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SUMMARY 

The objective of this thesis was to develop a numerical method to couple the 

flow in porous/fluid domains with a stress jump interfacial condition, and to 

investigate the effects of porous media on heat and mass transfer. A two-domain 

method was implemented which was based on finite volume method together with 

body-fitted grids and multi-block approach. For the fluid part, the governing equation 

used was Navier-Stokes equation; for the porous medium region, the generalized 

Darcy-Brinkman-Forchheimer extended model was used. The Ochoa-Tapia and 

Whitaker’s stress jump interfacial condition (1998b) was used with a continuity of 

normal stress. The thermal or mass interfacial boundary conditions were continuities 

of temperature/mass and heat/mass flux. Such thermal and mass interfacial conditions 

have not been combined with stress jump condition in previous studies. 

  The developed numerical technique was applied to several cases in heat and 

mass transfer: a) unsteady external flows past a porous square or trapezoidal cylinder, 

b) natural convective heat-transfer in a porous wavy cavity, c) forced convective heat-

transfer after a backward facing step with a porous insert or with a porous floor 

segment, d) mass transfer in a microchannel reactor with a porous wall. The 

implementations of the numerical technique are different from those of previous 

studies which were mainly based on one-domain method with either Darcy’s law or 

Brinkman’s equations for the porous medium. 

For unsteady flow past a porous square or trapezoidal cylinder, the flow 

penetrated into the porous bodies; and the resulting flow pattern may be steady or 

unsteady depending not just on Reynolds number but also on Darcy number. It was 



 xi

found that the body shape and stress jump parameters can also play an important role 

for the flow patterns. For natural convection in a porous wavy cavity, the results were 

shown with a wider range of Rayleigh and Darcy numbers than previous studies; and 

slightly negative Nusselt numbers were found with small aspect ratio and large 

waviness values. For forced convection after the backward facing step, heat transfer 

was enhanced globally with a porous insert or enhanced locally with a porous floor 

segment. The stress jump parameter effects on heat transfer were more noticeable for 

the case with the porous floor segment. 

The concentration results of the microchannel reactor with a porous wall are 

found to be well correlated by the use of a reaction-convection distance parameter 

which incorporates the effects of axial distance, substrate consumption and 

convection. Another important parameter is the porous Damkohler number (ratio of 

substrates consumption to diffusion). The reactor efficiency reduces with reaction-

convection distance parameter because of reduced reaction (or flux) and smaller local 

effectiveness factor, due to the lower concentration in Michaelis-Menten type 

reactions. The reactor is more effective and hence more efficient with smaller porous 

Damkohler number. When the reaction approaches first-order, increased fluid 

convection improves the efficiency but it is limited by the diffusion in the fluid region. 

The present thesis contributed a numerical implementation for problems 

involving porous-medium and homogeneous-fluid domains. It can address problems 

in which the flow and thermal or mass interfacial conditions need to be considered in 

detail. The technique is also suitable for complex geometries as it implements body-

fitted grids and multi-block approach. 
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NOMENCLATURE 

 

A discretization coefficients using SIMPLEC method 

a amplitude of wave in a wavy cavity 

c mass concentration, 3mol m−  

C dimensionless mass concentration 

dC , DC  drag coefficient 

FC  Forchheimer coefficient  

lC , LC  lift coefficient 

D depth of the porous segment, m; mass diffusivity in fluid part, 2 1 m s−  

Dam Damkohler number 

effD  effective mass diffusivity in porous part, 2 1m s−  

Da Darcy number 

e the basic number of natural logarithmic function 

xe  unit vector along x-axis 

ye  unit vector along y-axis 

F overall flux 

h porous depth in reactor 

H side length of the square cylinder; height of the channel after the step; the 

higher height of the trapezoidal cylinder, m 

K permeability of porous medium, 2m  

mK  dimensionless Michaelis-Menten constant or substrate concentration at which 

the SUR is half-maximal 

mk  Michaelis-Menten constant or substrate concentration at which the SUR is 

half-maximal 

fk  fluid thermal conductivity, 1 1 W m K− −  

effk  effective thermal conductivity of porous media, 1 1 W m K− −  



 xiii

mK  dimensionless Michaelis-Menten constant or dimensionless substrate 

concentration at which the SUR is half-maximal 

l integrated length for average Nusselt number, m 

L cavity height;  length of the porous segment, m 

Nu local Nusselt number 

aNu  average Nusselt number 

avNu  average Nusselt number 

n unit vector along normal direction of the interface 

Pr fluid Prandtl number 

p, fp  local average and intrinsic average pressure, Pa 

P, P* dimensionless average and intrinsic average pressure 

Ra clear fluid Rayleigh number 
*Ra  Darcy-Rayleigh number (=Ra Da)  

Re Reynolds number 

kR  ratio of thermal conductivity in porous and fluid regions 

S surface vector; source term 

T fluid temperature; dimensionless time  

cT  temperature of cold wavy-wall (left), K 

hT  temperature of the hot wavy -wall (right), K 

0T  characteristic temperature of porous medium CT= , K 

wT  temperature of bottom wall 

T∞  temperature of the incoming flow 

t unit vector along tangential direction to the interface, time   

U incoming flow velocity  

U ∞  dimensionless incoming flow velocity  

u, v velocity components along x- and y- axes, respectively 

mV  the maximal substrate uptake rate (SUR) per cell, 1mol s−  



 xiv

W average width of cavity 

x, y Cartesian coordinates 

  

Greek symbols 

α  thermal diffusivity, 2 1m s−  

β  stress jump parameter related to viscous effect; coefficient of volumetric 

thermal expansion 

1β  stress jump parameter related to inertia effect 

ε  porosity 

cε  convergence error 

ξ  concentration flux reaction parameter 

κ  effective distance parameter 
γ  kinematic viscosity, 2 1m s− ;  the cell volume density, 3m−  

λ  surface waviness in a wavy cavity 
μ  dynamic viscosity, 2 N s m−  

λ  interpolation factor  
ρ  fluid density, 3 kg m−  

φ  heat flux jump  

ϕ  general dependent variable 

ΔΩ  finite volume of the control cell 

  

Subscripts 

av average value 

bot bottom line in reactor 

B buoyancy source term 

D Darcy term 

e east 

eff effective value for porous media 



 xv

F Forchheimer term 

f fluid 

fluid fluid part 

i, j grid node number in x and y directions 

in inlet 

int interface line in reactor 

interface interface value 

l east, west, north, and south point of control volume 

n north 

w west  

p control volume center point; porous part 

porous porous part 

ref reference 

s south 

t tangential direction to the interface  

  

Superscripts 

∗  non-dimensional quantities 

c convection effect 

d diffusion effect 

m iteration time step 

n iteration step for each time level 

- average value 
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Chapter 1 

Introduction 

 

There have been wide applications for natural and manufactured porous 

materials in engineering processes, including heat sinks, mechanical energy absorbers, 

catalytic reactors, heat exchangers, high breaking capacity fuse, cores of nuclear 

reactors and grain storage. Due to its relatively low permeability and high 

conductivity, the addition of porous media can help to improve the flow structure, 

increase or decrease heat transfer. Besides, porous culture medium is also usually 

used as cell growing environment in bioreactors. Experiments and numerical 

simulations for flow and transport phenomena in porous media have been attempted 

since Darcy in the 19th century. Considering the wide applications for porous media, 

numerical research on heat and mass transfer in porous media, and in porous/fluid 

coupled domains with complex geometries has been conducted in current work.  

This chapter will give a general review of porous media applications, the 

numerical model development for the flow in porous media, and different interface 

treatments along the porous/fluid interface. Previous work on the flow around porous 

bodies, natural and forced heat convection in porous and porous/fluid coupled 

domains, mass transfer in reactors with porous media will also be reviewed.  
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1.1 Background 

1.1.1 Flow around Porous Bodies 

Porous media usually mean materials consisting of a solid matrix with an 

interconnected void. The interconnection of the void (the pores) allows the flow of 

one or more fluids through the materials. Examples in nature are beach sand, 

sandstone, limestone, rye bread, wood and human lung.   

Flow past porous bodies occurs in many practical applications and is 

important in different environmental issues. Examples are the nuclear biological 

chemical filters allowing flow through a porous cylinder, seepage from streams 

bounded by porous banks, displacement of oil from sandstones by shalewater influx, 

and leakage into aquifers. 

 

1.1.2 Heat Transport in Porous Media 

Porous materials are used for home and industrial thermal insulation in natural 

convection system due to their great flow resistance. Natural convection in porous 

media enclosure has many engineering applications, such as drying process, 

electronic cooling, ceramic processing, and overland flow during rainfall. In thermal 

insulation engineering, an appreciable insulating effect is derived by placing porous 

material in the gap between the cavity walls, and in multishield structures of nuclear 

reactors between the pressure vessel and the reactor.  
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In forced convection system, artificial porous materials, e. g. metallic foams 

with high conductivity, are usually used for heat fins in electronic cooling devices. 

For forced convection, there have been several studies on the use of porous materials 

(Vafai, 2001; Kiwan, S. and AI-Nimr, 2001; Bhattacharya and Mahajan, 2002) in 

order to obtain heat transfer enhancement for convective flow in a duct. Huang and 

Vafai (1994a) studied flow in a two-dimensional duct with porous blocks placed 

intermittently on the floor, and in a later study (Huang and Vafai, 1994b) they added 

porous cavities in the floor between the blocks. The heat transfer was found to be 

enhanced by the recirculation flows caused by the blocks or the cavities. Fu et al. 

(1996) continued the study with a porous block placed on one wall. 

 

1.1.3 Mass Transport in Reactors with Porous Media 

Porous silicon carrier matrices in micro enzyme reactors are widely used in 

enzyme coupling for their high surface area for biochemical engineering application. 

This characteristic can help to avoid lack of long-term stability and yield high 

reaction effectiveness and improve catalytic efficiency. Optimization of the porous 

silicon matrix is needed to further improve the reactor performance. 

Besides, porous matrix structure is usually used for cell culture in reactors for 

bioengineering applications. Bioreactors aim to assist the development of new tissue 

and to provide appropriate stimulation, efficient nutrient delivery and waste removal 

for the cultured cells. Generally, porous scaffold is used and it should be 

biocompatible for cell adhesion and growth. Its biodegradation rate should be close to 
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that of the tissue assembly. Also the scaffold structure should have a high porosity for 

cell-scaffold interation, cell profileration and extracellular matrix generation. What is 

more, the scaffold should have high permeability for the purpose of transporting 

nutrients and metabolites to and from the cells. Among them, the perfusion bioreactor 

with a porous wall allows essential nutrients to be delivered to cultured cells in a 

manner very similar to what they are used to within the body.   

 

1.2 Literature Review 

1.2.1 Numerical Model Development for Flow in Porous Media 

1.2.1.1 Darcy’s Law  

The velocity in a porous medium is related to the pressure gradient by the 

Darcy’s law (Vafai, 2000): 

             K pu
xμ
∂

= −
∂

                                                                                       (1.1) 

where p is the interstitial pressure, u is the mean filter velocity, μ  is the dynamic 

viscosity of the fluid, K is the permeability of porous media. 

Darcy’s law is valid only when the flow is of the seepage type and the fluid is 

homogeneous. Thus Darcy’s law can be considered valid in situations where the flow 

is of creeping type (Greenkorn, 1981) or when the porous medium is densely packed 

with small enough permeability (Rudrauah and Balachandra, 1983), so that the pore 

Reynolds number based on the local volume averaged speed is less than unity.  
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However, Darcy’s law neglects the boundary and inertial effects of the fluid 

flow due to the small porosity associated with the medium. When the velocity 

gradient is high, viscous effects cannot be taken into account in this law, especially in 

the presence of a solid wall, due to its low order accuracy. When the fluid Reynolds 

number is large enough, it will overpredict the actual fluid motion and the other 

effects (for example, inertial, viscous and convective effects) cannot be neglected 

(Vafai and Tien, 1981; Hsu and Cheng, 1990). 

 

1.2.1.2 Non-Darcian Models 

Non-Darcian effects have been incorporated to account for the other effects in 

porous flow. Forchheimer (1901) suggested a modification to the previous models to 

account for inertia effect. This was due to the rather high speed of the flow in some 

porous media, which was neglected in Darcy’s law. Lapwood (1948) and Yin (1965) 

added the unsteady term in the Darcy’s law to stand for temporal acceleration. 

Brinkman (1947a, 1947b) introduced a viscous term by examining the flow past a 

spherical particle to account for the viscous shear stresses that acted on the fluid 

element. An effective fluid viscosity inside the porous domain was used in his 

formulation.  

 

1.2.1.3 Darcy-Brinkman-Forchheimer Extended Model 
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When all the unsteady, inertia and viscous effects are taken into consideration, 

Vafai and Tien (1981), Hsu and Cheng (1990) derived the generalized Darcy-

Brinkman-Forchheimer extended model, as following: 

  0u∇⋅ =                                                                                                          (1.2)                               

( ) 2

Brinkman TermPressure Term Darcy TermUnsteady Term Forchheimer TermConvective Term

FC uu uu p u u u
t K K

ρερ μερ ε μ
ε

∗⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ + ∇⋅ = − ∇ + ∇ − −
∂

 (1.3) 

where Equation (1.2) is the mass continuity equation; Equation (1.3) is the 

momentum conservation equation; ε  is porosity; K is the permeability; u  the local 

average velocity vector (Darcy velocity); t is time; ρ  is the fluid density; μ  is the 

fluid dynamic viscosity; p∗  is the intrinsic average pressure; and FC  is  Forchheimer 

coefficient. The local average and intrinsic average can be linked by the Dupuit-

Forchheimer relationship, for example, p pε ∗= .   

Equation (1.2) and (1.3) were derived using local averaging technique. In this 

approach, a macroscopic variable is defined as an appropriate mean over a 

sufficiently large representative elementary volume (REV) (Figure 1.1). This 

operation yields the value of that variable at the centroid of REV (Vafai and Tien, 

1981). It is assumed that the result is independent of the size of the REV. The length 

scale of the REV is much larger than the pore scale, but smaller than the length scale 

of the macroscopic flow domain. 

It should be noted that the above two equations are now the most general 

equations governing the flow of a viscous fluid in porous media. They can recover the 
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standard Navier-Stokes equations when the porosity approaches unity and Darcy 

number goes to infinity. This characteristic makes it easier for those numerical flow 

problems in porous/fluid coupled domains, as reviewed in Section 1.2.3. 

 

1.2.2 Numerical Model Development for Heat Transfer in Porous 

          Media 

There are two kinds of models for heat transfer in porous media. One is the 

local thermal equilibrium (LTE) model, which is widely accepted and used in various 

analytical and numerical studies on transport phenomena in porous media. It is 

assumed that both the fluid and solid phases are at the same temperature (Vafai and 

Tien, 1981; Hsu and Cheng, 1990; Nithiarasu et al., 1997 and 2002), due to the high 

conductivity value of the solid parts in porous media. Under the assumption of LTE, 

many investigators have used one unique set of equation to obtain temperature 

distributions in a porous medium because an analysis based on the one-equation 

model is simple and straightforward. The other one is local thermal non-equilibrium 

(LTNE) model, where two sets of energy equations are used to treat the solid phase 

and the fluid phase separately (Khashan et al., 2006; Haddad et al., 2007). This model 

is employed when temperature difference between the two phases is considered as a 

crucial design parameter. 

 

1.2.3 Interface Treatment for Porous/Fluid Coupled Domains 
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From the modeling point of view, two different approaches can be used to 

represent transport phenomena in composite fluid/porous domains: one-domain and 

two-domain approaches. The detailed comparison of these two approaches has been 

given out by Goyeau et al. (2003) and here their main differences are discussed. 

 

1.2.3.1 One-domain Approach 

In the one-domain approach, the porous region is considered as a pseudo-fluid 

and the whole regions including fluid and porous domains are treated as a continuum. 

The transition from the fluid to the porous medium is achieved through a continuous 

spatial variation of properties such as the abrupt change of permeability and porosity 

values along the interface. In this case, the problem of explicitly writing the boundary 

conditions at the interface is avoided, as the matching conditions are automatically 

implicitly satisfied. Thus this approach has been extensively used in previous 

numerical computations dealing with natural convection (Bennacer et al., 2003; 

Gobin et al., 2005), forced convection problems (Zhang and Zhao, 2000; Abu-Hijleh, 

1997 and 2000) in composite fluid/porous domains. 

However, in the one-domain approach attention should be paid to the abrupt 

jump of permeability and porosity along the interface which may result in numerical 

instabilities (Basu and Khalili, 1999). It may be overcome by unphysical numerical 

techniques (Basu and Khalili, 1999). Thus, its physical representation of momentum 

conservation at the interfacial region depends on the relevance of the discretization 

scheme (Goyeau et al., 2003).  
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1.2.3.2 Two-domain Approach 

1.2.3.2.1 Slip and Non-slip Interface Conditions 

In the two-domain approach, the fluid and the porous regions are considered 

separately and the conservation equations in both regions are coupled by appropriate 

boundary conditions at the fluid/porous interface. For momentum transport, the 

interfacial conditions depend on the order of the differential equation in the porous 

region. When Darcy’s law is used, the coupling with the Navier-Stokes equation in 

the fluid region is obtained by using a semi-empirical slip boundary condition 

(Beavers and Joseph, 1967) involving a slip coefficient which depends on the local 

microstructure geometry of the interface. This is because Darcy’s law is first order 

and it cannot be coupled with the second order Navier-Stokes equation along the 

interface. 

Alternatively, Brinkman correction to Darcy’s law (Brinkman, 1947a, 1947b) 

can be used to meet the second order requirement in the porous region. Therefore, 

continuity of both velocity and shear stress can be satisfied at the interface. However, 

stress jump conditions can also be written in order to account for the heterogeneity of 

the interfacial region (Ochoa-Tapia and Whitaker, 1995a). Actually, in the two-

domain approach, the involved adjustable parameters (slip coefficient, stress jump 

coefficient) are difficult to predict and need further practical experiments to validate 

their values (Ochoa-Tapia and Whitaker, 1995b).  

The interfacial conditions have to be coupled with the equations for the two 

regions and additional boundary conditions are applied at the interface. Boundary 
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conditions for flow and heat transfer at the porous-fluid interface have been proposed 

previously and summarized in Tables 1.1 and 1.2.   

One of the early flow boundary conditions was that of Beavers and Joseph 

(1967) who proposed the slip-boundary condition, in which the interfacial fluid-shear 

was related to the interface fluid-velocity and Darcy flow was assumed in the porous 

region. The interface condition contained a jump in both stress and velocity. However, 

continuity in both velocity and stress was proposed by Neale and Nader et al. (1974) 

as well as Vafai and Kim (1990). The continuity of shear stress was also assumed by 

Vafai and Thiyagaraja (1987) as well as Kim and Choi (1996) but there is non-

continuity of velocity gradient, which is satisfied by using an effective viscosity for 

the porous medium region.  

 

1.2.3.2.2 Stress-jump Interface Conditions 

The non-continuity of both velocity gradient and shear stress has been 

developed by Ochoa-Tapia and Whitaker (1995a, 1995b). The development was 

based on the non-local form of the volume averaged Stokes’ equation. The length-

scale constraint was that the radius of the averaging volume is much smaller than the 

height of the fluid channel. Under these assumptions, the volume-averaged equations 

in the homogeneous fluid regions are equivalent to the point equations; and the 

analysis of jump condition is greatly simplified because a single volume-averaged 

transport equation is used in both fluid and porous regions. The jump condition links 

the Darcy law, with Brinkman’s correction, to the Stokes equation. The analysis 
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produced a jump in the stress but not in the velocity. The normal component of jump 

condition simply reduced to continuity of pressure. The function for the jump 

coefficient indicates dependence on permeability and porosity and was complex to 

solve. The coefficient was expected to be of order one, and may be either positive or 

negative. It was noted that the parameter depends on /K δ  where δ  is the 

thickness of the boundary region. 

Subsequently, Ochoa-Tapia and Whitaker (1998b) developed another stress 

jump condition which includes the inertial effects. Though inertial effects may be 

negligible in homogeneous regions of channel flow, it is not negligible in the 

boundary between the porous and fluid regions. Outside the boundary regions, the 

non-local form of the volume-averaged momentum equation reduces to the 

Forchheimer equation with Brinkman correction and the Navier Stokes equation. Two 

coefficients appear in this jump condition: one is associated with an excess viscous 

stress and the other is related to an excess inertial stress.  

The stress jump parameter (associated with an excess viscous stress) was 

derived by Goyeau et al. (2003) as an explicit function of the effective properties of a 

transition layer between the fluid and porous regions. The parameter is also related to 

the variations of the velocity in the transition layer, which is an unknown in the 

problem. Recently, Chandesris and Jamet (2006) presented a model in which the 

shear jump is built on fluid stress rather than effective stress. An explicit function for 

the stress jump coefficient was obtained which only depends on the characteristics of 

the porous medium (porosity and permeability) in the transition zone.  
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1.2.3.2.3 Numerical Experiments for Fluid/porous Coupled Flows 

Numerical solutions for the coupled viscous and porous flows have been 

attempted by many researchers with the two-domain approach (Gartling et al., 1996; 

Costa et al., 2004; Betchen et al., 2006). Costa et al. (2004) proposed a control-

volume finite element method to simulate the problems of coupled viscous and 

porous flows. A continuity of both velocity and stress at the interface was assumed 

and no special or additional procedure was needed to impose the interfacial boundary 

conditions. Betchen et al. (2006) developed a finite volume model, also based on 

continuity of both velocity and stress, but special attention was given to the pressure-

velocity coupling at the interface. 

The stress jump conditions have been adopted by many researchers. Different 

types of interfacial conditions between a porous medium and a homogenous fluid 

have been proposed; and found to have a pronounced effect on the velocity field as 

shown by Alazmi and Vafai (2001).  

The implementation of the numerical methodology for the stress jump 

condition based on Ochoa-Tapia and Whitaker (1995a, 1995b) can be found in the 

work of Silva and de Lemos (2003). Although they claimed that their treatment could 

be applied to complex geometris, their results were based on finite volume method in 

an orthogonal Cartesian coordinate system and for the case of fully developed flow. 

In their study, only the jump in shear stress was included and no special treatment on 

velocity derivatives was mentioned. However, for flow in general, it is necessary to 

consider how to formulate the velocity derivatives at the interface. Also, for a two-
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dimensional problem, the normal stress condition is needed to close the sets of 

equations. 

The main drawback of the stress jump condition is that its parameters are 

unknown. This closure problem has been investigated by many researchers recently 

(Goyeau et al., 2003; Chandesris and Jamet, 2006; Valdes-Parada et al., 2007; 

Chandesris and Jamet, 2007) and derivations have been proposed to evaluate the first 

stress-jump parameter which is viscous related.  

 

1.2.3.2.4 Heat and Mass Transfer Interface Conditions 

For heat transfer interface conditions, usually continuities of temperature and 

heat flux are required (Neale and Nader, 1974; Vafai and Thiyagaraja, 1987; Ochoa-

Tapia and Whitaker, 1997; Jang and Chen, 1992; Kim and Choi, 1996; Kuznetsov, 

1999). However, other types of interfacial conditions are also possible. Ochoa-Tapia 

and Whitaker (1998a) proposed a jump condition for heat flux to account for its 

production or consumption at the interface. Another hybrid interfacial condition, 

continuity of heat flux but non-continuity in temperature, was proposed by Sahraoui 

and Kaviany (1994). 

For mass transfer interface conditions, Valencia-Lopez et al. (2003) developed 

a mass jump condition that representing the excess surface accumulation, convection, 

diffusion adsorption and a nonequilibrium source, in addition to a term representing 

the exchange with the surrounding region. Recently, the closure problem has been 
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derived by Valdes-Parada et al (2006 and 2007b) to predict the jump coefficient as a 

function of the microstructure of the porous layer.  

 

1.2.4 Unsteady Flow past Porous Cylinders 

Flow past bluff bodies, especially cylinders, has been investigated extensively 

for a long time. Most of the studies concentrated on circular cylinder case under free 

flow conditions as reviewed by Williamson (1996) and Zdravkovich (1997). However, 

the research on square cylinder case has not been investigated to the same extent, 

although it plays a dominant role in many technical applications, such as building 

aerodynamics, as reported by Davis et al. (1982, 1984), Franke et al. (1990), Klekar 

and Patankar (1992), and Suzuki et al. (1993). They have provided numerical and 

experimental data about lift coefficient, drag coefficient, base pressure and Strouhal 

frequency for a range of Reynolds numbers (Re) up to 2800.  

Trapezoidal cylinders are also often used in engineering applications, and the 

flow around them is more complicated. Lee (1998a and 1998b) numerically studied 

the early stages of an impulsively started unsteady laminar flow past tapered and 

expanded trapezoidal cylinders, with Re ranging from 25 to 1000. He showed that the 

flow started with no separation first, then a symmetrical circulation zone developed 

behind the rear of the cylinder, later with separated flow and separation bubbles. 

Finally, the vortices merge to form a complex flow regime with its own distinct 

characteristics. Cheng and Liu (2000) simulated the effects of afterbody shape on 

flow around prismatic cylinders. The cross-sectional shape of the cylinder varies from 
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square to trapezoidal and finally to triangular. Later, the laminar vortex shedding 

from a trapezoidal cylinder with different height ratios was studied by Chung and 

Kang (2000). They showed that the Strouhal numbers from trapezoidal cylinders with 

Re = 100 and 150, had their minimum values at height ratios of 0.7 and 0.85, 

respectively; while with Re = 200, they increases to a maximum value at height ratio 

of 0.7, then decreases with the increase of height ratio. Kahawita and Wang (2002) 

also numerically investigated the wake flow behind trapezoidal bodies, using the 

spline method of fractional steps. They found the trapezoidal height was the dominant 

influence on Strouhal number, compared with the base width.   

However, most of the studies focused on flow past impermeable bodies, and 

flow behind a porous body has not been broadly investigated. For unsteady problems, 

flow over a circular cylinder with surface suction and blowing was theoretically 

investigated by Cohen (1991). He derived a model for St-Re relationship by order of 

magnitude estimation. Ling et al. (1993) numerically verified this model for flow over 

a square cylinder and obtained a similar trend between Strouhal and Reynolds 

numbers. These studies on the effects of suction and blowing through the body may 

help to explain the behaviour of flow past porous bodies.  

Jue (2003) simulated vortex shedding behind a porous square cylinder using 

finite element method. In his study, a general non-Darcy porous media model was 

applied to describe the flows both inside and outside the cylinder. A harmonic mean 

was used to treat the sudden change between the fluid and porous medium and no 

special treatment at the interface was given. He found that Darcy number has more 
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influence on the flow field than porosity does. Bhattacharyya et al. (2006) simulated 

the flow around a porous circular cylinder with Reynolds number ranging from 1 to 

40. For the interface, the harmonic-mean formulation was also used to handle the 

abrupt changes of permeability and porosity. Such abrupt changes were a major 

source of numerical difficulties and the resultant instabilities in the single-domain 

approach.  

 

1.2.5 Natural Convective Heat Transfer in Complex Porous Domains 

There have been many previous studies on natural convection in porous 

enclosures (Vasseur et al., 1989; Hsiao and Chen, 1994; Nithiarasu, 1996; Bera et al., 

1998; Holzbecher, 2004). The non-Darcian effects in natural convection are presented 

systematically in the works of Lauriat and Prasad (1989), Ettefagh et al. (1991), and 

Karimi-Fard et al. (1997). Non-Darcian effects represent deviations from the Darcy 

law, including the viscous and inertial effects, porosity variation effect, and the 

convective effect. They concluded that Darcy law is only valid when the pore 

Reynolds number is of order unity; and if the Rayleigh number is large enough, 

Darcy law will over predict the actual flow motion and the other effects cannot be 

neglected.   

Heat transfer in irregular geometry is also of interest recently. Ratish Kumar 

et al. (1997 and 1998), Murthy et. al. (1997) and Ratish Kumar and Shalini (2003) 

have studied natural convection heat transfer in a cavity, enclosing a porous medium, 

which has one wavy vertical wall. Subsequently Mahmud and Fraser (2004) 
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considered a wavy cavity, consisting of two wavy-vertical isothermal walls and two 

horizontal adiabatic walls, which enclosed a viscous and incompressible fluid (clean 

fluid) inside.  

Recently, Misirlioglu et al. (2005) extended the study of natural convection in 

the wavy cavity by considering that it enclosed a porous medium. However, their 

numerical results were based on Darcy’s law and the stream-function method was 

used to solve the governing equations. Flow and heat transfer characteristics 

(isothermal, streamlines and local and average Nusselt numbers) were investigated in 

their study.  

 

1.2.6 Forced Convective Heat Transfer in Porous-Fluid Coupled  

         Domains 

1.2.6.1 Forced Convection over a Backward Facing Step with a Porous Insert 

Heat transfer will be enhanced globally if the flow has regions of recirculation 

and the reduction or elimination of recirculation is highly desirable, as wall 

temperatures are typically high in these regions. Martin et al. (1998) numerically 

investigated the heat transfer enhancement with porous inserts behind the backward-

facing step, with high porosity above 0.90 and Re = 800. Generally the porous inserts 

reduce or eliminate the lower wall recirculation zone. They modified the velocity 

profile and straighten streamlines past the expansion, making the velocity gradient 

steeper near the floor which thus augmented the heat transfer in the porous region. 
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Due to the suppression of the recirculation bubble, there is no reattachment point to 

cause local enhancement of heat transfer at that location. 

 More recently, Zhang and Zhao (2000) solved the same problem using a 

high-order upwind finite-volume algorithm. The fluid region was governed by the 

Navier-Stokes equation and the porous region by the Brinkman-Forchheimer-

extended Darcy model. The two equations were unified into one set for both the fluid 

and porous media regions by introducing a binary parameter which had values one 

and zero in porous and fluid regions respectively. Thus the matching conditions at the 

interface were automatically satisfied. However, for such single-domain approach, the 

physical values at the interface depend on the type of discretization scheme.  

 

1.2.6.2 Forced Convection over a Backward Facing Step with a Porous Floor  

            Segment 

Local enhancement of heat transfer was achieved around the reattachment 

location if a porous segment was embedded in the floor downstream of the backward 

facing step (Abu-Hijleh, 1997 and 2000). This flow device could serve as a passive 

heat-control mechanism. The study may also be related to convection in a solid fuel 

combustion chamber, with an abrupt expansion, in which the fuel particles could be 

modeled as a porous segment. 

Abu-Hijleh’s numerical model was based on one-domain approach in which a 

momentum equation governed the flow in fluid and porous domains. In their equation, 

a pressure loss coefficient was incorporated to represent the extra pressure drop 
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through the porous segment. The pressure coefficient takes zero value for fluid 

domain and a non-zero for porous domain, the value of which depends on the porous 

materials and arrangements. The local heat transfer was found to be enhanced after 

the porous segment but the overall heat transfer might be reduced by as much as 16 %. 

However, the above study on porous floor segment (Abu-Hijleh, 1997 and 

2000) was based on one-domain approach in which continuity of stress was 

automatically satisfied. In the two-domain approach, there are two sets of equations 

for the two regions which have to be coupled at the interface. The two-domain 

approach requires additional boundary conditions to be applied at the interface, as 

reviewed in Section 1.2.3.2.  

 

1.2.7 Mass Transport in a Reactor with Porous Media  

For bioreactors with porous media, experimental research has been conducted 

before. Dusting et al. (2006) experimentally investigated, using particle image 

velocimetry technique, the flow field and shear stress outside a scaffold in a spinner-

flask bioreactor. It was found that vortex breakdown may still occur and relatively 

large stresses occur along the edge of scaffold protruding into the boundary of the 

vortex breakdown region. Drott et al. (1997 and 1999) fabricated a microstructured 

enzyme reactor with porous silicon along the walls in a channel to yield high enzyme 

activities.  Later, Melander et al. (2006) continued and investigated the effects of flow 

rate and substrate concentration on the hydrolysis efficiency. A perfusion bioreactor 
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was designed (Ma et al., 1999; Zhao and Ma, 2005) with fibrous matrix walls in the 

channels, for tissue engineering of trophoblast and mesenchymal stem cells. 

Mathematical modeling and numerical simulations have also been carried out 

and used to explain experimental results or cast light on research directions for mass 

transport in reactors with porous media. Porter et al. (2005) applied the lattice-

Boltzmann method to simulate the flow of culture media through scaffolds in a 

bioreactor. Micro-computed tomography imaging was used to define the micro-

architecture of the scaffold for the simulations. The local shear stress was estimated 

from velocity derivatives at various media flow rates. Boschetti et al. (2006) 

developed a computational fluid dynamic model of the flow through a three 

dimensional scaffold of homogeneous geometry. The scaffold was idealized as 

composing of many subunits which were obtained by subtracting a solid sphere from 

a concentric solid cube. In both of the above two approaches, a large number of 

elements are needed to describe the microstructure of the scaffolds.  

For other researchers, with the use of volume averaging technique (Vafai and 

Tien, 1981), macroscopic conservation equations for nutrient in the porous scaffold 

were used. For direct perfusion bioreactor, where the culture media flow was 

perpendicular to a cellular construct, finite element method was implemented to solve 

the Navier-Stokes equations for the fluid domain and Brinkman’s equation for the 

porous scaffold domain (Chung et al., 2007). Their model included time-dependent 

porosity and permeability which varied with cell growth and numerical results 

showed that cells penetrated to a great extend into the scaffold with a more uniform 
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distribution. For another kind of perfusion bioreactor, where culture media flow was 

parallel to the porous scaffold, Lattice-Boltzmann method was used to solve the 

Stokes’ equations in fluid region and the Brinkman’s equation in the porous scaffold 

region (Zhao et al., 2007). However, in the above two references, the details for the 

bioreactor design (for example, concentration distribution for cell growth, reaction 

effectiveness and critical reaction length) were not systematically and parametrically 

investigated.  

Recently, from the aspect of design analysis, numerical modeling of a micro-

channel flat-plate bioreactor was conducted using the correlation of combined 

parameters (Zeng et al., 2006, 2007 and 2008). Single-culture (Zeng et al., 2006), co-

culture cells (Zeng et al., 2007) and micro-patterning cells (Zeng et al., 2008) were 

distributed along the bioreactor wall and with the increase in the bioreactor wall 

length, there existed a critical point after which the cells suffered from hypoxia. The 

results were presented systematically and parametrically, which may serve as a 

general guide for the architecture design of a flat-plate bioreactor. However, these 

work did not involve reactor with porous walls, which is more useful and applicable 

in practical bioengineering and biochemical problems. 

 

1.3 Objectives of the Study 

1.3.1 Motivations 

As reviewed above, for numerical simulations of heat and mass transfer in 

porous/fluid coupled domains, the stress jump interfacial conditions (Ochoa-Tapia 



                                                        Chapter 1 Introduction 
 

 22

and Whitaker, 1998b) have not been incorporated with heat or mass transfer. There 

are also limited numerical experiments and systematic results for heat and mass 

transfer in porous/fluid coupled domains for certain numerical applications. The 

generalized Darcy-Brinkman-Forchheimer extended model has not been implemented 

and there is not sufficient work to investigate unsteady flow past porous cylinders, 

natural convective heat-transfer in porous complex geometries, forced convective 

heat-transfer in porous/fluid coupled domains and mass transport in a reactor with 

porous media. The implementation of stress jump interfacial condition has never been 

attempted before for unsteady problems for flow past porous cylinders. There is also 

no systematic or parametrical study on a microchannel reactor with a porous wall that 

examines the influence of flow and geometric parameters on mass transport behavior 

inside such reactors.  

 

1.3.2 Objectives 

The detailed objectives of the current work will be described in the 

corresponding chapters later and the general objectives are given here as follow: 

1. To develop a numerical method for heat and mass transfer in porous/fluid 

coupled domains with the use of generalized Darcy-Brinkman-Forcheimmer 

extended model for complex geometries and to implement the numerical 

technique on several applications related to heat and mass transfer; 
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2. To implement the Ochoa-Tapia and Whitaker’s stress jump conditions for the 

flow, heat and mass transfer in porous/fluid coupled domains, and to 

investigate their effects on local and global heat and mass transfer;  

3. To implement the numerical method for unsteady flow past porous cylinders, 

heat transfer in complex geometries and to check the heat transfer 

enhancement effects with the addition of porous media in porous/fluid 

coupled domains; 

4. To investigate the flow and mass transport in a microchannel reactor with a 

porous wall; and to develop combined non-dimensional parameters for a 

systematic and parametrical analysis of the mass concentration.  

 

1.3.3 Scope 

Due to the time-consuming mesh generation and high computational effort in 

complex geometries for three-dimensional problems, the current study only 

considered two-dimensional cases. The porous medium was considered to be rigid, 

homogeneous and isotropic; and saturated with the same single-phase fluid as that in 

the homogenous fluid region. For heat transfer, local thermal equilibrium (LTE) 

model was assumed. For the shear stress jump parameters, to demonstrate the 

implementation of current numerical method and to test their effects, they were 

ranged from -5.0 to +5.0 in the present study. For normal stress, temperature, heat 

flux, mass and mass flux, the continuity conditions were imposed. 
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For flow past a porous square or trapezoidal cylinder, Reynolds number up to 

250 was considered to avoid the complications from three-dimensional flow. For 

forced convection after backward facing step with a porous insert or a porous floor 

segment, the ratio of the effective thermal conductivity of porous medium to fluid 

conductivity was set to be unity. For the mass transfer in a microchannel reactor with 

a porous wall, a steady concentration field was assumed.  

 

1.4 Organization of the Thesis 

The following chapter will present the details of the numerical method for the 

flow in porous and porous/fluid coupled domains. It is based on the SIMPLEC 

method with multi-block technology and body-fitted grids. The grid non-

orthogonality is taken into account for complex geometries.  

In Chapter 3, a variety of numerical experiments are performed and compared 

with the benchmark problems for the validation of the present numerical code.  

In Chapter 4, unsteady flow past a porous square or trapezoidal cylinder with 

the stress jump interfacial condition is numerically analyzed. 

In Chapter 5, a numerical investigation is carried out for steady, natural 

convective heat transfer inside a wavy cavity filled with a porous medium. 

In Chapter 6, forced convective heat-transfer problems in porous/fluid coupled 

domains are numerically analyzed. The flow past a backward facing step with the 

addition of a porous insert or porous floor segment is presented. 
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In Chapter 7, mass transfer in a mircochannel reactor with a porous wall is 

considered. The results are correlated with the use of several combined dimensionless 

parameters; and the reaction effectiveness factor and the reactor efficiency are also 

investigated. 

In Chapter 8, a summary of the main conclusions that can be drawn from this 

work and the recommendations for future research work are presented. 
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Table 1.1 Velocity boundary conditions at interface between porous and fluid 
domains. 

 

Model Velocity Velocity Gradient References 

1  ( )interface
fluid

x
x

u u u
y K

α
∞

∂
= −

∂
 Beavers and Joseph, 1967.

2 fluidporous xx
u u=

 fluidporous

x x
u u
y y

∂ ∂
=

∂ ∂
 

Neale and Nader et al., 
1974; Vafai and Kim, 

1990. 

3 fluidporous xx
u u=

 fluidporous

x x
eff

u u
y y

μ μ
∂ ∂

=
∂ ∂

 
Vafai and 

Thiyagaraja,1987; Kim 
and Choi, 1996. 

4 fluidporous xx
u u=

 
interfacefluidporous

x x
x

u u u
y y K

μ μμ β
ε
∂ ∂

− =
∂ ∂

 

Ochoa-Tapia and 
Whitaker, 1995a, 1995b; 

Goyeau et al., 2003; 
Chandesris and Jamet, 

2006. 

5 fluidporous xx
u u=

 
fluidporous

2
1 interface

interface

                

x x

x x

u u
y y

u u
K

μ μ
ε

μβ β ρ

∂ ∂
−

∂ ∂

= +

Ochoa-Tapia and 
Whitaker, 1998b. 

 
Table 1.2 Heat transfer boundary conditions at interface between porous and fluid 

domains. 
 

Model Temperature Temperature Gradient References 

1 fluidporous
T T=  

fluidporous
eff f

T Tk k
y y

∂ ∂
=

∂ ∂
 

Neale and Nader, 1974; 
Vafai and Thiyagaraja, 
1987; Ochoa-Tapia and 

Whitaker, 1997; Jang and 
Chen, 1992; Kim and 

Choi, 1996; Kuznetsov, 
1999. 

2 fluidporous
T T=  

fluidporous
eff f

T Tk k
y y

φ
∂ ∂

= +
∂ ∂

Ochoa-Tapia and 
Whitaker, 1998a. 

3 fluid porous
fluid

( )TdT T T
dy

α
λ

= −

 fluidporous
eff f

T Tk k
y y

∂ ∂
=

∂ ∂
 

Sahraoui and Kaviany, 
1994. 
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Figure 1.1 The Representative Elementary Volume (REV). 
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Chapter 2 

A Numerical Method for Transport Problems in Porous and 

Fluid Coupled Domains* 

 

In the present chapter, the development of a finite volume code based on non-

orthogonal body-fitted and multi-block grids is described to simulate the coupled 

flow and heat or mass transport problems in the homogenous flow and porous 

medium regions. For such problems, previously one-domain approach is widely used, 

where continuities of velocity, shear stress, pressure, temperature, heat or mass flux 

are automatically satisfied. However for present method, two-domain approach is 

used, making it suitable to implement different interfacial conditions. The present 

code provides a flexible platform for implementing complex interfacial boundary 

conditions and new porous models. The finite volume method is chosen because it 

has been well developed and has relatively high computational efficiency. The use of 

multi-block technique is for convenience because the structured grid is applied. 

In the remainder of this chapter, the mathematical equations governing the 

fluid flow, heat or mass transport in the homogenous flow and porous medium 

regions for Cartesian coordinates are described, followed by the discretization 

procedures of the governing equations. The SIMPLEC algorithm is used to couple the 
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velocity and pressure. Special attention is given to the treatment of the interface 

between the homogenous flow and porous medium regions. The strongly implicit 

procedure (SIP) is applied to solve the resultant algebraic equation system.  

 

2.1 Governing Equations in Cartesian Coordinate 

2.1.1 Homogenous Fluid Region 

For a two-dimensional, incompressible, and viscous flow, the governing 

equations with primitive variables are:  

Continuity equation:   

                0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                        (2.1)  

X-momentum equation:  

2 2

2 2( ) ( ) x
u u u p u uu v
t x y x x y

Sρ ρ μ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂
i ρ                           (2.2) 

Y-momentum equation: 

              
2 2

2 2( ) ( ) y
v v v p v vu v S
t x y y x y

ρ ρ μ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂
i ρ                             (2.3) 

Heat or mass transfer equation: 

            
2 2

2 2( )u v
t x y x y

Sϕ ϕ
ϕ ϕ ϕ ϕ ϕρ ρ ρ ρ∂ ∂ ∂ ∂ ∂
+ + = Γ + +

∂ ∂ ∂ ∂ ∂
i                                   (2.4) 

where u and v are velocity components in x and y direction respectively; p the 

pressure;  ρ  the fluid density;  μ  the fluid dynamic viscosity;  xS  and yS  are the 
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source terms in x and y direction respectively. ϕΓ  is the diffusivity for the quantity ϕ ; 

Sϕ  the source term for the quantity ϕ . 

Equation (2.4) can be regarded as a general form of the governing equations 

for the Navier-Stokes equations. In the discretization section, the analysis will be 

carried out from the general conservation equation (Equation 2.4). 

 

2.1.2 Porous Medium Region 

The porous medium is considered to be rigid, homogeneous and isotropic; and 

saturated with the same single-phase fluid as that in the homogenous fluid region. In 

order to include all the non-Darcian effects, the governing equations for porous 

region based on a generalized model including both Brinkman and Forchheimer terms 

as well as the non-linear advection term (Hsu and Cheng, 1990; Gartling et al., 1996; 

Nithiarasu et al., 2002) can be written as: 

Continuity equation:   

            0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                         (2.5)  

X-momentum equation:  

                    
2 2 1/ 2 2 2

2 2

( ) ( )

1.75 ( )( ) (
150f

u u uu v
t x y

u v u u up u )
x K xK

ρ ρ
ε ε

μ ε ρε μ
ε

⎧ ⎫∂ ∂ ∂
+ + =⎨ ⎬∂ ∂ ∂⎩ ⎭

∂ +
− − − + +
∂ ∂

i i i
y

∂ ∂
∂

              (2.6) 

Y-momentum equation: 
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2 2 1/ 2 2 2

2 2

( ) ( )

1.75 ( )( ) (
150f

v v vu v
t x y

u v v v vp v
y K xK

ρ ρ
ε ε

μ ε ρε μ
ε

⎧ ⎫∂ ∂ ∂
+ + =⎨ ⎬∂ ∂ ∂⎩ ⎭

∂ +
− − − + +
∂ ∂

i i i )
y

∂ ∂
∂

               (2.7) 

Heat or mass transfer equation: 

            
2 2

2 2( )
ppu v

t x y x y
Sϕ

ϕ ϕ ϕ ϕ ϕρ ρ ρ ρ∂ ∂ ∂ ∂ ∂
+ + = Γ + +

∂ ∂ ∂ ∂ ∂
i                                   (2.8) 

where u and v are the local average velocity components (Darcy velocity components) 

in x and y direction respectively; fp  the intrinsic average pressure; ε  the porosity; K 

the permeability; The subscript “f” denotes the intrinsic average. The local average 

and intrinsic average can be linked by the Dupuit-Forchheimer relationship, for 

example, u= fuε .  and pΓ p
Sϕ are the diffusivity and the source term for the quantity φ 

in the porous medium respectively. 

 

2.1.3 Interface Boundary Conditions 

At the interface between the homogeneous fluid and porous medium regions, 

additional boundary conditions must be applied to couple the flows in the two 

domains. The boundary conditions include flow, heat or mass transfer. 

For flow interfacial condition, the stress jump condition of Ochoa-Tapia and 

Whitaker (1998) is applied: 

2
1

porous fluid interface

t t
t

u u u
n n K

μ μ
tuμ β

ε
∂ ∂

− = +
∂ ∂

β ρ                                  (2.9) 
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where in the porous medium region,  is the Darcy velocity component parallel to 

the interface aligned with the direction t  and normal to the direction n ; in the 

homogenous fluid region  is the fluid velocity component parallel to the interface; 

and 

tu

tu

β  and 1β  are adjustable parameters which account for the stress jump at the 

interface.  

Ochoa-Tapia and Whitaker (1998) derived analytical expressions for 

parameters β  and 1β   which indicate their dependence on permeability and porosity. 

They concluded that these two parameters are both of order one. Ochoa-Tapia and 

Whitaker (1995b) experimentally determined that β  varies from +0.7 to -1.0 for 

different materials with permeability varying from 15 × 10-6 to 127 × 10-6 in2 and 

average pore size from 0.016 to 0.045 in.  

There have been analytical studies which tried to relate the stress jump 

parameter β  to the properties of the porous media. Min and Kim (2005) considered 

channel flow which has a partial porous-medium with periodic structure (solid and 

fluid phases repeating in a regular pattern). For the fluid layer the periodic velocity 

distribution at the interface was expressed as a cosine Fourier series. The control 

equations for the fluid and porous regions were solved analytically to obtain the shear 

stress differences at the interface. The values of porosity and pore size were those 

used in Beavers and Joseph (1967). They found that the stress jump parameter β  was 

of order one and depended on local porosity, Darcy number, pore diameter and 

thickness of the adjacent fluid layer. Valdes-Parada et al. (2007) proposed a mixed 
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stress tensor to relate the stress jump coefficientβ , which was the sum of the global 

and Brinkman stress contributions. The porous medium was assumed to be composed 

of equally spaced spheres or cylinders. Their predicted values of the stress jump 

coefficient β  ranged from 0.96 to 1.25, for pore sizes and porosities used in Beavers 

and Joseph (1967). From the above two studies, it is noted that the stress jump 

coefficient β  was found to be of order one for two very different types of porous 

structures.  

There is presently no experimental data for 1β . It is not known how much the 

two parameters may change from one type of interface to another; and it is assumed 

in this thesis that the changes should be in the same range as those for different types 

of materials. Thus for the purpose of demonstrating the implementation of the present 

formulation, both β  and 1β  are varied in the range -5.0 to +5.0 in the present study. 

In addition to Equation (2.9), the continuity of velocity and normal stress 

prevailing at the interface is given by: 

interfacefluid porous
u u v= =                                                                       (2.10)                               

porous fluid

1 0n nu u
n nε

∂ ∂
−

∂ ∂
=                                                                      (2.11)                               

where in the porous medium region,  is the Darcy velocity component normal to 

the interface; and in the homogenous fluid region,  is the fluid velocity component 

normal to the interface.  

nu

nu



Chapter 2 Numerical Methods for Transport Problems in Porous and Fluid Coupled Domains 
 

 34

For heat or mass transfer interfacial condition, continuities of temperature and 

heat flux, mass and mass flux are implemented here:   

interfacefluid porous
ϕ ϕ ϕ= =                                                                      (2.12)                               

porous fluid
kR

n n
ϕ ϕ∂ ∂

=
∂ ∂

                                                                          (2.13) 

where kR  is the ratio of thermal conductivities or mass transfer diffusivities between 

porous and fluid regions. 

By combining with the appropriate boundary conditions of the composite 

regions, Equations (2.1) - (2.13) can be used to simulate the flow and heat or mass 

transfer in a system composed of a porous medium and a homogenous fluid. 

 

2.2 Discretization Procedures 

2.2.1 Homogenous Fluid Region  

A typical control volume is shown in Figure 2.1. For a general dependent 

variable ϕ ,  a final discrete form over the control volume can be written as: 

e w n sF F F F S+ + + =                                                                         (2.14) 

where , ,  and eF wF nF sF  are the overall fluxes (including both convection and 

diffusion) of  ϕ  at faces e, w, n, s, which denote east, west, north, and south of the 

control volume; and S  is the source term. The detailed numerical methodology for 



Chapter 2 Numerical Methods for Transport Problems in Porous and Fluid Coupled Domains 
 

 35

cobtaining the convective flux ( , , , and c c c
e w n sF F F F ) and diffusive flux 

( , , , and d d d
e w n s

dF F F F ) are given by Ferziger and Perić (1999).  

With the midpoint rule approximation, the convective flux at face east can be 

calculated as: 

e

c
e S e eF u ndS mρϕ= ⋅ ≈∫ ϕ

v

                                                                  (2.15) 

where me is the mass flux cross the surface e; Se is the surface area of face e; and φe is 

the value of φ at the center of the cell face. me and Se can be calculated as: 

( )x y
e e e

m S u Sρ= + ,    ( ) ( )2x y
e e eS S S= +

2

v

                                   (2.16) 

where  are the velocity components in the x and y directions; S and u x and Sy are the 

surface vector components.  

To avoid the non-orthogonal effect, the midpoint rule with the deferred 

correction term (Muzaferija, 1994) applied to the integrated diffusive flux is given by: 

n n

old

d
e e e e e e e

e ee e

F S S Sϕ ϕ ϕμ μ μ
ξ

ϕ
ξ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
           (2.17)                  

If an implicit flux approximation of the term 
e

ϕ
ξ

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

is applied, the final expression of 

Equation (2.17) then becomes: 

( ) (oldd E P
e e e e e e

PE
)F S S grad n i

L ξ
ϕ ϕμ μ ϕ−

= + ⋅ −                                   (2.18) 

where LPE stands for the distance between P and E; iξ  is the unit vector in the ξ -

direction.  
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The different methods to approximate the value of φ and its derivative at the 

cell face result in different interpolation schemes. In the present study, the central 

difference scheme (CDS) is used. Then the cell-face values of the variables are 

approximated as: 

( )1e e e E e Pϕ ϕ λ ϕ λ ϕ′≈ = + −  for face e                                             (2.19) 

where the interpolation factor eλ  is defined as: 

e P
e

e P E e

r r
r r r r

λ
−

=
− + −

                                                                       (2.20) 

where  is the position vector.  er

Equation (2.19) is a second-order approximation at the location e  on the 

straight line connecting nodes P and E (Figure 2.1). If the cell-face center e does not 

coincide with the location e , a correction term needs to be added in Equation (2.19) 

to restore the second-order accuracy, which can be expressed as follows: 

′

′

( ) ( )e e e ee
grad r rϕ ϕ ϕ′ ′≈ + ⋅ − ′                                                            (2.21) 

To obtain the deferred derivatives at the cell face, they are calculated first at 

the control volume centers and then interpolated to the cell faces. By using the Gauss’ 

theorem, the derivative at the CV centers can be approximated by the average value 

over the cell: 

ii
i c cS

ci P

d
x i ndS S

x

ϕ
ϕ ϕ ϕ

Ω

∂ Ω
⎛ ⎞ ∂∂

≈ = ⋅ ≈⎜ ⎟∂ ΔΩ⎝ ⎠

∫
∑∫ , , ,c e n w s,  =                (2.22) 
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ΔΩ

Then the cell-center derivatives can also be interpolated to the cell-face centers using 

the same interpolation as that described by Equation (2.19) to (2.21). It is noted that 

the derivative at the cell-face center can be directly evaluated by using Gauss theorem 

if a new control volume whose center is located at the original cell-face center is 

defined. 

The volume integral of the source term is: 

Q S d Sϕ ϕ ϕρ ρ
Ω

= Ω ≈∫                                                               (2.23)               

where Ω is the cell volume. For the unsteady source term, a three-level second order 

scheme is used:  

1 2(3 4 )
2

n n n
p p p

t t
ρ ϕ ϕ ϕϕρ

− −− +∂
=

∂ Δ
                                                        (2.24) 

where  is the time step, n is the time level. All the steady-state terms in the 

equations are discretized using the implicit scheme. 

tΔ

The momentum equations contain a contribution from the pressure. The 

volume integral of the pressure gradient term in u-momentum equation can be 

obtained by: 

,
p

u P
P P

p pQ d
x x

δ
δΩ

∂⎛ ⎞ ⎛ ⎞= − Ω ≈ − ΔΩ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠∫                                               (2.25)          

Then the final discrete form of the u-momentum equation is: 

*
,

u u
P P l l u P

l P

pA u A u Q
x

δ
δ

⎛ ⎞+ = − ⎜ ⎟
⎝ ⎠

∑ ΔΩ                                                   (2.26)                              
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where P is the index of an arbitrary node; the index l denotes the four neighboring 

points E, W, S, N;  the coefficients PAϕ , EAϕ , WAϕ , NAϕ , SAϕ  are those of the resultant 

algebraic equations; and  is the integral of the source term contributed by other 

forces.  

*
,u PQ

In the present study, SIMPLEC method (van Doormal JP and Raithby, 1984) 

is applied to couple the velocity and pressure. To avoid oscillations in the pressure or 

velocity, the interpolation proposed by Rhie and Chow (1983) is adopted: 

( )
1

1
m

m m
e e u ue

e eP l
l e

p pu u
A A x x

δ δ
δ δ

−⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟= − ΔΩ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
∑

                    (2.27) 

where m is interation step for each time level. 

 

2.2.2 Porous Medium Region  

    Equations (2.6) and (2.7) recover the standard Navier-Stokes equations when 

the porosity approaches unity and permeability goes to be infinity. Thus, the 

discretizing procedure for porous medium is similar to that for the homogenous fluid 

as the two sets of governing equations are similar in form. The discretized diffusion 

flux is similar in form to Equation (2.18). The convective flux at a cell face is similar 

in form to Equation (2.15) except for a small change: 

e

c
e S

uF u ndS m ue e e
ρ ε
ε

= ⋅ ≈∫                                                           (2.28) 

The volume integral of the pressure gradient term (similar in form to Equation 18) is: 
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( )
,

p
u P

P
P

p pQ d
x x
ε δε

δ

∗
∗

Ω

⎛ ⎞∂ ⎛ ⎞⎜ ⎟= − Ω ≈ − ΔΩ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∫                                     (2.29) 

            For the unsteady source term, a three-level second order scheme is used as 

shown in Equation (2.24).  

            For the Darcy term in Equations (2.6) and (2.7), the volume integral can be 

expressed as: 

u
D p

p p

Q u d
K K
με με

Ω

⎛ ⎞ ⎛ ⎞= − Ω = − ΔΩ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ u                                         (2.30) 

For the Forchheimer term, the volume integral is given by: 

2 2 2 2
u F F
F p

p p

C u v C u vQ u d
K K

ρε ρε
Ω

⎛ ⎞ ⎛ ⎞+ +
= − Ω = − ΔΩ⋅⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ u     (2.31) 

    It is convenient to treat the Darcy and Forchheimer terms as source terms. 

However, Equations (2.30) and (2.31) indicate that, after integrating, both terms 

become a product of Darcy velocity component and a coefficient. The two 

coefficients can be added into the coefficients of the algebraic equation u
pA , which 

will accelerate the convergence rate.  

   The procedure to obtain the pressure correction equation is also similar to that 

for homogenous fluid (Equation (2.27)), except for a small change: 

( ) ( ) ( )
1

1
m

m m
e e u ue

P l
e el e

p p
u u

A A x x
δ ε δ ε

δ δ

−
∗ ∗⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟= − ΔΩ −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∑
       (2.32)        
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2.2.3 Interface Treatment 

    In some cases, structured grids are difficult, even impossible, to construct for 

complex geometries. Therefore, in the present study, multi-block grids method is 

applied to provide a compromise between the simplicity and wide variety of solvers 

available for structured grids and ability to handle complex geometries that 

unstructured grids allow. 

   Figure 2.2 shows details of the interface between two different blocks. Two 

neighboring control volumes, lying in Block A and Block B respectively, share the 

interface. The grids in two neighboring blocks match at the interface. Generally, there 

are three types of interfaces when the block-structured grids method is employed to 

calculate the flow in the composite region: fluid - fluid interface, porous medium - 

porous medium interface, and fluid - porous medium interface.  

 

2.2.3.1 Interface between the Same Media 

    In this case, both blocks A and B (Figure 2.2) represent the same media, either 

fluid or porous. The method proposed by Lilek et al. (1997) is applied to treat the 

block interface. A special data structure is designed to save the information at the 

interface, which consists of: the indices of the left (L) and right (R) neighboring cells, 

the surface vector (pointing from L to R) and the coordinates of cell-surface center 

(Figure 2.2). The interface cell surface shared by two CVs is treated as a cell surface 

in the interior of the block. Thus, the convective and diffusive terms at the block 

interface can be calculated in the same way as that (Section 2.2.2) for the cell faces in 
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the interior of the block. Then the contributions from the interface cell faces, namely 

 and , can be obtained. LA RA

   Each interface cell face contributes to the source terms for the neighboring CVs. 

Thus, if the east side of a CV is a block interface, the coefficient  (Equation (2.26)) 

is set to zero. However, the algebraic equation at node L receives the contribution 

EA

R RA ϕ , while at node R, the contribution is L LA ϕ . 

 

2.2.3.2 Interface between Fluid and Porous Media 

2.2.3.2.1 Velocity and Pressure  

    In this case, blocks A and B (Figure 2.2) represent fluid and porous medium 

respectively. The velocity vector at the interface is given by interfacev . It can be written 

in either the x-y or n-t coordinate systems as: 

interface x y n tv ue ve u n= + = + u t                                                            (2.33)                      

where  are the components of  and u v interfacev  in the x and y directions while  

are  the  components along n and t directions respectively. And the component 

 then can be written as: 

 and n tu u

interfacev

tu

t x yu ue t ve t= ⋅ + ⋅                                                                             (2.34) 

By combining Equations (2.9), (2.11) and (2.33): 

2interface interface
1

porous fluid
t

v v u t u t
n n K

μ μ β
ε
∂ ∂

− = +
∂ ∂ t

μ β ρ                        (2.35) 

   The unit vector ( ) parallel to the interface (Figure 2) is calculated from:                                         t
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( ) ( )
( ) ( )2 2

ne se x ne se y e x e y

ene se ne se

x x e y y e x e y e
t

lx x y y

− + − Δ + Δ
= =

− + −
                                (2.36) 

By substituting the components of interfacev  in the x and y directions, the Equation (2.35) 

becomes: 

( )2

12 3
porous fluid

e e ee e e e

e e

x u x v yu x x v y xu u
n n l lK

μ μμ β β ρ
ε

Δ Δ + ΔΔ Δ + Δ Δ∂ ∂
− = +

∂ ∂
   (2.37) 

( )2

12 3
porous fluid

e e ee e e e

e e

y u x v yu x y v y yv v
n n l lK

μ μμ β β ρ
ε

Δ Δ + ΔΔ Δ + Δ Δ∂ ∂
− = +

∂ ∂
   (2.38) 

   The derivatives at the interface are calculated from the values at auxiliary 

nodes L′  and R′ ; these nodes lie at the intersection of the cell face normal n and 

straight lines connecting nodes L and N or R and NR, respectively, as shown in Figure 

2.2. The normal gradients at the interface can be calculated by using the first order 

difference approximation: 

porous porous

,  R e R

eR eR

u u v vu v
n L n L

′

′ ′

e′− −∂ ∂
= =

∂ ∂
                                         (2.39) 

fluid fluid

,  e L e L

L e L e

v v v vv v
n L n L

′ ′

′ ′

− −∂ ∂
= =

∂ ∂
                                              (2.40) 

The Cartesian velocity components at L′  and R′  can be calculated by using bilinear 

interpolation or by using the gradient at the control volume center: 

( )LL L
u u gradu L L

′
′= + ⋅                                                                  (2.41) 

   To obtain higher order approximation of the derivatives, the velocity 

components at more auxiliary nodes may be needed. Alternatively, the shape 
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functions may be used, which produces a kind of combined Finite Element/Finite 

Volume method for calculating the higher order approximations.  

   By using Equations (2.37) to (2.41) and explicitly calculating the terms at the 

right hand sides of Equations (2.37) and (2.38), the Cartesian velocity components u  

and v  at the interface are obtained. Then the convective fluxes at the interface can be 

calculated. The diffusive fluxes are calculated from Equations (2.39) - (2.41). Then 

the coefficients  and  can be obtained.  LA RA

   To close the algebra equation system, the pressure at the interface must be 

determined. However, the pressure gradient at the interface may not be continuous 

due to the rather large Darcy and Forchheimer terms (Equations (2.6) and (2.7)), 

which may result in a rapid pressure drop at the porous side (Betchen et al., 2006)). 

This discontinuity of the pressure gradient becomes more severe at higher Reynolds 

number and lower Darcy number. Thus it requires special treatment to estimate the 

interface pressure from that of the vicinity at either side. A simplistic pressure 

estimation may give unrealistic, oscillatory velocity profile. The coupling issue of 

pressure-velocity at the interface was described in a recent paper by Betchen et al. 

(2006) who proposed a solution that enables stable calculations. The pressure is 

extrapolated in the fluid side to a location at a small distance near the interface. From 

this location, a momentum balance is then used to estimate the interface pressure. 

This estimate is then averaged with the pressure extrapolated from the porous side to 

obtain the interface pressure. In the present paper, a less complex treatment was 

adopted. Extrapolations from the fluid and porous sides give two different estimates 
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of the interface pressure. The average of the two estimates is used as the interface 

pressure. A small number of iterations is required for accuracy.  

 

2.2.3.2.2 Temperature or Mass 

The heat or mass transfer interface conditions are defined by Equations (2.12) 

and (2.13). Following the discretization procedure for the velocity above, the 

discreticized equations at the interface are: 

   
porous fluid

0kR
n n
ϕ ϕ∂ ∂

−
∂ ∂

=                                                                   (2.42) 

   
porous

R

eRn L
e

ϕ ϕϕ ′

′

−∂
=

∂
                                                                        (2.43) 

   
fluid

e L

L en L
ϕ ϕϕ ′

′

−∂ =
∂

                                                                        (2.44) 

    ( )L L Lgrad L Lϕ ϕ ϕ
′

′= + ⋅                                                            (2.45) 

The temperature or mass values at the interface can be obtained. The coefficients  

and  for the energy or mass transfer equations can be used for the discretization 

along the interface control volume. 

LA

RA

 

2.3 Solution Algorithm 

The SIMPLEC algorithm based on Multi-block grids and a SIP solver is 

described as follows: 

1. Estimate the initial flow and pressure fields in each block; 
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2. Assemble the elements of matrix A and the source term Q in each block, ignoring 

the contributions of the block interfaces; 

3. Loop over the list of interface cell faces, updating pA  and  at nodes L and R, 

and calculate the matrix elements stored at the cell face,  and ; 

pQ

LA RA

4. Assemble and solve the momentum equations to obtain  and ; then 

assemble and solve the pressure-correction equation to obtain ; Calculate the 

residuals in each block using the regular part of the matrix A. Loop over the list of 

interface cell faces and update the residuals at nodes L and R by adding the products 

of 

*mu *mv

'p

R RA ϕ  and L LA ϕ , where φ denotes u, v or ; 'p

5. Correct the velocities and pressure to obtain the velocities  and , which 

satisfy the continuity equation, and the new pressure pm in each blocks; 

mu mv

6. Return to step 2 and repeat, using ,  and mu mv mp  as improved estimates for the 

next iteration, until all corrections are negligibly small. 

 

2.4 Conclusions 

A numerical method was presented for the transport phenomena in 

porous/fluid coupled domains. Non-orthogonal body-fitted and multi-block grids 

were used for the discretization of the governing equations in the homogenous flow 

and porous medium regions. The special attentions to the treatment of the interface 

between them were given in detail. A stress jump interfacial boundary condition was 

implemented, which included both viscous and inertia effects. For interface heat or 
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mass transport, continuities of temperature, heat flux, mass and mass flux are 

implemented. The SIMPLEC algorithm is used to couple the velocity and pressure. 

The strongly implicit procedure (SIP) is applied to solve the resultant algebraic 

equation system.  

The main computational code is programmed with the use of C++ language 

and the grids are generated with the use of Fortran language. Both the convective and 

diffusive fluxes are approximated using central difference scheme, which is second 

order accurate. Linear interpolation and numerical differentiation are used to express 

the cell-face value of the variables and their derivatives through the nodal values. 

Discretized momentum equations lead to an algebraic equation system for velocity 

component u and v where pressure and other fluid properties are taken from the 

previous iteration except the first iteration where initial conditions are applied. These 

linear equation system are solved iteratively (inner iteration) to obtain improved 

estimate of velocity. The improved velocity field is then used to estimate new mass 

fluxes, which satisfy the continuity equation. Pressure-correction equation is then 

solved using the same linear equation solver and to the same tolerance. Heat or mass 

transfer equation is then solved in the same manner to obtain the estimate of new 

solutions.  
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Figure 2.1 A typical two-dimensional control volume.  
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Chapter 3 

Validation of Numerical Method 

 

 In this chapter, in order to validate the adopted numerical method, it is 

applied to several benchmark problems. Firstly, flows in homogeneous fluid region 

are investigated, which include: 1) lid driven flow in a square cavity; 2) flow around a 

circular cylinder; 3) natural convection in a square cavity; 4) forced convection over a 

backward-facing step. Secondly, flow problems in porous medium region are 

conducted, which include: 1) flow in a fluid-saturated porous medium channel; 2) 

natural convection in a fluid saturated porous medium cavity. Finally, the coupled 

flows in porous and homogenous domains are considered, which include: 1) flow in a 

channel partially filled with a layer of a porous medium; 2) flow around a porous 

square cylinder. The computational results are compared with published benchmark 

solutions to prove the accuracy of the present numerical method. 

 

3.1 Flow in Homogeneous Fluid Region 

3.1.1 Lid Driven Flow 

Lid driven flow in a square cavity is often used for validating numerical 

methods based on orthogonal grids because of the simple geometry and the complex 

developed flow field with multiple regions of recirculation near the corners (Figure 

3.1). For such kind of flow, the dimensionless governing equations are as follows: 
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0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                       (3.1)  

2 2

2 2

1 ( )u u u p u uu v
t x y x Re x y

∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂
i                                         (3.2) 

              
2 2

2 2

1 ( )v v v p v vu v
t x y y Re x y
∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +
∂ ∂ ∂ ∂ ∂ ∂

i                                          (3.3) 

where Reynolds number is defined as: 

                      lidU LRe ρ
μ

=                                                                                        (3.4) 

where L is the cavity height, lidU  is the top wall velocity. The other walls are kept 

static and with non-slip boundary conditions. 

The numerical results are obtained with 62x62 grids. Figure 3.2 shows the 

streamline contour of a lid driven flow in a square cavity at Re = 400. The detailed 

comparisons between the present results and the numerical results for Re = 400 and 

Re = 1000 by Ghia et al. (1982) are shown in Figure 3.3. The horizontal U velocity 

component on the vertical centerline of the cavity and the vertical V velocity 

component on the horizontal centerline of the cavity show good agreement with 

bench mark solution of Ghia et al. (1982).  

 

3.1.2 Flow around a Circular Cylinder 

The governing equations are the same with Equations (3.1) to (3.3). The flow 

with an average velocity U∞ is coming uniformly around a circular cylinder. Non-slip 
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boundary condition is imposed at the cylinder surface. The Reynolds number here is 

defined as: 

   U DRe ρ
μ
∞=                                                                                        (3.5) 

where U∞  is free stream velocity and D is the diameter of the cylinder. 

The drag and lift coefficients are defined as, 

          
21

2

x
D

FC
U Dρ ∞

=                                                                                    (3.6) 

                      
21

2

y
L

F
C

U Dρ ∞

=                                                                                     (3.7) 

where the drag and lift force can be computed from the force along the cylinder 

interface as, 

x xF f ds
τ

= −∫                                                                                     (3.8) 

y yF f ds
τ

= −∫                                                                                     (3.9) 

where xf  and yf  are the x and y components of the singular force respectively. 

The numerical results are obtained with 360x160 grids. For steady flow, 

numerical results of the length of the recirculation zone, angle of separation and drag 

coefficient for Re = 20 and Re = 40 are compared with those previous studies (Russel 

and Wang, 2003; Ye et al. 1999; Dennis and Chang, 1970; Calhoun, 2002). Good 

agreement is obtained as shown in Table 3.1. 
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For unsteady flow, the drag and lift coefficients for the flow around a circular 

cylinder are compared with those in previous studies (Braza et al., 1986;, Liu et al., 

1998; Calhoun, 2002). Figure 3.4 shows the drag and lift coefficient development 

histories for Re = 200. The results shown in Table 3.2 agree well with the benchmark 

studies, which indicate that the present code is valid for the simulation of unsteady 

flow problems. Figure 3.5 shows instantaneous streamlines for flow around a circular 

cylinder with Re =40 and 200. 

 

3.1.3 Natural Convection in a Square Cavity 

Natural convection in a square cavity is a benchmark problem for heat transfer, 

as shown in Figure 3.6. The dimensionless governing equations are as follows: 

0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                     (3.10)  

2 2

2 2( )u u u p u uu v Pr
t x y x x y

∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂
i                                       (3.11) 

           
2 2

2 2( )v v v p v vu v Pr Pr Ra T
t x y y x y
∂ ∂ ∂ ∂ ∂ ∂

+ + = − + + +
∂ ∂ ∂ ∂ ∂ ∂

i i i                        (3.12) 

2 2

2 2

T T T T Tu v
t x y x y

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
                                                        (3.13) 

where the following scales have been used for non-dimensionalisation, 

                       *

ref

xx
L

= , *

ref

yy
L

= , *

/ ref

uu
Lα

= , *

/ ref

vv
Lα

=  

               2 2
*

/ ref

pp
Lρα

= , 0*

H C

t TT
T T
−=
−

                                                       (3.14) 
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3
refg TL

Ra
β
να
Δ

= , Pr γ
α

=   

where γ  is the fluid kinematic viscosity, β  is the coefficient of the thermal 

expansion, 0 CT T=  is the characteristic temperature, α  is the effective thermal 

diffusivity, refL  is the characteristic dimension, H CT T TΔ = − , HT  and CT  are the hot 

and cold wall temperatures, respectively. 

Note that the asterisks have been omitted from the dimensionless governing 

equations for the sake of convenience.  

The average Nusselt number is defined as, 

0

1Nu Nu
s

av ds
S

= ∫                                                                              (3.15) 

Here S is the wall where local Nusselt number is located, 

Nu |wall
T
n

∂
=
∂

                                                                                     (3.16) 

The cases (Pr=0.72) with Ra = 310 , 410 , 510  and 610  are compared with 

those in de Vahl Davis (1983) and Nithiarasu et al. (1997). The numerical results are 

obtained based on a 82x82 mesh. Figure 3.7 shows temperature and streamline 

contours with Ra = 510 . Table 3.3 shows that the average Nusselt number along the 

cold wall agrees well with the benchmark solutions.  

 

3.1.4 Forced Convection over a Backward-facing Step 
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For convection heat transfer, a benchmark problem is forced convection over 

a backward-facing step, as shown in Figure 3.8a. The inlet flow (fully-developed) and 

step wall temperature are set to iT ; the upper and bottom walls supply a constant heat 

flux q. 

The dimensionless governing equations are as follows: 

0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                     (3.17)  

2 2

2 2

1 ( )u u u p u uu v
t x y x Re x y

∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂
i                                       (3.18) 

           
2 2

2 2

1 ( )v v v p v vu v
t x y y Re x y
∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +
∂ ∂ ∂ ∂ ∂ ∂

i                                         (3.19) 

2 2

2 2

1 ( )T T T T Tu v
t x y Pr Re x y

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂i
                                          (3.20) 

where the following scales have been used for non-dimensionalisation, 

                       * xx
H

= , * yy
H

= , *

av

uu
U

= , *

av

vv
U

=  

               0
2

*

av

p pp
Uρ
−= , *

/
i

f

t TT
qH k
−=                                                            (3.21) 

                       Re = avU H
γ

, Pr γ
α

=  

Here H is the channel height, avU  is the average incoming flow velocity at the inlet, 

0p  is the reference pressure, fk  is the fluid conductivity inside.  

Note that the asterisks have been omitted from the dimensionless governing 

equations for the sake of convenience.  
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The local Nusselt number along the bottom wall is defined as, 

 
( )w i f

qHNu
T T k

=
−

                                                                            (3.22) 

where wT  is the bottom wall temperature. 

In the computation, non-uniform, body-fitted and orthogonal meshes are 

employed, where the density of meshes over the step back is higher than those in 

areas far downstream, as shown in Figure 3.8b. A mesh made of 380x100 grids for 

the flow field is used. Figure 3.9 shows the streamline plot with Re = 800, and 

comparison of velocity profiles with those in benchmark (Gartling, 1990; Martin et al., 

1998; Zhang and Zhao, 2000). There is a good agreement for the velocity profiles. 

For the Nusselt number the agreement is good at small x/H, which is near the inlet. 

Further away, at large x/H there is good agreement with Zhang and Zhao (2000) but 

deviation from Martin et al. (1998). The discrepancy is due to the different reference 

temperatures in the definition of Nusselt number (Equation 3.22). In the present study 

and that of Zhang and Zhao (2000) the reference temperature is the incoming flow 

temperature iT , unlike that of Martin et al. (1998) who used the bulk temperature, 

which is an average value over the cross section. The bulk temperature would differ 

more from the inlet temperature at distances further, which thus explains the larger 

deviation at large x/H.  

 

3.2 Flow in Porous Medium Region 

3.2.1 Flow in a Fluid Saturated Porous Medium Channel 
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The problem under consideration for flow in a fluid saturated porous medium 

channel is shown in Figure 3.10. For fully developed flow, the dimensionless 

governing equation is simplified as: 

2
2

2

1 U U U 1 0F
Y Daε
∂

− − + =
∂

                                                               (3.23) 

where Darcy number 2

KDa
H

= , Forchheimer number 
4

1/ 2 2
FC GHF
K
ρ
μ

= , Y = y
H

, 

2U= u
GH
μ . Here G is a constant applied gradient *dpG

dx
= − . The analytical solution 

of (3.23) has been obtained by Nield et al. (1996), which gives: 

[ ]2
0.5 0.5

0

2 ( )
3

bF P t dtε −⎛ ⎞ =⎜ ⎟
⎝ ⎠ ∫                                                                 (3.24) 

[ ]2
0.5 0.5

U

2 Y ( )
3

bF P t dtε −⎛ ⎞ =⎜ ⎟
⎝ ⎠ ∫                                                             (3.25) 

where 1 2 3( ) ( )( )( ),P U U b U b U b= − − −  2 (0),b U=  1 2 3b b b< <  and  

1/ 22
22

1 3 2 22

121 3 9( , ) 2 48 12
4

F bb b Fb F Fb
F Da Da Da

⎧ ⎫⎡ ⎤⎪ ⎪= − − + − −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎭⎩
∓ . 

The Equations (3.24) and (3.25) can be solved by numerical quadrature. 

In the computation, a mesh of 502x52 grids was used. Periodic boundary 

conditions were assumed at the inlet and outlet. The constant applied pressure 

gradient was converted to incoming flow Reynolds number. The comparisons of 

analytical solution and numerical solutions are shown in Figure 3.11, where good 

agreement between them is obtained. 
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3.2.2 Natural Convection in a Fluid Saturated Porous Medium  

         Cavity 

Steady natural convection in a porous square cavity is a benchmark problem 

for heat transfer, as shown in Figure 3.12. The dimensionless governing equations are 

as follows: 

0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                              (3.26)  

2 2 1/ 2 2 2

3/ 2 2 2

1 { ( ) ( )}

1 1.75 ( )( ) ( )
150f

u uu v
x y

Pr u v u Pr u up u
x Da x yDa

ε ε ε

ε
ε ε ε

∂ ∂
+ =

∂ ∂

∂ + ∂ ∂
− − − + +

∂ ∂ ∂

                (3.27) 

2 2 1/ 2 2 2

3/ 2 2 2

1 { ( ) ( )}

1 1.75 ( )( ) ( )
150f

v vu v
x y

Pr u v v Pr v vp v RaPrT
y Da x yDa

ε ε ε

ε
ε ε ε

∂ ∂
+ =

∂ ∂

∂ + ∂ ∂
− − − + + +

∂ ∂ ∂

  (3.28) 

2 2

2 2

T T T Tu v
x y x y

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
                                                                           (3.29) 

where the dimensionless parameter are the same as those in (3.14). The local and 

average Nusselt numbers are defined as the same as those in (3.15) and (3.16). 

In the computation, a mesh made of 80x80 grids for the flow field is used.  In 

Table 3.4, our results for 0.4,  0.6,  0.9ε =  with different Rayleigh numbers and 

Darcy numbers are compared with the general porous model (Nithiarasu et al., 1997). 

It is seen that the present values of avNu  are in very good agreement with those 

obtained by previous authors, which validates the present numerical code. 
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3.3 Coupled Flow in Porous and Homogenous Domains 

3.3.1 Flow in a Channel Partially Filled with a Layer of a Porous  

         Medium 

The physical domain is shown schematically in Figure 3.13. It consists of a 

planar channel which is horizontally divided into a homogenous fluid region with 

height 1H  above and a fluid-saturated porous region with height 2H   below. The case 

of height ratio 2 1/ 1H H =  is considered.  

The flow is assumed laminar and fully developed. The original governing 

equations are simplified as follows: 

              
2

2

1d u dp
dy dxμ

=              for the homogenous fluid                               (3.30) 

( ) 21 f F
d p Cd du u u

dy dy dx K K

ε ρμ μ
ε ε

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
  for porous medium region  (3.31)         

with introducing the dimensionless variables 

2
1

U u
GH
μ

=  and 
1

Y y
H

= , where G fdp
dx

= −                                            (3.32) 

Equations (3.30) and (3.31) can be rewritten as: 

2

2

U 1
Y

d
d

= −                     for the homogenous fluid                                  (3.33) 

2
2

2

1 U 11 U U
Y

d F
d Daε

= − + +    for porous medium region                       (3.34) 
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where Darcy number 2
1

KDa
H

=  and Forchheimer number 
4

1
1/ 2 2

FC GHF
K
ρ
μ

= . The 

boundary conditions are: 

U 0=  at Y 1=  and U 0=  at 2 1Y /H H= −                                              (3.35) 

interface
porous fluid

1 U U U
Y Y

d d
d d Da

β
ε

− =  at Y 0=                                          (3.36) 

Following the proposal of Nield et al. (1996), Equations (3.33) to (3.36) can be solved 

analytically as shown in Yu et al. (2007). Both numerical and analytical solutions are 

presented for validation of the present numerical implementation.  

For the following computations, a mesh of 60 × 60 grids was used. Figure 

3.14 shows the u velocity profile under different flow conditions. It is seen that the 

numerical and analytical results for different Darcy numbers, porosity values, and 

Forchheimer numbers are in good agreement.  

 

3.3.2 Steady Flow around a Porous Square Cylinder 

The problem is shown in Figure 3.15a. The governing equations for the fluid 

domain outside are the same as Equations (3.1) to (3.3). For the porous square 

domains, the dimensionless governing equations are as follows: 

0u v
x y
∂ ∂

+ =
∂ ∂

                                                                                          (3.37)  
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y Da Re Re x yDa

ε ε ε

ε
ε ε ε

∂ ∂
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   (3.39) 

where the dimensionless parameters are the same as those in (3.14). 

The Reynolds number here is defined as: 

   U HRe ρ
μ

∞=                                                                                           (3.40) 

where U∞  is free stream velocity and H is the height of the cylinder. 

Figure 3.15b shows an illustration of the body-fitted mesh example around the 

porous square cylinder. For the computation, grid independency test shows that 

240x120 grids for the fluid region and 62x62 grids for the porous region are sufficient.  

Figure 3.16 shows the instantaneous streamline contours for different Darcy 

numbers. It can be seen that when Da = 210− , there is no vortex formation behind the 

cylinder. When Da decreases from 310−  to 510− , as less fluid flows through the 

cylinder, the vortex is formed and its recirculation length is increased. The flow filed 

resembles that around a solid cylinder, when Da approaches zero.  

As shown in Figure 3.17, the circulation length becomes longer with decrease 

in the Darcy number. However, the recirculation length approaches to a constant 

value at low Darcy number as the porous cylinder tends to a solid one. The 

recirculation length at Da = 10-7 is about 1.32 (Figure 3.17), which is rather close to 

the value of around 1.34 for the solid cylinder (Sharma and Eswaran, 2004). This 

validates current numerical method accuracy for flow around porous bodies. 
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3.4 Conclusions 

A finite volume code has been developed to predict the flow, heat or mass 

transport in homogenous fluid region, in porous region and in conjugate fluid and 

porous regions. As detailed in Chapter 2, the present numerical method was based on 

nonorthogonal, body fitted, and multi-block structured grids, which are effective for 

problems with complex geometries. The SIMPLEC algorithm was used to couple the 

velocity and pressure. The strongly implicit procedure (SIP) was applied to solve the 

resultant algebraic equation system.  

For the pure fluid problems, the block interface was treated as the interior cell 

faces rather than boundaries, which were proposed by Lilek et al. (1997). A variety of 

numerical experiments are performed to test the validity of the present code. The 

agreements between the present numerical results and the bench mark results indicate 

that the present code can be used to predict 2D, incompressible, steady or unsteady, 

laminar flow, heat and mass transfer problems in Cartesian coordinates.  

For the porous flow problems, the governing equations were based on a  

generalized model including Brinkman and Forchheimer terms as well as non-linear 

advection term (Hsu and Cheng, 1990; Gartling et al., 1996; Nithiarasu et al., 2002), 

which recovers the Naver-Stokes equations when the porosity approaches unity. The 

block interface was also treated as the interior cell faces. Several computed results on 

the flow and heat transfer in porous media are presented to validate the present 

method. Comparisons between the present numerical results and analytical solutions, 

or computational results provided by other researchers confirm that the present code 
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is a reliable and efficient tool for the steady or unsteady, laminar flow problems in 

porous media.  

For the flow problems with a homogenous fluid and porous medium interface, 

the main novelty of this study is a numerical method for the theory developed by 

Ochoa-Tapia and Whitaker (1998b) to model the momentum jump condition at the 

interface, which includes both viscous and inertial jump parameters β and 1β . A 

distinctive feature of the present method is the use of multi-block grids which, 

together with body-fitted grids, makes it more suitable for handling complex 

geometries. The shear stress jump condition affects both the convective and diffusive 

fluxes. The normal stress condition, assumed continuous at the interface, is also 

needed in order to close the two sets of equations.  

The numerical results obtained by the present code were consistent with the 

results reported from the literature, demonstrating that the present method can solve 

such problems effectively and accurately. The numerical simulation of flow past a 

porous square cylinder demonstrates the use of multi-block body-fitted grid for 

coupled fluid-porous flows involving complex geometries. 
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Table 3.1 Length of the recirculation zone, angle of separation and drag coefficient 

 for Re = 20 and Re = 40. 
 

Re=20 Re=40  

L/d θ  DC  L/d θ  DC  

Russel and Wang (2003) 0.94 43.3  2.13 2.29 53.1  1.60 

Ye et al. (1999) 0.92 - 2.03 2.27 - 1.52 

Dennis and Chang (1970) 0.94 43.7  2.05 2.35 53.8  1.52 

Calhoun (2002) 0.91 45.5  2.19 2.18 54.2 1.62 

Present 0.92 42.3  2.03 2.21 53.2  1.52 

 
Table 3.2 Comparison of drag and lift coefficients with previous studies. 

 
Re=100 Re=200  

DC  LC  DC  LC  

Braza et al. (1986) 1.36± 0.015 ± 0.250 1.40± 0.050 ± 0.75 

Liu et al. (1998) 1.35± 0.012 ± 0.339 1.31± 0.049 ± 0.69 

Calhoun (2002) 1.33± 0.014 ± 0.298 1.17± 0.058 ± 0.67 

Present 1.38± 0.009 ± 0.335 1.36± 0.050 ± 0.73 

 
Table 3.3 Comparison of present results with single phase fluid 

 results in Nithiarasu et al. (1997) and de Vahl Davis (1983) (Pr=0.72). 
 

Rayleigh number Nusselt number (de 

Vahl Davis, 1983) 

Nusselt number 

(Nithiarasu et al., 1997) 

Present 

310  1.116 1.127 1.117 

410  2.238 2.245 2.248 

510  4.509 4.521 4.531 

610  8.817 8.800 8.877 
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Table 3.4 Comparison of Nusselt number along the cold wall (Pr=1.0) with 

 Nithiarasu et al. (1997). 
 

0.4ε =  0.6ε =  0.9ε =  Darcy 

Number 

Rayleigh 

number Nithiarasu 

et al. (1997)

Present Nithiarasu 

et al. (1997)

Present Nithiarasu 

et al. (1997)

Present

310  1.01 1.01 1.015 1.012 1.023 1.020 

410  1.408 1.362 1.530 1.500 1.64 1.63 

210−  

510  2.983 2.990 3.555 3.445 3.91 3.92 

510  1.067 1.064 1.071 1.070 1.072 1.071 

610  2.55 2.60 2.725 2.714 2.740 2.801 

410−  

710  7.81 7.86 8.183 8.648 9.202 9.49 

710  1.079 1.078 1.079 1.078 1.08 1.08 

810  2.97 3.05 2.997 3.081 3.00 3.08 

610−  

910  11.46 12.39 11.79 12.98 12.01 13.30 
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Figure 3.1 Schematic of a lid driven flow in a square cavity. 

          

Figure 3.2 Streamline contour of a lid driven flow in a square cavity at Re = 400. 
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Figure 3.3a 

Figure 3.3 Distributions of V (top) and U (bottom) velocity components along the 
central lines: (a) Re =400; (b) Re =1000. 
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Figure 3.3b 

Figure 3.3 Distributions of V (top) and U (bottom) velocity components along the 
central lines: (a) Re =400; (b) Re =1000. 
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(b) 

Figure 3.4 (a) Drag and (b) lift coefficients development histories for Re = 200. 
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(a)  

 
(b)  

Figure 3.5 Instantaneous streamlines for flow around a circular cylinder: 
(a) Re = 40; (b) Re = 200. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6 Schematic of natural convection in a square cavity. 
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Figure 3.7 Temperature (top) and streamline (bottom) contours with Ra = 5  10 . 
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(a) 

 

 
 

(b) 
Figure 3.8 Forced convection over a backward facing step: 

(a) Schematic of the problem; (b) Mesh illustration. 
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(c) 

Figure 3.9 Forced convection past backward-facing step at Re = 800: (a) streamline 
plot; (b) streamwise velocity profile at x/H=7.0; (c) lower wall Nusselt number versus 

axial location. 
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Figure 3.10 Schematic of flow past a porous square channel. 
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(b) 

Figure 3.11 Comparisons of velocity profiles in the  porous square channel with 
0.4ε = , Re = 20: (a) 210Da −= ; (b) 410Da −= . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.12 Schematic of natural convection in a porous square cavity. 
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Figure 3.13 Schematic of flow in a channel partially filled with saturated porous 

medium. 
 
 
 

U

Y

0 0.1 0.2 0.3
-1

-0.5

0

0.5

1

Analytical Solution; Da = 5x10
Numerical Solution; Da = 5x10
Analytical Solution; Da = 1x10
Numerical Solution; Da = 1x10
Analytical Solution; Da = 1x10
Numerical Solution; Da = 1x10

-2

-3

-2

-2

-2

-3

ε = 0.5; = 1; β = 0F

a)

Interface

 
 

(a) 
 
 

y 

-H2 

x 

Porous Medium 

H1 

0 

Impermeable wall 

Impermeable wall 

Homogeneous Fluid 
Fu

lly
 D

ev
el

op
ed

 F
lo

w

 



                                                                          Chapter 3 Validation of Numerical Method 

 75

 

U

Y

0 0.05 0.1 0.15 0.2 0.25 0.3
-1

-0.5

0

0.5

1

Analytical Solution; = 0.2
Numerical Solution; = 0.2
Analytical Solution; = 0.5
Numerical Solution; = 0.5
Analytical Solution; = 0.8
Numerical Solution; = 0.8

-2Da = 1x10 ; F = 1; = 0β

b)

Interface

ε
ε
ε
ε
ε
ε

 
(b) 

U

Y

0 0.05 0.1 0.15 0.2 0.25 0.3
-1

-0.5

0

0.5

1

Analytical Solution; F = 1
Numerical Solution; F = 1
Analytical Solution; F = 10
Numerical Solution; F = 10
Analytical Solution; F = 100
Numerical Solution; F = 100

-2Da = 1x10 ; = 0.5; = 0β

c)

Interface

ε

 
(c) 

Figure 3.14 The U velocity profile under different flow conditions: (a) Darcy number 
effect; (b) Porosity effect; (c) Forchheimer number effect. 
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(b) 

Figure 3.15 Schematic of flow past a porous square cylinder: 
(a) Computational domain; (b) Mesh illustration. 
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(a)

 

(b)

 

(c)

 

(d)

 
 

Figure 3.16 Instantaneous streamline contours at 0.4ε = , Re = 20 and 0β = , 1 0β = : 
 (a) Da= 210−  (b) Da= 310−  (c) Da= 410−  (d) Da= 510− .  
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Figure 3.17 Variation of recirculation length with the Darcy number  
at 0.4ε = , Re = 20 and 0β = , 1 0β = .  
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Chapter 4 

Unsteady Flow around Porous Bodies * 

 

The flow past solid cylinders under free flow conditions has been a hot topic 

previously as reviewed by Williamson (1996) and Zdravkovich (1997). However, 

there has been little research work on unsteady flow past porous bodies. Jue (2003) 

simulated unsteady vortex shedding behind a porous square cylinder using finite 

element method. However, one-domain approach was used in his model. In his study, 

a general non-Darcy porous media model was applied to describe the flows both 

inside and outside the cylinder. A harmonic mean was used to treat the sudden change 

between the fluid and porous medium and no special treatment at the interface was 

given. The drawback of one-domain approach is thoroughly reviewed as in Chapter 1.  

In this chapter, different from the steady flow past a porous cylinder in 

Section 3.3.2, unsteady flow past porous bodies is numerically analyzed. The two-

domain numerical method as described in Chapter 2, was used. At the interface 

between fluid and porous parts, a shear stress jump that includes the inertial effect 

was imposed, together with a continuity of normal stress. Two cases are investigated, 

one around a porous square cylinder and the other around a porous trapezoidal 

cylinder. Results are presented with flow configurations for different Darcy and 
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Reynolds numbers. The effects of the porosity, Darcy and Reynolds numbers, stress 

jump parameters on lift and drag coefficients, and the length of circulation zone or 

shedding period are studied.  

 

4.1 Problem Statement  

The problem under consideration is the same as in Section 3.3.2, as shown in 

Figure 3.15. The governing equations for the fluid domain outside are the same with 

(3.1) to (3.3). For the porous domains inside, the governing equations are: 

0u v
x y
∂ ∂
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∂ ∂

                                                                                          (4.1)  
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  (4.3) 

where the dimensionless parameters are the same with those in Section 3.3.2. 

The interface coupling conditions are the same with those Equations (2.9)-

(2.11). At the left boundary, the incoming flow is uniform, and at the other three 

boundaries, / 0U n∂ ∂ = . The initial conditions for the computation were either 

uniform flow at the inlet U∞ = 1.0, or the results of a previous calculation, often at 

different Reynolds number, Darcy number or porosity values. The time step is set 
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equal to 210− .  The mesh distribution is the same as those described in Section 3.3.2, 

shown as in Figure 3.15b.  

 

4. 2 Results and Discussion 

4.2.1 Flow past a Porous Square Cylinder  

4.2.1.1 Effect of Reynolds Number 

Figure 4.1 shows the instantaneous streamlines for different Reynolds 

numbers, at constant porosity 0.4ε = , Darcy number Da = 410− , jump coefficients 

0β =  and 1 0β = . The flow phenomenon of this case is like those of the non-porous 

one. At Re=20, a closed steady recirculation region consisting of twin symmetric 

vortices forms behind the cylinder. This recirculation region increases in size with the 

increase in Reynolds number, shown as Re = 40. When the Reynolds number 

becomes larger, the flow becomes unsteady; the vortices in the separation zone start 

to separate alternatively from the trailing edge of the square cylinder and move 

downstream, which is the vortex shedding phenomena. Due to the permeability of the 

porous media, the shedding intensity would be less than that for a solid case, and the 

critical Reynolds number, where the flow changes to unsteady from steady, would 

also be lower. 

Figure 4.2 shows the drag and lift coefficient history development, for 

Re=200, 0.4ε = , Da= 410−  and 0β = , 1 0β = . It shows that the unsteady vortex 

shedding becomes periodic, and the frequency of lift coefficient is twice of drag 
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coefficient, which are consistent with those of solid ones (Davis, 1982). Figure 4.3 

shows this periodic characteristic streamline contour in one period. It is shown that, 

different from the solid one, the wake flow coming backwards may penetrate into the 

porous cylinder. However, at Re = 250, for the drag coefficient shown in Figure 4.4, it 

is not a simple sine wave and there seems to be a small modulation in shedding 

frequency. This kind of phenomena was also found for the solid case by Davis (1982), 

which is out of the scope of the present study. So in the following study, the Re 

ranges from 20 to 200.     

 

4.2.1.2 Effect of Stress Jump Parameters 

Table 4.1 shows the influence of the stress jump parameters 1 and β β  at the 

lower Reynolds numbers Re = 20 and 40, with 0.4ε =  and Da= 410− . When Re=20, 

the β  effect is noticeable, whereas 1β  has less effect. From Equation (2.9), if the 

permeability K is small, that is Darcy number is small, the viscous term tu
K
μβ  is 

large. An interesting phenomenon is that when Re=40, for different combinations of 

β and 1β , the flow would become steady or unsteady. The instability at low Re is 

unexpected and may be caused by the sudden large stress jump at the interface. 

Figure 4.5 shows the instantaneous stream contours for these stress jump interface 

conditions. By checking the stream contours in one periodic time, it is found that the 

two vortices are not shed from the cylinder, but its size alternate periodically from 

small to large. This observation shows the importance of the stress jump boundary 
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conditions. The stress jump parameters β and 1β  are empirical inputs dependent on 

the porous medium properties as discussed in Chapter 2. In the numerical model these 

boundary parameters will determine the flow of fluid into as well as out of the porous 

medium; and the differences in bleed flow may have caused the changes in the vortex 

formation. Note that β and 1β  are not numerical stability parameters which need to be 

optimized. 

Table 4.2 shows the influence of the stress jump parameters 1 and β β  at the 

higher Reynolds numbers Re=100, and 200, with 0.4ε =  and Da= 410− . It can be seen 

that for the same Reynolds number, β  effect is still more obvious than 1β . Yu et al. 

(2007) showed that the viscous term tu
k
μβ  effect dominates for Re=20, and 

suggested that the inertial term 2
1 tuβ ρ , in Equation (2.9), may be important at high 

Reynolds number. However, the Reynolds number in the present study was not 

increased above 200 to avoid the complications from three dimensional flow and the 

frequency modulation noted above.  

Table 4.2 also shows in greater detail the effect of β  and 1β  for Re = 200, 

respectively. It can be seen that when β  increases from -0.7 to 0.7, the average drag 

coefficient, and the amplitude of both lift and drag coefficients shows a decreasing 

trend; but for the shedding period, there is no consistent trend. When 1β  increases 
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from -0.7 to 0.7, the change is not large. This shows that in Equation (2.9), the 

viscous term tu
k
μβ  is more important than the inertial term 2

1 tuβ ρ . 

 

4.2.1.3 Effect of Darcy Number 

The instantaneous streamline contours for different Darcy number at 0.4ε = , 

Re=20 and 0β = , 1 0β =  have been shown in Section 3.3.2. 

Table 4.3 shows the influence of Darcy number. For the steady cases, Re = 20 

and 40, the drag coefficient and length of recirculation zone decreases when the 

Darcy number increases. This is due to more porous flow. It can be seen that the 

results for Da = 410−  and 510−  changes little, as for 410Da −≤ , the flow inside the 

porous media is rather small, called Darcy flow conventionally. For Re = 100, it is 

interesting to find that the flow is still steady when Da = 210− . For the unsteady cases, 

Re = 100 and 200, there is no clear trend arising from Darcy number. The flow is 

more complicated because the porous flow may affect the location of the streamline 

separation near the back edge of the square cylinder (see instantaneous streamlines in 

Figures 4.1 and 4.3).  

 

4.2.1.4 Effect of Porosity Value 

Table 4.4 shows that at higher porosity, there is decrease of drag coefficient 

(average for unsteady cases). For the unsteady cases the lift amplitude is smaller at 

higher porosity. This behavior may be explained by the effect of more porous flow 
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through the cylinder. There are not much effect of porosity on recirculation length 

and shedding period. However the effect of porosity is smaller than that of Darcy 

number which is consistent with the observation of Jue (2003). 

 

4.2.2 Flow past a Porous Trapezoidal Cylinder 

The problem under consideration is shown in Figure 4.6a. Non-uniform, 

body-fitted and non-orthogonal meshes are employed, where the mesh density around 

the cylinder is higher than those areas far away (Figure 4.6b). A grid independency 

test was conducted for Re = 200, 0.4ε = , Da= 410−  and 0β = , 1 0β = . It shows that 

when the grid number in the porous domain was kept at 62x62 constant, increasing 

the grid number in the fluid domain outside from 320x140 to 360x160 resulted in 3% 

change for shedding period, lift and drag coefficients. Further increasing the grid 

number larger than 360x160 did not change them more than 1%. Thus, considering 

the computational cost and accuracy, a 360x160 mesh for the fluid domain with 

62x62 mesh for the porous domain is enough for use in subsequent computations.  

 

4.2.2.1 Early Stage Development of Steady Flow Pattern 

Figure 4.7 shows the early stage development of streamline patterns for Re=40, 

0.4ε = , Da= 410−  and 0β = , 1 0β = . There is no visible separation flow downstream 

of the cylinder for T 0.1≤ . After a short lapse of time, the flow separates from the 

rear surface of the cylinder forming a recirculation zone which has two symmetrical 
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eddies. After a certain lapse of time, the size of these two eddies become larger and 

finally they reach a constant shape at steady state flow (T=6.0). 

 

4.2.2.2 Early Stage Development of Unsteady Flow Pattern 

Figure 4.8 shows the flow development history at a higher Re=200. Compared 

with the previous Re=40, the flow also starts with no separation. However, 

subsequently the twin eddies after the cylinder develop faster and bigger. When 

T=75.0, one eddy breaks into two and tends to separate from the cylinder far away. 

Vortex shedding phenomena happens at T=95.0, and finally the flow has a periodic 

pattern (T=115.0). Figure 4.9 shows the drag and lift coefficient history developments. 

The results show that the vortex shedding becomes periodic, and the frequency of the 

lift coefficient is twice that of the drag coefficient, which are consistent with those of 

solid ones (Davis, 1982). 

 

4.2.2.3 Effect of Reynolds Number 

Figure 4.10 shows the instantaneous streamlines for different Reynolds 

number, at dimensionless time T = 150.0, constant porosity 0.4ε = , Darcy number 

Da= 410− , jump coefficients 0β =  and 1 0β = . The flow phenomenon of this case is 

similar with those described as in Section 4.2.1.1.   

 

4.2.2.4 Effect of Darcy Number 
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Figure 4.11 shows the variation of recirculation length with Darcy number. As 

shown, the recirculation length becomes longer when Darcy number is lower, because 

there is less porous flow through the cylinder. At very low Darcy number, there is 

very little porous flow and thus the recirculation length approaches to an asymptotic 

value near to that of a solid one. At Da = 210− , there is no recirculation length as there 

is no vortex formation behind the cylinder.  

Figure 4.12 shows the instantaneous streamline contours for different Darcy 

number at higher Re = 100. It can be seen that when Da = 210− , there is no vortex 

formation behind the cylinder. And when Da = 310− , the flow show steady 

characteristic with two vortices after the cylinder. When Da decreases from 410−  to 

510− , with less porous flow through the cylinder, the flow pattern becomes unsteady, 

and the vortex begins to separate.  

Table 4.5 shows the influence of Darcy number. For the steady cases, Re=20 

and 40, the drag coefficient and length of recirculation zone behave like those in 

Section 4.2.1.3.  Differently, for Re=100 and Re=200, it is interesting to find that the 

flow is still steady when Da= 210− . For the unsteady cases, Re=100 and 200, while Da 

decreases from 310−  to 510− , the average drag coefficient, and the amplitude of both 

lift and drag coefficients, show increasing trends, whereas for the shedding period, 

there is no obvious trend.  

 

4.2.2.5 Vortex Shedding 
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Figure 4.13 shows this vortex contour in one period. It is shown that, different 

from the solid one, the vortex formulation extends to the porous part. The two main 

vortex after the cylinder interact with each other to generate negative or positive lift 

forces.   

 

4.2.2.6 Effect of Stress Jump Parameters 

Table 4.6 shows the influence of the stress jump parameters 1 and β β  at the 

lower Reynolds numbers Re = 20 and 40, with 0.4ε =  and Da = 410− . Similar with 

those in Section 4.2.1.2, the β  effect is noticeable, especially for negative values, 

whereas 1β  has less effect. However, it is noted in Table 4.6 that the recirculation 

lengths are not much affected by the stress jump parameters. That is, these parameters 

do not affect the flow patterns at these lower Reynolds numbers of 20 and 40. This 

observation is different from the study in Section 4.2.1.2 on porous square cylinders 

where the parameters tend to make the flow more unstable.  

Table 4.7 shows the influence of the stress jump parameters 1 and β β  on the 

vortex shedding period pτ , lift and drag coefficients LC , DC  at the higher Reynolds 

numbers Re = 100, and 200, with 0.4ε =  and Da = 410− . It can be seen that for the 

same Reynolds number,β  effect is still more obvious than 1β . It can also be seen that 

when β  increases from -1.0 to +1.0, the average drag coefficient, and the amplitude 

of both lift and drag coefficients, and the shedding period show increasing trends. 

When 1β  increases from -1.0 to +1.0, the change is not large. This shows that in 
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Equation (2.9), the viscous term tu
k
μβ  is more important than the inertial 

term 2
1 tuβ ρ . 

 

4.2.2.7 Effect of Porosity Values 

Table 4.8 shows that at higher porosity, there is decrease of drag coefficient 

(average for unsteady cases). Similar with those in Section 4.2.1.4, for the unsteady 

cases the lift amplitude is smaller at higher porosity.  

 

4.3 Conclusions 

Two-dimensional flow around a porous square or trapezoidal cylinder has 

been carried out using numerical method as described in Chapter 2. To couple the 

flows at the interface, the shear-stress jump condition is implemented.  

The flow range considered varied from steady state to unsteady Reynolds 

number of 200, and different porosities, Darcy numbers and stress jump parameters 

were considered. With a larger Darcy number, the Reynolds number has to be higher 

before the vortex shedding phenomena occurs. The effects of the stress jump 

parameters are given for the flow condition from Re = 20 to 200. The first coefficient 

β  has a more noticeable effect whereas the second coefficient 1β  has small effect, 

even for Re = 200. The results also show that the interface stress jump parameters 

play an important role in the stability of the flow around a porous cylinder, which is 

different for porous square and trapezoidal cylinders. The Darcy number effect 
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becomes smaller when 410Da −≤ ; at larger Darcy number, the fluctuation-amplitude 

of drag coefficient decreases. Generally, a larger porosity cylinder results in a smaller 

drag coefficient and lift amplitude. 
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Table 4.1 Drag coefficient and length of the recirculation zone, for low Re, 

with 0.4ε = and Da= 410−  for flow past a porous square cylinder. 

Re β  1β  DC  L/H Re β  1β  DC  L/H 

-0.7 0 1.991 1.23 -0.7 0 1.448-1.463 - 

0 0 2.411 1.26 0 0 1.611 2.77 

0.7 0 2.550 1.27 0.7 0 1.534-1.568 - 
  

0 -0.7 2.376 1.26 0 -0.7 1.502-1.539 - 

0 0 2.411 1.26 0 0 1.611 2.77 

20 

0 0.7 2.371 1.26 

40 

0 0.7 1.611 2.76 
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Table 4.2 Drag, lift and period for high Re with unsteady vortex shedding, 

with 0.4ε = and Da= 410−  for flow past a porous square cylinder. 

 

Re β  1β  pτ  LC  DC  (Amplitude) 

0 0.7 6.97 -0.265-0.265 1.432-1.447 (0.015)

0 0 6.94 -0.269-0.269 1.433-1.448 (0.015)

0 -0.7 7.08 -0.266-0.266 1.431-1.447 (0.016)
 

0.7 0 6.93 -0.264-0.264 1.441-1.457 (0.016)

0 0 6.94 -0.269-0.269 1.433-1.448 (0.015)

100 

-0.7 0 7.02 -0.270-0.270 1.417-1.432 (0.015)

0 0.7 6.63 -0.788-0.788 1.585-1.730 (0.145)

0 0.5 6.59 -0.783-0.783 1.584-1.726 (0.142)

0 0.3 6.60 -0.782-0.782 1.583-1.725 (0.142)

0 0 6.60 -0.782-0.782 1.581-1.722 (0.141)

0 -0.3 6.61 -0.783-0.783 1.581-1.724 (0.143)

0 -0.5 6.66 -0.785-0.785 1.582-1.726 (0.144)

0 -0.7 6.63 -0.787-0.787 1.584-1.731 (0.147)
 

0.7 0 6.62 -0.759-0.759 1.568-1.706 (0.138)

0.5 0 6.64 -0.765-0.765 1.571-1.710 (0.139)

0.3 0 6.62 -0.770-0.770 1574-1.714 (0.140) 

0 0 6.60 -0.782-0.782 1.581-1.722 (0.141)

-0.3 0 6.60 -0.799-0.799 1.593-1.736 (0.143)

-0.5 0 6.67 -0.816-0.816 1.604-1.750 (0.146)

200 

-0.7 0 6.53 -0.840-0.840 1.621-1.771 (0.150)
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Table 4.3 Effect of Darcy number with 0.4ε = , 0β = and 1 0β =  for flow past a 

porous square cylinder. 

 

Re Da pτ  LC  DC (amplitude) L/H 

510−  - 0 2.413 1.32 

410−  - 0 2.411 1.26 

310−  - 0 2.143 1.21 

20 

210−  - 0 1.974 - 

510−  - 0 1.616 2.81 

410−  - 0 1.611 2.77 

310−  - 0 1.535 2.66 

40 

210−  - 0 1.472 - 

510−  7.15 -0.225-0.225 1.284-1.293 (0.009) - 

410−  6.94 -0.269-0.269 1.433-1.448 (0.015) - 

310−  7.10 -0.262-0.262 1.638-1.658 (0.020) - 

100 

210−  - 0 1.096 - 

510−  6.43 -0.546-0.546 1.343-1.418 (0.075) - 

410−  6.60 -0.782-0.782 1.581-1.722 (0.141) - 

310−  6.23 -0.310-0.310 1.634-1.816 (0.182) - 

200 

210−  6.52 -0.212-0.212 1.064-1.288 (0.224) - 
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Table 4.4 Effect of porosity with Da= 410−  and 10, 0β β= =  for flow past a 

porous square cylinder. 

Re ε  pτ  LC  DC  (amplitude) L/H 

0.4 - 0 2.411 1.26 

0.6 - 0 2.105 1.24 

20 

0.8 - 0 2.049 1.25 

0.4 - 0 1.611 2.73 

0.6 - 0 1.584 2.69 

40 

0.8 - 0 1.537 2.71 

0.4 6.94 -0.269-0.269 1.433-1.448 (0.015) - 

0.6 7.06 -0.261-0.261 1.419-1.433 (0.014) - 

100 

0.8 7.02 -0.257-0.257 1.407-1.420 (0.013) - 

0.4 6.60 -0.782-0.782 1.581-1.722 (0.141) - 

0.6 6.55 -0.772-0.772 1.575-1.715 (0.140) - 

200 

0.8 6.49 -0.750-0.750 1.563-1.698 (0.135) - 
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Table 4.5 Effect of Darcy number with 0.4ε = , 0β = and 1 0β =  for flow past a 

porous trapezoidal cylinder. 

 

Re Da pτ  LC  DC (amplitude) L/H 

510−  - 0 1.838 1.14 

410−  - 0 1.826 1.12 

310−  - 0 1.805 0.95 

20 

210−  - 0 1.610 - 

510−  - 0 1.353 2.22 

410−  - 0 1.345 2.13 

310−  - 0 1.330 1.94 

40 

210−  - 0 1.210 - 

510−  5.46 -0.235-0.235 1.294-1.329 (0.035) - 

410−  5.41 -0.206-0.206 1.199-1.228 (0.028) - 

310−  5.52 -0.116-0.116 1.164-1.171 (0.007) - 

100 

210−  - 0 0.895 - 

510−  4.58 -0.552-0.552 1.356-1.570 (0.214) - 

410−  4.42 -0.460-0.460 1.275-1.409 (0.134) - 

310−  4.62 -0.175-0.175 1.125-1.147 (0.022) - 

200 

210−  - 0 0.772 - 
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Table 4.6 Drag coefficient and length of the recirculation zone, for low Re, 

with 0.4ε = and Da = 410−  for flow past a porous trapezoidal cylinder. 

Re β  1β  DC  L/H Re β  1β  DC  L/H 

-1.0 0 1.602 1.06 -1.0 0 1.192 2.01 

0 0 1.826 1.12 0 0 1.345 2.13 

1.0 0 1.877 1.14 1.0 0 1.375 2.14 
  

0 -1.0 1.816 1.12 0 -1.0 1.342 2.13 

0 0 1.826 1.12 0 0 1.345 2.13 

20 

0 1.0 1.826 1.12 

40 

0 1.0 1.346 2.13 

 
 

Table 4.7 Drag, lift and shedding period for high Re with unsteady vortex 

shedding, with 0.4ε = and Da = 410−  for flow past a porous trapezoidal cylinder. 

Re β  1β  pτ  LC  DC  (Amplitude) 

0 1.0 5.47 -0.207-0.207 1.199-1.224 (0.025)

0 0 5.41 -0.206-0.206 1.199-1.228 (0.028)

0 -1.0 5.48 -0.207-0.207 1.198-1.225 (0.027)
 

1.0 0 5.51 -0.211-0.211 1.222-1.249 (0.027)

0 0 5.41 -0.206-0.206 1.199-1.228 (0.028)

100 

-1.0 0 5.37 -0.192-0.192 1.099-1.122 (0.023)

0 1.0 4.50 -0.451-0.451 1.258-1.395 (0.137)

0 0 4.42 -0.460-0.460 1.275-1.409 (0.134)

0 -1.0 4.63 -0.487-0.487 1.284-1.431 (0.147)
 

1.0 0 4.53 -0.472-0.472 1.296-1.432 (0.136)

0 0 4.42 -0.460-0.460 1.275-1.409 (0.134)

200 

-1.0 0 4.36 -0.431-0.431 1.189-1.311 (0.122)
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  Table 4.8 Effect of porosity with Da = 410−  and 10, 0β β= =  for flow past a 

porous trapezoidal cylinder. 

Re ε  pτ  LC  DC  (amplitude) L/H 

0.4 - 0 1.826 1.12 

0.6 - 0 1.768 1.12 

20 

0.8 - 0 1.713 1.11 

0.4 - 0 1.345 2.13 

0.6 - 0 1.314 2.12 

40 

0.8 - 0 1.281 2.12 

0.4 5.41 -0.206-0.206 1.199-1.228 (0.028) - 

0.6 5.47 -0.207-0.207 1.178-1.205 (0.027) - 

100 

0.8 5.53 -0.208-0.208 1.158-1.184 (0.026) - 

0.4 4.42 -0.460-0.460 1.275-1.409 (0.134) - 

0.6 4.46 -0.462-0.462 1.257-1.389 (0.132) - 

200 

0.8 4.49 -0.464-0.464 1.243-1.373 (0.130) - 
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(a)

 

(b)

 

(c)

 

(d)

 
Figure 4.1 Instantaneous streamline contours at 0.4ε = , Da=  and 410− 0β = , 

1 0β = : (a)Re=20; (b)Re=40; (c)Re=100; (d)Re=200.  
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Figure 4.2 Drag (up) and lift (down) coefficient histories, at Re=200, 0.4ε = , 
Da= 410−  and 0β = , 1 0β = . 

(a)

 

(b)
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(c)

 
Figure 4.3 Streamline contours at Re=200, 0.4ε = , Da= 410−  and 0β = , 1 0β = :  

(a) ; (b) maxLC = 0LC = ; (c) minLC = . 
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Figure 4.4 Periodic drag coefficient histories, at Re = 250, 0.4ε = , Da =  and 410−

0.7β = , 1 0β = . 

(a)
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(b)

 

(c)

 

(d)

 

(e)

 
Figure 4.5 Instantaneous streamline contours at Re = 40, 0.4ε = , Da = : 
(a)

410−

0β = , 1 0β = ; (b) 0β = , 1 0.7β = ; (c) 0β = , 1 0.7β = − ; (d) 0.7β = , 

1 0β = ;  (e) 0.7β = − , 1 0β = . 
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(a)   

 
(b)   

Figure 4.6 Schematic of flow past a porous expanded trapezoidal cylinder: 
(a) Computational domain; (b) Mesh illustration. 
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Figure 4.7 Instantaneous streamline pattern for Re = 40 at various times, with 

0.4ε = , Da = 410−  and 0β = , 1 0β = .  
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Figure 4.8 Instantaneous streamline pattern for Re = 200 at various times, with 

0.4ε = , Da = 410−  and 0β = , 1 0β = .  
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Figure 4.9 Drag (up) and lift (down) coefficient histories, at Re = 200, 0.4ε = , Da 

= 410−  and 0β = , 1 0β = . 
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(c)

 

(d)

 

Figure 4.10 Instantaneous streamline contours at T = 150.0, 0.4ε = , Da =  

and 

410−

0β = , 1 0β = : (a)Re = 20; (b)Re = 40; (c)Re = 100; (d)Re = 200.  
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Figure 4.11 Variation of recirculation length with Darcy number  

at 0.4ε = , Re = 20 and 0β = , 1 0β = . 
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Figure 4.12 Instantaneous streamline contours at T = 120.0, 0.4ε = , Re = 100 and 

0β = , 1 0β = : 

 (a) Da = ; (b) Da =210− 310− ; (c) Da = 410− ; (d) Da = . 510−
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Figure 4.13 Vorticity contours in a period pτ =4.42 from T = 125.0 at Re = 

200, 0.4ε = , Da = 410−  and 0β = , 1 0β = :  

(a) , from positive to negative; (b) 0LC = min 0.460L LC C= = − ; (c) , from 

negative to positive;. (d) 

0LC =

max 0.460L LC C= = + . 
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Chapter 5 

Natural Convection in a Porous Wavy Cavity* 

 

Natural convection in porous media cavity is of great interest in the references 

(Vasseur et al., 1989; Hsiao and Chen, 1994; Nithiarasu, 1996; Bera et al., 1998; 

Holzbecher, 2004). In practice, the cavity wall may be roughened or have protrusions 

attached to it to enhance the heat transfer process. Thus it is of interest to study the 

effects of surface undulations or waviness in porous cavities. Misirlioglu et al. (2005) 

investigated natural convection in a wavy cavity by considering that it enclosed a 

porous medium. Their numerical results were based on Darcy’s law and the stream-

function method was used to solve the governing equations. However, as reviewed in 

Section 1.2.1, Darcy’s law can not predict the flow well when the Reynolds or 

Rayleigh numbers are large, as it neglects viscous, inertia, and convective effects. 

Current chapter makes use of Darcy-Brinkman-Forchheimer extended model 

to depict the flow inside the porous region more generally by including the non-

Darcian effects, which enables studies at higher Reynolds and Rayleigh numbers. The 

results are shown in terms of local and average Nusselt numbers, isotherms and 

streamlines at various aspect ratios, surface wavinesses and porosity values. A wider 

range of Rayleigh number and Darcy number is considered.  
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5.1 Problem Statement 

The flow and heat transfer characteristics inside a wavy cavity made of two 

straight horizontal adiabatic walls and two bent vertical isothermal walls are 

considered here, as shown in Figure 5.1. The height is L, interval spacing is W, and 

amplitude of the wavy bent wall is a. The porous medium temperature is initially 0T . 

The cavity is heated by the right wall at temperature HT  and cooled by the left wall at 

temperature CT . 

The porous medium is assumed to be rigid, homogeneous and isotropic; and 

saturated with the same single-phase fluid. The governing equations have been 

described in Equations (3.26-3.29) in Chapter 3, and the non-dimensional parameters 

have also been shown as in Equations (3.14). 

For natural convection in porous media, another important parameter is the 

Darcy-Rayleigh number (Karimi-Fard et al., 1997), defined as,  

  refgK TL
Ra Ra Da

β
αγ

∗ Δ
= =                                                                (5.1) 

The boundary conditions are as follows, 

0,T
n

∂
=

∂
 on y=0, 0 x W≤ ≤  

0,T
n

∂
=

∂
 on y=L, 0 x W≤ ≤                                                                 (5.2) 

                    T=0, on 0 y L≤ ≤ , [1 cos(2 / )]x y Lλ π= −  

T=1.0, on 0 y L≤ ≤ , 1 [1 cos(2 / )]x y Lλ π= + −  
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where /a Wλ =  is the surface waviness of the wavy cavity. The aspect ratio of the 

wavy cavity is A = L/W.  

The definitions of local Nusselt number and average Nusselt number have 

been shown as those in Equations (3.15-3.16). Various computations were carried out 

for the following ranges of parameters: Darcy-Rayleigh number from 10 to 510 , 

aspect ratio A from 1 to 5, and surface waviness λ  from 0 to 1.8. During the 

computation, a non-orthogonal, non-uniform and non-staggered grid system was 

implemented (Figure 5.1). Considering the computational cost and accuracy, a grid 

independence survey (detail not given here) shows that it is adequate to use a mesh 

composed of 3200 control volumes and 3444 nodes, with 40 control volumes along 

the width of the cavity and 80 control volumes along the height. 

 

5.2 Results and Discussion  

5.2.1 Streamlines and Isotherms 

5.2.1.1 Effect of Aspect Ratio  

Figures 5.2a shows the typical isotherm and flow streamline for aspect ratio A 

= 1 and the Rayleigh-Darcy number is varied from Ra∗= 10 to 510 . It can be seen that 

hot fluid moves up along the hot wall (right wall) and turns to the left at the top 

adiabatic wall, then move down along the cold wall. This causes the circulation inside 

the cavity. Figures 5.2b and 5.2c show results for other aspect ratios of 3 and 5 

respectively, also from Ra∗= 10 to 510 . The other parameters are fixed at 0.5λ = , 
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0.4ε = , and Da = 210− . Note that the present Darcy number is much higher than 

those which assumed Darcy law, which is valid for 410Da −≤  (Karimi-Fard et al., 

1997; Aydin et al., 2005). 

At low Darcy-Rayleigh number (Figure 5.2a), the flow circulation is very 

weak, which means a conduction-dominant flow and heat transfer. The result shows 

similar behaviours with those in a previous study (Misirlioglu et al., 2005). However, 

some differences also exist especially near top and bottom regions at the right hand 

side. The present streamlines do not have so large curvatures as those based on Darcy 

law especially at Ra∗ = 510 . This is because Darcy model does not consider the 

convective, inertia, and viscous terms and thus the flow is able to turn abruptly at the 

corners, especially those at the right hand side of the cavity. 

At higher aspect ratio A=3 (Figures 5.2b), it is interesting that there is a main 

recirculating flow near the central region and two smaller recirculations near the top 

and bottom regions. The flow near the axial region is unable to recirculate to the top 

or bottom regions, due to the viscous effect. Had Darcy law, which has no viscous 

term, been assumed then there will just be a single main recirculation. It is noted that 

near the walls, where the natural convection is strong enough, the fluid is able to 

recirculate to the top unlike those near the axis. When the Ra* reaches 103 (Figure 

5.2b middle), the convective effect is strong enough for the whole flow domain to 

have a single recirculation.  

At large 510Ra∗ =  (Figures 5.2a, 5.2b and 5.2c, streamline diagrams on right) 

there are two recirculation loops at the middle region, instead of just one. The 
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convection caused by the hot and cold walls is so large that each wall generates a 

recirculation flow. It is noted that near the middle region, along the x direction from 

cold to hot walls, the temperature gradient is negative near the axis. This is different 

from those at lower Ra* in which the temperature gradient is positive throughout the 

region from cold to hot walls. This explains the distortion of the recirculation 

streamline at the middle region. 

 

5.2.1.2 Effect of Surface Waviness 

Figure 5.3 show the surface waviness effect on the flow and thermal fields at 

Darcy-Rayleigh number of 10Ra∗ =  to 510 . At low Darcy-Rayleigh number (Figure 

5.3a), there is one main recirculation region if the cavity is less wavy (see streamline 

diagram on left).; however at large waviness value 0.6λ =  there are smaller 

recirculation regions at the top and bottom in addition to the main one at the middle 

region The flow near the axial region is unable to recirculate to the top or bottom 

regions, due to the viscous effect. However, the fluid near the walls is able to 

recirculate to the top, as the natural convection near the walls is stronger than those 

near the axis. When the Ra* reaches 105 (Figures 5.3a, b and c, streamline diagrams 

on right), the convective effect is strong enough for the whole flow domain to have a 

single recirculation. 

The effect of waviness seems to be similar to that caused by aspect ratio 

which has been discussed earlier. Both waviness and aspect ratio increase the length 

of the cavity and hence the viscous effect. However when the Darcy-Rayleigh 
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number becomes large, it dominates over the viscous effect, so that the recirculation 

flow from the middle region is able to reach the top and bottom. The natural 

convection at large Darcy-Rayleigh number becomes so strong that it generates two 

recirculation regions at the middle as discussed earlier. 

 

5.2.2 Local and Average Nusselt Numbers 

5.2.2.1 Effect of Darcy Number  

To examine the dependence on Darcy number, the local Nusselt number along 

the cold wall is presented in Figures 5.4a and 5.4b. It is seen that for low Darcy-

Rayleigh number (Figures 5.4a), the local Nusselt number has negligible dependence 

on Darcy number which is thus not needed to be specified as another independent 

parameter. However at large Darcy-Rayleigh number (Ra*=103 in Figures 5.4b) there 

is a strong dependence on Darcy number. The Darcy number characterizes the 

permeability effect and Rayleigh number characterizes the natural convection effect. 

However the combined effects are not characterized by the Darcy-Rayleigh number 

when it is of large values. In addition to the Darcy-Rayleigh number, the Darcy 

number is needed as another independent parameter. 

It is seen that the Darcy number seems to change the local Nusselt number 

greatly, around an order of magnitude. This is because when Darcy number is 

changed, the Rayleigh number also changes in order to keep the Darcy-Rayleigh 

number constant. That is, the effects of permeability and natural convection are not 

isolated in Figure 5.4b. 
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 To see the real effects of Darcy number, instead of setting the Darcy-

Rayleigh number constant, the Rayleigh number is made constant in Figures 5.5a and 

5.5b. it is seen that at low Ra of 103 the effect of Da is negligible. However at high Ra 

of 105 there is obvious effect of Da. At larger Da, or larger permeability, there is 

smaller flow resistance through the porous medium, leading to larger flow convection 

and heat transfer. Thus the local Nusselt number increases with Da. However, when 

Da is less than 410− , the Nu changes little with Da (see Figure 5.5b). This range of 

low Darcy number less than 410−  is called the Darcy flow region (Karimi-Fard et al., 

1997; Misirlioglu et al., 2005). 

 

5.2.2.2 Effect of Porosity Value 

The effect of porosity is examined next, as presented in Figures 5.6a and 5.6b. At 

larger porosity, with permeability constant, there is larger flow through the porous 

medium, leading to larger flow convection and heat transfer. Thus the local Nusselt 

number increases with porosity. The dependence is rather similar to that of Darcy 

number considered above. There is negligible dependence on porosity at low Darcy-

Rayleigh number (Figure 5.6a) but when Ra* becomes large the dependence is 

noticeable (Figure 5.6b). The porosity, like Darcy number, is needed as another 

independent parameter.  

The dependence on Darcy number and porosity can be seen from the generalized 

momentum Equation (3.27). The Darcy number is present in the Darcy and inertia 

terms; and the porosity is in the convective, inertia and viscous terms. However, when 
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the Darcy equation is assumed, there is no dependence on Darcy number and porosity; 

also, the effect of Darcy number is included in the Darcy-Rayleigh number. 

 

5.2.2.3 Effect of Aspect Ratio and Surface Waviness  

In Figure 5.7 the effect of aspect ratio on local Nusselt number is shown. For 

the case shown, a larger aspect ratio reduces the local Nusselt number. When the 

aspect ratio is small, A=1, the local Nusselt number along the middle region 

approaches zero, which indicates that the temperature gradient there is small (see 

Figure 5.2a isotherm) due to the shape effect. 

The near-zero Nusselt number is more obvious in Figure 5.8a in which the 

shape effect is more pronounced, with A=0.5 and λ  up to 1.8. It is interesting that at 

λ =1.4, slightly negative Nusselt numbers are found, which indicates negative 

temperature gradient. Negative Nusselt numbers were also observed by Misirlioglu et 

al. (2005). However positive Nusselt number is always found at another aspect ratio, 

A = 4 (Figure 5.8b) in which the temperature gradient is large (see Figure 5.3b 

isotherm).   

The values of the average Nusselt number avNu  at the cold wall (left) are 

shown in Table 5.1 for different Darcy-Rayleigh number Ra*, aspect ratio A and 

wave amplitudeλ . In general, avNu  increases with Darcy-Rayleigh number due to 

stronger natural convection. For each Darcy-Rayleigh number, the aspect ratio or 

wave amplitude has effect on the Nusselt number. Whether the Nusselt number 

increases or decreases may be due to the different flow regimes inside the cavity as 
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explained by Mahmut and Fraser (2004). There may be an optimum aspect ratio or 

wave amplitude to achieve a peak Nusselt number which enhances the heat transfer. 

 

5.3 Conclusions 

The steady natural convection inside a porous cavity, with wavy vertical walls, 

is numerically studied with the Darcy-Brinkman-Forchheimer extended model.   

Isotherms and streamlines are presented at different aspect ratio, waviness, and 

Darcy-Rayleigh number. The present results show some interesting differences as 

compared with the Darcy’s law results due to its over prediction of the velocity field. 

The present flow field does not have so large curvature near the top and bottom 

regions. At low Darcy-Rayleigh number another recirculation zone may appear at 

both the top and bottom regions, which are additional to the main recirculation at the 

middle. At large Darcy-Rayleigh number, the top and bottom recirculations vanished 

and the middle recirculation was distorted into two. The results of local Nusselt 

number show that the dependence on Darcy number and porosity is not small at large 

Darcy-Rayleigh number.  
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Table 5.1 Average Nusselt number at the cold wall for different aspect ratios and 
wave amplitudes (Da=0.01, 0.4ε = ).  

 
Nusselt number for cold wall   

 Ra∗= 110  Ra∗= 310  Ra∗= 510  

0λ =  1.000 1.614 4.920 

0.3λ =  1.038 1.561 5.468 

0.4λ =  1.068 1.526 5.358 

0.5λ =  1.107 1.498 5.229 

A=4 

0.6λ =  1.155 1.487 5.091 

A=1 1.274 1.659 6.796 

A=2 1.219 1.768 6.001 

A=3 1.153 1.645 5.292 

A=4 1.107 1.498 5.229 

0.5λ =  

A=5 1.077 1.377 4.333 

 

 Figure 5.1 Schematic diagram of the porous cavity. 
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Figure 5.2a 

Figure 5.2 Isotherms (top) and streamlines (bottom) at different Darcy-Rayleigh number Ra 10∗ = , 310 , 510  (left to right); with 0.5λ = , Da = 

0.01, 0.4ε = ; at (a) A = 1; (b) A = 3; (c) A =5. 
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Figure 5.2b 
Figure 5.2 Isotherms (top) and streamlines (bottom) at different Darcy-Rayleigh 

number Ra 10∗ = , ,  (left to right); with 310 510 0.5λ = , Da = 0.01, 0.4ε = ;  

at (a) A = 1; (b) A = 3; (c) A =5. 



Chapter 5 Natural Convection in a Porous Wavy Cavity 

 123

 

 
Figure 5.2c 

Figure 5.2 Isotherms (top) and streamlines (bottom) at different Darcy-Rayleigh 

number Ra 10∗ = , ,  (left to right); with 310 510 0.5λ = , Da = 0.01, 0.4ε = ;  

at (a) A = 1; (b) A = 3; (c) A =5. 
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Figure 5.3a 

Figure 5.3 Isotherms (top) and streamlines (bottom) at different waviness ratio 

0,  0.4,  0.6λ =  (left to right); with A = 4, Da = 0.01, 0.4ε = ;  

at (a) Ra 10∗ = ; (b) 3Ra 10∗ = ; (c) 5Ra 10∗ = . 
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Figure 5.3b 

Figure 5.3 Isotherms (top) and streamlines (bottom) at different waviness ratio 

0,  0.4,  0.6λ =  (left to right); with A = 4, Da = 0.01, 0.4ε = ;  

at (a) Ra 10∗ = ; (b) 3Ra 10∗ = ; (c) 5Ra 10∗ = . 
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Figure 5.3c 

Figure 5.3 Isotherms (top) and streamlines (bottom) at different waviness ratio 

0,  0.4,  0.6λ =  (left to right); with A = 4, Da = 0.01, 0.4ε = ;  

at (a) Ra 10∗ = ; (b) 3Ra 10∗ = ; (c) 5Ra 10∗ = . 
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(b) 
Figure 5.4 Local Nusselt number along the cold wall and its dependence on Darcy 

number at (a) =10 ; (b) Ra∗ Ra∗= ; other parameters are310 0.4ε = , A=4, 0.5λ = . 
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(b) 

Figure 5.5 Local Nusselt number along the cold wall and its dependence on Darcy 

number at (a) ; (b) = ; other parameters are3Ra=10 Ra 510 0.4ε = , A=4, 0.5λ = . 
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(b)  

Figure 5.6 Local Nusselt number along the cold wall and its dependence on porosity 

at (a) =10 ; (b) ; other parameters are fixed at Da= , A=4,Ra∗ 3Ra 10∗ = 210− 0.5λ = .  
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Figure 5.7 Effect of different values of aspect ratio local Nusselt number along the 

cold walls; at Ra∗= , Da=310 210− , 0.4ε = , 0.5λ = . 
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(b) 
Figure 5.8 Effect of waviness on local Nusselt number along the cold walls; at 

, Da=310Ra∗ = 210− , 0.4ε = ; (a) A=0.5; (b)A=4. 
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Chapter 6 

Forced Convection in Porous/fluid Coupled Domains* 

 

Heat transfer enhancement is usually required in engineering situations, for 

example, heat sink, electronic cooling, drying technology and packed-bed chemical 

reactors. Forced convection heat transfer can be enhanced with the addition of porous 

media (Huang and Vafai, 1994a and b; Vafai, 2001; Kiwan and AI-Nimr, 2001; 

Bhattacharya and Mahajan, 2002). Different from those natural convection problems 

in Chapter 5, the fluid flow is caused by an external agent unrelated to the heating 

effect. Thus heat transfer effect is mainly influenced by the incoming flow properties. 

Numerical simulations show that heat transfer can be increased globally with a porous 

media insert after backward facing step (Martin et al., 1998; Zhang and Zhao, 2000) 

or locally with the addition of a porous floor segment (Abu-Hijleh, 1997 and 2000). 

However, their numerical methods were based on one-domain approach, and the 

interface conditions between the porous and fluid domains were not carefully treated.  

In this chapter, a two-domain approach is implemented to solve these forced 

convection problems in porous/fluid coupled domains. At its interface, the flow 

boundary condition imposed is a shear stress jump, which includes viscous and 

inertial effects, together with a continuity of normal stress. The thermal boundary 
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condition is continuity of temperature and heat flux. Two kinds of flow over a 

backward facing step are investigated. One is set with a porous insert after the step, 

which can eliminate the regions of recirculation. This can enhance the global heat 

transfer along the bottom wall. The other one is set with a porous floor segment, 

which can elongate the regions of recirculation. This can increase the local heat 

transfer after the segment along the bottom wall. The results were presented with the 

streamlines and local Nusselt number for different geometry lengths, Darcy numbers, 

porosity values. The local and average Nusselt numbers dependency on the stress 

jump parameters was also investigated. 

 

6.1 Backward Facing Step with a Porous Insert 

6.1.1 Problem Statement 

Steady, two-dimensional, laminar and incompressible flow over a backward-

facing step is considered here (Figure 6.1). The porous insert is located after the step. 

The inlet flow velocity is specified as a parallel flow with a parabolic horizontal 

component given by u(y) = 24y(0.5-y) for 0 0.5y≤ ≤ . This produces an average 

inflow velocity of 1.0avu =  which is taken as the reference velocity. The inlet flow 

and step wall temperature are set to iT ; the upper and bottom walls supply a constant 

heat flux q; and the outlet condition is adiabatic. 

The dimensionless governing equations for porous regions are the same with 

Equations (3.37) to (3.39). The dimensionless heat transfer equation is as following: 
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2 2

2 2

1 ( )k
T T T Tu v R
x y Pr Re x y

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
i
i

                                                 (6.1) 

where the dimensionless parameters are the same as those in Equation (3.21) in 

Chapter 3. kR  is the ratio of thermal conductivity in porous and fluid regions; Pr is 

the Prandtl number of the fluid; Re is the Reynolds number defined as following:  

U H, ,eff av
k

f

k
R Pr Re

k
ρμ

ρα μ
= = =                                                          (6.2) 

whereα  is the fluid thermal diffusivity; fk  is the fluid thermal conductivity, effk  is 

effective thermal conductivity of porous media. 

For the homogeneous fluid part, the dimensionless governing equations are 

the same with Equations (3.17) to (3.20).                

At the interface between the homogeneous fluid and porous medium regions, 

additional boundary conditions must be applied to couple the flows in the two 

domains. The boundary conditions include flow and heat transfer.  

The interface coupling conditions for flow are the same with those Equations 

(2.9) to (2.11) and they are non-dimensionlized as:  

2
1

porous fluid interface

1 1t t
t t

u u u Re u
n n Da

β β
ε
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i i                                (6.3) 

       interfacefluid porous
u u v= =                                                                         (6.4)                               

porous fluid
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∂ ∂
− =
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                                                                      (6.5)                               
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For heat transfer interfacial condition, continuities of temperature and heat 

flux are implemented here (Neale and Nader, 1974; Vafai and Thiyagaraja, 1987; 

Ochoa-Tapia and Whitaker, 1997; Jang and Chen, 1992; Kim and Choi, 1996; 

Kuznetsov, 1999),  

interfacefluid porous
T T T= =                                                                        (6.6)                              

porous fluid
k

T TR
n n

∂ ∂
=

∂ ∂
                                                                           (6.7) 

The local and average Nusselt number and frictional loss (Zhang and Zhao, 2000; 

Beavers and Joseph, 1967) are defined as:  

( )w i f

qHNu
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−

                                                                                  (6.8) 
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= ∫                                                                                    (6.9) 

2 2

( ) ( )
2 2

i i o o
l i o
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= + − +                                                        (6.10) 

where ip  and op are the average inlet and outlet pressures, and iα  and oα are the 

kinetic coefficients, defined as: 
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                                                                                  (6.11) 

In the present study, non-uniform, body-fitted and orthogonal meshes are 

employed, where the density of meshes over the step back is larger than those in areas 

far downstream. The initial conditions for the computation were either a uniform flow 
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at the inlet or the results of a previous calculation, often at different Reynolds number, 

Darcy number or porosity values. For simplicity, the ratio of the effective thermal 

conductivity of porous medium to fluid conductivity, kR  is set to be 1; the heat 

transfer would be more enhanced if the ratio is larger. The Prandtl number is set as Pr 

= 0.72, which is the value for air.  

Considering the computational cost and accuracy, the grid independency 

survey (details not given here) shows that a total 380x100 mesh, for both porous and 

fluid domains, is adequate.  

 

6.1.2 Results and Discussion 

6.1.2.1 Effect of Reynolds Number 

Figure 6.2 shows the stream contours of the flow for different Reynolds 

number from 10 to 800, at Da = 210− . It is observed that increasing the Reynolds 

number would increase the recirculation length, which is the distance from the back 

of the step to the vortex reattachment point. The flow field affects the heat transfer 

and this is shown in Figure 6.3 for the same Darcy number, in the form of axial 

distribution of lower wall Nusselt number. In the recirculation region, the heat 

transfer is first reduced. Then it increases towards the attachment point, after which 

the Nusselt number gradually decreases toward the fully developed state. However 

for low Re = 10, the recirculation region is so small that it does not cause much effect 

on the Nusselt number which shows decrease with distance from the step. Higher 

Reynolds number gives higher Nusselt number as expected. 
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When the Darcy number is small, Da= 410−  (details not shown here), the flow 

after the step is different as there is no recirculation region even with the Re=800. 

There is no flow separation due to the small porous flow. The lower wall Nusselt 

number keep decreasing (Figure 6.4) with distance from the step. As Re increases to 

800, the main heat transfer is convection. In the following computation to study 

mainly the convective mode, the Re is set to 800. 

 

6.1.2.2 Effect of Darcy Number 

 The Darcy number effect is shown in Figure 6.5, with the same parameters as 

Zhang and Zhao (2000), for the flow field at Re = 800. When the insert has high 

permeability, the recirculation length is still long (Figure 6.5a). With a lower 

permeability (Da = 310−  in Figure 6.5b), the insert breaks up the recirculation region 

into a small vortex in the region porous and a recirculation region in the fluid domain. 

With even lower Darcy number (Da = 410−  and 510−  in Figures 6.5c and d 

respectively) the recirculation has disappeared. The effect on heat transfer is shown in 

Figure 6.6. Note that the scale is larger for ease of comparison later with results of 

Zhang and Zhao (2000). In the region downstream of the step, there is pronounced 

heat-transfer enhancement with lower Darcy numbers (high Nusselt number at Da = 

410− ). There is enhanced heat transfer due to elimination of the recirculation region. 

After the recirculation region has been suppressed, there is no further enhancement of 

heat transfer when Darcy number is lowered to 510− ; the Nusselt number drops due to 
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lower convection in the porous insert. So for this Re = 800, there is an optimal Da 

between 410−  and 510− .  

A comparison with the one-domain results of Zhang and Zhao (2000) is also 

shown in Figure 6.6. The main difference in the two methods is the treatment of the 

interface pressure and velocity as discussed in Section 2.2, Chapter 2. Note that the 

present stress jump parameters were set to zero to permit comparison with the one-

domain model. As compared with the one-domain results, there is little discrepancy 

of the Nusselt numbers in the regions inside the porous insert and far downstream. 

Some discrepancies are found in the region just downstream of the porous insert. 

However the discrepancies are small for Da = 10-4 (see Figure 6.6). At this small Da, 

there is no recirculation region (Figure 6.5) which may explain why the interface 

treatment seems to have less effect. The unseparated gross-flow downstream of the 

porous inserts, being mainly determined by the channel height, would be relatively 

less sensitive to the interface pressure. At larger Darcy numbers (10-2 and 10-3), the 

discrepancies are significant which is attributed to the presence of the recirculation 

regions (see streamline Figures 6.5a and b). It is noted that the recirculation lengths 

computed here are longer than those of Zhang and Zhao (2000). The comparison 

indicates that the interface pressure has greater effects on the downstream flow, and 

hence the local Nusselt number, when there is a recirculation region. Thus a careful 

treatment of the interface pressure would be advantageous when the flow pattern is 

complex.  
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6.1.2.3 Effect of Porous Insert Length 

Figure 6.7 shows the effect of the porous insert length on the flow field with 

Da = 210− . With insert length of zero or small, there are two recirculation regions. A 

longer insert length of a/H=0.2 suppresses the upper recirculation region. Longer 

insert also reduces the length of the lower recirculation region. However, there is little 

difference in Nusselt numbers (details not shown here) as the insert length does not 

suppress the bottom recirculation. It is not suppressed, even with a longer insert, 

because there is insufficient flow resistance with a large Darcy number.  

Figure 6.8 shows the effect of the porous insert length on the flow field with a 

smaller Da = 410− . With longer insert, the recirculation regions are completely 

suppressed (Figures 6.8c and d). Figure 6.9 shows the corresponding axial 

distribution of lower wall Nusselt number. The longer inserts give more enhanced 

heat transfer behind the step due to the elimination of recirculation region.  

Figures 6.10a and b show velocity profiles behind the step (x/H = 0.5) for a 

short and long inserts respectively. With a short insert (Figure 6.10a), there are 

negative or small velocities near the lower wall due to the recirculation regions there 

(see Figures 6.7b and 6.8b). With a long insert (Figure 6.10b), the velocity profiles 

are greatly affected by the Darcy number. With large 210Da −≥ , there are negative 

velocities near the lower wall due to the recirculation region there (see Figure 6.7d). 

When Da decreases to 310−  or less, there is forward velocity near the bottom wall as 

the bottom recirculation region has been eliminated (see Figure 6.8d for 410Da −= ). 

The velocity profiles explain the enhancement of the local heat convection in the 
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bottom region behind the step. However, there is no additional enhancement below 

410Da −= . Once the recirculation has been suppressed, a further decrease of the 

Darcy number to 510−  will give lower velocity (compared to that of 410Da −=  as 

shown in Figure 6.10b). Thus there is an optimal Darcy number to achieve enhanced 

heat transfer at the lower wall as mentioned earlier (shown in Figure 6.6).  

In Figure 6.11, the dimensionless channel head loss (normalized by that with 

no porous insert) is shown as a function of insert length and Darcy number. The head 

loss is higher with longer insert length or smaller Darcy number, as expected. To 

achieve optimal enhancement of heat transfer, it is necessary to avoid excessive 

frictional losses. Thus a combination of medium Darcy number and insert length is 

preferred. 

 

6.1.2.4 Effect of Porosity Values 

Figure 6.12 gives out the porosity effect on the axial distribution of lower wall 

Nusselt number with Da = 410− . A smaller porosity gives higher Nusselt number 

behind the step, as expected. However, the porosity effect is rather small.  

 

6.1.2.5 Effect of Stress Jump Parameters 

The stress jump parameters were varied from -1 to +1 and its effect on the 

average lower wall Nusselt number is presented in Table 6.1 for Re = 800. It can be 

seen that for the larger Darcy number Da = 210− , there is little effect; the insert is too 

porous to affect the recirculation region as discussed earlier. For the smaller Darcy 
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number 4 = 10Da − , the difference is more noticeable but still not large, about 4%  

when both β  and 1β  are varied from -1 to 1. It is not surprising that the jump 

coefficients have little effect on average values like the wall Nusselt number in Table 

6.1. In the literature, it is possible to find studies (Valencia-Lopez and Ochoa-Tapia, 

2001) which show that even the type of formulation have almost no effect on global 

coefficients.  

The importance of a numerical method that considers properly the effect of 

the jump coefficients or the formulation of the boundary conditions should be 

assessed by analyzing local variable predictions in the neighborhood of the interface 

fluid-porous medium. The effect of the stress jump parameters on the local Nusselt 

number is shown in Figure 6.13. Their effects on the local velocity and temperature 

profiles at x/H=3.0 are shown respectively in Figures 6.14 and 6.15. It is noted that 

there are some effects of β  and 1β  when they are varied from -1 to +1. Positive 

parameters give a larger peak velocity and smaller velocity near the wall. Thus the 

temperatures there are smaller and hence the Nusselt numbers are larger.  

The effect of stress jump parameters is small in the present case because the 

dominant flow direction is near normal to the interface. In parallel flow past a porous-

fluid interface (Alazmi and Vafai, 2001), in which the porous medium partially fills 

the channel, it was found that the velocity profile was very sensitive to the stress 

parameters. It is expected that the stress parameters will have greater effect on the 

heat transfer, if the porous-insert was designed to partially fill the channel in order to 

avoid high friction losses.  
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6.2 Backward Facing Step with a Porous Floor Segment 

6.2.1 Problem Statement 

As shown in Figure 6.16a, the porous floor segment is located after the step. 

The inlet flow velocity is specified as that in section 6.1.1. The inlet flow temperature 

is set toT∞ ; the upper, step walls and left wall of the porous segment are adiabatic, 

while the bottom wall temperature is wT . 

The governing equations for porous and fluid regions, interface coupling 

conditions and dimensionless parameters are the same with those Equations (3.17) to 

(3.20), (3.37) to (3.39) and (6.1) to (6.7). 

The local and average Nusselt numbers (Abu-Hijleh, 1997 and 2000) are 

defined as:  

( , )

( )
( )

y floor

w

T x yH
y

Nu x
T T

=

∞

∂
−

∂
=

−
                                                           (6.12) 

1 ( )av
l

Nu Nu x dx
l

= ∫                                                                          (6.13) 

Non-uniform, body-fitted and orthogonal meshes are employed, where the 

density of meshes over the step back is larger than those in areas far downstream, 

shown as in Figure 6.16b. The initial conditions for the computation were either a 

uniform flow or the results of a previous calculation, often at different Reynolds 

number, Darcy number or porosity values. For simplicity, the ratio of the effective 

thermal conductivity of porous medium to fluid conductivity, kR  is set to be 1; the 
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heat transfer effect would be more enhanced if the ratio is larger. The Prandtl number 

is set as Pr = 0.72, which is the value for air.  

The mesh size was varied to obtain a mesh independent solution, which 

served as a check on the consistency of the numerical scheme. For the longest or 

deepest porous floor cases considered in the study, a mesh made of 360x100 grids for 

the pure flow field. For the porous field, a mesh composed of 80x25 to 300x25 

(depending on the floor lengths) or 200x10 to 200x100 (depending on the floor 

depths) was found to be sufficient. Further increase of the grid numbers was found to 

cause less than 1% change in the reattachment length and maximum Nusselt number. 

Thus considering the computational cost and accuracy, a total grid range from 38000 

to 56000, for both porous and fluid domains was adequate for the various cases of 

different segment lengths and depths.   

 

6.2.2 Results and Discussion 

6.2.2.1 Effect of Reynolds Number 

Figures 6.17 shows the stream contours of the flow for different Reynolds 

numbers from 100 to 800; with Da = 210− , segment length L/H = 3.3 and depth D/H = 

0.25, porosity 0.4ε = , jump parameters 0β =  and 1 0β = . Generally, increasing the 

Reynolds number would increase the distance from the step to the recirculation 

reattachment point. At higher Reynolds number, the shear layer needs a longer 

distance to entrain fluid before reattaching to the lower wall. At small Re of 100 the 
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reattachment point is inside the porous segment. When the Re is large (above 400), 

the reattachment is outside. At Re of 800 there is another recirculation bubble in the 

upper wall region.  

Figure 6.18 shows the axial distribution of lower wall Nusselt number for the 

cases in Figure 6.17. The Nusselt number is small in the porous segment due to the 

small convective flow there. There is a step increase in Nusselt number at the end of 

the porous segment. The step increase is due to the discontinuous lower wall which 

gives rise to a new boundary layer after the end of the porous segment. Downstream 

of the porous segment, the Nusselt number shows peak value for Re of 400 and 800. 

By referring to the streamlines in Figures 6.17c and d, it is seen that the locations of 

the peak Nu are around the reattachment points due to greater convection there, which 

is consistent with previous studies without porous floor (Kondoh et al., 1993). After 

the flow reattaches, the Nusselt number reaches an equilibrium value at the fully 

developed flow further downstream. The equilibrium Nu is higher at larger Re as 

expected. As for the Re of 200, the reattachment point is around the end of the porous 

segment (see Figure 6.17b). Thus the effects of the lower-wall discontinuity and the 

reattachment points give rise to significant enhancement of the Nusselt number just 

after the porous segment. The reattachment location for the low Re = 100 lies inside 

the porous segment, giving a small peak in Nu there, but it does not help to enhance 

the Nu downstream of the porous segment. It may be concluded that the reattachment 

location should be around the lower-wall discontinuity to obtain heat transfer 

enhancement due to both factors.   
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6.2.2.2 Effect of Segment Length 

Figure 6.19 shows how the flow field is affected by the length of the porous-

segment, with Re=200. The porous floor does not eliminate the recirculation flow, as 

those suppressed bubbles (Martin et al, 1998; Zhang and Zhao, 2000; Assato, et al, 

2005). On the contrary, the recirculation length increases if the porous segment is 

longer. When there is a porous floor, the shear layer needs a longer distance to entrain 

fluid before reattaching to the lower wall because the porous medium hampers the 

fluid returning from the reattachment point. The reattachment length approximately 

matches the porous length at L/H=3.3 (Figure 6.19c). At longer porous length the 

reattachment point is inside the porous segment (Figure 6.19d).  

Figure 6.20 shows the local Nusselt number for the cases in Figure 6.19. It is 

noted that there is a jump in Nu due to the discontinuity in lower wall as discussed 

earlier. As compared the case without porous floor, there is not much Nu 

enhancement at the downstream region if the porous floor is too short (L/H=1.1). On 

the other hand, a long porous floor (L/H = 5.5) will result in a long region of low Nu 

due to the small convective flow there. To obtain high local heat transfer effect after 

the porous segment, its length should be around the recirculation length as discussed 

earlier. The matching of porous and recirculation length depends on Reynolds number. 

At Re=280 the matched length is L/H=3.3 for heat enhancement effect. 

 

6.2.2.3 Effect of Segment Depth 
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Figures 6.21 and 6.22 show how the flow and heat transfer are affected by the 

depth of the porous segment at Re =280. The porous floor causes the recirculation 

length to be longer as compared with solid one. However, a deeper porous floor does 

not cause further increase of the recirculation length. Even though the porous floor is 

deeper, the fluid returning from the reattachment point moves mainly at a height 

around that of the channel floor; thus the entrainment of fluid by the shear layer is not 

hampered more if the porous medium is deeper. There is a noticeable increase for the 

local Nusselt number after the segment and it increases with increasing depths. This is 

attributed to the discontinuity of the lower wall. However the deeper floor causes the 

Nu in the porous region to be lower (Figure 6.22), due to the low convective flow. 

Thus it is not advantageous to have a porous floor with greater depth. 

 

6.2.2.4 Effect of Darcy Number  

Figure 6.23 shows the Darcy number effect on the flow field with Re=280. 

The case of Da = 0 represents that with no porous floor segment. When Da is larger, 

the recirculation length is seen to be slightly longer as more fluid goes into the porous 

medium and thus a longer length is needed for entrainment by the shear layer before 

reattachment. 

Figure 6.24 shows the local Nusselt number for different Darcy numbers. It 

can be seen that there is small heat convection in the porous medium due to small 

flow convection. After the step there is a jump in the local Nusselt number, which is 

bigger at larger Darcy number because the reattachment point is shifted a little further 
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downstream (see Figure 6.23). Just before the segment end the Nu shows a peak for 

Da = 110−  because of the recirculation flow there. 

Since the Nu is reduced along the permeable wall (Figure 6.24 and also 

previous Figures 6.20 and 6.22) there may be little or negative heat enhancement if 

the entire wall length is considered; that is, if the overall (integrated) Nusselt number 

along the entire bottom wall is considered. However, the overall heat transfer can be 

increased by using higher conductivity materials for the porous medium (Huang and 

Vafai, 1994a; Kiwan and AI-Nimr, 2001). For example, the conductivity ratio 

between metal foam and air is about 310  to 410  whereas the present computation uses 

a ratio of one. 

It was found (results not shown) that the head loss from inlet to outlet 

increased by less than 1% if a porous floor segment was embedded as compared with 

that of no porous segment; the case considered was for 110Da −= , 0.4ε = , Re = 280, 

L/H = 3.3, D/H = 0.25, 0β =  and 1 0β = . However, for a backward facing step with 

a porous insert (Martin et al, 1998; Zhang and Zhao), the head loss increases with 

decreasing Darcy number and at 410Da −=  it becomes six times larger than that with 

the porous floor; the case considered was for porous insert length a/H = 0.2 and the 

other parameters are the same as that with the porous floor. The comparison indicates 

that for the purpose of heat transfer enhancement using high conductivity porous 

material, it may be advantageous to embed it along the wall to avoid incurring high 

head loss.  
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6.2.2.5 Effect of Porosity Values 

The Darcy number defines the permeability which determines the flow 

through the porous medium and thus affects the heat transfer. As for porosity it is a 

geometry parameter related to the fraction of void space, and is not expected to affect 

the flow very much. This is confirmed in Figure 6.25 which shows little change in Nu 

for different porosities at a fixed Da = 210− . 

 

6.2.2.6 Effect of Stress Jump Parameters 

Table 6.2 shows the effect of stress jump parameters (varied from -5 to +5) on 

the average and maximum Nusselt number at lower wall. It can be seen for the larger 

Da= 210− , there are some effects of β  and 1β . But the effects are insignificant at 

smaller Da= 410−  as the porous flow is small, which is consistent with the case for the 

flow past a parallel porous interface (Alazmi and Vafai, 2001).  

The effects of the stress jump parameters 1and β β  on the local Nusselt 

number are shown in Figures 6.26a and 6.27a respectively. Also presented are their 

effects on the velocity profiles (Figures 6.26b and 6.27b) and temperature profiles 

(Figures 6.26c and 6.27c) at a location x/H=3.8. It is noted that the parameters have 

some effects, especially for the second parameter 1β . The parameters affect the 

velocity profile which thus influences the temperature gradients at the wall and hence 

the heat transfer is affected. 
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Note that the second stress jump parameter 1β  was varied in the present study 

by a wide range of -5 to + 5 as it was expected to be of order one by Ochoa-Tapia and 

Whitaker (1998b). This inertia-related parameter is usually negligible for parallel 

flows but may be relevant in the vicinity of the reattachment point. For the flow there, 

a large negative 1β  may not be realistic. Outside the porous medium, the velocity 

gradients around the reattachment point are not expected to be large. Thus, unless the 

porosity is very small, the stress jump is not expected to be a large negative value (see 

Equation 6.3). For positive 1β  variation from 0 to +5, it is interesting that the results 

are not very sensitive.   

 

6.3 Conclusions 

The forced convection after a backward facing-step, with a porous insert or 

porous floor segment after the step, has been numerically investigated using the 

numerical method described in Chapter 2. To couple the flows at the interface, the 

shear-stress jump condition is used as developed by Ochoa-Tapia and Whitaker 

(1998b). For the temperature and heat flux at the interface, the continuity condition is 

imposed.  

For the forced convection through a porous insert behind a backward-facing 

step, results are presented with flow configurations for different Darcy number from 

2 510 to 10− − , porosity from 0.2 to 0.8, and Reynolds number from 10 to 800, and ratio 

of insert length to channel height from 0.1 to 0.3. The Darcy number, Reynolds 



                                            Chapter 6 Forced Convection in Porous/fluid Coupled Domains 
 

 150

number and insert length influence the recirculation regions and hence the heat 

transfer, but the porosity effect is small. To achieve an optimal heat transfer effect, 

without excessive frictional loss, it is preferable to use a medium insert length with 

flow at medium Darcy number and large Reynolds number. The stress jump 

parameters have small effects on the average lower wall Nusselt number. For the 

smaller Darcy number 4= 10Da − , the difference in Nu is about 4%, when both β  and 

1β  are varied from -1 to 1. The effects are more discernible on the local velocity and 

temperature profiles.  

For the forced convection with a porous floor segment after a backward-

facing step, the porous floor does not eliminate the recirculation flow which forms 

after the step. On the contrary, the recirculation length increases if the porous 

segment is longer or more permeable. This is attributed to the longer distance for the 

shear layer to entrain fluid before reattaching to the lower wall. The Nusselt number 

is reduced at the lower wall within the porous segment but this may be offset by using 

a porous medium of high conductivity. After the porous segment the Nu is enhanced, 

more so at higher Darcy number. It is concluded that the heat transfer enhancement is 

high if the recirculation length is matched with the porous segment length. It is 

interesting that the depth of the porous floor has little effect on heat enhancement. 

The two stress jump parametersβ  and 1β  (from -5 to +5) show some effects on the 

Nusselt numbers if the Da is large.  

The second case is very different from the first case, which considered a 

porous insert that completely filled the duct directly behind the step. Its flow is more 
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complex at the porous-fluid interface due to the existence of recirculation region and 

reattachment point. Also a larger range of the jump parameters were used; -5 to +5 as 

compared to the first case -1 to +1. The flow complexity and larger stress jumps were 

found to cause convergent problems which have to be carefully handled in the 

numerical implementation.   
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Table 6.1 Average Nusselt number for lower wall with different stress jump 
parameters at Re=800, 0.4ε = , a/H=0.2. 

 

Da β  1β  avNu  Da β  1β  avNu  

0 -1 3.276 0 -1 3.855 

0 0 3.273 0 0 3.826 

0 1 3.273 0 1 3.785 
  

-1 0 3.272 -1 0 3.844 

0 0 3.273 0 0 3.826 

1 0 3.275 1 0 3.807 
  

1 1 3.275 1 1 3.741 

210−  

-1 -1 3.273 

410−  

-1 -1 3.902 
 
 

Table 6.2 Average and maximum Nusselt number for lower wall with different 
stress jump parameters at Re = 280, 0.4ε = , L/H = 3.3, D/H = 0.25. 

 

Da β  1β  avNu  maxNu Da β  1β  avNu  maxNu

0 -5 2.48 21.04 0 -5 2.25 10.98 

0 0 2.27 13.45 0 0 2.25 11.00 

0 5 2.26 12.81 0 5 2.25 11.02 
  

-5 0 2.43 19.21 -5 0 2.21 10.94 

0 0 2.27 13.45 0 0 2.25 11.00 

210−  

5 0 2.25 12.78 

410−  

5 0 2.25 11.04 
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Figure 6.1 Schematic of the flow model. 
 
 

0 2 4 6 8 10

(a)

 

0 2 4 6 8 10

(b)

 

0 2 4 6 8 10

(c)

 

0 2 4 6 8 10

(d)

 

 

Figure 6.2 Streamline plots at Darcy number Da = 210− , inset length a/H = 0.2, 
porosity 0.4ε = , jump parameters 0β =  and 1 0β = : 

 (a) Re=10; (b) Re=100; (c) Re=400; (d) Re=800. 
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Figure 6.3 Axial distribution of lower wall Nusselt number at Da= , 

a/H=0.2,

210−

0.4ε = , 0β =  and 1 0β = . 
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Figure 6.4 Axial distribution of lower wall Nusselt number at Da= , 
a/H=0.2,

410−

0.4ε = , 0β =  and 1 0β = . 
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Figure 6.5 Streamline plots at Re=800, a/H=0.2, 0.99ε = , 0β =  and 1 0β =  
with various Darcy numbers: 

 (a) Da= ; (b) Da=210− 310− ; (c) Da= 410− ; (d) Da= . 510−
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Figure 6.6 Axial distribution of lower wall Nusselt number at Re=800, a/H=0.2, 
0.99ε = , 0β =  and 1 0β =  with various Darcy numbers. 
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Figure 6.7 Streamline plots at Re=800, Da= 210− , 0.4ε = , 0β =  and 1 0β =  
with various insert lengths: (a) a/H=0.0; (b) a/H=0.1; (c) a/H=0.2; (d) a/H=0.3. 

   

0 2 4 6 8 10

(a)

 

0 2 4 6 8 10

(b)

 

0 2 4 6 8 10

(c)

 

0 2 4 6 8 10

(d)

 

 

Figure 6.8 Streamline plots at Re=800, Da= 410− , 0.4ε = , 0β =  and 1 0β =  
with various insert lengths: (a) a/H=0.0; (b) a/H=0.1; (c) a/H=0.2; (d) a/H=0.3. 
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Figure 6.9 Axial distribution of lower wall Nusselt number for 0.4ε = , Re=800, 

Da= 410− , 0β =  and 1 0β = . 
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(b) 
Figure 6.10 Streamwise velocity profiles at x/H=0.5, with Re=800, 0.4ε = , 0β =  

and 1 0β = : (a) a/H=0.1; (b) a/H=0.3. 
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Figure 6.11 Dimensionless channel head loss, with Re=800, 0.4ε = , 0β =  and 

1 0β = . 
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Figure 6.12 Axial distribution of lower wall Nusselt number for a/H=0.2, Re=800, 

Da= 410− , 0β =  and 1 0β = . 
 
 
 

 
 
159



                         Chapter 6 Forced Convection in Porous/fluid Coupled Domains 

x/H

N
u

0 2 4 6 8 10
3

4

5

6

7

8

9

10

=-1
=+1β

β

 
(a) 

x/H

N
u

0 2 4 6 8 10
3

4

5

6

7

8

9

10

=-1
=+1

β1
β1

 
(b) 

Figure 6.13 Effect of stress jump parameters on the local Nusselt number with 
a/H=0.2, Re=800, 0.4ε = , Da= 410− : 

(a) β  effect with 1β =0 ; (b) 1β  effect withβ =0. 
 

 
160

    



                         Chapter 6 Forced Convection in Porous/fluid Coupled Domains 

u/Uav

y/
H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5

-0.25

0

0.25

0.5

=-1
=+1β

β

 
(a) 

u/Uav

y/
H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5

-0.25

0

0.25

0.5

=-1
=+1β1

β1

 

(b) 
Figure 6.14 Effect of stress jump parameters on the velocity profile at x/H=3.0 

with a/H=0.2, Re=800, 0.4ε = , Da= 410− : 
(a) β  effect with 1β =0 ; (b) 1β  effect withβ =0. 
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(b) 

Figure 6.15 Effect of stress jump parameters on the temperature profile at x/H=3.0 
with a/H=0.2, Re=800, 0.4ε = , Da= 410− : 

(a) β  effect with 1β =0 ; (b) 1β  effect withβ =0. 
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(a) 

 
(b) 

Figure 6.16 Schematic of the flow model: (a) Computational domain; (b) Mesh 
illustration with L/H=2.2, D/H=0.5. 
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Figure 6.17 Streamline plots at different Reynolds numbers: 

(a) Re = 100, (b) Re = 200, (c) Re = 400, (d) Re = 800; 
0.4ε = , Da = 210− , L/H = 3.3, D/H = 0.25, 0β =  and 1 0β = . 
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Figure 6.18 Axial distribution of lower wall Nusselt number at different Reynolds 

numbers; 0.4ε = , Da = 210− , L/H = 3.3, D/H=0.25, 0β =  and 1 0β = .  
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Figure 6.19 Streamline plots with different lengths of porous segment: 
(a) L/H = 0, (b) L/H = 1.1, (c) L/H = 3.3, (d) L/H = 5.5; 
0.4ε = , Da = 210− , Re = 200, D/H = 0.25, 0β =  and 1 0β = .             
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Figure 6.20 Axial distribution of lower wall Nusselt number with different lengths 

of porous segment;  
0.4ε = , Da = , Re = 200, D/H = 0.25,210− 0β =  and 1 0β = . 
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Figure 6.21 Streamline plots with different depths of porous segment: 

(a) D/H = 0, (b) D/H = 0.125, (c) D/H = 0.25, (d) D/H = 1.0; 
0.4ε = , Da = 210− , Re = 280, L/H = 3.3, 0β =  and 1 0β = . 
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Figure 6.22 Axial distribution of lower wall Nusselt number with different depths 
of porous segment; 0.4ε = , Da = 210− , Re = 280, L/H = 3.3, 0β =  and 1 0β = . 
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Figure 6.23 Streamline plots at different Darcy numbers: 
(a) Da = 0, (b) Da = 510− , (c) Da = 310− , (d) Da = ; 110−

0.4ε = , Re = 280, L/H = 3.3 and D/H = 0.25, 0β =  and 1 0β = . 
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Figure 6.24 Axial distribution of lower wall Nusselt number at different Darcy 

numbers; 0.4ε = , Re = 280, L/H = 3.3, D/H = 0.25, 0β =  and 1 0β = . 
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Figure 6.25 Axial distribution of lower wall Nusselt number with different 

porosities; Da = , Re = 280, L/H = 3.3, D/H = 0.25, 210− 0β =  and 1 0β = . 
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(c) 
Figure 6.26 Effect of stress jump parameter β : (a) Local Nusselt number, (b) 
Velocity profiles at x/H = 3.8, (c) Temperature profiles at x/H = 3.8; 1β  = 0, 

0.4ε = , Da = 210− , Re = 280, L/H = 3.3 and D/H = 0.25. 
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(c) 
Figure 6.27 Effect of second stress jump parameter 1β : (a) Local Nusselt number, 

(b) Velocity profiles at x/H = 3.8, (c) Temperature profiles at x/H = 3.8; 
β  = 0, 0.4ε = , Da = 210− , Re = 280, L/H = 3.3 and D/H = 0.25.  
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 Chapter 7 

Mass Transport in a Microchannel Reactor  

with a Porous Wall* 

 

Besides its applications in heat transfer problems as studied in Chapters 5 and 

6, porous structures are also used in reactors for biochemical/bioengineering 

applications. For reactors with a porous wall, several experimental researches have 

been conducted, for example, mircochannel enzyme reactors with porous-silicon wall 

and perfusion bioreactors with porous-matrix wall. 

A microstructured enzyme reactor was fabricated by Drott et al. (1997 and 

1999) which had porous silicon etched along the walls in the microchannels. Glucose 

oxidase was immobilized on the porous structure; and the enzyme activity was 

monitored following a colorimetric assay. A 170-fold increase of catalytic turn-over 

rate was obtained as compared with a non-porous reactor. Later, Melander et al. 

(2006) experimentally studied the influence of several parameters on the hydrolysis 

efficiency of maltodextrins and starch and found that it increased with lower flow rate 

and lower substrate concentration. As for modeling of the mass transport there are 

previous studies (Bhatia et al., 2004; Tmej et al., 2005; Horta et al., 2007) on enzyme 

reactors whose porous matrix fully filled the channel. They analyzed the effects of 
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principle operational parameters (for example, reactor channel length, inlet 

concentration, flow rate, reaction rate and Michaelis-Menten constant) of the reactor 

system for the optimization of the enzyme reactor performance. Al-Muftah and Abu-

Reesh (2005) developed a mathematical model for a packed bed immobilized enzyme 

reactor. It was concluded that the effectiveness factor was reduced by intraparticle 

diffusion resistance and external mass transfer resistances. However there has been no 

modeling for a channel enzyme reactor partially filled with porous walls.  

A perfusion bioreactor was designed (Ma et al., 1999; Zhao and Ma, 2005) 

with fibrous matrix walls in the channels, for tissue engineering of trophoblast and 

mesenchymal stem cells. The porous matrix provides opportunities for the cells to 

grow into a three dimensional space and thus maintained their normal functional 

activities. Zhao et al. (2007) considered the porous matrix useful for tissue 

engineering of human mesenchymal stem cell (MSC) as the shear stress was 

significantly lower than those with other perfusion bioreactors, and the MSC 

differentiation are sensitive to low levels of shear stress.  

A model for the mass transport in a bioreactor with a porous matrix wall was 

given by Pathi et al. (2005) and Zhao et al. (2005). They assumed Poiseuille velocity 

profile in the fluid domain. In the cell layer, the flow convection was not considered; 

the substrate continuity equation involved diffusion and consumption terms. The 

equations were solved by MATLAB to give concentration distribution in the fluid and 

cell layers for their specific bioreactor. In their recent model (Zhao et al., 2007), the 

Stokes’ equation was used for the fluid region and the Brinkman’s equation for the 
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porous region. Continuities of velocity and shear stress were imposed at the porous-

fluid interface. The equations were solved by Lattice-Boltzmann method. 

Distributions of velocity, shear stress and concentration in the fluid and porous 

regions were presented for their specific cases of perfusion, bioreactor geometry and 

cell type (MSC). Pierre et al. (2008) numerically analyzed the influence of construct 

thickness and media flow rate for engineered cartilage oxygenation in a parallel-plate 

bioreactor. Poiseuille velocity profile in the fluid domain and negligible flow 

convection in tissue layer were also assumed. The mass transfer equation was solved 

using Femlab for four culture conditions with different tissue thicknesses and flow 

rates. So far, there is no general study which presents the influence of flow and 

geometric parameters on mass transport behavior in such bioreactors with porous 

walls. The general results would be useful in design of such bioreactors and its 

optimization.  

In this chapter, the flow and mass transport in a microchannel with a porous 

wall are studied with a view to applications in enzyme reactors and cell bioreactors. 

The Navier-Stokes equation in the fluid region and the Brinkman-Forcheimmer 

extended model in the porous medium are coupled and numerically solved. For 

porous-fluid interface, the Ochoa-Tapia and Whitaker’s stress jump interfacial 

condition (1998b) is used to investigate its effects on flow and mass transfer. The 

reaction kinetics are based on first-order, zeroth-order, and Michaelis-Menten types. 

The numerical results are correlated by non-dimensional parameters for the purpose 
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of presenting generalized results which can find applications in the design analysis of 

such microchannel reactors with a porous wall.  

 

7.1 Problem Statement   

7.1.1 Microchannel Reactor Model 

The reactor modeled in this chapter was a channel with dimensions typically 

of length 300 mm, 150 mμ  in depth and width 2.5cm as shown in Figure 7.1. In 

practice due to its larger value, the width effect is small as shown by Zeng et al. 

(2006). Thus the numerical model considered here is simplified into a two-

dimensional one like Zhao et al. (2005). The porous wall has a depth from 1.5 mμ  to 

150 mμ . The porous medium has cells or enzyme uniformly distributed in it, which 

forms the reactive (consumption) elements. 

The incoming flow is a steady, laminar and incompressible one with substrate 

concentration inc  . The inlet velocity is specified as that of a fully-developed flow. 

The governing equations for the flow are the same as described in Equations 

(3.17) to (3.20) and Equations (3.37) to (3.39). For the mass transfer equation in the 

porous part, the reaction is assumed to follow the Michaelis-Menten model (Michael 

and Fikret, 1992; Chow et al., 2001a and 2001b): 

2 2

2 2( ) m
eff

m

V cc c c cu v D
x y x y c k

γ∂ ∂ ∂ ∂
+ = + −

∂ ∂ ∂ ∂ +
                                                    (7.1) 
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where c is volume-averaged concentration, γ  is the cell or enzyme volume density, 

mV  is the maximal substrate uptake rate (SUR), mk  is Michaelis-Menten constant or 

substrate concentration at which the SUR is half-maximal, effD  is the effective mass 

diffusivity in porous medium.  

The porous medium consists of a matrix structure with either cells or enzymes 

attached on it, with volume fraction sε  and cε  occupied by the matrix and cells/ 

enzymes respectively. Thus the porosity of the porous medium can be calculated as: 

1 s cε ε ε= − −                                                                                              (7.2) 

Generally, for the matrix without cells, the porosity may vary from 0.6 to 0.95 

(Cooper et al., 2005) and the permeability of the porous medium is in the range of 

1210−  to 910−  (Wang and Tarbell, 2000). The results in Chapter 6 show that porosity 

makes little effect on flow and heat transfer, compared with permeability; thus for 

simplicityε  is set to be ε =0.9 in the simulations. As for the permeability, it will be 

shown to affect the Peclet numbers of the fluid and porous flows which will be 

discussed later. 

The mass transfer equation in fluid part is written as: 

2 2

2 2( )c c c cu v D
x y x y
∂ ∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂

                                                                   (7.3) 

For the velocity boundary conditions, the non-slip condition was imposed on 

the solid upper and bottom walls and fully-developed condition for the outlet. For the 

upper and bottom solid-walls, zero mass flux condition was imposed. At the interface 

between the homogeneous fluid and porous media regions, the stress-jump interfacial 
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conditions (Equation 6.3) together with continuities of velocity and normal stress 

(Equations 6.4 and 6.5) are imposed. Also imposed at the interface are continuities of 

mass and mass flux (similar with heat transfer Equations 6.6 and 6.7). 

Before the computation of results, a grid independency study was investigated 

for different geometries, which were composed of both upper fluid and bottom porous 

parts. The grid distribution was similar with those in Figure 6.16 in Chapter 6, where 

there were more grids near the inlet than further downstream. Considering the 

computational cost and accuracy, a total number of 1500x200 (for case of largest 

depth) to 1500x110 (smallest depth) meshes for both porous and fluid domains, were 

found to be adequate. 

 

7.1.2 Dimensionless Parameters 

The non-dimensional substrate concentration is defined as: 

       
in

cC
c

=                                                                                                 (7.4) 

The porous and fluid Peclet numbers for mass transfer are a measure of the 

relative importance of convection to diffusion in porous or fluid domains. They are 

defined as follows: 

_p av
p

eff

u h
Pe

D
=                                                                                         (7.5) 

_f av
f

u H
Pe

D
=                                                                                       (7.6) 
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where _p avu  and _f avu  are the incoming mean flow velocities in porous and fluid 

domains respectively; h and H are the heights of the porous wall and fluid channel 

respectively.  

The fluid and porous Damkohler numbers are defined as: 

_

m
f

f av in

V hDam
u c

γ
=                                                                                    (7.7) 

pDam  = 
2

m

eff in

V h
D c
γ                                                                                     (7.8) 

fDam  characterizes the ratio of the time scales of substrate reaction in the porous 

medium to substrate convection in the upper fluid domain. pDam  characterizes the 

ratio of the time scales of substrate reaction to substrate diffusion in the porous 

medium.   

The non-dimensional Michaelis-Menten constant (or non-dimensional 

concentration at which specific uptake rate is half maximal) is defined as: 

           m
m

in

kK
c

=                                                                                               (7.9) 

 

7.1.3 Simple Analysis for Fluid Region 

Consider a microchannel with Michaelis-Menten reaction in the porous 

medium. It is assumed that the velocity is uniform and the diffusion is in Y-direction. 

The mass transfer equation in fluid part (Equation 7.3) is simplified as: 
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2

_ 2f av
c cu D
x y
∂ ∂

=
∂ ∂

                                                                             (7.10) 

For zeroth-order reaction, the flux normal to the interface (explained later in 

Section 7.1.4.1) may be approximated as: 

int
_

int

( ) 1 1
2 2

bot
p f d

C C HC H Dam Dam
Y h h

−∂
= = =

∂
                             (7.11) 

where the fluid-diffusion Damkohler number is defined:  

_
m

f d
in

V hHDam
Dc
γ

=                                                                              (7.12) 

It characterizes the ratio of the time scales of substrate reaction along the boundary to 

substrate diffusion in the fluid domain. 

Using separation of variables techniques with the above boundary condition, 

the mass transfer equation can be solved to give the concentration distribution along 

the interface: 

    
int _

2 2
_2 2

1

1 11
2 6

1 ( 1) 1cos( )exp( )

f
f d

n

f d
n f

x Dam
C Dam

H
xDam n n

n H Pe
π π

π

∞

=

− = − −

−
+ −∑

i

                            (7.13)                              

Note that for the simplified analyses, the diffusivity effD  in the porous part was 

assumed to be the same as the diffusivity D of the fluid. Equation (7.13) shows that 

the interface concentration Cint is a function of the parameters f
x Dam
H

 and _f dDam . 
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The third term on the right is at least one order smaller than that of the first two terms; 

thus the effect of f
x Pe
H

 may be relatively smaller. 

For first-order reaction, the flux along the interface (as explained later in 

Section 7.1.4.2) may be approximated as: 

_int

int

( ) 1 1
2 2

p f dbot

m m

Dam DamC C HC H
Y h h K K

−∂
= = =

∂
                            (7.14)   

Using similar techniques as that for the zeroth-order reaction, but now using 

the above boundary condition for first-order reaction, the mass transfer Equation 

(7.10) can be solved to give the concentration distribution along the interface: 

_
int

_ 2 2
2 2

1

1 11
2 6

1 ( 1) 1cos( )exp( )

f f d

m m

n
f d

nm f

x Dam Dam
C

HK K
Dam xn n

K n H Pe
π π

π

∞

=

− = − −

−
+ −∑

i

                          (7.15) 

Equation (7.15) shows that the interface concentration Cint is a function of the 

parameters f

m

Damx
H K

 and _f d

m

Dam
K

. The effect of f
x Pe
H

 may be relatively smaller 

as the term is at least one order smaller like before.  

The above simplified analyses identified two combined parameters which may 

be useful for correlating the data: 

Reaction-convection distance parameter (zeroth-order) defined as: 

       fx Dam
H

κ =
i

                                                                                     (7.16) 

Reaction-convection distance parameter (first-order) defined as: 
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       f

m

x Dam
K H

κ =
i
i

                                                                                      (7.17) 

 

7.1.4 Simple Analysis for Porous Region 

7.1.4.1 Zeroth-order Reaction Type  

Due to the relatively higher flow resistance provided by the porous medium, 

the velocity there is much smaller than that in the fluid part. Since the reactor length 

is relatively larger than the porous medium depth, the mass transfer by diffusion is 

dominant in the Y-direction, that is >>  C C
y x

∂ ∂
∂ ∂

. Since mK =0, zeroth-order reaction 

type, Equation (7.1) becomes: 

2

2
m

eff

Vc
y D

γ∂
=

∂
                                                                                        (7.18) 

Equation (7.18) can be non-dimensionalized using inc , h: 

          
22

2 = m
p

eff in

V hC Dam
Y D c

γ∂
=

∂
                                                                        (7.19) 

The boundary conditions are:  

Y=1, C= intC                                                                                       (7.20) 

 Y=0, 0C
Y
∂

=
∂

                                                                                    (7.21) 

Using the above boundary conditions, the solution of Equations (7.19) is:   

                   C = 2
int

1 1
2 2p pDam Y C Dam+ −                                                         (7.22) 
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                   botC (Y=0)= int
1
2 pC Dam−                                                                  (7.23) 

    int 1
2

bot

p

C C
Dam
−

=                                                                                    (7.24)  

Equation (7.24) gives a simple relationship between the concentration difference and 

porous Damkohler number. This combined parameter may be rearranged as: 

      
int

int

( )eff bot

bot

p m

D c c
C C h

Dam V h
ξ

γ
=

−
−

=                                                      (7.25) 

which shows that it is a ratio between the concentration flux into the porous medium 

(Griffith and Swartz, 2006) and the maximum reaction rate. It should be noted for 

initial part of the reactor, there is also inlet concentration convection in the porous 

medium, and thus the concentration difference parameter is under-estimated for the 

initial part. The new combined parameter is proposed in the present study for 

correlating the data, and it is named as concentration difference parameter.  

As defined by Al-Muftah and Abu-Reesh (2005), the effectiveness factor is 

the ratio of actual reaction rate to that which would be obtained if the enzyme or cells 

are at the interface (that is without the porous medium); the reaction efficiency is the 

ratio of actual reaction rate to the maximum amount that could be used at the inlet. 

For the zeroth-order type reaction, Equation (7.25) may give an indication of the 

effectiveness factor; when averaged over the reactor length, it may give an indication 

of the reaction efficiency for the reactor.  
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For Michaelis-Menten type reactions, the effectiveness factor can be defined 

as:    

 
int

int

int

int

int

int

( )eff bot

m
mm

bot

p

D c c
h

cV h
c kK

C C
CDam C

ξ
γ

=

−

=

++

−                                          (7.26) 

The reactor efficiency can be defined as:    

int

in

in

int

( )

1
1

eff bot

m
mm

bot

p

D c c
h

cV h
c kK

C C

Dam
η

γ
=

−

=

++

−                                                (7.27) 

where intc  and  botc  are the interface and bottom concentrations averaged over the 

reactor length. 

 

7.1.4.2 First-order Reaction Type 

Using similar assumption as in Section 7.1.4.1, except using first-order 

reaction type, that is small /p mDam K , Equation (7.1) can be simplified as, 

2

2
m

eff m

Vc c
y D k

γ∂
=

∂
                                                                                   (7.28) 

As before, non-dimensionalize the equation using inc , h: 

          
22

2 = pm

eff in m m

DamV hC C C
Y D c K K

γ∂
=

∂
                                                           (7.29) 

With boundary conditions (7.20) and (7.21), Equation (7.29) can be solved as, 

   C = int ( )
p p

m m

p p

m m

Dam Dam
Y Y

K K
Dam Dam

K K

C e e

e e

−

−

+

+

                                           (7.30) 
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So,      

                  
int

2
p p

m m

bot
Dam Dam

K K

C
C

e e
−

=

+

                                                                       (7.31) 

or                
int

1botC a
C

=                                                                                              (7.32) 

where 
2

p p

m m

Dam Dam
K Ke ea

−

+
= . 

Using series extension for the exponential terms and neglecting higher order 

terms, assuming a small /p mDam K ,  

        11
2

p

m

Dam
a

K
≈ +                                                                                 (7.33) 

Equation (7.32) can be re-written as, 

int

int

0.5( ) /
1 0.5

pbot

pm

m

DamC C
DamC K

K

−
=

+
                                                 (7.34) 

Equation (7.34) gives a simple relationship between the concentration difference and 

porous Damkohler number. This combined parameter may be rearranged as:  

      
int

int

int
int

( )

( ) /
eff bot

pbot

mm

m

D c c
DamC C h

V hC K c
k
γξ

−
−

= =                                          (7.35) 

which shows that it is a ratio between the concentration flux into the porous medium 

(Griffith and Swartz, 2006) and the reaction rate based on interface concentration. 

The new combined parameter is proposed in the present study for correlating the data, 
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and it is named as concentration difference parameter. It may give an indication of the 

reaction effectiveness factor for the first-order type reactor (Al-Muftah and Abu-

Reesh, 2005).  

For first-order reaction, the concentration along the interface intC  is close to 

1.0, thus concentration difference parameter can be simplifies as:  

int( ) / p
bot

m

Dam
C C

K
ξ = −                                                                       (7.36) 

The concentration difference parameter is a combined parameter related to the ratio 

between the concentration flux into the porous part and maximum consumption rate 

inside. When averaged over the reactor length, it may give an indication of the 

reaction efficiency for the first-order type reactor (Al-Muftah and Abu-Reesh, 2005).  

It should be noted that the above analysis in Sections 7.1.4.1 and 7.1.4.2 is 

meant only for the purpose of developing the combined dimensionless parameters. It 

is a simplified reaction type which assumes no convection but only diffusion in Y-

direction in porous part. It is necessary to evaluate from the numerical results whether 

the use of the combined parameters listed in Section 7.1.3 and 7.1.4 are able to give 

good collapse of data. 

 

7.2 Results and Discussion 

7.2.1 General Results for Flow and Concentration 

7.2.1.1 Concentration and Velocity Fields 
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Figure 7.2 shows a typical concentration contour field for the fluid and porous 

regions. There is relatively higher substrate concentration in the fluid region than in 

the porous medium. The substrate in the fluid is convected to the interface; there the 

concentration is higher than the bottom due to the consumption in the porous medium. 

Along the downstream direction, the concentrations at the interface and bottom are 

decreasing, also due to the consumption. 

 The downstream decrease of interface concentration is shown in Figure 7.3a. 

Normal to the interface a typical concentration profile is shown in Figure 7.3b. A 

typical velocity profile of the fully developed flow is shown in Figure 7.3c. In these 

concentration and velocity plots, the effects of interfacial boundary conditions are 

explored with the change of stress jump coefficients. There are some effects of the 

first stress jump coefficient β  especially on the interfacial velocity and the maximum 

velocity (Figure 7.3c). The second stress jump coefficient 1β  has relatively smaller 

effect. This is because in the interfacial boundary conditions (Equation 6.3), the term 

involving 1β  is associated with Reynolds number which is low in present study. But 

the term involving β , associated with the reciprocal of Darcy number, can become 

large if Da is low. However, both effects are not large compared to the other 

parameters which will be discussed later. Thus in the following computations, stress 

and velocity continuities are imposed to couple the two sets of controlling equations 

in porous and fluid domains. 
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It is noted that the concentration distribution in the porous medium (Figure 

7.3b) behaves approximately linear except near the bottom wall where the mass flux 

is zero. Thus it is an approximation to assume linear concentration distribution for 

defining the flux in Equation (7.11) and (7.14). 

 

7.2.1.2 Effects of Porous and Fluid Peclet Numbers 

The effects of porous and fluid Peclet numbers are investigated for the 

interface concentration (Figure 7.4a), bottom concentration (Figure 7.4b) and their 

difference (Figure 7.4c); with the consumption rate pDam  constant. The porous 

Peclet number ranges from 0.025 to 2.5, which is in the diffusion-dominated range 

(McClelland et al. 2003). The fluid Peclet number ranges from 15 to 150, which is in 

the convection-dominated range (Zhao et al., 2007). 

It is seen that a larger fluid Peclet numbers gives larger values of interface and 

bottom concentrations (Figure 7.4a and b) and their differences (Figure 7.4c). This is 

due to the larger convection of substrate in fluid region. In the numerical model of 

Zhao et al. (2007) for a perfusion bioreactor with a porous wall, the concentration 

values was also found to increase significantly with fluid Peclet number (15 to 225). 

They stated that their porous Peclet number, being two orders smaller, had a 

negligible role for mass transfer. Similarly in the present study, the porous Peclet 

numbers pPe  is found to have relatively smaller effect because the convection in the 

porous medium is small especially for pPe  < 0.25.  However the convection in the 
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porous medium is less negligible at the largest pPe  of 2.5, as reflected in the slightly 

higher values of interface and bottom concentrations and slightly lower values of their 

difference.    

To further check the effect of fPe , it is studied together with the fluid 

Damkohler number fDam  in Figure 7.5a, b and c. It can be seen that when fDam  is 

kept constant, a great change of fPe  from 15.0 to 150.0 does not have much effect on 

the results. However change of fDam  has significant effects. 

Thus it can be concluded that fDam  is more important than fPe  for the 

interface line concentration. The results show that the parameter relating convection 

to consumption fDam  is much more dominant than that relating convection to 

diffusion fPe . The mass transfer is convection-dominated in the fluid region and the 

diffusion rate in the fluid part is much less important than the consumption rate. The 

apparent effects of fPe  described in previous Figure 7.4 actually arises from the 

changes of fDam .  

 

7.2.1.3 Effect of Porous and Fluid Damkohler Numbers 

For low reaction rate (close to first-order type), the effects of consumption 

rates on substrate concentration are presented in Figure 7.6a, b and c. The 

consumption rates as compared to porous diffusion and fluid convection are 
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respectively characterized by p

m

Dam
K

 and f

m

Dam
K

 as suggested by the simplified 

analysis (Equation 7.15). It is seen that the interface and bottom concentration (Figure 

7.6a and b) is larger when f

m

Dam
K

 is lower, which is expected as it is associated with 

smaller consumption relative to fluid convection. There is similar influence on 

concentration by p

m

Dam
K

 but its effect is smaller. For the effect on concentration 

difference (Figure 7.6c) both p

m

Dam
K

 and f

m

Dam
K

 are seen to be important parameters. 

The concentration difference is larger when p

m

Dam
K

 is larger or when f

m

Dam
K

 is 

smaller. As explained earlier, the concentration difference is approximately related to 

the flux into the porous medium. A larger p

m

Dam
K

 is associated larger consumption 

and hence larger flux. A smaller f

m

Dam
K

 is associated with larger convection (in fluid) 

relative to consumption and hence larger flux into porous medium. 

For middle and high reaction rates (close to zeroth-order and Michaelis-

Menten type), the effects of consumption rates on substrate concentration are 

presented in Figure 7.7a, b and c. The consumption rate as compared to porous 

diffusion and fluid convection are respectively characterized by pDam  and fDam  as 



     Chapter 7 Mass Transport in a Microchannel Reactor                               
 

 189

suggested by the simplified analysis (Equation 7.13). Note that the Michaelis-Menten 

constant mK  is not incorporated, different from that of first-order. 

It is seen that the interface and bottom concentration (Figure 7.7a and b) is 

larger when fDam  or pDam  are lower, which is expected as these are associated 

with smaller consumptions. For the effect on concentration difference (Figure 7.7c) it 

is larger when pDam  is larger or when fDam  is smaller. The explanation is similar 

to that for the first order case. A larger pDam  is associated with larger consumption 

and hence larger flux. The significance of parameter pDam  in reaction and diffusion 

has been highlighted by Griffith and Swartz (2006) for porous tissue constructs. As 

for the smaller fDam , it is associated with larger convection (in fluid) relative to 

consumption and hence larger flux into porous medium. 

The present results, for both small to large reaction rates, show that the mass 

transport is influenced by two consumption parameters: fDam  and pDam  (or f

m

Dam
K

 

and p

m

Dam
K

 for first-order case). The two parameters characterize the consumptions 

relative to convection and diffusion. In a previous study, Zhao et al. (2007) suggested 

two parameters: Peclet number fPe  and Thiele modulus (related to
2

m

in

V H
Dc
γ ). The 

Thiele modulus was also suggested by Griffith and Swartz (2006), but unlike Zhao et 
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al (2007), the axial length of the porous tissue was used; the present 

parameter pDam uses the depth of the porous medium. 

   

7.2.2 Correlation of Concentration Results 

7.2.2.1 Reactions Close to First-order Type 

The interface concentration (Figure 7.6a) at different consumption, convection 

and distance is plotted as a correlated plot in Figure 7.8 with the use of reaction- 

convection distance parameter f

m

Damx
H K

and reaction-diffusion (fluid) parameter 

_f d

m

Dam
K

. The data was obtained from various reaction-convection parameter f

m

Dam
K

. 

The correlation is for the case near to first-order where _f d

m

Dam
K

 is close to zero 

value. It can be seen that the use of the proposed parameters has correlated the results 

very well. The numerical results show that the interface concentration is mainly a 

function of the reaction-convection distance parameter f

m

x Dam
K H

κ =
i

 and the other 

parameter _f d

m

Dam
K

 is not significant. It is consistent with the simplified analysis 

(Equation 7.15) because the second and third terms on the right hand side, associated 

with _f d

m

Dam
K

 , are not large for first-order reaction. 



     Chapter 7 Mass Transport in a Microchannel Reactor                               
 

 191

The concentration difference (Figure 7.6c) at different consumption, 

convection and distance is plotted as a correlated plot in Figure 7.9; where 

int( ) / p
bot

m

Dam
C C

K
−  is plot against f

m

Damx
H K

 as these two combined parameters are 

identified by the simplified analysis (Section 7.1.4.2) to be significant for the purpose 

of correlating the data at different consumption, convection and porous-diffusion.   

It is seen (Figure 7.9) that the use of the proposed parameters has generally 

correlated the data well and collapsed the data obtained from various f

m

Dam
K

 

and p

m

Dam
K

. The correlation is not good for the case of f

m

Dam
K

 = 0.38 because it is not 

close to first order. The general trend of the correlated curve shows that the local 

concentration difference parameter is decreasing with increase of the reaction-

convection distance parameter. This means there is decreasing mass flux into the 

porous region further downstream, due to smaller consumption locally. This is 

because in first order reaction, the consumption is proportional to the local 

concentration which is smaller downstream. 

The effectiveness factor is shown in Figure 7.10. It is the ratio of actual 

reaction rate to that which would be obtained if the enzyme or cells are at the 

interface (that is without the porous medium). It is seen that there is still effect of 

f

m

Dam
K

even though it is incorporated in f

m

Damx
H K

, but the effect is small except for 
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the two curves of f

m

Dam
K

 = 0.38 which are not near first-order reaction. The results 

shows that effectiveness factor is a function of f

m

Damx
H K

and p

m

Dam
K

. Note that 

p

m

Dam
K

 was used to define the effectiveness factor but not to normalize the flux into 

the porous medium. Thus the data at various p

m

Dam
K

 is not expected to be collapsed 

although the results show that its effect is small. 

 It can be seen that the effectiveness factor is small when the reaction-

convection distance parameter f

m

Damx
H K

is small. This is because at large fluid 

convection, the mass transport is limited by diffusion in the fluid medium. Also the 

fluid convection there is so large that the effectiveness is not changed much by the 

present range of changes in porous medium diffusion as reflected in the parameter 

p

m

Dam
K

. Further downstream or large f

m

Damx
H K

, the effectiveness factor tends to an 

asymptotic value of 0.5 as predicted in the simplified analysis (Equation 7.34) for 

small p

m

Dam
K

. There, the porous diffusion can affect the effectiveness factor. A 

smaller p

m

Dam
K

 (larger porous diffusion) improves the effectiveness, which is 

consistent with the simplified analysis (see Equation 7.34).  



     Chapter 7 Mass Transport in a Microchannel Reactor                               
 

 193

The reactor efficiency is shown in Figure 7.11. It is correlated by the 

parameter f

m

Damx
H K

 only when it is larger than 5. The efficiency is initially affected 

by f

m

Dam
K

 due to diffusion limitation in the porous medium as discussed before for 

the effectiveness factor; a larger f

m

Dam
K

 gives lower efficiency. The influence of 

p

m

Dam
K

is small but this is because it cannot be varied greatly in first order reaction. 

The efficiency is reduced at longer distance or smaller convection, as reflected in the 

parameter f

m

Damx
H K

; the local concentration there small is small which makes the 

reaction small, and hence the flux into the porous medium is small. 

Drott et al. (1997 and 1999) experimentally studied an enzyme microreactor 

which consisted of microchannels with porous silicon walls. They found the reaction 

rate initially increased with porous depth and then leveled off at depth 5 mμ  due to 

diffusion limitation of the porous matrix. This appears consistent with the present 

results in Figure 7.11. The reactor efficiency shows a peak and then reduces with 

larger f

m

Damx
H K

. A larger f

m

Damx
H K

 is associated with bigger porous depth h if other 

specifications are fixed. The reactor efficiency is the ratio of reaction rate (flux into 

porous medium) and inlet reaction rate. The flux (which is normalized by h 
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through pDam ) would not increase with the porous depth h (or larger f

m

Damx
H K

) 

because the efficiency is decreasing. That is the larger h increases fDam  resulting in 

lower efficiency which offsets the higher flux effect of pDam . 

For such enzyme microreators, Melander et al. (2006) experimentally found 

that reactor efficiency decreased with increasing flow rate (due to shorter residence 

time). Their range of f

m

Damx
H K

 is around 7.0, and for this range, the present results in 

Figure 7.11 show that reactor efficiency increases with increasing flow rate or 

decreasing f

m

x Dam
HK
i

. The difference is due to the difference in the definition of 

efficiency as the present one is based on maximum reaction rate (in Michaelis-

Menten reaction) per residence time (Al-Muftah and Abu-Reesh, 2005), whereas 

Melander et al. (2006) based their efficiency on inlet convection flux. Their efficiency 

is lower with higher inlet concentration (due to saturation). The saturation effect 

seems to be present in the present results (Figure 7.11) as the present efficiency, 

though defined differently, does not increase with higher concentration (or smaller 

p

m

Dam
K

). 

 

7.2.2.2 Michaelis-Menten Type Reactions 
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The interface concentration (Figure 7.7a) at different consumption, convection 

and distance is plotted as a correlated plot in Figure 7.12 with the use of reaction-

convection distance parameter f
x Dam
H

and fluid-diffusion Damkohler number 

_f dDam . The data were obtained from various fluid Damkohler number fDam  as 

listed in the figure. The correlation is for Michaelis-Menten reaction type ( mK  is not 

zero). 

It can be seen in Figure 7.12a that the effect of different fDam  is not much as 

it has been incorporated into the reaction-convection distance parameter. The effect of 

_f dDam  is larger in the initial part of f
x Dam
H

 as the fluid diffusion effect is 

relatively more dominant than axial convection. Thus larger _
m

f d
in

V hHDam
Dc
γ

=  

(smaller diffusion) gives lower interface concentration initially, leaving more 

substrate for the region further downstream as seen from the cross-over in interface 

concentration. There, the effect of diffusion _f dDam  is relatively less dominant 

compared to the axial convection.   

However the above correlation does not involve the Michaelis-Menten 

constant mK  and the effect is investigated in Figure 7.12b. There is some effect of 

mK  but relatively smaller than that of _f dDam  in Figure 7.12a. Larger mK  will result 

in higher interface concentration due to smaller consumption rate using Michaelis- 

Menten reaction. It may be concluded that the interface concentration is 
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approximately correlated with the use of combined parameters f
x Dam
H

 and  

_
m

f d
in

V hHDam
Dc
γ

=  which respectively characterizes the ratios of reaction to fluid 

convection and reaction to fluid diffusion. Better correlation will need the 

incorporation of Michaelis-Menten constant mK . 

The concentration difference (Figure 7.7c) at different consumption, 

convection and distance is plotted as a correlated plot in Figure 7.13. The 

concentration difference parameter int bot

p

C C
Dam

ξ −
=  is plotted as a function of the 

reaction-convection distance parameter f
x Dam
H

. The data were obtained from 

various fluid Damkohler number fDam  and porous Damkohler number pDam as 

given in the figure. It is seen that Figure 7.13a has correlated the data of Figure 7.7c 

satisfactorily. The effect of fDam  is not much after 0.1f
x Dam
H

> ; the fluid 

convection affects the porous domain indirectly through the interface concentration, 

which has already been incorporated in the reaction-convection distance parameter 

f
x Dam
H

. However, the use of int bot

p

C C
Dam
−  in Figure 7.13a has reduced the spread of 

data in Figure 7.7c but not collapse the influence of different pDam ; when pDam  is 

smaller (larger porous diffusion) int bot

p

C C
Dam
−  is larger. This shows that the 

concentration difference would not be completely normalized by pDam  which is 
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based on various maximum reaction rates. For non-zeroth order reaction of 

Michaelis-Menten type, the actual reaction is dependent on concentration and thus on 

concentration difference. However the influence of the other reaction parameter 

fDam  has been incorporated in the combined parameter f
x Dam
H

.  

The concentration difference parameter is also larger at smaller mK  as shown 

in Figure 7.13b. Smaller mK  will result in larger consumption rate, using Michaelis-

Menten reaction, and hence larger concentration difference for regions of f
x Dam
H

 

below around 1. But this larger consumption results in earlier depletion of fluid 

substrate which explains the cross-over at f
x Dam
H

 around 1. 

It may be concluded that the concentration difference parameter int bot

p

C C
Dam
−  is 

correlated with the use of combined parameters f
x Dam
H

, pDam  and mK . The 

concentration difference may be related to the concentration flux into the porous 

medium if first order finite difference approximation is assumed.  

The concentration flux is meaningful as it indicates the mass transfer 

resistance of the porous medium. To quantify the mass transfer effectiveness of the 

porous medium, an effectiveness factor is defined. It is the ratio of actual reaction rate 

to that which would be obtained if the enzyme or cells are at the interface (that is 

without the porous medium). 
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The effectiveness factor is shown against fDam
x

H
 in Figure 7.14a. It is seen 

that the effect of fDam  is very small and only slightly noticeable at small 

0.1fDam
x

H
< . However the porous Damkholer number pDam  has large effect on the 

effectiveness. A smaller pDam  (larger porous diffusion) improves the effectiveness 

as would be expected. The reaction effectiveness factor with different mK  is shown 

in Figure 7.14b. A larger mK  gives smaller reaction at interface, for Michaelis-

Menten reaction, especially when the concentration is small like those further 

downstream, or larger fDam
x

H
. With a smaller interface reaction, the local 

effectiveness, by definition, will be relatively bigger. Note that mK is incorporated in 

the effectiveness factor only to define the interface reaction. It was not meant to 

normalize the flux and thus the effectiveness factor is still dependent on mK . 

The reactor efficiency is presented in Figure 7.15.  It is seen that efficiency is 

satisfactorily correlated by plotting against the parameter fDam
x

H
. The efficiency 

varies from about 0.5 to 0.2. The main effect on efficiency is the pDam , which is the 

ratio of reaction to porous diffusion. Smaller pDam  gives better efficiency as 

expected because the porous diffusion is larger. The effect of fDam  is only 

noticeable for smaller  fDam
x

H
 and is not large. The effect of Michaelis-Menten 
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constant mK  is relatively small (Figure 7.15b). The efficiency is defined with 

reference to the reaction at inlet where the concentration is largest and thus the 

mK effect on reaction, and thus efficiency, is expected to be small. 

 

7.2.3 Applications of Correlated Results 

7.2.3.1 Perfusion Bioreactor with Porous Scaffolds 

The results may find possible applications in the design of microchannel 

reactors with a porous wall. In considering the performance of the bioreactor, there 

are a few criteria. Firstly, there should be adequate substrate concentration for cell 

growth to avoid hypoxia, that is the concentration should be greater than the critical 

value. This condition bot mC K≥  may not be satisfied with a large pDam . As shown in 

Figure 7.13a, the concentration botC  has reached critical mK at fDam
x

H
= 0.3 beyond 

which it will be subcritical. Secondly, the porous medium should not pose a large 

resistance to the mass transport. Different from those bioreactors with an impervious 

wall (Zeng et al., 2006), the present mass transport is affected by the diffusion in the 

porous medium, as quantified by the effectiveness factor which then affects the 

reactor efficiency.  

To illustrate, consider the perfusion bioreactor system for growth of 

mesenchymal stem cells and hematopoietic cells (Zhao et al., 2005 and 2007; Pathi et 

al., 2005). Their flow configuration was similar to the present model (Figure 7.1) 

except a membrane formed the upper boundary of the flow channel, across which 
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there was oxygen transport additional to that from medium convection at the inlet.  

However the oxygen diffusion across the membrane was considered to be around one 

sixth of that from the medium convection (Pathi et al., 2005). The mass transport is 

not constant with time due to the increase in cell number. It is assumed here that the 

change of cell density does not cause transient behavior and can be regarded as a 

quasi steady change of the reaction parameters _f dDam , fDam  and pDam .   

To ensure adequate substrate concentration for cell growth, it is necessary to 

estimate the concentration along the interface and bottom of the porous region, 

especially at the outlet of the bioreactors. In the bioreactor of Zhao et al. (2005, 2007) 

and Pathi et al. (2005) the geometry, flow and substrate properties are listed in Table 

7.1. For instance, at day 20, the MSC density is 63.99x10 /cells ml  (Zhao et al., 2005). 

The Damkholers parameters are calculated as: pDam  =0.051, _f dDam =0.51, 

fDam =0.0123, and the outlet reaction-convection distance parameter is calculated as 

fx Dam
H
i

=0.20. Using Figure 7.12a, intC -1 is -0.25, giving intC = 0.75. Using Figure 

7.13b, int bot

p

C C
Dam
−

= 0.4, giving botC  = 0.73. Thus the interface and bottom 

concentrations at the outlet, even without considering mass diffusion from their upper 

membrane, were sufficient for cell growth ( mC K> ). Moreover, from Figures 7.14a 

and 7.15a, using fx Dam
H
i

=0.20, the reaction effectiveness factor and the reactor 

efficiency are both around 0.5. 
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Another similar bioreactor with porous media has been used for tissue 

engineering of cartilage oxygenation (Gemmiti and Guldberg 2006; Pierre et al., 

2008). Although their bioreactor included an additional lower static chamber, the 

model is basically similar to the present one when the oxygen flux from the porous 

construct into the bottom static chamber approached zero at steady state (after 1 to 6 

hours). In their third case, pDam  =7.95x 210− , fDam =8.75x 310− , _f dDam =7.95x 210− , 

the outlet reaction-convection distance parameter is fx Dam
H
i

=0.40. Using Figures 

7.12a, intC -1 is -0.65, giving intC = 0.35. Using Figure 7.13a, int bot

p

C C
Dam
−

= 0.36, 

giving botC  = 0.38. Thus the bottom substrate shows a wide change from inlet 1 to 

outlet 0.38. Using Figures 7.14a and 7.15a, the reaction effectiveness factor is close to 

0.5, the reactor efficiency is around 0.44.  

 

7.2.3.2 Microchannel Enzyme Reactor with Porous Silicon 

The criteria to consider in designing an enzyme bioreactor include the 

concentration, effectiveness factor and reactor efficiency (Al-Muftah and Abu-Reesh, 

2005). From the present results assuming first-order reaction, the interface and 

bottom concentrations, intC  and botC  , can be estimated from Figures 7.8 and 7.9. The 

effectiveness factor can be estimated from Figure 7.10 and the reactor efficiency from 

Figure 7.11. From the efficiency, the conversion rate (ratio between substrate 

converted and fed) can also be determined. 
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To illustrate the design application, the enzyme micro-bioreactor of Drott et al. 

(1997 and 1999) is considered. Their geometry and mass properties are as listed in 

Table 7.1. For their maximum reaction rate of 364 nmol/min with mK  of 10, 

p

m

Dam
K

=0.17, _f d

m

Dam
K

=0.34, and the largest reaction-convection distance parameter 

f

m

x Dam
K H

κ =
i
i

=0.02. Using Figure 7.8, the outlet interface concentration intC  is 0.98; 

and using Figure 7.9, int

int

( ) / pbot

m

DamC C
C K

ξ −
= =0.025, so the outlet bottom botC  is 

0.97. Thus with their reactor length and maximum reaction rate, the glucose 

concentration in the porous matrix is adequate for glucolysis by the enzyme. 

To obtain higher conversion rate, one option is to make the reaction-

convection distance parameter longer which gives lower concentration at outlet. 

Furthermore with longer reaction-convection distance parameter, the local 

effectiveness factor (Figure 7.10) increases to be around 0.5. However, reactor 

efficiency keeps decreasing as shown in Figure 7.11 and more so for f

m

x Dam
K H
i
i

  larger 

than 4, because of the low concentration which makes the flux small (for near first 

order reaction).  That is, although the reactor is locally more effective, the benefit is 

offset by the lower concentration.  To avoid the efficiency dropping by more than 

20% in attempting to maximize the conversion rate, the parameter f

m

x Dam
K H
i
i

 should 

not be increased beyond 5.  
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Recently, for the same enzyme reactor geometry, Melander et al. (2006) 

investigated the effect of flow rate on the hydrolysis efficiency. In their experiment, 

the flow rate is 0.5 to 2 1minlμ − , giving /f mDam K  of 0.015 to 0.004. Thus their 

reaction-convection distance parameter f

m

x Dam
K H

κ =
i
i

  varies from around 4 to 16. 

The present results show that the efficiency was increased by at least 50% when their 

flow rate was increased. Besides using higher flow rate to obtain higher efficiency, 

the present results of Figure 7.11 show that other options include: shorter reactor 

length, smaller porous depth, larger channel height, and larger inlet concentration. 

 

7.3 Conclusions 

The velocity and concentration fields have been computed in a microchannel 

reactor with a porous wall. Two parameters are defined to characterize the mass 

transports in the fluid and porous regions. The porous Damkohler number pDam  is 

the ratio of consumption to diffusion of the substrates in the porous medium. The 

fluid Damkohler number fDam  is the ratio of substrate consumption in the porous 

medium to substrate convection in the fluid region. It is shown that the apparent 

effect of the conventionally used fluid Peclet number fPe  is actually due to the 

change of fDam . As the consumption is considered over an axial distance, and 

fDam  relates to consumption per unit length, the combined parameter fx Dam
H
i

 is 
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defined from a simplified analysis for Michaelis-Menten reaction. Another parameter 

is the fluid-diffusion Damkohler number _f dDam  which is the ratio of substrate 

consumption in the porous medium and substrate diffusion in the fluid region. The 

concentration difference between the interface and base of the porous medium are 

normalized to form a concentration difference parameter int bot

p

C C
Dam
− . The numerical 

results are found to be well correlated by the use of these parameters. 

 The interface concentration intC  is found to be a function of the reaction-

convection distance parameter fx Dam
H
i

 and the fluid-diffusion Damkohler 

number _f dDam  whose influence is relatively smaller at fx Dam
H
i

 >1. The 

concentration difference parameter int bot

p

C C
Dam
−  is not completely normalized by 

pDam  which is based on various maximum values of the Michaelis–Menten 

reactions. For reactions close to first-order type, similar parameters are involved 

except all the Damkohler numbers are divided by the Michaelis-Menten constant mK . 

The influence of _f d

m

Dam
K

and p

m

Dam
K

 are small as they could not be varied much for 

reactions close to first-order type. 

The effectiveness factor is the ratio of local reaction rate to that which would 

be obtained if the enzyme or cells are at the interface. The reactor efficiency is the 

ratio of overall reaction rate to the maximum reaction rate based on the inlet 
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concentration. For Michaelis-Menten type reactions, the reactor efficiency reduces 

with fx Dam
H
i

 due to the lower reaction (or flux) because of the low concentration; 

furthermore the local effectiveness factor becomes lower. The effectiveness drops 

because the concentration in the porous medium is low which gives small Michaelis- 

Menten reaction. A larger pDam  (smaller diffusion) also gives smaller reactor 

efficiency. For reactions close to first-order type, the reactor efficiency reduces with 

f

m

Damx
H K

 because of the reduced reaction (or flux) due to low concentration. 

Although increased fluid convection (smaller f

m

Dam
K

) does increase the efficiency, 

the effect is not large. There is no advantage in reducing f

m

Dam
K

 below 0.02 because 

the effectiveness is poor due to the diffusion limitation in the fluid region. 

The correlated plots could be applied in the design of microchannel reactors 

with porous walls. From the plots, the concentration in the porous medium could be 

predicted for a given reactor geometry. The critical length to avoid concentration 

insufficiency could also be determined. The flow and geometry conditions could be 

designed to achieve high reactor efficiency.  
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Table 7.1 List of parameter values for model predictions. 

 
Type of Applications Parameters  References 

 Assumed Values  
L 100 mm 
H 6 mm 
h 0.6 mm 

inC  2.2 x 710 /mol ml−  

mk  1.1x 810 /mol ml−  

effD  1.59x 9 210 /m s−  
D 3.29x 9 210 /m s−  

mV  1.25 x 1710 / /mol cell s−  

Zhao et al., 2005 and 
2007; Pathi et al., 2005. 

γ  55.40x10  ~ 73.60x10 /cells ml Zhao et al., 2005; Pathi et 
al., 2005. 

 Computed Values  
mK  5.0 x 210−  

fPe  15 ~225 

pPe  5.60 x 710− ~8.40 x 610−  

pDam  6.94 x 310− ~0.463 

Perfusion Bioreactor 
(oxygen) 

fDam  1.66 x 410− ~0.111  

 

 Assumed Values  
L 11 mm 
H 32.5 mμ  
h ≤ 15 mμ  

inC  0.5, 1.2, 5 /mmol L  

mk  3~10 /mmol L  

Drott et al., 1997 and 
1999. 

effD  5.4x 10 210 /m s−  
D 5.4x 10 210 /m s−  

Ye et al., 2006. 

mV γ h ≤ 3.05x 5 210 / /mol m s−  Drott et al., 1997 and 
1999. 

 Computed Values  
mK  0.6~20 

fPe  3.24x 310  

 

pPe  3.53 x 910−  Lysenko et al., 2004. 

pDam  ≤ 1.60 

Micro-Enzyme 
Reactor (glucose) 

fDam  ≤ 6.1x 410−  
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Figure 7.1 Schematic of the bioreactor model (not to scale). 
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Figure 7.2 Contour of concentration field with pPe =0.25, pDam =0.5, fDam =0.025, 

h/H=0.5, mK =0.260, 0.9ε = , 0β =  and 1 0β = . 
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(c) 

Figure 7.3 Effects of different stress jump coefficients; pPe =0.25, pDam =0.5, 

fDam =0.025, h/H=0.5, mK =0.260, 0.9ε = , 0β =  and 1 0β = : 
(a) Concentration distribution along interface; (b) Concentration profiles normal to 

interface at x/H=10.0; (c) Velocity profiles. 
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(c) 

Figure 7.4 Effects of different pPe  and fPe ; pDam =0.6, h/H=0.5, mK =0.260, 
0.9ε = , 0β =  and 1 0β = : (a) Interface line concentration; (b) Bottom line 

concentration; (c) Concentration difference. 
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(c) 

Figure 7.5 Effects of different fDam  and fPe ; pDam =1.0, mK =0.260, h/H=0.5, 
0.9ε = , 0β =  and 1 0β = : (a) Interface line concentration; (b) Bottom line 

concentration; (c) Concentration difference. 
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Figure 7.6a 

Figure 7.6 Effects of different p

m

Dam
K

 and f

m

Dam
K

 for low reaction rate; h/H=0.5, 

0.9ε = , 0β =  and 1 0β = : 
(a) Interface line concentration; (b) Bottom line concentration; (c) Concentration 

difference. 
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Figure 7.6b 

Figure 7.6 Effects of different p

m

Dam
K

 and f

m

Dam
K

 for low reaction rate; h/H=0.5, 

0.9ε = , 0β =  and 1 0β = : 
(a) Interface line concentration; (b) Bottom line concentration; (c) Concentration 

difference. 
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Figure 7.6c 

Figure 7.6 Effects of different p

m

Dam
K

 and f

m

Dam
K

 for low reaction rate; h/H=0.5, 

0.9ε = , 0β =  and 1 0β = : 
(a) Interface line concentration; (b) Bottom line concentration; (c) Concentration 

difference. 
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Figure 7.7a 
Figure 7.7 Effects of different pDam  and fDam  for middle and high reaction rate; 

mK =0.260, h/H=0.5, 0.9ε = , 0β =  and 1 0β = : 
(a) Interface line concentration; (b) Bottom line concentration; (c) Concentration 

difference. 
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Figure 7.7b 
Figure 7.7 Effects of different pDam  and fDam  for middle and high reaction rate; 

mK =0.260, h/H=0.5, 0.9ε = , 0β =  and 1 0β = : 
(a) Interface line concentration; (b) Bottom line concentration; (c) Concentration 

difference. 
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Figure 7.7c 
Figure 7.7 Effects of different pDam  and fDam  for middle and high reaction rate; 

mK =0.260, h/H=0.5, 0.9ε = , 0β =  and 1 0β = : 
(a) Interface line concentration; (b) Bottom line concentration; (c) Concentration 

difference. 
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Figure 7.8 Concentration at the interface as a function of reaction-convection distance 

parameter with different f

m

Dam
K

 and _f d

m

Dam
K

 for first-order reaction; 0.9ε = , 0β =  

and 1 0β = . 
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Figure 7.9 Concentration difference parameter as a function of reaction-convection 

distance parameter with different f

m

Dam
K

 and p

m

Dam
K

 for first-order reaction; 0.9ε = , 

0β =  and 1 0β = . 
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Figure 7.10 Reaction effectiveness factor as a function of reaction-convection 

distance parameter with different f

m

Dam
K

 and p

m

Dam
K

 for first-order reaction; 0.9ε = , 

0β =  and 1 0β = . 
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Figure 7.11 Reactor efficiency as a function of reaction-convection distance 

parameter with different f

m

Dam
K

 and p

m
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K

  for first-order reaction; 0.9ε = , 0β =  

and 1 0β = . 
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Figure 7.12a 

Figure 7.12 Concentration at the interface as a function of reaction-convection 
distance parameter with different fDam  for Michaelis-Menten reaction; 0.9ε = , 

0β =  and 1 0β = : 
(a) At different f_dDam ; (b) At different mK . 
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Figure 7.12b 

Figure 7.12 Concentration at the interface as a function of reaction-convection 
distance parameter with different fDam  for Michaelis-Menten reaction; 0.9ε = , 

0β =  and 1 0β = : 
(a) At different f_dDam ; (b) At different mK . 
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Figure 7.13a 
Figure 7.13 Concentration difference parameter as a function of reaction-convection 

distance parameter with different fDam   for Michaelis-Menten reaction; 0.9ε = , 
0β =  and 1 0β = : 

(a) At different pDam ; (b) At different mK . 
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Figure 7.13b 
Figure 7.13 Concentration difference parameter as a function of reaction-convection 

distance parameter with different fDam   for Michaelis-Menten reaction; 0.9ε = , 
0β =  and 1 0β = : 

(a) At different pDam ; (b) At different mK . 
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Figure 7.14a 
Figure 7.14 Reaction effectiveness factor as a function of reaction-convection 

distance parameter with different fDam   for Michaelis-Menten reaction; 0.9ε = , 
0β =  and 1 0β = : 

 (a) At different pDam ; (b) At different mK . 
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Figure 7.14b 
Figure 7.14 Reaction effectiveness factor as a function of reaction-convection 

distance parameter with different fDam   for Michaelis-Menten reaction; 0.9ε = , 
0β =  and 1 0β = : 

(a) At different pDam ; (b) At different mK . 
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Figure 7.15 Reactor efficiency as a function of reaction-convection distance 
parameter with different fDam   for Michaelis-Menten reaction; 0.9ε = , 0β =  

and 1 0β = : 
(a) At different pDam ; (b) At different mK . 
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Figure 7.15 Reactor efficiency as a function of reaction-convection distance 
parameter with different fDam   for Michaelis-Menten reaction; 0.9ε = , 0β =  

and 1 0β = : 
(a) At different pDam ; (b) At different mK . 
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Chapter 8  

Conclusions and Recommendations 

 

8.1 Conclusions 

The main objective of current research was to develop and implement a 

numerical method for transport phenomena in porous media and porous/fluid coupled 

domains with complex geometries. For the interface between porous and 

homogeneous fluid domains, the Ochoa-Tapia and Whitaker’s stress jump interfacial 

condition (1998b) was used to investigate its effects on heat and mass transfer. The 

current study also considered porous media effects on the flow pattern, heat and mass 

transfer in such porous/fluid coupled domains.  

A two-domain method was implemented for more realistic and reasonable 

treatments on local velocity, stress, temperature and mass at the porous/fluid interface. 

It was based on finite volume method together with body-fitted grids and multi-block 

technology. For the homogeneous fluid region, the governing equation was Navier-

Stokes equation; and for the porous medium region, the generalized Darcy-Brinkman-

Forchheimer extended model was used. At the interface between porous and 

homogeneous fluid domains, the flow boundary conditions imposed was a shear 

stress jump, which included both viscous and inertial effects, together with a 

continuity of normal stress. The thermal or mass interfacial boundary conditions were 

continuities of temperature and heat flux, or mass and mass flux. Such thermal and 
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mass interfacial conditions have not been combined with stress jump condition in 

previous studies. 

The developed numerical technique was applied to several cases in heat and 

mass transfer: a) unsteady external flows past a porous square or trapezoidal cylinder, 

b) natural convective heat-transfer in a porous wavy cavity, c) forced convective heat-

transfer after a backward facing step with a porous insert or with a porous floor 

segment, d) mass transfer in a microchannel reactor with a porous wall. The 

implementations of the numerical technique are different from those of previous 

studies which were mainly based on one-domain method with either Darcy’s law or 

Brinkman’s equations for the porous medium.  

 The present work contributes a numerical implementation that can deal with 

general transport problems in porous and homogeneous fluid domains. The developed 

numerical technique is able to incorporate different flow-thermal or flow-mass 

boundary conditions at the porous-fluid interface, and can address problems in which 

the flow and thermal or mass interfacial conditions need to be considered in detail. 

The technique is suitable for more complex geometries as it implements body fitted 

grids and multi-block approach. 

 

8.1.1 Unsteady External Flows past a Porous Square or Trapezoidal 

Cylinder 

Different from flows past solid bodies, the flow penetrated into the porous 

bodies and resulting flow is steady or unsteady flow depending on both the Reynolds 
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number and Darcy number. With a larger Darcy number, the Reynolds number has to 

be higher before the vortex shedding phenomena occurs. The Darcy number effect 

becomes smaller when 410Da −≤ ; and the fluctuation-amplitude of drag coefficient 

decreases with a larger Darcy number. Generally, a larger porosity cylinder results in 

smaller drag coefficient and lift amplitude. 

The effects of the stress jump parameters are given for the flow condition 

from Re = 20 to 200. The first coefficient β  has a more noticeable effect whereas the 

second coefficient 1β  has small effect, even for Re = 200. It was interesting to find 

that stress jump parameters affected flow pattern, for example, unsteady flow 

phenomena when Re = 40 with 1β =  and 1 0β =  for porous square case, while for 

trapezoidal one, there was no such phenomenon. The stress jump parameters could 

also play an important role for the flow pattern past porous bodies, depending on the 

body shapes. 

 

8.1.2 Natural Convective Heat-transfer in a Porous Wavy Cavity 

Natural convection in a porous wavy cavity was studied using the generalized 

Brinkman-Forcheimmer extended model. Different from previous studies using 

Darcy’s law (Misirlioglu, et al, 2005), the isotherms and streamlines show interesting 

phenomena, e.g., multi-cellular circulations to single-cellular circulation. This is due 

to the shortcomings of Darcy’s law; for example, it neglects inertia, convection, and 
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viscous effects, while the generalized Brinkman-Forcheimmer extended model can 

depict the porous flow better.  

Thus the results are shown with a wider range of Rayleigh and Darcy numbers 

than those of previous studies. At low Darcy-Rayleigh number another recirculation 

zone may appear at both the top and bottom regions, which are additional to the main 

recirculation at the middle. At large Darcy-Rayleigh number, the top and bottom 

recirculations vanished and the middle recirculation was distorted into two. The 

results of local Nusselt number show that the dependence on Darcy number and 

porosity is not small if the Darcy-Rayleigh number is large. For the wavy geometry 

effect, slightly negative Nusselt numbers were found with small aspect ratio and large 

waviness values. This indicated negative temperature gradient there, which was 

mainly due to local large inertia effect. This showed that the inertial effect played an 

important role at large Rayleigh numbers or waviness values. 

 

8.1.3 Forced Convective Heat-transfer after a Backward Facing Step 

         with a Porous Insert or a Porous Floor Segment 

Forced convections after the backward facing step with the addition of a 

porous insert or with a porous floor segment were simulated. The heat transfer was 

enhanced globally with a porous insert or enhanced locally with a porous floor 

segment. For those with a porous insert, to minimize frictional losses and to attain 

heat enhancement, a medium length of insert with medium Darcy number, and larger 

Reynolds number was preferred. With the addition of a porous insert, the circulation 
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after the step was eliminated, which increased heat convection there. Increasing 

Reynolds number meant increasing the convection effect, while further decreasing the 

Darcy number to 510−   did not increase the convection after the step due to the high 

resistance provided by the insert. For those cases with a porous floor segment, heat 

transfer was enhanced locally after the porous segment while the flow attachment 

point was located around the end of the segment. With the addition of a porous floor 

segment, the circulation after the step was elongated, which helped more flow to 

entrain back for heat convection there.  

The stress jump parameter effects on the global and local Nusslet number 

were more noticeable for the flow along porous/fluid interface in the porous floor 

segment case, due to the sensitive change in local velocity and temperature profiles 

with different combinations of stress jump parameters. Generally the first stress jump 

parameter has much more effect if the Darcy number is small; the second stress jump 

parameter effect can not be neglected for parallel flow. 

 

8.1.4 Mass Transfer in a Microchannel Reactor with a Porous Wall 

The flow and mass transfer in a microchannel reactor with a porous wall was 

numerically investigated. Two parameters are defined to characterize the mass 

transports in the fluid and porous regions. The porous Damkohler number pDam  is 

the ratio of consumption to diffusion of the substrates in the porous medium. The 

fluid Damkohler number fDam  is the ratio of substrate consumption in the porous 
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medium to substrate convection in the fluid region. It is shown that the apparent 

effect of the conventionally used fluid Peclet number fPe  is actually due to the 

change of fDam . As the consumption is considered over an axial distance, and 

fDam  relates to consumption per unit length, the combined parameter fx Dam
H
i

 is 

defined from a simplified analysis for Michaelis-Menten reaction. Another parameter 

is the fluid-diffusion Damkohler number _f dDam  which is the ratio of substrate 

consumption in the porous medium and substrate diffusion in the fluid region. The 

concentration difference between the interface and base of the porous medium are 

normalized to form a concentration difference parameter int bot

p

C C
Dam
− . The numerical 

results are found to be well correlated by the use of these parameters. 

 The interface concentration intC  is found to be a function of the reaction-

convection distance parameter fx Dam
H
i

 and the fluid-diffusion Damkohler 

number _f dDam  whose influence is relatively smaller at fx Dam
H
i

 >1. The 

concentration difference parameter int bot

p

C C
Dam
−  is not completely normalized by 

pDam  which is based on various maximum values of the Michaelis–Menten 

reactions. For reactions close to first-order type, similar parameters are involved 

except all the Damkohler numbers are divided by the Michaelis-Menten constant mK . 
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The influence of _f d

m

Dam
K

and p

m

Dam
K

 are small as these could not be varied much for 

reactions close to first-order type. 

The reaction effectiveness factor and reactor efficiency for both of the above 

two reaction types are presented with the use of the combined parameters. For 

Michaelis-Menten type reactions, the reactor efficiency reduces with fx Dam
H
i

 due to 

the lower reaction (or flux) because of the low concentration; furthermore the local 

effectiveness factor becomes lower. The effectiveness drops because the 

concentration in the porous medium is low which gives small Michaelis- Menten 

reaction. A larger pDam  (smaller diffusion) also gives smaller reactor efficiency. For 

reactions close to first-order type, the reactor efficiency reduces with f

m

Damx
H K

 

because of the reduced reaction (or flux) due to low concentration. Although 

increased fluid convection (smaller f

m

Dam
K

) does increase the efficiency, the effect is 

not large. There is no advantage in reducing f

m

Dam
K

 below 0.02 because the 

effectiveness is poor due to the diffusion limitation in the fluid region. 

The general correlated results may be useful for the design of such reactor 

with porous walls. From the plots, the concentration in the porous medium could be 

predicted for a given reactor geometry. The critical length to avoid concentration 
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insufficiency could also be determined. The flow and geometry conditions could be 

designed to achieve high reactor efficiency.  

 

8.2 Recommendations 

Future study can extend current numerical method to three-dimensional and 

more practical cases with more complex geometries. Attention should be paid to 

those with singularity domains which may give difficulties in getting stable, 

consistent and convergent solutions. Unstructured grid and multi-block technology 

with different size grids may also be used for complex geometries. To avoid the 

instability and un-convergency problems due to the abrupt fluid property changes 

along the interface, self-adaptive grid could also be used. 

For unsteady flow, mass transfer can be considered from the porous cylinders 

to the environment around with vortex shedding (Bhattacharyya et al, 2006b). An 

extension of the mass jump interfacial conditions and their effects on flow and mass 

transfer can also be conducted theoretically or numerically (Valdes-Parada et al, 

2007b). From the practical point of view, the flow past an array of porous square 

cylinders can also be conducted. 

For heat and mass convection problems, mixed convection problems (with 

both external convection and gravity effects) can be considered in a cavity filled with 

porous or porous/fluid media. The stress jump conditions may have different effects 

on heat and mass transfer in such mixed convection problems. To enhance heat 

transfer, turbulent heat transfer models can be added in current work together with the 
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existence of porous media (Assato et al., 2005). With the existence of turbulence, the 

stress jump parameters may affect the flow and heat transfer more significantly. 

For mass transfer in microchannel reactors with a porous wall, other types of 

reaction for mass consumption models can be attempted, for example the inhibitory 

kinetics (Pathi et al., 2005). The reaction efficiency and reactor effectiveness factor 

can be defined based on local concentration to more accurately measure the reactor 

performance. More realistically, the reaction kinetics can also be assumed to be with 

time-dependent consumption rate and variable porosity and permeability in porous 

region (for example, due to the change of cell density). Additionally, local non-

averaged mass transfer model can also be assumed to model the solid and fluid phases 

in porous region, respectively. 

For interface coupled conditions, experiments on stress jump parameter values 

can be addressed with different porous materials. Likewise theoretical derivation of 

the interface treatment for heat or mass transfer can be continued and their effects on 

transport phenomena may also be implemented for numerical simulations. Different 

porous material with different interfacial porous structures can be combined to test 

their effects on natural, forced and mixed convective heat transfer, and mass transfer 

problems. 
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