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SUMMARY 
 

West Nile virus (WNV) is a mosquito-borne flavivirus. It can cause fatal 

meningoencephalitis in infected victims especially in elderly and 

immunocompromised. This re-emerging virus has recently caused large epidemics in 

the Western Hemisphere. Despite advances in WNV research, the mechanism of its 

molecular pathogenesis is still not well understood. It has also been shown that 

different cell types have different permissivity to WNV infection. Differential 

permissivity could be one of the factors that contribute to different degree of 

pathogenesis. Hence, by exploring the transcriptome profile of two different cells with 

differential permissivity, a better understanding of the molecular pathogenesis of 

WNV could be attained. 

 

The initial studies on different human host cells have found that A172 cells 

(glioblastoma) were not as permissive as HeLa cells (cervical adenocarcinoma) to 

WNV (Sarafend) infection. Based on the results of a previous study by Koh and Ng 

(2005) on the global transcriptome profiles of these two different host cells, 

differentially expressed FRMD4A and INDO were selected as the genes of interest. 

The gene expression profile of FRMD4A and INDO were further validated by reverse-

transcription and real-time polymerase chain reaction (PCR). Silencing of FRMD4A 

and INDO in A172 cells showed ten-fold increase and no increase in virus titre, 

respectively. Hence, INDO was dropped out as it showed no anti-viral role and 

FRMD4A was chosen for further research. It was also observed that FRMD4A only 

expressed in A172 cells and not HeLa cells. This showed that FRMD4A is an anti-

viral host factor that can resist WNV infection, found only in A172 cells.  
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Based on indirect immunofluorescence confocal microscopy, FRMD4A was 

observed to interact with the activated αvβ3 integrin via the FERM domain at the N-

terminal of FRMD4A protein. Activated αvβ3 integrin have been shown previously to 

mediate WNV entry via the activated focal adhesion kinase (FAK) pathway. Through 

bioinformatics analyses, it was observed that FERM domain of FRMD4A may 

compete with FAK binding event to the activated αvβ3 integrin. As a result, the level 

of phosphorylation of FAK was affected that might have hindered the entry of WNV. 

Hence, this study provided insights into how FRMD4A regulates the entry of WNV 

via the activated αvβ3 integrin pathway in A172 cells, making them less permissive to 

WNV infection. The entry event is often a major determinant of virus tropism and 

pathogenesis (Schneider-Schaulies, 2000). Understanding this early event of virus 

infection in more details will provide opportunities to develop strategies to reduce the 

burden of WNV infection. 
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INTRODUCTION 
 

The completion of the Human Genome Project has revolutionised biomedical 

sciences gradually towards functional genomics. Functional genomics involve the 

analyses and understanding of many genes (and proteins) functions and their 

interactions simultaneously. As a result, an overall biological mechanism of how 

certain phenotypes arise can be proposed and this can enhance the progress of drug 

discovery and vaccine developments against the emerging infectious diseases. 

 

Techniques of functional genomics include high-throughput methods for gene 

expression profiling at the transcript and protein levels, and the application of 

bioinformatics. DNA microarray and two-dimensional gel electrophoresis are the 

common methods for gene expression profiling at the transcript and protein level, 

respectively. Both DNA microarrays and proteomics hold great promise for the study 

of complex biological systems with applications in molecular medicine (Celis et al., 

2000). A vast amount of gene and protein expression data is usually generated and 

these data may provide information in understanding the regulatory events involved in 

normal and diseased processes.  

 

Flaviviruses are emerging pathogens of increasingly important public health 

concern in the world. For some flaviviruses such as West Nile virus (WNV), although 

much has been learned about their molecular biology, neither effective vaccine nor 

antiviral therapy is available yet. In order to generate an effective vaccine, the vaccine 

must be immunogenic enough to generate an effective humoral immune response, 

producing neutralising antibodies but not too reactogenic that it is harmful to the host. 

In addition, an effective vaccine has to provide protection against all different 
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serotypes and strains of the virus. As such, even though the development of safe and 

effective vaccines remains to be critical for controlling the disease in the long run, 

alternatively, antiviral therapy is an approach to be developed in parallel as well 

 

Since WNV alternates between insect vectors and vertebrates in nature, any 

cellular proteins that this virus uses during replication would be expected to be 

evolutionarily conserved. Of particular interest will be the identification of cell 

protein(s) used for virus attachment and entry, and elucidation of molecular 

mechanisms involved in virus replication.  Viruses use cell proteins during many 

stages of their replication cycles, including attachment, entry, translation, 

transcription/replication, and assembly. Viruses also interact with cell proteins to alter 

the intracellular environment or cell architecture so that it is more favourable for virus 

replication. The replication can also inactivate intracellular defence mechanisms, such 

as apoptosis and interferon pathways. Mutations in cell proteins involved can cause 

disruptions of these critical virus-host interactions. These virus-host interactions may 

thus represent novel targets for the development of new anti-viral agents.  

 

A DNA microarray genomic study was carried out previously by Koh and Ng 

(2005) to elucidate host factors involved in the different permissiveness of HeLa and 

A172 cell lines to WNV (Sarafend) infection. Based on the findings, an attempt was 

therefore made to further investigate whether any of these differentially expressed 

host factors play a role in anti-viral mechanism in A172 cells as it may be one the 

factors that caused brain inflammation. This host factor may also represent novel 

target for the development of new anti-viral agents.  
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1.     History of West Nile Virus  

West Nile virus (WNV) was first isolated in 1937 from the blood of a febrile 

adult woman participating in a malaria study in the West Nile region of Uganda 

(Smithburn et al., 1940). Before the fall of 1999, WNV was considered to be 

relatively unimportant as a human and animal pathogen and it was classified under the 

genus Flavivirus under the family Flaviviridae by a cross-neutralisation test (Calisher 

et al., 1989). It is a member of the Japanese encephalitis virus serogroup of 

flaviviruses, which includes a number of closely related viruses that also cause human 

disease, including Japanese encephalitis virus (JEV) in Asia, St. Louis encephalitis 

virus (SLEV) in the Americas, and Murray Valley encephalitis virus (MVEV) in 

Australia (Mackenzie et al., 2002; Gubler et al., 2007). These viruses have a similar 

transmission cycle, with broad vector range such as Culex species mosquitoes serving 

as the enzootic and/ or epizootic vectors and broad vertebrate host range such as birds 

serving as the natural vertebrate host, humans and domestic animals, such as horses, 

are generally thought to be incidental hosts.  

 

1.2.   Epidemiology of West Nile Virus Infection 

From 1937 to 1999, epidemic of infection only occurred occasionally 

(Romania and Morocco in 1996; Tunisia in 1997; Italy in 1998; Figure 1-1) and 

infection of human, birds and horses were generally asymptomatic or mild. In 
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addition, neurologic disease and death were very uncommon (Murgue et al., 2001; 

Murgue et al., 2002; Hurlburt et al., 1956). 

 

Figure 1-1. Epidemics caused by West Nile virus, 1937–2006. The red stars indicate epidemics that 

have occurred since 1994 that have been associated with severe and fatal neurologic disease in humans, 

birds, and/or equines (adapted from Gubler DJ, 2007). 

 

 

In 1999, an epidemic of WNV infection occurred in some parts of United 

States such as New York, Connecticut, and New Jersey (Hayes et al., 2006) and the 

severity of the disease was seen to increase amongst those who developed clinical 

symptoms (Petersen and Roehrig, 2001). This WNV outbreak was suggested to be 

due to the introduction of WNV in spring or early summer of 1999 by an infected 

human arriving from Israel, which was also facing WNV epidemic in Tel Aviv at that 

time (Giladi et al., 2001). In addition, it was found that the epidemic was due to the 

emergence of a new variant of WNV designated “Isr98/NY99” (Lanciotti et al., 

2002). This strain is characterized by a high avian death rate and an apparent increase 

in human disease severity as it moved westward of United States (Solomon and 

Winter, 2004). This was consistent with the hypothesis that there were some changes 

in the neurovirulent properties of the virus (Ceccaldi et al., 2004). 
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From 1999, there were increasing number of cases with neuroinvasive disease 

and death (Gubler, 2007). This is likely due to the increasing numbers of migratory 

birds that fly south to Central and South America in the fall and back north to the 

United States and Canada along specific flyways in the spring (Gubler, 2007). These 

migratory birds presented an increased risk of spreading WNV, resulting in the 

increasing number of cases. West Nile virus infection was observed via several novel 

modalities of transmission to humans besides advances in transportation and 

globalisation. These include transplacental transmission to the foetus, transmission via 

breast milk, blood transfusion, or laboratory contamination through percutaneous 

inoculation (Peterson and Roehrig, 2001; Hayes and O’Leary, 2004).  

 

Wild bird species develop high levels of viremia after WNV infection and are 

able to sustain viremic levels of WNV of at least 10
5
 PFU/ml of serum (the minimum 

level estimated to be required to infect a feeding mosquito) for days to weeks. They 

are the main reservoir hosts in endemic regions for the virus, which can initiate 

epizootics outside the endemic areas (Bernard et al., 2001; Petersen and Roehrig, 

2001).  

 

West Nile virus has been isolated from Culex, Aedes, Anopheles, Minomyia, 

and Mansonia mosquitoes in Africa, Asia, and the United States, but Culex species 

are the most susceptible to WNV infection (Burke and Monath, 2001; Ilkal et al., 

1997). Culex mosquitoes feed on infected wild bird species. This increases the 

possibility of vertical transmission from mosquito to eggs since infected wild birds 

can have high levels of viremia (Turell et al., 2000). Natural vertical transmission of 

WNV in Culex mosquitoes in Africa has been reported and is expected to enhance 
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virus maintenance in nature (Miller et al., 2000). Humans and horses are incidental 

hosts with low viremic levels and it is still unknown what roles they play in the 

transmission cycle of WNV (Gubler, 2007). 

   

The existing WNV isolates are grouped into two genetic Lineages (1 and 2) on 

the basis of signature amino acid substitutions or deletions in their envelope proteins 

(Berthet et al., 1997).  Due to antigenic cross-reactivity between different flaviviruses, 

techniques such as in situ hybridization and sequence analyses of real-time 

polymerase chain reaction (PCR) products are required to unequivocally identify 

WNV as the causative agent in infections (Briese et al., 2002; Lanciotti et al., 2002). 

All members belong to the same clade share more than or equal to 98% homology 

with each other (Figure 1-2), thus suggesting that they all had a common ancestor. All 

WNV isolates that are associated with human diseases are found in Lineage 1, while 

Lineage 2 viruses are mainly restricted to endemic enzootic infection in Africa (Jia et 

al., 1999; Lanciotti et al., 2002).  

 

Figure 1-2 Phylogenetic tree of West Nile viruses based on sequence of the envelope gene. Viruses 

were isolated during the epidemics indicated by red stars in Figure 1-1, all of which belong to the same 

clade, suggesting a common origin. Figure appears courtesy of the Centers for Disease Control and 

Prevention (adapted from Gubler DJ, 2007) 
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1.3. Clinical Manifestations of West Nile Virus Infection 

According to the Centre for Disease Control and Prevention (CDC), WNV 

infections may be asymptomatic or may result in illnesses of variable severity 

sometimes associated with central nervous system (CNS) involvement. West Nile 

Fever (WNF) is the most common symptom observed in humans. The course of the 

fever is sometimes biphasic, and a rash on the chest, back, and upper extremities often 

develops during or just after the fever (Burke and Monath, 2001). When the CNS is 

affected, clinical syndromes ranging from febrile headache to aseptic meningitis to 

encephalitis may occur (Omalu et al., 2003, Briese et al., 2000), and these are usually 

indistinguishable from similar syndromes caused by other arboviruses, and hence, 

may lead to misdiagnosis. The brainstem, particularly the medulla, is the primary 

central nervous system (CNS) target. Humans aged 60 and older have an increased 

risk of developing this fatal disease (Sampson et al., 2000; Chowers et al., 2001). 

WNV meningitis is characterized by fever, headache, stiff neck, and pleocytosis. 

WNV encephalitis is characterized by fever, headache, and altered mental status 

ranging from confusion to coma with or without additional signs of brain dysfunction 

(e.g., paresis or paralysis, cranial nerve palsies, sensory deficits, abnormal reflexes, 

generalized convulsions, and abnormal movements). Flacid paralysis and muscle 

weakness, similar to polio-like syndrome, have also been reported in the absence of 

fever or meningo-encephalitis (Li et al., 2003; Arturo et al., 2003). 

 

Histopathological studies revealed that, WNV could be detected but in 

different viral titres in all major organs such as liver, kidney, heart and spleen, and in 

most part of the brain (88%), including glial cells and neurons (Steele et al., 2000). 

Neuropathogenicity was also observed in infected animals whereby it is similar to 
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poliomyeloencephalitis. It was characterized by T-lymphocytes and, to a lesser extent, 

macrophage infiltration within the CNS, with multifocal glial nodules and some 

nueronophagia (Cantile et al., 2001). As high levels of WNV-reactive serum IgM 

antibodies could still be detected in confirmed human cases (Roehrig et al., 2003) and 

in animal studies (Xiao et al., 2001) of WNV encephalitis as long as 1.5 years after 

onset, there is a possibility of viral persistence within the CNS. 

 

1.4.   Virus Morphology  

West Nile virus belongs to the family Flavivirdae. The virions are small 

(~50nm in diameter), spherical, enveloped, and have a buoyant density of ~1.2g/cm
3
. 

The WNV genome is a single-stranded RNA of positive polarity (mRNA sense) and 

is 11,029 bases in length, containing a single open reading frame (ORF) of 10,301 

bases. The virus contain three structural proteins which include the majority of 

flavivirus antigenic and functional determinants (Heinz and Roehrig, 1990): a 

nucleocapsid protein (C protein, 14kDa), a lipid membrane protein (M protein, 8kDa), 

and a large envelope glycoprotein (E protein, 55kDa). Figure 1-3 shows the structure 

of the virus particle and Figure 1-4 shows the structural arrangement of the envelope 

proteins. The E glycoprotein is the principal stimulus for the development of 

neutralizing antibodies and it contains a fusion peptide responsible for inserting the 

virus into the host cell membrane. Generally, the E proteins of most flaviviruses are 

glycosylated, and the glycosylation of certain amino acid residues have been 

postulated to contribute to the pathogenicity of the virus (Beasley et al., 2004). Hence, 

varying N-glycosylation sites could also be important in epitope definition (Seligman 

and Bucher, 2003). 
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1.5.   Virus Entry, Assembly and Maturation 

WNV replicates in a wide variety of cell cultures, including primary chicken, 

duck and mouse embryo cells and continuous cell lines from monkeys, humans, pigs, 

rodents, amphibians, and insects, but does not cause obvious cytopathology in many 

cell lines (Brinton, 1986). It was demonstrated that although embryonic stem (ES) 

cells were relatively resistant to WNV infection before differentiation, they became 

permissive to WNV infection once differentiated, and die by the process of apoptosis 

(Shrestha et al., 2003). Since flaviviruses are transmitted between insect and 

Figure 1-3. The immature and 

mature flavivirus virions. The 

heterodimers of prM and E are 

shown on the left (immature 

virion) and the homodimers of E, 

following cleavage of prM, on the 

right (mature virion). The 

icosahedral nucleocapsid consists 

of viral C protein and genomic 

RNA, and is surrounded by a lipid 

bilayer in which the viral E and 

prM/M proteins are embedded. 

Viral maturation is triggered by 

the cleavage of prM to pr and M 

proteins by the host protease furin 

(adapted from Shi, 2002). 

Figure 1-4. Structural 

arrangement of flavivirus 

envelope protein. Diagrams of 

the flavivirus ectodomain and 

transmembrane domain proteins 

side and top views. The stem and 

transmembrane helices of the E 

(E-H1, E-H2, E-T1 and E-T2) and 

M (M-H, M-T1 and M-T2) 

proteins are shown in blue and 

orange, respectively. The 

conserved amino acid sequence of 

the region between the two E 

protein stem helices is marked CS 

(adapted from Mukhopadhyay et 

al., 2005). 
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vertebrate hosts during their natural transmission cycle, it is likely that the cell 

receptor(s) they utilize to gain entry into the cells is a highly conserved protein 

(Brinton, 2002). The receptor for WNV (Sarafend) was found to be a 105-kDa 

protease-sensitive, N-linked glycoprotein in Vero and murine neuroblastoma 2A cells 

(Chu and Ng, 2003a). Subsequently, it was determined to be the αVβ3-integrin 

receptor (Chu and Ng, 2004b). Alternatively, WNV entry can be independent of αVβ3-

integrin receptor. The virus was shown to enter via cholesterol-rich membrane 

microdomain (Medigeshi et al., 2008) 

 

 

Figure 1-5. The Flavivirus replication cycle. Virions attach to the surface of a host cell and 

subsequently enter the cell by receptor-mediated endocytosis (see Figure). Several primary receptors 

and low-affinity co-receptors for flaviviruses have been identified. Acidification of the endosomal 

vesicle triggers conformational changes in the virion, resulting in fusion of the viral and lysosomal 

membranes, and particle disassembly. Once the genome is released into the cytoplasm, the positive-

sense RNA is translated into a single polyprotein that is processed co- and post-translationally by viral 

and host proteases. Genome replication occurs on intracellular membranes. Virus assembly occurs on 

the surface of the endoplasmic reticulum (ER) when the structural proteins and newly synthesized RNA 

buds into the lumen of the ER. The resultant non-infectious, immature viral and subviral particles are 

transported through the trans-Golgi network (TGN). The immature virion particles are cleaved by the 

host protease furin, resulting in mature, infectious particles. Subviral particles are also cleaved by furin. 

Mature virions and subviral particles are subsequently released by exocytosis (adapted from 

Mukhopadhyay et al., 2005). 
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The pathway for flavivirus entry into host cells is through clathrin-mediated 

endocytosis, which is triggered by an internalization signal (di-leucine or YXXΦ) in 

the cytoplasmic tail of the receptor (Chu and Ng, 2004a). Clathrin is assembled on the 

inside face of the plasma membrane to form an electron dense coat known as clathrin-

coated pit. Clathrin interacts with a number of accessory protein molecules (Eps15, 

ampiphysin and AP2 adapter protein) as well as the dynamin GTPase which is 

responsible for releasing the internalized vesicle from the plasma membrane (Marsh 

and McMahon, 1999).   

 

This is followed by low-pH fusion of the viral membrane with the lysosomal 

vesicle membrane, releasing the nucleocapsid into the cytoplasm [(Heinz and Allison, 

2000) (Figure 1-5 and 1-6)]. The reduced pH causes the conformational 

rearrangement of the E proteins, allowing the interactions of the virus E proteins with 

the lysosomal membrane to form hemifusion pores for the release of viral 

nucleocapsids into the cytoplasm for uncoating and replication (Modis et al., 2004).  

 

The RNA genome is released and translated into a single polyprotein (Figure 

1-5). The viral serine protease, NS2B-NS3, and several cell proteases then cleave the 

polyprotein at multiple sites to generate the mature viral proteins (Figure 1-5). The 

viral RNA-dependent RNA polymerase (RdRp), NS5, in conjunction with other viral 

nonstructural proteins and possibly cell proteins, copies complementary minus strands 

from the genomic RNA template, and these minus-strand RNAs in turn serve as 

templates for the synthesis of new genomic RNAs. Upon WNV infection, extensive 

reorganization and proliferation of both smooth and rough endoplasmic reticula were 

observed (Ko et al., 1979; Murphy, 1980; Westaway and Ng, 1980; Lindenbach and 
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Rice, 1999). There were also induction of unique sets of membranous structures, but 

their functions during infection mostly remained elusive (Westaway et al., 2002).  

One of such generic flavivirus-induced features, in both vertebrate and invertebrate 

cells, is the formation of vesicles packets that contains bi-layered membrane vesicles 

of 50-100 nm in size. These vesicles enclosed distinctively single or double-stranded 

‘thread-like’ structures during early stages of infection (Ng, 1987).  

 

 

Figure 1-6 Proposed rearrangement of the E proteins during maturation and fusion. a The E 

proteins in the immature virus (left) rearrange to form the mature virus particle (right). b The E protein 

dimers in the mature virus (left) are shown undergoing a rearrangement to form the putative T=3 

fusogenic intermediate structure (right) with a possible intermediate (centre). The arrows indicate the 

direction of the E rotation. The solid triangle indicates the position of a quasi three-fold axis. This 

suggested rearrangement would require a ~10% radial expansion of the particle between the 

intermediate (centre) and fusogenic form (right) (adapted from Mukhopadhyay et al., 2005). 

 

Flavivirus assembly occurs in association with the ER membranes (Figure 1-

5). Intracellular immature virions, which contain heterodimers of E and prM proteins, 

accumulate in vesicles and are then transported through the host secretory pathway 

(Heinz et al., 1994). It has been shown by electron microscopy that mature virions can 

be found within the lumen of endoplasmic reticulum (Matsumura et al., 1977; 

Sriurairatna and Bhamarapravati, 1977; Hase et al., 1989; Ng, 1987) at the perinuclear 
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area of the cytoplasm (Murphy, 1980; Westaway and Ng, 1980). The glycosylated 

and hydrophilic N-terminal portion of prM protein is cleaved in the trans-Golgi 

network by cellular furin or a related protease (Stadler et al., 1997). The C-terminal 

portion (M) remains inserted in the envelope protein of the mature virion (Murray et 

al., 1993). The prM-E proteins interaction may maintain the E protein in a stable, 

fusion-inactive conformation during the assembly and release of new virions (Heinz 

and Allison, 2000). Recently, it has been shown that the pr peptide beta-barrel 

structure of immature virus at neutral pH covers the fusion loop in E protein, 

preventing fusion with host cell membranes (Li et al., 2008). Virus maturation 

involves 60 trimers of prM-E proteins heterodimers that project from the virus surface 

to dissociate and form 90 E protein homodimers, which lie flat on the virus surface. 

During fusion with host cell, the anti-parallel E protein homodimers dissociate into 

monomers, which then reassociate into parallel homotrimers (Figure 1-6) 

(Mukhopadhyay et al., 2005). 

 

Assembly of WN (Sarafend) virus is, however, slightly different from the 

process shown above, which is generally true for other flaviviruses. With the use of 

cryo-immunoelectron microscopy, the precursor of nucleocapsid particles from WNV 

was observed to be closely associated with the envelope proteins at the host cell’s 

plasma membrane (Ng et al., 2001). Instead of maturing within the endoplasmic 

reticulum, WNV was found to mature (cis-mode) at the plasma membrane (Ng et al., 

1994). This contrasts with the trans-mode of maturation observed for most flavivirus 

where mature virus particles are released from cells by exocytosis (Mason, 1989; 

Nowak et al., 1989). 
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Egress of WNV had been observed to occur predominantly at the apical 

surface of polarized Vero cells, suggesting the involvement of a microtubule-

dependent, polarized sorting mechanism for WNV proteins (Chu and Ng, 2002a). 

Previous study has shown that both E and C proteins were strongly associated and 

transported along the microtubules to the plasma membrane for assembly (Chu and 

Ng, 2002b). It was also observed in the same study that the association of E protein 

and microtubules was sensitive to high salt extraction but resistant to Triton X-100 

and octyl glycoside extraction. This suggested that virus E protein and possibly also C 

protein associate effectively with the microtubules through an ionic interaction (Chu 

and Ng, 2002b). 

  

1.6.   Virus-Host Interactions 

Infection and replication of viruses in vertebrate cells resulted in the alteration 

of expression of many cellular genes and these differentially expressed genes can be 

identified using a variety of techniques such as high-density DNA microarrays, 

differential display or subtraction hybridization (Manger and Relman, 2000). Such 

changes in host gene expression could be a cellular antivirus response, a virus-

induced response that is beneficial or even essential for virus survival, or a non-

specific response that neither promotes nor prevents virus infection (Saha and 

Rangarajan, 2003). In addition, some cell types may response differently to WNV 

infection (Silva et al., 2007) and this make the study of WNV pathogenesis more 

complicated but still essential so as to develop an effective antiviral strategy. 

Infection of diploid vertebrate cells with WNV has been reported to increase 

cell surface expression of MHC-1, which was activated by NF-κB (Kesson and King, 
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2001). Activation of NF-κB appeared to be mediated via virus-induced 

phosphorylation of inhibitor κB. Increased MHC-1 expression allowed intracellular 

virus antigens to be presented, thus increasing the cell’s susceptibility to virus-specific 

cytotoxic T-cell (CTL) lysis (Douglas et al., 1994). This increase might also enhance 

tissue damage and immunopathology in an infected host (King et al., 1993).  

 

West Nile virus infection was reported to induce expression of non-conserved 

polymorphic intracellular adhesion molecule-1 [(ICAM-1) (CD54)] and its receptor, 

the integrin lymphocyte related antigen-1 [(LFA-1)(CD11a/CD18)] in infected cells 

(Shen et al., 1995). The binding of ICAM-1 to its receptor was found to increase the 

avidity of cellular conjugation between T cells and their target cells. This facilitated 

the interaction of antigen-targeted immune cells, and hence contributing to more 

efficient antiviral responses. WNV-specific, interferon-independent induction of 

ICAM-1 was observed within 2 h after infection in quiescent but not replicating 

fibroblasts. The increase in MHC-1 and ICAM-1 expressions were found to be cell-

cycle dependent, with up-regulation in G0 phase compared to G1 phase (Douglas et 

al., 1994; Shen et al., 1995). E-selectin (ELAM-1, CD62E), which is a rolling 

receptor for leukocyte adhesion, was also found to increase maximally 2 h post-

infection (p.i.), but declined to baseline levels within 24 h p.i. (Shen et al., 1997). 

Recently, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) was 

shown to be able to enhance infection of cells by direct interaction with the 

glycosylated Lineage 1 WNV strains, which partially explained why Lineage 1 strains 

are more pathogenic than Lineage 2 strains (Martina et al., 2008). In another 

perspective, this showed that cells with DC-SIGN tend to be more permissive to 

WNV of Lineage 1 as compared to Lineage 2 strains. 
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Another common outcome of virus-host interaction is the physiological 

process of cell death. Apoptosis, which is an active and highly conserved process of 

cellular self-destruction with distinctive morphological and biochemical features, was 

observed in WNV-infected K562 and Neuro-2a cells and was shown to be bax 

dependent (Parquet et al., 2001). Apoptosis was also shown to be a major pathway of 

death in mouse neuronal cells infected with dengue virus (Despres et al., 1996). Virus 

replication seemed necessary to induce apoptosis since UV-inactivated virus failed to 

induce apoptosis. Apoptosis of cells might also be triggered by the M ectodomain 

(proapoptotic sequence) of WNV and this was similarly found in Dengue virus M 

protein (Catteau et al., 2003).  

 

In addition, the introduction of WNV C protein into the nuclei of host cells 

inducing apoptosis, further contributed to the pathogenesis of flavivirus infection 

(Yang et al., 2002). However, others found that neurons of mice infected with Murray 

Valley Encephalitis (MVE) virus did not show evidence of apoptosis, and the severity 

of the disease might be more linked to neutrophil infiltration and inducible nitric 

oxide synthetase activity in the CNS (Andrews et al., 1999). Hence, the mechanism of 

pathogenesis could be virus-specific even though the viruses belong to the same 

genus. Furthermore, death-associated protein kinase-related apoptosis-inducing 

kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine 

kinases, which is specifically expressed in T and B cells (Wang et al., 2008b) and 

matrix metalloproteinase (MMP) 9 (Wang et al., 2008a) was shown to facilitate WNV 

entry into brain, resulting in lethal encephalitis.  
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The role of host genetic factors often has a part to play in the outcome of 

WNV infection. It was found that WNV replication was less efficient in cells that 

produce the normal copy of Oas1b as compared to those expressing the inactive 

mutated form (Lucas et al., 2003). Variations in the response of individuals to 

flavivirus infection were observed in humans as well as in other host species. In mice, 

the alleles of a single Mendelian dominant gene, Flv, can determine whether an 

infection is lethal (Brinton, 1986) and segregates as a Mendelian dominant trait 

(Sangster et al., 1993). The Flv resistance allele functions intracellularly to reduce the 

amount of virus produced, and the lower production of virus resulted in a slower 

spread of the virus in the host, both of which served to give the host defence systems 

sufficient time to effectively eliminate the virus.  

 

The host immune response is also critical in determining the outcome of 

human flavivirus infection. Recently, production of alpha/beta interferon (Samuel and 

Diamond, 2005) and cell-specific IRF-3 responses (Daffis et al., 2007) were shown to 

protect against West Nile virus infection. The expression of these IRF-3 target genes 

and IFN stimulated genes, including several subtypes of alpha interferon involved 

both RIG-I and MDA5 proteins signaling through IPS-1 (Fredericksen et al., 2008). 

Both RIG-I and MDA5 are two related pathogen recognition receptors (PRRs), 

required for sensing various RNA viruses. In addition, early protective alpha 

interferon response was shown to occur through an IRF-7-dependent transcriptional 

signal (Daffis et al., 2008). 

 

On the contrary, there are host factors that play a part in sustaining viral 

replication in infected cells. Interaction between eEf1A and the 3’-terminal stem loop 
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of WNV (Davis et al., 2007), and interactions of T cell intracellular antigen-1 related 

protein (TIAR) with viral components (Emmara and Brinton, 2007) was shown to 

facilitate West Nile virus genome RNA synthesis and inhibited the shutoff of host 

translation. Lastly, host cell-encoded phosphatase inhibitor, I2PP2A was shown to 

interact with WNV capsid protein, resulting in an increase in serine/threonine 

phosphatase PP2A activity, producing more infectious virus (Hunt et al., 2007). 

 

1.7. The FERM Domain Superfamily 

Members of the protein 4.1 superfamily such as the closely related proteins 

ezrin, radixin and moesin (ERM), band 4.1, merlin, talin and protein-tryosine 

phosphatases (PTPs), are generally associated with the linkage of the cytoskeleton to 

the plasma membrane. They are involved in signal transduction pathways and played 

vital roles in maintaining cell integrity, motility and differentiation (Bretscher et al., 

2002). Some of these members are also implicated in carcinogenesis such as moesin 

(Kobayashi et al., 2004), apoptosis and metastasis such as ezrin and merlin (Gautreau 

et al., 1999; Hunter et al. 2004; Bretscher et al., 2002). The 4.1 protein superfamily 

has a conserved region called the FERM domain which is originally named after the 

four proteins: Band 4.1 and ERM proteins. The FERM domain is approximately 300 

amino acids in length and predominantly located at the N-terminus in the majority of 

FERM-containing proteins (Chishti et al., 1998). There are three structural lobes 

within the FERM domain. The N-terminal lobe resembles ubiquitin and the central 

lobe resembles acyl-CoA binding proteins (Hamada et al., 2000). The C-terminal lobe 

is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding 

(PTB) domains and consequently is capable of binding to both peptides and 

phospholipids at different sites. For example, the ERM proteins function as molecular 
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linkers that connect cell-surface transmembrane proteins such as CD44, CD43, 

ICAM-2 and ICAM-3 to the actin cytoskeleton, in a variety of cell types (Chrishti et 

al., 1998). In addition, FERM domain of PTPL1 has a crucial role of intracellular 

targeting and by binding to phosphatidylinositol 4, 5-biphosphate [PtdIns (4, 5) P2], it 

regulates the localisation of PTPL1 (Bompard et al., 2003). The FERM domain is 

found in tryosine kinases such as focal adhesion kinase (FAK) and Janus kinase 

(JAK) (Serrels et al., 2007; Hilkens et al., 2001). FERM domain of FAK regulates 

actin polymerisation by binding directly to Arp3 (Serrels et al., 2007) and enhances 

p53 degradation that promotes cell proliferation and survival (Lim et al., 2008). 

FERM domain of FAK also binds to integrin beta subunit directly upon activation of 

integrin receptor which leads to autophosphorylation of tyrosine 397 and subsequent 

downstream signaling processes (“outside-in” signaling) (Parsons, 2003). Recently, 

FERM domain of PTPN3 was shown to be essential for suppression of Hepatitis B 

virus gene expression (Hsu et al., 2007).  

 

1.8. Gene Silencing with microRNA 

 Gene silencing is a general term used to describe the reduction in gene 

expression level (gene knockdown) by a mechanism other than genetic modification. 

Gene knockdown is a preferred method than gene knockout for large scale or 

preliminary study. In order to observe the effect of a specific gene knockdown, 

antisense technology is used in the post transcriptional gene silencing to suppress the 

gene. This is also known as RNA interference (RNAi). There are several appropriate 

tools to induce RNAi, depending on the model system, the length of time you require 

knockdown and other experimental parameters. The tools are synthetic/ in vitro 

dicing-siRNA (McManus and Sharp, 2002) and RNAi vectors with short hairpin RNA 
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(shRNA) (Paddison et al., 2002) or microRNA (miRNA) (Yekta et al., 2004). The use 

of siRNA (diced siRNA or synthetic siRNA) for RNAi analysis in mammalian cells is 

limited by their transient nature. Hence, it is not effective to observe an accurate 

account of the effect of gene silencing. In addition, the use of shRNA vectors for 

RNAi analysis requires the screening of large number of sequences to identify active 

sequences and the use of Pol III promoters limits applications such as tissue-specific 

expression. In contrast, the use of miRNA vector for RNAi analysis is ideal as it is 

engineered with capabilities for tissue-specific expression with the Pol II promoters, 

and high, constitutive expression of the miRNA to suppress the gene of interest. 

 

MicroRNA expressed from the transfected vector are small ssRNA sequences 

of ~22 nucleotides in length which naturally direct gene silencing through 

components shared with the RNAi pathway (Bartel, 2004). Unlike shRNAs, however, 

the miRNAs are found embedded, sometimes in clusters, in long primary transcripts 

(pri-miRNAs) of several kilobases in length containing a hairpin structure and driven 

by RNA Polymerase II (Lee et al., 2004b), the polymerase also responsible for 

mRNA expression. Drosha, a nuclear RNase III, cleaves the stem-loop structure of the 

pri-miRNA to generate small hairpin precursor miRNAs (pre-miRNAs) which are 

~70 nucleotides in length (Zeng et al., 2005). The pre-miRNAs are exported from the 

nucleus to the cytoplasm by exportin-5, a nuclear transport receptor (Bohnsack et al., 

2004; Yi et al., 2003). Following the nuclear export, the pre-miRNAs are processed 

by Dicer into a ~22 nucleotides miRNA (mature miRNA) molecule, and incorporated 

into an miRNA-containing RNA-induced silencing complex (miRISC) (Cullen, 

2004). 
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1.9. Objectives of study 

There is a lack of understanding of why and how A172 cells are less 

permissive to WNV infection. Hence, a DNA microarray genomic study was carried 

out previously in the laboratory to elucidate host factors involved in the differential 

permissiveness of HeLa and A172 cell lines to WNV (Sarafend) infection (Koh WL 

and Ng ML, 2005). Based on the previous findings, the objectives of this study are: 

 

1) To investigate whether these differentially expressed host factors have any 

role in anti-viral mechanism in A172 cells via microRNA silencing 

technology. A172 cells were chosen as they resemble microglial cells, in 

which they are also poorly permissive to the growth of WNV and is thought to 

influence the neuropathogenesis of WNV infection (Cheeren et al., 2005). 

 

2) To investigate the role of the selected anti-viral host factor which may have 

contributed to the less permissive A172 cells, using mainly indirect 

immunofluorescence confocal microscopy.  
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CHAPTER 2  

MATERIALS AND METHODS 

 

2.1. Cell Culture 

All solutions and media for cell culture were made with autoclaved reagent 

water of type one grade (E-pure, Barnstead, USA) and chemicals of ultra-pure grade. 

The following measures were taken to prevent contamination of the media and the 

cell cultures: Glass bottles (Schott, Germany) with screw-capped lids and non-toxic 

plastic blue washer were used for storage of the media. In addition, parafilm was used 

to seal around the cap and the neck of the bottle after tightening the cap. All cell 

culture and media preparations were done under aseptic conditions in a class two type 

A2 biohazard safety cabinet (Gelman Sciences, Australia & ESCO, USA). Cells used 

in this study were grown and maintained in sterile 75 cm
2
 plastic tissue culture flasks 

with double seal cap and canted neck (IWAKI, Japan). 

 

2.1.1. Cell Lines 

Four different types of cell lines were used in this study. Of which, two were 

human cell lines. They were HeLa cells, a cervical adenocarcinoma cell line (ATCC, 

CCL-2) and A172 cells, a neuroblastoma cell line. HeLa cell line was originally 

derived from a 31 years old Negroid woman (Master, 2002). A172 cell line was 

originally derived from the glioblastoma brain tumour cells of a 53 year old male 

(Giard et al., 1973). The passage number of HeLa cells and A172 cell lines used was 

between 80 and 100. In addition, C6/36 mosquito cell line was used for propagation 

of the WNV whereas Syrian golden baby hamster kidney (BHK)-21 cell line was 
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mainly used for plaque assay. The passage number of both cell lines used was 

between 50 and 80.  

 

2.1.2. Media for Cell Culture 

Dulbecco’s Modified Eagle’s media [(DMEM) (Sigma, USA – Appendix 1a)] 

was used as the growth medium to culture both HeLa and A172 cells. RPMI-1640 

(Sigma, USA – Appendix 1b) was used to culture BHK cells and L15 (Sigma, USA – 

Appendix 1c) growth medium was used to culture C6/36 cells. DMEM, RPMI and 

L15 maintenance media (Appendix 1d) were used to culture virus-infected HeLa, 

A172, BHK and C6/36 cells respectively. The media were prepared according to 

manufacturer’s specifications and these were further supplemented with 10 % fetal 

calf serum (FCS) for growth medium and 2 % FCS for maintenance medium. Sodium 

bicarbonate was added as a buffering agent, and the pH of the media was adjusted to 

7.2.  

 

2.1.3. Regeneration, Cultivation and Propagation of Cell Lines 

Cells in cryo-vials were stored in liquid nitrogen. To revive the cells, each vial 

of the desired cell line was retrieved from liquid nitrogen storage and immediately 

thawed in a 37 °C water bath. When thawed, the cells were transferred into a 75 cm
2
 

culture flask and 15 ml of growth medium was added. The growth medium was 

needed to dilute the toxic effects of dimethysulphoxide (DMSO), which was present 

in the preserving medium. The cells in the flasks were then incubated at 37 °C with 5 

% CO2. The growth medium was decanted after 12 h and replaced with fresh medium, 

after which the cells were allowed to grow to confluence for about 3-4 days.  
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When the cells were confluent, the medium was discarded and the cell 

monolayer was rinsed once with 10 ml 1 X PBS (Appendix 2a). This was followed by 

the addition of two ml trypsin-versene solution (Appendix 2b) and incubated at 37 °C 

for about two min. Cells were then observed under microscope to ensure that they 

have detached. The flask was tapped gently to dislodge the cell monolayer. Two ml of 

growth medium was immediately added to inactivate the enzymatic effect of the 

trypsin-versene solution. The cell aggregates were resuspended by pipetting up and 

down gently for a few times. The suspension of cells was split into a seeding ratio of 

1:4 for experiments and a seeding ratio of 1:8 for maintaining the cell lines, into 75 

cm
2
 culture flasks, and topped up to 10 ml with growth medium. The cells were 

cultivated at 37 °C, in a humidified 5 % CO2 incubator (Lunaire, USA). The 

monolayer reached confluency in about three days and six days for seeding ratio of 

1:4 and 1:8, respectively. The media were changed after every three days till the cells 

were confluent to sub-culture. 

 

Cell cultivation in a 24-well tissue culture tray required cells from a 100 % 

confluent cell monolayer in a 75 cm
2
 flask. The monolayer was split into a seeding 

ratio of 1:4 as describe above. Hence, one out of four ml of the cell suspension was 

further resuspended with 11 ml of medium before dispensing 0.5 ml into each well. 

The trays were then left at 37 °C in the 5 % CO2 incubator (Lunaire, USA) until they 

were confluent unless describe otherwise . 
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2.2. Infection of Cells 

2.2.1. Virus Strains 

The virus used in this study was West Nile (Sarafend) virus [WN(S)V] – a gift 

from Emeritus Professor Westaway, Sir Albert Sakzewski Virus Research Laboratory, 

Queensland, Australia. It is used as a laboratory prototype for WNV. The virus was 

propagated in C6/36 cells throughout the study, and introduced into the human cell 

lines (HeLa cells and A172 cells) for infection studies. The virus was not ‘adapted’ to 

the human cell lines prior to infection, so as to ensure that a basal level of comparison 

can be obtained by using the same virus stock. This was also to prevent any form of 

attenuation to the virus when grown in the human cells (Dunster et al., 1990).  

 

2.2.2. Infection of Cell Monolayer and Production of Virus Pool 

A confluent cell monolayer of about 3 days old in either a 75 cm
2
 culture flask 

or 24-well tissue culture tray was used for infection. The growth medium was 

discarded and the monolayer was washed with three ml or one ml of Hanks medium 

(Sigma, USA – Appendix 3a) for a 75 cm
2
 culture flask and a 24-well tissue culture 

tray, respectively. A volume of one ml or 0.1 ml of virus suspension with multiplicity 

of infection (MOI) of 10 was inoculated onto the cell monolayer of a 75 cm
2
 culture 

flask and a 24-well tissue culture tray respectively. The flask was incubated at 37 °C 

for 1 h and rocked every 15 min to ensure even infection of the cell monolayer. After 

1 h of virus adsorption, virus suspension was removed and washed as described above 

with Hanks medium before adding 10 ml or 1 ml of maintenance medium to a 75 cm
2
 

culture flask and a 24-well tissue culture tray, respectively. The infected cells were 

then incubated at 37 °C for 24 h. Mock-infected controls on HeLa cells and A172 
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cells were also prepared as describe above with 1 ml of Hanks medium instead of 

virus suspension. 

 

At the end of the incubation period, the maintenance medium containing 

extracellular virus particles was then harvested. The supernatant was first spun on a 

bench top centrifuge (Sigma Model 3K15, USA) at 1,000 rpm for 10 min at 4 °C to 

remove cell debris. One ml of this supernatant was aliquoted into sterile cryo-vials, 

sealed and frozen immediately in cold ethanol (-80 °C). The vials were subsequently 

stored at -80 °C. To assay viral growth kinetics, confluent cultures in 25 cm
2
 flasks 

were infected at the desired MOI. Cells from a replicate flask were counted prior to 

infection to accurately calculate the amount of virus needed. Virus was adsorbed for 1 

h at room temperature with rocking at every 15 min, and the monolayers were rinsed 

four times to remove unbound virus before replacing 5 ml of DMEM containing 5 % 

FCS. Samples (0.5 ml) of culture fluid were removed at various times after infection 

and stored at −80 °C. Fresh medium (0.5 ml) was replaced at each time point. Virus 

titres were determined by plaque assay on BHK cells. The virus titres at each time 

point are the averages of the results of triplicate titrations from one experiment. In 

total, three separate experiments were carried out. 

 

2.2.3. Plaque Assay  

Virus stock was diluted in ten-fold serial dilutions with virus diluent from 10
-1

 

to 10
-8

 dilutions. Aliquots containing 0.1 ml of the appropriate dilutions were 

inoculated onto a day-old confluent BHK cell monolayer (~ 10
5
 cells) grown in a 24-

well culture plate (Nunc, Denmark). The virus was allowed to adsorb to the cells at 37 

°C for 1 h, with gentle rocking at 15 min intervals. Following that, excess inoculate 
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were removed and the wells were washed gently with virus diluent. One ml of overlay 

media (Appendix 3b) was added to each well. The plate was placed in a humidified 37 

°C, 5 % CO2 incubator (Lunaire, USA). After about two days of incubation, the 

overlay media was decanted and then stained with 1 % crystal violet solution 

(Appendix 3c) overnight at room temperature on a shaker. Thereafter, the plate was 

rinsed twice with water and dried in an oven. The number of plaques obtained was 

then counted.  

 

The virus was plaqued on BHK cells, even though they had been passaged in 

HeLa and A172 cells, so that a basal level of comparison can be obtained. It had also 

been reported that HeLa cell plaque assays were unreliable (Dunster et al., 1990).  

 

2.3. Microscopy  

2.3.1. Light Microscopy 

When the monolayers reached 70 % confluency, the cells were infected with 

WN(S) virus. The flasks were incubated for 24 h until cytopathic effects (CPE) was 

observed. The flasks were then visualised under an optical microscope (IX81, 

Olympus, Japan) that was linked to a digital camera.  

 

2.3.2. Indirect Immunofluorescence Microscopy 

Cells were grown on coverslips for immunofluorescence microscopy. Glass 

coverslips of diameter 13 mm (ARH, UK) were washed with 90 % ethanol for 30 min 

and then boiled in double-distilled water for about 10 min. The coverslips were then 

left to air dry. Dry sterilization was done in a hot air oven at 160 °C (Jouan, USA) for 
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2 h. The individual coverslips were subsequently placed aseptically into a 24-well 

tissue culture tray (Nunc, Denmark). When the monolayers reached confluency of 

about 70 %, the cells were infected with WN(S)V as before. Mock-infected cells 

using virus diluent was used as controls. The plate was incubated at appropriate time 

points until it is ready for immunofluorescence microscopy studies. 

 

The antisera used and their sources are described as below: 

Table 2-1: Antibodies and their working dilution used in IFA. 

Type of 

antibody 
Name Dilution 

Rabbit polyclonal anti- WNV Envelope protein 

antibody (Millipore, USA) 

1:500 Primary 

antibodies 

Mouse anti-αvβ3 integrins antibody (Chemicon) 1:500 

Alexa Fluor 488 Goat anti-mouse IgM (µ chain) 

(Invitrogen, USA) 

1:500 

Alexa Fluor 594 Goat anti-mouse IgM (µ chain) 

(Invitrogen, USA) 

1:500 
Secondary 

antibodies 

Alexa Fluor 594 Goat anti-rabbit IgM (µ chain) 

(Invitrogen, USA) 

1:500 

 

The infected and control cells were washed twice with cold 1 X PBS and then fixed 

with cold formaldehyde (Merck, Germany) for 10 min at room temperature and 

followed by Triton-X for 10 min at room temperature. This was followed by a wash in 

cold PBS for 15 min. The cells were then blocked with cold 0.1 % BSA (Appendix 

4a) in PBS for 1 h to prevent non-specific attachment of antibodies.  
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Primary antibodies were diluted as detailed above in Table 1. Twenty µl of the 

diluted antibodies was spotted on parafilm. Coverslips seeded with cells were then 

inverted over the drop of antibody and incubated at 37 °C for 1 h in a humid chamber. 

After incubation, the excess antibodies were washed off thrice after incubating with 

PBS for 5 min each at room temperature. Species-specific secondary antibodies were 

appropriately diluted in PBS as detailed in Table 1. Coverslips were similarly treated 

with the secondary antibodies as described above. After incubation, the coverslips 

were washed three times with cold PBS for 5 min each. Following all these secondary 

labelling, twenty µl of DAPI (1: 20 dilution) was similarly treated to the cells to stain 

the nucleus at 37 °C for 15 min in a humid chamber. In addition, phallodin 

(Invitrogen, USA) is used at 1: 5000 dilution to stain actin filaments in the cells where 

appropriate. 

 

A single drop of prolong ProLong® Gold Antifade Reagent (Invitrogen, USA) 

was placed on ethanol-cleaned glass slides and the coverslips were inverted over the 

ProLong reagent. Excess ProLong was blotted with a cleaning tissue, Kimwipe 

(Kimberly Clark, Canada). Fluorescence was visualised under optical 

immunofluorescence microscopy (IX81, Olympus, Japan) and Laser Scanning 

Spectral Confocal microscopy (A1R, Nikon, Japan) using oil immersion objectives. 

Where relevant, quantification of the fluorescent intensity was performed using the 

MetaMorph software (Universal Imaging Corporation, USA).  
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2.4. Molecular Biology techniques 

2.4.1. Total RNA Isolation from Cell Culture 

RNA is prone to disintegration from ubiquitous ribonucleases (RNase), 

therefore it is important to stabilize RNA and adopt proper RNA handling techniques. 

A cell monolayer was washed once with PBS to remove excess media. Total RNA 

isolation was carried out using QIAGEN RNeasy Mini Kit (QIAGEN GmbH, 

Germany) according to the manufacturer’s recommended protocol. Briefly, a volume 

of 350 µl Lysis buffer was added immediately to the cells (5 x 10
6
). This captures 

relevant RNA in cells by preventing unwanted changes in the gene-expression 

patterns due to RNA degradation or changes in the environment. After the lysis of 

cells to release RNA, homogenization of the sample was performed to reduce the 

viscosity of the cell lysates by shearing the high-molecular weight genomic DNA and 

other high-molecular weight cellular components to create a homogeneous lysate. 

Homogenization would disrupt the cells and thus increase the yield of RNA and this 

was carried out by transferring the lysates directly into a QIAshredder spin column 

(QIAGEN GmbH, Germany) and centrifuged at 13 000 X g for 2 min. Subsequently, 

350 µl of 70 % ethanol was added and mixed well before transferring into a RNeasy 

spin column and centrifuged at 12 000 X g for 30 s. The flow through was then 

discarded and 700 µl of Buffer RW1 was added to the spin column, and centrifuged at 

12 000 X g for 30 s. This was followed by washing with 500 µl of Buffer RPE twice, 

with centrifugation at 12 000 X g for 30 s after the first wash and 2 min after the 

second wash. RNA was eluted out in 30 µl of RNase-free water and stored at -20 °C 

for later use.  
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2.4.2. Small scale purification and screening of plasmid DNA  

Small scale plasmid DNA preparation using alkaline lysis method was 

adopted. Single bacterial colony was picked and inoculated in 2 ml of LB medium 

(Appendix 5a) containing either 100 µg/ml of ampicillin or blasticidin (Invitrogen, 

USA). The culture was incubated at 37 °C with vigorous shaking for 16 h. The 

overnight culture was placed into a 2 ml tube and centrifuged at 12,000 X g for 5 min, 

followed by purification. Plasmid DNA was purified with PureLink Quick Plasmid 

Miniprep Kit (Invitrogen, USA). The medium was completely removed after 

centrifugation before the cells were resuspended in 250 µl Resuspension Buffer (R3) 

with RNase A. Then 250 µl of Lysis Buffer (L7) was added and mixed by inverting 

the tube. Next, 350 µl of Precipitation Buffer (N4) were added. The tube was 

centrifuged at 12,000 X g for 10 min to remove cell debris. The supernatant was 

applied to a silica-based spin column, followed by centrifugation at 12,000 X g for 1 

min. The column was washed with 500 µl of Wash Buffer (W10) and subsequently 

with 700 µl of Wash Buffer (W9). The column was spun for another minute to 

remove residual buffer before 30 µl preheated (65 °C) TE Buffer was added to the 

center of the column. The column was incubated for 1 min at room temperature 

followed by centrifugation at 12,000 X g for 2 min. The DNA plasmid was stored at -

20 °C for later use and aliquots for immediate use were stored at 4 °C. 

 

2.4.3. RNA and DNA plasmid Quantification and Quality Determination 

RNA and DNA concentration were determined by measuring the absorbance 

at 260 nm (A260). An absorbance of 1 unit at 260 nm corresponds to either 40 µg of 

RNA or 50 µg of DNA per ml of sample. Nanodrop 1000 (Thermo Scientific, USA) 

was used to measure the quantity and quality with 2 µl of sample. The purity of RNA 
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was determined by taking the ratio of the readings at 260 nm and 280 nm (A260/A280). 

Pure RNA should have a A260/A280 ratio of greater than 2 units and pure DNA should 

have a A260/A280 ratio of greater than 1.80 units. 

 

2.4.4. Determination of RNA and DNA plasmid Integrity 

The integrity and size distribution of total RNA extracted was assessed by 

denaturing formaldehyde-agarose (FA) gel (Appendix 5e) electrophoresis. The 

respective ribosomal bands (1.9 kb and 5.0 kb for 18S and 28S rRNA, respectively) 

should appear as sharp bands on stained gels. Degraded RNA samples (smearing of 

the ribosomal bands) should not be used to proceed with downstream applications. 

Prior to running the gel, equilibrate the gel in 1 X FA gel running buffer (Appendix 

5f) for at least 30 min. Two µl of RNA sample was mixed with 8 µl of RNA loading 

buffer (Appendix 5g) and mixed. Ten µl of each mixture was incubated for 5 min at 

65 °C, and then chilled on ice. The equilibrated FA gel was electrophoreses at 100 V 

for 1.5 h. The gel was then incubated in 0.01% ethidium bromide containing TAE 

buffer for 30 min to stain the RNA for visualisation under the UV. 

 

DNA plasmid was checked for contaminating genomic DNA and RNA by 

running agarose gel electrophoresis with 1 % TAE gel with TAE running buffer 

(Appendix 5h) at 150 V for 0.5 h. The gel was subsequently visualized under UV and 

images captured using ChemiGenius
2
 (Syngene, UK).  

 

2.4.5. Automatic DNA sequencing 

DNA sequencing was carried out on an Applied Biosystems PRISM 3100A 

genetic analyzer with an ABI PRISM BigDye terminator cycle sequencing ready 
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reaction kit (Applied Biosystems, USA). Sequencing reaction of 10 µl contained 0.25 

µg DNA template, 1.6 pmol primer and 4 µl BigDye terminator reaction mixture. The 

cycle sequencing was performed on iCycler PCR System (BioRad, USA) with 

following parameters: 38 cycles of 96 °C for 10 sec, 50 °C for 5 sec and 60 °C for 4 

min. The reaction was purified by ethanol precipitation and the sample was 

resuspended in 6 µl of loading buffer followed by denaturing at 90 °C for 2 min. 

About 1.5 µl of denatured sample was loaded on 5 % acrylamide sequencing gel (18 g 

of urea, 5 ml of 50% long ranger acrylamide stock solution, 26 ml of distilled water 

and 5 ml of 10 X TBE) and was run on the ABI PRISM 377 sequencer for 9 h. The 

sequences were edited by the manufacturer's software. Sequencing results were 

checked using BLAST 2 sequences from the BLAST network server of the National 

Center for Biotechnology Information (NCBI). 

 

2.4.6. Western blot 

The WNV-infected cells were harvested from cell culture flask by using 

trypsin (Appendix 2b) and 5 ml of growth medium to deactivate the trypsin activity. 

Subsequently, cell suspension is spun at 350 rpm for 5 min at 4 °C. The supernatant 

was carefully removed without disturbing the cell pellet. The cells were kept at -80 °C 

if not processed immediately. 

 

For 10
6
 cells, 100 ul of cell lysis buffer (Miltenyi Biotec, Germany) was used 

in total protein extraction. After thorough mixing, the mixture was incubated for 1 h at 

room temperature. After incubation, it was transferred into 1.5 ml tube and heated for 

5 min at 95 °C. Then the tube was spun at 10,000 X g for 10 min to remove the 

insoluble part. The supernatant as total protein extract was transferred to a new tube. 
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Protein samples were fractioned on SDS-polyacrylamide gel (12 % separating gel: 1.6 

ml water, 2.0 ml 30 % acrylamide, 1.3 ml 1.5 M Tris.Cl (pH 8.8), 50 ul 10 % SDS, 50 

ul 10% APS, 2 ul TEMED; 5 % stacking gel: 1.36 ml water, 333 ul 30 % acrylamide, 

250 ul 1M Tris (pH 6.8), 20 ul 10 % SDS, 20 ul 10% APS, 2 ul TEMED). The 

samples were treated with equal volume of loading buffer [0.1 M Tris-HCl, pH 6.8, 

20 % glycerol (V/V), 4 % SDS (W/V), 5 % ß-mercaptoethanol (V/V), 0.2 % 

bromophenol blue (W/V)] at 100 
o
C for 10 min. The running buffer (pH 8.3) 

contained the following reagents in one liter: 94 g glysine, 25 ml 10 % SDS and 15.1 

g Tris.base. The electrophoretic unit was supplied with 50 V for 30 min, followed by 

100 V for 2 h. For transferring proteins to PVDF membrane (Roche Diagnostics 

GmbH, Germany), the membrane was soaked in methanol and Transfer buffer (10% 

methanol, 0.01 M Tris.base, 0.096 M glysine) for 10 min, respectively. The Biorad 

Transblot machine was supplied with 10 V for 2 h. The membrane with proteins was 

then transferred into blocking buffer [5 % non-fat milk powder in TBST (10 mM 

Tris.Cl, pH 8.0, 150 mM NaCl, and 0.05 % Tween 20)] and the membrane was kept at 

4 °C overnight with gentle shaking. 

 

One ul of primary antibody (mouse anti-PY397 FAK and mouse anti-actin, 

respectively) was added into 10 ml TBST buffer (1: 10,000 dilution) and the mixture 

together with membrane was shaken for 1 h at RT. Secondary antibody (goat anti-

mouse) (1:10,000 diluted in TBST) was added to the membrane and incubated at RT 

for 1 h. The membrane was washed with TBST for 10 min for three times before and 

after adding antibodies.  
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2.5. Semi-Quantitative Reverse Transcription and Quantitative 

Real-Time PCR 

2.5.1.   Synthesis of Oligonucleotides 

Appendix 6 lists the oligonucleotides (1
st
 Base, Singapore) that were 

synthesized and used in this study. Sequences for the primers against target genes 

were primarily sourced from ‘Primer 3’. It was used as a tool to generate optimal 

primers based on the target gene sequences 

[(http://fokker.wi.mit.edu/primer3/input.htm) (Rozen and Skaletsky, 2000)].  

 

2.5.2. Semi-Quantitative Reverse Transcription PCR (RT-PCR) 

Total cellular RNA was extracted as described previously. An additional 

DNase treatment step was included to remove all contaminating genomic DNA as 

qRT-PCR is a very sensitive quantification method. The qRT-PCR was performed in 

two steps; the first step was reverse transcription to generate first strand cDNA and 

then followed by real-time PCR. For first strand cDNA synthesis, 5 µg of total RNA 

was reverse transcribed using 200 units of SuperScript III Reverse transcriptase 

(Invitrogen, USA) in a total volume of 20 µl containing 500 µM dNTP mix, 5 mM 

MgCl2, 20 mM DTT, 40U RNaseOUT, primed with 2.5 µM random hexamer. 

Reverse transcription was performed at 50 °C for 60 min, followed by 85 °C for 5 

min, according to the manufacturer’s protocol.  

 

With 0.1 ug cDNA, PCR reaction was carried out in a 50 ul reaction mixture 

(5 ul of 10 X Taq buffer, 5 ul of 2mM dNTP mix, 1 uM of specific primers dimers, 1 

ul of Promega Taq polymerase and top up to 50 ul with sterile distilled water) with the 
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following PCR steps: 1 cycle of 2 mins at 95 °C, 30 cycles of 30 s at 95 °C, 30 s at 55 

°C and 20 s at 72 °C, 1 cycle of 8 mins at 72 °C and 1 cycle of  10 °C  for infinite 

time till collection of tubes. PCR products were then run on the agarose gel as 

described in section 2.4.4. to check on the bands. 

 

2.5.3.   Real-Time PCR 

For real-time PCR, 25 µl reaction mixture containing 2 µl of diluted cDNA (1: 

100 dilution), 12.5 µl of SYBR GreenER
™

 qPCR SuperMix for ABI PRISM
®

 

instrument (Invitrogen, USA) and 0.2 µM of both forward and reverse primers (1
St

 

Base, Singapore) (Appendix 6) was used. A negative template control that contained 

all SYBR green reagents except DNA was performed in parallel. Reactions were 

cycled at 50 °C for 2 min and then 95 °C for 2 min, followed by 45 cycles of 95 °C 

for 15 s, 60 °C for 30 s and 72 °C for 30 s, followed by a melting curve analysis. 

These were performed on ABI PRISM
®

 instrument (ABI, USA). Each gene was 

quantified 3 times, with a triplicate sample each time. This was to increase the 

statistical power and to average the readings.  

 

A calibration curve containing 5 points ranging from 100 fg to 1 ng of cDNA 

was used as a standard. The 18S rRNA gene was used as an internal control for 

normalization, as it is a putative housekeeping gene. Other common housekeeping 

genes, such as beta-actin were found to be differentially expressed during virus 

infection. The threshold cycle (CT)
 
values were then translated into relative copy 

numbers of cDNA by using the comparative CT (∆∆CT) method of calculation (Livak 

and Schmittgen, 2001) as follows: 

Relative change = 2
-∆∆C

T, where ∆∆CT = (CT, Target – CT, 18S )virus 
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2.6. Gene Silencing with microRNA (miRNA) 

2.6.1. Generation of pcDNA TM 6.2-GW/miR expression clone 

The miRNA was generated with BLOCK-iT Pol II miR RNAi Expression 

Vector Kit (Invitrogen, USA) according to manufacturer’s protocols. Briefly, single-

stranded DNA oligos (Appendix 6) encoding pre-miRNA of interest are designed 

with an online tool, BLOCK-iT RNAi Designer 

[(https://rnaidesigner.invitrogen.com/rnaiexpress/) (Invitrogen, USA)]. The single-

stranded oligos are annealed to generate a double-stranded (ds) oligo as follows: a 20 

µl reaction mixture (5 µl of 200 µM top strand oligo & bottom strand oligo each, 2 µl 

of 10 X oligo annealing buffer and 8 µl of DNase/RNase-free water) was heated at 95 

°C for 4 min and cooled at room temperature for 10 min. The ds oligo was then 

diluted to 500 nM with DNase/RNase-free water and further diluted to 10 nM with 

Oligo Annealing Buffer. The ds oligo was cloned into pcDNA TM 6.2-GW/miR in the 

reaction mix [4 µl of 5 X ligation buffer, 2 µl of pcDNA TM 6.2-GW/miR (5ng/ µl), 4 

µl of 10nM ds oligo, 9 µl of DNase/RNase-free water and 1 µl of T4 DNA ligase (1U/ 

µl)] incubated for 5 min at room temperature. The ligated product was transformed 

into One Shot TOP10 chemically competent E.coli with 2 µl of the ligation reaction 

mix. The cells and ligation reaction mix were incubated on ice for 30 min before heat-

shocking the cells at 42 °C for 30 s without shaking and immediately transferred to 

ice. Subsequently, 250 µl of room temperature S.O.C. medium was added and 

incubated at 37 °C for 1 h with shaking. After shaking, 100 µl of bacterial culture was 

spread on a pre-warmed LB agar plate containing 50 µg/ml of spectinomycin and 

incubated overnight at 37 °C. A few colonies were selected and cultured overnight in 

LB containing 50 µg/ml of spectinomycin. The pcDNA TM 6.2-GW/miR with the 

ligated ds oligo was isolated as described above, quantitated and sequenced using the 
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miRNA forward sequencing primer (Appendix 6) to check the integrity of the ds 

oligo.  

 

2.6.2. Transient silencing of FRMD4A & INDO in A172 cells 

The pcDNA TM 6.2-GW/miR expression plasmid DNA (0.8ug) was diluted in 

50 ul of Opti-MEM
® 

I Medium without serum. In another sterile 5 ml tube, 2 µl of 

Lipofectamine TM 2000 (Invitrogen, USA) was diluted in 50 ul of Opti-MEM
® 

I 

Medium without serum. After 5 min of incubation, the diluted DNA was combined 

with the diluted Lipofectamine TM 2000, and was further incubated for 20 min at room 

temperature, forming the DNA- Lipofectamine TM 2000 complexes. The DNA- 

Lipofectamine TM 2000 complexes were added into the 24-well plate containing 500 ul 

of growth medium containing serum with a confluent layer of A172 cells. The plate 

was incubated overnight at 37 °C in a CO2 incubator. The media containing the DNA- 

Lipofectamine TM 2000 complexes was removed the next day and replaced with 

complete culture medium. The effect of transient silencing was analysed the following 

day (48 h post transfection) or the cells were collected and stored in -80 °C till further 

analysis was needed. 

 

2.7. Cloning of full-length FRMD4A and truncated FRMD4A 

2.7.1. First strand cDNA synthesis 

The cloning of 3120 bp FRMD4A was carried out firstly by performing first 

strand cDNA synthesis with the following kits and its recommended protocol:  

 

A. SuperScriptTM III Reverse Transcriptase (Invitrogen, USA). The reaction mix 

initially contained 1 µl of 50 µM of oligo (dT)20, 2 µg of total RNA, 1 µl of 10 mM of 
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dNTP Mix (10 mM each of dATP, dGTP, dCTP and dTTP at neural pH) and sterile, 

distilled water to make up 13 µl reaction volume. The mixture was heated to 65 °C for 

5 min and incubated on ice for 5 min. Subsequently, 4 µl of 5 X First-Strand Buffer, 1 

µl of 0.1 M DTT, 1 µl of RNaseOUT TM Recombinant RNase Inhibitor (40 units/µl) 

and 2 µl of SuperScriptTM III Reverse Transcriptase was added and mix well before 

incubating at 55 °C for 60 min and followed by heating at 70 °C for 15 min to 

inactivate the reaction. Finally, 1 µl of E.coli RNase H was added into the reaction 

mix and incubated at 37 °C for 20 min.  

 

B. Transcriptor High Fidelity cDNA Synthesis kit (Roche, Germany). The reaction 

mix initially contained 1 µl of 50 pmol/ µl of oligo (dT)18, 2 µg of total RNA, and 

sterile, distilled water to make up 11.5 µl reaction volume. The mixture was heated to 

65 °C for 10 min and incubated on ice for 5 min. Subsequently, 4 µl of 5 X 

transcriptor High Fidelity Reverse Transcriptase Reaction Buffer, 1 µl of 0.1 M DTT, 

0.5 µl of Protector RNase Inhibitor (40 units/µl), 2 µl of dNTPs (10 mM each) and 1 

µl of High Fidelity Reverse Transcriptase was added and mix well before incubating 

at 55 °C for 60 min and followed by heating at 85 °C for 5 min to inactivate the 

reaction. Finally, 1 µl of E.coli RNase H was added into the reaction mix and 

incubated at 37 °C for 20 min. Similarly, reverse gene-specific primer was also used 

to perform the first strand cDNA synthesis with both kits instead of oligo (dT)20. 
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2.7.2. PCR amplification of full-length and partial fragments of FRMD4A 

The kits and recommended protocol used for PCR amplification are as 

followed: 

  

A. High Fidelity PCR Enzyme Mix (Fermentas, USA), a 50 µl reaction mix includes 5 

µl of 10X High Fidelity PCR Buffer with MgCl2, 5 µl of 2mM dNTP mix, 1 µl of 10 

µM primer pair, 5 µl of cDNA reaction mix and 0.5 µl of High Fidelity PCR Enzyme 

Mix (5 units/µl). The cycling conditions are 94 °C for 2 min for initial denaturation, 

followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at the appropriate 

temperature depending on the primer melting temperature (Tm) and elongation at 72 

°C for 3 min (full-length) or at 1 min/kb of PCR target and lastly, final elongation at 

72 °C for 10 min.  

 

B. KapaFidelity DNA polymerase kit (Bio Laboratories, Singapore), a 50 µl reaction 

mix includes 5 µl of 10X reaction buffer, 3 µl of 25mM MgCl2, 1.5 µl of 10 mM 

dNTP mix, 1.5 µl of 10 µM primer pair, 5 µl of cDNA reaction mix and 2 µl of 

KapaFidelity DNA polymerase (1units/µl). The cycling conditions were 95 °C for 2 

min for initial denaturation, followed by 35 cycles of denaturation at 98 °C for 15 s, 

annealing at the appropriate temperature depending on the primer melting temperature 

(Tm) and elongation at 72 °C for 2 min (full-length) or at 0.5 min/kb of PCR target 

and lastly, final elongation at 72 °C for 1 min. 

 

C. Phusion High-Fidelity DNA Polymerase (Finnzymes, Finland), a 50 µl reaction 

mix includes 5 µl of 10 X Phusion HF Buffer with (1.5mM) MgCl2, 1 µl of 10 mM 

dNTP mix, 1 µl of 10 µM primer pair, 5 µl of cDNA reaction mix and 1 µl of Phusion 
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High-Fidelity DNA Polymerase (2 units/µl). The cycling conditions are 98 °C for 30 s 

for initial denaturation, followed by 35 cycles of denaturation at 98 °C for 10 s, 

annealing at the appropriate temperature depending on the primer melting temperature 

(Tm) and elongation at 72 °C for 2 min (full-length) or at 30 s/kb of PCR target and 

lastly, final elongation at 72 °C for 10 min. 

 

The amplification of the full length FRMD4A starts from 329 bp (FRMD4A 329) 

to 3509 bp (FRMD4A 3509) of the mRNA sequence found in NCBI (Accession no. 

NM_018027). The amplification of the partial FRMD4A fragments includes:  

A. 329 bp (FRMD4A 329) to 1611 bp (FRMD4A 1611) which consists of the 

FERM domain. 

B. 1592 bp (FRMD4A 1592) to 2419 bp (FRMD4A 2419) 

C. 2403 bp (FRMD4A 2403) to 3509 bp (FRMD4A 3509).  

The primer sequences in bracket are listed in Appendix 6. Amplification of these 

partial FRMD4A fragments was carried out using High Fidelity PCR Enzyme Mix 

(Fermentas, USA). 

 

2.7.3. Cloning of FERM domain into GFP vector  

The FERM domain of FRMD4A (329bp-1611bp) was amplified with newly designed 

primers (Appendix 6) using High Fidelity PCR Enzyme Mix (Fermentas, USA) and 

cloned into pcDNA3.1/CT-GFP-TOPO vector (Invitrogen, USA) using TOPO cloning 

technology according to manufacturer’s protocols. This cloning required the inclusion 

of salt (200 mM NaCl, 10 mM MgCl2). The salt prevented topoisomerase I from 

rebinding and potentially nicking the DNA after ligating the PCR products and 

dissociating from DNA. The result is more intact molecules present which leads to 



                                                                                                     Materials and Methods 

 42 

higher transformation efficiencies. The TOPO reaction includes: 4 ul of fresh PCR 

product, 1 ul of salt solution and 1 ul of TOPO vector. The reaction mixture was 

incubated for 1 h at room temperature. The ligated product was then transformed into 

One Shot TOP 10 Chemically Competent E.coli and incubated on ampicillin plate 

overnight at 37 °C according to the manufacturer’s protocol. A few colonies were 

selected and cultured overnight in LB containing 100 µg/ml of ampicillin. The 

plasmid was isolated as described in section 2.4.2., quantitated and sequenced using 

the GFP reverse primer (Appendix 6).  

 

2.7.4. Bioinformatic Analyses  

 Conserved domain query was carried out with the NCBI Conserved Domain 

Database (CDD) (www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). The amino acid 

homology of FRMD4A as compared to erythroid protein 4.1 was obtained by getting 

the amino acid sequence of both proteins from NCBI database and compared using 

Cluster W (www.ebi.ac.uk/clustalw/). In addition, the multiple sequence alignment of 

the TALIN, RADIXIN, FAK and FRMD4A proteins was done using Cluster W. 
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CHAPTER 3. 

RESULTS 

 

3.1. Validation of microarray analysis of FRMD4A and INDO  

West Nile virus (WNV)-infected A172 cells (glioblastoma) and WNV-

infected HeLa cells (cervical adenocarcinoma) were observed to consistently produce 

virus titre of 10
5
 PFU/ml and 10

8
 PFU/ml at 24 h post-infection, respectively (Figure 

3-1A). In addition, WNV-infected A172 cells had less efficient virus growth kinetic 

as compared to WNV-infected HeLa cells even though both have similar growth 

pattern (Figure 3-1B). As such, it was hypothesized that a more effective anti-viral 

mechanism was present in A172 cells. This anti-viral mechanism could be the reason 

behind the lower virus titre in WNV-infected A172 cells. A genomic study was then 

carried out using microarray technology previously (Koh and Ng, 2005). The main 

aim of that study was to determine the differentially expressed genes that could play a 

role in the different cell permissivity to infection between A172 cells and HeLa cells. 

From the differentially expressed genes, two genes, FRMD4A and INDO, with the 

highest significant fold change were identified and selected for further research. The 

fold difference of these two genes was validated using semi-quantitative reverse 

transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR.  
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Figure 3-1. Differential WNV infection in selected cells. A. WNV-infected 

A172 cells produce a lower virus titre than WNV-infected HeLa cells at 24 h 

post-infection with MOI of 10. WNV-infected BHK cells are used as a 

positive control for plaque assay to ensure that the assay process is 

standardised. B. Graphs of WNV growth kinetic in infected A172 cells and 

infected HeLa cells show that WNV infects A172 cells less efficiently as 

compared to HeLa cells. The virus titres at each time point are the averages 

of the results of triplicate titrations from one experiment. In total, three 

separate experiments were carried out. Error bars indicate standard deviation 

of the three separate experiments and are shown where appropriate. These 

results strongly suggest A172 cells may have a more effective anti-viral 

mechanism than HeLa cells.  
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3.1.1. Total RNA integrity and purity 

Total RNA was extracted from A172 cells and HeLa cells. Subsequently, the 

total RNA was assessed on integrity and purity (Figure 3-2). The good integrity of 

total RNA gave two distinct sharp bands which corresponded to 18S and 28S 

ribosomal RNA (rRNA). The apparent ratio of 28S rRNA to 18S rRNA was 

approximately 2:1 based on fluorescence intensity of the bands (Figure 3-2A). In 

addition, the purity of extracted total RNA was considered good with 

Asorbance260/Asorbance280 (A260/A280) and A260/A230 ratios ranging between 2 to 2.1 

(Figure 3-2B). This indicated low contamination with compounds such as protein, 

guanidine isothiocyanate, EDTA and phenol. As such, the good integrity and high 

purity of total RNA would provide more accurate and reliable results of the 

downstream applications. 

 

 

 

 

 

28S 

rRNA 

18S 

rRNA 

Figure 3-2. Integrity and purity assessment of extracted total RNA with 2 

% denaturing agarose gel (A) and Nanodrop (B) respectively. Two 

distinct 28S and 18S rRNA bands are used to assess the integrity of the 

total RNA. Ratio of 260/280 and 260/230 are used to assess the purity of 

the total RNA. This figure shows a representation of the common 

observation of rRNA bands and the ratio readings. 
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3.1.2. Primer specificity of FRMD4A and INDO 

Primers (Appendix 6) were designed to amplify and detect specifically the 

presence of a short region of FRMD4A and INDO. The primers were specific as it 

produced a single band of the appropriate size after PCR (Figure 3-3). The specificity 

of these primers would also provide a more accurate and reliable results of the RT-

PCR and real time PCR. 

 

3.1.3. Endogenous control assessment 

In order to make accurate comparison of the mRNA levels between different 

cell lines and between mock-infected and infected cell lines in RT-PCR and real time 

PCR, a suitable endogenous control that has a consistent mRNA level under all 

experimental conditions is required. BETA-ACTIN (β-ACTIN) and 18S rRNA are the 

common endogenous control for RT-PCR and real time PCR as they belong to the 

housekeeping gene category. Standard curves of β-ACTIN and 18S rRNA were 

obtained with different dilutions of total RNA extracted from mock-infected and 

infected A127 cells and HeLa cells using real-time PCR. Standard curve of β-ACTIN 

1. 100bp 

Molecular 

Marker 

2. FRMD4A 

(246bp) 

3. INDO 

(234bp) 

  1       2       3 

Figure 3-3. Primer specificity of FRMD4A and 

INDO primers. These primers (Appendix 6) are 

subsequently used for checking mRNA expression 

of FRMD4A and INDO.  
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from the mock-infected A172 cells showed significant difference from the rest of the 

standard curves obtained (Figure 3-4A). This could be due to the virus infection as it 

had been reported that actin filaments played a role in the maturation process of the 

WNV (Chu, et al., 2003). However, there was no significant difference observed for 

the standard curves of 18S rRNA (Figure 3-4B). Hence, 18S rRNA was chosen as the 

endogenous control in this study.  
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Figure 3-4. Endogenous control assessment for real-time PCR. 
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3.1.4. Semi-quantitative RT-PCR 

RT-PCR evidently showed that the mRNA expression levels of FRMD4A and 

INDO were differentiated prominently in expression in WNV-infected A172 cells 

when compared to WNV-infected HeLa cells (Figure 3-5A and B). This trend is 

correlated completely with the previous microarray analyses. Interestingly, it was 

observed that FRMD4A was only expressed in A172 cells but not in HeLa cells. 

However, the mRNA expression level of FRMD4A remained unregulated in A172 

cells after virus infection (Figure 3-5A). This could be one of the intrinsic cellular 

factors that may be involved in the permissivity of A172 cells to WNV infection. 

Although its expression level was not influenced by the impact of virus infection, it 

might still play a role in WNV infection. On the contrary, the mRNA expression level 

of INDO was upregulated in infected A172 cells when compared to mock-infected 

A172 cells (Figure 3-5B). Hence, INDO may also be involved in the permissivity of 

A172 cells to WNV infection since its expression level was influenced by the impact 

of the WNV infection. 
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Figure 3-5. Semi-quantitative RT-PCR of FRMD4A (A) and INDO (B). Both 

mRNA expression of FRMD4A and INDO show higher level in infected A172 

cells than in infected HeLa cells. However, the mRNA expression of FRMD4A 

is only observed in A172 cells but not in HeLa cells and mRNA expression of 

INDO is induced in infected A172 cells when compared to infected HeLa cells. 
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3.1.5. Real time PCR analyses 

Dissociation curves of FRMD4A and INDO showed the primer specificity in 

real-time PCR. Dissociation curve of FRMD4A showed a single distinct peak at 

dissociation temperature of approximately 88 °C (Figure 3-6A). However, the 

dissociation curve of INDO showed two peaks. This was due to the existence of two 

isoforms of INDO, namely INDO 1 and INDO 2 in the amplified fragments of the 

same size as the two fragments were not observed in RT-PCR (Figure 3-5B). The two 

isoforms were made up of a number of different nucleotides resulting in the formation 

of different peaks with dissociation temperature difference of approximately 3 °C 

(Figure 3-6B). The No Template Control (NTC) was incorporated as a negative 

control to ensure that the amplified fragment is from the template and not other 

sources. The mRNA expression level of FRMD4A and INDO was observed to be 

significantly higher in infected A172 cells than in infected HeLa cells (Figure 3-7A & 

B; Figure 3-8). The fold difference of FRMD4A and INDO was approximately 11 and 

10 units, respectively (Figure 3-9). These results again correlated well with the 

microarray analyses of FRMD4A and INDO.   
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Figure 3-6. Dissociation curve of FRMD4A (A) and INDO (B). A. The 

single peak of FRMD4A represents the specificity of the primers. B. The 

double peaks of INDO represent the presence of two isoforms of INDO of 

the same fragment size but contain a few different nucleotides. This results 

in a dissociation temperature difference of approximately 3 °C. NTC- No 

template control. This figure is used as a representation of the replicates of 

real-time PCR results. 
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INDO  1 

INDO 2 

B. 



                                                                                                                              Results 

 52 

 

 

Figure 3-7. Real-time PCR analyses of FRMD4A (A) and INDO (B) in WNV-

infected A172 and HeLa cells. A. WNV-infected A172 cells have lower cycle 

number (Ct) than infected HeLa cells and hence, higher mRNA expression 

level of FRMD4A. B. WNV-infected A172 cells have lower cycle number (Ct) 

than infected HeLa cells and hence, higher mRNA expression level of INDO. 

This figure is used as a representation of the replicates of real-time PCR 

results. 
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Figure 3-9. Relative fold change of FRMD4A and INDO between WNV-infected 

A172 cells and HeLa cells using real-time PCR. Real-time PCR results of both 

FRMD4A and INDO correlate well with microarray analyses. Fold change =  

2
-∆∆CT

 (A172)/ 2
-∆∆CT

 (HeLa) where ∆∆CT = (CT, Target – CT, 18S rRNA ) virus-

infected.  
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Figure 3-8. Real-time PCR analysis of FRMD4A and INDO mRNA 

expression level (Ct value) in A172 cells and HeLa cells. FRMD4A 

expression in WNV-infected A172 cells and WNV-infected HeLa cells 

show significant difference. However, mock-infected and WNV-infected of 

both A172 cells and HeLa cells do not show significant difference in 

FRMD4A expression. INDO expression in WNV-infected A172 cells and 

WNV-infected HeLa cells show significant difference. However, mock-

infected and WNV-infected of both A172 cells and HeLa cells do not show 

significant difference in INDO expression.  
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3.2. Impact of silencing FRMD4A and INDO on WNV infection 

FRMD4A and INDO had been shown and validated to have significantly 

higher differential expression in WNV-infected A172 cells than in WNV-infected 

HeLa cells. In order to find out whether these two genes had any influence on WNV 

infection, silencing of these two genes was carried out using microRNAs (miRNA) 

expression system. This expression system facilitates the generation of an expression 

construct that permits high-level expression of a pre-miRNA in mammalian cells for 

RNAi analyses of the target genes. The expression of pre-miRNA will subsequently 

be processed by Dicer into an approximately 22 nucleotides miRNA (mature miRNA) 

molecule. Mature miRNAs usually regulate gene expression by either mRNA 

cleavage or translational repression (Cullen, 2004). However, the engineered miRNAs 

produced by the BLOCK-iT™ Pol II miR RNAi Expression Vector Kits fully 

complement their target site and hence, cleave the target mRNA. 

 

Since WNV infection can cause neurological diseases such as encephalitis and 

meningitis, it would be most appropriate to used A172 cells. A172 cells are human 

glioblastoma cells of central nervous system origin and, so it is more relevant and 

significant to study the two genes in A172 cells. Furthermore, A172 cells like the 

microglial cells are poorly permissive to the growth of WNV. Microglial cells are also 

thought to influence the neuropathogenesis of WNV infection (Cheeren et al., 2005).  

 

3.2.1. Construction of FRMD4A- and INDO- silencing plasmid 

Antisense target sequence of 21 nucleotides (nt) (Appendix 6) of FRMD4A 

and INDO were selected using Invitrogen’s BLOCK iT
TM

 RNAi Designer online tool. 

The respective site of these sequences was shown in Figure 3-10. The antisense target 
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sequence of FRMD4A was chosen outside the FERM domain. This was because based 

on literature review, there were many proteins found to have this FERM domain. In 

order not to affect the expression level of other FERM domain-containing proteins, it 

was logical to design the antisense target sequence outside the FERM domain. 

 

Single-stranded (ss) DNA oligos of 64 nt were designed with the selected 

antisense target sequence of FRMD4A and INDO, respectively (Appendix 6). Double-

stranded (ds) oligos of size that corresponded to 75 bp of the molecular marker were 

generated by annealing the commercially synthesized complementary ss DNA oligos 

(Figure 3-11A). The respective ds DNA oligos were then cloned into the pcDNA 

vector by ligation and transformation into E. coli to form pre-FRMD4A miRNA and 

pre-INDO miRNA expressing- vectors (Figure 3-11B). In addition, scramble (Scr) 

sequence was cloned into the vector to generate pre-Scr miRNA expressing-vector to 

determine the specificity of silencing (negative control) and to ensure no off-target 

effects.  
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Figure 3-10. Schematic diagrams of FRMD4A (A) and INDO (B) mRNA, and their 

respective antisense target sequence sites. The sequence of antisense target sites 

used for silencing FRMD4A and INDO is selected using Invitrogen’s BLOCK iTTM 

RNAi Designer online tool. A. The miRNA sequence for silencing FRMD4A is 

selected at nucleotide (nt) position 1454-1474, away from the FERM domain. This 

is to avoid unspecific silencing of other FERM domain-containing proteins. B. The 

miRNA sequence for silencing INDO is selected at nucleotide (nt) position 244-

264. Based on the analysis of the online tool, both miRNA sequence of FRMD4A 

and INDO are one of the sequences that have the highest silencing probability. 
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Figure 3-11. Generation of double-stranded (ds) oligo (A) and pre-

miRNA-expressing vector for silencing (B). A. Single-stranded (ss) 

DNA oligos, designed using BLOCK-iT RNAi Designer, were 

successfully annealed to generate the ds oligo (75 bp). Commercially 

available ds miR-positive oligos are used for positive control. B. Ds 

miR- FRMD4A/INDO/Scramble (Scr) oligos were then ligated into 

pcDNA vector to generate the FRMD4A/INDO/Scr miRNA-

expressing vector, respectively. Lane 2 shows the ds miR- 

FRMD4A/INDO/Scramble oligos successfully ligated into the pcDNA 

vector. This results in the higher molecular weight of the vector in 

Lane 2 as compared to the vector in Lane 3. This figure is a 

representation of the generation of pre-FRMD4A, INDO and Scr mi 

RNA expressing-vector. 
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3.2.2. Transient RNAi analysis of FRMD4A in A172 cells and its impact on virus 

infection 

With the generated pre-miRNA vector for silencing FRMD4A, transfections of 

these vectors were performed. It was observed (Figure 3-12A) and quantitated by 

real-time PCR (Figure 3-12B) that the generated pre-miRNA vector was capable of 

reducing the mRNA expression level of FRMD4A by approximately 79 fold 

difference based on the Ct values obtained. As a result of this silencing, the virus titre 

increased by one log (Figure 3-13). This showed that FRMD4A is a potential anti-viral 

host factor. Expression level of FRMD4A was also not affected by miScr and hence, 

silencing of FRMD4A was specific and not due to off-target effects. 
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Figure 3-12. Transient silencing of FRMD4A in A172 cells. A. Pre-FRMD4A  

miRNA expressing-pcDNA vector (miF) is transfected into A172 cells to 

silence FRMD4A. Pre-Scramble miRNA expressing-pcDNA vector (miScr) is 

used as a negative control for silencing. B. Real-time PCR is used to quantitate 

the reduction of the mRNA level of FRMD4A. Transfection of miF 

successfully results in transient silencing of FRMD4A. miScr: transfection with 

pcDNA expressing pre-Scr miRNA; miF: transfection with pcDNA expressing 

pre- FRMD4A miRNA; WT: mock transfection. 
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3.2.3. Transient RNAi analyses of INDO in A172 cells and its impact on virus 

infection 

In addition, pre-INDO miRNA expressing-pcDNA vector was transfected into 

A172 cells. It was observed (Figure 3-14A) and quantitated by real-time PCR (Figure 

3-14B) that the generated pre-miRNA vector was capable of reducing the mRNA 

expression level of INDO by approximately 65 fold difference based on the Ct values 

obtained. However, as a result of this silencing, the virus titre remained consistently 

unchanged (Figure 3-15). Even though there is an induction of INDO in infected 

A172 cells as compared to mock-infected A172 cells, the role played by INDO may 

not be significant enough to affect virus replication. It was also observed that there is 

a change in INDO expression level as a result of the scrambled miRNA. This could be 

due to the silencing of other variants of INDO which could have very similar 

sequence as the scramble miRNA. 

Figure 3-13. The impact of transient silencing FRMD4A on virus 

titre in A172 cells. With transient silencing of FRMD4A, the 

virus titre increases by one log as compared to mock-transfected 

A172 cells. miScr: transfection with pcDNA expressing pre-Scr 

miRNA; miF: transfection with pcDNA expressing pre- 

FRMD4A miRNA; WT: mock transfection. 
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Figure 3-14.  Transient silencing of INDO in A172 cells. Pre-INDO miRNA 

expressing-pcDNA is used for transfection. Pre-Scramble miRNA 

expressing-pcDNA vector (Scr) is used as a negative control for silencing. B. 

Real-time PCR is used to quantitate the reduction of the mRNA level of. 

INDO. Transfection of miI successfully results in silencing of INDO. miScr: 

transfection with pcDNA expressing pre-Scr miRNA; miI: transfection with 

pcDNA expressing pre-INDO miRNA; WT: mock transfection. 
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3.3. Elucidation of the role of FRMD4A and its FERM domain in the less 

permissive A172 cells to WNV infection with bioinformatics and 

immunofluorescence microscopy 

From the results of silencing FRMD4A and INDO, and their impact on virus 

infection based on the virus titre, it was more relevant to further study FRMD4A and 

its role in permissivity of A172 to WNV infection. Furthermore, it is a potential 

antiviral host protein that expresses only in A172, glioblastoma cells of central 

nervous system origin but not in HeLa cells.  

 

3.3.1. Bioinformatics analyses of FRMD4A 

Based on NCBI and conserved domain query, FRMD4A was found to belong 

to the 4.1 superfamily that contains a 4.1 ezrin radixin moesin (FERM) domain 

(Figure 3-16).  

 

 

 

Figure 3-15. The impact of transient silencing INDO on virus titre in 

A172 cells. With transient silencing of INDO, the virus titre remains 

relatively similar. miScr: transfection with pcDNA expressing pre-Scr 

miRNA; miF: transfection with pcDNA expressing pre-INDO 

miRNA; WT: mock transfection. 
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Figure 3-16. Conserved domains of FRMD4A. FERM domain 

consisting of three lobes (FERM-N, FERM-M, FERM-C) and B41 

domain are conserved domains located at the N-terminal of FRMD4A 

protein. 
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The FERM domain of FRMD4A has 23% amino acid sequence homology to 

erythroid protein 4.1 (Figure 3-17). It is very similar to the FERM domain of talin, 

ezrin, radixin and moesin. In most cases, FERM domain has been shown to mediate 

intermolecular interactions between the transmembrane proteins such as integrins and 

the cytoskeleton. 

 

RADIXIN, TALIN and FAK are three FERM-domain containing proteins that 

had shown to interact with the integrin β-cytoplasmic tail (Athar et al., 1998). 

Previously, it was found that the interaction of WNV with αvβ3 integrins mediates 

virus entry into the cells via the FAK activation and triggering of actin assembly 

23%

%2

FRMD4A 

[1039 aa] 

Figure 3-17. Amino acid sequence homology of FERM domain compared 

with that of erythroid protein 4.1. Similarly to most of the FERM domain-

protein, FERM domain of FRMD4A is located at the N-terminal and has 

23% amino acid sequence homology. 
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leading to clathrin-mediated endocytosis of virus particles (Chu & Ng, 2004). As 

such, a clustering of the FERM domain of RADIXIN, FRMD4A, TALIN and FAK 

was performed. It revealed two identical amino acids and a number of conserved 

substitutions of amino acids which correlated well to the binding region of integrin β-

cytoplasmic tail (Figure 3-18A) (Tanentzapf and Brown, 2006). Furthermore, by 

comparing the scores derived from the clustering, it was observed that FRMD4A had 

the highest homology level as RADIXIN, which was also evident in Figure 3-15. The 

lowest homology level was observed with FAK, which may suggest FRMD4A could 

be a competitor of integrin-binding FAK (Figure 3-18B). It was observed that proteins 

such as RADIXIN (Tang et al., 2007) and TALIN (Calderwood et al., 2002) that were 

involved in the ‘inside-out’ signaling of integrin activation had a better homology 

score than FAK. This suggested that FRMD4A may be involved in the ‘inside-out’ 

signaling. Moreover, the score suggested that FRMD4A may have better or other 

binding sites like the RADIXIN and TALIN that can bind to integrin, competing with 

FAK in the process. 
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Figure 3-18. Clustering of the FERM domain of RADIXIN, FRMD4A, 

TALIN and FAK. A. The two identical lysine residues are associated with 

integrin β cytoplasmic binding site. ‘·’ means semi-conserved substitution. ‘:’ 

means conserved substitution. ‘*’ means identical residues. B. FERM domain 

of FRMD4A has the highest homology to RADIXIN and the lowest 

homology to FAK. 
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3.3.2. Cloning of full length FRMD4A and its FERM domain 

 FRMD4A (NM_018027) has an mRNA of 6804 base pairs (bp) and coding 

sequence of 3509 bp, according to NCBI database. Many attempts to clone the full-

length of this gene (3120 bp) were performed. However, none was successful. 

Forward and reverse primers were designed by first blasting the primer sequence with 

NCBI Blast to check for the specificity of the primer. Other parameters such as 

melting temperature, GC content, length of primer were also taken into consideration. 

Two different first strand cDNA synthesis kits were tried. They were Transcriptor 

High Fidelity cDNA Synthesis kit (Roche, Germany) and SuperScript
TM

 III Reverse 

Transcriptase (Invitrogen, USA). Furthermore, three different PCR kits with different 

polymerase were tested too. They were High Fidelity PCR Enzyme Mix (Fermentas, 

USA), KapaFidelity DNA polymerase kit (Bio Laboratories, Singapore) and Phusion 

High-Fidelity DNA Polymerase (Finnzymes, Finland). In addition, three-piece PCR 

strategy was performed but to no avail (Figure 3-19). In the end, the focus of the 

cloning was shifted to just the FERM domain as it was known to be functionally 

important as a linker between the transmembrane proteins and the cytoskeleton based 

on literature review. The segment 1A which consisted of FERM domain was 

amplified from 329bp-1611bp using newly designed primers (Appendix 6) (Figure 3-

19C) and it was cloned into a vector with a GFP at the C-terminal of the segment 1A 

for downstream microscopy works. 
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Figure 3-19. Cloning of full-length and FERM domain of FRMD4A. A. Schematic 

diagram of FRMD4A coding sequence of 3509 base pairs. The full length sequence 

was split up into three segments; 1A, 1283 bp long; 1B, 828 bp long; 1C, 1070 bp 

long. B. Three-piece PCR strategy to clone the full-length FRMD4A was also 

unsuccessful due to the production of unspecific and incorrect band size. (i). 

Increment of annealing temperature was also performed to reduce the unspecific 

bands and to achieve the correct size band, but to no avail (ii). C. Amplification of 

segment 1A of FRMD4A which consists of the FERM domain (Lane 2). Lane 3 is 

a representative figure of the many unsuccessful amplifications of the full length 

FRMD4A. 
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3.3.3. Colocalisation of WNV and integrins   

Previous study had shown that WNV-integrin interaction mediated entry (Chu 

& Ng, 2004). Hence, based on bioinformatics analyses and literature review, it would 

be interesting to investigate the role of the FERM domain of FRMD4A in relation to 

WNV and integrin interaction-mediated entry. In Figure 3-20, A. represented the 

nuclei staining with DAPI; B. represented activated αvβ3 integrins detected with 

mouse anti-αvβ3 integrins antibody and stained with goat anti-mouse antibody 

conjugated with Alexa Fluor 488. The αvβ3 integrins are not strongly activated in all 

cells. However, when it is activated, it is found near the perinuclear region (white 

arrow in B); C. represented WNV detected with rabbit anti-WNV and stained with 

goat anti-rabbit antibody conjugated with Alexa Fluor 594. WNV is localized near the 

perinuclear region (white arrow in C) where the activated αvβ3 integrins are also 

localized; D. represented co-localizations of αvβ3 integrin (green) and the WNV (red) 

in infected A172 cells, represented in yellow. From Figure 3-20D, the colocalisation 

signal (yellow) from antibodies against WNV and αvβ3 integrin clearly shows that 

there is association between WNV and αvβ3 integrin. This was well-correlated to 

previous study (Chu & Ng, 2004) and it provided more confidence for this study to 

build on previous findings. However, it could be observed that some cells infected 

with WNV did not show strong colocalisation signal. This could be due to the fact 

that not all cells were intensely infected with WNV at that point of time. It could also 

be due to the entry of WNV via other mechanisms, instead of αvβ3 integrin. 

 

3.3.4. No colocalisation between FERM domain of FRMD4A and actin filaments 

In order to investigate whether the FERM domain interacts with the actin 

filaments, the following experiment was carried out. In Figure 3-21, A. represented 
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nuclei staining with DAPI; B. represented actin filaments detected with Phallodin; C. 

represented transfected FERM-GFP vector in A172 cells and FERM-GFP was 

localized near the perinuclear region; D. represented no co-localization of FERM-

GFP (green) with the actin filaments (red) in A172 cells. Hence, the FERM domain 

was observed to have no association with the actin filaments (Figure 3-21). This is not 

surprising, as it has been reported in studies that actin binding sites are found at the C-

terminal of the FERM domain-containing proteins and not at the FERM domain 

(Tanentzapf and Brown, 2006; Lee et al., 2004a; Gary R and Bretscher A., 1995). In 

addition, the C-terminal of the FERM domain-containing proteins had a role involved 

in regulating the binding of the FERM domain to the integrin via this intramolecular 

autoinhibitory interaction (Lietha et al., 2007). 
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Anti-WNV 

Anti-αvβ3 integrins DAPI 

Merged 

 

Figure 3-20. Immunofluorescence microscopy images of integrin (B) and WNV 

(C) association in WNV-infected A172 cells (D). A. Nuclei staining with DAPI. 

B. Activated αvβ3 integrins is detected with mouse anti-αvβ3 integrins antibody 

and stained with goat anti-mouse antibody conjugated with Alexa Fluor 488. The 

αvβ3 integrins are not strongly activated in all cells. When it is strongly activated, 

it is found near the perinuclear region (white arrow in B). C. WNV is detected 

with rabbit anti-WNV and stained with goat anti-rabbit antibody conjugated with 

Alexa Fluor 594. WNV is localized near the perinuclear region (white arrow in 

C) where the activated αvβ3 integrins are localized. D. Co-localizations of αvβ3 

integrin (green) and the WNV (red) in infected A172 cells are represented in 

yellow. 

A. B. 

C. D. 
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3.3.5. Colocalisation of FERM domain of FRMD4A and Integrins 

In order to investigate whether FERM domain of FRMD4A interacts with 

activated integrins, the following experiment was carried out. In Figure 3-22, A & Bi. 

represented nuclei staining with DAPI; A & Bii. represented activated αvβ3 integrins 

detected with mouse anti-αvβ3 integrins antibody and stained with goat anti-mouse 

antibody conjugated with Alexa Fluor 594. A & Biii. represented transfected FERM-

GFP vector in A172 cells.  In mock-infected A172, it was observed consistently that 

the FERM-GFP was localized at perinuclear region of the cell (Figure 3-22Aiii.) and 

had no association with the activated integrin (Figure 3-22Aiv.). Interestingly, when 

Figure 3-21. Immunofluorescence microscopy images of FERM-GFP and actin 

association. A. Nuclei staining with DAPI. B. Actin filaments are detected with 

phallodin. C. FERM-GFP vector was transfected into A172 cells and FERM-GFP 

was localized near the perinuclear region. D. No co-localization of FERM-GFP 

(green) and the actin filaments (red) in A172 cells is observed. FERM-GFP, similar 

to FERM domain of other FERM domain-containing protein does not interacts with 

actin (red).  

C. 

A. 

DAPI Phallodin (actin) 

FERM-GFP Merged 

D. 

B. A. 

C. 
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the cells were infected with WNV 1 hr post infection, it was observed that the FERM-

GFP had dispersed out, covering almost the entire perinuclear region (Figure 3-

22Aiii.) and there was strong association with activated integrins (Figure 3-22Biv.).  

 

3.3.6. Colocalisation of FERM domain of FRMD4A and WNV 

In order to investigate whether WNV had any role in regulating the FERM 

domain of FRMD4A, the following experiment was carried out. In Figure 3-23, A. 

represented nuclei staining with DAPI; B. represented WNV detected with rabbit anti-

WNV and stained with goat anti-rabbit antibody conjugated with Alexa Fluor 594. 

WNV was localized near the perinuclear region; C. represented transfected FERM-

GFP vector in A172 cells and FERM-GFP was localized near the perinuclear region 

as well; D. represented some co-localizations signal of FERM-GFP (green) with 

WNV (red) in WNV-infected A172 cells, represented in yellow at 0.5 h post 

infection. It was observed that FERM-GFP had some form of association with WNV 

0.5 h post infection (Figure 3-23D). This suggested that the dispersion of the FERM-

GFP surrounding the entire perinuclear region might involve in the entry process of 

WNV. This preliminarily shows how FRMD4A targets WNV with its FERM domain 

and hinders WNV entry. However, more studies such as co-immunoprecipitation and 

time-course/live confocal microscopy are required to prove this. 
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Figure 3-22. Immunofluorescence microscopy images of FERM-GFP and integrin 

association in mock-infected (A) and infected A172 cells (B). A. & B.i. Nuclei 

staining with DAPI. A. & B.ii. Activated αvβ3 integrins is detected with mouse 

anti-αvβ3 integrins antibody and stained with goat anti-mouse antibody conjugated 

with Alexa Fluor 594. A. & B.iii. FERM-GFP vector was transfected into A172 

cells. In mock-infected cells, FERM-GFP is localized at perinuclear region (A.iii.) 

and does not colocalised (yellow) with the integrin (red) at 1h post infection 

(A.vi.). However, in infected cells, the FERM-GFP is dispersed (B.iii.) and it 

colocalises (yellow) with the integrin (red) at 1 h post infection (B.vi.). 

 

DAPI Anti-αvβ3 integrins A. 

i. 

iv. iii. 

ii. 

FERM-GFP Merge

d Mock-infected A172 
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3.3.7. FERM domain of FRMD4A regulate the level of phosphorylation of FAK 

tyrosine 397 

 Since FERM domain of FRMD4A colocalised with activated integrins that 

WNV mediated with to gain entry (Chu & Ng, 2004), it was hypothesized that FERM 

domain regulate the level of phosphorylation of FAK tyrosine 397, which could have 

resulted in the less permissive A172 cells to WNV. However, the level of 

phosphorylation in WNV-infected A172 cells transfected with plasmid expressing 

pre-FRMD4A miRNA (miF) and FERM-GFP showed insignificant fold difference 

Figure 3-23. Immunofluorescence microscopy images of FERM-GFP and WNV 

association. A. Nuclei staining with DAPI. B. WNV is detected with rabbit anti-

WNV and stained with goat anti-rabbit antibody conjugated with Alexa Fluor 594. 

WNV is localized near the perinuclear region. C. FERM-GFP vector was 

transfected into A172 cells and FERM-GFP was localized near the perinuclear 

region.  D. Co-localizations of FERM-GFP (green) and the WNV (red) in infected 

A172 cells are represented in yellow at 0.5 h post infection. 

DAPI Anti-WNV  

FERM-GFP Merged 

A. 

D. C. 

B. 
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when compared to WNV-infected and mock-transfected A172 cells (WT) (Figure 3-

24 & 3-25). There was only an approximately 0.2 fold increase in phosphorylation in 

miF as compared to WT (Figure 3-25). In addition, there was only an approximately 

0.1 fold reduction in phosphorylation in FERM-GFP as compared to WT (Figure 3-

25). Though the difference in the level of phosphorylation was not significant, the 

trend of phosphorylation in miF and FERM-GFP was as expected. The silencing of 

FRMD4A had resulted in an increase trend in the level of phosphorylation. On the 

other hand, the overexpression of FERM domain of FRMD4A had resulted in a 

decrease trend in the level of phosphorylation. The high level of activated FAK in WT 

was no surprising as FAK was overexpressed in many tumors including the brain 

(Natarajan et al., 2003). 
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Figure 3-24. Phosphorylation of tyrosine 397 of Focal Adhesion Kinase (FAK) 

in WNV-infected A172 cells. A. The level of phosphorylation is compared 

among the following cells: i. WNV-infected A172 cells transfected with plasmid 

expressing pre-scramble miRNA (miScr); ii. WNV-infected A172 cells 

transfected with plasmid expressing pre-FRMD4A miRNA (miF); iii. WNV-

infected and mock-transfected A172 cells (WT); iv. WNV-infected A172 cells 

transfected with plasmid expressing FERM-GFP (FERM-GFP).Both miF and 

FERM-GFP do not show significant difference in the degree of phosphorylation 

as compared to WT. B. Antibody against β-actin is used to ensure equal loading 

of the protein sample. C. FERM mRNA is semi-quantitated with reverse 

transcription PCR (RT-PCR) to ensure the effect of silencing and 

overexpression is present, respectively. D. RT-PCR is used to semi-quantitate 

the concentration of 18S rRNA to ensure equal loading of total cDNA sample 

loaded. 

  miScr         miF         WT    FERM-GFP 

PY397 FAK 

(125 kDa) 
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(42 kDa) 

18S rRNA 
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Figure 3-25. Semi-quantitation of FAK tyrosine 397 phosphorylation in the 

following cells: i. WNV-infected A172 cells transfected with plasmid 

expressing pre-scramble miRNA (miScr); ii. WNV-infected A172 cells 

transfected with plasmid expressing pre-FRMD4A miRNA (miF); iii. WNV-

infected and mock-transfected A172 cells (WT); iv. WNV-infected A172 

cells transfected with plasmid expressing FERM-GFP (FERM-GFP). 
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Chapter 4. 

DISCUSSION & CONCLUSION 

 

Differential West Nile virus (WNV) infection is known to occur in different 

cell types, depending on the permissiveness of the cell types to WNV. However, the 

mechanism of permissiveness is poorly understood. It has been reported that 

microglial cells are poorly permissive to WNV infection even though they may still 

influence the neuropathogenesis of WNV infection (Cheeren et al., 2005). The higher 

resistance of microglial cells may explain the infrequent development of encephalitis 

in WNV infection. Hence, it is important to understand the mechanism behind this 

differential infection as it may help to explain the clinical manifestations of WNV 

infection. This differential infection most likely involves host-virus interactions that 

affect the virus entry, replication or assembly.  

 

This study is based on the observation that A172 cells, a type of glioblastoma 

cells of central nervous system origin, was not as permissive or susceptible as HeLa 

cells to WNV infection (Figure 3-1). This provides a suitable platform to investigate 

the lesser permissivity of cells to WNV. The difference in permissivity could be due 

to the presence and the number of high affinity receptors for the virus particles as well 

as the presence of anti-viral factors in the cells. From the overall result of a previous 

genomic microarray study comparing the transcriptional level of host genes between 

WNV-infected A172 cells and WNV-infected HeLa cells (Koh & Ng, 2004), 

FRMD4A was found to have the highest differential expression among the genes 

selected (Figure 3-5A & 3-9). This molecular approach was chosen because it is able 
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to provide a global analysis of large number of genes relevant to the molecular 

pathogenesis of WNV simultaneously.  

 

It was observed that FRMD4A only expressed in A172 cells but not in HeLa 

cells (Figure 3-5A). The expression of FRMD4A was also not regulated significantly 

in the presence of virus infection (Figure 3-5A). This suggests that FRMD4A is a 

factor that neither the host nor the virus is able to manipulate its mRNA expression 

level. After transient silencing of FRMD4A, it was observed that the virus titre 

increased by 10 fold (Figure 3-13). This shows that FRMD4A has an anti-viral role in 

A172 cells. 

 

FRMD4A is a relatively new member of the protein 4.1 superfamily. It was 

first identified in a human brain cDNA sequencing project and was named KIAA1294 

(Nagase et al., 2000). It has a coding sequence of 3509 base pairs which encodes a 

protein that has a 4.1 ezrin radixin moesin (FERM) domain at the N-terminus (Figure 

3-16). The FERM domain of FRMD4A is similar to the FERM domain of talin, ezrin, 

radixin and moesin. This is based on the amino acid sequence homology comparison 

(Figure 3-17) and the lack of association with the actin filaments (Figure 3-21). 

Hence, this suggests that FERM domain of FRMD4A may have similar roles as talin, 

ezrin, radixin and moesin. The FERM domain-containing proteins have been 

associated with mediating intermolecular interactions between the transmembrane 

proteins such as cadherins and the cytoskeleton (Tsukita et al., 1992). Since FRMD4A 

is postulated to be a membrane-cytoskeleton linker and has an anti-viral role, it is 

hypothesized that it may be involved in regulating the entry of WNV via the activated 

integrin pathway as described by Chu and Ng (2004b).  
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The trials of cloning the full-length FRMD4A were unsuccessful after months 

of attempts with various parameter changes such as PCR kits, primers and annealing 

temperatures. One likely explanation would be the 3kb FRMD4A is too long to 

amplify. However, the strategy of generating 3 sub-fragments of FRMD4A to form the 

full-length with different parameters was also unsuccessful except for the generation 

of the first sub-fragment. The first sub fragment is mainly the FERM domain. One 

possible alternative would be to purchase from private company which have the 

isolated full-length cDNA clone. It may be costly but it would be more effective.   

 

From the clustering result of the FERM domain of FRMD4A and those 

integrin-binding FERM domain-containing proteins (Figure 3-18A), and the 

colocalisation of FRMD4A FERM domain with the activated integrins (Figure 3-

22B), it was observed that FERM domain of FRMD4A had a close association with 

αvβ3 integrins in WNV-infected A172 cells. Furthermore, FERM domain of FRMD4A 

did not have close association with activated αvβ3 integrins when it is not infected 

with WNV (Figure 3-22A). Hence, it was postulated that close association of the 

FERM domain with activated integrins required a feedback from the host after being 

infected with WNV. In addition, WNV may have a role in regulating this feedback by 

associating with FERM domain (Figure 3-23).  From the clustering results, it was 

shown that FERM domain of FRMD4A may compete with FAK binding to the 

activated integrins and involve in ‘inside-out’ signaling like TALIN (Calderwood et 

al., 2002) and RADIXIN (Tang et al., 2007) (Figure 3-18).  

 

Collectively, with all these preliminary results, an anti-viral mechanism that 

regulates the WNV entry into A172 cells is proposed. During normal cell state (Figure 
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4-1A), integrins are activated, leading to the recruitment and the autophosphorylation 

of FAK. This leads to the activation of FAK-Src signaling process which results in 

actin polymerisation required for cell survival and proliferation (Parsons, 2003). 

FRMD4A at this stage is postulated to be inactivated and localised near the 

perinuclear region. The inactivated FRMD4A may be due to the intramolecular 

autoinhibitory interaction where the C-terminal of the protein folds and binds to the 

FERM domain at the N-terminal, similar to other FERM domain-containing proteins 

such as FAK (Lietha et al., 2007). 

 

During the early WNV infection (Figure 4-1B), interaction of WNV with 

integrin mediates virus entry. The autophosphorylation of FAK in response to virus 

integrin engagement leads to the formation of phosphotyrosine docking sites for 

several classes of signaling molecules. This is necessary for the recruitment and 

activation of the downstream signaling molecules and signaling complexes that 

eventually lead to the triggering of actin assembly followed by the process of clathrin-

mediated endocytosis of WNV particles (Chu and Ng, 2004). In response to the 

invasion of WNV, the host cells activate an anti-viral mechanism involving FRMD4A 

during this early infection (Figure 4-1B). As hypothesized, there may a feedback 

mechanism in the process of WNV entry that activates and disperses the FRMD4A to 

the surrounding perinuclear region (Figure 3-22B). FRMD4A may then bind 

competitively to the activated integrins and inhibits the FAK from binding to the 

integrin. As a result, this may indirectly hinders the process of clathrin-mediated 

endocytosis of WNV particles via the WNV-activated integrin mediated pathway 

(Figure 4-1B), and hence, resulting in the less permissive A172 cells to WNV 

infection.  
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This proposed anti-viral mechanism may still hold even though the difference 

in level of FAK tyrosine 397 phosphorylation is not too significant in transient 

FRMD4A-silenced A172 cells and FERM domain-overexpressed A172 cells (Figure 

3-24 & 3-25). The small difference may be due to the higher intensity of endogenous 

FAK autophosphorylation (Natarajan et al., 2003) as compared to the lower intensity 

of FRMD4A competitively binding to activated integrins in response to WNV 

infection. This may explain the consistent observation of WNV infection albeit at a 

lower level. Even though FRMD4A is postulated to resist WNV entry into A172 cells 

via the activated integrin pathway as the primary entry mechanism, the virus can also 

still gain entry via other mechanisms such as cholesterol-rich membrane microdomain 

(Medigeshi et al., 2008).  

 

Microglial cells, which are also poorly permissive to WNV growth, are best 

represented by A172 cells in this study. Activated microglial cells produce 

proinflammatory cytokines and chemokines upon infection by WNV as an immediate 

immune defence response against WNV. However, overproduction of cytokines 
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including TNF-α and IL-6 enhances neuronal injury (Meda et al., 1995; Jeohn et al., 

1998). As such, activated microglial cells influence the neuropathogenesis of WNV 

A. 

B. 

Figure 4-1. A cartoon of the proposed mechanism that regulates the 

WNV entry in WNV-infected A172. A. The roles and function of FAK 

at normal cell state. B. The roles and function of FAK and FRMD4A 

and the proposed outcome of the recruitment of FRMD4A to bind 

competitively to the integrins. 

? 



                                                                                                 Discussion & Conclusion 

 83 

infection (Cheeren et al., 2005). Hence, inhibition of WNV infection may be induced 

by FRMD4A regulating WNV entry into cells, together with the production of 

proinflammatory molecules. On the other hand, prolonged resistance in A172 cells 

may contribute to overproduction of proinflammatory cytokines leading to 

inflammation-induced cell death with resultant encephalitis. More studies such as 

time course/live confocal microscopy, co-immunoprecipitation, yeast-two hybrid and 

biochemical assays are required to confirm these preliminary findings. In addition, 

ELISA kit for detection of human phosphorylated (Tyr 397) FAK can be used to 

quantitatively evaluate the degree of phosphorylation in transient FRMD4A-silenced 

A172 cells and FERM domain-overexpressed A172 cells.  

 

FRMD4A was postulated to play a role in regulating WNV entry. It is a 

potential anti-viral factor that is neither regulated by the host nor the virus. The 

FERM domain is strongly associated with activated integrins and is postulated to bind 

competitively to integrins and thus, inhibiting FAK binding to integrin during WNV 

infection. As a result, it prevents the integrin activated clathrin-mediated endocytosis 

of WNV into A172 cells. On this scenario, A172 cells become less permissive to 

WNV infection compare to cells such as HeLa cells which do not possess FRMD4A. 

Similarly to microglial cells, FRMD4A is likely to influence the neuropathogenesis of 

WNV infection. 
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Appendix 1: Media for Tissue Culture of Cell Lines 

a) Dulbecco’s Modified Eagle’s Medium (DMEM): Growth Medium for HeLa  

and A172 Cells 

Item Amount Source 

DMEM Powder 17.3 g Sigma, USA 

NaHCO3 2.2 g Merck, Germany 

Foetal Calf Serum (FCS) 100 ml Hyclone, 

Switzerland 

Autoclaved Type 1 Reagent Grade Water 

(E-pure) 

900 ml Barnstead, USA 

One bottle of DMEM powder was dissolved in 900 ml of NANOpure water. 2.2 g of 

NaHCO3 was then added and the pH adjusted to 7.2. Sterilization of media was 

carried out by filtration through a 0.22 µm filter (Sterivex G-S, Millipore, USA). The 

media was then stored in aliquots at 37 °C for two days to check for any 

contamination before storing in 4 °C. 

 

b) RPMI-1640 Growth Medium for BHK Cells 

Item Amount Source 

RPMI Powder 16.4 g Sigma, USA 

NaHCO3 2.2 g Merck, Germany 

Foetal Calf Serum (FCS) 100 ml Hyclone, 

Switzerland 

Autoclaved Type 1 Reagent Grade Water 900 ml Barnstead, USA 
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(E-pure) 

One bottle of RPMI powder was dissolved in 900 ml of E-pure water. 2.2 g of 

NaHCO3 was then added and the pH adjusted to 7.2. Sterilization of media was 

carried out by filtration through a 0.22 µm filter (Sterivex G-S, Millipore, USA). The 

media was then stored in aliquots at 37 °C for two days to check for any 

contamination before storing in 4 °C.  

 

c) L-15 Growth Medium for C6/36 Cells 

Item Amount Source 

L-15 Powder 13.8 g Sigma, USA 

NaHCO3 2.2 g Merck, 

Germany 

Foetal Calf Serum (FCS) 100 ml Hyclone, 

Switzerland 

Autoclaved Type 1 Reagent Grade Water (E-

pure) 

900 ml Barnstead, 

USA 

One bottle of L-15 powder was dissolved in 900 ml of E-pure water. 2.2 g of NaHCO3 

was then added and the pH adjusted to 7.2. Sterilization of media was carried out by 

filtration through a 0.22 µm filter (Sterivex G-S, Millipore, USA). The media was 

then stored in aliquots at 37 °C for two days to check for any contamination before 

storing in 4 °C.  
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d) Maintenance Medium (DMEM) for HeLa and A172 Cells, Maintenance 

Medium (RPMI) for BHK and Maintenance Medium (L-15) for C6/ 36 

Item Amount Source 

DMEM/ RPMI/ L-15 Powder 17.3g/16.4g/13.8g Sigma, USA 

Foetal Calf Serum 20 ml Hyclone, 

Switzerland 

NaHCO3 2.2 g Merck, 

Germany 

Autoclaved Type 1 Reagent Grade 

Water (E-pure) 

980 ml Barnstead, 

USA 

One bottle of the DMEM/RPMI/L-15 powder was dissolved in 980 ml of water, and 

2.2 g of NaHCO3 was then added. The pH was adjusted to 7.2 and sterilization was 

carried out by filtration through a 0.22 µm filter (Sterivex G-S, Millipore, USA). The 

media was then stored in aliquots at 37 °C for two days to check for any 

contamination before storing in 4 °C.  

 

Appendix 2: Reagents for Subculturing of Cells  

a) 10 X Phosphate Buffered Saline [(PBS) (pH7.4)] 

Item Amount Source 

NaCl 80.0 g Merck, Germany 

KCl 2.0 g Merck, Germany 

KH2PO4 2.0 g Merck, Germany 

Na2HPO4 11.5 g Merck, Germany 

Type 1 Reagent Grade Water (E-pure) 900 ml Barnstead, USA 
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To prepare 10 X PBS stock solution, the specified items were added to 900 ml of E-

pure water and the pH adjusted to 7.4. The solution was topped up to 1 litre and then 

autoclaved at 121 °C for 15 min. The stock solution was then stored at room 

temperature. To prepare the working 1 X PBS, the stock solution was diluted 1:10 

with E-pure water. The solution was then autoclaved at 121 °C for 15 min and 

subsequently stored at 4 °C.  

 

b) 10 X Trypsin/Versene (ATV) Solution 

Item Amount Source 

NaCl 80.0 g Merck, Germany 

KCl 4.0 g Merck, Germany 

D-glucose 10.0 g Analar, UK 

NaHCO3 5.8 g Merck, Germany 

Trypsin 5.0 g Difco, New 

Zealand 

Versene (EDTA) 2 g Sigma, USA 

Autoclaved Type 1 Reagent Grade Water 

(E-pure) 

90 ml Barnstead, USA 

The items were added to 90 ml of E-pure water and the mixture was heated to 30 °C 

with occasional shaking (for 3-4 hr) to dissolve the trypsin. The solution was topped 

up to 100 ml before filtered through a 0.22 µm filter (Sterivex G-S, Millipore, USA). 

Ten ml of this solution was added to 90 ml of sterile E-pure water to give 1 X ATV 

solution.  
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Appendix 3: Reagents for Infection of Cells & Plaque Assays 

a) Hanks Medium (Virus Diluent) 

Item Amount Source 

Hank’s Balanced Salt Solution 11.0 g Sigma, USA 

10 % Bovine Serum Albumin 1 ml CSL, Australia 

NaHCO3 2.2 g Merck, Germany 

Autoclaved Type 1 Reagent Grade Water 

(E-pure) 

99 ml Barnstead, USA 

All items were dissolved in the water to give 100 ml. The solution was sterilized by 

filtration through a 0.22 µm filter unit (Sterivex G-S, Millipore, USA). The media was 

then stored in aliquots at 37 °C for two days to check for any contamination before 

storing in 4 °C.  

 

b) Overlay Medium 

Item Amount Source 

M199 Powder 11.0 g Sigma, USA 

Foetal Calf Serum 40 ml Hyclone, 

Switzerland 

NaHCO3 4.4 g Merck, Germany 

Autoclaved Type 1 Reagent Grade Water 

(E- pure) 

460 ml Barnstead, USA 

The reagents were dissolved in the water to produce a 2 X concentrate nutrient 

medium. Two hundred ml of this 2 X concentrate medium was added to an equal 

volume of 2.5 % carboxymethyl-cellulose solution (See Appendix 3d ). 
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c) 1% Crystal Violet Staining Solution 

Item Amount Source 

Crystal Violet Powder 1.85 g BDH, UK 

37 % Formaldehyde  250 ml Merck, Germany 

PBS 120 ml see Appendix 2a 

 

d) 2.5% Carboxymethyl-Cellulose Solution 

Item Amount Source 

Sodium salt of Carboxymethyl-Cellulose 2.5 g CalBiochem, USA 

Type 1 Reagent Grade Water (NANOpure) 100 ml Barnstead, USA 

2.5 g of sodium salt of carboxymethyl-cellulose (Aquacide II, CalBiochem, USA) was 

added to 100 ml of the water. The solution was mixed, autoclaved for 15 min at 121 

°C and stored at 4 °C. 

 

Appendix 4: Reagent for Indirect Immunofluorescence Microscopy 

a)  10% Bovine Serum Albumin (BSA) 

Item Amount Source 

Bovine serum albumin powder, Fraction V 10 g Gibco BRL, USA 

PBS 100 ml see Appendix 1g 

Glycerol 9 ml Merck, Germany 

The solution was aliquoted and stored at –20 °C. To obtain 0.1% BSA, 1 ml of 10% 

BSA was diluted in 100 ml of PBS.  
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Appendix 5: Reagents for Molecular Biology Techniques 

a)  LB (Luria-Bertani) Medium & Plates 

Item Amount Source 

Tryptone 10 g Oxoid, United kingdom 

Yeast extract 5 g Oxoid, United kingdom 

NaCl 10 g Merck, Germany 

Type 1 Reagent Grade Water (E- 

pure) 

950 ml Barnstead, USA 

Molecular grade agarose powder 

(only necessary when making LB 

plates) 

15 g Biorad Laboratories, 

Singapore 

The pH of the solution was adjusted to 7.0 with NaOH, followed by autoclaving on 

liquid cycle for 20 min at 15 psi. Antibiotic was added after the solution had cooled to 

around 55 °C. This was followed by pouring the LB-agar into the 10 cm plates and 

stored at 4 °C after it had harden. 

 

b) Diethylpyrocarbonate (DEPC) Treated ddH2O 

Item Amount Source 

Diethylpyrocarbonate (DEPC) 1.0 ml Sigma, USA 

Type 1 Reagent Grade Water (E-pure) 999 ml Barnstead, USA 

To make 1 litre of DEPC treated (RNase-free) water, 1ml of DEPC was added to 999 

ml of water. The treated water was incubated overnight at room temperature with 

stirring. The water was then autoclaved at 121 °C for 15 min. 
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c) Ethidium Bromide (EtBr) 

Item Amount Source 

Ethidium Bromide (EtBr) 0.2 g Sigma, USA 

DEPC Water 20 ml see Appendix 5b 

EtBr was dissolved in 20 ml of DEPC water by stirring with a magnetic stirrer at 

room temperature for several hours. The solution was then stored in the dark at 4°C.  

 

d) 10x Formaldehyde-Agarose (FA) Gel Buffer 

Item Amount Source 

200 mM 3-[N-morpholino]propanesulfonic 

acid (MOPS) (free acid) 

41.86 g Sigma, USA 

50 mM Sodium acetate 4.1 g Merck, Germany 

10 mM EDTA 2.9 g Merck, Germany 

DEPC Water to 1000 ml see Appendix 5b 

The pH of the buffer was adjusted to 7.0 with NaOH.  

 

e) FA Gel 

Item Amount Source 

Agarose  1.2 g BioRad Laboratories, 

Singapore 

10 X FA Gel Buffer 10 ml see Appendix 1o 

37 % (12.3M) Formaldehyde  1.8 ml Sigma, USA 
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Ethidium Bromide (10µg/ml) 1 µl see Appendix 5c 

DEPC Water 90 ml see Appendix 5b 

The agarose and 10 X FA gel buffer was mixed and topped up to 100 ml with DEPC 

water. It was then swirled and microwaved until completely dissolved. Formaldehyde 

and ethidium bromide was then added and mixed at 60 °C. 

 

f) 1x Formaldehyde-Agarose (FA) Gel Running Buffer 

Item Amount Source 

10x FA Gel Buffer 100 ml see Appendix 5d 

37% (12.3M) Formaldehyde 20 ml Sigma, USA 

DEPC Water 880 ml see Appendix 5b 

Store at room temperature after preparation.  

 

g) 5x RNA Loading Buffer 

Item Amount Source 

Bromophenol Blue 16 µl Sigma, USA 

Formamide 3.084 ml Sigma, USA 

37% (12.3M) Formaldehyde 720 µl Sigma, USA 

100% Glycerol 2 ml Merck, Germany 

500mM EDTA, pH8.0 80 µl Merck, Germany 

10x FA Gel Buffer 4 ml See Appendix 5d 

DEPC Water to 10 ml see Appendix 5b 

Store at -20°C after preparation. 
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h)  50X and 1X TAE running Buffer and 1% Gel 

Item Amount Source 

Tris Base 242.28 g USB Corporation, 

USA 

Glacial Acetic Acid 57.1 ml Merck, Germany 

0.5 M EDTA (pH 8.0) 100 ml BDH, Middle East 

Type 1 Reagent Grade Water (E-pure) 840 ml Barnstead, USA 

Agarose gel (necessary when  making 1% 

gel) 

1 g in 100 

ml of 1 X 

TAE 

BioRad 

Laboratories, 

Singapore 

EDTA of 0.5 M was prepared by adding 93.06 g of EDTA in 500 ml of Type 1 

Reagent Grade Water (E-pure) at pH 8.0. The 1 X TAE was prepared by diluting 20 

ml of 50 X TAE with 980 ml of Type 1 Reagent Grade Water (E-pure) 
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Appendix 6: List of Oligonucleotides 

Gene Symbol Sequence (5'-3') 

FRMD4A F gcc caa aat gtg gag tga gt  
FRMD4A 

FRMD4A R cct cgt gga atg gac gta gt  

INDO F Gcg ctg ttg gaa ata gct tc  

INDO 

INDO R cag gac gtc aaa gca ctg aa  

Antisense target 

sequence of FRMD4A 

 aga acc tga aga cag cag gct 

Antisense target 

sequence of INDO 

 tat gag atc agg cag atg ttt 

Top single-

stranded oligo 

tgc tga gaa cct gaa gac agc agg ctg ttt tgg 

cca ctg act gac agc ctg ctc ttc agg ttc t 

 
Double-stranded 

oligos for FRMD4A 

miRNA Bottom single-

stranded oligo 

cct gag aac ctg aag agc agg ctg tca gtc agt  

ggc caa aac agc ctg ctg tct tca ggt tct c 

 

Top single-

stranded oligo 

tgc tgt atg aga tca ggc aga tgt ttg ttt tgg 

cca ctg act gac aaa cat ctc tga tct cat a 

 

 

Double-stranded 

oligos for INDO 

miRNA 

 

Bottom single-

stranded oligo 

cct gta tga gat cag aga tgt ttg tca gtc agt 

ggc caa aac aaa cat ctg cct gat ctc ata c 

 

   

   

miRNA forward 

sequencing primer 
miRNA (+) tcccaagctggctagttaag 

   

GFP reverse primer GFP (-) gggtaagctttccgtatgtagc 

   

CMV promoter CMV F cgcaaatgggcggtaggcgtg 

   

FRMD4A 329 F attcgtgcatgggaatcg 

  

FRMD4A 3509 R gggaggaatccaggaaacag 

  

FRMD4A 1611 R tgagctcagcttctcggag 

  

FRMD4A 1592 F ctccgagaagctgagctca 

  

FRMD4A 2419 R cctcgtggaatggacgtagt 

  

FRMD4A 2403  F acgtccattccacgagg 

  

New  FRMD4A 

329 F  
cac cat ggc agt gca gct ggt  

FRMD4A 

New FRMD4A 

1611 R 
gtg tga gct cag ctt ctc gga gac aca g 
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