve the classification accuracy. 

K nearest neighbor [4] is a method based on the intuition that, if the values of the 

features in different instances are similar (or the same), the instances should be in the 

same class. The training process is simple: just keep the training data set. The 

mapping function from the features to the class labels is implicitly expressed with the 

training instances. However, the prediction with K nearest neighbor method is 

time-consuming – It searches the similar instances throughout the training data set for 

each new instance to make a prediction. 

Artificial neural network [9,84] is a method inspired by a biological neural 

system which consists of many neurons. The neurons in artificial neural network are 

inter-connected and work together to realize a mapping function. The links between 

neurons can be trained with data to strengthen the particular patterns. The 

representative training method for artificial neural networks is Back-propagation [84]. 

A neural network can approximate any functions with any accuracy when the number 

of neurons, connection functions, and the weights of the connections are properly 

selected. 

Support vector machines (SVMs) [17,164] map data from the original 
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low-dimension space into a high-dimension space and learn a hyperplane which 

separates the learning examples into their different classes. The hyperplane in the 

high-dimension space is selected based on the maximal margin between two classes. 

With kernel methods, the real mapping from the original dimension to the higher 

dimension can be achieved implicitly. SVMs are among the best methods for 

classification. However, they are sensitive to noises, since the noises may change the 

margin, the position of the hyperplane and then the classification accuracy. 

2.1.2 Regression 

Regression [141] has been extensively studied in statistics. It examines the 

relationship between a dependent variable (or response variable) and independent 

variables (or explanatory variables). The representative methods are linear regression 

and logistic regression. Different from Bayesian network structure learning (refer to 

Section 2.3 for details), where there is no specific target variable, a target variable is 

pre-specified in regression models. The purpose of regression analysis is to learn the 

relationship between the target variable and all the other variables. In contrast, the 

purpose of Bayesian network structure learning is to identify all possible direct causal 

influence relationships between variables in a domain.  

2.1.3 Clustering 

Clustering is a common unsupervised descriptive task where a finite set of categories 

or clusters are identified to describe the data [53,55,92,159]. It is a very helpful 
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method for discovering new and interesting patterns in the underlying data. The 

patterns in clustering are some kinds of similarities within a subset of the data to 

distinguish them from the rest. After clustering, the instances in each cluster are 

similar to each other with respect to some similarity measure, and dissimilar to the 

instances in other clusters. Two categories of clustering methods are commonly used: 

partitional clustering and hierarchical clustering [92]. Detailed surveys on clustering 

methods can be found in [7,75,92,93,96,176]. 

2.1.4 Association Rule Mining 

Association rule mining was originally proposed to identify items frequently 

co-occurring in commercial transactions. The co-occurrence of the items indicates that 

consumers tend to buy these items together. Such information is important for 

marketing and has applications in other domains, such as analysis of dependence 

between genes in Biology. Representative methods for association rule mining are 

Apriori [3] and Dynamic Itemset Counting (DIC) [14]. 

2.1.5 Time-series Analysis 

Time-series data can be modeled with a Markov process or its variants [12,137]. In a 

Markov process, the future state of the system is only dependent on the current state 

and independent of the past states. The discrete time-series data can be modeled with 

hidden Markov models (HMM) [137]. The continuous time-series data can be 

modeled with time-series regression models or state-space models [12]. 
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A special issue in time-series analysis is Granger causality, which is widely used 

in econometrics. Ordinarily, regressions from observational data reflect "mere" 

correlations, but Clive Granger [76] argued that an interpretation of a set of tests can 

reveal something about causality: If a variable X  at time 1t  can predict another 

variable Y  at time 2t  ( 1t  is before 2t  in time) well by regression, then variable 

X  is a cause of variable Y .  

2.1.6 Disadvantages of Correlation-based Knowledge 

Discovery 

Correlation-based knowledge discovery from observational data, including Granger 

causality, only measure correlational dependencies between variables. 

Correlation-based knowledge discovery can predict the values of some variables from 

the observational values of other variables when there is no change in the mechanism 

of the system. When some variables are manipulated to specific values, however, 

correlation-based knowledge discovery cannot predict the change of other variables. 

For example, if two variables X  and Y  are the effects of a common cause, but 

with a different lag, one variable may predict another variable well based on 

correlation and Granger causality may be established between them. However, 

manipulating either one of X  and Y  would not change the value of the other. 

Since the change of some variables with other variables under manipulation is 

important for control, causal prediction and system re-engineering, causal knowledge 

discovery is needed with manipulation criterion. 
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2.2 Causal Knowledge Discovery with Randomized 

Experiments 

Causal knowledge discovery appeared from the very beginning of human history 

when our ancestors started to explore the nature. In ancient time, human inferred 

causal knowledge from their experiences and manipulations implicitly. The modern 

methods for causal inference started with Statistics in scientific research. Randomized 

experiments [58,125,143] are the established method to collect interventional data for 

causal knowledge discovery. The objective of a typical randomized experiment is to 

test whether one variable will affect another variable causally. The first variable will 

be manipulated to different values to examine its effects on the second variable. The 

values of the first variable are randomly assigned – the manipulation of the first 

variable does not depend on any other variables in the domain. In this case, the 

change of the second variable is just due to the manipulation of the first variable, not 

by other factors. The collected interventional data is analyzed with regression or other 

methods. There are a number of applications of randomized experiments for causal 

knowledge discovery [120,144]. 

Neyman [125] introduced the potential outcome notation for causal knowledge 

inference in the context of randomized experiments, and proved that the difference of 

the observed sample mean between different manipulations was the unbiased 

estimator of the average causal effect over all the tested subjects [143]. Fisher [57] 

recognized that, without randomization, an experiment has little value irrespective of 

the subsequent treatment ([139], page 45).  
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However, randomized experiments just deal with how to efficiently and 

effectively test the statistical significance of the hypothesis. The randomized 

experiment methods do not deal with hypothesis generation explicitly with 

mathematical models. And the hypothesis in the randomized experiments is 

constrained to one target variable. Alternatively, Bayesian network method can 

generate new hypotheses and model causal relationships between many variables. 

2.3 Bayesian Network Learning 

Bayesian network learning can be used in knowledge discovery from both 

observational and interventional data. This section starts by introducing the basics of 

Bayesian networks and follows by giving the reasons to learn Bayesian networks from 

data. The later sub-sections give a survey of parameter learning and structure learning 

in Bayesian networks, respectively. The last sub-sections cover the related work on 

causal knowledge discovery with Bayesian networks and active learning. 

2.3.1 Basics of Bayesian Networks 

Bayesian networks [131] offer a graphical representation of probabilistic 

relationships between a set of random variables. Given a finite set },...,{ 1 nXX=Χ  of 

discrete random variables where each variable iX  may take values from a finite set, 

denoted by )( iXVal . A Bayesian network is an annotated directed acyclic graph 

(DAG) },{ EVG =  that encodes a joint probability distribution over Χ . The nodes7 

of G  correspond to random variables nXX ,...,1 . The edges of G  represent direct 
                                                        
7 We will use “node” and “variable” interchangeably in this thesis if there is no ambiguity. 
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causal influences between variables. If there is a directed edge from variable iX  to 

variable jX , variable iX  will be a parent of variable jX , and variable jX  will be 

a child of variable iX . Each node is associated with a conditional probability 

distribution (CPD) ))(|( ii XPaXp , where )( iXPa  denotes the parents of iX  in 

G . The pair (G , CPD) encodes the joint probability distribution ),...,( 1 nXXp  given 

Bayesian network G . A unique joint probability distribution over Χ  from G  is 

factorized as: 

∏=
i iin XPaXpXXp ))(|(),...,( 1  

Figure 2 shows an example of a Bayesian network: the Cancer network from 

Cooper and Yoo [39], which is hypothetically about a medical domain with 5 

variables8.  

 

Figure 2  A simple example of a Bayesian network 

 

Causal Bayesian networks 

A causal Bayesian network [130] of a domain is similar to the general Bayesian 

network. The difference is in the interpretation of edges in the Bayesian networks. In 

a general Bayesian network, the edges between variables can be explained as 

correlations or associations. In a causal Bayesian network, the edges represent causal 

                                                        
8 Re-printed with permission from Elsevier. 
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relationships (Refer to Section 1.1.1 for causal knowledge):  

When we manipulate the parent variable of an edge by fixing its state to different 

values, we can observe the change in the probability distribution of the child 

variable; however, when we manipulate the child variable, the probability of the 

parent will not change. 

This corresponds to the causality with agency: manipulating causes can change effects 

but not vice versa [135,171].  

Moreover, when one variable is manipulated, the causal influence relationships 

between other variables will not change, i.e., the conditional probability of the child 

variable given its parents will remain the same if the child variable is not the 

manipulated variable. This is a modularity property of the causal system: the 

manipulation on one part of the system will not change the mechanism of other parts 

of the system. 

2.3.1.1  Qualitative Part and Quantitative Part in Bayesian 

Networks 

A Bayesian network has two main components: i) qualitative part and ii) quantitative 

part. The qualitative part of a Bayesian network encodes the causal influence 

relationships between the variables and the conditional independence statements in 

Bayesian network structure. Based on the causal Markov assumption, variable iX  is 

independent of all its non-descendants given its parents )( iXPa  in Bayesian network 

G . For example, in Figure 2, variables 5X  and 1X  are conditionally independent 
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given variable 3X : 

)|(),|( 35135 XXpXXXp = . 

The quantitative part of a Bayesian network represents the strength of direct 

causal influences between variables. Each variable associates with a set of conditional 

probability distributions with respect to each configuration of its parents )( iXPa , 

regardless of other variables. 

2.3.2 Bayesian Network Construction from Domain 

Knowledge 

There are several ways to construct Bayesian networks. One way is to construct 

Bayesian networks completely from domain knowledge. This is generally achieved in 

three main steps [46] that:  

1) Determine the number of variables and the meaning of these variables in the 

domain of interest; 

2) Determine whether there exist direct causal influence relationships between the 

variables in the domain; and 

3) Determine the conditional probability distributions given the structure of the 

Bayesian network from the first two steps. 

To construct a Bayesian network from domain knowledge, we assume that: 1) all 

variables are known in advance – the variables in the Bayesian network are 

determined; 2) domain knowledge can readily assert the causal relationships (typically 

correspond to the assertions of conditional dependencies [86]) between variables – the 
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edges in the Bayesian network can be determined by domain knowledge; and 3) the 

values of conditional probabilities can be estimated from domain knowledge. Quite a 

few Bayesian networks have been constructed in this way, e.g., QMR-DT [150]. 

Various methods have been proposed to facilitate the process to construct Bayesian 

networks with causal domain knowledge [46,89,124].  

2.3.3 Reasons to Learn Bayesian Networks from Data 

Although there are examples of successful Bayesian networks built from domain 

knowledge, this approach may be limited by available sources of domain knowledge. 

The limitations of expert-based knowledge acquisition process are: i) The process is 

tedious and arduous for an expert; ii) The probabilities are hard to elicit; and iii) When 

several experts are involved, it is difficult to assure a consistent network structure and 

probability estimates. 

Alternatively, accompanied with the improvement in electronic devices, more 

data are available in science or application areas. We can utilize the available data for 

causal knowledge discovery in the domain of interest. 

2.3.4 Categories of Bayesian Network Learning Problems 

The problem of learning Bayesian networks has been extensively studied in the 

literature [6,10,15,24,34,38,60,61,65,71,87,103,153]. The Bayesian network learning 

problems can be divided into different categories according to two criteria: 1) whether 

the Bayesian network structure is known; and 2) whether the data set is complete. 
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Table 1 shows four different categories of problems and corresponding methods 

respectively from this division. 

 Complete data Incomplete data 

Known 

structure 

Statistical parametric estimation 

(closed-form equations) 

Parametric optimization 

(EM, gradient descent …) 

Unknown 

structure 

Discrete optimization over structure 

(discrete search) 

Combined (Structural EM, 

mixture models …) 

Table 1  Categories of Bayesian network learning problems 

If the structure is known beforehand, the problem is usually referred to as the 

parameter learning problem. The objective of the parameter learning problem in 

Bayesian networks is to optimize the parameters in a given structure with respect to 

the likelihood of the data. When the data is complete, the parameter learning problem 

is a statistical parametric estimation problem and closed-form solutions are available. 

When the data is incomplete, the parameter learning problem does not have a 

closed-form solution. In this case, the expectation-maximization algorithm (EM) [42] 

and gradient descent algorithm can be used to estimate the parameters. 

When the structure is unknown, the Bayesian network learning problem becomes 

a structure learning problem. The objective of the structure learning problem is to 

find a structure in the Bayesian network structure space that optimizes some measure 

of the structure quality. Since the parameters in Bayesian networks are dependent on 

the structure, the structure learning problem needs to learn the structure and the 

parameters simultaneously. This problem is more difficult than the parameter learning 

problem, especially when the data set is incomplete. In this thesis, we focus on the 

problem of Bayesian network learning with unknown structure and complete data. 
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2.3.5 Parameter Learning in Bayesian Networks 

2.3.5.1  Complete Data 

There are assumptions for closed-form solutions in parameter learning with complete 

data [15,153]. The first assumption is that there are no missing values in the data set 

D , which can be called a complete data. The second assumption is that parameter 

vectors are mutually independent. Under these two assumptions, the parameters can 

be updated independently. The third assumption is that the probability distribution of 

the problem is from the exponential family. With the exponential family assumption, 

the prior probability and the posterior probability are in the same form. With the three 

assumptions, the probabilities can be updated with a closed-form. 

2.3.5.2  Incomplete Data 

Learning parameters of Bayesian networks from incomplete data is typically done 

under the Missing-At-Random (MAR) assumption [142], which states that the pattern 

of missingness is not dependent on the missing values and it may only depend on the 

values of the observed variables. 

When the data is incomplete, the parameters are not independent anymore, and no 

closed-form solution for parameter learning exists. Approximate solutions have been 

proposed, such as gradient method [8,157], the EM method [103] and Monte Carlo 

methods such as Gibbs sampling [71]. Gradient method and EM method are more 

efficient than Monte Carlo methods, but they tend to converge to a local maximum. 
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Monte Carlo methods can yield accurate results, but they are intractable and converge 

slowly. For more details on parameter learning in Bayesian networks, please refer to 

[6,44,126,127,160].  

2.3.6 Structure Learning in Bayesian Networks 

The objective of Bayesian network structure learning is to find a Bayesian network 

structure that best describes the observed data. This problem is more difficult than 

parameter learning, because the number of possible structures (DAGs) to search is 

super-exponential in the number of variables in the domain. Robinson [140] derived a 

recursive function to determine the number of possible DAGs with n  variables: 

∑
=

−+ −−=
n

i

inin
i

i infCnf
1

)(1 )(2)1()(  

The numbers of possible DAGs with 1 to 10 variables are calculated from the formula 

and shown in Table 2. We can see that the number of Bayesian network structures 

increases very fast with the number of variables in the domain. 

Number of variables in DAG Number of possible DAGs 

1 1 

2 3 

3 25 

4 543 

5 29,281 

6 3,781,503 

7 1.1x109 

8 7.8x1011 

9 1.2x1015 

10 4.2x1018 

Table 2  Number of DAGs 

Since the number of DAGs is super-exponential in the number of variables, it is 

impossible to enumerate all possible structures and score them, even with a small 
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number of variables n  in a Bayesian network. The Bayesian network structure 

learning problem has been proven to be NP-complete [30]. Heuristic-based methods 

have been proposed to find a local maximum in the structure space. 

Two approaches for Bayesian network structure learning exist. The first approach 

is the score-and-search-based approach [32,38,87]. This approach starts from an 

initial structure (generated randomly or from domain knowledge), and moves to the 

neighbors of the current structure with the best score in the structure space 

deterministically or stochastically, until a local maximum of the optimization criterion 

is reached. The learning process can re-start several times with different initial 

structures to improve the final result. The representative methods of the score-and- 

search-based approach are K2 algorithm [38], Greedy search, Markov Chain Monte 

Carlo (MCMC), and Structural EM [60]. 

The second approach is the constraint-based approach [132,155]. This 

approach starts to test the statistical significance of the pairs of variables conditioning 

on other variables to induce the conditional independence between the pairs of 

variables. The pairs of variables that pass some threshold of the statistical significance 

are deemed as directly connected in the Bayesian networks. The complete Bayesian 

network structure is constructed from the induced conditional independence and 

dependence information of variables. The representative methods of  the constraint- 

based approach are SGS algorithm and PC algorithm [155]. 

To discuss the Bayesian network structure learning methods further, Markov 

equivalence and model selection criteria need to be introduced first. 
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2.3.6.1  Markov Equivalence 

If two DAGs encode the same conditional independencies, they are said to be Markov 

equivalent. Bayesian networks are Markov equivalent if and only if they have the 

same skeleton and the same v-structures [165], where v-structure is a graphical 

relationship of any three variables such that there are edges from variable X  to 

variable Z  and from variable Y  to Z  but no adjacency between X  and Y . All 

DAGs with the same conditional independencies can form a Markov equivalent class 

[131]. Such a class can be represented by a complete partially directed acyclic graph 

(CPDAG) called an essential graph or pattern. The directed edges in this CPDAG 

mean that these edges must be oriented in a certain direction in all the DAGs of the 

same equivalence class, and the undirected edges mean that these edges can be in 

either direction subject to the acyclic constraint in Bayesian network.  

In Bayesian network structure learning, it is unlikely to distinguish the structures 

in a Markov equivalent class with observational data. The model selection criteria will 

give the same score to the set of equivalent structures. In this case, we cannot hope to 

recover the "true" generating structure with the observational data only. The best 

solution to be expected is a structure within the same Markov equivalent class. 

To distinguish different Bayesian networks within the same Markov equivalent 

class, we need domain knowledge to justify the direction of the edges or we need 

interventional data to learn the direction of the edges (refer to Chapter 5 and also 

[121,161]). 
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2.3.6.2  Model Selection Criteria 

The score-and-search-based approach to Bayesian network structure learning is based 

on a scoring function that estimates how well a given Bayesian network G  matches 

the data D . The best Bayesian network is the one that maximizes a scoring function 

given the data D . 

An ad-hoc scoring function is based on the maximum likelihood (ML) principle: 

selecting the structure which generates the data D  with the highest probability. One 

disadvantage of ML principle is that the models with more parameters9 can predict 

the data well, but may lead to overfitting problem. Therefore, a penalty of the model 

complexity is needed in the scoring function. 

Two scoring functions with complexity penalty are: Bayesian Information 

Criterion  (BIC) and Bayesian score. The Bayesian Information Criterion (BIC) [147] 

is defined as 

N
d

GDp G log
2

),|(log −θ
)

 

where D  is the data, G  is the Bayesian network to be evaluated, Gθ
)

 is the 

maximum likelihood (ML) estimate of the parameters in Bayesian network G  with 

data D , d  is the number of parameters in Bayesian network G , and N  is the 

number of instances in the data. The BIC criterion has several properties. First, it does 

not depend on the prior, so we do not need to specify the prior to score the structure. 

Second, it is quite intuitive. Namely, it contains a term ),|(log GDp Gθ
)

 measuring 

how well the parameterized model predicts the data and a term Nd log*2/  that 

                                                        
9 The number of parameters in a model is used to measure the complexity of the model. 
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punishes the complexity of the model. Third, it is exactly minus the Minimum 

Description Length (MDL) criterion [86]. BIC is often used in practice. However, it 

has a drawback that it tends to choose models that are too simple due to the heavy 

penalty on the complexity of the model. 

The Bayesian score for measuring the quality of Bayesian network G  is its 

posterior probability given the data: 

)(/),()|( DpGDpDGp =  

where the marginal probability )(Dp  of the data D  is a normalization constant 

which does not depend on Bayesian network G . Since )(Dp  is a constant relative 

to G  and will not affect the ordering of the different models, the relative posterior 

probability )|(*)(),( GDpGpGDp =  is often used for model selection. This 

criterion has two components: the prior of the structure and the marginal likelihood of 

the data given the structure. The prior can be specified by experts or just set uniformly 

to all possible structures. The marginal likelihood can be calculated by integrating the 

parameters of the model. The Bayesian score for Bayesian network learning is 

originally discussed by Cooper and Herskovits [38] as BD metric and further 

developed by Heckerman et al. [87] as BDe metric. Compared to BIC, the Bayesian 

score is a more accurate criterion, since it considers the prior information. However, it 

needs more computation. In comparison, BIC can be derived as a large sample 

approximation to the marginal likelihood. In practice, the sample size does not need to 

be very large for the approximation to be good.  

Besides the criteria mentioned above, some other criteria have also been proposed 
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for Bayesian network structure selection, such as cross-validation criterion [5] and 

Minimum Message Length [167]. The details are deferred to the above references. 

2.3.6.3  Score-and-search-based Approach 

The score-and-search-based approach relies on the model selection criterion and a 

search method. Any of the model selection criteria mentioned above can be used for 

the former. In the following sections, the focus will be on the latter. As to the different 

combinations of search methods and model-selection criteria, Checkering [31] 

showed that greedy search with random restarts can produce better structures when 

the computational time is fixed.  

Exhaustive Search 

The brute-force approach to structure learning is to enumerate all possible DAGs, 

score each one, and select the one with the best score. Since the number of the 

possible DAGs is super-exponential in the number of variables, it is infeasible to 

enumerate all possible DAGs when the number of variables is greater than 5. 

However, this provides a "gold standard" to gauge other algorithms. And, one can 

evaluate any reasonably-sized set of hypotheses in this way (e.g., the nearest 

neighbors of one Bayesian network structure). 

K2 Algorithm 

If we know a total causal ordering of variables, finding the best structure amounts 

to picking the best set of parents for each variable independently. K2 algorithm [38] 

adopts this idea and applies a greedy method to search the parents of variables from 
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the set of variables before the variable on question in the ordering. The algorithm 

starts by assigning each variable without parents. It then incrementally adds a parent 

to the current variable which mostly increases the score of the resulting structure. 

When any addition of a single parent cannot increase the score, it stops adding parents 

to the variable. Since an ordering of the variables is known beforehand, the search 

space under this constraint is much smaller than the entire structure space, and there is 

no need to check cycles in the learning process. 

If the ordering of the variables is unknown, we can search over orderings. The 

space of orderings is much smaller and more regular than the space of the structures, 

and has a smoother posterior “landscape”. As a result, the search over ordering is 

more efficient than the search over DAGs [65]. 

Greedy Search 

If we do not know the ordering of the variables, we can treat the structure 

learning problem as an optimization problem over a discrete space of Bayesian 

networks. The intuitive way is greedy search. Greedy search starts at an initial 

structure in the structure space as the current structure, considers all the nearest 

neighbors of the current structure, and moves to the neighbor that has the highest 

score; if no neighbors have a higher score than the current structure, the algorithm 

stops. 

When greedy search stops, it always reaches a local maximum. The local 

maximum reached is essentially dependent on the initial structure. If a good initial 

structure is chosen, we can reach a good structure in a short time. If a bad initial 
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structure is chosen, we will reach a reasonably good structure only after a very long 

time, or cannot reach a reasonably good one at all. Although we know the initial 

structure is essential, we do not have enough domain knowledge to justify which 

initial structure is good. Instead of choosing one good initial structure, the alternative 

way is to restart greedy search with different initial structures and choose the one with 

the best resultant local maximum. 

Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) method is a powerful stochastic simulation 

method used in many areas. Madigan and York [115] first applied MCMC algorithm 

Metropolis-Hastings (MH) for Bayesian network structure learning. The motivation 

behind this approach is to obtain samples from a (posterior) probability distribution of 

Bayesian network structures given the data D , rather than learning a particular 

Bayesian network that maximizes a certain criterion. 

With an initial structure 0G , MCMC learning paradigm will transfer 

stochastically to 1G , one of 0G ’s neighbors, and calculate the posterior given 1G .  

The standard proposal distribution is to assign equal probabilities to all the nearest 

neighbors of one structure. Then the approach will transfer from 1G  to 2G , one of 

1G ’s neighbors, and calculate the posterior given 2G . The process will continue until 

the required number of repetitions is reached. The convergence of the MCMC method 

to the target probability distribution of )|( DGP  is guaranteed under the conditions 

of irreducibility10 and infinite samples11. MCMC methods can yield accurate results 

                                                        
10 Irreducibility means that any possible structure can be reached from any initial structure. 
11 Infinite samples mean the process should run a long time to get enough samples. 
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theoretically, but it converges very slowly, especially when there are extreme 

conditional probabilities.  

2.3.6.4  Constraint-based Approach 

The constraint-based approach views the structure learning problem differently from 

the score-and-search-based approach. Since a Bayesian network structure encodes the 

dependencies and independencies between variables in a domain, this approach tries 

to discover the dependencies between variables from the data, and then uses these 

dependencies (and independencies) to infer the structure. 

The dependency relationships are measured using a conditional independence (CI) 

test. In order to use the CI results for Bayesian network structure reconstruction, 

several assumptions are needed. The assumptions are: causal sufficiency assumption, 

causal Markov assumption, and faithfulness assumption [155]. 

Causal sufficiency assumption: There are no common unobserved (also known 

as hidden or latent) variables in the domain that are parents of one or more observed 

variables of the domain. 

Causal Markov assumption: Given a Bayesian network G , any variable is 

independent of all its non-descendants in G  given its parents. 

Faithfulness assumption: A Bayesian network G  and a probability distribution 

P  generated by G  are faithful to each other if and only if every conditional 

independence relationship valid in P  is entailed by the causal Markov assumption 

on G . 
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With these assumptions, one can ascertain the existence of edges between 

variables and the directions of the edges in certain cases. The output of 

constraint-based approach will be a CPDAG to represent the entire Markov equivalent 

class. 

The SGS Algorithm 

The SGS algorithm, named after Spirtes, Glymour, and Scheines [154], tests the 

dependency of any two variables X  and Y  given every subset of other variables in 

a Bayesian network. If X  and Y  are conditional independent given any subset of 

other variables, there will be no edge between X  and Y . Otherwise, there will be 

an edge between X  and Y . After testing all the pairs of variables, an undirected 

graph will be determined. 

With the undirected graph, SGS algorithm determines the directionality of these 

edges by the v-structure within triples of variables. If i) X  is adjacent to Z  

( ZX − ), ii) Y  is adjacent to Z  ( ZY − ), iii) X  and Y  are not adjacent to each 

other, and iv) X  and Y  are conditional dependent given any subset of variables in 

a Bayesian network with Z  but without X  and Y , then the directionalities of the 

edges ZX −  and ZY −  are ZX →  and ZY → , respectively. After the 

directions of the edges in the v-structure are determined, the directions will be 

propagated to other edges while maintaining acyclicity of the Bayesian networks. 

Assigning directions to edges depends on the true structure of the underlying 

Bayesian network. As we mentioned above, the SGS algorithm - and any other 

constraint-based algorithms - cannot necessarily assign directions to every edge. For 
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example for a Bayesian network with three variables, ZYX →→ , the direction of 

either edge cannot be determined by any set of independence statements, because two 

other networks with the same undirected structure, namely ZYX ←←  and 

ZYX →← , belong to the same Markov equivalent class and encode the same 

conditional independence statements. 

The IC Algorithm 

Similar to SGS algorithm, IC algorithm (Inductive Causation) was proposed by 

Pearl and Verma [132]. While SGS algorithm starts from a complete undirected graph 

and then removes edges between any two variables if they are independent given a 

subset of the remaining variables, IC algorithm starts from an empty graph, and adds 

edges between any two variables if they are dependent given all subsets of the 

remaining variables. After this step, IC algorithm will build an undirected 

independence graph, and the remaining steps are the same as those in SGS algorithm. 

The PC Algorithm 

Since SGS algorithm requires to test the dependency of any pair of variables 

given all possible subsets of remaining variables, the time complexity is exponential 

in the number of variables. This makes it impractical for domains with many 

variables.  

The PC algorithm [156] makes the learning more efficient by reducing the 

number of conditional independence tests. Since conditional independence of 

variables X  and Y  is implied by the subsets of variables linked to them, 

conditional independence of variables X  and Y  can be tested given a subset of the 
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variables linked to them. If variables X  and Y  are independent given a subset of 

the variables linked to X  and Y , the edge between variables X  and Y  can be 

removed and there is no need to test conditional independence of X  and Y  

conditioning on other subsets of variables. 

2.3.7 Causal Knowledge Discovery with Bayesian Networks 

Generally, the Bayesian networks learned from observational data are interpreted as 

dependency models, and the structure represent the probabilistic conditional 

independence. Many people have tried to interpret Bayesian networks causally. 

Spirtes et al. [155] and Pearl [130] developed theories to represent and discover 

causal knowledge with Bayesian networks from observational data. Spirtes et al. [155] 

supposed that the learning results from SGS algorithm and PC algorithm can be 

interpreted causally. V-structure is mainly used to determine the direction of edges in 

Bayesian networks. 

Pearl [129] proposed the following three rules to make it possible to infer the 

probabilities under manipulation from the observational data with graphical models: 

Rule 1  Insertion/deletion of observations 

X
GWXZYifwxypwzxyp ),|(  ),,ˆ|(),,ˆ|( ⊥=  

Rule 2  Action/observation exchange 

ZX
GWXZYifwzxypwzxyp ),|( , ),,ˆ|(),ˆ,ˆ|( ⊥=  

Rule 3  Insertion/deletion of actions 

( )WZX
GWXZYifwxypwzxyp ),|(  ),,ˆ|(),ˆ,ˆ|( ⊥=  
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Where x̂  means that variable X  is manipulated to a specific value x , ẑ  means 

that variable Z  is manipulated to a specific value z , 
X

G  means the original graph 

G  with all edges pointing to X  removed, 
ZX

G  means the original graph G  with 

all edges pointing to X  removed and all edges out of Z  removed, ( )WZ  is the 

set of variables in Z  that are not ancestors of any variables in W  in 
X

G , and 

)(WZX
G  means the original graph with all edges pointing to X  removed and all 

edges pointing to ( )WZ  removed. 

The first rule states that, if variables Y  and Z  are independent given X  and 

W  in the mutilated graph 
X

G , the probability of Y  given the observed variables 

Z , W  and the manipulated variable X  is the same as the probability of Y  given 

the observed variable W  and the manipulated variable X . In this rule, one observed 

variable can be added or deleted from the probability expression if the condition is 

satisfied. 

The second rule states that, if variables Y  and Z  are independent given X  

and W  in the mutilated graph 
ZX

G , the probability of Y  given the observed 

variable W  and the manipulated variables X  and Z  is the same as the probability 

of Y  given the observed variables Z , W  and the manipulated variable X . In this 

rule, one observed variable can be changed to a manipulated variable in the 

probability expression if the condition is satisfied. 

The third rule states that, if variables Y  and Z  are independent given X  and 

W  in the mutilated graph 
)(WZX

G , the probability of Y  given the observed variable 

W  and the manipulated variables X  and Z  is the same as the probability of Y  
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given the observed variable W  and the manipulated variable X . In this rule, one 

manipulated variable can be added or deleted from the probability expression if the 

condition is satisfied. 

With these three rules, we can estimate the interventional effects from 

observational data when the Bayesian network structure is known. This is very 

important for the domains where we cannot conduct interventional experiments. 

However, Spirtes et al. [155] and Pearl [130] only considered the observational 

data. Since interventional data can provide concrete causal information, they should 

be incorporated into the knowledge discovery process. 

Cooper and Yoo [39] first examined the assumptions that would allow one to 

combine observational and interventional data in the knowledge discovery process 

with Bayesian networks. With their assumptions, the parameters in Bayesian networks 

can be updated with both observational and interventional data in a closed form.  

2.3.8 Active Learning of Bayesian Networks with 

Interventional Data 

Traditionally, the methods for knowledge discovery assume that a data set is available 

before learning, and the data set will not change in the learning process. Alternatively, 

active learning is a method for knowledge discovery that assumes active collection of 

new data during the learning process. The collection of new data can be guided with 

the existing data to reduce the total data collected. This idea has been studied for a 

long time with a standard framework [35,113,138].  
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Recently, Tong and Koller [160,161] and Murphy [121] applied active learning 

framework to learn Bayesian network structure. In their work, they assume a small 

data set is available first, and the probabilities of edges in the Bayesian network are 

estimated from this data set. The expected posterior loss of different interventions is 

estimated and the intervention with the maximal expected posterior loss is selected for 

the new data collection step. The new data is then combined with the existing data for 

the next round of active learning. The process is repeated until some stopping 

criterion is satisfied. 

Specifically, Tong and Koller [161] considered three possible conditions between 

two variables iX  and jX : 1) there is an edge from iX  to jX , ji XX → ; 2) there 

is an edge from jX  to iX , ji XX ← ; and 3) there is no edge between iX  and 

jX , ji XX ⊥ . The edge probabilities are ),|( KDXXp ji → , ),|( KDXXp ji ←  

and ),|( KDXXp ji ⊥ , where D  is the available data, and K  is the background 

knowledge. In the following discussions, D  and K  will be omitted for brevity. The 

uncertainties of the edges are measured with edge entropy 

)(log)(

)(log)(

)(log)()(
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To reduce the uncertainties in the Bayesian network, a variable is selected for an 

interventional experiment based on the expected posterior entropy loss, and one new 

instance is collected. The new instance is incorporated in the original data set to 

update the probabilities of edges in the Bayesian network.  

However, they only considered the situation when one data instance is collected 
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at each intervention step. The situation when a data set is collected in each 

intervention step is not considered, since it is not feasible to calculate the expected 

posterior loss in reasonable time. 

2.3.9 Applications of Causal Knowledge Discovery with 

Bayesian Networks 

Bayesian networks have been used for causal knowledge discovery in many different 

domains. In Cognitive Science, Bayesian networks were used to model causal 

learning in human behaviors [29,77,78,146]. The application domains were modeled 

with Bayesian networks and the causal strengths were estimated with Bayesian 

network learning. In Biology, Bayesian networks were used to model the interaction 

relationships between different molecules, for example proteins as described in Sachs 

et al. [145]. 

Due to the cost of intervention and data collection, causal knowledge discovery 

done purely from data is currently not applicable to domains with many variables if 

the relationships between variables are probabilistic. In the efforts mentioned above, 

most experiments work with 3-7 variables. We test the similar cases in the later 

chapters. When domain knowledge and some assumptions are applied, causal 

knowledge discovery can be applied to domains with more variables. 
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Chapter 3  Hypothesis Generation in 

Knowledge Discovery with Bayesian 

Networks 

- Learning Bayesian Networks from Observational Data 
 

This chapter will discuss hypothesis generation – the first step of causal knowledge 

discovery with Bayesian networks. We first introduce two kinds of hypotheses as 

parts of the Bayesian network structure learning problem: 1) whether an individual 

Bayesian network structure exists; and 2) whether an individual edge exists in a 

Bayesian network. The hypothesis space of these kinds of hypotheses exists when the 

variables in a domain are given. The statistical significance of these hypotheses will 

be evaluated with probabilities using Bayesian network learning from observational 

data. Selecting the significant hypotheses from the corresponding hypothesis space is 

our hypothesis generation step. We propose a new method to extend the hypothesis 

space for Bayesian network structure learning that is based on the idea of variable 

grouping. Variable grouping partitions the variables with similar conditional 

probability distributions into one group. A Bayesian network is learned with the group 

variables alone. Variable grouping can narrow the search space and may help to speed 

up the learning process.  
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3.1 Hypothesis Generation with Bayesian Network 

Structure Learning 

The first kind of hypotheses, whether an individual Bayesian network structure exists, 

is important because it considers all direct causal influence relationships between 

variables in a domain. The second kind of hypotheses, whether an individual edge 

exists in a Bayesian network, is important, since edges reflect direct influence 

relationships between variables and they can be verified with manipulation 

experiments. 

3.1.1 Probabilities of Individual Bayesian Network 

Structures 

From the Bayesian perspective, the probabilities of individual Bayesian network 

structures can be estimated with the following formula with the given data D  and 

background knowledge K :  

∑
=

G

KGpGDp

KGpGDp
KDGp

)|(*)|(
)|(*)|(

),|(  

Where G  is the structure of a possible Bayesian network, )|( KGp  is the prior 

probability of G  given the background knowledge, and )|( GDp  is the likelihood 

of the data D  given G . In the formula, we need to calculate the probability of the 

data given the Bayesian network structure and normalize it by the sum of the 

probabilities of the data given all individual Bayesian networks. Since the number of 

Bayesian networks is exponential in the number of variables, it is time-consuming to 
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calculate this probability when the number of variables is greater than 5. Approximate 

methods are used as an alternative. For example, some Bayesian networks with high 

scores can be selected as the representatives of the entire structure space, or Markov 

Chain Monte Carlo (MCMC) method can be used to estimate the probability [43]. 

3.1.2 Probabilities of Individual Edges in Bayesian Networks 

In practice, we are not only interested in complete Bayesian network structures, but 

also interested in individual edges and their probabilities: Do the edges in the learned 

Bayesian networks appear by chance or with some statistical significance? To 

examine the confidence of the edges in the learned structure, we can estimate the 

Bayesian probabilities of individual edges by the formula suggested by Buntine [16]. 
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Where )(GE  is the set of edges in Bayesian network G , and BA →  means that 

there is an edge from A  to B  in Bayesian network G . 

The first equation above is from the law of total probability. The second one is 

from the fact that the existence of an edge is independent of the data and domain 

knowledge given the Bayesian network structure. The third one is from the fact that 

the probability )|( GBAp →  is 1 when Bayesian network G  contains the edge 

BA → ; and 0, otherwise. In general, the edge BA →  in the formula can be 

replaced with any other topological features in Bayesian networks to estimate the 
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probabilities of those features, e.g., BA ← , or the partial ordering where A  is 

before B . 

In the formula, we need to sum up the probabilities of all Bayesian networks with 

the edge of interest. As mentioned before, the number of Bayesian networks is 

exponential in the number of variables and the edge probability estimation is time 

consuming. We have to resort to approximate methods to estimate the probabilities of 

individual edges. We adopt the bootstrap approach for this purpose. 

A bootstrap approach [50] is a statistical method to measure the accuracy of 

statistical estimates and perform statistical inference by re-using the original instances. 

In a bootstrap approach, the original data set will be re-sampled with replacement to 

form a new data set with the same number of instances. A new model will be built 

from the new data set with the same method as that to analyze the original data. The 

re-sampling experiments are repeated many times, and the results from the repeated 

experiments show the confidence of the conclusions from the original instances. The 

process of the bootstrap approach is: 

1) Re-sample N instances from the original data set D with replacement, where N is the 

number of instances in the original data set. Denote the re-sampled data set as newD  

2) Apply the Bayesian network learning algorithm on newD  to learn a Bayesian 

network 

3) Repeat Steps 1) and 2) many times 

4) Count the number of edges appearing in all the learned Bayesian networks 

In our work, the probabilities of edges are the percentages of their occurrences in 

the learned Bayesian networks from the repeated experiments. If an edge appears in 
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the bootstrap experiments with a high percentage, it means that the strength of the 

direct dependency relationship between two variables is not spurious or accidental 

and indicates strong correlations. Friedman et al. [64] first applied the bootstrap 

approach to estimating the probabilities of edges in Bayesian networks. 

Recently, Koivisto [97] proposed an exact method for estimating edge 

probabilities in Bayesian networks. Koivisto utilized the intuition that the order of the 

parents of a variable is irrelevant to the variable’s probability estimation, and applied 

forward and backward dynamic programming and fast truncated Mobius transform to 

estimate all edge probabilities in )2( nnO  time, where n  is the number of variables 

in the domain. This method can be applied to domains with a moderate number of 

variables (around 25).  

3.1.3 An Application of Hypothesis Generation to a Heart 

Disease Problem 

To illustrate the hypothesis generation process, we analyzed a data set for coronary 

artery disease (CAD) study [26,27] collected at one of the local hospitals in Singapore. 

The data set consists of data on 2,949 human subjects: 1,462 of the subjects were 

diagnosed to have coronary artery disease at the time of data collection; the rest were 

healthy subjects at the time of recruitment. The assessment of CAD in this work was 

based on the presence of at least 50% narrowing in at least one of the major coronary 

arteries as detected by angiography. In addition to CAD, ten other patient variables 

were selected for our experiments. Out of these ten variables, eight are discrete 
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variables and two other variables, “AGE” and “CBMI”, are continuous. These two 

continuous variables were discretized separately. The attributes are summarized in 

Table 3. 

Variables No. of states Remarks 

CAD 2 Healthy or diseased 

AGE continuous  

SEX 2 Male or female 

RACE 3 Chinese, Indian and Malay 

CBMI continuous Body-mass index 

Smoking 3 Smoker, non-smoker and ex-smoker 

Diabetic 2 healthy or diseased 

Hypertension 2 healthy or diseased 

FCAD 2 Family history of CAD: yes or no 

FDM 2 Family history of diabetes: yes or no 

FHY 2 Family history of hypertension: yes or no 

Table 3  Attributes of the heart disease dataset 

Several methods have been applied to this data set to evaluate the statistical 

significance of causal or association relationships between variables, including the 

learned Bayesian network, the probabilities of individual edges from the bootstrap 

approach, chi-square test, and mutual information12. The Bayesian network was 

learned with the greedy search method and Bayesian Information Criterion (BIC) 

score [147] (Refer to Section 2.3.6.2 for the definition and explanations of BIC). The 

best learned Bayesian network in our experiment is shown in Figure 3.  

We applied the bootstrap approach to estimating the probabilities of edges in the 

learned Bayesian network. The learning program ran 500 times and the edges with top 

occurrences in the learned Bayesian networks from bootstrap approach are listed in 

Table 4. For example, the first row of Table 4 means that the edge from CAD to 

                                                        
12 Refer to Appendix A for a brief introduction of chi-square, and mutual information. 
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Diabetic appeared 456 times (91.2%) in 500 bootstrap repeated experiments. From 

Table 4, we know that most edges in the learned Bayesian network appear with high 

probabilities from the bootstrap experiments. 

The top chi-square values and mutual information values are shown in Table 5 

and Table 6, which show that “CAD” is highly correlated with “AGE” and 

“Hypertension” – this is consistent with our common sense. 

 

Figure 3  Bayesian network learned from the heart disease data 

 

Order Variable 1 Variable 2 Occurances 

1 CAD Diabetic 456 (91.2%) 

2 CAD Hypertension 438 (87.6%) 

3 CAD FDM 434 (86.8%) 

4 CAD RACE 397 (79.4%) 

5 CAD Smoker 392 (78.4%) 

6 AGE CBMI 382 (76.4%) 

7 FHY FCAD 381 (76.2%) 

8 FDM FCAD 314 (62.8%) 

9 CAD SEX 311 (62.2%) 

10 SEX Smoker 304 (60.8%) 

Table 4  Top edges estimated with bootstrap approach for the learned Bayesian network 

With the learned Bayesian network and the edge probabilities, we notice that 

some edges in the learned Bayesian network have high probabilities, which means 

that these edges are statistically significant. However, some edges in the best learned 
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structure are inconsistent with domain knowledge. For example, variable “AGE” is 

dependent on variable “CAD” in Figure 3. Other examples include CAD affecting Sex, 

Smoker affecting Sex, and Sex affecting family history, etc. Such kind of relationships 

contradicts our common sense: Variable “AGE” should not be affected by any other 

variables in the domain. 

Order Variable 1 Variable 2 Chi-square value 

1 AGE CAD 1331.58 

2 Hypertension CAD 1173.95 

3 Hypertension AGE 771.04 

4 Diabetic CAD 668.56 

5 Hypertension Diabetic 500.51 

6 Diabetic AGE 475.85 

7 Smoker SEX 475.43 

8 Smoker CAD 348.65 

9 AGE CBMI 333.55 

10 Smoker AGE 210.24 

Table 5  Top chi-square values from the heart disease data 
  

Order Variable 1 Variable 2 Mutual information 

1 AGE CAD 0.267676 

2 Hypertension CAD 0.224037 

3 Hypertension AGE 0.154849 

4 Diabetic CAD 0.129434 

5 Diabetic AGE 0.098644 

6 Smoker SEX 0.096076 

7 Hypertension Diabetic 0.082606 

8 Smoker CAD 0.064145 

9 AGE CBMI 0.045032 

10 Smoker AGE 0.040836 

Table 6  Top mutual information values from the heart disease data 

In this situation, if we are only interested in the density estimation or correlation 

model, the learned structure is good enough. However, if we want to understand the 

causal relationships between the variables, the learned structure should be updated, 

and the inconsistency between the learned structure and domain knowledge should be 
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corrected. This leads to the second topic in this thesis – hypothesis refinement (refer 

to Chapter 4). The structure learned from observational data gives us a good initial 

approximation of the relationships between variables in the domain and a starting 

point to improve. 

3.2 Hypothesis Generation with Variable Grouping 

In Section 3.1, we discussed how the hypothesis generation process calculates 

probabilities of complete Bayesian networks and individual edges in Bayesian 

networks using Bayesian network structure learning methods. Currently, the existing 

algorithms only take tens of variables into consideration, which are inadequate for 

domains with hundreds or more variables. To solve this problem, we introduce hidden 

variables to represent a group of original variables and propose to learn a Bayesian 

network with group variables only. We conducted experiments on synthetic examples 

and real microarray data to analyze the approach. The results from synthetic examples 

show that the algorithm can work well with small data (11 instances in our small 

examples) and identify the expected group Bayesian network from different data sets. 

The expected group Bayesian network has the highest BIC score. The experiments on 

the real microarray data show some domain-meaningful results. We expect the 

algorithm to generalize well to other domains with similar assumptions.  

3.2.1 Observations from Microarray Data 

Microarray is a technology used in biological experiments to simultaneously measure 
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the expression levels of thousands of genes in the cell under different conditions. The 

measured gene expression levels are microarray data, in which each gene is treated as 

a variable and the gene expression levels from each experiment form a data instance. 

The data set usually has hundreds or thousands of genes, but only hundreds (or even 

just tens) of experiments (as instances). 

One of the problems in microarray data analysis is to infer the potential 

regulatory relationships between genes and gene groups. Many methods have been 

proposed for this purpose, such as clustering methods [51,66,152] and classification 

methods [1,68]. Among the proposed methods, Bayesian network learning is a 

promising one, since the influence relationships between genes are stochastic in 

nature, which can be easily modeled with Bayesian networks.  

However, when we want to apply the existing Bayesian network learning 

methods to microarray data, there are three main challenges: 1) there are many 

variables in the data set, 2) the sample size is small and 3) microarray data are 

changing from experiment to experiment. These challenges are not uncommon in the 

Bayesian network domain, but the third challenge has special significance. Different 

biological research groups perform microarray experiments for different purposes and 

new microarray data are emerging quickly. Since the conditions in these experiments 

are quite different, it is meaningless to simply combine these data sets into one large 

data set. Moreover, Bayesian networks learned from different data sets are not directly 

comparable. To maximize the interpretability of microarray data and the capability for 

knowledge discovery, we need to extend the Bayesian network formalism for 
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microarray data analysis in particular, and for the situations with the similar 

assumptions (see below) in general, e.g., stock market with different industrial 

sections.  

There are some assumptions in the proposed algorithm. One assumption is that 

some variables in the domain follow similar conditional probability distributions. The 

second assumption is that the variables following similar conditional probability 

distributions can be partitioned into one group and can be represented with group 

variables reliably in different conditions. The third assumption is that the influences 

between the variables in a group are dense and the influences between groups are 

sparse.  

These assumptions can be interpreted from biological perspective. First, genes 

from the same gene complex have similar functions based on biological knowledge. 

These overlapping functions of genes guarantee that the defect of some genes cannot 

degrade the functions of an entire cell dramatically. Second, some genes act together 

to perform a biological function. This means that genes can be partitioned into groups 

according to their functions. Third, the expression levels of these genes are similar or 

related under different experiment conditions. Moreover, the genes in a group interact 

with genes in other groups, and the entire interactions between the groups are more 

important than the interactions between individual genes. 

The assumptions can be satisfied in other domains as well. Take the data from 

stock market as an example. In the stock market, there are different industrial sections 

and stocks from the same industrial section can be categorized into one group to 
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represent the activity of the corresponding industry. The different industrial sections 

will affect each other in the industry level, not merely at the company level. For 

example, the construction industry grows and needs more steel, which leads to the 

boom of steel industry, while the boom of the steel industry will lead to the need of 

more electricity and coal. The growth and boom of the industry will be reflected in the 

stock prices of the different companies in the corresponding industries. Our algorithm 

could be applied to stock market data to determine the influence relationships between 

different industrial sections.  

We are using microarray data as an example, and introduce the notion of group 

variables to represent the groups of the original variables and propose an algorithm to 

learn a Bayesian network to represent the relationships between groups. In microarray 

data, the values of a group variable are the expression level of the corresponding 

biological function performed by this group of genes, which will be learned from the 

expression levels of individual genes. A Bayesian network will be learned with the 

group variables only. We call the learned Bayesian network a group Bayesian 

network. 

3.2.2 Related Work 

The proposed algorithm is related to three areas of machine learning methods for 

microarray data analysis. The first area is clustering [51]. Clustering is one of the 

most commonly used methods for microarray data analysis. Clustering methods can 

identify genes with similar expression levels. However, clustering methods cannot 
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identify the dependency and possible causal relationships between genes (or groups of 

genes). In this sense, clustering is not sufficient for biological knowledge discovery. 

In our proposed algorithm, we can identify groups of genes and the dependency 

between groups simultaneously. The dependency between groups is a better way of 

hypothesis generation for gene regulatory relationship discovery. 

The second related area is hidden variable discovery in Bayesian networks. The 

general method for hidden variable discovery uses maximal cliques [117] or 

semi-maximal cliques in Bayesian networks [52]. The disadvantage of the general 

method is that it is difficult to identify the meaning of hidden variables. In our 

proposed algorithm, the group variables (as hidden variables) are assumed to 

represent the summarized activity level of variables in the group, such as the 

summarized expression level of genes in individual groups of the microarray data. 

The third related area is the module networks by Segal et al. [148]. In their work, 

Segal et al. considered groups of genes as modules whose expression levels are 

similar. The authors assumed that variables in the same modules have the same 

parents and the same conditional probability distributions. This assumption is one 

type of parameter tying in Bayesian networks and can narrow the structure space and 

the number of parameters in Bayesian network learning process. However, the authors 

did not introduce hidden variables in the learning process, and Bayesian networks 

were learned only with the original variables. As a result, the space of Bayesian 

network structures we need to search is still very large. 
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3.2.3 Learning Algorithm with Variable Grouping 

Based on the above observations, we propose an algorithm to learn Bayesian network 

with variable grouping. The pseudo code of the algorithm is shown in Table 7. The 

algorithm consists of four main steps: 

1) Partition the original variables into different groups; 

2) Determine the values of the group variable for each group based on the 

individual original variables in the group; 

3) Learn a Bayesian network with group variables only; and 

4) Recover a potential structure of all variables from the learned group Bayesian 

network structure. 

1) Generate an initial partition of the original n variables into m groups as the current partition Pc 

2) Determine the values of the group variable for each group in partition Pc 

3) Learn a Bayesian network with group variables from Pc, and set the BIC score from the learned 

Bayesian network as the current score Sc  

4) For each neighbor Pi of the current partition Pc 

a. Determine the values of the group variable for each group in partition Pi 

b. Learn a Bayesian network with group variables from Pi, and set the BIC score from 

the learned Bayesian network as score Si  

5) Find the maximum of all Si as Smax 

6) If Smax is greater than Sc, set Smax as the current score Sc and the corresponding Pmax as the 

current partition Pc, go back to Step 4) 

7) If not, recover the structure with all variables from the learned group Bayesian network 

Table 7  Algorithm for Bayesian network learning with variable grouping 

The details of these steps will be discussed in the following sub-sections and will 

be illustrated on a small example in Figure 4. While the algorithm is applicable to 
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different variable types, our example works with Gaussian variables. Variable 1 

follows a normal distribution with 0 mean and unit standard deviation – )1,0(~1var N . 

Variables 2 and 3 follow the same conditional normal distribution. Their means are 

conditioning on the sampled value of Variable 1 – )1 ,1var;2(var~2var N 13 and 

)1 ,1var;3(var~3var N , and their variances are assumed to be a unit. Variable 4 

follows a conditional normal distribution, and its mean is dependent on the sum of the 

sampled values of Variable 2 and Variable 3 – )1 ,3var2var;4(var~4var +N . 

 
Figure 4  A simple synthetic Bayesian network for variable grouping 

 In this example, Variables 2 and 3 follow the same conditional probability 

distribution and are similar to each other. From our assumption – the variables with 

the similar conditional probability distribution should be grouped together, Variables 2 

and 3 should be grouped together in the group Bayesian network. Since Variables 2 

and 3 are dependent on Variable 1 in the original structure, the group with Variables 2 

and 3 should be dependent on the group with Variable 1. Similarly, the group with 

Variable 4 should be dependent on the group with Variables 2 and 3. 

                                                        
13 )1 ,1var;2(var~2var N  means that the values of Variable 2 are conditional on the values of Variable 

1. At each sampling process, the value of Variable 1 is sampled first. Then the value of Variable 1 will 

be used as the mean in the distribution of Variable 2. It is similar for Variables 3 and 4. 

Var 1 

Var 2 Var 3 

Var 4 
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Note that, in general, the algorithm will decide which variables to group and 

when to group. The grouping can be verified with the original relationships between 

the variables if they are available. 

3.2.3.1  Partitioning of Original Variables into Different Groups 

The first main step of the algorithm is to partition n  original variables into m  

groups ( nm< ). The number of original variables n  and groups m  are determined 

by domain knowledge. This step is similar to variable clustering (not instance 

clustering). The aim of variable clustering is to detect the redundant variables in the 

data, or highly-correlated variables. The difference between variable grouping in this 

algorithm and the ordinary variable clustering is in the grouping criterion. The 

criterion of the ordinary variable clustering is just based on the similarity of the 

variables. The criterion in this algorithm is based on the BIC score of the learned 

Bayesian network with group variables, because our objective is to learn both the 

similarity between original variables and the dependency relationships between group 

variables.  

The example in Figure 4 is to partition 4 variables into 3 groups. There are 6 

possible ways. For example, Variables 1 and 2 can be assigned to a group }2,1{ , 

Variable 3 can be in another group }3{ , and Variable 4 can be in a third group }4{ . 

This grouping will be expressed as }}4{},3{},2,1{{ . 

Exhaustive Search for Variable Grouping 

The intuitive way to group variables is to enumerate all possible partitionings of n  
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variables into m  groups. The number of possible configurations is the Stirling 

number of the second kind ([25], page 47), which is exponential in the number of 

variables n  and the number of groups m . In this case, it is not feasible to do the 

exhaustive search for moderately large n  and m , if m  is not equal to 1, or m  is 

not equal to n . This method is only implemented as a gold standard to test small 

cases. 

Greedy Search for Grouping – Greedy Grouping 

Since the grouping space is exponential in the number of variables and the number of 

groups, we need heuristics to speed up the grouping. Greedy search for grouping – 

greedy grouping – is adopted in this work. First, greedy grouping starts from an 

initial assignment of the variables to different groups. The initial assignment may be 

generated randomly, or from domain knowledge. For example, the initial grouping 

may be randomly assigned to be }}4{},3{},2,1{{  in our example. 

Second, the algorithm tests all the nearest neighbors of the current grouping. The 

neighbors mean the possible partitions in which only one original variable is changed 

from one group to another group of the current grouping. For example, one neighbor 

of the initial grouping }}4{},3{},2,1{{  is }}3{},4,2{},1{{  and it is obtained by 

assigning Variable 2 to another group. For each neighbor of the current grouping, a 

Bayesian network will be learned with the group variables defined by the partitioning, 

and the BIC score of the learned Bayesian network is used to measure the goodness of 

that partition. 

Third, the algorithm chooses the neighbor with the highest BIC score as the new 
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current grouping, if the highest BIC score is greater than the BIC score of the current 

grouping. Suppose that the current grouping is }}4{},3{},2,1{{  in the example. If its 

neighbor }}4{},3,2{},1{{  has the highest BIC score among all the neighbors and this 

score is better than that from the current grouping, }}4{},3,2{},1{{  will be assigned 

as the new current grouping. 

Lastly, the grouping process stops when no neighbors have a higher BIC score 

than the current grouping. In the example, the current grouping is }}4{},3,2{},1{{  

and no neighbors have a better score, and the greedy grouping will stop. 

Greedy grouping does the optimization locally and always reaches a local 

maximum. To escape from the local maximum, we can restart the greedy search 

several times with different initial groupings and select the best result we can obtain. 

In the second step of greedy grouping, only one variable's assignment is changed from 

one group to another group and two groups are involved. The results for other groups 

can be cached to speed up the process. 

3.2.3.2  Determine the Values for Each Group Variable 

In this algorithm, group variables are introduced as hidden variables to represent each 

group in this step. Determining the values of group variables is essential, since 

Bayesian network structure learning is based on group variables. In our work, we 

have tried different ways to determine the values of the group variables, such as the 

average of the variables in the group and the values from the first principal component 

of the variables in a group for continuous variables, and Autoclass package [24] for 
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discrete variables. For example, if the average of the variables in a group is used as 

the value of the group variable, Variables 2 and 3 are in a group, and the value of 

Variable 2 is 0.1 and the value of Variable 3 is 0.2 in one instance, then the value of 

the group variable is 0.15 (=(0.1+0.2)/2) in this instance. 

In the previous paragraph, we showed an example to determine the values of 

group variables when the variables are Gaussian variables. The algorithm can be 

applied to the cases when the variables are non-Gaussian or discrete. In those cases, 

the values of the groups can be determined with domain knowledge or other learning 

methods, such as the unsupervised Bayesian classification method Autoclass [24].  

3.2.3.3  Learn a Bayesian Network Based on the Group 

Variables 

The third main step in the algorithm is to learn a Bayesian network with the group 

variables only. In this step, we adopt the greedy search with BIC score for Bayesian 

network structure learning. The important issue in this step is that Bayesian network 

structure learning is based on group variables only, and no original variables are used 

in this step. We name the learned Bayesian network the group Bayesian network. 

Suppose the grouping is }}4{},3,2{},1{{ , and we name }1{  as group 1, }3,2{  

as group 2, and }4{  as group 3. The learned group Bayesian network is shown in 

Figure 5: 
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Figure 5  The learned group Bayesian network 

3.2.3.4  Recover the Structure of the Entire Variables from the 

Group Bayesian Network 

The fourth main step is to recover the structure for all variables. We adopt a strategy 

to keep the group variables as the skeleton in the recovered structure. In the process to 

determine the values of the group variables, a local structure is defined as the 

structure between the group variable and the original variables in each group, which 

can be used for potential structure recovery purpose. When the values of the group are 

from the average or the first principal component of the original variables in the group, 

the local structure is a tree structure – the original variables are independent of each 

other given the group variables. For example, group 2 is a root of the local structure 

with Variables 2 and 3 as in Figure 6. 

 
Figure 6  An example of the local structure 

In the recovery strategy, the local structures are concatenated to the group 

group2 
Var 2 

Var 3 

group1 

group2 

group3 
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Bayesian network to form an entire Bayesian network. The structure between the 

group variables is the main frame of the recovered Bayesian network. For example, 

the recovered structure in the example is shown in Figure 7: 

 

Figure 7  The recovered structure of the group Bayesian network 

If another strategy is adopted to remove the group variables from the final 

structure, the Bayesian network structure with the original variables should be learned 

with the constraints from the group Bayesian network. The group Bayesian network 

structure will be used as the skeleton of Bayesian network of the original variables. 

The original variables in a group will only choose their parents from the original 

variables which are in the parent groups of this group. For example, group 1 is the 

parent of group 2 in the learned group Bayesian network in Figure 5, and then the 

original variables in group 2 will only choose the original variables in group 1 as their 

parent variables. In this case, the recovered Bayesian network in our example is the 

same as the original one. 

3.2.4 Important Issues in the Proposed Algorithm 

There are two important issues to be emphasized. First, there are two search spaces in 

group1 
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our algorithm – one for variable grouping and the other for Bayesian network 

structure search with group variables. Although both spaces are exponential (one in 

the number of original variables and the number of groups, and the other in the 

number of group variables), the combination space is much smaller than the space of 

possible Bayesian network structures with the entire set of original variables. For 

example, there are 18102.4 ×  possible Bayesian network structures with ten original 

variables in a domain. If these ten variables will be partitioned into five groups, there 

are 42525 possible partitions14, and the number of possible Bayesian network 

structures with five variables is 29,281. The combined search space is 91024.1 ×  

(=29,281*42525), which is much smaller than the original search space of Bayesian 

networks with ten variables. Therefore, variable grouping can narrow the search space 

and speed up the learning process. 

Second, several heuristics are used in the learning process. One heuristic is the 

greedy search for variable grouping and the cache of the unchanged groups in greedy 

grouping. Another heuristic is the greedy search in Bayesian network structure 

learning. In these heuristics, we always choose a grouping and group Bayesian 

network with a higher BIC score as the next group assignment and Bayesian network 

structure. The BIC score never decreases in the search process. When the algorithm 

stops, it guarantees to reach a local maximum. These heuristics make the process 

reach a local maximum faster. 

                                                        
14 { } )5,5(/1)1,5(2)2,5(3)3,5(4)4,5(5)5,5(42525 1010101010 PCCCCC ×+×−×+×−×= . Here ),( mnC  means the 

possible choices to choose m  items from n  items, and ),( mnP  means the possible permutation of 

m  items from n  items. 
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3.2.5 Experiments with Variable Grouping 

The proposed algorithm has been tested in experiments with synthetic examples and a 

real microarray data. In the experiments with the synthetic examples, we build a 

synthetic Bayesian network first and sample data from the Bayesian network. With 

the sampled data, we apply the proposed algorithm to learn a group Bayesian network. 

The learned group Bayesian network will be compared with the expected group 

Bayesian network to evaluate the proposed algorithm. In the experiments with the real 

microarray data, we chose some genes in the domain of interest and compared the 

learned group Bayesian network with biological domain knowledge. 

The first synthetic example  First we tested the proposed algorithm with the 

example in Figure 4. In Figure 4, Variables 2 and 3 follow the same conditional 

probability distribution and are similar to each other, and should be grouped together 

in the group Bayesian network based on our assumption. The group with Variables 2 

and 3 should be dependent on the group with Variable 1, and affect the group with 

Variable 4. 

We drew different number of samples from this synthetic Bayesian network to 

learn a group Bayesian network. In our experiment, we tested with one thousand 

samples first and the expected group Bayesian network can be learned reliably. To 

determine the minimal number of samples required to estimate the expected group 

Bayesian network reliably, we reduced the number of samples gradually. In the end, 

we found that eleven was the smallest number of samples to make the group Bayesian 

network reliably learned in the experiments. 
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In the experiment, exhaustive search over all possible groupings was tested first 

for the comparison sake. The grouping problem here is to partition 4 variables into 3 

groups. There are 6 different cases in total. Figure 7 shows the structure of the group 

Bayesian network with the highest BIC score. Group 1 contains Variable 1, Group 2 

contains Variables 2 and 3, and Group 3 contains Variable 4. This grouping result is 

the same as what we expect. 

For greedy search over grouping, we ran the program for 12 hours and finished 

221 repeated experiments. In each experiment, we drew eleven samples from the 

synthetic model and learned a group Bayesian network from the instances with greedy 

grouping. In 82.8% of the repeated experiments, the learned grouping and the 

structure of the group Bayesian network are the same as expected result in Figure 7.  

Another synthetic example  

Figure 8 shows another synthetic Bayesian network, which has two copies of the 

first example with extra edges. In the example, Variables 3 and 4 follow the same 

conditional probability distribution and should be grouped together; Variables 5 and 6 

follow the same conditional probability distribution and should be grouped together. 

The group with Variables 3 and 4 should be dependent on the group with Variable 1, 

and should affect the group with Variable 7 and the group with Variable 8. The group 

with Variables 5 and 6 should be dependent on the group with Variable 2, and should 

affect the group with Variable 8. 

The eight original variables are partitioned into six groups and there are 266 
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different cases of grouping15. From the assumption, the expected result is to partition 

Variables 3 and 4 into one group, partition Variables 5 and 6 into another group, and 

partition other variables into individual groups. Figure 9 shows the result with the 

highest BIC score, which is the same as what we expected. 

The synthetic Bayesian networks above show the combination of the diverging 

and converging patterns in the Bayesian networks, which is the difficult part to learn. 

If there is no combination of diverging patterns and converging patterns in a Bayesian 

network, the Bayesian network structure will be a chain or a tree-like structure, which 

is easier to learn. In the above two synthetic examples, the proposed algorithm can 

partition the variables which follow the same conditional probability distributions into 

one group, and the learned group Bayesian networks summarize the relationships 

between the original variables in a high-level abstraction. 

 
 

Figure 8  Another synthetic example with eight Gaussian variables 

 

                                                        
15 )3,8()2,2(/)2,6()2,8(266 CPCC +×= . Here ),( mnC  and ),( mnP  have explained in Footnote 14. 
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Figure 9  The expected group Bayesian network with eight Gaussian variables 

Microarray data   The microarray data set used in this work was from Gasch et al. 

[69], which measured the response of yeast cells to environmental changes under 

different conditions. The data set contains 6157 genes and 173 experiments. From this 

data set, we selected ninety known genes in Actin cytoskeleton group to learn a group 

Bayesian network for testing purpose. The missing values in the data set were filled in 

with the average of the known values for each gene. Based on domain knowledge, 

there are averagely six genes in one group to perform a function, and the number of 

groups is set to fifteen in our experiment.  

We ran the experiments ten times to test whether the learned groups and group 

Bayesian networks are consistent in the majority of the experiments. In the result, 

genes ARC15, ARC19, ARP3 and the other three genes are in one of the learned 

groups in all the experiments. By checking with biological knowledge, we found that 

these genes are from one gene complex and are functionally related. Another group 

that contains gene PFY1 is dependent on the group with ARC19. The partial graph is 

shown in Figure 10. With the learned groups and group Bayesian networks, a domain 

expert checked the learned group Bayesian network and dependencies between groups 

of genes. He confirmed that most of the genes in the same groups and the 
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dependencies between groups are consistent with domain knowledge.  

 
Figure 10  A partial graph from the learned model with genes from Actin cytoskeleton group 

Note: Group 1 and 2 contain more genes than those in the figure. The edges without variables at the 

beginning or the end mean that some variables are not shown here. 

3.2.6 Discussion 

In this section, a new algorithm is proposed to learn Bayesian network from data in 

which some variables have similar conditional probability distributions. Within the 

limits of the experiments and investigations, we have shown that for a class of 

problems with practical implications, the proposed algorithm could discover groups of 

variables which follow the same conditional probability distributions, and could 

identify possible dependencies between groups simultaneously. The learned group 

Bayesian network is the skeleton of the relationships between the original variables in 

the domain. 

This algorithm has several advantages. First, it will reduce the number of 

variables in Bayesian network structure learning, since only group variables are used 

to learn the Bayesian network structure. Reducing the number of variables can narrow 

down the Bayesian network structure space and speed up the learning process. Second, 

it will relieve the requirement for the number of instances. Moreover, the learned 

group Bayesian network is a high-level abstraction of the relationships between the 
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original variables, such as the activity level of the groups of genes in a cell from the 

microarray data. Group variables are more reliable in representing the biological 

functions in a cell, and the dependency relationships between group variables are 

more stable than the dependency relationships between individual variables. Although 

our algorithm will lose some details in the sense of the direct interactions between 

original variables by introducing group variables and restricting the edges between 

variables in the different groups, it can capture the main interactions between groups, 

and such high-level abstraction of interactions between gene functions is common in 

Biology. 

In our work, the idea of variable grouping is motivated by the observations from 

microarray data. The algorithm can be applied to other domains with similar 

assumptions, such as different industrial sectors in stock market. 

There are some future directions for this work. One is overlapped grouping. In the 

current algorithm, each gene is only assigned to one group. From biological 

knowledge, however, we know that some genes can perform several functions and 

belong to different groups. Overlapped grouping is a natural way to model this 

phenomenon. Another important future direction is to collaborate with domain experts 

who work on wet-bench biological experiments. The proposed algorithm can generate 

hypotheses of dependency between genes for future research.  

3.3 Summary of Hypothesis Generation 

This chapter discussed hypothesis generation from Bayesian network structure 
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learning. Two general hypothesis forms are introduced first: individual Bayesian 

networks and individual edges in Bayesian networks. Hypothesis generation is to 

select the statistically-significant individual Bayesian networks or individual edges in 

Bayesian networks based on the available data with Bayesian network structure 

learning. Variable grouping is proposed to generate hypotheses with Bayesian 

network structure learning in the domain where some variables follow similar 

conditional probability distributions. In our experiments, the proposed algorithm can 

partition similar variables into the same groups and learn the dependency between the 

groups. The concepts and algorithms for hypothesis generation via variable grouping 

developed in this chapter represent a new effort in this direction. Since there are no 

available methods for refinement and verification of group variables as hidden 

variables, the hypotheses generated with variable grouping will not be considered in 

the subsequent chapters in this thesis. Individual edges in Bayesian networks will be 

mainly used for hypothesis refinement and verification in Chapter 4 and Chapter 5. 



 78 

Chapter 4  Hypothesis Refinement for 

Knowledge Discovery with Bayesian 

Networks 

- Learning Bayesian Networks with Observational Data 

and Topological Constraints from Domain Knowledge 

 

In Chapter 3, we have discussed hypothesis generation from observational data, which 

is a Bayesian network structure learning problem in our discussion. In this chapter, we 

will address one of the common problems in the learned Bayesian networks. This 

problem is that some edges in the learned Bayesian networks are inconsistent with 

domain knowledge. Generally, domain knowledge has been verified by experiences or 

interventional experiments and is considered correct. In this case, we need to adjust 

the hypotheses of direct influence relationships between variables as edges in 

Bayesian networks generated with observational data and make them consistent with 

domain knowledge. 

In this chapter, we will discuss the representation of topological domain 

knowledge, the refinement of the generated hypotheses with the available topological 

domain knowledge, and the effect of topological domain knowledge on the learned 

Bayesian network structure. 
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4.1 Background and Motivation 

In Section 3.1.3, we have observed the inconsistency between the learned Bayesian 

network and domain knowledge in the heart disease problem, where variable “AGE” 

is dependent on other variables. From common sense, we know that variables like 

“AGE” are not affected by other variables in the heart disease problem. Such variables 

should be root nodes in the related causal Bayesian networks. However, in the learned 

Bayesian networks, these variables can be the children of other variables, which make 

the learned Bayesian networks inconsistent with domain knowledge. Similarly, some 

variables should be leaf nodes in the causal Bayesian networks. For example, in 

medical domains, the lab test results will not affect other variables in the domain and 

should be leaf nodes. Moreover, some edges may be known before learning, such as a 

known edge from variable “having a cold” to variable “running nose”. 

This inconsistency problem can be addressed manually, and the inconsistent 

edges can be deleted from the learned Bayesian networks. This strategy can reduce 

the inconsistency; however, such modified structure may not be the one with the 

highest score given the available data and domain knowledge. 

Alternatively, topological domain knowledge can be taken into consideration in 

Bayesian network structure learning to constrain the structure space. Many authors 

have tried in this direction. Cooper and Herskovits required the complete causal 

ordering of the variables in a domain and proposed the K2 algorithm [38]. Heckerman 

et al. [87] used a prior network for Bayesian network structure learning. These 

methods work well theoretically when the required systematic domain knowledge is 
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available. In practice, however, only partial domain knowledge is available in most 

cases. Partial domain knowledge means that, certain variables are known as roots or 

leaves in Bayesian networks from the time constraints or other sources, or there are 

known edges between some variables.  

To utilize the available partial domain knowledge, we need to represent domain 

knowledge as topological constraints to restrict the structure space of Bayesian 

networks. In this case, domain knowledge should be represented in appropriate ways 

to facilitate Bayesian network structure learning. Certain kinds of partial domain 

knowledge have been considered in Bayesian network structure learning ([155], 

Section 5.4.5) in packages like LibB, TETRAD and Bayesian network 

PowerConstructor16. Experience has shown that the partial domain knowledge can be 

very helpful in improving both the efficiency and accuracy of the learned Bayesian 

network structures. 

However, as far as we know, there is no systematic representation, analysis and 

evaluation on incorporating partial topological domain knowledge into Bayesian 

network structure learning, and the explicit effects and influences of different kinds of 

topological constraints are unknown. When domain knowledge is not well-expressed, 

domain experts may specify inconsistent domain knowledge, which may not be easily 

detected when there are many variables in a domain. Some other issues should also be 

addressed in Bayesian network structure learning with domain knowledge, such as 

                                                        
16 LibB: http://www.cs.huji.ac.il/labs/compbio/LibB/ 

TETRAD: http://www.phil.cmu.edu/projects/tetrad/ 

BN PowerConstructor: http://www.cs.ualberta.ca/~jcheng/bnsoft.htm  
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random generation of Bayesian network structures and Bayesian network structure 

rejection with topological domain knowledge. 

In this chapter, we propose two canonical formats to represent the partial 

topological domain knowledge as topological constraints in Bayesian network 

structure learning, and examine the effect of topological constraints on the accuracy of 

the learned Bayesian network structures. 

We assume in this chapter that domain knowledge for Bayesian network structure 

learning is available. The source of domain knowledge is a big issue, and efficiently 

eliciting domain knowledge from domain experts is an active research topic. Causal 

knowledge elicitation has been proposed by Nadkarni and Shenoy [124] for Bayesian 

network construction. The general knowledge elicitation in artificial intelligence 

domain has been discussed extensively by Firlej & Hellens [56] and references 

therein.  

4.1.1 Related Work 

Domain knowledge considered in this chapter is qualitative domain knowledge, such 

as whether there is a direct edge from one variable to another variable. Donoho & 

Rendell [45] and Han et al. [82] have discussed some general categories of domain 

knowledge and previous efforts [11,94,95,126] have examined quantitative domain 

knowledge for Bayesian network learning. Another topic related to hypothesis 

refinement in Bayesian networks is the general knowledge refinement [72,162,163], 

where meta-knowledge is used to refine some specific domain knowledge. The work 
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mentioned above discussed the quantitative domain knowledge or general knowledge. 

Such knowledge is different from the direct causal influence relationships between 

variables and not directly applicable to the problem we address here.  

4.2 Representation of Topological Domain Knowledge 

in Bayesian Networks 

In this chapter, we consider qualitative domain knowledge for hypothesis refinement 

in Bayesian network structure learning. The types of qualitative domain knowledge 

considered are: root variables, leaf variables, known and forbidden edges, partial 

ordering of variables, (conditional) independence relationship between variables, 

known parents and children, possible parents and children, and the maximal number 

of parents and children. 

These types of qualitative domain knowledge are derived from the understanding 

of causal Bayesian networks and how qualitative domain knowledge can be applied to 

causal Bayesian network construction. The root variables are usually determined by 

time constraint or common sense. As mentioned in the medical domain in the previous 

chapter, variables like “AGE”, “ RACE”, and “SEX” have their values fixed before 

other variables and their values are not affected by other variables. Therefore, these 

variables should be root variables in a causal Bayesian network. Similarly, variables 

like the lab test results are dependent on other variables and do not affect other 

variables, and should be leaf variables in a causal Bayesian network. 

The known edges and forbidden edges can be from common sense. For example, 
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there should be an edge from “having a cold” to “ runny nose”. There should be no 

edge from the lab X-ray test results to variable “Tuberculosis”. Causal ordering is 

from time constraints and manipulation results. Similar examples can be applied to 

other qualitative domain knowledge. 

We will represent qualitative domain knowledge as topological constraints in 

Bayesian networks in two formats: the rule format and the matrix format. Table 8 

summarizes a common set of topological constraints in the rule format. The column 

“types of topological domain knowledge” lists all the types of topological domain 

knowledge we have considered. The column “meaning” explains the rules in the 

ordinary language. In general, these rules are easy to understand and elicit from 

domain experts. However, if there are conflicts and cycles in the elicited domain 

knowledge, it is difficult to detect them in the rule representation. 

To facilitate consistency checking, we propose to convert the topological 

constraints from the rule format into the matrix format: one matrix for the known 

edges, one matrix for the forbidden edges, one matrix for the partial ordering, one 

vector for the maximal number of parents, and one vector for the maximal number of 

children, as summarized in Table 9. If there is a known edge from variable i  to 

variable j , the element (i , j ) in the known edge matrix will be 1; otherwise, the 

element will be 0. If there is a forbidden edge from variable i  to variable j , the 

element (i , j ) in the forbidden edge matrix will be 1; otherwise, the element will be 0. 

If it is known that variable i  is before variable j , the element (i , j ) in the partial 

ordering matrix will be 1; otherwise, the element will be 0. The values of the maximal 
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number of parents and children are non-negative natural numbers. For known edge 

matrix, forbidden edge matrix and partial ordering matrix, only the elements with 

value 1 will be used in the learning process; the elements with value 0 just mean that 

we do not have such knowledge and they will not be used in the learning process.  

Types of topological 
domian knowledge 

Meaning 

Roots 
Variables without parents. Such variables influence other 

variables, but are not influenced by any other variables 

Leaves 
Variables without children. Such variables are influenced by 

other variables, but do not affect other variables. 

Known edges Fixed edges before learning 

Forbidden edges Definitely no such edges 

Partial ordering Variables before some other variables in the causal ordering 

(Conditional) independence Variables conditional independent 

Known parents The parents of some variables are known 

Known children The children of some variables are known 

Possible parents The parents of variables are restricted to a subset of variables 

Possible children The children of variables are restricted to a subset of variables 

Maximal number of parents Numbers of parents of variables can be different and limited 

Maximal number of children Numbers of children of variables can be different and limited 

Table 8  Summary of topological domain knowledge in the rule format 

 

Names of components        Meaning 

Matrix_k Matrix for known edges 

Matrix_f Matrix for forbidden edges 

Matrix_p Matrix for partial ordering 

V_maxParents Vector for the maximal parents 

V_maxChildren Vector for the maximal children 

Table 9  Summary of topological domain knowledge in the matrix format 

These components of topological domain knowledge in the matrix format 
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summarize all possible topological constraints of the rule format in Table 8. The first 

ten rules in Table 8 suggest the known edges, forbidden edges and the partial 

orderings in Table 9. The last two rules suggest the limits on the numbers of parents 

and children of individual variables. 

4.2.1 Compilation of Domain Knowledge from the Rule 

Format to the Matrix Format 

Each rule of domain knowledge in Table 8 corresponds to different values in the 

matrix format. For example, if a variable is a root in a Bayesian network, it means that 

there are no edges pointing to it, and the values of elements in the row of the 

forbidden matrix corresponding to this variable will be 1. For another example, if we 

know the partial ordering of some variables, we can specify a set of variables before 

another set of variables or a set of variables arranged in their causal order. For every 

rule, we have performed such a mapping from the rule format to the matrix format. 

4.2.2 Checking the Consistency of Topological Constraints 

After the compilation, we have domain knowledge in the matrix format. Before we 

apply it in Bayesian network structure learning, we need to check the consistency in 

the specified domain knowledge. By analyzing the properties of the topological 

constraints, we identified five types of inconsistency:  

1) Cycles in the known edges. There should be no cycle of the directed edges from 

topological domain knowledge; 
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2) Conflicts in the known edges and the forbidden edges. There should be no 

overlapping between the known edges and the forbidden edges in valid domain 

knowledge; 

3) Cycles introduced by the partial ordering and known edges. If there are cycles, it 

means that certain paths of the known edges conflict with the known partial orderings; 

4) The number of the maximal parents is smaller than the number of the known 

parents. The sums of the parents of the known edges to each variable represent the 

number of the known parents; and 

5) The number of the maximal children is smaller than the number of the known 

children. The sums of the children of the known edges from each variable represent 

the number of the known children. 

These five types of inconsistency are checked step by step. If there are 

inconsistencies in topological domain knowledge, our program will report them. 

Currently, we do not computationally resolve the inconsistencies in topological 

domain knowledge. We leave the work to domain experts or further experiments. In 

the following sections, we assume that the topological domain knowledge used is 

consistent and correct. 

Running Time for Consistency Checking 

As we mentioned above, the matrix format of domain knowledge is easy for 

consistency checking. For comparison, we have implemented the consistency 

checking in both the rule format and the matrix format with MATLAB. In the rule 

format, we need to enumerate all possible paths to check the circles, and the possible 
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conditions for overlapping. In the matrix format, the consistency checking is done by 

matrix manipulation. We conducted experiments to compare the running time of the 

rule format and matrix format for consistency checking. 

First we randomly generated domain knowledge with ten variables in rule format 

to test whether our program can work properly. We manually checked the 

inconsistency in the generated domain knowledge as the base cases for consistency 

checking. In our testing, the program can report the same inconsistency in rule format 

and matrix format as that in manual checking, if applicable. 

Next, we ran experiments to compare the time required for consistency checking 

in two different topological formats. We tested the consistency checking with ten to 

one hundred variables. For each specified number of variables, we randomly 

generated fifty different topological constraint sets in the rule format. For each 

topological constraint set, the consistency checking was performed both in the rule 

format and the matrix format. The time for consistency checking in the matrix format 

includes the time to compile the topological constraints from the rule format to the 

matrix format. The average time in two different cases is reported in Figure 11. 

Figure 11 shows that, in our experiment, the time required for consistency 

checking in the rule format seems exponential in the number of variables in the 

domain, while the time required for consistency checking in the matrix format seems 

linear to the number of variables in the domain. On average, the consistency checking 

in the matrix format takes only about 10% of time required in the rule format. A 

potential reason is that, in the matrix format, consistency checking is done by matrix 
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operation, which can check multiple circles in a single manipulation; but in the rule 

format, it takes more time to enumerate all possible situations for consistency 

checking. 

 

Figure 11  Average time required for consistency checking with different constraint formats 

4.2.3 Induction with Topological Constraints 

Some topological constraints in Bayesian networks are related to the conditional 

independence. Dawid [41] examined the axiomatic rules to characterize the 

conditional independence in a probability distribution: symmetry, decomposition, 

weak union, contraction, and intersection. In these rules, only the conditional 

independence information is considered.  

Here, we can utilize the graphical properties of Bayesian networks to deduce 

independence relationships with d-separation (Refer to Appendix A.B for the 

definition of “D-separation”). A new rule is proposed to derive new topological 

constraints from the available topological constraints which are not explicitly 

mentioned by domain experts. This will minimize the expert’s effort in domain 
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knowledge elicitation stage. Moreover, if there are inconsistencies in the specified 

topological constraints, the derived topological constraints from this rule may show 

the direct conflict in the elicited domain knowledge and make the inconsistencies 

clearer. The rule and the proof are as follows. 

Theorem 4.1  Suppose X , Y  and Z  are three different variables in a 

domain which can be modeled with a Bayesian network (G , P ) where the structure of 

Bayesian network G  is unknown, and P  is the probability distribution in the 

domain that satisfies the causal Markov assumption and corresponds to G . If X  is 

independent of Y , and Z  is a parent of X , then Z  and Y  will be independent. 

YZthenXZandYXIf ⊥→⊥ ,  

• Proof: 

• Suppose that Z  is not independent of Y  

• Then there will be a path from Z  to Y  without v-structure (This is an 

application of the d-separation criterion) 

• If this path includes X , it means that the part of this path between X  

and Y  will not have v-structure 

• If this path does not pass through X , adding an edge XZ →  to the path 

will not introduce v-structure at Z . In this case, there is a path between 

X  and Y  without v-structure 

• In both cases, there will be a path between X  and Y  without 

v-structure. Then we can conclude that, X  and Y  are not independent 

(This is another application of the d-separation criterion) 

• Contradiction!                                             ■ 

Take the benchmark Asia network (refer to Figure 12) as an example. If we know 

that variable “Tuberculosis” is independent of variable “Smoking” and there is an edge 
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from variable “Visit to Asia” to “Tuberculosis”, then “Visit to Asia” should be 

independent of variable “Smoking”. This relationship can be easily checked with the 

structure in Asia network. 

4.3 Bayesian Network Structure Learning with Domain 

Knowledge 

After domain knowledge is represented in the matrix format, we can apply it in 

Bayesian network structure learning. The topological domain knowledge can be used 

to reject the DAGs which are inconsistent with domain knowledge, and it is 

applicable to all the Bayesian network structure learning methods, including 

score-and-search-based approach and constraint-based approach. In the following 

section, we will use a score-and-search-based approach for illustration.  

Greedy Search Algorithm with Topological Constraints 

In this work, we adopt greedy search and Bayesian Information Criterion (BIC) 

score to learn Bayesian networks and Table 10 shows the pseudo code.  

Compared with the general greedy search method for Bayesian network structure 

learning, there are two main differences. First, the initial DAG generated should be 

consistent with domain knowledge. The base DAG under topological constraints is 

the one with the known edges only. Other edges can be randomly added to the base 

DAG under the acyclic constraint in Bayesian networks. 

Second, an additional step should be applied to reject the neighbors of the current 

DAG that are inconsistent with the topological constraints. When we have a set of 
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DAGs as the candidate structures of Bayesian network, we need to check them and 

reject the ones inconsistent with topological constraints. The consistency checking is 

similar to the consistency checking process discussed in Section 4.2.2. This will 

guarantee that the selected Bayesian network structures are consistent with the 

topological domain knowledge, and will help to narrow the structure space and speed 

up the learning process. 

Generate an initial DAG consistent with the topological constraints as the current DAG 

Done = false 

While ~Done 

    Generate all possible neighbors of the current DAG 

    Reject the neighbors which are inconsistent with the topological constraints 

    Evaluate the remaining neighbor DAGs 

   If the best score of the remaining neighbor DAGs is better than that of the current DAG 

        Set the neighbor DAG with the best score as the current DAG 

    Else 

         Done = true   

Table 10  Algorithm for Bayesian network learning with topological domain knowledge 

4.4 An Iterative Process to Identify Topological 

Constraints with Bayesian Network Structure 

Learning 

Domain knowledge elicitation is an important step for hypothesis refinement. In 

practice, we may not be able to identify all possible topological constraints in one 

round, due to time constraints and knowledge limitation. We may identify some 

topological constraints first and then identify others later after we learn the Bayesian 
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network structures.  

In Section 3.1.2, we have mentioned how to estimate the probabilities of 

individual edges (and other features). After learning, the edges with the highest 

probabilities and the lowest probabilities can be shown to domain experts. The 

domain experts will evaluate the significance of these edges with their expertise, and 

decide whether the edges with high probabilities are real edges and the edges with low 

probabilities are forbidden edges. If the domain experts confirm that these edges are 

known edges or forbidden edges, these edges will be included in the topological 

constraint set. Then the new topological constraint set can be used to learn the 

probabilities of other edges. This process can repeat until the domain experts confirm 

that there are no more topological constraints from domain knowledge. 

Likelihood of Individual Topological Constraints 

Another issue with domain knowledge is whether the specified topological 

constraints are correct or not. For each individual topological constraint, we can 

estimate its probability with data and other topological constraints. The known edges 

in the topological constraint set should have high probabilities. The forbidden edges 

in the topological constraint set should have low probabilities. If not so, more 

justification is needed for the known edges with low probabilities and the forbidden 

edges with high probability, and we leave this issue to the domain experts. 



 93 

4.5 Empirical Evaluation of Topological Constraints on 

Bayesian Network Structure Learning 

In this section, we examine the effects of topological constraints on Bayesian network 

structure learning. One expected effect is the speed-up of Bayesian network structure 

learning with domain knowledge. Another expected effect is the improvement of the 

learned Bayesian network structure with domain knowledge. We want to know which 

kind of topological constraints can lead to more correct edges in the learned Bayesian 

network structure. Such knowledge will help us in data collection, domain knowledge 

elicitation, and interventional experiment design for causal knowledge discovery.  

In this section, the benchmark Asia network [104] is used to examine the effects 

of topological constraints on Bayesian network structure learning, since all possible 

constraint types can be represented in it. Asia network is a Bayesian network with 

eight variables that models the situation to determine the likelihood of a person 

having a disease, given his/her visiting history and smoking habit. The structure of the 

Asia network17 is shown in Figure 12.  

 
Figure 12  Asia network 

                                                        
17 Reprinted with the permission from Wiley-Blackwell. 
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The experiment process is as follows.  

1) Specify the topological constraint sets (empty, with a single topological constraint, or 

with multiple topological constraints) 

2) For i=1:n, 

3)    Sample data from the original Bayesian network 

4)    Learn Bayesian networks with the data and the specified topological constraint sets 

5)    Count the edges in the learned Bayesian networks 

Topological constraints are generated based on the structure of Asia network. The 

single topological constraints are generated systematically, which are the possible 

roots, leaf nodes, the existing edges as known edges, the non-existing edges as 

forbidden edges. Topological constraint sets with multiple individual constraints are 

randomly generated and some topological constraint sets are manually generated to 

examine the effects of the topological constraint types of interest. 

The evaluation criteria are the correct edges in the learned Bayesian network and 

the Hamming distance between the learned Bayesian network and the original 

Bayesian network. In addition, the number of the correct structures learned and the 

number of the learned structure in the Markov equivalent class (as the CPDAG) of the 

original Bayesian network are counted in the repeated experiments. The correct 

structure means that the algorithm can identify all the influence relationships between 

variables from the data. The number of the learned structure in CPDAG is used to 

measure how the algorithm extracts the conditional independence relationships 

between the variables from data. 

4.5.1 Without Constraints 

We first tested the case without topological constraints. We sampled data from the 



 95 

Asia network to learn Bayesian network structure. Experiments show that it is very 

difficult to learn the correct complete structure from the data alone, and it is a little bit 

easier to learn the CPDAGs. This is consistent with theoretic analysis and findings 

from other researchers [33].  

4.5.2 With Individual Topological Constraints 

In this experiment, we tested the effects of all possible individual topological 

constraints in Asia network on the correctness of the learned Bayesian network 

structure. Individual topological constraint means only one constraint in the constraint 

set. Totally, sixty-one individual topological constraint sets were generated from Asia 

network – 1 without constraints, 2 with one root, 2 with one leaf, and 56 with 1 edge 

as known or forbidden edge. The experiment setup is as follows: 

1) The program ran 36 hours and finished 100 experiments. 

2) 100 different randomly sampled data sets were generated from the original 

Bayesian network 

3) Each data set has 1000 randomly sampled instances 

4) One Bayesian network is learned with each data set and one of the 61 different 

constraint sets. 

The total number of the learned Bayesian networks is 6100 (=100*61). Some findings 

from the experiment results are:  

1) In the total learned Bayesian networks, only 3 are the same as the original ones. 

However, more learned Bayesian networks are in the CPDAG of the original 

Bayesian network. It shows that it is more likely to learn a Bayesian network in 

the Markov equivalent class of the original Bayesian network [33] from data and 
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individual topological constraints, other than the exact structure of the original 

Bayesian network.  

2) A constraint set with a single edge from node “Visit to Asia” to node 

“Tuberculosis” leads to the highest average correct edges and the minimal average 

Hamming distances. This edge is an undirected edge in the CPDAG of the original 

Bayesian network, and such type of edges is distribution-indistinguishable . The 

direction of such edges cannot be determined by the observational data. This 

result means that, when the constraint set contains the edges that are 

distribution-indistinguishable, the constraint set can lead to more accurate 

structure in the learned Bayesian networks.  

3) The other two constraints also lead to the learned structures with high accuracy. 

One constraint is an edge from node “Lung Cancer” to node “Tuberculosis or 

Lung Cancer”, which is an edge in a v-structure of the original Bayesian network. 

The other constraint is a leaf node “Dyspnea”. These results suggested that we 

need to pay more attention to certain types of topological constraints in practice 

for knowledge discovery, such as the roots, leaves, edges in v-structure, and edges 

which are distribution-indistinguishable in Bayesian networks. If possible, we 

need to determine such types of topological constraints with interventional 

experiments. This is the task of hypothesis verification in Chapter 5.  

4.5.3 With Multiple Randomly-sampled Constraints 

In this experiment, we tested the effects of multiple constraints in one constraint set 
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on the correctness of the learned Bayesian network structure. We want to know which 

kind of topological constraints or their combinations can lead to Bayesian networks 

with better accuracy. We randomly selected one to seven possible edges in the original 

Bayesian network as known edges or forbidden edges of the constraint sets, and 

totally generated 43 constraint sets. The experiment setup is: 

1) We ran the program for 14 hours and finished 93 experiments 

2) 93 different data sets were randomly sampled from the original Bayesian 

network in this period 

3) Each data set has 1000 random instances 

4) One Bayesian network was learned with each data set and one of the 43 

randomly generated constraint sets 

The total number of the learned Bayesian networks is 3999 (=93*43). In the total 

learned Bayesian networks, 453 (11%) of them were the same as the original one. 

Compared to the results with individual constraints, where almost no learned 

Bayesian networks were the same as the original ones, this means that it is more likely 

to learn the correct Bayesian networks with more topological constraints. This 

coincides with our belief that, the more the topological constraints we know, the 

easier to learn the correct edges from the data. 

4.5.4 With Multiple Manually-generated Constraints 

In this experiment, we want to know the effects of some specific topological 

constraints and their combinations on the learned Bayesian networks. From the 

previous experiments, we observed that roots, leaves, distribution-indistinguishable 

edges and edges in v-structure of the original Bayesian networks are important for the 
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correct Bayesian network structure learning. Here we want to examine how these 

topological constraints affect the accuracy of the learned Bayesian network structure 

and the learning process. We manually generated 12 different constraint sets:  

1) Without topological constraints; 

2) “Visit to Asia” and “Smoking” as roots, “Positive X-ray” and “Dyspnea” as leaves, 

“Lung Cancer” to “Tuberculosis or Lung Cancer” and “Tuberculosis” to 

“Tuberculosis or Lung Cancer” as known edges; 

3) “Positive X-ray” and “Dyspnea” as leaves; 

4) “Visit to Asia” and “Smoking” as roots, “Positive X-ray” and “Dyspnea” as leaves; 

5) “Smoking” to “Lung Cancer” as known edge; 

6) “Smoking” to “Bronchitis” as known edge; 

7) “Lung Cancer” to “Tuberculosis or Lung Cancer” as known edge; 

8) “Smoking” as root, and “Bronchitis” to “Dyspnea” as known edge; 

9) “Positive X-ray” and “Dyspnea” as leaves, and “Lung Cancer” to “Tuberculosis or 

Lung Cancer” as known edge; 

10) “Lung Cancer” to “Tuberculosis or Lung Cancer” and “Tuberculosis” to 

“Tuberculosis or Lung Cancer” as known edges; 

11) “Lung Cancer” to “Tuberculosis or Lung Cancer” and “Bronchitis” to “Dyspnea” 

as known edges; and 

12) “Visit to Asia” and “Smoking” as roots, “Positive X-ray” and “Dyspnea” as leaves, 

“Tuberculosis or Lung Cancer” to “Dyspnea” and “Bronchitis” to “Dyspnea” as 

known edges. 
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We ran the program for eighteen hours and finished 328 repeated experiments. 

The results are summarized in Table 11. In Table 11, the rows represent different 

evaluation criteria, and the columns represent different topological constraint sets. 

From Table 11, we know that, when the topological constraint sets (sets 2, 4, and 12) 

contain roots or leaves from the original Bayesian networks, more candidate DAGs 

will be rejected (refer to row (5) in Table 11), and more correct edges will be 

recovered in the learned Bayesian networks (refer to row (4) in Table 11).  

 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10 Set11 Set12 

(1) 1 0 1 0 5 0 0 0 2 0 0 0 

(2) 1 0 3 8 16 0 0 0 5 0 0 0 

(3) 11 5 6 4 9 11 9 10 4 11 8 5 

(4) 3 5 5 5 4 3 4 4 6 4 5 6 

(5)(%) 0 43 20 37 4 4 4 15 23 7 8 40 

Table 11  Results of Bayesian network structure learning with topological constraints 

Note: The row numbers represent (1) number of learned DAGs as expected; (2) number of learned 

CPDAGs as expected; (3) average Hamming distance; (4) average correct edges; and (5) average 

percent of DAGs rejected. The columns represent the topological constraint sets from the Asia 

network: (1) set1 has no constraints, (2) set2, set4, set8 and set12 have the roots specified, (3) set2, 

set3, set4, set9, and set12 have the leaves specified, and other topological constraint sets have 

some edges specified. 

The constraint set 5 contains an edge from “Smoking” to “Lung Cancer”, which is 

a distribution-indistinguishable edge in the CPDAG of the original Bayesian network. 

This constraint set leads to the maximum number of correct CPDAG. It emphasizes 

that the distribution-indistinguishable edges in the original Bayesian networks are 

important for Bayesian network structure learning. 
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4.6 Application of Bayesian Network Structure 

Learning with Domain Knowledge in Heart Disease 

Problem 

In Section 3.1.3, we applied the hypothesis generation methods to a real heart disease 

data. In this section, we will apply domain knowledge for hypothesis refinement on 

this same data set. 

Two Bayesian networks are learned from the heart disease data, one without 

topological constraints (Figure 13, shown in Section 3.1.3 before) and one with 

topological constraints (Figure 14). In Figure 13, the variables “AGE”, “ RACE” and 

“SEX” have parents, which is inconsistent with common sense as these variables are 

not affected by other variables in the domain. This motivated us to combine 

topological domain knowledge in Bayesian network structure learning. 

In our work, we applied three types of topological domain knowledge. First, 

variables “RACE”, “ AGE” and “SEX” are specified as roots in the causal Bayesian 

networks, since we know from common sense that the probability distributions of 

these three variables are not dependent on other patient profile information. Second, 

the family health history variables “FHY”, “ FDM” and “FCAD” precede all other 

variables in the partial ordering, since family health history precedes the patient 

profile in time. Third, there is a known edge from “Smoker” to “CAD”, which is from 

our current domain understanding. The Bayesian network learned with such 

topological domain knowledge is shown in Figure 14. As compared with the Bayesian 

network in Figure 13, the causal Bayesian network structure in Figure 14 is more 
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meaningful as judged by commonsense: The disease “CAD” is dependent on the 

variable “AGE”, and the variable “Smoker” is dependent on “SEX” and “RACE”. The 

results in this section and related research with single nucleotide polymorphism (SNP) 

information were published in World Congress of Health(Medical) Informatics18 

[27,107]. 

 

Figure 13  Bayesian network learned without domain knowledge 

 

 

Figure 14  Bayesian network learned with domain knowledge 

To be noted, the edges of the learned Bayesian networks in the heart disease 

problem may not be causal relationships between the variables, although we prefer 

discovering causal relationships from the data. The learned relationships need to be 

verified with manipulation criterion, and we cannot manipulate the values of variables 

in the heart disease domain due to ethical reasons. In the next chapter, we will 

                                                        
18 The permission for re-printing the materials refers to Footnote 4. 
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consider the relationships which can be verified with manipulation. 

4.7 Application of Bayesian Network Structure 

Learning with Domain Knowledge and 

Bootstrapping in Heart Disease Problem 

To verify the significance of the edges in the learned Bayesian networks, we applied 

the bootstrap approach [50] to learn the probabilities of individual edges. We sampled 

data from the original data with replacement, and two Bayesian networks were 

learned from each sampled data set – one without topological domain knowledge and 

one with the topological domain knowledge specified before.  

Table 12 and Table 13 show the significant pairs of variables from the bootstrap 

approach in the learned Bayesian networks with and without domain knowledge. The 

results showed that almost all the edges in the learned Bayesian networks were quite 

significant and appeared more than 80% of times in the 500 bootstrap experiments. 

The pair of variables “Smoker-CAD” appeared 100% in the learned Bayesian 

networks as the known edges in Table 12. The top pair of variables in the learned 

Bayesian networks with bootstrap approach and domain knowledge is “SEX-Smoker” 

in Table 12, which appeared surprisingly 100% in the 500 bootstrap experiments. This 

pair of variables is deemed to be related to each other based on the current domain 

understanding. Other evaluation methods such as chi-square, mutual information and 

the Bayesian network learned without domain knowledge, however, did not rank this 

pair of variables highly. The third top pair of variables in Table 12 is “RACE-Smoker”, 
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which shows that smoking habits are correlated with race, similar to the research on 

the adolescents in the United States of America [166]. 

The fourth top pair of variables in Table 12 is “AGE-CAD”, which is consistent 

with common sense: the likelihood of having heart disease depends on the age of the 

patient. Other highly ranked pairs of variables in Table 12 appeared in the learned 

Bayesian network with topological domain knowledge (Figure 14). It means that the 

edges in the learned Bayesian network with domain knowledge are statistically 

significant. 

Both Table 12 and Table 13 show that “CAD” is related to smoking habit, 

diabetes and race. But how one variable will affect another is not clear, and the 

clinical meaning of these pairs of variables needs further examination. 

Order Variable 1 Variable 2 Occurrences (%) 
1 Smoker CAD 500 (100.0%) 

2 SEX Smoker 500 (100.0%) 

3 AGE CAD 411 (82.2%) 

4 RACE Smoker 406 (81.2%) 

5 CAD diabetic 401 (80.2%) 

Table 12  Top edges learned with bootstrap and topological constraints 

Note: The percentage in the Occurrences column means the percent of the edges appearing in the 500 

learned Bayesian networks with domain knowledge from bootstrap approach. 

 

Order Variable 1 Variable 2 Occurrences (%) 

1 CAD Diabetic 462 (92.4%) 

2 CAD FDM 443 (88.6%) 

3 CAD Hypertension 439 (87.8%) 

4 CAD RACE 408 (81.6%) 

5 CAD Smoker 402 (80.4%) 

Table 13  Top edges learned with bootstrap but no topological constraints 

Note: The percentage in the Occurrences column means the percent of the edges appearing in the 500 

learned Bayesian networks without domain knowledge from bootstrap approach. 

 

Figure 15 shows the histograms of the running time of Bayesian network 
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structure learning with and without topological constraints. As indicated, the running 

time with topological constraints are much shorter than those without topological 

constraints. The average running time with topological constraints is 65.9 seconds. 

Compared to the average running time without topological constraints (140.1 

seconds), the speed-up of Bayesian network structure learning with topological 

constraints is more than two times in our experiments. 

 

Figure 15  Histograms of times taken to learn Bayesian networks with/without domain 

knowledge 

We notice that the speed-up of the learning process is dependent on the available 

domain knowledge. In our example, there are eleven variables and one hundred and 

ten possible edges (two directions for fifty-five pairs of variables). The available 

domain knowledge in our example is that three variables are roots, three variables are 

before other eight variables in causal ordering, and one edge is known. Based on such 

constraints, there are totally fifty-five forbidden edges. The Bayesian network 

structure space with the constraints was much smaller, which led to the speed-up in 

Bayesian network structure learning. If the number of the known topological 

constraints is different, the speed-up will be different too. 
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4.8 Summary of Hypothesis Refinement 

Inconsistency between the learned Bayesian networks and domain knowledge is a big 

issue in applications of Bayesian networks. When the learned Bayesian networks are 

consistent with domain knowledge, it will be much easier for domain experts to 

accept the learned Bayesian networks and apply them in their work. To make the 

hypotheses generated from data consistent with domain knowledge, we need to 

incorporate domain knowledge into Bayesian network structure learning. 

In this chapter, we have proposed two canonical formats to represent qualitative 

domain knowledge as topological constraints in Bayesian networks, and identified 

that some topological constraints are important for Bayesian network structure 

learning, such as roots, leaves and distribution-indistinguishable edges in the CPDAG 

of the original Bayesian network. 

The two types of domain knowledge representations have different properties. 

The rule format is easy for domain knowledge elicitation from domain experts. 

However, the relationship of a specific pair of variables may be specified in several 

rules. This repeated information may lead to conflicts in the specified domain 

knowledge if the rules are not well-specified. In addition, it is difficult to detect such 

conflicts of domain knowledge in the rule format. Alternatively, the matrix format is 

easy for checking the consistency in domain knowledge. And it is easy to apply the 

matrix format of domain knowledge in Bayesian network structure learning. We 

suggest using the rule format to elicit domain knowledge from domain experts and 

using the matrix format in Bayesian network structure learning. To fill in the gap from 
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the rule format of domain knowledge to the matrix format, we have proposed the 

compilation methods for this purpose.  

In our experiments, we combined domain knowledge with the score-and-search- 

based method for Bayesian network structure learning. Experiments on the 

benchmark Asia network show that topological constraints can increase the validity of 

the learned Bayesian network structure, especially when the constraint sets consist of 

roots, leaves, and distribution-indistinguishable edges in the Markov equivalent class 

of the original Bayesian network. The direction of the distribution-indistinguishable 

edges cannot be determined with observational data alone but can be identified with 

interventional experiments. 

A case study on a real heart disease data shows that both efficiency and 

“meaningfulness” of Bayesian network learning can be improved with topological 

constraints. The significance of the identified direct dependency relationship between 

variables is estimated with the bootstrap approach. The direct edges in the learned 

Bayesian network with topological constraints are statistically significant, which can 

in turn be used as new hypotheses for further analysis. 
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Chapter 5  Hypothesis Verification in 

Knowledge Discovery with Bayesian 

Networks 

In the last two chapters, we have discussed hypothesis generation and hypothesis 

refinement with Bayesian network structure learning. If the goal of our knowledge 

discovery is for causal prediction and control, one major concern is that these 

generated hypotheses are merely some kinds of associations and not applicable to 

situations with causal prediction. This problem is more important when we want to 

re-engineer the current system to achieve some expected functions, since the 

associations from observational data cannot provide useful information when the 

mechanism of the system changes. To determine whether the generated causal 

hypotheses are real causal knowledge, we need to verify the hypotheses with 

interventional experiments. 

In this chapter, we will discuss causal knowledge discovery with interventions, 

and consider the situation where multiple data instances are collected in each active 

learning step. We propose node entropy and edge entropy from the current data to 

rank the hypotheses, first propose non-symmetrical entropy to select hypotheses for 

verification and propose an entropy-based criterion to stop the active learning process. 

The results from simulation show that hypothesis selection with non-symmetrical 
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entropy requires minimal interventions to achieve the Bayesian network structure with 

the specified structure entropy than hypothesis selection with symmetrical entropy or 

random node selection.  

Some significant issues need to be emphasized. The first issue is the distinction 

between observational data and interventional data – whether the data is observed 

under manipulation (Refer to Section 1.1.4 for details). The second issue is causal 

knowledge – we adopt the manipulation criterion for causal knowledge (Refer to 

Section 1.1.1 for details) and apply it to hypothesis verification in the knowledge 

discovery process.  

5.1 Background and the Problem 

5.1.1 Roles of Interventional Data in Bayesian Network 

Structure Learning 

In the last two decades, there have been many research efforts to learn Bayesian 

networks from observational data [38,65,73,86,88,130,155]. However, with 

observational data alone, it is difficult (if not impossible) to determine the structure of 

causal Bayesian networks. In most of the cases, only a Markov equivalent class can be 

learned from observational data [33], which is not sufficient for domains where causal 

knowledge is required. 

 A simple example, in which the causal structure cannot be learned from the 

observational data, is the model with two variables X  and Y . From observational 

data, we may conclude that these two variables are highly correlated. However, we 
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cannot determine which variable will affect which variable, even with infinite 

observational data. 

Figure 16 shows another example where the Bayesian network structure cannot 

be reliably learned from observational data. In the model, the binary variables 1X , 

2X , and 3X  are independent of each other and all have the value “true” with the 

prior probability 0.5. The value of variable 4X  is determined by the values of 1X , 

2X , and 3X . If there are one or three variables of 1X , 2X , and 3X  with values 

“ true”, the value of 4X  is “true” with probability 1.0. If there are zero or two 

variables of 1X , 2X , and 3X  with values “true”, the value of 4X  is “true” with 

probability 0. 

 
Figure 16  An example which cannot be recovered from observational data reliably 

 

P(X1=F)=0.5 P(X1 = T)=0.5 

P(X2=F)=0.5 P(X2 = T)=0.5 

P(X3=F)=0.5 P(X3 = T)=0.5 

P(X4=F | X1=F, X2=F, X3=F)=1.0 

P(X4=F | X1=F, X2=F, X3=T)=0 

P(X4=F | X1=F, X2=T, X3=F)=0 

P(X4=F | X1=F, X2=T, X3=T)=1.0 

P(X4=F | X1=T, X2=F, X3=F)=0 

P(X4=F | X1=T, X2=F, X3=T)=1.0 

P(X4=F | X1=T, X2=T, X3=F)=1.0 

P(X4=F | X1=T, X2=T, X3=T)=0 

P(X4=T | X1=F, X2=F, X3=F)=0 

P(X4=T | X1=F, X2=F, X3=T)=1.0 

P(X4=T | X1=F, X2=T, X3=F)= 1.0 

P(X4=T | X1=F, X2=T, X3=T)=0 

P(X4=T | X1=T, X2=F, X3=F)= 1.0 

P(X4=T | X1=T, X2=F, X3=T)=0 

P(X4=T | X1=T, X2=T, X3=F)=0 

P(X4=T | X1=T, X2=T, X3=T)= 1.0 

Table 14  The probabilities associated with Figure 16  

In this example, the variables in any true sub-sets of the four variables will pass 

the independence test. However, when all the four variables are considered together, 

the variables are not independent any more – The value of any variable can be 

X2 X1 X3 

X4 
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determined by other three variables. In this case, the true structure of the model 

cannot be learned from observational data, even with infinite number of instances. 

This is the reason why we need interventional data for causal Bayesian network 

structure discovery. 

5.1.2 Different Interventions 

Interventional data can be obtained by manipulating one or more variables and 

observing the effects on other variables in a domain. In this chapter, we need to 

distinguish different kinds of interventions: node-based interventions and 

edge-based interventions.  

In node-based interventions, we will set the values of some variables by 

manipulation and observe the effects on other variables in a domain. When only one 

variable is manipulated in a node-based intervention, we say that the non-manipulated 

variables are the descendants of the manipulated variable if the conditional probability 

distributions of these non-manipulated variables change as the effect of the 

manipulated variable. Therefore, with node-based interventions, we can establish the 

ancestor-descendant relationships as causal ordering of the variables. 

From a Bayesian network perspective, manipulating a variable is to mutilate the 

Bayesian network by cutting the edges to this variable in the original structure and 

assigning one independent exogenous variable as its parent. The original parents of 

this variable will not affect the probability distribution of this variable anymore. As an 

example, the model in Figure 17 will be used for illustration. 
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Figure 17  Cancer network 

Suppose that variable 2X  is to be manipulated. The mutilated graph of Figure 

17 in this situation is shown in Figure 18 and an independent exogenous variable19 is 

added as the parent of variable 2X . In Figure 18, variable 2X  is dependent on the 

exogenous variable, and will not depend on the original parent 1X  anymore. When 

variable 2X  is manipulated to different values, the probability distribution of 4X  

will change, while the probability distributions of other variables will not be affected 

by the change of variable 2X . From the change of the probability distribution of 4X , 

we can conclude that variable 4X  is dependent on 2X  and is a descendant of 2X .  

 

Figure 18  A case of the node-based intervention 

Note: The small oval represents an exogenous variable. 

Node-based interventions have been explored for knowledge discovery with 

Bayesian networks recently [121,161]. Another type of interventions edge-based 

interventions has not been explored to our best knowledge. In edge-based 

                                                        
19 Exogenous variables are shown as small ovals in this and the following examples. 

X1 

X2 X3 

X4 X5 

X1 

X2 X3 

X4 X5 

 



 112 

interventions, the interest is the direct causal relationship from one variable (say A ) 

to another variable (say B ). To verify the direct causal influence relationship from 

variable A  to variable B , the values of other 2−n  variables need to be fixed in 

one of their exponential number of configurations by manipulation, and the value of 

variable A  is changed and the effect on variable B  is observed. If the probability 

distribution of variable B  changes when variable A  is manipulated to different 

values under any configuration of other variables, variable B  is dependent on 

variable A  in the domain. Since all other variables have been set to specific values 

by manipulation, there is no indirect path from variable A  to variable B  – all 

indirect paths via other variables have been blocked. In this case, the only explanation 

to the change of variable B  is that there is a direct edge from variable A  to 

variable B , and variable A  is a parent of variable B  in the causal Bayesian 

network. When variable A  is determined to be a parent of variable B  in any 

configuration of other variables, the edge-based intervention will stop the verification 

of direct relationship from variable A  to variable B . 

If the probability distribution of variable B  does not change when variable A  

is manipulated to different values under all the configurations of other variables, 

variable B  is not dependent on variable A , and there is no edge from variable A  

to variable B . In summary, the result from an edge-based intervention can determine 

whether there is an edge from one variable to another variable.  

In the case when there is no edge from variable A  to variable B , the data set 

collected in the edge-based intervention is the effect of variable B  when all other 



 113 

1−n  variables (including variable A ) are manipulated to different values20. This 

same data set can be treated as the data to examine the causal relationship from any 

one of the 1−n  variables to variable B . Following the strategy in the last two 

paragraphs, the parent set of variable B  can be determined with such a data set. 

For illustration, suppose that the direct causal influence from variable 1X  to 

variable 2X  in Figure 17 will be examined with an edge-based intervention. Figure 

19 shows the mutilated graph for an edge-based intervention. From the mutilated 

graph, we can find that variable 2X  is dependent on variable 1X  in some 

configuration of 3X , 4X  and 5X , and conclude that variable 1X  is a parent of 

variable 2X . In this case, we can stop the edge-based intervention for the causal 

influence relationship from 1X  to 2X . 

 
Figure 19  A case of the edge-based intervention 

Note: Small ovals represent different independent exogenous variables. 

For another example, suppose that the causal relationship from variable 1X  to 

variable 4X  is selected for an edge-based intervention. Figure 20 shows the 

mutilated graph. In this case, we need to test the effect of 1X  on variable 4X  under 

                                                        
20 Note: The concept of Markov blanket in Bayesian networks is not applicable to this situation to 

reduce the number of variables to be manipulated, since at this stage, we do not know the structure of 

the underlying Bayesian network and the Markov blanket of the variable to be manipulated. 
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all possible configurations of 2X , 3X  and 5X . In all the configurations of 2X , 

3X  and 5X , variable 4X  is independent of variable 1X . In the end, we can 

conclude that variable 1X  is not a parent (or a direct cause) of variable 4X  in the 

domain. 

In Figure 20, we have manipulated variables 1X , 2X , 3X  and 5X  to all their 

possible configurations to determine whether there is a direct edge from 1X  to 4X . 

The data set collected in this step can be used to determine the relationship from 2X  

to 4X , since variable 2X  has been changed to different values under all 

configurations of 1X , 3X  and 5X  in the same data set. In this example, we can 

determine that variable 2X  is a parent of variable 4X  from the data. The same 

procedure can be applied to the relationships from all other variables to variable 4X  

with the same data. In the end, we can achieve the result: variables 2X  and 3X  are 

parents of variable 4X , and variable 5X  is not a parent of 4X . Therefore, with an 

edge-based intervention, we can identify the parent set of the target variable. 

 
Figure 20  Another case of the edge-based intervention 

Note: Small ovals represent different independent exogenous variables. 

From causal Bayesian network perspective, the result of an edge-based 

intervention is whether there is an edge from one variable to another variable. We 
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treat the determination of such an edge as one edge-based intervention. Regardless 

whether there is an edge or not, the information can be used as a known edge or a 

forbidden edge and added to the topological constraint set for further causal Bayesian 

network structure learning. If all possible edges between variables have been 

determined by edge-based interventions, the results can be combined to build the 

complete Bayesian network structure.  

Compared with node-based interventions, the advantage of edge-based 

interventions is that it is possible (probably the only method) to verify the direct 

causal influence relationship from one variable to another variable. The disadvantage 

of edge-based interventions is that the number of the observed instances can be 

exponential, since we need to consider all possible configurations of the 1−n  

variables in edge-based interventions. Although an exponential number of instances 

are needed, Fisher [57,59] claimed that complex experiment designs (such as factorial 

designs in edge-based interventions) were more efficient than studying one factor at a 

time for causal knowledge discovery.  

When we compare the observational experiments, node-based interventions and 

edge-based interventions, we can see that node-based interventions are a general case 

of the experiments: an observational experiment is a special type of node-based 

interventions without any variable manipulated, and an edge-based intervention is a 

special type of node-based interventions with 1−n  variables manipulated. To 

distinguish the different experiments, we will name the node-based interventions in 

the following sections as the experiments with at least one variable manipulated and 
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at most 2−n  variables manipulated. 

Based on different interventions, we can get the observational data from 

experiments without manipulation, the node-based interventional data from 

node-based interventions, and the causal influence relationship between two variables 

from the edge-based interventions, respectively.  

5.1.3 Related Work 

With different types of data, there are requirements to combine them for effective and 

efficient causal knowledge discovery. Recently, some new methods have been 

proposed to combine observational data with interventional data for this purpose 

[39,47,85,121,161].  

Cooper and Yoo [39] examined the assumptions by combining the observational 

and interventional data for Bayesian network probability updates. They extended the 

Bayesian method for observational data by Cooper and Herskovits [38] and 

Heckerman et al. [87] to the mix of observational and interventional data. In particular, 

when one variable is manipulated to specific values in some data instances, these data 

instances will not be used to update the probabilities of the family21 in which this 

variable is the child variable of the family. Under the assumptions of complete data 

and no hidden variables and other assumptions [39], the likelihood of a data set can be 

estimated in a closed form if the Bayesian network structure is known. Yoo et al. [175] 

applied the extension of this method to gene regulatory pathway discovery with 

                                                        
21 In Bayesian networks, a family means a partial structure that consists of a variable and all its 

parents. 
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simulated observational and interventional microarray data, and generated some 

hypotheses of influence relationships between genes which are supported by the 

results in the scientific literature. 

Sachs et al. [145] applied Bayesian network structure learning method to a real 

biological domain – the intracellular signaling networks of human primary naïve 

CD4+ T cells. They conducted real biological experiments to collect observational 

data and node-based interventional data, and applied the methods from Heckerman et 

al. [87] and Pe’er et al. [128] to learn Bayesian network structures. A representative 

network with seventeen high-confidence edges was chosen from the average of five 

hundred high-scoring structures. After searching the literature, they claimed that 

fifteen of the seventeen high-confidence edges had been reported in literature (and 

three real edges are missing in their learned structure). Then they conducted the real 

biological experiments to verify whether the remaining two edges are causal 

relationships, and the experiment results were statistically significant. This is a real 

success of Bayesian network learning in real application, although the selection of the 

high-scoring structures and the selection of the threshold for high-confidence edges 

are arguable. 

Eberhardt et al. [48,49] proved that, under ideal conditions with causal Markov 

assumption and faithfulness assumption (and ideal probability distributions), the 

number of the experiments required to identify the causal relationships between n  

variables is 1−n  when at most one variable is manipulated each time, and 

)1(log2 +n  when multiple variables can be manipulated simultaneously. 
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Meganck et al. [119] assumed that their method starts with the correct CPDAG 

from the observational data and determines the directions of the un-directed edges in 

the CPDAG with interventional data. Eaton and Murphy [47] discussed different 

kinds of manipulations and proposed uncertain intervention for Bayesian network 

structure learning with interventional data. 

Although the effects mentioned above [39,47-49,119] achieved significant results, 

only passive learning is considered in the learning process. Passive learning works 

with a set of readily available data; the data set does not change in the learning 

process. More interventions and more data are needed to achieve the required criteria, 

which can be quite expensive.  

5.1.3.1  Active Learning 

Active learning is a method that samples new data during the learning process. It 

tries to collect new data with the help from the existing data. Typically, its goal is to 

reduce the uncertainty in the model. Therefore, active learning is more effective and 

efficient than random sampling, and requires a smaller number of data instances for 

knowledge discovery [35,113,138].  

The general active learning framework ([110], page 19-20) is shown in Figure 21. 

It starts with some prior information (including data and domain knowledge). Next, it 

estimates the probability of each possible observation under every action, and the 

posterior of the selected measure with each observation under every action. Then it 

estimates the expected posterior loss for every action. The action with the maximal 
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expected posterior loss is selected for an experiment. After the experiment, new data 

are collected and combined with the existing data for the next round of active learning. 

In active learning, the action space, the observation space under each action and the 

estimation of the posterior are usually exponential. The product of these three spaces 

is exponential too. Heuristics from domain knowledge are needed to reduce the space 

and speed-up the learning process. 

 

Figure 21  The general framework for active learning 

Tong and Koller [161] and Murphy [121] applied the above active learning 

framework to guide the experiments to collect interventional data for probability 

update in Bayesian networks. In active learning of causal Bayesian networks 

[121,161], the learning process starts with an available data set, and the expected 

posterior loss of each possible intervention is used as a criterion to select nodes for 

node-based interventions. Suppose the domain has n  binary variables. The number 

Start some prior information (including data and domain knowledge) 

For each possible action  

Estimate the probability of each possible observation after the action 

Estimate the posterior with each observation after the action 

Estimate the posterior loss for the action 

Choose the action with the maximum expected posterior loss 

Perform one experiment with the chosen action to collect new data  

Repeat from the first step until the stopping criterion is satisfied 
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of possible interventions is nn 23 −  if the variables can be manipulated 

simultaneously22. If only one variable is manipulated in each intervention, the number 

of possible interventions is n2 . When one variable is manipulated to a specific value, 

there are 12 −n  possible observations from other 1−n  binary variables. Each 

possible observation should be combined with the existing data to estimate the edge 

probabilities and the structure entropy of the Bayesian network. With the structure 

entropy, the node with the maximal expected posterior loss is selected for intervention, 

and a new data instance is collected. This process for the expected posterior loss 

estimation and the new data collection can be repeated until the maximal number of 

interventions is reached. 

The computational complexity to select one node for an intervention is 

)2( Tno n∗ , where T  is the time to estimate the edge probabilities in one situation. 

Estimating the edge probabilities need to sum over all possible Bayesian networks, 

which is already a big computational challenge. The complexity of the best approach 

currently available to estimate all the edge probabilities is )2( nno ∗  [97]. The 

computational complexity to select one node for an intervention is )2( 22 nno ∗ . 

Monte Carlo method was used to sample Bayesian networks for approximate edge 

probability estimation in [121,161], but the convergence is very slow. 

We have shown that the complexity with one instance being collected at an 

                                                        
22 In a manipulation, each binary variable can be in one of 3 possible conditions: manipulated to two 

different values or not manipulated. Totally, there are n3  possible combinations of manipulations for 

n  binary variables. The n2  cases with all n  binary variables manipulated should be excluded, since 

there are no observational variables in these cases which cannot provide any information for 

knowledge discovery. 
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intervention is computationally intensive. In real applications [145], multiple data 

instances can be collected during an intervention. The active learning method based 

on expected posterior loss is not applicable to multiple data instances for a few 

reasons. First, if only one of the multiple data instances from each intervention is used 

to estimate the expected posterior loss, it will be a waste of other instances in the 

available data. Second, if all multiple data instances are considered to estimate the 

expected posterior loss, the edge probabilities need to be estimated in )1(2 −nm  

possible observations (assume that there are m  instances collected in each 

intervention in the domain with n  binary variables and only one variable is 

manipulated). Monte Carlo method can be used to sample possible observations and 

possible Bayesian networks for edge probability estimation. But a small sample of 

possible observations will give a very biased result and a big sample may not be 

feasible in a reasonable time. 

The methods mentioned above are not practical, even if only one instance can be 

collected from one intervention. To achieve a reliable estimation of edge probabilities 

(or the probabilities of the Bayesian network structures), many data instances and 

many interventions are required. Since intervention is usually expensive and needs 

more time, the required interventional instances cannot be easily collected in practice. 

Therefore, active learning methods based on multiple data instances from one 

intervention need to be studied. 
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5.1.4 The Problem and Our Proposed Solution 

The problem to be addressed in this chapter is to identify the complete causal 

Bayesian network structure with observational data, node-based interventional data 

and the results from the edge-based interventions when multiple data instances can be 

collected in each intervention. This is a common goal in many reverse engineering 

areas, such as the biological pathway research. The application domain is where we 

can collect observational data economically and can manipulate the variables with 

more cost for causal knowledge discovery. Since more cost will be involved in 

interventional experiments, it depends on the application’s objective to adopt 

interventional experiments for the complete causal Bayesian network structure. If the 

true causal structure is very important, the node-based and edge-based interventions 

are compulsory for causal knowledge discovery. In the following sections, we assume 

that the node-based and edge-based interventions are needed. 

Our objective is to minimize the number of interventions, subject to the 

identification of the complete causal Bayesian network structure. We will utilize the 

available data and topological constraints to generate hypotheses of causal influence 

relationships between variables for interventions. The data from node-based 

interventions will be used to update the probabilities of hypotheses. The results from 

edge-based interventions will be used as topological constraints in Bayesian network 

learning. The main challenges in this task are: 1) how to choose a node for node-based 

interventions, or how to choose the pair of variables for edge-based interventions, and 

2) when to stop the intervention process. 
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We propose a non-symmetrical-entropy-based method to select nodes or edges for 

new interventions and propose an entropy-based criterion to stop the active learning 

process. Our simulation results show that, on average, our non-symmetrical- 

entropy-based method requires the minimal number of interventions to identify the 

complete causal Bayesian networks. For the stopping criterion, we found that the 

structure entropy is the best method in the sense that the learned structure is very 

similar to the original structure when the learning process stops. These results are 

promising and instructive to many reverse engineering tasks where the goal is to 

identify the causal structure in the domain. 

The relationships between our work and some related efforts are as follows.  

5.1.4.1  Relationship to Experiment Design 

Traditional experiment design [18] is a discipline that has broad application across 

all the natural and social sciences. In traditional experiment design, the experimenters 

are interested in the effect of some interventions on certain objects, which are the 

hypotheses in the experiments. The objective of experiment design is to organize the 

experiments to facilitate the data collection and hypothesis evaluation. In Bayesian 

experimental design [22], the experimenters have the prior probabilities of the 

parameters in the experiment, and try to optimize the parameters based on the 

expected posterior. In optimal experimental design [22], the experimenters try to 

optimize the experiment parameters without prior information, which is a limiting 

case of Bayesian experimental design when the data is sufficiently large. In all these 
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settings, the experimenters obtain the hypothesis from some sources, which is external 

to the experiment design process. 

In our work, the learning process with data and domain knowledge is to select 

significant hypotheses of causal influence relationships between variables for new 

experiments. With the selected hypotheses, we can apply traditional experiment 

design methods to test the hypotheses. Our work for edge or node selection is one step 

ahead of the traditional experiment design, which will provide more informative 

hypotheses to test and make the identification of the complete causal structure more 

efficient. 

5.1.4.2  Relationship to Closed-loop Data Mining 

Traditional data mining is usually an open-loop process [111,112]. After we generate 

and deploy the conclusions from data mining methods, the data mining process will 

usually stop. However, the conclusions from data mining are not the end of the story. 

We need to know the effects of results from data mining methods in real applications. 

If the results are not good enough, we should try data mining methods again with the 

feedback from the real applications, and verify the hypotheses generated with data 

mining methods for further improvement. The entire data mining process is repeated 

and the closed-loop data mining is required. 

In our work, node selection and edge selection are for hypothesis verification. 

The node-based intervention is a way to verify causal orderings in Bayesian networks. 

The edge-based intervention is a way to verify direct causal relationships between 
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variables. With such verification, the validity of hypotheses will be improved.  

5.2 Assumptions for Applying Active Learning with 

Interventions 

To apply active learning for causal Bayesian network discovery with interventions, we 

use the following assumptions.  

Assumption 1. The underlying causal mechanism in the domain is stable. This 

assumption requires that observational data are collected from the same system 

mechanism and the interventional experiment is working on the same mechanism. If a 

causal Bayesian network is used to represent the mechanism of the domain, this 

assumption means that the structure and parameters of the underlying Bayesian 

network do not change during the data collection and experiment periods. This is a 

basic assumption for all the research where we need repeated experiments and 

observations. 

Assumption 2. There is no feedback in the domain. Feedback can lead to directed 

cycles, which are not allowed in Bayesian networks. If there are feedbacks in a 

domain, it is not appropriate to represent the mechanism in the domain with a general 

Bayesian network. Dynamic Bayesian networks have been proposed to extend 

Bayesian networks to the situations with feedback [70,123]. 

Assumption 3. The underlying mechanism in the domain can be represented as a 

causal Bayesian network. Only under this condition, we can apply causal Bayesian 

networks to the problem. 
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Assumption 4. There are no hidden variables in the domain. This assumption is also 

known as the causal sufficiency assumption. It means that all variables are directly 

observable. If there are hidden variables, we cannot observe and manipulate them for 

causal knowledge discovery, and the causal relationship between hidden variables and 

other variables cannot be determined directly. The group variables in Section 0 are 

hidden variables. So they are not considered in this chapter. 

Assumption 5. All variables are atomic and can be directly manipulated. This 

assumption means that no variables are logical functions of other variables and the 

values of the variables can be manipulated directly, instead of changed by some 

intermediate variables in the domain. 

Assumption 6. When there are manipulations on some part of the structure or the 

values of some variables in a domain, the causal mechanism of the other parts in the 

system, including structure and parameters, do not change except the edges to the 

manipulated variables and the values of the manipulated variables. This is the 

invariance requirement on the causal relationships between the manipulated variables 

in the domain and other parts of the structure and parameters. Only under this 

assumption, the results from the interventional experiments can be applicable to the 

original system. 

Assumption 7. It is possible to conduct the node-based and edge-based interventional 

experiments and observe the effects of the manipulated variables on other variables. 

Assumption 8. The results from the edge-based interventions are concrete knowledge 

of the examined edges. The result is deterministic about the edge, i.e., there is an edge 
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or not; if there is an edge, the direction of the edge is also known.  

Assumptions 3 and 4 in the list have been discussed by Cooper and Yoo [39]. 

Other assumptions are derived from our understanding of domain knowledge and 

commonsense. For the domains where causal knowledge is required and causal 

Bayesian networks are the appropriate models, these assumptions are general and 

applicable. For example, in agricultural research, Wright [172] was probably the first 

to use a graphical model in analysis of crop failure. Recently, Sachs et al. [145] 

applied causal Bayesian network to protein-signaling networks in biological domain. 

5.3 Hypothesis Verification with Node-based 

Interventions 

In this section, we will discuss the node-based intervention when one variable is 

manipulated and multiple data instances can be collected in each intervention step. In 

Section 5.1.3, we mentioned that the previous work is not applicable in this situation 

due to the computational complexity.  

One computationally-intensive problem in previous work is to estimate the 

expected posterior loss. If one variable is manipulated and m  instances are observed 

in one intervention from a domain with n  binary variables, edge probabilities should 

be estimated under )1(2 −nm  possible observations. With the current best method [97] 

for edge probability estimation, the computational complexity is )2( 2 mnmnno −+∗  for 

each active learning step, which is infeasible even for very small n  and m . A 

possible way to solve this problem is to select variables for intervention based on the 
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node uncertainty from the current data, rather than the expected posterior loss 

estimation. Our observation is that, when a big interventional data set is collected, the 

influence relationship from the manipulated variable to the non-manipulated variables 

can be determined and the node uncertainty from the manipulated variable to 

non-manipulated variables can be reduced significantly (even totally). This means that 

node uncertainty from the current data can be used as an indicator to select nodes for 

node-based intervention.  

Another observation is that intervention is non-symmetrical in nature. In an 

intervention, we can only manipulate one variable in a pair of variables to derive the 

causal information between this pair of variables: whether the manipulated variable 

affects the non-manipulated variable; we cannot derive the causal information from 

the non-manipulated variable to the manipulated variable. If both variables are 

manipulated, we cannot derive any causal information between this pair of variables 

from the interventional data.  

Therefore, we propose node uncertainty and non-symmetrical entropy from the 

current data for node selection. In this way, the exponential number of possible 

observations for the expected posterior loss estimation can be avoided. After a node is 

selected for intervention, equal numbers of instances will be collected when this node 

is manipulated to different values. 

There are two main issues in node-based interventions – node selection criteria 

and stopping criteria. Before further discussion, we will discuss some uncertainty 

measures in Bayesian networks.  
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5.3.1 Bayesian Network Uncertainty Measures 

The intuitive option is to use probabilities of all possible DAGs to measure the 

uncertainty of the Bayesian network structure given the available data. In the ideal 

condition, the DAG of the true structure has probability 1, and other DAGs have 

probability 0. However, in practice, we cannot obtain the probability 1 for one DAG23, 

since the data is not ideal. Even if the data is ideal, we need to enumerate all possible 

DAGs to find the optimal DAG, which is infeasible for a reasonably large number of 

variables, since the number of DAGs is exponential in the number of variables. 

Another option is to measure the uncertainty of each pair of variables and use the 

sum of uncertainties from pairs of variables as the structure uncertainty measure. In 

Section 3.1.2, we have discussed how to estimate the edge probabilities. Suppose that 

we have two variables A  and B . There are three possible conditions between A  

and B  in a Bayesian network: 1) there is an edge from A  to B , BA→ ; 2) there 

is an edge from B  to A , BA← ; and 3) there is no edge between A  and B , 

BA ⊥ . With these three conditions, the entropy between variables A  and B  is 

calculated with the following formula [161]: 

)(log))(                   

)(log)(                   

)(log)(),(

BApBAp

BApBAp

BApBApBAHS

⊥⊥−
←←−
→→−=

                             (1) 

The entropy of the Bayesian network structure is the sum of the entropy of all 

                                                        
23 The Markov equivalent class of Bayesian networks means that some Bayesian networks are 

distribution-equivalent and some edges can be in either direction. Alternatively, manipulation can 

determine the direction of edges by experiments, and all Bayesian networks can be distinguished from 

each other by manipulation. 
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possible pairs of variables: 

∑
≠

=
BA

SS BAHGH ),()(  

In an ideal condition, only one of the three conditions between variables A  and 

B  is with probability 1 and other two are with probability 0. The entropy between 

variables A  and B  will be 0. If all pairs of variables are ideal, the entropy of the 

real DAG will be 0. 

Another Option for Edge Entropy 

In the case mentioned above, the edge entropy between two variables is 

symmetrical. The word “symmetrical” means that the edge entropy between A  and 

B  is calculated with the three conditions between A  and B : BA→ , BA←  

and BA ⊥ . The conditions BA→  and BA←  are treated equally. In this case, 

when a pair of variables are selected with high entropy, it does not tell us which 

variable to manipulate: A  or B . 

To know which variable to be manipulated, we need to distinguish the conditions 

of BA→  and BA←  for edge entropy calculation. We propose to calculate the 

entropies of the two situations separately. 

))(1log())(1()(log)()( BApBApBApBApBAH NS →−→−−→→−=→  (2) 

To distinguish these two entropy definitions, we call the one in Formula (1) with 

three edge conditions as symmetrical edge entropy, and the one in Formula (2) with 

two edge conditions as non-symmetrical edge entropy. The non-symmetrical edge 

entropy is from the observation that intervention is non-symmetrical in nature. 

Estimating the edge probabilities is important for edge entropy calculation in 
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active learning. In the previous active learning work [121,161], edge probabilities are 

estimated approximately with Markov Chain Monte Carlo (MCMC). In this section, 

we propose to estimate the edge probabilities with an exact method by Koivisto [97], 

since the exact edge probabilities can provide accurate information. When the 

interventional data is combined with observational data, the instances with the 

manipulated variable will not be used in calculating the probability of the family with 

the manipulated variable as the child (the assumptions and the method can be referred 

to Cooper and Yoo [39]) . 

5.3.2 Selecting Nodes for Node-based Interventions 

We propose to choose the node with maximal node uncertainty for intervention. The 

node uncertainty between a variable and all the other variables can be estimated from 

edge entropy.  

∑=
B

NSNS BAHAH ),()(                     (3) 

∑=
B

SS BAHAH ),()(                                        (4) 

Where ),( BAHS  and ),( BAH NS  are defined in formulas (1) and (2). Similar to 

edge entropy ),( BAHS  and ),( BAH NS , we refer to )(AHNS  as non-symmetrical 

node entropy and )(AH S  as symmetrical node entropy.  

5.3.3 Stopping Criteria for Causal Structure Learning 

Another main practical problem in applying Bayesian network learning for causal 

knowledge discovery is when to stop the learning process – when do we think that the 
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learned causal Bayesian network is good enough? 

The intuitive way is to choose the number of interventions as the stopping 

criterion. The disadvantage of this approach is that there is no guarantee on the quality 

of the learned Bayesian network structure. We propose to use certain “acceptable” 

entropy of the learned structure as the stopping criterion. The ideal entropy of the 

learned structure is 0; however, it is difficult to reach in practice. We consider the 

effects of the different entropies from the learned structure as the stopping criteria on 

the accuracy of the learned structures. 

5.3.4 Topological Constraints 

In practice, we may have domain knowledge which can be used as topological 

constraints in causal Bayesian network structure learning, as discussed in Chapter 4. 

In Koivisto’s method [97] for edge probability estimation, the families of variables 

will be set as impossible ones if some corresponding edges are not allowed in the 

topological constraints.  

5.3.5 Experiments for Node-based Interventions 

The proposed method has been tested in experiments with five different Bayesian 

networks: two Bayesian networks created by ourselves (Study network and Cold 

network), and three benchmark Bayesian networks used for active learning in Tong 

and Koller [161] (Cancer network, Asia network, and Car network). Cancer network 

has five variables (Figure 17), Asia network has eight variables (Figure 12), and Car 
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network has twelve variables for car trouble-shooting, respectively. Our Bayesian 

networks (Study network and Cold network) are shown in Figure 22 and Figure 23, 

and the corresponding hypothetical CPDs are in Table 15 and Table 16, respectively. 

Study network and Cold network have the canonical structures of Bayesian networks, 

and the direction of the edges in these two networks cannot be learned with 

observational data alone, even with infinite number of instances. 

 
Figure 22  A hypothetic Study network 

 

P(X1=F)=0.2 P(X1 = T)=0.8 

P(X2=F | X1=F)=0.6 

P(X2=F | X1=T)=0.2 

P(X2=T | X1=F)=0.4 

P(X2=T | X1=T)=0.8 

Table 15  The corresponding CPDs of Study network 

 

Figure 23  A hypothetic Cold network 

 

P(X1=F)=0.7 P(X1 = T)=0.3 

P(X2=F | X1=F)=0.95 

P(X2=F | X1=T)=0.1 

P(X2=T | X1=F)=0.05 

P(X2=T | X1=T)=0.9 

P(X3=F | X1=F)=0.92 

P(X3=F | X1=T)=0.75 

P(X3=T | X1=F)=0.08 

P(X3=T | X1=T)=0.25 

Table 16  The corresponding CPDs of Cold network 

The experiment setup is as follows and the flowchart is shown in Figure 24:  

1) Choose a Bayesian network from Cancer network, Asia network, Car network, 
Study network, or Cold network as the ground truth Bayesian network; 

2) Sample a data set with N_obs observational instances from the ground truth 
Bayesian network; 

X1 

X2 X3 

Having a cold 

Runny nose Headache  

X1 X2 

Study hard Good mark 
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3) Estimate the edge probabilities, node entropy and structure entropy with the 
available data (and domain knowledge, if any); 

4) Check the stopping criterion. If the stopping criterion is satisfied, stop the 
learning process; otherwise, continue; 

5) Select one node for intervention based on the criteria in formula (3) or (4), 
random node selection for intervention, or without manipulated node; and 

6) Generate a new data set with N_int interventional instances from the ground 
truth Bayesian network with the selected variables manipulated to different 
values; return to step 3). 

 

 
Figure 24  Flowchart of active learning with node-based interventions 

In the experiments, the uniform prior is used for Markov equivalent classes as in 

Heckerman et al. [87] to create the structure prior. The edge probabilities are 

estimated by Koivisto’s exact method [97] with the extension to the combination of 

observational and interventional data as discussed in Cooper and Yoo [39]. The size of 

the initial observational data N_obs is set to 20, and the size of the interventional data 

in each intervention N_int changes from 1 to 200 instances. Such size of data for each 

intervention is more realistic than an ideal probability distribution required in 

Eberhardt et al. [49]. 

Two different stopping criteria are tested in our experiments - the number of 

interventions and the structure entropy of the learned Bayesian networks. Different 

Select a Bayesian network as the ground truth 

Sample N_obs observational instances 

from the ground truth 

Estimate edge probabilities, node entropy and 

structure entropy from the available data 

Finish 

Stop? Select a node for intervention 

Sample N_int interventional 

instances from the ground truth 

Yes 

No 
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numbers of interventions have been tested as stopping criteria in our experiments. The 

maximal number of total interventional instances is set to 1000 for Study network and 

Cold network, 2000 for Cancer network and 5000 for Asia network and Car network. 

There are two reasons to set the maximal number of total interventional instances: 1) 

after trying different numbers of the total interventional instances, we found that the 

structure entropy of the learned Bayesian networks can converge with the specified 

number of interventional instances from non-symmetrical-entropy-based node 

selection in our experiments; and 2) we had observed that the learned Bayesian 

network would not reach certain small structure entropy when node selection is based 

on symmetrical node entropy, even if a very large data set is sampled. The maximal 

number of interventional instances is used to stop the learning process when the 

structure entropy is used as the stopping criteria. 

Besides node selection with symmetrical node entropy and non-symmetrical node 

entropy, we consider random node selection for intervention and consider the situation 

without manipulation (i.e., there is no manipulated variable in new data collection at 

each step, and the data is observational data).  

When one variable is selected for intervention, the edges pointing to this variable 

will be removed from the ground truth Bayesian network and this variable will be 

manipulated to specific values. The values of other variables are sampled based on the 

Bayesian network structure and the original conditional probabilities. In addition, one 

variable can be selected for more than one round of intervention in the active learning 

process. 
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In our experiments, we have tested: 1) which method requires the minimal number 

of node-based interventions to achieve required structure entropy? 2) what are the 

relationships between the number of interventions and the entropy of the learned 

structure? 3) what is the relationship between the number of interventions and 

Hamming distance between the learned structure and the ground truth Bayesian 

networks? 4) which stopping criterion can achieve a structure with smaller structure 

entropy?  

The experiments show that non-symmetrical entropy is the best method for node 

selection to learn causal Bayesian networks with the minimal structure entropy. The 

conclusions from different Bayesian networks are similar, and the results from the 

different sizes of interventional data from each intervention are similar. In the 

following section, the results will be demonstrated with Cancer network with the size 

of the interventional data as 200. More results are listed in Appendix A.C. 

We first used the original conditional probabilities in the Bayesian networks for 

test. To examine whether the results from the specific values of the conditional 

probabilities in the original Bayesian networks can be generalized to different 

conditional probabilities, we conducted experiments with the same Bayesian network 

structures but with randomized conditional probabilities. The conclusions from the 

experiments with the randomized conditional probabilities are similar to the results 

with the original conditional probabilities. In the following sections, we will only 

discuss the results from the original conditional probabilities. 
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5.3.5.1  Number of Interventions vs. Structure Entropy 

In the first experiment, we tested the relationship between the number of interventions 

and the entropy of the learned structures. The objective is to show how the entropy of 

the learned structures varies with the different number of interventions. In the 

experiment, we found that, in order to reach small structure entropy in the learned 

Bayesian networks, the required number of interventions is dependent on the number 

of instances to be collected in each intervention. The maximal number of intervention 

is set to the division of the total instances and the number of instances to be collected 

in each intervention. For Cancer network, the maximal number of interventions24 is 

set to 6 when the size of the interventional data is 200 in each active learning step. 

The programs ran eight hours and finished 608 repeated experiments25 on the 

Cancer network (about 48 seconds for one experiment). The results are shown in 

Figure 25, where the lines represent the change of the average structure entropy with 

the number of interventions. Figure 25 shows that, with the same number of 

interventions, node selection with non-symmetrical node entropy can derive a 

Bayesian network with the lowest entropy (also with the smallest variance) on 

average, which means that the structure learned with non-symmetrical node entropy 

has less uncertainty. This is consistent with our expectation, since the interventions 

                                                        
24 The maximum number of interventions depends on the number of variables in the domain and the 

conditional probabilities. In the Cancer network, the maximum number is set to 6 when the size of the 

interventional data is 200 in each active learning step. 
25 We distinguish between the terms “intervention” and “experiment” here. “Intervention” means to 

manipulate some variables and observe the effects on other variables. “Experiment” means to run the 

method for testing. 
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are non-symmetrical in nature and the interventional data can provide more causal 

information about the probabilities between the manipulated variable and 

non-manipulated variables. If there is a real edge from the manipulated variable to one 

non-manipulated variable, the probability of this edge should increase with the 

interventional data, and the non-symmetrical entropy of this edge will decrease. 

 
Figure 25  Number of interventions vs. average structure entropy of the learned Bayesian 

network from Cancer network 

Note: The “non-sym entropy” and the “sym entropy” refer to node selection with non-symmetrical node entropy 

and symmetrical node entropy defined in formulas (3) and (4). “Random” refers to random node selection for 

node-based interventions. “Observational” means only observational data used in the learning. The same terms are 

used in the later figures of this section. 

The highest structure entropy is derived from observational data when the same 

number of data instances is collected at each step. The entropy of the Bayesian 

network structure learned with the random node selection and node selection with the 

symmetrical node entropy fall between those of the node selection with 

non-symmetrical node entropy and the observational data.  

The significance of the structure entropy differences from different node selection 

measures was evaluated by one-sided t-test. The p-values between the entropy of the 

learned Bayesian network structure from non-symmetrical node entropy and other 

methods are all smaller than 1010− . This means that the structure entropy from node 
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selection with non-symmetrical entropy is significantly smaller than others. 

From Figure 25, we have a surprising observation. When the number of 

interventions is smaller than 6 in the Cancer network, the entropy of the learned 

structure with nodes selected from the symmetrical node entropy is lower than that 

from random node selection. When the number of interventions is equal to or greater 

than 6, the entropy of the learned structure by node selection with symmetrical node 

entropy is higher than that from random node selection. It means that, in the first 

several interventions, symmetrical node entropy selects the nodes to reduce the 

structure uncertainty significantly when compared with random node selection. 

However, when the number of interventions is greater than or equal to 6, the leaf 

nodes (nodes 4X  and 5X  in Figure 17) are always selected by symmetrical node 

entropy. The data with leaf nodes as manipulated nodes can reduce the probabilities of 

the edges from the leaf nodes to other nodes. But, the data cannot provide information 

about the causal influence relationships from other nodes to the leaf nodes. The 

uncertainty of the leaf nodes calculated from symmetrical node entropy can still be 

quite large. However, the random method may select other nodes for intervention, 

which could generate subsequent interventional data with more causal information 

about the edges from other nodes to the leaf nodes. Such information will reduce the 

total structure entropy. 

Figure 25 also shows that, with more interventions (which means more data), the 

entropy of the learned structure decreases with all the node selection criteria. The 

entropy of the learned Bayesian network structure generally decreases more in the 
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first few interventions. In the later stages, the entropy of the learned structure seems to 

converge to certain values. These results are general across all the Bayesian networks 

tested. 

5.3.5.2  Number of Interventions vs. Distance of the Learned 

Structure to the Ground-truth Bayesian Network 

In this experiment, we compared the learned structures with the ground-truth 

Bayesian networks. The difference between the learned structure and the ground truth 

is measured with Hamming distance. Figure 26 shows that node selection with 

non-symmetrical node entropy leads to the smallest average Hamming distance to the 

ground truth, as compared with other methods for node selection. With 6 or more 

interventions when nodes are selected by non-symmetrical node entropy, the average 

distance is 0 and the variance is near 0 with Cancer network. The variances of the 

Hamming distances from the symmetrical node entropy and observational data only 

are quite high (about 0.55 and 0.33, respectively). In addition, Figure 26 shows that 

the average Hamming distance decreases with the number of interventions. With more 

interventional data, the average distance from the learned structure to the ground truth 

will be smaller. 

From Figure 25 and Figure 26, we can observe that, when the number of the 

interventions increases, the structure entropy converges to a certain low value with 

either node selection with non-symmetrical node entropy or random node selection. 

The reason is that, the true causal Bayesian network structure can be identified with 
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sufficient interventional data from any node selection method. We note that, however, 

when the number of interventions is small, non-symmetrical node entropy could 

outperform all other methods for node selection in active learning. The difference in 

performance could be significant in applications where only a few interventions are 

feasible. For example, in practice there are resource constraints (time, cost, and man 

power) in biological experiments, and we may only conduct a small number of 

interventional experiments to collect data for causal relationship verification. 

 

 
Figure 26  Number of interventions vs. average Hamming distance from the learned Bayesian 

network structure to the ground truth Cancer network 

5.3.5.3  Structure Entropy vs. Distance of the Learned 

Structure to the Ground-truth Bayesian network 

In practice, we do not know the structure of the underlying Bayesian networks in the 

domain, and cannot use the Hamming distance from the learned structure to the 

ground truth structure as the stopping criteria in causal Bayesian network learning. A 

different strategy is needed to stop the learning process. This experiment will examine 

the relationship between the structure entropy and the Hamming distance from the 

learned structure to the ground truth Bayesian network. Figure 27 shows how the 
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entropy of the learned structure approximates the average Hamming distance from the 

learned structure to the ground truth. When the entropy of the learned structure is 

small, the average Hamming distance is also small, which means that the entropy of 

the learned structure is a good approximation of the distance of the learned structure 

to the ground truth Bayesian network and can be used as a stopping criterion for the 

structure learning. 

 

 
Figure 27  Relationship between average structure entropy of the learned Bayesian network and 

the average Hamming distance to the ground truth Cancer network 

5.3.5.4  Structure Entropy as Stopping Criterion 

In the subsequent experiment, we tested the effect of the structure entropy as the 

stopping criterion. Figure 28 shows that, with non-symmetrical node entropy as the 

node selection criterion, the program can reach the required structure entropy with 

fewer interventions. When the manipulated node is selected with symmetrical node 

entropy, a large number of interventions are needed. The results from observational 

data do not show in Figure 28, as the program with observational data cannot reach 

the required structure entropy in the maximal steps allowed in this set of experiments. 

 Appendix A.C shows more results when structure entropy is used as the stopping 
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criterion. One observation from these results is that, when the size of the data 

collected from one intervention is bigger, the performance of node selection with 

non-symmetrical entropy is better. This is consistent with our expectation: a data set 

with more instances from one intervention can reduce the uncertainty from the 

selected node to other nodes the most, and fewer interventions are needed to achieve 

the required structure entropy. If the data set collected from each intervention is small, 

the change of the structure uncertainty with the new data will be limited, and the 

performance of node selection with non-symmetrical entropy could be similar to the 

performance of random node selection. 

 
Figure 28  Structure entropy vs. number of interventions required from Cancer network 

5.3.5.5  Comparison with the Expected Posterior Loss Method 

For comparison purpose, we have implemented the method based on the expected 

posterior loss [121,161]. The expected posterior loss considers possible interventions 

and possible observations after interventions and should give better structure entropy 

with the same number of interventions theoretically. But it will take a very long time 

to estimate the probabilities of possible observations and the edge probabilities under 

different observations, as we mentioned in the beginning of this section. In our 
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implementation, the expected posterior loss is similar to that in Tong and Koller [161]: 

we sample the orderings of variables from the current data and estimate the 

probabilities of possible observations. The edge probabilities are estimated with both 

the exact method by Koivisto [97] and MCMC method. Experiments show that the 

MCMC methods take more time to converge to the probabilities estimated with the 

exact method. So, only the edge probabilities from the exact method will be discussed 

here. 

We have tested our method with Study network and Cold network26. In the 

experiment, the number of instances collected from each intervention is set to 1 when 

the selected node is manipulated to a distinct value. Due to the computational 

complexity, the multiple data instances from each intervention are not tested. 

Figure 29 shows the results from Study network. Figure 29 (a) shows that all the 

methods with interventional data can reach the required structure entropy with smaller 

than 50 interventional instances, while the observational data alone cannot reach the 

requires structure entropy with the maximal instances allowed. Figure 29 (b) shows 

the detailed results from the node selection methods with interventional data. In this 

example, node selection with the expected posterior loss requires the minimal number 

of instances to reach the structure entropy on average. The method next to the 

expected posterior loss is node selection with non-symmetrical entropy. Node 

selection with symmetrical entropy and random node selection requires a larger 

number of instances to reach the required structure entropy. Figure 29 (c) shows the 

                                                        
26 We have tried with Cancer network, but the program cannot finish one experiment in 12 hours. 
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average running time the different methods spent. We can see that the expected 

posterior loss requires much more time than other methods for node selection. The 

time for observational data converges when the maximal number of instances is 

reached.  

  

(a) (b) 

 

 

(c)  

Figure 29  Comparison of different node selection methods for intervention on Study network 

5.3.5.6  Positive Findings in Subsequent Interventions 

In the final experiment for node-based interventions, we considered the situation with 

resource constraints. In the previous experiments, the objective is to identify the 

complete causal structure with multiple interventions and we have enough resources 

to reach this objective. In practice, there are usually resource constraints for 
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interventions, and sometimes we can only conduct one interventional experiment. In 

this case, we may hope to get a positive finding in one interventional experiment, 

where a positive finding means that there is really a causal relationship between the 

manipulated variable and one of the non-manipulated variables.  

The problem in this experiment is defined as follows: given the available data, 

domain knowledge and resource constraints, what is the likelihood to get a positive 

finding in a single interventional experiment? In this case, we assume we can only 

conduct one interventional experiment. This problem has not been considered in any 

previous active learning work with Bayesian networks [121,161], since one instance 

collected from an intervention cannot change the probability of the hypotheses much. 

A positive finding is only possible when a data set is collected from one intervention. 

There is no guarantee to obtain a positive finding in a single intervention, but 

some strategies are available to increase the chance for a positive finding. In the 

experiment, we generated the observational data and interventional data randomly 

first. Then, we sampled the possible edges in the Bayesian network as topological 

constraints with probabilities 0.1, 0.2, 0.3 and 0.4, respectively. We estimated the edge 

probabilities with the available data, and chose the parent node of the edge with the 

highest probability as the node to be manipulated. We repeated the experiments 1000 

times in the different scenarios. 

The results show that in 98.5% cases and above, the edges with the highest 

probability from the available data and the known edges (as domain knowledge) are 

the true edges. It empirically shows that the edges with the highest probability are the 



 147 

best choice for a positive finding if we have resource constraints and only can conduct 

one interventional experiment. 

5.3.6 Discussion  

In this section, we propose an active learning algorithm for causal Bayesian network 

structure learning when multiple data instances are collected from one intervention. 

The current node entropy is used to select nodes for intervention, not the expected 

posterior loss in Tong and Koller [161] and Murphy [121]. Therefore, there is no need 

to consider the exponential number of possible observations after each intervention, 

and the algorithm can be sped up. 

 Non-symmetrical entropy is proposed for node selection, since the intervention is 

non-symmetrical in nature. The experiment results show that non-symmetrical 

entropy is much better than symmetrical entropy in all the cases, and better than 

random node selection when more instances are sampled in one intervention. The 

performance of node selection with non-symmetrical entropy is comparable to the 

random node selection sometimes when one instance is sampled from an intervention, 

which is consistent with Murphy’s observation in Car network [121]. The possible 

reason is that when one instance is collected from one intervention, limited 

information is provided by this instance.  

Tong and Koller [161] considered domain knowledge and only root nodes in the 

domain were manipulated in active learning, while other nodes could be selected in 

random node selection. From manipulation criterion and our experiment results, we 
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know that the manipulation on the leaf nodes cannot provide sufficient causal 

influence information from the leaf node to other nodes, while the manipulation on 

the root nodes can be used to establish the causal ordering between the variables. 

Although root nodes can be known from domain knowledge in some domains, the 

reported results with only root nodes manipulated in Tong and Koller [161] are 

biased. 

L1 edge error is used in Tong and Koller [161] as the goodness criterion of the 

learned structure, which requires the knowledge of the true Bayesian network 

structure. This is suitable for a simulation, but not for a real application. This is why 

we choose the structure entropy as the criterion to evaluate the quality of the learned 

structure. Experiments show that the structure entropy is a good approximate to the 

Hamming distance from the learned structure to the ground truth, and can be used as 

the stopping criterion. 

5.4 Hypothesis Verification with Edge-based 

Interventions 

In some situations, we need the concrete knowledge of causal relationships between 

variables, such as the situations for system re-engineering. However, the concrete 

causal knowledge cannot be achieved with observational data and node-based 

interventional data sometimes, especially when several variables interact together to 

affect one variable. In this case, we need edge-based interventions to verify the 

relationships between the variables. In this section, we try to identify the complete 
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structure of causal Bayesian networks in a domain with the minimal number of 

edge-based interventions. 

5.4.1 Active Learning with Edge-based Interventions 

Active learning with edge-based interventions starts with a data set (possibly with 

observational data and node-based interventional data) and the capability to conduct 

edge-based interventions. The data (with topological constraints, if applicable) is used 

to estimate edge probabilities, edge entropy and structure entropy. One edge is chosen 

with certain criterion for an edge-based intervention, and the edge-based intervention 

determines whether there is a causal influence relationship from the parent node to the 

child node in the selected edge. The result of the edge-based intervention is combined 

with the available topological constraints for another round of edge probability 

estimation. The learning process will repeat until the stopping criterion is satisfied. 

The process is summarized in Table 17 and the flowchart is shown in Figure 30. 

In the second step of the process, we apply Koivisto’s exact method [97] to 

estimate the edge probabilities with the available data and topological constraints. The 

edges are predicted as the learned edges27 when their probabilities are greater than 

0.5. In the following steps of the learning process, there are two challenges similar to 

those for node-based interventions. One challenge is how to select a pair of variables 

for an edge-based intervention. Another challenge is when to stop the learning process. 

In the following two sub-sections, we will discuss these two challenges in detail. 

                                                        
27 Predicting edges from edge probabilities is different from the complete Bayesian network structure 

learning. 
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Input of the algorithm: 

1) A data set (possibly with observational data and node-based interventional 

data); and 

2) The set of topological constraints (can be empty in the beginning), which can 

be from domain knowledge or from edge-based interventions. 

Output of the algorithm: 

1) Intermediate results: the chosen edges for the subsequent edge-based 

interventions; 

2) The results of the edge-based interventions for selected hypotheses; and 

3) The final result: the structure of the causal Bayesian network. 

1. Set the initial topological constraint set C (can be empty) 

2. Learn edge probabilities with the data and the topological constraint set C  

3. Check whether to stop the learning process 

4. If not, select an edge for an edge-based intervention. Assume the result of the 

edge-based intervention as E. Set CC →∪ E , and return to step 2 

5. If yes, stop. 

Table 17  Active learning of Bayesian networks with edge-based intervention 

 

Figure 30  Flowchart of active learning with edge-based intervention 

5.4.2 Edge Selection for Edge-based Interventions 

The objective of edge selection is to choose the edge that is most informative for 

Set the initial topological constraint set � C 

Learn edge probabilities with data and C 

Stop? 

Start 

End 

Yes 

Select an edge for edge- 

based intervention 

Result E from Edge- 

based Intervention 

CC →∪ E  

No 
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causal knowledge discovery with edge-based interventions. After we determine the 

relationship between the chosen pair of variables, the uncertainty of the Bayesian 

network structure is expected to reduce the most.  

Edge selection can be determined by the expected posterior loss from decision 

theoretical approach. In a domain with n  variables, there are )1(* −nn  edges and 

the expected posterior loss from every edge needs to be estimated for edge selection. 

Due to the computational complexity, the expected posterior loss for edge selection 

will not be considered. 

 We will use the edge entropy as the criterion for edge selection. In Section 5.3.1, 

we have discussed two ways to measure the edge uncertainties: symmetrical edge 

entropy in Formula (1) and non-symmetrical edge entropy in Formula (2). The reason 

to use edge entropy from the available data and topological constraints for edge 

selection is as follows. When we perform edge-based interventions on two variables, 

we will manipulate one variable and observe the effect on another variable. Suppose 

we manipulate variable A  in a pair of variables A  and B  in the edge-based 

intervention.  

1) When the edge-based intervention tells us that there is really a directed edge 

from A  to B  ( BA→ ), the probability )( BAp →  will be 1 and the probabilities 

of other two conditions between A  and B  will be 0. In this case, the edge entropy 

between A  and B  will be 0, and the total entropy of the DAG will reduce with the 

amount of the entropy between A  and B  estimated before the edge-based 

intervention.  
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2) When the edge-based intervention tells us that there is no directed edge from 

A  to B , the probability )( BAp →  will be 0 and the probabilities for other two 

conditions between A  and B  will change. In this case, the edge entropy between 

A  and B  may not be 0, and we are not sure about the change of the total entropy.   

We have tried the following methods to select edges for edge-based interventions. 

1) Random edge selection. This is a straightforward method to select an edge for 

an edge-based intervention. 

2) Edge selection based on chi-square28 values between any pair of variables 

from the available data. The uncertain edge with the highest chi-square value 

will be selected for an edge-based intervention. 

3) Edge selection based on mutual information between any pair of variables 

from the available data. The uncertain edges with the highest mutual 

information values will be selected for an edge-based intervention. 

4) Random selection of edges from the learned Bayesian network with the data 

and topological constraints. If all the edges in the learned Bayesian network 

have been determined by edge-based interventions, we will randomly select 

one uncertain edge.  

5) Edge selection based on symmetrical entropy as in Formula (1). The edge with 

the maximal edge entropy will be selected for an edge-based intervention.  

6) Edge selection based on maximal non-symmetrical entropy as in Formula (2). 

7) Edge selection based on the edge with the highest probability from the data 

                                                        
28 Refer to Appendix A for a brief description of chi-square and mutual information. 
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and topological constraints. 

Our experiments show that edge selection with non-symmetrical entropy requires the 

minimal number of interventions to identify the true structures of the Bayesian 

networks (refer to Section 5.4.4 for details). 

5.4.3 Criteria to Stop the Learning Process 

A stopping criterion is used to evaluate the learned Bayesian networks, and decide 

whether to stop the learning process. In the simulation test, we can compare the 

learned Bayesian network with the ground-truth Bayesian network and stop the 

learning process if the learned Bayesian network is the same as the ground-truth. In 

practice, however, we do not know the true structure of the Bayesian networks, and 

cannot compare the learned Bayesian networks with the underlying Bayesian 

networks (If the underlying Bayesian networks are known, there is no need to learn 

the Bayesian network structure). In this case, we need some strategies to stop the 

learning process. 

The possible strategies to stop the learning process are: 1) when the maximal 

absolute edge entropy is small enough; 2) when the maximal relative edge entropy is 

small enough; and 3) when there is no change in the learned structure for several 

iterations.  

5.4.4 Experiments for Edge-based Interventions 

We conducted experiments for hypothesis verification with edge-based interventions 
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on four Bayesian networks: two Bayesian networks created by ourselves (Study 

network and Cold network), and two benchmark Bayesian networks29 (Cancer 

network and Asia network). These Bayesian networks include the canonical structures 

and the results can be generalized to other Bayesian networks.  

In the simulation experiments, the results of the edge-based interventions are 

obtained from the ground-truth Bayesian networks. These results will be used as 

topological constraints in the next round of the learning process.   

The performance of the learning process is measured by the following criteria:  

1) The number of interventions required; 

2) The number of correct edges identified in the final learned Bayesian network; 

3) The Hamming distance between the final learned structure and the original 

Bayesian network; 

4) Product of (#Interventions+1)*(HammingDistance+1), where #Interventions 

means the number of interventions required in the learning process. We 

proposed this measure to combine the number of interventions required and 

the Hamming distance from the learned structure to the original Bayesian 

network structure. The addition of one to each variable is to avoid the situation 

when one variable is 0 and the product is 0. The smaller this measure, the 

better the learning strategy.  

                                                        
29 Car network is not used since the experiment cannot finish in a reasonable time. 
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5.4.4.1  Best Strategy for Edge Selection  

In the first experiment, we tested the edge selection strategies until the learned process 

identifies the ground truth structure. The experiment setup is: Given a known 

Bayesian network, we sample data instances from the given Bayesian network as the 

observational data, and apply the active learning algorithm described in Section 5.4.1. 

When a Bayesian network is learned from the available observational data and the 

topological constraints, we will compare it with the given Bayesian network. If two 

Bayesian networks are the same, the learning process stops and the number of 

edge-based interventions conducted will be recorded; otherwise, the learning process 

will continue. 

We ran the program on Study network for two minutes with 261 experiments, on 

Cold network for two minutes with 152 experiments, on Cancer network for six 

minutes with 155 experiments, and on Asia network for two hours with 76 

experiments. The medians and averages of the required edge-based interventions from 

different methods are shown in Table 18 and Table 19.  

Table 18 and Table 19 show that, for Cancer network and Asia network, the 

required interventions by edge selection with symmetrical edge entropy, non- 

symmetrical edge entropy, and edges with the highest probability is much smaller 

than those by random edge selection, chi-square value, mutual information and 

random selection from the learned edges. For Study network and Cold network, the 

required number of edge-based interventions is similar in different edge selection 

strategies, since these two networks are very small, and only one or two edge-based 
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interventions are needed. 

Bayesian network 
Study 

network 

Cold 

network 

Cancer 

network 

Asia 

network 

# data sets generated 261 152 155 76 

Average 

Random selected edges 1 2 6 39.5 12.125 

Chi-square 1 2 4 37 11 

Mutual information 1 2 4 41 12 

Randomly learned edge 1 2 4 36.5 10.875 

Max symmetrical entropy 1 1 6 25.5 8.375 

Max non-symmetrical entropy 1 2 4 28 8.75 

 Edge with the highest prob 1 2 4 27 8.5 

Table 18  The median of the interventions required to identify the true structure 
 

Bayesian network 
Study 

network 

Cold 

network 

Cancer 

network 

Asia 

network 

# data sets generated 261 152 155 76 

Average 

Random selected edges 0.99 1.73 6.7 39 12.105 

Chi-square 0.99 2.07 6.64 35.2 11.225 

Mutual information 0.99 2.07 6.86 39.95 12.4675 

Randomly learned edge 0.99 2.28 5.68 34.46 10.8525 

Max symmetrical entropy 0.99 1.49 6.34 23.78 8.15 

Max non-symmetrical entropy 0.99 1.62 5.23 26.05 8.4725 

 Edge with the highest prob 0.99 1.72 5.23 27.22 8.79 

Table 19  The average of the interventions required to identify the true structure 

Among edge selection strategies, the random edge selection does not use any 

available information from data and domain knowledge. The chi-square and mutual 

information only measure the pair-wised dependency between variables from the data. 

They do not consider other variables in the domain, and cannot take advantage of the 

information from other variables and the available topological domain knowledge for 

edge selection, such as the acyclicity constraints in Bayesian networks. This is why 

these methods cannot compete with the entropy-based methods for edge selection. 

After this preliminary experiment, we will keep the following three edge selection 

methods for further testing: 1) symmetrical edge entropy; 2) non-symmetrical edge 
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entropy; and 3) edge with the highest probability, and will not consider other edge 

selection strategies anymore. 

5.4.4.2  Best Strategy for Edge Selection and Stopping 

Criterion 

In this experiment, we tested the full learning process with edge selection and 

stopping criterion. The results from different networks are summarized in Table 20, 

Table 21 and Table 22.  

Bayesian network 
Study 

network 

Cold 

network 

Cancer 

network 

Asia 

network 

# data sets generated 470 241 345 161 

Average 

Edge selection Stopping criterion  

Absolute entropy 1 2.84 10.81 34.64 12.32 

Relative entropy  1 2 6.41 9.64 4.76 
Symmetrical 

entropy 
No structure change  1.51 3.6 5.03 4.09 3.56 

Absolute entropy  1 2.88 10.68 35.55 12.53 

Relative entropy  1 2.05 4.89 10.36 4.58 
Non-symmetrical 

entropy 
No structure change  1.48 3.59 5.24 4.73 3.76 

Absolute entropy  1 2.63 9.43 33 11.52 

Relative entropy  1 2.33 4.38 8.27 4.00 
Edge with the 

highest prob 
No structure change  1.47 3.91 4.46 3.82 3.42 

Table 20  Average interventions required in active learning of Bayesian network structure 

On average, three edge selection methods require the similar number of 

edge-based interventions to reach the required stopping criterion. The stopping 

criterion based on the absolute entropy requires the maximal number of edge-based 

interventions to achieve the stopping criterion, while the learned structure has the 

minimal Hamming distance. The stopping criterion based on no structure change 

requires the minimal number of edge-based interventions to stop the learning process, 

and the average of (#interventions+1)*(Hamming distance+1) is the smallest. 
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Therefore, different stopping criteria have different effects. If there are resource 

constraints, the stopping criterion with no structure change is preferable. If the correct 

structure of the domain is more important, the stopping criterion with absolute 

structure entropy is desirable. 

 

Bayesian network 
Study 

network 

Cold 

network 

Cancer 

network 

Asia 

network 

# data sets generated 470 241 345 161 

Average 

Edge selection Stopping criterion  

Absolute entropy 1 0.48 0.08 0.27 0.46 

Relative entropy  1 1.22 1.62 2.55 1.60 
Symmetrical 

entropy 
No structure change  0.49 0.12 1.76 3.73 1.53 

Absolute entropy  1 0.6 0.08 0.18 0.47 

Relative entropy  1 1.12 1.49 3 1.65 
Non-symmetrical 

entropy 
No structure change  0.52 0.15 0.78 3.27 1.18 

Absolute entropy  1 0.72 0.11 0.27 0.53 

Relative entropy  1 0.86 1.03 2.91 1.45 
Edge with the 

highest prob 
No structure change  0.51 0.07 0.86 4.45 1.47 

Table 21  Average Hamming distance from the learned Bayesian networks to the ground-truth 

Bayesian networks 
 

Bayesian network 
Study 

network 

Cold 

network 

Cancer 

network 

Asia 

network 

# data sets generated 470 241 345 161 

Average 

Edge selection Stopping criterion  

Absolute entropy 4 5.62 12.81 45.55 17.00 

Relative entropy  4 6.74 19.46 38.91 17.28 
Symmetrical 

entropy 
No structure change  3.49 5.02 13.05 22.36 10.98 

Absolute entropy  4 6.05 12.68 43.36 16.52 

Relative entropy  4 6.42 14.62 49 18.51 
Non-symmetrical 

entropy 
No structure change  3.51 5.13 9.95 23.55 10.54 

Absolute entropy  4 6.02 11.78 43.27 16.27 

Relative entropy  4 6.13 10.84 35.55 14.13 
Edge with the 

highest prob 
No structure change  3.49 5.15 8.97 23 10.15 

Table 22  Average of (#interventions+1)*(Hamming distance + 1) required in active learning of 

Bayesian network structure 
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5.5 Conclusion and Discussion 

Causal Bayesian network learning is a big challenge for knowledge discovery. The 

problem we addressed in this chapter is on how to determine the causal structure with 

observational data and interventional data. In this thesis, we assume that we can 

manipulate the variables and can collect the interventional data in the application 

domain. Our objective is to minimize the number of interventions while identifying 

the correct structure of the Bayesian network.  

We have proposed a type of active learning for causal Bayesian networks: 

combining the observational data with the node-based interventional data and the 

results from the edge-based interventions. The method can utilize the available data 

and domain knowledge to guide the interventional experiments for efficient causal 

knowledge discovery. 

Two different intervention types have been discussed in this chapter: the 

node-based intervention and the edge-based intervention. The node-based 

interventions would help establish the causal ordering of variables. The advantage of 

the node-based interventions is that it may only require linear number of interventions 

when one variable is manipulated each time. This is more applicable in practice. The 

disadvantage of the node-based interventions is that some direct causal relationship 

may not be tested. Therefore, if some direct causal relationships are really important, 

we first proposed the edge-based intervention to examine the direct relationships 

between variables. 

The edge-based interventions would help establish the parent sets of variables, 
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and distinguish the different structures in the Markov equivalent class, which cannot 

be done with the observational data and node-based interventional data sometimes. 

However, an exponential number of instances may be needed in edge-based 

interventions. So, the choice of the methods is dependent on the objective in the 

applications and the resources available. 

There are two main problems in the active learning process: how to select the 

hypotheses for intervention, and when to stop the learning process. Non-symmetrical 

entropy is first proposed to select nodes for interventional experiments. Compared 

with other methods, non-symmetrical entropy requires the minimal number of 

interventional experiments to achieve the required structure entropy. 

In node-based interventions, entropy-based stopping criterion is better than the 

stopping criterion based on the number of interventions, since stopping the learning 

process with the number of intervention cannot guarantee the learned structure quality. 

In edge-based interventions, we can see the compromise between the accuracy of the 

learned Bayesian network structure and the number of interventions required. If the 

accuracy of the learned Bayesian network structure is more important, entropy-based 

stopping criterion is a better choice. 

   

 



 161 

Chapter 6  An Example in a Biological 

Domain 

In this thesis, we have proposed a framework for knowledge discovery with Bayesian 

networks which includes three steps: hypothesis generation with Bayesian network 

structure learning, hypothesis refinement with topological constraints, and hypothesis 

verification with interventional experiments. We have examined the technical 

challenges and practical issues in the framework in last three chapters. 

In this chapter, we will show how to apply the framework of knowledge 

discovery with Bayesian networks in a biological domain – the intracellular signaling 

network of human primary naïve CD4+ T cells, downstream of CD3, CD28, and 

LFA-1 activation. Figure 31 shows the network structure of signaling molecule 

interactions (from [145]). Eleven variables in the structure represent eleven proteins 

measured. The twenty edges represent the causal influence relationships between the 

proteins from the consensus of the current domain understanding. Among the twenty 

edges, eighteen of them have been verified with biological experiments in the 

literature. Another two edges (PKC� PKA and Erk�Akt in dashed lines) were 

recently hypothesized with Bayesian network techniques and confirmed with 

biological experiments by Sachs et al. [145].  

In the following sections, we will show the application of the proposed 

framework with this example network. Section 6.1 will show that Bayesian networks 
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can generate reasonable hypotheses of influence relationships between variables from 

the sampled data, although some edges are not exactly the same as the original 

network. Section 6.2 will show that topological domain knowledge can refine the 

generated hypotheses of influence relationships between variables and improve the 

meaningfulness of the hypotheses. Section 6.3 will show how to conduct node 

selection for hypothesis verification with interventional experiments. 

 
Figure 31  The consensus intracellular signaling networks of human primary naïve CD4+ T cells, 

downstream of CD3, CD28, and LFA-1 activation 

6.1 Hypothesis Generation: Learning the Structure 

with Observational Data 

In the first experiment, we will show how the hypotheses of influence relationships 

between variables are generated from observational data. The observational data is 

sampled from the Bayesian network in Figure 31. The parameters are randomly 

generated from Dirichlet priors. Two thousand of instances were sampled from the 

network by direct sampling. The edge probabilities were estimated with Koivisto’s 
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exact method [97]. If the edge probabilities are greater than 0.5, the edges are 

regarded as predicted edges. The learned Bayesian network is shown in Figure 32. 

Compared with Figure 31, eleven edges are the same as those in the original 

structure. Seven edges have reverse directions (the dotted lines in Figure 32), and two 

edges are missing (Plcy � Pip2 and Pka � Jnk). This means that most of the 

undirected edges between variables are learned correctly, and Bayesian networks can 

generate the reasonable hypotheses of influence relationships between variables from 

the data for the domain of interest. The edges in this learned Bayesian network can 

now serve as the initial hypotheses for further refinement and verification.  

Note that we only consider the hypotheses of direct influence relationships 

between variables in this example. While this example does not show the potential 

application of variable grouping, variable grouping could be useful in a situation 

where the aggregate functions of some proteins are to be studied. 

 

Figure 32  The learned BN with data sampled from the intracellular signaling network 
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6.2 Hypothesis Refinement: Learning the Structure 

with Observational Data and Topological 

Constraints 

The second experiment will show the effect of topological constraints on the 

hypothesis refinement. We will re-estimate edge probabilities with the available 

observational data and topological constraints. In this experiment, we use the 

following topological constraints: Pip3 is a root in the domain, and Jnk and P38 are 

leaf nodes in the domain. Such topological constraints are from biological domain 

knowledge: Pip3 is an upstream protein and is not affected by other proteins in the 

domain, and can be treated as a root in a Bayesian network; Jnk and P38 are two 

downstream proteins and will not affect other proteins in the domain, and can be 

treated as leaf nodes in a Bayesian network. After combining the topological 

constraints with observational data, the generated graph is shown in Figure 33. 

Compared with the original structure in Figure 31, eighteen edges are learned 

correctly with the data and topological constraints. Only one edge (Plcy � Pip2) is 

missing and one edge (Raf � Mek12, dotted line in Figure 33) is reversed. We can see 

that topological constraints can improve the hypotheses of influence relationships 

between variables generated from data in this example. 
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Figure 33  The learned BN with data and topological constraints from the intracellular signaling 

network  

6.3 Hypothesis Verification: Node Selection for 

Interventional Experiments 

With the available observational data and topological constraints, we can estimate the 

node uncertainty with our first proposed non-symmetrical entropy in Formula (3) and 

(4) of Section 5.3.2. The estimated node uncertainties without/with topological 

constraints are shown in Table 23 and Table 24. If only the observational data is used 

for edge probability estimation, variable Pkc has the highest node entropy with value 

1.2, and will be selected for the subsequent node-based intervention. If both the 

observational data and the topological constraints are used for edge probability 

estimation, variable Mek12 has the highest node entropy with value 1.25, and will be 

selected for the subsequent node-based intervention. 

With the generated node entropies, we can choose the protein with the highest 

entropy for intervention and conduct the real biological experiments to collect 

Pip3 

Pkc 

Jnk 

P38 

Raf Mek12 

Pka 

Erk 

Akt 

Missing edge: 

Plcy � Pip2 
Plcy Pip2 
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interventional data to verify the causal relationships. Since the biological experiments 

are out of the scope of our research, we will not continue the experiment. We hope 

that there would be biologists who are interested in this domain and would use the 

hypotheses from computational methods for further experiments in future. 

Protein Node uncertainty 

Pkc 1.1996 

 Pka 1.1559 

 Mek12 0.94244 

 Raf 0.80507 

 Plcy 0.79517 

 Pip2 0.79517 

 Jnk 0.48444 

 p38 0.10604 

 Erk 0.033956 

 Pip3 0.020267 

 Akt 1.04E-29 

Table 23  Node uncertainty from observational data for the intracellular signaling network 

 

Protein Node uncertainty 

Mek12 1.2515 

 Pka 1.157 

 Raf 1.0853 

 Plcy 0.69315 

 Pip2 0.69315 

 Pkc 7.96E-07 

 Erk 4.13E-07 

 Pip3 3.00E-10 

 Akt 8.96E-29 

 p38 0 

 Jnk 0 

Table 24  Node uncertainty from observational data and topological constraints for the 

intracellular signaling network   
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6.4 Summary 

In this chapter, we applied our proposed framework to a biological problem using 

simulation. The results show that Bayesian networks could generate reasonable 

hypotheses of influence relationships between variables from the data for the domain 

of interest. The combination of domain knowledge could improve the quality of the 

hypotheses of influence relationships between variables generated from data. Both the 

missing edges and reversed edges are reduced with the specified root and leaf nodes 

as topological constraints. Node entropy can be derived from the available data and 

domain knowledge, and the node with the highest node entropy can be selected for 

hypothesis verification with the node-based interventional experiments; the list of 

results has correctly suggested the most promising nodes for further experiments. 
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Chapter 7  Conclusion 

Causal knowledge is helpful for comprehension, diagnosis, prediction and control in 

many complex situations. In this thesis, I consider causal knowledge from the 

probabilistic perspective with a manipulation criterion. A mixture of observational 

data and interventional data is used for causal knowledge discovery with causal 

Bayesian networks.  

7.1 Summary of Contributions 

Identification of causal knowledge is an important research topic with a long history 

([130], Epilogue) and many challenging issues. Neyman [125] and Fisher [57] 

pioneered causal knowledge discovery with randomized experiments. Rubin [143,144] 

initiated the study of causal knowledge discovery with observational data and 

statistical methods, while Spirtes et al. [155,156] and Pearl [130] led the way of 

inductive learning of causal knowledge from observational data with Bayesian 

networks. 

One of the main differences between the traditional statistical methods and 

Bayesian network methods for causal knowledge discovery is how the hypotheses of 

causal influence relationships between variables are modeled and generated. In the 

traditional statistical methods, the hypotheses of causal influence relationships 

between variables are generated from domain experts without sufficient mathematical 



 169 

support. In this case, the results of knowledge discovery heavily depend on domain 

experts to generate the hypotheses of causal influence relationships between variables. 

However, in the inductive learning of causal knowledge with Bayesian networks, the 

hypothesis space is assumed before learning, and the best hypothesis is automatically 

searched through the hypothesis space based on the data. 

In this thesis, I use causal Bayesian networks [130,131,155,156] as the basic tool 

for causal knowledge discovery. I assume that observational data can be collected 

economically and interventional data will be collected with higher cost, such as in 

Biological Science [145]. Interventional data is surely useful for causal knowledge 

discovery, while it is controversial to discover causal knowledge from observational 

data, since observational data mainly gives correlation information between variables. 

In this thesis, a combination of observational data and interventional data is used for 

causal knowledge discovery. 

The hypotheses of direct causal influence relationships between variables will be 

generated as edges in causal Bayesian networks from the available data. The 

hypotheses will be updated with topological domain knowledge. Interventional 

experiments can verify the generated hypotheses. Our objective is to reduce the 

number of interventions required to identify the underlying causal structure of the 

domains of interest, while keeping the computational complexity affordable. 

In this thesis, I proposed an iterative and interactive framework for causal 

knowledge discovery with observational data and interventional data to close the 

knowledge discovery loop. My main contributions include: 1) proposal of an iterative 
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and interactive framework for causal knowledge discovery with three components: 

hypothesis generation, hypothesis refinement and hypothesis verification; and within 

the framework: 2) proposal of a new hypothesis generation method with variable 

grouping; 3) proposal of a new hypothesis refinement method with topological 

constraints; and 4) proposal of a new hypothesis verification with node-based and 

edge-based interventional experiments and non-symmetrical entropy for hypothesis 

selection. I have also illustrated how to integrate the different tasks in a systematic 

way to support cost-effective causal knowledge discovery. Promising results are 

shown in a set of applications with practical implications. 

7.1.1 Framework for Knowledge Discovery with Bayesian 

Networks 

The proposed framework for knowledge discovery with Bayesian networks is an 

iterative and interactive process with modular components: hypothesis generation, 

refinement and verification. These three components are generally studied separately 

and a unified framework is needed. In the proposed framework, the details of the three 

components can be updated or extended further in future without affecting the 

structure of the framework. 

7.1.2 Hypothesis Generation 

The main kind of hypotheses used in this thesis is the direct causal relationships 

between variables in a domain, which are the edges in Bayesian networks. Another 
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kind of hypotheses is the complete Bayesian network structure. These two kinds of 

hypotheses can be generated from Bayesian network structure learning. The edges 

between variables are mainly used for hypothesis refinement and hypothesis 

verification. 

A new method is proposed to generate hypotheses by Bayesian network structure 

learning with variable grouping. This method is applicable in the domains where 

some variables follow similar conditional probability distributions. Experiments show 

that this method could identify the group variables and dependency between the 

groups simultaneously. This would be particularly useful in the domains where the 

group information and the dependency between the group variables are important, e.g., 

microarray data from gene expressions and stock price from the stock market. 

7.1.3 Hypothesis Refinement 

Two canonical formats are proposed to represent topological constraints for Bayesian 

network structure learning. The rule format is easy for domain knowledge elicitation 

and the matrix format is easy for Bayesian network structure learning and domain 

knowledge consistency checking. Experiments show that topological constraints 

could improve the relevance of the hypotheses of causal influence relationships 

between variables generated from data. 

7.1.4 Hypothesis Verification 

Node-based and edge-based interventions are proposed for active learning of causal 
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Bayesian network structures. Non-symmetrical entropy is proposed to select nodes or 

edges for interventional experiments. Compared with the decision theoretic approach 

(the expected posterior loss), our method is more computationally affordable while 

the learned structure entropy is comparable. Compared with other methods, non- 

symmetrical entropy requires a minimal number of node-based interventions and a 

comparable number of edge-based interventions for causal knowledge discovery. 

Entropy-based method is proposed as the stopping criterion in causal Bayesian 

network structure learning process.  

7.1.5 Limitations 

There are some limitations in the current work. The definition of causal knowledge in 

this thesis is based on manipulation criterion. Therefore, it may not be applicable to 

the conditions with other causal knowledge definitions. And, since the proposed 

framework needs the interventional experiments for hypothesis verification, it is not 

applicable to the domains where the interventional experiments are not feasible, e.g., 

in Social Science. Even if the interventional experiments are possible, the resources 

needed in the hypothesis verification process can be substantial. The availability of 

the resources will limit the application of the proposed framework. When the 

resources are available, it could still be time-consuming to collect the interventional 

data. However, we believe that the proposed framework would be useful in cases 

where real experiments or the dire consequences of inaccurate diagnosis, prediction, 

or other applications of causal knowledge are extremely costly. 
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7.2 Related Work 

This work builds on and extends the existing Bayesian network theory and active 

learning methods for causal knowledge discovery. It also integrates many ideas from 

knowledge discovery in database and experiment design in Statistics.  

Causal knowledge discovery started from the very beginning of human history. 

Our ancestors learned causal knowledge from their experiences and manipulations in 

natural exploration process. Aristotle spoke of the doctrine of four causes, while 

others proposed different forms of causality afterwards [90,106,130,155,171]. David 

Hume [90] thought that causality was just from our habit and doubted whether we 

could identify the certain laws of cause and effect. David Lewis [106] suggested the 

counterfactual causality. Cheng [29], Pearl [130], Spirtes et al. [155], and Woodward 

[171] considered causality from a probabilistic perspective. Pearl [130], Price [135], 

Spirtes et al. [155], and Woodward [171] discussed causality with a manipulation 

criterion. In this thesis, I follow the definition from Spirtes et al. [155] and consider 

causal knowledge from probabilistic perspective with manipulation criterion. 

The main scientific method for causal knowledge discovery from data is 

randomized experiments in Statistics [58,125,144]. The interventional data is 

collected in randomized experiments to infer the causal strength of the randomized 

variables on other variables. Bayesian experiment design and optimal experiment 

design [22] have been explored to optimize the parameters in the experiments to make 

the interventional data collection and analysis more effective for causal knowledge 

discovery. However, hypothesis generation is not integrated in traditional experiment 
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design, and only one variable is considered as the target variable at a time. To model 

the causal relationships between multiple variables for hypothesis generation, causal 

Bayesian networks should be considered. 

Wright [172] is among the first to use a graphical model for causal knowledge 

discovery. Rubin [143,144] is one of the pioneers to infer causal knowledge from 

observational data with statistical methods. Pearl [130,131] and Spirtes et al. [155,156] 

have developed a comprehensive theory for causal knowledge discovery from 

observational data with Bayesian networks. Pearl [129] proposed three basic rules to 

make it possible to infer the probabilities under manipulation from observational data 

with graphical models. 

The knowledge discovery process has been discussed in general (i.e., in expert 

systems [74,133] and data mining [13,23], and the survey [101]). Fayyad, 

Piatetsky-Shapiro and Smyth [54] discussed the general knowledge discovery tasks, 

the typical methods and the knowledge discovery process. The large amount of work 

in knowledge discovery focuses on observational data for correlational knowledge 

discovery. However, hypothesis refinement and hypothesis verification have not been 

sufficiently considered in the knowledge discovery processes mentioned above, 

especially little work on hypothesis verification with interventional data. 

 Knowledge discovered from observational data has been applied in many 

domains. However, it may not help causal knowledge discovery in many situations. 

For example, observational data cannot distinguish the simple causal models with two 

variables, such as A�B or AB, since these two models imply the same conditional 
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(in)dependence from observational data. Alternatively, interventional data can 

distinguish such models for causal knowledge discovery. If the concrete causal 

knowledge is required in some reverse engineering projects, we need to conduct the 

interventional experiments. But in some domains, we cannot conduct interventional 

experiments due to financial, legal or ethical reasons, and cannot collect 

interventional data. In this case, we need to resort to causal knowledge discovery with 

observational data. In summary, causal knowledge discoveries from interventional 

data and observational data have their own advantages and disadvantages, and their 

application domains. Generally, observational data can be collected economically, and 

interventional data will be collected costly. Causal knowledge discovery with 

observational data and interventional data is complimentary to each other. 

Our framework includes three components (hypothesis generation, hypothesis 

refinement and hypothesis verification), exploits the available resources (i.e., 

observational data, interventional data, topological domain knowledge, and 

interventional experiments) to discover new causal knowledge, and minimize the 

number of experiments required for new interventional data collection. The 

comparisons of our proposed methods with the related work in each component are 

discussed in the following sub-sections. More related references, brief comments and 

comparisons with the proposed methods are listed in Appendix A.E. 
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7.2.1 Related Work for Hypothesis Generation with Variable 

Grouping 

Hypothesis generation with variable grouping in Bayesian network structure learning 

is one method for variable aggregation. The group variables as hidden or latent 

variables are dependent on each other as a Bayesian network in our proposed method, 

and the original variables are independent of each other given the group variables. 

The idea of variable aggregation is not really new and has been considered in many 

situations, inside and outside of Bayesian network area. The general variable 

clustering [105] is one way to detect the redundant variables or highly-correlated 

variables in the data. However, it does not consider the dependency between the 

different clusters of the original variables.  

Hidden variable discovery can be identified with maximal cliques [117] or 

semi-maximal cliques in the learned Bayesian networks [52]. However, the hidden 

variables identified in this way are difficult to interpret.  

Module networks [148] defined the sets of variables with the similar behaviors as 

a module. The variables in the same modules have the same parents and the same 

conditional probability distributions. By enforcing such constraints, the complexity of 

the Bayesian network space is significantly reduced as well as the number of 

parameters. Different from our proposed Bayesian network structure learning with 

variable grouping, no hidden variables were explicitly introduced in module networks: 

the variables in module networks are interacting with each other directly and the 

search space is still very big. 
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Hierarchical Bayesian networks [79] consider the Cartesian product of the original 

variables as composite variables, which is similar to the clustering method30 for 

Bayesian network inference [21]. This is another way for variable aggregation in 

Bayesian networks. However, the Cartesian product of the original variables may lead 

to an exponential number of states in the composite variables. 

Multiply Sectioned Bayesian Networks (MSBNs) [173] were proposed to identify 

groups of variables as sections, and a local Bayesian network could be built with the 

variables in one section. The local Bayesian networks can be connected together 

through d-sep nodes among the sections to build MSBNs. Network fragments [102] 

were proposed to build partial Bayesian networks from domain knowledge as blocks 

for big Bayesian network construction. These two methods focus on the Bayesian 

network construction and no known work has been developed for learning. 

When the classes or population of variables are considered, Bayesian network can 

be extended to object-oriented Bayesian networks [98], probabilistic frame-based 

systems [99], probabilistic relational models [63], and the first-order probabilistic 

models [134]. The variables in these models are class variables as in object-oriented 

languages, the class variables can be instantiated as objects, and the structures and 

parameters of the objects can be instantiated and reused for many times. Most of these 

models are new methods for knowledge representation and inference based on 

Bayesian networks. In the learning, objects and their relations have to be specified in 

skeletons. In our work, the group variables can be treated as class variables in the 

                                                        
30 The clustering method has been proposed to cluster the variables together to transform the Bayesian 

networks with un-directed cycles into poly-trees for efficient inference. 
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first-order probabilistic model and each member in the groups can be treated as an 

individual in a population. Then our work provides a way to learn a first-order 

probabilistic model from data.  

7.2.2 Related Work for Hypothesis Refinement 

It is not new to facilitate the causal structure inference with domain knowledge [77] 

and the Bayesian network learning with domain knowledge [38,67,87]. The 

quantitative domain knowledge has been explored to learn the conditional 

probabilities [11,94,95,126]. The qualitative domain knowledge can be represented as 

the topological constraints in Bayesian networks [38,87]. 

Physical theories are required in Griffiths et al. [77] as domain knowledge to infer 

the causal structure. A causal ordering of variables is required to learn the Bayesian 

network structure in Cooper and Herskovits [38]. An initial Bayesian network is 

required in Heckerman et al. [87]. The degree of the node connected to other nodes is 

required in Friedman et al. [67]. Although these methods work well with the required 

domain knowledge, such knowledge is not available in many cases. Also, in these 

methods, the elicitation of domain knowledge is ad hoc and not in the systematic way 

for causal Bayesian network learning. 

Certain kinds of partial domain knowledge have been considered in Bayesian 

network structure learning ([155], Section 5.4.5) in packages like LibB, TETRAD and 

Bayesian network PowerConstructor31. However, as far as we know, there is no 

                                                        
31 Same as Footnote 16. 
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systematic representation, analysis and evaluation on incorporating partial topological 

domain knowledge into Bayesian network structure learning, and the explicit effects 

and influences of different kinds of topological constraints are unknown. 

7.2.3 Related Work for Hypothesis Verification 

Hypothesis verification with interventional data is important before applying the 

discovered knowledge to real causal prediction and control. The mixture of 

observational data and interventional data has been explored for causal knowledge 

discovery. Cooper and Yoo [39] first examined the assumptions to combine 

observational data and interventional data for knowledge discovery with Bayesian 

networks. Active learning [35,113,138] has been tried to guide the new data collection 

with the available resources to reduce the variance of the model. Recently, Tong and 

Koller [160,161] and Murphy [121] applied active learning to causal Bayesian 

network learning. They applied the decision theoretic approach to estimating the 

expected posterior loss to select variables for manipulation. Every possible 

intervention and their corresponding possible outcomes should be considered to 

estimate the expected posterior loss. However, the computational complexity involved 

is very high and only the case with one instance collected in each intervention is 

considered in their work. The case with multiple data instances collected in each 

intervention is not considered, although this is a general situation in practice. 

We propose the node-based interventions and edge-based interventions for causal 

knowledge discovery. The hypothesis selection is based on non-symmetrical entropy 
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from the current data, and the possible outcomes from each intervention do not need 

to be considered, which will reduce the computational complexity. The stopping 

criterion is based on the structure entropy from the learned Bayesian networks. The 

detailed comparison of our proposed methods and active learning with expected 

posterior loss is listed in Table 25. 
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 one instance 

collected from 

each intervention  

m  instances 

collected from 

each intervention 

comments 

Active learning with 

expected posterior loss 

for intervention 

selection 

[121,160,161] 

computational 

complexity in 

each active 

learning step is 

)2( 22 nno ∗  

computational 

complexity in 

each active 

learning step is 

)2( 2 mnmnno −+∗   

 

Theoretically, active learning with expected posterior loss is the best one to achieve the smallest 

structure entropy. However, the computational cost makes it infeasible in most of the situations. 

Can be compared with node-based intervention when only one instance can be collected in each 

intervention. In this case, the learned Bayesian networks have the smaller structure entropy 

than those from node-based intervention. 

Can not finish the experiments in a reasonable time with multiple data instances collected in 

each intervention 

Our proposed 

node-based intervention 

with non-symmetrical 

entropy from the 

current data 

Computational 

complexity in 

each active 

learning step is 

)2( nno ∗ .  

Computational 

complexity in 

each active 

learning step is 

)2( nno ∗ . 

Can be used to establish the causal ordering of variables with interventional data. The learned 

structure entropy is near that from expected posterior loss when one instance is collected in 

each intervention. Can be applied to the case when multiple data instances are collected from 

each intervention. But may not determine some direct causal relationships. 

Our proposed 

edge-based intervention 

with non-symmetrical 

entropy from the 

current data 

 Not applicable It depends. 

Generally not 

applicable 

Can identify the direct causal relationships. But need to consider the exponential numbers of 

configurations of manipulated variables for data collection to establish the direct causal 

relationship from one variable to another variable. Computational complexity in each active 

learning step is )2( nno ∗ .  

Table 25  Comparisons of the active learning methods for causal Bayesian network learning 
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7.3 Future Work 

The possible future work includes: 1) extending the topological constraints to soft 

topological constraints; 2) variable selection for causal Bayesian network building; 

and 3) hidden variable discovery. 

7.3.1 Extending to Soft Topological Constraints 

Currently, we consider domain knowledge as concrete topological constraints: 

whether there is a root, a leaf node or an edge. In some situations, however, we are not 

sure about the available domain knowledge. For example, from domain knowledge, 

we may have 80% confidence that variable A  affects variable B . In this case, we 

cannot specify that there is an edge from A  to B  as in Chapter 4. We need other 

methods to deal with soft or uncertain topological constraints.  

7.3.2 Variable Selection for Causal Bayesian Networks 

The first step in Bayesian network building is to determine variables in a domain of 

interest. In our work, we assume that variables in a domain have been determined 

beforehand. However, in many real applications, the variables related to knowledge 

discovery objective may not be known in advance. We need to select variables in the 

process of Bayesian network learning [40] for knowledge discovery. From Simpson’s 

Paradox [130], we know that, the conclusion of a statistical test can be reversed under 

some occasions when one extra variable is included into a model. In this case, we 

must pay more attention to the variable selection problem and determine when it is 



 183 

appropriate to include a variable into the model or exclude a variable from the model 

for knowledge discovery. 

7.3.3 Hidden Variable Discovery 

Hidden variables are a difficult and complex issue in knowledge discovery and have 

been explored with Bayesian networks [8,34,36,52,61,77,117,174]. However, some 

important questions related to hidden variables need to be further examined: 1) when 

is a hidden variable really needed for knowledge discovery? and 2) what is the real 

meaning of the hidden variable, if applicable? Introducing a hidden variable into the 

model for knowledge discovery will change the hypothesis space, which will 

significantly change the problem complexity in many domains. As pointed out by 

Tiles ([158], page 12) nineteen years ago, automated programs cannot restructure the 

problem space and introduce new (or hidden) variables into the model for knowledge 

discovery. How to introduce a new variable to change the hypothesis space is still a 

problem we face today.  
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Appendix 

A. Hypothesis Generation with Two Variables 

This section is a brief review of some methods for hypothesis generation. The 

possible methods are correlation, chi-square, and mutual information. These methods 

are used to determine the dependencies between the variables. Whether the 

dependencies are causal or associational, it is dependent on the characteristic of the 

data. If the data is from intervention, the estimated dependencies will be causal; 

otherwise, the dependencies will be associational. 

The hypotheses generated with two variables are only the total dependencies 

between two variables. The total dependencies between two variables can come from 

the direct dependency between two variables, and from the indirect dependencies – 

through paths along other variables. Therefore, the total dependencies from two 

variables cannot be used to determine the direct influence; however, they can be used 

as indicators of the direct dependencies – high total dependencies sometimes mean the 

high direct dependencies. Low total dependencies, however, do not guarantee the low 

direct dependencies, since there can be multiple paths between two variables and the 

dependencies through different paths can reduce the effect of each other. 

i. Correlation for Continuous Variables 

In probability theory and Statistics, correlation, also called correlation coefficient 



 185 

[141], indicates the strength and direction of a linear relationship between two random 

variables. The correlation coefficient YX ,ρ  between two random variables X  and 

Y with expected values Xµ  and Yµ  and standard deviations Xσ  and Yσ  is 

defined as: 

YX

YX

YX
YX

YXEYX

σσ
µµ

σσ
ρ )))(((),cov(

,

−−==  

where ) (E  is the expectation function of a random variable and ),cov( YX  is the 

covariance function of the random variables. 

The maximum of the absolute correlation coefficient value is 1. If the correlation 

coefficient is +1, it means that two variables change linearly in the same directions. If 

the correlation coefficient is -1, it means that two variables change linearly in the 

opposite directions. 

When two variables are independent, their correlation should be 0. However, 

when the correlation is 0, it does not mean that two variables are independent, since 

correlation only measures the linear dependency between two variables.  

ii. Chi-square Test for Discrete Variables 

The chi-square value between two variables [141] is defined as 
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Where m  is the number of the possible states of variable 1, n  is the number of the 

possible states of variable 2, ijA  is the number of instances with i -th value for 

variable 1 and j -th value for variable 2, iR  is the number of instances with i -th 
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value for variable 1, jC  is the number of instances with j -th value for variable 2, 

N  is the number of the total instances, and NCRE jiij /*=  is the expected 

frequency of ijA . The chi-square value measures the difference of the expected 

frequencies and the actual frequencies in different categories. 

We have tried the chi-square measure on a data set sampled from the Asia 

network. Most of the real edges in the Asia network achieved high chi-square values. 

In addition, some pairs of variables, without direct edges between them in the Asia 

network, also achieved high chi-square values. The possible explanation is that 

chi-square only measures the total dependency between two variables, both from the 

direct edges and from any indirect paths. The top chi-square values are shown in 

Table 26. 

Order Variable 1 Variable 2 Occurances 

1 Lung_Cancer Tuberculosis_or_Lung_Cancer 874.84 

2 Tuberculosis_or_Lung_Cancer X-ray_result 517.32 

3 Bronchitis Dyspnea 486.16 

4 Lung_Cancer X-ray_result 450.52 

5 Tuberculosis Tuberculosis_or_Lung_Cancer 110.53 

6 Smoking Bronchitis 71.81 

7 Tuberculosis X-ray_result 59.14 

8 Smoking Dyspnea 39.2 

9 Smoking Lung_Cancer 35.44 

10 Visit_to_Asia Tuberculosis 35.3 

Table 26  High chi-square values between variables from data sampled from Asia network 

iii.  Mutual Information for Discrete Variables 

Mutual Information  (MI) [114] is an entropy-based measure of the dependency 

between two variables. It is the difference between the prior entropy of variable C  

and the posterior entropy of variable C  given values of another variable F : 
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We have tried the mutual information on the data set sampled from the Asia 

network. Similar to the results from chi-square values, most of the real edges in the 

Asia network achieved high mutual information values, and some pairs of variables, 

without direct edges between them in the Asia network, achieved the high mutual 

information values too. The reason is the same – mutual information only measures 

the total dependency between two variables. The top mutual information values are 

shown in Table 27. 

Order Variable 1 Variable 2 Occurances 

1 Bronchitis Dyspnea 0.27 

2 Lung_Cancer Tuberculosis_or_Lung_Cancer 0.2 

3 Tuberculosis_or_Lung_Cancer X-ray_result 0.16 

4 Lung_Cancer X-ray_result 0.14 

5 Smoking Bronchitis 0.04 

6 Tuberculosis Tuberculosis_or_Lung_Cancer 0.02 

7 Smoking Lung_Cancer 0.02 

8 Smoking Dyspnea 0.02 

9 Smoking Tuberculosis_or_Lung_Cancer 0.02 

10 Tuberculosis X-ray_result 0.02 

Table 27  High mutual information values between variables from data sampled from Asia 

network 

B. D-separation 

Bayesian networks encode the dependencies and independencies between variables. 

Under the causal Markov assumption, each variable in a Bayesian network is 

independent of its non-descendants given the values of its parents. With the causal 

Markov assumption, we can check some conditional independence in Bayesian 

networks. For the general conditional independence in a Bayesian network, Pearl [131] 
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proposed a graphical criterion: d-separation. D-separation in Bayesian networks has 

the following implication: If two sets of variables X  and Y  are d-separated in 

Bayesian network by a third set Z  (excluding X  and Y ), the corresponding 

variable sets X  and Y  are independent given the variables in Z . The definition of 

d-separation is: two sets of variables X  and Y  are d-separated in Bayesian 

network by a third set Z  (excluding X  and Y ) if and only if every un-directed 

path between X  and Y  is “blocked”, where the term “blocked” means that there is 

an intermediate variable W  (distinct from X  and Y ) such that: 

- The connection through W  is “tail-to-tail” or “tail-to-head” and W  is in Z ; 

- Or, the connection through W  is “head-to-head” and neither W  nor any 

descendant of W  is in Z . The graph patterns of “tail-to-tail”, “tail-to-head” and 

“head-to-head” are shown in Figure 34. 

 

Figure 34  Patterns for paths through a variable 

C. Results of Node-Based Interventions 

For node-based interventions, we have tested two of our created Bayesian networks 

(Study network and Cold network) and three benchmark Bayesian networks (Cancer 

network, Asia network and Car network). The test conditions are:  

1) Five different node selection criteria: node selection with non-symmetrical node 

entropy, symmetrical node entropy, the expected posterior loss, random node selection, 

(a) tail-to-tail, or 

diverging pattern 

(b) tail-to-head, 

or serial pattern 

(c) head-to-head, or 

converging pattern 
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or observational data;  

2) Two stopping criteria: the number of interventions and the structure entropy of the 

learned Bayesian networks; 

3) The original conditional probabilities in the tested Bayesian networks or 

randomized conditional probabilities; and 

4) Different numbers of instances from each intervention, which are from 1 to 200.  

There are many different combinations of these conditions. Some representative 

results are shown here. More results will be available online. 

i. Study Network 

Figure 35 shows the active learning results from Study network. The stopping 

criterion is the structure entropy of the learned Bayesian networks. The original 

conditional probabilities from Study network are used. In Figure 35, node selection 

with non-symmetrical node entropy requires the minimal number of instances to 

achieve structures with the specified entropy in active learning with Bayesian 

networks. 

 

Figure 35  Active learning results from Study network 

Note: The left panel shows the results when one instance is sampled in each intervention and the right 

panel shows the results when ten instances are sampled in each intervention 
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ii. Cold Network 

Figure 36 shows the active learning results from Cold network. The stopping criterion 

is the structure entropy of the learned Bayesian networks. The original conditional 

probabilities from Cold network are used. In Figure 36, node selection with 

non-symmetrical node entropy requires much smaller number of total instances to 

reach the required structure entropy. When the number of instances collected in each 

intervention is large (100 or 200 in our example), non-symmetrical entropy performs 

much better than other node selection methods. 

  

(a) (b) 

  

(c) (d) 

Figure 36  Active learning results from Cold network 

Note: The numbers of the sampled instances in each intervention are 1, 10, 100, and 200 in (a), (b), (c), 

and (d), respectively. 
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iii.  Cancer Network 

Figure 37 shows the active learning results from Cancer network. The stopping 

criterion is the structure entropy of the learned Bayesian networks. The original 

conditional probabilities from Cancer network are used. In Figure 37, node selection 

with non-symmetrical entropy requires much smaller number of total instances to 

reach the required structure entropy. When the number of instances collected in each 

intervention is large (100 or 200 in our example), non-symmetrical entropy performs 

much better than other node selection methods. 

 
 

(a) (b) 

  

(c) (d) 

Figure 37  Active learning results from Cancer network 

Note: The numbers of the sampled instances in each intervention are 1, 10, 100, and 200 in (a), (b), (c), 

and (d), respectively. 
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iv. Asia Network 

Figure 38 shows the active learning results from Asia network. The stopping criterion 

is the structure entropy of the learned Bayesian networks. Randomized conditional 

probabilities are used for this example. In Figure 38, node selection with 

non-symmetrical entropy requires much smaller number of total instances to reach the 

required structure entropy. When the number of instances collected in each 

intervention is large (400 in our example), non-symmetrical entropy performs much 

better than other node selection methods. 

  

(a) (b) 

 

 

(c)  

Figure 38  Active learning results from Asia network 

Note: The numbers of the sampled instances in each intervention are 1, 10, and 400 in (a), (b), and (c), 

respectively. 

 



 193 

v. Car Network 

Figure 39 shows the active learning results from Car network. The stopping criterion 

is the structure entropy of the learned Bayesian networks. The original conditional 

probabilities are used for this example. In Figure 39, node selection with 

non-symmetrical entropy requires much smaller number of total instances to reach the 

required structure entropy. When the number of instances collected in each 

intervention is large (100 and 200 in our example), non-symmetrical entropy performs 

much better than other node selection methods. When the required structure entropy is 

small, all the node selection methods need to sample the maximal number of instances, 

which explains why the number of the total instances from intervention is 5000 when 

the structure entropy is 0.1 or 0.2. 

 
 

(a) (b) 

Figure 39  Active learning results from Car network 

Note: The numbers of the sampled instances in each intervention are 100 and 200 in (a) and (b), 

respectively. 

D. Selected Publications 
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• Li, Guoliang, Tze-Yun Leong, Active Learning for Causal Bayesian Network 
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on Knowledge Discovery and Data Mining (PAKDD), LNAI 5476, 

Springer-Verlag, 2009, pp. 290-301. 

• Li, Guoliang, Steel Mike, Louxin Zhang, More Taxa Are Not Necessarily 

Better For the Reconstruction of Ancestral Character States, Systematic 

Biology 57 (4) (2008) 647-653. 

• AH. Morris, J. Orme,Jr., JD Truwit, J. Steingrub, C. Grissom, KH Lee, 

Guoliang Li, BT Thompson, R. Brower, M. Tidswell, G. Bernard, D. 

Sorenson, K. Sward, H. Zheng, D. Schoenfeld, H. Warner, A replicable 

method for blood glucose control in critically ill patients, Critical Care 

Medicine. 36(6):1787-1795, June 2008 

• Li, Guoliang, Tze-Yun Leong, Biomedical Knowledge Discovery with 

Topological Constraints Modeling in Bayesian Networks: A Preliminary 

Report, in: World Congress on Health (Medical) Informatics (MedInfo) (IOS 

Press, Brisbane, Australia, 2007) 560-565. 

• Li, Guoliang, J. Ma, L. Zhang, Selecting Genomes for Reconstruction of 

Ancestral Genomes, Proceedings of the Fifth Annual RECOMB Satellite 

Workshop on Comparative Genomics (RECOMB-CG), LNBI 4751, 2007, pp. 

110-121. 

• Li, Guoliang, Tze-Yun Leong, and Louxin Zhang, Translation Initiation Sites 

Prediction with Mixture Gaussian Models in Human cDNA Sequences. IEEE 

Transactions on Knowledge and Data Engineering, 2005. 17(8): p. 1152-1160. 
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• Li, Guoliang and Tze-Yun Leong, Feature Selection for the Prediction of 

Translation Initiation Sites. Genomics, Proteomics & Bioinformatics, 2005. 

3(2): p. 73-83. 

• Li, Guoliang and Tze-Yun Leong, A framework to learn Bayesian Networks 

from changing, multiple-source biomedical data. in Proceedings of the 2005 

AAAI Spring Symposium on Challenges to Decision Support in a Changing 

World. Stanford University, CA, USA, 66-72. 

• Li, Guoliang, Tze-Yun Leong, L. Zhang, Translation Initiation Sites 

Prediction with Mixture Gaussian Models, the Proceedings of the 4th 

Workshop on Algorithms in Bioinformatics (WABI 2004), LNBI 3240, 

Bergen, Norway, 2004, pp. 338-349. 

 

E. Summary of Related Work and Comments 

The followings are some selected references related to this research, some brief 

comments and the comparisons with the methods proposed in this thesis.  

 

Topic References Comments  

Knowledge discovery 

framework 

the general process of knowledge 

discovery [13,23,54,74,133], and the 

survey [101] 

More emphasis on hypothesis 

generation 

Our three-step iterative 

framework 

Our proposed framework More emphasis on hypothesis 

refinement and hypothesis 

verification 

Table 28  References for knowledge discovery process 
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Topic References 

Bayesian network theory Pearl [130,131], Spirtes et al. [155,156] 

Bayesian network construction 

from domain knowledge 

Druzdzel and van der Gaag [46], Heckerman [89], Nadkarni and 

Shenoy [124] 

Bayesian network parameter 

learning 

With complete data [15,153], with incomplete data by gradient 

method [8,157], the EM method [103] and Monte Carlo methods 

such as Gibbs sampling [71]. 

Bayesian network structure 

learning 

The representative methods in score-and-search-based category 

are K2 algorithm [38], Greedy search, Markov Chain Monte 

Carlo (MCMC), and Structural EM [60]. The representative 

methods in constraint-based category are SGS algorithm and PC 

algorithm [155] 

Bayesian network structure 

learning with the mixture of 

observational and 

interventional data 

Cooper and Yoo [39], Tong and Koller [161], Murphy [121] 

Proponents on causal 

knowledge discovery with 

Bayesian networks 

Pearl [130], Spirtes et al. [155,156], Korb and Wallace [100] 

Opponents on Causal 

knowledge discovery with 

Bayesian networks 

Cartwright [19,20], Humphreys and Freedman [91], and McKim 

and Turner [118] 

Table 29  Selected references for Bayesian networks 
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Topic References Comments  

Variable clustering Lee et al. [105] No dependency between the 

variable clusters 

Hidden variable 

discovery in Bayesian 

networks 

with maximal cliques [117] or 

semi-maximal cliques [52] in the 

learned Bayesian networks 

difficult to interpret the hidden 

variables 

Module networks The variables in the same modules have 

the same parents [148] 

No hidden variable introduced. 

The search space is still very 

large 

Hierarchical Bayesian 

networks 

Cartesian product of the original 

variables as composite variables [79] 

Possibly an exponential 

number of states in the 

composite variables 

Multi-sectioned 

Bayesian Network 

Xiang et al. [173] Mainly for Bayesian network 

construction 

Network fragment Laskey and Mahoney [102] Mainly for Bayesian network 

construction 

First-order 

probabilistic models 

and the variants  

first-order probabilistic models (Poole, 

2003), object-oriented Bayesian 

network (Koller & Pfeffer, 1997), or 

probabilistic frame-based systems 

(Koller & Pfeffer, 1998) 

Objects and relations have to 

be specified in skeleton 

Latent Tree Models Wang et al. [168] Hidden variables are 

dependent on each other in a 

tree structure 

Bayesian network 

structure learning 

with variable 

grouping 

Our proposed method Hidden variables are 

dependent on each other in a 

network structure. No need 

specify the relations in 

skeleton as required in PRMs. 

Table 30  References for variable aggregation – Related to hypothesis generation 
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Topic References Comments  

General domain 

knowledge 

Donoho and Rendell [45] and Han et 

al.  [82] 

The representation is not for 

Bayesian network 

general knowledge 

refinement 

general knowledge refinement 

[72,162,163] 

meta-knowledge is used to refine 

the specific domain knowledge 

quantitative domain 

knowledge in 

Bayesian networks 

Boutilier et al. 1996; Joshi and Leong 

2006; Niculescu et al. 2006; Joshi et 

al. 2007 [11,94,95,126] 

Not our research focus in this 

thesis 

qualitative domain 

knowledge in 

Bayesian networks 

Cooper and Herskovits [38], and 

Heckerman et al. [87], LibB, 

TETRAD and Bayesian network 

PowerConstructor32 

The proposed topological 

constraints. The systematic domain 

knowledge such as the full causal 

ordering of variables may not be 

available. The effects of different 

topological constraints are 

unknown. 

Table 31  References for domain knowledge – Related to hypothesis refinement 

 

Topic References Comments  

Causal knowledge Aristotle’s doctrine of four causes; 

logical perspective, probabilistic 

perspective, Granger causality, 

counterfactual causality, 

[90,106,130,155,171] 

I follow the definition of causal 

knowledge from Spirtes et al. 

[155]: causal knowledge from 

probabilistic perspective with 

manipulation criterion 

causal knowledge 

discovery with 

randomized 

experiments 

Neyman [125], Fisher [57], Rubin 

[144] 

The established method for causal 

knowledge discovery in scientific 

research. Manipulation-based 

causal knowledge 

discovery with 

observational data  

Pearl [130], Spirtes et al. [155], 

Rubin [143] 

With causal Markov assumption, 

causal sufficiency assumption, and 

faithfulness assumption 

Knowledge 

discovery with 

observational data 

knowledge discovery in database 

[53,86]: classification, regression, 

clustering, and association rule 

mining with observational data 

Correlational information from 

observational data. May not be 

causal knowledge 

Causal knowledge 

discovery with the 

mixture of 

observational and 

interventional data 

Probability update [39], active 

learning [121,160,161] 

My proposed method in this 

category. Active learning with 

Bayesian networks 

Table 32  References for causal knowledge and causal knowledge discovery – Related to 

hypothesis verification 

                                                        
32 Same as Footnote 16. 
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