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SUMMARY 
 

High-grade gliomas are highly malignant tumours. Standard therapy includes surgical 

resection, radiation therapy and chemotherapy. However, in spite of advances in surgical 

techniques, medical technology, radiation therapy, chemotherapeutic regimens and other 

forms of therapy, the overall prognosis remains poor. The median survival of anaplastic 

astrocytoma and glioblastoma is about 3 years and 1 year respectively. Sadly, the survival 

outcome has not significantly improved the past 2-3 decades. 

 Surgery plays an important role in the management of high-grade gliomas. 

Surgery is critical for histological diagnosis of high-grade gliomas. Aggressive tumour 

resection can also rapidly reduce the intracranial hypertension associated with bulky 

disease and provide symptomatic relief and improved quality of life. The most 

contentious issue surrounds the controversy on whether surgery can improve overall 

survival and review of the literature shows that there is currently no good data to support 

this hypothesis. 

 In vitro experiments however demonstrate that greater tumour loading of 

glioblastoma cells requires higher levels of the chemotherapeutic agent 1,3-Bis (2-

Chloroethyl)-1-Nitrosurea  (BCNU) to achieve similar levels of cellular death when 

compared to a lower tumour loading. Increased tumour burden can therefore confer   

chemoresistance. Reduction of tumour burden may therefore potentiate adjuvant therapy. 

It is likely that the chemoresistance properties are potentiated by autocrine and paracrine 

pathways and facilitated by mitogenic agents.  
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 Local tissue invasion distinguishes high-grade astrocytomas from low-grade 

tumours and this attribute limits the effectiveness of treatment. High-grade gliomas tend 

to recur locally until the patient succumbs to microscopic invasion and local compression 

of vital centres in the brain. The invasive and mitogenic behaviour of gliomas is 

influenced by proteases, angiogenic factors and growth factors. 

Co-expression of growth factors with their corresponding receptors in gliomas 

may result in complex ligand-receptor interactions. The growth factor receptors 

expressed on the surface of tumour cells may bind soluble ligand produced by the same 

(autocrine), or adjacent cells (paracrine). In addition, membrane-anchored growth factor 

isoforms generated by alternative splicing may bind to the same (juxtacrine) or adjacent 

tumour cells (paracrine). Intracellular interactions between growth factor receptors and 

their ligands can also lead to intracrine activation of signaling cascades. 

Many different growth factor/receptor systems have been implicated in the 

proliferative behaviour of gliomas such as vascular endothelial growth factor (VEGF), 

epidermal growth factor (EGFR), platelet-derived growth factor (PDGF), nerve growth 

factor (NGF), insulin-like growth factor (IGF), transforming growth factor-beta (TGF-β), 

brain-derived growth factor (BDGF) and scatter factor/hepatocyte growth factor 

(SF/HGF). 

Glial cell line-derived neurotrophic factor (GDNF) was originally identified in 

1993 by Lin et al as a neurotrophic factor. It was isolated from a rat glioma cell line 

supernatant and was shown to confer increased survival for embryonic midbrain 

dopamine neurons. Subsequently, it was also found that GDNF also had potent trophic 

functions in spinal motorneurons and central noradrenergic neurons. The GDNF-family 
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ligands (GFL) consists of GDNF, neurturin (NRTN), artemin (ARTN) and persephin 

(PSPN). These GFLs bind to specific GDNF-family receptor-α (GFRα) co-receptors and 

activate RET. The GFRα receptors are linked to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) anchor. Four classes of GFRα receptors have been 

characterised (GFRα1-4), which determine ligand specificity. GDNF binds to GFRα1, 

NRTN binds to GFRα2, ARTN to GFRα3 and PSPN binds to GFRα4. In addition, NRTN 

and ARTN may crosstalk weakly with GFRα1 and GDNF with GFRα2 and GFRα3.   

Spliced isoforms are also abundant in the GDNF-family receptor-α (GFRα). 

GFRα1 receptor exists in two highly homologous alternatively spliced isoforms: GFRα1a 

and GFRα1b. GFRα1b is identical to GFRα1a except for the absence of 5 amino acids 

(140DVFQQ144), encoded by exon 5. In addition, GFRα2 and GFRα4 receptor spice 

isoforms have also been identified in mammalian tissue. Three variants of GFRα2 

receptors (GFRα2a/2b/2c) have been identified. At least two splice variants of GFRα4 

have been identified in rat tissue. 

GDNF has been implicated as a mitogenic agent in many cancers such as 

pancreatic cancer, biliary cancer and phaeochromocytoma. GDNF is ubiquitous in the 

central nervous system and neural tissue and hence can also play a role in the 

pathogenesis of high-grade glioma. GDNF and its receptor GDNF-Family Receptor-α1 

(GFRα1) have been demonstrated to be strongly expressed in human gliomas. 

Furthermore, GDNF has also been demonstrated to be a proliferation factor for rat C6 

glioma cells by antisense experiments. 
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GDNF was overexpressed in the glioblastoma cell lines LN-229 and A172. 

Significantly, the expression of GDNF was also found to be increased in all glioma 

specimens when compared to adult brain, foetal brain, adult liver and foetal liver. All 

glioblastoma samples and cell lines demonstrated increased level of expression and the 

highest expression level was observed in a sample of glioblastoma tissue.   

The glioblastoma cell lines had significantly lower levels of expression of 

GFRα1a compared to human adult and foetal brain samples. 11 out of the 13 human 

glioma samples had decreased levels of expression of GFRα1a compared to human adult 

and foetal brain samples. 2 out of the 8 glioblastoma samples had elevated levels of 

GFRα1a expression.  

In the analysis of GFRα1b expression, the 2 glioblastoma cell lines had increased 

expression of GFRα1b compared to human adult and foetal brain samples. 5 glioma 

samples had elevated levels of expression of GFRα1b compared to human adult and 

foetal brain samples. These were all human glioblastoma samples. 

On close analysis of the expression levels of GFRα1a and GFRα1b levels, an 

interesting observation was noted. The glioblastoma cell lines demonstrated much higher 

levels of GFRα1b expression than GFRα1a expression. For cell line LN-229, the ratio of 

GFRα1b/GFRα1a was 16.3 and the ratio of GFRα1b/GFRα1a was 14.3 for cell line 

A172. A similar trend was also noted in 7 out of the 8 human glioblastoma samples. The 

GFRα1b/GFRα1a ranged from 1.73 to 5.44 in the 7 specimens. Only one human 
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glioblastoma specimen had a higher GFRα1a/GFRα1b ratio. There exists a differential 

expression level of GFRα1b and GFRα1a with an elevated GFRα1b/GFRα1a ratio. 

The potential role of GDNF in conferring chemoresistance was examined. 

Glioblastoma cell lines were pre-treated with GDNF and subjected to BCNU 

chemotherapy and compared to a control group without pretreatment with GDNF. In the 

analysis for chemotherapy cytotoxicity effects using the MTS assay, GDNF was shown 

to confer very significant cellular survival in the presence of BCNU chemotherapy. 

Replicating the experiments in a similar fashion with pretreatment with Neurturin 

(NRTN) did not demonstrate any survival advantage. This demonstrates that the ability to 

potentiate chemoresistance is ligand-specific. 

GDNF has been found to influence the migration and mitogenic behaviour of low-

grade gliomas. Treatment of low-grade Hs683 cells with GDNF significantly increased 

migration comparable to high-grade C6 cells. The molecular mechanism is mediated by 

the activation of JNK-1, ERK 1/2 and p38 MAPK. Treatment of Hs683 cells with 

60ng/ml of GDNF markedly activated JNK. A kinetic study of GDNF-induced JNK 

activation showed that JNK was markedly activated within 30 min after GDNF treatment 

and returned to the basal level at 90 min. ERK 1/2 were activated at 10 min after GDNF 

treatment and the activated levels remained until 60 min. GDNF markedly increased the 

active form of p38 MAPK within 10 min, maximally activated at 30 min and decreased at 

60 min after the treatment311.   

In the light of the evidence, we examined the modulation of MAPK and Akt 

signaling pathways in glioblastoma cell lines. LN-229 and A172 human glioblastoma cell 
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lines were stimulated with BCNU and GNDF and the experiments were studied at 0, 10, 

30, 60 and 180 mins respectively.  

Western blotting showed that BCNU induces activation of MAP kinases 

(ERK1/2, JNK and p38) in both LN-229 and A172 human glioblastoma cell lines. BCNU 

was however found to reduce the background activation of Akt in the A172 human 

glioblastoma cell line. 

GDNF was found to induce the activation of ERK1/2 and Akt in both LN-229 and 

A172 human glioblastoma cell lines. GDNF was however found to reduce the 

background activation of JNK and the A172 human glioblastoma cell line in a time-

dependent fashion. 

The ability of GDNF to promote Akt activity and inhibit JNK activity may 

contribute to the increased cellular survival to BCNU chemotherapy. 
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CHAPTER 1  

INTRODUCTION 

1.1 Brain Tumours 

Brain tumour is one of the most devastating forms of human disease. The brain has long 

been considered sacrosanct and inviolable and the concept of a tumour in the brain is 

frightening not just to the layman but to medical doctors as well. 

Yet brain tumours are one of the most common forms of tumours in humans. 

They are the second most common form of malignancy in children and the sixth to eight 

most common form of malignancy in adults. Brain tumours are conventional categorised 

into primary tumours which originate in the brain and secondary or metastatic brain 

tumours which originate from a different site such as the lung, breast or colon.   

Primary tumours of the brain and spine account for less than 2% of malignancies 

but are responsible for 7% of the years lost of life lost from cancer prior to 70 years of 

age. In childhood, these figures are even more dramatic and primary brain tumours 

account for 20% of malignant tumours diagnosed before 15 years of age1.  

The most common form of primary brain tumours are gliomas which originate 

from glial cells. There are many forms of gliomas: astrocytomas, ependymomas and 

oligodendrogliomas are some of the examples. 

  

1.2 Astrocytomas 

The term astrocytoma was used as early as the late 19th century by Virchow2 but was only 

firmly used in histopathological classification by Baily and Cushing in 19263. 

Astrocytomas are the most common gliomas and account for more than 60% of all 
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primary brain tumours4-5. They arise from star-shaped glial cells known as astrocytes. In 

adults, astrocytomas most often arise in the cerebrum. In children, they occur in the brain 

stem, the cerebellum, and the cerebrum. Astrocytomas are classified by various grading 

systems. Examples of these are the Kernohan6, Ringertz7, St Anne-Mayo8-9 and the 

World Health Organisation (WHO)10 grading systems. The introduction of a grading 

system marked the beginning of the era of refining different classifications based on 

histogenesis. The major reason for this shift in philosophy resulted from increasing 

awareness amongst neuropathologists, neurosurgeons and neuro-oncologists that a 

meaningful classification schema of central nervous system tumour can give an 

indication of biologic behaviour and provide a basis for the development of treatment 

strategies.  

The most commonly used grading system currently used is the World Health 

Organisation (WHO) Classification system. The WHO classification separates the 

astrocytic tumours into two major categories: the diffusely infiltrating astrocytomas and 

the relatively more circumscribed, specialised variants of astrocytoma (pilocytic 

astrocytoma, pleomorphic xanthoastrocytoma and subependymal giant cell 

astrocytoma)11.  

The diffusely infiltrating group consists of astrocytic tumours which generally 

infiltrate beyond the macroscopically apparent brain-tumour interface and frequently 

undergo anaplastic transformation. The more circumscribed group comprises tumours 

which show limited infiltration into surrounding brain and which infrequently undergo 

malignant transformation12.  
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Four different tumour grades are classified under the WHO grading system: 

Grade I to Grade IV. Tumours with nuclear atypia alone are designated Grade II; those 

which in addition to nuclear atypia demonstrate mitotic activity are Grade III; and 

neoplasms showing atypia, mitosis, endothelial proliferation and/or necrosis are 

considered Grade IV. WHO Grade I and II tumours are known as low-grade astrocytomas 

whereas WHO Grade III and IV tumours are known as high-grade or malignant 

astrocytomas. The most common WHO Grade III astrocytoma is anaplastic astrocytoma 

and the most common WHO Grade IV astrocytoma is glioblastoma. 

High-grade astrocytomas are highly infiltrative and aggressive tumours with 

marked proliferative potential. Anaplastic astrocytoma may arise from previously low-

grade astrocytoma or de novo without an identifiable precursor lesion as a high-grade 

astrocytoma. The progression of anaplastic astrocytoma to glioblastoma influences the 

prognosis of the disease. The mean time to progression is 2 years and the mean survival 

is 3 years13-15. Glioblastoma is the most common astrocytoma, accounting for 

approximately 12-15% of all intracranial neoplasms and 50-60% of all astrocytic 

tumours4. In most European and North American countries, the incidence is in the range 

of 2-3 new cases per 100,000 population per year5. It is however regrettably the most 

malignant astrocytic tumour. It consists of poorly differentiated neoplastic astrocytes and 

histological features include cellular polymorphism, nuclear atypia, increased mitotic 

activity, vascular thrombosis, microvascular proliferation and necrosis. Similar to 

anaplastic astrocytoma, glioblastoma may arise de novo as glioblastoma or may 

transform from diffuse astrocytoma (WHO Grade II) or anaplastic astrocytoma. The 
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diagnostic hallmark is the presence of prominent microvascular proliferation and/or 

necrosis.  

 

1.3 Malignant Astrocytoma 

Malignant astrocytomas are the most frequent primary brain tumours in adults and 

represent a significant cause of morbidity and mortality. The inherent neurological and 

mental deterioration with disease progression is a source of great distress not just to the 

patient but their family members. Family members often feel helpless as they see their 

loved one progressively and relentlessly deteriorating before their very eyes.  The peak 

incidence of malignant astrocytoma in the 4th and 5th decade of life translates that patients 

are frequently afflicted at the most productive period of their lives4. The high cost of 

treatment and high fatality rate has obvious serious personal, social and public health 

consequences.  

 

1.4 Epidemiology of Malignant Astrocytoma 

Malignant astrocytomas are the most common primary brain tumours and would 

generally constitute over 40% of all primary brain tumours. The distribution of malignant 

astrocytoma in the population is age specific. The probability of histologic malignancy in 

an astrocytoma is only 0.34 between the years of 30 and 34 and is 0.85 after the age of 

6016. The incidence per 100,000 population of glioblastoma and astrocytoma rises from 

0.2 and 0.5 in the under-14 age group to 4.5 and 1.7 respectively after the age of 45 

years17. There is a distinct difference in the location of occurrence of these tumours in the 

different age groups. In the younger age group (<25 years), 67% of astrocytomas are 
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located in the posterior fossa whereas 90% of the tumours are located in the 

supratentorial compartment in the older age group (>25 years). The incidence of 

malignant astrocytoma is more common in males compared to females in a 3:2 ratio16. 

There are trends to show that the incidence of astrocytomas can vary between racial 

groups or nationalities. This incidence is detected even on incidence rates standardized to 

the world population for males and females separately. Some of the variation may be due 

to access to health care and medical technology. Interesting, Japan which has an 

advanced health care system and modern technology to Western Developed Countries 

has rates of Central Nervous System (CNS) cancer which are a third or less of those 

observed in the United States. The incidence in other Asian countries is also low18. Some 

ethic groups such as New Zealand Maoris and New Zealand Pacific Polynesian Islanders 

have higher incidence rates than Caucasian New Zealanders. In contrast, African 

Americans have a lower incidence than White Americans in the United States (US). Jews 

living in the Israel and Jewish populations in the US have elevated rates19-21. McCredie et 

al reviewed the CNS tumour incidence by ethnic group in New South Wales (NSW) and 

found no stastically significant differences in males but a significantly lower rate in 

female migrants from Asia22. Giles et al similarly also found lower rates of malignant 

CNS tumours in female migrants from Middle East and Asia23. In Singapore Chinese, the 

age standardized incidence of CNS tumour for adults aged 35-64 years was found to be 

2.5 per 100,000 for males and 0.9 per 100,000 for females. This is significantly lower 

than the age standardized incidence for US Whites which range from 7.4 to 13.7 per 

100,000 for males and 4.4 to 12.1 for females18. Parkin et al similarly demonstrated that 
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the incidence of astrocytoma in children aged 0-14 in Singapore was 3.8 per 100,000 

compared to 10.3 per 100,000 in New South Wales and 15.7 per 100,000 in Sweden24.   

 

1.5 Aetiology 

In the vast majority of cases, malignant astrocytomas occur sporadically without any 

identifiable familial tendency or environmental risk factors. 

The cell of origin of malignant astrocytomas has traditionally been thought to be the 

astrocyte based on staining and morphological similarities4,25. Malignant transformation, 

like in all other cancers, has been attributed to genetic aberrations in normal astrocytes 

leading to dysregulated growth and proliferation. This hypothesis has however been 

never adequately tested. Furthermore, the concept of dedifferentiation of mature glia cells 

is questionable and fails to explain the presence of mixed tumours such as 

oligoastrocytomas.  

More than two decades ago, Cairncross proposed a radical hypothesis that 

glioblastoma may be likened to chronic myelogenous leukaemia, a neoplasm that arises 

following transformation of a myeloid precursor cell26.  There is now evidence to support 

this hypothesis as the presence of pleuripotential neural progenitor cells have been 

demonstrated in the subventricular zone of mature brain27, the lining of the lateral 

ventricles, the dentate gyrus28, within the hippocampus and subcortical white matter29. 

Lapidot et al had previously demonstrated that cells that from acute myeloid leukaemia 

(AML) patients exhibiting the haemopoietic stem cell surface phenotype cluster of 

differentiation (CD) 34+ and CD 38- could be injected into severe combined immune-

deficient (SCID) mice to generate a leukaemia similar to that of the original patient30. 
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Bonnet and Dick subsequently identified a serially transplantable population of human 

leukaemia cells enriched for tumour-initiating abilities in 1997 and developed an 

experimental system in which to test the repopulation capacity of normal haemopoietic 

and leukaemic human cells when injected into mice31. Al-Hajj et al demonstrated that 

isolating cells on the basis of a CD44+CD24-/lowLineage- cell phenotype enriched the 

tumour-initiating ability of surgically explanted breast cancer cells from a primary site of 

disease or from metastatic pleural effusions. This constituted the first identification of a 

cancer stem cell population in solid tumours that could self-renew, proliferate and 

differentiate to regenerate the phenotypically heterogeneous tumour when injected into 

mice32. 

In 2003, Singh et al demonstrated that tumour-derived neurosphere cells from 

human brain tumours expressing the neural stem cell surface marker CD133 had an 

increased capacity for self-renewal and proliferation in vitro33. The presence of 

pleuripotential neural progenitor stem cells has been identified in glioblastoma tumours34-

37. 

Known aetiological agents associated with increase incidence of brain tumours 

include genetic syndromes, familial clustering and environmental factors.  

 

1.6 Genetic Factors 

Several hereditary and congenital diseases have been identified which have a high 

preponderance of developing not just astrocytoma but also other brain tumours such as 

meningioma, haemangioblastoma and vestibular schwannoma. Examples of these 

diseases includes: Neurofibromatosis Type 1 (NF-1), Neurofibromatosis Type 2 (NF-2)38-
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39, Tuberous sclerosis40, Von Hippel-Lindau disease (VHL)41-42, ataxia telangiectasia43, 

Gorlin and Turcot syndrome44. These diseases are generally inherited in an autosomal 

dominant fashion but may exhibit varying degrees of penetrance. Other genetic diseases 

with increased incidence of brain tumours are Li-Fraumeni syndrome45 and the multiple 

endocrine neoplasia (MEN) type 146. 

A familial association of astrocytomas where certain families have increased 

incidence of astrocytomas has also been proposed47-49. This theory is however still 

controversial, although there is evidence to show that patients newly diagnosed with 

astrocytomas have a close relative with a verifiable history of a glial tumour. Ikizler 

reported that 6.7 % of newly diagnosed cases had a significant family history of glial 

tumour. This data is substantiated with observation that 9.4% of anaplastic astrocytoma 

patients had at least one first degree relative with an astrocytic tumour50. A significant 

proportion of patients with family history of up to 16% have been reported by Mahaley et 

al51. These figures are significantly higher than the rate of random chance occurrence 

which is estimated to be 4%.  

 

1.7 Environmental Factors 

There are many reports in the literature investigating protean associations between 

environmental factors and increased risk of brain tumours. However considering the 

many variable factors, number of studies and low statistical power, it is difficult to 

definitely prove a direct causation effect and it is expected that many of these factors will 

be merely chance associations52. 
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1.7.1 Radiation 

There is evolving evidence that exposure to radiation in utero53-54, childhood55 and 

adulthood56 may increase the risk of brain tumours. Particularly, the use of radiation 

therapy to treat children with tinea capitis in Eastern European have demonstrated 

increased incidence of meningiomas, gliomas and nerve sheath tumours55. High dose 

radiation has been shown to increase the risk of meningioma but not glioma in adults56-59.  

The role of non-ionising radiation in the pathogenesis of brain tumours such as magnetic 

field radiation is contentious and these forms of radiation are not believed to have any 

tumour-promoting properties60. It has been suggested that residential and occupational 

exposure to electromagnetic field radiation may relate to the development of CNS 

tumours in children61. This is however highly controversial and Feychting and Ahlbom 

have failed to find any significant associations between electromagnetic field exposures 

and CNS tumours in children62. 

 

1.7.2 Chemicals 

Putative carcinogenic chemicals implicated in causing brain tumours include benzene, 

organic solvents, lubricating oils, acrylonitrile, vinyl chloride, formaldehyde, polycyclic 

aromatics and phenol63-64. Observations in certain occupations with increased exposure 

such as in the electrical and electronic industry, oil refining, rubber, airplane industry, 

farming, manufacturing industry, pharmaceutical industry, laboratory professionals, 

embalmers and chemical industry have shown an associated higher risk of brain 

tumours64-68. 
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1.7.3 Diet 

There is no strong association between dietary factors and brain tumours currently. Any 

association between diet and CNS tumours in humans remain unproven. There have been 

international correlations between CNS tumours and per capita consumption of total fat, 

animal protein and fats and oil69. These differences can also be easily explained by 

international differences in technological advancement and ethnic differences in 

susceptibility. N-nitroso compounds and their precursors might increase brain tumour 

risk whereas the consumption of orange juice and vitamin supplements (which contain 

anti-oxidant substances such as ascorbic acid which inhibit endogenous nitrosation 

activity) has been associated with reduced risk of childhood CNS tumours70-71. Most 

studies however used poor measures of intake and have been too small to detect any 

significant risks. 

The association with alcohol is also sparse and inconsistent. Most studies have 

shown negative results72. In fact, there is literature to support that alcohol consumption 

can reduce the incidence of brain tumours59. 

 

1.7.4 Tobacco 

The association between smoking and brain tumours is similar to the situation with 

dietary factors. The findings are difficult to interpret and it is difficult to prove any 

causation effect. Furthermore, there is conflicting data in the literature. Associations have 

been shown between passive smoking and childhood CNS tumours73. Non-smoking 

wives of men who smoked more than 20 cigarettes a day were also shown to have a rate 
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of brain tumour almost fivefold to that of women married to non-smokers74. Choi et al 

and Brownson et al however did not show any risk of CNS tumours associated with 

smoking72,75.  

 

1.7.5 Drugs 

Long-term uses of drugs such as tranquilizers and anti-epileptic medication have been 

implicated in the pathogenesis of brain tumours76. The regular use of tranquilisers was 

associated with an increased risk of gliomas77. Olsen et al however found that there is an 

a high rate of CNS tumours in Danish epileptics which subsequently declined on follow-

up, indicating that epilepsy rather than anti-epileptic agent was associated with CNS 

tumours78. There is however no definitive epidemiological proof that these associations 

hold true at the present moment. 

 

1.7.6 Infection 

Various forms of infection including bacterial, parasitic and viral infections have been 

implicated in the aetiology of brain tumours. Viral infections are the most commonly 

implicated infections.  (JC) virus has been reported in high-grade astrocytoma 

particularly in the setting of multifocal high-grade astrocytoma in Human 

Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) patients 

with progressive multifocal leukoencephalopathy (PML) 79. C-type viruses and human 

papovavirus have also been detected in a variety of human central nervous system (CNS) 

tumours80-81. Ebstein Barr Virus (EBV) is ubiquitous in cerebral lymphomas occurring in 

HIV/AIDS patients82 and the Rous Sarcoma Virus, adenovirus type 12, simian virus 40, 
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JC papovavirus and both murine and avian sarcoma viruses can induce CNS sarcoma in 

animal models83-85. 

Associations between Tuberculosis (TB) and glioma have been reported, although 

there is suggestion that this may be related to an impaired immune response rather than as 

a direct association86-87.  

Toxoplasmosis gondii infection has a predilection for neural tissue. It has been 

linked to astrocytoma in one study88. However, a study by Ryan et al demonstrated that 

Toxoplasmosis gondii antibodies were associated with meningioma formation but not 

glioma pathogenesis89.  

 

1.7.7 Mobile Phone 

The recent popularity and widespread use of mobile phones have led to great speculation 

that brain tumours may be caused by radiofrequency (RF) field from the use of mobile 

communication devices.  

There are currently about 50 million mobile phones in use in the United Kingdom 

(UK) compared with around 25 million in 2000 and 4.5 million in 1995. These are 

supported by about 40 000 base stations in the UK network. The majority of these base 

stations operate under the Global System for Mobile Communications (GSM).  

In less than ten years since the first GSM network was commercially launched as 

the second generation of mobile phones, it has become the world's leading and fastest 

growing telecommunications system. It is in use by more than one-sixth of the world's 

population and it has been estimated that at the end of January 2004 there were 1 billion 
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GSM subscribers across more than 200 countries. The growth of GSM continues 

unabated with more than 160 million new customers in the last 12 months.  

The extensive use of mobile phones suggests that users do not in general judge 

them to present a significant health hazard. Rather they have welcomed the technology 

and brought it into use in their everyday lives. Nevertheless, since their introduction, 

there have been persisting concerns about the possible impact of mobile phone 

technologies on health. 

In 1999, the Independent Expert Group on Mobile Phones (IEGMP) was establish 

to review the situation. Its report, Mobile Phones and Health (the Stewart Report), was 

published in May 2000. It stated:  

“ The balance of evidence to date suggests that exposures to RF radiation below 

NRPB (National Radiological Protection Board) and ICNIRP (International Commission 

on Non-Ionising Radiation Protection) guidelines do not cause adverse health effects to 

the general population.  

There is now scientific evidence, however, which suggests that there may be 

biological effects occurring at exposures below these guidelines.  

We conclude therefore that it is not possible at present to say that exposure to 

RF radiation, even at levels below national guidelines, is totally without potential adverse 

health effects, and that the gaps in knowledge are sufficient to justify a precautionary 

approach.  

We recommend that a precautionary approach to the use of mobile phone 

technologies be adopted until much more detailed and scientifically robust information 

on any health effects becomes available.” 
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Similarly, the Advisory Group on Non-ionising Radiation (AGNIR) has also 

concluded that the amount of radiation from radiofrequency field is insufficient to result 

in carcinogenesis from DNA damage. The most recent report “Mobile Phones and Health 

2004” by the National Radiological Protection Board (NRPB) also reported that there 

was no association between the mobile phone use and brain tumours90.  

The issue of mobile phone usage and brain tumours is however of great current 

interest in view of the global widespread use and dependence on mobile communication 

devices. Individual studies have found positive correlations between high grade 

astrocytoma and phone use ipsilateral to the side of the tumours. Hardell et al identified 

one cohort study and 13 case-control studies and the data was analysed for mobile phone 

usage >10 years and ipsilateral exposure if presented. The results showed that the use of 

mobile phones for >10 years give a consistent pattern of an increased risk for acoustic 

neuroma and glioma, most pronounced for high-grade glioma. The risk is highest for 

ipsilateral exposure91. A meta-analysis by Lahkola et al however demonstrated no 

increased risk of brain tumours with mobile phone use greater than 5 years92. A large 

study conducted by Hepworth et al on a large cohort in United Kingdom also did not 

show any association between mobile phone usage and gliomas93.  It is cautionary to note 

that the phenomenon of widespread use of mobile phones is a relatively recent and 

although there is currently no evidence to support the association between mobile phone 

usage and brain tumours in the short and medium term, the absolute effects of long-term 

usage may not be quantifiable at the present moment.  
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1.8 Clinical Features 

The clinical features of high-grade astrocytoma are similar to that of any other space-

occupying mass lesion in the brain. The signs and symptoms are a function of the 

location rather than the actual pathology. 

The presentation generally will fall into the following categories: 

(A)  Signs and symptoms of elevated intracranial pressure - This can result from the 

tumour mass, cerebral oedema or obstructive hydrocephalus and can manifest as 

headaches, drowsiness, nausea and vomiting. The headaches are classically worse in 

the morning and are relieved by vomiting although this relationship is frequently not 

present. Clinical signs may include evidence of altered consciousness, papilloedema 

and 6th nerve palsy. In severe cases of herniation syndrome, decerebration and 

evidence of 3rd nerve palsy and coma will ensue and the condition will rapidly lead to 

death if no active emergent therapy is instituted.  

(B) Focal neurological deficit- This is dependent on the location of the tumour. For 

instance a tumour located in the speech centre will present with speech disturbance. 

Examples of focal deficits are cranial nerve deficits, hemiparesis, dysphasia, 

paraesthesia, visual problems, mental and personality change.  

(C) Seizures- Brain tumours constitute 8% of first seizure in adults 15 years of age and 

older.  In a series from the Montreal Neurological Institute, seizures were documented 

at some stage during the clinical course in 48% of 209 patients with hemispheric 

astrocytomas94.  Penfield et al reported a seizure incidence incidence of 37% in 

glioblastoma, which is nearly half as frequent as low-grade gliomas95.  The most 

frequently epileptogenic areas are the frontal, parietal and temporal lobes. Seizures 
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result from irritation of adjacent cortical structures by the tumour. Morphological and 

biochemical alterations occur which result for the epileptogenicity of the tumour96-97. 

Epilepsy may be is caused by interference with normal γ-aminobutyric acid (GABA) 

and glutamate uptake and metabolism in the surrounding cortex. Analysis of human 

glioma biopsy specimens for the amino acid neurotransmitters and glutamine has 

shown that gliomas associated with epilepsy have a higher concentration of 

glutamine98. It has also been demonstrated that hyperexcitable cortex surrounding the 

tumour lesion have significantly reduced populations of GABA and somatostatin 

containing neurons when compared to adjacent non-tumour, non-epileptogenic cortex 

from the same patient99. Furthermore, comparison of the temporal cortex taken from 

patients with temporal lobe epilepsy with normal controls showed reduction in 

thickness of the cortex and reduction in the numbers of nerve cells. This decline was 

due to cell degeneration and was more severe for non-GABAergic nerve cells. 

Accordingly, the proportion of the GABA-positive neurons in the otherwise 

diminished neuronal population increased to 36.4% from the 32% control value. The 

number of GABAergic terminals, however, decreased even further, explaining the 

resulting disinhibition during epileptic seizures100 

Most cancers have the ability to metastasise or spread beyond the normal 

anatomical confines. This occurs by local infiltration or invasion, lymphatic spread or 

haematogenous spread. It is noteworthy that malignant gliomas give rise to significant 

morbidity and mortality by local infiltration and invasion and very rarely metastasise 

outside the cranium or the central nervous system. The nervous system is also devoid of 

lymphatic channels. A systematic review of the literature only reviewed 51 cases of 
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malignant glioma with metastasis to the spine and extraneural structures.  The 

consequences of metastatic spread is however dire with the vast majority of patient not 

surviving beyond 6 months after the detection of metastatic disease101.  

     

1.9 Management 

When the diagnosis of brain tumour is considered, initial imaging studies should be 

performed. This initial diagnostic study should be a contrast enhanced computed 

tomography (CT) or preferably magnetic resonance imaging (MRI) scan. The 

identification of any mass lesion, particularly in the presence of contrast enhancement is 

highly suggestive of a high-grade astrocytoma.  

There have been recent advances in neuroradiological techniques in functional 

and metabolic imaging of brain tumours. The functional imaging techniques of positron 

emission tomography (PET), single positron emission computed tomography (SPECT) 

and magnetic resonance spectroscopy (MRS) are able to quantify various aspects of brain 

tumour metabolism. Information regarding tumour blood flow, tumour growth rate, 

degree of oxygenation, potential of hydrogen (pH) and chemical composition such as 

lactate (Lac), choline (Cho), N-acetylaspartate (NAA), phosphocreatine (PCr), creatine 

(Cr) and lipids (Lip) can be obtained.   

Increased glucose uptake and glycolysis has long been associated with 

malignancy102. The analog of glucose used in PET is 18F-fluoro-2-deoxyglucose (18FDG). 

Low uptake of 18FDG has been found to be a good prognostic indicator103-104. Herholz et 

al used 18FDG PET in 36 patients with WHO Grade 2 and 3 tumours and found that 10 
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out of 11 with a low metabolic index compared to 4 out of 10 patients with a high 

metabolic index survived during a mean follow-up of 24 months105-106.  

SPECT is a less costly and more investigative tool compared to PET. SPECT 

scanning uses radioisotopes utilised in nuclear medicine, namely technetium, gallium, 

thallium and iodine which act as blood flow markers107. Thallium is highly sensitive for 

detecting viable tumour and has even been used to grade astrocytomas108-112. 

Magnetic resonance spectroscopy (MRS) uses the interaction between atomic 

nuclei and magnetic fields which then detects the resonance spectra of chemical 

compounds giving a reflection of in situ chemistry. Magnetic nuclear isotopes such as 

carbon 13, deuterium, fluorine 19, hydrogen 1, phosphorus, sodium 23 or tritium absorb 

radio frequency energy when placed in a magnetic field. The energy absorption results in 

resonance of the nuclei of the atoms in the chemical compound studied. Different atoms 

resonate at different frequencies, and this difference in resonance frequency reveals 

structural information about the brain metabolites such as choline (Cho), creatine and 

phosphocreatine (Cr), lactate (Lac), myoinositol (MI), lipids (Lip) and N-Acetylaspartate 

(NAA). In vivo MRS studies of glial brain tumors have reported increased levels of Cho 

compared to normal brain6. Elevated measurements of Cho/NAA and Cho/Cr ratios have 

also been found to be an important malignancy marker for histological grading of 

astrocytoma, and pattern recognition analysis of in vivo MRS has been proposed as a 

non-invasive method to enhance the diagnosis of human brain tumors grade113-117. Apart 

from Cho, the concentrations of other metabolites such as Lac, Lip and MI can vary even 

among tumors of similar histological grade, and these chemicals are the subject of active 

research118. Ishimaru has however demonstrated that metastases and glioblastomas 
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showed definite lipid or lipid/lactate mixture, but anaplastic astrocytomas showed no 

definite lipid signal117. Targeting areas with elevated lipid content may provide the 

highest diagnostic yield. Ng et al showed that regions with highest lipid content (Lip/Cr 

ratio) revealed glioblastoma (WHO Grade 4) whereas a region with high Cho/NAA ratio 

but low Lip/Cr ratio revealed anaplastic astrocytoma (WHO Grade 3)119. MRS targeting 

regions of highest lipid content may therefore be useful in maximizing the diagnostic 

yield and accuracy when performed stereotactic biopsy for patients with suspected 

astrocytoma.  

At the end of the day, functional and metabolic imaging can only provide a guide 

on the probabilty of malignancy and has inherent problems with false positivity and 

negativity as well as issues with sensitivity and specificity. It has an important role in 

target selection to improve diagnostic yield and reduce sampling error in stereotactic 

biopsy and also has an important role in the follow-up of patients to help to distinguish 

between tumour recurrence or treatment effects. However, it has severe limitation in 

definitive diagnosis and can certainly not provide histological proof of the disease. 

Tissue diagnosis is therefore extremely critical as the radiological appearance of 

malignant astrocytoma may be mimicked by numerous neoplastic and non-neoplastic 

lesions such as metastatic tumours, lymphoma, bacterial abscess, tuberculosis and 

cerebral infarction. It is also critical to distinguish between the various forms of primary 

brain tumours such as oligodendroglioma or ependymoma as this will impact on adjuvant 

therapy such as radiation therapy and chemotherapy. 

The mainstay of therapy is a combination of surgery, radiation therapy and 

chemotherapy.  
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The main role of surgery is to obtain tissue diagnosis. Surgery can also 

significantly and rapidly reduce intracranial hypertension leading to symptomatic relief 

and recovery of reversible neurological deficits such as hemiparesis. The role of radical 

surgical resection of high-grade astrocytomas remains controversial although there is 

some literature to support the role of radical surgery to improve patient survival and 

disease free progression of the disease.   

The type of surgery performed may range from a simple stereotactic biopsy, 

subtotal debulking of tumour or radical resection of the tumour. The type of surgery 

performed is dependent on the functional status of the patient, the presence of significant 

co-morbidities, tumour size and location. 

Stereotactic biopsy is especially useful in elderly patients with significant deficits 

and co-morbidities as well as in situations where the tumour is small and deep-seated 

which would render more aggressive surgery dangerous. 

In most patients with malignant glioma, surgery should be carried out with the 

aim of removing as much tumour with maximal preservation of structural and functional 

integrity of surrounding normal anatomy. The aims of radical resection are as follows120-

121: 

(A) Rapid 2-log cell kill 

(B) Remove resistant cells 

(C) Reduce sampling error associated with a small biopsy 

(D) Decrease intracranial hypertension  

(E) Improve neurological function    

(F) Potentiate adjuvant therapy such as radiation therapy and chemotherapy 
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(G) Potentially improve survival and disease-free progression  

Radiation therapy has for the last 3 decades remained as the single most effective 

treatment for malignant astrocytoma122-125. All patients with high-grade astrocytomas 

should be given a course of radiation therapy after surgery if they remain in reasonable 

functional status. The duration and dose of radiation given depends on the functional 

status of the patient.  

The role of chemotherapy is to potentiate and augment radiation therapy. 

Chemotherapy is greatly limited by penetration into the central nervous system through 

the blood-brain-barrier, toxicity and chemoresistance to therapeutic agents used. 

Traditional regimens have been based on the use of nitrosureas. In 1970, two separate 

groups of investigators reported 40% response rate with 1,3-Bis(2-chloroethyl)-1-

nitrosourea (BCNU) alone126-127. Other agents used include losmustine (CCNU) and 

procarbazine. Chemotherapy is conventionally used as an adjuvant after surgery and 

radiation therapy. 

The most recent significant advance has been the “Stupp Regimen” 2005. This 

protocol essentially involves the concomitant administration of temozolamide 

chemotherapy with radiation therapy followed by temozolamide to glioblastoma patients 

in one arm of study with a separate arm of study which differed in that no concomitant 

administration of temozolamide was given. The results of the study showed that the two-

year survival rate was 26.5% with radiation and temozolamide and 10.4% with radiation 

alone128. Resulting from these dramatic results and the fact that temozolamide is an orally 

administered chemotherapy agent with very little adverse effects, this is the current 
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therapy practised by many units world-wide. The only limiting factor is the extremely 

high cost of temozolamide which can be prohibitive.    

 

1.10 Limitations in Treatment 

Malignant astrocytomas are highly infiltrative and invasive tumours. Conventional 

imaging can only demonstrate the obvious tumour mass. At the time of diagnosis, there is 

evidence that tumour cells are present beyond the confines of the main tumour mass seen 

radiologically and at the time of surgery. A tumour gradient exists with the greatest 

density of tumour cell number decreasing rapidly at increasing distances from the 

contrast-enhancing rim of tumour tissue. Therefore the majority of recurrent glioblastoma 

(more than 90%) occur locally, within 2cm of the original margin of contrast-enhancing 

tumour129-132.    

However, tumour cells can be found at great distances from the primary site, even 

on the contralateral hemisphere. Widespread distributions of malignant cells are detected 

at autopsy and during methodical stereotactic biopsy studies133-134. The cells tend to 

spread along white matter tracts such as long association pathways and corpus 

callosum135-136. This obviously obviates the possibility of more aggressive surgery as that 

would lead to unacceptable morbidity and mortality.  

Renewed growth of astrocytoma following therapy indicates failure to reduce the 

tumour mass to a size (approximately 105 cells) permitting eradication of the remnant 

cells by the patient’s immune system137-138. 

Failure also results from factors which limit the efficacy of each modality. The 

blood-brain-barrier forms a protective barrier against the ingress of toxins into the central 
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nervous system. Unfortunately, this protective mechanism conversely also poses a 

challenge as it impedes the delivery of chemotherapy into the brain tissue. Patients with 

malignant astrocytomas are also immunocompromised and hence have impaired 

immunity to eradicate remnant tumour cells. The patient’s immune response may be 

rendered ineffective by the tumour’s secretion of factors antagonistic to immune 

cytokines139. 

Most significantly, malignant astrocytic cells also differ in genetics, morphology, 

kinetics, metabolism, angiogenesis, oxygenation and antigenic expression which promote 

their overall survival and render them resistant to therapeutic agents.   

These factors all contribute to the current dismal state of affairs. Clinicians are still 

unable to provide long-term control for malignant astrocytomas and the current prognosis 

for this group of patients is still uniformly poor with median survival of 1 year for 

glioblastoma and 3 years for anaplastic astrocytoma13-15, 140. Glioblastomas are among the 

most malignant human and irrespective of aggressive radio- and chemotherapy, only 

about 2% survived more than 3 years141-142.  

 

1.11 Molecular Biology 

The development of many cancers has directly been attributed to genetic mutations 

including loss of tumour suppressor genes and mutations in protooncogenes. 

The past decade has seen an explosion in the molecular knowledge of astrocytomas. This 

understanding of the molecular basis for the disease coupled with the failure of current 

treatment to achieve a satisfactory disease control leaves no doubt that the next major 

advancement in glioma treatment has to take place in the realm of molecular biology. 
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Cytogenetic and molecular genetic studies have characterized the various chromosomal 

and genetic aberrations observed in gliomas. 

 

1.11.1 Multi-step Theory of Tumourigenesis 

Many human neoplasms have a tendency to evolve to more malignant states. This 

concept of malignant progression appears especially applicable to low-grade gliomas. 

Longitudinal studies have shown that more than 50% of low-grade gliomas will 

ultimately transform to tumours of higher grade143. Müller et al examined 72 patients who 

had low-grade gliomas at the time of initial surgery. At the time of recurrence, 14% of the 

tumours were unchanged histologically, whereas 55% were now classified as anaplastic 

astrocytoma and 30% were now classified as glioblastoma multiforme. The time between 

the initial diagnosis and the second surgery averaged 31 months144. In Soffietti’s series, 

79% of low-grade patients had grade 3 or 4 tumours at the time of clinical recurrence or 

death145.    

The progression of low-grade to high-grade astrocytoma involves the progressive 

loss of genes responsible for the control of cell proliferation, apoptosis and/or 

invasiveness. The earliest and most common alteration occurs on chromosome 17, which 

is associated with the tumour suppressor gene TP53146. The reported incidence of TP53 

gene mutation in astrocytomas is approximately from 30-45%147-150. Alterations on 

chromosome 22 occur in approximately 20-30% of low-grade astrocytomas148. 

Overexpression of the proliferation-promoting platelet-derived growth factors (PDGF-A 

and PDGF-B) and the PDGFR-α receptor occurs in the vast majority of astrocytomas151. 

The transition of low-grade glioma to anaplastic astrocytoma is believed to be facilitated 
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by loss of 9p. Approximately 30-50% of gliomas have alterations to the retinoblastoma-1 

(RB1) gene. These alterations arise either by mutation in the RB1 gene or by LOH at 

13q14148, 152-154. Loss of Heterozygosity (LOH) on 19q has been reported in both 

anaplastic astrocytomas and glioblastomas155. Subsequent transformation to glioblastoma 

is thought to result from deletion of chromosome 10. Tumours of this grade typically 

demonstrate whole or partial deletion of a copy of chromosome 10 and this occurs in 53-

97% of reported cases156-160. Amplification of the Epidermal Growth Factor Receptor 

(EGFR) gene is a late and rare event. This multi-step theory gives rise to the concept of 

“secondary glioblastoma” which is preceded by the presence of pre-existing low-grade 

astroctoma. 

“Primary glioblastoma” arise de novo without preceding low-grade astrocytoma. 

It may be argued that progression occurred without detection. However there is molecular 

genetic evidence that supports that these tumours belong to a separate category. Lang et 

al characterized de novo glioblastomas as tumours without TP53 mutations but with 

amplification of EGFR and Loss of Heterozygosity (LOH) of chromosome 10 and 

secondary glioblastomas as neoplasms with TP53 mutations and LOH of chromosome 

17p161. Von Deimling also showed that these tumours were more common in the elderly 

and had more frequent EGFR amplification without LOH on chromosome 17p162.  

The many genetic aberrations result in cell cycle dysregulation, activation of 

glioma signaling cascades, cellular proliferation, loss of normal apoptosis, invasiveness 

and angiogenesis.    
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1.11.2 Glioma Invasiveness 

Local tissue invasion distinguishes high-grade astrocytomas from low-grade tumours and 

this attribute limits the effectiveness of radical resection. High-grade astrocytomas tend to 

recur locally until the patient succumbs to microscopic invasion and local compression of 

vital centres in the brain. Although more than 90% of malignant astrocytomas recur 

within 2cm of the original site of presentation after treatment, some patients may develop 

recurrence at some distance from the original tumour either in the ipsilateral hemisphere 

or even on the contralateral hemisphere129-132. Single tumour cells that invade the normal 

brain tissue as far as several centimetres from the macroscopic tumour border escape 

cytoreductive surgery and even involved-field radiation therapy with a safety margin no 

more than 2 cm around the presurgical tumour volume and usually results in tumour 

recurrence within a few months163. 

For gliomas to invade normal brain structures, they must be able to migrate and 

breakdown the surrounding extracellular matrix (ECM). To migrate, the cell body must 

be able to modify its shape and stiffness and to interact with the surrounding ECM. 

Tumour invasion consists of several steps: tumour cell interaction with ECM, hydrolytic 

degradation of the matrix by the release of proteases and migration of tumour cells into 

the area of degradation.   

There are three major groups of proteases and their inhibitors: (1) matrix 

metalloproteases (MMPs) and tissue inhibitors of matrix metalloproteases (TIMPs); (2) 

serine proteases, including urokinase, tissue plasminogen activator (tPA) and 

plasminogen activator inhibitor (PAI); and (3) cysteine proteases164-166. 
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The intracellular mechanisms of glioma migration are dependent on the complex 

interaction of microtubules, actin microfilaments and intermediate filaments which propel 

the tumour cell. The ECM also plays an integral role in glioma invasion. Several ECM 

proteins such as fibronectin, tenscin, laminin, integrins, collagen and vitronectin are 

utilized by glioma cells for invasion164-171. 

 

1.11.3 Angiogenesis 

Tumours are dependent on angiogenesis, the formation of neo-vessels from existing 

vessels within the tumour172. Tumours secrete diffusible chemicals that stimulate 

endothelial cells, resulting in neovascularisation of capillaries. A number of angiogenic 

factors have been identified and examples include vascular endothelial growth factor 

(VEGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), 

transforming growth factor (TGF), interleukin (IL) 8 and tumour necrosis factor-α (TNF-

α)173-174. Several anti-angiogenic agents have been identified. Examples include 

interferon α, thalidomide, glioma derived angiogenesis inhibitory factor, angiostatin and 

endostatin175. These inhibitors of angiogenesis may hold promise for the development of 

novel therapeutic strategies. 

 

1.11.4 Glioma Signaling Pathways and Growth Factors 

Tumour stromal interactions play an important role in the mitogenesis of many human 

malignancies. 

In colorectal tumour cells, co-culture of human colonic carcinoma cell lines Caco-

2 or HT-29 cells in collagen gels resulted in the formation of a few small solid cell 
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clusters with no lumina, but when co-cultured with stromal cells, the tumour cells formed 

glandular structures with central lumina. This fibroblast-induced organization and 

differentiation of Caco-2 cells (not HT-29 cells) appeared to be mediated by transforming 

growth factor-beta (TGF-β)176. A paracrine mechanism is also seen in squamous cell 

carcinoma (SCC). Stromal changes with increased expression of proteases and cytokines 

may promote tumour proliferation. Myofibroblasts are commonly concentrated at the 

invasive margin of oral SCC. The tumour cells directly induce a myofibroblastic 

phenotype which is dependent on SCC-derived TGF-β1. In turn, myofibroblasts secrete 

significantly higher levels of hepatocyte growth factor/scatter factor compared with 

fibroblast controls which promotes SCC invasion177. Malignant melanoma cells are able 

to express various cytokines and growth factors at different stages of tumour progression, 

which can confer tumour competence via autocrine and paracrine effects178. 

Likewise, the co-expression of growth factors with their corresponding receptors 

in gliomas may result in complex ligand-receptor interactions. The growth factor 

receptors expressed on the surface of tumour cells may bind soluble ligand produced by 

the same (autocrine), or adjacent cells (paracrine). In addition, membrane-anchored 

growth factor isoforms generated by alternative splicing may bind to the same 

(juxtacrine) or adjacent tumour cells (paracrine). Intracellular interactions between 

growth factor receptors and their ligands can also lead to intracrine activation of signaling 

cascades166, 179. 

Many different growth factor/receptor systems have been implicated in the 

proliferative behaviour of gliomas. Vascular endothelial growth factor (VEGF) is 

considered one of the most potent angiogenic factors in gliomas. It is highly expressed in 
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malignant gliomas predominantly in areas of necrosis180-185 and is thought to stimulate 

angiogenesis in a paracrine manner by binding to tyrosine kinase receptors on endothelial 

cells183, 186-188. The epidermal growth factor receptor (EGFR/c-erb/HER 1) is the 

mammalian homologue of the v-erbB oncogene from avian erythroblastosis virus189. 

Expression of EGFR has been shown in glioma cell lines and primary tumours with the 

degree of expression correlating to histological grade. EGFR expression has been linked 

to higher Ki-67 labelling indices and decreased survival190-192. In vitro experiments have 

demonstrated that expression of EGFR leads to increased proliferation behaviour and 

reduced apoptosis193-195. Co-expression of platelet-derived growth factor (PDGF) and 

their receptors is a common alteration in glioblastoma which can influence survival and 

proliferation of tumour cells. All four members of the PDGF family group PDGF-A, B, C 

and D have been shown to influence malignant behaviour. One of the most consistent 

cellular signaling defects observed in high-grade gliomas is the presence of an autocrine 

loop attributable to the co-expression of PDGF-A and PDGF-B and their receptors196-200. 

PDGF-C and PDGF-D expression is also seen in human glioblastoma cell lines and 

primary human tumour tissues. The use of CT52923, a potent inhibitor of PDGFR 

blocked PDGF autocrine-mediated phosphorylation of PDGFR, Akt and mitogen-

activated protein kinase (MAPK) and was also able to inhibit glioma growth in nude mice 

models201. 

Nerve growth factor is a member of the family of neurotrophins which are widely 

expressed in glioma tissue202. They bind with different affinity to receptors of the tyr 

family and can stimulate glioma cell line proliferation in an autocrine fashion203-204. 
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Several other putative growth factors have been found to be widely expressed in 

human glioma cell lines and glioma tissue and can stimulate mitogenic behaviour. These 

include insulin-like growth factor (IGF)205, transforming growth factor-beta (TGF-β)206, 

brain-derived growth factor (BDGF)207 and scatter factor/hepatocyte growth factor 

(SF/HGF)208-209. 

Many of the above ligands are over-expressed due to gene amplification and the 

receptors can exist in constitutively active mutant forms. The mitogens and their cognate 

receptors will subsequently regulate several intracellular signaling pathways. The major 

signaling cascades are: phosphoinositide 3-kinase/AKT-protein kinase B (PI3K/AKT-

PKB) pathway, mitogen activated protein kinase (RAS/MAPK) pathway and the 

phospholipase C-γ/protein kinase C (PLC-γ/PKC) pathway209-210. 

The interplay of these complex signaling pathways resulting from of ligand-

receptor interactions induce tumour proliferation, promote angiogenesis, inhibit apoptosis 

and confer cellular survival and chemoresistance.      

 

1.12 Glial Cell Line-Derived Neurotrophic Factor (GDNF) Family 

1.12.1 GDNF Family of Ligands (GFLs) 

Glial cell line-derived neurotrophic factor (GDNF) was originally identified in 1993 by 

Lin et al as a neurotrophic factor. It was isolated from a rat glioma cell line supernatant 

and was shown to confer increased survival for embryonic midbrain dopamine 

neurons211. Subsequently, it was also found that GDNF also had potent trophic functions 

in spinal motorneurons and central noradrenergic neurons.  
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In view of the ability of GDNF to confer neuronal survival and the presence of 

trophic functions, much research on GDNF has therefore focused on its role as a potential 

therapeutic agent for neurodegenerative diseases such as Parkinson’s Disease. GDNF 

targeted therapy has reached the realm of clinical trials and application in the field of 

Parkinson’s Disease212-215. 

The GDNF-family ligands (GFL) consist of GDNF, neurturin (NRTN), artemin 

(ARTN) and persephin (PSPN). The GFLs support midbrain dopamine and motorneurons 

in the central nervous system. In addition, GDNF, NRTN and ARTN promote the 

survival and regulate the differentiation of many peripheral neurons such as the 

sympathetic, parasympathetic, sensory and enteric neurons216-217. 

GFLs belong to the transforming growth factor-beta (TGF-β) superfamily, 

containing seven cysteine residues with the same relative spacing as other members of 

the family. GDNF and other structurally characterized members of the TGF-β 

superfamily have similar conformations218. They all belong to the cystine-knot protein 

family and function as homodimers. 

GFLs are produced in the form of a precursor, preproGFL. The sequence is 

cleaved on secretion and activation of proGFL occurs by proteolytic cleavage. The 

secreted proneurotrophins may however be biologically active216, 219-220.  

GDNF is secreted as a mature protein of 134 amino acids. In its natural state, it 

exists as a glycosylated homodimer of approximately 39 kDa. 
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1.12.2 GDNF-family Signalling   

These GFLs bind to specific GDNF-family receptor-α (GFRα) co-receptors and activate 

RET. The GFRα receptors are linked to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) anchor. Four classes of GFRα receptors have been 

characterised (GFRα1-4), which determine ligand specificity. GDNF binds to GFRα1, 

NRTN binds to GFRα2, ARTN to GFRα3 and PSPN binds to GFRα4. In addition, NRTN 

and ARTN may crosstalk weakly with GFRα1 and GDNF with GFRα2 and GFRα3.   

Rearranged during Transfection (RET) is a single-pass transmembrane protein 

that contains four cadherin-like repeats in the extracellular domain and a typical 

intracellular tyrosine kinase domain. The GFL- GFRα binding to the extracellular domain 

of RET leads to intracellular activation of the tyrosine kinase domain216,221. A GDNF 

dimer binds to a monomeric or dimeric GFRα1, and the GDNF-GFRα1 complex then 

interacts with two RET molecules, thereby inducing homodimerisation and tyrosine 

autophosphorylation222. However, GDNF mutants that are deficient in GFRα1 binding 

sites have been shown to be able to activate RET, indicating that at least some RET 

molecules may be weakly associated with GFRα1 prior to GDNF binding223. 

The lipid micro-environments on the cell surface known as lipid rafts can also 

take part in the process of signal induction. Lipid rafts contain a given set of proteins, 

cholesterol and sphingolipids on the outer leaflet of the plasma membrane. They can 

change their size and composition in response to intra- or extracellular stimuli. This 

favours specific protein-protein interactions, resulting in the activation of signalling 

cascades224-225.  Inactive RET lies outside the lipid rafts and only upon GDNF stimulation 

does the GFRα receptor incorporate RET into the lipid rafts. Soluble GFRα1 also targets 
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RET to lipid rafts226-227. RET is alternatively spliced to yield at least two spliced 

isoforms, RET9 and RET51, which differ only in their C-termini. TheRET9 and RET51 

signaling cascades differ markedly228. Comparison of GFL activation of RET9 and 

RET51 revealed that phosphorylation of Tyrosine (Tyr) (905) and Tyr(1062) was greater 

and more sustained in RET9 as compared with RET51. In contrast, Tyr(1015) was more 

highly phosphorylated over time in RET51 than in RET9. In addition, RET9 and RET51 

did not associate with each other in sympathetic neurons after glial cell line-derived 

neurotrophic factor stimulation, even though they share identical extracellular 

domains228. Using targeted mutagenesis to generate mice that express either RET9 or 

RET51. Monoisoformic RET9 mice, which lack RET51, are viable and appear normal. In 

contrast, monoisoformic RET51 animals, which lack RET9, have kidney hypodysplasia 

and enteric aganglionosis. RET9 transgenes are capable of rescuing the kidney agenesis 

in RET-deficient mice or causing kidney hypodysplasia in wild-type animals. In contrast, 

similar RET51 transgenes fail to rescue the kidney agenesis or cause hypodysplasia. 

Therefore, only the short RET9 isoform can rescue the phenotype of the RET-null 

mutation in the kidney and enteric system229.  

Recently, the neural cell adhesion molecule (NCAM) was also shown to function 

as a signaling receptor for members of the GFLs. Significantly, GDNF was shown to 

stimulate schwann cell migration via NCAM but independently of RET. GDNF was also 

demonstrated to stimulate axonal growth in primary neurons via NCAM and Fyn Kinase 

but independently of RET230. 

In addition to being mediators of neuronal survival, neuritic growth and 

differentiation, the GFLs also have many extra-neuronal functions. GDNF is essential for 
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renal morphogenesis where it serves as an inductive signal sent from the nephrogenic 

mesenchyme to the ureteric bud. GDNF is expressed by mesenchyme and is repressed by 

epithelial conversion of the mesenchymal cells. GDNF releasing beads have been shown 

to stimulate ureteric branching in cultured kidneys and promote the outgrowth of ectopic 

ureteric buds from the nephric duct231-233.  

GDNF is also expressed in the testis by Sertoli cells and regulate spermatogenesis 

in a paracrine fashion. Both GDNF and NRTN stimulate Deoxyribonucleic acid (DNA) 

synthesis in spermatogonia although transgenic mice experiments demonstrated that 

GDNF but not NRTN contributes to the regulation of spermatogonial self-renewal and 

differentiation234-235. 

 

1.12.3 RET Dysfunction and GDNF in Disease  

Mutations in the RET gene can result in many human diseases. There are two groups of 

RET mutations: gain-in-function mutations and loss-in-function mutations. 

Gain-of-function mutations within the receptor tyrosine kinase gene RET cause 

inherited and non-inherited thyroid cancer. Germline RET mutations are found in 

virtually all cases of familial medullary thyroid cancer and somatic point mutations occur 

in nearly half of the sporadic cases. Gene rearrangements of RET, giving rise to chimeric 

genes have been found in papillary thyroid carcinoma236-237. The majority of cases of 

multiple endocrine neoplasia (MEN) types 2A and 2B are also associated with 

dysfunction of RET arising from missense mutation, insertions or deletions either in the 

extracellular or intracellular domain236-238. Conversely, loss-of-function mutations are 

responsible for the development of Hirschsprung's disease, a congenital malformation of 
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the enteric nervous system. The frequency of RET mutations in Hirschsprung’s disease 

range from 5% to 50% and is more common in the familial form than in the sporadic 

form239. 

GDNF has immense promise in clinical therapeutics. The area of most intense 

study is the use of GDNF in Parkinson’s Disease. Phase I trials have shown that the 

delivery of GDNF directly into the putamen can be performed safely and for long periods 

resulting in a significant increase in dopamine storage in the putamen and improvement 

in clinical condition. Gill et al reported that after one year, there were no serious clinical 

side effects. There was a 39% improvement in the off-medication motor sub-score of the 

Unified Parkinson's Disease Rating Scale (UPDRS) and a 61% improvement in the 

activities of daily living sub-score. Medication-induced dyskinesias were also reduced by 

64% and were not observed off medication during chronic GDNF delivery240.  Slevin et 

al reported that the unilateral administration of GDNF results in significant, sustained 

bilateral benefits in patients with PD. These improvements are lost within 9 months of 

drug withdrawal241. Other areas of potential therapeutic applications are in the realm of 

sensory regeneration and neuropathic pain, epilepsy, addiction, cerebral ischaemia and 

male contraception221, 242-246.  

 

1.12.4 GDNF and Cancer 

There are carcinogenic consequences of dysregulated RET activation. GDNF has been 

implicated as a mitogenic agent in many cancers. 

RET mutations are common in MEN syndromes 2A and 2B236-238. Patients with 

MEN 2 develop hyperplasia of adrenal chromaffin cells which are often followed by 
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phaechromocytomas247. GDNF and NRTN were found to be mitogens for normal adult 

rat chromaffin cells in vitro. NRTN was the more potent mitogen and caused increased 

phosphorylation of extracellular signal-regulated kinases 1 and 2 in cultured chromaffin 

cells248.  

In pancreatic cancer, RET overexpression was seen in pancreatic tumour tissue. 

GDNF and ARTN were strongly expressed in all intrapancreatic nerves and 

intrapancreatic neural invasion was significantly related to the expression of GDNF. In 

invasion assays, the migration of pancreatic cancer cells are markedly induced by co-

culture with human glioma cells capable of secreting GDNF. In all intrapancreatic nerves 

of pancreatic cancer tissue, GDNF and artermin were expressed strongly. The expression 

of RET was stronger than that seen in normal ductal cells and was significantly related to 

the survival rate after resection249-250. Perineural invasion is an important prognostic 

factor for patients with bile duct carcinoma and is not surprising that GDNF can play a 

role in the pathogenesis of bile duct cancer. Using immunohistochemistry, moderate to 

strong staining of GDNF in tumour cells was observed more frequently in sections with 

perineural invasion. Cell migration was also seen to be enhanced by conditioned media 

from GDNF-treated cells251.  

GDNF can promote proliferation of neuroblastoma cells and can have a role in 

promoting resistance to differentiation or cytotoxic therapy of neuroblastoma252. 

 

1.12.5 GDNF and Malignant Astrocytoma 

Malignant astrocytomas are the most common form of primary brain cancer. Many 

growth factors such as PDGF, VEGF, IGF and BDGF have been demonstrated to 
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promote proliferation, inhibit apoptosis and induce angiogenesis in malignant 

astrocytomas. GDNF is ubiquitous in the central nervous system and neural tissue and 

hence can also play a role in the pathogenesis of high-grade glioma. 

 GDNF and its receptor GFRα1 have been demonstrated to be strongly expressed 

in human gliomas. In an analysis of 20 human astrocytomas (14 glioblastomas, 1 

gliosarcoma and 5 astrocytomas), GDNF protein concentrations were found to be present 

in high amounts compared to postmortem human frontal lobe and rat cortex. 

Immunohistochemistry of GFRα1 demonstrated strongly positive staining in 5 out of 15 

high-grade glioma samples, weakly positive staining in 4 specimens and no staining in 6 

specimens253. 

Additional evidence for the role of GDNF as a proliferation factor for glioma 

comes from experiments with rats. GDNF is found to be highly expressed in rat glioma 

cell lines B49 and C6. Knockdown experiments with antisense oligonucleotides 

performed with rat C6 glioma cells demonstrated that knockdown of C6 cells with GDNF 

and GFRα1 significantly reduced the number of C6 glioma cells and also inhibited the 

incorporation of bromodeoxyuridine as a sign of DNA synthesis. Persephin antibodies 

did not however result in any difference when compared to control experiments. This 

therefore suggests that GDNF but not persephin is a potent proliferation factor for rat 

glioma cells254. 

 

1.12.6 GFRα Splice Isoforms/Variants 

Multicellular eukaryotic cells contain multiple introns. The presence of multiple introns 

permits the expression of multiple, related proteins from a single gene by alternative 
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splicing producing different forms of a protein, known as spliced isoforms or spliced 

variants. The formation of a mature mRNA involves the removal of introns and splicing 

together with exons. Splicing occurs at short, conserved sequences in pre-mRNAs via 

two transesterification reactions. Johnson et al used microarrays to monitor splicing at 

every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and 

cell lines and concluded that at least 74% of human multi-exon genes are alternatively 

spliced255. Alternative splicing is therefore responsible for much of the protein diversity 

in humans.  

Cancer cells often acquire aberrant profiles of alternative spliced isoforms that 

can promote cell proliferation and invasion and inhibit apoptotic cell death. The CD99 

gene encodes two distinct transmembrane proteins by alternative splicing of its transcript. 

Two spliced variants, the major wild-type form (type I) and the minor spliced variant 

(type II) are present. Expression of CD99 type II but not type I is associated with 

markedly elevated invasiveness of breast cancer cell lines256. Ras activating mutations are 

important in colorectal cancer. K-ras encodes two splice variants, K-ras 4A and 4B. 

Plowman et al has investigated the expression of K-ras in colorectal cancer and found 

that K-ras 4B was expressed ubiquitously and was the predominant spliced variant 

whereas K-ras 4A was expressed differentially with detection in colorectal tumours and 

cell lines and normal colon, pancreas and lung. They postulate that altered splicing of 

either the K-ras proto-oncogene, in favour of K-ras 4B, may modulate tumour 

development257. Alternative splicing variants of interferon regulatory factor (IRF-1) have 

also been found in cervical cancer. Five variants lacking some combination of exons 7, 8 

and 9 have been identified and their expression levels were higher in malignant samples. 
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Alternative splicing in exons 7, 8, and 9 may therefore be an important mechanism for 

negatively regulating IRF-1 in cervical cancer258. Fibroblast growth factor receptor 3 

(FGFR3) is a major family member expressed in both normal human urothelium and 

cultured normal urothelial cells and is expressed as the IIIb isoform. A spliced variant, 

FGFR3 Delta8-10, lacking exons encoding the COOH-terminal half of immunoglobulin-

like domain III and the transmembrane domain have been identified by Tomlinson et al. 

In culture, cells overexpressing FGFR IIIb showed FGFR1-induced proliferation which 

was inhibited by addition of FGFR3 Delta8-10259. Interleukin-17 receptor-like protein 

(IL-17RL) spliced isoforms have also been identified in prostate cancer and may play a 

role in the mitogenesis of prostatic cancer. Extensive alternative splicing is present with 

more than 90 different IL-17RL isoforms detected. The three most abundant isoforms 

account for approximately half the total transcripts260. Alternative splicing of interleukin-

7 (IL-7) is also found abundantly in malignant haemopoietic cells and the diverse IL-7 

protein isoforms may play an important role in the pathogenesis of leukemia261. 

Spliced isoforms are also abundant in the GDNF-family receptor-α (GFRα). 

GFRα1 receptor exists in two highly homologous alternatively spliced isoforms: GFRα1a 

and GFRα1b262-264. GFRα1b is identical to GFRα1a except for the absence of 5 amino 

acids (140DVFQQ144), encoded by exon 5. In addition, GFRα2 and GFRα4 receptor 

spice isoforms have also been identified in mammalian tissue. Three variants of GFRα2 

receptors (GFRα2a/2b/2c) have been identified265-266. At least two splice variants of 

GFRα4 have been identified in rat tissue267-269. 

Alternatively spliced variants of RET229, 270-271 and NCAM272-274 also exist and 

have been demonstrated to subserve distinct biochemical and physiological functions.  

 61



The presence of multiple spliced isoforms increases the permutational possibility 

and complexity of ligand-receptor interactions and can potentially result in diverse 

biological and physiological processes. The spliced variants have been shown to have 

differing levels of expression in different tissue. Tissue expression of alternatively spliced 

GFRα1, NCAM and RET isoforms were studied by Yoong et al in various murine adult 

tissue and whole embryo. Both GFRα1a and GFRα1b were expressed at similar levels in 

all tissues examined, except in the brain where, GFRα1a is the predominant spliced 

isoform. The expression of both GFRα1 isoforms were expressed at similar levels but 

were significantly higher than in other tissues. RET was most highly expressed in the 

brain and testis and RET9 was the predominant spliced variant. NCAM120, 140 and 180 

were expressed at equivalent levels in the brain. DNA microarray was used to analyse 

NRTN stimulation of GFRα1 isoforms in transfected Neuro2A cells. Both GFRα1 

isoforms demonstrated rapid phosphorylation and nuclear localization of ERK1/2 when 

stimulated by GDNF or NRTN. An early time point chosen to examine the gene profile 

of NRTN stimulation showed that stimulation with NRTN resulted in specific gene 

changes not shared by the spiced isoforms, indicative of distinct functional roles275.       

 

1.13 Objective of Research Project 

GDNF and its receptor GFRα1 have been demonstrated to be strongly expressed in 

human gliomas by Wisenhofer et al253. GDNF has also been demonstrated to be a 

proliferation factor for rat C6 glioma cells by antisense experiments254. 

Emerging data showing varying levels of expression of spliced variants in various 

tissues raises the question that differing spliced isoform expression levels may be present 
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in pathological states. Such differing levels of isoform expression can also impact on the 

pathogenesis of disease. 

There is no literature quantifying the expression level of the GFRα receptor splice 

isoforms in malignant gliomas. There have also been no experiments investigating the 

effects of GDNF on human glioma model. Studies investigating possible mechanisms of 

GDNF action on chemoresistance and cellular survival are also lacking. 

The objectives of this research are: 

1. To identify the expression of GDNF and its receptors in glioblastoma cell 

lines and human glioma specimens. Specifically, we endeavoured to ascertain 

if there were differing levels of expression of the various spice isoform 

variants.  

2. To investigate the role of GDNF in promoting tumour growth and proliferation. 

3. To elucidate putative signaling pathways of GDNF in tumourigenesis.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Cell Culture 

(a) Cell lines 

The cell lines with obtained from American Type Culture Collection (ATCC®). The cell 

lines were selected based on their histological subtypes. All the cell lines selected were 

Homo sapiens (human) glioblastoma (WHO Grade IV) cell lines.  

The following cell lines were selected: 

1. Cell Line Designation: LN-229 (ATCC®  Catalog No. CRL-2611) 

2. Cell Line Designation: A172 (ATCC®  Catalog No. CRL-1620) 

 

(b) Cell Stock 

The cell lines were seeded and cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% foetal bovine serum (FBS), 100 IU/ml penicillin and 

100 µg/ml streptomycin in 75mL flasks. Cultures were maintained at 37°C in an 

atmosphere of 5% CO2. After 24 hours the solutions were replaced with fresh culture. 

The cell lines were expanded and trypsinised at 80 to 90% confluency and stocked up in 

cryotubes and stored at -80 degrees Celsius.  

 

(c) Maintenance of Cell Lines 

All cell lines were cultured in DMEM supplemented with 10% fetal bovine serum, 100 

IU/ml penicillin and 100 µg/ml streptomycin in 75 mL flasks. Cultures were maintained 
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at 37°C in an atmosphere of 5% CO2. The cells were trypsinised at 80 to 90% confluency 

and reseeded into 75 mL flasks. 

  

2.2 Human Glioma Specimens 

(a) Ethics approval 

The project was submitted to the Hospital Ethics Committee and was approved by the 

Tan Tock Seng Hospital (TTSH) Ethics Committee on 3 Dec 2003 (Ref: 

CR/ETHICS/03/950).  

The oversight of the research project was transferred to the National Healthcare 

Group (NHG) Domain Specific Review Board on 23 Apr 2004 (DSRB-A-00-37) and 

subsequently to the National Neuroscience Institute (NNI) Institutional Review Board 

(IRB) on 30 May 2005.  

The approved period for the study is from 30 May 2005 to 29 May 2007. The 

study reference number assigned is NNI-IRB/00/029.   

 

(b) Patient Consent 

Informed consent was obtained from a member of the clinical staff who was not actively 

involved in the research conducted. Tumour samples were only analyzed on superfluous 

tissue after the completion of all diagnostic tests and procedures. This was performed to 

ensure that research activity did not compromise the clinical management of patients. 

Details of the consent procedure are detailed in Appendix 1. 
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(c) Specimens 

Patients with pre-operative diagnosis of glioma on MRI scan were approached to obtain 

informed consent for the research. Small tumours which underwent biopsy were excluded 

from the study as all the tissues were sent for diagnostic tests. In large tumours which 

were subjected to extensive tumour resection, excess fresh tumour was kept aside and 

stored at -80 oC until the diagnostic tests were completed before the tissue is used for 

research. This protocol was followed to ensure optimal care to the patient and the 

patient’s well-being is given top priority at all times in accordance with the Hospital 

Ethics Committee. 

A total of 13 specimens were collected.  The histological subtypes consisted of 

the following: 

(a) 8 cases of glioblastoma (WHO Grade IV) 

(b) 2 cases of Pleomorphic Xanthoastrocytoma (PXA) (WHO Grade II) (1 case 

was a recurrent tumour with previous history of  PXA) 

(c) 1 case of anaplastic ependymoma (WHO Grade III) 

(d) 1 case of oligodendroglioma (WHO Grade II) 

(e) 1 case of pilocytic astrocytoma (WHO Grade I) 

 

2.3 Quantitative Real Time Polymerase Chain Reaction (PCR) 

(a) Reverse Transcription (RT) Reaction 

Total ribonucleic acid (RNA) was prepared with preparation with guanidinium 

isothiocyanate, followed by delipidation. RNA is isolated by differentially partitioning 

DNA into the organic phase, followed by precipitation with ethanol. Total RNA was 
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obtained from the cell lines and human glioma samples. Further purification to remove 

genomic DNA was performed using Nucleospin RNA II (Macherey-Magel, Germany) 

accordingly to the manufacturer’s specifications. The integrity of total RNA was 

validated by denaturing agarose gel electrophoresis. Five micrograms of total RNA from 

each tissue specimen was reverse-transcribed using 400 U of ImpromII and 0.5 µg of 

random hexamer (Promega, Madison, WI, USA) for 60 min at 42 oC according to the 

manufacturer’s specifications The reaction was terminated by heating at 70 oC for 5 min 

and used directly for quantitative real-time PCR.  

 

(b) Sequence Independent Real-Time PCR using SYBR Green I Plasmids 
Construction 

 
Unless otherwise stated, all templates were generated by reverse transcription (RT)-PCR 

using human brain cDNA subcloned into pGEM-T (Promega), and all clones were 

verified by DNA sequencing. The complete open reading frame (ORF) of human 

GFRα1a (GenBank accession number: NM_005264), GFRα1b (GenBank accession 

number: NM_145793), Ret 9 (GenBank accession number: NM_020630), Ret 51 

(GenBank accession number: NM_020975), NCAM (GenBank accession number: 

NM_000615) and GFRα2 (GenBank accession number: NM_001495)  were generated by 

PCR and subcloned into pIRESneo (clontech). The complete ORF of GADPH was 

generated using the GenBank sequence (accession number NM_008084). DNAMAN 

software package was used for the design of the primers. 

The following primers were used: 

GFR1a: (150bp) 

hGFR1a (Forward Primer): CATATCAGATGTTTTTCAGCAAGTGGA 
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hGFR1(Reverse Primer): CAGACATCGTTGGACACGCT 

GFR1b: (145bp) 

hGFR1b (Forward Primer): TGGTCCCATTCATATCAGTGGA 

hGFR1(Reverse Primer): CAGACATCGTTGGACACGCT 

GFR2 

Common: 

hGFR2GPI (Forward Primer): CAGTGACAGTACCAGCTTGGG    

hGFR2GPI (Reverse Primer):  AAGGCCTGTTTCAGCATCAG  

Ret 9: (83bp) 

hRet9 (Forward Primer): GGATTGAAAACAAACTCTATGGTAGA 

hRet9 (Reverse Primer): AGGAAGGATAGTGCARAGGGGAC 

Ret 51: (142bp) 

hRet51 (Forward Primer): AAACAAACTCTATGGCATGTCAGAC 

hRet51 (Reverse Primer): CGCTGAGGGTGAAAGCATC 

hNCAM (Forward Primer): CAGCAGCGGATCTCAGTGGT 

hNCAM (Reverse Primer): CATCACACACAATCACGGCA 

GDNF: (175bp) 

hGDNF (Forward Primer): TCACTGACTTGGGTCTGGG 

hGDNF (Reverse Primer): TCAAAGGCGATGGGTCTGC 

GAPDH: (92bp) 

hGAPDH (Forward Primer): AAACCTGCCAAATATGATGAC 

hGAPDH (Reverse Primer): ACCTGGTGCTCAGTGTAG 
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(c) Sequence Independent Real-Time PCR 

Real-time PCR was performed on the iCycler iQ (Biorad, Hercules, USA) using Sybr 

Green I. The threshold cycles (Ct) were calculated using the Optical interface v3.0B. 

Real-time PCR was performed after an initial denaturation for 3 min at 95 degree Celsius 

followed by 40 to 60 cycles of 60 sec denaturation at 95 oC, 30 sec annealing at 60 oC  

and 60 sec extension at 72 oC. Fluorescent detection was carried out at the annealing 

phase. The reaction was carried out in a total volume of 50 µl in 1x XtenseMixtuSGTM 

(BioWORKS), containing 2.5 mM Mg Cl2, 10pmol of primers and 1.25 U platinum DNA 

polymerase (Invitrogen). Melt curve analyses and agarose gel electrophoresis were 

carried out at the end of PCR to verify the identity of the products. All real-time PCR 

quantification was carried out simultaneously with linearised plasmid standards and a 

negative water control. The concentrations of GFRα1, GFRα2, GDNF, RET and NCAM 

in all the tissues were interpolated from standard curves and then normalized to the 

expressions of Glyceraldehyde-3-phosphate dehydrogenase (GADPH) in the same 

tissues. Differences in the expression levels were analysed using paired Student’s t test 

with a level of significance taken as p<0.05. The specificity of the assay (∆Ct/ε) is 

determined by the difference in the Ct values of the defined target and test templates 

normalised to the efficiency of target amplification (ε).   
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2.4 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) 

BCNU was obtained from Sigma-Aldrich. It is a DNA alkylating agent causing DNA   

interstrand crosslinks276. It is stored at a temperature of −20°C. BCNU is highly  

hygroscopic and hence fresh preparations are produced at the commencement of each set 

of experiments277. 

BCNU was selected as it is a nitrosurea which is the drug used as in traditional 

regimens for malignant gliomas. In 1970, two separate groups of investigators reported 

40% response rate with 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) alone126-127.  

Recently, the use of temozolamide has been popularised as part of the “Stupp 

Regimen”. This protocol essentially involves the concomitant administration of 

temozolamide chemotherapy with radiation therapy followed by temozolamide to 

glioblastoma patients in one arm of study with a separate arm of study which differed in 

that no concomitant administration of temozolamide was given. The results of the study 

showed that the two-year survival rate was 26.5% with radiation and temozolamide and 

10.4% with radiation alone128. Temozolamide is prohibitively costly and hence BCNU 

was selected as the cytotoxic agent of choice in view of its long history of efficacy and 

significantly lower cost.    

 

2.5 Ligands 

The GDNF-Family ligands used for stimulation were GDNF and NRTN. GDNF binds to 

GFRα1 and NRTN binds to GFRα2. NRTN may crosstalk weakly with GFRα1 and 

GDNF with GFRα2 and GFRα3.  

The concentration of GDNF and NRTN used for stimulation experiments was 50ng/ml. 
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2.6 Cytotoxicity assay 

(a) MTS assay 

Promega CellTiter 96® AQueous One Solution Cell Proliferation Assay was used to 

determine cytotoxicity effects of BCNU. This is a colorimetric method for determining 

the number of viable cells in culture in 96-well plate format. The Promega CellTiter 96® 

AQueous One Solution Reagent contains a tetrazolium compound [3-(4,5-dimethylthiazol -

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt; MTS(a)] 

and an electron coupling reagent. The quantity of formazan as measured by the amount of 

490 nm absorbance is directly related to the number of living cells in culture. 100 µL of 

Promega CellTiter 96® AQueous One Solution was added to each well and incubated at 37 

oC for one hour and then absorbance was read at 490 nm with a spectrophotometric plate 

reader. Tumour cells were treated with 2% Triton X-100 to obtain baseline absorbance 

value which was subtracted from the various readings obtained.  

 

(b) Normalisation of MTS Assay 

Different concentrations of cells were seeded at 5,000 cells per well, 10,000 cells per 

well, 15,000 cells per well and 20,000 cells per well in DMEM supplemented with 2% 

fetal bovine serum. Cell loading beyond 20,000 cells per well resulted in rapid cell 

proliferation and saturation of the assay.  

After plating, the cells were incubated at 37 oC for 24 hours before treatment with 

varying concentrations of BCNU from 25-175 µg/mL in 25 µg/mL increments. The 

control tumour cells not treated with BCNU were treated with 1% alcohol. The cells were 
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incubated at 37 oC in an atmosphere of for 24 hours before being subject to the MTS 

assay. 

 

(c) Propidium Iodide (Pi) staining  

After completion of treatment of the cells with BCNU, the culture media is aspirated and 

800 µL of 75% cold ethanol is added. The cells were then incubated for 10 min at 4 oC 

Celsius. Re-aspiration of the media is performed and staining done using 1 µg/mL of 

Propidium Iodide (Pi)/0.1% Triton X-100/10 µg/ml RNAaseA in phosphate buffer 

solution (PBS). The solution is then incubated for 5 min at 37 oC and observed under the 

microscope.  

 

2.7 Western Blot  

(a) Protein quantification by bicinchoninic acid (BCA) assay 

LN-229 and A172 cell lines were stimulated with BCNU and GNDF and the experiments 

were studied at 0, 10, 30, 60 and 180 mins respectively.  

BCATM Protein Assay Reagent Kit (Pierce, USA) was used to determine protein 

concentration. The protein assay is based on bicinchoninic acid (BCA) for the 

colorimetric detection and quantification of total protein. This method combines the 

reduction of Cu2+ to Cu+ by protein in alkaline medium with the highly sensitive and 

selective colorimetric detection of the cuprous (Cu+) using bicinchoninic acid. The 

macromolecular structure of protein, and number of peptide bonds and the presence of 

four amino acids (cysteine, cystine, tryptophan and tyrosine) have been reported to be 

responsible for color formation in protein sample when assayed with BCA278. The purple 
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reaction product, formed by the interaction of two molecules of BCA with one cuprous 

ion (Cu+), is water-soluble and exhibits a strong absorbance at 562 nm. This allows the 

spectrophotometric quantification of protein in aqueous solutions. 

Working reagent was prepared by combining 50 parts of reagent A (sodium 

carbonate, sodium bicarbonate, bicinchoninic acid and sodium tartrate in 0.2 M sodium 

hydroxide) with one part of reagent B (4 % cupric sulfate solution). Serial dilutions (20-

2000 µg/ml) of protein standard  and samples were assayed in parallel. Twenty five 

microlitres of each standard or unknown sample was pipetted into the appropriate 

microtiter plate wells and then 200 µl of working reagent was added to each well and 

mixed for 30 sec. The plate was incubated at 37°C for 30 min and absorbance was read at 

562 nm with a microtiter plate reader (Model 680, Bio-Rad, USA). Standard curve was 

prepared by plotting the absorbance at 562 nm vs. protein concentration and protein 

concentration of each unknown samples were interpolated. 

 

(b) Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Discontinuous one-dimensional gel electrophoresis was carried out using Bio-Rad Mini-

Protean apparatus (Bio-Rad Laboratories, USA) with an acrylamide resolving gel and 5% 

(w/v) stacking gel. The percentage of acrylamide – bisacrylamide (Bio-Rad Laboratories, 

USA) in resolving gel was chosen depending on the molecular weight of the protein of 

interest. For the present study, a 10-12 % (w/v) of resolving gel was used. 

Samples were suspended in SDS sample buffer, heated at 95°C for 5 min, briefly 

centrifuged, loaded and underwent electrophoresis at 100 volts until the dye front 
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migrated to the resolving gel, then the voltage was increased to 180 volts until the dye 

reached the bottom of the resolving gel.  

 

(c) Western blotting and detection 

Following SDS-PAGE, the gel was removed and equilibrated in transfer buffer for 10 

min at room temperature with constant shaking. A piece of nitrocellulose membrane 

(Hybond-C Extra, Amersham Pharmacia Biotech UK) was placed on top of the gel and 

covered by a filter paper which was then placed between a semidry transfer apparatus 

(Bio-Rad Laboratories, USA). The transfer was carried out at 100 volts for 60 min. The 

membrane was then incubated in TBST solution with 5 % fat-free skimmed milk (w/v, 

Diploma Instant, Melbourne Australia) for 1 hr at room temperature to reduce non-

specific binding of antibody in subsequent steps. Immunoblots were probed to the 

following: Anti-phospho-erk1/2, anti-erk1/2, anti-phospho-jnk, anti-actin, anti-phospho-

p38 and anti-phospho-akt. The membrane was then washed 3 times in TBST and 

incubated with the primary antibody (1 : 1000 dilution in TBST, 1% (w/v) skimmed 

milk) for 1 hr at room temperature or overnight at 4ºC on a rocking platform. After the 

incubation, the membrane was washed for 3 x 5 min in 1 % (w/v) skimmed milk in Tis 

buffered saline Tween-20 (TBST). The secondary antibody conjugated with horseradish 

peroxidase (HRP) (DAKO, Denmark) at 1:1000 dilution in 1 % skimmed milk (w/v) 

/TBST was then added and incubated for 1 hr at room temperature. The membrane was 

then washed for 3 x 5 min in TBST and detected by Super Signal® West Dura Extended 

Duration chemiluminescent substrate (Pierce, USA) according to manufacturer’s 

instruction. The chemiluminescent image was captured on Biomax film (MR 1, Kodak). 
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2.8 Study on the Impact of Cell Tumour Burden on Chemoresistance 

Three human glioblastoma cell lines (ATCC® Catalog No. CRL-2611, Designation LN-

229; ATCC®  Catalog No. CRL-1620, Designation A-172) were used for the 

experiments. The cell lines were cultured in 75ml flasks with Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% foetal bovine serum (FBS), 100 IU/ml 

penicillin and 100µg/ml streptomycin. Cultures were maintained at 37oC in an 

atmosphere of 5% CO2. 

When the cells were 90% confluent, they were trysinised, counted in a 

haematocytometer and seeded into 96 well plates. The cells were plated in the following 

concentrations with 150 µl of 2% FBS media: 5,000 cells per well; 10,000 cells per well 

and 20,000 cells per well. Cell loading beyond 20,000 cells per well resulted in 

overcrowding which would cause cells to enter into Gap 1 (G1) arrested state. 

After plating, the cells were incubated at 37 oC in an atmosphere of 5% CO2 for 24 

hours before being treated with varying concentrations of 1,3-Bis(2-chloroethyl)-1-

nitrosourea (BCNU).  

After 24 hours of treatment with BCNU, the cells were subject to Promega 

CellTiter 96® AQueous One Solution Cell Proliferation Assay was used to determine 

cytotoxicity effects of BCNU as described above. Pi staining was also performed as 

described above.      
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2.9 Study on the effects of GDNF and NRTN on BCNU chemotherapy and its role in 
chemoresistance 
 
LN-229 and A172 were grown to 90% confluency and trypsinised. For MTS assay, 

10,000 cells were seeded into 96 well plates and grown in DMEM enriched with 2% 

foetal calf serum. The experimental group were seeded with GDNF or NRTN enriched 

media at 50ng/ml concentration. The control group was not treated with GDNF or 

NRTN. After 24 hours, the LN-229 cells were treated with 1,3-Bis(2-chloroethyl)-1-

nitrosourea (BCNU) at concentrations at 40 µg/ml and 50µg/ml and the A172 cells were 

treated at 75 µg/ml. The cells were then examined morphologically and underwent MTS 

assay after 24 hours of treatment with BCNU. The BCNU was obtained from Sigma 

Aldrich. 

The BCNU concentration used was based on experiments demonstrating the 

cytotoxic effects of varying concentrations of BCNU on LN-229 and A172. 50µg/ml and 

75 µg/ml were the concentrations that exhibited significant (>70%) cell death (Figure 1). 

Higher concentrations of BCNU resulted in complete cell death.  
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Figure 1: Effects of BCNU on cytotoxicity of LN-229 and A172  Cell Lines  

 

BCNU concentration of 50µg/ml resulted in >70% cell death on Promega CellTiter 96® 

AQueous One Solution Cell Proliferation Assay. 

For Pi index, 5 x 103 were seeded per well into 12 well plates. Similarly, the 

experimental group were pre-treated with GDNF or NRTN for 24 hours, treated with 

BCNU at the same concentrations and subsequently underwent Pi staining.   

All the experiments were performed and repeated in triplicates. 
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CHAPTER 3 

RESULTS 

3.1 Higher glioblastoma cell loading required higher concentration of BCNU to 
achieve similar cell cytotoxicity 
 
The human glioblastoma cell lines LN-229 and A-172 were plated in 2% FBS media in 

96-well plates at concentrations of 5,000 cells per well, 10,000 cells per well, 15,000 

cells per well and 20,000 cells per well and incubated at 37 ºC in an atmosphere of 5% 

CO2 for 24 hours. They were then subjected to varying concentrations of BCNU from 25-

175 µg/mL in 25 µg/mL increments. After 24 hours of treatment, the cells were examined 

morphologically under the microscope and cell proliferation assay with Promega 

CellTiter 96® AQueous One Solution Proliferation Assay was performed.  

 

3.2 Morphology of Cells 

Figure 2 shows the normal appearance of the human glioblastoma cells (LN-229). On 

morphological examination under x100 and x400 magnification, it is observed that 

higher concentration of BCNU were required to produce a pyknotic appearance of the 

glioblastoma cells indicative of cellular death (Figure 3). BCNU concentration at 50 

µg/mL resulted in the vast majority of cells showing a pyknotic appearance for 

glioblastoma cells plated at 5,000 cells per well (Figure 3). For glioblastoma cells seeded 

at 10,000, 15,000 and 20,000 cells per well, the corresponding concentration of BCNU 

reproducing similar morphological appearance were 75 µg/mL, 100 µg/mL and 125 

µg/mL respectively. A similar trend was observed with cell line A-172. 
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Propidium Iodide (Pi) staining showed DNA fragmentation which demonstrates the 

presence of apoptotic cell death (Figure 4).  

 

 

Figure 2:  Normal Appearance of LN-229 Cell Line (400X magnification) 
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Figure 3:  Pyknotic Appearance of LN-229 Cell Line after treatment with BCNU (400X 

magnification) 
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Figure 4: Propidium Iodide (Pi) staining showing DNA fragmentation (400X 

magnification)   
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3.3 Cell Proliferation Assay 

Promega CellTiter 96® AQueous One Solution Proliferation Assay was used to determine 

cytotoxicity effects of BCNU. The drug concentration required to achieve inhibitory 

concentration (IC) greater than 90% growth inhibition (IC90) was taken as the reference 

for comparison of efficacy of chemotherapy dose.  

For LN-229 cells seeded at 5,000 per well density, the drug concentration 

required to achieve greater than 90% growth inhibition was 75 µg/mL. Cells seeded at 

densities of 10,000, 15,000 and 20,000 per well required BCNU concentrations of 100 

µg/mL, 150 µg/mL and 175 µg/mL respectively (Figure 5).  

For A172 cell line, the drug concentration required to achieve IC90 for cells 

seeded at 5,000, 10,000, 15,000 and 20,000 cells per well were 100 µg/mL, 125 µg/mL, 

150 µg/mL and 175 µg/mL respectively (Figure 6). 

The survival curves for the various cell lines demonstrate a consistent trend of 

larger chemotherapy doses required to achieve similar levels of growth inhibition for 

higher tumour loading in all the cell lines. 

This demonstrates that increased glioblastoma cell loading in the well requires 

significantly higher concentration of chemotherapeutic agent to achieve similar 

cytotoxicity effects.  
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Survival Curve for Cell Line LN-229
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Figure 5: Survival Curve for Cell Line LN-229 
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Survival Curve for Cell Line A172
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Figure 6: Survival Curve for Cell Line A172 
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3.4 GDNF Expression Level 

GDNF was overexpressed in the two cell lines LN-229 and A172. Significantly, the 

expression of GDNF was also found to be increased in all glioma specimens when 

compared to adult brain, foetal brain, adult liver and foetal liver.  

All glioblastoma samples and cell lines demonstrated increased level of 

expression. The highest expression level was observed in a sample of glioblastoma tissue. 

Other gliomas studied (oligodendroglioma, PXA, recurrent PXA, anaplastic 

ependymoma and pilocytic astrocytoma) also demonstrated increased levels of 

expression of GDNF. The pilocytic astrocytoma and PXA had the lowest level of GDNF 

expression of all the glioma samples. The results are summarised in Figure 7.  
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Figure 7: Expression Levels of GDNF 
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Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 

S13: Pilocytic Astrocytoma (WHO Grade I) 

 

3.5 Expression of RET Isoforms (RET 9 and RET 51) 

Ret 9 expression was reduced in the 2 glioblastoma cell lines investigated. 

Ret 9 was however more highly expressed in 8 out of 13 of the glioma samples when 

compared to the expression level in human adult brain. The level of expression was lower 

than human adult brain in three glioblastoma samples, one PXA and the case of pilocytic 

astrocytoma. Incidentally, these 5 samples with the lowest Ret expression also had the 

lowest corresponding GDNF expression.  

The level of Ret 51 expression was noted to be fairly homogeneous amongst the 

all the glioma samples as well as human adult and foetal brain. The expression level is 

however significantly reduced for the two cell lines studied. 

Comparing the ratio of Ret9/Ret51 showed that Ret 9 is the predominant splice isoform 

in glioma samples and in brain and liver tissue. The results are summarised in Figure 8. 
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Figure 8: Expression Levels of RET 9 and RET 51 
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Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 

S13: Pilocytic Astrocytoma (WHO Grade I) 

 

3.6 Expression of NCAM 

The glioblastoma cell lines had significantly lower expression of NCAM when compared 

to human adult and foetal brain samples. All glioma specimens had lower NCAM 

expression compared to human foetal brain and 11 of the 13 glioma samples had reduced 

expression compared to adult brain. 2 out of the 8 glioblastoma samples had slightly 

higher expression than adult brain (Figure 9).  

As the expression level of NCAM in all the glioblastoma cell lines and human 

glioma samples were lower than human foetal brain samples, expression levels of the 

various NCAM splice isoform variants were not quantified. 
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Figure 9: Expression Levels of NCAM 
 
Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 

S13: Pilocytic Astrocytoma (WHO Grade I) 

 

3.7 Expression of GFRα1a  

The glioblastoma cell lines had significantly lower levels of expression of GFRα1a 

compared to human adult and foetal brain samples. 11 out of the 13 human glioma 

samples had decreased levels of expression of GFRα1a compared to human adult and 
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foetal brain samples. 2 out of the 8 glioblastoma samples had elevated levels of GFRα1a 

expression (Figure 10). 
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Figure 10: Expression Levels of GFRα1a 
 
Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 

S13: Pilocytic Astrocytoma (WHO Grade I) 
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3.8 Expression of GFRα1b 

The 2 glioblastoma cell lines had increased expression of GFRα1b compared to human 

adult and foetal brain samples. 5 glioma samples had elevated levels of expression of  

GFRα1b compared to human adult and foetal brain samples. These were all human 

glioblastoma samples (Figure 11). 
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Figure 11: Expression Levels of GFRα1b 
 
Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 
 S13: Pilocytic Astrocytoma (WHO Grade I) 
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3.9 Differential Expression Levels of GFRα1b and GFRα1a 

On close analysis of the expression levels of GFRα1a and GFRα1b levels, an interesting 

observation was noted. 

The glioblastoma cell lines demonstrated much higher levels of GFRα1b 

expression than GFRα1a expression. For cell line LN-229, the ratio of GFRα1b/GFRα1a 

was 16.3 and the ratio of GFRα1b/GFRα1a was 14.3 for cell line A172. 

A similar trend was also noted in 7 out of the 8 human glioblastoma samples. The 

GFRα1b/GFRα1a ranged from 1.73 to 5.44 in the 7 specimens. Only one human 

glioblastoma specimen had a higher GFRα1a/GFRα1b ratio. 

The GFRα1b/GFRα1a ratio for the pilocytic astrocytoma and PXA are 3.88 and 

4.20 respectively. The oligodendroglioma sample had higher level of expression of 

GFRα1a  with a GFRα1a/GFRα1b ratio of 5.99. GFRα1b expression was undetectable for 

the recurrent PXA specimen. 

The results are summarised in Figure 12. 

 

 

 

 

 

 

 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

A
du

lt 
B

ra
in

Fe
ta

l B
ra

in

A
du

lt 
Li

ve
r

Fe
ta

l L
iv

er

LN
22

9

A
17

2

Ratio of GFR1b/1a

R
at

io
 to

 G
A

D
PH

GFR1a
GFR1b

Figure 12: Differential expression levels of GFRα1a and GFRα1b 
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Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 
 S13: Pilocytic Astrocytoma (WHO Grade I) 
 

 

 

 

3.10 Expression of GFRα2   

All human glioma samples and glioblastoma cell lines demonstrated significantly 

decreased levels of expression of GFRα2 compared to human adult brain and human 

foetal brain samples (Figure 13). As the level of expression of GFRα2 was shown to be 

much lower than in the normal controls, expression levels of GFRα2 splice isoform 

variants were not measured. 
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Figure 13: Expression Levels of GFRα2 
 
Key to samples: 
 S1: Oligodendroglioma (WHO Grade II) 
 S2: Glioblastoma (WHO Grade IV) 
 S3: Glioblastoma (WHO Grade IV) 
 S4: Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S5: Glioblastoma (WHO Grade IV) 
 S6: Glioblastoma (WHO Grade IV) 
 S7: Glioblastoma (WHO Grade IV) 
 S8: Recurrent Pleomorphic Xanthoastrocytoma (WHO Grade II) 
 S9: Glioblastoma (WHO Grade IV) 
 S10: Anaplastic Ependymoma (WHO Grade III) 
 S11: Glioblastoma (WHO Grade IV) 
 S12: Glioblastoma (WHO Grade IV) 
 S13: Pilocytic Astrocytoma (WHO Grade I) 
 

3.11 Study of Effects of GDNF on BCNU chemotherapy 

BCNU is a nitrosurea and is the chemotherapy drug used as in traditional regimens for 

malignant gliomas. Pre-treatment with GDNF was performed to elucidate the possible 

effects of GDNF in promoting tumour proliferation by antagonising the cytotoxic effects 

of chemotherapy. GDNF may therefore play a role in conferring chemoresistance.  
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LN-229 and A172 were grown to 90% confluency and trypsinised. The 

experimental groups were seeded with GDNF enriched media at 50ng/ml concentration. 

The control group was not treated with GDNF. 24 hours, the LN-229 cells were treated 

with 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) at concentrations at 40 µg/ml and 

50µg/ml and the A172 cells were treated at 75 µg/ml. 

After 24 hours of BCNU treatment, the morphology of the glioblastoma cells was 

observed. A larger proportion of the cells pre-treated with GDNF had normal 

morphology whereas a larger proportion of the cells in the control arm appeared rounded 

and pyknotic in appearance (Figure 14).  

 

 

 
 
Figure 14a: Morphology of LN-229 with pre-treatment with GDNF prior to treatment 
with BCNU at 50µg/ml (400X magnification) 
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Figure 14b: Morphology of LN-229 without pre-treatment with GDNF prior to treatment 
with BCNU at 50µg/ml (400X magnification) 
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In the analysis for chemotherapy cytotoxicity effects using the MTS assay, GDNF was 

shown to demonstrate very significant cellular survival in the presence of BCNU 

chemotherapy. 

When the LN-229 cells were treated with BCNU at 40µg/ml concentration, the 

cellular survival on MTS assay were 31.7%, 41.0% and 52.1% for the group not pre-

treated with GDNF. For the group pre-treated with GDNF, the cellular survival on MTS 

assay were 71.4%, 77.9% and 79.1% respectively. This difference was statistically 

significant (P<0.05). The mean cellular survival on MTS assay in the group not pre-

treated with GDNF was 41.6% and 75.8% in the group pre-treated with GDNF. This 

difference was statistically significant (p<0.05). 

A similar trend was also noticed when the LN-229 cells were treated with BCNU 

at 50µg/ml concentration. The cellular survival on MTS assay were 14.0%, 30.6% and 

35.4% for the group not pre-treated with GDNF. For the group pre-treated with GDNF, 

the cellular survival on MTS assay were 50.8%, 56.2% and 57.2% respectively. This 

difference was statistically significant (P<0.05). The mean cellular survival on MTS 

assay in the group not pre-treated with GDNF was 26.7% and 54.7% in the group pre-

treated with GDNF. This difference was statistically significant (p<0.05). The results are 

summarised in Figures 15. 
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Figure 15a: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line LN-229 (Experiment 1)  
 
 
 

 98



0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Without GDNF                      WIth GDNF

Average 1.56 0.64 0.48 1.67 1.29 0.94

CONTRO
L BCNU 40 BCNU 50 CONTRO

L BCNU 40 BCNU 50

 

Figure 15b: Study of the effects of BCNU chemotherapy with and without pre-treatment 

with GDNF on cell line LN-229 (Experiment 2)   
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Figure 15c: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line LN-229 (Experiment 3)   
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The experimental protocol was replicated for glioblastoma cell line A172. In this 

cell line, GDNF also demonstrated very significant cellular survival in the presence of 

BCNU chemotherapy.  

When the A172 cells were treated with BCNU at 75µg/ml concentration, the 

cellular survival on MTS assay were 30.9%, 26.0% and 31.4% for the group not pre-

treated with GDNF. For the group pre-treated with GDNF, the cellular survival on MTS 

assay were 61.0%, 58.3% and 68.0% respectively. This difference was statistically 

significant (P<0.05). The mean cellular survival on MTS assay in the group not pre-

treated with GDNF was 29.4% and 62.4% in the group pre-treated with GDNF. This 

difference was statistically significant (p<0.05). The results are summarised in Figure 16. 
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Figure 16a: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line A172 (Experiment 1)   
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Figure 16b: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line A172 (Experiment 2)   
 

 103



0.00

0.50

1.00

1.50

2.00

2.50

Without GDNF                     With GDNF

Average 1.90 0.60 1.97 1.34

CONTROL BCNU 75 CONTROL BCNU 75

 

 
Figure 16c: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line A172 (Experiment 3)   
 

The results therefore demonstrate that GDNF can confer significantly cellular 

survival in the presence of BCNU chemotherapy. This ability to confer chemoresistance 

is also demonstrated in two different human glioblastoma cell lines: LN-229 and A172.   
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3.12 Study on the Effects of NRTN on BCNU chemotherapy 

GDNF binds to GFRα1 and NRTN binds to GFRα2. In addition, NRTN may crosstalk 

weakly with GFRα1 and GDNF with GFRα2. This ability to crosstalk with other GFRα 

receptors is the basis to investigate the role of NRTN on BCNU chemotherapy and aims 

to elucidate if NRTN has a similar effect on chemoresistance and cellular survival. 

LN-229 and A172 were grown to 90% confluency and trypsinised. The 

experimental group was seeded with NRTN enriched media at 50ng/ml concentration. 

The control group was not treated with NRTN. 24 hours, the LN-229 cells were treated 

with 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) at concentrations at 40 µg/ml and 

50µg/ml and the A172 cells were treated at 75 µg/ml. 

After 24 hours of BCNU treatment, the morphology of the glioblastoma cells was 

observed. There was no discernable difference in the morphology of the glioblastoma 

cells in the cells pre-treated with NRTN and in the cells not pre-treated with NRTN 

(Figure 17).   
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Figure 17a: Morphology of LN-229 with pre-treatment with NRTN prior to treatment 
with BCNU at 50µg/ml (100X magnification) 
 

 

Figure 17b: Morphology of LN-229 without  pre-treatment with NRTN prior to treatment 
with BCNU at 50µg/ml (100X magnification) 
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In the analysis for chemotherapy cytotoxicity effects using the MTS assay, NRTN 

did not demonstrate any significant cellular survival advantage in the presence of BCNU 

chemotherapy. 

When the LN-229 cells were treated with BCNU at 40µg/ml concentration, the 

cellular survival on MTS assay were 69.2%, 71.9% and 57.4% for the group not pre-

treated with NRTN. For the group pre-treated with NRTN, the cellular survival on MTS 

assay were 70.9%, 66.4% and 57.4% respectively. There was no statistically significant 

difference (p>0.05). The mean cellular survival on MTS assay in the group not pre-

treated with NRTN was 66.2% and 64.9% in the group pre-treated with NRTN. This 

difference was not statistically significant (p>0.05). 

A similar trend was also noticed when the LN-229 cells were treated with BCNU 

at 50µg/ml concentration. The cellular survival on MTS assay were 43.6%, 37.7% and 

29.5% for the group not pre-treated with NRTN. For the group pre-treated with NRTN, 

the cellular survival on MTS assay were 44.3%, 38.7% and 30.9% respectively. This 

difference was not statistically significant (p>0.05). The mean cellular survival on MTS 

assay in the group not pre-treated with NRTN was 36.9% and 38.0% in the group pre-

treated with NRTN. This difference was not statistically significant (p>0.05). The results 

are summarised in Figure 18.  
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Figure 18a: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with NRTN on cell line LN-229 (Experiment 1)   
 

 108



0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Without NRTN                                 With NRTN

Average 1.14 0.82 0.43 1.19 0.79 0.46

CONTROL BCNU 40 BCNU 50 CONTROL BCNU 40 BCNU 50

 

 
Figure 18b: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with NRTN on cell line LN-229 (Experiment 2)   
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Figure 18c: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with NRTN on cell line LN-229 (Experiment 3)   
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The experimental protocol was replicated for glioblastoma cell line A172. In this 

cell line, NRTN also did not demonstrate very significant cellular survival in the presence 

of BCNU chemotherapy.  

When the A172 cells were treated with BCNU at 75µg/ml concentration, the 

cellular survival on MTS assay were 32.3%, 32.5% and 33.3% for the group not pre-

treated with NRTN. For the group pre-treated with NRTN, the cellular survival on MTS 

assay were 35.3%, 31.0% and 35.5% respectively. There was no statistical difference 

between the values in the two groups (p>0.05). The mean cellular survival on MTS assay 

in the group not pre-treated with GDNF was 32.7% and 33.9% in the group pre-treated 

with NRTN. There was no statistically significant difference between the two groups 

(p>0.05). The results are summarised in Figure 19. 
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Figure 19a: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with NRTN on cell line A172 (Experiment 1)   
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Figure 19b: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line A172 (Experiment 2)   
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Figure 19c: Study of the effects of BCNU chemotherapy with and without pre-treatment 
with GDNF on cell line A172 (Experiment 3)   
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The results therefore demonstrate that NRTN, unlike GDNF does not confer any 

cellular survival advantage to BCNU chemotherapy. This absence of significant 

chemoresistance property is demonstrated in two different human glioblastoma cell lines: 

LN-229 and A172.   

 

3.13 Signalling Mapping on stimulation with BCNU and GDNF for LN-229 and 
A172 
 

Many different growth factor/receptor systems have been implicated in the proliferative 

behaviour of gliomas. Examples of such growth factors are: Vascular Endothelial Growth 

Factor (VEGF), Nerve Growth Factor (NGF) and Platelet-Derived Growth Factor 

(PDGF). The results above have also convincing demonstrated that GDNF but not NRTN 

has a significant role in conferring chemoresistance to BCNU chemotherapy. 

These mitogens and their cognate receptors will subsequently regulate several 

intracellular signaling pathways. The major signaling cascades in activated in malignant 

gliomas are: phosphoinositide 3-kinase/AKT-protein kinase B (PI3K/AKT-PKB) 

pathway, mitogen activated protein kinase (RAS/MAPK) pathway and the phospholipase 

C-γ/protein kinase C (PLC-γ/PKC) pathway. 

The modulation of MAPK and Akt signaling pathways in glioblastoma cell lines 

was investigated. LN-229 and A172 human glioblastoma cell lines were stimulated with 

BCNU and GNDF and the experiments were studied at 0, 10, 30, 60 and 180 mins 

respectively. Experiments were terminated with 2% SDS. 

Western blotting showed that BCNU induces activation of MAP kinases 

(extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH(2)-terminal kinase (JNK) 
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and p38) in both LN-229 and A172 human glioblastoma cell lines. BCNU was however 

found to reduce the background activation of Akt in the A172 human glioblastoma cell 

line. 

GDNF was found to induce the activation of ERK1/2 and Akt in both LN-229 and 

A172 human glioblastoma cell lines. GDNF was however found to reduce the 

background activation of JNK and the A172 human glioblastoma cell line in a time-

dependent fashion (Figure 20). 
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A172 Cell line 

 

 

Figure 20: Western Blotting showing activation of phospho-ERK1/2, ERK 1/2, phospho-

JNK, phsopho-p38, phospho-Akt on cell lines LN-229 and A172 on stimulation with 

BCNU and GNDF   
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CHAPTER 4 

DISCUSSION 

4.1 Role of Radical Surgery 

Surgery plays an important role in the management of high-grade gliomas. Surgery is 

critical for histological diagnosis of high-grade gliomas. Aggressive tumour resection can 

also rapidly reduce the intracranial hypertension associated with bulky disease and 

provide symptomatic relief and improved quality of life. 

Surgical management can range from a simple biopsy with the express purpose of 

histological diagnosis, debulking of tumour to relief the pressure effects effects exerted 

by the tumour mass to more radical surgery. There is little argument that extensive  

surgical resection can provide higher diagnostic yield by obviating the problems of 

sampling error from a simple biopsy. There is also little controversy that more radical 

tumour resection can reduce intracranial hypertension and lead to symptomatic relief and 

recovery of reversible neurological deficits. However, the role of radical surgery in 

improving overall survival remains highly contentious and controversial. 

The invasive and widely infiltrative nature of high grade glioma makes curative 

resection impossible279. This has been supported by the fact that even hemispherectomy 

was associated with survival rate of less than two years. Hemispherectomy as a means to 

achieve total glioma removal was pioneered by Walter Dandy in 1928280. Patient survival 

following hemispherectomy reported in the early 1930’s as less than 2 years280-284. Eight 

decades on, even when near total excision is achieved and corroborated with post 

resection magnetic resonance imaging (MRI), median survival rate remains at a dismal 

13 months285. 
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Tumour recurrence commonly occurs near to resection margin129-132, 286. This is 

attributed to the sharp drop in tumour cell density with increasing distance from resection 

cavity. These ideas underlie the belief that a wider resection margin, coupled with 

adjuvant therapy would delay recurrence and prolong survival. 

Four extensive reviews of the available literature have been carried out to date in 

an attempt to resolve the controversy of whether surgical resection improves survival 

time in malignant gliomas (see Table 1). Two publications evaluated existing evidence 

prior to 1990287-288. Another reviewed publications from 1991 to 1999289. The most recent 

update was from the Cochrane database of systematic reviews290. This systematic review 

identified only one study with adequate scientific rigour. It was a randomised trial, which 

enrolled 23 patients and compared biopsy to surgical excision. The results showed no 

difference in outcome between the two treatment options; however, these findings may 

not be conclusive because of the small sample size of the study. All four reviews 

unanimously bemoaned the lack of well conducted studies and arrived at a similar 

conclusion: that there is of absence of good scientific evidence to support claims of 

survival benefit from surgical resection of malignant gliomas. 

Lacroix et al retrospectively analysed 416 consecutive cases of glioblastoma 

multiforme (GBM) treated at the M.D. Anderson Cancer Centre285. This however 

included 44% of previously treated cases at other institutions prior to referral 

(cytoreductive surgery or biopsy only, with or without adjuvant chemotherapy or 

radiation therapy). No comparison group was available (matched untreated group). The 

patients’ tumour volumes were quantified prospectively based on preoperative and 

postoperative MR images. Tumour volume was defined based on contrast enhancement 
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on T1-weighted imaging and increased signal intensity on T2-weighted imaging. 

Volumetric measurement was then performed using a software program. This method of 

assessing extent of resection is quantitative and reliable compared to other methods 

which were based on intraoperative surgeon judgement and/or radiologist assessment of 

preoperative and postoperative MR imaging without quantification of tumour volume, 

both of which are prone to subjectivity and variability. The authors reported longer 

survival in patients with at least 98% tumour resection (median survival 13 vs. 8.8 

months). In the selected group without prior surgical intervention (56%) the reported 

survival was 13 months for patients with ≥ 98% resection and 10.1 months for less than 

98% glioma resection. The survival benefit for ≥ 98% resection was much better in the 

previously not treated group compared to the previously surgically treated (at a separate 

institution) group. There was also a trend for survival benefit once tumour resection 

exceeds 89%. Although none of this data constitutes Class I evidence, it does show a 

trend that aggressive tumour resection can be performed with low morbidity with better 

survival compared to more conservative surgery. Furthermore, it is not likely that a 

randomised controlled trial can be conducted in the future because of ethical 

considerations. 

In summary there is no good evidence that aggressive surgical resection 

significantly improves survival outcome. On the contrary recent evidence from a 

series a trials of glioma treatment suggests that any survival benefit, if present, is likely 

to be marginal. Radical resection may therefore be attempted if the incidence of surgical 

morbidity is reasonably low. 

 121



Table 2 summarises additional studies which support improved survival following 

glioma resection. Most are retrospective in nature with no matched control, let alone 

randomised control; thus there is no strong evidence that aggressive surgical resection per 

se significantly improves survival outcome.  

 

4.2  Why surgical resection then? 

Failure to demonstrate prolonged survival should not detract physicians from considering 

surgical resection due to the numerous other benefits or tumour removal. 

 

(A) Symptomatic relief and neurological improvement 

Symptomatic relief from mass effect and obstructed cerebrospinal fluid (CSF) circulation 

are obvious benefit of glioma resection. Distortion of brain structure and compression of 

neural pathways contribute to both general symptoms and focal deficits, which may have 

some degree of improvement following surgical resection. 

Global symptoms such as headache, nausea, vomiting and general malaise often 

show dramatic improvement after surgery291. Relief of local compression may contribute 

to partial reversal of neurological deficit292.  

An often used indicator of potential neurological improvement following surgical 

glioma resection is a trial course of dexamethasone (16 mg per day). Patients with 

improved functional status after steroid use are usually the ones who will also show 

improvement in their quality of life after aggressive surgical resection, provided there is 

low postoperative morbidity293.  
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Brown et al evaluated the quality of life following 3 separate high grade glioma 

treatment regimes for high grade gliomas294. In this trial, patients with gross total glioma 

resection and adjuvant therapy had improved overall quality of life at 2 and 4 month 

follow-up. There was no survival benefit. 

Ammirat et al295 and Sawaya et al296 found that gross total resections are 

associated with better patient neurological performance scores than those observed after 

more limited resections. Furthermore, partial resection, with significant residual tumour, 

may lead to an increased risk of post operative bleeding and oedema exacerbation. 

 

(B) Oncologic reduction to augment adjuvant therapy 

Oncologic reduction is another benefit of aggressive surgical resection. A 99% excision 

would reduce the amount of neoplastic cells by a factor of two, from 109 to 107 cells. A 

lower tumour load increases the efficacy of adjuvant therapy.  Stewart et al297 performed 

a systematic review and meta-analysis of the effect of systemic chemotherapy on high 

grade glioma. They showed improved survival with a combined modality of surgical 

resection, radiotherapy and chemotherapy, as compared to surgery and radiotherapy. 

Surgical treatment included biopsy only, incomplete resection or complete resection. In 

the biopsy group survival at one year improved from 36% to 42%. Subgroup analysis did 

not show evidence of a differential effect of chemotherapy on extent of resection; 

however there was a trend towards improved survival in the patients who underwent 

complete and incomplete resection, compared to those in the biopsy group, although the 

improvement was not statistically significant. 
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(C) More accurate diagnosis 

Accuracy of histological diagnosis is dependent on tissue sample size. This is especially 

true in the setting of false negatives associated with stereotactic biopsy as a result of 

limited tissue sample, which is estimated to be around 10%120. Jackson et al298 reported a 

discrepancy rate of 38% between biopsy and subsequently resected specimens in 81 

patients. This discrepancy was found to affect treatment in 26% of cases. The prognosis 

was altered in 38% of cases. 

 

(D) Aid in research 

The collection of large human tumour samples allows comprehensive molecular analysis 

and fingerprinting of each tumour and this may lead us to individually-tailored molecular 

therapies. Only through further understanding of the biology of gliomas can we hope to 

find a cure in the future. 

There is therefore inconclusive evidence to support aggressive resection in 

prolonging survival in patients with high grade glioma. Most studies were insufficiently 

powered (or power of study not reported) to refute this issue once and for all.  

With radical excision the reported outcome, at best, is a mean survival benefit of 

about 13 months285. In the elderly (>65 years old), this is further reduced to 3 months299. 

However such data suffer selection bias, as patients with expected poor outcome would 

not have undergone surgery. Even when survival benefit may be possible this is only seen 

with radical excision in excess of 98%285.  

As such we advocate the following guideline for glioblastoma resection300: 

 124



1. Tumour resection should be considered for histological confirmation, 

cytoreduction and to alleviate mass effect. 

2. Aggressiveness of tumour resection is limited by the risk of incurring further 

new neurological deficit, in particular deficits which delays post operative 

radiotherapy and chemotherapy. 

3. Adjuvant intraoperative procedures to facilitate safe tumour resection should 

be encouraged.   

 

Surgical Adjuncts that Exist to Limit Surgical Morbidity 

Because of the limited lifespan of high-grade glioma patients, it is crucial that surgical 

debulking does not compound any existing neurological deficit. Otherwise, any potential 

gain from the surgical resection would be offset by the morbidity. Many techniques have 

been developed to identify eloquent cortex, especially language, motor and sensory 

cortex. These adjuncts aid in defining the resection limit, and further debulking beyond 

this limit will likely increase the risk of surgical morbidity. 

Functional MRI (fMRI) helps to identify language and motor centres. Mueller et 

al 301 compared the location of the fMRI activation with positive responses to 

intraoperative cortical stimulation and showed that in patients with more than 2 cm 

between the margin of the tumour and the activation, no decline in motor function 

occurred from surgical resection. fMRI of tactile, motor and language tasks is feasible in 

patients with tumours that are near the eloquent cortex, and shows promise as a means of 

determining postoperative motor deficit risk following surgical resection of frontal or 

parietal lobe tumours.  

 125



Intraoperative MRI potentially permits greater safety during aggressive resection 

of tumours by providing real-time images of residual tumour and the surrounding brain. It 

also leads to greater surgical accuracy by reducing neuronavigation errors due to 

intraoperative brain shift. In a study of 137 patients with WHO Grade III-IV gliomas, 

Nimsky et al299 found that 66% of patients with Grade III tumours and 28% of patients 

with Grade IV tumours underwent extended resection with the guidance of intraoperative 

MRI, thereby increasing the percentage of complete resections by 15% in Grade III 

gliomas and by 12% in Grade IV gliomas. Unfortunately, this increase is only marginal 

because in many cases, the tumour extends into the eloquent brain areas and could not be 

excised safely. 

The integrated application of functional navigation on top of intraoperative MRI 

resulted in a lower postoperative morbidity rate, e.g., a transient new neurological deficit 

of 10.2% and a permanent neurological deficit of 2.9%. Oh et al302 went on to suggest 

that this may become the standard of care in due time owing to the fact that patients with 

less residual tumour may respond more favourably to adjuvant chemotherapy with 

temozolomide.  

Awake craniotomy with cortical mapping can localise eloquent motor cortex more 

reliably than anatomical landmarks. Employing identification techniques developed by 

doing awake craniotomy in 65 patients at the Mayo Clinic, Meyer et al303 found that 

resecting tumour until the onset of neurological deficits resulted in slightly more than half 

(52%) of the patients having a greater than 90% reduction in T2 signal postoperatively. 

At the same time, these techniques allow for good functional recovery. 94% of the 48 

patients who developed intraoperative deficits achieved a modified Rankin grade of 2 or 
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less at 3-month follow up. Combining awake craniotomy with intraoperative cortical 

stimulation could reduce early neurological deterioration. 

We performed a 3-year retrospective review of patients who underwent awake 

craniotomy under local anaesthesia at the National Neuroscience Institute, Singapore. All 

patients had tumours in close proximity to eloquent cortex, including speech areas in the 

dominant hemisphere as well as primary sensory and motor cortex in either hemisphere. 

Brain mapping was performed by direct cortical stimulation using the Ojemann 

stimulator to identify a safe corridor for surgical approach to the tumour. Intraoperative 

physiological monitoring was carried out with physiological monitoring of speech, motor 

and sensory functions during the process of surgical resection. All resections were 

evaluated and verified by postoperative imaging and reviewed by an independent 

assessor. Postoperative complications and neurological deficits, as well as extent of 

tumour resection, were evaluated.  

A total of 20 patients underwent stereotactic resection over a period of 3 years 

from July 2003 to August 2006. There were 7 male patients and 13 female patients, with 

a mean age of 39.8 years. The average length of stay was 5.5 days. There were no major 

anaesthetic complications and no perioperative deaths. Postoperative neurological deficits 

were seen in 6 patients (30%) and this was permanent in only 1 patient (5%). The degree 

of cytoreduction achieved was greater than 90% in 58% of patients and a further 21% had 

greater than 80% cytoreduction304.  

Awake craniotomy is therefore a safe technique that allows maximal resection of 

lesions in close relationship to eloquent cortex and has a low risk of neurological deficit. 
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Based on the current literature, there is still a lack of evidence on whether surgical 

resection improves patient survival. However, there are benefits, albeit short-term 

ones, to be had from surgical resection, and these should be borne in mind. Technological 

advances in the form of intraoperative and functional MRI along with awake craniotomy 

techniques may be employed to reduce surgical morbidity and improve the extent of 

surgical resection. Ideally, a controlled randomized trial would best answer the perennial 

question of whether surgical resection improves patient outcome and survival, but these 

will not be possible because of inherent ethical concerns. Well-controlled retrospective 

studies with a multivariate analysis of all potential confounding factors can answer 

further questions but unfortunately will not provide Class I evidence. 
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Table 1: Systematic reviews of the extent of resection influencing outcome 

Authors Studies 
included in 
literature 
reviewed 
 
 

Clinical 
question 

Study 
descriptions 

Conclusions  

Nazzaro and 
Neuwelt, 
Quigley and 
Maroon 

Prior to 1990  
(all reported 
trials) 

No RCT 
Lack of 
prospective 
observational 
data. 
Confounding 
factors not 
accounted for. 

Flawed study 
designs. Little 
evidence to 
support 
hypothesis that 
aggressive 
surgical 
management 
significantly 
prolonged 
survival. 
 
 

 
 
Hess 

1991 to 1999 
(all reported 
trials) 

Extent of  high 
grade glioma 
resection vs 
survival 
outcome  

Retrospective 
data except for 
one 
prospective 
study. 
Only 4 
adjusted for 
confounding 
factors. 

No reliable 
clinical study. 
Little scientific 
evidence to 
support 
assertion that 
aggressive 
surgical 
resection 
prolongs 
survival  
 
 

 
 
Grant 

Up to 2006 
(Randomised 
and clinically  
controlled 
trials only) 

Effect of 
surgical 
resection vs 
biopsy on 
survival, time 
to progression 
or quality of 
life    

1 RCT 
Inequalities 
among groups 
Underpowered 
Radiological 
misdiagnosis 
(30 
randomised, 
only 23 with 
high grade 
gliomas) 

Single small, 
underpowered 
study. Unable 
to conclude if 
one form of 
treatment 
(surgical 
excision or 
biopsy only) is 
superior to 
another. 
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RCT: randomised control trial 

 

 Table 2: Studies (1999 – 2006) excluded by the Cochrane review   

Paper  Study type 
 

Results reported 

Lacroix 2001 Retrospective. N=416 
44% had prior treatment 
elsewhere. 
Multivariate analyses 

Improved survival 
associated with 98% or 
more total resection. 
(median survival 13 vs 8.8 
months). 
Adjusted rate ratio 1.6 
(95% CI 1.3-2, p<0.0001) 
 
 

Buckner 2003
 
 

a. large 
cooperat
ive 
trials: 
BTSG, 
NCCTG
, RTSG 

Retrospective data, 
multivariate analysis 
including recursive 
partitioning analysis (RPA) 
 
 

Survival advantage for 
patients underwent 
resection 

Laws 2003
 

Retrospective outcome 
data of 788 patients over 4 
years (1997-2001), 
multivariate analysis of 
resection vs biopsy 

P<0.0001 
Increased survival time 
even after eliminating 
‘poor’ risk patients who 
may have been over-
represented in biopsy 
group 
 
 

Proescholdt 2003
 
 

120 articles up to 2003 No studies with high LOE 
(52.5% of studies had 
Level IIIb evidence which 
formed the majority). 
72.5% of studies observed 
a positive effect of total 
resection but they contain 
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methodological limitations 
which may significantly 
influence results. 
 

Bucci 2004 Retrospective 
Pediatric population. MRI 
validated total resection 
(defined as >90% 
resection) 
Small group(n=39) 
Median follow-up 47.6 
months 
 

Median survival of patients 
with total resection vs 
residual disease, 122.2 vs 
21.3 months (p<0.005) 

Brown 2005 Phase II trial. 
No matched control cohort  
Gross total resection group 
had better initial quality of 
life assessment. 

On multivariable analyses 
performed 
patients with gross total 
resection were less likely 
to be depressed and had 
improved quality of life at 
2 month follow-up. 
 

Schneider 2005 Prospective (n=31) 
Resection extent measured 
by post op MRI.  
Unadjusted for known 
prognostication factors 
 

Median survival for 
complete vs incomplete 
resection, 537 vs 237 days 
(p=0.0037)  

Stark 2005 Retrospective (n=267) 
Univariate analysis of 
survival time (Not 
adjusted) 
Resection extent measured 
by post op CT with 
contrast 
 

Gross total resection 
associated with prolonged 
survival 
P=0.014 

RCT – randomised control trial 
LOE – level of evidence 
EOR – extent of resection 
 

BTSG – Brain Tumour Study Group 

NCCTG – North Central Cancer Treatment Group 

RTOG – Radiation Therapy Oncology Group  
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4.3 Higher glioblastoma tumour burden reduces efficacy of BCNU chemotherapy: 
in vitro evidence to support radical surgery for malignant gliomas 
 

The in vitro experiments were designed to ascertain whether tumour burden can 

independently affect the efficacy of the standard chemotherapy agent BCNU.   

On analysis of the experimental data, it was shown that significantly higher doses 

of BCNU are required to bring about tumour death in a setting of high tumour burden. 

Conversely, a smaller dose of BCNU is necessary to bring about tumour death in the 

presence of lower tumour burden.  

For LN-229 cells seeded at 5,000 per well density, the drug concentration 

required to achieve greater than 90% growth inhibition (IC90) was 75µg/mL. Cells seeded 

at densities of 10,000, 15,000 and 20,000 per well required BCNU concentrations of 100 

µg/mL, 150 µg/mL and 175 µg/mL respectively.  

For A172 cell line, the drug concentration required to achieve IC90 for cells 

seeded at 5,000, 10,000, 15,000 and 20,000 cells per well were 100 µg/mL, 125 µg/mL, 

150 µg/mL and 175 µg/mL respectively. 

For T98G cell line, the drug concentration required to achieve IC90 for cells 

seeded at 5,000, 10,000, 15,000 and 20,000 cells per well were 75 µg/mL, 100 µg/mL, 

125 µg/mL   and 150 µg/mL respectively. 

The survival curves for the various cell lines demonstrate a consistent trend of 

larger chemotherapy doses required to achieve similar levels of growth inhibition for 

higher tumour loading in all the cell lines. 

This vitro study has therefore shown increased chemotherapy resistance with 

higher glioblastoma load. A four fold increase in GBM tumour load requires a two fold 
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increase in BCNU concentration to achieve the same effect. Radical resection of high-

grade gliomas may therefore facilitate adjuvant therapy by reducing oncologic load. This 

effect has also been in clinical studies. Stewart et al297 performed a systematic review and 

meta-analysis of the effect of systemic chemotherapy on high-grade gliomas. They 

showed improved survival with a combined modality of surgical resection, radiotherapy 

and chemotherapy, as compared to surgery and radiotherapy. Surgical treatment included 

biopsy only, incomplete resection or complete resection. Subgroup analysis did not show 

evidence of a differential effect of chemotherapy on extent of resection; however, there 

was a trend towards improved survival in the patients who underwent complete and 

incomplete resection, compared to those in the biopsy group, although the improvement 

was not statistically significant.  

Our in vitro experimental data therefore shows that increased tumour burden can 

reduce the efficacy of chemotherapy in human glioblastoma call lines. Radical surgery to 

reduce tumour burden can therefore potentiate adjuvant therapy. This lends further 

credence to support aggressive surgery for high-grade gliomas.   

 

4.4 Growth Factors 

The control of cell proliferation is highly regulated by growth factors. Growth factors are 

high affinity ligands for membrane-spanning cell surface receptors belonging to the 

family of receptors tyrosine kinase (RTK). Activation of the receptor results in complex 

multistep signal transduction pathway which includes ligand binding and receptor 

dimerisation, intermolecular phosphorylation of the intracellular domain on tyrosine 

residues, recruitment and activation of cytoplasmic signaling molecules that transmit 
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signals to the nucleus. In malignant transformed cells, the receptor tyrosine kinase is 

dysregulated and constitutively activated. Activation can occur by ligand overexpression, 

mutations within the RTK protein or overexpression of the receptor due to genetic 

aberrations such as translocation or gene amplification. Overexpression can result in RTK 

activation by increasing the concentration of the protein at the plasma membrane leading 

to ligand independent dimerisation305. 

Activation of growth factors or their receptors is evident in many human cancers. 

For instance, the ErbB family of receptors includes GFR, v-erb-b2 erythroblastic 

leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog 

(avian) (ErbB2/HER2/Neu). ErbB3 and ErbB4 can be bound and activated by ligands. 

Their activation can contribute to the proliferative behaviour of a variety of cancers, 

including breast, ovarian, colorectal, small cell lung cancer and glioblastoma306.   

Many mitogens and their cognate receptors are present in overactive forms in 

gliomas. Examples of these mitogens are: PDGF, EGF and EGFR. Many of the ligands 

are over-expressed due to gene amplification and the receptors exist in constitutively 

active forms. The cognate receptors contain tyrosine kinase activity regulating several 

intracellular signaling cascades.         

 

4.5 Cellular Signalling 

The fundamental feature of all cancer cells is their ability to grow, survive and proliferate 

beyond a normal homeostatic environment. Recent advances in molecular research have 

shown complex interactions between cell surface receptors and intracellular signaling 

proteins. Multiple cellular pathways have been elucidated which promote cell 
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proliferation, growth and anti-apoptosis, ultimately contributing to the survival and 

mitogenesis of tumour cells. Growth factor receptors are membrane-spanning proteins 

characterised by innate tyrosine kinase activity. The receptor tyrosine kinases (RTKs) 

catalyse the transfer of the γ phosphate of ATP to hydroxyl groups of tyrosines on target 

proteins. Specific growth factors or ligands are over-expressed due to gene amplification 

and the receptors can exist in constitutively active mutant forms. Many growth factors 

have been found to be widely expressed in human glioma cell lines and glioma tissue and 

can stimulate mitogenic behaviour. These include vascular endothelial growth factor 

(VEGF), platelet-derived growth factor (PDGF), epidermal growth factor receptor 

(EGFR/c-erb/HER 1), insulin-like growth factor (IGF), transforming growth factor-beta 

(TGF-β), brain-derived growth factor (BDGF) and scatter factor/hepatocyte growth factor 

(SF/HGF)173-174, 189-209.  

Binding of growth factors induces conformational changes in the extracellular 

domain of the receptor and facilitates dimerisation or clustering of receptor tyrosine 

kinases. Dimeric ligands such as PDGF induce a symmetric ligand/receptor interaction 

whereas monomeric ligands such as EGF induce receptor dimerisation.  

Ligand binding, receptor dimerisation and consequent conformational change in 

the growth factor receptor brings about union of two catalytic domains, resulting in 

autophosphorylation of tyrosine residues within the catalytic domain and non-catalytic 

regulatory regions of the cytoplasmic domain. Phosphorylation of key residue within the 

kinase activation loop induces the opening of the catalytic site and allows the ingress of 

ATP and substrates, while phosphorylated residues in non-catalytic regions create 
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docking sites for downstream signaling molecules that are essential for signal 

propagation306. 

In gliomas, the cognate receptors activate several intracellular signaling cascades: 

P13K/AKT-PTB (phosphoinositide 3-kinase/AKT-protein kinase B) pathway, 

RAS/MAPK (mitogen activated protein kinase) pathway and the PLC-γ/PKC 

(phospholipase C-γ/protein kinase C) pathway209-210. 

The MAPK regulate highly conserved signaling pathways in all eukaryotic cells. 

All MAPK pathways include a core three-tiered signaling unit, in which MAPKs are 

activated by the sequential activation of linked serine/threonine kinases. 

Phosphoinositides are phospholipids of cell membranes that are dynamically 

regulated in response to growth factor signaling307. They contribute to signal propagation 

by serving as precursors of the second messengers IP3 and Diacylglycerol (DAG) or by 

binding to signaling proteins that contain specific phosphoinositide binding modules. 

Overall, the most important downstream signaling pathways involved are the P13K/Akt 

and RAS/MAPK pathways. 

   

4.6 Paracrine and Autocrine Loops in Cancer 

Tumour-stromal interactions can influence tumour differentiation and invasion in many 

tumours. In colorectal tumour cells, co-culture of Caco-2 or HT-29 cells in collagen gels 

resulted in the formation of a few small solid cell clusters with no lumina, but when co-

cultured with stromal cells, the tumour cells formed glandular structures with central 

lumina. This fibroblast-induced differentiation of Caco-2 cells (nit HT-29 cells) appeared 

to be mediated via transforming growth factor-beta (TGF-β)176. A paracrine mechanism is 
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also seen in squamous cell carcinoma (SCC). Stromal changes with increased expression 

of proteases and cytokines may promote tumour proliferation. Myofibroblasts are 

commonly concentrated at the invasive margin of oral SCC. The tumour cells directly 

induce a myofibroblastic phenotype which is dependent on SCC-derived TGF-β1. In turn, 

myofibroblasts secrete significantly higher levels of hepatocyte growth factor/scatter 

factor compared with fibroblast controls which promotes SCC invasion177. Malignant 

melanoma cells are able to express various cytokines and growth factors at different 

stages of tumour progression, which can confer tumour competence via autocrine and 

paracrine effects178.   

      

 

4.7 Paracrine and Autocrine Loops in Gliomas 

Likewise, the co-expression of growth factors with their corresponding receptors in 

gliomas may result in complex endogenous ligand-receptor interactions. The growth 

factor receptors expressed on the surface of tumour cells may bind soluble ligand 

produced by the same (autocrine) or adjacent cells (paracrine). In addition, membrane-

anchored growth factor isoforms generated by alternative splicing may bind to the same 

(juxtacrine) or adjacent tumour cells (paracrine). Intracellular interactions between 

growth factors and their ligands can also lead to intracrine activation of signaling 

cascades166, 179.  

Many different growth factor/receptor systems have been implicated in the 

proliferative behaviour of gliomas. Vascular endothelial growth factor (VEGF) is 

considered one of the most potent angiogenic factors in gliomas. It is highly expressed in 
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malignant gliomas predominantly in areas of necrosis180-185 and is thought to stimulate 

angiogenesis in a paracrine manner by binding to tyrosine kinase receptors on endothelial 

cells183, 186-188. The epidermal growth receptor (EGFR/c-erb1/HER1) is the mammalian 

homologue of the v-erbB oncogene from avian erythroblastosis virus189. Expression of 

EGFR has been shown in glioma cell lines and primary tumours with the degree of 

expression correlating with histological grade. EGFR expression has been linked to 

higher Ki-67 labelling indices and decreased survival190-192. In vitro experiments have 

demonstrated that expression of EGFR leads to increased proliferation and reduced 

apoptosis193-195. Co-expression of platelet-derived growth factor (PDGF) and their 

receptors is a common alteration in glioblastomas which can influence survival and 

proliferation of tumour cells. All four members of the PDGF family group PDGF-A, B, C 

and D have been shown to influence malignant behaviour. One of the most consistent 

cellular signaling defects observed in high-grade gliomas is the presence of an autocrine 

loop attributable to the coexpression of PDGF-A and PDGF-B and their receptors196-200. 

PDGF-C and PDGF-D expression is also seen in human glioblastoma cell lines and 

primary human tumour tissues. The use of CT52923, a potent inhibitor of PDGFR 

blocked PDGF autocrine-mediated phosphorylation of PDGFR, Akt, and mitogen-

activated protein kinase (MAPK) and was also able to inhibit glioma growth in nude mice 

models201. 

Nerve growth factor is a member of the family of neurotrophins which are widely 

expressed in glioma tissue202. They bind with different affinity to receptors of the trk 

family and can stimulate glioma cell line proliferation in an autocrine fashion203-204. 

Several other putative growth factors have been found to be widely expressed in human 
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glioma cell lines and glioma tissue and can stimulate mitogenic behaviour. These include 

insulin-like growth factor (IGF)205, transforming growth factor-beta (TGF-β)206, brain-

derived neurotrophic factor (BDNF)207 and scatter factor/hepatocyte growth factor 

(SF/HGF)208-209. 

A highly complex system of ligand-receptor interactions are therefore present to 

stimulate tumour proliferation, promote invasiveness, inhibit apoptosis and confer 

cellular survival and chemoresistance.  

 

4.8 Glial Cell Line-Derived Neurotrophic Factor (GDNF) Family  

Glial cell line-derived neurotrophic factor (GDNF) was originally identified in 1993 by 

Lin et al as a neurotrophic factor211. It was isolated from a rat glioma cell line supernatant 

and was shown to confer increased survival for embryonic midbrain dopamine neurons. 

Subsequently, it was also found that GDNF also had potent trophic functions in spinal 

motorneurons and central noradrenergic neurons.  

Due to its ability to promote neuronal survival, in the realm of neuroscience 

research, much of the research on GDNF has therefore been focused on its role as a 

potential therapeutic agent for neurodegenerative diseases such as Parkinson’s Disease212-

215. 

The GDNF-family ligands (GFL) consist of GDNF, neurturin (NRTN), artemin 

(ARTN) and persephin (PSPN). The GFLs support midbrain dopamine and motorneurons 

in the central nervous system. In addition, GDNF, NRTN and ARTN promote the 

survival and regulate the differentiation of many peripheral neurons such as the 

sympathetic, parasympathetic, sensory and enteric neurons216-217. 
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GFLs belong to the transforming growth factor-beta (TGF-β) superfamily, 

containing seven cysteine residues with the same relative spacing as other members of 

the family218. They all belong to the cystine-knot protein family and function as 

homodimers. 

GFLs are produced in the form of a precursor, preproGFL. The sequence is 

cleaved on secretion and activation of proGFL occurs by proteolytic cleavage. The 

secreted proneurotrophins may however be biologically active216, 219-220.  

GDNF is secreted as a mature protein of 134 amino acids. In its natural state, it exists as a 

glycosylated homodimer of approximately 39 kDa. 

 

4.9 GDNF and Malignant Gliomas 

Besides the nervous system, GDNF is produced in many other organ systems in the 

human body. There is an increasing trend that GDNF is implicated as a mitogenic agent 

for cancers in the various organ systems where it is found to be present. 

GDNF and NRTN were found to be mitogens for normal adult rat chromaffin 

cells in vitro. The mitogenic behaviour is potentiated by binding and activation of protein 

kinase C (PKC). Although both ligands contributed to increased mitogenesis, NRTN was 

the more potent mitogen and caused increased phosphorylation of extracellular signal-

regulated kinases 1 and 2 in cultured chromaffin cells248.  

In pancreatic cancer, RET overexpression was seen in pancreatic tumour tissue. 

GDNF and ARTN were strongly expressed in all intrapancreatic nerves and 

intrapancreatic neural invasion was significantly related to the expression of GDNF. In 

vitro invasion assays, the migration of pancreatic cancer cells are markedly induced by 
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co-culture with human glioma cells capable of secreting GDNF. Immunohistochemical 

assessment of GDNF, NRTN, PSPN, ARTN, GDNF family receptor alpha-1 and alpha-2 

and RET in 51 cases of surgically resected pancreatic cancer demonstrated that GDNF 

and ARTN were expressed strongly in all intrapancreatic nerves. In pancreatic cancer 

tissues, the expression of RET was stronger than that seen in normal ductal cells and was 

significantly related to the survival rate after resection and lymphatic invasion249-250. 

Intrapancreatic neural invasion was also significantly related to the expression of GDNF 

The expression of RET in pancreatic cancer tissues may therefore be a useful prognostic 

marker and GDNF may play an important role in neural invasion. RET expression in 

pancreatic cancer cells may also be a potential target for anti-invasion therapy.  

Treatment of pancreatic carcinoma cell lines with GDNF resulted in activation of the 

monomeric GTPases N-Ras, Rac1, and RhoA, in activation of the mitogen-activated 

protein kinases extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal 

kinase (JNK) and in activation of the phosphatidylinositol 3-kinase/Akt pathway. Both 

inhibition of the Ras-Raf-MEK (mitogen-activated protein/ERK kinase)-ERK cascade by 

either stable expression of dominant-negative H-Ras(N17) or addition of the MEK1 

inhibitor PD98059 as well as inhibition of the phosphatidylinositol 3-kinase pathway by 

LY294002 prevented GDNF-induced migration and invasion of pancreatic carcinoma 

cells. These results demonstrate that pancreatic tumor cell migration and possibly 

perineural invasion in response to GDNF is critically controlled by activation of the Ras-

Raf-MEK-ERK and the phosphatidylinositol 3-kinase pathway. (Activation of 

phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for 
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glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic 

carcinoma cells308. 

Perineural invasion is an important prognostic factor for patients with bile duct 

carcinoma and is not surprising that GDNF can play a role in the pathogenesis of bile 

duct cancer. Using immunohistochemistry, moderate to strong staining of GDNF in 

tumour cells was observed more frequently in sections with perineural invasion. Cell 

migration was also seen to be enhanced by conditioned media from GDNF-treated 

cells251.  

GDNF can promote proliferation of neuroblastoma cells and can have a role in 

promoting resistance to differentiation or cytotoxic therapy of neuroblastoma. (Glial cell 

line-derived neurotrophic factor (GDNF) family ligands reduce the sensitivity of 

neuroblastoma cells to pharmacologically induced cell death, growth arrest and 

differentiation309. 

Immunohistochemistry studies in vestibular schwannoma have shown that co-

expression of transforming growth factor-beta 1 (TGF-β1) and GDNF in vestibular 

schwannoma may demonstrate trophic synergism in this tumour.  

GDNF is produced by astrocytes and is ubiquitous in the central nervous system 

and neural tissue and hence can potentially play an important role in the pathogenesis of 

high-grade glioma. 

GDNF and its receptor GFRα1 have been demonstrated to be strongly expressed 

in human gliomas by Wiesenhofer et al. In an analysis of 20 human astrocytomas (14 

glioblastomas, 1 gliosarcoma and 5 astrocytomas), GDNF protein concentrations were 

found to be present in high amounts compared to postmortem human frontal lobe and rat 
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cortex. Immunohistochemistry of GFRα1 demonstrated strongly positive staining in 5 out 

of 15 high-grade glioma samples, weakly positive staining in 4 specimens and no staining 

in 6 specimens253.  

In murine experiments, GDNF is found to be highly expressed in rat glioma cell 

lines B49 and C6. Furthermore, knockdown experiments with antisense oligonucleotides 

performed with rat C6 glioma cells demonstrated that knockdown of C6 cells with GDNF 

and GFRα1 significantly reduced the number of C6 glioma cells and also inhibited the 

incorporation of bromodeoxyuridine as a sign of DNA synthesis254.  

In our study, the use of Real-Time PCR to quantify the level of expression of 

GDNF demonstrated that GDNF was more highly expressed in glioma samples and 

glioblastoma cell lines than in adult brain, foetal brain, adult liver and foetal liver 

samples. All glioblastoma samples and cell lines demonstrated increased level of 

expression. The highest expression level was observed in a sample of glioblastoma tissue. 

Other gliomas studied (oligodendroglioma, PXA, recurrent PXA, anaplastic 

ependymoma and pilocytic astrocytoma) also demonstrated increased levels of 

expression of GDNF. The pilocytic astrocytoma and PXA had the lowest level of GDNF 

expression of all the glioma samples studied. Pilocytic astrocytoma is a benign tumour 

classified as WHO Grade I tumour. PXA is a low-grade glial tumour (WHO Grade II). 

Although, it is tempting to postulate that GDNF expression may be correlated to the 

WHO Grading of the tumour, this theory is not tenable at this stage as the 

oligodendroglioma (WHO Grade II) sample demonstrated very high level of GDNF 

expression. Obviously, a much larger sample size to compare the difference in expression 

of GDNF between the low-grade and high-grade gliomas may be able to ascertain a 
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statistically significant difference. In practical terms, we are limited by the small numbers 

of low grade gliomas in our population and would therefore not have sufficient clinical 

numbers to test this hypothesis.  

Significantly, in vitro experiments comparing the level of GDNF expression in 

high-grade C6 glioma cells and low-grade Hs683 cells revealed that the high-grade cells 

secrete more GDNF than the low-grade cells. GDNF signaling is also more highly 

activated in C6 cells than in Hs683 cells. Treatment of the Hs683 cells with GDNF 

significantly increased migration comparable to C6 cells311.   

It is noteworthy that the case of recurrent PXA showed the second highest level of 

expression of GDNF. PXA is a rare primary astrocytic tumour of the nervous system 

usually involving the superficial temporal cortex of children and young adults. Although 

the tumour may exhibit histological features of pleomorphism or cellular atypia, the 

overall prognosis is good compared with other glial tumours, and only 30% of  PXA 

recur and 15-20%  undergo anaplastic transformation312-317. It would be interesting to 

study the varying levels of GNDF expression to ascertain whether increased level of 

GDNF expression is correlated with recurrence of PXA, more aggressive behaviour or 

malignant transformation. 

  

4.10 Splice Isoforms/Variants 

Alternative splicing is responsible for much of the protein diversity in humans. 

Approximately 60% of human genes express multiple mRNAs and approximately 80% of 

these alternative splicing events lead to variation in the encoded protein255.  
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RET pre-mRNA alternative splicing leads to the production of two isoforms: RET 9 and  

RET 51, which possess different biochemical and biological properties. Alternatively  

spliced variants NCAM also exist and have been demonstrated to subserve distinct 

biochemical and physiological functions.  

Splice isoforms are also abundant in the GDNF-family receptor-α (GFRα). 

Several variants have been observed for GFRα1, GFRα2 and GFRα4 pre-mRNAs. 

GFRα1 receptor exists in two highly homologous alternatively spliced isoforms: GFRα1a 

and GFRα1b262-264.  

GFRα1b is identical to GFRα1a except for the absence of 5 amino acids  

(140DVFQQ144), encoded by exon 5. In addition, GFRα2 and GFRα4 receptor splice  

isoforms have also been identified in mammalian tissue. Three variants of GFRα2  

receptors (GFRα2a/2b/2c) have been identified265-266. At least two splice variants of  

GFRα4 have been identified in rat tissue267-269. The presence of multiple spliced isoforms 

increases the permutational possibility and complexity of ligand-receptor interactions and 

can potentially result in diverse biological and physiological processes. 

Quantification of expression levels of GFRα1a and GFRα1b in murine brain, 

heart, ileum, kidney, liver and testis showed that both spliced isoforms were expressed at 

fairly equivalent levels except in the brain, where GFRα1a is the predominant isoform. 

Expression levels of RET9 were significantly higher than that of RET51 in murine brain, 

heart, ileum and testis. All three NCAM spliced variants (NCAM120, 140 and 180) were 

highly expressed in the murine brain but at low levels in most peripheral tissues275.    

Neuro-2a cell lines expressing either GFRα1 isoforms demonstrated that GDNF 

and NRTN bind to GFRα1b isoform more efficiently than to the GFRα1a isoform. 
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Investigation of the capacity of each GFRα1 isoform to activate the RET receptor showed 

that at low ligand concentrations GFRα1b mediated RET phosphorylation to a larger 

extent than GFRα1a. At ligand saturation, RET activation was maximal and no difference 

between the GFRα1 isoforms was observed318.   

Using transfected Neuro2A which expressed both NCAM and RET endogenously 

as a model, Yoong et al showed that when stimulated with either GDNF or NRTN, both 

GFRα1a and GFRα1b induced the phosphorylation of ERK1/2 potently.  Microarray 

analyses of GFRα1 isoforms transfected cells stimulated with NRTN however showed 

distinct and non-overlapping gene profiles, providing evidence that the spliced GFRα1 

isoforms may have different functions275.  

Measurement of the expression of miRNA precursors in human BE(2)-C cells that 

express GFRα2 but not GFRα1 with quantitative real-time PCR demonstrated that GDNF 

and NTN differentially regulate the expression of distinct micro-RNA (miRNA) 

precursors through the activation of mitogen-activated protein kinase. The expression of 

distinct miRNA precursors is can therefore also differentially regulated by specific 

ligands through the activation of GFRα2.  

 

4.11 Splice Variants in Gliomas 

Real-Time PCR studying the expression levels of RET showed a consistent trend that 

RET9 is the predominant spliced isoform in all human glioma samples and glioblastoma 

cell lines. RET9 was also the predominant spliced isoform found in brain and liver 

samples. 
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The glioblastoma cell lines had significantly lower levels of expression of 

GFRα1a compared to human adult and foetal brain samples. 11 out of the 13 human 

glioma samples had decreased levels of expression of GFRα1a compared to human adult 

and foetal brain samples. 2 out of the 8 glioblastoma samples had elevated levels of 

GFRα1a expression. 

The 2 glioblastoma cell lines had increased expression of GFRα1b compared to 

human adult and foetal brain samples. 5 glioma samples had elevated levels of expression 

of GFRα1b compared to human adult and foetal brain samples. These were all human 

glioblastoma samples. 

On close analysis of the expression levels of GFRα1a and GFRα1b levels, an 

interesting observation was noted. The glioblastoma cell lines demonstrated much higher 

levels of GFRα1b expression than GFRα1a expression. For cell line LN-229, the ratio of 

GFRα1b/GFRα1a was 16.3 and the ratio of GFRα1b/GFRα1a was 14.3 for cell line 

A172. A similar trend was also noted in 7 out of the 8 human glioblastoma samples. The 

GFRα1b/GFRα1a ranged from 1.73 to 5.44 in the 7 specimens. Only one human 

glioblastoma specimen had a higher GFRα1a/GFRα1b ratio 

The GFRα1b/GFRα1a ratio for the pilocytic astrocytoma and PXA are 3.88 and 

4.20 respectively. The oligodendroglioma sample had higher level of expression of 

GFRα1a  with a GFRα1a/GFRα1b ratio of 5.99. GFRα1b expression was undetectable for 

the recurrent PXA specimen. 

GFRα1b is therefore the predominant spliced isoform in human glioblastoma 

samples and human glioblastoma cell lines. This is especially significant in the setting 

that GFRα1a is the usual predominant spliced isoform in the brain. 
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GFRα2 is alternatively spliced into at least three isoforms (GFRα2a, GFRα2b and 

GFRα2c). Yoong et al hypothesized that the spliced isoforms may have differing 

functional properties. When transfected Neuro2A cells were stimulated with GDNF and 

NRTN, both the GFRα2a and GFRα2c transfected cell lines, but not the GFRα2b 

transfected cell line, promoted neurite outgrowth. In addition, the GFRα2 isoforms were 

shown to regulate different early-response genes when stimulated with GDNF or NRTN. 

In coexpression studies, GFRα2b transfected cell line was found to inhibit ligand-induced 

neurite outgrowth by GFRα2a and GFRα2c. Stimulation of GFRα2b also inhibited the 

neurite outgrowth induced by GFRα1a. Furthermore, activation of GFRα2b inhibited 

neurite outgrowth induced by retinoic acid and activated RhoA319.  

This shift in spliced isoform expression in glioblastoma suggests that the GFRα1 

spliced isoforms may subserve different functions and this altered state of expression may 

contribute to the mitogenic behaviour of the tumour.       

 

 4.12  Potentiation of Chemoresistance 

The mainstay of therapy for malignant gliomas is a combination of surgery, radiation 

therapy and chemotherapy. The effectiveness of standard chemotherapy regimens such as 

procarbazine, lomustine (CCNU), vincristine and 1,3-Bis(2-chloroethyl)-1-nitrosourea 

(BCNU) are limited by their toxicities and inability to penetrate the blood-brain-barrier 

(BBB). The BBB consists of endothelium with tight junctions, vascular cells and 

astrocytic foot processes and it is estimated that 98% of all known small molecules are 

unable to breach the BBB. For a chemotherapy agent to cross the BBB in significant 
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concentration, the molecular size must be less than 400-500 Da and the drug must be 

highly lipid-soluble.  

It is now also known that human cancer populations are not homogeneous.  

Cancer stem cells have an intrinsic capacity for unlimited self-renewal and possess the 

ability to initiate and drive tumour progression in an animal model320. Thus, they would 

seem the most probable candidates responsible for tumour chemoresistance and 

recurrence.  

Hirschmann-Jax et al have shown that the “side population” (SP) of neuroblastoma cells 

not only had the characteristics of tumour stem cells (multipotentiality and self-renewal), 

but were also more resistant to the effects of drugs such as mitoxantrone, and may 

contribute to the overall drug resistance phenotype of relapsed or resistant cancers321-322. 

Neuroblastoma cells cultured in the presence of mitoxantrone showed a progressive 

increase in the frequency of the SP fraction, indicating that their ability to expel 

mitoxantrone offered a survival advantage to these putative stem cells. Sorted SP cells, 

unlike non-SP cells, were also able to proliferate and establish new colonies in the 

presence of mitoxantrone, whereas non-SP cells could not, demonstrating stem-cell-like 

properties. Taken together, the data confirm the link between SP and drug resistance, 

disease persistence and relapse. A study by Liu and colleagues demonstrated an increased 

resistance of CD133+ brain tumour stem cells in response to treatment with 

chemotherapeutic agents such as temozolomide, carboplatin, paclitaxel (Taxol) and 

etoposide (VP16) as compared to autologous CD133- cells323. Gene expression studies 

revealed a higher expression of multidrug resistance gene BCRP1, and DNA-mismatch 

repair genes such as O6-methylguanine–DNA methyltransferase (MGMT), as well as 
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genes that inhibited apoptosis in the CD133-expressing cancer stem cells. Furthermore, 

the work showed that CD133 gene expression was significantly higher in recurrent GBM 

tissue specimens as compared to their respective newly diagnosed tumours. Clinically, it 

is observed that tumours respond to chemotherapies only to recur with renewed resilience 

and aggression. Although chemotherapy kills most of the cells in a tumour, these results 

suggest that cancer stem cells may be left behind, which then recur due to their enhanced 

chemoresistance. 

Growth factors can also potentiate chemoresistance. Brain-Derived Neurotropic 

Factor (BDNF) and TrkB are expressed in many poor-prognosis neuroblastoma tumours. 

Activation of the BDNF-TrkB signal transduction pathway was investigated in two 

neuroblastoma cell lines, 15N and SY5Y. 15N cells lack the high-affinity receptor 

p145TrkB and express BDNF; 15N cells were used along with 15N-TrkB cells, a sub-line 

transfected with a TrkB expression vector. In cytotoxicity assays, 15N-TrkB cells were 

consistently 1.4-2 fold more resistant to vinblastine than 15N cells. BDNF can therefore 

confer chemoresistance to vinblastine treatment324. 

In oesophageal cancer, insulin-like growth factor-I (IGF-I) prevented the 

apoptosis of CE81T/VGH oesophageal carcinoma cell lines induced by chemotherapeutic 

drugs, such as cisplatin, 5-fluorouracil and camptothecin325. 

Treatment of neuroblastoma cell lines BE(2)-C and SY5Ywith GDNF or NRTN 

caused cells to grow at a more rapid rate compared to untreated cells. GDNF and NRTN 

also overcame the growth inhibitory effects of all-trans-retinoic acid (aRA) on BE(2)-C 

cells respectively, which expressed both RET and GFRα1. Furthermore, cytotoxicity 

assays showed that BE(2)-C cells treated with cytotoxic agent and GDNF demonstrated 
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enhanced cell growth at low concentrations of cisplatin, etoposide and vincristine. This 

ability of GDNF and NRTN to promote chemoresistance raised the possibility of a 

similar phenomenon in glioblastoma326. 

When the LN-229 cells were treated with BCNU at 40µg/ml concentration, the 

cellular survival on MTS assay were 31.7%, 41.0% and 52.1% for the group not pre-

treated with GDNF. For the group pre-treated with GDNF, the cellular survival on MTS 

assay were 71.4%, 77.9% and 79.1% respectively. This difference was statistically 

significant (P<0.05). The mean cellular survival on MTS assay in the group not pre-

treated with GDNF was 41.6% and 75.8% in the group pre-treated with GDNF. This 

difference was statistically significant (p<0.05). 

A similar trend was also noticed when the LN-229 cells were treated with BCNU 

at 50µg/ml concentration. The cellular survival on MTS assay were 14.0%, 30.6% and 

35.4% for the group not pre-treated with GDNF. For the group pre-treated with GDNF, 

the cellular survival on MTS assay were 50.8%, 56.2% and 57.2% respectively. This 

difference was statistically significant (P<0.05). The mean cellular survival on MTS 

assay in the group not pre-treated with GDNF was 26.7% and 54.7% in the group pre-

treated with GDNF. This difference was statistically significant (p<0.05). 

The same experimental protocol was replicated for glioblastoma cell line A172. In 

this cell line, GDNF also demonstrated very significant cellular survival in the presence 

of BCNU chemotherapy.  

When the A172 cells were treated with BCNU at 75µg/ml concentration, the 

cellular survival on MTS assay were 30.9%, 26.0% and 31.4% for the group not pre-

treated with GDNF. For the group pre-treated with GDNF, the cellular survival on MTS 
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assay were 61.0%, 58.3% and 68.0% respectively. This difference was statistically 

significant (P<0.05). The mean cellular survival on MTS assay in the group not pre-

treated with GDNF was 29.4% and 62.4% in the group pre-treated with GDNF. This 

difference was statistically significant (p<0.05). This ability to confer increased survival 

can be directly attributed to the chemoresistance property of GDNF as GDNF did not 

exhibit significant direct proliferative advantage in the control experiments. 

Significantly, when the exact experiments were repeated with NRTN pre-

treatment instead of GDNF pre-treatment, no significant survival advantage was detected. 

The results therefore demonstrate GDNF but not NRTN can confer cellular survival 

advantage to BCNU chemotherapy. This ability to confer chemoresistance is 

demonstrated in two different human glioblastoma cell lines: LN-229 and A172.   

The GDNF-family ligands (GFL) can therefore confer chemoresistance to BCNU 

chemotherapy in glioblastoma in a ligand-specific fashion. 

Lee et al investigated the differing effects of GDNF and NRTN in RET/GFRα1-

expressing cells in a specific cell line NG108-15, which endogenously expressed RET 

and GFRα1 but not GFRα2-4. Immunoblot data showed that GDNF caused a transient 

activation whereas NRTN caused a sustained activation of both p44/p42 MAP kinases 

and PLCγ. Under serum starvation, NG108-15 cells differentiate to form euritis. NRTN 

but not GDNF stimulated neurite overgrowth, which could be blocked by the selective 

PLC inhibitor U73122. On the other hand, GDNF but not NRTN promoted cell survival 

and this could not be blocked by the p44/p42 MAK kinase inhibitor PD98059. Activation 

of GFRα1 with different ligand can therefore result in differing biological responses327.   
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4.13  Signalling Mapping 

Combined modality treatment such as concomitant radiation and chemotherapy is 

frequently used in the treatment of cancers to improve overall efficacy of treatment. The 

combination of BCNU chemotherapy and radiation therapy in glioblastoma has however 

failed to produce any additive or synergistic effects observed in other tumour types. In 

vitro experiments have shown actual antagonistic effect between radiation and 

chemotherapy in three primary human glioblastoma cell lines (GBME3-5). Irradiation of 

the three cell lines from 2 to 10Gy followed by BCNU chemotherapy ranging from 10 to 

50µM in the presence of exogenous epidermal growth factor (EGF). Compared with cells 

treated with BCNU alone at virtually each BCNU concentration, the apoptotic index was 

significantly lower in the cells pre-treated by radiation compared with BCNU alone.  

Reversal of the sequential order by administering chemotherapy prior to radiation therapy 

showed similar findings demonstrating that this antagonistic effect between radiation and 

BCNU was present irrespective of the sequential order of administration. Elucidating the 

downstream pathways mediating this phenomenon showed that MAPK and PI3-K/Akt 

activities were up-regulated after either radiation or chemotherapy. Further, BCNU-

mediated stimulation of PI3-K/Akt via EGFR appears to most significantly increase 

resistance to radiation-induced apoptosis328. 

GDNF has been found to influence the migration and mitogenic behaviour of low-

grade gliomas. Treatment of low-grade Hs683 cells with GDNF significantly increased 

migration comparable to high-grade C6 cells. The molecular mechanism is mediated by 

the activation of JNK-1, ERK 1/2 and p38 MAPK. Treatment of Hs683 cells with 

60ng/ml of GDNF markedly activated JNK. A kinetic study of GDNF-induced JNK 
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activation showed that JNK was markedly activated within 30 min after GDNF treatment 

and returned to the basal level at 90 min. ERK 1/2 were activated at 10 min after GDNF 

treatment and the activated levels remained until 60 min. GDNF markedly increased the 

active form of p38 MAPK within 10 min, maximally activated at 30 min and decreased at 

60 min after the treatment311.   

In the light of the evidence, we examined the modulation of MAPK and Akt 

signaling pathways in glioblastoma cell lines. LN-229 and A172 human glioblastoma cell 

lines were stimulated with BCNU and GNDF and the experiments were studied at 0, 10, 

30, 60 and 180 mins respectively.  

Western blotting showed that BCNU induces activation of MAP kinases 

(ERK1/2, JNK and p38) in both LN-229 and A172 human glioblastoma cell lines. BCNU 

was however found to reduce the background activation of Akt in the A172 human 

glioblastoma cell line. 

GDNF was found to induce the activation of ERK1/2 and Akt in both LN-229 and 

A172 human glioblastoma cell lines. LN-229 cell line has a wild-type phosphatase with 

tensin homology (PTEN) gene. PTEN is a phosphatidylinositols(3,4,5)P3 (PIP3) 

phosphatase and negatively regulates the PI3-K/Akt pathway by converting PIP3 back to 

phosphatidylinositols(4,5)P2  (PIP2)332. GDNF is therefore able to activate Akt even in the 

presence of PTEN gene. 

GDNF was however found to reduce the background activation of JNK and the 

A172 human glioblastoma cell line in a time-dependent fashion. 

The ability of GDNF to promote Akt activity and inhibit JNK activity may 

contribute to the increased cellular survival to BCNU chemotherapy. The interplay of the 
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signaling pathways activated by BCNU and GDNF which result in cellular survival or 

death is summarised in Figure 21. 
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Figure 21: Diagram summarising the interplay between BCNU and GDNF stimulation 

pathways influencing survival and death pathways in GBM cell lines  
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CHAPTER 5 

FUTURE STUDIES 

GDNF was demonstrated in the above studies that it can promote mitogenic behaviour of 

glioblastoma. This is promoted by its ability to confer chemoresistance property to 

glioblastoma cells in the presence of conventional chemotherapy agent (BCNU). 

This finding has significant clinical implications as GDNF is ubiquitous in the 

central nervous system and glial tumours are therefore constantly exposed to and 

stimulated by GDNF. Significantly, the studies showed that only GDNF, but not NRTN, 

was able to confer chemoresistance. 

GDNF binds to specific GDNF-family receptor-α1 (GFRα1) co-receptor and 

activate RET. The GFRα1 receptor is linked to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) anchor.  

Cancer cells often acquire aberrant profiles of alternative spliced isoforms that 

can promote cell proliferation and invasion and inhibit apoptotic cell death. Spliced 

isoforms are also abundant in the GDNF-family receptor-α (GFRα). GFRα1 receptor 

exists in two highly homologous alternatively spliced isoforms: GFRα1a and GFRα1b262-

264. GFRα1b is identical to GFRα1a except for the absence of 5 amino acids 

(140DVFQQ144), encoded by exon 5. GFRα1b was found to be the predominant spliced 

isoform in the human glioblastoma samples and human glioblastoma cell lines in the 

study.  

Similar to GFRα1, GFRα2 is alternatively spliced into at least three isoforms 

(GFRα2a, GFRα2b and GFRα2c). When transfected Neuro2A cells were stimulated with 

GDNF and NRTN, both the GFRα2a and GFRα2c transfected cell lines, but not the 
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GFRα2b transfected cell line, promoted neurite outgrowth. GFRα2 isoforms were also 

demonstrated to regulate different early-response genes when stimulated with GDNF or 

NRTN. Furthermore, in coexpression studies, GFRα2b transfected cell line was found to 

inhibit ligand-induced neurite outgrowth by GFRα2a and GFRα2c319.  All these data 

taken together suggests that GFRα spliced isoforms regulate distinct biological functions. 

As GFRα1b is the predominant spliced isoform in glioblastoma cell lines and human 

samples and GDNF has been shown to confer chemoresistance in glioblastoma cells, it 

would be fascinating to examine the role of the spliced isoforms in conferring mitogenic 

behaviour. 

Post-transcriptional gene silencing (PTGS), which was initially a bizarre 

phenomenon thought to be limited to petunias and a few other plant species has now 

become one of the most important molecular techniques in biology. Most importantly, the 

emerging use of PTGS, particularly RNA interference (RNAi) as a tool to knockout or 

knockdown expression of specific genes can facilitate the study of the specific gene329-331.  

Future studies with RNAi to knockdown GFRα1a and GFRα1b specifically can 

potentially provide us with information on the precise roles of each spliced isoform with 

respect to mitogenesis. Investigation of the downstream signaling pathways with 

knockdown experiments will also provide important details on the differing signaling 

pathways involved. 
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APPENDICES 
 

 

Appendix 1 

CONSENT FOR USE OF BRAIN TUMOUR TISSUE FOR RESEARCH 

Background of project 

Astrocytomas are the most common primary brain tumours. They are classified into two 

broad groups: low-grade astrocytomas and high-grade astrocytomas. 

The biological behaviour can range markedly. Generally, low-grade astrocytomas 

are tumours that exhibit slow, progressive growth whereas high-grade astrocytomas tend 

to grow more rapidly. 

Many factors can influence this growth rate. One such factor is the influence of 

growth factors. There are numerous growth factors which have been shown to influence 

the behaviour of these tumours. Glial Cell-Line Derived Neurotrophic Factor (GDNF) is 

an important growth factor which has not been studied extensively. 

GDNF is produced in normal brain tissues. We believe that it is produced in 

excessive quantities in patients with astrocytomas and that the excessive levels of GDNF 

stimulate tumour growth.  

We hope that understanding the role of GDNF on tumour growth will allow us to 

understand tumour biology better and ultimately be able to develop new treatment 

strategies for the future. 
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How can you help? 

At the time of surgery, tumour tissue is removed. Some tissue is collected for histology 

and at times microbiological tests if indicated. These tests allow us to make an accurate 

diagnosis. Excess tissue is discarded. We hope to be able to use this tissue for our 

research. Only some of this tissue will be used for this research project and extra tissue 

will be stored in freezers. Should we require the tissue for future research projects, we 

will obtain consent from you again. 

The research data will be coded and your identity will not be revealed and your 

confidentiality maintained at all times.  

You can be assured that your care is the top priority. In situations where only 

small amounts of tissue are obtained, they will be sent for the relevant tests and not for 

research. We will not compromise on your care.  

 

What if I choose not to participate in the research project? 

Participation in this project is totally voluntary. Non-participation will not influence your 

care in any way and you will receive the same level of care as a patient who chooses to 

participate in the project. 

Who can I contact for more information? 

You can contact the following persons if you have any queries: 

Dr Ng Wai Hoe (Principle Investigator)  

Dr Yeo Tseng Tsai (Collaborator) 

Ms Emily Ang (Neuro-oncology Nurse Clinician) 

Contact Number: 63577191 
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I have read and understood the information regarding consent for the use of brain tumour 

tissue for research. I understand that: 

1. Participation in this research project is totally voluntary 

2. Only excess brain tumour tissue that will normally be discarded will be used for 

research 

3. My clinical care is the first priority and non-participation will not influence my 

care in any way 

I give consent for the use of any excess brain tumour tissue for research. 

 

 

 

___________________                                                            ___________________ 

        (Signature)                                                                               (Name/NRIC) 

     

I have explained the background and purpose of the research project to the patient 

and answered all queries. 

 

___________________                                                            ___________________ 

       (Signature)                                                                            (Name/Designation) 
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