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Summary

Causal knowledge is essential for comprehensiagndisis, prediction, and control
in many complex situations. Identification of cdukaowledge is an important
research topic with a long history and many chaglilep issues. The majority of
existing approaches to causal knowledge discova® laased on statistical
randomized experiments and inductive learning fotrservational data.

This thesis proposes a three-step iterative framevior causal knowledge
discovery with Bayesian networks under a manipaiatriterion. Its goal is to exploit
available resources, including observational datgerventional data, topological
domain knowledge, and interventional experiments, discover new causal
knowledge, and minimize the number of interventioegperiments required to
validate the causal knowledge. The main challermgesin automatically generating
new hypotheses of causal knowledge, systematicadrporating domain knowledge
for hypothesis refinement, and effectively selegtiypotheses for verification.

Direct causal influence relationships between Vdem are regarded as
hypotheses and are modeled as edges of causali@ayedworks. The statistical
significance of the hypotheses of the direct causlence relationships between
variables can be estimated from data with Bayesgtwork structure learning. We
propose variable grouping as a new method for lngsi$ generation; this method
partitions the variables with similar conditionabpabilities into groups to support

learning of the Bayesian network structures sinmaltasly.



Domain knowledge is specified as topological caists in Bayesian network
structure learning for hypothesis refinement. Weppse two canonical formats to
model topological domain knowledge. The effectslifferent topological constraints
are examined experimentally.

The hypotheses of the direct causal relationshépaden variables from data can
be verified with interventional experiments. Theiation with multiple data instances
collected in each intervention step is first comsidl. We propose node-based
interventions to establish the causal ordering dafriables and edge-based
interventions to examine the direct causal relatigps between variables, propose
non-symmetrical entropy from the available dataaaselection measure to rank the
hypotheses for verification, and propose strucemopy as a criterion to stop the
active learning process.

The proposed methods build on and extend variodkses®blished algorithms
for the respective tasks. The different tasks ategrated in a systematic way to
support cost-effective causal knowledge discovergmising results are shown in a
set of synthetic and benchmark Bayesian networkh wiactical implications. In
particular, we illustrate the effectiveness of the@posed methods in a class of
problems where: i) variable grouping groups theilaimvariables together and
generates relevant hypotheses; ii) hypothesis emfemt with topological domain
knowledge improves the relevance of the generatgghotheses; and iii)
non-symmetrical entropy from the data reduces timapuitational cost and leads to

minimal interventional experiments to validate Gduknowledge. The proposed



framework is applicable to many domains for caksawledge discovery, such as in

reverse engineering tasks.

Keywords: Causal knowledge, Bayesian networks, knowledgscosery,

hypothesis generation, hypothesis refinement, gsis verification, observational

data, interventional data, non-symmetrical entraggive learning
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Chapter 1 Introduction

[“... Knowledge Discovery is the most desirable gmdduct of computing. Finding new
phenomena or enhancing our knowledge about themahgieater long-range value than
optimizing production processes or inventories, @ndecond only to task that preserve our
world and our environment. It is not surprising tha is also one of the most difficult

computing challenges to do well. ..."] — Gio Wieldeld (1996) [170]

Knowledge is used in every scenario of our life fmmprehension, diagnosis,
prediction and control. Causal knowledge is impdrtéor dealing with complex
problems and representing knowledge more logicallyd especially useful in
manipulating current systems for expected effecte-@ngineering current systems to
create new systems. Discovering new causal knowlddgm observations is a
sustaining and continuing effort of human beingen&ally, knowledge discovery
involves several steps such as data (or obseryawmalysis and hypothesis
generation. Usually, these steps are studied gdeparm the literature and the
connections among them are harder to identify. Kiech framework that would
integrate these steps and facilitate knowledgeosieny is needed.

My research is about knowledge discovery with olsgrnal data, interventional
data, domain knowledge and interventional experimeh three-step framework for
causal knowledge discovery with Bayesian netwoskproposed. The steps include:
hypothesis generation, hypothesis refinemami hypothesis verificatianin this

framework, hypotheses are the direct causal infleeslationships between variables



and are modeled as edges of Bayesian networks. n@fiseal data and
interventional data are used to generate hypothgsdscting the possible causal
relationships between variables with statisticgngicance), domain knowledge is
used to refine the generated hypotheses, and amtonal experiments are suggested
to verify the top-ranked hypotheses for knowledpealery.

The application of this framework is shown on pevbs in biomedical domains.
The experiments show that for this class of proBletie framework and its
algorithms can make use of all available resouiaed facilitate the knowledge
discovery process: sound hypotheses can be gedeiratiem data with Bayesian
network structure learning, domain knowledge caprove the validity of hypotheses
generated from data, and non-symmetrical entropy rénimize the number of

interventional experiments to verify the hypotheses domain.

1.1 Background and Motivation

With advanced information technology, we are usingre sensors and electronic
recording devices in various fields, collecting astdring more data in databases.
With these accumulated data, people are able lireuthem to unearth patterns in the
domain, which can be used as new knowledge aftefication. This process is
known asknowledge discovery in databases

There are different definitions for knowledge digery in database. According to
the widely-cited definition by Fayyad, Piatetskyapiro and Smyth [54]:Knowledge

discovery in database (KDD) is the nontrivial preseof identifying valid, potentially



useful, and ultimately understandable patternsatad This definition is well-known
for its emphasis on the properties of new knowledigeovered from data.

Research in Computer Science, Statistics, Datadyagether disciplines has led
to various techniques for knowledge discovery. §ifecstion, regression, clustering
and association rule mining are four representdtig&s in knowledge discovery and
the discovered knowledge is represented in diffepatterns based on the tasks.
Patterns in classification and regression reflaet relationships between one target
variable and all other variabfesPatterns in clustering reflect the similaritiencag
some part of the data to distinguish them from oplzets of the data. Association rule
mining is used to identify items frequently occogitogether in different scenarios.
In practice, the majority of these tasks are ofipplied to correlational relationship
discovery from observational data.

Besides the patterns mentioned above, an impaoptitérn in many domains is
causal relationships between variables — the ergie of direct influencé
relationships between variables in a domain. Cargationship is an indispensable
part of our life and causal knowledge is essemtialealing with complex situations
and summarizing results more logically [14Bjausal knowledgeis the superset of
the causal relationship between variables. It iiat for the manipulation of the

system to achieve the expected effects and crémighe re-engineering process to

! The target variables in classification are categbariables and the target variables in regoessi
are continuous variables.

2 |n this thesis, the “influence” means the “causilence”. If variable A influences variableB, it
means that variableA is a cause of variabld3 . Refer to the definition of causal knowledge in
Section 1.1.1 for detalils.



create new systems from the existing systems, asadn Engineering, Biology and
Economics. A critical problem in the re-engineerprgcess is to predict the behavior
(or property) of the new system before re-engimgeriSuch prediction cannot be
done merely with the correlation relationships hestw variables from observational
data. We need to know which properties of the systgll remain unchanged after
re-engineering and how other properties will char@ausal knowledge can model
these properties as the structural invariance hadntanipulation invariance of the
system, and tell us how the properties change aféeripulation.

The focus of this thesis is on the discovery otgras that can be represented as
causal relationships— direct causal influence relationships betweenabtes in a
domain. Correlational relationships are mainly the association between variables
from observational data, and are not causal relships in general, although such
information may be used as the initial hypotheséscausal knowledge before
verification with interventional experiments.

One approach to modeling causal influence relatigussbetween variables in a
domain is Bayesian networks (BNs). The goal of thiwk is to discover causal
knowledge represented by Bayesian networks fronereational data, interventional
data, topological domain knowledge and intervergioexperiments. The main
challenges are to generate the hypotheses of caelaabnships from data, to refine
the hypotheses with domain knowledge and to mirentiie number of interventional
experiments needed to verify the hypotheses. |earthat the combination of

observational and interventional data can effettivend economically discover



causal relationships.

1.1.1Causal Knowledge

Causal knowledge captures the cause-and-effect relationship betwdifferent
events. The study of causal knowledge has a lostprlyi Aristotle spoke of the
doctrine of four causes, while others proposecerbfit forms of causality afterwards
[90,106,130,155,171]. In this thesis, | follow tdefinition from Spirteset al [155]
and consider causal knowledge from a probabilfstispective with ananipulation
criterion (refer to [155], Section 3.7.2):
Definition of causal relationship (Spirtes et al [155]): Suppose we can
manipulate the variables in a domain andl and B are two variables in the
domain; If 1) we manipulate variableéd to different valuesa, or a,, 2)
measure the effects on variabE, and 3) observe the changes in the probability
distribution of variable B under different values of variablé\,
p(B|do(A=a,)) # p(B|do(A=a,)),
we say that variableA causally influences variableB, variable A is a
(direct or indirect) cause of variabld , and variable B is an effect of variable
A. The operatordo() is from Pearl’s book “Causality” [130], anddo(A = a,)
means that variableA is manipulated to a specific valug,, rather than
observed with valuea, from observational data.
The reason | adopt this definition of causal relahip is that this definition is

general and operational, and this kind of causawkedge can be verified by



experiments with manipulation.

The main scientific method for causal knowledgecalvery from data relies on
randomized experiments in statistics discipline, 128,144]. The interventional data
is collected in randomized experiments to infersedwstrength of the randomized
variables on other variables. However, the probt#nmypothesis generation is not
discussed in experiment design in statistics, etvmmugh the hypothesis is most

important as thetarting pointof the experiment design.

1.1.2Causal Knowledge Discovery with Bayesian Networks

Bayesian networks are graphical models that can be used to represmmngal
knowledge as the probabilistic causal relationsbgtsveen variables in a domain and
model multiple direct causal influence relationshipimultaneously. Judea Pearl
[130,131] and Spirtest al [155,156] have developed a comprehensive theary f
causal knowledge discovery from observational dath Bayesian networks. There
are many applications of their work on causal krenlgke discovery [73,145,151].

The previous work on Bayesian networks [38,87,182), Imainly focused on
hypothesis generation from data as Bayesian netwttcture learning problem,
which is the process to infer the Bayesian netvsbricture from data with a certain
criterion to best explain the data. In this thebkigill use Bayesian networks to model
causal knowledge in a domain, to generate hypasheseausal relationships from
data, to model domain knowledge as topological iraims in Bayesian networks and

to select hypotheses for verification with intertrenal experiments.



It is widely accepted that causal knowledge carexteacted from intervention
(when intervention is possible), such as randomieggderiments. It is debatable
whether causal knowledge can be inferred from ofasenal data alone with
Bayesian networks. Spirtes al. [155,156], Pearl [130], and Korb and Wallace [100]
are examples of proponents of Bayesian networksdoisal knowledge discovery,
while CartWright [19,20], Humphreys and Freedmaf][%nd McKim and Turner
[118] represent the opponents. The arguments ane ran the assumptions in
Bayesian networks — causal Markov assumption aittfdéness assumption, and
whether these assumptions are reasonable. In Hbi&st | will not discuss this
controversial issue — | will take Bayesian netwoiks a knowledge discovery

framework for granted.

1.1.3Why Bayesian Networks?

The reasons | chose Bayesian networks as the rfardaeiowledge discovery are:

i) Bayesian networks can be used to generate hgpeshof causal relationships from
data for causal knowledge discovery, while randechiexperiments do not consider
hypothesis generation for causal inference in nmagtieal form;

i) Bayesian networks can model multiple hypothesésausal relationships with
many target variables simultaneously, while randmui experiments and
classification and regression methods only considertarget variable;

iii) Bayesian networks can model joint probabiligtribution in a domain with fewer

parameters, by exploiting conditional independaetationships among variables;



iv) Bayesian networks can explicitly model uncertgiand address noisy and missing
data;

V) It is easy to combine prior knowledge (such assal knowledge) into the structure
and parameters of Bayesian networks;

vi) Results from Bayesian network structure leagnaigorithms can be extended for
causal knowledge discovery, especially when inteieeal data is considered; and
vii) Manipulation methods are available in many @ans (such as Biology or

Electrical Engineering) to verify the hypotheseseyated from Bayesian networks.

1.1.4Data

The data for knowledge discovery can be divided ihwo categories by the
observation conditions: observational data andvetgional data.
i) Observational data— This category of data is observed when the sysit
interest evolves autonomously and there is no nudatipn on the system. A
typical example is the system of the Sun, the ptanad the stars. Currently (or
even in the near future), humans can only obsér@ertovements of the Sun, the
planets and the stars and cannot manipulate thensydn Biology, we can
observe the expression level of proteins withoyt i@agents added. In Electrical
Engineering, we can observe the system workingowitlexternal signals added.
i) Interventional data — This category of data is observed when somebias
in the system have been manipulated to specifigegaand other variables evolve

simultaneously by following the system’s causal haggsm. In Biology, we can



manipulate the expression levels of some genesbgkkout or over-expression

experiments, and observe the expression levelstluér ogenes. In Electrical

Engineering, we can cut connections in the cirouiadd some external signals at

some points of the system, and observe the effeotleer parts of the system.

The main difference between observational datair@edventional data is whether
some variables in the system are under manipulatioen the data is collected. A
manipulation® is represented by the introduction of an exogena@uible into the
current causal system as a cause of the varialide toanipulated. When there is no
manipulation, the system functions as normal. Whiegre is manipulation, the
relationships between the manipulated variable iendriginal causes in the system
will be changed — the values of the manipulatedabées are determined by the
manipulation while the values of other variable e determined by the mechanism
of the system. In this way, the relationship betwego variables, whether causal or
merely correlational, can be verified with intertienal data.

Here we need to distinguish the probabilities fralifferent types of data:
p(Y | X =x) from observational data ang(Y |do(X =x)) from interventional
data. p(Y|X =x) means the conditional probability distribution wériable Y
given that variableX is observed with valuex,. p(Y|do(X =x)) means the
conditional probability distribution of variabley given that variable X is
manipulated to valuex, .

Compared to interventional data, observational databe collected economically.

% For more details of manipulability, refer to theolx by J. Woodwardylaking things happen: a
theory of causal explanatip®@xford University Press, 2003.



In some domains, such as in Social Science or @@lirscience, only observational
data can be obtained, and intervention on somablas is infeasible due to financial,
legal or ethical reasons. This is why most traddio methods for knowledge
discovery in database [53,86] only consider obsmmwal data, leading to some
researchers developing methods to discover caetatianships with observational

data [130,143,155].

1.1.5Hypotheses

The knowledge discovered from data can be repredantdifferent forms, such as
rules, differential equations, structural equatmndels and more [28,81,136,172].
The interest in this thesis is thdirect causal influence relationships between
variables, which can be represented as Bayesian networgtstas. The process used
to discover new knowledge is equivalent to learrohddayesian network structures.
Directededgesin the learned Bayesian networks will be regardetlypotheses of

causal relationshipsgenerated from data and domain knowledge.

1.1.6Domain Knowledge

In every domain, we have certain domain knowledgeh as the number of variables
and the meanings of these variables. Such domabwlkdge could come from

scientific laws, expert opinions, accumulated peatcexperience, as well as other
sources [37]. From common sense, we know that dokrawledge is usually correct,

since it has been verified by experiments or rpplieations.
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In the applications of Bayesian network structwearhing from data, it is not
uncommon to observe that some edges in the le@agesian network structures are
inconsistent with domain knowledge. The potentalson for the inconsistency is that
the available data is inadequate or not represeataf the probability distribution in
the domain. To resolve this inconsistency, one khaonsider incorporating the
available domain knowledge in the knowledge discpyeocess.

Representation of domain knowledge in Bayesian osdsvcan be quantitative
and qualitative. The quantitative domain knowledgeconditional probabilities or
constraints on conditional probabilities, and thedg on quantitative domain
knowledge can be referred to [11,94,95,126]. Thalitiive domain knowledge can
be represented as topological constraints in Bagesetworks [38,87]. This work
will provide a detailed discussion of topologicahstraints in Chapter 4 for refining

the hypotheses generated from observational data.

1.2 The Application Domain

While the issues in knowledge discovery | have asskd are general, the
applications | examined were mainly from biomedidaimains. The purpose of
knowledge discovery in biomedical domains is noteheto predict the values of

some variables based on their correlation with rotlaeables from observational data
— the purpose is to predict the behaviors of trstesy after the manipulation of some
variables in the system, like the responses aféatrnents in the medical domain or

system properties after gene sequence changeslwogRi
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In biomedical domains, there are sufficient obagonal data, interventional data,
domain knowledge and possible ways of manipulatoomerify the hypotheses. All
these make biomedical domains an ideal area tooexghe idea of combining

observational and interventional data for causal®edge discovery.

1.3 Contributions

This thesis focuses on causal knowledge discovetly ®ayesian networks. The
objective is to identify direct causal influencdat®nships between variables in a
domain. The main challenges are how to effectieploit the available resources
and minimize the number of interventions for causawledge discovery. Utilizing
the available resources will improve the relevaot¢he generated hypotheses, and
minimizing the number of interventions will reduttee cost and resources required
for causal knowledge discovery. From our best kedgé, no work has combined
observational data, interventional data, domain wkaedge and interventional
experiments for causal knowledge discovery.

A three-step framework of knowledge discovery wiyesian networks is
proposed. The steps are:

1) Hypothesis generation from data;

2) Hypothesis refinement with topological domairowiedge; and

3) Hypothesis verification with interventional eximeents.
The input-output model of the framework can besiitated as

Data + domain knowledge + experiment + algorithm=» new knowledge

12



The flowchart of knowledge discovery framework li®wn in Figure 1.

A

Data

A

Hypothesis generation as Bayesian network strutéaraing
A

A 4

Hypothesis refinement < Domain knowledge <

A 4

Hypothesis ranking for verification

Real experiments

\ 4

New knowledge

Figure 1 Diagram for the proposed knowledge disc@ry framework

1) Hypothesis generation from data

The hypothesesare the direct influence relationships betweenabégs in a
domain as edges in Bayesian networks in this thelsisothesis generation in
the proposed framework is equivalent to learning Bafyesian network
structure from data. The probabilities of indiviluedges and complete
Bayesian networks can be estimated from data widlyeBian network
structure learning as the statistical significaotthe hypotheses.

In this step, a new algorithm is proposed to leRAayesian networks with
variable grouping in a domain with similar variahl&roup variables are
introduced to represent groups of variables witlmilar conditional
probabilities and are used to learn Bayesian ndsvorariable grouping can

reduce the number of variables and Bayesian netegakch space, which can
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2)

lead to speed up the learning process. The expetsmeith synthetic
examples and a real microarray data show thatalgisrithm is capable of
generating reasonable hypotheses in the domairterest.

Hypothesis refinement with topological domain knowddge

Topological domain knowledgecontains known root nodes, leaf nodes, edges,

and so on, and is used in Bayesian network streidearning to resolve the
possible inconsistency between the learned streieind domain knowledge.
Two canonical forms, i) the rule format and ii) tihmatrix format, have been
proposed to represent topological domain knowledgee rule format is
general and easy to extract from domain expertdewhe matrix format is
easy for domain knowledge consistency checkingesasy to combine in the
Bayesian network learning. From our best knowledbe, matrix format of
topological domain knowledge has not been discussether work.
Topological domain knowledge has been used in Bayesetwork structure
learning. However, the effects of different kindk topological constraints
have not been comprehensively studied. Experimiantsis thesis show that
topological constraints such as roots, leaves @tdllition-indistinguishable
edges are important in hypothesis refinement walgeBian network structure
learning.

The application of Bayesian network structure leagnn a real heart disease
domain shows the inconsistency between the leaBag@sian network and

domain knowledge, which suggests the requirementopblogical domain
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3)

knowledge for hypothesis refinement in real appioce. With topological
domain knowledge, Bayesian network structure legrréan generate more
justifiable hypotheses from data and the learnioggss can be sped up.
Hypothesis verification with interventional experiments

The generated hypotheses are not the final prodfictausal knowledge
discovery. They have to be verified with interventl experiments to ensure
their effectiveness for causal diagnosis, predicéind control.

The objective of hypothesis verification is to s¢léhe appropriate hypotheses
for verification and to minimize the number of intentional experiments
required. Node-based and edge-based interventionare proposed for
hypothesis verification. In node-based intervergjosome variables are
manipulated to specific values and their effects aiher variables are
measured to evaluate the influence relationshipgw/dsn variables learned
from the previous data. In edge-based interventions2 variables in the
domain are fixed to specific values by manipulatoa one of two remaining
variables is manipulated to different values toesbs its effect on the last
variable. To my knowledge, this thesis is the fistdiscuss the edge-based
intervention for hypothesis verification under thBayesian network
framework.

Hypothesis verification starts with a data setexkd in each active learning
step. Node entropy and edge entropy from the cueeailable data are used

to rank the hypotheses for intervention to redbeecomputational complexity.
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A new criterion, non-symmetrical entropy, is first proposed to select
hypotheses for verification, and a new entropy-bagéerion is proposed to
stop the active learning process. Non-symmetricgltopy considers the
probabilities of two states between two variabksy( A and B): an edge
from A to B and the state without such an edge. In contrgstetrical
entropy considers the probabilities of three sthieisveen two variables: an
edge from A to B, an edge fromB to A and the state of no edge
between A and B.

Since intervention is non-symmetrical in naturenissgmmetrical entropy is
better than other methods to rank hypotheses fdfication. Experiments
show that, on average, non-symmetrical entropy migges the number of
interventional experiments required to verify the#ed causal influence
between variables in interventional experiments.

The proposed framework is interactive and iteratwiich involves the repeated
application of specific Bayesian network structukearning algorithms and
interpretation of hypotheses generated by theswitigs ([54], page 4). The reason
for an iterative framework is that knowledge disegvin a domain cannot be
completed in one round, and there is no closed-lsamework formalized for
knowledge discovery with causal Bayesian networiléhough the idea of a
closed-loop framework for causal knowledge discgveimplicitly used in practice.

The structure of the framework is stable, and tb&its of the three components

of the framework can be updated or further extensheduture. The two main
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components to be emphasized in the framework afegpothesis refinement and ii)
hypothesis verification. The general knowledge @listy process has been discussed
for expert systems [74,133] and data mining [13,@3pre references in the survey
[101]). However, hypothesis refinement and hypatheerification have not been
sufficiently taken into account. Little work hasdmedone on hypothesis selection for
verification with interventional experiments. Theposed framework can be a step in
the right direction for hypothesis verification. kodetailed comparisons between our
methods and related work can be referred to Se€tn
The framework is implemented using MATLAB with Bayblet Toolbox [122].

Some preliminary results of the work have beeniphbtl before [107,108]

1.4 Structure of the Thesis

This chapter briefly summarizes the research mitina and objectives of this work.
The remainder of the thesis is organized as follows
Chapter 2 summarizes the background and relatekl @fdhis thesis.

Chapter 3 discusses methods for hypothesis gemerati three situations:

* Some of the results have appeared in the followaers. Reprinted with permission from 10S
Press.

G. Li, T.-Y. Leong, A framework to learn BayesiaetWorks from changing, multiple-source
biomedical data, Proceedings of the 2005 AAAI 8giBymposium on Challenges to Decision
Support in a Changing World Stanford University, @fSA, 2005, pp. 66-72.

Q. Chen, G. Li, T.-Y. Leong, C.-K. Heng, Predictiigronary Artery Disease with Medical Profile
and Gene Polymorphisms Data, World Congress onti@dedical) Informatics (MedInfo), IOS
Press, Brisbane, Australia, 2007, pp. 1219-1224.

G. Li, T.-Y. Leong, Biomedical Knowledge Discovemth Topological Constraints Modeling in
Bayesian Networks: A Preliminary Report, World @Qozss on Health (Medical) Informatics
(MedInfo), IOS Press, Brisbane, Australia, 2007, 5§0-565.
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individual Bayesian networks, individual edges iayBsian networks and Bayesian
networks learned with variable grouping.

Chapter 4 discusses hypothesis refinement. Twoniealoformats are proposed
to represent domain knowledge as topological caims in Bayesian networks.

Chapter 5 discusses hypothesis verification withdeabased interventions and
edge-based interventions. Non-symmetrical entragigrion is proposed to select
hypotheses for verification, and entropy-basedgadh is proposed to stop the active
learning process.

Chapter 6 demonstrates the complete process of lkdges discovery with
Bayesian networks on a protein signal network asiking example.

Chapter 7 summarizes the achievements, the limitsitof this study and the

potential future work.

1.5 Declaration of Work

During my PhD study, | have worked on differentitsp including Bayesian network
structure learning, translation initiation site gicgion from human cDNA sequences,
and ancestral state accuracy analysis in phylogsnéthave published four papers in
the leading international journals and nine papirsthe leading international

conferences. The details of the selected publicataze available in Appendix A.D.
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Chapter 2 Background and Related Work

There are two categories of high-level tasks invledge discovery ([73], preface,
page xi). The first category of the tasks is tadpmethe values of some variables from
the values of other variables based on correlatifmmmation fromobservational data
such as classification and regression waithservational data or to summarize
observational datasuch as density estimation, clustering and aggonirule mining.
The second category of the tasks in knowledge desgois to predict the causal
change of some variables based on causal relajpsndietween variables from
interventional datavhen other variables are manipulated to diffevahtes.

In this chapter, | first briefly summarize the madls usingpbservational datdor
correlational knowledge discovery. Next, | disctemsdomized experiments to collect
interventional datafor causal knowledge discovery. Lastly, | surveg tmethods for
Bayesian network learning, which are the fundaniendé this thesis and can be

applied to both categories of tasks in knowledgealiery.

2.1 Knowledge Discovery with Correlation Information

Knowledge discovery with correlation information based orobservational data

The representative tasks in this category includssdication, regression, clustering,
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and association rule mining withhservational data These methods are useful and
important in many applications, such as marketi@§j jnvestment [80], fraud

detection [149], manufacturing [116], and biomankexdiction [109].

2.1.1Classification

Classification is a kind of supervised learning][8&/ith the available data and the
class labels, we need to find a function that mtnes features to class labels as
accurately as possible. The features, extracteth ftbe data, can be discrete,
continuous, or mixed. The mapping function can kpressed explicitly in some
models or implicitly in the data. Some represemnéatnethods for classification are
decision trees [136], Naive Bayes [83], K nearesgimbors [4], artificial neural
networks [9], and support vector machines [17hdme a few.

Decision tree methods [136] use a tree structurelassify the instanc&sThe
classification process starts from the root of tte®. In the root of the tree, one
feature (or some combinations) of the instancempared to a specified function to
decide which branch to follow. In the next internalde encountered, another feature
will be compared to a new specified function. Tedsnparison process will continue
until the instance reaches a leaf node, where shecaated class label is assigned to
the instance.

Naive Bayes [83] is a probability-based methocdskumes that the features are

® Usually, classification and regression can alsafygied to interventional data for causal knowtedg
discovery.

® In this thesis, an “instance” is the same as a,@sample, or an example in a data set. An iostan
includes the values of all the variables in a djpecase.
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independent of each other given the class labet atlvantage of Naive Bayes
classifier is that it is easy to build and it isbost in prediction. However, the
independence assumption between features giveriabg label is sometimes strong.
Some extensions of Naive Bayes relax the indepeederssumption, such as
Tree-Augmented Naive Bayes [62] and Aggregating -Dependence Estimators
(AODE) [169], to improve the classification accuyac

K nearest neighbor [4] is a method based on thation that, if the values of the
features in different instances are similar (orghee), the instances should be in the
same class. The training process is simple: jusipkihe training data set. The
mapping function from the features to the clasel&is implicitly expressed with the
training instances. However, the prediction with n€arest neighbor method is
time-consuming — It searches the similar instaticesighout the training data set for
each new instance to make a prediction.

Artificial neural network [9,84] is a method inspit by a biological neural
system which consists of many neurons. The neuroastificial neural network are
inter-connected and work together to realize a nmgpfunction. The links between
neurons can be trained with data to strengthen phgicular patterns. The
representative training method for artificial nduratworks is Back-propagation [84].
A neural network can approximate any functions vaitty accuracy when the number
of neurons, connection functions, and the weiglitshe connections are properly
selected.

Support vector machines (SVMs) [17,164] map datamfrthe original
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low-dimension space into a high-dimension space laadn a hyperplane which
separates the learning examples into their diftectassses. The hyperplane in the
high-dimension space is selected based on the nahximargin between two classes.
With kernel methods, the real mapping from the indf dimension to the higher
dimension can be achieved implicity. SVMs are amahe best methods for
classification. However, they are sensitive to egjssince the noises may change the

margin, the position of the hyperplane and therctassification accuracy.

2.1.2Regression

Regression [141] has been extensively studied atistits. It examines the
relationship between a dependent variable (or respoariable) and independent
variables (or explanatory variables). The repregesg methods are linear regression
and logistic regression. Different from Bayesiamwwogk structure learning (refer to
Section 2.3 for details), where there is no speddrget variable, a target variable is
pre-specified in regression models. The purposegfession analysis is to learn the
relationship between the target variable and al ather variables. In contrast, the
purpose of Bayesian network structure learning isléntify all possible direct causal

influence relationships between variables in a doma

2.1.3Clustering

Clustering is a common unsupervised descriptivie tdgere a finite set of categories

or clusters are identified to describe the data9532,159]. It is a very helpful
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method for discovering new and interesting pattémshe underlying data. The
patterns in clustering are some kinds of similesitwithin a subset of the data to
distinguish them from the rest. After clusteringe tinstances in each cluster are
similar to each other with respect to some sintijfameasure, and dissimilar to the
instances in other clusters. Two categories oftefusy methods are commonly used:
partitional clustering and hierarchical clusteri®g]. Detailed surveys on clustering

methods can be found in [7,75,92,93,96,176].

2.1.4Association Rule Mining

Association rule mining was originally proposed igentify items frequently
co-occurring in commercial transactions. The codo@nce of the items indicates that
consumers tend to buy these items together. Sufdmmation is important for
marketing and has applications in other domainsh sas analysis of dependence
between genes in Biology. Representative methodsg$eociation rule mining are

Apriori [3] and Dynamic Itemset Counting (DIC) [14]

2.1.5Time-series Analysis

Time-series data can be modeled with a Markov @®oe its variants [12,137]. In a
Markov process, the future state of the systemmlg dependent on the current state
and independent of the past states. The discratederies data can be modeled with
hidden Markov models (HMM) [137]. The continuousné-series data can be

modeled with time-series regression models or Spéee models [12].
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A special issue in time-series analysis is Gramgeisality, which is widely used
in econometrics. Ordinarily, regressions from obagonal data reflect "mere”
correlations, but Clive Granger [76] argued thairaarpretation of a set of tests can
reveal something about causality: If a variabfe at time t, can predict another
variable Y at time t, (t, is beforet, in time) well by regression, then variable

X is a cause of variabler .

2.1.6Disadvantages of Correlation-based Knowledge

Discovery

Correlation-based knowledge discovery from obsémat data, including Granger
causality, only measure correlational dependenciégtween variables.
Correlation-based knowledge discovery can pretietvialues of some variables from
the observational values of other variables whenetls no change in the mechanism
of the system. When some variables are manipuletespecific values, however,
correlation-based knowledge discovery cannot ptetiee change of other variables.
For example, if two variablesX and Y are the effects of a common cause, but
with a different lag, one variable may predict dmot variable well based on
correlation and Granger causality may be estaldishetween them. However,
manipulating either one o)X and Y would not change the value of the other.
Since the change of some variables with other bksaunder manipulation is
important for control, causal prediction and systeaengineering, causal knowledge

discovery is needed with manipulation criterion.
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2.2 Causal Knowledge Discovery with Randomized

Experiments

Causal knowledge discovery appeared from the vewginming of human history
when our ancestors started to explore the natarentient time, human inferred
causal knowledge from their experiences and maaius implicitly. The modern
methods for causal inference started with Stasisticscientific research. Randomized
experiments [58,125,143] are the established metihadllect interventional data for
causal knowledge discovery. The objective of adgiiandomized experimentis to
test whether one variable will affect another Jaleacausally. The first variable will
be manipulated to different values to examine fitscés on the second variable. The
values of the first variable are randomly assigrethe manipulation of the first
variable does not depend on any other variablethendomain. In this case, the
change of the second variable is just due to thepuéation of the first variable, not
by other factors. The collected interventional datanalyzed with regression or other
methods. There are a number of applications ofamnized experiments for causal
knowledge discovery [120,144].

Neyman [125] introduced the potential outcome natator causal knowledge
inference in the context of randomized experimeautsl proved that the difference of
the observed sample mean between different manipoga was the unbiased
estimator of the average causal effect over alltés¢ed subjects [143]. Fisher [57]
recognized that, without randomization, an expenintes little value irrespective of

the subsequent treatment ([139], page 45).
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However, randomized experiments just deal with htowv efficiently and
effectively test the statistical significance ofetthypothesis. The randomized
experiment methods do not deal with hypothesis ggio@ explicitly with
mathematical models. And the hypothesis in the oamzded experiments is
constrained to one target variable. AlternativaBgyesian network method can

generate new hypotheses and model causal relaifpsrisétween many variables.

2.3 Bayesian Network Learning

Bayesian network learning can be used in knowledggovery from both

observational and interventional data. This secsiants by introducing the basics of
Bayesian networks and follows by giving the readoriearn Bayesian networks from
data. The later sub-sections give a survey of pat@ntearning and structure learning
in Bayesian networks, respectively. The last suilises cover the related work on

causal knowledge discovery with Bayesian networkbactive learning.

2.3.1Basics of Bayesian Networks

Bayesian networks [131] offer a graphical representation of probiabd
relationships between a set of random variablegerGa finite setX ={X,,..., X, }of
discrete random variables where each variakle may take values from a finite set,
denoted byVal(X, ) A Bayesian network is an annotatéuected acyclic graph
(DAG) G={V,E} that encodes a joint probability distribution ov&r. The node’s

of G correspond to random variables,,..., X, . The edges ofG represent direct

" We will use “node” and “variable” interchangealiythis thesis if there is no ambiguity.
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causal influences between variables. If there dsrected edge from variable; to
variable X, variable X; will be a parent of variableX;, and variable X, will be
a child of variable X,. Each node is associated with a conditional pritibab
distribution (CPD) p(X; |Pa(X, )) where Pa(X, ) denotes the parents oX, in

G . The pair G, CPD) encodes the joint probability distributiogn(X,,...,X, gjven

Bayesian networkG. A unique joint probability distribution oveX from G is
factorized as:
P(Xy,-X,) = T, p(X; [ Pa(X))
Figure 2 shows an example of a Bayesian netwokCdmncer network from
Cooper and Yoo [39], which is hypothetically abautmedical domain with 5

variableé.

History of
smoking

Chronic Lung cancer
bronchitis

@ @Mass seen
Fatigu on X-ray
Figure 2 A simple example of a Bayesian network

Causal Bayesian networks

A causal Bayesian network[130] of a domain is similar to the general Bagesi
network. The difference is in the interpretationedges in the Bayesian networks. In
a general Bayesian network, the edges betweenblesiacan be explained as

correlations or associations. In a causal Bayes@éwork, the edges represent causal

8 Re-printed with permission from Elsevier.
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relationships (Refer to Section 1.1.1 for causavidedge):
When we manipulate the parent variable of an edgixing its state to different
values, we can observe the change in the probghiigtribution of the child
variable; however, when we manipulate the childialale, the probability of the
parent will not change.
This corresponds to the causality with agency: puaating causes can change effects
but not vice versa [135,171].

Moreover, when one variable is manipulated, thesahinfluence relationships
between other variables will not change, i.e., dbreditional probability of the child
variable given its parents will remain the sameth& child variable is not the
manipulated variable. This is a modularity propedly the causal system: the
manipulation on one part of the system will notrg@the mechanism of other parts

of the system.

2.3.1.1 Qualitative Part and Quantitative Part in Bayesian

Networks

A Bayesian network has two main components: i) itatale part and ii) quantitative
part. The qualitative part of a Bayesian networlcogles the causal influence
relationships between the variables and the camditiindependence statements in
Bayesian network structure. Based on the causakdaassumption, variableX; is
independent of all its non-descendants given itsrga Pa(X; ) in Bayesian network

G . For example, in Figure 2, variables, and X, are conditionally independent
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given variable X,:
P(Xs | X3, X;) = p(Xs | X5).
The quantitative part of a Bayesian network represehe strength of direct
causal influences between variables. Each varadseciates with a set of conditional
probability distributions with respect to each dgofation of its parentsPa(X; ,)

regardless of other variables.

2.3.2Bayesian Network Construction from Domain

Knowledge

There are several ways to construct Bayesian nksv@ne way is to construct
Bayesian networks completely from domain knowleddes is generally achieved in

three main steps [46] that:

1) Determine the number of variables and the megpafrthese variables in the

domain of interest;

2) Determine whether there exist direct causaligrite relationships between the

variables in the domain; and

3) Determine the conditional probability distribaris given the structure of the

Bayesian network from the first two steps.

To construct a Bayesian network from domain knogéedve assume that: 1) all
variables are known in advance — the variables h@ Bayesian network are
determined; 2) domain knowledge can readily askertausal relationships (typically

correspond to the assertions of conditional deparids [86]) between variables — the
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edges in the Bayesian network can be determinedbbyain knowledge; and 3) the
values of conditional probabilities can be estiddtem domain knowledge. Quite a
few Bayesian networks have been constructed inlag, e.g, QMR-DT [150].

Various methods have been proposed to facilitageptiocess to construct Bayesian

networks with causal domain knowledge [46,89,124].

2.3.3Reasons to Learn Bayesian Networks from Data

Although there are examples of successful Bayesstworks built from domain
knowledge, this approach may be limited by avadaurces of domain knowledge.
The limitations of expert-based knowledge acqusifprocess are: i) The process is
tedious and arduous for an expert; ii) The proltadslare hard to elicit; and iii) When
several experts are involved, it is difficult tesage a consistent network structure and
probability estimates.

Alternatively, accompanied with the improvementeéilectronic devices, more
data are available in science or application ard&scan utilize the available data for

causal knowledge discovery in the domain of interes

2.3.4Categories of Bayesian Network Learning Problems

The problem of learning Bayesian networks has beensively studied in the
literature [6,10,15,24,34,38,60,61,65,71,87,103,158e Bayesian network learning
problems can be divided into different categoriesoading to two criteria: 1) whether

the Bayesian network structure is known; and 2)thdrethe data set is complete.

30



Table 1 shows four different categories of probleam&l corresponding methods

respectively from this division.

Complete data Incomplete data
Known Statistical parametric estimation Parametric optimization
structure (closed-form equations) (EM, gradient descent ...)
Unknown Discrete optimization over structur¢ Combined (Structural EM,
structure (discrete search) mixture models ...)

Table 1 Categories of Bayesian network learning mblems

If the structure is known beforehand, the problenusually referred to as the
parameter learning problemThe objective of the parameter learning problem i
Bayesian networks is to optimize the parameters given structure with respect to
the likelihood of the data. When the data is coneplthe parameter learning problem
is a statistical parametric estimation problem eloded-form solutions are available.
When the data is incomplete, the parameter learpirablem does not have a
closed-form solution. In this case, the expectatm@ximization algorithm (EM) [42]
and gradient descent algorithm can be used to at&ithe parameters.

When the structure is unknown, the Bayesian netweakning problem becomes
a structure learning problemThe objective of the structure learning problesmta
find a structure in the Bayesian network strucpace that optimizes some measure
of the structure quality. Since the parametersagd3ian networks are dependent on
the structure, the structure learning problem needfearn the structure and the
parameters simultaneously. This problem is morcdlf than the parameter learning
problem, especially when the data set is incompletehis thesis, we focus on the

problem of Bayesian network learning with unknownusture and complete data.
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2.3.5Parameter Learning in Bayesian Networks
2.3.5.1 Complete Data

There are assumptions for closed-form solutiongarameter learning with complete
data [15,153]. The first assumption is that theeereo missing values in the data set
D, which can be called eomplete data The second assumption is that parameter
vectors are mutually independent. Under these tssairaptions, the parameters can
be updated independently. The third assumptiohasthe probability distribution of
the problem is from the exponential family. Withetxponential family assumption,
the prior probability and the posterior probabikise in the same form. With the three

assumptions, the probabilities can be updated avttosed-form.

2.3.5.2 Incomplete Data

Learning parameters of Bayesian networks from inmdete data is typically done
under the Missing-At-Random (MAR) assumption [14&hich states that the pattern
of missingness is not dependent on the missingesadmd it may only depend on the
values of the observed variables.

When the data is incomplete, the parameters armdependent anymore, and no
closed-form solution for parameter learning exigggproximate solutions have been
proposed, such as gradient method [8,157], the Ehaod [103] and Monte Carlo
methods such as Gibbs sampling [71]. Gradient ndethed EM method are more

efficient than Monte Carlo methods, but they teaddnverge to a local maximum.
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Monte Carlo methods can yield accurate resultstimyt are intractable and converge
slowly. For more details on parameter learning ayd@sian networks, please refer to

[6,44,126,127,160].

2.3.6Structure Learning in Bayesian Networks

The objective of Bayesian network structure leagnmto find a Bayesian network
structure that best describes the observed data. problem is more difficult than
parameter learning, because the number of possihletures (DAGSs) to search is
super-exponential in the number of variables indbmain. Robinson [140] derived a

recursive function to determine the number of gdedDAGs with n variables:
f(n)= Z(—l)”lci” 2 £ (n-1)
i=1

The numbers of possible DAGs with 1 to 10 varialalescalculated from the formula
and shown in Table 2. We can see that the numb&agésian network structures

increases very fast with the number of variableh&domain.

Number of variables in DAG Number of possible DAGs
1 1
3
25
543
29,281
3,781,503
1.1x18
7.8x10"
1.2x106°
4.2x10°
Table 2 Number of DAGs

O[N] |W|IN

[ =Y
o

Since the number of DAGs is super-exponential enrtamber of variables, it is

impossible to enumerate all possible structures somte them, even with a small
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number of variablesn in a Bayesian network. The Bayesian network gingct
learning problem has been proven to be NP-comjB&te Heuristic-based methods
have been proposed to find a local maximum in thesture space.

Two approaches for Bayesian network structure legraexist. The first approach
is the score-and-search-based approacl32,38,87]. This approach starts from an
initial structure (generated randomly or from domkhowledge), and moves to the
neighbors of the current structure with the bestrescin the structure space
deterministically or stochastically, until a locabximum of the optimization criterion
is reached. The learning process can re-start @etenes with different initial
structures to improve the final result. The repnésttve methods of the score-and-
search-based approach are K2 algorithm [38], Greedych, Markov Chain Monte
Carlo (MCMC), and Structural EM [60].

The second approach is theonstraint-based approach [132,155]. This
approach starts to test the statistical signifieaoicthe pairs of variables conditioning
on other variables to induce the conditional indej@mce between the pairs of
variables. The pairs of variables that pass somestiold of the statistical significance
are deemed as directly connected in the Bayesitmonies. The complete Bayesian
network structure is constructed from the inducemddional independence and
dependence information of variables. The represgatanethods of the constraint-
based approach are SGS algorithm and PC algoritbsi.|

To discuss the Bayesian network structure learmreghods further, Markov

equivalence and model selection criteria need tmtpeduced first.
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2.3.6.1 Markov Equivalence

If two DAGs encode the same conditional indepengsnthey are said to be Markov
equivalent. Bayesian networks are Markov equivalérind only if they have the
same skeleton and the same v-structures [165], emhstructure is a graphical
relationship of any three variables such that theme edges from variabl&X to
variable Z and from variableY to Z but no adjacency betweeX and Y. All
DAGs with the same conditional independencies cam fa Markov equivalent class
[131]. Such a class can be represented by a coenpéetially directed acyclic graph
(CPDAG) called an essential graph or pattern. Tinecttd edges in this CPDAG
mean that these edges must be oriented in a celitaction in all the DAGs of the
same equivalence class, and the undirected edgas that these edges can be in
either direction subject to the acyclic constramnBayesian network.

In Bayesian network structure learning, it is ualikto distinguish the structures
in a Markov equivalent class with observationabddihe model selection criteria will
give the same score to the set of equivalent strest In this case, we cannot hope to
recover the "true" generating structure with thesesbational data only. The best
solution to be expected is a structure within #ame Markov equivalent class.

To distinguish different Bayesian networks withiretsame Markov equivalent
class, we need domain knowledge to justify thectime of the edges or we need
interventional data to learn the direction of tldges (refer to Chapter 5 and also

[121,161]).
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2.3.6.2 Model Selection Criteria

The score-and-search-based approach to Bayesiorkettructure learning is based
on a scoring function that estimates how well a&giBayesian networkc matches
the data D. The best Bayesian network is the one that maxsn& scoring function
given the dataD .

An ad-hoc scoring function is based on the maxiniikelihood (ML) principle:
selecting the structure which generates the datawith the highest probability. One
disadvantage of ML principle is that the modelshwitore parametetscan predict
the data well, but may lead to overfitting problebherefore, a penalty of the model
complexity is needed in the scoring function.

Two scoring functions with complexity penalty arBayesian Information
Criterion (BIC) andBayesian scoreThe Bayesian Information Criterion (BIC) [147]
is defined as

log p(D | 8;,G) —%Iog N
where D is the data,G is the Bayesian network to be evaluaté, is the
maximum likelihood (ML) estimate of the parameter8Bayesian networkG with
data D, d is the number of parameters in Bayesian netw@rk and N is the
number of instances in the data. The BIC critehas several properties. First, it does
not depend on the prior, so we do not need to §p#w prior to score the structure.
Second, it is quite intuitive. Namely, it contaiagerm log p(D |§G,G) measuring

how well the parameterized model predicts the detd a termd/2*logN that

° The number of parameters in a model is used teuneahe complexity of the model.
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punishes the complexity of the model. Third, itdgactly minus the Minimum
Description Length (MDL) criterion [86]. BIC is @h used in practice. However, it
has a drawback that it tends to choose modelsatigatoo simple due to the heavy
penalty on the complexity of the model.

The Bayesian score for measuring the quality ofeB@an networkG is its
posterior probability given the data:

p(G|D) = p(D,G)/ p(D)

where the marginal probabilityp(D df the dataD is a normalization constant
which does not depend on Bayesian netw@k Since p(D ) is a constant relative
to G and will not affect the ordering of the differembdels, the relative posterior
probability p(D,G)=p(G)* p(D|G) is often used for model selection. This
criterion has two components: the prior of thedtrite and the marginal likelihood of
the data given the structure. The prior can beipedy experts or just set uniformly
to all possible structures. The marginal likelihaizoh be calculated by integrating the
parameters of the model. The Bayesian score foreSlagy network learning is
originally discussed by Cooper and Herskovits [28] BD metric and further
developed by Heckermaat al. [87] as BDe metric. Compared to BIC, the Bayesian
score is a more accurate criterion, since it canrsithe prior information. However, it
needs more computation. In comparison, BIC can &éved as a large sample
approximation to the marginal likelihood. In praetj the sample size does not need to
be very large for the approximation to be good.

Besides the criteria mentioned above, some otlierierhave also been proposed
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for Bayesian network structure selection, such rassevalidation criterion [5] and

Minimum Message Length [167]. The details are deféto the above references.

2.3.6.3 Score-and-search-based Approach

The score-and-search-based approach relies on ¢hkel rselection criterion and a
search method. Any of the model selection criterentioned above can be used for
the former. In the following sections, the focudl Wwe on the latter. As to the different
combinations of search methods and model-selectigteria, Checkering [31]
showed that greedy search with random restartgpoaghuce better structures when
the computational time is fixed.
Exhaustive Search

The brute-force approach to structure learning isrtumerate all possible DAGS,
score each one, and select the one with the best.s8ince the number of the
possible DAGs is super-exponential in the numbewariables, it is infeasible to
enumerate all possible DAGs when the number ofabées is greater than 5.
However, this provides a "gold standard" to gauteeoalgorithms. And, one can
evaluate any reasonably-sized set of hypothesethi;m way €.g, the nearest
neighbors of one Bayesian network structure).
K2 Algorithm

If we know a total causal ordering of variableagdfng the best structure amounts
to picking the best set of parents for each vagiabhiiependently. K2 algorithm [38]

adopts this idea and applies a greedy method tatsdlae parents of variables from
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the set of variables before the variable on quesiothe ordering. The algorithm
starts by assigning each variable without pardhthen incrementally adds a parent
to the current variable which mostly increases sbere of the resulting structure.
When any addition of a single parent cannot in@dhs score, it stops adding parents
to the variable. Since an ordering of the varialieknown beforehand, the search
space under this constraint is much smaller tharefttire structure space, and there is
no need to check cycles in the learning process.

If the ordering of the variables is unknown, we c@arch over orderings. The
space of orderings is much smaller and more reghédar the space of the structures,
and has a smoother posterior “landscape”. As dltrabe search over ordering is
more efficient than the search over DAGs [65].

Greedy Search

If we do not know the ordering of the variables, wan treat the structure
learning problem as an optimization problem ovediscrete space of Bayesian
networks. The intuitive way is greedy search. Gyeedarch starts at an initial
structure in the structure space as the currenttsiie, considers all the nearest
neighbors of the current structure, and moves &rkighbor that has the highest
score; if no neighbors have a higher score thanctiieent structure, the algorithm
stops.

When greedy search stops, it always reaches a Imeaimum. The local
maximum reached is essentially dependent on thialistructure. If a good initial

structure is chosen, we can reach a good struatueeshort time. If a bad initial
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structure is chosen, we will reach a reasonablydginicture only after a very long
time, or cannot reach a reasonably good one atAHHough we know the initial
structure is essential, we do not have enough dorkadowledge to justify which
initial structure is good. Instead of choosing goed initial structure, the alternative
way is to restart greedy search with differentiaistructures and choose the one with
the best resultant local maximum.
Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) method is a powéstochastic simulation
method used in many areas. Madigan and York [1it&] &pplied MCMC algorithm
Metropolis-Hastings (MH) for Bayesian network sture learning. The motivation
behind this approach is to obtain samples fromoatggior) probability distribution of
Bayesian network structures given the dd&da rather than learning a particular
Bayesian network that maximizes a certain criterion

With an initial structure G, , MCMC learning paradigm will transfer
stochastically toG,, one of G,’s neighbors, and calculate the posterior givén
The standard proposal distribution is to assignabguobabilities to all the nearest
neighbors of one structure. Then the approachtvatisfer from G, to G,, one of
G,'s neighbors, and calculate the posterior giv@yn. The process will continue until
the required number of repetitions is reached. ddrevergence of the MCMC method
to the target probability distribution oP(G|D) is guaranteed under the conditions

of irreducibility*® and infinite samplés. MCMC methods can yield accurate results

19" |rreducibility means that any possible structuae be reached from any initial structure.
1 Infinite samples mean the process should run gfione to get enough samples.
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theoretically, but it converges very slowly, espdlgi when there are extreme

conditional probabilities.

2.3.6.4 Constraint-based Approach

The constraint-based approach views the strucaaming problem differently from
the score-and-search-based approach. Since a Bayestwork structure encodes the
dependencies and independencies between variableslomain, this approach tries
to discover the dependencies between variables fr@rdata, and then uses these
dependencies (and independencies) to infer thetsteu

The dependency relationships are measured usiogdational independence (Cl)
test. In order to use the CI results for Bayesiatwork structure reconstruction,
several assumptions are needed. The assumptiansaasal sufficiency assumption,
causal Markov assumption, and faithfulness assumpti55].

Causal sufficiency assumptionThere are no common unobserved (also known
as hidden or latent) variables in the domain thatparents of one or more observed
variables of the domain.

Causal Markov assumption Given a Bayesian networks, any variable is
independent of all its non-descendantsGn given its parents.

Faithfulness assumption A Bayesian networkG and a probability distribution
P generated byG are faithful to each other if and only if everyndiional
independence relationship valid iR is entailed by the causal Markov assumption

on G.
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With these assumptions, one can ascertain theeegistof edges between
variables and the directions of the edges in aerteases. The output of
constraint-based approach will be a CPDAG to reprethe entire Markov equivalent
class.

The SGS Algorithm

The SGS algorithm, named after Spirtes, Glymoud, &oheines [154], tests the
dependency of any two variables and Y given every subset of other variables in
a Bayesian network. IfX and Y are conditional independent given any subset of
other variables, there will be no edge betweénand Y. Otherwise, there will be
an edge betweerX and Y. After testing all the pairs of variables, an uedied
graph will be determined.

With the undirected graph, SGS algorithm determihesdirectionality of these
edges by the v-structure within triples of variabldf i) X is adjacent toZ
(X=2),ii) Y is adjacent toZ (Y-—-2Z),iii)) X and Y are not adjacent to each
other, and iv) X and Y are conditional dependent given any subset ohl&es in
a Bayesian network withZ but without X and Y, then the directionalities of the
edges X-Z and Y-Z are X - Z and Y - Z, respectively. After the
directions of the edges in the v-structure are rdeteed, the directions will be
propagated to other edges while maintaining adyglaf the Bayesian networks.

Assigning directions to edges depends on the tuetare of the underlying
Bayesian network. As we mentioned above, the S@Britim - and any other

constraint-based algorithms - cannot necessargigagirections to every edge. For
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example for a Bayesian network with three varigbl¥s— Y — Z, the direction of
either edge cannot be determined by any set opemntience statements, because two
other networks with the same undirected structuramely X «Y « Z and
X «Y - Z, belong to the same Markov equivalent class antbdm the same
conditional independence statements.
The IC Algorithm

Similar to SGS algorithm, IC algorithm (Inductivea@ation) was proposed by
Pearl and Verma [132]. While SGS algorithm standsnfa complete undirected graph
and then removes edges between any two variablbeyfare independent given a
subset of the remaining variables, IC algorithmitsttlom an empty graph, and adds
edges between any two variables if they are depgngieen all subsets of the
remaining variables. After this step, IC algorithmill build an undirected
independence graph, and the remaining steps asathe as those in SGS algorithm.
The PC Algorithm

Since SGS algorithm requires to test the dependeh@ny pair of variables
given all possible subsets of remaining variabiles,time complexity is exponential
in the number of variables. This makes it impradtifor domains with many
variables.

The PC algorithm [156] makes the learning morecedfit by reducing the
number of conditional independence tesBnce conditional independence of
variables X and Y is implied by the subsets of variables linked tcem,

conditional independence of variableé and Y can be tested given a subset of the
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variables linked to them. If variableX and Y are independent given a subset of
the variables linked toX and Y, the edge between variables and Y can be
removed and there is no need to test conditiondependence ofX and Y

conditioning on other subsets of variables.

2.3.7Causal Knowledge Discovery with Bayesian Networks

Generally, the Bayesian networks learned from olagiemal data are interpreted as
dependency models, and the structure represent ptbheabilistic conditional
independence. Many people have tried to interprayeBian networks causally.
Spirteset al. [155] and Pearl [130] developed theories to regresand discover
causal knowledge with Bayesian networks from olms@mal data. Spirtest al.[155]
supposed that the learning results from SGS algoriand PC algorithm can be
interpreted causally. V-structure is mainly usedlébermine the direction of edges in
Bayesian networks.

Pearl [129] proposed the following three rules take it possible to infer the
probabilities under manipulation from the obseiwaal data with graphical models:
Rule 1 Insertion/deletion of observations

P(Y % z,w) = p(y | X,w),if (Y OZ|X,W)g_
Rule 2 Action/observation exchange
P(YIX2w) = p(y X zw),if (Y DZ|XW)e_

Rule 3 Insertion/deletion of actions

P(y%,2,w) = p(y [xw),if (Y DZ|XW)e
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Where X means that variableX is manipulated to a specific value, z means

that variable Z is manipulated to a specific value, G, means the original graph

G with all edges pointing toX removed, G;, means the original graple with

A
all edges pointing toX removed and all edges out & removed, Z(W) is the

set of variables inZ that are not ancestors of any variablesWwh in G_, and

X 1

G

xze means the original graph with all edges pointingX removed and all
edges pointing toZ(W) removed.

The first rule states that, if variableé and Z are independent giverX and
W in the mutilated graphGy, the probability of Y given the observed variables
Z, W and the manipulated variablX is the same as the probability &f given
the observed variabl®/ and the manipulated variablX . In this rule, one observed
variable can be added or deleted from the prolplekpression if the condition is

satisfied.

The second rule states that, if variablésand Z are independent giverX

and W in the mutilated graphC‘yXZ, the probability of Y given the observed
variable W and the manipulated variables and Z is the same as the probability
of Y given the observed variabled, W and the manipulated variablX . In this

rule, one observed variable can be changed to aipolated variable in the

probability expression if the condition is satisfie

The third rule states that, if variablé and Z are independent giverX and

W in the mutilated graprf‘yxz—(w), the probability of Y given the observed variable

W and the manipulated variable® and Z is the same as the probability of
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given the observed variabl/ and the manipulated variablX . In this rule, one
manipulated variable can be added or deleted flmmptobability expression if the
condition is satisfied.

With these three rules, we can estimate the intdimeal effects from
observational data when the Bayesian network strects known. This is very
important for the domains where we cannot conchterventional experiments.

However, Spirte®t al. [155] and Pearl [130] only considered the obséoval
data. Since interventional data can provide coectausal information, they should
be incorporated into the knowledge discovery preces

Cooper and Yoo [39] first examined the assumptithrag would allow one to
combine observational and interventional data m khowledge discovery process
with Bayesian networks. With their assumptions,gheameters in Bayesian networks

can be updated with both observational and intérmeal data in a closed form.

2.3.8Active Learning of Bayesian Networks with

Interventional Data

Traditionally, the methods for knowledge discovasgume that a data set is available
before learning, and the data set will not chamge learning process. Alternatively,
active learningis a method for knowledge discovery that assurageacollection of
new data during the learning process. The collaatibnew data can be guided with
the existing data to reduce the total data coltectdis idea has been studied for a

long time with a standard framework [35,113,138].
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Recently, Tong and Koller [160,161] and Murphy [L2pplied active learning
framework to learn Bayesian network structure.Hairt work, they assume a small
data set is available first, and the probabilipé®dges in the Bayesian network are
estimated from this data set. The expected postlerss of different interventions is
estimated and the intervention with the maximaleet@d posterior loss is selected for
the new data collection step. The new data is toenbined with the existing data for
the next round of active learning. The processegeated until some stopping
criterion is satisfied.

Specifically, Tong and Koller [161] considered #aqgossible conditions between
two variables X; and X;: 1) there is an edge fronX; to X;, X; - X;; 2) there
is an edge fromX, to X;, X; « X;; and 3) there is no edge betweeqy and
X;, X, OX,. The edge probabilities ar@(X; — X, |D,K), p(X; « X;|D,K)
and p(X; OX,|D,K), where D is the available data, an¥ is the background
knowledge. In the following discussion§) and K will be omitted for brevity. The

uncertainties of the edges are measured with eclgeps

H(X - xj):_p(xi - Xj)|09p(xi - xj)
= p(X; < X;)logp(X; «~ X,)
_p(xi ij)|09p(xi ij)

To reduce the uncertainties in the Bayesian netwarkariable is selected for an
interventional experiment based on the expectetepos entropy loss, and one new
instance is collected. The new instance is incafgar in the original data set to
update the probabilities of edges in the Bayesawaork.

However, they only considered the situation whee data instance is collected
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at each intervention step. The situation when aa dsdt is collected in each
intervention step is not considered, since it it fleasible to calculate the expected

posterior loss in reasonable time.

2.3.9Applications of Causal Knowledge Discovery with

Bayesian Networks

Bayesian networks have been used for causal kngeldscovery in many different
domains. In Cognitive Science, Bayesian networksewased to model causal
learning in human behaviors [29,77,78,146]. Theliegfion domains were modeled
with Bayesian networks and the causal strengthse vestimated with Bayesian
network learning. In Biology, Bayesian networks &v@ised to model the interaction
relationships between different molecules, for eplenproteins as described in Sachs
et al.[145].

Due to the cost of intervention and data collecticeusal knowledge discovery
done purely from data is currently not applical@edbmains with many variables if
the relationships between variables are probaibilist the efforts mentioned above,
most experiments work with 3-7 variables. We tés similar cases in the later
chapters. When domain knowledge and some assumptoe applied, causal

knowledge discovery can be applied to domains mitine variables.
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Chapter 3 Hypothesis  Generation In
Knowledge Discovery with Bayesian

Networks

- Learning Bayesian Networks from Observational Data

This chapter will discuss hypothesis generatiohe-first step of causal knowledge
discovery with Bayesian networks. We first introdumvo kinds of hypotheses as
parts of the Bayesian network structure learningble@m: 1) whether an individual
Bayesian network structure exists; and 2) whethernaividual edge exists in a
Bayesian network. The hypothesis space of thes#slohhypotheses exists when the
variables in a domain are given. The statistioghificance of these hypotheses will
be evaluated with probabilities using Bayesian oekwearning from observational
data. Selecting the significant hypotheses fromctireesponding hypothesis space is
our hypothesis generationstep. We propose a new method to extend the hgpisth
space for Bayesian network structure learning thdiased on the idea of variable
grouping. Variable grouping partitions the variables with similar conditional
probability distributions into one group. A Bayesiaetwork is learned with the group
variables alone. Variable grouping can narrow #eech space and may help to speed

up the learning process.
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3.1 Hypothesis Generation with Bayesian Network

Structure Learning

The first kind of hypotheses, whether an individBalesian network structure exists,
is important because it considers all direct caustilence relationships between
variables in a domain. The second kind of hypothesdether an individual edge
exists in a Bayesian network, is important, sincies reflect direct influence
relationships between variables and they can befiagerwith manipulation

experiments.

3.1.1Probabilities of Individual Bayesian Network

Structures

From the Bayesian perspective, the probabilitiesndividual Bayesian network
structures can be estimated with the following folanwith the given dataD and

background knowledgeK :

p(D1G) * p(G|K)

PEIBK) =5 00197 pE 1K)

Where G is the structure of a possible Bayesian netwopk( |K) is the prior
probability of G given the background knowledge, amq{D |G is)the likelihood
of the dataD given G. In the formula, we need to calculate the proligbdf the
data given the Bayesian network structure and nirenat by the sum of the
probabilities of the data given all individual Bayen networks. Since the number of

Bayesian networks is exponential in the numberasiables, it is time-consuming to
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calculate this probability when the number of Vviales is greater than 5. Approximate
methods are used as an alternative. For exampiee 8ayesian networks with high
scores can be selected as the representatives ehthie structure space, or Markov

Chain Monte Carlo (MCMC) method can be used tares the probability [43].

3.1.2Probabilities of Individual Edges in Bayesian Netwiks

In practice, we are not only interested in compEB#gesian network structures, but
also interested in individual edges and their pbdliges: Do the edges in the learned
Bayesian networks appear by chance or with somestital significance? To

examine the confidence of the edges in the leastedture, we can estimate the

Bayesian probabilities of individual edges by tberula suggested by Buntine [16].

p(A - B|D,K)
=> p(A - B|G,D,K)p(G|D,K)

>.p(A- B|G)p(G|D,K)

2. P(G|D,K)

G:A- BOE(G)

Where E(G) is the set of edges in Bayesian netwddk and A - B means that
there is an edge fromA to B in Bayesian networkG .

The first equation above is from the law of totablgability. The second one is
from the fact that the existence of an edge ispeddent of the data and domain
knowledge given the Bayesian network structure. fiivel one is from the fact that
the probabilityp(A - B|G ) is 1 when Bayesian networks contains the edge
A - B; and 0, otherwise. In general, the edge- B in the formula can be

replaced with any other topological features in &agn networks to estimate the
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probabilities of those featuree.g, A — B, or the partial ordering wheré\ is
before B.

In the formula, we need to sum up the probabilibkall Bayesian networks with
the edge of interest. As mentioned before, the mundi Bayesian networks is
exponential in the number of variables and the eugdability estimation is time
consuming. We have to resort to approximate mettméstimate the probabilities of
individual edges. We adopt the bootstrap approacthfs purpose.

A bootstrap approach [50] is a statistical method to measure the aayui
statistical estimates and perform statistical eree by re-using the original instances.
In a bootstrap approach, the original data set lvélre-sampled with replacement to
form a new data set with the same number of ins&n& new model will be built
from the new data set with the same method astéhamnalyze the original data. The
re-sampling experiments are repeated many timestteresults from the repeated
experiments show the confidence of the conclusioma the original instances. The

process of the bootstrap approach is:
1) Re-sample N instances from the original data setitb replacement, where N is the

number of instances in the original data set. Dertbe re-sampled data set d3,,,

2) Apply the Bayesian network learning algorithm &, to learn a Bayesian

network
3) Repeat Steps 1) and 2) many times

4) Count the number of edges appearing in all therledrBayesian networks

In our work, the probabilities of edges are thecpatages of their occurrences in

the learned Bayesian networks from the repeatedrawpnts. If an edge appears in
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the bootstrap experiments with a high percentageeans that the strength of the
direct dependency relationship between two vargldenot spurious or accidental
and indicates strong correlations. Friednmeinal [64] first applied the bootstrap
approach to estimating the probabilities of edgeBdyesian networks.

Recently, Koivisto [97] proposed an exact method festimating edge
probabilities in Bayesian networks. Koivisto utdd the intuition that the order of the
parents of a variable is irrelevant to the varigbpeobability estimation, and applied
forward and backward dynamic programming and fastdated Mobius transform to
estimate all edge probabilities i®(n2") time, wheren is the number of variables
in the domain. This method can be applied to domaiith a moderate number of

variables (around 25).

3.1.3An Application of Hypothesis Generation to a Heart

Disease Problem

To illustrate the hypothesis generation processamalyzed a data set for coronary
artery disease (CAD) study [26,27] collected at ohtne local hospitals in Singapore.
The data set consists of data on 2,949 human sabje@d62 of the subjects were
diagnosed to have coronary artery disease atriedf data collection; the rest were
healthy subjects at the time of recruitment. Theeasment of CAD in this work was
based on the presence of at least 50% narrowiag least one of the major coronary
arteries as detected by angiography. In additio@A®D, ten other patient variables

were selected for our experiments. Out of thesevembles, eight are discrete
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variables and two other variabledAGE’ and “CBMI”", are continuous. These two

continuous variables were discretized separatehg attributes are summarized in

Table 3.

Variables No. of states Remarks
CAD 2 Healthy or diseased
AGE continuous
SEX 2 Male or female
RACE 3 Chinese, Indian and Malay
CBMI continuous | Body-mass index

Smoking 3 Smoker, non-smoker and ex-smoker

Diabetic 2 healthy or diseased

Hypertension 2 healthy or diseased

FCAD 2 Family history of CAD: yes or no
FDM 2 Family history of diabetes: yes or no
FHY 2 Family history of hypertension: yes or o

Table 3 Attributes of the heart disease dataset

Several methods have been applied to this datdosetaluate the statistical
significance of causal or association relationshpsveen variables, including the
learned Bayesian network, the probabilities of widiial edges from the bootstrap
approach, chi-square test, and mutual informafiofhe Bayesian network was
learned with the greedy search method and Baydsinmation Criterion (BIC)
score [147] (Refer to Section 2.3.6.2 for the dgén and explanations of BIC). The
best learned Bayesian network in our experimesiidsvn in Figure 3.

We applied the bootstrap approach to estimatingthbabilities of edges in the
learned Bayesian network. The learning progranbfhtimes and the edges with top
occurrences in the learned Bayesian networks frootstrap approach are listed in

Table 4. For example, the first row of Table 4 nse#mat the edge from CAD to

12 Refer to Appendix A for a brief introduction ofiefquare, and mutual information.
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Diabetic appeared 456 times (91.2%) in 500 bogistegpeated experiments. From
Table 4, we know that most edges in the learnece8iayp network appear with high
probabilities from the bootstrap experiments.

The top chi-square values and mutual informatiolnes are shown in Table 5
and Table 6, which show thatCAD’ is highly correlated with AGE and

“Hypertensioi— this is consistent with our common sense.

Figure 3 Bayesian network learned from the heart dease data

Order Variable 1 Variable 2 Occurances
1 CAD Diabetic 456 (91.2%
2 CAD Hypertension| 438 (87.6%)
3 CAD FDM 434 (86.8%)
4 CAD RACE 397 (79.4%)
5 CAD Smoker 392 (78.4%
6 AGE CBMI 382 (76.4%)
7 FHY FCAD 381 (76.2%)
8 FDM FCAD 314 (62.8%)
9 CAD SEX 311 (62.2%)
10 SEX Smoker 304 (60.8%)

Table 4 Top edges estimated with bootstrap approador the learned Bayesian network

With the learned Bayesian network and the edge ghitibes, we notice that
some edges in the learned Bayesian network have gngpabilities, which means

that these edges are statistically significant. eloav, some edges in the best learned
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structure are inconsistent with domain knowledgar. €&ample, variableAGE’ is
dependent on variabl€€AD’ in Figure 3. Other examples include CAD affectibex,
Smoker affecting Sex, and Sex affecting familydmgtetc. Such kind of relationships
contradicts our common sense: VariabhgGE’ should not be affected by any other

variables in the domain.

Order | Variable 1 Variable 2 Chi-square value
1 AGE CAD 1331.58
2 Hypertension CAD 1173.95
3 Hypertension AGE 771.04
4 Diabetic CAD 668.56
5 Hypertension Diabetic 500.51
6 Diabetic AGE 475.85
7 Smoker SEX 475.43
8 Smoker CAD 348.65
9 AGE CBwMmI 333.55
10 Smoker AGE 210.24
Table 5 Top chi-square values from the heart disesa data
Order | Variable 1 Variable 2 Mutual information
1 AGE CAD 0.267676
2 Hypertension CAD 0.224037
3 Hypertension AGE 0.154849
4 Diabetic CAD 0.129434
5 Diabetic AGE 0.098644
6 Smoker SEX 0.096076
7 Hypertension Diabetic 0.082606
8 Smoker CAD 0.064145
9 AGE CBMmI 0.045032
10 Smoker AGE 0.040836

Table 6 Top mutual information values from the heat disease data

In this situation, if we are only interested in dhensity estimation or correlation
model, the learned structure is good enough. Hokvévere want to understand the
causal relationships between the variables, theéeastructure should be updated,

and the inconsistency between the learned struanudtedomain knowledge should be
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corrected. This leads to the second topic in thésis — hypothesis refinement (refer
to Chapter 4). The structure learned from obsewmati data gives us a good initial
approximation of the relationships between varisbte the domain and starting

pointto improve.

3.2 Hypothesis Generation with Variable Grouping

In Section 3.1, we discussed how the hypothesisergéion process calculates
probabilities of complete Bayesian networks andividdal edges in Bayesian
networks using Bayesian network structure learmreghods. Currently, the existing
algorithms only take tens of variables into consatlen, which are inadequate for
domains with hundreds or more variables. To sdii®roblem, we introduce hidden
variables to represent a group of original varialded propose to learn a Bayesian
network with group variables only. We conductedezkpents on synthetic examples
and real microarray data to analyze the approdoé.résults from synthetic examples
show that the algorithm can work well with smalitalg11 instances in our small
examples) and identify the expected group Bayes@éwork from different data sets.
The expected group Bayesian network has the hig@i€sscore. The experiments on
the real microarray data show some domain-meaningfsults. We expect the

algorithm to generalize well to other domains vatmilar assumptions.

3.2.10bservations from Microarray Data

Microarray is a technology used in biological expents to simultaneously measure
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the expression levels of thousands of genes ice¢lainder different conditions. The
measured gene expression levels are microarrayidatdich each gene is treated as
a variable and the gene expression levels from egplriment form a data instance.
The data set usually has hundreds or thousandsnafsg but only hundreds (or even
just tens) of experiments (as instances).

One of the problems in microarray data analysistoisinfer the potential
regulatory relationships between genes and gengpgrdMlany methods have been
proposed for this purpose, such as clustering nastf®1,66,152] and classification
methods [1,68]. Among the proposed methods, Bayesigwork learning is a
promising one, since the influence relationshipswvben genes are stochastic in
nature, which can be easily modeled with Bayes&twaorks.

However, when we want to apply the existing Bayesretwork learning
methods to microarray data, there are three maalleriges: 1) there are many
variables in the data set, 2) the sample size iallsamd 3) microarray data are
changing from experiment to experiment. These ehgks are not uncommon in the
Bayesian network domain, but the third challenge $@ecial significance. Different
biological research groups perform microarray expents for different purposes and
new microarray data are emerging quickly. Sincecttraditions in these experiments
are quite different, it is meaningless to simplyntine these data sets into one large
data set. Moreover, Bayesian networks learned fiiff@rent data sets are not directly
comparable. To maximize the interpretability of roarray data and the capability for

knowledge discovery, we need to extend the Bayesietwork formalism for
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microarray data analysis in particular, and for thieuations with the similar
assumptions (see below) in generalg, stock market with different industrial
sections.

There are some assumptions in the proposed algoriime assumption is that
some variables in the domain follow similar corahitl probability distributions. The
second assumption is that the variables followimgilar conditional probability
distributions can be partitioned into one group @ad be represented with group
variables reliably in different conditions. Therthiassumption is that the influences
between the variables in a group are dense andéhtluences between groups are
sparse.

These assumptions can be interpreted from biolbgieespective. First, genes
from the same gene complex have similar functicaset on biological knowledge.
These overlapping functions of genes guaranteethieatiefect of some genes cannot
degrade the functions of an entire cell dramatjc&kcond, some genes act together
to perform a biological function. This means thahgs can be partitioned into groups
according to their functions. Third, the expresdmrels of these genes are similar or
related under different experiment conditions. Mwex, the genes in a group interact
with genes in other groups, and the entire intevastbetween the groups are more
important than the interactions between individyeies.

The assumptions can be satisfied in other domansedl. Take the data from
stock market as an example. In the stock marketgthare different industrial sections

and stocks from the same industrial section carcdiegorized into one group to
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represent the activity of the corresponding industhe different industrial sections
will affect each other in the industry level, noemaly at the company level. For
example, the construction industry grows and needee steel, which leads to the
boom of steel industry, while the boom of the stadustry will lead to the need of
more electricity and coal. The growth and boomhefindustry will be reflected in the
stock prices of the different companies in the esponding industries. Our algorithm
could be applied to stock market data to deterrtiirenfluence relationships between
different industrial sections.

We are using microarray data as an example, anodinte the notion of group
variables to represent the groups of the origiaaiables and propose an algorithm to
learn a Bayesian network to represent the reldtipsshetween groups. In microarray
data, the values of a group variable are the egmedevel of the corresponding
biological function performed by this group of genwhich will be learned from the
expression levels of individual genes. A Bayesiatwork will be learned with the
group variables only. We call the learned Bayesimtwork agroup Bayesian

network.

3.2.2Related Work

The proposed algorithm is related to three areamathine learning methods for
microarray data analysis. The first area is clusgef51]. Clustering is one of the
most commonly used methods for microarray datayarsalClustering methods can

identify genes with similar expression levels. Hoes clustering methods cannot
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identify the dependency and possible causal relshiips between genes (or groups of
genes). In this sense, clustering is not sufficfentbiological knowledge discovery.
In our proposed algorithm, we can identify grougsgenes and the dependency
between groups simultaneously. The dependency batgemups is a better way of
hypothesis generation for gene regulatory relatigndiscovery.

The second related area is hidden variable disgameBayesian networks. The
general method for hidden variable discovery usesximal cliques [117] or
semi-maximal cliques in Bayesian networks [52]. Thsadvantage of the general
method is that it is difficult to identify the maag of hidden variables. In our
proposed algorithm, the group variables (as hiddanables) are assumed to
represent the summarized activity level of variable the group, such as the
summarized expression level of genes in individmaups of the microarray data.

The third related area is the module networks lyaSet al.[148]. In their work,
Segalet al considered groups of genes as modules whose ssipmelevels are
similar. The authors assumed that variables in stsme modules have the same
parents and the same conditional probability distrons. This assumption is one
type of parameter tying in Bayesian networks andre@row the structure space and
the number of parameters in Bayesian network lagrprocess. However, the authors
did not introduce hidden variables in the learnprgcess, and Bayesian networks
were learned only with the original variables. Agesult, the space of Bayesian

network structures we need to search is still Venye.
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3.2.3Learning Algorithm with Variable Grouping

Based on the above observations, we propose arithfgdo learn Bayesian network
with variable grouping. The pseudo code of the @tigm is shown in Table 7. The
algorithm consists of four main steps:

1) Partition the original variables into different gps;

2) Determine the values of the group variable for egobup based on the

individual original variables in the group;
3) Learn a Bayesian network with group variables oahg
4) Recover a potential structure of all variables fribia learned group Bayesian

network structure.

1) Generate an initial partition of the original variables intom groups as the current partition.H

2)Determine the values of the group variable for egabup in partition R

3)Learn a Bayesian network with group variables figgand set the BIC score from the learned

Bayesian network as the current scote S

4) For each neighbor Pof the current partition P
a. Determine the values of the group variable for egabup in partition P
b. Learn a Bayesian network with group variables frBgnand set the BIC score from

the learned Bayesian network as score S
5)Find the maximum of all; 8s $,ax
6)If Syax IS greater than & set ¢ as the current score.%nd the corresponding B, as the

current partition R, go back to Step 4)

7)If not, recover the structure with all variable®in the learned group Bayesian network

Table 7 Algorithm for Bayesian network learning wth variable grouping

The details of these steps will be discussed irfahewing sub-sections and will

be illustrated on a small example in Figure 4. Whhe algorithm is applicable to
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different variable types, our example works withu&sian variables. Variable 1
follows a normal distribution with 0 mean and wtindard deviationvarl~ N (0]) .
Variables 2 and 3 follow the same conditional ndraiatribution. Their means are
conditioning on the sampled value of Variable 1var2~ N(var2varl1 ** &nd
var3~ N(var3,varll), and their variances are assumed to be a unitablar4
follows a conditional normal distribution, and iteean is dependent on the sum of the

sampled values of Variable 2 and Variablevaar4 ~ N(var4;,var2+var .31

Figure 4 A simple synthetic Bayesian network for &riable grouping

In this example, Variables 2 and 3 follow the sacwomditional probability
distribution and are similar to each other. From assumption — the variables with
the similar conditional probability distribution@hid be grouped together, Variables 2
and 3 should be grouped together in the group Bawyewetwork. Since Variables 2
and 3 are dependent on Variable 1 in the origitratgire, the group with Variables 2
and 3 should be dependent on the group with VaridblSimilarly, the group with

Variable 4 should be dependent on the group witielées 2 and 3.

13 var2 ~ N(var2;varl,1) means that the values of Variable 2 are conditionahe values of Variable

1. At each sampling process, the value of Varidhilesampled first. Then the value of Variable il wi
be used as the mean in the distribution of Vari&ble is similar for Variables 3 and 4.
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Note that, in general, the algorithm will decideievhvariables to group and
when to group. The grouping can be verified witd driginal relationships between

the variables if they are available.

3.2.3.1 Partitioning of Original Variables into Different Groups

The first main step of the algorithm is to partition original variables intom
groups (m<n). The number of original variablea and groupsm are determined
by domain knowledge. This step is similar to vadealslustering (not instance
clustering). The aim of variable clustering is &tett the redundant variables in the
data, or highly-correlated variables. The diffeehetween variable grouping in this
algorithm and the ordinary variable clustering ms the grouping criterion. The
criterion of the ordinary variable clustering issfjubased on the similarity of the
variables. The criterion in this algorithm is bassd the BIC score of the learned
Bayesian network with group variables, because aijective is to learn both the
similarity between original variables and the defmty relationships between group
variables.

The example in Figure 4 is to partition 4 variabie® 3 groups. There are 6
possible ways. For example, Variables 1 and 2 @aradsigned to a groufi,2},
Variable 3 can be in another group {3}, and Var&gll can be in a third group {4}.
This grouping will be expressed 4§12},{3}, {4}}

Exhaustive Search for Variable Grouping

The intuitive way to group variables is to enumerall possible partitionings oh
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variables intom groups. The number of possible configurations he $tirling
number of the second kinR5], page 47), which is exponential in the numbgé
variables n and the number of groups1. In this case, it is not feasible to do the
exhaustive search for moderately largeand m, if m is not equal to 1, om is
not equal ton. This method is only implemented as a gold stahdartest small
cases.

Greedy Search for Grouping — Greedy Grouping

Since the grouping space is exponential in the murobvariables and the number of
groups, we need heuristics to speed up the grou@ngedy search for grouping —
greedy grouping — is adopted in this work. First, greedy groupstgrts from an
initial assignment of the variables to differenbgps. The initial assignment may be
generated randomly, or from domain knowledge. B@n®le, the initial grouping
may be randomly assigned to BgL2},{3}{4}} in our example.

Second, the algorithm tests all the nearest neightiiothe current grouping. The
neighbors mean the possible partitions in whicly @mle original variable is changed
from one group to another group of the current giog. For example, one neighbor
of the initial grouping{{12},{3}, {4}}is {{1},{24}{3}} and it is obtained by
assigning Variable 2 to another group. For eaclyhimr of the current grouping, a
Bayesian network will be learned with the groupiatsles defined by the partitioning,
and the BIC score of the learned Bayesian netwsotséd to measure the goodness of
that partition.

Third, the algorithm chooses the neighbor with highest BIC score as the new

65



current grouping, if the highest BIC score is geedlhan the BIC score of the current
grouping. Suppose that the current groupind{i2},{3},{4}} in the example. If its
neighbor {{1}, {23}, {4 }} has the highest BIC score among all the neigkeomd this
score is better than that from the current groupid}, {23},{4}} will be assigned
as the new current grouping.

Lastly, the grouping process stops when no neighbarve a higher BIC score
than the current grouping. In the example, theemurgrouping is{{1},{23}, {4}}
and no neighbors have a better score, and theygggedping will stop.

Greedy grouping does the optimization locally andags reaches a local
maximum. To escape from the local maximum, we cestart the greedy search
several times with different initial groupings aselect the best result we can obtain.
In the second step of greedy grouping, only on@abe’'s assignment is changed from
one group to another group and two groups are wedblThe results for other groups

can be cached to speed up the process.

3.2.3.2 Determine the Values for Each Group Variable

In this algorithm, group variables are introducechalden variables to represent each
group in this step. Determining the values of graugriables is essential, since
Bayesian network structure learning is based ommneariables. In our work, we
have tried different ways to determine the valukethe group variables, such as the
average of the variables in the group and the gdien the first principal component

of the variables in a group for continuous variabkend Autoclass package [24] for
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discrete variables. For example, if the averagthefvariables in a group is used as
the value of the group variable, Variables 2 andré in a group, and the value of
Variable 2 is 0.1 and the value of Variable 3 B . one instance, then the value of
the group variable is 0.15 (=(0.1+0.2)/2) in tmstance.

In the previous paragraph, we showed an exampldetermine the values of
group variables when the variables are Gaussiaiabtas. The algorithm can be
applied to the cases when the variables are nossgauor discrete. In those cases,
the values of the groups can be determined withailotknowledge or other learning

methods, such as the unsupervised Bayesian ctaggfi method Autoclass [24].

3.2.3.3 Learn a Bayesian Network Based on the Group

Variables

The third main step in the algorithm is to learBayesian network with the group
variables only. In this step, we adopt the greesirch with BIC score for Bayesian
network structure learning. The important issu¢his step is that Bayesian network
structure learning is based on group variables, @mg no original variables are used
in this step. We name the learned Bayesian netthagroup Bayesian network
Suppose the grouping 1},{23}{4}}, and we name {1} as group 1, {23}
as group 2, and {4} as group 3. The learned groageBian network is shown in

Figure 5:
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Figure 5 The learned group Bayesian network

3.2.3.4 Recover the Structure of the Entire Variables from the

Group Bayesian Network

The fourth main step is to recover the structureafbvariables. We adopt a strategy
to keep the group variables as the skeleton imegb@vered structure. In the process to
determine the values of the group variables, allstaicture is defined as the
structure between the group variable and the algrariables in each group, which
can be used for potential structure recovery pwpdéen the values of the group are
from the average or the first principal componétrthe original variables in the group,
the local structure is a tree structure — the pafvariables are independent of each
other given the group variables. For example, grdup a root of the local structure
with Variables 2 and 3 as in Figure 6.
Comed <

Figure 6 An example of the local structure

In the recovery strategy, the local structures emacatenated to the group
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Bayesian network to form an entire Bayesian netwditke structure between the
group variables is the main frame of the recovdBaglesian network. For example,

the recovered structure in the example is showsigare 7:

Figure 7 The recovered structure of the group Baysan network

If another strategy is adopted to remove the greapables from the final
structure, the Bayesian network structure withahiginal variables should be learned
with the constraints from the group Bayesian nekwdhe group Bayesian network
structure will be used as the skeleton of Bayeseimwork of the original variables.
The original variables in a group will only chootdeeir parents from the original
variables which are in the parent groups of thsugr For example, group 1 is the
parent of group 2 in the learned group Bayesiawowt in Figure 5, and then the
original variables in group 2 will only choose twginal variables in group 1 as their
parent variables. In this case, the recovered Bayeetwork in our example is the

same as the original one.

3.2.4Important Issues in the Proposed Algorithm

There are two important issues to be emphasizest, Fiere are two search spaces in
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our algorithm — one for variable grouping and thbeo for Bayesian network
structure search with group variables. Althoughhbgpaces are exponential (one in
the number of original variables and the numbemgfups, and the other in the
number of group variables), the combination spagauch smaller than the space of
possible Bayesian network structures with the ensiet of original variables. For
example, there aret2x10® possible Bayesian network structures with tenioaig
variables in a domain. If these ten variables tdlpartitioned into five groups, there
are 42525 possible partitiofls and the number of possible Bayesian network
structures with five variables is 29,281. The camebi search space i$24x10°
(=29,281*42525), which is much smaller than theyioal search space of Bayesian
networks with ten variables. Therefore, variableuging can narrow the search space
and speed up the learning process.

Second, several heuristics are used in the leamiogess. One heuristic is the
greedy search for variable grouping and the caélieeounchanged groups in greedy
grouping. Another heuristic is the greedy searchBewyesian network structure
learning. In these heuristics, we always chooserauping and group Bayesian
network with a higher BIC score as the next grosgignment and Bayesian network
structure. The BIC score never decreases in thretsgaocess. When the algorithm
stops, it guarantees to reach a local maximum. & thesiristics make the process

reach a local maximum faster.

14 42525={C(55)x51°-c(5,4)x41°+c(5,3)x310—c(5,2)x210+c(5,1)x11°}/|:>(5,5). Here c(n,m) means the
possible choices to choose items from n items, and p(n,m) means the possible permutation of
m items from n items.
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3.2.5Experiments with Variable Grouping

The proposed algorithm has been tested in expetindgth synthetic examples and a
real microarray data. In the experiments with tlatlsetic examples, we build a
synthetic Bayesian network first and sample dadenfthe Bayesian network. With
the sampled data, we apply the proposed algorithiearn a group Bayesian network.
The learned group Bayesian network will be compangith the expected group
Bayesian network to evaluate the proposed algorithrthe experiments with the real
microarray data, we chose some genes in the doaofaimerest and compared the
learned group Bayesian network with biological domaowledge.

The first synthetic example First we tested the proposed algorithm with the
example in Figure 4. In Figure 4, Variables 2 anéblbow the same conditional
probability distribution and are similar to eaclhat and should be grouped together
in the group Bayesian network based on our assompiihe group with Variables 2
and 3 should be dependent on the group with Vaidbland affect the group with
Variable 4.

We drew different number of samples from this sgtithBayesian network to
learn a group Bayesian network. In our experimem, tested with one thousand
samples first and the expected group Bayesian mktesn be learned reliably. To
determine the minimal number of samples requiregsiimate the expected group
Bayesian network reliably, we reduced the numbesamhples gradually. In the end,
we found that eleven was the smallest number opkzsto make the group Bayesian

network reliably learned in the experiments.
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In the experiment, exhaustive search over all pésgroupings was tested first
for the comparison sake. The grouping problem igete partition 4 variables into 3
groups. There are 6 different cases in total. [Eigushows the structure of the group
Bayesian network with the highest BIC score. Graugontains Variable 1, Group 2
contains Variables 2 and 3, and Group 3 contaimg&ab& 4. This grouping result is
the same as what we expect.

For greedy search over grouping, we ran the progoxmi2 hours and finished
221 repeated experiments. In each experiment, we @leven samples from the
synthetic model and learned a group Bayesian n&tfwom the instances with greedy
grouping. In 82.8% of the repeated experiments, ldsgned grouping and the
structure of the group Bayesian network are theesasrexpected result in Figure 7.
Another synthetic example

Figure 8 shows another synthetic Bayesian netwaehich has two copies of the
first example with extra edges. In the example,jaldes 3 and 4 follow the same
conditional probability distribution and should ¢uped together; Variables 5 and 6
follow the same conditional probability distributi@and should be grouped together.
The group with Variables 3 and 4 should be dependerthe group with Variable 1,
and should affect the group with Variable 7 andghmup with Variable 8. The group
with Variables 5 and 6 should be dependent on thepwith Variable 2, and should
affect the group with Variable 8.

The eight original variables are partitioned ini® groups and there are 266
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different cases of groupihty From the assumption, the expected result is ttitipa
Variables 3 and 4 into one group, partition Vargbb and 6 into another group, and
partition other variables into individual groupdgiire 9 shows the result with the
highest BIC score, which is the same as what weard.

The synthetic Bayesian networks above show the owtibn of the diverging
and converging patterns in the Bayesian networksciwis the difficult part to learn.
If there is no combination of diverging patternsl @onverging patterns in a Bayesian
network, the Bayesian network structure will béhain or a tree-like structure, which
is easier to learn. In the above two synthetic glas the proposed algorithm can
partition the variables which follow the same cdiadial probability distributions into
one group, and the learned group Bayesian netwswksmarize the relationships

between the original variables in a high-level edagion.

Figure 8 Another synthetic example with eight Gausian variables

® 266=C(82)xC(62)/P(22)+C(83) - Here c(nm) and p(nm) have explained in Footnote 14.
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Figure 9 The expected group Bayesian network witkight Gaussian variables

Microarray data The microarray data set used in this work wamf@aschet al
[69], which measured the response of yeast cellentaronmental changes under
different conditions. The data set contains 615Ygeand 173 experiments. From this
data set, we selected ninety known genes in Agtins&eleton group to learn a group
Bayesian network for testing purpose. The missaigas in the data set were filled in
with the average of the known values for each g&ased on domain knowledge,
there are averagely six genes in one group to peréofunction, and the number of
groups is set to fifteen in our experiment.

We ran the experiments ten times to test whethedgarned groups and group
Bayesian networks are consistent in the majorityhef experiments. In the result,
genes ARC15, ARC19, ARP3 and the other three garesn one of the learned
groups in all the experiments. By checking withldgical knowledge, we found that
these genes are from one gene complex and araduoalty related. Another group
that contains gene PFY1 is dependent on the grathpARC19. The partial graph is
shown in Figure 10. With the learned groups andig®ayesian networks, a domain
expert checked the learned group Bayesian netwuatldependencies between groups

of genes. He confirmed that most of the genes | shme groups and the
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dependencies between groups are consistent witliddmowledge.

Group 1 ::' Group 2 i
ARC1H

Figure 10 A partial graph from the learned model wth genes from Actin cytoskeleton group
Note: Group 1 and 2 contain more genes than thodeifigure. The edges without variables at the
beginning or the end mean that some variablesarshown here.

3.2.6Discussion

In this section, a new algorithm is proposed taorieBayesian network from data in
which some variables have similar conditional pholitg distributions. Within the
limits of the experiments and investigations, wevehahown that for a class of
problems with practical implications, the proposdégbrithm could discover groups of
variables which follow the same conditional proligidistributions, and could
identify possible dependencies between groups samebusly. The learned group
Bayesian network is the skeleton of the relatigpsihetween the original variables in
the domain.

This algorithm has several advantages. First, it vaduce the number of
variables in Bayesian network structure learnimgges only group variables are used
to learn the Bayesian network structure. Redudnegiumber of variables can narrow
down the Bayesian network structure space and gpe#uk learning process. Second,
it will relieve the requirement for the number oisiances. Moreover, the learned

group Bayesian network is a high-level abstracbbnhe relationships between the
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original variables, such as the activity level loé¢ tgroups of genes in a cell from the
microarray data. Group variables are more reliableepresenting the biological
functions in a cell, and the dependency relatiqgmstietween group variables are
more stable than the dependency relationships keetwelividual variables. Although
our algorithm will lose some details in the senéehe direct interactions between
original variables by introducing group variablesdaestricting the edges between
variables in the different groups, it can captime main interactions between groups,
and such high-level abstraction of interactionsMeen gene functions is common in
Biology.

In our work, the idea of variable grouping is mated by the observations from
microarray data. The algorithm can be applied tbheotdomains with similar
assumptions, such as different industrial sectostack market.

There are some future directions for this work. @Gnaverlapped grouping. In the
current algorithm, each gene is only assigned te gmoup. From biological
knowledge, however, we know that some genes cdiorperseveral functions and
belong to different groups. Overlapped groupingaisiatural way to model this
phenomenon. Another important future directioroisdllaborate with domain experts
who work on wet-bench biological experiments. Theppsed algorithm can generate

hypotheses of dependency between genes for fudseaurch.

3.3 Summary of Hypothesis Generation

This chapter discussed hypothesis generation fromye8lan network structure
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learning. Two general hypothesis forms are intredudirst: individual Bayesian
networks and individual edges in Bayesian netwoHgpothesis generation is to
select the statistically-significant individual Besjan networks or individual edges in
Bayesian networks based on the available data Bélesian network structure
learning. Variable grouping is proposed to generaypotheses with Bayesian
network structure learning in the domain where sovaeables follow similar
conditional probability distributions. In our expeents, the proposed algorithm can
partition similar variables into the same groupd kearn the dependency between the
groups. The concepts and algorithms for hypothgsigeration via variable grouping
developed in this chapter represent a new effothim direction. Since there are no
available methods for refinement and verificatioh gpoup variables as hidden
variables, the hypotheses generated with variatdepgng will not be considered in
the subsequent chapters in this thesis. Individdges in Bayesian networks will be

mainly used for hypothesis refinement and verifarain Chapter 4 and Chapter 5.
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Chapter 4 Hypothesis Refinement for
Knowledge Discovery with Bayesian

Networks

- Learning Bayesian Networks with Observational Data

and Topological Constraints from Domain Knowledge

In Chapter 3, we have discussed hypothesis gearratim observational data, which
is a Bayesian network structure learning problemundiscussion. In this chapter, we
will address one of the common problems in thenledrBayesian networks. This
problem is that some edges in the learned Bayamamnorks are inconsistent with
domain knowledge. Generally, domain knowledge lenlverified by experiences or
interventional experiments and is considered cariacthis case, we need to adjust
the hypotheses of direct influence relationshipswben variables as edges in
Bayesian networks generated with observational dathmake them consistent with
domain knowledge.
In this chapter, we will discuss the representatmn topological domain

knowledge, the refinement of the generated hypethasth the available topological
domain knowledge, and the effect of topological domknowledge on the learned

Bayesian network structure.
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4.1 Background and Motivation

In Section 3.1.3, we have observed the inconsigtbetween the learned Bayesian
network and domain knowledge in the heart diseasklgm, where variableAGE’

is dependent on other variables. From common semseknow that variables like
“AGE’ are not affected by other variables in the hdatase problem. Such variables
should be root nodes in the related causal Bayestmorks. However, in the learned
Bayesian networks, these variables can be therehilof other variables, which make
the learned Bayesian networks inconsistent with alorknowledge. Similarly, some
variables should be leaf nodes in the causal Bagesetworks. For example, in
medical domains, the lab test results will not efiether variables in the domain and
should be leaf nodes. Moreover, some edges manderkbefore learning, such as a
known edge from variablenaving a cold to variable ‘running nosé

This inconsistency problem can be addressed manuaid the inconsistent
edges can be deleted from the learned BayesiarorietwThis strategy can reduce
the inconsistency; however, such modified structmay not be the one with the
highest score given the available data and domaawledge.

Alternatively, topological domain knowledge can ta&en into consideration in
Bayesian network structure learning to constram gtructure space. Many authors
have tried in this direction. Cooper and Herskoviguired the complete causal
ordering of the variables in a domain and propdked?2 algorithm [38]. Heckerman
et al. [87] used a prior network for Bayesian networkusture learning. These

methods work well theoretically when the requirgdtematic domain knowledge is
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available. In practice, however, only partial dom&nhowledge is available in most
casesPartial domain knowledgeneans that, certain variables are known as raots o
leaves in Bayesian networks from the time condisaim other sources, or there are
known edges between some variables.

To utilize the available partial domain knowledges need to represent domain
knowledge as topological constraints to restria #tructure space of Bayesian
networks. In this case, domain knowledge shouldepeesented in appropriate ways
to facilitate Bayesian network structure learni@ertain kinds of partial domain
knowledge have been considered in Bayesian netwttcture learning ([155],
Section 5.4.5) in packages like LibB, TETRAD and y&sian network
PowerConstructdf. Experience has shown that the partial domain kedye can be
very helpful in improving both the efficiency andcaracy of the learned Bayesian
network structures.

However, as far as we know, there is no systemmapcesentation, analysis and
evaluation on incorporating partial topological dom knowledge into Bayesian
network structure learning, and the explicit efseahd influences of different kinds of
topological constraints are unknown. When domaiovedge is not well-expressed,
domain experts may specify inconsistent domain kedge, which may not be easily
detected when there are many variables in a dorSaime other issues should also be

addressed in Bayesian network structure learnirt domain knowledge, such as

16 LibB: http://www.cs.huji.ac.il/labs/compbio/LibB/
TETRAD: http://www.phil.cmu.edu/projects/tetrad/
BN PowerConstructohttp://www.cs.ualberta.ca/~jcheng/bnsoft.htm
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random generation of Bayesian network structures Bawesian network structure
rejection with topological domain knowledge.

In this chapter, we propose two canonical formatsrapresent the partial
topological domain knowledge as topological constsain Bayesian network
structure learning, and examine the effect of togilal constraints on the accuracy of
the learned Bayesian network structures.

We assume in this chapter that domain knowledg8#gesian network structure
learning is available. The source of domain knogted a big issue, and efficiently
eliciting domain knowledge from domain experts msaxtive research topic. Causal
knowledge elicitation has been proposed by Nadkamdi Shenoy [124] for Bayesian
network construction. The general knowledge elicita in artificial intelligence
domain has been discussed extensively by Firlej &ldds [56] and references

therein.

4.1.1Related Work

Domain knowledge considered in this chapter isitatale domain knowledge, such
as whether there is a direct edge from one variablenother variable. Donoho &
Rendell [45] and Hamt al [82] have discussed some general categories oo

knowledge and previous efforts [11,94,95,126] haxamined quantitative domain
knowledge for Bayesian network learning. Anothepi¢orelated to hypothesis
refinement in Bayesian networks is the general kedge refinement [72,162,163],

where meta-knowledge is used to refine some speatifimain knowledge. The work
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mentioned above discussed the quantitative domrewledge or general knowledge.
Such knowledge is different from the direct causéllence relationships between

variables and not directly applicable to the probige address here.

4.2 Representation of Topological Domain Knowledge

In Bayesian Networks

In this chapter, we consider qualitative domainwiealge for hypothesis refinement
in Bayesian network structure learnifidhe types of qualitative domain knowledge
considered are: root variables, leaf variables,wimand forbidden edges, partial
ordering of variables, (conditional) independenetationship between variables,
known parents and children, possible parents aildreh, and the maximal number
of parents and children.

These types of qualitative domain knowledge arévddrfrom the understanding
of causal Bayesian networks and how qualitative alarknowledge can be applied to
causal Bayesian network construction. The rootalédes are usually determined by
time constraint or common sense. As mentionedemtbdical domain in the previous
chapter, variables likeAGE’, “RACE, and “SEX have their values fixed before
other variables and their values are not affectedther variables. Therefore, these
variables should be root variables in a causal 8ayenetwork. Similarly, variables
like the lab test results are dependent on otheablas and do not affect other
variables, and should be leaf variables in a caBagésian network.

The known edges and forbidden edges can be fronmoonsense. For example,
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there should be an edge fromating a cold to “runny nosé& There should be no

edge from the lab X-ray test results to variableberculosis Causal ordering is

from time constraints and manipulation results. iBimexamples can be applied to
other qualitative domain knowledge.

We will represent qualitative domain knowledge apotogical constraints in
Bayesian networks in two formats: the rule formatl ahe matrix format. Table 8
summarizes a common set of topological constramtie rule format. The column
“types of topological domain knowledge” lists alfiet types of topological domain
knowledge we have considered. The column “meanexglains the rules in the
ordinary language. In general, these rules are &asynderstand and elicit from
domain experts. However, if there are conflicts &ydles in the elicited domain
knowledge, it is difficult to detect them in thdeuwepresentation.

To facilitate consistency checking, we propose tmvert the topological
constraints from the rule format into the matrixn@t: one matrix for the known
edges, one matrix for the forbidden edges, oneixntidr the partial ordering, one
vector for the maximal number of parents, and agwtor for the maximal number of
children, as summarized in Table 9. If there isnavin edge from variable to
variable j, the elementi(, j) in the known edge matrix will be 1; otherwisee th
element will be 0. If there is a forbidden edgenfreariable i to variable j, the
element (, j) in the forbidden edge matrix will be 1; otherwitige element will be 0.
If it is known that variablei is before variablej, the elementi(, j) in the partial

ordering matrix will be 1; otherwise, the elemeirilt tve 0. The values of the maximal
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number of parents and children are non-negativaralahumbers. For known edge
matrix, forbidden edge matrix and partial orderm@trix, only the elements with
value 1 will be used in the learning process; tleenents with value 0 just mean that

we do not have such knowledge and they will natised in the learning process.

Types of topological

Meanin
domian knowledge 'ng

Variables without parents. Such variables influeotter

Roots . ] ]
variables, but are not influenced by any otheralaés
L Variables without children. Such variables areueficed by
eaves
other variables, but do not affect other variables.
Known edges Fixed edges before learning
Forbidden edges Definitely no such edges
Partial ordering Variables before some other véemn the causal ordering

(Conditional) independence| Variables conditiondeipendent

Known parents The parents of some variables areino

Known children The children of some variables arewn

Possible parents The parents of variables areatestito a subset of variableg
Possible children The children of variables ard¢rieted to a subset of variables

Maximal number of parents Numbers of parents ofabdes can be different and limited

Maximal number of children Numbers of children afiables can be different and limiteg

Table 8 Summary of topological domain knowledge ithe rule format

Names of components Meaning
Matrix_k Matrix for known edges
Matrix_f Matrix for forbidden edges
Matrix_p Matrix for partial ordering
V_maxParents Vector for the maximal parents
V_maxChildren Vector for the maximal children

Table 9 Summary of topological domain knowledge ithe matrix format

These components of topological domain knowledgethe matrix format
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summarize all possible topological constraintshef tule format in Table 8. The first
ten rules in Table 8 suggest the known edges, dddm edges and the partial
orderings in Table 9. The last two rules suggestlithits on the numbers of parents

and children of individual variables.

4.2.1Compilation of Domain Knowledge from the Rule

Format to the Matrix Format

Each rule of domain knowledge in Table 8 correspgotad different values in the
matrix format. For example, if a variable is a rooa Bayesian network, it means that
there are no edges pointing to it, and the valueglements in the row of the
forbidden matrix corresponding to this variablelwi¢ 1. For another example, if we
know the partial ordering of some variables, we specify a set of variables before
another set of variables or a set of variableshged in their causal order. For every

rule, we have performed such a mapping from the farimat to the matrix format.

4.2.2Checking the Consistency of Topological Constraints

After the compilation, we have domain knowledgethe matrix format. Before we
apply it in Bayesian network structure learning, meed to check the consistency in
the specified domain knowledge. By analyzing thepprties of the topological
constraints, we identified five types of inconsntg

1) Cycles in the known edges. There should be mteayf the directed edges from

topological domain knowledge;
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2) Conflicts in the known edges and the forbiddelyes. There should be no
overlapping between the known edges and the foebidedges in valid domain

knowledge;

3) Cycles introduced by the partial ordering andwn edges. If there are cycles, it
means that certain paths of the known edges comfiib the known partial orderings;

4) The number of the maximal parents is smallen ttitee number of the known

parents. The sums of the parents of the known etigeach variable represent the
number of the known parents; and

5) The number of the maximal children is smalleantithe number of the known

children. The sums of the children of the knownesdffom each variable represent
the number of the known children.

These five types of inconsistency are checked $tgpstep. If there are
inconsistencies in topological domain knowledger ptogram will report them.
Currently, we do not computationally resolve theoimsistencies in topological
domain knowledge. We leave the work to domain esper further experiments. In
the following sections, we assume that the topeklgdomain knowledge used is
consistent and correct.

Running Time for Consistency Checking

As we mentioned above, the matrix format of domlawmowledge is easy for
consistency checking. For comparison, we have imefged the consistency
checking in both the rule format and the matrixriat with MATLAB. In the rule

format, we need to enumerate all possible patlthéck the circles, and the possible
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conditions for overlapping. In the matrix formdigtconsistency checking is done by
matrix manipulation. We conducted experiments tmgare the running time of the
rule format and matrix format for consistency chiegk

First we randomly generated domain knowledge véthuariables in rule format
to test whether our program can work properly. Wanually checked the
inconsistency in the generated domain knowledgth@adase cases for consistency
checking. In our testing, the program can repatdaime inconsistency in rule format
and matrix format as that in manual checking, flegable.

Next, we ran experiments to compare the time reduior consistency checking
in two different topological formats. We tested t@nsistency checking with ten to
one hundred variables. For each specified numbewasiables, we randomly
generated fifty different topological constrainttssen the rule format. For each
topological constraint set, the consistency chegkias performed both in the rule
format and the matrix format. The time for consistechecking in the matrix format
includes the time to compile the topological coastis from the rule format to the
matrix format. The average time in two differensesiis reported in Figure 11.

Figure 11 shows that, in our experiment, the tirequired for consistency
checking in the rule format seems exponential & mumber of variables in the
domain, while the time required for consistencyativeg in the matrix format seems
linear to the number of variables in the domain.a@erage, the consistency checking
in the matrix format takes only about 10% of tineguired in the rule format. A

potential reason is that, in the matrix format, gistency checking is done by matrix
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operation, which can check multiple circles in mgé manipulation; but in the rule

format, it takes more time to enumerate all possibituations for consistency

checking.
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Figure 11 Average time required for consistency atking with different constraint formats

4.2.3Induction with Topological Constraints

Some topological constraints in Bayesian networnies ralated to the conditional
independence. Dawid [41] examined the axiomaticesuto characterize the
conditional independence in a probability distribnt symmetry, decomposition,
weak union, contraction, and intersection. In thegks, only the conditional
independence information is considered.

Here, we can utilize the graphical properties ofydd@an networks to deduce
independence relationships with d-separation (ReéferAppendix A.B for the
definition of “D-separation”). A new rule is propas$ to derive new topological
constraints from the available topological consitisiwhich are not explicitly

mentioned by domain experts. This will minimize thepert’s effort in domain
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knowledge elicitation stage. Moreover, if there areonsistencies in the specified

topological constraints, the derived topologicahgtoaints from this rule may show

the direct conflict in the elicited domain knowledgnd make the inconsistencies

clearer. The rule and the proof are as follows.

Theorem 4.1 Suppose X, Y and Z are three different variables in a

domain which can be modeled with a Bayesian netW@rkP ) where the structure of

Bayesian networkG is unknown, andP is the probability distribution in the

domain that satisfies the causal Markov assumgiahcorresponds t& . If X is

independent ofY , and Z is a parent of X ,then Z and Y will be independent.

If Xagy and Z - X, then Z0OY

Proof:

Suppose thatZ is not independent off

Then there will be a path fronZ to Y without v-structure (This is an
application of the d-separation criterion)

If this path includesX , it means that the part of this path betweXn
and Y will not have v-structure

If this path does not pass througk, adding an edgeZ — X to the path
will not introduce v-structure af . In this case, there is a path between
X and Y without v-structure

In both cases, there will be a path betweéh and Y without
v-structure. Then we can conclude tha, and Y are not independent
(This is another application of the d-separatiotedon)

Contradiction! n

Take the benchmark Asia network (refer to Figurga?an example. If we know

that variable Tuberculosi$is independent of variableSmoking and there is an edge
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from variable Visit to Asid to “Tuberculosi then “Visit to Asid should be
independent of variableSmoking. This relationship can be easily checked with the

structure in Asia network.

4.3 Bayesian Network Structure Learning with Domain

Knowledge

After domain knowledge is represented in the matosmat, we can apply it in
Bayesian network structure learning. The topoldgicanain knowledge can be used
to reject the DAGs which are inconsistent with dom&nowledge, and it is
applicable to all the Bayesian network structurarieng methods, including
score-and-search-based approach and constraird-lzggeoach. In the following
section, we will use a score-and-search-based appror illustration.

Greedy Search Algorithm with Topological Constrains

In this work, we adopt greedy search and Bayesiéorrhation Criterion (BIC)
score to learn Bayesian networks and Table 10 shimevgseudo code.

Compared with the general greedy search methoBdgesian network structure
learning, there are two main differences. Firsg ittial DAG generated should be
consistent with domain knowledge. The base DAG undgological constraints is
the one with the known edges only. Other edgesbearandomly added to the base
DAG under the acyclic constraint in Bayesian neksor

Second, an additional step should be applied &xtréhe neighbors of the current

DAG that are inconsistent with the topological doasts. When we have a set of
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DAGs as the candidate structures of Bayesian n&wee need to check them and
reject the ones inconsistent with topological casts. The consistency checking is
similar to the consistency checking process disgmisa Section 4.2.2. This will
guarantee that the selected Bayesian network stasctare consistent with the
topological domain knowledge, and will help to mavrthe structure space and speed

up the learning process.

Generate an initial DAGonsistent with the topological constraints as the current DAG
Done = false
While ~Done
Generate all possible neighbors of the curf@AG
Reject the neighbors which are inconsistent with the topological constraints
Evaluate the remaining neighbor DAGs
If the best score of the remaining neighbor DAIsetter than that of the current DAG
Set the neighbor DAG with the best scorthasurrent DAG

Else

Done = true

Table 10 Algorithm for Bayesian network learning wth topological domain knowledge

4.4 An lterative Process to Identify Topological
Constraints with Bayesian Network Structure

Learning

Domain knowledge elicitation is an important step hypothesis refinement. In
practice, we may not be able to identify all poksitopological constraints in one
round, due to time constraints and knowledge linota We may identify some

topological constraints first and then identify eth later after we learn the Bayesian

91



network structures.

In Section 3.1.2, we have mentioned how to estintate probabilities of
individual edges (and other features). After leagnithe edges with the highest
probabilities and the lowest probabilities can I®ven to domain experts. The
domain experts will evaluate the significance afsi edges with their expertise, and
decide whether the edges with high probabilitiesraal edges and the edges with low
probabilities are forbidden edges. If the domaipests confirm that these edges are
known edges or forbidden edges, these edges wilhtleded in the topological
constraint set. Then the new topological constraett can be used to learn the
probabilities of other edges. This process canatpstil the domain experts confirm
that there are no more topological constraints fdmmain knowledge.

Likelihood of Individual Topological Constraints

Another issue with domain knowledge is whether #pecified topological
constraints are correct or not. For each individiogdological constraint, we can
estimate its probability with data and other togadal constraints. The known edges
in the topological constraint set should have tpgbbabilities. The forbidden edges
in the topological constraint set should have lombgabilities. If not so, more
justification is needed for the known edges wittv [probabilities and the forbidden

edges with high probability, and we leave this ésguthe domain experts.
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4.5 Empirical Evaluation of Topological Constraints on

Bayesian Network Structure Learning

In this section, we examine the effects of topalabconstraints on Bayesian network
structure learning. One expected effect is the djppeof Bayesian network structure
learning with domain knowledge. Another expectddatfis the improvement of the
learned Bayesian network structure with domain Kedge. We want to know which
kind of topological constraints can lead to moreect edges in the learned Bayesian
network structure. Such knowledge will help us atedcollection, domain knowledge
elicitation, and interventional experiment designdausal knowledge discovery.

In this section, the benchmadsia network [104] is used to examine the effects
of topological constraints on Bayesian network dtite learning, since all possible
constraint types can be represented in it. Asiavordt is a Bayesian network with
eight variables that models the situation to deteenthe likelihood of a person

having a disease, given his/her visiting historg amoking habit. The structure of the

Asia networR’ is shown in Figure 12.

Visit to Asia

Tuberculosis or
Lung Cancer

Positive X-ray

Figure 12 Asia network

Dyspnea

" Reprinted with the permission from Wiley-Blackwell

93



The experiment process is as follows.

1) Specify the topological constraint sets (emptyhwaitsingle topological constraint, g

=

with multiple topological constraints)

2) Fori=1l:n,

3) Sample data from the original Bayesian network

4) Learn Bayesian networks with the data and theeiied topological constraint sets
5) Count the edges in the learned Bayesian networks

Topological constraints are generated based osttheture of Asia network. The
single topological constraints are generated syatieaily, which are the possible
roots, leaf nodes, the existing edges as known sedipe non-existing edges as
forbidden edges. Topological constraint sets witlitiple individual constraints are
randomly generated and some topological constssts are manually generated to
examine the effects of the topological constraipes of interest.

The evaluation criteria are the correct edges énlé¢hrned Bayesian network and
the Hamming distance between the learned Bayes&work and the original
Bayesian network. In addition, the number of therext structures learned and the
number of the learned structure in the Markov egjent class (as the CPDAG) of the
original Bayesian network are counted in the reggbagxperiments. The correct
structure means that the algorithm can identifyttadl influence relationships between
variables from the data. The number of the leasteacture in CPDAG is used to
measure how the algorithm extracts the conditioimalependence relationships

between the variables from data.

4.5.1Without Constraints

We first tested the case without topological canats. We sampled data from the
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Asia network to learn Bayesian network structunepdfiments show that it is very
difficult to learn the correct complete structurerh the data alone, and it is a little bit
easier to learn the CPDAGs. This is consistent Wigtoretic analysis and findings

from other researchers [33].

4.5.2With Individual Topological Constraints

In this experiment, we tested the effects of alkgilole individual topological

constraints in Asia network on the correctness h&f kearned Bayesian network
structure. Individual topological constraint meam$y one constraint in the constraint
set. Totally, sixty-one individual topological cdrant sets were generated from Asia
network — 1 without constraints, 2 with one rootyiZh one leaf, and 56 with 1 edge

as known or forbidden edge. The experiment setag fsllows:

1) The program ran 36 hours and finished 100 experimen
2) 100 different randomly sampled data sets were gegadrfrom the original
Bayesian network
3) Each data set has 1000 randomly sampled instances
4) One Bayesian network is learned with each datasdtone of the 61 different
constraint sets.
The total number of the learned Bayesian netwa@l&lDO (=100*61). Some findings

from the experiment results are:

1) In the total learned Bayesian networks, only 3theesame as the original ones.
However, more learned Bayesian networks are inGR®AG of the original
Bayesian network. It shows that it is more liketyléarn a Bayesian network in

the Markov equivalent class of the original Bayesi@twork [33] from data and
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2)

3)

individual topological constraints, other than #eact structure of the original
Bayesian network.

A constraint set with a single edge from nodéisit to Asid to node
“Tuberculosisleads to the highest average correct edges anchithimal average
Hamming distances. This edge is an undirected exdidpe CPDAG of the original
Bayesian network, and such type of edgeadistibution-indistinguishable. The
direction of such edges cannot be determined byothservational data. This
result means that, when the constraint set contdites edges that are
distribution-indistinguishable, the constraint sedn lead to more accurate
structure in the learned Bayesian networks.

The other two constraints also lead to the leastadctures with high accuracy.
One constraint is an edge from nodaufig Cancert to node Tuberculosis or
Lung Cancet, which is an edge in a v-structure of the origiBayesian network.
The other constraint is a leaf nodeyspned These results suggested that we
need to pay more attention to certain types of ltapoal constraints in practice
for knowledge discovery, such as the roots, leaggges in v-structure, and edges
which are distribution-indistinguishable in Bayesiaetworks. If possible, we
need to determine such types of topological comtsrawith interventional

experiments. This is the task of hypothesis vetian in Chapter 5.

4.5.3With Multiple Randomly-sampled Constraints

In this experiment, we tested the effects of mldtiponstraints in one constraint set
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on the correctness of the learned Bayesian netstankture. We want to know which
kind of topological constraints or their combinaocan lead to Bayesian networks
with better accuracy. We randomly selected onewers possible edges in the original
Bayesian network as known edges or forbidden eddebe constraint sets, and

totally generated 43 constraint sets. The experirsetup is:

1) We ran the program for 14 hours and finished 93eixpents

2) 93 different data sets were randomly sampled frbm ariginal Bayesian
network in this period

3) Each data set has 1000 random instances

4) One Bayesian network was learned with each dataasdt one of the 43

randomly generated constraint sets

The total number of the learned Bayesian netw@k39PR9 (=93*43). In the total
learned Bayesian networks, 453 (11%) of them wkeesame as the original one.
Compared to the results with individual constrgintghere almost no learned
Bayesian networks were the same as the origina, @his means that it is more likely
to learn the correct Bayesian networks with morpological constraints. This
coincides with our belief that, the more the togadal constraints we know, the

easier to learn the correct edges from the data.

4.5.4With Multiple Manually-generated Constraints

In this experiment, we want to know the effects swime specific topological
constraints and their combinations on the learnegeBian networks. From the
previous experiments, we observed that roots, agestribution-indistinguishable

edges and edges in v-structure of the original Biayenetworks are important for the
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correct Bayesian network structure learning. Heee want to examine how these
topological constraints affect the accuracy of ldened Bayesian network structure
and the learning process. We manually generatetiffe?ent constraint sets:

1) Without topological constraints;

2) “Visit to Asid and “Smoking as roots, Positive X-ray and “Dyspned as leaves,
“Lung Cancet to “Tuberculosis or Lung Cancerand ‘“Tuberculosi$ to
“Tuberculosis or Lung Canceas known edges;

3) “Positive X-ray and “Dyspned as leaves;

4) “Visit to Asid and “Smoking as roots, Positive X-ray and “Dyspned as leaves;
5) “Smoking to “Lung Cancetas known edge;

6) “Smoking to “Bronchitis' as known edge;

7) “Lung Canceétto “Tuberculosis or Lung Canceas known edge;

8) “Smoking as root, and Bronchitis' to “Dyspned as known edge;

9) “Positive X-ray and “Dyspned as leaves, andLung Cancet to “Tuberculosis or
Lung Canceras known edge;

10) “Lung Cancer to “Tuberculosis or Lung Cancerand ‘Tuberculosi$ to
“Tuberculosis or Lung Canceas known edges;

11) “Lung Cancerto “Tuberculosis or Lung Canceand “Bronchitis' to “Dyspned
as known edges; and

12) “Visit to Asid and “Smoking as roots, Positive X-ray and “Dyspned as leaves,
“Tuberculosis or Lung Canceto “Dyspned and “Bronchitis' to “Dyspned as

known edges.
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We ran the program for eighteen hours and finisB28 repeated experiments.
The results are summarized in Table 11. In Tabletdd rows represent different
evaluation criteria, and the columns representedfit topological constraint sets.
From Table 11, we know that, when the topologicaistraint sets (sets 2, 4, and 12)
contain roots or leaves from the original Bayegiatworks, more candidate DAGs
will be rejected (refer to row (5) in Table 11),damore correct edges will be

recovered in the learned Bayesian networks (refeow (4) in Table 11).

Setl| SetZ SetB Setd Set5 Set6 SJet7 pHet8 [Set9 [SBHIAL| Setll
@ 1 0 1 0 5 0 0 0 2 0 0 0
2 1 0 3 8 16 0 0 0 5 0 0 0
3 11 5 6 4 9 11 9 10 4 11 8
()] 3 5 5 5 4 3 4 4 6 4 5 6
(5)(%0) 0 43 20 | 37 4 4 4 15 23 7 8 40

Table 11 Results of Bayesian network structure leaing with topological constraints
Note: The row numbers represent (1) number of ERIDAGS as expected; (2) number of learned
CPDAGs as expected; (3) average Hamming distaddeverage correct edges; and (5) average
percent of DAGs rejected. The columns representdhelogical constraint sets from the Asia
network: (1) setl has no constraints, (2) set2, set8 and setl2 have the roots specified, (3) set
set3, set4, set9, and setl2 have the leaves sgkdiind other topological constraint sets have
some edges specified.

The constraint set 5 contains an edge fr@moking to “Lung Cancef, which is
a distribution-indistinguishable edge in the CPD&{Ghe original Bayesian network.
This constraint set leads to the maximum numberoofect CPDAG. It emphasizes
that the distribution-indistinguishable edges ie tbriginal Bayesian networks are

important for Bayesian network structure learning.
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4.6 Application of Bayesian Network Structure
Learning with Domain Knowledge in Heart Disease

Problem

In Section 3.1.3, we applied the hypothesis geiramhethods to a real heart disease
data. In this section, we will apply domain knowgedfor hypothesis refinement on
this same data set.

Two Bayesian networks are learned from the heatadie data, one without
topological constraints (Figure 13, shown in Sett®1.3 before) and one with
topological constraints (Figure 14). In Figure i# variables AGE’, “RACE and
“SEX have parents, which is inconsistent with commensg as these variables are
not affected by other variables in the domain. Thistivated us to combine
topological domain knowledge in Bayesian networlictre learning.

In our work, we applied three types of topologicaimain knowledge. First,
variables RACE, “AGE’ and “SEX are specified as roots in the causal Bayesian
networks, since we know from common sense thatptiebability distributions of
these three variables are not dependent on othienparofile information. Second,
the family health history variabled=HY”, “FDM” and “FCAD’ precede all other
variables in the partial ordering, since family ltteahistory precedes the patient
profile in time. Third, there is a known edge fré@moket to “CAD”, which is from
our current domain understandinghe Bayesian network learned with such
topological domain knowledge is shown in Figure Ad.compared with the Bayesian

network in Figure 13, the causal Bayesian netwarcture in Figure 14 is more
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meaningful as judged by commonsense: The dise@#d™ is dependent on the
variable ‘AGE’, and the variable Smoket is dependent onSEX and “RACE. The
results in this section and related research vintjles nucleotide polymorphism (SNP)
information were published in World Congress of kgMedical) Informatics®

[27,107].

Figure 14 Bayesian network learned with domain knaledge

To be noted, the edges of the learned Bayesianoneiwn the heart disease
problem may not be causal relationships betweenvéinables, although we prefer
discovering causal relationships from the data. [Blaened relationships need to be
verified with manipulation criterion, and we canmoanipulate the values of variables

in the heart disease domain due to ethical readonthe next chapter, we will

'8 The permission for re-printing the materials refer Footnote 4.
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consider the relationships which can be verifiethwmanipulation.

4.7 Application of Bayesian Network Structure
Learning with Domain Knowledge and

Bootstrapping in Heart Disease Problem

To verify the significance of the edges in the el Bayesian networks, we applied
the bootstrap approach [50] to learn the probadsliof individual edges. We sampled
data from the original data with replacement, amd Bayesian networks were
learned from each sampled data set — one with@aldgical domain knowledge and
one with the topological domain knowledge specibedbre.

Table 12 and Table 13 show the significant pairsasfables from the bootstrap
approach in the learned Bayesian networks withvaitttout domain knowledge. The
results showed that almost all the edges in thenéebaBayesian networks were quite
significant and appeared more than 80% of timethén500 bootstrap experiments.
The pair of variables Smoker-CAD appeared 100% in the learned Bayesian
networks as the known edges in Table 12. The tapqgbavariables in the learned
Bayesian networks with bootstrap approach and dokrawledge is SEX-Smokér
in Table 12, which appeared surprisingly 100% m300 bootstrap experiments. This
pair of variables is deemed to be related to edbhrdased on the current domain
understanding. Other evaluation methods such asqeldre, mutual information and
the Bayesian network learned without domain knogggedowever, did not rank this

pair of variables highly. The third top pair of \ables in Table 12 iSRACE-Smokér
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which shows that smoking habits are correlated watte, similar to the research on
the adolescents in the United States of Americ&][16

The fourth top pair of variables in Table 12 BGE-CAD, which is consistent
with common sense: the likelihood of having he@tdse depends on the age of the
patient. Other highly ranked pairs of variablesTable 12 appeared in the learned
Bayesian network with topological domain knowledqgegure 14). It means that the
edges in the learned Bayesian network with domaiowkedge are statistically
significant.

Both Table 12 and Table 13 show th&AD’ is related to smoking habit,
diabetes and race. But how one variable will affecbther is not clear, and the

clinical meaning of these pairs of variables ndadber examination.

Order Variable 1 Variable 2 Occurrences (%)
1 Smoker CAD 500 (100.0%)
2 SEX Smoker 500 (100.0%)
3 AGE CAD 411 (82.2%)
4 RACE Smoker 406 (81.2%)
5 CAD diabetic 401 (80.2%)

Table 12 Top edges learned with bootstrap and tojpagical constraints
Note: The percentage in the Occurrences column srisagnpercent of the edges appearing in the 500
learned Bayesian networks with domain knowledgenfbmotstrap approach.

Order Variable 1 Variable 2 Occurrences (%)
1 CAD Diabetic 462 (92.4%)
2 CAD FDM 443 (88.6%)
3 CAD Hypertension 439 (87.8%)
4 CAD RACE 408 (81.6%)
5 CAD Smoker 402 (80.4%)

Table 13 Top edges learned with bootstrap but nampological constraints
Note: The percentage in the Occurrences column srisa@npercent of the edges appearing in the 500
learned Bayesian networks without domain knowlefdge bootstrap approach.

Figure 15 shows the histograms of the running tiofieBayesian network
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structure learning with and without topological straints. As indicated, the running
time with topological constraints are much shottean those without topological

constraints. The average running time with topalalgconstraints is 65.9 seconds.
Compared to the average running time without togiockd constraints (140.1

seconds), the speed-up of Bayesian network steichkesrning with topological

constraints is more than two times in our experitsien

Histogram of the time learning BNs
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Histogram of the time learning BNs with topological constraints
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Figure 15 Histograms of times taken to learn Bayémn networks with/without domain
knowledge

We notice that the speed-up of the learning proisedspendent on the available
domain knowledge. In our example, there are elexsgrables and one hundred and
ten possible edges (two directions for fifty-fivaigs of variables). The available
domain knowledge in our example is that three Wéemare roots, three variables are
before other eight variables in causal ordering, @me edge is known. Based on such
constraints, there are totally fifty-five forbiddeedges. The Bayesian network
structure space with the constraints was much smaiiich led to the speed-up in
Bayesian network structure learning. If the numloérthe known topological

constraints is different, the speed-up will beetint too.
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4.8 Summary of Hypothesis Refinement

Inconsistency between the learned Bayesian netvasisiomain knowledge is a big
issue in applications of Bayesian networks. Whenldarned Bayesian networks are
consistent with domain knowledge, it will be mucasier for domain experts to
accept the learned Bayesian networks and apply thetheir work. To make the
hypotheses generated from data consistent with kok@owledge, we need to
incorporate domain knowledge into Bayesian netvabri«cture learning.

In this chapter, we have proposed two canonicah&bs to represent qualitative
domain knowledge as topological constraints in Bae networks, and identified
that some topological constraints are important Baryesian network structure
learning, such as roots, leaves and distributialistmguishable edges in the CPDAG
of the original Bayesian network.

The two types of domain knowledge representaticage hdifferent properties.
The rule format is easy for domain knowledge digiin from domain experts.
However, the relationship of a specific pair ofiahles may be specified in several
rules. This repeated information may lead to cotdliin the specified domain
knowledge if the rules are not well-specified. tddion, it is difficult to detect such
conflicts of domain knowledge in the rule formattesnatively, the matrix format is
easy for checking the consistency in domain knogdedind it is easy to apply the
matrix format of domain knowledge in Bayesian netwatructure learning. We
suggest using the rule format to elicit domain klealge from domain experts and

using the matrix format in Bayesian network stroetiearning. To fill in the gap from
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the rule format of domain knowledge to the matxniat, we have proposed the
compilation methods for this purpose.

In our experiments, we combined domain knowledgd wie score-and-search-
based method for Bayesian network structure legrniBxperiments on the
benchmark Asia network show that topological caists can increase the validity of
the learned Bayesian network structure, espeaidilgn the constraint sets consist of
roots, leaves, and distribution-indistinguishaldges in the Markov equivalent class
of the original Bayesian network. The directiontlé distribution-indistinguishable
edges cannot be determined with observational @latee but can be identified with
interventional experiments.

A case study on a real heart disease data showsbtih efficiency and
“meaningfulness” of Bayesian network learning canimproved with topological
constraints. The significance of the identifiededirdependency relationship between
variables is estimated with the bootstrap approdtie direct edges in the learned
Bayesian network with topological constraints agdistically significant, which can

in turn be used as new hypotheses for further aisaly
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Chapter 5 Hypothesis  Verification In
Knowledge Discovery with Bayesian

Networks

In the last two chapters, we have discussed hypwsthgeneration and hypothesis
refinement with Bayesian network structure learnitighe goal of our knowledge

discovery is for causal prediction and control, anajor concern is that these
generated hypotheses are merely some kinds of iassaos and not applicable to
situations with causal prediction. This problenmisre important when we want to
re-engineer the current system to achieve some ceegbefunctions, since the
associations from observational data cannot prowusieful information when the

mechanism of the system changes. To determine wetdtie generated causal
hypotheses are real causal knowledge, we need tify ibe hypotheses with

interventional experiments.

In this chapter, we will discuss causal knowledgavery with interventions,
and consider the situation where multiple dataaimsts are collected in each active
learning step. We propose node entropy and edgepsnfrom the current data to
rank the hypotheses, first propose non-symmetgoéiopy to select hypotheses for
verification and propose an entropy-based critettostop the active learning process.

The results from simulation show that hypothesiec®n with non-symmetrical
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entropy requires minimal interventions to achidwe Bayesian network structure with
the specified structure entropy than hypothesisctiein with symmetrical entropy or
random node selection.

Some significant issues need to be emphasizedfifhassue is the distinction
between observational data and interventional datehether the data is observed
under manipulation (Refer to Section 1.1.4 for d&taThe second issue is causal
knowledge — we adopt the manipulation criterion éausal knowledge (Refer to
Section 1.1.1 for details) and apply it to hypotbegerification in the knowledge

discovery process.

5.1 Background and the Problem

5.1.1Roles of Interventional Data in Bayesian Network

Structure Learning

In the last two decades, there have been manyrobsedforts to learn Bayesian
networks from observational data [38,65,73,86,881%5]. However, with
observational data alone, it is difficult (if n@hpossible) to determine the structure of
causal Bayesian networks. In most of the caseg,aMarkov equivalent class can be
learned from observational data [33], which is sudficient for domains where causal
knowledge is required.

A simple example, in which the causal structurancé be learned from the
observational data, is the model with two variablés and Y. From observational

data, we may conclude that these two variableshigitely correlated. However, we
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cannot determine which variable will affect whiclarsble, even with infinite
observational data.

Figure 16 shows another example where the Bayewamork structure cannot
be reliably learned from observational data. In th@del, the binary variablex,
X,, and X, are independent of each other and all have thgevéatue’ with the
prior probability 0.5. The value of variablX, is determined by the values of,
X,, and X,. If there are one or three variables ¥, X,, and X, with values
“true’, the value of X, is “true” with probability 1.0. If there are zero or two
variables of X,, X,, and X, with values true’, the value of X, is “true” with

probability O.

Figure 16 An example which cannot be recovered fro observational data reliably

P(X:=F)=0.5 PX, = T)=0.5

P(X,=F)=0.5 PX, = T)=0.5

P(X:=F)=0.5 PX; = T)=0.5

P(X,=F | X:=F, X,=F, Xs=F)=1.0 PX=T | X;=F, Xo=F, Xs=F)=0
P(X,;=F | X=F, X,=F, X;=T)=0 PX=T | Xi=F, X=F, Xs=T)=1.0
P(X,=F | X:=F, X,=T, Xs=F)=0 PO=T | Xi=F, X=T, Xs=F)= 1.0
P(Xs=F | X:=F, X,=T, X;=T)=1.0 POG=T | Xi=F, Xo=T, Xs=T)=0
P(X,=F | X=T, X;=F, Xs=F)=0 POG=T | X.=T, Xo=F, Xs=F)= 1.0
P(X=F | X=T, X;=F, Xs=T)=1.0 POG=T | Xi=T, Xo=F, X;=T)=0
PX=F |X=T, X;=T, Xs=F)=1.0 POG=T | Xi=T, Xo=T, Xo=F)=0
PX=F |X=T, X;=T, Xs=T)=0 POG=T | X=T, Xo=T, Xo=T)= 1.0

Table 14 The probabilities associated with Figurda6

In this example, the variables in any true sub-séthe four variables will pass
the independence test. However, when all the famiakles are considered together,

the variables are not independent any more — Theevaf any variable can be
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determined by other three variables. In this calse,true structure of the model
cannot be learned from observational data, eveh imfinite humber of instances.
This is the reason why we need interventional datacausal Bayesian network

structure discovery.

5.1.2Different Interventions

Interventional data can be obtained by manipulatomg or more variables and
observing the effects on other variables in a damhi this chapter, we need to
distinguish different kinds of interventionsnode-based interventions and
edge-based interventions

In node-based interventions we will set the values of some variables by
manipulation and observe the effects on other blagain a domain. When only one
variable is manipulated in a node-based intervantie say that the non-manipulated
variables are the descendants of the manipulateabie if the conditional probability
distributions of these non-manipulated variablesangfe as the effect of the
manipulated variable. Therefore, with node-bas¢erwentions, we can establish the
ancestor-descendant relationships as causal ogdefrthe variables.

From a Bayesian network perspective, manipulatingréable is to mutilate the
Bayesian network by cutting the edges to this Wéian the original structure and
assigning one independent exogenous variable gmitnt. The original parents of
this variable will not affect the probability digtution of this variable anymore. As an

example, the model in Figure 17 will be used flustiration.
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Figure 17 Cancer network

Suppose that variableX, is to be manipulated. The mutilated graph of Fégur
17 in this situation is shown in Figure 18 and ragkependent exogenous varidblés
added as the parent of variabd,. In Figure 18, variableX, is dependent on the
exogenous variable, and will not depend on theimalgparent X, anymore. When
variable X, is manipulated to different values, the probapitiistribution of X,
will change, while the probability distributions other variables will not be affected
by the change of variableX,. From the change of the probability distributidn ¥, ,

we can conclude that variablX, is dependent onX, and is a descendant oX, .

?
OO

Figure 18 A case of the node-based intervention
Note: The small oval represents an exogenous \lariab

Node-based interventions have been explored fowladye discovery with
Bayesian networks recently [121,161]. Another tygfeinterventionsedge-based

interventions has not been explored to our best knowledge. Igedxsed

9 Exogenous variables are shown as small ovalssratid the following examples.
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interventions, the interest is the direct causkti@nship from one variable (say)
to another variable (sap). To verify the direct causal influence relatioipsfrom
variable A to variable B, the values of othen—2 variables need to be fixed in
one of their exponential number of configuratiorysnanipulation, and the value of
variable A is changed and the effect on variallie is observed. If the probability
distribution of variableB changes when variablé is manipulated to different
values under any configuration of other variableariable B is dependent on
variable A in the domain. Since all other variables have ko specific values
by manipulation, there is no indirect path fromighle A to variable B — all
indirect paths via other variables have been bldckethis case, the only explanation
to the change of variabl® is that there is a direct edge from variabde to
variable B, and variable A is a parent of variableB in the causal Bayesian
network. When variableA is determined to be a parent of varialle in any
configuration of other variables, the edge-baséehnention will stop the verification
of direct relationship from variableA to variable B.

If the probability distribution of variableB does not change when variabke
is manipulated to different values under all theafurations of other variables,
variable B is not dependent on variabld, and there is no edge from variabke
to variable B. In summary, the result from an edge-based int¢ime can determine
whether there is an edge from one variable to amothriable.

In the case when there is no edge from variaBleto variable B, the data set

collected in the edge-based intervention is thecefbf variable B when all other
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n-1 variables (including variableA) are manipulated to different vald&sThis
same data set can be treated as the data to ex#mimausal relationship from any
one of then—- 1variables to variableB. Following the strategy in the last two
paragraphs, the parent set of varialide can be determined with such a data set.
For illustration, suppose that the direct causdluamce from variableX, to
variable X, in Figure 17 will be examined with an edge-basedrivention. Figure
19 shows the mutilated graph for an edge-basedvanigdon. From the mutilated
graph, we can find that variableX, is dependent on variableX; in some
configuration of X,, X, and X, and conclude that variabl&X, is a parent of
variable X,. In this case, we can stop the edge-based intgéovefor the causal

influence relationship fromX, to X,.

@

}D

®??
OO

Figure 19 A case of the edge-based intervention
Note: Small ovals represent different independ&agenous variables.

?
©,

For another example, suppose that the causalaesdtip from variableX, to
variable X, is selected for an edge-based intervention. Figze shows the

mutilated graph. In this case, we need to teseffext of X, on variable X, under

2 Note: The concept of Markov blanket in Bayesiatwaeks is not applicable to this situation to
reduce the number of variables to be manipulaiade st this stage, we do not know the structure of
the underlying Bayesian network and the Markov kétrof the variable to be manipulated.
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all possible configurations ofX,, X, and X;. In all the configurations ofX,,
X, and X,, variable X, is independent of variableX;. In the end, we can
conclude that variableX; is not a parent (or a direct cause) of varialde in the
domain.

In Figure 20, we have manipulated variabl¥s, X,, X, and X, to all their
possible configurations to determine whether ther direct edge fromX, to X,.
The data set collected in this step can be use@termine the relationship fronX,
to X,, since variable X, has been changed to different values under all
configurations of X,, X, and X, in the same data set. In this example, we can
determine that variableX, is a parent of variableX, from the data. The same
procedure can be applied to the relationships fatirther variables to variableX,
with the same data. In the end, we can achieveethdt: variablesX, and X, are
parents of variableX,, and variable X, is not a parent ofX,. Therefore, with an

edge-based intervention, we can identify the pasenof the target variable.

i)
©,
T T

Figure 20 Another case of the edge-based intervéon
Note: Small ovals represent different independ&agenous variables.

From causal Bayesian network perspective, the trestil an edge-based

intervention is whether there is an edge from oaeable to another variable. We
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treat the determination of such an edge as one-leaggd intervention. Regardless
whether there is an edge or not, the informatiam loa used as a known edge or a
forbidden edge and added to the topological coimstsat for further causal Bayesian

network structure learning. If all possible edgestween variables have been
determined by edge-based interventions, the resaltsbe combined to build the

complete Bayesian network structure.

Compared with node-based interventions, the adgentaf edge-based
interventions is that it is possible (probably twely method) to verify the direct
causal influence relationship from one variabl@another variable. The disadvantage
of edge-based interventions is that the numberhef dbserved instances can be
exponential, since we need to consider all possdaefigurations of then-1
variables in edge-based interventions. Althouglegponential number of instances
are needed, Fisher [57,59] claimed that complexexpent designs (such as factorial
designs in edge-based interventions) were moreiefti than studying one factor at a
time for causal knowledge discovery.

When we compare the observational experiments,-baded interventions and
edge-based interventions, we can see that nodetin@tseventions are a general case
of the experiments: an observational experimena ispecial type of node-based
interventions without any variable manipulated, amdedge-based intervention is a
special type of node-based interventions with- vdriables manipulated. To
distinguish the different experiments, we will nathe node-based interventions in

the following sections as the experiments witheaist one variable manipulated and
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at most n—2 variables manipulated.

Based on different interventions, we can get theeokational data from
experiments without manipulation, the node-basederwentional data from
node-based interventions, and the causal influesleéionship between two variables

from the edge-based interventions, respectively.

5.1.3Related Work

With different types of data, there are requireragéatcombine them for effective and
efficient causal knowledge discovery. Recently, somew methods have been
proposed to combine observational data with intereeal data for this purpose
[39,47,85,121,161].

Cooper and Yoo [39] examined the assumptions bybaaimg the observational
and interventional data for Bayesian network praiighupdates. They extended the
Bayesian method for observational data by Coopet &erskovits [38] and
Heckermaret al.[87] to the mix of observational and interventibdata. In particular,
when one variable is manipulated to specific valnesome data instances, these data
instances will not be used to update the probasliof the family* in which this
variable is the child variable of the family. Undee assumptions of complete data
and no hidden variables and other assumptions {88]ijkelihood of a data set can be
estimated in a closed form if the Bayesian netvatridcture is known. Yoet al [175]

applied the extension of this method to gene regufapathway discovery with

2L |n Bayesian networks, a family means a partiaicste that consists of a variable and all its
parents.
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simulated observational and interventional micraardata, and generated some
hypotheses of influence relationships between gewid@sh are supported by the
results in the scientific literature.

Sachset al [145] applied Bayesian network structure learningthod to a real
biological domain — the intracellular signaling wetks of human primary naive
CD4" T cells. They conducted real biological experinsettt collect observational
data and node-based interventional data, and apihieemethods from Heckerman
al. [87] and Pe’ert al. [128] to learn Bayesian network structures. A espntative
network with seventeen high-confidence edges wasearh from the average of five
hundred high-scoring structures. After searching literature, they claimed that
fifteen of the seventeen high-confidence edges liesh reported in literature (and
three real edges are missing in their learned tstre)c Then they conducted the real
biological experiments to verify whether the renmagn two edges are causal
relationships, and the experiment results weressitatlly significant. This is a real
success of Bayesian network learning in real apptio, although the selection of the
high-scoring structures and the selection of threstimold for high-confidence edges
are arguable.

Eberhardtet al. [48,49] proved that, under ideal conditions witdusal Markov
assumption and faithfulness assumption (and ideabgbility distributions), the
number of the experiments required to identify ta@sal relationships betweem
variables is n-1 when at most one variable is manipulated each ,tiared

log,(n+1) when multiple variables can be manipulated sinmeitasly.
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Megancket al. [119] assumed that their method starts with theecd CPDAG
from the observational data and determines thetilires of the un-directed edges in
the CPDAG with interventional data. Eaton and Myrgh7] discussed different
kinds of manipulations and proposed uncertain waigtion for Bayesian network
structure learning with interventional data.

Although the effects mentioned above [39,47-49, Htdlieved significant results,
only passive learning is considered in the learmpraressPassive learningworks
with a set of readily available data; the data de#s not change in the learning
process. More interventions and more data are detedachieve the required criteria,

which can be quite expensive.

5.1.3.1 Active Learning

Active learning is a method that samples new data during the ilEanprocess. It
tries to collect new data with the help from théserg data. Typically, its goal is to
reduce the uncertainty in the model. Thereforeyadearning is more effective and
efficient than random sampling, and requires a Enaumber of data instances for
knowledge discovery [35,113,138].

The general active learning framework ([110], p4§€20) is shown in Figure 21.
It starts with some prior information (includingtdaand domain knowledge). Next, it
estimates the probability of each possible obsemwatinder every action, and the
posterior of the selected measure with each obgenvander every action. Then it

estimates the expected posterior loss for evengracThe action with the maximal
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expected posterior loss is selected for an expatinddter the experiment, new data
are collected and combined with the existing datalfe next round of active learning.
In active learning, the action space, the obseyuaspace under each action and the
estimation of the posterior are usually exponeniilk product of these three spaces
is exponential too. Heuristics from domain knowledge needed to reduce the space

and speed-up the learning process.

Start some prior information (including data andndn knowledge)

v

For each possible action

v

Estimate the probability of each possible obseovadifter the action

v

Estimate the posterior with each observation dfteraction

v

Estimate the posterior loss for the action

v

Choose the action with the maximum expected pastkrss

v

Perform one experiment with the chosen action tlectonew data

'

Repeat from the first step until the stopping cigte is satisfied

Figure 21 The general framework for active learniiy

Tong and Koller [161] and Murphy [121] applied thé&ove active learning
framework to guide the experiments to collect weetional data for probability
update in Bayesian networks. In active learning calisal Bayesian networks
[121,161], the learning process starts with an lalbe data set, and the expected
posterior loss of each possible intervention isdus®e a criterion to select nodes for

node-based interventions. Suppose the domainrhdsnary variables. The number
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of possible interventions is3"-2" if the variables can be manipulated
simultaneousi?. If only one variable is manipulated in each inégtion, the number
of possible interventions i2n . When one variable is manipulated to a specHice,
there are 2"" possible observations from othem— Hinary variables. Each
possible observation should be combined with thstiexy data to estimate the edge
probabilities and the structure entropy of the Bigme network. With the structure
entropy, the node with the maximal expected pastéoss is selected for intervention,
and a new data instance is collected. This protmsshe expected posterior loss
estimation and the new data collection can be tegeantil the maximal number of
interventions is reached.

The computational complexity to select one node & intervention is
o(n[12"T), where T is the time to estimate the edge probabilitiesrie situation.
Estimating the edge probabilities need to sum @lepossible Bayesian networks,
which is already a big computational challenge. Tbmplexity of the best approach
currently available to estimate all the edge prdhbms is o(n(02") [97]. The
computational complexity to select one node for iatervention is o(n*02*" )
Monte Carlo method was used to sample Bayesianank$wfor approximate edge
probability estimation in [121,161], but the coryence is very slow.

We have shown that the complexity with one instabeeg collected at an

% |n a manipulation, each binary variable can beria of 3 possible conditions: manipulated to two
different values or not manipulated. Totally, thare 3" possible combinations of manipulations for
n binary variables. The2" cases with alln binary variables manipulated should be excludiedes
there are no observational variables in these aalsieh cannot provide any information for
knowledge discovery.
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intervention is computationally intensive. In regdplications [145], multiple data
instances can be collected during an intervenfltre active learning method based
on expected posterior loss is not applicable totiplal data instances for a few
reasons. First, if only one of the multiple datstamces from each intervention is used
to estimate the expected posterior loss, it willdbevaste of other instances in the
available data. Second, if all multiple data ins&mare considered to estimate the
expected posterior loss, the edge probabilitiesd ntee be estimated 2™
possible observations (assume that there areinstances collected in each
intervention in the domain withn binary variables and only one variable is
manipulated). Monte Carlo method can be used tgpkapossible observations and
possible Bayesian networks for edge probabilitynestion. But a small sample of
possible observations will give a very biased reanld a big sample may not be
feasible in a reasonable time.

The methods mentioned above are not practical, gvarly one instance can be
collected from one intervention. To achieve a t&aestimation of edge probabilities
(or the probabilities of the Bayesian network simoes), many data instances and
many interventions are required. Since interventmisually expensive and needs
more time, the required interventional instancemoabe easily collected in practice.
Therefore, active learning methods based on maltigita instances from one

intervention need to be studied.
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5.1.4The Problem and Our Proposed Solution

The problem to be addressed in this chapter isdémtify the complete causal
Bayesian network structure with observational dataje-based interventional data
and the results from the edge-based interventidresvnultiple data instances can be
collected in each intervention. This is a commorlgn many reverse engineering
areas, such as the biological pathway research.appkcation domain is where we
can collect observational data economically and ramipulate the variables with
more cost for causal knowledge discovery. Sinceemmost will be involved in
interventional experiments, it depends on the appbn’s objective to adopt
interventional experiments for the complete calsglesian network structure. If the
true causal structure is very important, the noaleed and edge-based interventions
are compulsory for causal knowledge discoveryhifobllowing sections, we assume
that the node-based and edge-based interventienmseaded.

Our objective is to minimize the number of intertens, subject to the
identification of the complete causal Bayesian mekwstructure. We will utilize the
available data and topological constraints to gaeehypotheses of causal influence
relationships between variables for interventiofifie data from node-based
interventions will be used to update the probabdgitof hypotheses. The results from
edge-based interventions will be used as topolbgimastraints in Bayesian network
learning. The main challenges in this task ardidly to choose a node for node-based
interventions, or how to choose the pair of vaealdbr edge-based interventions, and

2) when to stop the intervention process.
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We propose a non-symmetrical-entropy-based methsdlect nodes or edges for
new interventions and propose an entropy-baseérionit to stop the active learning
process. Our simulation results show that, on a&egraour non-symmetrical-
entropy-based method requires the minimal numbeantefventions to identify the
complete causal Bayesian networks. For the stoppiiigrion, we found that the
structure entropy is the best method in the sehakethe learned structure is very
similar to the original structure when the learnpi@cess stops. These results are
promising and instructive to many reverse engimgetasks where the goal is to
identify the causal structure in the domain.

The relationships between our work and some rekeffedts are as follows.

5.1.4.1 Relationship to Experiment Design

Traditional experiment design[18] is a discipline that has broad applicatiomoas

all the natural and social sciences. In traditiangleriment design, the experimenters
are interested in the effect of some interventionscertain objects, which are the
hypotheses in the experiments. The objective oeerpent design is to organize the
experiments to facilitate the data collection angpdihesis evaluation. In Bayesian
experimental design [22], the experimenters hawe phior probabilities of the
parameters in the experiment, and try to optimize parameters based on the
expected posterior. In optimal experimental dedi@®], the experimenters try to
optimize the experiment parameters without pridonmation, which is a limiting

case of Bayesian experimental design when theislaafficiently large. In all these
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settings, the experimenters obtain the hypothesie some sources, which is external
to the experiment design process.

In our work, the learning process with data and alonknowledge is to select
significant hypotheses of causal influence relaiops between variables for new
experiments. With the selected hypotheses, we g¢goty araditional experiment
design methods to test the hypotheses. Our wor&dge or node selection is one step
ahead of the traditional experiment design, whial provide more informative
hypotheses to test and make the identificatiorhefdomplete causal structure more

efficient.

5.1.4.2 Relationship to Closed-loop Data Mining

Traditional data mining is usually an open-loopgass [111,112]. After we generate
and deploy the conclusions from data mining methtus data mining process will
usually stop. However, the conclusions from dataimg are not the end of the story.
We need to know the effects of results from dataimgi methods in real applications.
If the results are not good enough, we should &t dnining methods again with the
feedback from the real applications, and verify liypotheses generated with data
mining methods for further improvement. The entlega mining process is repeated
and the closed-loop data mining is required.

In our work, node selection and edge selectionfarénypothesis verification.
The node-based intervention is a way to verify ahosderings in Bayesian networks.

The edge-based intervention is a way to verify airgausal relationships between
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variables. With such verification, the validity lmfpotheses will be improved.

5.2 Assumptions for Applying Active Learning with

Interventions

To apply active learning for causal Bayesian nekwtiscovery with interventions, we
use the following assumptions.

Assumption 1. The underlying causal mechanism in the domairstable. This
assumption requires that observational data arkeatetd from the same system
mechanism and the interventional experiment is wagrbn the same mechanism. If a
causal Bayesian network is used to represent theéhanesm of the domain, this
assumption means that the structure and paramefetse underlying Bayesian
network do not change during the data collectiod experiment periods. This is a
basic assumption for all the research where we nepdated experiments and
observations.

Assumption 2. There is no feedback in the domain. Feedbackleatn to directed
cycles, which are not allowed in Bayesian netwoilksthere are feedbacks in a
domain, it is not appropriate to represent the rapidm in the domain with a general
Bayesian network. Dynamic Bayesian networks havenbproposed to extend
Bayesian networks to the situations with feedb@€k123].

Assumption 3. The underlying mechanism in the domain can beessmted as a
causal Bayesian network. Only under this conditiwa, can apply causal Bayesian

networks to the problem.
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Assumption 4. There are no hidden variables in the domain. @&ksumption is also
known as the causal sufficiency assumption. It reghat all variables are directly
observable. If there are hidden variables, we caohbserve and manipulate them for
causal knowledge discovery, and the causal relstiprbetween hidden variables and
other variables cannot be determined directly. §rmp variables in Section 0 are
hidden variables. So they are not considered shdhapter.

Assumption 5. All variables are atomic and can be directly rpatated. This
assumption means that no variables are logicaltiume of other variables and the
values of the variables can be manipulated direatistead of changed by some
intermediate variables in the domain.

Assumption 6. When there are manipulations on some part ofsthecture or the
values of some variables in a domain, the causahamésm of the other parts in the
system, including structure and parameters, dochahge except the edges to the
manipulated variables and the values of the maaipdl variables. This is the
invariance requirement on the causal relationsbgis/een the manipulated variables
in the domain and other parts of the structure pachmeters. Only under this
assumption, the results from the interventionalegixpents can be applicable to the
original system.

Assumption 7. It is possible to conduct the node-based and-bdged interventional
experiments and observe the effects of the martgulilzariables on other variables.
Assumption 8. The results from the edge-based interventions@merete knowledge

of the examined edges. The result is determinadiaut the edge, i.e., there is an edge
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or not; if there is an edge, the direction of tdgesis also known.

Assumptions 3 and 4 in the list have been discubye@ooper and Yoo [39].
Other assumptions are derived from our understgndindomain knowledge and
commonsense. For the domains where causal knowledgequired and causal
Bayesian networks are the appropriate models, thesemptions are general and
applicable. For example, in agricultural reseakthight [172] was probably the first
to use a graphical model in analysis of crop failuRecently, Sachst al. [145]

applied causal Bayesian network to protein-sigigatiatworks in biological domain.

5.3 Hypothesis Verification with Node-based

Interventions

In this section, we will discuss the node-baseé@rugntion when one variable is
manipulated and multiple data instances can beaelll in each intervention step. In
Section 5.1.3, we mentioned that the previous kot applicable in this situation
due to the computational complexity.

One computationally-intensive problem in previousrkvis to estimate the
expected posterior loss. If one variable is mamifmd and m instances are observed
in one intervention from a domain with binary variables, edge probabilities should
be estimated unde2™™™® possible observations. With the current best nte{83]
for edge probability estimation, the computatiocamplexity is o(n” 02™ "™ ) for
each active learning step, which is infeasible ef@nvery smalln and m. A

possible way to solve this problem is to selectaldes for intervention based on the
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node uncertainty from the current data, rather thiam expected posterior loss
estimation. Our observation is that, when a bigrivegntional data set is collected, the
influence relationship from the manipulated vartatd the non-manipulated variables
can be determined and the node uncertainty from ntfamipulated variable to
non-manipulated variables can be reduced signifigéeven totally). This means that
node uncertainty from the current data can be aseah indicator to select nodes for
node-based intervention.

Another observation is that intervention is non-gyetrical in nature. In an
intervention, we can only manipulate one variable ipair of variables to derive the
causal information between this pair of variabMbether the manipulated variable
affects the non-manipulated variable; we cannoivdethe causal information from
the non-manipulated variable to the manipulatedabée. If both variables are
manipulated, we cannot derive any causal informalietween this pair of variables
from the interventional data.

Therefore, we propose node uncertainty and non-stnical entropy from the
current data for node selection. In this way, tkpomential number of possible
observations for the expected posterior loss esitoimaan be avoided. After a node is
selected for intervention, equal numbers of instangill be collected when this node
is manipulated to different values.

There are two main issues in node-based intervetimode selection criteria
and stopping criteria. Before further discussion, we will discuss sonmeeautainty

measures in Bayesian networks.
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5.3.1Bayesian Network Uncertainty Measures

The intuitive option is to use probabilities of glbssible DAGs to measure the
uncertainty of the Bayesian network structure gitlem available data. In the ideal
condition, the DAG of the true structure has prolitgbl, and other DAGs have
probability 0. However, in practice, we cannot afbtae probability 1 for one DAS,
since the data is not ideal. Even if the dataeslidwe need to enumerate all possible
DAGs to find the optimal DAG, which is infeasiblerfa reasonably large number of
variables, since the number of DAGs is exponemi#the number of variables.
Another option is to measure the uncertainty ohgaair of variables and use the
sum of uncertainties from pairs of variables asdtnacture uncertainty measure. In
Section 3.1.2, we have discussed how to estimatedge probabilities. Suppose that
we have two variablesA and B. There are three possible conditions betwe®n
and B in a Bayesian network: 1) there is an edge frémto B, A - B; 2) there
is an edge fromB to A, A~ B; and 3) there is no edge betweén and B,
A B. With these three conditions, the entropy betweanables A and B is

calculated with the following formula [161]:

H<(AB) =-p(A - B)logp(A - B)
- p(A ~ B)logp(A ~ B) (1)
- p(AOB))log p(A L B)

The entropy of the Bayesian network structure & sbm of the entropy of all

% The Markov equivalent class of Bayesian networksns that some Bayesian networks are
distribution-equivalent and some edges can betlireedirection. Alternatively, manipulation can
determine the direction of edges by experimentd,adinBBayesian networks can be distinguished from
each other by manipulation.
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possible pairs of variables:

Hs(G) = > Hs(AB)

A£B

In an ideal condition, only one of the three coiodit between variable®A and
B is with probability 1 and other two are with proiddy 0. The entropy between
variables A and B will be 0. If all pairs of variables are ideal etlentropy of the
real DAG will be 0.

Another Option for Edge Entropy

In the case mentioned above, the edge entropy betweo variables is
symmetrical. The word “symmetrical” means that ¢uge entropy betweed and
B is calculated with the three conditions betwednand B: A- B, A~ B
and ALB. The conditionsA - B and A — B are treated equally. In this case,
when a pair of variables are selected with higlrogyt it does not tell us which
variable to manipulate:A or B.

To know which variable to be manipulated, we needistinguish the conditions
of A- B and A~ B for edge entropy calculation. We propose to cakeuthe
entropies of the two situations separately.

Hys(A - B) =-p(A - B)logp(A - B) - (1~ p(A - B))log(l- p(A - B)) (2)

To distinguish these two entropy definitions, w# @& one in Formula (1) with
three edge conditions agmmetrical edge entropy and the one in Formula (2) with
two edge conditions ason-symmetrical edge entropy The non-symmetrical edge
entropy is from the observation that interventismon-symmetrical in nature.

Estimating the edge probabilities is important &mlge entropy calculation in
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active learning. In the previous active learningkjd21,161], edge probabilities are
estimated approximately with Markov Chain Monte IBdMCMC). In this section,
we propose to estimate the edge probabilities aitlexact method by Koivisto [97],
since the exact edge probabilities can provide rateuinformation. When the
interventional data is combined with observatiodalta, the instances with the
manipulated variable will not be used in calculgtihe probability of the family with
the manipulated variable as the child (the asswnptand the method can be referred

to Cooper and Yoo [39]) .

5.3.2Selecting Nodes for Node-based Interventions

We propose to choose the node with maximal nodertedaty for intervention. The
node uncertainty between a variable and all therotariables can be estimated from
edge entropy.
Hys(A) = EB: H\s(A B) 3)
Hs(A) =EB:HS(A. B) (4)
Where H(A,B) and H (A B) are defined in formulas (1) and (2). Similar to
edge entropyH (A B )and H (A B), we refer to H(A) asnon-symmetrical

node entropyand H¢(A) assymmetrical node entropy

5.3.3Stopping Criteria for Causal Structure Learning

Another main practical problem in applying Bayesragtwork learning for causal

knowledge discovery is when to stop the learniragess — when do we think that the
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learned causal Bayesian network is good enough?

The intuitive way is to choose the number of inggons as the stopping
criterion. The disadvantage of this approach istiirere is no guarantee on the quality
of the learned Bayesian network structure. We mgepim use certain “acceptable”
entropy of the learned structure as the stoppintgron. The ideal entropy of the
learned structure is 0; however, it is difficult teach in practice. We consider the
effects of the different entropies from the learsédicture as the stopping criteria on

the accuracy of the learned structures.

5.3.4Topological Constraints

In practice, we may have domain knowledge which banused as topological
constraints in causal Bayesian network structuaeniag, as discussed in Chapter 4.
In Koivisto’'s method [97] for edge probability esttion, the families of variables
will be set as impossible ones if some correspane@idges are not allowed in the

topological constraints.

5.3.5Experiments for Node-based Interventions

The proposed method has been tested in experimetitsfive different Bayesian
networks: two Bayesian networks created by ourse(@udy network and Cold
network), and three benchmark Bayesian networks usedcfibrealearning in Tong
and Koller [161] (Cancer network, Asia network, abdr network). Cancer network

has five variables (Figure 17), Asia network haghevariables (Figure 12), and Car
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network has twelve variables for car trouble-shuptirespectively. Our Bayesian
networks (Study network and Cold network) are shanvkigure 22 and Figure 23,
and the corresponding hypothetical CPDs are ineTabland Table 16, respectively.
Study network and Cold network have the canonitattures of Bayesian networks,
and the direction of the edges in these two netsvarknnot be learned with

observational data alone, even with infinite numiifeénstances.

CO—()

Study hard Good mark

Figure 22 A hypothetic Study network

P(X1=F)=O.2 PK]_ = T)=08
P(X2=F |X1=F)=06 P(X2=T |X1=F)=O4
P(X2=F |X1=T)=02 P(X2=T |X1=T)=08

Table 15 The corresponding CPDs of Study network

aving a cold

Runny nose Headache

Figure 23 A hypothetic Cold network

P(X,;=F)=0.7 PX. =T)=0.3
P(X=F |X;=F)=0.95 P(X=T | %;=F)=0.05
P(X,=F |X,=T)=0.1 POG=T [ X,=T)=0.9
P(Xs=F |X;=F)=0.92 P(X=T | %;=F)=0.08
P(Xs=F | X;=T)=0.75 P(X=T | X,;=T)=0.25

Table 16 The corresponding CPDs of Cold network
The experiment setup is as follows and the flowtcisashown in Figure 24:

1) Choose a Bayesian network from Cancer network, Asfiaork, Car network,
Study network, or Cold network as the ground tB#éyesian network;

2) Sample a data set with N_obs observational instaificen the ground truth
Bayesian network;
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3) Estimate the edge probabilities, node entropy andcture entropy with the
available data (and domain knowledge, if any);

4) Check the stopping criterion. If the stopping aitie is satisfied, stop the
learning process; otherwise, continue;

5) Select one node for intervention based on theraite formula (3) or (4),
random node selection for intervention, or withmanipulated node; and

6) Generate a new data set with N_int interventiomatances from the ground
truth Bayesian network with the selected variabtenipulated to different
values; return to step 3).

Select a Bayesian network as the ground truth

v

SampleN_obsobservational instances
from the ground truth

y

Estimate edge probabilities, node entropy < SampleN_intinterventional
structure entropy from the available data instances from the ground truth
A
S
Select a node for intervention
Yes
Finish

Figure 24 Flowchart of active learning with node-lased interventions

In the experiments, the uniform prior is used foarkbv equivalent classes as in
Heckermanet al [87] to create the structure prior. The edge philties are
estimated by Koivisto’s exact method [97] with teension to the combination of
observational and interventional data as discuss€mboper and Yoo [39]. The size of
the initial observational dafd_obsis set to 20, and the size of the interventiorshd
in each interventiol_int changes from 1 to 200 instances. Such size offdatach
intervention is more realistic than an ideal praligb distribution required in
Eberhardet al.[49].

Two different stopping criteria are tested in oxperiments - the number of

interventions and the structure entropy of therledrBayesian networks. Different
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numbers of interventions have been tested as stgmpiteria in our experiments. The
maximal number of total interventional instancesasto 1000 for Study network and
Cold network, 2000 for Cancer network and 5000Asia network and Car network.
There are two reasons to set the maximal numbtatalf interventional instances: 1)
after trying different numbers of the total intemtienal instances, we found that the
structure entropy of the learned Bayesian netweoeks converge with the specified
number of interventional instances from non-symioakentropy-based node
selection in our experiments; and 2) we had obsethat the learned Bayesian
network would not reach certain small structureat when node selection is based
on symmetrical node entropy, even if a very largeadset is sampled. The maximal
number of interventional instances is used to stegp learning process when the
structure entropy is used as the stopping criteria.

Besides node selection with symmetrical node egteoya non-symmetrical node
entropy, we consider random node selection forwetgion and consider the situation
without manipulation (i.e., there is no manipulatediable in new data collection at
each step, and the data is observational data).

When one variable is selected for intervention,atiges pointing to this variable
will be removed from the ground truth Bayesian ratwand this variable will be
manipulated to specific values. The values of otfagiables are sampled based on the
Bayesian network structure and the original conddl probabilities. In addition, one
variable can be selected for more than one rount@fvention in the active learning

process.

135



In our experiments, we have tested: 1) which metlkeqgdires the minimal number
of node-based interventions to achieve requiredctire entropy? 2) what are the
relationships between the number of interventiond the entropy of the learned
structure? 3) what is the relationship between rthenber of interventions and
Hamming distance between the learned structure thadground truth Bayesian
networks? 4) which stopping criterion can achievaracture with smaller structure
entropy?

The experiments show that non-symmetrical entrgpjne best method for node
selection to learn causal Bayesian networks wighrttinimal structure entropy. The
conclusions from different Bayesian networks arailair, and the results from the
different sizes of interventional data from eachefivention are similar. In the
following section, the results will be demonstrateith Cancer network with the size
of the interventional data as 200. More resultdiated in Appendix A.C.

We first used the original conditional probabiltien the Bayesian networks for
test. To examine whether the results from the $ipevalues of the conditional
probabilities in the original Bayesian networks chea generalized to different
conditional probabilities, we conducted experimenith the same Bayesian network
structures but with randomized conditional probabd. The conclusions from the
experiments with the randomized conditional prolizds are similar to the results
with the original conditional probabilities. In tHellowing sections, we will only

discuss the results from the original conditionalgabilities.
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5.3.5.1 Number of Interventions vs. Structure Entropy

In the first experiment, we tested the relationdiepveen the number of interventions
and the entropy of the learned structures. Thectifageis to show how the entropy of
the learned structures varies with the differentnbar of interventions. In the
experiment, we found that, in order to reach srmatlicture entropy in the learned
Bayesian networks, the required number of intereestis dependent on the number
of instances to be collected in each interventidre maximal number of intervention
is set to the division of the total instances ar&riumber of instances to be collected
in each intervention. For Cancer network, the makinumber of interventior$ is
set to 6 when the size of the interventional dat200 in each active learning step.
The programs ran eight hours and finished 608 tedeaxperiments on the
Cancer network (about 48 seconds for one experjmé&he results are shown in
Figure 25, where the lines represent the changkeofverage structure entropy with
the number of interventions. Figure 25 shows tivath the same number of
interventions, node selection with non-symmetricalde entropy can derive a
Bayesian network with the lowest entropy (also witle smallest variance) on
average, which means that the structure learndd mah-symmetrical node entropy

has less uncertainty. This is consistent with oyreetation, since the interventions

4 The maximum number of interventions depends omtheber of variables in the domain and the
conditional probabilities. In the Cancer netwoHe maximum number is set to 6 when the size of the
interventional data is 200 in each active learrsitep.

% We distinguish between the terms “interventiont &experiment” here. “Intervention” means to
manipulate some variables and observe the effectstiter variables. “Experiment” means to run the
method for testing.
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are non-symmetrical in nature and the interventialzda can provide more causal
information about the probabilities between the ipalated variable and

non-manipulated variables. If there is a real ddg® the manipulated variable to one
non-manipulated variable, the probability of thidge should increase with the

interventional data, and the non-symmetrical entraizhis edge will decrease.

# of interventions vs. struct Entropy

—8—non-sym entropy

=o=-sym entropy
random

-k observational

structural entropy

1 2 3 4 5 6
# of interventions
Figure 25 Number of interventions vs. average striure entropy of the learned Bayesian
network from Cancer network
Note: The “non-sym entropy” and the “sym entropgfer to node selection with non-symmetrical nodeogy
and symmetrical node entropy defined in formul3dsa(® (4). “Random” refers to random node selediion
node-based interventions. “Observational’ meang obervational data used in the learning. The demes are
used in the later figures of this section.

The highest structure entropy is derived from okegonal data when the same
number of data instances is collected at each Step. entropy of the Bayesian
network structure learned with the random nodectiele and node selection with the
symmetrical node entropy fall between those of thede selection with
non-symmetrical node entropy and the observatidat.

The significance of the structure entropy differemérom different node selection
measures was evaluated by one-sided t-test. Tlaups/between the entropy of the
learned Bayesian network structure from non-symicatmnode entropy and other

methods are all smaller that0™°. This means that the structure entropy from node
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selection with non-symmetrical entropy is signifidg smaller than others.

From Figure 25, we have a surprising observatiorhellVthe number of
interventions is smaller than 6 in the Cancer nétwthe entropy of the learned
structure with nodes selected from the symmetmecale entropy is lower than that
from random node selection. When the number ofvetgions is equal to or greater
than 6, the entropy of the learned structure byersmlection with symmetrical node
entropy is higher than that from random node sgectit means that, in the first
several interventions, symmetrical node entropyedsl the nodes to reduce the
structure uncertainty significantly when compareihwandom node selection.
However, when the number of interventions is gme#tan or equal to 6, the leaf
nodes (nodesX, and X. in Figure 17) are always selected by symmetricalen
entropy. The data with leaf nodes as manipulateksean reduce the probabilities of
the edges from the leaf nodes to other nodes.tBeiata cannot provide information
about the causal influence relationships from othedes to the leaf nodes. The
uncertainty of the leaf nodes calculated from symniced node entropy can still be
quite large. However, the random method may seldwér nodes for intervention,
which could generate subsequent interventional détia more causal information
about the edges from other nodes to the leaf né@lesh information will reduce the
total structure entropy.

Figure 25 also shows that, with more interventifmgich means more data), the
entropy of the learned structure decreases withthallnode selection criteria. The

entropy of the learned Bayesian network structweeegally decreases more in the
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first few interventions. In the later stages, tha@py of the learned structure seems to
converge to certain values. These results are gkeaeross all the Bayesian networks

tested.

5.3.5.2 Number of Interventions vs. Distance of the Learned

Structure to the Ground-truth Bayesian Network

In this experiment, we compared the learned strastuith the ground-truth
Bayesian networks. The difference between the éshstructure and the ground truth
iIs measured with Hamming distance. Figure 26 shtves node selection with
non-symmetrical node entropy leads to the smatlestage Hamming distance to the
ground truth, as compared with other methods fatenselection. With 6 or more
interventions when nodes are selected by non-syricakenhode entropy, the average
distance is 0 and the variance is near 0 with Ganeevork. The variances of the
Hamming distances from the symmetrical node enti@py observational data only
are quite high (about 0.55 and 0.33, respectivéypddition, Figure 26 shows that
the average Hamming distance decreases with theeruoh interventions. With more
interventional data, the average distance fromaamed structure to the ground truth
will be smaller.

From Figure 25 and Figure 26, we can observe thlaén the number of the
interventions increases, the structure entropy eqes to a certain low value with
either node selection with non-symmetrical nodeagyt or random node selection.

The reason is that, the true causal Bayesian nktatoucture can be identified with
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sufficient interventional data from any node satetimethod. We note that, however,
when the number of interventions is small, non-swtmmwal node entropy could
outperform all other methods for node selectiomgtive learning. The difference in
performance could be significant in applicationsevéhonly a few interventions are
feasible. For example, in practice there are resuonstraints (time, cost, and man
power) in biological experiments, and we may onbnauct a small number of

interventional experiments to collect data for euslationship verification.

# of interventions vs. distances to the ground truth

—B—non-sym entropy

==-3ym entropy
random

- observational

average distances to the ground truth
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“"*. .......................... *
2 3 4 5 g

# of interventions
Figure 26 Number of interventions vs. average Hamimg distance from the learned Bayesian
network structure to the ground truth Cancer network

5.3.5.3 Structure Entropy vs. Distance of the Learned

Structure to the Ground-truth Bayesian network

In practice, we do not know the structure of theertying Bayesian networks in the
domain, and cannot use the Hamming distance fraenleéarned structure to the
ground truth structure as the stopping criterigansal Bayesian network learning. A
different strategy is needed to stop the learnmggss. This experiment will examine
the relationship between the structure entropy thiedHamming distance from the

learned structure to the ground truth Bayesian ogtwFigure 27 shows how the
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entropy of the learned structure approximates tieeage Hamming distance from the
learned structure to the ground truth. When theoent of the learned structure is
small, the average Hamming distance is also smwaiich means that the entropy of
the learned structure is a good approximation efdistance of the learned structure
to the ground truth Bayesian network and can bd asea stopping criterion for the

structure learning.
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Figure 27 Relationship between average structureneropy of the learned Bayesian network and

the average Hamming distance to the ground truth Cacer network

5.3.5.4 Structure Entropy as Stopping Criterion

In the subsequent experiment, we tested the effethe structure entropy as the
stopping criterion. Figure 28 shows that, with synametrical node entropy as the
node selection criterion, the program can reachrélg@ired structure entropy with
fewer interventions. When the manipulated nodeelected with symmetrical node
entropy, a large number of interventions are needibd results from observational
data do not show in Figure 28, as the program wlitbervational data cannot reach
the required structure entropy in the maximal stdjmsved in this set of experiments.

Appendix A.C shows more results when structureopytis used as the stopping
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criterion. One observation from these results iat,thwhen the size of the data
collected from one intervention is bigger, the perfance of node selection with
non-symmetrical entropy is better. This is consisteith our expectation: a data set
with more instances from one intervention can redtite uncertainty from the
selected node to other nodes the most, and fewsventions are needed to achieve
the required structure entropy. If the data sdectdd from each intervention is small,
the change of the structure uncertainty with thes mata will be limited, and the
performance of node selection with non-symmetragglopy could be similar to the

performance of random node selection.
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Figure 28 Structure entropy vs. number of interverions required from Cancer network

5.3.5.5 Comparison with the Expected Posterior Loss Method

For comparison purpose, we have implemented théadebased on the expected
posterior loss [121,161]. The expected posteriss lconsiders possible interventions
and possible observations after interventions dnadilgl give better structure entropy
with the same number of interventions theoreticdlyt it will take a very long time

to estimate the probabilities of possible obseovetiand the edge probabilities under

different observations, as we mentioned in the rb@gg of this section. In our
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implementation, the expected posterior loss islambo that in Tong and Koller [161]:
we sample the orderings of variables from the currdata and estimate the
probabilities of possible observations. The edgiabilities are estimated with both
the exact method by Koivisto [97] and MCMC methétperiments show that the
MCMC methods take more time to converge to the gibdlties estimated with the

exact method. So, only the edge probabilities ftbenexact method will be discussed
here.

We have tested our method with Study network anttl @etworK®. In the
experiment, the number of instances collected feaich intervention is set to 1 when
the selected node is manipulated to a distinct evalbue to the computational
complexity, the multiple data instances from eaxthrivention are not tested.

Figure 29 shows the results from Study networkuf@?9 (a) shows that all the
methods with interventional data can reach theiredqustructure entropy with smaller
than 50 interventional instances, while the obdemal data alone cannot reach the
requires structure entropy with the maximal insésnallowed. Figure 29 (b) shows
the detailed results from the node selection methwaith interventional data. In this
example, node selection with the expected posterss requires the minimal number
of instances to reach the structure entropy onaaeer The method next to the
expected posterior loss is node selection with syonmetrical entropy. Node
selection with symmetrical entropy and random naeééction requires a larger

number of instances to reach the required struaotepy. Figure 29 (c) shows the

% We have tried with Cancer network, but the progcamnot finish one experiment in 12 hours.
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average running time the different methods sperd. d&h see that the expected
posterior loss requires much more time than othethods for node selection. The

time for observational data converges when the makinumber of instances is

reached.
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Figure 29 Comparison of different node selection athods for intervention on Study network
5.3.5.6 Positive Findings in Subsequent Interventions

In the final experiment for node-based intervergjone considered the situation with
resource constraints. In the previous experimediies, objective is to identify the

complete causal structure with multiple intervensia@and we have enough resources

to reach this objective. In practice, there areallguresource constraints for
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interventions, and sometimes we can only conduetioterventional experiment. In
this case, we may hope to get a positive findingrie interventional experiment,
where a positive finding means that there is reallyausal relationship between the
manipulated variable and one of the non-manipulatedbles.

The problem in this experiment is defined as foBowgiven the available data,
domain knowledge and resource constraints, whtedikelihood to get a positive
finding in a single interventional experiment? histcase, we assume we can only
conduct one interventional experiment. This probleas not been considered in any
previous active learning work with Bayesian netvgofk21,161], since one instance
collected from an intervention cannot change tlababpility of the hypotheses much.
A positive finding is only possible when a dataiseatollected from one intervention.

There is no guarantee to obtain a positive findm@ single intervention, but
some strategies are available to increase the ehfmca positive finding. In the
experiment, we generated the observational datairgedventional data randomly
first. Then, we sampled the possible edges in tageBian network as topological
constraints with probabilities 0.1, 0.2, 0.3 andl Gespectively. We estimated the edge
probabilities with the available data, and chose phrent node of the edge with the
highest probability as the node to be manipulatée.repeated the experiments 1000
times in the different scenarios.

The results show that in 98.5% cases and aboveediges with the highest
probability from the available data and the knowdges (as domain knowledge) are

the true edges. It empirically shows that the edgés the highest probability are the
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best choice for a positive finding if we have raseuconstraints and only can conduct

one interventional experiment.

5.3.6Discussion

In this section, we propose an active learning ratlgm for causal Bayesian network
structure learning when multiple data instancescaikected from one intervention.
The current node entropy is used to select nodemfervention, not the expected
posterior loss in Tong and Koller [161] and Murdhg1]. Therefore, there is no need
to consider the exponential number of possible masens after each intervention,
and the algorithm can be sped up.

Non-symmetrical entropy is proposed for node silecsince the intervention is
non-symmetrical in nature. The experiment resul®ws that non-symmetrical
entropy is much better than symmetrical entropyalinthe cases, and better than
random node selection when more instances are sdnmiplone intervention. The
performance of node selection with non-symmetrgmatropy is comparable to the
random node selection sometimes when one instarsampled from an intervention,
which is consistent with Murphy’s observation inrGetwork [121]. The possible
reason is that when one instance is collected frmme intervention, limited
information is provided by this instance.

Tong and Koller [161] considered domain knowledgd anly root nodes in the
domain were manipulated in active learning, whilleeo nodes could be selected in

random node selection. From manipulation criterdowl our experiment results, we
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know that the manipulation on the leaf nodes canpralvide sufficient causal
influence information from the leaf node to othedas, while the manipulation on
the root nodes can be used to establish the caudafing between the variables.
Although root nodes can be known from domain kndgéein some domains, the
reported results with only root nodes manipulatedTong and Koller [161] are
biased.

L1 edge error is used in Tong and Koller [161] laes goodness criterion of the
learned structure, which requires the knowledgethe true Bayesian network
structure. This is suitable for a simulation, bat for a real application. This is why
we choose the structure entropy as the criteriogeveduate the quality of the learned
structure. Experiments show that the structureopgtis a good approximate to the
Hamming distance from the learned structure togtieeind truth, and can be used as

the stopping criterion.

5.4 Hypothesis Verification with Edge-based

Interventions

In some situations, we need the concrete knowledgausal relationships between
variables, such as the situations for system réneegng. However, the concrete
causal knowledge cannot be achieved with obsenatialata and node-based
interventional data sometimes, especially when reg¢wariables interact together to
affect one variable. In this case, we need edgeebasterventions to verify the

relationships between the variables. In this sactwe try to identify the complete
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structure of causal Bayesian networks in a domaithn whe minimal number of

edge-based interventions.

5.4.1Active Learning with Edge-based Interventions

Active learning with edge-based interventions staith a data set (possibly with
observational data and node-based interventiorta) @md the capability to conduct
edge-based interventions. The data (with topoldgicastraints, if applicable) is used
to estimate edge probabilities, edge entropy andtstre entropy. One edge is chosen
with certain criterion for an edge-based intervemtiand the edge-based intervention
determines whether there is a causal influencéioakhip from the parent node to the
child node in the selected edge. The result oktlge-based intervention is combined
with the available topological constraints for dreat round of edge probability
estimation. The learning process will repeat utlitd stopping criterion is satisfied.
The process is summarized in Table 17 and the flawgs shown in Figure 30.

In the second step of the process, we apply Kaigistxact method [97] to
estimate the edge probabilities with the availalalita and topological constraints. The
edges are predicted as the learned &dgeken their probabilities are greater than
0.5. In the following steps of the learning proceaksre are two challenges similar to
those for node-based interventions. One challesd@w to select a pair of variables
for an edge-based intervention. Another challesgehen to stop the learning process.

In the following two sub-sections, we will discubgse two challenges in detail.

" predicting edges from edge probabilities is déferfrom the complete Bayesian network structure
learning.
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Input of the algorithm:

1) A data set (possibly with observational data andl@ibased interventional
data); and

2) The set of topological constraints (can be emptthenbeginning), which cal
be from domain knowledge or from edge-based inttiomes.

o}

Output of the algorithm:

1) Intermediate results: the chosen edges for the esmEnt edge-based
interventions;

2) The results of the edge-based interventions facsed hypotheses; and
3) The final result: the structure of the causal Bagesetwork.

Set the initial topological constraint sét(can be empty)

Learn edge probabilities with the data and the tog@al constraint se€

Check whether to stop the learning process

P w0 N B#

If not, select an edge for an edge-based intergantAssume the result of the
edge-based intervention as E. SEf ] E - C, and return to step 2

5. If yes, stop.

Table 17 Active learning of Bayesian networks witledge-based intervention

Set the initial topological constraint setC

h COE-C
Learn edge probabilities with data a@d T
Result E from Edge-

based Intervention

No T
Select an edge for edge-

Yes based intervention

End

Figure 30 Flowchart of active learning with edge-ased intervention

5.4.2Edge Selection for Edge-based Interventions

The objective of edge selection is to choose thgedtat is most informative for
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causal knowledge discovery with edge-based intdimes After we determine the
relationship between the chosen pair of variabiles, uncertainty of the Bayesian
network structure is expected to reduce the most.

Edge selection can be determined by the expectsténar loss from decision
theoretical approach. In a domain with variables, there are* (n—-1) edges and
the expected posterior loss from every edge neebs estimated for edge selection.
Due to the computational complexity, the expectedtgrior loss for edge selection
will not be considered.

We will use the edge entropy as the criterionddge selection. In Section 5.3.1,
we have discussed two ways to measure the edgetainties: symmetrical edge
entropy in Formula (1) and non-symmetrical edgeagytin Formula (2). The reason
to use edge entropy from the available data andlagral constraints for edge
selection is as follows. When we perform edge-baseaiventions on two variables,
we will manipulate one variable and observe theatfbn another variable. Suppose
we manipulate variableA in a pair of variablesA and B in the edge-based
intervention.

1) When the edge-based intervention tells us therietis really a directed edge
from A to B (A - B), the probability p(A - B ) will be 1 and the probabilities
of other two conditions betwee and B will be 0. In this case, the edge entropy
between A and B will be 0, and the total entropy of the DAG widlduce with the
amount of the entropy betweed® and B estimated before the edge-based

intervention.
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2) When the edge-based intervention tells us thextetis no directed edge from
A to B, the probability p(A - B) will be 0 and the probabilities for other two
conditions betweenA and B will change. In this case, the edge entropy betwee
A and B may not be 0, and we are not sure about the chafripe total entropy.

We have tried the following methods to select edgesdge-based interventions.

1) Random edge selection. This is a straightforwarthoteto select an edge for
an edge-based intervention.

2) Edge selection based on chi-sqdarealues between any pair of variables
from the available data. The uncertain edge withttighest chi-square value
will be selected for an edge-based intervention.

3) Edge selection based on mutual information betwa®y pair of variables
from the available data. The uncertain edges with highest mutual
information values will be selected for an edgeedastervention.

4) Random selection of edges from the learned Bayewm#nork with the data
and topological constraints. If all the edges ia lbarned Bayesian network
have been determined by edge-based interventiomsyiv randomly select
one uncertain edge.

5) Edge selection based on symmetrical entropy asiméa (1). The edge with
the maximal edge entropy will be selected for ageeldased intervention.

6) Edge selection based on maximal non-symmetricabpytas in Formula (2).

7) Edge selection based on the edge with the highres@apility from the data

% Refer to Appendix A for a brief description of eltjuare and mutual information.
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and topological constraints.
Our experiments show that edge selection with ryonrsetrical entropy requires the
minimal number of interventions to identify the drstructures of the Bayesian

networks (refer to Section 5.4.4 for details).

5.4.3Criteria to Stop the Learning Process

A stopping criterion is used to evaluate the ledrBayesian networks, and decide
whether to stop the learning process. In the sitimulatest, we can compare the
learned Bayesian network with the ground-truth Bee network and stop the
learning process if the learned Bayesian netwoitkessame as the ground-truth. In
practice, however, we do not know the true strectifrthe Bayesian networks, and
cannot compare the learned Bayesian networks whth underlying Bayesian
networks (If the underlying Bayesian networks anewn, there is no need to learn
the Bayesian network structure). In this case, wednsome strategies $top the
learning process.

The possible strategies to stop the learning peoees: 1) when the maximal
absolute edge entropy is small enough; 2) whemtée@mal relative edge entropy is
small enough; and 3) when there is no change indgamed structure for several

iterations.

5.4.4Experiments for Edge-based Interventions

We conducted experiments for hypothesis verificatioth edge-based interventions
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on four Bayesian networks: two Bayesian networksatd by ourselves (Study
network and Cold network), and two benchmark Bayeshetwork$® (Cancer
network and Asia network). These Bayesian netwinglside the canonical structures
and the results can be generalized to other Bayesitaorks.

In the simulation experiments, the results of tllgesbased interventions are
obtained from the ground-truth Bayesian networkisese results will be used as
topological constraints in the next round of therihéng process.

The performance of the learning process is measwyréle following criteria:

1) The number of interventions required;

2) The number of correct edges identified in the fiearned Bayesian network;

3) The Hamming distance between the final learnedcttrea and the original
Bayesian network;

4) Product of (#Interventions+1)*(HammingDistance+®here #Interventions
means the number of interventions required in #mling process. We
proposed this measure to combine the number ofvenéons required and
the Hamming distance from the learned structureéhto original Bayesian
network structure. The addition of one to eachal#e is to avoid the situation
when one variable is 0 and the product is 0. Thallemthis measure, the

better the learning strategy.

2 Car network is not used since the experiment dgiimmish in a reasonable time.
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5.4.4.1 Best Strategy for Edge Selection

In the first experiment, we tested the edge s@erdtrategies until the learned process
identifies the ground truth structure. The expenimeetup is: Given a known
Bayesian network, we sample data instances frongitren Bayesian network as the
observational data, and apply the active learniggrahm described in Section 5.4.1.
When a Bayesian network is learned from the avi@lalbservational data and the
topological constraints, we will compare it withetigiven Bayesian network. If two
Bayesian networks are the same, the learning postsps and the number of
edge-based interventions conducted will be recqordéterwise, the learning process
will continue.

We ran the program on Study network for two minwtéh 261 experiments, on
Cold network for two minutes with 152 experimentsy Cancer network for six
minutes with 155 experiments, and on Asia netwook fwo hours with 76
experiments. The medians and averages of the eghedge-based interventions from
different methods are shown in Table 18 and TaBle 1

Table 18 and Table 19 show that, for Cancer netvasrét Asia network, the
required interventions by edge selection with symniced edge entropy, non-
symmetrical edge entropy, and edges with the higpesbability is much smaller
than those by random edge selection, chi-squareeyvahutual information and
random selection from the learned edges. For Shathwork and Cold network, the
required number of edge-based interventions islainin different edge selection

strategies, since these two networks are very siaadl only one or two edge-based
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interventions are needed.

) Study Cold Cancer Asia
Bayesian network
network | network | network | network | Average
# data sets generated 261 152 155 74
Random selected edges 1 2 6 39.5 12.1p5
Chi-square 4 37 11
Mutual information 4 41 12
Randomly learned edge 1 2 4 36.5 10.875
Max symmetrical entropy 1 1 6 25.5 8.375
Max non-symmetrical entropy 1 2 4 28 8.75
Edge with the highest proh 1 2 4 27 8.5

Table 18 The median o

f the interventions requiredo identify the true structure

) Study Cold Cancer Asia
Bayesian network
network | network | network | network | Average
# data sets generated 261 152 15% 76
Random selected edges 0.99 1.73 6.7 39 12.105
Chi-square 0.99 2.07 6.64 35.2 11.225
Mutual information 0.99 2.07 6.86 39.95 12.4675
Randomly learned edge 0.99 2.28 5.68 34.46 10.8525
Max symmetrical entropy 0.99 1.49 6.34 23.78 8.15
Max non-symmetrical entropy 0.99 1.62 5.23 26.0p 4785
Edge with the highest prob 0.99 1.72 5.23 27.22 79 8.

Table 19 The average of the interventions requiretb identify the true structure

Among edge selection strategies, the random edigetiom does not use any

available information from data and domain knowkdghe chi-square and mutual

information only measure the pair-wised dependdretween variables from the data.

They do not consider other variables in the domaa, cannot take advantage of the

information from other variables and the availaioleological domain knowledge for

edge selection, such as the acyclicity constramayesian networks. This is why

these methods cannot compete with the entropy-basé#abds for edge selection.

After this preliminary experiment, we will keep tf@lowing three edge selection

methods for further testing: 1) symmetrical edgea@y; 2) non-symmetrical edge
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entropy; and 3) edge with the highest probabiliyd will not consider other edge

selection strategies anymore.

5.4.4.2 Best Strategy for Edge Selection and Stopping

Criterion

In this experiment, we tested the full learning q@ss with edge selection and
stopping criterion. The results from different netlis are summarized in Table 20,

Table 21 and Table 22.

) Study Cold Cancer| Asia
Bayesian network
network | network | network | network | Average
# data sets generated 47( 241 345 161
Edge selection Stopping criterion
) Absolute entropy 1 2.84 10.81 34.64 12.32
Symmetrical -
entro Relative entropy 1 2 6.41 9.64 4.74
Py No structure change 1.51 3.6 5.03 4.09 3.56
) Absolute entropy 1 2.88 10.64 35.5p 12.53
Non-symmetrical - -
entrop Relative entropy 1 2.05 4.89 10.36 4.58
y No structure change 1.48 3.59 5.24 4.73 3.76
i Absolute entropy 1 2.63 9.43 33 11.5p
Edge with th -
. Relative entropy 1 2.33 4.38 8.27 4.00
highest prob
No structure change 1.47 3.91 4.46 3.82 3.42

Table 20 Average interventions required in activdearning of Bayesian network structure

On average, three edge selection methods requie siimilar number of
edge-based interventions to reach the requiredpstgpcriterion. The stopping
criterion based on the absolute entropy requiresmiximal number of edge-based
interventions to achieve the stopping criterion,ilevihe learned structure has the
minimal Hamming distance. The stopping criteriorsdzh on no structure change
requires the minimal number of edge-based interoestto stop the learning process,

and the average of (#interventions+1)*(Hamming atise+1) is the smallest.
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Therefore, different stopping criteria have differeeffects. If there are resource
constraints, the stopping criterion with no struetohange is preferable. If the correct
structure of the domain is more important, the iiog criterion with absolute

structure entropy is desirable.

Study Cold Cancer| Asia

Bayesian network
network | network | network | network | Average

# data sets generated 47( 241 345 161
Edge selection Stopping criterion
) Absolute entropy 1 0.48 0.08 0.27 0.46
Symmetrical -
entropy Relative entropy 1 1.22 1.62 2.55 1.60
No structure change 0.49 0.12 1.76 3.73 1.53
) Absolute entropy 1 0.6 0.08 0.18 0.47
Non-symmetrical -
entrop Relative entropy 1 1.12 1.49 3 1.65
Y No structure change 0.52 0.15 0.78 3.27 1.18
) Absolute entropy 1 0.72 0.11 0.27 0.53
Edge with th - i
. Relative entropy 1 0.86 1.03 2.91 1.45
highest prob

No structure change 0.51 0.07 0.86 4.45 1.47
Table 21 Average Hamming distance from the learneBayesian networks to the ground-truth

Bayesian networks

Study Cold Cancer| Asia

Bayesian network
network | network | network | network | Average

# data sets generated 47( 241 345 161
Edge selection Stopping criterion
) Absolute entropy 4 5.62 12.81 45.55 17.00
Symmetrical -
entro Relative entropy 4 6.74 19.44 38.91 17.28
Py No structure change 3.49 5.02 13.05 22.36 10.98
) Absolute entropy 4 6.05 12.64 43.3p 16.52
Non-symmetrical -
entro Relative entropy 4 6.42 14.64 49 18.51
Py No structure change 3.51 5.13 9.95 23.55 10.54
) Absolute entropy 4 6.02 11.79 43.2)7 16.27
Edge with th -
. Relative entropy 4 6.13 10.84 35.5p 14.13
highest prob
No structure change 3.49 5.15 8.97 23 10.15

Table 22 Average of (#interventions+1)*(Hamming ditance + 1) required in active learning of
Bayesian network structure
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5.5 Conclusion and Discussion

Causal Bayesian network learning is a big challeiogeknowledge discovery. The
problem we addressed in this chapter is on howeterthine the causal structure with
observational data and interventional data. In thiesis, we assume that we can
manipulate the variables and can collect the istgiienal data in the application
domain. Our objective is to minimize the numbeilirgérventions while identifying
the correct structure of the Bayesian network.

We have proposed a type of active learning for @lalBayesian networks:
combining the observational data with the node-thaséerventional data and the
results from the edge-based interventions. The odetian utilize the available data
and domain knowledge to guide the interventiongdeexnents for efficient causal
knowledge discovery.

Two different intervention types have been discdsse this chapter: the
node-based intervention and the edge-based intewwen The node-based
interventions would help establish the causal andeof variables. The advantage of
the node-based interventions is that it may ondpire linear number of interventions
when one variable is manipulated each time. Thimase applicable in practice. The
disadvantage of the node-based interventions issiti@e direct causal relationship
may not be tested. Therefore, if some direct cadationships are really important,
we first proposed thedge-based interventioto examine the direct relationships
between variables.

The edge-based interventions would help establishparent sets of variables,
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and distinguish the different structures in the kéarequivalent class, which cannot
be done with the observational data and node-beder/entional data sometimes.
However, an exponential number of instances maynbeded in edge-based
interventions. So, the choice of the methods iseddpnt on the objective in the
applications and the resources available.

There are two main problems in the active learrpngcess: how to select the
hypotheses for intervention, and when to stop ¢laenling process. Non-symmetrical
entropy is first proposed to select nodes for w@rtional experiments. Compared
with other methods, non-symmetrical entropy recuitbe minimal number of
interventional experiments to achieve the requstedcture entropy.

In node-based interventions, entropy-based stopgiitgrion is better than the
stopping criterion based on the number of intere@st since stopping the learning
process with the number of intervention cannot goitee the learned structure quality.
In edge-based interventions, we can see the conmgedmetween the accuracy of the
learned Bayesian network structure and the numbenterventions required. If the
accuracy of the learned Bayesian network struggireore important, entropy-based

stopping criterion is a better choice.
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Chapter6 An Example in a Biological

Domain

In this thesis, we have proposed a framework favwkadge discovery with Bayesian
networks which includes three steps: hypothesieiggion with Bayesian network
structure learning, hypothesis refinement with topical constraints, and hypothesis
verification with interventional experiments. We vba examined the technical
challenges and practical issues in the framewot&shthree chapters.

In this chapter, we will show how to apply the fework of knowledge
discovery with Bayesian networks in a biologicah@on — the intracellular signaling
network of human primary naive CDZ cells, downstream of CD3, CD28, and
LFA-1 activation. Figure 31 shows the network stnoe of signaling molecule
interactions (from [145]). Eleven variables in tsteucture represent eleven proteins
measured. The twenty edges represent the caukarioé relationships between the
proteins from the consensus of the current domaderstanding. Among the twenty
edges, eighteen of them have been verified witHogical experiments in the
literature. Another two edged?KC-> PKA and Erk->Akt in dashed lines) were
recently hypothesized with Bayesian network techesg and confirmed with
biological experiments by Sacksal [145].

In the following sections, we will show the apptioca of the proposed

framework with this example network. Section 6.1 siow that Bayesian networks
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can generate reasonable hypotheses of influenagorethips between variables from
the sampled data, although some edges are notlyexhet same as the original
network. Section 6.2 will show that topological dgim knowledge can refine the
generated hypotheses of influence relationshipwd®t variables and improve the
meaningfulness of the hypotheses. Section 6.3 sfibw how to conduct node

selection for hypothesis verification with intertiemal experiments.

Figure 31 The consensus intracellular signaling meorks of human primary naive CD4+ T cells,
downstream of CD3, CD28, and LFA-1 activation

6.1 Hypothesis Generation: Learning the Structure

with Observational Data

In the first experiment, we will show how the hyjpeses of influence relationships
between variables are generated from observatdeta. The observational data is
sampled from the Bayesian network in Figure 31. plaeameters are randomly
generated from Dirichlet priors. Two thousand dftamces were sampled from the

network by direct sampling. The edge probabilitresre estimated with Koivisto’s
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exact method [97]. If the edge probabilities areager than 0.5, the edges are
regarded as predicted edges. The learned Bayestaonk is shown in Figure 32.

Compared with Figure 31, eleven edges are the smmiose in the original
structure. Seven edges have reverse directionsi@ited lines in Figure 32), and two
edges are missingPlcy 2 Pip2 and Pka - JnK. This means that most of the
undirected edges between variables are learnedatlyrrand Bayesian networks can
generate the reasonable hypotheses of influenagarehips between variables from
the data for the domain of interest. The edgedim learned Bayesian network can
now serve as the initial hypotheses for furtheinezhent and verification.

Note that we only consider the hypotheses of diiafitence relationships
between variables in this example. While this exentmes not show the potential
application of variable grouping, variable groupioguld be useful in a situation

where the aggregate functions of some proteintodne studied.

Missing edges:
Plcy > Pip2
Pka-> Jnk

Figure 32 The learned BN with data sampled from th intracellular signaling network
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6.2 Hypothesis Refinement: Learning the Structure
with  Observational Data and Topological

Constraints

The second experiment will show the effect of togatal constraints on the
hypothesis refinement. We will re-estimate edgebpbilities with the available
observational data and topological constraints.tHis experiment, we use the
following topological constraintip3 is a root in the domain, anbhk andP38 are
leaf nodes in the domain. Such topological constsaare from biological domain
knowledge:Pip3 is an upstream protein and is not affected byropineteins in the
domain, and can be treated as a root in a Bayesbmork; Jnk and P38 are two
downstream proteins and will not affect other pratein the domain, and can be
treated as leaf nodes in a Bayesian network. Afiembining the topological
constraints with observational data, the genergtedh is shown in Figure 33.
Compared with the original structure in Figure 8ighteen edges are learned
correctly with the data and topological constrai@sly one edgeRlcy = Pip2) is
missing and one edgR&f-> Mek12 dotted line in Figure 33) is reversed. We can see
that topological constraints can improve the hyps#s of influence relationships

between variables generated from data in this el@mp
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Missing edge:
Plcy = Pip2

Figure 33 The learned BN with data and topologicatonstraints from the intracellular signaling
network

6.3 Hypothesis Verification: Node Selection for

Interventional Experiments

With the available observational data and topolagionstraints, we can estimate the
node uncertainty with our first proposed non-synrioak entropy in Formula (3) and
(4) of Section 5.3.2. The estimated node uncer&@ntvithout/with topological
constraints are shown in Table 23 and Table 2dnly the observational data is used
for edge probability estimation, varialdikc has the highest node entropy with value
1.2, and will be selected for the subsequent n@ded intervention. If both the
observational data and the topological constraares used for edge probability
estimation, variabl&lekl12has the highest node entropy with value 1.25,vailicbe
selected for the subsequent node-based intervention

With the generated node entropies, we can choaseriiein with the highest

entropy for intervention and conduct the real hyidal experiments to collect
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interventional data to verify the causal relatiapshSince the biological experiments
are out of the scope of our research, we will ritioue the experiment. We hope
that there would be biologists who are interestethis domain and would use the

hypotheses from computational methods for furtlx@eements in future.

Protein Node uncertainty
Pkc 1.1996
Pka 1.1559
Mek12 0.94244
Raf 0.80507
Plcy 0.79517
Pip2 0.79517
Jnk 0.48444
p38 0.10604
Erk 0.033956
Pip3 0.020267
Akt 1.04E-29

Table 23 Node uncertainty from observational datdor the intracellular signaling network

Protein Node uncertainty

Mek12 1.2515
Pka 1.157
Raf 1.0853
Plcy 0.69315
Pip2 0.69315
Pkc 7.96E-07
Erk 4.13E-07
Pip3 3.00E-10
Akt 8.96E-29
p38 0
Jnk 0

Table 24 Node uncertainty from observational datand topological constraints for the
intracellular signaling network
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6.4 Summary

In this chapter, we applied our proposed frameworla biological problem using
simulation. The results show that Bayesian netwarksld generate reasonable
hypotheses of influence relationships between kesafrom the data for the domain
of interest. The combination of domain knowledgeldamprove the quality of the
hypotheses of influence relationships between kbasagenerated from data. Both the
missing edges and reversed edges are reducedhsitspecified root and leaf nodes
as topological constraints. Node entropy can bével@rfrom the available data and
domain knowledge, and the node with the higheseretropy can be selected for
hypothesis verification with the node-based intatimal experiments; the list of

results has correctly suggested the most promisdags for further experiments.
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Chapter 7 Conclusion

Causal knowledge is helpful for comprehension, nlsgs, prediction and control in
many complex situations. In this thesis, | considausal knowledge from the
probabilistic perspective with a manipulation aite. A mixture of observational
data and interventional data is used for causawledge discovery with causal

Bayesian networks.

7.1 Summary of Contributions

Identification of causal knowledge is an importeggearch topic with a long history
([130], Epilogue) and many challenging issues. Naynj125] and Fisher [57]
pioneered causal knowledge discovery with randothezgeriments. Rubin [143,144]
initiated the study of causal knowledge discoverighwobservational data and
statistical methods, while Spirteg al. [155,156] and Pearl [130] led the way of
inductive learning of causal knowledge from obstovel data with Bayesian
networks.

One of the main differences between the traditiostatistical methods and
Bayesian network methods for causal knowledge dexgois how the hypotheses of
causal influence relationships between variablesnaodeled and generated. In the
traditional statistical methods, the hypotheses cafisal influence relationships

between variables are generated from domain expéthisut sufficient mathematical
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support. In this case, the results of knowledgealisry heavily depend on domain
experts to generate the hypotheses of causal mftueelationships between variables.
However, in the inductive learning of causal knayge with Bayesian networks, the
hypothesis space is assumed before learning, abletst hypothesis is automatically
searched through the hypothesis space based dattne

In this thesis, | use causal Bayesian networks,[l80155,156] as the basic tool
for causal knowledge discovery. | assume that ebsenal data can be collected
economically and interventional data will be colézt with higher cost, such as in
Biological Science [145]. Interventional data igedy useful for causal knowledge
discovery, while it is controversial to discoveusal knowledge from observational
data, since observational data mainly gives cdroglanformation between variables.
In this thesis, a combination of observational datd interventional data is used for
causal knowledge discovery.

The hypotheses of direct causal influence relakippssbetween variables will be
generated as edges in causal Bayesian networks fr@mavailable data. The
hypotheses will be updated with topological dom&mowledge. Interventional
experiments can verify the generated hypotheses. dbjective is to reduce the
number of interventions required to identify thederlying causal structure of the
domains of interest, while keeping the computaticoaplexity affordable.

In this thesis, | proposed an iterative and intivacframework for causal
knowledge discovery with observational data aneérirgntional data to close the

knowledge discovery loop. My main contributionslute: 1) proposal of an iterative
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and interactive framework for causal knowledge alety with three components:
hypothesis generatigmypothesis refinememind hypothesis verificatignand within
the framework: 2) proposal of a new hypothesis g method with variable
grouping; 3) proposal of a new hypothesis refineamerthod with topological
constraints; and 4) proposal of a new hypothesiffisation with node-based and
edge-based interventional experiments and non-syrioaeentropy for hypothesis
selection. | have also illustrated how to integrite different tasks in a systematic
way to support cost-effective causal knowledge aliscy. Promising results are

shown in a set of applications with practical inoptions.

7.1.1Framework for Knowledge Discovery with Bayesian

Networks

The proposed framework for knowledge discovery wBiiyesian networks is an
iterative and interactive process with modular cormgnts: hypothesis generation,
refinement and verification. These three componargsgenerally studied separately
and a unified framework is needed. In the propdsdework, the details of the three
components can be updated or extended further tiwrefuwithout affecting the

structure of the framework.

7.1.2Hypothesis Generation

The main kind of hypotheses used in this thesithés direct causal relationships

between variables in a domain, which are the edg&ayesian networks. Another
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kind of hypotheses is the complete Bayesian netwtnkcture. These two kinds of
hypotheses can be generated from Bayesian netviugtige learning. The edges
between variables are mainly used for hypothesimement and hypothesis
verification.

A new method is proposed to generate hypothes@apgsian network structure
learning with variable grouping. This method is laggble in the domains where
some variables follow similar conditional probatyildistributions. Experiments show
that this method could identify the group variablesd dependency between the
groups simultaneously. This would be particularbeful in the domains where the
group information and the dependency between thiepgvariables are importarg.g,

microarray data from gene expressions and stock iom the stock market.

7.1.3Hypothesis Refinement

Two canonical formats are proposed to represemtiagral constraints for Bayesian
network structure learning. The rule format is efsydomain knowledge elicitation
and the matrix format is easy for Bayesian netwairkicture learning and domain
knowledge consistency checking. Experiments shoat tbpological constraints
could improve the relevance of the hypotheses aisaainfluence relationships

between variables generated from data.

7.1.4Hypothesis Verification

Node-based and edge-based interventions are pposactive learning of causal
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Bayesian network structures. Non-symmetrical entisgroposed to select nodes or
edges for interventional experiments. Compared Wieéhdecision theoretic approach
(the expected posterior loss), our method is moraputationally affordable while
the learned structure entropy is comparable. Coedpavith other methods, non-
symmetrical entropy requires a minimal number oflaxbased interventions and a
comparable number of edge-based interventions &msal knowledge discovery.
Entropy-based method is proposed as the stoppiitgrion in causal Bayesian

network structure learning process.

7.1.5Limitations

There are some limitations in the current work. @kénition of causal knowledge in
this thesis is based on manipulation criterion.ré&fage, it may not be applicable to
the conditions with other causal knowledge defom&. And, since the proposed
framework needs the interventional experimentshiggothesis verification, it is not
applicable to the domains where the interventi@xgleriments are not feasibkeg,

in Social Science. Even if the interventional expents are possible, the resources
needed in the hypothesis verification process asubstantial. The availability of
the resources will limit the application of the posed framework. When the
resources are available, it could still be timestoning to collect the interventional
data. However, we believe that the proposed framlewuld be useful in cases
where real experiments or the dire consequenc@saoturate diagnosis, prediction,

or other applications of causal knowledge are exdg costly.
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7.2 Related Work

This work builds on and extends the existing Bagmesietwork theory and active
learning methods for causal knowledge discovergldb integrates many ideas from
knowledge discovery in database and experimengdeasiStatistics.

Causal knowledge discovery started from the vemjirieng of human history.
Our ancestors learned causal knowledge from thxpiergences and manipulations in
natural exploration process. Aristotle spoke of tluetrine of four causes, while
others proposed different forms of causality afeexg [90,106,130,155,171]. David
Hume [90] thought that causality was just from tiabit and doubted whether we
could identify the certain laws of cause and eff@zvid Lewis [106] suggested the
counterfactual causality. Cheng [29], Pearl [1E]jirteset al. [155], and Woodward
[171] considered causality from a probabilisticqpactive. Pearl [130], Price [135],
Spirteset al. [155], and Woodward [171] discussed causality vatimanipulation
criterion. In this thesis, | follow the definiticinom Spirteset al [155] and consider
causal knowledge from probabilistic perspectivenwitanipulation criterion.

The main scientific method for causal knowledgecaok®ry from data is
randomized experiments in Statistics [58,125,14%he interventional data is
collected in randomized experiments to infer thaese& strength of the randomized
variables on other variables. Bayesian experimasigth and optimal experiment
design [22] have been explored to optimize thematars in the experiments to make
the interventional data collection and analysis eneifective for causal knowledge

discovery. However, hypothesis generation is ntagrated in traditional experiment
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design, and only one variable is considered asafyet variable at a time. To model
the causal relationships between multiple variabdeshypothesis generation, causal
Bayesian networks should be considered.

Wright [172] is among the first to use a graphinaddel for causal knowledge
discovery. Rubin [143,144] is one of the pioneearsrifer causal knowledge from
observational data with statistical methods. Pd&0,131] and Spirtest al. [155,156]
have developed a comprehensive theory for causelvlkedge discovery from
observational data with Bayesian networks. Pe&@®]broposed three basic rules to
make it possible to infer the probabilities undexmpulation from observational data
with graphical models.

The knowledge discovery process has been discussgéneral (i.e., in expert
systems [74,133] and data mining [13,23], and thevey [101]). Fayyad,
Piatetsky-Shapiro and Smyth [54] discussed the rgélk@owledge discovery tasks,
the typical methods and the knowledge discoverggss. The large amount of work
in knowledge discovery focuses aiservational dateor correlational knowledge
discovery. However, hypothesis refinement and Hygsis verification have not been
sufficiently considered in the knowledge discovessocesses mentioned above,
especially little work on hypothesis verificatiorntiwinterventional data

Knowledge discovered from observational data haenbapplied in many
domains. However, it may not help causal knowledigeovery in many situations.
For example, observational data cannot distingthistsimple causal models with two

variables, such as-%B or A<B, since these two models imply the same conditiona

174



(in)dependence from observational data. Alterntjventerventional data can
distinguish such models for causal knowledge disppvif the concrete causal
knowledge is required in some reverse engineeringgegts, we need to conduct the
interventional experiments. But in some domains,caenot conduct interventional
experiments due to financial, legal or ethical oe@s and cannot collect
interventional data. In this case, we need to tdsatausal knowledge discovery with
observational data. In summary, causal knowledgeoderies from interventional
data and observational data have their own advastagd disadvantages, and their
application domains. Generally, observational databe collected economically, and
interventional data will be collected costly. Cdusmowledge discovery with
observational data and interventional data is comggitary to each other.

Our framework includes three componenkypothesis generatiorhypothesis
refinement and hypothesis verification exploits the available resources (i.e.,
observational data, interventional data, topoldgiclomain knowledge, and
interventional experiments) to discover new causawledge, and minimize the
number of experiments required for new interverdlomata collection. The
comparisons of our proposed methods with the mtlaterk in each component are
discussed in the following sub-sections. More eslateferences, brief comments and

comparisons with the proposed methods are listégpendix A.E.
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7.2.1Related Work for Hypothesis Generation with Variable

Grouping

Hypothesis generation with variable grouping in &ign network structure learning
is one method for variable aggregation. The groapables as hidden or latent
variables are dependent on each other as a Baysstianrk in our proposed method,
and the original variables are independent of eabler given the group variables.
The idea of variable aggregation is not really reewd has been considered in many
situations, inside and outside of Bayesian netwarka. The general variable
clustering [105] is one way to detect the redundaariables or highly-correlated
variables in the data. However, it does not comstdle dependency between the
different clusters of the original variables.

Hidden variable discovery can be identified with xin@al cliques [117] or
semi-maximal cliques in the learned Bayesian nékev¢52]. However, the hidden
variables identified in this way are difficult toterpret.

Module networks [148] defined the sets of variagth the similar behaviors as
a module. The variables in the same modules hawesdame parents and the same
conditional probability distributions. By enforcirsgich constraints, the complexity of
the Bayesian network space is significantly reduesdwell as the number of
parameters. Different from our proposed Bayesiamvaork structure learning with
variable grouping, no hidden variables were exiiégntroduced in module networks:
the variables in module networks are interactinghvéach other directly and the

search space is still very big.
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Hierarchical Bayesian networks [79] consider thet€aan product of the original
variables as composite variables, which is simitarthe clustering methdd for
Bayesian network inference [21]. This is anothely Viar variable aggregation in
Bayesian networks. However, the Cartesian produttieooriginal variables may lead
to an exponential number of states in the compesitiables.

Multiply Sectioned Bayesian Networks (MSBNSs) [1¥8re proposed to identify
groups of variables as sections, and a local Bagesetwork could be built with the
variables in one section. The local Bayesian ndisvaran be connected together
through d-sep nodes among the sections to build N&SBletwork fragments [102]
were proposed to build partial Bayesian networksnfldomain knowledge as blocks
for big Bayesian network construction. These twahwods focus on the Bayesian
network construction and no known work has beereld@ed for learning.

When the classes or population of variables arsidered, Bayesian network can
be extended to object-oriented Bayesian networld, [Probabilistic frame-based
systems [99], probabilistic relational models [6@hd the first-order probabilistic
models [134]. The variables in these models aresclariables as in object-oriented
languages, the class variables can be instantadenbjects, and the structures and
parameters of the objects can be instantiatedeused for many times. Most of these
models are new methods for knowledge representaiwh inference based on
Bayesian networks. In the learning, objects and tiedations have to be specified in

skeletons. In our work, the group variables carnrbated as class variables in the

% The clustering method has been proposed to cltisterariables together to transform the Bayesian
networks with un-directed cycles into poly-treesdtficient inference.
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first-order probabilistic model and each membethe groups can be treated as an
individual in a population. Then our work providasway to learn a first-order

probabilistic model from data.

7.2.2Related Work for Hypothesis Refinement

It is not new to facilitate the causal structurgerance with domain knowledge [77]
and the Bayesian network learning with domain kmolge [38,67,87]. The
guantitative domain knowledge has been exploredlgarn the conditional
probabilities [11,94,95,126]. The qualitative domknowledge can be represented as
the topological constraints in Bayesian networl& §3].

Physical theories are required in Griffitbtsal. [77] as domain knowledge to infer
the causal structure. A causal ordering of varglderequired to learn the Bayesian
network structure in Cooper and Herskovits [38]. iuitial Bayesian network is
required in Heckermaet al.[87]. The degree of the node connected to othdesits
required in Friedmaet al.[67]. Although these methods work well with the uggd
domain knowledge, such knowledge is not availablenany cases. Also, in these
methods, the elicitation of domain knowledge ishad and not in the systematic way
for causal Bayesian network learning.

Certain kinds of partial domain knowledge have beensidered in Bayesian
network structure learning ([155], Section 5.4rbpackages like LibB, TETRAD and

Bayesian network PowerConstrucforHowever, as far as we know, there is no

31 Same as Footnote 16.
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systematic representation, analysis and evaluatiomcorporating partial topological
domain knowledge into Bayesian network structuegrigng, and the explicit effects

and influences of different kinds of topologicahstraints are unknown.

7.2.3Related Work for Hypothesis Verification

Hypothesis verification with interventional data important before applying the
discovered knowledge to real causal prediction aoatrol. The mixture of
observational data and interventional data has leegiored for causal knowledge
discovery. Cooper and Yoo [39] first examined thesumptions to combine
observational data and interventional data for Kedge discovery with Bayesian
networks. Active learning [35,113,138] has beeedttio guide the new data collection
with the available resources to reduce the variaridbe model. Recently, Tong and
Koller [160,161] and Murphy [121] applied activeataing to causal Bayesian
network learning. They applied the decision theorapproach to estimating the
expected posterior loss to select variables for ipudation. Every possible
intervention and their corresponding possible ouie® should be considered to
estimate the expected posterior loss. Howevergohgputational complexity involved
is very high and only the case with one instandéeci®d in each intervention is
considered in their work. The case with multipldadanstances collected in each
intervention is not considered, although this geaeral situation in practice.

We propose the node-based interventions and edsgethaterventions for causal

knowledge discovery. The hypothesis selection gedaon non-symmetrical entropy
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from the current data, and the possible outconms fach intervention do not need
to be considered, which will reduce the computaiocomplexity. The stopping
criterion is based on the structure entropy fromm ldarned Bayesian networks. The
detailed comparison of our proposed methods anweattarning with expected

posterior loss is listed in Table 25.
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one instance
collected from
each intervention

M instances
collected from
each intervention

comments

Active learning with computational computational Theoretically, active learning with expected pdsteoss is the best one to achieve the smallest
expected posterior loss complexity in complexity in structure entropy. However, the computational ousites it infeasible in most of the situations.
for intervention each active each active Can be compared with node-based intervention whname instance can be collected in each
selection learning step is learning step is intervention. In this case, the learned Bayesiawaorks have the smaller structure entropy
[121,160,161] o(n? 022") o(n? 027 than thos.e .from node-ba.lsed int.ervention. ) . . .
Can not finish the experiments in a reasonable tiitte multiple data instances collected in
each intervention
Our proposed Computational Computational Can be used to establish the causal ordering @hlas with interventional data. The learned
node-based interventioncomplexity in complexity in structure entropy is near that from expected pmstErss when one instance is collected in
with non-symmetrical | each active each active each intervention. Can be applied to the case whetiple data instances are collected from
entropy from the learning step is learning step is each intervention. But may not determine some tlcaasal relationships.
current data o(nC2"). o(nC2").
Our proposed Not applicable It depends. Can identify the direct causal relationships. Begahto consider the exponential numbers of
edge-based intervention Generally not configurations of manipulated variables for dathection to establish the direct causal
with non-symmetrical applicable relationship from one variable to another variallemputational complexity in each active

entropy from the

current data

learning step iso(n02").

Table 25

Comparisons of the active learning methadfor causal Bayesian network learning

181



7.3 Future Work

The possible future work includes: 1) extending thpological constraints to soft
topological constraints; 2) variable selection fausal Bayesian network building;

and 3) hidden variable discovery.

7.3.1Extending to Soft Topological Constraints

Currently, we consider domain knowledge as concteological constraints:
whether there is a root, a leaf node or an edgeonme situations, however, we are not
sure about the available domain knowledge. For @kanifrom domain knowledge,
we may have 80% confidence that variab¥e affects variableB. In this case, we
cannot specify that there is an edge fromnto B as in Chapter 4. We need other

methods to deal with soft or uncertain topologmastraints.

7.3.2Variable Selection for Causal Bayesian Networks

The first step in Bayesian network building is &tetmine variables in a domain of
interest. In our work, we assume that variables idomain have been determined
beforehand. However, in many real applications, wheables related to knowledge
discovery objective may not be known in advance.néled to select variables in the
process of Bayesian network learning [40] for krexdge discovery. From Simpson’s
Paradox [130], we know that, the conclusion ofaistical test can be reversed under
some occasions when one extra variable is includieda model. In this case, we

must pay more attention to the variable selectimblem and determine when it is
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appropriate to include a variable into the modeéxelude a variable from the model

for knowledge discovery.

7.3.3Hidden Variable Discovery

Hidden variables are a difficult and complex issu&nowledge discovery and have
been explored with Bayesian networks [8,34,36,52,6117,174]. However, some
important questions related to hidden variablesirieebe further examined: 1) when
is a hidden variable really needed for knowledgaery? and 2) what is the real
meaning of the hidden variable, if applicable?ddtrcing a hidden variable into the
model for knowledge discovery will change the hysis space, which will

significantly change the problem complexity in mashgymains. As pointed out by

Tiles ([158], page 12) nineteen years ago, autaingtegrams cannot restructure the
problem space and introduce new (or hidden) vagabito the model for knowledge

discovery. How to introduce a new variable to cleatige hypothesis space is still a

problem we face today.
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Appendix

A.Hypothesis Generation with Two Variables

This section is a brief review of some methods ligpothesis generation. The
possible methods are correlation, chi-square, amiahinformation. These methods
are used to determine the dependencies betweenvahables. Whether the
dependencies are causal or associational, it isrlgmt on the characteristic of the
data. If the data is from intervention, the estedatdependencies will be causal;
otherwise, the dependencies will be associational.

The hypotheses generated with two variables arg thd total dependencies
between two variables. The total dependencies legtwego variables can come from
the direct dependency between two variables, amm the indirect dependencies —
through paths along other variables. Therefore, tttal dependencies from two
variables cannot be used to determine the dirécteimce; however, they can be used
as indicators of the direct dependencies — higll tt#pendencies sometimes mean the
high direct dependencies. Low total dependencieseklier, do not guarantee the low
direct dependencies, since there can be multiglesgzetween two variables and the

dependencies through different paths can reduceftbet of each other.

I. Correlation for Continuous Variables

In probability theory and Statisticsprrelation, also calledcorrelation coefficient
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[141], indicates the strength and direction ofn@ér relationship between two random

variables. The correlation coefficienp, , between two random variableX and
Y with expected valuesy, and g, and standard deviationgr, and o, is

defined as:

_cov(X,Y) _ E((X = #,)(Y — )
o0, 0,0,

where E() is the expectation function of a random varialbid a&ov(X,Y) is the
covariance function of the random variables.

The maximum of the absolute correlation coefficiegdue is 1. If the correlation
coefficient is +1, it means that two variables dmifinearly in the same directions. If
the correlation coefficient is -1, it means thabtwariables change linearly in the
opposite directions.

When two variables are independent, their cor@taghould be 0. However,
when the correlation is 0, it does not mean that variables are independent, since

correlation only measures the linear dependencydsst two variables.

ii. Chi-square Test for Discrete Variables

Thechi-squarevalue between two variables [141] is defined as
m n (A - Ei' )2
x?= Zz i j

Where m is the number of the possible states of variable lis the number of the

possible states of variable 2 is the number of instances wititth value for

variable 1 andj-th value for variable 2,R is the number of instances witihth
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value for variable 1,C; is the number of instances with-th value for variable 2,
N is the number of the total instances, aBl=R*C;/N is the expected
frequency of A,. The chi-square value measures the differencehef expected
frequencies and the actual frequencies in diffecategories.

We have tried the chi-square measure on a dataasepled from the Asia
network. Most of the real edges in the Asia netwaxchieved high chi-square values.
In addition, some pairs of variables, without diredges between them in the Asia
network, also achieved high chi-square values. pbssible explanation is that
chi-square only measures the total dependency kativeo variables, both from the

direct edges and from any indirect paths. The topsquare values are shown in

Table 26.
Order Variable 1 Variable 2 Occurances
1 Lung_Cancer Tuberculosis_or_Lung_Cancer 874.84
2 Tuberculosis_or_Lung_Cancer | X-ray_result 517.32
3 Bronchitis Dyspnea 486.16
4 Lung_Cancer X-ray_result 450.52
5 Tuberculosis Tuberculosis_or_Lung_Cancer 110.53
6 Smoking Bronchitis 71.81
7 Tuberculosis X-ray_result 59.14
8 Smoking Dyspnea 39.2
9 Smoking Lung_Cancer 35.44
10 Visit_to_Asia Tuberculosis 35.3

Table 26 High chi-square values between variabldsom data sampled from Asia network

ii. Mutual Information for Discrete Variables

Mutual Information (MI) [114] is an entropy-based measure of the ddpacy
between two variables. It is the difference betwdenprior entropy of variableC

and the posterior entropy of variabl@ given values of another variablE :
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MI = entropy(C) - z (— P(F) * entropy(C | F))

We have tried the mutual information on the datassenpled from the Asia
network. Similar to the results from chi-squareuesl, most of the real edges in the
Asia network achieved high mutual information valuand some pairs of variables,
without direct edges between them in the Asia nekwachieved the high mutual
information values too. The reason is the same tuahunformation only measures
the total dependency between two variables. Thertafual information values are

shown in Table 27.

Order Variable 1 Variable 2 Occurances
1 Bronchitis Dyspnea 0.27
2 Lung_Cancer Tuberculosis_or_Lung_Cancer 0.2
3 Tuberculosis_or_Lung_Cancer | X-ray_result 0.16
4 Lung_Cancer X-ray_result 0.14
5 Smoking Bronchitis 0.04
6 Tuberculosis Tuberculosis_or_Lung_Cancer 0.02
7 Smoking Lung_Cancer 0.02
8 Smoking Dyspnea 0.02
9 Smoking Tuberculosis_or_Lung_Cancer 0.02
10 Tuberculosis X-ray_result 0.02

Table 27 High mutual information values between vidables from data sampled from Asia

network

B.D-separation

Bayesian networks encode the dependencies andeindepcies between variables.
Under the causal Markov assumption, each variablea iBayesian network is
independent of its non-descendants given the valfiéts parents. With the causal
Markov assumption, we can check some conditiondependence in Bayesian

networks. For the general conditional independemeeBayesian network, Pearl [131]
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proposed a graphical criterion: d-separatidrseparation in Bayesian networks has
the following implication: If two sets of variableX and Y are d-separated in
Bayesian network by a third sef (excluding X and Y), the corresponding
variable setsX and Y are independent given the variables4n The definition of
d-separation is: two sets of variable§ and Y are d-separated in Bayesian
network by a third setZ (excluding X and Y) if and only if every un-directed
path betweenX and Y is “blocked”, where the term “blocked” means tttare is
an intermediate variabl®V (distinct from X and Y) such that:

- The connection throughV is “tail-to-tail” or “tail-to-head” andW isin Z;

- Or, the connection throughw is “head-to-head” and neithew/ nor any
descendant oW is in Z. The graph patterns of “tail-to-tail”, “tail-to-ad” and

“head-to-head” are shown in Figure 34.

O—0O—0O O—0O0—0 O—0——10O

(a) tail-to-tail, or (b) tail-to-head, (c) head-to-head, or
diverging pattern or serial pattern converging pattern

Figure 34 Patterns for paths through a variable

C.Results of Node-Based Interventions

For node-based interventions, we have tested twaupfcreated Bayesian networks
(Study network and Cold network) and three benchknBayesian networks (Cancer
network, Asia network and Car network). The testdibons are:

1) Five different node selection criteria: nodeesgbn with non-symmetrical node

entropy, symmetrical node entropy, the expectetepios loss, random node selection,

188



or observational data;

2) Two stopping criteria: the number of intervenscand the structure entropy of the
learned Bayesian networks;

3) The original conditional probabilities in thested Bayesian networks or
randomized conditional probabilities; and

4) Different numbers of instances from each intetia®, which are from 1 to 200.
There are many different combinations of these timms$. Some representative

results are shown here. More results will be atélanline.

I. Study Network

Figure 35 shows the active learning results fromd$tnetwork. The stopping
criterion is the structure entropy of the learneay®&ian networks. The original
conditional probabilities from Study network areedsIn Figure 35, node selection
with non-symmetrical node entropy requires the mali number of instances to
achieve structures with the specified entropy inivaclearning with Bayesian

networks.

structural entropy vs. # of instances structural entropy vs. # of instances
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Figure 35 Active learning results from Study netwek
Note: The left panel shows the results when onmite is sampled in each intervention and the right
panel shows the results when ten instances ardedinpeach intervention
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ii. Cold Network

Figure 36 shows the active learning results frond@etwork. The stopping criterion
is the structure entropy of the learned Bayesiawaors. The original conditional
probabilities from Cold network are used. In Figu8é, node selection with
non-symmetrical node entropy requires much smallenber of total instances to
reach the required structure entropy. When the murabinstances collected in each
intervention is large (100 or 200 in our exampten-symmetrical entropy performs

much better than other node selection methods.
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Figure 36 Active learning results from Cold netwok
Note: The numbers of the sampled instances in méetvention are 1, 10, 100, and 200 in (a), (), (
and (d), respectively.
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ill. Cancer Network

Figure 37 shows the active learning results frormdga network. The stopping
criterion is the structure entropy of the learneay@&ian networks. The original
conditional probabilities from Cancer network ased. In Figure 37, node selection
with non-symmetrical entropy requires much smatlamber of total instances to
reach the required structure entropy. When the murabinstances collected in each
intervention is large (100 or 200 in our exampten-symmetrical entropy performs

much better than other node selection methods.
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Figure 37 Active learning results from Cancer netwrk
Note: The numbers of the sampled instances in m#etvention are 1, 10, 100, and 200 in (a), (), (
and (d), respectively.
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iv. Asia Network

Figure 38 shows the active learning results fronaAagtwork. The stopping criterion
is the structure entropy of the learned Bayesiawaorks. Randomized conditional
probabilities are used for this example. In Figu38, node selection with

non-symmetrical entropy requires much smaller nunobéotal instances to reach the
required structure entropy. When the number of amsts collected in each
intervention is large (400 in our example), non-ey&irical entropy performs much

better than other node selection methods.
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Figure 38 Active learning results from Asia netwok
Note: The numbers of the sampled instances in iedetvention are 1, 10, and 400 in (a), (b), and (c
respectively.
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v. Car Network

Figure 39 shows the active learning results from i&dwork. The stopping criterion
is the structure entropy of the learned Bayesiawors. The original conditional
probabilities are used for this example. In Figu3®, node selection with
non-symmetrical entropy requires much smaller nunobéotal instances to reach the
required structure entropy. When the number of amsts collected in each
intervention is large (100 and 200 in our exampie))-symmetrical entropy performs
much better than other node selection methods. \ieerequired structure entropy is
small, all the node selection methods need to sathpl maximal number of instances,
which explains why the number of the total instanftem intervention is 5000 when

the structure entropy is 0.1 or 0.2.
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Figure 39 Active learning results from Car network
Note: The numbers of the sampled instances in iedetvention are 100 and 200 in (a) and (b),
respectively.

D.Selected Publications

The followings are the selected publications durmgPhD study period:

* Li, Guoliang, Tze-Yun Leong, Active Learning for &al Bayesian Network
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Structure with Non-symmetrical Entropy, The 13tltiReAsia Conference
on Knowledge Discovery and Data Mining (PAKDD), LNA5476,

Springer-Verlag, 2009, pp. 290-301.

Li, Guoliang, Steel Mike, Louxin Zhang, More TaxaeANot Necessarily
Better For the Reconstruction of Ancestral Chara@wtes, Systematic
Biology 57 (4) (2008) 647-653.

AH. Morris, J. Orme,Jr., JD Truwit, J. Steingrub, Grissom, KH Lee,
Guoliang Li, BT Thompson, R. Brower, M. Tidswell,. ®ernard, D.

Sorenson, K. Sward, H. Zheng, D. Schoenfeld, H.néfarA replicable

method for blood glucose control in critically ipatients, Critical Care
Medicine. 36(6):1787-1795, June 2008

Li, Guoliang, Tze-Yun Leong, Biomedical Knowledgeis@very with

Topological Constraints Modeling in Bayesian Netkwgor A Preliminary

Report, in: World Congress on Health (Medical) hnfiatics (MedInfo) (I0S

Press, Brisbane, Australia, 2007) 560-565.

Li, Guoliang, J. Ma, L. Zhang, Selecting Genomes Reconstruction of
Ancestral Genomes, Proceedings of the Fifth AnrRBICOMB Satellite

Workshop on Comparative Genomics (RECOMB-CG), LMB51, 2007, pp.
110-121.

Li, Guoliang, Tze-Yun Leong, and Louxin Zhang, Tsktion Initiation Sites

Prediction with Mixture Gaussian Models in Humanm\®Sequences. IEEE

Transactions on Knowledge and Data Engineering5209(8): p. 1152-1160.
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* Li, Guoliang and Tze-Yun Leong, Feature Selection the Prediction of
Translation Initiation Sites. Genomics, Proteomgc®Bioinformatics, 2005.
3(2): p. 73-83.

* Li, Guoliang and Tze-Yun Leong, A framework to leddayesian Networks
from changing, multiple-source biomedical dataPnoceedings of the 2005
AAAI Spring Symposium on Challenges to Decision gup in a Changing
World. Stanford University, CA, USA, 66-72.

e Li, Guoliang, Tze-Yun Leong, L. Zhang, Translatidnitiation Sites
Prediction with Mixture Gaussian Models, the Praliegs of the 4th
Workshop on Algorithms in Bioinformatics (WABI 2004LNBI 3240,

Bergen, Norway, 2004, pp. 338-349.

E. Summary of Related Work and Comments

The followings are some selected references reltadethis research, some brief

comments and the comparisons with the methods peapio this thesis.

Topic References Comments
Knowledge discovery the general process of knowledg®lore emphasis on hypothesis
framework discovery [13,23,54,74,133], and thg@eneration
survey [101]
Our three-step iterative Our proposed framework More emphasis on hypothesis
framework refinement and hypothes|s
verification

Table 28 References for knowledge discovery proces
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Topic

References

Bayesian network theory

Pearl [130,131], Spigtkal.[155,156]

Bayesian network constructig
from domain knowledge

rnDruzdzel and van der Gaag [46], Heckerman [89],Kded and
Shenoy [124]

Bayesian network paramet
learning

eiVith complete data [15,153], with incomplete datagvadient
method [8,157], the EM method [103] and Monte Cankethods
such as Gibbs sampling [71].

Bayesian network structureThe representative methods in score-and-searclutzagegory

learning

are K2 algorithm [38], Greedy search, Markov Ch&onte
Carlo (MCMC), and Structural EM [60]. The represdive
methods in constraint-based category are SGS #igoand PC
algorithm [155]

Bayesian network structureCooper and Yoo [39], Tong and Koller [161], Murpgi1]

learning with the mixture o

f

observational and

interventional data

Proponents on causal Pearl [130], Spirtest al.[155,156], Korb and Wallace [100]
knowledge discovery with

Bayesian networks

Opponents on Causal Cartwright [19,20], Humphreys and Freedman [91§ &ftKim
knowledge discovery with and Turner [118]

Bayesian networks

Table 29

Selected references for Bayesian networks
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Topic References Comments

Variable clustering Leet al.[105] No dependency between the
variable clusters

Hidden variablel with  maximal cliques [117] or difficult to interpret the hidden

discovery in Bayesian semi-maximal cliques [52] in thevariables

networks learned Bayesian networks

Module networks The variables in the same modude® hNo hidden variable introducedl.

the same parents [148] The search space is still very
large

Hierarchical Bayesian Cartesian product of the originaPossibly an  exponential

networks variables as composite variables [79]| number of states in the
composite variables

Multi-sectioned Xianget al.[173] Mainly for Bayesian network

Bayesian Network construction

Network fragment Laskey and Mahoney [102] Mainly ®ayesian network
construction

First-order first-order probabilistic models (PooleObjects and relations have to

probabilistic  modelg 2003), object-oriented Bayesiarbe specified in skeleton

and the variants network (Koller & Pfeffer, 1997), of

probabilistic  frame-based systems
(Koller & Pfeffer, 1998)

Latent Tree Models Wangf al.[168] Hidden variables arg
dependent on each other in a
tree structure

Bayesian network Our proposed method Hidden variables are

structure learning dependent on each other in a

with variable network structure. No need

grouping specify the relations im
skeleton as required in PRMs.

Table 30 References for variable aggregation — Rekd to hypothesis generation
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Topic References Comments

General domain Donoho and Rendell [45] and Hat| The representation is not for

knowledge al. [82] Bayesian network

general knowledge general knowledge refinemenimeta-knowledge is used to refine

refinement [72,162,163] the specific domain knowledge

guantitative domain Boutilier et al. 1996; Joshi and LeongNot our research focus in thjs

knowledge in| 2006; Niculescwet al. 2006; Joshet | thesis

Bayesian networks| al. 2007 [11,94,95,126]

gualitative domain Cooper and Herskovits [38], andrhe proposed topological

knowledge in| Heckerman et al. [87], LibB, | constraints. The systematic domain

Bayesian networks| TETRAD and Bayesian networkknowledge such as the full causal

PowerConstructdf ordering of variables may not be

available. The effects of different
topological constraints are
unknown.

Table 31 References for domain knowledge — Relatéal hypothesis refinement

Topic References Comments

Causal knowledge | Aristotle’s doctrine of four cajsd follow the definition of causal
logical perspective, probabilisticknowledge from Spirteset al

perspective, Granger  causaliff155]: causal knowledge from
counterfactual causality,probabilistic  perspective  with
[90,106,130,155,171] manipulation criterion
causal knowledge Neyman [125], Fisher [57], RubinThe established method for causal
discovery with| [144] knowledge discovery in scientific
randomized research. Manipulation-based

experiments

causal knowledge Pearl [130], Spirteset al. [155], | With causal Markov assumption

discovery with| Rubin [143] causal sufficiency assumption, and
observational data faithfulness assumption

Knowledge knowledge discovery in databas€orrelational information from
discovery with| [563,86]: classification, regressionpbservational data. May not be

observational data | clustering, and association ruleausal knowledge
mining with observational data

Causal knowledge Probability update [39], activeMy proposed method in this
discovery with the learning [121,160,161] category. Active learning with
mixture of Bayesian networks
observational and
interventional data

Table 32 References for causal knowledge and caligaowledge discovery — Related to
hypothesis verification

32 Same as Footnote 16.
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