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Summary

The use of magnetic resonance (MR) images for virtual colonoscopy is a relatively new

method for the prevention of colorectal cancer. Unlike computed tomography, magnetic

resonance technology does not use ionizing radiations and offer a good contrast for soft

tissues. However, the processing of MR images is a very challenging issue due to noise

and inhomogeneities.

The first step in processing MR images for virtual colonoscopy is to segment the

colon in order to construct a model. Since this model must be as close to the reality as

possible, the colon must be segmented with great precision. In this work, we compared

two different methods for the segmentation of the colon in 2D MR images.

The first method is based on thresholding algorithms. We first determine the thresh-

old by applying a Bayes classification rule on the histograms. A region growing algo-

rithm is then used to remove non-colonic pixels. We show that due to the presence

of significant amount of noise, a good preprocessing algorithm is also needed for the

thresholding algorithms to perform well. Therefore, we use anisotropic diffusion as a

preprocessing algorithm for noise reduction. We develop a strategy to choose the opti-

mal parameters for this algorithm.

The second method uses deformable models or snakes. Snakes are dynamic con-

tours that move through the images according to internal and external forces. We use

gradient vector flow (GVF) as external forces. The snakes are implemented using B-

splines. Such snakes are referred to as B-snakes. A control points insertion algorithm

and a stopping condition are also implemented to give more flexibility to the snake.

A quantitative evaluation of the results is made based on 30 images from two differ-

ent datasets. We use Jaccard’s measure and obtain an average performance rate of 94%

v



for both thresholding methods and B-snakes. A qualitative evaluation made on 235 im-

ages from the two same datasets shows that segmented regions obtained with B-snakes

have a more regular aspect than those obtained with thresholding algorithms.

Finally we show the possibility of a 3D reconstruction of the colon from 2D images

segmented with B-snakes on a series of 40 images.
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. Introduction

1.1 Motivation

With an estimated 677 000 deaths in 2007, colon and rectal cancers (usually referred to

as colorectal cancer) are the third most common cancers in the world [4]. In the United

States, around 150 000 new cases are expected to occur in 2008 [5]. In Singapore, col-

orectal cancer is the second most common cancer with approximatively 1000 new cases

every year [6].

The colon, or large intestine, is the last part of the digestive system. Its function is

to absorb water from the remaining indigestible food matter. The colon begins at the ce-

cum which receives undigested matter from the small intestine. The cecum is followed

by the ascending colon, the transverse colon, the descending colon, the sigmoid colon.

It ends with the rectum where feces is stored before being ejected through the anus (Fig-

Figure 1.1: Colon [1]
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1.1. MOTIVATION

(a) Colorectal polyp [9] (b) Colorectal polyp with a long stalk [10]

Figure 1.2: Examples of colorectal polyps

Figure 1.3: Optical colonoscopy [2]

ure 1.1). For more information about the colon, the reader can refer to [7] and [8].

The main form of colorectal cancer is due to the presence of adenomatous polyps

in the colon (Figure 1.2). Those polyps, originally benign, may develop into cancer. A

cancerous polyp may go through the surface of the colon, and then spreads in the whole

body due to the presence of many lymph nodes around the colon. Thus, the early detec-

tion and the removal of adenomatous polyps reduces the risk of colorectal cancer [11]

[12].

Statistics show that people over the age of 60 are more likely to develop a colorectal

cancer. The disease can also have a genetic origin and families with this genetic abnor-

mality present a higher risk [13].

The oldest and most common colonoscopy is the conventional colonoscopy or op-

tical colonoscopy, which consists of inserting a endoscope in the colon of the patient

2



1.1. MOTIVATION

(a) CT scanner [17] (b) MR scanner [18]

Figure 1.4: Scanners

(Figure 1.3). The two main advantages of conventional colonoscopy are that the resolu-

tion of images is high and that it is possible to remove the polyps during the procedure.

However, this is a very invasive examination and it is sometimes impossible to complete

a whole examination because of patient’s discomfort, or because of colon obstruction.

Moreover, the rate of missed polyps can be quite high, depending on the experience of

the gastroenterologist [14].

To avoid these problems, more recent methods tend to be as uninvasive as possible.

One of the first non-invasive methods is called double contrast barium enema (DCBE).

Details of this method can be found in [15]. The main drawback of this method is its

low sensitivity [16] and the high-level skills required from the radiologist [15].

Currently, the state-of-the-art method in non-invasive colonoscopy is CT colonog-

raphy [19]. This method consists of acquiring a stack of 2D cross-sectional CT images

of the abdomen with a CT scanner (Figure 1.4). Those images can be observed slice by

slice by a radiologist in order to detect the polyps. However, such observations are time

consuming and require an experienced radiologist. For this reason, the method often re-

quires the images to be processed in order to make them easier to interpret. A software

which offers the possibility to reconstruct a 3D model of the colon and to fly through

this model is already available commercially [20].

A more recent method is MR colonography. The principle is the same as CT colonog-

raphy except that the images are acquired with an MR scanner (Figure 1.4(b)).

It has been shown that MR and CT colonography are much better tolerated by pa-

tients than conventional colonoscopy [21]. As CT colonography is more cost effective

than MR colonography [22], the research has focused more on CT colonography than

3



1.2. AIM OF THE THESIS

(a) CT image of the abdomen (b) MR image of the abdomen

Figure 1.5: Comparison between CT and MR images

on MR colonography. However, as CT colonography becomes more and more popular,

questions are raised about the influence of radiation exposure, particularly for people

who need to be examined frequently [23]. Since no radiation is involved in MR colonog-

raphy, radiologists are willing to use this method rather than CT colonography [24]. In

the present work, we focus on the processing of images in MR colonography.

1.2 Aim of the Thesis

One of the most important steps in the processing of the images is segmentation. This

step consists of isolating the colon from the rest of the image to focus on the region of in-

terest. A good segmentation procedure must fulfill at least two important requirements

:

• It must be as accurate as possible. A common requirement for a colonography

is the ability to detect polyps as small as 5 mm or at least 1 cm. Therefore, the

segmentation process should be able to represent even the fine details of the colon.

• It must be as automatic as possible. Ideally, the radiologist should interact mini-

mally with the software . Practically, it is still difficult to achieve this goal and the

radiologist must often give some information to the system (the location of a seed

point in the colon for example).

The segmentation of MR images is often challenging; they are very noisy and the con-

trast between air and tissues is weak. Unlike CT images, which have little noise and a

good air/tissue contrast, simple segmentation methods do not perform well (Figure 1.5)

4



1.3. CONTRIBUTIONS OF THE THESIS

The aim of the present work is to evaluate two different segmentation methods on

MR images of the colon :

• The first method comprises two steps. A preprocessing step aims to reduce the

noise in the image while enhancing the edges. In this work, we use an anisotropic

diffusion algorithm, which has been shown to be a efficient preprocessing step for

our application [25]. Then, the segmentation in itself is a combination of thresh-

olding and region growing similar to the one used for CT images [26].

• The second method is based on deformable models or snakes. An efficient initial-

ization method is developed in order to limit the interaction between the user and

the software.

1.3 Contributions of the thesis

The contributions of the thesis are summarized here:

• The anisotropic diffusion algorithm, used as a preprocessing step in the segmenta-

tion of the colon, is improved by introducing variable parameters. This improve-

ment makes the algorithm less sensitive to noise.

• A procedure to optimize the parameters of the anisotropic diffusion is developed.

• We compare two different approaches to the segmentation problem. One ap-

proach is based on pixel classification and thresholding. The other approach is

based on contour deformation and snake model.

• A comprehensive implementation scheme is presented for both the finite differ-

ence snake model and the B-snake model.

• The feasibility of colon segmentation with B-snakes is demonstrated. Arguments

are proposed to explain the superiority of snakes over traditional thresholding

methods.

1.4 Organization of the thesis

The outline of the thesis is as follows :

5



1.4. ORGANIZATION OF THE THESIS

• Chapter 2. We present a literature review firstly on the status of colonography

(CT and MR) and then on the different methods for the segmentation of noisy

images.

• Chapter 3. We present a method based on global thresholding, region growing

and adaptive local thresholding for segmenting the colon in MR images.

• Chapter 4. Anisotropic diffusion is presented as a preprocessing method to im-

prove the results of segmentation. An optimization of the parameters of anisotropic

diffusion is proposed.

• Chapter 5. After a general introduction on deformable models, we present a

traditional implementation of snakes. The limitations of this model are shown,

leading to the implementation of a more sophisticated deformable model called

B-snake with a different deformation force, the gradient vector flow (GVF). We

describe an algorithm to insert control points in order to improve the flexibility of

the model.

• Chapter 6. The two methods are applied to a series of 2D MR images of the

abdomen.

• Chapter 7. Concluding remarks and future perspectives are presented.

6



. Literature Review

2.1 CT Colonography

CT colonography was described for the first time in 1994 by Vining et al.[27]. The first

feasibility studies showed promising results. In a unblinded study on 10 patients1, Hara

showed a detection rate of 100% for polyps bigger than 1 cm [28].

Those good results motivated researchers to propose several blind studies. Until

2003, the conclusions of those studies were not satisfactory. Most of the time, the de-

tection rates found by those studies were too low (66% for polyps between 6 mm and 9

mm and 75% for polyps larger than 10 mm in [29], 47.2% and 75.2% in [30] and 56% and

61% in [31]). Other studies obtained much better detection rates (82% and 91%) but the

patients had a high risk for colorectal polyps and were therefore not representative.

In 2003, Pickhardt et al. [32] published the result of a blind study on an asymp-

tomatic2 population of 1233 patients. Their results were outstanding with a detection

rate of 88.7% for polyps between 6 mm and 9 mm, and 93.8% for polyps larger than 10

mm. Although their results raised some controversies [33], they confirmed the potential

of CT colonography as a mass screening method.

Moreover, CT colonography offers the possibility to detect extracolonic lesions, which

is obviously impossible with conventional colonoscopy [34].

1The patients underwent a conventional colonocopy before the CT colonography and the observers
were aware of the results of this colonoscopy.

2The patients had a normal risk of colorectal polyps, thus being representative of a real population.
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2.2. MR COLONOGRAPHY

2.2 MR Colonography

MR colonography has an even more recent history than CT colonography. It was first

described in 1997 by Luboldt in [35], when the technology of MR scanners allowed

the possibility of acquiring images of the abdomen in one single breath hold. The first

preliminary studies were essentially based on visual assessment [36] and demonstrated

the feasibility of MR colonography.

Compared to CT colonography, the literature about MR colonography is relatively

poor. We can mention the work of Hartmann et al. [37] who obtained an impressive

detection rate of 84.2% for polyps between 6 mm and 9 mm and 100% for polyps larger

than 10 mm. However, those results are to be taken with precaution because of the small

size of the study group (92 people) and because the patients of this study group had a

high risk for colorectal polyps. Florie et al. [38] had more modest results in a study that

focused on limiting the bowel preparation for the comfort of the patient. They found a

sensitivity of 75% for polyps larger than 10 mm. A large scale study is still needed to

assess the possibilities of MR colonography.

Currently, the main drawbacks of MR colonography compared to CT colonography

are:

• the quality of MR images compared to CT images. MR images are more noisy and

the contrast between colonic air and tissue is lower than in CT images [39],

• the cost of MR examinations [22].

However, the main reasons that justify the research in MR colonography are:

• Absence of radiation. The exposure to radiations is a main concern in CT colonog-

raphy [40]. Efforts have been made to reduce the radiation dose without affecting

the image quality [41] and reports have been published to show that the risk asso-

ciated with radiation exposure is not significant [23]. However, in some countries

like Germany, the regulations in terms of radiation are so strict that they justify

the research effort for MR colonography [40].

• Better contrast in soft tissue. Although the contrast colonic air / soft tissue is

lower than in CT images, MR images offer a better contrast between soft tissues of

different nature than CT images [39] [40]. This property could be used to observe
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2.3. COLON SEGMENTATION

the thickness and nature of the colon wall and thus to detect polyps that are not

necessarily visible just by looking at the shape of the colon wall (in the case of flat

polyps for example). No investigation has been made in that direction so far.

2.3 Colon segmentation

Segmentation is a crucial step in virtual colonoscopy. The literature about colon segmen-

tation in CT images is abundant. Originally, the segmentation methods were mainly

based on the thresholding/region growing algorithm. The principle of this algorithm

is quite simple: from a seed point located in the colon, we grow a region according to

the values of the neighbour pixels. If the value of a neighbour pixel is within a certain

range, the pixel is added to the region. This method is described in [42] and [43].

However the results of this algorithm are not always satisfactory. Indeed, the algo-

rithm is vulnerable to fluctuations of intensity in the image. This problem is even more

true for MR images. Another drawback of the thresholding/region growing algorithm

is that the contour generated is usually quite jagged.

Therefore, many efforts have been made to find more sophisticated methods that

could improve the segmentation of the colon. We describe some of the most significant

methods in the recent literature.

Van Uitert et al. [44] develop an interesting segmentation procedure based on level-

set and thresholding/region growing. They first detect the inner wall of the colon with a

classical thresholding/region growing algorithm. Since the contrast between colonic air

and colonic wall is high enough in CT images, they consider this method as acceptable

for the inner wall. However, the contrast between colonic wall and gray tissues around

is very low. Therefore, a more sophisticated method is required to segment the outer

colonic wall. The authors implemented a level-set algorithm to segment the outer wall.

The principle of the level-set algorithm is to consider a level-set function Φ(x, y, t) and

to define the contour Γ as the set of points where Φ(x, y, t) = 0.

Γ(t) = {(x, y)/Φ(x, y, t) = 0} (2.1)

The main advantage of level-set algorithm is its ability to handle topological changes in

the contour very easily (merging or splitting of the contour). The results obtained by

9



2.3. COLON SEGMENTATION

Van Uitert et al. are quite impressive. However the detection of the outer wall requires a

certain homogeneity in the gray tissues surrounding the colon. Therefore, it seems dif-

ficult to apply the same method for MR images where many details of the gray tissues

are visible.

Another remarkable method is the one developed by Franaszek et al. [45]. They

first organize the alternance of colonic air pockets and tagged fecal residues pockets in

a pocket tree. Then, they combine several algorithms including thresholding/region

growing, fuzzy-connectedness, and level-set. Thresholding/region growing is used as

an initialization step. Then, fuzzy-connectedness improves the results of the initializa-

tion. Fuzzy-connectedness can be seen an improved region growing. From a seed point

p0, a strength path is calculated for each pixel :

f(p, p0) = f0 exp
(
−∆2(p, p0)

2σ2

)
(2.2)

with

∆(p, p0) =
Ip + Ip0

2
− µ (2.3)

µ and σ are the mean and variance of pixel intensity calculated in the area found by

region growing. f0 stands for the maximum strength. A pixel p is added to the region

if f(p, p0) ≥ Tfuzz , Tfuzz being a predefined threshold. The final contour is obtained by

using a level-set algorithm.

Franaszek’s algorithm combines many different segmentation algorithms and is par-

ticularly efficient for segmentation of colon with tagged fecal residues. In our applica-

tion, it does not seem that the accumulation of segmentation methods can improve the

results significantly.

Finally, Wyatt et al. [46] used a particular deformable model called a geometric de-

formable model to segment the colon in 3D CT images. They consider a surface

X(u, v, t) −→ R3 (2.4)

10
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This surface evolves according to the equation :

∂X

∂t
= (ΦH −∆Φ.~U).~U (2.5)

where ~U is the surface normal, H is the mean curvature and Φ is a stopping function. In

their paper, the authors focus on finding the optimal stopping function. They show the

superiority of their method compared to thresholding/region growing.

We have mentioned just a few examples of the most popular methods employed for

colon segmentation. Other references can be found for each of those methods, but we

will not go further since our main interest is in the segmentation in MR images.

2.4 Segmentation in MR images

Compared to CT colonography, only a few papers have focused on the segmentation

process in MR colonography. In the first paper on MR colonography [35], the authors

suggest that the colon was segmented with a thresholding/region growing method.

Le Manour [25] proposes to improve the classical thresholding/region growing al-

gorithm in two ways:

• A preprocessing step is implemented to reduce noise and enhance edges. The

author uses an anisotropic diffusion algorithm for this purpose

• The results of the thresholding/region growing algorithm are refined by using

adaptive thresholding. This algorithm uses a threshold map instead of a single

threshold value for the whole image, thus being insensitive to the fluctuations of

intensity in the image.

This segmentation procedure shows promising results but is very dependent from the

quality of the preprocessing step.

The low level of interest in segmentation methods in MR colonography is quite sur-

prising. Indeed, segmentation in MR images in general is much more challenging than

segmentation in CT images (due to the noise and the inhomogeneity of the images).

Segmentation of other organs in MR images has been extensively studied, particu-

larly for the brain and the heart. In the following paragraphs, we give a few examples

of those studies.

11
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Admasu et al. [47] use a method based on fuzzy-connectedness and artificial neural

networks (ANN) to segment sclerosis lesions from brain MR images. Fuzzy-connectedness

is used to detect all the parts of the brain considered as normal (white matter, gray mat-

ter and cerebrospinal fluid). The remaining parts serve as inputs of a ANN with a single

hidden layer. The ANN’s purpose is to identify the lesions from other objects among

those remaining parts. This method could be applied to detect polyps in the colon, but

an important work must be done to identify the possible candidates. This task is much

more difficult than identify the candidates for brain sclerosis lesions since there is a very

weak contrast between the polyps and the colonic wall.

Chenoune [48] observed the deformation of the left ventricle of the heart in MR im-

ages with a level-set algorithm. The particularity of the method is to be implemented in

a 2D+t space. The time is indeed considered as an additional dimension to observe the

deformations of the left ventricle.

Last but not least, parametric deformable models or snakes have also been widely

used in MR segmentation. A snake in 2D is represented by a parametric curve :

[0, 1] −→ R2 (2.6)

s 7−→ v(s) = (x(s), y(s)) (2.7)

This curve is deformed by internal forces that keep the curve smooth and external forces

that attract the curve to the edges in the image. Deformable models have been widely

used in segmentation of the heart in MR images for their strong robustness against noise.

Gupta et al. [49] and Ranganath [50] showed promising results with a basic model of

deformable models. More recently, Terzopoulos et al. [51] unified more than 20 years

of work on deformable images. They propose a unique finite element model that can

describe most of the implementations of snakes that have been used over the past years.

They applied their model on many different kinds of images, including:

• CT images of the lungs

• MR images of the brain

• MR images of the liver

• MR images of the legs to detect the growth plates
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• Mammograms.

They show that snakes are a very robust model that can adjust to many different kinds

of applications.

2.5 Conclusion

Some important points were raised in this literature review:

• Virtual colonoscopy is a promising technology which still needs to be developed.

• Segmentation of the colon in CT images has been extensively studied.

• Those major methods have also been applied to the segmentation of different or-

gans in MR images, mainly the heart and the brain. However, very few efforts

have been made to improve the segmentation of the colon in MR images.

• Deformable models appear as an efficient and robust method for segmentation in

MR images.

Those arguments motivate us to investigate a new method for segmenting MR im-

ages of the colon and to compare it with existing methods.

13
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3.1 Introduction

The first and most intuitive approach for a segmentation problem is to consider it as a

classification problem. The image can be considered as a set of pixels q, each pixel being

defined by its position (x(q), y(q)) and its intensity I(q). Since we desire to isolate the

colon in the image, we decide to assign a label or a class to each pixel. A pixel q will

be assigned the label ω1 if it is located inside the colon and ω2 otherwise. Therefore, the

image will be divided into two sets of pixels. C will be the set of pixels inside the colon

and C the complementary set.

This chapter presents a method to achieve this classification. This method consists

of 3 algorithms:

• Global thresholding,

• Region growing,

• Adaptive thresholding.

The two first algorithms are presented in the first part. Adaptive thresholding is devel-

oped in the second part.

3.2 Global thresholding and region growing

The first observation that can be made about MR images of the abdomen is that the

intensity of pixels located inside the colon is lower than the intensity of gray tissues
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surrounding the colon. Global thresholding exploits directly this property. The main

idea is to find an intensity value T , called the threshold, for which

∀q ∈ ω1 , I(q) ≤ T (3.1)

∀q ∈ ω2 , I(q) > T (3.2)

The challenge is to find an optimal value for T . Many methods can be found in the

literature. A good summary of the most efficient methods has been made by Sezgin et

al. [52].

In our work, we use a histogram based algorithm. In Figure 3.1 we represent some

histograms of pixel intensities in 2D MR images of the abdomen. Those histograms have

been normalized so that the total area under the curve is equal to 1. The background

of the images is not taken into consideration. We observe two local maxima. The first

one in the low intensities corresponds to colonic air. The second one in higher intensi-

ties corresponds to gray tissues. We therefore decide to use a Bayesian rule to find the

optimal threshold.

Let z be a random variable representing the pixel intensity. The normalized his-

togram can be considered as a good approximation of the probability density function

(pdf) of pixel intensity. We denote p(z) the values of this function. We also denote

p(z/ω1) and p(z/ω2) the pdf of z given ω1 and ω2 respectively. Given the shape of the

histograms, we can assume that p(z/ω1) and p(z/ω2) are Gaussian distributions with

means m1 and m2 and variances σ1 and σ2 respectively. The Bayesian rule defines the

optimal threshold as:

P (ω1)p(T/ω1) = P (ω2)p(T/ω2) (3.3)

with

p(z/ωi) =
1√

2πσi
exp

(
−(z −mi)2

2σ2
i

)
for i = 1, 2 (3.4)
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Figure 3.1: MR images and their corresponding histograms
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and where P (ω1) and P (ω2) are the probability of occurrence of pixels from class ω1 and

ω2 respectively. From Equations 3.3 and 3.4 we obtain

aT 2 + bT + c = 0 (3.5)

with

a = σ2
1 − σ2

2 (3.6)

b = 2(m1σ
2
2 −m2σ

2
1) (3.7)

c = m2
2σ

2
1 −m2

1σ
2
2 + 2σ2

1σ
2
2 ln

σ2P (ω1)
σ1P (ω2)

(3.8)

To solve Equation 3.5 , we need to find the values of P (ω1), P (ω2), m1, m2, σ1 and

σ2. P (ω1) and P (ω2) are empirically determined by observing the ratio between pixels

inside the colon and pixels outside the colon. For all images, we choose the values

P (ω1) = 0.3 and P (ω1) = 0.7 which are the values suggested by Yeo [26].

To determine m1, m2, σ1 and σ2, we require from the user to select one region inside

the colon and one region in the gray tissues. We estimate the mean and the variance in

each of those regions to determine our parameters1.

Once the parameters are estimated and the threshold T is found, we classify the

pixels of the image according to the rule defined in Equations 3.1 and 3.2. The result is a

binary images as we can see in Figures 3.2(a) and 3.2(b). In those images, the pixels with

the label ω1 are represented in white whereas the pixels with the label ω2 are represented

in black.

We notice that not only the pixels inside the colon have an intensity smaller than T .

The background of the image and some organs also verify this condition. Thus, further

processing is required. We use a region growing algorithm. The user is required to give

one seed point in each intra colonic region. Therefore, those seed points have the label

ω1. Each of them initializes a growing region which grows according to the following

rule: all the pixels that are 8-connected to the growing region and have the label ω1 are

added to the region. The algorithm proceeds iteratively until the regions remain stable.

The results are shown in Figures 3.2(c) and 3.2(d).

We observe that the regions obtained are very noisy and have many holes. This
1the variance is approximated by an unbiased estimator
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(a) Image 1 after global thresholding (b) Image 1 after global thresholding

(c) Image 1 after region growing (d) Image 2 after region growing

Figure 3.2: Binary images obtained after global thresholding and region growing
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(a) Image 1 after preprocessing with 
Gaussian blurring

(b) Image 2 after preprocessing with 
Gaussian blurring

(c) Contours of segmented regions on 
image 1

(d) Contours of segmented region on 
image 2

Figure 3.3: Influence of a preprocessing with Gaussian blurring
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is mainly due to the presence of noise in the image. One idea to solve this problem

is to apply a Gaussian filter to the image before the thresholding algorithm. Gaussian

filtering can then be considered as a preprocessing step to improve the segmentation

procedure. In Figures 3.3(a) and 3.3(b), we represent the regions that we obtained using

a Gaussian blurring preprocessing. We obsevre that they are more homogeneous than

the segmented regions we obtain in Figure 3.2.

At this point, we would like to evaluate the accuracy of the segmented regions by

comparing the regions with the original image. We define the contour of the segmented

regions B as the set of pixels q satisfying:

• q ∈ C, and

• there is at least one pixel q′ such as q′ ∈ N4(p)2 and q′ ∈ C.

Figures 3.3(c) and 3.3(d) represent the contour of the segmented regions superimposed

on the image. In these figures, we see that the drawback of preprocessing the image

with Gaussian blurring is that the final result of the segmentation algorithm does not

accurately include the whole intra colonic region, but a smaller region inside. This is

mainly due to the fact that Gaussian blurring not only removes the noise but also blurs

the edges. Thus, our segmentation algorithm only allows us to obtain an approximate

location of the edges.

Global thresholding and region growing are therefore limited in our application.

In the next paragraph, we describe adaptive local thresholding as a way to refine the

results of those two algorithms.

3.3 Adaptive local thresholding

Instead of applying the same threshold to all pixels of the image, adaptive local thresh-

olding algorithm adjusts locally the threshold for each pixel according to its neighbour-

hood. One of the first implementations of adaptive local thresholding can be found in

[53]. In this paper, the authors divide the image in small windows. They use a method

similar to the one we used previously to determine an optimal threshold for every win-

dow. Then, they interpolate the values of those thresholds to assign a threshold for each

2N4(p) stands for the set of pixels that are 4-connected to q
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pixel in the image. A binary image is then reconstructed according to those thresholds.

This method is not particularly suitable for our application because the region of in-

terest3 is small compared to the size of the image. Then, we would spend much effort

segmenting regions we are not interested in.

Therefore, we develop an algorithm that uses the results from Section 3.2. We sup-

pose that we have already computed segmented regions as in Figure 3.3. We consider

one contour B of those regions. For each pixel q ∈ B, we consider W (q), a square win-

dow centered in q (we choose a square window with a side of 20 pixels). If we compute

the histograms of those windows, we notice that they are similar to the histograms of

the entire image. They can therefore be interpreted as the sum of two Gaussian distribu-

tions (Figure 3.4 and 3.5). We decide to use a Bayesian rule to compute a new threshold

value T (q) for each pixel q ∈ B. We define :

n1 = card{q ∈ C ∩W (q)} (3.9)

n2 = card{q ∈ C ∩W (q)} (3.10)

where card stands for the cardinal of the set.

We compute m1, m2, σ1 and σ2 as the means and variances of intensity among the

pixels in C ∩W (q) and C ∩W (q) respectively. We also approximate the probability of

occurrence of ω1 and ω2 in W (q) as:

P (ω1) =
n1

n1 + n2
(3.11)

P (ω2) =
n2

n1 + n2
(3.12)

Using Equations 3.5 to 3.8, we calculate a new threshold for the pixel q, T (q). Then,

if the intensity of pixel q, I(q) is such as I(q) > T (q), it means that global thresholding

misclassified this pixel according to the local properties of the image around this pixel.

Therefore, we update B:

B ←− B ∪ q (3.13)

This process is repeated until B remains stable.

3the colon and the regions surrounding the colon
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Figure 3.4: Histogram of a small window located near the colon wall in image 1
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Figure 3.5: Histogram of a small window located near the colon wall in image 2
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3.4 Results

We present the results of our method in Figure 3.6. We notice an improvement compared

to the results obtained in Figure 3.3. The contour of the segmented regions manages to

reach the real edge of the colon. However, the contour looks jagged. If we zoom in to

the contour as in Figure 3.7(b), we observe many variations whereas a smooth curve

would be expected. Despite changing the size of the window W (q) (Figure 3.7), there is

no significant improvement.

These results can be explained by the influence of noise in our algorithm. Indeed,

even though we reduce the noise to find the approximate contours in the first part, the

refinement with adaptive local thresholding uses the original image directly. Threfore,

we are still affected by the presence of noise near the edges.

In order to solve this problem, we would like to have an image where the noise

is reduced and which would be accurate enough to be used at every step of our seg-

mentation procedure. Therefore, we need to find a better preprocessing algorithm than

Gaussian blurring.

3.5 Conclusion

The segmentation method presented in this first chapter can be summarized by the chart

in Figure 3.8.

We showed that our segmentation procedure gives jagged contours due to the pres-

ence of noise. In the next chapter, we will propose a different preprocessing algorithm

to replace Gaussian blurring. This algorithm is called anisotropic diffusion.
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(a) Contour of segmented region on image 1

(b) Contour of segmented region on image 2

Figure 3.6: Final contours after adaptive local thresholding
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(c) Window size =30x30 pixels (d) Window size = 40x40 pixels

(a) Window sicze = 10x10 pixels (b) Window size = 20x20 pixels

Figure 3.7: Zoom on the contour for different sizes of the window W (q)
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Figure 3.8: Segmentation procedure with thresholding methods
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4.1 Introduction

This chapter presents the anisotropic diffusion algorithm as a preprocessing step to re-

duce noise while enhancing edges in MR images of the abdomen. After a theoretical

presentation of the algorithm, we will focus on the implementation and the optimiza-

tion of the parameters. Finally, we will see how the segmentation procedure studied

in the previous chapter can be adjusted to perform well on images preprocessed by

anisotropic diffusion.

4.2 Presentation of anisotropic diffusion

4.2.1 History

Anisotropic diffusion was first introduced by Perona and Malik [54] in 1990 to detect

edges in noisy images. If the efficiency of anisotropic diffusion is recognized by the sci-

entific community from the beginning, the first theoretical study was made only in 1992

by Catté et al. [55] and then later completed by Weickert [56] in 1998. The first applica-

tion of anisotropic diffusion for MR images was described by Gerig et al. [57] in 1992. In

this paper, the algorithm of Perona and Malik was used to enhance edges in MR images

of the brain.

Anisotropic diffusion is still present in the recent literature. Montagnat et al. [58] use

4D anisotropic diffusion (3D+time) in processing ultrasound images of the heart. They

used the model proposed by Weickert as a preprocessing step in their segmentation pro-
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cedure to observe deformations of the heart.

More recently, Le Manour [25] proposed the use of anisotropic diffusion as a prepro-

cessing step for the segmentation of the colon in MR images. In this chapter, we use the

same method as Le Manour and improve it by proposing a quantitative procedure in

the choice of the parameters.

4.2.2 Theoretical background

Perona and Malik model

In the first chapter, we used Gaussian blurring as a preprocessing method to reduce the

noise in MR images. The main drawback of this method is to blur the edges. Anisotropic

diffusion, unlike Gaussian blurring, has the ability to enhance edges while reducing the

noise.

The first concept in anisotropic diffusion is to consider the image not only as a func-

tion of the position but as a function of time too. We use the notation I(x, y, t). Therefore,

the original image is the image at t = 0 and all its transformations are considered as be-

ing the image at a different time t > 0. The image is transformed, or diffused, according

to the diffusion equation :

∂I

∂t
= div (D.∇I) (4.1)

where ∇ is the gradient operator and D is called the diffusion tensor. We notice that if

D is a scalar, Equation 4.1 becomes:

∂I

∂t
= D.∇2I (4.2)

where ∇2 is the laplacian operator. We recognize the heat equation, of which solutions

are well known:

I(t) = G√2kt ∗ I(0) (4.3)

where G√2kt is a Gaussian kernel of variance
√

2kt. In other words, the diffusion equa-

tion with D constant is equivalent to a Gaussian blurring.

The diffusion equation becomes interesting if we allow D to vary according to the
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position of the image. Perona and Malik [54] choose D = g(|∇I|) where g is an appli-

cation defined on R+ and taking its values in [0, 1]. The choice of g greatly influences

the result of the algorithm. We can impose some constraints on g to achieve our goal.

We can consider that a high value for |∇I| corresponds to a real edge in the image,

whereas a low value corresponds to noise. Therefore, we expect g to have the following

behaviour:

lim
x→+∞

g(x) = 0 (4.4)

g(0) = 1 (4.5)

The two functions proposed by Perona and Malik are:

g(|∇I|) = exp
(
|∇I|
K

)2

(4.6)

g(|∇I|) =
1

1 +
(
|∇I|
K

)2 (4.7)

where K is a constant which influences the sensitivity of the algorithm to edges. The

higher K is, the more edges are diffused.

We compare the results of the diffusion equation with D constant and D = g(|∇I|)

(using Equation 4.6) on a 1D signal. The results are presented on Figure 4.1. For each

graph, we display the evolution of the signal according to the diffusion time. It clearly

appears that the Perona and Malik diffusion algorithm preserves the edges whereas

Gaussian blurring tends to flatten the entire signal.

Weickert’s model

Although the results obtained by Perona and Malik are impressive, several researchers

raised the point that no analysis of the condition of stability has been made. Catté et

al. [55] show that if the noise in the image is significant, the algorithm proposed by

Perona and Malik can lead to instabilities and tends to enhance the noise. They solve

this problem in a simple and elegant way, by adding a regularization function. Equation

4.1 becomes:

∂I

∂t
= div (g(|∇Gσ ∗ I|).∇I) (4.8)
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(b) 1D diffusion with D=g(|I|)

(a) 1D diffusion with D constant

Figure 4.1: Comparison between anisotropic diffusion and Gaussian blurring on a 1D
signal
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where Gσ is a Gaussian kernel. They prove that with this simple modification, enhance-

ment of noise is avoided in general. They also prove uniqueness of the solution in this

case.

In [59], Weickert studied in detail the mathematical background of anisotropic dif-

fusion. He established a series of conditions that g must fulfill for stability. He showed

that the Perona and Malik functions do not fulfill those conditions and proposed a new

diffusion function:

g(|∇I|) = 1− exp

 −C(
|∇I|
λ

)4

 (4.9)

where C is a constant chosen so that xg(x) is increasing for x < λ and decreasing for

x ≥ λ. The parameter λ plays a similar role as the parameter K in the Perona and

Malik’s equations.

Improvement of Weickert’s model

Li et al. [60], in their analysis of the Perona and Malik’s model improved by Catté, show

that anisotropic diffusion tends to enhance noise if the amplitude of noise is similar to

the amplitude of edges in the image. We tried to see if the Weickert’s model led to the

same issue. In Figure 4.2(a), we apply the Weickert’s model to a 1D noisy signal which

contains one edge and one noisy peak of similar amplitude. We note that the noisy peak

is enhanced. Therefore, the Weickert’s model does not solve the issue raised by Li et al.

The solution proposed by Li et al. consists of making the parameters K and σ in

Perona and Malik’s equation (Equation 4.6 depend on the diffusion time t. A similar

action with the Weickert density function (Equation 4.9) would be to make λ and σ

dependent on t. The idea is to start with higher values for λ and σ so that high edges are

enhanced and the noise is reduced efficiently (in our 1D signal example, a high value of

σ can help flatten the peak). As the process evolves, the noise almost disappears and σ

becomes unnecessary. But small edges must also be preserved and enhanced. Therefore,

we make λ decrease with the diffusion time. We take the example on Li et al. to choose
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(a) 1D diffusion with constant parameters

(b) 1D diffusion with variable parameters

Figure 4.2: Diffusion of a 1D signal with a noisy peak
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Figure 4.3: Evolution of parameters λ and σ

the following expressions for λ and σ:

λ = λ0 exp
−t
20

(4.10)

σ = L+

(
σ0

(
1− t

10

))
(4.11)

where L+ is an operator defined as:

L+(x) = x if x ≥ 0 (4.12)

L+(x) = 0 if x < 0 (4.13)

The evolution of parameters λ and σ according to the diffusion time are shown in Figure

4.3.

We apply the algorithm with those parameters on the 1D signal (Figure 4.2(b)). The

improvement is obvious; the noisy peak is no longer enhanced while the edge is still

preserved.

In the rest of this work, we will use the diffusion Equation 4.8 with the Weickert’s model

defined in Equation 4.9 and variable λ and σ as defined in Equations 4.10 and 4.11.
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4.3 Implementation

Now that the theory about anisotropic diffusion has been established, we need to dis-

cretize Equation 4.8 to implement it. We will just give here the most important ideas of

this implementation. The reader can refer to the works of Le Manour [25] and Weickert

[56] [59] for more details.

Since I is defined as a function of space and time, the discretization must be done in

both space and time. The spatial discretization is straightforward. The pixel structure of

the original image gives the rectangular grid on which the image is projected. Central

differences are used in order to calculate the divergence operator. Equation 4.8 can be

written as:

dI

dt
= A(I).I (4.14)

where A is a (n× n) matrix.

The time discretization requires more attention. We discretize the time space with a

time step τ . We use the notation Ik = I(kτ). The usual explicit scheme leads to:

Ik+1 − Ik
τ

= A(Ik).Ik (4.15)

However, this scheme is stable only if τ satisfies some conditions. Weickert shows

that the stability can be guaranteed in any case for τ < 1
2 . This condition is too restrictive

for our application. Weickert proposes to use a semi-implicit scheme:

Ik+1 − Ik
τ

= A(Ik).Ik+1 (4.16)

which leads to

[I− τA(Ik)]Ik+1 = Ik (4.17)

where I is the identity matrix. This scheme is unconditionally stable. However, it re-

quires more computation since the matrix B = I − τA(Ik) needs to be inverted at each

iteration. Since this matrix is tridiagonal, it can be easily inverted with efficient algo-

rithms.
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4.4 Choice of parameters

4.4.1 Review of previous work

Now that the implementation scheme has been established, we still need to set the pa-

rameters of anisotropic diffusion. Four parameters have an influence on the result:

• λ: this parameter is inherent to the diffusion equation. It influences the sensitivity

of the algorithm to edges. The higher λ is, the more edges are diffused.

• σ: the variance of the Gaussian kernel in the regularization process.

• τ : the timestep. As we mentioned before, the stability of the algorithm is not

affected by its value, but the accuracy of the result can be affected.

• N : the total diffusion time or in other words, the number of times that Equation

4.17 is applied.

An analysis of the best value for the timestep τ is made by Weickert in [56]. He observes

that for τ ≤ 5, the results are not affected. For τ ≥ 10, the image starts having distortions

that are not acceptable. Therefore, we agree with the value τ = 5.

N must be high enough for the algorithm to modify the image. However, it must not

be too high, otherwise the image will be too diffused. Whitaker et al. [61] show that it is

impossible for the image to stabilize unless it is wider than 150,000 pixels. We decide to

choose N = 50. We will discuss this choice later.

We still have two parameters to set, λ and σ. More precisely, since we have defined

λ and σ as variables of the diffusion time t (Equations 4.10 and 4.11), we need to set

λ0 and σ0. In the literature about anisotropic diffusion, those parameters are usually

chosen based on visual interpretation. Le Manour [25] makes an attempt at choosing

λ and σ based on the signal to noise ratio (SNR) on a computer generated image. The

image is corrupted with Gaussian and speckle noise. Diffusion anisotropic is applied to

the corrupted image and the parameters are chosen in order to obtain the highest SNR.

The method chosen by Le Manour is debatable. Indeed, measuring the SNR is good way

to know how anisotropic diffusion reduces the noise in the image. But it does not give

any information about how edges are preserved. Therefore, we develop a new method

to evaluate the best parameters according to the two features we are interested in : noise
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(a) image3 (b) image4

Figure 4.4: MR images from two other datasets

Figure 4.5: Computer generated image

reduction and edge enhancement.

4.4.2 Creation of a computer generated image

Our first task is to create an image that would be representative of real images while

being relatively simple. We decide to use a 200 × 200 image with a dark shape on a

brighter background. The dark shape represents the colon while the background rep-

resents the gray tissues. We choose the value of the pixel intensities for each of those

regions according to our observation of real images.

For this purpose, we use the two images that were previously mentioned in this

work (Figures 3.1(a) and 3.1(c)) as well as two other images coming from two different

datasets (Figure 4.4). We select manually an 8 × 8 area inside each colonic air pocket.

Then, we calculate the mean value of all pixels. We find a mean value of 17.98 (with a
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standard deviation of 6.37). Therefore, we decide to set the intensity of pixels inside the

dark shape equal to 20.

Setting a representative value for the background is not as straightforward as the

range of intensities for gray tissues is wide. The contrast between the colon and sur-

rounding gray tissues can be very high as in Figure 3.1(a) or very low as in Figure 4.4(b).

We decide to set the background value at 50, which represents a low contrast. Our as-

sumption is that if the algorithm can perform well in the worst cases, it will perform

well in more favorable cases. Our computer generated image is shown in Figure 4.5.

The next step is to find a model for the errors that naturally affect MR images. Those

errors can be classified into two categories:

• small scale errors or noise, and

• large scale errors or bias. The main consequence of this error is that the mean

value for one particular kind of tissue can vary spatially

We use a model described by Guillemaud et al. [62]. Its mathematical formulation is

Imeasured = IoriginalB +N (4.18)

Imeasured is the acquired MR image. Ioriginal is the image which is supposed to represent

exactly the reality. B and N represent the bias and noise, respectively. Our goal is

to find expressions for B and N which are representative of the bias and noise that

usually affect MR images. Once we have those expressions, we will be able to corrupt

the computer generated image which will serve as the input for anisotropic diffusion.

According to Guillemaud et al., noise in MR images usually follows a Rayleigh or a

Rice distribution, but a classical Gaussian distribution with zero mean can be assumed

to evaluate the performance of algorithms. We make this assumption. A value for the

standard deviation of the noise σN needs to be determined. Kaufman et al. [63] propose

to estimate the standard variation of the noise in MR images by measuring the mean

M and the standard deviation SD of the intensity in regions of real MR images where

there is no information, for example the air surrounding the abdomen. Due to the fact

that the intensity of MR images is a complex value and that we only have access to the

magnitude in the displayed images, they found that M and SD are, respectively, an
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overestimation and an underestimation of σN :

M = 1.253σN (4.19)

SD = 0.655σN (4.20)

According to Gerig et al. [57], the measurement of M and SD could be affected by the

bias, unless it is done in small regions of the image. Therefore, they consider 8 × 8

regions in homogeneous parts of real MR images and calculate M and SD for each of

those regions. We use a similar strategy by taking 8 × 8 regions in the four images that

we used before. Those regions are always taken in the air surrounding the abdomen.

We use a total of 320 regions, 80 in each image, and we calculate M and SD for each

of those regions. For M , we find an average value of 11.51, the minimum value being

8.41 and the maximum value being 19.83. For SD, we find an average value of 3.37, the

minimum value being 1.98 and the maximum value being 9.73. Following what we did

previously in setting the contrast in our artificial image, we will consider the worst case

and take the maximum values. Using the equations of Kaufman (Equations 4.19 and

4.20), we obtain:

σN,M = 19.83/1.253 (4.21)

= 15.82 (4.22)

σN,SD = 9.73/0.655 (4.23)

= 14.86 (4.24)

where σN,M and σN,SD are estimations of σN from the calculation of M and SD respec-

tively. After considering those values, we choose σN = 15.

Estimating the bias B is a challenging task and has been the topic of many papers

([62] and [64] for example). Moreover, the bias can have different forms according to the

image and it is not possible to define a unique model which would be representative of

every different kind of bias. We decide to take our inspiration from Guillemaud et al.

[62], who use a sinusoidal bias in the y direction on their artificial image. The period

of the sinusoid is set so that the height of the image represents slightly more than one

period. Furthermore, Meyer et al.[64] indicate that the variation in intensity values due
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Figure 4.6: Computer generated image corrupted by noise and bias

to the bias can reach 30%. Therefore, we decide to use the expression:

B(x, y) = 1 + 0.15 sin
(

3πy
200

)
(4.25)

Finally, the computer generated image corrupted with N and B is displayed in Figure

4.6.

4.4.3 Description of the method

Now that we have our corrupted image, we need to find a method to choose the optimal

parameters. We define an error function as follows:

Error =
√

1
S

∑
q

(Ioriginal(q)− Idiffused(q))2 (4.26)

S represents the total number of pixels in the image and summation is made on all the

pixels q. We choose the set of parameters that minimize the error.

Our error function simply compares the diffused image with the original image.

Therefore we will select the parameters that restore the image the closest to the original

image. Parameters that do not reduce the noise efficiently will lead to a high value for

the error. Similarly, parameters that diffuse the edges will increase the value of the error.

The optimal parameters will be the best compromise between noise reduction and edge

enhancement
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(a) Diffused image with constant parame-
ters, N=50

(b) Diffused image with variable parame-
ters, N=50

Figure 4.7: Results of anisotropic diffusion on computer geenrated image

Our strategy is to choose the optimal values among a finite set of values:

λ0 ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} (4.27)

σ0 ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} (4.28)

Therefore, we have 7 × 8 = 56 possible combinations of parameters. We calculate the

error for each of those combinations and we choose the set of parameters giving the

lowest error.

4.4.4 Results

We obtain:

λ0 = 4 (4.29)

σ0 = 1 (4.30)

The value of the error E obtained with those parameters is:

E = 3.97 (4.31)

We have already discussed one advantage of variable λ and σ in section 4.2.2. An-

other advantage can be shown here.

In Figure 4.7, we compare the computer generated image diffused with constant λ
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(a) Diffused image with constant parame-
ters, N=100

(b) Diffused image with variable parame-
ters, N=100

(c) Diffused image with constant parame-
ters, N=200

(d) Diffused image with variable parame-
ters, N=200

(e) Diffused image with constant parame-
ters, N=500

(f) Diffused image with variable parame-
ters, N=500

Figure 4.8: Evolution of the results according to the diffusion time N
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and σ1 and the image diffused with variable λ and σ.

The differences are not visually significant for N ≥ 50 However, if we apply the

algorithm for other values of N ≥ 50 (Figure 4.8), we observe that with constant param-

eters, the edges start disappearing for N ≥ 200 and the image is completely diffused

for N ≥ 500. On the other hand, with variable parameters, the image becomes stable.

Therefore, using variable values for λ and σ rather than constant values. removes the

constraint of choosing an optimal value for N .

Finally, we apply anisotropic diffusion with variable λ and σ on the four MR images

that we mentioned before (Figure 4.9). The images appear less noisy than the original

ones. The edges also look sharper. In those conditions, it seems that the segmentation

of those images will be easier and more accurate, as we will see in the next section.

4.5 Modification of the segmentation procedure

The preprocessing of MR images of the abdomen with anisotropic diffusion has a radi-

cal effect on the histograms of images. In Figure 4.10, we represent the histograms of the

same images as we used in the previous chapter (Figure 3.1) after diffusion. We can see

that our assumption that the histogram is the sum of two Gaussian distributions cannot

be applied to the histogram of the diffused image.

The same observation can be made about the local histograms in adaptive thresh-

olding. Figures 4.11 and 4.12 display the histogram of the same windows as in Figures

3.4 and 3.5 after diffusion.

We decide not to change the global thresholding algorithm. We still use the original

image to determine the threshold. However, we use this threshold to classify the pixels

of the diffused image. A region growing algorithm is then applied to exclude extra-

colonic areas.

The adaptive local thresholding is however completely changed. This time, we

work directly on the non-normalized histogram. Our goal is to find a way to choose the

local thresholds T (q) for each pixel q ∈ B as defined in section 3.3. We note that there

are usually two or more peaks on the local histograms, the first one being the highest

and corresponding to colonic air. Our strategy is to select all the intensity values which

1We choose λ = 2 and σ = 0.75, which are the optimal constant values, using the same method as the
one we described in the previous section
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(a) Image 1 diffused

(d) Image 4 diffused(c) Image 3 diffused

(b) Image 2 diffused

Figure 4.9: MR images after anisotropic diffusion
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(a) Image 1 diffused
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(b) Histogram of image 1 diffused

(d) Histogram of image 2 diffused

Figure 4.10: Histogram after anisotropic diffusion
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Figure 4.11: Histogram of a small window located near the colon wall in image 1 after
anisotropic diffusion
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Figure 4.12: Histogram of a small window located near the colon wall in image 2 after
anisotropic diffusion
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Figure 4.13: Local threshold determination
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are represented by 5 pixels or more in the window. We retain the first two values and

set T (q) as the middle value between those two values. An example is given in Figure

4.13. On this histogram, the first intensity value represented by more than 5 pixels is

27. The second intensity value represented by more than 5 pixels is 173. Therefore, we

choose T (q) = 27+173
2 = 100.

4.6 Results

In Figure 4.14, we present the results of our segmentation procedure with anisotropic

diffusion as a preprocessing step. In terms of accuracy, the contour represents accurately

the real contour of the colon. Moreover, if we zoom in to the contour, it appears more

regular than the contour we obtained in the previous chapter, as it is shown in Figure

4.15.

4.7 Conclusion

Figure 4.16 illustrates the entire segmentation procedure of this chapter. Anisotropic

diffusion appears as an attractive method to reduce noise in MR images. The results

are better than those we obtained with Gaussian blurring as a preprocessing step. In the

next chapter, we will take a completely different approach to segment the colon with the

use of deformable models or snakes. The results of the two approaches, thresholding

methods and snakes, will then be compared.

49



4.7. CONCLUSION

(a) Contour of segmented region in image 1

(b) Contour of segmented region in image 2

Figure 4.14: Contour of segmented region using thresholding methods and anisotropic
diffusion
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(a) Contour obtained with anisotropic 
diffusion

(b) Contour obtained without anisotropic 
diffusion

(e) Contour obtained with anisotropic 
diffusion

(c) Contour obtained with anisotropic 
diffusion

(f) Contour obtained without anisotropic 
diffusion

(d) Contour obtained without anisotropic 
diffusion

Figure 4.15: Comparison of the contours obtained with different preprocessing methods
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Figure 4.16: Segmentation procedure with thresholding methods and anisotropic diffu-
sion
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5.1 Introduction

In this chapter, we investigate a different approach for segmentation problems. We start

from a closed contour, which can be deformed according to the information given by the

image, as well as some other constraints defined by the user. The goal is to match this

contour with the real contour of the colon. Such a contour is called deformable model

or snake.

After presenting the history and the theory of deformable models, we will propose a

first implementation based on finite difference approximation. We will show the limita-

tions of this model and present an implementation based on B-snakes. Finally, we will

see how those two models are linked to each other and how they may be integrated in

a single implementation scheme.

5.2 History

Snakes were first introduced by Kass et al. [65] in 1988. they presented the concept of

a dynamic curve which could be deformed under the constraints of internal and exter-

nal forces. Internal forces impose a smoothness constraint on the curve while external

forces attract the curve to some features of the image, typically lines or edges. Due to its

dynamic behavior, they name the curve a snake.

The first application to medical images appeared in 1990, when Cohen et al. [66]

used snakes for the segmentation of the left ventricle in ultrasound and MR images. But
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the potential of snakes in medical imaging applications was established by McInerney

et al. in [67]. Since then, snakes have proven to be an efficient method of segmentation,

particularly for noisy medical images such as MR images and ultrasound images.

Improvements of the initial model have been a popular topic in the literature since

Kass et al. first introduced the idea. In their first paper, Cohen et al. propose a new

implementation based on finite elements. Simultaneously, Menet et al. [68] developed

a B-spline implementation of snakes, commonly referred to as B-snakes. Both finite ele-

ments and B-splines require fewer discretization points and are more accurate than the

initial finite difference model proposed by Kass et al. (more details about the superiority

of B-snakes over finite difference snakes will be given later).

Other models of snakes can be found in the literature. We list here some of the most

important developments:

• Staib et al. [69] developed a probabilistic snake based on a Fourier decomposition

of the boundary;

• Gavrila [70] used a Hermitian deformable model whose implementation is com-

parable in theory to B-snakes;

• Caselles et al. [71] developed a geometric deformable model which can easily

handle topological transformations (splitting and merging).

As stated in the introduction, medical image processing should be as automatic as pos-

sible. Therefore, an important issue must be addressed, namely, their initialization. In-

deed, the first models require the snake to be initialized close to edges to converge. This

condition is not practical in medical imaging applications because it would require too

much user interaction.

Various efforts have been made to overcome this problem. The first attempts tried

to modify the external forces to have a wider range of attraction. An example is the

work of Xu et al. [72] who created a new external force field called the Gradient Vector

Flow (GVF). GVF will be studied in detail later. Another approach to this problem is to

develop a complete initialization algorithm.

The history and main challenges of snakes have been presented. We will now study

in detail the mathematical foundations.
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5.3 Theoretical background

A snake is a 2D curve:

[0, 1] −→ R2 (5.1)

s 7−→ v(s) = (x(s), y(s)) (5.2)

This curve moves through the spatial domain of the image in order to minimize the

energy functional:

A −→ R (5.3)

v 7−→ E(v) =
∫ 1

0
[Eint(v(s)) + Eext(v(s))]ds (5.4)

A represents the space of admissible snakes. Eint(v(s)) is the internal energy associated

with the snake. It guarantees the smoothness of the snake. A commonly accepted form

for Eint(v(s)) is:

Eint(v(s)) =
1
2
αv′(s)2︸ ︷︷ ︸

membrane energy

+
1
2
βv′′(s)2︸ ︷︷ ︸

thin-plate energy

(5.5)

where (α, β) ∈ R+2 and the primes denote differentiation with respect to s. The mem-

brane energy discourages stretching and discontinuity while the thin-plate energy avoids

the bending of the curve. To give more flexibility to the snake, it is common to take into

consideration only the membrane energy (by setting β = 0). Therefore, the snake can

become second-order discontinuous and develop corners [65].

Eext(v(s)) is the external energy. This energy derives form the image and is meant

to attract the snake toward the features we are interested in. Unlike the internal energy,

many expressions exist for this term.

The functional (5.5) can be written as

E(v) =
∫ 1

0
[αv′(s)2 + Eext(v(s))] ds (5.6)
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We denote

f(s, v(s), v′(s)) =
1
2
αv′(s)2 + Eext(v(s)) (5.7)

We know that a necessary condition to minimize E(v) is to solve the Euler-Lagrange

equations:

∂f

∂x
=

d

ds

(
∂f

∂x′

)
(5.8)

∂f

∂y
=

d

ds

(
∂f

∂y′

)
(5.9)

The first equation in the x direction leads to

∂f

∂x
=

d

ds

(
∂f

∂x′

)
(5.10)

∂Eext(v(s))
∂x

=
1
2
d

ds
(2αx′(s)) (5.11)

∂Eext(v(s))
∂x

= αx′′(s) (5.12)

αx′′(s)− ∂Eext(v(s))
∂x

= 0 (5.13)

Similarly, in the y direction,

αy′′(s)− ∂Eext(v(s))
∂y

= 0 (5.14)

We make Equations 5.13 and 5.14 dynamic by adding a time variable. We obtain1:

∂x(s, t)
∂t

= α
∂2x(s, t)
∂s2

− ∂Eext
∂x

(5.15)

∂y(s, t)
∂t

= α
∂2y(s, t)
∂s2

− ∂Eext
∂y

(5.16)

The terms −∂Eext
∂x and −∂Eext

∂y can be seen as the components of an external force Fext =

(Fx, Fy) pushing the snake toward the boundary of the colon. Therefore, we denote

Fext = −∇Eext =

Fx
Fy

 (5.17)

1from now we will write Eext in place of Eext(v(s, t)) to simplify the notation
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Similarly, α∂
2x(s,t)
∂s2

and α∂
2y(s,t)
∂s2

are the components of an internal force Fint. We can

write

Fint = α
∂2v(s, t)
∂s2

(5.18)

The theoretical background having been set, we will now see in detail how to imple-

ment snakes. This implementation can be divided into three steps:

• Initialization

• Choice of external forces

• Discretization

In the following chapter, we will propose our model for each of those steps.

5.4 Initialization

In the early works on snakes, initialization was not a major focus. This task was usually

done manually. The level of interaction between the user and the algorithm was quite

high because the initial snake had to be accurate enough for the algorithm to converge.

The common approach to solve this problem is to use a pre-segmentation algorithm.

This algorithm is usually very basic since we only require the initial snake to be at a

reasonable distance from the edges. Several authors have used this strategy. Medina et

al. [73] use a Canny edge detector associated with a region growing algorithm. Rahna-

mayan et al. [74] combine global thresholding and morphological operators.

If we refer to Chapter 3 of our work, we have already developed a basic segmen-

tation algorithm. This algorithm is based on global thresholding, region growing and

adaptive local thresholding. Since we just need a rough approximation of the contour,

the adaptive local thresholding part is not necessary. Figure 5.1 is a flowchart of our

initialization procedure.

As stated in Section 3.2, the actions required from the user are:

• Selecting a point inside the colon,

• Selecting a region inside the colon and another region in the gray matter surround-

ing the colon.

Those actions are simple and do not require much time for execution.
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Figure 5.1: Initialization of the snake
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Figure 5.2: External forces applied to a snake

5.5 External force field

5.5.1 First model

The external energy term is meant to attract the snake toward the colon wall. This

energy must therefore be minimal at the edges. It seems natural to choose

Eext = −||∇I||2 (5.19)

The corresponding force Fext can be written as

Fext = ∇||∇I||2 (5.20)

In Figure 5.2, we represent this force field applied on a snake2.

The main problem with the energy defined in Equation 5.19 is that its capture range

is very small. In other words, there is a high chance that the snake does not converge

toward the edges, even with a very good initialization. Figure 5.3(a) gives an example

of such a situation.

Cohen [66] proposes a solution to this problem which consists in normalizing the

forces and adding an inflating term. Fext becomes

Fext = k1
∇P
||∇P ||

+ k2~n(s, t) (5.21)

where P = −||∇I||2 and ~n(s, t) is the normal vector to the snake at point v(s, t). The role

of the term k2~n(s) is to inflate the snake when the gradient values are small and do not

2what is represented is the interpolation of the force field to discrete points of the snake
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5.5. EXTERNAL FORCE FIELD

(a) Traditional external forces (b) Cohen’s model with inflating force

Figure 5.3: Comparison between the traditional model and Cohen’s model of external
forces

(a) Cohen’s model (b) GVF

Figure 5.4: Comparison between Cohen’s model and the GVF near a haustral fold of the
colon

give information about the location of the edges (small gradient values are generally due

to noise). If we choose k1 > k2, the gradient force will become predominant as the snake

gets close to the edges, allowing the snake to converge. We can see the improvement

brought by this force model in Figure 5.3(b).

Cohen’s model is powerful in most applications in general. However, it does not

give good results if the region to be segmented has concave parts. This is a real problem

in our application because the colon has many concave parts called haustral folds. In

Figure 5.4(a), we can see that Cohen’s force tends to push the snake away from the

concave area. This problem can be solved by using another model of external forces

called the gradient vector flow (GVF).
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5.5.2 GVF

The first step to compute a GVF is to define an edgemap:

e = ||∇I||2 (5.22)

We notice that this edgemap is the opposite of our first definition of the external energy

(Equation 5.19). The GVF is defined as the vector field Fext = (Fx, Fy) which minimizes

the functional

E =
∫∫

I
µ

((
∂Fx
∂x

)2

+
(
∂Fx
∂y

)2

+
(
∂Fy
∂x

)2

+
(
∂Fy
∂y

)2
)

︸ ︷︷ ︸
1

+ |∇e|2|Fext −∇e|2︸ ︷︷ ︸
2

dx dy

When there is no information from the data (∇e small), the functional is dominated by

the partial derivatives of the vector field (first term), thus making the field smooth. µ

appears as a regularization parameter. The noisier the image is, the higher µ should be.

On the other hand, when ∇e is high, the second term dominates the functional and is

minimized by taking F = ∇e. Then, the vector field points toward the high gradients

of the image, including the edges of the colon. Similarly to the snake functional, the

minimization of the the function E can be done by solving the Euler Lagrange equations.

Details of the implementation of the GVF can be found in Appendix A. In Figure 5.4(b),

we show the GVF on a portion of snake near a haustral fold. We observe that unlike

Cohen’s force, the GVF attracts the snake inside the concavity.

5.6 Discretization with finite differences

The most natural way to discretize Equations 5.15 and 5.16 is the finite difference method.

As we discussed before in the chapter on anisotropic diffusion, the discretization must

be done both in space and time. From now we will focus on Equation 5.15 as the ar-

guments are exactly the same for Equation 5.16. We start with the discretization in the

space domain. We use the notation xi(t) = x(hi, t) where h is a space step. Therefore,

we have

∂xi(t)
∂t

= α
xi+1(t)− 2xi(t) + xi−1(t)

2h2
+ Fxi(t) (5.23)
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Then, we discretize Equation 5.23 in the time domain. We define γ = 1/τ as the

inverse of the time step. We note xi(tk) = xi(kτ). We use an implicit scheme for the

internal force term and an explicit scheme for the external force term as follows:

γ (xi(k + 1)− xi(k)) = α
xi+1(k + 1)− 2xi(k + 1) + xi−1(k + 1)

2h2
+ Fxi(k)

This equation can be written in matrix form. Assuming that we have n+1 discretization

points (x0 . . . xn), we define a vector X as:

X =



x0

...

xi
...

xn


(5.24)

Similarly, we define FX as:

FX =



Fx0

...

Fxi

...

Fxn


(5.25)

We introduce a matrix A of size ((n+ 1)× (n+ 1)):

A =



−2 1 0 . . . . . . 0 1

1 −2 1 0 . . . 0 0

0 1 −2 1 . . . . . . 0
...

...
...

...
. . . . . .

...

1 0 . . . . . . . . . 1 −2


(5.26)

Therefore, we have:

γ (X(k + 1)− X(k)) = αAX(k + 1) + FX(k) (5.27)

(γI− αA)X(k + 1) = γX(k) + FX(k) (5.28)

X(k + 1) = (γI− αA)−1(γX(k) + FX(k)) (5.29)
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Despite the simplicity of the implementation, we found that this method was not

optimal for several reasons:

• First, the spatial discretization requires a small space step to conserve the smooth-

ness of the snake. This condition leads to an important number of discretization

points, increasing the computation time.

• Then, in our construction, the distance between the discretization points is the

same for every point 3. Two problems may be encountered:

– If the colon wall has a complicated shape at some place, there is a possibility

that the number of points is locally insufficient to represent the shape accu-

rately.

– Similarly if the colon wall has a regular shape at some place, there might be

an over-representation of the shape.

In other words, the number of discretization points does not adjust to the local

shape properties of the colon wall.

Considering those limitations of the finite difference model, we investigate another im-

plementation method called B-snakes.

5.7 B-snakes

5.7.1 Theoretical background

A B-spline is a linear combination of polynomial functions with finite support called

splines. Givenm+1 values si ∈ [0, 1] called knots, a two-dimensional B-spline of degree

n is a parametric curve:

[s0, sm] −→ R2 (5.30)

s 7−→ v(s) =
m−n−1∑
i=0

Pibi,n(s) (5.31)

3the notion of distance must be here considered for the parameter s. This distance is not the euclidean
distance in the 2D space of the image
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where Pi are called control points (Pi ∈ R2 ∀i ∈ [0,m − n − 1]) and bi,n are defined

recursively as

bi,0(s) =

1 if si ≤ s < si+1

0 otherwise
(5.32)

bi,n(s) =
s− si

si+n − si
bi,n−1(s) +

si+n+1 − s
si+n+1 − si+1

bi+1,n−1(s) (5.33)

We consider the particular case of uniform B-splines where s0 = 0, sm+1 = 1 and

si+1 − si = ∆s = constant.

To better understand the concept of B-splines, let us first consider a B-spline of de-

gree 1. In this case, there are m − 1 control points (P0 . . . Pm−2). v(s) can be written

as

v(s) =
m−2∑
i=0

Pibi,1(s) (5.34)

From the definition of the basis functions, we have ∀i ∈ {0 . . .m− 2},

bi,1(s) =


s−si
∆s if si ≤ s < si+1

si+2−s
∆s if si+1 ≤ s < si+2

0 otherwise

(5.35)

If we consider a particular s ∈ [si, si+1], i ∈ {1 . . .m − 2}, we notice that all the basis

functions are equal to 0 except bi,1 and bi−1,1. Consequently, vi(s), which is the restriction

of v(s) to [si, si+1] can be written as

vi(s) = Pi−1bi−1,1(s) + Pibi,1(s) (5.36)

vi(s) = Pi−1
si+1 − s

∆s
+ Pi

s− si
∆s

(5.37)

At this point we introduce a new variable s = si+1−s
∆s . A rapid calculation shows that

s−si
∆s = 1− s. If we write vi according to variable s, we obtain

vi(s) = Pi−1s+ Pi(1− s) ∀s ∈ [0, 1] (5.38)
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We recognize this as the equation of a straight line joining Pi−1 and Pi. It can be easily

shown that in the cases i = 0 and i = m − 1, vi is a line joining (0, 0) and P0, and Pm−1

and (0, 0), respectively. Finally, v appears as a broken line joining all the control points

and the origin. Therefore, v is continuous (and even C∞) everywhere except at the

knots. Moreover, by construction, if we move one control point, the shape of the curve

only changes locally (only the two lines linking the control point to its two neighbours

change).

If we want to work with a closed curve (which is what we will need to do), we

simply need to use the sequence of control points (P1 . . . Pm−1P1) and we restrict the

parameter s to [s1, sm−1].

Having shown the main properties of a B-spline of degree 1, it is easy to show that

in the general case, a B-spline of degree n:

• is a polynomial function of degree n and is therefore C∞ between knots,

• is Cn−1 at the knots,

• only changes locally when a control point is moved,

• can be extended to a closed curve by using the sequence of control points

(P1 . . . Pm−n−1P1 . . . Pn) and parameter s restricted to [sn, sm−1].

Those properties make B-splines a perfect tool for segmentation applications where both

regularity and flexibility of the curve are required. The possibility of a local control of

the curve is also a great advantage as it allows the curve to adjust to local properties of

the image. B-splines used as snakes in segmentation applications are often referred to

as B-snakes.

In our application, we choose a B-spline of dimension 3 or cubic B-spline. Using the

same change of variables as before, it can easily be shown that on each interval [si, si+1],

v can be written in matrix form:

vi(s) =
[
s3 s2 s 1

]


−1
6

1
2

−1
2

1
6

1
2 −1 1

2 0

−1
2 0 1

2 0

1
6

2
3

1
6 0





Pi−1

Pi

Pi+1

Pi+2


(5.39)
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5.7.2 Discretization

With the matrix formulation in Equation 5.39, the discretization of the B-snake can be

done by sampling the interval [0, 1]. We use a sampling step h and we note sj = jh. Let

Vi be a matrix such as Vi(j) = vi(sj). If we assume that there are p sampling points, Vi

is of size (p× 2). Then, we have ∀i ∈ {1 . . .m− 3}4:

Vi =



0 0 0 1
...

...
...

...

s3
j s2

j sj 1
...

...
...

...

1 1 1 1





−1
6

1
2

−1
2

1
6

1
2 −1 1

2 0

−1
2 0 1

2 0

1
6

2
3

1
6 0





Pi−1

Pi

Pi+1

Pi+2


(5.40)

We simplify the notation by defining:

H =



0 0 0 1
...

...
...

...

s3
j s2

j sj 1
...

...
...

...

1 1 1 1





−1
6

1
2

−1
2

1
6

1
2 −1 1

2 0

−1
2 0 1

2 0

1
6

2
3

1
6 0


(5.41)

H is of size (p× 4). Vi can then be written:

Vi = H



Pi−1

Pi

Pi+1

Pi+2


(5.42)

4we assume that Pm−3 = P0, Pm−2 = P1 and Pm−1 = P2
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we can go further and write the whole B-snake in a single matrix formulation. We first

define the following vectors and matrices:

V =



V1

...

Vi

...

Vm−3


(5.43)

V is of size (p(m−3)×2). We write the matrix H defined in (5.41) as H = [H1 H2 H3 H4]

where each Hk k ∈ {1 . . . 4} is of size (p× 1). We define a new matrix M:

M =



H1 H2 H3 H4 . . . . . . . . . . . .

0 H1 H2 H3 H4 . . . . . . . . .

...
...

...
...

...
. . . . . . . . .

H4 . . . . . . . . . . . . H1 H2 H3

H3 H4 . . . . . . . . . . . . H1 H2

H2 H3 H4 . . . . . . . . . . . . H1


(5.44)

We set M so that its size is (p(m− 3)× (m− 3)). Finally we define the vector P:

P =



P0

...

Pi
...

Pm−4


(5.45)

which is simply the vector of control points of size ((m − 3) × 2). The set of discrete

points V representing the B-snake can be easily written as

V = MP (5.46)

From a set of m − 3 points control points, we are able to reconstruct a curve with

p(m−3) discretization points. We recall that for the finite difference methods, we needed

to record all the discretization points in order to reconstruct the curve (no difference was
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made between control points and discretization points). Therefore, the assumption that

the contour of the colon can be approximated by polynomial functions of degree 3 linked

together in a C2 way allows us to reduce the quantity of information that needs to be

recorded to define a particular snake. If we manage to find a way to interact directly

with those control points to deform the snake, we could reduce the computational load.

This is exactly what we will do in the next section.

5.7.3 Deformation of the B-snake

As we mentioned earlier, the snake is deformed under the influence of internal forces

and external forces. We will see how those forces can be applied directly to the control

points.

First, we recall the expression of internal forces (derived for the membrane energy):

Fint = α
∂2v(s, t)
∂s2

(5.47)

This force uses the second derivative of v with respect to the variable s. Since the B-snake

that we created in Section 5.7.1 is at worst C2, the second derivative exists at every point

on the B-snake. More precisely, we realize that if we use the following matrix:

H” =



0 1
...

...

sj 1
...

...

1 1



−1 3 −3 1

1 −2 1 0

 (5.48)

in place of H in Subsection 5.7.2, we can construct a matrix M” following the same prin-

ciple as in Equation 5.44 to finally obtain a good approximation of the second derivative

of the B-snake with the following expression:

V” = M”P (5.49)

The discretized internal force can be written as

Fint = αM”P (5.50)
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We focus now on the external force. We assume that we have already computed

an external force field such as GVF. We simply interpolate this force field on each dis-

cretized point of the B-snake to create a (p(m− 3)× 2) vector Fext.

Finally, the equation of deformation of the snake discretized in the spatial domain

can be written as

M
∂P
∂t

= αM”P + Fext (5.51)

For the discretization in the time domain, we use a semi-implicit method similar to the

one we used in the finite difference model. We obtain

γM (P(k + 1)− P(k)) = αM”P(k + 1) + Fext (5.52)

(γM− αM”)P (k + 1) = γMP(k) + Fext (5.53)

For reasons that will become clearer in the next chapter, we would like to find an ex-

pression for ∆P(k) = P(k + 1)− P(k). From Equation 5.53, we easily obtain:

γM (P(k + 1)− P(k)) = αM”P(k + 1) + Fext (5.54)

(γM− αM”)(P(k + 1)− P(k)) = γMP(k) + Fext − (γM + αM”)P(k)

(γM− αM”)∆P(k) = αM”P(k) + Fext (5.55)

The matrix M = γM − αM” is of dimension (p(m − 3) × (m − 3)). Therefore, it is not a

square matrix and Equation 5.55 is not directly invertible. To solve this problem, we use

the Moore-Penrose pseudo inverse defined as:

M+ = (MTM)−1MT (5.56)

Now we can solve Equation 5.55:

M∆P(k) = αM”P(k) + Fext (5.57)

MTM∆P(k) = MT (αM”P(k) + Fext) (5.58)

∆P(k) = (MTM)−1MT (αM”P(k) + Fext) (5.59)

∆P(k) = M+(αM”P(k) + Fext) (5.60)
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5.7.4 Stopping criterion and control point insertion

Until now, we have omitted an important aspect when implementing a dynamic model:

the stopping criterion. The most natural idea would be to stop the algorithm when the

variation ∆P becomes small. As we saw before, ∆P(k) is a ((m − 3) × 2) matrix which

represents the displacement of P at the time k. We can compute a norm for this matrix

as

‖∆P(k)‖ = max
i∈{0...m−4}

√
(∆P(k))2

i,1 + (∆P(k))2
i,2 (5.61)

With this expression, we simply calculate the largest displacement among all the control

points. If we set a value δ1 > 0, we can decide to stop the algorithm at time kf which

verifies:

‖∆P(kf )‖ < δ1 (5.62)

‖∆P‖ < δ1 (5.63)

‖F‖ < δ2 (5.64)

P = P + ∆P (5.65)

However, there might be situations where a small displacement does not mean that

the forces applied to the snake are weak. For example, it is possible that the forces along

a portion of the snake between two control points compensate each other, resulting in a

small displacement. In such a situation, one might want to have more control points to

better estimate the forces at this location.

We develop a strategy to insert a control point at the location where the forces are

the strongest. We define a norm for the term F(k) = αM”P(k) + Fext which is similar to

the norm for the displacement matrix:

‖F(k)‖ = max
j∈{0...pm}

√
(∆F(k))2

j,1 + (∆F(k))2
j,2 (5.66)

Then, we define a value δ2 > 0. If ‖F(k)‖ ≥ δ2, a control point is inserted where the

force is the strongest.

We still need to indicate how to insert a control point exactly. The goal is to insert the
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Figure 5.5: Control point insertion

point without changing the shape of the snake. Let us imagine that we have a sequence

of m − 3 control points P and that the maximal force has been found on the curve con-

trolled by points (Pi−1, Pi, Pi+1, Pi+2) at the parameter s. We create a new sequence of

m− 2 control points P̂ so that

∀j ∈ 0 . . .m− 2, P̂j = (1− αj)Pj−1 + αjPj (5.67)

(5.68)

where αj is given by

αj =


0 for j ≤ i− 1

s+2−(i−j)
3 for i ≤ j ≤ i+ 2

1 for j ≥ i+ 3

(5.69)

Figure 5.5 illustrates the control points insertion strategy.

5.8 Comparison of the two models

We have presented the two models (finite difference and B-snake) in a classical way,

which makes them difficult to compare at first sight. Following a similar approach to

Terzopoulos et al. [51], we will try to unify the two models in the same implementation.
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More precisely, we will show how the finite difference model can be interpreted as a

particular B-snake.

The finite difference snake model can be seen as a B-snake of degree 1. Indeed, the fi-

nite difference model uses a sequence of discretization points which are linked together

with straight lines. As we mentioned before, the discretization points corresponds to the

control points. By analogy with the B-snake, the finite difference snake can be written

as

V = MP (5.70)

M being the identity matrix Im−1 Obviously, unlike the cubic B-spline, the finite dif-

ference snake is not differentiable. Therefore, the discretization of the internal force

Fint(s) = α∂
2v(s,t)
∂t2

is not straightforward. However, the only thing that we need to do is

to find a matrix M” which would act as a second derivative operator by analogy with

the B-snake implementation. A suitable matrix is the one we defined in Equation 5.26.

We simply change the dimensions for the analogy. So:

M” =



−2 1 0 . . . . . . 0 1

1 −2 1 0 . . . 0 0

0 1 −2 1 . . . . . . 0
...

...
...

...
. . . . . .

...

1 0 . . . . . . . . . 1 −2


(5.71)

M and M” having been defined, the snake deformation equation is exactly the same as

the equation for the B-snake:

∆P = M+(αM”P(k) + Fext) (5.72)

We now compare the two models in terms of computational load. Let mFD − 1 be the

number of control points for the finite difference snake and mBS − 3 be the number of

control points for the B-snake. Let p be the number of sampling points in each interval

[0, 1] as defined before for the B-snake. In the two cases, the pseudo inverse A+ can be
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calculated beforehand. In the finite element case, the complexity is equal to:

CFD = 2(mFD − 1)2 + (mFD − 1) + 2(mFD − 2)2 (5.73)

CFD ∼ 4m2
FD (5.74)

For the B-snake model,

CBS = 2p(mBS − 3)2 + p(mBS − 3) + 2p(mBS − 3)2 (5.75)

CBS ∼ 4pm2
BS (5.76)

As stated before, a B-snake requires fewer control points than a finite difference snake.

More precisely, if we want a equivalent representation of the two models, we should

take mFD ∼ pmBS . CBS can be expressed according to mFD:

CBS ∼ 4p
m2
FD

p2
(5.77)

CBS ∼
4m2

FD

p
(5.78)

A common value for p is p ≈ 10. We can see that the computational complexity can be

reduced by a factor 10 with the B-snake model.

At this point, since we have transformed the finite difference model in a B-snake

model, we could also generalize the stopping criterion developed in the previous chap-

ter. There would be no problem to generalize the first part, namely the evaluation of

‖∆P(k)‖. However, the control point insertion would have no sense for the finite differ-

ence model. Indeed, in this model, since control points and discretization points are the

same, we do not measure the force between the control points as for the B-snake model.

Therefore, a situation as the one we mentioned in Subsection 5.7.4 (a compensation of

forces yielding to a small displacement) can not happen. This is one of the reasons why

B-snakes are more flexible and accurate than finite difference snakes.

5.9 Conclusion

In this chapter, a complete procedure of segmentation based on snakes has been pre-

sented. The theory about snakes has been explained in details and a correspondence
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Figure 5.6: Segmentation procedure with snakes
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between the traditional finite difference implementation model and B-snakes has been

established. Figure 5.6 summarizes the entire snake algorithm. The reader can refer to

Section 5.4 and Subsection 5.7.4 for more details about the initialization and the stop-

ping algorithm test respectively.

Based on the initial results that we have presented, snakes seem to give a smoother

contour than the thresholding methods presented before. In the next chapter, we will

compare in detail the two methods on two sets of 2D MR images of the colon.
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6.1 Presentation of the data

The full procedure for a complete MR colonography examination comprises several ac-

quisitions:

• T2-weighted

• T2-weighted with colon inflation (the colon remain inflated for all the following

acquisitions)

• T1-weighted in coronal view

• T1-weighted in coronal view with contrast agent (the contrast agent remains for

all the following acquisitions)

• T1-weighted in axial view, patient in prone position

• T1-weighted in axial view, patient in supine position

The T1-weighted images with colon inflated and contrast agent are usually used the

ones used by the radiologist to detect polyps because they offer the best resolution.

In our work, we tested our algorithms on the T1-weighted images in axial view, the

patient being in prone position. We used images coming from two datasets, both from

the National University Hospital (NUH) in Singapore.

The first dataset comprises 176 images against 168 for the second dataset. In the two

datasets, the images are of size 288 × 320 with an intra-slice resolution of 1.25 mm and
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6.2. PRESENTATION OF THE METHOD

(a) Image with no colon

(b) Another image with no colon

Figure 6.1: Examples of images not retained for testing our algorithms

an inter-slice resolution of 2.5 mm.

Some images were not usable for our experiment. The reason is that the colon

simply did not appear in some of the images at the extremity of the dataset (Figure

6.1(a)). Therefore, we kept 143 images in the first dataset and 152 images in the second

dataset.

6.2 Presentation of the method

6.2.1 Quantitative evaluation

The most common method to evaluate an segmentation algorithm is to compare the

result with a manually segmented image. We denote by ΩM , ΩTM and ΩBS the set
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of colonic pixels segmented manually, using thresholding methods (TM) and using B-

snakes (BS), respectively. We use the Jaccard’s measure to compare the sets:

JTM =
card(ΩTM ∩ ΩM )
card(ΩTM ∪ ΩM )

(6.1)

JBS =
card(ΩBS ∩ ΩM )
card(ΩBS ∪ ΩM )

(6.2)

The set of manually segmented pixels is considered as ground truth. Therefore, the va-

lidity of this method depends closely on the quality of manual segmentation. However,

due to the relatively low quality of MR images, our confidence in manual segmenta-

tion was not strong in many images. Then we evaluated our algorithms on a set of 30

images chosen among the two datasets for which we were confident about the manual

segmentation.

6.2.2 Qualitative evaluation

In the previous section we saw that a quantitative evaluation was not possible for all

images in the dataset. However, we would like to be able to give an appreciation of the

performance of our algorithms for all the images of the dataset where the colon appears.

Therefore, we applied the algorithms on all the images of the dataset and evaluated

the results visually. A segmented contour was considered as good when the contour

gave an acceptable representation of the colon according to the information in the image.

It was considered as bad when the contour was obviously not representative of the

reality.

This method is not as accurate as the quantitative method since it depends strongly

on the appreciation of the author. However, it allows an evaluation of the whole dataset.

By combining the results of the quantitative and the qualitative methods, we can have a

good idea of the performances of our algorithms.

6.3 Results

All our algorithms were implemented in Matlab on a PC with a 3.6 GHz processor and

2GB of RAM. The processing time with thresholding methods for each image is about 10

seconds, including anisotropic diffusion. The processing time with B-snakes is usually
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mean max min
TM 93, 8% 96.5% 88, 4%
BS 93, 7% 96.7% 89, 7%

Table 6.1: Quantitative results

Total TM Success BS Success
Number of images 143 94 108

Rate 100% 66% 76%

Table 6.2: Qualitative results obtained with dataset 1

around 3 seconds.

6.3.1 Quantitative results

The results of the quantitative evaluation on 30 images are summarized in Table 6.1.

We observe that thresholding methods and B-snakes both perform well in cases where

we were confident about manual segmentation. Figure 6.2 shows the contours obtained

with the three segmentation methods on one image.

6.3.2 Qualitative results

In our qualitative evaluation, we found that thresholding methods gave accurate re-

sults in 94 images in the first dataset and 126 images in the second dataset. B-snakes

gave accurate results in 108 images in the first dataset and 127 images in the second

dataset. The better results obtained with the second dataset can be explained by the

better quality of images. Tables 6.2 and 6.3 summarize the results obtain for the two

datasets, respectively. Table 6.4 gives the results for all images, regardless of the dataset.

In those tables, a success means that the segmented contour obtained was considered as

good. We observe that B-snakes achieve a slightly better performance than thresholding

methods (75% against 80%).

In cases where both thresholding methods and B-snakes give accurate results,

we observe an important difference in the regularity of the contour between the two

Total TM Success BS Success
Number of images 152 126 127

Rate 100% 83% 84%

Table 6.3: Qualitative results obtained with dataset 2
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(a) Manual segmentation

(c) B-snakes(b) Thresholding methods

Figure 6.2: Comparison between manual thresholding and automatic thresholding

Total TM Success BS Success
Number of images 295 220 235

Rate 100% 75% 80%

Table 6.4: Overall qualitative results
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(d) contour obtained with thresholding 
methods

(b) contour obtained  with B-snake

(c) contour obtained with thresholding 
methods

(a) contour obtained  with B-snake

Figure 6.3: Comparison of regularity of contours (1)
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(a) contour obtained  with B-snake (b) contour obtained  with B-snake

(c) contour obtained with thresholding 
methods

(d) contour obtained with thresholding 
methods

Figure 6.4: Comparison of regularity of contours (2)
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methods. B-snakes give a regular contour in most cases, whereas thresholding meth-

ods, despite the use of anisotropic diffusion, give jagged contours if the image is very

noisy. We illustrate this result in Figures 6.3 and 6.4.

We identified two categories of images where B-snakes and thresholding methods

both fail to segment the colon properly. The first category consists of images with sharp

details in the colon wall. Those sharp details usually represent haustral folds. Figure 6.5

shows different kinds of contours that we obtained with B-snakes. We observe that the

details are completely ignored in some cases (Figures 6.5(c) and 6.5(d)) and the snake

intersects itself in other cases (Figures 6.5(a) and 6.5(b)). Figure 6.6 shows the results

obtained with thresholding methods. Details are also ignored in some cases (Figures

6.6(c) and 6.6(d)). In some other cases, a small part of the detail is isolated from the rest

of the contour (Figures 6.6(a) and 6.6(b)).

The second category of images that our algorithms failed to process well are images

where the contrast colon-gray tissues was very low. The results obtained with both algo-

rithms were usually contours that leaked out of the colon. Figures 6.7(a) and 6.7(b) show

some results obtained with B-snakes while Figures 6.7(c) and 6.7(d) show the contours

given by thresholding methods.

6.4 Interpretation of the results

6.4.1 Improvement on the regularity of contours with B-snakes

As mentioned before, the results obtained with B-snakes have a smoother aspect than

the contours obtained with thresholding methods. There are two main reasons to ex-

plain this observation. The first reason comes from the implementation of the snake

itself: the presence of internal forces, as well as the constraint of C2 regularity ensures

that the contour remains smooth. The second reason is more subtle; the accuracy of

the thresholding methods is limited to the size of the pixels, whereas the snake can

achieve sub-pixel accuracy. To better understand this issue, let us consider an edge

as represented in Figure 6.81. In red and magenta, we show the contours given by the

thresholding methods. For the magenta contour, pixels at the inner border of the thresh-

olded region have been considered whereas the red contour represent pixels located at

1this image has been artificially generated
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(a) B-snake intersecting with itself

(c) B-snake missing a sharp detail

(b) B-snake intersecting with itself

(d) B-snake missing a sharp detail

Figure 6.5: Problems encountered with B-snakes on sharp details

84



6.4. INTERPRETATION OF THE RESULTS

(a) sharp detail isolated with 
thresholding methods

(c) thresholding methods missing a 
sharp detail

(b) sharp detail isolated with 
thresholding methods

(a) sharp detail isolated with 
thresholding methods

(d) thresholding methods missing a 
sharp detail

Figure 6.6: Problems encountered with thresholding methods on sharp details
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(a) leakage with B-snake

(c) leakage with thresholding methods

(b) leakage with B-snake

(d) leakage with thresholding methods

Figure 6.7: Problems with low contrast images
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Comparison of contours

 

 

B−snake

outer contour

inner contour

Figure 6.8: Comparison of contours
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the outer border of the thresholded region. The blue contour is the result given by the

B-snake algorithm. As we can see, the contours obtained with the thresholding meth-

ods are limited by the pixel size. We can say that the space of admissible contours is

discretized. The magenta and red contours are the best approximation for the ideal con-

tour which is located somewhere in between. On the contrary, the space of admissible

B-snakes is continuous, allowing the snake to get closer to the ideal contour and to adopt

a smoother aspect.

Globally, B-snakes manage to cope with most of the difficulties brought by MR im-

ages as thresholding methods do. The power of B-snakes is to impose a constraint of

regularity which is not too restrictive and can still adjust to many different shapes. Our

strategy of control points insertion offers even more flexibility to the model. Further-

more, the processing time is smaller for B-snakes since it does not require any sophis-

ticated preprocessing algorithm. This quality is particularly significant for big datasets

like the one we use for virtual colonoscopy in general.

6.4.2 Difficulties encountered with some images

We showed that both B-snakes and thresholding methods did not give accurate results

for some images, namely images with sharp details and images with low contrast be-

tween the colon and gray tissues. Those problems can be partly explained due to the

fact that we work on 2D images. Due to the complexity of the colon shape, the bound-

ary of the colon is sometimes difficult to find in 2D images. If we look at the series of

consecutive images in Figure 6.9 we see on the right side of the image that one part of

the colon splits into two different parts. This can represent a haustral fold or a change

of direction of the colon at that location. In some images, the boundary is so thin that

it is difficult to determine if there is only one or two parts. Those images are typically

images containing sharp details which our algorithms have difficulty in segmenting.

One could surmise that these problems could be solved if we use the whole 3D dataset.

Indeed, we would then have access to the information carried by adjacent slices, which

could be helpful in such cases.

However, working in 2D is not the only issue and the inherent quality of MR images

is also a critical factor. Indeed, we recall the fact many images are difficult to segment

manually. Some improvement in MR imaging technology is expected in order to take
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(a) Image 1

(f) Image 6(e) Image 5

(d) Image 4(c) Image 3

(b) Image 2

Figure 6.9: Series of images where the colon splits into two different parts
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full advantage of MR images.

6.5 3D reconstruction

Although we only work on 2D images, a 3D reconstruction is possible by agglomerat-

ing the 2D contours. We chose a series of 40 images and segmented each image with a

B-snake. The results for each image are shown in Appendix B.

The agglomeration of B-snakes can be easily done using the theory that we devel-

oped in Chapter 5. Recalling Equation 5.39, we now use two parameters (s, t) and on

each interval [si, si+1] and [ti, tj+1], the snake can be written as

vi,j(s, t) =
[
s3 s2 s 1

]

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(6.3)

The results of this 3D reconstruction are shown in Figures 6.10.

The main limitation of this method is the difficulty to handle the changes of topol-

ogy as the one we mentioned in section 6.4.2. In that particular case, we would need the

ability to split one contour into two distinct contours. Our algorithm does not currently

handle this kind of situation.
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(a) 3D reconstruction (view 1)

(b) 3D reconstruction (view 2)

(c) 3D reconstruction (view 3)

Figure 6.10: 3D recontruction of the colon from 40 planar images
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. Conclusion

7.1 Summary of contributions

In this work, we have first established a coherent procedure of segmentation based

on thresholding methods and anisotropic diffusion. We have combined different well

known algorithms and improved some of them to fit our application. A particular ef-

fort has been made for the optimization of the parameters in the anisotropic diffusion

algorithm.

Then, we have presented another segmentation procedure based on snakes. We have

first mentioned the problems of initialization and we have solved them by using some

basic thresholding methods presented in the first part. Two different models of snakes

have been presented, namely the finite difference snakes and the B-snakes. A simple

and efficient implementation has been proposed for the two models. A stopping crite-

rion and a control point insertion algorithm have been included to further improve the

B-snake model.

Finally we compared the results of thresholding methods and snakes. We showed

that B-snakes and thresholding methods perform equally well in general. B-snakes

proved to be superior to thresholding methods in terms of regularity of the contour

and time processing.
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7.2 Future work

In our work, we developed an empirical method to obtain the best parameters for MR

images of the colon. One drawback of our method is that the parameters that we ob-

tain are optimal for our application only. The same parameters would probably not

be optimal for ultrasound images for example. A current trend in the research about

anisotropic diffusion is to find a method to obtain adjustable optimal parameters. An

interesting approach can be found in [75]. In this paper, Castellanos et al. describe an

iterative procedure to determine optimal parameters for the diffusion equations of Per-

ona and Malik. They apply their algorithm to MR images of the brain. It would be

interesting to analyze the performance of their algorithm on different types of images,

and to implement a similar procedure on other diffusion equations like the improved

Weickert’s equation that we used in our work.

We have also proven the feasibility of colon segmentation with B-snakes in 2D MR

images. A 3D reconstruction obtained from the agglomeration of 2D B-snakes has been

shown. But as mentioned before, this method has some limitations. The next step would

be to implement the B-snakes directly in 3D. The main challenges in this approach

would be to redefine the initialization and the control points insertion algorithms. The

problem comes from the fact that the order of control points matters for snakes (the same

control points taken in a different order can give a totally different result). Although this

problem can be easily handled in 2D, it is much more challenging in 3D.

Another direction of research would be to evaluate the ability of snakes to represent

polyps accurately. Many polyp detection algorithms are based on an analysis of con-

tour curvature. Since snakes have an explicit mathematical formulation, access to the

curvature can be done easily and accurately. A preliminary approach can be found in

[76] where B-snakes are used to determine contact angles of water drops.

Finally, different models of snake could be investigated, for example, geometric de-

formable models, which have the advantage of not using a parametric representation.

We introduced them in section 2.3. Geometric models are based on level-set methods.

In other words, the contours are represented as the zero level of a higher-dimensional

function. Therefore, unlike B-snakes, geometric models can easily handle changes of

topology. Figure 7.1 illustrates this property. The function Φ is the higher-dimensional
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Figure 7.1: Principle of level-set method [3]

function and C represents the zero-level. In this figure, we can see that by changing the

function Φ, a single contour can easily be split into two contours.

More details about geometric models can be found in [71]. Recent examples of their

application for medical images can be found in [77] for the segmentation of lungs in CT

images, or in [78] for the segmentation of the colon in CT images too.

Until now, we have focused on finding a method to segment the colon. However, the

ultimate goal of virtual colonoscopy is to automatically detect polyps accurately. Most

methods available in the literature try to detect polyps according to their shape. Yeo

[26] gives an example of such a method. However, the complexity of the colon shape

is an issue for those methods, and haustral folds often give false-positive results [79].

An interesting direction for future work would be to detect the polyps according to the

contrast of luminosity in MR images. Some promising observations have been made

by Hartmann et al. [37]. In their work, they visually detect polyps from the contrast

between polyps and the surrounding tissues. It would be interesting to integrate this

feature in an automatic detection algorithm.
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A. Gradient Vector Flow

The GVF is defined as the vector field Fext = (Fx, Fy) which minimizes the function

E =
∫∫

I
µ

((
∂Fx
∂x

)2

+
(
∂Fx
∂y

)2

+
(
∂Fy
∂x

)2

+
(
∂Fy
∂y

)2
)

+ |∇e|2|Fext −∇e|2 dx dy

We wish to minimize the functional according to the function Fext defined as

Fext : R2 −→ R2

(x, y) 7−→ Fext(x, y) = (Fx(x, y), Fy(x, y))
(A.1)

To simplify the notation, the partial derivative of any function φ according to any vari-

able u will be denoted by

∂uφ =
∂φ

∂u
(A.2)

We now define a function g such as

g (Fext, x, y, ∂xFx, ∂yFx, ∂xFy, ∂yFy) =

µ
(

(∂xFx)2 + (∂yFx)2 + (∂xFy)
2 + (∂yFy)

2
)

+ |∇e|2|Fext −∇e|2
(A.3)

with:

|∇e|2 = (∂xe)2 + (∂ye)2 (A.4)

|Fext −∇e|2 = (Fx − ∂xe)2 + (Fy − ∂ye)2 (A.5)
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The function E is minimal if the equations of Euler-Lagrange are verified:

∂g

∂Fx
− ∂

∂x

(
∂g

∂(∂xFx)

)
− ∂

∂y

(
∂g

∂(∂yFx)

)
= 0 (A.6)

∂g

∂Fy
− ∂

∂x

(
∂g

∂(∂xFy)

)
− ∂

∂y

(
∂g

∂(∂yFy)

)
= 0 (A.7)

Equation A.6 yields:

2
(
(∂xe)2 + (∂ye)2

)
(Fx − ∂xe)− 2µ(∂x2Fx + ∂y2Fx) = 0 (A.8)(

(∂xe)2 + (∂ye)2
)

(Fx − ∂xe)− µ∇2Fx = 0 (A.9)

Similarly, equation A.7 gives

(
(∂xe)2 + (∂ye)2

)
(Fy − ∂ye)− µ∇2Fy = 0 (A.10)

In order to solve those two equations, we make them dynamic by adding a time variable.

For example, on the x direction, we obtain

∂tFx =
(
(∂xe)2 + (∂ye)2

)
(Fx − ∂xe)− µ∇2Fx (A.11)

We discretize in the time domain using an explicit scheme:

γ(Fx(k + 1)− Fx(k)) =
(
(∂xe)2 + (∂ye)2

)
(Fx(k)− ∂xe)− µ∇2Fx(k) (A.12)

where γ is the invert of the time step. The discretization in the space domain is done

using the pixel grid of the image. We use classical discrete operators for the calculation

of the derivatives.
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B. 2D projections of the 3D B-snake

The series of 40 images used in Section 6.5 to construct the 3D model of the colon are

represented below. On each image, the 2D contour that was used in the reconstruction

of the model is represented.
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Figure B.1: 2D projections (1)
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Figure B.2: 2D projections (2)
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Figure B.3: 2D projections (3)
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Figure B.4: 2D projections (4)
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Figure B.5: 2D projections (5)
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Figure B.6: 2D projections (6)
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Figure B.7: 2D projections (7)
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