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Summary 

Nasal polyposis (NP) is a chronic inflammatory airway disease, which represents 

severe infiltration of inflammatory cells (e.g. eosinophils and neutrophils), epithelial 

damage, and stromal edema. Although glucocorticosteroid (GC) treatment is effective 

in relieving NP inflammation, the high recurrence rate makes the etiology and 

pathogenesis of NP complicated. The results from our research group reported profiles 

of cellular infiltration in Asian NP. In this respect, this thesis focuses on the molecular 

mechanisms underlying the pathogenesis of Asian (especially Chinese) NP and its 

response to GC treatment. 

 

At first, we started to test the hypothesis of Staphylococcus aureus (S. aureus) and its 

superantigens in Asian NP. A low incidence rate of S. aureus was found in the studied 

NP and superantigens could not be found in all NP tissues, indicating no significant 

effects of S.aureus related superantigens in Asian NP.  

 

Secondly, we tried to find if some cancer related mechanism (methylation) would be 

involved in NP pathogenesis. This is based on the assumption that NP pathological 

features are somewhat similar to tumor growth, such as tissue hyperplasia and high 

recurrence rate. Although methylation of common tumor suppressor genes (TSGs) 

(CDH1, TSLC1, DAPK1, and PTPN6) was detected in NP, the frequency of gene 

methylation did not differ between NP and nasal mucosal controls, indicating the role 

of methylation of these TSGs appears to be minimal in NP. 

 

The first two studies came out with negative results which were not anticipated 

initially. For this reason, a systemic microarray analysis was used to identify novel 



 xi

gene markers and molecular pathways which underlie the NP pathogenesis and its 

response to GC treatment. Two sets of NP biopsies, i.e., before the initiation and after 

oral GC treatment, were taken from the same patient with bilateral NP. The inferior 

turbinate from patients with nasal septal deviation served as a nasal mucosal control. 

All subjects were Chinese. Histological results demonstrated that GCs had potent 

effects on epithelial repair and suppression of eosinophils. Pathway analysis revealed 

that alteration of AP-1 network, anti-inflammatory gene network, apoptosis signaling, 

complement system, EGF/EGFR signaling, Leukotriene signaling, PGE2 signaling, 

ERK/MAPK signaling, IL-6 signaling, and NF-kappaB signaling would be involved 

in the NP pathogenesis. AP-1/AP-1 related genes and their interactive networks were 

considered to be the central molecular evidence for the epithelial healing effect by 

GCs. GCs also regulated the expression of several important pro-/anti-inflammatory 

genes (e.g., MMPs, DUSPs, and SPRYs) and then performed the anti-inflammatory 

effects to control the inflammatory responses in NP. In addition, eosinophil- and 

neutrophil-associated genes were reviewed in array data based on literature reports 

and they were able to differentiate eosinophilia and neutrophilia in nasal samples. The 

pathological features of NP were also attributed to the change of other genes/gene 

families in NP, such as oxidant/antioxidant related genes, edema related genes, and 

mucin genes. 

 

In conclusion, we demonstrate the molecular profiles underlying the beneficial effects 

of GCs on NP and the histopathological patterns of NP. Identification of these genes 

and gene networks ultimately contributes to the knowledge of NP pathogenesis and 

improvement of NP therapy. 
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Chapter 1. Nasal Polyposis – a Multifactorial Chronic Inflammatory 

Disease (Literature review) 

 

1.1 Histopathology 

Nasal polyposis (NP) is a common inflammatory disease in upper airway. Nasal 

polyps are generally regarded as a benign mucosal swelling that arises from the 

middle meatus and ethmoid sinus and prolepses into the nasal cavity. In some cases, 

polyps also arise from the maxillary sinuses and from the middle and superior 

turbinates.  

 

In macroscopical appearance (Figure 1.1), nasal polyps are usually soft, lobular and 

mobile swellings, and have a smooth and shiny surface with a bluish-grey or pink 

translucent color. The cut surface is moist and pale but appears more pink or red if the 

polyp is more vascular. The polyp often has an elongated stalk and the polyp size 

varies from 2 to 3 cm in diameter.  

 

Figure 1.1 Gross view of nasal polyps. Picture was taken from the patient with NP under endoscope 

examination. 

 

The characteristic features of nasal polyps are large quantities of extracellular edema 
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and an inflammatory cell infiltrate consisting of mast cells, eosinophils, lymphocytes, 

neutrophils and plasma cells, with eosinophils often dominant. The epithelium of 

polyps is often damaged followed by aberrant remodeling (such as squamous 

metaplasia). Other characteristics of nasal polyps include proliferation of stromal 

elements, a thickening of the basement membrane, sparse blood vessels and few 

mucous glands lacking normal innervation.   

 

NP is categorized into four types based on the different histological patterns [Hellquist, 

1997]. The most common one is the edematous, eosinophilic polyp, which is 

characterized by edema, goblet cell hyperplasia of the epithelium, thickening of the 

basement membrane, and infiltration of numerous leukocytes, predominantly 

eosinophils. The second common type is the fibro-inflammatory polyp, which is 

characterized by squamous metaplasia of epithelium and intensive infiltration of 

lymphocytes, but lack of stromal edema and goblet cell hyperplasia. The less common 

polyp presents with pronounced hyperplasia of seromucinous glands but also shows 

extensive edema. The rarest type is a polyp with stromal atypia which contains 

atypical fibroblast-like cells without mitoses.  

 

1.2 Epidemiology 

In the general population, the prevalence of nasal polyposis (NP) ranges from 0.2% to 

4.3%, making it one of the most common chronic diseases of the upper respiratory 

system [Falliers, 1974; Hedman et al., 1999; Larsen and Tos, 1991; Mygind et al., 2000]. A far 

higher prevalence of NP was found at 32% from an autopsy study [Larsen & Tos, 2004]. 

The incidence of NP is higher in men than in women and increases with age [Larsen & 

Tos, 2002], while the frequency of NP is rare (about 0.1%) in children [Triglia & Nicollas, 
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1997]. There is lack of epidemiology data in Asian populations, and only one Korean 

group reported that the incidence of NP in Korea was 0.5%, based on a nationwide 

survey of 10,054 subjects [Min et al., 1996]. Whether there is any difference in the 

prevalence among various population groups is not clear.  

 

NP is usually associated with chronic rhinosinusitis, aspirin intolerance, asthma, and 

cystic fibrosis:  

 

(1) NP and chronic rhinosinusitis (CRS) 

Chronic rhinosinusitis (CRS) is a common disease closely associated with NP. The 

percentage of CRS in patients with NP has been reported to range from 65% to 90% 

[Bunnag et al., 1983; Slavin, 1988]. In addition, a higher incidence rate of CRS in patients 

with NP was reported in Asians, compared to Caucasians [Tan et al., 1998]. Although 

CRS almost always coexists with NP, only about 20% of the patients with CRS 

develop NP [Settipane, 1996]. Accumulated evidence has shown that CRS with NP and 

CRS without NP actually are two different disease entities [Polzehl et al., 2006; Van Zele et 

al., 2006], while it is still not clear whether CRS predisposes for NP or results from it.  

 

(2) NP and aspirin intolerance 

NP is commonly found in aspirin intolerant patients, who are manifested by acute 

bronchospasm and rhinorrhea within 3 hours after injection of aspirin. The reported 

incidence rate of NP in patients with aspirin intolerance varies from 36% to 95% 

[Larsen, 1996]. Samter described the triad of NP, aspirin intolerance and asthma, which 

was so called “Samter’s syndrome” [Samter & Beers, 1968]. The triad seems to develop 

in a time sequence: asthma usually occurs first followed by aspirin intolerance within 
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one year, while NP occurs within the next 10 years of asthma onset [Settipane, 1986].  

 

(3) NP and asthma 

Asthma is a chronic respiratory disease which is characterized by bronchoconstriction 

in response to various stimuli, including allergen, cold air, moist air, exercise and 

emotional stress. NP was found in 13% of non allergic asthma and only 5% of allergic 

asthma [Settipane, 1977], suggesting that non allergic asthma was most commonly 

associated with NP. In addition, one French study reported that the prevalence of 

asthma in patients with NP was as high as 45% in 224 cases without relevant sex 

difference [Rugina et al., 2002].  

 

(4) NP and cystic fibrosis (CF) 

Cystic fibrosis (CF) is a hereditary disease that mainly affects the respiratory and 

digestive system, causing progressive disability and early death. CF is one of the most 

common life-shortening, childhood-onset inherited diseases, especially in Caucasians. 

Patients with CF have a high frequency of NP, ranging from 20% to 37% [Settipane, 

1996; Hadfield et al., 2000]. In addition, it has been reported that 50% of the patients with 

nasal polyps aged 16 or younger had CF [Schramm, 1980], indicating children with 

nasal polyps need to be evaluated for CF.  

 

1.3 Anatomy 

The nasal cavity and nasal sinuses have important physiological functions: airflow 

ventilation, olfaction, sensation, filtration, warming and humidifying, and immunity 

[Jones, 2001]. The nasal cavity is divided sagittally into left and right halves by the 

nasal septum. The roof of the nasal cavity is the cribriform plate, separating it from 
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the anterior cranial cavity. The inferior wall is the palate which separates the nasal 

cavity from the oral cavity. The superior, middle, and inferior turbinates (also called 

concha) form the lateral wall as horizontal projections, where the superior, middle and 

inferior meatus line below the respective turbinate (Figure 1.2). They are considered 

to be the main nasal passages.   

 

Figure 1.2 Lateral wall of the nose. Superior, middle and inferior turbinates are shown. (Picture source: 

http://training.seer.cancer.gov/ module_anatomy/ images/ illu_nose_nasal_cavities.jpg) 

 

There are four nasal sinuses: the frontal, sphenoidal, maxillary and ethmoidal sinuses. 

The maxillary sinus, anterior ethmoidal and frontal sinuses all drain into the middle 

meatus via the ostiomeatal complex (OMC). OMC is important, because obstruction 

here by inflammation and swelling due to some pathological conditions (e.g. allergy, 

infection, anatomical variants and nasal polyps) will interfere with the drainage and 

aeration of these three sinuses.  

 

The middle meatus and ethmoids have been considered the important region where 

most NP and sinusitis develop. Messerklinger described his nasal endoscopic findings 

on the pathophysiologic roles of this area: when the mucosal surfaces from middle 
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meatus and ethmoids contact directly, localized disruption of the mucociliary 

clearance occurs, resulting in retention of secretions in the surface contact, preventing 

or slowing drainage, predisposing the patient to infection and leading to inflammation 

and edema [Messerklinger, 1978].  

 

From the ultrastructure view: (i) the nasal lining consists of a pseudostratified 

columnar ciliated mucous membrane which is continuous with the sinuses and 

pharynx; (ii) one third of the anterior nasal cavity is covered by epithelium which has 

a typical airway structure. The normal nasal epithelium comprises the columnar 

ciliated cells, goblet cells and basal cells. Under the epithelium is the basement 

membrane which is a layer of collagen fibrils. The nasal submucosa (lamina propria) 

is a loose connective tissue, containing blood vessels, submucosal glands and various 

cell types, such as macrophage, fibroblast, lymphocyte and plasma cell. In the 

pathological condition, the number and status of the host cells in nasal 

mucosa/submucosa may change, and increase of the infiltration of some inflammatory 

cells (e.g. neutrophils and eosinophils) will occur.  

 

1.4 Pathogenesis 

Although the pathogenesis of NP is poorly understood, several hypotheses underlying 

the mechanisms of NP have been proposed in recent decades, including 

environmental factors, genetic predisposition, allergy, local nasal allergy, 

microorganisms, chemical mediators, deregulation of fluid and electrolyte transport, 

and epithelial rupture theory. 

 

1.4.1 Environmental factors 



 7

Since nasal mucosa is exposed to a variety of environmental allergen, pollutants, and 

microbes, the role of environmental factors in the etiology of NP have been proposed. 

NP has been suggested to be associated with aeroallergen hypersensitivity [Asero & 

Bottazzi, 2001]. NP patients exposed to noxious inhalant pollutants were significantly 

associated with NP occurrence [Pimentel, 1995]. Moreover, an association between the 

use of a woodstove as a primary source of heating and the development of NP was 

also reported [Hanley and Kim, 2002]. 

 

1.4.2 Genetic predisposition 

Some epidemiological evidence supports the genetic factors on NP: (i) Drake-Lee 

reported the development of NP in identical twins [Drake-Lee, 1992]; (ii) high rates of 

NP (52.6%) and asthma (43.6%) have been reported in the family history of patients 

affected with NP [Rugina, 2002]. However, evidence is still lacking for a genetic basis 

for this. 

 

Human leukocyte antigen (HLA) genetic patterns have been reported in NP: (i) 

Moloney et al. reported a higher incidence of HLA-A1/B8 in 29 patients with NP and 

asthma, but not the patients with NP alone [Moloney & Oliver, 1980]; (ii) a significant 

association was found between HLA-A74 and NP [Luxenberger et al., 2000]; (iii) 

Molnar-Gabor et al. showed that HLA-DR7-DQAI*0201 and –DQBI*0202 haplotype 

had two to three times higher odd ratios in patients with NP compared to controls 

[Molnar-Gabor et al., 2000]. Moreover, the mutation of the cystic fibrosis transmembrane 

regulator (CFTR) gene was reported in few patients with NP but without cystic 

fibrosis, however the vast majority of patients with NP do not have inactivation of the 

CFTR gene [Irving, 1997].  
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In the recent literature, some studies were able to show linkage of certain phenotypes 

of NP to candidate gene polymorphisms. Karjalainen et al. reported that subjects with 

a single G-to-T polymorphism in exon 5 at +4845 of the gene encoding IL-1alpha 

(IL-1A) were found to have less risk of developing NP as compared to subjects with 

common G/G genotype [Karjalainen et al., 2003]. In another study, polymorphism of IL-4 

(IL-4/-590 C-T), a potential determinant of IgE mediated allergic disease, was also 

found to be associated with a protective mechanism against NPs in the Korean 

populations [Yea et al., 2006]. In addition, asthma-related Argl6gly polymorphism of the 

beta2-adrenoceptor gene (ADRBeta2) was found to be associated with an increased 

risk of nasal polyposis [Bussu et al., 2007]. 

 

1.4.3 Allergy 

Allergy has been assumed to be the underlying cause of NP because of three factors: 

(i) presence of eosinophilia; (ii) association with asthma; (iii) allergic symptoms and 

signs, such as high levels of IgE, mast cell degranulation, and high recurrence rate.  

 

However, there is still much evidence to support the association between allergy and 

NP. Park et al. found that allergen-induced in vitro release of 

granulocyte-macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-8 

from NP tissue in atopic subjects and these mediators were associated with increased 

eosinophil survival [Park et al., 1997]. In Thailand, Pumhirun et al. reported that the 

incidence rate of positive skin prick test was 40% (24 out of 40) in patients with NP, 

while 20% (6 out of 30) in the control group [Pumhirun et al., 1999]. Asero and Bottazzi 

found 40% (8 out of 20) of patients with NP showed skin reaction to Candida 
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albicans, a common commensal mold of the upper airway tract [Asero and Bottazzi, 

2000]. Asero et al. also found that 70% (30 out of 43) of the patients with NP who 

were tested positive in the skin prick test seemed to be sensitive to perennial airborne, 

compared to 19% (215 out of 1128) of the controls with respiratory allergy, 

suggesting that perennial airborne allergens may play a relevant role in the NP [Asero 

and Bottazzi, 2001].  

 

It has been suggested that food allergy may have a possible role in the pathogenesis of 

NP although evidence for this is limited. Pang et al. reported that 81% (65 out of 80) 

of NP patients showed positive intradermal test results relating to food allergy, while 

only 11% (4 out of 36) of control subjects were positive to food allergy test [Pang, 

2000]. Another study showed that 31% of NP patients gave a history of food or drug 

allergy [Rugina et al., 2002]. Because the food allergy studies in NP are mostly based on 

clinical trials, its role need to be further investigated in molecular and cellular levels.  

 

1.4.4 Microorganisms 

Several types of microorganisms have been investigated to determine their role in NP. 

Some old studies have found that the nasal cavity is normally colonized with some 

non-pathogenic bacteria: (i) Calenoff et al. showed that 59 out of 61 NP patients 

exhibited positive serum IgE to at least one out of 11 bacteria tested [Calenoff et al., 

1983]; (ii) Dunnette et al. reported that multiple aerobic bacterial species occurred in 

NP from patients with asthma more frequently than in those from patients without 

asthma, and the number of bacteria was related to the number of infiltrating 

neutrophils [Dunnette et al., 1986]; (iii) Daws et al. showed that pus cells and bacteria 

were found in 16% of sinus irrigations [Dawes et al., 1989].  
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Recent studies have suggested the role of superantigens secreted by Staphylococcus 

aureus (S. aureus), which may contribute to the pathogenesis of NP [Bachert et al., 2008]. 

Superantigens are defined as toxins of bacterial or viral origin that are able to 

cross-link antigen presenting cells (APCs) and T-lymphocytes by binding to the major 

histocompatibility complex class II (MHC II) on APCs and the TCRs on 

T-lymphocytes. The recognition of superantigens is generally not MHC restricted and 

unprocessed superantigens directly bind to the conserved amino acid residues that are 

outside the peptide-antigen binding groove. Such special cross-inking characters 

results in an extreme polyclonal activation of CD4 and CD8+ T cells. S. aureus 

produces a large variety of enterotoxins, including S. aureus enterotoxins (SEs) A to E, 

G to I, and TSST-1 (toxic shock syndrome toxin-1), which act as superantigen 

function and activate large subpopulations of T cells, B cells, and other 

pro-inflammatory cells.  

 

Van Zele et al. presented some interesting results about superantigens in NP [Van Zele 

et al., 2004]: (i) coagulase-positive S. aureus colonization in the middle meatus is 

higher in patients with NP (64%) compared to patients with chronic sinusitis (27%) 

and healthy controls (33%); (ii) the potential to produce enterotoxins was also parallel 

with the S. aureus colonization rates in NP; (iii) tissue concentrations of specific IgE 

against S. aureus enterotoxins were higher in the NP patients with aspirin intolerance 

and asthma, compared to those with NP only; (iv) the infiltration of eosinophils and 

concentration of total IgE in tissues were also significantly increased in samples with 

the presence of specific IgE to enterotoxins. Moreover, there is also some evidence 

that S. aureus superantigens play a role in the induction of Th2 cytokines like IL-4 
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and IL-5 [Bachert et al., 2008]. These results indicate that NP with local overproduction 

of IgE, eosinophilia, and Th2 shift may represent an allergic phenomenon originated 

from S. aureus derived superantigens. 

 

Other than bacteria, it has been suggested that viruses may be involved in the 

pathogenesis of NP, such as the Influenza A virus [Ginzburg et al., 1982] and the 

Epstein-Barr virus [Tao et al., 1996]. However, these opinions are not of any interest, 

mostly because viruses were found in both healthy individuals and NP patients.  

 

1.4.5 Cellular components 

Two major cell types have been determined in NP: infiltrated inflammatory cells and 

structure-related cells. Traditionally, the inflammatory cells including eosinophils, 

lymphocytes, mast cells, plasma cells and neutrophils were considered the major 

sources of inflammatory chemical mediators. However, there is a growing awareness 

that structure-related cells including epithelial cells, endothelial cells and fibroblasts 

have also been seen as active participants in the interaction with other inflammatory 

cells as well as the release of various mediators, but not just passive barrier lining. 

The crosstalk between these different cell populations and various mediators 

ultimately contribute to the complicated pathogenesis of NP. 

 

1.4.5.1 Lymphocytes 

Lymphocytes play a central role in adaptive immunity. T helper 1 (Th1) cells 

stimulate phagocyte-mediated defense against infections, T helper 2 (Th2) cells 

stimulate IgE and eosinophil/mast cell-mediated immune reactions, and cytotoxic T 

cells recognize and kill target cells expressing foreign peptide antigen in association 
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with class І MHC molecules. T lymphocytes were often prominent over B 

lymphocytes [Liu et al., 1994]. Bernstein et al. reported that nasal polyps were found to 

have more lymphocytes than the inferior turbinates [Bernstein et al., 1997]. In contrast, 

Linder et al. reported that the relative proportion and spatial distribution of T and B 

lymphocytes were similar with regards to both NP and normal mucosa from 

disease-free controls [Linder et al., 1993]. The findings of helper T cells (CD4+) and 

cytotoxic T cells (CD8+) were also controversial. Liu et al. demonstrated that staining 

of CD4+ T cells were present in greater numbers than CD8+ T cells in NP [Liu et al., 

1994]. However, Stoop et al. reported that more CD8+ T cells than CD4+ T cells were 

found in the NP [Stoop et al., 1989]. In addition, our previous study showed significantly 

higher levels of CD8+ T cells and an inverse median ratio of CD4+/CD8+ T cells 

were found in nasal polyps compared to the middle turbinates from controls [Hao et al., 

2006]. It has been suggested that the cytokine pattern in NP assumes neither a Th1 nor 

Th2 type predominance, because IL-5, IL-5 and IFN-gamma have all been shown to 

be up-regulated in NP, without influence of the atopic status [Bachert et al., 2002]. One 

most recent study has indicated that a dysfunction of T regulatory cells may contribute 

to severe inflammation in NP tissues due to a decreased expression of forkhead box 

P3 (FOXP3) [Van Bruaene et al., 2008]. 

 

1.4.5.2 Eosinophils 

The activated infiltrating eosinophils produce a large amount of granule-associated 

toxic proteins, such as eosinophilic cationic protein (ECP), major basic protein (MBP) 

and eosinophil peroxidase (EPO), causing cellular injury and tissue damage. There is 

recognition that the accumulation of eosinophils into a tissue site involves a number 

of events, including (i) differentiation of bone marrow progenitors into functionally 
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mature cells; (ii) rolling, adhesion and migration through the endothelium; (iii) 

chemotaxis, activation and survival within the tissue [Rothenberg, 1998]. Several studies 

have indicated that cytokines (e.g. IL-3, IL-5, and IL-13) [Allen et al., 1997], 

chemokines (e.g. eotaxin, RANTES and CCL24) [Olze et al., 2006], growth factors (e.g. 

GM-CSF) [Allen et al., 1997], leukotrienes [Parnes et al., 2002], adhesion molecules (e.g. 

integrins, VCAM1 and ICAM1) [Kupczyk et al., 2006] and other regulatory factors may 

participate in the eosinophil infiltration in NP.  

 

It is widely accepted that eosinophils are a hallmark of allergy. Bachert et al. found 

significantly more eosinophilic infiltration in NP containing high total IgE tissue 

concentrations and these high total IgE levels were more frequently found in 

asthmatic and aspirin-intolerant NP patients [Bachert et al., 2001]. However, in 

non-asthmatic and aspirin tolerant NP patients, the resulting eosinophilic infiltration 

appears to be the same for both atopic and non-atopic NP. Therefore, it remains 

unknown what causes the primary recruitment of eosinophils to the site of nasal 

polyps; to investigate the cellular sources of those inflammatory mediators should be 

helpful to clarify the mechanism of eosinophilia in NP. 

 

1.4.5.3 Neutrophils 

Increase of neutrophils has been commonly found in bacterial infectious disease. 

Studies of neutrophil infiltration in NP remain controversial, i.e., high infiltration in 

NP [Takasaka et al., 1986] as opposed to lack of difference between NP and controls 

[Fujisawa et al., 1990]. The correlation between neutrophil infiltration and bacteria count 

in NP has been reported [Dunnette et al., 1986]. Some mediators (e.g. IL-8, GM-CSF and 

ICAM) have been reported to regulate the recruitment and survival of neutrophils in 
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NP [Demoly et al., 1998; Takeuchi et al., 1995; Vancheri et al., 1991]. Furthermore, the 

relationship between neutrophils and other inflammatory cells in nasal polyps has also 

been documented. A significant correlation was identified between neutrophil 

elastase+ cells and activated mast cells or eosinophils [Park et al., 1997]. Neutrophil 

elastase may contribute to tissue inflammation and remodeling by inducing the 

expression of secretory leukocyte protease inhibitor [Marchand et al., 1997]. 

 

1.4.5.4 Mast cells 

Mast cells are known to play a key role in IgE-mediated diseases, but they are also 

involved in non-IgE-mediated inflammatory diseases. Mast cells can be detected in 

the stroma as well as the epithelium of nasal polyps. The level of mast cells in NP was 

higher than that in the sinus mucosa from patients with sinusitis and the middle 

turbinate mucosa from patients with allergic rhinitis [Otsuka et al., 1993]. Mast cells in 

NP produce a variety of cytokines such as Il-4, IL-5, Il-6, Il-13, GM-CSF and IL-8 

[Pawankar, 2003]. In addition, mast cell mediators like histamine and tryptase are able to 

up-regulate the release of RANTES and GM-CSF from epithelial cells and fibroblasts 

in NP, indicating a vicious cycle that further promote eosinophilia in NP [Pawankar, 

2003].  

 

1.4.5.5 Epithelial cells 

In NP, epithelium is both an active player and a “passive” target in the pathology. It 

plays a central role in the interaction with eosinophils and myfibroblasts. Epithelial 

damage caused by inflammatory mediators can trigger aberrant epithelial remodeling 

processes in NP, causing hyperproliferation of epithelial cells and squamous 

metaplasia. During this process, epithelial cells would release various molecules (e.g. 
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TGF-beta, EGF, VEGF, GM-CSF, eotaxin and RANTES) which are related to growth, 

differentiation, migration, and activation, and then such anti-apoptotic 

microenvironment further promote the infiltration of eosinophils and survival of 

myofibroblasts [Devalia & Davies, 1993; Mullol et al., 1995; Shin et al., 2003]. 

 

1.4.5.6 Fibroblasts/Myofibroblasts 

Myofibroblasts are an activated phenotype of fibroblasts and are involved in wound 

repair and tissue differentiation in non-pathological circumstances [Serpero et al., 2006]. 

Myofibroblasts are atypical stromal cells that play a crucial role in the pathological 

tissue changes seen in both NP and asthma. In NP, myofibroblasts produce large 

amounts of extracellular matrix molecules, such as collagens (type I, III, IV and VIII) 

and fibronectin, which would contribute to the stromal fibrosis [Beju et al., 2004]. The 

fibrosis in NP seems to represent an unchecked and deranged tissue repair since the 

myofibroblasts do not go into apoptosis [Zhang et al., 1999], and consequently it may 

promote the growth of NP. It has been suggested that some growth molecules secreted 

by eosinophils or epithelial cells may cause uncontrolled proliferation and survival of 

myofibroblasts [Elovic et al., 1994].  

 

1.4.6 Molecular and chemical mediators  

The molecular and chemical mediators (e.g., peptides, proteins, amines, or lipids) 

released from the inflammatory/structural cells contribute to the complicated 

inflammatory signaling networks and appear to be important in the development of 

NP. In recent decades, most of the NP studies have focused on the molecular evidence 

in NP. 
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1.4.6.1 Histamine 

Histamine is released primarily by mast cells after activation by IgE or other 

histamine releasing factors. Recent study showed that histamine content in NP and 

normal nasal mucosa did not differ, but histidine decarboxylase (histamine 

biosynthesis enzyme) was elevated in NP tissue and histamine-N-methyltransferase 

(histamine degradative enzyme) activity was enhanced in NP compared to the control; 

hence, histamine metabolism seems to be increased in NP [Jokuti et al., 2004]. Another 

report showed that histamine H4 receptor was elevated in NP and associated with the 

eosinophil infiltration [Jokuti et al., 2007]. In addition, former study showed that the 

level of histamine was higher in NP patients with allergy than in those with aspirin 

intolerance, due to the difference in histamine-N-methyltransferase activity [Ogino et al., 

1993].  

 

1.4.6.2 Arachidonic acid metabolites 

Arachidonic acid (AA) is the precursor of a family of chemical mediators. Two main 

pathways exist: the lipoxygenase pathway synthesizing hydroxyeicosatetraenoic acids 

(HETEs), lipoxins (LX), and cystinyl-leukotrienes (cysLTs); the cyclooxygenase 

pathway producing prostaglandins (PGs), thromboxanes, and prostacyclin.  

 

Abnormalities of AA metabolism may be related to the chronic inflammation of NP, 

especially those with aspirin intolerance. The major AA metabolite in NP is 15-HETE, 

which was found in a higher level in NP compared to normal nasal mucosa [Jung et al., 

1987]. 5-Lipoxygenase (5-LO) is the key enzyme which can convert 15-HETE to 

Lipoxin A4 and Lipoxin B4, and consequently perform vasodilation effects during 

inflammatory progression. Both 5-LO and Lipoxin A4 were increased in NP 
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[Perez-Novo et al., 2005].  

 

cysLTs have profound effects on airway function by inducing airway smooth muscle 

contraction, vasodilatation, and vascular permeability and altering the remodeling 

process in asthma [Funk et al., 2001; Holgate et al., 2003]. All of the cysLTs have been 

found in NP tissue: LTE4 was frequently identified in nasal lavage [Salari et al., 1986]; 

both LTB4 and LTC4 was found in higher concentration in NP [Jung et al., 1987], and the 

level of LTB4 is higher in NP from allergic patients than non-allergic ones [Ogino et al., 

1993]; LTC4 and LTD4 are predominant in NP patients with aspirin intolerant asthma 

[Yamashita et al., 1989].  

 

NP contains detectable levels of PGD2 and PGE2. PGE2 has been proposed to reduce 

cysLTs synthesis [Szczeklik et al., 1997], and its production has been found lower in NP 

[Mullol et al., 2002], especially in aspirin intolerant patients [Picado et al., 1999]. PGD2 has 

been proposed to prolong eosinophil survival [Monneret et al., 2001], and its production 

was increased in NP and was positively correlated with eosinophil accumulation [Hyo 

et al., 2007].  

 

1.4.6.3 Granular proteins 

The non-enzymatic, performed granular proteins of eosinophils include eosinophil 

cationic protein (ECP) and major basic protein (MBP). Two types of ECP have been 

identified: non-secretory form and secretory form, and both have been found in 

greater amounts in NP tissues than in healthy nasal mucosa [Stoop et al., 1993]. Nasal 

lavage from patients with NP contained more ECP than that from patients without NP, 

but levels did not change with seasonal allergen exposure [Keith et al., 1994]. MBP has 
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also been found in mast cells in NP, suggesting the sequestration of MBP in mast cells 

[Butterfield et al., 1990]. The amount of MBP present in NP tissues has been positively 

correlated with the degree of epithelial damage [Fujisawa et al., 1990].  

 

1.4.6.4 Interleukins 

Interleukins (ILs) are a family of mediators released by a number of inflammatory and 

non-inflammatory cells. IL-1 (alpha and beta) was found primarily in mononuclear 

leukocytes, but not commonly in polymorphonuclear cells [Liu et al., 1993]. IL-3 

expression was elevated in NP tissues compared to controls, and the level of IL-3 was 

associated with eosinophil infiltration [Allen et al., 1997]. IL-4 was localized in 

eosinophils[Nonaka et al., 1995], and it regulated eotaxin-2/CCL24 (potent eosinophil 

attractant) production in a dose-dependent manner [Lezcano-Meza et al., 2003], 

suggesting IL-4 perform an indirect effect on eosinophil infiltration in NP.  

 

IL-5, a key cytokine for the maturation and activation of eosinophils, was found to be 

significantly increased in NP compared to controls [Bachert et al., 1997]. IL-5 expression 

was correlated with the degree of eosinophilic inflammation in NP [Allen et al., 1997] 

and anti-IL-5 treatment induced eosinophil apoptosis in NP tissue homogenates in 

vitro [Simon et al., 1997]. In addition, IL-5 receptor alpha subunit, which transduces IL-5 

signal to the nucleus of the target cells, was significantly up-regulated in NP versus 

the control [Gevaert et al., 2003].  

 

IL-8 is a chemokine produced by macrophages and other cell types such as epithelial 

cells. Mullol et al. showed that epithelial cells from NP released more IL-8 than those 

from healthy nasal mucosa, and IL-8 was reduced in NP after dexamethasone 
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treatment [Mullol et al., 1995]. Furthermore, allergen-induced in vitro release of IL-8 

from NP tissue in atopic individuals was associated with increase of eosinophil 

survival [Park et al., 1997]. IL-13 is an important mediator of allergic inflammation and 

GC treatment can reduce IL-13 expression in NP [Hamilos et al., 1999]. However, there 

is no evidence to support the up-regulation of IL-13 in NP.  

 

1.4.6.5 Growth factors 

Several growth factors appear to be involved in the pathogenesis of NP. Colony 

stimulating factors (CSFs) have been found to be important in proliferation and 

differentiation of granulocyte precursors. They are classified depending on different 

stimulated cells: macrophages (M-CSF), granulocytes (G-CSF), and both granulocyte 

and macrophages (GM-CSF). They are released from macrophages and lymphocytes, 

as well as from epithelial cells, endothelial cells, eosinophils, and fibroblasts in NP 

tissues. 

 

GM-CSF is supposed to be the primary growth factor in NP. GM-CSF staining was 

stronger in NP subepithelium than in normal mucosa and the number of GM-CSF 

staining cells was correlated strongly with the number of activated eosinophils [Ohno 

et al., 1991]. Both non-allergic and allergic NP presented large numbers of GM-CSF 

immunoreactive cells, but healthy nasal mucosa did not [Hamilos et al., 1998]. Fibroblast 

and epithelial cells cultured from NP tissues produced significantly higher levels of 

GM-CSF in their supernatants compared to those from inferior turbinate tissues 

[Ohtoshi et al., 1991; Vancheri et al., 1991]. In addition, conditioned media from NP derived 

cell lines has been used to study the roles of GM-CSF. Epithelial cells from NP tissue 

survived and proliferated better than normal tissue in vitro [Otsuka et al., 1987]. The 
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conditioned media from NP tissues induced differentiation of monocytes and 

neutrophils to a greater level than media from controls [Ohtoshi et al., 1991]. 

Supernatants of epithelial cells and fibroblasts increased eosinophil survival and 

activation, and this effect was abrogated by antibody to GM-CSF [Gauldie et al., 1994; 

Xaubet et al., 1994]. 

 

Transforming growth factor beta (TGF-beta) is another growth factor important for 

inducing fibroblast proliferation, and the increased stromal fibrosis seen in NP may be 

due to the increased expression of TGF-beta [Elovic et al., 1994]. Eosinophils are an 

important source of TGF-beta, suggesting that eosinophils could enhance their 

infiltration via TGF-beta regulation [Elovic et al., 1994]. Vascular endothelial growth 

factor (VEGF) which is important for inducing angiogenesis and edema was reported 

to be increased in NP and was further up-regulated by TGF-beta [Coste et al., 2000]. 

However, other studies showed that TGF-beta could inhibit the synthesis of IL-5 and 

abrogate the survival of eosinophils [Alam et al., 1994], and the expression of TGF-beta 

was higher in chronic rhinosinusitis than in NP [Watelet et al., 2004].  

 

Fibroblast growth factors (FGF) constitute a family of at least nine heparin-binding 

polypeptide growth factors, which may promote stromal fibrosis and the proliferation 

of endothelial and epithelial cells. Up-regulation of both acidic FGF (aFGF) and basic 

FGF (bFGF) was found in NP compared to nasal turbinates [Kim et al., 2006], and GCs 

may decrease bFGF levels in NP [Yariktas et al., 2005]. However, the mRNA level of 

aFGF and bFGF was lower in NP than healthy nasal mucosa, while mRNA level of 

keratinocyte growth factor (KGF or FGF-7) was higher in NP compared to nasal 

mucosa [Ishibashi et al., 1998].  
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Other growth factors have been reported to be involved in the cellular proliferation in 

NP. Insulin-like growth factor I (IGF-I) was present in high concentrations in NP 

tissues, but in low level in adjacent control nasal mucosa [Petruson et al., 1988]. 

Platelet-derived growth factor (PDGF) and proliferating cell nuclear antigen (PCNA) 

were also up-regulated in NP compared with controls [Coste et al., 1996].  

 

1.4.6.6 Chemokines 

Chemokines are a family of low molecular weight cytokines that stimulate leukocyte 

movement and regulate the migration of leukocytes from the blood to tissues. Some 

inflammatory chemokines are important in recruiting monocytes, neutrophils, and 

eosinophils into NP tissues.  

 

The CC-chemokine eotaxin has been considered to play a key role in tissue 

eosinophilia in NP [Bartels et al., 1997; Shin et al., 2000]. Olze et al. showed that not only 

eotaxin, but also eotaxin-2 and eotaxin-3 were increased in NP tissues compared to 

healthy turbinate tissues, and all eotaxin family members were positively correlated 

with eosinophil infiltration [Olze et al., 2006]. Another CC-chemokine, RANTES was 

found to be stained more intensively in NP than in healthy controls [Beck et al., 1996], 

and was found to be increased in eosinophilia NP tissues compared to those without 

tissue eosinophilia [Meyer et al., 2005]. Some monocyte chemotatctic proteins (MCP-3 

and MCP-4) have been also considered potent eosinophil chemoattractants [Bartels et 

al., 1997; Woodworth et al., 2004]. These chemokines bind to chemokine receptor 3 (CCR3) 

and then recruit eosinophils in NP, therefore, antagonism of CCR3 could have a 

therapeutic role in this disease.  
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1.4.6.7 Adhesion molecules 

Adhesion molecules are membrane proteins which regulate cell to cell interaction. An 

early study demonstrated that intercellular adhesion molecule 1 (ICAM-1), E-selectin 

and P-selectin were expressed in NP endothelium and contributed to eosinophil 

adhering and rolling through the endothelium [Symon et al., 1994]. Jahnsen et al. 

reported that both the number of eosinophils and the proportion of vessels positive for 

vascular cell adhesion molecule 1 (VCAM-1) were significantly increased in NP 

compared with the turbinate mucosa of the same patients [Jahnsen et al., 1995]. 

Moreover, the ligand of VCAM-1 on the peripheral blood eosinophils is very late 

antigen 4 (VLA-4), and both VCAM-1 and VLA-4 were significantly increased in NP 

patients with aspirin intolerance than those with aspirin tolerance [Kupczyk et al., 2006].  

 

1.4.6.8 Neurotransmitters 

Neurotransmitters, released from autonomic and sensory nerves, may contribute to 

airway inflammation via their effects on the immune system and respiratory glands, 

particularly if their metabolism is impaired. Neuropeptide Y (NPY) and vasoactive 

intestinal peptide (VIP) were predominantly found around the thick wall vessels and 

in close proximity to the submucosal glands in NP tissues, respectively [Fang et al., 

1994]. Substance P was not found in NP [Fang et al., 1994] and poor response of 

substance P to capsaicin stimulation was present in nasal secretions of the patients 

with NP [Gungor et al., 1999]. A recent study showed that brain derived neurotrophic 

factor (BDNF), a neurotrophin which up-regulates neuropeptide production, was 

expressed at a higher level in epithelial cell cultures from NP than those from middle 

turbinates and BDNF was increased in response to pro-inflammatory cytokine 
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stimulation [Jornot et al., 2007]. However, dipeptidyl peptidase (DPPIV), the enzyme 

which degrades neuropeptides, was expressed at a similar level between NP and 

control [Jornot et al., 2007].  

 

1.4.7 Deregulation of fluid and electrolyte transport 

The large quantity of extracellular fluid (edema) in NP may suggest the abnormal 

regulation of fluid and ion channel properties. This mechanism has been supported by 

several studies: (i) increased expression of VEGFs would promote the vascular 

permeability and angiogenesis in NP [Coste et al., 2000]; (ii) the CFTR protein is an 

active chloride pump that plays a crucial role in fluid homeostasis, and evidence has 

been shown that this protein was mutated in NP with cystic fibrosis (CF) [Noone et al., 

2001], and it was also expressed in a low level or located abnormally in epithelium of 

non-CF NP [Jang et al., 2001]; (iii) increased voltage and short circuit current was found 

in cell cultures from NP as compared to those from turbinate tissues, indicating a 

significant increase in absorption of sodium ion [Bernstein et al., 1997]. These interesting 

findings suggest that the micro inflammatory environment in NP would cause 

abnormal bioelectric properties, and then result in the increased movement of water 

into the interstitial fluid in NP.  

 

1.4.8 Epithelial rupture theory 

Larsen et al. proposed the epithelial rupture theory which may explain the early stages 

of NP formation [Larsen et al., 1991; Larsen et al., 1992]: (i) polyp formation starts with 

epithelial damage, necrosis, and rupture due to tissue pressure by inflammatory edema 

and infiltrated lamina propria; (ii) lamina propria protrudes through the epithelial 

defect and the mucosa tends to cover it by migration of the epithelium from the edges 
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of the defect; (iii) the prolapse of the lamina propria undergoes epithelialization, and 

the vessel stalk will be established; (iv) tubulous glands are formed; (v) polyp 

enlarges due to gravity with elongation of the glands; (iv) the epithelium and stroma 

are changed (such as transformation of pseudostratified to stratified epithelium, 

changes of density of goblet cells, changes of cell infiltration) and polyp is 

well-developed.  

 

1.5 Clinical symptoms, diagnosis and treatment 

1.5.1 Symptoms 

The nasal symptoms of NP are described as follows: (i) constant non-periodic nasal 

blockage and stuffiness, which can have a valve-like sensation allowing better airflow 

in only one direction; (ii) nasal congestion, which can be a feeling of pressure and 

fullness in the nose and paranasal cavities (“full-head”); (iii) perennial clear 

rhinorrhea and sneezing; (iv) white or yellow postnasal drip, which represents the 

sinusitis symptoms; (v) facial pain and headache, which are exacerbated when 

infection in sinuses; (vi) hyposmia or anosmia. About one third of patients who are 

often accompanying asthma have chest symptoms, including wheezing and chronic 

cough. Diet may induce exacerbations if the patient has aspirin intolerance.  

 

The recurrence of NP is common. About 40% of patients with surgical polypectomy 

have recurrences [Settpiane et al., 1987]. It was reported that those patients with positive 

response of allergy skin test had a higher recurrence rate compare to those with 

negative response [Settpiane et al., 1987].  

 

1.5.2 Diagnosis 
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The diagnosis of NP is based on the patient’s history, symptoms, and clinical 

examination. When taking the history, the typical symptoms of the patient should be 

recorded during spontaneous conversation and followed by questions on most 

important individual symptom. Some specific techniques and scoring systems have 

been developed to validate the symptoms: (i) validation of nasal obstruction by 

rhinomanometric or nasal peak flow evaluations; (ii) validation of facial pain and 

pressure by maxillary antral aspiration or paranasal sinus radiographs; (iii) validation 

of smell abnormalities by subjective scoring of olfaction.  

 

Endoscopic examination should be the most helpful technique to assess the severity of 

NP in clinics. Staging systems for NP under endoscopy view have been proposed 

[Malm, 1997; Fokkens et al., 2007]: (i) score “0” means absence of nasal polyps; (ii) score 

“1” means polyps in middle meatus only; (iii) score “2” means polyps beyond middle 

meatus but not blocking the nose completely; (iv) score “3” means polyps completely 

obstructing the nose.  

 

Computed tomography (CT) scanning is the imaging modality of choice confirming 

the extent of pathology and the anatomy in paranasal sinuses. It is also helpful to aid 

the sinus surgery by providing information on anatomy. The Lund-Mackay system 

relies on a score of 0-2 depending upon the absence (score = 0), partial (score = 1) 

and complete opacification (score = 2) of each sinus system and of the ostiomeatal 

complex, deriving a maximum score of 12 per side [Lund et al., 1993].  

 

In addition, routine pathological examination of nasal biopsy is the gold standard to 

confirm NP diagnosis at the histopathological level and helpful to differentiate 
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neoplasia and vasculitides.  

 

1.5.3 Treatment 

The management of NP includes: drug treatment, which is traditionally based on the 

use of topical or systemic glucocorticosteroids (GCs); and surgical operation, which is 

trying to eradicate all polyp tissues from the nasal lumen and sinuses. The aims of 

treatments are to relieve nasal blockage, restore olfaction, and improve sinus drainage.  

 

1.5.3.1 Topical and systemic glucocorticosteroids 

GCs can suppress many phases of the inflammatory process, which may explain their 

strong effect on inflammation. As NP represents intensive infiltration of various 

inflammatory cells, especially eosinophils, GC treatment is the first-choice approach. 

This can range from topical GC sprays or drops in mild to moderate NP, to a short 

course of systemic GCs in severely affected patients. Systemic application affects all 

NP tissues within the nose and sinuses, but has the disadvantage of systemic 

side-effects when used for long-term treatment. Topical application significantly 

reduces adverse effects but does not impact nasal polyps within the sinus.  

 

The biological effect of GCs is mediated through activation of intracellular 

glucocorticoid receptors (GRs). Activated GRs bind to the DNA sequence called 

glucocorticoid response element (GRE) and perform transactivation of target gene 

transcription (often anti-inflammatory molecules) [Beato, 1989]; while activated GRs 

also interact with transcription factors such as AP-1 and NF-kappaB to perform 

transrepression of some inflammatory genes [Cato et al., 1996].  
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With regard to the transcriptional activation, GRs can increase gene transcription 

through an action on chromatin remodeling and recruitment of RNA polymerase II to 

the site of local DNA unwinding [Hayashi et al., 2004]. GRs can also interact with other 

coactivator proteins such as SRC-1, TIF-2, p300/CBP that enhance local histone 

acetylation activity. It has been found that GRs could up-regulate the transcription of 

some anti-inflammatory genes such as annexin-1, inhibitors of NF kappa B, and MAP 

kinase phosphatase [Hayashi et al., 2004]. 

 

Except for the ability of GCs to induce gene expression, the major anti-inflammatory 

effects of GCs are thought to suppress the transcription of those inflammatory genes. 

This inhibitory effect of GCs could be attributed to the interaction between GRs and 

the proinflammatory transcription factors, such as NF kappa B and AP-1 [Hayashi et al., 

2004]. For example, NF kappa B recruits transcriptional coactivators, such as CBP or 

p300/CBP associated factor which have intrinsic histone acetyltransferase (HAT) 

activity, leading to increased transcription of inflammatory genes. Activated GRs can 

then translocate to the nucleus and interfere the binding between NF kappa B and its 

coactivators, resulting in the inhibition of HAT activity and reduction of histone 

acetylation. Those pro-inflammatory genes such as chemokines, cytokines, and 

leucotrienes, have been found to be suppressed by GCs [Hayashi et al., 2004].  

 

GCs also affect migration, activation and survival of inflammatory cells such as 

eosinophils [Burgel et al., 2004], by regulating a variety of mediators such as cytokines 

(e.g. IL3, IL-5 and IL-13), chemokines (e.g. eotaxin and RANTES), adhesion 

molecules (e.g. ICAM-1, VCAM-1 and integrins), growth factors (e.g. GM-CSF) and 

leukotrienes [Bachert et al., 1999]. 
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There is a good amount of evidence that topical as well as systemic GCs are effective 

in reducing the size and symptoms (e.g. nasal blockage, rhinorrhoea and hyposmia) of 

NP [Ruhno et al., 1990; Small et al., 2005]. After surgery, high dosage of topical GC may 

reduce the incidence of NP recurrences or prolong the symptom-free time interval. 

Nevertheless, a substantial number of patients appear to be refractory to both topical 

and systematic GC treatments, or seem to develop a decreasing GC sensitivity during 

the medication period. The underlying mechanism for this glucocorticoid resistance 

has not been fully clarified; some reports suggested GR-beta isoform was increased in 

glucocorticoid insensitive patients and may interfere with GR-alpha function [Pujols et 

al., 2004]. Although the clinical efficacy of GCs in alleviating NP inflammation is 

prominent, the molecular mechanism has been poorly understood due to the 

pleiotropic effects of GCs on multiple signaling pathways. Therefore, to identify the 

candidate molecules which may contribute to beneficial or side effects of GCs will be 

helpful in developing GC therapy. 

 

1.5.3.2 Antimicrobials 

Several microorganisms have been investigated to indicate their role in NP. 

Antibacterials can control the bacterial infection effectively and their potential benefit 

in bilateral NP has been discussed by Bachert and Van Cauwenberge [Bachert & Van 

Cauwenberge, 2003]. It has been suggested that macrolide antibiotics not only decrease 

the colonizing bacteria, but also perform anti-inflammatory activities: (i) in a clinical 

study, an improvement in 52% of 20 NP patients was observed after treating with 

roxithromycin, one macrolide antibiotic, 150 mg/day for at least 8 weeks [Ichimura et al., 

1996]; (ii) Nonaka demonstrated that roxithromycin, could directly suppress NP 
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fibroblast proliferation [Nonaka et al., 1999]; (iii) Yamada reported the three-month 

administration of macrolides in patients with NP resulted in reduced polyp size 

paralleled by a decrease of local IL-8 level [Yamada et al., 2000]; (iv) Iino showed that 

macrolides enhance CD80 positive macrophages which was negatively correlated 

with eosinophil infiltration in NP [Iino et al., 2001].  

 

As discussed in Chapter 1.4.4, the possible role of S.aureus enterotoxins in the 

pathogenesis of NP calls for placebo-controlled clinical trials to confirm if antibiotics 

could be effective for this pathogen in NP. However, it should be noted that low-dose 

and long-term treatment with antibiotics may also induce bacterial resistance, which 

may limit this approach. 

 

1.5.3.3 Antihistamines 

Histamine, which be released from mast cells in NP, significantly increases the 

expression of intracellular adhesion molecule (ICAM)-1 and HLA-DR in epithelial 

cells. However, their use in patients with only polyps has not been extensively studied. 

Several studies have shown that in vitro, antihistamines significantly inhibit the 

leukotriene (LT) C4/D4, LTB4, prostaglandin (PG) D2, TNFα and GM-CSF in NP 

cell cultures in a dose-dependent manner [Carayol et al., 2002; Crampette et al., 1996]. One 

clinical study reported that after polypectomy, NP patients were treated with 

antihistamines (20mg, twice daily) for 3 months [Haye et al., 1998]. The results showed 

that the number and size of polyps remained unchanged, while nasal sneezing and 

rhinorrhea were effectively relieved, and nasal obstruction was reduced in the later 

part.  
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1.5.3.4 Possible future medical treatment approaches 

Consistent with current knowledge on the pathophysiology of NP, new therapeutic 

approaches may focus on eosinophilic inflammation, eosinophil recruitment, the T 

cell as the orchestrating cell and IgE antibodies, as well as on tissue destruction and 

remodeling processes. Some interesting markers may act as possible drug targets, 

such as IL-5 antagonists, chemokine receptor 3 and eotaxin antagonists, IL-4 and 

IL-13 antagonists, local IgE antagonists, matrix metalloproteinase inhibitors.  

 

1.5.3.5 Surgical operation 

Surgical polypectomy is the preferred treatment for NP with many patients 

undergoing repeated operations. Functional endoscopic sinus surgery (FESS) is the 

standard surgical treatment of NP nowadays, and it has been proven to improve the 

quality life of the patients satisfactorily [Uri et al., 2002]. Whereas, some studies have 

shown that the effect of surgery had no significant difference from medical treatment 

[Lildholdt et al., 1988]. One recent clinical study showed the sense of smell improved 

after treatment with systemic and topical GCs, and surgery had additional beneficial 

effects on nasal obstruction and secretion [Blomqvist et al., 2001]. The study suggests that 

surgical treatment is applicable if nasal obstruction is the main problem which cannot 

be relieved by GCs, and surgery should be based on the patient’s symptoms rather 

than the examiner’s polyp score. However, to date there is too little data available to 

determine if there is any difference between surgery and GC therapy in the long-term 

outcome of patients with NP, especially their benefits on the recurrence of NP.  
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Chapter 2. Objectives and Significance 

 

2.1 Research questions 

The pathogenesis of NP is highly complicated due to its heterogeneity. Fundamental 

research on the pathogenesis of NP is hampered by two main problems: (i) various 

clinical phenotypes influence the nature of NP; (ii) whether NP should be considered 

a local disease or a local manifestation of a systemic disease. Although numerous 

papers have dealt with the pathogenesis of this nasal disease, the molecular/cellular 

alterations required for its development and progression are poorly understood. 

Several research questions concerning the pathogenesis and treatment of NP have 

been raised in this thesis. 

 

(1) Are Staphylococcus aureus and its superantigens involved in inflammation of 

Asian NP? 

Staphylococcus aureus (S. aureus) and its superantigen have been thought to result in 

Th2 shift, eosinophil activation, and overproduction of IgE observed in NP (Chapter 

1.4.4, Page 9). Most superantigen studies have focused on Caucasian NP patients, 

who show eosinophil dominant polyps with less abundant neutrophils [Bachert et al., 

2008]. However, NP in Asian patients has been found to show a neutrophilic pattern 

with a relative lack of eosinophil-dominated inflammation [Jareoncharsri et al., 2002]. In 

addition, our previous results demonstrated a combined cell infiltration with 

eosinophils, neutrophils and CD4+/CD8+ T lymphocytes in Asian patients with NP 

[Hao et al., 2006]. Importantly, activation of neutrophils is likely associated with innate 

immune defense which counteract the microbial infection. Hence, the evidence raises 

an issue whether S. aureus and its superantigens have some role in this differential 
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infiltration of inflammatory cells in Asian NP.  

 

(2) Is methylation of tumor suppressor genes associated with NP inflammation? 

NP has not been considered a cancer-prone lesion, but the hyperplasia feature 

(especially increase of squamous cells) and high recurrence rate of NP raises the 

question as to whether NP would share some pathological mechanisms with those 

malignant (e.g. nasopharyngeal carcinoma, NPC) and benign (e.g. inverted papilloma, 

IP) neoplasms in upper respiratory tissues. Promoter methylation of tumor suppressor 

genes (TSGs) is a major molecular defect in cancers and is associated with loss of 

protein expression in cancer cells [Jones et al., 2001]. Patients with cancer-prone chronic 

inflammatory diseases, such as ulcerative colitis, gastritis, and some hyperplastic 

polyps showed hypermethylation in several TSGs [Abraham et al., 2004; Chan et al., 2002;]. 

In addition, it was shown that inflammation mediated cytokine damage can alter the 

methylation pattern and critical gene regulation [Valinluck et al., 2007]. This evidence 

suggests that DNA methylation is a mechanism that could link inflammation with 

tumorigenesis.  

 

In nasopharyngeal carcinoma, a high frequency of epigenetic inactivation of TSGs 

was confirmed [Kwong et al., 2002]. The methylation profile of TSGs in inverted 

papilloma has not been intensively studied, and only one report demonstrated that the 

cell cycle marker, CDKN2B was frequently methylated in inverted papilloma [Stephen 

et al., 2007]. In regard to the hyperplastic property of NP, it is worth studying whether 

methylation of some TSGs could occur in NP, although NP is generally considered a 

benign proliferative lesion. As far as we know, the methylation status of TSGs has not 

been reported in NP. 
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(3) What are the molecular evidences underlying the histopathologic patterns of NP 

as well as the GC effects on NP? 

NP represents severe inflammatory cell infiltration and structure remodeling. A 

number of molecular/chemical mediators have been shown to be associated with NP 

histopathologic features (reviewed in Chapter 1.4.6, Page 15). However, most of 

these NP studies investigated inflammatory mediators objectively and could not elicit 

an overall picture of the molecular profile of NP. Hence, to explore the genes as well 

as their interaction network underlying the NP pathogenesis, it has been necessary to 

identify a large number of differentially expressed genes simultaneously and novel 

disease related candidates in NP.  

 

GCs are considered the most effective pharmacological therapy for chronic upper 

airway inflammation including NP and asthma [Fokkens et al., 2007; Bateman et al., 2008]. 

The predominant effects of GCs are to suppress eosinophil infiltration and relieve 

tissue damage and remodeling in NP by altering the expression of inflammation 

related genes. However, the underlying molecular mechanism of GCs in treating NP 

has not been fully elucidated.  

 

DNA microarray technology consists of a matrix with attached sequences that allow 

simultaneous analysis of expression of panels of human genes. This provides unique 

opportunities to identify the change of disease-associated gene and analyze the effects 

of drug treatment on a genome-wide scale. In addition, the comparison of profiles of 

significant genes can highlight the involvement of both expected and unsuspected 

biological functions and pathways by utilizing advanced bioinformatics tools (e.g., 
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pathway analysis). 

 

Therefore, it is of interest to investigate the presence of genes differentially 

transcribed in human NP tissues and nasal mucosal control, and to analyze the 

alteration of gene expression in NP in response to oral GC treatment by using DNA 

microarray. Furthermore, the biological function and pathways associated with the 

micorarray-identified genes could also be explored by using bioinformatics software. 

So far, no report has shown the gene expression profiles in Asian NP and its response 

to oral GC treatment. Moreover, no integrated functional pathway analysis has been 

performed in previous NP studies. 

 

2.2 Aims of the study 

The principal aims of this thesis are to investigate the molecular/cellular mechanisms 

underlying the pathogenesis of NP as well as the response of NP to GC treatment. 

 

Specific aims of the thesis are as follows: 

(1) To test the superantigen hypothesis in Asian NP. (Chapter 4) 

(2) To study if methylation of tumor suppressor genes has some role in the 

hyperplasia of NP. (Chapter 5) 

(3) To identify the candidate genes/gene families underlying the development of NP 

as well as the response of NP to GC treatment. (Chapter 6) 

(4) To explore the biological functions and interactive pathway among the 

disease-related genes and the GC-responsive genes in NP. (Chapter 6) 
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2.3 Significance 

Most NP studies have been performed in Caucasian patients, but Asian (especially 

Chinese) NP may present different histopathological features, indicating the 

underlying molecular mechanisms of Chinese NP may be different from those of 

Caucasian NP. Our studies systemically study the pathogenic mechanisms of NP from 

Asian/Chinese patients at molecular and cellular levels: (i) superantigen study can 

elicit the involvement of Staphylococcus aureus and its superantigens in Asian NP; (ii) 

methylation study can provide novel information for possible epigenetic alterations of 

the commonly reported TSGs in a benign outgrowth situation in upper airway tissues; 

(iii) microarray study is applicable to identify disease/therapeutic candidates as well 

as their functional networks, and then to enhance the knowledge of the 

pathophysiology and improve the GC management in NP. 
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Chapter 3. Materials and Methods 

 

3.1 Study Subject 1 (for superantigen and methylation studies) 

Fresh NP tissues were obtained from 24 patients (19 males and 5 female, aged from 

21 to 58 years old, median age of 44) with unilateral/bilateral NP. They were 

scheduled for functional endoscopic sinus surgery at the Department of 

Otolaryngology, Head & Neck Surgery in the National University Hospital of 

Singapore. A control biopsy of inferior turbinate (IT) mucosa was obtained from 10 

non-NP patients (7 males and 3 females, aged from 18 to 56 years old, mean age of 

24), who were scheduled for septal plastic surgery due to septal deviation in the same 

hospital. All NP and control subjects did not have aspirin intolerance and asthma 

diagnosed by means of clinical history, and did not take either any form of antibiotics 

or GCs within 3 months before the study. In addition, three nasal inverted papilloma 

(IP) samples were obtained after being reviewed by a pathologist to confirm diagnosis, 

and none of the patients with IP had evidence of carcinoma. Papilloma biopsies from 

these IP patients were only used in methylation study. Three to five milliliters of 

peripheral blood were taken during surgery in all NP and IP patients as well as 

controls. Cases were coded to provide confidentiality. Fresh specimens were dissected 

into two sections: one section was quickly frozen by liquid nitrogen for DNA analysis; 

and the other section was wrapped with tissue freezing medium and then frozen by 

liquid nitrogen for histo-immunohistological examination. All samples were preserved 

at -80℃ until use. 

 

A signed informed consent was obtained from the study patients before surgery. 

Approval to conduct this study was granted by the National Medical Research 



 37

Council of Singapore and the Institutional Review Board of the Medical Faculty of 

National University of Singapore.  

 

3.2 Study Subject 2 (for gene expression study) 

In this prospective study, NP patients and non-NP controls were recruited from the 

Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-Sen University. 

All subjects are Chinese. Twelve patients (9 males and 3 females; median age of 36; 

age range, 18-55 years) with bilateral NP that have refractory nasal obstruction 

requiring functional endoscopic sinus surgery (FESS) were included in this study. The 

diagnosis of NP was based on medical history and clinical examinations. Two sets of 

polyp biopsies were taken from the same patient, i.e., before the initiation (GC-naïve) 

and after (GC-treated) the oral prednisone treatment (10 mg thrice per day for 3-5 

days). Biopsy of inferior turbinate was obtained from control subjects (7 males and 3 

females; median age of 28 years; age range, 23-36 years) who underwent surgery for 

nasal septal deviation. This tissue served as nasal mucosal control. None of the 

patients and controls had upper respiratory infection nor undertook any forms of GCs 

and antibiotics for more than three months before the study. All subjects did not have 

history of aspirin exposure, asthma, and cystic fibrosis. Cases were coded to provide 

confidentiality. Fresh specimens were dissected into two sections: one section was 

preserved with RNAlater (Ambion, Austin, TX) for gene expression profiling and the 

other section was fixed in formalin for histological evaluation. All patients were 

recruited through physician referrals. Approval to conduct this study was obtained 

from the Institutional Review Board of the First Affiliated Hospital, Sun Yet-Sen 

University and the National University of Singapore. 
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3.3 Allergy test 

Serum samples from all study subjects were analyzed for total IgE levels, Phadiatop 

assay, and specific IgE (sIgE) to a common panel of inhalant allergens, including 

Dermatophagoides pteronyssinus, Dermatophagoides farianae, Aspergillus fumigatus, 

cockroach, common pollen, and ragweed mixtures. IgE test was carried out by using 

the ImmunoCAP system (Phadia AB, Uppsala, Sweden). The results were evaluated 

following manufacture’s instruction: a Phadiatop PAU/l (Pharmacia Arbitrary Units/l) 

value ≥ 0.35 was considered as atopy. 

 

3.4 DNA extraction 

Genomic DNA was extracted from frozen solid tissues and peripheral blood by using 

the Gentra Puregen Kit (Gentra Systems, Suite, MN). Both solid tissues and 

peripheral blood were collected from study subject 1 as indicated in Chapter 3.1.  

 

3.4.1 Extraction from solid tissues 

Solid tissues (including NP, IT, and IP) were frozen by using liquid nitrogen and then 

stored at -80℃ until used. DNA extraction followed the manufacturer’s protocols: (i) 

solid tissue was merged in Cell Lysis Solution followed by homogenizing; (ii) 

homogenate was treated with Proteinase K Solution and then incubated overnight; (iii) 

RNasae treatment (by using RNase A Solution) followed by protein precipitation (by 

using Protein Precipitation Solution) was done in cell lysate; (iv) DNA was 

precipitated was by using by using 100% Isopropanol (Sigma Aldrich, St.Louis, MO); 

(v) DNA hydration was used by DNA Hydration Solution. DNA concentration and 

purity were determined by using NanoDrop™ 1000 Spectrophotometer (Thermo 
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Fisher Scientific, Waltham, MA). DNA was then stored at -20℃. 

 

3.4.2 Extraction from peripheral blood mononuclear cell (PBMC) 

Clotted whole blood from both patients and controls was separated into serum and 

cellular components, both of which were stored at -20℃ until use. DNA extraction 

from PBMC was performed according to the manufacturer’s protocol: (i) blood clot 

was dispersed using a Clotspin™ basket; (ii) red blood cells were removed using 

RBC Lysis solution; (iii) cell pellet was lysed using Cell Lysis Solution with 

Priteinase K and then incubated overnight; (iv) protein precipitation was collected 

using Protein Precipitation Solution in cell lysate; (v) DNA was precipitated using 

100% Isopropanol (Sigma Aldrich); (vi) DNA hydration was performed using DNA 

Hydration Solution. DNA concentration and purity were determined by using 

NanoDrop™ 1000 Spectrophotometer (Thermo Fisher Scientific). DNA was then 

stored at -20℃. 

 

3.5 Experiments for superantigen study 

3.5.1 Standard polymerase chain reaction (PCR) 

The DNA (both solid tissues and PBMC) from Study Subject 1 (except the patients 

with IP) were selected. DNA from bacterial strain Oxford Heatley NCTC 657 was 

used as a positive control (kindly provided by Dr. Taylor, Department of Microbiology, 

NUS). Primers for the S.aureus related superantigens and nuc gene were described in 

Table 3.1. The PCR mixture contained 1x PCR Buffer II (Applied Biosystems, Foster 

City, CA), 3 mM MgCl2, 0.2 mM dNTP, 0.5 µM each primer (sense and antisense), 1 

U Taq-Gold polymerase (Applied Biosystems), and 1µl DNA template in a final 

volume of 25 µl. Reactions were initially denatured at 94℃ for 5 minutes followed by 



 40

35 cycles (30 sec at 94℃, 30 sec at 55℃, and 60 sec at 72℃) and finally followed by 

a 5-min extension at 72℃. Negative control without DNA template was performed for 

each set of PCR. PCR products were separated by electrophoresis on agrose gel with 

proper concentration (from 1% to 1.8%), stained with ethidium bromide, and 

visualized under UV illumination. 

 

Table 3.1 Primers for the detection of S.aureus related superantigens and nuc gene 

*Ref: 
1. Johnson et al., 1991 

2. Mclauchlin et al., 2000 

3. Brakstad et al., 1992 

 

3.5.2 Direct sequencing 

The PCR product amplified by primers of nuc gene was subjected to direct 
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sequencing analysis. The PCR mixture contains 1X PCR Buffer II (Applied 

Biosystems), 3mM MgCl2 , 0.2mM dNTP, 0.5µM each primer (sense and antisense), 

1U AmpliTaq polymerase (Amplied Biosystems), and 100 ng DNA template in a final 

volume of 25µl. Reactions were initially denatured at 94℃ for 5 minutes followed by 

40 cycles (30 sec at 94℃, 30 sec at 55 , and 30 sec at℃  72℃), and finally followed by 

a 5-min extension at 72℃. PCR products were separated by electrophoresis on 1.8% 

agrose gel, stained with ethidium bromide, and visualized under UV illumination. The 

correct size band was excised from agrose gel, purified by using the GFX PCR DNA 

and Gel Band Purification Kit (Amersham Biosciences) following the manufacture’s 

instruction. Purified PCR product was subjected to cycle sequencing PCR by using 

ABI Prism BigDye® Terminator v3.1 (Applied Biosystems) and reverse primer of nuc 

gene. The cycle sequencing PCR product was then sent to service lab for sequencing.  

 

3.6 Experiments for methylation study 

3.6.1 Bisulfite modification of DNA 

Purified DNA (both solid tissues and PBMC) and CpGenome Universal Methylated 

DNA (Chemicon International, Temecula, CA) were subjected to bisulfite 

modification by using EZ DNA Methylation-Gold Kit™ (Zymo Research Corporation, 

Orange, CA). Briefly, 1 µg of DNA was denatured by a thermal cycle (98°C /10 min, 

64°C /2.5 h) with CT Conversion Reagent (Zymo Research Corporation). Denatured 

DNA was applied in column for desulphonation and clean-up. Finally the DNA was 

eluted in M-Elution Buffer (Zymo Research Corporation) and stored at -20°C. 

 

3.6.2 Methylation-specific PCR (MSP) 

Primer were designed at the promoter regions and described in Table 3.2. The PCR 
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mixture contained 1x PCR Buffer II (Applied Biosystems), 2 mM MgCl2, 0.2 mM 

dNTP, 0.6 µM each primer (sense and antisense), 1.875 U Taq-Gold polymerase 

(Applied Biosystems), and 25ng bisulfite treated DNA template in a final volume of 

12.5 µl. Reactions were initially denatured at 95℃ for 8 minutes followed by 35 to 40 

cycles (30 sec at 94℃, 30 sec at the annealing temperature listed in Table 3.2, and 30 

sec at 72℃) and finally followed by a 3-min extension at 72℃ [Tao et al., 1999]. 

CpGenome Universal Methylated DNA was used as a methylation-positive control, 

while negative control without DNA template was performed for each set of PCR. 

PCR products were separated by electrophoresis on 1.8% agrose gel, stained with 

ethidium bromide, and visualized under UV illumination. 
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Table 3.2 MSP and BGS primers 

 

* M, methylated sequence; U, unmethylated sequence. 
† AT, annealing temperature. 
a p16 MSP primer sequences described by Herman et al. [Herman et al., 1996]; Genbank accession 
numbers: X94154. 
b RASSF1A, PTPN6 and TSLC1 MSP or BGS primers designed by us; Genbank accession numbers: 
RASSF1A, AF102770; PTPN6, AB079851; TSLC1, AP003174. 
c CDH1 MSP primers described by Graff et al. [Graff et al., 1997]. Genebank accession number: 
L34545. 
d DAPK1 MSP primers described by Katzenellenbogen et al. [Katzenellenbogen et al., 1999]; Genbank 
accession numbers: AL161787. 
e CDH1 and DAPK1 BGS primers designed by using “Primo MSP 3.4” software (Chang Bioscience, 
Inc., USA). 
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3.6.3 Bisulfite genomic sequencing (BGS) 

BGS primers for the indicated genes were shown in Table 3.2. The PCR mixture 

contained 1x PCR Buffer II (Applied Biosystems), 2 mM MgCl2, 0.2 mM dNTP, 0.6 

µM each primer (sense and antisense), 1.875 U Taq-Gold polymerase (Applied 

Biosystems), and 100 ng bisulfite treated DNA template in a final volume of 25 µl. 

PCR condition is the same as that described in MSP. The PCR products amplified 

with BGS primers were separated by electrophoresis on agrose gel. The band of the 

interest was carefully excised from the gel, and the gel slice was placed into the 

Spin-X® Centrifuge Tube Filters (Corning Incorporated Life Sciences, Lowell, MA) 

and mixed with distilled water. The DNA was eluted by centrifuging the tube at 

13,000 × g for 10 minutes at room temperature. 

 

Eluted DNA was cloned into pCR2.1-TOPO® vector by using TOPO® TA Cloning kit 

(Invitrogen, Carlsbad, CA). In brief, the steps include: (i) TOPO® cloning reaction – 

mix DNA with TOPO® vector; (ii) One Shot® Chemical transformation – mix the 

TOPO® cloning reaction with One Shot® Chemically Competent E.coli; (iii) 

incubation – incubate the transformants on Luria Broth (LB) plates containing 

ampicillin; (iv) selection of clones – randomly pick the white colonies; (v) isolation of 

plasmid DNA – use Wizard® Plus SV Minipreps kit (Promega, Madison, WI). Isolated 

plasmid DNA was subjected to cycle sequencing PCR by using ABI Prism BigDye® 

Terminator v3.1 (Applied Biosystems) and M13 reverse primers supplied by TOPO® 

TA Cloning kit. The PCR product was then sent to service lab for sequencing.  

 

3.7 Experiments for gene expression study 

3.7.1 RNA extraction from nasal tissues  
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Total RNA was extracted from solid tissues (NP and IT) by using RiboPure kit 

(Ambion), according to the manufacture protocol. Briefly, the procedures were 

described as follows: (i) tissues were removed from RNAlater and submerged in TRI 

Reagent® (Molecular Research Center Inc, Cincinnati, OH), followed by 

homogenizing; (ii) chloroform was added in homogenate and centrifuge at 12,000 × g 

to separate the mixture into a lower, red, organic phase, an interphase, and a colorless, 

upper aqueous phase; (iii) RNA remains in the aqueous phase while DNA and 

proteins are in the interphase and organic phase; (iv) aqueous phase was transferred 

into a filter cartridge-collection tube and RNA was binding to the filter; (v) after 

washing steps, the RNA was eluted through the filter.  

 

3.7.2 Quantification and gel electrophoresis of RNA 

Total RNA was quantified by NanoDrop™ 1000 Spectrophotometer (Thermo Fisher 

Scientific). The overall quality of total RNA can be assessed by electrophoresis on a 

denaturing agarose gel. To prepare the gel, 0.5 g agarose was dissolved in 1×MOPS 

running buffer (Ambion) mixed with 37% formaldehyde (12.3 M). 1 µg of total RNA 

was mixed with 1×volume Formaldehyde Load Dye (Ambion) and ethidium bromide 

(10 µg/ml), and then RNA samples were heated to denature at 65℃. Load the gel and 

electrophoresis at 5-6 V/cm. Visualize the gel on a UV transilluminator (UVP, Upland, 

CA). The RNA samples with good integrity which showed the ratio of 28S rRNA: 

18S rRNA at least 1.2:1 in gel picture were selected for downstream work (microarray 

and real-time RT PCR). This quality assessment led to exclude 2 pairs of NP samples 

and 4 controls. 

 

3.7.3 Microarray experiment 
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Ten pairs of NP samples (before and after GC treatment) and six controls were 

recruited in microarray experiment. Each subject was analyzed with a single gene 

chip. Preparation of cDNA, labeled cRNA, hybridization, staining, and scanning of 

Human Genome U133 Plus 2.0 (HG_U133 plus 2.0) arrays (Affymetrix, Santa, Clara, 

CA) was performed according to the technical manual outlined by Affymetrix 

(http://www.affymetrix.com/ Auth/ support/ downloads /manuals/ 

expression_ever_manual.zip)”. Figure 3.1 shows the flowchart of the microarray 

experiment procedures. Briefly, 1 µg of total RNA and diluted poly-A RNA controls 

were reverse transcribed to double-stranded cDNA using an T7-oligo (dT) primer 

(Affymetrix). In vitro transcription from the double-stranded cDNA was carried out 

using IVT Labeling Kit (Affymetrix). The biotinylated cRNA (20 µg) was fragmented 

by using 5× Fragmentation Buffer (Affymetrix). The fragmented cRNA was 

hybridized for 16 h at 45°C in a Hybridization Oven 640 (Affymetrix) to a HG-U133 

plus 2.0 chip (Affymetrix). Washing and staining of the arrays with 

phycoerythrin-conjugated streptavidin (Molecular Probes, Eugene, OR) was 

completed in a Fluidics Station 450 (Affymetrix). The arrays were then scanned using 

a confocal laser GeneChip Scanner 3000 and GeneChip Operating Software 

(Affymetrix).  
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Figure 3.1 Flowchart of affymetrix gene chip experiment. Labeled cDNA or cRNA targets derived 

from the mRNA of a tissue are hybridized to nucleic acid probes attached to the gene chips. This 

picture is cited from Paszek, E. Introduction, Connexions Web site. http: // cnx.org/ content/ m12370/ 

1.3/, Sep 13, 2004.  

 

3.7.4 Quality control (QC) assessment for microarray experiment and data 

3.7.4.1 QC for fragmentation 

The unfragmented cRNA and fragmented cRNA were loaded into agarose gel with 

tris-acetate EDTA (TAE) buffer. cRNA with no more than 300 bp size was considered 

to be successfully fragmented and can be used in hybridization step. 

 

3.7.4.2 QC for assay performance 

To achieve the quality assessment for assay/hybridization performance, several 

control parameters were evaluated in data report (.rpt file) following the criteria 

outlined in “data analysis fundamentals” (https://support/downloads/manuals/ data_ 

analysis_ fundamentals_ manual.pdf). The control parameters include: (i) average 
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background and noise values; (ii) Poly-A controls; (iii). hybridization controls; (iv) 

internal control genes; (v) percent present; (vi) scaling factor.  

 

The average background and noise values represent the electrical noise of the scanner 

and sample quality. Affymetrix guideline recommends that typical average 

background values range from 20 to 100 for arrays scanned with the GeneChip 

Scanner 3000. Although each scanner has a unique inherent electrical noise associated 

with its operation, array data acquired from the same scanner should ideally have 

comparable noise values.  

 

Poly-A RNA controls can be used to monitor the entire target labeling process, and all 

of the Poly-A controls should be called “Present” with increasing signal values in the 

order of lys, phe, thr, and dap. Hybridization controls can be used to evaluate sample 

hybridization efficiency, and all of the controls should be called “Present” with 

increasing signal values in the order of bioB, bioC, bioD, and cre, reflecting their 

relative concentration.  

 

The 3’ to 5’ ratio of the internal control genes (β-actin and GAPDH) in each sample 

should not be more than 3, which indicate intact RNA and efficient transcription of 

double-strand cDNA. Compared array samples should have similar percent present 

values, and extremely low percent present values are a possible indication of poor 

sample quality. 

 

Differences in overall intensity are most likely due to assay variables including 

pipetting error, hybridization, washing, and staining efficiencies, which are all 
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independent of relative transcript concentration. Scaling/normalization method can 

correct these variables. Therefore, larger discrepancies among scaling/normalization 

factors of the studied arrays (e.g. 3-fold or greater) may indicate significant 

assay/biological variability or sample degradation, which leads to noisier data. 

 

3.7.4.3 QC for raw array data 

In Affymetrix GeneChip (HG-U133 Plus 2.0™), oligonucleotides of 25 base pairs in 

length are used to probe genes. There are two types of probes: reference probes that 

match a target sequence exactly, called the perfect match (PM), and partner probes 

which differ from the reference probes only by a single base in the center of sequence, 

so called mismatch (MM) probes. Typically 11 of these probe pairs, each interrogating 

a different part of the 3’-end sequence for a gene, make up what is known as a 

probeset. The intensity information from the values of each of the probes in probeset 

are combined together to get an expression measure. 

 

RMAexpress software version 1.0 Release (Free version available in 

http://rmaexpress.bmbolstad.com/) can analyze the unadjusted PM intensities of 

Affymetrix array data. The undjusted PM intensity of raw array data could be 

visualized by the “RMAExpress Raw Data Visualizer” window. Two output plots 

available: boxplots and density plots. Potential low quality data often present 

higher/lower PM intensity than the other arrays in the dataset in boxplots; while in 

density plots, array data with low quality are often shifted away from the main set of 

density curves. 
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3.7.4.4 Data normalization by Robust Multichip Average method 

The need for normalization arises naturally when dealing with experiments involving 

multiple arrays. To reduce the variation that is introduced during the process of 

carrying out the experiment, a total of 54,000 probesets, representing approximately 

38,500 genes on the HG-U133 Plus 2.0™ arrays from three Affymetrix probe-level 

datasets were underwent normalization. The three datasets are as follows: (i). 

GC-naïve NP (8 chips) versus controls (5 chips); (ii). GC-treated NP (8 chips) versus 

controls (5 chips); (iii). GC-treated NP and GC-naïve NP from the same patient (8 

pairs of chips). Each set was normalized by the Robust Multichip Average (RMA) 

method [Irizarry et al. 2003], available in RMAexpress software version 1.0 Release 

(Free version available in http://rmaexpress.bmbolstad.com/). RMA method does not 

depend on the choice of a baseline array, but rather treat PM and MM all as intensities 

that need to be normalized. The processing steps of RMA consist of a background 

adjustment, quantile normalization, and the median-polish summarization method, 

producing a single normalized expression set for each comparison. Therefore, 

RMAExpress computed expression value for each probeset and exported the results in 

log scale. Detail instruction of RMAexpress software can be referred to its Users 

Guide (http://rmaexpress.bmbolstad.com/RMAExpress_UsersGuide.pdf ). 

 

3.7.4.5 QC for normalized array data 

In addition to normalizing array data, RMAExpress software can also be used to carry 

quality assessment for normalized array data. Two main QC options were available in 

RMAExpress software: chip pseudo-images of residues and probe-level model (PLM) 

based quality statistics. The detailed instruction and algorithm of these two options 

are available in the published book [Bolstad et al., 2005] and the software document 
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(http://bioconductor.org/packages/2.1/bioc/vignettes/affyPLM/inst/doc/QualityAssess.

pdf.) 

 

When selecting the “Store Residuals” option from the software dialog box, chip 

pseudo-images are generated. Poor quality data typically has large intense patches of a 

single color in distinct regions. The typical images, both of good and poor quality, are 

listed in the online resource http://PLMImageGallery.bmbolstad.com.  

 

When using “PLM” as summarization method instead of “median-polishing” in the 

software dialog box, the QC statistics can be examined. Two PLM methods are used 

in RMAExpress: Relative Log Expression (RLE) and Normalized Unscaled Standard 

Errors (NUSE). Specifically, RLE values are computed for each probeset by 

comparing the expression value on each array against the median expression value for 

that probeset across all arrays. On the other hand, NUSE estimates the standard error 

for each gene on each array across arrays so that the median standard error for that 

gene is 1 across all arrays. Both RLE and NUSE processes account for differences in 

the variability between genes. Typically arrays with poor quality show up with boxes 

that are not centered about 0 (for RLE) / 1(for NUSE) and are more spread out; hence, 

RLE and NUSE are useful in determining outliers among the normalized data. 

 

3.7.5 Statistical analysis by Significant Analysis of Microrarray (SAM) 

Three RMA normalized data sets were then imported to Microsoft Excel spreadsheets, 

respectively, and formatted for analysis by the Significant Analysis of Microrarray 

(SAM) software, version 3.00 (Free version available in http://www-stat.stanford. 

edu/~tibs/SAM/) [Tusher et al., 2001]. Differentially expressed genes in each comparison 
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were identified by using SAM. SAM computes a statistic measuring the strength of 

the relationship between gene expression and a response variable, while taking into 

account the multiple testing nature of a microarray experiment. SAM method accepts 

normalized expression data sets and identifies statistically significant changes in gene 

expression by assigning each gene a score (called “d score”) based on its change in 

expression relative to the standard deviation of repeated measurements. Genes with 

score greater than a threshold, as determined by a tuning variable ∆, are deemed 

potentially significant. The percentage of such genes identified by chance is the false 

discovery rate (FDR). SAM uses permutations of empirical measurements to estimate 

the FDR for the called list in the form of a 90% confidence interval. FDR controls the 

expected proportion of incorrectly rejected null hypotheses (type I errors). In addition, 

fold change has also been indicated in each probeset ID in SAM generated gene list. 

The options selected for the SAM analysis: (i) response type: two-class, unpaired data 

(comparison of GC-naïve/GC-treated NP versus control); two-class, paired data 

(comparison of NP without versus with GC treatment); (ii) data logged: logged (base 

2); (iii) number of permutations: 5000. Hence, genes identified with FDR of 

0.8%/0.7% in the datasets of GC-naïve/GC-treated NP vs. control and with a FDR of 

6% in the dataset of GC-treated vs. GC-naïve NP were deemed significant if they 

passed a 1.5-fold change filter [Liu et al., 2004].  

 

How to define and control the FDR has been hotly debated, since each dataset is 

particular and must be treated as a special case. Based on the literature, we could not 

find the any widely accepted FDR bench mark. Therefore, to estimate a proper FDR 

for the given dataset, we have compared different gene lists based on different FDR 

value issued to the dataset.  
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With regard to the gene lists generated from the datasets of GC-naïve NP vs. control 

and GC-treated NP vs. control, the cut-off of FDR was defined strigenently low, 

otherwise there would be huge amount of significant genes. In contrast, the threshold 

of FDR for the dataset of GC-treated vs. GC-naïve NP was defined a little bit higher 

since the number of GC-responsive genes was not large. Then we have tried to use 

FDR 0.005, 0.006, 0.007, 0.008, 0.009, and 0.01 to the datasets of GC-naïve NP vs. 

control and GC-treated NP vs. control; while used FDR 0.05, 0.06, 0.07, 0.08, 0.09, 

and 0.10 to the dataset of GC-treated vs. GC-naïve NP.  

 

To compare the gene lists generated based on different FDR values, we always looked 

for those genes assigned with the cut-off FDR value (here we called them “marginal 

genes”), i.e., examining the genes with FDR 0.005 in the gene list generated from 

FDR 0.005. Some parameters of these “marginal genes” were examined in order to 

evaluate the suitability of the prescribed FDR: (i). the SAM score; (ii). the expression 

level (i.e., extent of detection signal); (iii). the biological sense. For example, if the 

“marginal genes” with FDR 0.005 matched the criteria of high SAM score (> 2.0 or < 

-2.0), expression with detection signal, and biological sense, FDR 0.005 is proper for 

the dataset. Then we went to check the “marginal genes” from gene list with FDR 

0.006, if it also passed the criteria, we looked for the FDR 0.007; in such sequence, 

we chose the next to last FDR which cannot pass the criteria. Finaly, FDR 0.008, FDR 

0.007, and FDR 0.06 were considered to be suitable for the datasets of GC-naïve NP 

vs. control, GC-treated NP vs. control, and GC-treated vs. GC-naïve NP, respectively. 

 

After generating the gene list based on proper FDR, we filtered these genes by fold 
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change. From the literature, 1.5- or 2-fold appears to be commonly used as bench 

mark. Hence, we also compared the gene lists filtered by 1.5-fold and 2-fold. In this 

case, we considered that 1.5-fold should be a suitable cut-off since it can guarantee 

most genes with biological sense.  

 

3.7.6 Annotation analysis 

Gene annotations of the analyzed transcripts were verified by means of web-based 

program Netaffx™ Analysis Center (http://www.affymetric.com/analysis/index.affx). 

This resource contains probe sequences and up-to-date gene annotations and allows 

researchers to quickly search for information of gene annotation, compare and refine 

results, and export data into Excel-friendly formats. Two filtration steps were 

performed: firstly, those transcripts which did not contain identified gene symbols 

were filtered; secondly, those genes with redundant probe identities and those 

transcripts with unknown gene ontology (such as those annotated with “chromosome 

open reading frame”, “hypothetical protein”, “KIAAs” and “family with sequence 

similarity”) were filtered. 

 

3.7.7 Class predictor analysis 

The SAM-generated significant genes from two datasets (GC-naïve NP vs. control 

and GC-treated vs. GC-naïve NP) with their identifiers were imported in GeneSpring 

software version 7.3 (Agilent Technologies, Santa Clara, CA) and subjected to class 

predictor analysis, including hierarchical clustering analysis and principal component 

analysis (PCA). 

 

3.7.7.1 Cluster analysis 
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Tree view cluster, which is composed of gene tree and condition tree, is useful to 

explore the similarity among the genes and conditions (or say “samples”, such as NP 

and control samples) [Eisen et al., 1998]. Gene trees are dendrograms used as a method 

of showing relationships among the expression levels of genes over a series of 

conditions. Condition trees like gene trees, instead of showing the relationships 

between genes, they show the relationships among the expression levels of conditions. 

Gene trees and condition trees were built up by selecting “Clustering>Gene 

Tree/Condition Tree” option from the Tools menu of the software. In both of these 

two “trees”, spearman correlation was used in similarity measure, while average 

linkage was used in clustering algorithm. In addition, similar branches were merged 

by default and confidence levels of each branch were calculated by bootstrapping. 

Cluster analysis was also conducted in those 31 eosinophil associated genes by using 

the same algorithm.  

 

3.7.7.2 Principal component analysis 

PCA is a decomposition technique that produces a set of expression patterns known as 

principal component [Raychaudhuri et al., 2000]. It is helpful to find out how samples can 

be separated after the analysis. Liner combinations of these patterns can be assembled 

to represent the behavior of all of the conditions in a given dataset. PCA scores (or 

called eigenvalues, between -1 and 1) are calculated by computing the standard 

correlation between each condition’s expression profile vector and each principal 

component vector (eigenvector). Eigenvalues can be representative of the level of 

explained variance as a percentage of total variance (reported under “Percent 

Variance” in the results window). The percent of variance explained is dependent on 

how well all the components summarize the data. To run PCA, just select “Principal 
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Components Analysis” from the Tools menu of the software and then choose “PCA on 

Conditions” tab. The output results can be chosen as two-dimensional (2D) plot. 

 

3.7.8 Ingenuity Pathways Analysis (IPA) 

The gene lists identified by SAM, containing affymetrix proset ID as transcript 

identifiers and corresponding expression values (d scores), were uploaded into the 

Ingenuity Pathway Analysis (IPA) tool (version 6.0, Ingenuity® Systems, 

www.ingenuity.com), a web-delivered application that enables the discovery, 

visualization, and exploration of molecular interaction networks in gene expression 

data. Each gene identifier was mapped to its corresponding gene object in the 

Ingenuity Pathway Knowledge Base (IPKB), which provided up-to-date high quality 

knowledge of pathway interactions in broad-genome-wide coverage. Functional 

analysis, network analysis, and Canonical Pathway analysis were executed by IPA. 

 

3.7.8.1 Functional analysis 

The database of IPA functional analysis currently has three primary categories: (i) 

Diseases & Disorders; (ii) Physiological System Development & Function; (iii) 

Molecular & Cellular Functions. There are 85 high level functional categories that are 

classified under these primary categories. Lower level functions are classified within 

the high level categories. Specific functions are the lowest level functions found in 

IPA. Each lowest level function has a population of associated molecules. The 

example for this hierarchical classification is: Molecular & Cellular Functions 

(primary category) > Cellular Movement (high level function) > Migration (lower 

level function) > Migration of Eukaryotic Cells (specific function). Three types of 

functional analysis can be performed in IPA: functional analysis for a dataset, 
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comparison of functional analysis, and functional analysis for a network. For more 

details, see the Ingenuity Functional Analysis p-value whitepaper (https:// 

analysis.ingenuity.com/ pa/ info/ help/ help.htm#ipa_help.htm). 

 

(1) Functional analysis for a dataset 

Genes from the dataset that were associated with biophysiological functions and/or 

diseases in the IPKB were considered for the functional analysis. Fischer’s exact test 

was used to calculate a p-value determining the probability that each biophysiological 

function and/or disease assigned to that dataset is due to chance alone. In this method, 

the p-value for a given function is calculated by considering (i) the number of 

functional analysis molecules that participate in that function; (ii) the total number of 

molecules that are known to be associated with that function in IPKB. In general, 

p-value less than 0.05 indicates a statistically significant, non random association. 

 

IPA then generated a series of significant high level functions in each primary 

category for each dataset. In the category of Molecular & Cellular Functions, top-10 

high level functions were selected based on the rank of the significant level (p-value) 

assigned to function (Appendix I, Page 265). However, in the other two primary 

categories, some respiratory irrelevant diseases/disorders (e.g., reproductive system 

disease, ophthalmic disease and metabolic disease) and some respiratory irrelevant 

physiological development/functions (e.g. embryonic development, behavior and 

reproductive system development and function), no matter how significant or not, 

were filtered out first; consequently, the top significant functions of these two 

categories were selected according to the significant level assigned to the high level 

function (Appendix I, Page 265).  



 58

 

(2) Comparisons of functional analysis 

To determine whether and to what extent a given high level function is affected from 

one observation to another within a comparison we can start by comparing the extent 

to which the significances change from one observation to another, i.e. if the 

significance of a function changes from one treatment (e.g., GC treatment) to the next, 

then it is likely that the treatment had an impact on the function under investigation. 

 

The strategy to compare the GC treatment effects on the high level functions among 

these three datasets are described here: (i) Step 1, the functions in dataset of GC-naïve 

NP vs. control were set as baselines and these selected functions in other two datasets 

were automatically arranged side-by-side with the baselines by IPA software; (ii) Step 

2, if the significant levels of the relevant functions in the dataset of GC-treated NP vs. 

control were much lower than the baselines, it means that GCs may have effects on 

the genes associated with these functions; (iii) Step 3, the functions found to be 

associated with GC effects in step 2 were referred to dataset of GC-treated vs. 

GC-naïve NP, if these functions showed similar or higher significant levels in dataset 

of GC-treated vs. GC-naïve NP as compared to dataset of GC-treated NP vs. control, 

it double confirms the GC effects on these functions in NP.  

 

(3) Functional analysis for a network 

The functional analysis of a network identifies the biophysiological functions and/or 

diseases that are most significant to the genes in the network. The network genes 

associated with biophysiological functions and/or diseases in the IPKB were 

considered for the analysis. Fisher’s exact test was used to calculate a p-value 
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determining the probability that each biophysiological function and/or disease 

assigned to that network is due to chance alone. In general, p-values less than 0.05 

indicate a statistically significant, non random association. 

 

3.7.8.2 Network analysis 

The uploaded significant gene lists were also subjected to network analysis by IPA. 

The molecules of interest which interact with other molecules in IPKB are identified 

as Network Eligible molecules. These so-called focus genes were then used as a 

starting point for generating biological networks. To start building networks, the 

application queries the IPKB for interactions between focus genes and all other gene 

objects stored in the knowledge base, and generates a set of networks. Every resulting 

gene interaction has supporting literature findings available online. Networks are 

limited to 35 molecules each to keep them to a usable size. IPA then computes a score 

for each network according to the fit of the user’s set of significant genes. The score is 

derived from p-value and indicates the likelihood of the focus genes in a network 

being found together as a result of random chance. A score of 2 indicates that there is 

a 1-in-100 chance that the focus genes are together in a network as a result of random 

chance. Therefore, scores of 2 or higher have at least a 99% confidence of not being 

generated by random chance alone. The score is not an indication of the quality or 

biological relevance of the network; it simply calculates the approximate “fit” 

between each network and the Network Eligible molecules. For more details, see the 

Ingenuity Pathways Analysis Network Generation Algorithm whitepaper (https:// 

analysis.ingenuity.com/ pa/ info/ help/help.htm#ipa_help.htm). 

 

3.7.8.3 Canonical Pathway Analysis 
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IPA provides the Canonical Pathways, which are well-characterized cell signaling 

pathways that have been curated and hand-drawn by Ph.D. level scientists. The 

information contained in Canonical Pathways comes from specific journal articles, 

review articles, text books, and KEGG Ligand. The diagram displayed in the 

Canonical Pathway view is representative of the canonical pathway at the cellular 

level. The significance of the association between the dataset and the Canonical 

Pathway was measured in 2 ways: (i) a ratio of the number of genes from the dataset 

that map to the pathway divided by the total number of genes that map to the 

Canonical Pathway is displayed; (ii) Fischer’s exact test was used to calculate a 

p-value determining the probability that the association between the genes in the 

dataset and the Canonical Pathway is explained by chance alone. In general, p-value 

less than 0.05 indicate a statistically significant, non random association. 

 

Since most canonical pathways are specifically made up of limited well-known genes, 

the involvement of just one key gene within a Canonical Pathway may be still 

biologically interesting, even if this pathway is not statistically significant. So that we 

prefer to look for the ratio of the number of genes rather than the p-value, and focus 

on those pathways related to the results of functional analysis (e.g., inflammation, 

cellular growth, proliferation, movement and death) and the NP pathological patterns. 

In addition, in order to narrow down the selection of the Canonical Pathways, some 

“redundant” pathways (e.g., apoptosis signaling vs. death receptor signaling, 

EGF/EGFR signaling vs. neuregulin signaling, and ERK/MAPK signaling vs. 

p38/MAPK signaling), and the pathways without alteration of key genes (e.g., no 

alteration of IL-10 in IL-10 signaling pathway) were filtered. Finally, top-7 relevant 

Canonical Pathways were selected, including apoptosis signaling, complement system, 
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EGF/EGFR signaling, eicosanoid signaling, ERK/MAPK signaling, IL-6 signaling, 

and NF-kappaB signaling. 

 

3.7.9 Real-time reverse transcription (RT) PCR 

One microgram of the total RNA was reversely transcribed using TaqMan Reverse 

Transcription Reagents kit (Applied Biosystems) based on the manufacturer’s 

protocol. Briefly, the reverse transcription PCR (RT-PCR) mixture contained 1X 

TaqMan RT buffer, 5.5 mM MgCl2 , 500 µM dNTP, 2.5 µM Random Hexamer, 

0.4U/µl RNase inhibitor and 1.25U/µl MultiScribe Reverse Transcripase in a final 

volume of 50 µl. RT-PCR reactions were performed in thermal cycler with the 

following conditions: 25℃/10 min, 48℃/30 min, 95℃/5 min. cDNA samples were 

stored in aliquots at -20℃ until use. 

 

Real-time RT PCR analysis was performed to validate the expression of selected 

target genes which showed significant differences in microarray analysis. In addition, 

the expression of two GR gene products (GRα and GRβ) whose probe IDs were not 

available in affymetrix arrays was also determined. The TaqMan assays (Applied 

Biosystems) of target genes were described in Table 3.3. Both target and reference 

(GAPDH) genes were amplified in separate wells in triplicate. The PCR amplification 

was performed in a final volume of 25 µl, containing 10 ng of cDNA, 1× TaqMan 

Gene Expression Assay (Applied Biosystems), and 1× TaqMan Universal PCR Master 

Mix (Applied Biosystems). The cycling conditions for ABI Prism 7300 Sequence 

Detection System (Applied Biosystems) were 50°C for 2 min and 95°C for 10 min, 

followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Briefly, each gene was 

amplified in separate tubes, and the increase in fluorescence was measured in 
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real-time. The threshold cycle (Ct), which is defined as the fractional cycle number at 

which the fluorescence reaches 10× the standard deviation of the baseline that was 

calculated. Relative gene expression was calculated using the comparative 2-∆∆Ct 

method as previously described [Livak et al. 2001]. 

 

Table 3.3 Identity for human Taqman Gene Expression Assays-On-Demand™ 

Gene Symbol Description Assay ID 
AP-1 genes   
c-Fos v-fos FBJ murine osteosarcoma viral oncogene homolog Hs00170630_m1 
c-Jun Jun oncogene Hs00277190_s1 
FosB FBJ murine osteosarcoma viral oncogene homolog B Hs00171851_m1 
JunB Jun B proto-oncogene Hs00357891_s1 
AP-1 related genes  
COX-2 Cyclooxygenase-2 Hs00153133_m1 
IL-6 Interleukin 6 Hs00174131_m1 
HBEGF Heparin-binding EGF-like growth factor Hs00181813_m1 
AREG Amphiregulin Hs00155832_m1 
EGR1 Early growth response 1 Hs00152928_m1 
Pro-inflammatory genes in NP in response to GCs  
CXCL9 Chemokine (C-X-C motif) ligend 9 Hs00171065_m1 
CXCL11 Chemokine (C-X-C motif) ligend 11 Hs00171138_m1 
MMP7 Matrix metallopeptidase 7 Hs00159163_m1 
MMP9 Matrix metallopeptidase 9 Hs00234579_m1 
Anti-inflammatory genes in NP in response to GCs  
DUSP1 Dual specificity phosphatase 1 Hs00610256_g1 
DUSP2 Dual specificity phosphatase 2 Hs00358879_m1 
DUSP6 Dual specificity phosphatase 6 Hs00169257_m1 
SPRY1 Sprouty homolog 1 Hs00398096_m1 
SPRY2 Sprouty homolog 2 Hs00183386_m1 
SPRY4 Sprouty homolog 4 Hs00540086_m1 
NFKBIZ Nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor, zeta 
Hs00230071_m1 

SOCS3 Suppressor of cytokine signaling 3 Hs00269575_s1 
ANXA1 ANNEXIN A1 Hs00167549_m1 
SCGB1A1 Secretoglobin, family 1A, member 1 (uteroglobin) Hs00171092_m1 
ZFP36 Zinc finger protein 36 Hs00185658_m1 
THBD Thrombomodulin Hs00264920_s1 
Eosinophil related genes  
CD69 CD69 molecule Hs00156399_m1 
NR4A1 Nuclear receptor subfamily 4, group A, member 1 Hs00374230_m1 
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Gene Symbol Description Assay ID 
NR4A2 Nuclear receptor subfamily 4, group A, member 2 Hs00428691_m1 
CXCL2 Chemokine (C-X-C motif) ligand 2 Hs00236966_m1 
CCL11 Chemokine (C-C motif) ligand 11 (eotaxin) Hs00237013_m1 
IL5Ra Interleukin 5 receptor, alpha Hs00602482_m1 
C3 Complement component 3 Hs00163811_m1 
IL13RA2 Interleukin 13 receptor, alpha 2 Hs00152924_m1 
IL18 Interleukin 18 Hs00155517_m1 
NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor, alpha 
Hs00230071_m1 

Glucocorticoid receptor genes  
GRα   Glucocorticoid receptor alpha isoform Hs01005211_m1 
GRβ  Glucocorticoid receptor beta isoform Hs00354508_m1 
House keeping gene  
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 4333764T 

 

3.8 Histo-immunohistochemical examination 

Evaluation of the Study Subject 1 was used by frozen tissues, while evaluation of the 

Study Subject 2 was used by paraffin embedded tissues. The frozen tissue specimens 

were sectioned into a thickness of 4 µm by using Leica CM 1850 Cryostat (Leica, 

Wetzlar, Germany); while the paraffin embedded tissues were sectioned at 4 µm with 

Leica RM2125 Microtome (Leica). To obtain a general impression of the 

histopathological features of the examined specimens, slides were stained with 

hematoxylin and eosin (H&E). In addition, several interesting cellular markers and 

target genes were evaluated by immunohistochemical staining.  

 

3.8.1 Staining procedures for frozen tissues 

Frozen sections were fixed in cold methanol:acetone (1:1) and then blocked by 3% 

hydrogen peroxide, and 2% normal goat serum (Dako A/S, Glostrup, Denmark). 

Slides were stained with anti-CDH1 monoclonal antibody [mouse IgG2a; clone, 36] 

(BD Biosciences, San Jose, CA), anti-CD8 monoclonal antibody [mouse IgG1 kappa; 

clone, C8/144B] (Dako A/S), and anti-neutrophil elastase monoclonal antibody 
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[mouse IgG1 kappa; clone, NP57] (Dako A/S) at dilutions of 1:100, and then were 

incubated at room temperature for 1 h. Species- and subtype-matched antibodies were 

used as negative controls [N-Universal Negative Control for mouse IgG and 

N-Universal Negative Control for rabbit IgG] (Dako A/S) and were performed in 

parallel with the specific staining. The sections were blocked with 2% normal goat 

serum (Dako A/S) again. The slides were then incubated with DAKO EnVision 

System Peroxidase kit (Dako A/S) for 30 minutes at room temperature. 

Diaminobenzidine (DAB) was used as substrate for color development. In the end, 

sections were counterstained with hematoxylin, dehydrated with serial concentration 

of ethanol, hydrated with xylene and mounted with mounting medium (Dako A/S). 

 

3.8.2 Staining procedures for paraffin embedded tissues 

Deparaffinization and rehydration were performed in prior to the staining of paraffin 

embedded sections. Slides were processed with Target Retrieval Buffer (Dako A/S). 

Endogenous peroxidase activity was blocked with 3% H2O2. Slides were stained with 

anti-c-Jun monoclonal antibody [mouse IgG2a; clone, 3/Jun] (BD Biosciences) and 

anti-c-Fos polyclonal antibody [Rabbit IgG; clone, K-25] (Santa Cruz Biotechnology, 

Santa Cruz, CA) at dilutions of 1:100 and 1:300, respectively, and then were 

incubated at room temperature for 1 hour. Species- and subtype-matched antibodies 

were used as negative controls [N-Universal Negative Control for mouse IgG and 

N-Universal Negative Control for rabbit IgG] (Dako A/S) and were performed in 

parallel with the specific staining. The slides were then incubated with DAKO 

EnVision+System-HRP (Dako A/S) at room temperature for 30 min. 

Diaminobenzidine was used as substrate for color development. All slides were 

counterstained with hematoxylin (Sigma Aldrich), dehydrated with serial 



 65

concentration of ethanol, hydrated with xylene and mounted with mounting medium 

(Dako A/S).  

 

3.8.3 Evaluation of histo-immunohistochemical patterns 

Several histo-immunohistochemical patterns were examined with a light microscope 

including infiltration of inflammatory cells, epithelial integrity, edema status, and 

target gene expression. To have a standardized histological evaluation of the staining 

(including both H&E staining and immunostaining), the pathologist independently 

assessed all cases in a blind fashion. 

 

3.8.3.1 Evaluation of infiltrated inflammatory cells 

Infiltration of eosinophils was evaluated based on H&E staining, while infiltration of 

neutrophils and CD8+ cells was examined based on immuno-staining. The results of 

cell counting were showed in percentage, which were calculated by positive staining 

cells per 200 cells at 400× magnification in every five fields with high-intensity 

positive cells. The percentage of these inflammatory cells was categorized into four 

grades: Grade 0, none; Grade 1, less than 10%; Grade 2, 10% to 40%; Grade 3, more 

than 40%.  

 

3.8.3.2 Evaluation of epithelial integrity and edema status in the nasal tissues 

Since the tissue morphology was preserved well in formalin fixed specimens, only the 

paraffin embedded sections were examined for assessing epithelial integrity as 

described [Wladislavosky-Waserman et al., 1984]. Grade 0 indicated intact epithelium 

which all layers of epithelial cells were present; grade 1 indicated moderately 

damaged epithelium which 2 or more layers of cells were present; grade 2 indicated 
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severely damaged epithelium which only 1 layer of cells or no epithelial cells (naked 

basement membrane) remained. In this study, grade 0 was defined as “intact” 

epithelium, while grade 1 and 2 were defined as “damaged” epithelium. The status of 

edema is also evaluated and classified as: grade 0, no edematous stoma; grade 1, mild 

or moderate edematous stoma and grade 2, severe edematous stoma. 

 

3.8.3.3 Evaluation of target gene expression 

In methylation study, protein level of CDH1 was evaluated from frozen sections; 

while in gene expression study, protein level of c-Jun and c-Fos was examined from 

paraffin embedded sections. 

 

Differential CDH1 expression was defined in three categories as described [Zheng et al., 

1999]: high level of expression (>75% cells were positive), intermediate level of 

expression (35% to 75% cells were positive), and low level of expression (<35% cells 

were positive). The counting was performed blindly without the investigator knowing 

the identity of the sample. 

 

For slides stained with antibodies to c-Jun and c-Fos, a semi-quantitative scoring 

system considering the extent of immunoreactivity and staining intensity was 

performed [Putti et al., 2002]. The immunoreactivity of c-Jun or c-Fos within the 

epithelium region was graded as “0 point” for negative staining, “1 point” for < 15% 

positive cells, “2 points” for 15-60% positive cells, and “3 points” for > 60%. The 

intensity of c-Jun or c-Fos staining was graded as “1 point” for weak staining, “2 

points” for moderate staining, and “3 points” for strong staining. The overall score 

was calculated by multiplying the score of immunoreactivity and intensity of staining 
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in each case. Hence, the maximum score for individual case is 9. In this study, the 

overall score of ≥ 6 was defined as “strong” expression while the overall score < 6 

was defined as “weak” expression. 

 

3.9 Statistical analysis 

All data in methylation study and gene expression study were analyzed using the 

SPSS statistical software V14.0 (SPSS Inc., Chicago, IL).  

 

3.9.1 Statistics in methylation study 

Fisher’s exact test and continuity correction were used to compare the methylation 

frequency in different study groups (NP versus control) and in different sample types 

(solid tissues versus PBMC samples) in NP and control group, respectively. Fisher’s 

exact test was used to analyze the methylation status of CDH1 in relation to the 

expression of this gene. The Mann-Whiney two-tailed test was used to compare the 

gene methylation status in clinical parameters (such as atopic, 

eosinophil/neutrophil/CD8+ cell infiltration). Values were considered significant if p 

< 0.05. 

 

3.9.2 Statistics in gene expression study 

Power and sample size estimation suggested that a minimum of four biopsies in each 

study group are required to detect a 1.5-fold difference in gene expression with a 1% 

significance level and a 90% power. Hence, we would expect to detect a 2.0-fold 

difference in gene expression with p < 0.01 and with a 90% chance of avoiding a type 

II error.  
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Wilcoxon matched pairs sign rank test was used to compare eosinophils and 

neutrophils count, epithelial integrity, edema status and gene expression levels, in 

GC-treated versus GC-naïve NP samples. Mann-Whitney two-tailed test was 

performed to compare gene expression levels between NP tissues, either GC-treated 

or GC-naïve, versus nasal mucosal controls. Spearman rank analysis was used to 

analyze the correlation between the gene expression levels assessed by microarray 

and those measured by quantitative PCR; and between fold change of c-Jun and other 

AP-1 related genes. Fisher’s exact test was used to assess the relationship between 

protein expression of c-Jun and epithelium integrity in NP tissues. Values were 

considered significant if p < 0.05. 
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Chapter 4. Role of Staphylococcus Aureus and Superantigens in Nasal 

Polyposis 

 

To test the superantigen hypothesis in Asian NP, we carried out a pilot study 

performed in 24 cases of NP samples and 10 inferior turbinate (IT) samples as 

controls. Standard PCR was used to detect S. aureus specific gene (nuc) and 9 S. 

aureus derived enterotoxins (superantigens) (listed in Table 3.1, Page 40) by using 

DNA samples isolated from NP and IT tissues. 

 

Part I Results 

4.1.1 Patient characteristics and histological evaluation 

The NP and control subjects selected here are the same as the subjects selected in the 

methylation study, so that their clinical characteristics were summarized in Table 5.1 

(page 76). The majority of the NP patients are Chinese ethnics (about 70%). All NP 

patients had sinusitis, which was confirmed by CT scan of the sinuses. Atopy, a 

positive serum specific IgE antibody to common local allergens, was founded in 33% 

(8 out of 24) of NP patients and 50% (5 out of 10) of controls, respectively; but the 

IgE results were not significantly different between NP and controls (data not shown 

here). An increase of eosinophils, neutrophils, and CD8+ cells was evident in NP 

samples, but not in control turbinate samples. 

 

4.1.2 Detection of S. aureus and superantigens 

Nuc gene which encodes the thermostable nuclease of S. aureus has been considered a 

diagnostic marker for S. aureus infection [Brakstad et al., 1992]. Positive PCR results of 

nuc gene with bands of the expected size were obtained for only 2 out of 24 NP 
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tissues and 1 out of 10 IT tissues (Figure 4.1). No detection signal of nuc gene was 

found in all PBMC samples. Interestingly, there was one confounding PCR band close 

to the expected size of nuc gene in some NP tissues (e.g., NP1, NP3, and NP4 in 

Figure 4.1). To evaluate the positive PCR results, direct sequencing was performed 

and then the sequencing results were uploaded to Blast (online source: 

http://blast.ncbi.nlm.nih.gov/Blast.cgi). The blast results confirmed that the sequence 

from the nuc positive PCR band was amplified from the whole mRNA sequence of 

the nuc gene; while the sequence from the PCR band close to the correct size of nuc 

gene was confirmed to not be related to the nuc gene sequence (Figure 4.2). As far as 

the superantigens, there was no evidence to support that the 9 S. aureus enterotoxins 

DNA existed in any of the nasal mucosa samples and PBMC samples by PCR 

detection (Data not shown here).  

 

 

Figure 4.1 PCR product of S.aureus specific nuc gene. Gel picture shows the nuc gene in 

representative NP samples and NCTC 657 S.aureus bacteria chain (positive control). Only the band 

from NP9 and NP18 is at the same size as positive control. L, size marker (100-bp DNA ladder). 
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  Figure 4.2 

  (A) 

 

 (B) 
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(C) 

 
Figure 4.2 Direct sequencing results of nuc gene. (A) Blast results of direct sequencing for positive 

control. (B) Blast results of direct sequencing for NP18, which has PCR product with correct size. (C) 

Blast results of direct sequencing for NP1, which has PCR product with confounding size. 

 

Part II Discussion 

S. aureus and its superantigens have been proposed as elemental causes for the Th2 

shift and increase of eosinophils in NP (reviewed in Chapter 1.4.4, Page 9). We 

assumed the potential roles of S. aureus and its superantigens in NP in this 

prospective study. However, we found that S. aureus was only detected in 8% (2 out 

of 24) of the NP tissues and in 10% (1 out of 10) of the control IT tissues, indicating 

that the prevalence rate of S. aureus in NP is low and existence of S. aureus is not 

specific to NP. S. aureus was not found in any of the PBMC samples, indicating no 

systemic infection of S. aureus. Moreover, we could not find the presence of 

superantigens in NP. The results of no detection signal in superantigens were 

consistent with the low prevalence rate of S. aureus in NP. 

 

Although the prevalence rate of S. aureus in NP has not been summarized in the 
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literature, based on the current results and some published reports, it may range from 

8% to 64% [Fan et al., 2006; Niederfuhr et al., 2008; Van Zele et al., 2004]. Possible reasons for 

this wide range include the heterogeneities of NP (eosinophilic vs. neutrophilic), 

different studied populations (Asian vs. Caucasian), method and location of tissue 

sampling (nasal swab vs. mucosa biopsy; middle meatus vs. sinus mucosa), and 

different microbiological detection techniques (IgE test vs. PCR assays). Our study 

used PCR to directly detect S. aureus specific nuclease genes (nuc) in NP biopsy in 

Asian patients. The advantages of PCR are that it is a fast method that detects DNA of 

living as well as dead bacteria; and the PCR detection of nuc gene has shown a greater 

specificity (> 90%) in S. aureus measurement than the other methods [Brakstad et al., 

1992; Niederfuhr et al., 2008]. However, nuc-PCR assays may have low sensitivities 

(about 58%) if small amounts of DNA are used [Niederfuhr et al., 2008]. Therefore, 

whether the lack of detection signal for nuc gene is attributed to the little inputed 

DNA copy numbers need to be carefully examined in the future study. 

 

With regard to the superantigens, their prevalence rates appear to be different from the 

incidence of S. aureus in NP without asthma. For example, Van Zele et al. showed that 

only about 43% of S. aureus positive NP demonstrated an IgE response to 

superantigens [Van Zele et al., 2004]. In addition, there was no major difference in the 

presence of enterotoxin genes in S. aureus strains derived from NP or control patients 

[Van Zele et al., 2008]. Similarly, another study also showed no difference in the 

incidence of S. aureus among chronic sinusitis patients with or without NP and 

controls. S. aureus did not intensify the Th2 shift in NP patients [Niederfuhr et al., 2008]. 

Our results were in line with the recent reports which showed no detection of specific 

IgE of anti- S. aureus enterotoxins in Chinese NP [Fan et al., 2006]. In contrast, one 
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study showed that about one-third of the Chinese patients with NP presented an IgE 

response to superantigens, but the relationship between eosinophil inflammation and 

superantigens was low [Zhang et al., 2006]. The discrepancy in these results may be due 

to the different detection methods used in these studies and different histopathological 

features in the studied NP.  

 

Part III Conclusion 

In summary, the roles of S. aureus superantigens may not be evident in Asian NP, at 

least in our study population. Although there is increasing evidence that S. aureus 

superantigens may participate in the chronic inflammation of NP, our results and some 

published reports suggest that of S. aureus and its superantigens may not have a 

substantial role in Asian NP. The evidence for the role of S. aureus and its 

superantigens in NP is thought to be circumstantial and not present in all types of NP. 

Nevertheless, the potential role of S. aureus superantigens in NP cannot be ruled out. 

Some confounding factors (e.g., NP characteristics, studied population, and detection 

methods) in future superantigen studies in NP need to be carefully categorized and 

standardized. In addition, further studies are necessary to answer the question whether 

the presence of S. aureus and its superantigens in both NP and nasal mucosal controls 

have a different pathophysiologic impact in nasal mucosa. 
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Chapter 5 Methylation of Tumor Suppressor Genes in Nasal 

Polyposis 

To evaluate the promoter methylation status of some common tumor suppressor genes 

(TSGs) in NP, six commonly reported TSGs (p16, RASSF1A, CDH1, TSLC1, DAPK1, 

and PTPN6) whose expressions were frequently silenced by promoter methylation in 

multiple cancers were studied. In this study, we recruited three groups of subjects: 

three inverted papilloma (IP) served as controls representing benign tumors; 24 NP 

were the sample group; and 10 inferior turbinates (IT) from patients with septal 

deviation served as healthy controls. Methylation of the TSGs was evaluated in solid 

tissues and PBMC from all studied subjects by using methylation specific PCR 

(MSP). 

 

Part I Results 

5.1.1 Patient characteristics and histological evaluation 

The clinical and histological characteristics of the subjects (IP, NP, and controls) are 

summarized in Table 5.1. H&E staining was used in IP, NP, and healthy controls; 

while, immunostaining (for neutrophils and CD8+ T cells) was only applied in NP and 

controls. Atopy was evident in 33% of the NP patients and 50% of the healthy 

controls (allergy test was not performed in IP patients). 
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Table 5.1 Patient clinical and histological characters 

Sample 

ID 

Sex Age Atopy* Eosinophil† Neutrophil† CD8+

Cell† 

Squamous 

metaplasia 

NP1 M 47 - 1 1 1 - 

NP2 M 58 - 1 3 3 - 

NP3 F 50 - 3 1 2 - 

NP4 M 50 + 2 1 2 - 

NP5 M 53 - 3 2 2 - 

NP6 M 38 - N.A N.A N.A N.A 

NP7 F 23 - 2 3 3 + 

NP8 M 47 - N.A N.A N.A N.A 

NP9 M 54 - 2 2 2 - 

NP10 M 49 + 3 1 1 - 

NP11 M 34 - N.A N.A N.A N.A 

NP12 M 29 + 3 1 1 - 

NP13 F 40 - N.A N.A N.A N.A 

NP14 M 21 + 1 1 1 + 

NP15 M 42 - 2 2 2 - 

NP16 M 58 - 1 2 3 - 

NP17 F 46 - 1 3 1 - 

NP18 M 33 - 3 2 3 - 

NP19 M 29 + 1 1 1 - 

NP20 M 48 + 3 3 2 + 

NP21 M 49 - 1 2 3 - 

NP22 F 28 + 3 2 3 - 

NP23 M 42 + 2 3 2 + 

NP24 M 32 - 3 3 3 + 

IT1 M 23 - 0 1 1 - 

IT2 F 20 + 1 1 2 - 
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Sample 

ID 

Sex Age Atopy* Eosinophil† Neutrophil† CD8+

Cell† 

Squamous 

metaplasia 

IT3 M 25 + 1 1 1 - 

IT4 F 40 - 0 1 2 - 

IT5 M 29 - 1 1 1 - 

IT6 M 29 + 1 2 2 - 

IT7 F 56 + 1 1 2 - 

IT8 M 18 - 1 1 1 - 

IT9 M 21 + 1 2 2 - 

IT10 M 23 - 1 1 1 - 

IP1 M 45 N.A 1 N.A N.A + 

IP2 F 36 N.A 1 N.A N.A + 

IP3 M 52 N.A 1 N.A N.A + 
 

* A Phadiatop PAU/L (Pharmacia Arbitrary Units/L) value ≥ 0.35 was considered as atopy. “+”, atopy; 

“-”, non-atopy. 

† The percentage of eosinophil/neutrophil/CD8+ cell was categorized into four grades: Grade 0, none; 

Grade 1, less than 10%; Grade 2, 10% to 40%; Grade 3, more than 40%. Grade 2 and Grade 3 were 

considered increased infiltration of the indicated cell type. 
# Squamous metaplasia of epithelium was evaluated qualitatively in H&E staining sections, i.e., “+” 

presence of sqamous metaplasia; “-”, absence of squamous metaplasia. 

Abbreviations: NP, Nasal polyposis; IT, inferior turbinate; IP, Inverted papilloma; N.A., not applicable. 

 

H&E staining revealed the patterns of eosinophil infiltration and epithelium structure 

in IP, NP, and controls. An increase cell count of eosinophils, neutrophils, and CD8+ 

cells was significant in NP, but not in IP or controls. With regard to the epithelium 

(Figure 5.1), IP showed an inversion of the neoplastic squamous epithelium with 

minimal mitosis and atypia, and rarely presented a respiratory epithelial structure. The 

surface epithelium of NP was typically respiratory mucosa with areas of transitional 

and squamous epithelium; moreover, squamous epithelium was not found in IT 

tissues. 
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Figure 5.1 Histological patterns of epithelium with squamous metaplasia. (A) Squamous metaplasia 

from representative NP sample; (B) Squamous metaplasia from representative IP sample. All sections 

were stained with H&E staining and evaluated at ×100 magnification. 

 

5.1.2 Detection of methylation status by methylation-specific PCR (MSP) 

The DNA of solid tissues (IP, NP, and control IT) and the PBMC from the subjects 

were examined for promoter methylation in p16, RASSF1A, CDH1, TSLC1, DAPK1 

and PTPN6 genes by MSP. Representative MSP results of these genes are presented in 

Figure 5.2. The presence of a methylated signal always occurs with the presence of 

unmethylated signal, but not vice versa, indicating that these tissues consist of mixed 

cell populations in terms of methylation of these genes. In all samples, MSP results 

were confirmed by repeated tests in order to avoid any technical bias. The summary 

of the promoter methylation status of all six genes are shown in Table 5.2. The 

frequency of methylation of these TSGs in NPC was cited from the published results. 

For p16 and RASSF1A, only unmethylated alleles were detected in all of the studied 

samples. Methylation of CDH1, TSLC1, and DAPK1 was found in some samples from 

IP, NP and control groups; furthermore, methylation of PTPN6 was detected in all 

solid tissues. The methylation rate was significantly higher in solid tissues than in 

corresponding PBMC. However, no significant difference was detected in the 
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methylation frequencies of CDH1, TSLC1, DAPK1, and PTPN6 between NP tissues 

and control IT tissues (data not shown). Note that since the sample size of IP was too 

small, statistical comparison was not performed in this sample group.  

 

 

Figure 5.2 Representative samples of MSP analyses of DNA samples from NP, IT, and PBMC. 

Methylation (M) and unmethylation (U) primers sets were used to amplify the methylated and 

unmethylated sequences, respectively. L, size marker (100-bp DNA ladder); P, positive control. 

CpGenome Universal Methylated DNA was used as a methylation-positive control. 
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Table 5.2 Summary of TSGs methylation status (by MSP analysis) of different groups 

Genes NP a 

(n=24) 

IT a 

(n=10) 

NP-PBMC a

(n=20) 

IT-PBMC a

(n=10) 

IP b 

(n=3) 

NPC c 

 

p16 0 0 0 0 0 46% d 

RASSF1A 0 0 0 0 0 84% d 

CDH1  46% 70% 30% 20% 2 52% e 

TSLC1 29% 30% 0 0 1 68% f 

DAPK1 38% 50% 5% 0 1 76% d 

PTPN6 100% 100% 0 0 3 N.A. 
 

NP, Nasal Polyp; IT, Inferior Turbinate; IP, inverted papilloma; NPC, Nasopharyngeal carcinoma 

N.A., not applicable.  
  a Methylation frequency of each gene in different sample type from NP patients and IT controls.  
   b Only counted the number of IP samples with methylated status, due to the small sample size. 

  c Methylation frequency of NPC is referred to published reports. 
d Kwong et al., 2002 
e Tsao et al., 2003 
f Zhou et al., 2005 

 

5.1.3 Confirmation of MSP results by bisulfite genomic sequencing (BGS) 

For CDH1, TSLC1, DAPK1, and PTPN6, BGS analysis was further performed to 

check their detailed methylation status (Figure 5.3). BGS showed that all the 

cytosines at non-CpG sites were converted to thymines, validating the adequacy of the 

bisulfite modification. BGS results for CDH1, TSLC1, and DAPK1 showed that only 

low levels of methylation (1 out of 10-15 alleles sequenced was fully methylated) 

were detected in samples with methylation detected by MSP; while BGS of PTPN6 

showed extensive methylation of CpG sites in most alleles (3 out of 5). Hence, the 

methylation signals of the genes (CDH1, TSLC1, and DAPK1) detected by MSP were 

mainly derived from a small percentage of cells (< 10%) in NP and control mucosa. 
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Figure 5.3 Detailed methylation analysis in promoter of selected genes (SHP-1, DAPK1, TSLC1, and 

CDH1) by using BGS. CpG sites are shown on the top row as numbers. Each row of circles represents 

a single allele of the respective gene promoter analysed. Open circles: unmethylated CpG sites; filled 
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circles: methylated CpG sites. For BGS, at least 10 bacterial colonies were analysed for each DNA 

sample (except SHP-1). In all of the four genes, methylated alleles are present in respective NP solid 

tissue with MSP methylated signal, while unmethylated alleles are shown in the NP samples (except 

BGS of SHP-1 was analysed in PBMC) with no MSP methylated signal. (A) BGS primers amplify a 

589-bp region with 22 CpG sites in the SHP-1 promoter. (B) BGS primers amplify a 351-bp region 

with 36 CpG sites in the DAPK1 promoter. (C) BGS primers amplify a 211-bp region with 22 CpG 

sites in the TSLC1 promoter. (D) BGS primers amplify a 372-bp region with 30 CpG sites in the CDH1 

promoter.  

 

5.1.4 Correlation between methylation status versus histopathological patterns of 

NP and protein expression 

Methylation of CDH1, TSLC1, and DAPK1 was not significantly associated with the 

appearance of squamous metaplasia in IP and NP samples (data not shown). In 

addition, there is no significant correlation between promoter methylation status of 

these three genes (CDH1, TSLC1, and DAPK1) and cell counts for 

eosinophils/neutrophils/CD8+ T cells in NP tissues (data not shown). In the above 

analysis, all known confounding variables, such as age, sex and atopic status were not 

found to be associated with methylation status of individual genes (data not shown). 

 

Due to the importance of CDH1 in epithelial development, we attempted to 

investigate the relationship between methylation status of CDH1, and its protein 

expression in the NP and control mucosa. Our results showed that CDH1 expression 

was found in all NP and IT specimens, which was mainly in the area of epithelium 

and endothelium (Figure 5.4). However, we did not find the anticipated correlation 

between CDH1 promoter hypermethylation and down-regulation of CDH1 expression 

in these nasal tissues (Table 5.3). 
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Figure 5.4 Immunohistochemical staining of CDH1 in NP samples. CDH staining is shown in right 

column, while the corresponding negative control is shown in left column. (A) High level of expression 

(>75%) of CDH1 in sample NP12 which does not have methylation of CDH1. (B) Intermediate level of 

expression (35% to 75%) of CDH1 in sample NP15 which has methylation of CDH1. (C) High level of 

expression of CDH1 in sample IT8 which has methylation of CDH1. A, B, and C ×100 magnification. 

 

Table 5.3 Correlation between CDH1 expression and methylation status of CDH1 in 

nasal tissues (both NP and IT) 

Methylation Status of CDH1b Expression of CDH1a 

No/weak methylation Methylation 

p- valuec 

Low/intermediate level  

High level expression 

3 

12 

7 

8 

0.123 

 
a  High level of expression (>75% cells are positive), intermediate level of expression (35% to 75% cells 

are positive), and low level of expression (<35% cells are positive)  
b  Methylation status was determined by methylation-specific PCR analysis. 
c  p-value was determined by two-sided Fischer’s exact test, and p < 0.05 was regarded as statistically 

significant.  
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Part II Discussion 

In the head and neck region, the most common lesion encountered by the 

otolaryngologist relates to alterations of the surface squamous epithelium. The 

epithelium of NPC represents dysplastic epithelial changes (e.g., poorly differentiated 

squamous cells). IP is generally regarded as a benign neoplasm of the sinonasal cavity, 

although the metaplastic epithelium may exhibit dyplasia, and up to 10% of the IP 

transform into squamous cell carcinoma [Dictor et al., 2000]. There is increasing 

evidence suggesting that IP may arise from a background of sinonasal mucosal 

inflammation, and clinically IP is frequently associated with NP [Robinson et al., 2006]. 

Promoter methylation-mediated gene silencing is a hallmark of many squamous cell 

carcinomas, including NPC [Hasegawa et al., 2002], and methylation of TSGs in IP was 

also implied in the association between IP and squamous cell cancers [Stephen et al., 

2007].  

 

NP represents a damaged respiratory epithelium with areas of squamous metaplasia 

after abnormal remodeling. The gross view of NP is similar to IP (Figure 5.5), while 

in histological observation, the severity of squamous cell remodeling in NP is much 

lesser than that in IP (Figure 5.1, Page 78). Although NP has not been regarded as a 

cancer-prone lesion, the high recurrence rate of NP after surgical polypectomy and the 

abnormal remodeling of epithelium raise the question as to whether NP could share 

some pathological mechanisms with those malignant (e.g., NPC) and benign (e.g., IP) 

neoplasms in upper respiratory tissues. Indeed, some hyperplastic polyps from gastric 

and colorectal tissues have been considered to present malignant potential even 

though they are non-neoplastic lesions in nature [Hawkins et al., 2001; Jass, 2004].  
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Figure 5.5 Gross view of nasal polyps and nasal inverted papilloma. (A) Nasal polyps; (B) inverted 

papilloma. Both are under endoscope examination. Picture was taken from patients with NP or 

papilloma under endoscope examination. 

 

The six selected genes are regarded as common TSGs which control and prevent 

cancer development. P16 and RASSF1A are cell cycle inhibitors which can prevent 

the cancer cell from going through the G1/S phase transaction. CDH1 and TSLC1 are 

adhesion molecules which can control the tumor cell invasions. DAPK1 is a 

pro-apoptotic factor which can mediate death of cancer cells. PTPN6 is a negative 

regulator of cellular signaling in immune cells which antagonize the 

growth-promoting tyrosine kinases in leukemia/lymphoma. Inactivation of these 

TSGs contributes to the aberrant proliferation and differentiation of squamous cancer 

cells. In addition, methylation of these genes was also observed in the chronic 

inflammation of gastric and intestinal epithelial lesions which have been considered to 

predispose to cancers.  

 

Methylation of CDH1, TSLC1, and DAPK1 was observed in IP and NP, confirming 

that the methylation of some TSGs could also be detected in benign growths and 

inflammatory conditions. In addition, the methylation rate of these three genes was 

significantly higher in solid tissues than the corresponding PBMC, indicating it is 
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more likely a local event. However, methylation of CDH1, TSLC1, and DAPK1 was 

also found in control nasal mucosa and the methylation rate of these three genes was 

not significantly different between NP and controls. Indeed, sequencing results of 

CDH1, TSLC1, and DAPK1 in NP and IP tissues demonstrated that the CpG sites 

between the MSP primer sequences were not completely methylated and the 

percentage of methylated alleles was low. Furthermore, significant negative 

correlation between CDH1 promoter methylation and CDH1 expression was not 

found in the nasal tissues and some clinical characteristics of the patients (including 

age, appearance of squamous metaplasia, and infiltration of eosinophils) were not 

associated with methylation status of CDH1, TSLC1, and DAPK1. Hence, all this 

evidence would suggest that a low level of methylation of CDH1, TSLC1, and DAPK1 

may have a minimal contribution to the pathogenesis of the nasal benign lesions (IP 

and NP), and indicate that IP and NP should still be considered non-malignant. 

 

Methylation of TSGs is commonly negative in PBMC from non-cancer subjects 

[Gutierrez et al., 2003] and has been used as molecular detection strategies in tumors. 

However, methylation of CDH1 and DAPK1 was detected in PBMC from some of the 

IP, NP, and control subjects, and was in line with the previous studies which showed 

methylation of DAPK1 in PBMC from healthy subjects [Reddy et al., 2003]. Therefore, 

the methylation status of CDH1 and DAPK1 in PBMC may act as a confounding 

factor in tumor detection. 

 

Interestingly, it is obvious that methylation of PTPN6 was found in all solid tissues (IP, 

NP, and healthy control), but not at all in PBMC from all study patients. BGS results 

confirmed that methylation of PTPN6 in nasal solid tissues occurred in all CpG sites 
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of the amplified regions in most alleles. PTPN6 is primarily expressed in 

hematopoietic cells, and considered a putative tumor suppressor gene in lymphoma 

and leukemia. Most of the methylation studies of PTPN6 focused on the malignancy 

of the hematologic system [Oka et al., 2002]. Only one report showed a high frequency 

of methylation of PTPN6 in gallbladder carcinoma (GBC) and chronic cholecystitis. It 

was postulated that methylation of PTPN6 was an early event in GBC pathogenesis 

[Takahashi et al., 2004], however this study did not obtain normal gallbladder epithelium 

as control. Based on our data, we suggest that methylation of PTPN6 is only a 

tissue-specific phenomenon at least in upper airway mucosa and it may not contribute 

to any pathogenic mechanism in epithelial alteration on cellular infiltration. In 

addition, the lack of PTPN6 methylation in normal PBMC confirms that it should be a 

specific serum tumor marker for the detection of lymphoid/hematopoietic cancers, but 

PTPN6 is not a suitable molecular marker in detection of carcinoma (at least in airway 

tissues) based on PTPN6 methylation. 

 

It should be noted that there are limitations in this study. Because NP and IT are 

infiltrated by various cell populations, it is hard to identify which cell types contribute 

to the gene methylation. One report showed that infiltrating leukoctyes might account 

for the methylated CpGs in breast cancer tissues and confound the methylation 

detection [Lombaerts et al., 2004]. So the impurity of cell types may be a reason that 

normal control tissues also showed methylation signals, and that nasal samples with 

normal CDH1 expression showed a strong MSP product. Therefore, in future studies, 

it is recommended that different components of NP (especially epithelial area) could 

be isolated by laser capture microdissection and the gene methylation could be 

determined in a cell-specific manner. 
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Part III Conclusion 

In conclusion, this study compared the methylation status of six commonly reported 

TSGs in IP, NP and healthy nasal mucosa. Methylation of p16 and RASSF1A, were 

considered tumor-specific. Methylation of CDH1, TSLC1, and DAPK1 was found at 

low level in IP, NP, and control nasal mucosa with no difference in the detection rates. 

Methylation of PTPN6 is tissue-specific and should only be studied in hematopoietic 

disorders. The role of methylation of these genes in nasal mucosal inflammation 

appears to be minimal, and IP and NP are still regarded as benign lesions. Nonetheless, 

our study indicates that when using CDH1, TSLC1, and DAPK1 in studies of tumors, 

one need to bear in mind that weak methylation of these genes could still be detected 

in inflammatory or benign conditions, or even normal PBMCs, hence they may not be 

specific molecular markers in tumor detection based on methylation. 
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Chapter 6. Gene Expression Profiles in Nasal Polyposis and its 

Response to GC Treatment 

 

In this gene expression study, of 12 patients with untreated (GC-naïve) bilateral NP, 

two sets of NP biopsies were taken from each patient, i.e., before the initiation and 

after GC treatment. Biopsies of the inferior turbinate from 10 patients who underwent 

surgery for nasal septal deviation served as nasal mucosal controls. DNA microarrays 

containing 38,500 genes were used to characterize the global gene expression profile. 

Integrated microarray analyses, including functional analysis, network analysis, and 

canonical pathway analysis as well as the comparison of literature reviews were 

applied to identify key molecular pathways and genes underlying the pathogenesis of 

NP and the response of NP to GC treatment. Selected genes were validated by means 

of quantitative RT-PCR and immunohistochemistry in the polyps and control samples.  

 

Part I Results 

[Note that in the following content, the prefix of GC-naïve NP sample ID is indicated as “NP”, while 

the prefix of GC-treated NP sample ID is indicated as “NPR”; i.e., NP1 means the sample is from NP 

patient 1 before GC treatment, and NP1R means the sample is from NP patient 1 after GC treatment.] 

 

6.1.1 Patient characteristics and histological evaluation 

The demographic characteristics of the studied subjects are listed in Table 6.1. Atopy 

status was present in 8 patients and 2 controls, respectively. GC-naïve NP tissues 

revealed distinct histopathological patterns compared to control turbinates and the 

comparison is summarized in Table 6.2. The representative pictures for these 

histopathological profiles of NP (including infiltration of eosinophils, neutrophils, and 
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lymphocytes, epithelial damage and squamous remodeling, status of edema and 

fibrosis, density of glands) and the histological pictures of controls were shown in 

Figure 6.1. 

Table 6.1 Clinical and histological characteristics of NP patients and control 

 

Abbreviations: NP, Nasal polyposis; IT, inferior turbinate; GC, glucocorticoidsteroid; N.A., not 

applicable.  
a “+”, atopy, and “-”, non-atopy. 
b Eosinophil and neutrophil counting were showed in percentage, which were calculated by 

positive staining cells per 200 cells at 400× magnification in every five fields with high-intensity 

positive cells.  

Grading of cell count: Grade 0 = none; Grade 1 = less than 10%; Grade 2 = 10% to 40%; Grade 3 

= more than 40%.  
c Edema status: Grade 0 = absent; Grade 1 = mild or moderate; Grade 2 = severe. 

   d Epithelium integrity: 0, intact epithelium; 1, moderately damaged epithelium; 2, severely 

damaged epithelium. 

   e p-value obtained by Wilcoxon matched pairs sign rank test; values were considered significant if p 

< 0.05. 
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Figure 6.1 Representative staining pictures of nasal tissues. In GC-naïve NP tissues, some 

histopathological features are prominent: (A) epithelial damage and edema (grade 2); (B) eosinophil 

infiltration (grade 3); (C) neutrophil infiltration (grade 3); (D) high infiltration of lymphocytes; (E) 

dilation of glands. In GC-treated NP tissues, (G) absence of eosinophils and significant reduction of 

edema in GC-treated NP tissue. In control turbinate, (H) absence of eosinophils and edema, and 

presence of typical intact epithelium; (F) non-distensible glands in control turbinate. Pictures (A), (E), 

(C), (F), (G), and (H) were taken at magnification ×100, while pictures (B) and (D), were taken at 

magnification ×200. 
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Table 6.2 Comparison of histopathological patterns between GC-naïve NP and 
control 
Histopathological 

components 
GC-naïve NP Nasal mucosal control 

Epithelium Damaged epithelium; 
Parts of squamous metaplasia; 
Thickening of basement membrane.

Typical intact respiratory 
epithelium containing 
columnar ciliated cells. 

Stroma Severe edema in most NP tissues. No edema but with 
significant connective 
tissues 

Glands Low density, uneven distribution, 
and dilation with varying 
shape/size. 

High density, even 
distribution, and small 
tubulo-alveolar shape 

Infiltration cells High infiltration of eosinophils, 
neutrophils, and lymphocytes. 

Low infiltration of 
leukocytes. 

 

Significant correlation between the infiltration of eosinophils and neutrophils among 

subjects of GC-naïve NP and control was evident (r = 0.846, p < 0.001) (Figure 6.2). 

However, among these GC-naïve and control subjects, infiltration of both eosinophils 

and neutrophils was not correlated with atopic status; and infiltration of these two cell 

types was also not correlated with epithelial damage and edema status (data not 

shown here). 

 

Figure 6.2 Correlation between infiltration of eosinophils and neutrophils in nasal tissues (GC-naïve 

NP and control). Eosinophil and neutrophil counting were calculated in percentage, which were 

calculated by positive staining cells per 200 cells at 400× magnification in every five fields with 

high-intensity positive cells. Square shapes in the dash line rectangle indicate control samples; while 
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the square shapes outside the rectangle indicate GC-naïve NP samples. 

 

Most of the pathological findings in GC-naïve NP were reduced in response to GC 

treatment. Before GC treatment, epithelial damage (9 out of 12), high infiltration 

(grade ≥ 2) of eosinophils (10 out of 12) and neutrophils (8 out of 12), and severe 

edema (7 out of 12) were found in NP patients (Table 6.1). A short course of oral 

prednisone was effective in epithelial restitution, decrease of nasal eosinophil 

recruitment and tissue edema (Table 6.1). Among those 8 NP patients with increase of 

neutrophil infiltration, a reduction of neutrophil count following GC treatment was 

observed in 4 NP patients, but it did not reach statistical significance (p = 0.05). 

Interestingly, with regard to those 2 GC-naïve NP samples (NP3 and NP10) without 

significant epithelial damage, squamous metaplasia was observed in some parts of the 

epithelium; while improvement (i.e., no squamous metaplasia) in epithelium structure 

was evident after GC therapy, suggesting the effect of GCs on NP epithelial 

remodeling. 

 

6.1.2 Strategy for identifying candidate genes by microarray analyses 

After evaluating the histopathological patterns of NP as well as its response to GCs, 

we would like to study the molecular profiles underlying these histological changes in 

NP. The integrated microarray data analyses were therefore carried out. These 

analyses include the quality control evaluation of the samples/array data, statistical 

analysis of the genome-wide transcriptional alterations, class predictor analysis of 

gene expression patterns, functional and network analyses of the significant genes, 

and identification of candidate genes. 
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There are three comparison groups in the current microarray study: (i) the genes in the 

dataset of GC-naïve NP vs. control are considered to be involved in NP pathogenesis, 

i.e., NP disease associated genes; (ii) the genes in the dataset of GC-treated vs. 

GC-naïve NP are considered to underlie the molecular mechanism of the GC effect on 

NP, i.e., GC-responsive genes; while (iii) the genes in the dataset of GC-treated NP vs. 

control would more likely serve as references for the expression levels of NP 

associated genes which are regulated by GCs, i.e., whether the indicated NP relative 

gene is normalized by GCs or not. Therefore, the results from datasets of GC-naïve 

NP vs. control and GC-treated vs. GC-naïve NP are of great interest. Figure 6.3 

summarizes the strategy to identify NP and GC candidate genes by these integrated 

microarray analyses. 
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Figure 6.3 Flow chart for identification of GC-responsive genes and NP associated 

genes  
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6.1.3 Quality of samples and array data 

Quality assessments, which can potentially flag outlier samples, should be carried out 

in the initial analysis of Affymetrix GeneChip dataset. Serials of quality control (QC) 

procedures have been done before analyzing the significant genes. These steps include 

the evaluation of RNA quality, QC for microarray experiment, QC for assay 

performance, QC for raw array data, data normalization, and QC for normalized data. 

 

6.1.3.1 RNA quality 

Quality evaluation was performed in extracted RNA by determining RNA 

concentration, purity, and integrity. Since the least amount of RNA loaded in a gene 

chip is 1 µg and the volume of RNA cannot be more than 8 µl, the concentration of 

the selected RNA samples must be more than 150 µg/ml. The A260/A280 ratio was 

confirmed between 1.9 and 2.1 for pure RNA. 

 

The integrity of RNA was assessed by electrophoresis on a denaturing agarose gel. 

Figure 6.4A shows that the studied RNA have sharp 28S and 18S rRNA bands, and 

the 28S rRNA band is approximately 1.8 times as intense as the 18S rRNA band, 

indicating that these RNA are intact and acceptable for downstream work (micorarray 

and real-time PCR). Only the samples NP11, NP12, NP12R, IT7, IT8, IT9 and IT10 

showed faint 28S:18S bands (Figure 6.4B) and were considered partially degraded. 

Since the NP samples are compared pair-wise (before versus after GC treatment), this 

assessment led to the exclusion of 2 pairs of NP samples and 4 control samples for 

downstream RNA work. 
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Figure 6.4 Gel electrophoresis of RNA samples. One µg of total RNA from nasal tissues (both NP and 

IT) were run on a 1% denaturing agarose gel. The 18S and 28S ribosomal RNA bands are clearly 

visible in the all RNA samples from plate (A), but are smear and faint in samples NP11, NP12, NP12R, 

IT7, IT8, IT9 and IT10 from plate (B). Human Lung Total RNA (Ambion) was served as quality 

control.  

 

6.1.3.2 Quality of fragmented cRNA 

During the microarray experiment, fragmentation of cRNA target before hybridization 

onto GeneChip probe arrays has been shown to be critical in obtaining optimal assay 

sensitivity. The size of fragmented cRNA run on the gel picture should not be more 
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than 300 bp. All of the cRNA ready to load in a gene chip were confirmed 

successfully fragmented and representative samples were shown in Figure 6.5. 

 

Figure 6.5 Gel electrophoresis of fragmented/unfragmented cRNA. Lane 1 and 2 represent 

unfragmented cRNA from NP6 and NP6R; L3 and L4 represent corresponding fragmented cRNA from 

sample NP6 and NP6R. L,size marker (100-bp DNA ladder)  

 

6.1.3.3 Quality of assay performance 

Once the microarray experiment is completed, the operating software generates an 

Expression Analysis report file (.rpt) for each array and allows the researcher to 

review the assay/hybridization performance. Following the Affymetrix guideline (see 

Chapter 3.7.4, Page 47), several QC parameters were assessed (Table 6.3): (i) 

comparable average background values and noise were within the arrays; (ii) poly-A 

controls were called ‘Present’ with increasing signal values in the order of lys, phe, thr 

and dap; (iii) hybridization controls were called ‘Present’ with increasing signal 

values in the order of bioB, bioC, bioD and cre; (iv) 3’ to 5’ ratio for GAPDH or 

β-actin was no more than 3; (v) present value is more than 40%; (vi) consistency of 

array data was validated by confirming that the range of Present Calls is 40% to 50% 

and the difference in scaling factor is less than 3-fold within the compared arrays. 

Most of the arrays match these criteria, only arrays of NP9, NP10, and IT6 show high 
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value (> 3) of 3’ to 5’ ratio for β-actin and GAPDH. Since the NP samples are 

compared pair-wise (before versus after GC treatment), this assessment lead to 

exclude two pairs of NP arrays (NP9/9R and NP10/10R) and one control array (IT6) 

for downstream microarray analysis.  

   Table 6.3 Parameters for assessing assay performance (part 1) 
Internal control genes

(Signal 3’/5’)  

 

Percent present (%) 
Sample 

ID 

Backg

round 
Noise 

β-actin   GAPDH Present  Absent 

Scale 

factor 

NP1 32.18 0.79 2.73 1.03 45.80 52.70 4.639 
NP1R 32.03 0.74 2.52 0.99 43.90 54.60 5.004 
NP2 26.91 0.72 2.38 1.10 47.10 51.10 4.594 

NP2R 30.75 0.73 2.47 1.13 44.50 54.00 5.723 
NP3 31.81 0.80 2.65 1.11 45.50 52.90 4.363 

NP3R 30.81 0.75 2.30 1.02 45.10 53.40 4.759 
NP4 33.28 0.82 2.80 1.17 45.80 52.70 4.330 

NP4R 32.03 0.73 2.60 1.20 42.70 55.60 5.701 
NP5 32.01 0.80 2.85 1.56 43.90 54.60 5.626 

NP5R 32.06 0.76 2.75 1.45 44.80 53.70 5.305 
NP6 30.05 0.70 2.52 1.04 41.40 57.00 6.709 

NP6R 31.66 0.70 2.85 1.69 40.70 58.50 7.021 
NP7 33.59 0.73 2.60 1.20 44.00 54.40 5.694 

NP7R 31.26 0.71 2.69 1.69 41.40 57.10 5.809 
NP8 29.47 0.68 2.68 1.12 45.20 53.10 6.160 

NP8R 31.23 0.71 2.68 1.27 44.40 54.10 6.381 
IT1 28.17 0.69 2.35 1.14 42.10 56.10 7.313 
IT2 33.21 0.77 2.37 1.33 42.90 55.50 5.476 
IT3 30.57 0.78 2.50 1.24 44.40 54.10 6.205 
IT4 32.13 0.69 2.61 1.45 41.20 57.30 7.519 
IT5 31.52 0.70 2.45 1.33 43.50 54.80 6.904 
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Table 6.3 Parameters for assessing assay performance (part 2) 

Sample ____Poly-A controls (Signal)____ ___Hybridization controls (Signal)__ 
ID Lys Phe Thr Dap bioB bioC bioD cre 

NP1 96.35 113.42 145.26 751.87 223.75 576.33 1809.19 7810.37 
NP1R 96.71 99.82 123.47 671.58 246.48 573.04 1747.9 7679.04 
NP2 72.73 80.13 100.12 541.26 229.04 633.64 1987.55 7877.54 

NP2R 81.45 85.22 106.98 560.37 274.42 694.89 2027.72 8108.03 
NP3 67.58 80.97 102.41 565.63 207.29 501.68 1594.34 6632.25 

NP3R 78.35 85.65 128.46 616.36 197.07 591.29 1692.26 7439.61 
NP4 80.78 98.76 144.56 675.00 248.97 606.55 1932.21 7564.7 

NP4R 107.85 117.54 165.16 760.38 237.4 644.57 2000.11 8171.95 
NP5 79.65 99.36 112.60 553.63 290.54 730.56 2064.21 8796.98 

NP5R 82.04 98.97 114.85 612.37 235.95 618.88 1817.48 7838.46 
NP6 97.94 105.13 179.4 772.2 277.1 735.69 2017.83 9237.74 

NP6R 131.2 177.73 180.24 853.78 371.4 995.56 2660.38 12707.16 
NP7 113.83 126.09 181.24 821.08 231.99 582.43 1549.17 7789.59 

NP7R 102.97 143.96 198.7 759.92 222.37 559.17 1875.27 7825 
NP8 104.85 116.26 152.29 705.3 239.05 643.26 1977.44 8901.95 

NP8R 141.75 150.27 212.34 940.76 239.1 662.81 1906.72 9271.03 
IT1 122.01 131.97 185.09 798.05 262.46 686.88 1949.58 9822.6 
IT2 140.13 155.36 197.78 903.21 268.99 706.06 2154.29 9134.91 
IT3 114.84 124.97 163.84 777.20 259.28 717.81 1983.03 9057.46 
IT4 126.48 164.26 200.02 841.56 335.15 822.44 2159.50 11559.7 
IT5 148.34 186.3 239.63 1108.41 275.69 787.52 2282.75 10793.5 

 

6.1.3.4 Quality of raw array data 

Unlike the Affymetrix’s array data report which only gives the quality information of 

individual array, RMAExpress can assess the quality of array data within a whole set 

of compared arrays before data normalization. The arrays from eight pairs of NP 

samples (before and after GC treatment) and 5 controls, which passed the QC for 

assay performance, were recruited for analyzing perfect match (PM) intensity. Two 

optional plots (boxplots and density plots) generated by RMAExpress show the PM 

intensities for each array (Figure 6.6). Both of the two plots show that all the selected 

arrays have similar shape and trend, and comparable PM intensities, i.e., no outliers 

among the datasets. 
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Figure 6.6 
(A) 

 

       (B) 

 

Figure 6.6 Visualization of array raw data. (A) Boxplots and (B) Density plots for visualization of the 

array data. For better visualization, perfect match intensities are log2 transformed. 
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6.1.3.5 Normalization of array data 

Normalization is a process for reducing variation among the multiple high density 

arrays of non-biological origin. RMAExpress software performs a Robust Multichip 

Average (RMA) method to compute normalized expression values of arrays by doing 

background correction, quantile normalization, and median-polish summarization. 

RMA normalization is carried out at probe level for all the probes on an array. The 

arrays from three datasets (GC-naïve NP vs. control, GC-treated NP vs. control, and 

GC-treated vs. GC-naïve NP) were normalized. An expression value for each probeset 

was generated. 

 

6.1.3.6 Quality of normalized data 

The quality of normalized arrays could also be assessed by several tools in the 

RMAExpress software. 

 

(1) Chip pseudo-images 

Chip pseudo-images of residuals are very useful for detecting artifacts on arrays that 

could pose potential quality problems. RMAExpress software can produce residual 

images on a chip-by-chip basis when computing normalization expression values. 

Figure 6.7 shows that the residual image of each array presented homogenized color 

throughout the whole region, implying no significant artifacts in these arrays. 
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(2) Probe level model (PLM) based quality assessment 

Two main PLM based quality statistics are available in RMAExpress: Relative Log 

Expression (RLE) and Normalized Unscaled Standard Error (NUSE). To identify the 

lower quality arrays, RMAExpress also provides quality control cutoffs applied to the 

RLE/NUSE Multiplot. The arrays which fall well outside the control limits for both 

RLE and NUSE metrics are considered outliers. Within our dataset, the boxplots of all 

the arrays demonstrated similar shape and locate near the center position (data not 

shown here); moreover, no outlier array was found from the summarized RLE/NUSE 

Multiplot (Figure 6.8).  

 

Figure 6.8 RLE and NUSE single summary plots of normalized array data. Normalized Unscaled 

Standard Error (NUSE) and Relative Log Expression (RLE) were used to access the quality of 

normalized data from NP and control samples. Dash lines are used to indicate the control limits. 

 

In summary, the QC assessments of samples and array data are critical in successful 
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microarray analysis, since it facilitates filtering the outlier arrays and significantly 

reduces the obscuring variation which may arise during the experimental procedures. 

Our results indicate that (i) after step-by-step QC assessment, the final 

RMA-processed arrays are in good quality and comparable with each other; and (ii) 

these normalized array data are suitable for downstream statistical analysis. 

 

6.1.4 Genome-wide transcriptional alterations 

Following the normalization by RMA method and statistical analysis by SAM (See 

Chapter 3.7.5, Page 51), each transcript (with identified probeset ID) was assigned a 

score with a fold change and a proper false discovery rate (FDR) to represent its 

relative expression level. Therefore, we identified 3,833 differentially regulated 

transcripts in GC-naïve NP versus control. They differed in their relative intensities by 

at least 1.5-fold with FDR of 0.008. These transcripts represented 3,833/54,677 ≈ 0.07 

(7%) of the total genes expressed in the nasal mucosal controls. Apart from the 

transcripts of GC-naïve NP versus control, comparisons between transcripts of 

GC-treated NP versus control and transcripts of GC-treated versus GC-naïve NP were 

also performed. In summary, 2,312 transcripts differed in relative expression (by at 

least 1.5-fold with FDR of 0.007) in GC-treated NP versus control, while 121 

transcripts were different (by at least 1.5-fold with FDR of 0.06) in GC-treated versus 

GC-naïve NP.  

 

After filtering the unmapped genes, genes with unknown gene ontology and genes 

with redundant probe identities, further search uncovered 1,989 and 1,330 genes 

which were differentially expressed in GC-naïve and GC-treated versus nasal mucosal 

controls, respectively (Figure 6.9). Expressions of 71 genes were different in 
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GC-treated versus GC-naïve NP tissues (Figure 6.9, Table 6.4). The Venn Diagram 

summarizes the relationship among the three comparisons (Figure 6.9): (i) among the 

71 GC-responsive genes, most of them (n=51, 72%) were also found to be 

differentially expressed in GC-naïve NP versus control; (ii) these 51 genes 

represented 2.5% (51/1,989) of the NP disease associated genes, and underlie the 

molecular effects of GCs in NP; (iii) 88% (45/51) of these GC-responsive plus NP 

related genes were normalized in GC-treated NP; (iv) six out of the 51 genes were 

either under-expressed or over-expressed in GC-treated NP as compared to the 

controls; and (v) 48% (969/1,989) of the NP associated genes remained unchanged in 

GC-treated NP. 

 

 

Figure 6.9 Overlapping genes in three datasets. Venn diagram shows the overlapping of differentially 

expressed genes in GC-naïve NP tissues versus nasal mucosal controls, GC-treated NP tissues versus 

nasal mucosal controls and GC-treated versus GC-naïve NP tissues. 
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Table 6.4 Significant GC-responsive genes in NP 

Probe ID 
Gene 

symbol 
Gene title 

Score 
(d) 

Fold 
Change

FDR 
(%) 

  Up-regulated genes in NP after GC treatment (n=55)   

222162_s_at ADAMTS1 
ADAM metallopeptidase with thrombospondin 
type 1 motif 1. 

3.319  2.464  0.000 

233011_at ANXA1 ANNEXIN A1. 5.260  5.905  0.000 
201525_at APOD Apolipoprotein D. 3.218  2.412  0.000 
221031_s_at APOLD1 Apolipoprotein L domain containing 1. 3.139  4.004  0.000 
205239_at AREG amphiregulin (schwannoma-derived growth factor) 3.024  6.474  0.000 
203946_s_at ARG2 Arginase type II. 2.624  3.299  3.560 
202672_s_at ATF3 Activating transcription factor 3. 2.472  7.548  3.904 

238987_at B4GALT1 
BetaGlcNAc beta 1,4- galactosyltransferase, 
polypeptide 1. 

2.459  2.254  3.904 

205430_at BMP5 Bone morphogenetic protein 5. 2.248  3.287  6.101 
201236_s_at BTG2 BTG family,member 2. 3.286  2.225  6.101 
210735_s_at CA12 Carbonic anhydrase XII. 3.044  2.145  1.309 
1555827_at CCNL1 Cyclin L1. 3.426  5.841  0.000 
209795_at CD69 CD69 molecule 3.357  2.999  0.000 
206932_at CH25H Cholesterol 25-hydroxylase.Less info. 2.979  2.046  1.309 
213992_at COL4A6 Collagen,type IV,alpha 6. Less info. 3.071  2.262  1.309 
209774_x_at CXCL2 Chemokine (C-X-C motif) ligand 2, CXCL2 3.646  5.423  0.000 
210764_s_at CYR61 Cysteine-rich,angiogenic inducer,61. 2.503  4.127  3.904 
201041_s_at DUSP1 Dual specificity phosphatase 1. 5.316  4.977  0.000 
204794_at DUSP2 dual specificity phosphatase 2 2.391  3.197  4.413 
208893_s_at DUSP6 Dual specificity phosphatase 6. 3.549  2.077  0.000 
227404_s_at EGR1 Early growth response 1. 5.245  7.810  0.000 
205249_at EGR2 Early growth response 2. 5.097  4.242  0.000 
206115_at EGR3 Early growth response 3. 2.415  7.293  4.413 
1564796_at EMP1 Epithelial membrane protein 1. 3.049  4.734  1.309 

209189_at FOS 
v-fos FBJ murine osteosarcoma viral oncogene 
homolog, (known as c-Fos). 

6.144  14.859 0.000 

202768_at FOSB 
FBJ murine osteosarcoma viral oncogene homolog 
B. 

4.002  16.671 0.000 

209304_x_at GADD45B Growth arrest and DNA-damage-inducible,beta. 2.413  2.209  4.413 
203821_at HBEGF Heparin-binding EGF-like growth factor. 3.382  5.454  0.000 
208937_s_at ID1 Inhibitor of DNA binding 1. 3.638  2.012  0.000 
205207_at IL-6 interleukin 6 (interferon, beta 2). 3.185  7.867  1.309 
231183_s_at JAG1 jagged 1 (Alagille syndrome). 3.711  2.007  0.000 
201464_x_at JUN  jun oncogene, (known as c-Jun). 4.119  3.390  0.000 
201473_at JUNB Jun B proto-oncogene.  3.677  3.377  0.000 
219371_s_at KLF2 Kruppel like factor 2 2.933  2.084  2.046 
221841_s_at KLF4 Kruppel like factor 4  3.796  2.965  0.000 
205266_at LIF Leukemia inhibitory factor. 3.337  2.402  0.000 
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Probe ID 
Gene 

symbol 
Gene title 

Score 
(d) 

Fold 
Change

FDR 
(%) 

202431_s_at MYC 
v-myc myelocytomatosis viral oncogene homolog 
(avian) 

2.561  2.610  4.413 

223218_s_at NFKBIZ NF-kappaB inhibitor,zeta. 2.411  2.223  4.413 
202340_x_at NR4A1 Nuclear receptor subfamily4,group A,member1.  3.256  4.357  0.000 
216248_s_at NR4A2 Nuclear receptor subfamily4,group A,member2. 3.396  7.019  0.000 
243296_at PBEF1 Pre-B-cell colony enhancing factor 1. 4.973  3.707  0.000 

204748_at PTGS2 
Prostaglandin-endoperoxide synthase 2, (known as 
COX-2) 

3.565  3.469  0.000 

216834_at RGS1 Regulator of G-protein signalling 1. 3.350  3.195  0.000 
212099_at RHOB ras homolog gene family, member B. 3.937  1.886  0.000 
205725_at SCGB1A1 secretoglobin, family 1A, member 1 (uteroglobin) 3.522  5.511  0.000 
206211_at SELE Selectin E (endothelial adhesion molecule 1). 4.241  7.597  0.000 

225660_at SEMA6A 
Sema,transmembrane domain, and cytoplasmic 
domain 6A. 

2.331  1.710  6.101 

204466_s_at SNCA Synuclein,alpha  3.680  2.008  0.000 
227697_at SOCS3 suppressor of cytokine signaling 3 3.537  4.202  0.000 
212558_at SPRY1 Sprouty homolog 1,antagonist of FGF signaling. 2.859  2.485  2.046 
204011_at SPRY2 Sprouty homolog 2. 2.734  2.114  2.840 
221489_s_at SPRY4 Sprouty homolog 4. 3.857  2.137  0.000 
203888_at THBD  Thrombomodulin.  3.676  2.631  0.000 
1555938_x_at VIM Vimentin. 3.048  3.105  1.309 
201531_at ZFP36 Zinc finger protein 36. 3.467  3.777  0.000 
  Down-regulated genes in NP after GC treatment (n=16)   
205692_s_at CD38 CD38 molecule -2.801  0.674  6.101 
230609_at CLINT1 Clathrin interactor 1. -3.473  0.493  0.618 
210163_at CXCL11 Chemokine (C-X-C motif) ligend 11. -3.752  0.404  0.000 
203915_at CXCL9 Chemokine (C-X-C motif) ligend 9. -4.127  0.404  0.000 

222858_s_at DAPP1 
Dual adaptor of phosphotyrosine and 
3-phosphoinositides. 

-3.444  0.651  2.282 

227609_at EPSTI1 Epithelial stromal interaction 1. -4.264  0.467  0.000 
205890_s_at GABBR1 gamma-aminobutyric acid (GABA) B receptor, 1 -3.659  0.482  0.000 
202270_at GBP1 Guanylate binding protein 1 (interferon-inducible). -4.711  0.475  0.000 
211597_s_at HOP Homeodomain-only protein. -5.424  0.420  0.000 
204415_at IFI6 Interferon,alpha-inducible protein 6. -3.420  0.479  0.618 

226757_at IFIT2 
Interferon-induced protein with tetratricopeptide 
repeats 2. 

-2.703  0.624  6.101 

204747_at IFIT3 
Interferon-induced protein with tetratricopeptide 
repeats 3. 

-3.241  0.495  1.127 

201744_s_at LUM Lumican. -4.714  0.456  0.000 
204259_at MMP7 matrix metallopeptidase 7 (matrilysin, uterine) -4.258  0.474  0.000 
203936_s_at MMP9 Matrix metallopeptidase 9. -3.822  0.439  0.000 
215342_s_at RABGAP1L RAB GTPase activating protein 1-like. -3.118  0.632  6.101 



 109

 

6.1.5 Classification of samples based on gene expression patterns 

Cluster analysis and principal component analysis (PCA) were first used to visualize 

the overall gene expression patterns throughout the three groups compared (GC-naïve 

NP, GC-treated NP and control). Cluster and PCA analyses were carried out by 

Genespring software (See Chapter 3.7.7, Page 54). 

 

6.1.5.1 Tree view cluster 

Cluster analysis for genome-wide expression data from the DNA microarray is 

described using standard statistical algorithms to arrange “conditions” (or say 

“samples”) according to the similarity in pattern of gene expression, or genes 

according to similarity of expression profiles throughout the samples. Therefore, the 

relationships among objects (samples and genes) are represented by a tree whose 

branch lengths reflect the degree of similarity between the objects, i.e., genes/samples 

with similar expression patterns are placed closer to each other. The output is 

displayed graphically, conveying the cluster patterns and the underlying expression 

data simultaneously in a form intuitive for biologists. 

 

In our study, two sets (GC-naïve NP vs. control and GC-treated vs. GC-naïve NP) of 

the significant genes were used to perform two-dimensional hierarchical clustering. 

The genes with similar expression profiles (i.e., up-regulation or down-regulation in 

NP or control group) were clearly separated (Figure 6.10) in each dataset. The more 

interesting dendrogram is to specify the arrangement of samples based on their gene 

expression patterns. Figure 6.10 shows two distinct subclasses in each dataset: (i) for 

dataset of GC-naïve NP vs. control, one subclass consists entirely of NP tissues while 
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the other subclass consists primarily of control samples (except NP6); (ii) for the 

dataset of GC-treated vs. GC-naïve NP, one subclass consists primarily of GC-treated 

NP (except NP7) while the other consists primarily of GC-naïve NP (except NP4R). 

Moreover, NP4 and NP4R were grouped very closely. 

(A)  
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  (B) 

 

Figure 6.10 Cluster pictures generated from the results of significance analysis of microarrays (SAM) 

identified genes. Hierarchical cluster analysis was performed using the genes differentially expressed in 

(A) GC-naïve NP vs. control, and (B) GC-treated vs. GC-naïve NP. Each row represents an individual 

gene, and each column represents a tissue sample. Relative distance of each gene (vertical axis) and 

individual sample (horizontal axis) are also demonstrated. The color spectrum for the range of 

expression values is shown at the right: the red color indicates high expression and green color low 

expression. The tissue type color bar is shown at the bottom: in (A), purple color represents GC-naïve 

NP samples, while blue color represents control samples; in (B), purple color represents GC-naïve NP 

samples, while blue color represents GC-treated NP samples. 
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6.1.5.2 PCA classification 

The expression of thousands of genes is measured across many conditions in a typical 

microarray experiment. Therefore, it becomes impossible to make a visual inspection 

of the relationship between genes or conditions in such a multi-dimensional matrix. 

PCA is a statistical method that can be used to reduce complex data sets with multiple 

variables into significantly smaller number of variables (known as components), 

which retain the relevant variance information used to distinguished the sample 

groups from one to another.  

 

We applied PCA to the significant genes in each of the three comparisons to establish 

the inter-relationships among the tissue samples. Figure 6.11 shows the 

two-dimensional (2D) plots for gene expression data of each comparison. The first 

two components, which accounted for more than 70% variance in our gene expression 

data, could be used to distinguish the overall gene expression profiles of GC-naïve NP, 

GC-treated NP and control. In order to interpret the variance of different samples 

intuitively, the 2D PCA plot can be separated like the four quadrants of a Cartesian 

coordinate system. Since the PCA component 1 represents the most variance of 

expression patterns (> 55%) among the objects, the samples in Quadrant II and III can 

be classified in one group, while the samples in Quadrant I and IV can be classified in 

another group (Figure 6.11). 

 

The analysis demonstrates that most of the nasal tissues from the three sample groups 

can be separated easily in their pairwise comparisons, while the same cannot be said 

of one to two NP samples in these comparisons which were also described in cluster 

analyses. PCA figures showed that NP6 was located in the “control” Quadrant (I, IV) 
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in comparisons of GC-naïve NP versus control (Figure 6.11). Regarding the PCA for 

comparison of GC-treated versus GC-naïve NP (Figure 6.11), NP4R was located in 

the “GC-naïve NP” Quadrant (I, IV) and the distance between NP4 and NP4R was 

very close. The NP7 was located in the “GC-treated NP” Quadrant (II, III), but the 

distance between NP7 and NP7R was not close. 

   (A) 

 

   (B) 
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Figure 6.11 Principal component analysis (PCA) plots generated from the results of significance 

analysis of microarrays (SAM) identified genes. The gene expression profiles of (A) comparison of 

GC-naïve NP versus control and (B) comparison of GC-treated versus GC-naïve NP were analyzed by 

PCA. The two-dimensional plot view of gene expression data is shown, with respect to their correlation 

to the first two principal components, which account for more than 70% variance in the expression data. 

The PCA plot are separated into four quadrants (I~IV) like a Cartesian coordinate system for easy 

interpretation.  

 

In summary, the results of cluster analysis and PCA were comparable to each other 

and both of them showed that different types of nasal tissues were almost classified 

into corresponding group. 

 

6.1.6 Functions of the significant genes  

Cluster and PCA analyses describe overall changes in apparent gene expression, but 

provide few insights into the biological process and signaling networks involved in 

the formation and development of NP, as well as its response to GC treatment. 

Therefore, it requires systematic analyses in the context of known biophysiological 

function and/or diseases, derived from the three datasets.  

 

The three sets (GC-naïve NP vs. control, GC-treated NP vs. control and GC-treated vs. 

GC-naïve NP) of SAM identified significant genes accompanied by their effective 

significance as indicated by the d score, were uploaded to Ingenuity Pathway Analysis 

(IPA) for functional analysis. Biophysiological functions and/or diseases were 

assigned to each dataset by using the Ingenuity Pathway Knowledge Base (IPKB) as a 

reference set and a proprietary ontology representing over 500,000 classes of 

biological objects and consisting of millions of individually modeled relationships 

between proteins, genes, complexes, cells, tissues, small molecules and diseases. 

These encoded relationships are based on a continual formal extraction from the 
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public domain literature and cover more than 10,300 human genes. The 

biophysiological functions and/or diseases assigned to each dataset were ranked 

according to the significance (p-value) of that function to the dataset. Thus, the top 

significant and relevant functional annotations in each main category (Diseases & 

Disorders; Physiological System Development & Function; Molecular & Cellular 

Functions) of each dataset were listed in the respective tables (Appendix I, Page 

259). 

 

Briefly, the NP associated genes (from dataset of GC-naïve NP vs. control) and the 

GC-responsive genes (from dataset of GC-treated vs. GC-naïve NP) were most likely 

involved in: (i) the molecular functions such as cellular movement, growth, 

proliferation, development, and death; (ii) the physiological functions such as tissue 

morphology/development, organ development/function, and immune response; (iii) 

the diseases such as cancer, inflammatory and immunological diseases. 

 

Once we get the top relevant functions in each primary category from each 

comparison, we can compare these relevant functions among the three datasets (i.e., 

GC-naïve NP vs. control, GC-treated NP vs. control, and GC-treated vs. GC-naïve NP) 

by IPA. This comparison analysis can be used to quickly gain an overview over the 

effect of GC treatment on a variety of high level functions (See Chapter 3.7.8.1, Page 

56). Figure 6.12 summarizes the comparison of the top relevant functional 

annotations in each primary category among these three datasets: (i) in the primary 

category of Diseases & Disorders, GC treatment mainly affects the genes involved in 

cancer, inflammatory disease, connective tissue disorders, and immunological disease; 

(ii) in the primary category of Physiological System Development & Function, GC 
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treatment mainly affects the genes involved in tissue development, organismal 

development, and cardiovascular system development & function; (iii) in the primary 

category of Molecular & Cellular Functions, GCs have potent effects on most of the 

selected functions, including cellular movement, cellular growth & proliferation, cell 

death, cellular development, cell morphology, cell cycle, and gene expression. 
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Figure 6.12 Functional comparison among the datasets. Top relevant functional annotations for gene 

sets differentially expressed in three comparisons: GC-naïve NP versus control, GC-treated NP versus 

control and GC-treated versus GC-naive NP. Three main categories of the functions are listed in (A) 

Diseases & Disorders, (B) Physiological System Development & Function, (C) Molecular & Cellular 

Functions. Statistic p value for a given function is calculated by considering 1) the number of 

functional analysis genes that participate in that function and 2) the total number of genes that are 

known to be associated with that function in the Ingenuity Pathway Knowledge Base (IPKB). On the 

y-axis of the diagram, the significance is expressed as the exponent of the p value calculated for each 

function. Dashed line represents the threshold (p = 0.05) of the significant level of the functions. 
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6.1.7 Identification of GC-responsive genes by network analysis 

To further elucidate the global changes in NP tissue and its response to GC treatment, 

we sought to computationally decipher the principal networks involved in the given 

significant genes. Based on the computed scores, 68 and 5 significant networks were 

generated from the dataset of GC-naïve NP vs. control (data not shown here), and 

GC-treated vs. GC-naïve NP (Table 6.5), respectively. Since the numbers of 

significant networks and significant genes in the dataset of GC-naïve NP vs. control 

are huge, it is too complicated to select the representative networks and interpret the 

functional relationships among the interacting genes in the analysis of GC-naïve NP 

vs. control. In contrast, the dataset of GC-treated vs. GC-naïve NP contains fewer 

amounts of significant networks and genes, so that it is intuitive to explain the 

functional interaction among the genes of interest in the generated networks. For this 

reason, we intend to use network analysis to identify GC-responsive genes and their 

related network; but apply Canonical Pathway Analysis to identify the networks 

associated with NP pathogenesis. This part will be described in the latter section 

(Chapter 6.1.8). 
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Table 6.5 Functional network analysis for GC-responsive genes (Part I) 

Network 
ID Molecules in Network* Score Focus 

Molecules

1 

ANXA1, AREG, BTG2, Calpain, Cbp/p300, Creb, 
CXCL2, Cyclin A, DUSP6, EGR1, ERK1/2, ETS, 
ETS2, Fgf, FOS, GADD45B, GC-GCR dimer, 
HBEGF, ID1, IFIT2, IL6, JUN, Mek1/2, MHC Class 
II, PBEF1, PTGS2, SPRY1, SPRY2, SPRY4, 
STAT5a/b, SWI-SNF, Tgf beta, ZFP36 

43 20 

2 

Alkaline Phosphatase, ATF3, B4GALT1, CCNL1, 
CD38, CXCL9, CXCL11, Cyclin D, CYR61, 
DAPP1, DUSP1, DUSP2, FOSB, Gsk3, Hsp27, Ikb, 
IL1, JAK, JUNB, LDL, LIF, NFkB, NFKBIZ, Pdgf, 
PDGF BB, PDGF-AA, PI3K, Rb, RHOB, SCGB1A1, 
SOCS, SOCS3, STAT, THBD 

35 18 

3 

14-3-3, Akt, Ap1, CD69, Cyclin E, EGR2, EGR3, 
EMP1, GABBR1, Hsp70, Hsp90, Ige, Insulin, Jnk, 
KLF2, KLF4, Mapk, Mek, MMP7, MMP9,MYC, 
Nfat, NR4A1, NR4A2, P38 MAPK, Pkc(s), Pld, Ras, 
Ras homolog, RGS1, Rxr, SELE, SNCA, TCR, 
Ubiquitin, Vegf 

25 15 

4 

15-(S)-hydroperoxyeicosatetraenoic acid, APOD, 
ARF4, CA12, CH25H, CIDEC, Ck2, COL4A6, 
ELK3, FZD5, HAS1, HNRNPC, HOPX, HOXA11, 
IFI6, IFIT3, JAG1, JAG2, LRP6, LTBP2, MFAP2, 
MPZ, NOP5/NOP58, PBEF1, PDGFC, progesterone, 
RASA3, RNA polymerase II, SLC7A1, TERT, 
TGFB1, TGFBI, THBD, TNF 

20 11 

5 

ADAMTS1, AP2A2, APOLD1, ARL6IP1, BCAS3, 
beta-estradiol, BMP5, CCNL2, CDKN1A, CLINT1, 
COMT, CTSH, DDR1, EGF, ELK3, ELL, FAT2, 
GBP1, GPX3, GSTA4, Hexokinase, Histone h3, 
HSPH1, KIAA0101, leukotriene D4, LUM, MCM5, 
MKI67, PELP1, TP53, UBE2S, VIM, ZFP36 

18 9 

 
*The underlied words in bold: Up-regulated genes in NP after GC treatment. 

The words in grey color: Down-regulated genes in NP after GC treatment. 
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Table 6.5 Functional network analysis for GC-responsive genes (Part II) 

 Top three functions/diseases of each network p-value# 
Network1 Cellular Development 1.61E-10 
 Cellular Growth and Proliferation 2.50E-09 
 Cell Death 6.09E-09 
Network2 Immunological disease 2.89E-06 
 Inflammatory disease 5.18E-06 
 Cellular movement 3.56E-05 
Network3 Tissue morphology 7.97E-06 
 Cell cycle 1.13E-05 
 Gene expression 2.72E-05 
Network4 Cellular development 4.38E-07 
 Cancer 4.34E-06 
 Cell death 4.34E-06 
Network5 Gene expression 5.07E-09 
  Cancer 8.17E-08 
 Cell death 8.17E-08 
 
# Fisher’s exact test was used to calculate a p-value determining the probability that each biological 
function and/or disease assigned to that network is due to chance alone. 

 

6.1.7.1 Identification of GC-responsive gene networks 

In the dataset of GC-responsive genes, all five significant networks and their 

respective related functions are listed in Table 6.5. Among these networks, the 

top-scoring one (score = 43) contains two central molecules including JUN (also 

known as c-Jun) and FOS (also known as c-Fos), which are the most abundant 

components of activation protein 1 (AP-1) heterodimer (Figure 6.13A). Since these 

two important AP-1 genes are the prominent interaction partners at the level of 

interconnecting functional modules, this network is the so called AP-1 network. 

Notably, 20 of the 71 GC-responsive genes that were differentially expressed have at 

least one gene in the AP-1 pathway, underscoring its pivotal role in its corresponsive 

to GC therapy. In addition, evaluation of the AP-1 sub-network regions revealed that a 

group of AP-1 related genes (PTGS2, IL-6, AREG, HBEGF and EGR1) were 

modulated by GC administration in NP tissues (Figure 6.13A). Functional analysis 
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for this network indicates that GCs may have significant effects on NP by regulating 

cellular development, growth, proliferation and death (Table 6.5). Note that since 

AP-1/AP-1 related genes are altered in GC-naïve NP as compared to the control, they 

will also be identified in Canonical Pathways (See Chapter 6.1.8, Page 126).  

 

The 2nd ranking network from the GC-responsive gene set is also of great interest, 

since the molecules in the network are likely associated with inflammatory and 

immunological diseases (Figure 6.13B). Although the core molecule (NF-kappa B) 

was not altered by GC treatment, most of its interacted genes were considered to have 

pro-/anti-inflammatory function, including CXCL9, CXCL11, DUSP1, DUSP2, 

NFKBIZ, SOCS3, SCGB1A1, and THBD. Some of the other anti-inflammatory genes 

(such as ANXA1, ZFP36, DUSP6, and SPRYs (1, 2, 4)) were also found in the 

top-scoring network, while two pro-inflammatory genes (MMP7 and MMP9) were 

found in the 3rd ranking network (Table 6.5). Moreover, two other AP-1 genes (FosB 

and JunB) were presented in this 2nd ranking network. Note that since some 

anti-inflammatory genes (such as DUSPs, SPRYs, SOCS3, and NFKBIZ) are also 

altered in GC-naïve NP as compared to the control, they will also be identified in the 

Canonical Pathways (See Chapter 6.1.8, Page 126). 
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(A) 

 

(B) 
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Figure 6.13 Network pathways of GC-responsive genes. Networks composed of GC-responsive genes 

were complemented by an unsupervised relevance network learning algorithm without any priori 

assumptions and post adjustment. (A) Top-scoring network with highlight (in dark blue color) of AP-1 

and AP-1 related genes. (B) 2nd ranking network. Nodes represent genes, with their shape representing 

the functional class of the gene product, and edges indicate the biological relationship between the 

nodes (see network legend). Nodes are color coded according to their d score generated by SAM (red, 

overexpression in GC-treated vs. GC-naïve NP; green, underexpression in GC-treated vs. GC-naïve NP) 

and the color intensity increases with the magnitude of altered regulation.  

 

6.1.7.2 Identification of core GC-responsive candidate genes 

Another application of network analysis is to identify core genes among the total 

genes. This identification can be facilitated by merging the individual networks and 

then the graphic visualizations of all potential connections are generated. The genes 

with most prominent interaction partners within the merged networks are considered 

the central molecules. Since the total selected molecules for merging networks is 

limited to 500 nodes (i.e., focused genes), the total significant networks (containing 

more than 500 nodes) in dataset of GC-naïve NP vs. control cannot be merged. 

Therefore, only the networks from GC-responsive gene set were able to be merged. A 

high-resolution picture of the entire merged network and an enlarged portion with 

core genes of the merged network are shown in Figure 6.14.The combined networks 

revealed that c-Jun and c-Fos map the central nodes among all the GC-responsive 
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genes, which are the same as the core genes in the top-ranking GC-responsive 

network (AP-1 network). In addition, the merged networks showed that 3 of the AP-1 

related genes (PTGS2, IL-6 and EGR1) in the AP-1 network also contain prominent 

interactions with other GC-responsive molecules (Figure 6.14). 

 

Figure 6.14 Merged network of GC-responsive genes. Networks composed by an unsupervised 

relevance network learning algorithm without any priori assumptions and post adjustment were 

generated by IPA. All five networks composed of GC-regulated genes were merged. The highlighted 

box shows that c-Jun and c-Fos are the core molecules. Nodes represent genes, with their shape 

representing the functional class of the gene product, and edges indicate the biological relationship 

between the nodes (see network legend in Figure 6.13). Nodes are color coded according to their d 

score generated by SAM (red, overexpression; green, underexpression) and the color intensity 

increases with the magnitude of altered regulation.  



 125

In summary, the network analysis provides comprehensive molecular networks 

involved in GC mechanisms in NP, and also facilitates the identification of key genes 

underlying the GC effects on NP. The AP-1 network appears to be particularly 

important, because it is not only the top-ranking network but also includes the core 

genes (AP-1 genes) which interact with the most GC-responsive genes. In addition, 

those pro-/anti-inflammatory genes identified in the networks are also worth studying 

since GCs have been traditionally considered a potent anti-inflammatory agent.   

 

6.1.7.2 Transcriptional levels of the GC-responsive genes 

The network analysis identified that GCs mainly regulated AP-1/AP-1 related genes 

and inflammation related genes in NP. Appendix II (Page 268) lists the alteration 

(fold change) of these genes in GC-naïve NP, GC-treated NP, and control tissues. In 

addition, Appendix III (Page 271) describes the relative expression level of the genes 

validated by real-time RT PCR. c-Jun and c-Fos mRNA in GC-naïve NP tissues were 

only 29% and 8% of the nasal mucosal control, respectively. c-Jun and c-Fos mRNA 

were increased 3.39-fold and 14.85-fold in GC-treated versus GC-naïve NP, 

respectively. Both c-Jun and c-Fos mRNAs were normalized by GCs in NP. A similar 

trend was also observed in two other AP-1 members (FosB and JunB) and those 5 

important AP-1 related genes. Transcripts of FosB, JunB, COX-2, IL-6, AREG, 

HBEGF, and EGR1 were markedly repressed in GC-naïve NP as compared to the 

control. Transcripts of these genes were increased in GC-treated NP tissues. However, 

expression of JunB, IL-6 and EGR1 were still lower in GC-treated NP tissues as 

compared to controls.  

 

With regard to the inflammation related genes, expression of pro-inflammatory genes 
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(CXCL9, CXCL11, MMP7, and MMP9) was higher in GC-naïve NP than control; 

while anti-inflammatory genes (ANXA1, DUSP1, DUSP2, DUSP6, SPRY1, SPRY2, 

SPRY4, NFKBIZ, SOCS3, SCGB1A1, THBD, and ZFP36) were expressed at lower 

levels in GC-naïve NP than controls (Appendix II, Page 268). In response to GC 

treatment, down-regulation of these pro-inflammatory genes but up-regulation of the 

anti-inflammatory genes was evident in GC-treated NP tissues (Appendix II, Page 

268). Since the expression levels of these pro-/anti-inflammatory genes were not 

significantly different between GC-treated NP and control, they were considered to be 

normalized by GCs. These results confirm the potent anti-inflammatory effect of GCs. 

 

6.1.8 Identification of NP associated genes by Canonical Pathway analysis 

The networks described above are generated de novo, based on the input data without 

any prior assumptions, while IPA also provides Canonical Pathways which are 

generated prior to data input and based on a pre-described well-known knowledge 

base. Since the amount of significant NP associated genes is large, and in order to 

narrow down the genes of interest which could represent NP pathogenesis, it is 

applicable to perform Canonical Pathway analysis. More importantly, it also provides 

a systemic view to reveal those well known signaling pathways underlying the NP 

pathogenesis. 

 

As described in Chapter 3.7.8.3 (Page 59), the top-7 relevant Canonical Pathways 

potentially associated with NP pathogenesis were selected: apoptosis signaling, 

complement system, EGF/EGFR signaling, eicosanoid signaling, ERK/MAPK 

signaling, IL-6 signaling, and NF-kappaB signaling. All these signaling pathways are 

regarded to be related to cellular proliferation, growth, and development and the 
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inflammatory process, which are consistent with the functions of NP associated genes 

(See Chapter 6.1.6, Page 114). The involved genes as well as their transcriptional 

levels in NP in these pathways are described in the following paragraphs. These 

Canonical Pathways are composed of genes differentially expressed in GC-naïve NP 

as compared to control. Figure 6.15 demonstrates all of these 7 Canonical Pathways: 

the legend of Figure 6.15A describes the general components in these Canonical 

Pathways; and the legends of Figure 6.15 B-H describe the specific content of the 

signaling pathways. The fold changes of the genes which are indicated in the 

following paragraphs are listed in Appendix II (Page 268). 

 
Figure 6.15 (A) General network legends of the Canonical Pathways 

 

Figure 6.15 Canonical pathways in NP. (A) General network legends for Figure 6.15 B-H: nodes 

represent genes, with their shape representing the functional class of the gene product, and edges 

indicate the biological relationship between the nodes (see network legend). In Figure 6.15 B-H, nodes 

are color coded according to their d score generated by SAM (red, up-regulation in GC-naïve NP 

versus controls; green, down-regulation in GC-naïve NP versus controls) and the color intensity 
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increases with the magnitude of altered regulation. Up arrow in blue indicates up-regulation of the 

genes in NP after GC treatment. 

 

6.1.8.1 Genes in apoptosis signaling 

Apoptosis involves a series of biochemical events leading to a variety of 

morphological changes, including blebbing, changes to the cell membrane, cell 

shrinkage, nuclear fragmentation, chromatin condensation, and DNA fragmentation 

[Nagata, 1997]. Figure 6.15B highlights the key molecular events in triggering 

apoptosis. The central executioner of apoptosis, caspase 3 (CASP3) was up-regulated 

at 1.73-fold in GC-naïve NP as well as 1.85-fold up-regulation of caspase 7 (CASP7). 

BID, which act as a direct molecular link between the activated caspase 8 and 

mitochondrial death machinery, was increased at 1.65-fold in NP compared to the 

control; while AIF, which mediates caspase-independent DNA fragmentation, was 

up-regulated at 1.60-fold. However, none of these apoptosis related genes were 

changed in NP after GC treatment. These results indicate the increase of apoptosis 

signaling activity in GC-naïve NP. 
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Figure 6.15 (B) Apoptosis signaling 

 

Figure 6.15 (B) Apoptosis signaling is a coordinated, energy-dependent process that involves the 

activation of a group of cysteine proteases called caspases and a cascade of events that link the 

initiating stimuli to programmed cell death. The two main pathways of apoptosis are the intrinsic and 

extrinsic pathways. The intrinsic signaling pathways are non-receptor-mediated and 

mitochondria-dependent. The end result is a change in mitochondrial transmembrane potential and 

release of two main groups of pro-apoptotic proteins from the intermembrane space into the cytosol. 

The first group consists of cytochrome c, DIABLO, and HTRA2, which activate the caspase-dependent 

mitochondrial pathway. The second group includes AIF and Endo G, which directly translocate to the 

nucleus and cause DNA fragmentation. The extrinsic signaling pathways that initiate apoptosis involve 

transmembrane receptor-mediated interactions (e.g., TNF receptors). The activation of these receptors 

triggers caspase 8 or 10 which can then activate the execution pathway. Alternatively, triggered caspase 

8 or 10 could result in the activation of the pro apoptotic protein BID and then lead to a cross talk with 

the mitochondria-dependent intrinsic pathway of apoptosis. Each pathway requires specific triggers to 

initiate a cascade of molecular events that converge at the stage of caspase 3 activation. Up-regulation 

of caspase 3 &7, AIF, and BID in GC-naïve NP indicates the enhancement of apoptosis signaling in 

GC-naïve NP; while GCs have no effect on these apoptosis markers. 
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6.1.8.2 Genes in complement system  

The complement system is not only important in innate immunity which contributes 

to host defense, but also mediates various inflammatory responses in airway disorders 

[Markiewski et al., 2007]. The Canonical Pathway of the complement cascade reveals the 

alteration of the complement components in NP (Figure 6.15C). Our results show that 

expression of the key complement components C3 and C4a was up-regulated at 

2.64-fold and 5.54-fold in GC-naïve NP as compared to control, respectively. With 

regard to the other molecules related to complement pathways, C1QB was increased 

at 4.73-fold, while CFH (also known as HF1), which is the inhibitor of complement 

system, was decreased at 2.01-fold in GC-naïve NP as opposed to controls. However, 

expression of all the molecules in this complement pathway was not changed in NP 

after GC treatment. These results indicate the enhancement of the complement 

mediated inflammatory process in NP. 
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Figure 6.15 (C) Complement system 

 

Figure 6.15 (C) The complement system has three pathways based on initiation of the complement 

cascade: classical pathway, alternate pathway and lectin pathway. The classical pathway is triggered by 

the binding of C1 to the antigen-antibody (Ag-Ab) complex. The lectin pathway is initiated by MBL 

(mannose binding lectin), a serum protein, binding to mannose groups on bacterial cell walls. The 

alternate pathway is activated by C3, a complement protein, binding to components of microbial cell 

surfaces. The three activation pathways converge into a final common pathway when C3 convertase 

cleaves C3 into C3a and C3b where C3b is directly linked to opsonization and also goes on to form part 

of the complex that cleaves C5 into C5a and C5b. C5b with C6, C7, C8, and C9 form (C5b6789) 

membrane attack complex, which is inserted into the cell membrane and initiates cells lysis. Moreover, 

fragments of C3, C4, and C5 can interact with the cell membrane receptor directly to trigger activation 

of inflammatory cells. The key promoters in complement system (C3, C4, and C1QB) are up-regulated 

while one complement inhibitor (HF1) is down-regulated in GC-naïve NP; however, none of them 

responds to GC treatment. These results indicate the increase of complement activity in NP. 

Classical Pathway Lectin Pathway Alternate Pathway 

Cellular 

Ag-Ab 
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6.1.8.3 Genes in EGF/EGFR signaling 

The interaction between EGF receptors and their corresponding ligands have been 

considered an important mechanism in regulating cellular growth and proliferation 

[Citri et al., 2006]. In the Canonical Pathway of EGF/EGFR signaling, a uniform 

down-regulation of EGF receptor (ERBB4, 2.12-fold) and EGF ligands (AREG, 

4.01-fold; HBEGF, 4.56-fold; EGF, 3.93-fold; NRG3, 4.44-fold) were found in 

GC-naïve NP as compared to controls (Figure 6.15D); while expression levels of 

AREG and HBEGF were significantly normalized after GC treatment with 6.48-fold 

and 5.45-fold up-regulation in GC-treated versus GC-naïve NP tissues, respectively. 

These results indicate the defect of EGF mediated proliferation signaling in NP, and 

GCs may correct the insufficient activity of EGF signaling.  

 
Figure 6.15 (D) EGF/EGFR signaling 

 

Figure 6.15 (D) The epiermal growth factor (EGF) receptors and their corresponding ligands play an 

important role in cell differentiation, proliferation, and survival. EGFR is the prototype of the EGF 

receptor family, and it can either homo-/or hetro-dimerize with other members including ERBB2, 

ERBB3, and ERBB4. The known EGFR ligands include EGF, AREG, HBEGF, NGR3, and TGF-alpha. 

Ligands bind to the EGF receptors results in series activation/phosphorylation events, which mainly 

trigger MAPK cascade and PI3K-AKT signaling. Down-regulation of the EGFR (e.g., ERBB4) and 

EGFR ligands (EGF, AREG, HBEGF, and NRG3) is significant in GC-naïve NP, and AREG and 

HBEGF are normalized by GCs. The results suggest the low activity of EGF signaling in NP, and GCs 

may promote EGF mediated proliferation signaling. Up arrow in blue indicates up-regulation of the 

genes in NP after GC treatment. 
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6.1.8.4 Genes in eicosanoid signaling 

Eicosanoids transduce signals via their membrane receptors and mediate complex 

biological processes like inflammation, vascular permeability, allergic reactions, 

induction of labor and carcinogenesis. The Canonical Pathway picture of eicosanoid 

signaling (Figure 6.15E) highlights the alteration of some key receptors and enzymes 

in GC-naïve NP. In the leukotriene (LT) pathway, the LT receptors LTB4R and 

CYSLTR1 were up-regulated at 1.66-fold and 2.92-fold in GC-naïve NP, respectively; 

while the LT syntheis related enzymes ALOX5AP and LTA4H were increased at 

2.61-fold and 1.53-fold, respectively. In the prostaglandin (PG) pathway, we found 

down-regulation of PTGS2 (or COX-2) (2.58-fold), PTGIS (3.88-fold) and PTGER3 

(6.53-fold), but up-regulation of PTGER2 (1.99-fold) in GC-naïve NP compared to 

controls. Regarding the PLA2 enzymes, expression levels of PLA2G4A (also known 

cPLA2 alpha) and PLA2G10 were increased 2.61-fold and 2.51-fold in GC-naïve NP 

versus control, respectively. Among these molecules in the eicosanoid signal pathway, 

only COX-2 was normalized (3.47-fold up-regulation in GC-treated vs. GC-naïve NP) 

in response to GC treatment. The results suggest the increase of LT mediated 

inflammation and alteration of PGE2 signaling activity in NP, and GCs mainly have an 

effect on the PG pathway. 

 

 

 

 

 

 

 



 134

Figure 6.15 (E) Eicosanoid signaling  

 

Figure 6.15 (E) Eicosanoid-mediated signaling plays a diverse role in many biological processes, such 

as inflammation, angiogenesis, and osmoregulation. There are four types of eicosanoids: prostaglandins 

(PGs), lipoxins, leukotrienes (LTs) and thromboxanes. Arachidonic acid (AA), the precursor for most 

eicosanoids, is produced by hydrolysis of membrane phospholipids by phospholipaseA2 (PLA2). AA is 

then converted to eicosanoids by one of two types of enzymes: (1) prostaglandin endoperoxide 

synthases (PTGS), commonly referred to as cyclooxygenases (COX-1 and COX-2), catalyze the key 

step in the synthesis of biologically active prostaglandins, the conversion of AA into prostaglandin H2 

(PGH2). PGH2 serves as the precursor for thromboxanes and prostaglandins; (2) The lipoxygenases 

include ALOX5, ALOX12 and ALOX15; ALOX5 catalyzes the key step in the conversion of AA to 

leukotriene A4, B4 and C4; ALOX15 in concert with ALOX5 is involved in the formation of lipoxins 

A4 and B4; ALOX12 synthesizes 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]. Eicosanoid 

receptors include LTB4Rs and CYSLTRs for leukotrienes, PTGERs for prostaglandin E2, PTGFR for 

prostaglandin F2, PTGDR for prostaglandin D2 and TBXA2R for thromboxane A2. The leukotriene 

and PGE2 pathways are highlighted in orange. Up-regulation of LT pathway related markers (such as 

LTB4R, CYSLTR1, ALOX5AP, and LTA4H) is evident in GC-naïve NP, and GCs have no effect on LT 

mediated signaling. In PG pathway, the key catalyzer COX-2 is down-regulated as well as 

down-regulation of PGER3; but PTGER2 is up-regulated. The response of COX-2 to GC treatment 

indicates that GCs may have effect on PG pathway. Up arrow in blue indicates up-regulation of the 

genes in NP after GC treatment. 
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6.1.8.5 Genes in ERK/MAPK signaling 

Mitogen-activated protein kinase (MAPK) families mediate transcriptional and 

posttranscriptional changes in gene expression in response to proinflammatory stimuli 

and are considered to play an important role in inflammation [Chang et al., 2001]. Dual 

specificity protein phosphatases (DUSPs) (also known as MKPs) are the key negative 

regulators of the MAPK signaling cascade by dephosphorylating the theronine and 

tyrosine motifs on MAPK proteins [Farooq et al., 2004; Shepherd et al., 2007]. The canonical 

pathway of MAPK signaling reveals the down-regulation of these DUSPs in 

GC-naïve NP as compared to control (Figure 6.15F): DUSP1 (also known as MKP1) 

(9.61-fold), DUSP2 (also known as PAC1) (5.68-fold), DUSP4 (also known as MKP2) 

(4.78-fold), DUSP5 (4.50-fold), and DUSP6 (also known as MKP3) (2.91-fold). 

Furthermore, DUSP 1, DUSP2, and DUSP6 were normalized in NP in response to GC 

treatment with increase of 4.98-fold, 3.19-fold, and 1.73-fold, respectively. 

 

Another gene family which also inhibits MAPK cascade is so called Sprouty (SPRY) 

homolog. SPRYs are essential in negative regulation of receptor tyrosine kinases 

(RTKs) signaling pathways. As shown in the canonical pathway figure, DUSPs 

specifically inhibit MAPKs at p38, ERK, and JNK levels, but SPRYs control the 

MEK or Raf level which is the up-stream kinase of MAPKs (Figure 6.15F). Similar 

to DUSPs, three SPRY homologies were observed to be down-regulated in GC naïve 

NPs compared to control nasal mucosa: SPRY1 (3.02-fold), SPRY2 (1.61-fold), and 

SPRY4 (1.62-fold); while all of them were normalized in NP in response to GC 

treatment: SPRY1 (2.49-fold), SPRY2 (2.11-fold), and SPRY4 (2.13-fold). 

 

These results suggest that the negative regulation system of the inflammatory process 
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is inadequate in GC-naïve NP, leading to chronic inflammation; while GCs may 

perform the anti-inflammatory effect in NP via up-regulation of these negative 

regulators in the inflammatory pathway. 

 

Figure 6.15 (F) ERK/MAPK signaling 

 

Figure 6.15 (F) The ERK (extracellular-regulated kinase)/MAPK (mitogen activated protein kinase) 

pathway is a key pathway that transduces cellular information on meiosis/mitosis, growth and 

differentiation during inflammatory process. Binding of ligand to RTK activates the intrinsic tyrosine 

kinase activity of RTK. Adaptor molecules like GRB2, SOS and Shc form a signaling complex on 

tyrosine phosphorylated RTK and activate Ras. Activated Ras initiates a kinase cascade, beginning with 

Raf (a MAPK kinase kinase) which activates and phosphorylates MEK (a MAPK kinase); MEK 

activates and phosphorylates ERK (a MAPK). ERK in the cytoplasm can phosphorylate a variety of 

targets which include cytoskeleton proteins, ion channels/receptors and translation regulators. The 
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ERK/MAPK signaling is controlled by its negative regulators at different cascade level. PP1/PP2A and 

Sprouty homolog (SPRYs) inhibit MEKs activity, while Dual specificity protein phosphatases (DUSPs) 

(known as MKPs) inhibit ERKs activity. DUSP1 known as MKP1, DUSP2 known as PAC1, DUSP4 

known as MKP2 and DUSP6 known as MKP3. Down-regulation of the negative regulators of MAPK 

cascade was significant in GC-naïve NP, including DUSP1, DUSP2, DUSP4, DUSP6, SPRY1, SPRY2, 

and SPRY4; moreover, most of them (except DUSP4) are up-regulated in response to GC treatment. 

The results indicate that the negative regulation system of pro-inflammatory signaling is inadequate in 

NP, and the increase of these controllers represents the anti-inflammatory function of GCs. Up arrow in 

blue indicates up-regulation of the genes in NP after GC treatment. 

 

6.1.8.6 Genes in IL-6 signaling 

IL-6 mediated signaling pathway is important in the growth and differentiation of 

numerous cell types (including epithelial cells) [Gallucci et al., 2000]. As shown in the 

Canonical Pathway of IL-6 signaling, the key factors (including activation factors and 

inhibition factors) involved in the IL-6 signaling pathway were all down-regulated in 

GC-naïve NP as compared to controls (Figure 6.15G): IL-6 (6.10-fold), IL6ST 

(known as GP130) (1.69-fold), STAT3 (1.73-fold), and SOCS3 (3.21-fold). In 

response to GC treatment, IL-6 and SOCS3 were increased at 7.87-fold and 4.81-fold, 

respectively; but the expression level of IL-6 was still lower in GC-treated NP as 

compared to control. These results suggest that the IL-6 signaling is insufficient in 

GC-naïve NP, and the increase of both IL-6 and its inhibitor SOCS3 represents the 

regulatory role of GCs in IL-6 signaling mediated biological process. 
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Figure 6.15 (G) IL-6 signaling 

 

Figure 6.15 (G) IL-6 mediates both pro- and anti-inflammatory signaling. IL-6 responses are 

transmitted through Glycoprotein 130 (GP130), which serves as the universal signal-transducing 

receptor subunit for all IL-6-related cytokines. IL-6-type cytokines utilize tyrosine kinases of the Janus 

Kinase (JAK) family and signal transducers and activators of transcription (STAT) family as major 

mediators of signal transduction. Dimer of STATs translocate to the nucleus, where they regulate 

transcription of target genes. In addition, IL-6 also activates the extracellular signal-regulated kinases 

(ERK1/2) of the mitogen activated protein kinase (MAPK) pathway. The SHC protein is activated by 

JAK2 and thus serves as a link between the IL-6 activated JAK/STAT and RAS-MAPK pathways. 

Suppressor of cytokine signaling (SOCS) can negatively regulate IL-6-mediated JAK/STAT pathway. 

Down-regulation of the key genes in IL-6 signaling is obvious in GC-naïve NP, including IL-6, GP130, 

STAT3, and SOCS3; while up-regulation of IL-6 and SOCS3 after GC treatment. The results indicate 

the IL-6 pathway activity is low in GC-naïve NP, and GCs have an regulatory effect on IL-6 mediated 

proliferation signaling. Up arrow in blue indicates up-regulation of the genes in NP after GC treatment. 
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6.1.8.7 Genes in NF-kappaB signaling 

NF-kappaB is a multi-subunit transcription factor that is involved in the regulation of 

a large number of genes that control various aspects of the immune and inflammatory 

response [Baldwin et al., 1996]. The activity of NF-kappaB is largely controlled by 

inhibitors of NF-kappaB (IkappaB), which bind to NF-kappaB, preventing its 

association with DNA and causing its localization to the cytoplasm [Baldwin et al., 1996]. 

The Canonical pathway of NF-kappaB signaling showed a decrease of IkappaB in 

GC-naïve NP (Figure 6.15H): IkappaB-α (also known as NFKBIA) and IkappaB-ζ 

(also known as NFKBIZ) were down-regulated at 1.53-fold and 2.19-fold respectively, 

while only NFKBIZ was increased at 2.22-fold in NP in response to GC treatment. 

These results suggest that the negative regulation of NF-kappaB signaling in 

GC-naïve NP is insufficient, and GCs may have an inhibitory effect on NF-kappaB 

mediated inflammatory process via regulating NF-kappaB inhibitors. 
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Figure 6.15 (H) NF-kappaB signaling 

 

Figure 6.15 (H) The Nuclear factor kappa B (NF-kappaB) transcription factors are key regulators of 

gene expression culminating in response to stress and the development of innate and acquired 

immunity, leading to activation of inflammatory process. RELA/p65 and p50 are the two major 

subunits of NF-kappaB hetero-/homodimers. In quiescent situation, cytoplasmic NF-kappaB are bound 

to inhibitor of NF-kappaB (IkappaB), thereby sequestering them in the cytoplasm. Activators of 

NF-kappaB mediate the site-specific phosphorylation of seriene on IkappaB, making IkappaB for 

ubiquitination and destruction. NF-kappaB is then free to translocate to the nucleus and bind DNA 

leading to the activation of a host of inflammatory response target genes. IkappaB not only inhibits 

NF-kappaB mediated transcription, but also transports NF-kappaB back to the cytoplasm. Two 

members of NF-kappaB inhibitor, NFKBIA and NFKBIZ are down-regulated in GC-naïve NP, leading 

to increase of NF-kappaB signaling. However, only NFKBIZ is responded to GC treatment, indicating 

the inhibitory effect of GCs on NF-kappaB mediated inflammatory process. Up arrow in blue indicates 

up-regulation of the genes in NP after GC treatment. 
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6.1.9 Identification of NP associated genes by literature reviews 

To broaden the identification of NP related genes in the microarray results, we intend 

to review more genes associated with NP histopatholgical patterns by literature 

reports, such as infiltration of eosinophils and neutrophils, edema, tissue damage, and 

mucus hypersecretion. The following paragraphs describe these disease related genes 

as well as their expression profiles in response to GC treatment. The fold changes of 

the genes which are indicated in the following paragraphs are listed in Appendix II 

(Page 268). 

 

6.1.9.1 Eosinophil related genes 

NP has been considered an eosinophil predominant inflammatory disease and GC can 

potently suppress eosinophil infiltration in NP (Table 6.1, Page 90). To identify the 

eosinophil associated genes, we mainly relied on the authoritative reviews which 

discussed eosinophil biological features [Rothenberg, 1998; Rothenberg & Hogan, 2006] and 

then 60 important genes were selected from the published sources. Table 6.6 

summarizes and categorizes these eosinophil related genes based on the biological 

process of eosinophils. Among the 60 eosinophil-associated genes, microarray data 

suggested that 31 genes (21 up-regulated and 10 down-regulated genes) differed 

significantly in GC-naïve NP compared to controls. Hierarchical cluster results 

indicate that the differential expression of these 31 genes may reflect the phenotypic 

differences in eosinophil infiltration between NP and control samples (Figure 6.16). 

Results showed a clear separation of NP and control subjects, i.e., the tissue sample 

dendrogram (condition tree) divided NP samples as one group and control samples as 

another group; while the gene dendrogram (gene tree) also divided up-regulated and 

down-regulated genes in two distinct groups. Furthermore, two GC-naïve NP subjects 
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(NP6 and NP7) with a low grade (grade=1) of eosinophil count have shown a 

difference in expression pattern with other NP subjects with higher grades (grade=2 or 

3) of eosinophil infiltration. 

 

Effects of oral GCs on 5 important eosinophil-associated genes (MMP9, CD69, 

DUSP1, NR4A1, and NR4A2) were evident. Expression of MMP9 in GC-treated NP 

tissues was significantly reduced as compared to GC-naïve tissues. Moreover, 

expression of CD69, DUSP1, NR4A1 and NR4A2 in GC-treated NP tissues was 

completely normalized as compared to controls. 

Table 6.6 Microarray expression profiles of eosinophil-associated genes in NP (before 

GC treatment) as compared to control 

Genes with significant change* Biological 
process of 
Eosinophil 

Genes without significant 
change* Up-regulation Down-regulation 

Development 
& 
Maturation 

CSF2 (GM-CSF); IL-3; 
IL-5; GATA1. 

None None 

Adhesion  
&  
rolling 

ITGA4 (VLA-4); ITGB7; 
SELEP; ICAM1; VCAM1; 
ITGB1(CD29). 

ITGB2 (CD18); 
SELPLG; ADAM8.  

None 

Chemo- 
attraction 

C5; CCL5 (RANTES);  
CCL7 (MCP-3); CCL13 
(MCP-4); CCL24; CCL2; 
CCR3; CYSLTR2; 
HRH4; GPR44 (CRTH2); 
IL-4; IL-5; IL-8; IL-13. 

MMP9; CCL11 
(eotaxin)#; CCL15; 
CCL28; CYSLTR1#; 
LTB4R#; LTA4H#; 
ALOX5AP#; 
PLA2G4A#; LGALS9; 
IL-18; C3; SCG2. 

CXCL12; 
IL13RA2. 

Survival, 
signaling and 
others 

CD95L; BCL2L1 (Bcl-xl); 
TGFβ; CD95; CYSLTR2; 
CCR3; Siglec-8; Bax; 
CSF2 (GM-CSF); IL-4; 
IL-5; IL-13 

CCL11 (eotaxin)#; 
IL5RA; NOS2A; 
CD86; MIF; LYN; 
CYSLTR1#; LTB4R#; 
LTA4H#; ALOX5AP#; 
PLA2G4A#. 

DUSP1; NR4A1; 
NR4A2; CD69; 
NR4A3; CD9; 
CD40; NFKBIA. 

Genes in bold and underlines style were found significant changes after GC treatment. 
*: Significant change in microarray analysis. 
#: Genes have dual functions and been listed twice. 
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Figure 6.16 Cluster views of eosinophil associated genes in nasal tissues. Supervised hierarchical 

cluster analysis based on analysis of significance of microarrays (SAM) selected genes which are 

associated to eosinophil bio-physiological function. Each row represents an individual gene, and each 

column represents a tissue sample (GC-naïve NP or control) with grades (0 to 3) of eosinophil 

infiltration. Relative distance of each gene (vertical axis) and individuals (horizontal axis) are also 

demonstrated. The color spectrum for the range of expression values is shown at the left: the red color 

indicates high expression and green color low expression. The tissue type color bar is shown in the 

bottom: the purple color represents NP group, and orange color represents control group.  
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6.1.9.2 Neutrophil associated genes 

Besides well-recognized eosinophil-dominated inflammation in Caucasian studies, 

predominant infiltration of other types of cells, especially neutrophils, could be a key 

component underlying the pathogenesis of NP in Asian populations [Jareoncharsri et al., 

2002; Zhang et al., 2006]. The results from our research group also reported a high 

infiltration of neutrophils in Chinese NP [Hao et al., 2006]. Therefore, it is worthwhile to 

review and identify the genes associated with the neutrophil biological process in NP, 

particularly in the Asian polyps. 

 

Following a strategy similar to the selection of eosinophil associated genes, 77 

important neutrophil associated genes were chosen based on several authoritative 

reviews [Borregaard et al., 2007; Kobayashi, 2008; Theilgaard-Mönch et al., 2005]. Analysis of 

the gene expression profiles demonstrated that 14 genes were differentially expressed 

in GC-naïve NP versus controls. Ten genes were up-regulated (CXCL6, CXCL12, 

IFNAR1, LGALS8, ITGB2, CEACAM6, MMP7, MMP9, SERPINA1, and DEFB1) 

while 4 genes were down-regulated (CXCL2, CRISP3, CEACAM1, and PTX3) in 

GC-naïve samples (Table 6.7). Among those 14 genes, only MMP7, MMP9 and 

CXCL2 mRNA levels were modified by the short course of GC treatment (Table 6.7). 

 

 

 

 

 

 

 



 145

Table 6.7 Microarray expression profiles of neutrophil associated genes in GC-naïve 

NP as compared to control 

Genes with significant change*  Genes without significant change*

Up-regulation Down-regulation
Neutrophil 
migration & 
activation 

CXCR4; CCR1; CCR2; CCR3; 
CCR6; IL1β; IL8; CXCL1; 
CXCL3; CXCL5; CXCL10; CCL2; 
CCL3; CCL4; CCL19; CCL20; 
IFNGR1; IFNGR2; IL8RA; IL8RB; 
IL4R; IL6R; IL10RB; IL13RA1; 
IL17RA; TNFRSF1A; TNFRSF1B; 
TGFBR2; LILRB1; LILRA2; 
LILRA5; TNF; TGFB1. 

CXCL6; 
IFNAR1; 
LGALS8; 
ITGB2.  
 

CXCL2; 
CXCL12. 
 

Neutrophil 
granule 
proteins 

BPI; CST3; CTSG; CYBB; 
SNAP23; STOM; MPO; ELA2; 
DEFA1; DEFA4; PRTN3; AZU1; 
LCN2; MMP8; CAMP; 
CEACAM1; CEACAM8; LTF; 
ITGAM; PGLYRP1; CFP; VAMP2; 
VTI1B; PLAUR; HP; SLPI; 
ORM1; HPSE; B2M; SLC11A1. 

MMP7; MMP9; 
SERPINA1; 
DEFB1; 
CEACAM6.  
 

CEACAM1; 
CRISP3;  
PTX3. 

Genes in bold and underlines style were found significant changes after GC treated. 
*: Significant change in microarray analysis. 
 

6.1.9.3 Edema associated genes 

(1) Bioelectric genes 

Normal airway epithelium maintains the homeostasis of water transport across the 

epithelial tissues via regulating anion secretion and cation absortion. In NP and other 

airway disorders, dysregulation of the ion channels is thought to result in airway 

tissue edema [Boucher, 1994].  

 

In our study, we looked for the ion channel genes based on the literature reports 

[Bernstein 1997; Boucher, 1994; Yasuda et al., 2007a; Yasuda et al., 2007b]. One family of 

sodium channels, sodium channel nonvoltage-gated (SCNN) (also known as 

amiloride-sensitive epithelial sodium channel, ENaC), was uniformly up-regulated in 



 146

GC-naïve NP as compared to controls: SCNN1A (1.96-fold), SCNN1B (4.93-fold), 

and SCNN1G (5.65-fold). Another family of chloride channels, chloride intracellular 

channels (CLICs), was up-regulated in GC-naïve NP: CLIC3 (2.03-fold), CLIC5 

(1.85-fold), and CLIC6 (3.57-fold). With regard to the molecules which maintain the 

homeostasis of intracellular Na+ levels, ATP1A2 (ATPase, Na+/K+ transporting, alpha 

2) was down-regulated in GC-naïve NP at 2.96-fold. Although these bioelectric 

markers were differentially expressed in NP versus controls, none of them was altered 

after GC treatment. 

 

(2) Angiogenesis related genes 

In NP tissues, small vessels have been observed in the stroma, suggesting 

angiogenesis activity in NP. Angiogenesis in NP has been considered to be associated 

with vascular permeability, leading to tissue edema [Coste et al., 2000]. Several 

angiogenesis related genes have been reviewed. One important angiogenesis gene 

family, so called angiopoientins (ANGPTs), was identified in the NP disease gene list. 

Angiopoientins as well as its functional receptor (TEK) were down-regulated in 

GC-naïve NP as compared to controls: angiopoietin 1 (ANGPT1), 3.66-fold; 

angiopoietin 2 (ANGPT2), 2.94-fold; TEK, 3.19-fold. 

 

6.1.9.4 Genes related to tissue damage 

Airway tissues are susceptible to injury by various stimuli and environmental factors. 

Atmospheric oxygen species and free radicals have been thought to result in tissue 

damage of both upper and lower airways, such as asthma, chronic obstructive 

pulmonary disease and NP [Rahman et al., 2006]. Based on searching for gene ontology 

information related to oxygen species metabolism by online database 
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(http://www.geneontology.org/), we found that the expression of a number of 

oxidant/antioxidant related genes was significantly changed in GC-naïve NP 

compared to the control. Those enzymes which promote oxidative stress were 

uniformly up-regulated in GC-naïve NP: NOS2A, 3.96-fold; NOX4, 3.03-fold; 

DUOX1, 6.67-fold. However, some common antioxidant related enzymes were 

differentially expressed in GC-naïve NP: down-regulation of SOD3 (2.56-fold), 

GPX3 (2.59-fold), OXR1 (2.37-fold), and LPO (35.7-fold); while up-regulation of 

GCLM (3.65-fold), TXN (1.64-fold), PRDX1 (1.62-fold), and PRDX5 (1.79-fold). 

Among these oxidant/antioxidant markers, only GPX3 was up-regulated at 1.59-fold 

in NP after GC treatment.  

 

6.1.9.5 Genes with mucus hypersecretion 

Mucus hyper-secretion is a feature of several airways diseases such as chronic 

rhinosinusitis, asthma, and cystic fibrosis. Our histological results showed that 

submucosal glands in NP were dilated in pathological condition, leading to an 

increase of mucus production (Figure 6.1). Mucins are the major components of 

mucus. Our results showed that several mucin genes were altered in GC-naïve NP 

compared to control: up-regulation of MUC4 (5.47-fold), MUC16 (11.12-fold), and 

MUC20 (4.51-fold), but down-regulation of MUC7 (41.67-fold). However, none of 

these mucins responded to GC treatment in NP.  

 

6.1.10 Target genes validation by quantitative PCR 

To verify the findings from the microarray analysis, the same starting materials for the 

microarray study were used for subsequent quantitative PCR measurements. Several 

target genes deemed biologically interesting because of their differential expression in 
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GC-naïve NP versus control and/or in GC-treated versus GC-naïve NP were selected 

for validation. Selection of verified genes was based on the following criteria: (i) the 

key genes in the top ranking GC-responsive gene network; (ii) the important 

pro-/anti-inflammatory genes among GC-responsive genes; (iii) those NP associated 

genes which respond to GC treatment; (iv) the key genes in NP related Canonical 

Pathways; and (v) some important eosinophil related genes in NP. Appropriate 

TaqMan™ assays for genes of interest and GAPDH were purchased (Table 3.3). PCR 

data of validated genes were comparable to the results generated from microarray 

experiments (Figure 6.17). The rank order and magnitude of gene expression profile 

derived from quantitative PCR were in accordance with the microarray data. 

(A)                                    (B) 

 

Figure 6.17 Correlation of gene expression levels between Real-time RT PCR and microarray assays. 

Fold changes of each gene between GC-naïve NP and control (A), and between GC-treated and 

GC-naïve NP (B), were determined by means of real-time PCR and microarray. Twenty-nine validated 

genes in (A) include AREG, C3, CCL11, CD69, c-Fos, c-Jun, COX-2, CXCL2, DUSP1, DUSP2, 

DUSP6, EGR1, FosB, HBEGF, IL-18, IL5Ra, IL-6, JunB, MMP7, NFKBIA, NFKBIZ, NR4A1, 

NR4A2, SOCS3, SPRY1, SPRY2, SPRY4, THBD, and ZFP36. Twenty-nine validated genes in (B) 

include ANXA1, AREG, CD69, c-Fos, c-Jun, COX-2, CXCL2, CXCL9, CXCL11, DUSP1, DUSP2, 

DUSP6, EGR1, FosB, HBEGF, IL-6, JunB, MMP7, MMP9, NFKBIZ, NR4A1, NR4A2, SCGB1A, 

SOCS3, SPRY1, SPRY2, SPRY4, THBD, and ZFP36. Scale of X and Y axis is logarithmic (base 10) 

transformed.  

 

Due to the importance of the AP-1 network in GC-responsive genes, the correlation 
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between gene expression in AP-1 and AP-1 related genes was further evaluated based 

on fold change by PCR measurement. c-Jun mRNA is positively correlated with c-Fos 

and JunB mRNA (Spearman, r = 0.924, p < 0.001 and r = 0.827, p = 0.003, 

respectively; Figure 6.18). Similarly, c-Jun gene expression is positively correlated 

with AP-1 related genes (COX-2, IL-6 and EGR1) in GC-treated NP tissues (COX-2, 

r = 0.827, p = 0.003; IL-6, r = 0.662, p = 0.03 and EGR1, r = 0.893, p = 0.001; Figure 

6.18). Although the expression levels of the other two AP-1 related genes (AREG and 

HBEGF) were not significantly correlated, their correlation coefficients range from 

medium to large (AREG, r = 0.558; HBEGF, r = 0.426).  

 

Two glucocorticoid receptor (GR) isoforms were also measured by quantitative PCR 

(Appendix II, Page 268). GRα mRNA was significantly decreased in patients with NP, 

either with or without GC treatment, when compared to control tissues. Compared with 

GRα mRNA expression, the level of GRβ mRNA expression was undetectable in all 

groups. 

 

 

 

 

 

 

 

 



 150

 

 

 

 

6.1.11 Protein expression evaluated by immunohistochemistry 

Since two AP-1 components (c-Jun and c-Fos) are the core genes among those 

GC-responsive genes, protein expression levels of these AP-1 genes were further 

evaluated by immunohistochemistry. c-Jun was present predominantly in epithelium 

of both NP tissues and nasal mucosal controls (Figure 6.19). c-Jun protein was 

Figure 6.18 Relationship between mRNA 

level (by real-time PCR) of AP-1 genes 

versus AP-1 related genes. Correlation 

between mRNA level of c-Jun versus c-Fos 

(A), JunB (B), COX-2 (C), IL-6 (D), and 

EGR1 (E) was illustrated.  ∆, fold change of 

the indicated gene in individual patient prior 

to versus after GC treatment. Fold changes 

were determined by PCR. 
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markedly lower in 6 of 10 GC-naïve NP tissues, but significantly elevated in 

GC-treated NP, suggesting usage of GC contributed to the increase of c-Jun 

expression (Table 6.8). In turbinate control tissues, the intensity of c-Jun staining in 

epithelial cells was similar to that in GC-treated NP tissues (Figure 6.19). 

 

c-Fos protein was expressed among various cell types such as epithelial cells, 

glandular cells, vascular endothelial cells, lymphocytes, granulocytes and monocytes. 

Interestingly, the expression of c-Fos was similar among GC-naïve, GC-treated and 

control tissues (Figure 6.19), suggesting that GC treatment does not alter the protein 

expression of c-Fos in NP. 

 

Because the current study showed that one of the major effects of GCs in NP was to 

improve epithelial structure (Table 6.1, Page 90) and the functions of the AP-1 gene 

network are involved in cellular development, growth, and proliferation, we intended 

to evaluate the relationship between c-Jun protein expression and epithelial 

improvement by GCs. Interestingly, the results showed that c-Jun expression was 

positively related to the epithelial integrity in both GC-naïve and GC-treated NP 

tissues (Table 6.8), suggesting its role in growth and development of epithelial cells. 
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Figure 6.19 Expression of c-Jun and c-Fos protein in nasal tissues. Protein levels of c-Jun and c-Fos 

were determined by means of immunohistochemistry in the nasal mucosa of 2 representative NP 

patients and 2 controls:  plates A, B, G and H are from patient NP9 and plates D, E, I and J are from 

patient NP7 while plates C and K are from control IT5, and plates F and L are from control IT3.  

Plates A and B represent c-Jun staining in patient NP4 prior to versus after GC treatment and plates G 

and H are stains with isotype control antibody prior to versus after GC treatment. Similarly, plates D 

and E represent c-Fos staining in patient NP5 prior to versus GC treatment while plates I and J are 

stains with isotype control antibody prior to versus GC treatment. Plate C represents c-Jun staining in 

control IT5, while plate K is the corresponding isotype control. Plate F represents c-Fos staining in 

control IT3, while plate L is the corresponding isotype control. Original magnification: 200x.   
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Table 6.8 Comparisons of c-Jun immunohistochemistry in  

NP epithelium from GC naïve and GC treated subjects 

 Evaluation of c-Jun staining * 
Group 

Weak     Strong     p value # 

GC naïve NP 6 4 0.01 

GC treated NP 0 10  

Damaged Epithelium † 6 4 0.01 

Intact Epithelium † 0 10  
 

* Referring to c-Jun staining in Table 6.1: overall score of ≥ 6 defined as “strong” expression, and < 6 

as “weak” expression. 
† Referring to epithelium damage in Table 6.1: Grade 0 defined as intact epithelium; Grade 1 and 2 

defined as damaged epithelium.  
# p value obtained by fisher’s exact test. 

 

Part II Discussion 

Gene profiling technologies have demonstrated considerable power in the generation of 

cell and tissue molecular signatures, identification of disease-associated gene, 

determination of candidate genes in response to drug effects and exploration of 

molecular signaling pathways. DNA microarray technology consists of a matrix with 

attached sequences that allow simultaneous analysis of expression of panels of human 

genes. Comparison of gene expression profiles in disease versus healthy tissues or in 

drug effects often highlights the involvement of both expected and unsuspected 

pathologic pathways. 

 

Inflammatory processes within the mucosa of the upper respiratory tract are believed to 

play an important role in the development of NP. Infiltration of eosinophils and 

epithelial damage followed by abnormal remodeling are the most characteristic features 

of NP. Some of the mediators that participate in the NP formation have been already 
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identified in previous studies (See Chapter 1.4.6, Page 15). However, considerable 

doubt remains concerning the role of each molecule in this complex and dynamic 

process. In addition, the molecular mechanisms underlying the ameliorative response 

of NP to GCs are poorly understood. Therefore, based on increasing recognition that a 

systems approach is necessary to view the overall molecular events responsible for NP 

and GC effects on NP, we have combined large-scale analysis of gene expression 

profile with knowledge-based and relevance network analyses.  

 

In our study, DNA microarrays with 38,500 human genes were used to screen for those 

in which expression was altered in GC-naïve NP versus control and GC-treated versus 

GC-naïve NP. This strategy identified both up-regulated and down-regulated genes. 

Most importantly, complex networks involved in inflammation, cellular infiltration and 

tissue development were mapped and subsequently explored in the context of genes 

deemed important in NP development as well as its response to GC treatment by 

inferential statistics for a refined molecular pathway picture. The candidate genes for 

GC effects on NP have been subsequently suggested.  

 

In the following sections, the important findings of the current microarray study will 

be highlighted and discussed: (i) indication of the general microarray analysis 

(including PCA/cluster analysis and functional network analysis); (ii) the major 

molecular events underlying the GC effects on NP; (iii) the important molecular 

mechanisms underlying the pathological patterns of NP. 

 

6.2.1 Indication of microarray analysis 

Microarray analyses describe the general expression profiles (by PCA/cluster 
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analysis), and the functions as well as molecular interaction networks among the gene 

sets. These analyses themselves reveal some interesting indications.  

 

6.2.1.1 Indication of PCA/cluster analysis 

Based on these significantly different genes, advanced computational methods 

(PCA/cluster analysis) were applied to study the relationships among the nasal 

samples according to similarity in pattern of gene expression. The PCA and cluster 

analysis were consistent with each other, and they demonstrated a near-perfect 

separation of three sample groups (GC-naïve NP, GC-treated NP, and control), 

indicating there were prominent underlying differences in gene expression associated 

with the development of NP, as well as the GC effects on NP (Figure 6.10, Page 111; 

Figure 6.11, Page 113). However, one to two NP samples were not contained within 

their corresponding clusters. They did not cluster tightly with the majority of the other 

NP samples in cluster and PCA analyses likely because they have distinct gene 

expression patterns at least with respect to the dataset of the significant genes used in 

these analyses.  

 

In the comparisons between GC-naïve NP and controls, NP6 was clustered opposite to 

the NP samples. This observation may be attributed to the distinct histological pattern 

of NP6 compared to the other GC-naïve NP samples. NP6 was the only polyp sample 

highly infiltrated with lymphocytes but without eosinophil infiltration. Considering 

the comparison of GC-treated vs. GC-naïve NP, NP7 (GC-naïve polyp) and NP4R 

(GC-treated polyp) were not clustered in the corresponding groups. This observation 

could also be explained by the different histological patterns of these NP samples 

from the others. In the studied NP samples, most GC-naïve NP represent high 
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infiltration of eosinophils and severe edema, while most GC-treated NP represent low 

infiltration of eosinophils and absence of edema (Table 6.1, Page 90). NP7 was the 

only NP sample which simultaneously showed little eosinophil infiltration and edema 

among the GC-naïve NP group, so that the histological characters of NP7 were close 

to those of GC-treated NP tissues. As far as the similarity between NP4 and NP4R are 

concerned, the histological changes among this pair of NP were not obvious: 

eosinophil infiltration was not significantly reduced in NP4R compared to NP4, and 

both NP4 and NP4R were not edematous polyps. Therefore, the close cluster of NP4 

and NP4R may indicate the limited effects of GCs on change of histopathologic 

profiles (eosinophils and edema) in NP4 patient. 

 

In summary, these analyses suggest that varied histological features of NP may have a 

basis in distinct gene expression patterns and this observation is consistent with the 

great biological variability observed in vivo as manifested in patient clinical behavior 

and the heterogeneous features of NP.  

 

6.2.1.2 Indication of functional analysis 

In Chapter 6.1.6 (Page 114), we described and compared the most significant 

functional groups in three datasets (GC-naïve NP versus control, GC-treated versus 

GC-naïve NP, and GC-treated NP versus control). The significant functions were 

classified into three categories (i.e., at disease, tissue, and molecular/cellular levels). 

The most significant functions related to NP and the response of NP to GCs were in 

agreement with each other, including inflammatory/immunological diseases, cancer, 

tissue development, cellular development, growth, proliferation, and death. Indeed, 

these functions may contribute to the pathogenesis of NP at different levels (i.e. from 
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tissue to cell to molecule). These results could explain that NP is a chronic 

inflammatory disease with abnormal tissue development process in epithelium and 

stroma area, which are attributed to dysregulation of cellular activation and infiltration. 

Furthermore, these functions are also considered to be the underlying mechanism for 

the potent anti-inflammatory and tissue repair effects of GCs.  

 

One interesting finding of the functional analysis is that the top significant disease 

related to NP associated genes is cancer. Although NP has not been considered a 

cancer-prone lesion, the hyperplastic features and high recurrence rate of NP raise 

attention to whether NP could share some pathological mechanisms with those 

malignant (e.g. nasopharyngeal carcinoma) and benign (e.g. inverted papilloma) 

neoplasms in upper respiratory tissues, or whether NP could serve a link between 

neoplasia and inflammation. This suggests that some cancer related 

genes/mechanisms could be considered alternative approaches to study NP 

pathogenesis. 

 

6.2.1.3 Indication of functional network analysis 

The effect of GC treatment on NP is attributed to the complex interaction among those 

functional related genes, so that we have identified distinct molecular networks 

implicated in the mechanism of GCs. These networks include both directed and 

undirected interactions. Directed interactions are characterized by a well-defined 

information flow (e.g., from a transcription factor to the gene it regulates). Undirected 

interactions do not have an assigned direction (e.g., mutual binding relationships). 

The ability to rank the networks based on their relevance to the GC-responsive gene 

set allowed for rapid prioritization of networks with highest importance. The 
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top-scoring network, AP-1 network is related to cellular development, growth, and 

proliferation; while the 2nd ranking network is associated with inflammatory disease. 

These results are consistent with those in functional analysis and could represent the 

molecular evidence of GCs, at least in our studied NP samples. 

 

Another important application of network analysis in the current study is to identify 

the core/candidate genes among the GC-responsive genes. This is based on the 

searching of most prominent interaction partners within the merged networks. Other 

than those previous microarray studies in NP which focused on the top 

over-expressed/under-expressed genes [Fritz et al., 2003; Benson et al., 2004; Liu et al., 2004; 

Lee et al., 2006; Bolger et al., 2007; Figueiredo et al., 2007], network analysis identifies the 

most functional interacting genes which may represent the molecular candidates in 

response to GC treatment. The identified candidates, AP-1 genes (c-Jun and c-Fos) are 

critical factors which govern the transcription status of numerous growth related 

genes, mapping the central position among the GC-responsive gene network. Again, 

these results are also in agreement with those significant functions related to the gene 

sets. 

 

6.2.2 Summary of the functional network pathways 

Based on the network analysis (Chapter 6.1.7, Page 118) and Canonical Pathway 

analysis (Chapter 6.1.8, Page 126), the present microarray study reveals several 

important molecular signaling pathways which contribute to the pathogenesis of NP 

and its response to GC treatment. Network analysis suggests that AP-1 network and 

the network composed of pro-/anti-inflammatory genes would underlie the GC effects 

on NP. The Canonical Pathways suggests that apoptosis signaling, complement 
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system, EGF/EGFR signaling, eicosanoid signaling, ERK/MAPK signaling, IL-6 

signaling, and NF-kappaB signaling would be associated with NP pathogenesis. Table 

6.9 summarized the relevant roles of these signaling pathways in NP before and after 

GC treatment based on the evaluation of the expression levels of the key genes. Note 

that some genes identified in Canonical Pathways are also determined in 

GC-regulated network pathways. The Canonical Pathways are discussed in this 

section; while those GC-responsive pathways will be discussed in a latter section (See 

Chapter 6.2.3, Page 169; Chapter 6.2.4, Page 179). 

 

Table 6.9 Summary of the functional network pathways in NP 

Response to GC therapy‡ Pathway Relevant 
biological/immunolog
ical functions† Before After 

AP-1 network* Epithelial restitution Down Up 
Anti-inflammatory 
gene network* 

Anti-inflammatory 
process Down Up 

Caspase-mediated 
apoptosis signaling# 

Epithelial damage Up NS 

Complement system# Eosinophil infiltration Up NS 
EGF/EGFR 
signaling# 

Epithelial restitution Down Up 

Leukotriene 
signaling#  

Eosinophil infiltration Up NS 

Prostaglandin E2 
signaling# 

Epithelial restitution Down Up 

ERK/MAPK 
signaling# 

Pro-inflammatory 
process Up Down 

IL-6 signaling# Epithelial restitution Down Up 
NF-kappaB 
signaling# 

Pro-inflammatory 
process Up Down 

* Networks generated from GC-regulated genes. 
# Networks generated from NP disease associated genes. 
† Only list the most relevant function of the indicated pathway based on the results of current study. 
‡ Response of indicated network is evaluated by the expression levels of the involved key genes. 
NS, not significant change. 
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6.2.2.1 Apoptosis signaling in NP 

Apoptosis, a form of cell death characterized by cell shrinkage, membrane blebbing, 

nuclear breakdown, and DNA fragmentation, is essential for development, 

maintenance of tissue homeostasis and elimination of harmful cells in metazoan 

organisms [Nagata, 1997]. Caspases, a group of cysteine proteases that cleave protein 

substrates after aspartic acids, play a central role in the regulation and execution of 

apoptosis [Cryns et al. 1998]. Canonical Pathway of apoptosis described the 

caspase-mediated apoptosis cascade in GC-naïve NP (Figure 6.15B, Page 129). 

 

There is less information about the apoptotic factors in NP, and only one recent report 

showed that down-regulation of cIAP1 (apoptosis inhibitor 1) may contribute to the 

increase of cellular infiltrates in NP [Cho et al., 2008]. Our results showed that, although 

GCs did not change expression level of the apoptotic factors in NP, two critical 

downstream caspase genes (CASP3 and CASP7) as well as Bid and AIF were 

constituently expressed higher in GC-naïve NP. The previous study also reported that 

CASP3 was only expressed in the epithelial region in NP, but not in subepithelial 

constituents [Cho et al., 2008]. Since epithelium damage was detected in GC-naïve NP 

in our study, it suggests that the caspase pathway may not be an important 

pro-apoptotic mechanism in the stromal cellular infiltration, but may be essential in 

epithelial damage/remodeling in NP. In addition, up-regulation of pro-apoptotic genes 

may also indicate the heterogeneity of apoptotic environment in NP, i.e., the 

anti-apoptotic milieu in eosinophil/neutrophil infiltration, but pro-apoptotic milieu in 

epithelial cells. 
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6.2.2.2 Complement components in NP 

The complement system is perceived as a central constituent of innate immunity, 

defending the host against pathogens, coordinating various events during 

inflammation, and bridging innate and adaptive immune responses [Markiewski & 

Lambris, 2007]. However, disturbance in this defense system leads to inflammatory 

disorders. The Canonical Pathway of complement system showed the activation 

cascades of complement components in GC-naïve NP (Figure 6.15C, Page 131).  

 

The roles of complement in asthma are considered to promote migration of 

inflammatory cells, resulting in the rapid degranulation of mast cells [Guo et al., 2005; 

DiScipio et al., 2007]. However, the effects of complement signaling in NP inflammation 

have been rarely reported. Only two studies have reported the findings of complement 

levels in NP, but the results were controversial since both up- and down-regulated 

production of complement was found [Zídková et al., 1993; Baruah et al., 2007].  

 

Our results showed that the key complement component C3 was associated with 

eosinophil infiltration (Table 6.6, Page 142) and other components such as C4a and 

C1QB were also up-regulated in GC-naïve NP. Moreover, C3 has also been 

recognized as a potent mediator for the induction of Th2-induced allergic asthma 

[Drouin et al., 2001]. Therefore, the increase of complement components in NP may 

reflect the ongoing inflammatory response (e.g. recruitment of leukocytes and 

up-regulation of inflammatory cytokines) in exposure to microbes in nasal mucosa, 

leading to an increase of eosinophils. 
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6.2.2.3 EGF/EGFR signaling in NP 

The EGF/EGFR signaling is important to regulate cell proliferation, migration and 

differentiation on target cells (Figure 6.15D, Page 132). The EGF/EGFR signaling 

has been suggested to play a critical role in tissue repair/remodeling in both healthy 

airway tissues and airway inflammatory disorders (e.g., asthma) [Davies et al., 1999; 

Holgate, 2000; Watelet et al., 2006]. Most importantly, the localization of EGF genes and 

EGFR in nasal epithelium from healthy inferior turbinate indicates that they have an 

essential role in epithelial development and repair [Polosa et al., 2000]. However, its 

function in NP has been less documented. Our results showed that both EGFR ligands 

(e.g., AREG, EGF, HBEGF and NRG3) and EGF receptors (e.g., ERBB4) were 

down-regulated in GC-naïve NP as compared to controls, suggesting the 

dysregulation of EGF/EGFR mediated proliferation signaling in NP, especially in NP 

the epithelial region. Furthermore, an increase of AREG and HBEGF in response to 

GC treatment suggests the epithelial repair function of GCs (more detail in Chapter 

6.2.3, Page 169). 

 

6.2.2.4 Eicosanoid signaling in NP 

Abnormal regulation of both leukotriene (LT) and prostaglandin (PG) pathways 

appear to be involved in the chronic inflammation of NP [Picado et al., 1999; Mullol et al., 

2002; Pérez-Novo et al., 2005; Pérez-Novo et al., 2006; Adamjee et al., 2006; Hyo et al., 2007]. The 

Canonical Pathway picture showed the interactions of the molecules involved in the 

eicosanoid signaling network (Figure 6.15E, Page 134).  

 

The enzymes (PLA2, ALOX5AP, and LTA4H) in the LT synthesis pathway as well as 

the LT receptors (LTB4R and CYSTLR1) were up-regulated in GC-naïve NP and 
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up-regulation of these LT related markers were significantly correlated with an 

increased infiltration of eosinophils in nasal samples (Table 6.6, Page 142; Figure 

6.16, Page 143). These data are in line with the previous studies showing that 

eosinophils are one of the most important sources of LT receptors in inflamed upper 

airways [Sousa et al., 2002]; and that an LT signaling pathway may be involved in 

eosinophil migration and survival [Holgate et al., 2003; Saito et al., 2004].  

 

As far as in the PG pathway, we found that the key enzyme (COX-2) for PGE2 

production and the PGE2 receptors (PTGER2 and PTGER3) were changed in 

GC-naïve NP as compared to controls and only COX-2 expression responded to GC 

treatment in NP. The anti-inflammatory roles of COX-2/ PGE2 in NP have been 

documented. Previous studies reported that the imbalance of AA/PGE2 metabolism in 

aspirin-intolerant/aspirin-tolerant NP patients could be due to down-regulation of 

COX-2 [Picado et al., 1999; Mullol et al., 2002; Pujols et al., 2004]. Another important role of 

COX-2/PGE2 is considered to be associated with epithelial repair and it will be 

discussed in Chapter 6.2.3 (Page 169). The complexities of PGE2-mediated effects 

may be attributed to the diversified properties of PGE2 receptors [Funk, 2001; Tilley et al., 

2001]. PGE2 promotes vasodilatation by activation of cAMP-coupled PTGER2 on 

vascular smooth muscle and increase of vascular permeability by enhancing the 

release of histamine and other mediators from leukocytes. Regarding PTGER3, a 

previous study showed that the prevalence of a certain haplotype in PTGER3 was 

significantly higher in mild asthmatics than in moderate and severe asthmatics, 

suggesting that genetic variations in PTGER3 may play an important role in asthma 

severity [Park et al., 2007]. PTGER3 action was mediated by an increase of intracellular 

cAMP signaling, which is associated with an inhibition of leukocyte activation in 
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inflamed tissues [Gerlo et al., 2004]. Therefore, up-regulation of PTGER2, but 

down-regulation of PTGER3 may promote the chronic inflammation of NP. 

 

In summary, mRNA patterns of the genes involved in LT and PG pathways are 

different between NP and control. Up-regulation of the markers related to LT 

synthesis/activation would contribute to eosinophil infiltration in NP. In contrast to the 

effects of LT signaling, PGE2 pathway (COX-2 – PTGERs) may have diverse 

modulatory roles in the development of NP and up-regulation of COX-2 may 

represent the beneficial effects of GCs in NP inflammation. In addition, our results 

also indicate that to determine the role of PGE2 in a given inflammatory response, one 

should keep in mind not only knowledge of the lipid mediators (PGs) presented in the 

tissues, but also the PG receptor profile and its corresponding biochemical signaling 

on immune cells.  

 

6.2.2.5 ERK/MAPK signaling in NP 

The ERK/MAPK signaling pathway has an important role in cellular processes, such 

as proliferation, stress responses, apoptosis, and inflammation. MAPK pathways are 

activated through a cascade of sequential phosphorylation events. Activated MAPKs 

can phosphorylate a wide array of downstream targets, including protein kinases and 

transcription factors (e.g. ATF/CREB and AP-1 family) that facilitate the transcription 

of pro-inflammatory genes [Johnson et al., 2007]. Meanwhile, activation of the MAPK 

signaling cascade also triggers negative-feedback mechanisms, which can restrain and 

terminate the inflammatory response [Lang et al., 2006]. The ERK/MAPK Canonical 

Pathway (Figure 6.15F, Page 136) revealed altered expression of two major negative 

regulators of MAPK signaling pathway in NP, including dual specificity phosphatases 
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(DUSPs) and sprouty homologys (SPRYs), which control the signaling cascade at 

different activation/phosphorylation levels. Moreover, most of the DUSPs and SPRYs 

responded to GC treatment in NP, which were also identified in the GC-responsive 

gene networks. 

 

In many cases, the expression of DUSPs is regulated by MAPKs and the participation 

of DUSPs in feedback regulation of MAPK activity is thought to be critical to the 

dynamic regulation of MAPK responses. GCs have been shown to inhibit the activity 

of different MAPK members [González et al., 1999; González et al., 2000; Lasa et al., 2002]. 

However, the response of most DUSP members to GCs is poorly understood; only 

induction of DUSP1 was found in several cell types by GC treatment and it has been 

regarded as one potential anti-inflammatory mechanism of GCs [González et al., 1999]. 

Furthermore, DUSP1 is the founding member of the MAPK phosphatase family and 

is expressed as an immediate-early gene in response to serum, growth factors, or 

cellular stresses [Sun et al., 1993; Zheng et al., 1993].  

 

Sprouty homology family represents a major class of ligand-inducible inhibitors of 

receptor tyrosine kinase (RTK)-dependent signaling pathways, particularly the 

RTK-RAS-RAF-ERK/MAPK signaling cascade [Mason et al., 2006]. Expression of 

SPRY proteins is induced by various growth factor signals, including fibroblast 

growth factors (FGFs) [Hanafusa et al., 2002] and epidermal growth factor (EGF) [Reich 

et al., 1999]. The inhibitory activity of SPRY is exerted upstream of ERK/MAPK and 

downstream of the RTK, but the precise point at which SPRY intercepts 

RTK-ERK/MAPK signaling varies depending on the biological context. For example, 

in mouse fibroblasts, SPRY1 and SPRY2 interfere with ERK/MAPK signaling at the 
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level of Ras activation [Gross et al., 2001], while in human epithelial cells, SPRY2 and 

SPRY4 functions at the level of RAF activation [Yusoff et al., 2002]. 

 

Although the knowledge of MAPK signaling pathway in inflammation is well 

established, the mechanism of MAPKs in NP has been rarely reported. Only the 

induction of RANTES [Yamada et al., 20001], MUC5AC [Young et al., 2004], MUC8 [Cho 

et al., 2005], and CCL2 [Lin et al., 2007] was involved in MAPK mediated inflammatory 

pathways. In addition, no report has described the expression and function of the 

MAPK negative regulators (DUSPs and SPRYs) in NP. Our study found that five 

main DUSPs (DUSP1, DUSP2, DUSP4, DUSP5, and DUSP6) and three major 

SPRYs (SPRY1, SPRY2, and SPRY4) were expressed lower in GC-naïve NP, 

indicating the negative regulation process on MAPK was inadequate in NP. Therefore, 

the response of DUSP1, DUSP2, DUSP6, SPRY1, SPRY2, and SPRY4 to GC 

treatment in NP suggests the anti-inflammatory effects of GCs on ERK/MAPK 

signaling pathways. 

 

6.2.2.6 IL-6 signaling in NP 

As shown in Figure 6.15G (Page 138), IL-6 signaling is mediated by IL-6 signal 

transducer (IL6ST, or known as gp130), which leads to Jak activation, receptor 

phosphorylation, and consequently activation of the transcription factor STAT3 [Bravo 

et al., 2000; Schmitz et al., 2000]. Upon phosphorylation, STAT3 forms homodimer and 

translocates into the nucleus, where it activates transcription of target genes, such as 

Bcl-2, cyclin D1, cyclin E1, CDKN1A, MYC, c-Jun, and c-Fos [Alvarez et al., 2004]. To 

control the IL-6 mediated proliferation signal, gp130 can recruit the key feedback 

inhibitor, suppressor of cytokine signaling 3 (SOCS3) by interacting with the Y759 
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motif of gp130 [Starr et al., 1997; Nicholson et al., 2000]. SOCS3 is induced by IL-6 and has 

an important role in the regulation of IL-6 signaling pathway [Croker et al., 2003]. 

 

The expression of IL-6 in NP has been reported controversially, and both up- and 

down-regulated alteration has been found [Bachert et al., 1997; Scavuzzo et al., 2005; 

Danielsen et al., 2006], indicating IL-6 may participate in both pro- and 

anti-inflammatory actions. Since all the key markers (including IL-6, gp130, STAT3, 

and SOCS3) were down-regulated in NP, IL-6 signaling may be defected in GC-naïve 

NP samples (Figure 6.15G, Page 138). Reduction of IL-6 signaling may reflect the 

damage of epithelium and low growth potential of epithelial cells in NP. So that the 

increase of IL-6 expression in NP after GC treatment suggests the promotion of 

epithelial restitution by GCs; while the simultaneous up-regulation of SOCS3 by GCs 

may indicate the homeostatic effect of GCs on IL-6 mediated proliferation signaling. 

 

6.2.2.7 NF-kappaB signaling in NP 

NF-kappaB acts on genes for proinflammatory cytokines, chemokines, enzymes that 

generate mediators of inflammation, immune receptors, and adhesion molecules that 

play a key part in the initial recruitment of leukocytes to sites of inflammation [Hayden 

et al., 2004]. The activated form of NF-kappaB is a heterodimer, which usually consists 

of two proteins, a p65 subunit and a p50 subunit. In unstimulated cells, NF-kappa B is 

found in cytoplasm and is bound to inhibitors of NF-kappaB (IkappaB), which 

prevent it from entering the nuclei [Baldwin, 1996]. NF-kappaB Canonical Pathway 

revealed that two important inhibitors (NFKBIA and NFKBIZ) of NF-kappaB 

signaling were decreased in GC-naïve NP (Figure 6.15H, Page 140).  
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There are six IkappaB family members, including IkappaB-α (NFKBIA), IkappaB-β 

(NFKBIB), IkappaB-γ, IkappaB-ε (NFKBIE), BCL3, and IkappaB-ζ (NFKBIZ), 

which are characterized by the presence of five to seven ankyrin repeats that assemble 

into elongated cylinders that bind the dimerization domain of NF-kappaB dimmers. 

Various members of the IkappaB family target different NF-kappaB complexes, for 

example, NFKBIA and NFKBIB interact preferentially with p65/p50 heterodimers 

[Thompson et al., 1995], while NFKBIZ preferentially associates with the NF-kappaB 

subunit p50 rather than p65 [Yamazaki et al., 2001].  

 

Previous studies showed that an increase of NF-kappaB activity and expression has 

been found in NP, which was accompanied with up-regulation of pro-inflammatory 

genes (such as GM-CSF, IL-5, IL-8, and eotaxin) [Takeno et al., 2002; Valera et al., 2008]. 

Direct interactions between the glucocorticoid receptor and NF-kappaB account for 

the inhibitory effects of GCs on NF-kappaB signaling [McKay et al., 1999]. However, 

glucocorticoid response element (GRE) was found in IkappaB genes, and GCs are 

able to induce expression of IkappaB, indicating another way by which GCs inhibit 

NF-kappaB activity [Auphan et al., 1995]. Therefore, the lower expression of NFKBIA 

and NFKBIZ suggest that the control mechanism of NF-kappaB is insufficient, 

contributing to the chronic inflammatory milieu in NP. Although we did not find the 

change of expression in NF-kappaB factors in NP, the results of up-regulation of 

NFKBIZ are in line with the concept that GCs can inhibit activation of NF-kappaB by 

promoting IkappaB expression [Scheinman et al., 1995]. 

 

6.2.2.8 Conclusion of Canonical Pathways in NP 

Systemic pathway analysis reveals the well-established signaling pathways which 
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contribute to the NP pathogenesis. Referring to the histopathological findings of the 

current study, we suggest that the dysfunction of NP epithelium would be associated 

with the alteration of caspase-mediated apoptosis signaling, EGF/EGFR signaling, 

PGE2 signaling, and IL-6 signaling, while the increase of eosinophil infiltration and 

inflammatory process in NP would be related to the enhanced activity of complement 

system, LT signaling, ERK/MAPK signaling, and NF-kappaB signaling (Table 6.9, 

Page 159). Most of the Canonical Pathways responded to GC treatment (except 

apoptosis signaling, complement system, and LT signaling), indicating the potential 

effects of GCs on NP could be epithelial repair and anti-inflammation (Table 6.9, 

Page 159). These two major beneficial effects will be discussed in detail in the 

following two sections (Chapter 6.2.3 & 6.2.4). 

 

6.2.3 Epithelial repair effect of GCs in NP 

In the current study, the advanced functional and network analyses were used to 

identify the key networks and candidates in response to GC treatment. This is the first 

in vivo study deciphering the role of the AP-1 gene network and epithelial remodeling 

in NP. The major findings are: (i) epithelial damage is an important feature of NP and 

a remarkable epithelial restitution is observed after GC treatment; (ii) AP-1 and its 

related genes appear to be a key molecular network underlying the wound healing in 

NP; (iii) epithelial c-Jun protein expression is up-regulated by oral GC therapy and is 

positively correlated with epithelium restitution in NP tissues. 

 

6.2.3.1 Background information of epithelial repair in airway tissues  

The epithelial repair process is a highly organized and well coordinated process, 

which is generally categorized into three steps: the inflammatory, proliferative, and 
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remodeling phases. During inflammation, various inflammatory cells (including 

neutrophils, lymphocytes and macrophages) infiltrated the wounded epithelium, and 

secrete pro-inflammatory mediators (e.g. cytokines and growth factors) which are 

vital for pushing the wound healing process into the proliferative phase. After the 

inflammatory stage, fibroblasts begin to enter the wound site, marking the onset of the 

proliferative phase. During this period, epithelial cells migrate across the new tissue to 

form a barrier between the wound and the environment. Finally, tissue remodeling 

occurs, including re-epithelialization and matrix deposition.  

 

The human nasal epithelium represents the first line of defense against a number of 

toxic substances, allergens and infectious agents. In order to maintain its integrity, the 

nasal epithelium has the capacity to repair itself in response to the chronic exposure of 

damaging agents. However, the feature of mucosal inflammation in NP is epithelial 

damage followed by abnormal tissue repair and remodeling [Holgate, 2000; Watelet et al., 

2006]. The NP epithelium is “passively” under attack by the infiltrating eosinophils 

and inflammatory mediators, leading to damage of epithelium [Uneri et al., 2005; Cheng et 

al., 2006]. Consequently, the epithelial damage of NP causes the release of 

pro-inflammatory signals which pass down into the submucosa and also removes 

some anti-inflammatory mediators such as PGE2, leading to uncontrolled remodeling. 

Hence, under chronic inflammatory conditions, the epithelial repair process may 

become inadequate in NP, resulting in abnormal tissue repair and remodeling. In this 

context, rapid repair of damaged epithelium without causing uncontrolled 

re-epithelialization process is critical to the resolution of NP inflammation.  

 

GC treatment is considered the most effective pharmacological therapy for chronic 
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upper airway inflammation including NP and asthma [Fokkens et al., 2007; Bateman et al., 

2008]. The predominant effects of GCs are to switch off multiple inflammatory genes 

that have been activated during the inflammatory process and to promote tissue repair, 

such as immunoregulatory and remodeling effects by induction of TGF-β in NP 

[Mastruzzo et al., 2003], and by activation of EGF/EGFR signaling in the asthma model 

[Wadsworth et al., 2006]. However, the previous studies only specify selected known 

markers, while a systematic approach is necessary to view the overall molecular 

events responsible for GC therapy and their effects on epithelial repair in NP. 

 

6.2.3.2 Histolgoical findings regarding epithelial repair by GCs in the current 

study 

On the basis of a grading system that we used to quantify epithelial integrity, the 

epithelium of most GC naïve NP samples was substantially damaged, while 

remarkable epithelial restitution with no abnormal remodeling was observed after oral 

GC treatment (Table 6.1, Page 90). Moreover, improvement was evident in GC-naïve 

NP tissues with areas of squamous epithelium (NP3 and NP10), and GC-treated NP3 

and NP10 presented pseudostratiried columnar epithelium without aberrant 

hyperplasia, indicating the regulatory effects of GCs. Our findings are consistent with 

those reports which demonstrate improvement in the structure of airway epithelium 

after GC treatment [Mastruzzo et al., 2003; Wadsworth et al., 2006]. Note that the previous 

studies focused on the effect of topical GC treatment, while our study observed that 

short course (3-5 days) of oral GC treatment indeed had a tissue repair effect on NP in 

vivo.  

 

6.2.3.3 Molecular events underlying the wound healing effects of GCs in NP 
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Histological evaluation has confirmed the epithelial change at the tissue level, while 

microarray analyses explored the molecular evidence underlying this healing process 

of GCs. In this context, the top-scoring network (AP-1 network) and the involved GC 

candidate genes (AP-1 molecules) as well as their major interacting genes are of 

particularly interest. The functions of AP-1 network and AP-1 genes/AP-1 related 

genes are associated with cellular development, growth, and proliferation, which are 

considered to contribute to the histological change of NP epithelium. The discussion 

of AP-1 and AP-1 related genes is described in the following paragraphs. 

 

(1) Background information of AP-1 

AP-1 regulates a wide range of cellular processes by induction of various 

pro-/anti-inflammatory molecules, including inflammation, cell migration, 

proliferation, death, survival and differentiation [Shaulian et al., 2002]. AP-1 is formed 

by dimerization of members of Jun (c-Jun, JUNB and JUND) and Fos (c-Fos, FOSB, 

FOSL1 and FOSL2) proto-oncogene families, while the most abundant AP-1 

heterodimer is c-Fos:c-Jun [Karin et al., 1997]. c-Jun is the central component of all 

AP-1 proteins and the key factor for AP-1 activity, due to its wide range of 

dimerization with other AP-1 members and regulation (e.g. phosphorylation) by 

various mediators [Karin et al., 1997]. The Fos proteins, which cannot homodimerize, 

form stable heterdomiers with Jun proteins and thereby enhance their DNA binding 

activity.  

 

AP-1 activity is regulated by a broad range of extracellular stimuli including 

physiological agents (mitogens, growth factors, hormones, extracellular matrix and 

inflammatory cytokines), bacterial and viral infections, pharmacological compounds 
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(anisomycin, phorbol esters, and okadaic acid) and cellular stress (ultraviolet or 

ionizing radiation) [Karin et al., 1997]. Many of these stimuli activate the 

mitogen-activated protein kinase (MAPK) cascades [mostly p38, JUN N-terminal 

kinases (JNKs) and extracellular signal-related kinases (ERKs)], leading to the 

phosphorylation of c-Jun [Karin, 1995]. In turn, phosphorylated JUN heterodimers bind 

DNA sequences (AP-1 response elements) and induce the transcription of downstream 

genes which are most involved in cellular development, growth and proliferation. 

AP-1 induces a variety of growth related genes (e.g. EGF protein family) [Grose, 2003], 

cytokines (e.g. IL-6) [Gallucci et al., 2000], and enzymes (e.g. COX-2) [Yamaguchi et al., 

2005]. Moreover, AP-1 can also interact with other transcription factors (e.g., EGR1), 

which enhance AP-1 activity [Levkovitz & Baraban, 2001]. 

 

Regulation of AP-1 gene expression in response to GCs is highly complex and may be 

cell-type-specific. Subramaniam et al. demonstrated that dexamethasone (Dex) 

up-regulated the mRNA levels of c-Jun and c-Fos in human osteoblasts [Subramaniam et 

al., 1992]. Zhou et al. showed that both c-Jun mRNA and protein, but not other 

members of the AP-1 family (c-Fos, JUNB, JUND, FOSB), were induced by Dex in 

human leukemic lymphoblasts [Zhou et al., 1996]. Boudreau et al. reported that both the 

mRNA and protein of c-Jun, c-Fos, and JUNB were increased in intestinal epithelial 

cells by Dex treatment [Boudreau et al., 1999]. However, Lee et al. reported that the 

expression of c-Jun was repressed by Dex in fibroblasts [Lee et al., 1991]. In addition, 

c-Jun transcription was directly stimulated by its own gene product [Angel et al., 1988].  

 

(2) AP-1 gene expression in nasal tissues 

We determined the expression of two main components of AP-1 (c-Jun & c-Fos) in 
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NP as well as in nasal mucosal control at mRNA and protein level. A deficiency in 

both c-Jun and c-Fos mRNA expression in NP tissues was evident. A restoration of 

both c-Jun mRNA and protein was found after GC therapy in NP tissues. With regard 

to c-Fos, its mRNA was up-regulated in GC-treated NP, but immunohistochemical 

staining suggests that GC treatment did not improve c-fos protein level in extracted 

NP tissues. 

 

Our results are in disagreement with a previous report in which elevated c-Fos protein 

was detected in NP tissue and GC decreased c-Fos protein, but did not affect c-Fos 

mRNA level in NP tissues [Baraniuk et al., 1998]. In that study, mRNA expression of 

c-Fos was measured by RT-PCR that is considered as qualitative but not quantitative 

measurement. Furthermore, determination of c-Fos mRNA level was normalized by 

β-actin intensity band, which is not a reliable internal control for GC-treated nasal 

samples [Bolger et al., 2007]. c-Fos mRNA and protein expression may also be affected 

by broad alterations in post-transcriptional processes: (i) increased turnover of c-Fos 

protein may not be detectable by immunohistochemistry [Kruijer et al., 1984]; (ii) c-Fos 

or AP-1 may negatively auto-regulate c-Fos protein translation [Sassone-Corsi et al., 

1988]; (iii) binding of activated GR and c-Fos may lead to the mutual inactivation and 

proteolytic degradation and then hamper the c-Fos production [Yang-Yen et al., 1990]. 

Other plausible explanations for such a conflicting result are due to variable factors 

such as choice of different subjects (same patient versus different patient before and 

after treatment), dosage and type of GC treatment (oral versus topical GC), and 

different experimental protocols (e.g. different RNA detection method, different 

immunohistochemistry methods). Nevertheless, the role of c-Fos protein in NP and its 

response to GC treatment needs to be further clarified, and trying to minimize 
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confounding factors in detecting c-Fos is recommended. 

 

(3) Tissue repair role of c-Jun/AP-1 and its related genes in nasal polyp epithelium 

Circumstantial evidence suggests a critical role of AP-1 (especially c-Jun) and its 

related genes in the maintenance and repair of epithelial tissues and reduction of AP-1 

expression may interrupt a critical autocrine/paracrine pathway of signaling to the 

epithelial restitution [Grose, 2003; Li et al., 2003; Shaulian et al., 2002]. In our results, 

elevated expression of c-Jun in GC-treated NP tissues was associated with the 

significant improvement in NP epithelial structure (Figure 6.19, Page 152; Table 6.8, 

Page 153), indicating that GCs may perform the tissue repair effect via regulating 

c-Jun expression.  

 

c-Jun/AP-1 is a transcription factor, which induces many mRNAs for cytokines and 

growth factors (AP-1 downstream genes), while c-Jun/AP-1 itself is also regulated by 

various growth related factors (AP-1 upstream genes). Therefore, these c-Jun/AP-1 

related genes (both downstream and upstream) indeed participate in the epithelial 

repair function of c-Jun/AP-1. The integrated analysis of multi-dimensional 

microarray data has proved informative. Our network analyses have identified a 

number of AP-1 related genes (COX-2, IL-6, AREG, HBEGF, and EGR1) which 

appear to modulate airway epithelial remodeling and are GC dependent. 

 

AP-1 induces transcription of COX-2 which is the key enzyme required for the 

conversion of arachidonic acid into prostaglandins (PGs) [Yamaguchi et al., 2005]. 

COX-2/PGE2 plays an important role in the homeostasis of epithelial remodeling 

process in airway tissues [Savla et al., 2001]. Decreased expression of COX-2 and 
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diminished PGE2 production seem to be an important feature of untreated NP tissues, 

especially those with aspirin intolerance [Picado et al., 1999; Mullol et al., 2002]. We found 

an up-regulation of COX-2 mRNA in NP tissues after oral GC treatment, which is in 

line with the report by Dworski et al., who found that treatment with prednisone 

resulted in a significant increase in COX-2 mRNA and protein in atopic subjects in 

vivo [Dworski et al., 1997]. 

 

In our study, up-regulation of c-Jun/AP-1 is associated with IL-6. c-Jun/AP-1 was 

shown to induce IL-6 expression through the CRE binding region [Franchimont et al., 

1999], while IL-6 mediated signal pathway could increase expression of c-Jun 

[Solis-Herruzo et al., 1999]. IL-6 is a pleiotropic cytokine that exerts both pro- and 

anti-inflammatory activities, as well as cellular proliferation. GCs were found to 

enhance the induction of IL-6 mRNA in human bronchial epithelial cells, indicating 

the host defense activity of GCs [Homma et al., 2004]. In addition, IL-6 together with 

growth related factors (e.g. EGF and COX-2) are important to protect epithelium from 

injury in a variety of tissues, including skin [Gallucci et al., 2000], gastrointestinal tract 

[Tebbutt et al., 2002], and kidney [Nechemia-Arbely et al., 2008].  

 

This study shows evidence of an up-regulation of two EGFR ligands (AREG and 

HBEGF) in response to GC treatment. The EGF protein family is thought to be the 

primary cytokines in the process of epithelium healing [Holgate, 2000; Watelet et al., 2006]. 

The GC mediated wound healing process in airway epithelium requires the activation 

of the EGF/EGFR signaling pathway [Wadsworth et al. 2006]. The response of EGF 

genes is clearly linked to AP-1 transcription factor activity, since both the EGFR and 

its known ligands are direct AP-1 target genes [Fu et al., 1999; Johnson et al., 2000]; and 
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activation of EGF/EGFR signaling also leads to the induction of AP-1 [Grose 2003; Li et 

al., 2003].  

 

In this study, we found an increase of EGR1 that has been regarded to induce c-Jun 

expression and trigger c-Jun/AP-1 activation [Levkovitz et al., 2001]. EGR1 functions as 

a transcriptional regulator and is an example of an “immediate early response protein” 

because it is rapidly induced by numerous cytokines, growth factors, injurious stimuli, 

stress, and GC hormone [Liu et al., 2000; Revest et al., 2005]. EGR1 is also involved in the 

tissue repair process mediated by AP-1/EGF signaling [Warburton et al., 2005] and 

activated GC receptors could increase the levels of both EGR1 mRNA and protein 

[Revest et al., 2005]. 

 

6.2.3.4 Conclusion of the epithelial repair effect of GCs 

Our results indicate the epithelial repair effect of GCs on NP from histological to 

molecular levels. AP-1 (especially c-Jun) and its related genes are all involved in the 

top function network composed of GC-regulated genes in NP (Figure 6.13, Page 122). 

The network analysis has revealed an extended pathway map potentially underlying 

the epithelial healing process in NP in response to GC treatment. c-Jun/AP-1 has been 

considered the core gene in this network, while the interactive positive feedback loop 

between c-Jun/AP-1 and its related genes (including AREG, HBEGF, COX-2, IL-6, 

and EGR1) will contribute to the epithelial repair effects of GCs on NP. The 

interaction among c-Jun/AP-1 and its related genes are summarized in Figure 6.20 

(Page 179): (i) expression level of c-Jun/AP-1, EGF molecules (AREG & HBEGF), 

COX-2, IL-6 and EGR1 in GC-naïve NP may be too low to perform their normal 

physiological process (e.g. wound healing), resulting in epithelial damage; (ii) 
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inadequate expression of AREG, HBEGF, COX-2, and IL-6 in NP may contribute to 

the lower expression of c-Jun/AP-1; (iii) since these growth related genes are 

c-Jun/AP-1 target genes, it may further potentiate the reduction of AREG, HBEGF, 

COX-2, and IL-6; (iv) after GC treatment, GR may directly/indirectly induce the 

expression of c-Jun/AP-1, AREG, HBEGF, COX-2, IL-6, and EGR1 in NP, and the 

positive feedback loop among these factors is activated, resulting in the promotion of 

epithelial repair in NP.  
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Figure 6.20 Schematic diagram of AP-1 and AP-1 related genes in epithelial repair in NP after GC 

treatment. AREG, HBEGF, COX-2, and IL-6 are both AP-1 upstream activators and AP-1 downstream 

target genes; and EGR1 is the co-activator of AP-1. Before GC treatment, AP-1 and AP-1 related genes 

are expressed at a low level in NP; while after GC treatment, all these genes are up-regulated and then 

the positive loop of epithelial cell proliferation is activated, leading to enhance of epithelial restitution. 

GR, glucocorticoid receptor.  

 

6.2.4 Anti-inflammatory effect of GCs in NP  

In previous paragraphs, we suggested that GCs may promote re-epithelization during 

the tissue repair process. Indeed, the anti-inflammatory action of GCs is widely 

accepted, and this effect is mediated by glucocorticoid receptor (GR), which migrates 

from the cytoplasm to the nucleus upon binding of ligand and exerts both positive and 
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negative effects upon transcription [Newton, 2000]. In our study, the network analysis 

identified several important pro- and anti-inflammatory genes involved in the GC 

gene networks (Chapter 6.1.7, Page 118). We suggest that GR modulates the 

expression of anti-inflammatory genes (e.g., inhibitors of NF-kappaB, inhibitors of 

MAPKs, SOCS3, ANXA1, SCGB1A1, ZFP36 and THBD) in a positive way, either 

directly or indirectly [Castro-Caldas et al., 2003; Usmani et al., 2005; Ishaq et al., 2007]; while it 

modulates the expression of some pro-inflammatory genes (e.g., MMP7, MMP9, and 

chemokines) in a negative regulation way. 

 

6.2.4.1 Glucocorticoid receptor 

Two human isoforms of glucocorticoid receptor (GR), GRα and GRβ, have been 

identified, which originate from the same gene by alternative splicing of the GR 

primary transcript [Encío et al., 1991]. GRα is the predominant isoform of the receptor 

and has GC-binding activity [Pujols et al., 2004]. In contrast, GRβ does not show 

ligand-binding activity, but may act as a dominant negative inhibitor of GRα activity 

[Pujols et al., 2004]. Moreover, recent evidence suggests that increased expression of 

GRβ may be associated with GC resistant asthma and NP [Hamid et al., 1999].  

 

Our results showed a decrease of GRα mRNA in GC-naïve NP compared to controls, 

which is in line with previous reports [Pujols et al., 2008]. It has been reported that most 

of the eosinophils in NP were stained slightly with GR [Pujols et al., 2008], and GR 

expression was prominent in airway epithelial cells [Adcock et al., 1996]. These findings 

indicate that the local inflammatory milieu (high infiltration of eosinophils) of NP 

may be related to the down-regulation of GRα. In contrast to our results, Choi et al. 



 181

reported the higher level of GRα mRNA in NP than in control nasal mucosa [Choi et al., 

2006]. These controversial results may be attributed to the cellular complexity of the 

NP tissues, heterogeneity of patient background and different detection methods. In 

agreement with previous data, expression of GRβ mRNA was too low to be detected 

in both NP and control tissues by real-time RT PCR.  

 

GC resistance in asthma may result from the elevated level of GRβ expression and 

deficiency of GRα [Leung et al., 1997]. Although GRβ expression is considered a 

marker of GC resistance in NP [Hamilos et al., 2001], GRα expression level appears to 

have no effect on those NP patients who is resistant to the GC treatment [Choi et al., 

2006]. Our results confirmed no detection of GRβ in GC-naïve NP, indicating that no 

GC resistance occurs in the studied samples. In addition, down-regulation of GRα in 

GC-naïve NP also appears not to be associated with the GC insensitivity in NP 

patients, since GCs could alter the expression of many GC responsive genes in the 

current NP samples. 

 

There was no significant difference in GRα expression in NP before and after GC 

treatment. These results contrast with the data showing down-regulation of the GR 

after in vitro treatment of different airway cell types with GCs [Pujols et al., 2001; Pujols 

et al., 2004]. In keeping with our results, Henriksson et al. reported that NP did not 

respond with down-regulation of GR mRNA following GC treatment in vivo 

[Henriksson et al., 2001]. The conflicting findings may be attributed to the different 

experimental designs (in vitro vs. in vivo). 
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6.2.4.2 Anti-inflammatory molecules regulated by GCs 

The inhibitors of pro-inflammatory signaling pathways including NFKBIZ, DUSPs, 

SPRYs, and SOCS3 were discussed in Chapter 6.2.2 (Page 158). Moreover, some 

other important anti-inflammatory genes were also identified by network analysis, 

such as ANXA1, SCGB1A1, ZFP36, and THBD. 

 

(1) Annexin A1 

Annexin A1 (ANXA1) belongs to a family of Ca2+-dependent phospholipid binding 

proteins and has phospholipase A2 (PLA2) inhibitory activity. Since PLA2 is required 

for the biosynthesis of the potent mediators of inflammation, such as prostaglandins, 

and leukotrienes. ANXA1 may have potential anti-inflammatory activity in 

inflammatory response [Wallner et al., 1986]. Besides the inhibition of arachidonic acid 

metabolism, ANXA1 also contributes to a variety of anti-inflammatory pathways, 

including inhibition of iNOS expression [Wu et al., 1995], stimulation of IL-10 release 

[Ferlazzo et al., 2003], inhibition of leukocyte migration [Perretti et al., 1996], and induction 

of apoptosis of inflammatory cells [Solito et al., 2001]. Regulation of ANXA1 by GCs 

has been well established and ANXA1 is able to mimic the anti-inflammatory effects 

of GCs in several experimental models of inflammation both in vivo and in vitro 

[Flower et al., 1988]. Our study showed that expression of ANXA1 was not different 

between NP and controls, but augmented ANXA1 expression was found in NP after 

GC treatment. These results are in agreement with the previous study [Sena et al., 2006], 

indicating that up-regulation of ANXA1 in NP may be attributed to the feedback 

response of the immune system to chronic inflammation, while GCs may enhance 

such anti-inflammatory action. 
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(2) Secretoglobin, family 1A, member 1 

Secretoglobin, family 1A, member 1 (SCGB1A1; also know as uteroglobin), is an 

important GC-induced anti-inflammatory gene, which was originally found to inhibit 

PLA2 activity [Mukherjee et al., 2007]. It is the founding member of a newly designated 

Secretoglobin superfamily of proteins [Klug et al., 2000], constitutively expressed by the 

epithelial lining of all organs that communicate with the external environment. It has a 

broad range of anti-inflammatory effects [Mukherjee et al., 2007], including the inhibition 

of PLA2, leukocyte chemotaxis, and pro-inflammatory cytokines. Furthermore, 

peptides derived from SCGB1A1 are among the most potent anti-inflammatory agents 

identified to date [Miele, 2003]. Our study found that SCGB1A1 was expressed at a 

similar level between GC-naïve NP and control, but it was up-regulated at 5.19-fold in 

NP in response to GC treatment. The result is consistent with the previous NP 

microarray study, which revealed that SCGB1A1 was increased most in NP after GC 

treatment [Benson et al., 2004].  

 

(3) Zinc finger protein 36 

Zinc finger protein 36 (ZFP36; also known as tristertraprolin, TTP) is an 

immediate-early gene induced by various stimuli (e.g. LPS, TNF-α, p38 MAPK, 

IFN-γ) [Sauer et al., 2006], and destabilizes several pro-inflammatory cytokine mRNAs 

by binding to AU-rich elements with their 3’ untranslated regions, targeting 

degradation [Carballo et al., 1998]. Moreover, dexamethasone treatment was found to 

inhibit TNF-α expression by sustained induction of the ZFP36 mRNA level in lung 

epithelial cells [Smoak et al., 2006]. This evidence suggests that ZFP36 performs its 

anti-inflammation activity by a negative feedback loop which is induced by 
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inflammatory signalings. Although GCs can induce ZFP36 and control the post 

transcription of pro-inflammatory genes, the role of ZFP36 in airway inflammation 

(e.g. NP and asthma) as well as its response to GC treatment has not been investigated 

as well. Our results demonstrated that ZFP36 was expressed lower in GC-naïve NP, 

but up-regulated in NP after GC treatment, suggesting the degradation effect of GCs 

on pro-inflammatory gene mRNA. 

 

(4) Thrombomodulin 

Ample evidence has suggested the cross-talk between inflammation and coagulation, 

i.e. inflammation leads to the activation of coagulation, meanwhile coagulation also 

significantly affects inflammatory activity, moreover, several anti-coagulant 

molecules are supposed to modulate inflammation [Levi et al., 2004]. Thrombomodulin 

(THBD) is an important anticoagulant factor. It plays an indirect role in modulating 

inflammation by inhibiting thrombin mediated inflammatory and remodeling 

processes [Van de Wouwer et al., 2004]. For example, the C-type lectin-like N-terminal 

domain of THBD could suppress activation of the MAPK cascade and prevent 

expression of leukocyte adhesion molecules, consequently interfering with the 

leukocyte migration to inflammatory tissues [Conway et al., 2002]. However, the roles of 

THBD in NP and its response to GC treatment have not yet been studied. Our study 

found down-regulation of THBD in GC-naïve NP, while it was increased in NP after 

GC treatment, indicating the effect of GCs on the coagulation system mediated 

inflammation and remodeling process in NP. 

 

6.2.4.3 Pro-inflammatory molecules regulated by GCs 

In addition to the positive effect on anti-inflammatory genes, GCs also suppress the 
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expression of those pro-inflammatory genes, such as Matrix metalloproteinase and 

CXC-chemokines. 

 

(1) Matrix metalloproteinase (MMP) 

Among the GC-responsive genes, two pro-inflammatory genes, MMP7 and MMP9 

were down-regulated in GC-treated NP. MMP7 and MMP9 belong to the matrix 

metalloproteinase (MMP) family, which is capable to cleave a diverse array of 

extracellular matrix (ECM), thereby modulating cellular infiltration and tissue 

structure during both health and disease stages. Substantial evidence suggests that 

MMP is an important modulator of the inflammatory and remodeling processes. 

Increased or mis-regulated levels of MMPs have been observed in many inflammation 

associated diseases [Malemud, 2006]. The natural inhibitors of MMPs, so called tissue 

inhibitors of metalloproteinases (TIMPs), were used as anti-inflammatory drugs in 

inflammatory conditions such as arthritis [Burrage et al., 2007]. Steorids have been found 

to reduce expression of MMPs in airway tissues [Hoshino et al., 1999; Profita et al., 2004]. 

 

MMPs was found to be involved in tissue remodeling and eosinophil migration in NP 

due to the property of ECM degradation [Lechapt-Zalcman et al., 2001; Watelet et al., 2004; 

Kostamo et al., 2007; Can et al., 2008]. There is evidence that eosinophils are a source of 

MMP9 in NP and asthmatic tissues [Ohno et al., 1997]. In agreement with the previous 

studies, we found the up-regulation of MMP7 and MMP9 in GC-naïve NP, and 

increase of MMP9 was associated with eosinophil/neutrophil infiltration in NP, while 

MMP7 was only associated with a neutrophil influx. Increase of MMP9 and MMP7 

production could degrade components of endothelial basement membrane and then 

enhance microvascular permeability, leading to eosinophil or neutrophil 
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transmigration [Lechapt-Zalcman et al., 2001; Yoon et al., 2007; Can et al., 2008; Swee et al., 2008]. 

Hence, after GC treatment, decrease of MMP7 and MMP9 may not only contribute to 

the suppression of leukocyte migration, but also maintain the homeostasis of tissue 

remodeling in NP. 

 

(2) CXC-chemokines 

Two CXC-chemokines, CXCL9 and CXCL11 were down-regulated in NP in response 

to GC treatment. CXCL9 and CXCL11 genes are closely located to each other on 

human chromosome 4. Both of them are considered T-cell chemoattractants, which 

interact with the T-cell surface receptor CXCR3. Since gene expression of CXCL9 

and CXCL11 is strongly induced by IFN-gamma and CXCR3 is primarily expressed 

on activated Th1 cells, CXCL9 and CXCL11 are associated with Th1 response [Cole et 

al., 1998]. In addition, CXCL9 and CXCL11 are commonly produced by local cells in 

inflammatory lesions, suggesting that CXCR3 and its chemokines ligands participate 

in the recruitment of inflammatory cells. With regard to the response of GCs, CXCL9 

and CXCL11 which were induced by IFN-gamma were found to be decreased after 

GC treatment [Egesten et al., 2007; Widney et al., 2000]. 

 

Although CXCL9 and CXCL11 have not been reported in any NP studies, their role in 

allergic rhinitis is regarded to suppress Th2 response [Sun et al., 2007]. Our results 

showed that before GC treatment, expression of CXCL9 and CXCL11 was not 

significantly different between NP and control. However, they were expressed at a 

high level in one NP sample (NP6) which was prominently infiltrated by lymphocytes 

(data not shown). These results are consistent with the histological patterns of these 

studied NP samples, most of which are eosinophil dominant. The decrease of CXCL9 
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and CXCL11 by GCs suggests that GC attenuation of CXCL9 and CXCL11 

expression may contribute to the anti-inflammatory effects of GCs in Th1-dependent 

processes [Goleva et al., 2004].   

 

6.2.4.4 Conclusion of the anti-inflammatory effects of NP 

Our observation suggests that the anti-inflammatory effects of GCs in NP may not 

only be due to transrepression of pro-inflammatory genes by the GR, as indicated in 

previous studies [De Bosscher et al., 2003], but also involves positive regulation of 

anti-inflammatory genes. This finding is in agreement with the new concept of 

“non-transrepression” anti-inflammatory actions of GCs, i.e., activated GR initiates a 

signaling cascade with an induction of anti-inflammatory genes [Limbourg & Liao, 2003; 

Hayashi et al., 2004]. Most importantly, the identified anti-inflammatory genes are all 

involved in the negative feedback loops of the inflammatory signaling pathways. For 

example, NFKBIZ inhibit NF-kappaB activation, DUSPs, SPRYs, ZFP36, THBD 

inhibit MAPK cascade activation, SOCS3 inhibit IL-6 activity, ANXA1 and 

SCGB1A1 antagonize arachidonic acid mediated inflammatory response. 

Nevertheless, those pro-inflammatory markers such as MMP7, MMP9, CXCL9, and 

CXCL11 were also attenuated by GCs. These findings emphasize the diverse 

anti-inflammatory functions of GCs in modulating cellular signaling events in NP. 

 

6.2.5 Hypothesis of the GC beneficial effects on NP 

With regard to the GC effects on NP, we discussed two major findings: epithelial 

repair and anti-inflammatory function. AP-1 and AP-1 related genes respond to the 

growth effect on damaged NP epithelium and they are mainly involved in MAPK, 

IL-6, and arachidonic acid signaling pathways; however, most identified 
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anti-inflammatory genes negatively regulate this growth related signaling. Although 

these two effects seem opposite, they may represent a regulatory effect of GCs on the 

epithelial repair process. This is because wound healing itself is a process that 

involves both inflammation and the resolution of the inflammatory response, which 

culminates in remodeling.  

 

Figure 6.21 summarizes the epithelial repair process under physiological and 

pathological conditions: the increase of pro-inflammatory signaling markers (like 

AP-1 and AP-1 related genes) in response to epithelial damage results in epithelial 

restitution, while if these growth signals are not controlled, it will cause chronic 

inflammation and then potentiate the epithelial injury, leading to abnormal epithelial 

remodeling. In this scenario, the increase of the inhibitors (like DUSPs, SPRYs, 

SOCS3, etc.) of these inflammatory signaling pathways would be considered to 

control the aberrant remodeling. Indeed, the histological evaluation of NP epithelium 

was concordant to the effects of these genes, and showed improvement of epithelial 

structure but without severe remodeling (e.g., squamous metaplasia).  

 

Based on these observations, we hypothesize that the beneficial effects of GCs on 

epithelial healing may be at least in part, mediated by the induction of c-Jun/AP-1 and 

its related genes; and the promotion of anti-inflammatory effects of GCs could control 

the remodeling process of epithelium in a proper situation. Therefore, regulation of 

these gene markers would be useful in the resolution of NP inflammation, suggesting 

their potential therapeutic benefit. 
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Figure 6.21 Schematic representation of the epithelial repair process as well as its 

response to GC treatment in NP 

 

 
 

 

6.2.6 Combination of eosinophil- and neutrophil-infiltration in NP  

The general histopathological classification of NP is eosinophil-dominated 

inflammation (65-90%), which appears to be a hallmark of Caucasian NP [Fokkens et al., 

2007]. However, in the Caucasian population, neutrophilic NP may only account for 

15% to 20% of the studied cases [Bachert et al., 2003]. In contrast to the studies in 

Caucasians, recent studies reported a lower incidence of eosinophil-dominated 

inflammation in Asian population with tissue infiltration of neutrophils was as high as 

40% [Jareoncharsri et al., 2002]. We have investigated the type of cellular inflammation in 
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Singaporean Chinese patients with NP. Our results indicated a combined cell 

infiltration with eosinophil, neutrophils and CD4+/CD8+ T lymphocytes [Hao et al., 

2006]. Our recent findings lead to the following intriguing theory. Besides 

well-recognized eosinophil-dominated inflammation in Caucasian studies, 

predominant infiltration of other types of cells, especially neutrophils, could be also a 

key component underlying the pathogenesis of NP in Asian populations. 

 

The current study confirmed that infiltration of eosinophils and neutrophils was 

evident in Chinese patients with NP. The concept that NP in Chinese population may 

be a separate entity from those NP in Caucasian population is an interesting 

postulation. However, it is also possible that NP in Chinese population may represent 

a whole constellation of disease states with differing etiologies that converge upon a 

common final pathway of clinical manifestation as those NP in Caucasian populations. 

The current knowledge about the pathogenesis of NP is insufficient to test this 

hypothesis as some Chinese patients may undergo medical management for their 

disease after it has been present for a long period of time, making it difficult to 

determine what the inciting factors may have been. We postulated that a specific cell 

type-associated genetic analysis of differential gene expression could be a relevant 

indicator of difference or similarities among various disease states in NP. The 

questions to be addressed in this research, therefore, were whether eosinophil- or 

neutrophil-associated gene expression differs in NP patients and, if so, how it differs. 

 

6.2.6.1 Eosinophil-related genes in NP 

In rhinosinusitis, with or without NP, eosinophils have accumulated in the nasal or 

paranasal sinuses and caused profound clinical effects. Important immunoregulatory 
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genes influence the function of eosinophils. By using the microarray approach, we 

were able to assess the gene expression levels of most candidate genes (n=60) which 

are associated with eosinophil biology from published reviews [Lampinen et al., 2004; 

Rothenberg, 1998; Rothenberg, 2006], as well as their response to GC treatment in the same 

study. Among those 60 important eosinophil-associated genes, expression levels of 31 

genes were different in NP patients versus controls. Aberrant expression of those 31 

genes has been associated with the migration and survival of eosinophils. Ten out of 

these 31 eosinophil-associated genes were down-regulated while 21 genes were 

up-regulated in NP when compared to controls (Table 6.6, Page 142). In addition, it is 

not surprising that we did not find any genes related to eosinophil development due to 

the tissue specificity of our study samples. 

 

Hierarchical clustering indicates the relationships among samples (NP and control) 

with different histological patterns dependent on the expression of those 31 

eosinophil-associated genes. The expression profile of eosinophil-associated markers 

was distinct between NP and control nasal mucosa due to their different patterns of 

eosinophil infiltration, (Figure 6.16, Page 143). In addition, two NP samples (NP6 

and NP7) with weak eosinophil infiltration were not clustered tightly with the 

majority of NP, suggesting the expression profile may also be different between 

eosinophilic and non-eosinophilic NP. Note that the histological feature of NP6 

represented edema with highly infiltrated lymphocytes, while the feature of NP7 

represented increased number of glands without edema. These results suggest the 

correlation between the expression levels of these 31 genes and the extent of 

eosinophil infiltration. 
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Among those 31 eosinophil-associated genes, differential expression of 12 genes 

(MMP9, IL5RA, ITGB2, SELPLG, CCL11, LGALS9, LTA4H, ALOX5AP, 

PLA2G4A, CYSLTR1, LTB4R and NOS2A) in NP subjects versus controls have been 

reported previously [Chen et al., 2007; Gevaert et al., 2003; Hebestreit et al., 1998; Matsumoto et 

al., 2002; McNulty et al., 1999; Olze et al., 2006; Parnes, 2002; Ponath et al., 1996; Sousa et al., 2002; 

Woltmann et al., 2000]. As far as we are concerned, this is the first study suggesting that 

aberrant expressions of 19 eosinophil-associated genes are important aspects 

conditioning the severity and prognosis of NP. Perturbations of these 19 genes 

(ADAM8, CCL15, IL-18, C3, SCG2, CXCL12, IL13RA2, NR4A1, NR4A2, NR4A3, 

CD69, CD86, LYN, MIF, NFKBIA, DUSP1, CCL28, CD9 and CD40) have been 

implicated in many diseases associated with eosinophila, such as asthma [Adachi et al., 

1999; DiScipio et al., 2007; Foerster et al., 2002; Hashida et al., 2007; Kobayashi et al., 2006; Matsuno 

et al., 2008; Yasunaga et al., 2003], allergic rhinitis [Korsgren et al., 2003; Sebelova et al., 2007], 

and atopic dermatitis [Kagaya et al., 2005]. These 19 genes exert critical role in 

regulating migration and survival of eosinophils. It has been shown that up-regulation 

of ADAM8, CCL15, IL-18, C3, SCG2 and down-regulation of CXCL12, IL13RA2 

promote eosinophil migration into inflammatory tissues [DiScipio et al, 2007; Pardigol et 

al., 1998; Matsuno et al., 2008; Yasunaga et al., 2003]; while down-regulation of NR4A1, 

NR4A2, NR4A3, and CD69 suppress eosinophil apoptosis [Foerster et al., 2002; Hashida 

et al., 2007]. Moreover, up-regulation of CD86, LYN, MIF and down-regulation of 

NFKBIA, DUSP1 may facilitate activation signals in eosinophils [Adachi et al., 1999; 

Fujihara et al., 2005; Kobayashi et al., 2006]. Up-regulation of CD9, CD40, and CCL28 

genes promotes migration and survival of eosinophils [John et al., 2005; Rothenberg et al., 

2006].  

 

IL-5 and CCL11 (eotaxin) have been frequently reported as the molecular markers for 
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eosinophils in NP [Hamilos et al. 1998; Olze et al., 2006]. IL-5 gene expression was 

undetectable in all samples in this study. However, IL-5Rα mRNA was significantly 

higher (9.85-fold by real-time PCR) in untreated NP as compared to controls, while it 

was not altered by GCs. Our result is in agreement with a recent study in which 

soluble IL-5Rα protein expression level was found to be dramatically higher (up to 

1,200 times) than IL-5 concentrations in NP [Gevaert et al., 2003]. It has been found that 

the expression level of soluble form IL-5RA was associated with eosinophil 

infiltration and the concentrations of ECP and IL-5, indicating IL5RA levels were 

related to the disease severity [Gevaert et al. 2003]. Moreover, the expression level of 

IL5RA is important in relation to the sensitivity of anti-IL-5 treatment [Gevaert et al. 

2003]. With regard to CCL11, its mRNA was significantly up-regulated in NP samples 

(14.9-fold) in comparison with the controls but it remained unchanged after oral GC 

therapy. It seems that the expression profiles of these two best-known gene markers of 

eosinophils are not in concordance to the reduction of eosinophils in NP after GC 

therapy, indicating other eosinophil-associated genes may respond to GCs. 

 

6.2.6.2 Eosinophil-related genes in response to GC treatment in NP 

GC is the most effective and the current standard treatment for NP [Fokkens et al., 2007]. 

Our data confirm that a 3-5 day oral GC treatment (30mg prednisone daily) could 

eventually reduce infiltration of eosinophils and tissue edema in NP. A total of 5 

eosinophil-associated genes (MMP9, NR4A1, NR4A2, CD69 and DUSP1) were 

responsive to GC therapy (Appendix II, Page 268). These molecular changes 

correlate well with histological findings, such as reduced severity of tissue edema and 

eosinophil count in NP tissues, after oral GC treatment. In addition, a short-term oral 

GC therapy appears to be sufficient to normalize the expression of those genes. 
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In the literature, a number of research data have already confirmed the biological 

functions of these five genes in relation to eosinophils. MMP9 is a matrix 

metalloproteinase that promotes eosinophil migration and tissue edema in airway 

inflammation which was discussed in Chapter 6.2.4.3 (Page 184). DUSP1 potently 

inhibits MAPK mediated inflammatory signal pathways in activated eosinophils [Lasa 

et al. 2002; Wong et al. 2002], and the role of DUSP1 was also discussed in Chapter 

6.2.2.5 (Page 165). 

 

NR4A nuclear receptor members are immediate-early genes, which have been shown 

to play a key role in regulating expression of various genes related to inflammation 

[Winoto et al., 2002]. Recent review suggested that the NR4A receptor family was 

important in causing eosinophil apoptosis, because CD30 stimulation which induced 

eosinophil-specific apoptosis, enhanced expression of NR4A1, NR4A2 and NR4A3 

[Hashida et al., 2007]. We showed that NR4A1 and NR4A2 expression was increased 

after GC treatment in NPs, but NR4A3 expression was too low to detect in all NP 

samples. Hence, it indicates that transcription of NR4A1 and NR4A2 may be 

controlled by external stimuli (e.g. GCs) and it may participate in the GC-induced 

apoptosis of eosinophils in NP.  

 

Although the expression of CD69 was induced by pro-inflammatory cytokines (e.g. 

IL-3, IL-5 and GM-CSF) [Hartnell et al., 1993] in activated eosinophils, the function of 

CD69 is to transduce a death signal, leading to eosinophil apoptosis [Foerster et al., 

2002]. Our results showed that CD69 was up-regulated in response to GC treatment in 

NP, suggesting that GCs may facilitate its apoptosis effect on eosinophils via CD69 
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signaling transduction. 

 

As discussed above, GCs may perform the effects on eosinophils by regulating the 

expression of some genes which related to eosinophil migration and survival. 

Although most of the other eosinophil-related markers we found did not respond to 

GC treatment, it does not exclude the potential effects of GCs on these markers, since 

the reduction of eosinophil density itself would confuse the detection of 

eosinophil-related genes.  

 

6.2.6.3 Genes related to neutrophil infiltration in NP 

Recently, neutrophils were detected in the tissue of NP but their pathophysiological 

relevance is unclear. We have reported that a combination of eosinophils, neutrophils 

and CD4+/CD8+ T lymphocytes is a common feature of NP and adjacent middle 

turbinate mucosa in Asian patients [Hao et al., 2006]. In the current study, we have 

assessed the expression level of important neutrophil-associated genes, together with 

its cellular count in NP. Our results demonstrate that: (1) infiltration of neutrophils is 

common (66.6%) in NP patients; (2) among the 76 important neutrophil-associated 

genes [Borregaard et al., 2007; Kobayashi et al., 2006; Theilgaard et al., 2005], the expression 

level of 14 genes (10 up-regulated and 4 down-regulated) were different in NP 

patients versus controls (Table 6.7, Page 145). Among those 13 differentially 

expressed neutrophil-associated genes, 4 genes (MMP7, MMP9, ITGB2, DEFB1 and 

PTX3) have been shown to promote neutrophil infiltration in NP [Baruah et al., 2007; Can 

et al., 2008; Chen et al., 2007; Lee et al., 2002; McNulty et al., 1999]. In addition, the 

up-regulation of CXCL2, CXCL6, IFNAR1, LGALS8, ITGB2 and down-regulation 

of CXCL12 have been suggested to promote neutrophil migration [Borregaard et al., 2007; 
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Kobayashi et al., 2008; Nishi et al., 2003]. The up-regulation of SERPINA1, CEACAM1, 

CEACAM6, MMP7 and MMP9 may facilitate neutrophil adhesion and degranulation 

[Borregaard et al., 2007; Kobayashi et al., 2008; Swee et al., 2008; Theilgaard et al., 2005]; DEFB1 

promotes neutrophil survival [Borregaard et al., 2007]; and CRISP3 and PTX3 are 

associated with neutrophil-mediated innate immune defense [Baruah et al., 2007; 

Borregaard et al., 2007]. There is little effect of GCs on neutrophil-associated gene 

expression. Oral prednisone was only effective in modulating expression levels of 3 

neutrophil-associated genes (MMP7, MMP9 and CXCL2) and had no significant 

effect on neutrophil recruitment.  

 

6.2.6.4 Relationship between eosinophil and neutrophil infiltration in NP 

Our results suggest that infiltration of eosinophils and neutrophils is a common 

feature in Chinese patients with NP. However, the pathophysiological interactions 

between eosinophils and neutrophils in NP are not fully understood. Recent results 

suggest that eosinophils and neutrophils may share similar pathobiological processes 

in inflammatory tissues and may cross-talk to facilitate the recruitment of one to the 

others. Neutrophil-mediated pro-inflammatory cytokines such as IL-8, IL-1β, and 

TNF-α may contribute to allergic inflammation by inducing the influx and 

degranulation of eosinophils [Borregaard et al., 2007; Kobayashi et al., 2008; Lamblin et al., 

1998]. Neutrophils were suggested as a carrier of eosinophil cationic protein (ECP) 

and correlated with ECP level [Sur et al., 1998]. In addition, some reported 

eosinophil-associated genes (e.g., SELPLG, ITGB2, ADAM8, MMP9, CCL11, 

LTB4R, CYSLTR1, LTA4H, ALOX5AP, PLA2G4A, C3, CXCL12, NOS2A, MIF, 

LYN, CD69, DUSP1, NFKBIA, CD40) have also been reported to be effective on 

neutrophil migration and survival [Asberg et al., 2008; Corry et al., 2004; Fazal et al., 2002; 
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Gabbay et al., 1999; Khan et al., 2006; Kobayashi et al., 2006; Symon et al., 1996; Matsuno et al., 2008; 

McNulty et al., 1999; Nopp et al., 2002; Sampson, 2000; Wang et al., 2007; Ward et al., 1999]. In the 

future, it may be necessary to combine these two cell types in studies of inflammatory 

disorders (especially in NP), which have a predominant infiltration of these cells. 

   

With a combined assessment of both cell types, our results suggest that GCs are 

effective in inhibiting eosinophil infiltration and decreasing the size of polyps and 

edema but their effect on neutrophils is not established. Our results are consistent with 

several independent studies in which GCs induce apoptosis in eosinophils, but have 

no effect on neutrophil recruitment [Burgel et al., 2004; Meagher et al., 1996; Meltzer et al., 

1994; Sampson, 2000]. It raises an interesting question as to whether these unchanged 

expression levels of most neutrophil-associated genes underlie such phenomenon or 

whether neutrophils could counteract the beneficial effects of GC therapy on allergic 

inflammation [Benson et al., 2000]. It is an important area of research as there are quite a 

substantial number of NP patients who appears to be refractory to GC therapy; and 

therefore, the roles of those neutrophil-associated genes are worth further 

investigation. 

 

6.2.6.5 Conclusion of eosinophil- and neutrophil- assocaited genes in NP 

In summary, we have profiled eosinophil- and neutrophil-associated genes and their 

response to GC treatment in Chinese patients with NP. Clustering of a longitudinally 

derived data set provided a detailed picture of the gene expression patterns induced 

and/or suppressed in the nasal tissues during various stages of NP. In particular, the 

changes in expression profiles of MMP9, NR4A1, NR4A2, CD69 and DUSP1 appear 

to be correlated to the short-term oral GC therapy and are associated with reduction of 
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local tissue infiltration of eosinophils and edema in NP. This is the early step in 

learning the molecular events of inflammatory cell infiltrations in NP. Subsequent 

work is needed to localize these gene expression levels in specific cell types (e.g., 

eosinophils and neutrophils) and to determine their relationship with the 

bio-physiological functions of these infiltrating cell types.  

 

6.2.7 Other gene families associated with pathogenesis of NP 

In addition to the eosinophil/neutrophil-associated genes, the present microarray study 

also observed a variety of gene families which potentially contribute to the 

pathogenesis of NP by literature reviews. These gene families include the 

oxidant/antioxidant-related genes, edema-related genes, and mucin genes.  

 

6.2.7.1 Oxidant/antioxidant-related genes in NP  

Airways are exposed to high levels of environmental oxidants, yet they also have 

enriched extracellular antioxidants. Airways disease such as asthma, cysitic fibrosis, 

and chronic obstructive pulmonary disease have evidence of increased oxidative stress, 

suggesting that reactive oxygen (ROS) and nitrogen species (RNS) may overwhelm 

antioxidant defenses in these diseases. ROS include superoxide, hydrogen peroxide, 

and hydroxyl radical; while RNS include nitric oxide (NO) and its derivates such as 

nitrogen dioxide and peroxynitrite. Some key enzymes underlie the mechanisms of 

generation of ROS and RNS, including myeloperoxidase, NADPH oxidase, and nitric 

oxide synthases. While in response to oxidative stress, antioxidants are synthesized by 

their related enzymes including the families of superoxide dismutases (SODs), 

catalase, glutathione peroxidases (GPXs), glutathione S-transferasaes (GSTs), 

thioredoxins (TXN) and peroxiredoxins (PRDXs).  
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An imbalance of oxidants (e.g. ROS & RNS) and antioxidants has been regarded to 

play a role in the pathogenesis of NP. Eosinophils, neutrophils, macrophages, and 

lymphocytes are highly infiltrated in NP tissue and these inflammatory cells are 

considered to produce extensive ROS/RNS, which cause cellular and tissue damage 

[Dogru et al., 2001; Kang et al., 2004]. Dagli et al. reported a significant negative 

correlation between free radical-mediated peroxidation products and antioxidants in 

NP, suggesting high free-radical levels in NP can be related to reduced antioxidant 

levels or consumption of antioxidants by excess free radicals [Dagli et al., 2004]. Several 

oxidant/antioxidant related enzymes were found to change in GC-naïve NP as 

compared to controls in the current study. 

 

(1) Oxidant-related enzymes 

Our results showed up-regulation of some common oxidant-related enzymes (NOS2A, 

NOX4, and DUO1) in GC-naïve NP (Appendix II, Page 268). As discussed before 

(Chapter 6.2.6, Page 189), NO induced by NOS2A could disrupt Fas 

receptor-mediated apoptosis in eosinophils in NP [Hebestreit et al., 1998]. NADPH 

oxidase 4 (NOX4) and Dual oxidase 1 (DUO1) are the major NADPH oxidases 

expressed in airway epithelium and also in eosinophils/neutrophils. The principal 

function of NOX4/DUO1 is to catalyze transmembrane transfer of electrons form the 

cytosolic electron donor NADPH to the electron acceptor – O2, leading to the 

production of O2
- [Geiszt et al., 2004]. O2

- has a very short half-life due to its rapid 

reaction with other radical species and its spontaneous formation of hydrogen 

peroxide (H2O2). Therefore, increases of NADPH oxidases can increase the release of 

ROS from epithelial cells and eosinophils/neutrophils, leading to damage of nasal 
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epithelium. In addition, NADPH oxidase enzymes are also involved in inflammatory 

signaling in airway diseases. For example, the Th2 cytokines could induce epithelial 

expression of DUOX1 in allergic asthma [Harper et al., 2005], and DUOX1 was 

associated with airway acidification [Schwarzer et al., 2004]. Both NOX4 and DUO1 

have been suggested to induce overexpression of mucin 5AC (MUC5AC) in chronic 

inflammatory airway diseases with mucus hypersecretion [Kim et al., 2008; Shao et al., 

2005].   

 

(2) Antioxidant-related enzymes 

Several antioxidant-related genes including oxidation resistance 1 (OXR1), 

superoxide dismutase 3 (SOD3), glutathione peroxidases 3 (GPX3) and 

lactoperoxidase (LPO) were down-regulated in GC-naïve NP (Appendix II, Page 

268). OXR1 localizes to the mitochondria, and can prevent and repair oxidative DNA 

damage by detoxification of ROS, leading to protection against spontaneous 

mutagenesis and cell death [Volkert et al., 2000].  

 

SOD3 belongs to the superoxide dismutases (SODs) family, which potently 

counteract against superoxide radicals. SODs not only catalyzes the dismutation of 

two superoxide radicals into H2O2 and O2 [Zelko et al., 2002], but also modulates nitric 

oxide-mediated signaling associated with bronchodilation [Jonsson et al., 2002]. SOD3 is 

distributed in extracelluar regions, and abundant in airway epithelium [Su et al., 1997]. 

Thus, SOD3 can protect airway tissues from oxidative stress and lead to reduction of 

airway hyper-responsiveness [Assa'ad et al., 1998]. Decreased expression and activity of 

SOD3 was found in asthma and NP, indicating the excessive ROS/RNS injury in these 

airway diseases [Cannady et al., 2007; Comhair et al., 2005;]. 
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Following SODs dismutase two superoxide radicals into H2O2, the glutathione system 

can decompose organic and inorganic hydroperoxides. GPX3 belongs to the GPX 

enzyme family which requires reduced glutathione to serve as the electron donor 

[Comhair et al., 2002]. GPX3 is the plasma GPX that has been detected in the epithelial 

lining fluid of the human lung [Comhair et al., 2001]. GPXs not only reduce ROS (e.g., 

H2O2 and O2
-), but also protect against nitric oxide-mediated protein oxidation by 

regulation of RNS (e.g., peroxynitrite) levels in airway inflammatory diseases 

[Comhair et al., 2002].  

 

LPO is another major contributor to H2O2 consumption. LPO uses H2O2 to oxidize the 

anion thiocyanate to an antibiotic compound (hypothiocyanate) that prevents growth 

of bacteria, fungi, and viruses in airway tissues. Unlike other members of this 

peroxidase group, including myeloperoxidase (MPO) (present in neutrophil and 

monocytes) and eosinophil peroxidase (EPO), LPO is mainly present in epithelial 

cells. Most importantly, LPO generated hypothiocyanate is a weak oxidizing agent 

and is not as toxic as the hypochlorite species produced by MPO and EPO. Hence, it 

may provide less damaging antimicrobial activity than the recruitment of granulocytes 

to prevent the airway mucosa from infection.  

 

However, some antioxidant enzymes were up-regulated in GC-naïve NP, including 

GCLM, TXN, PRDX1, and PRDX5. The increase of these antioxidant enzymes in NP 

could be a compensatory mechanism to prevent tissue damage. However, 

up-regulation of only these four enzymes may not be sufficient to scavenge the 

increased ROS/RNS in NP as it may not compensate for the decreased levels of other 
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antioxidant enzymes (OXR1, SOD3, GPX3, and LPO) and increased levels of 

oxidases (NOS2A, DUO1, and NOX4). 

 

(3) Oxidant/antioxidant-related enzymes in response to GC treatment 

GCs appear to affect both antioxidant and oxidant levels during airway inflammation 

[De Raeve HR et al., 1997; Dweik et al., 1997; Rocksén et al., 2000]. However, our results 

demonstrated that only GPX3 responded to GC therapy, indicating the important roles 

of the glutathione system on prevention of oxidative stress in NP, leading to reduction 

of tissue damage. Whether GCs have beneficial effects on antioxidants in NP remain 

to be further investigated. Nevertheless, our study reviewed groups of 

oxidant/antioxidant related enzymes in NP, indicating the imbalance of oxidant and 

antioxidant levels may increase the oxidative burden in NP and then contribute to 

epithelial damage in NP.  

 

6.2.7.2 Genes related to edema in NP 

Stromal edema is the typical histopathological feature of NP. Two gene families were 

found to be associated with edema formation in NP, including bioelectric genes and 

angiogenesis-related genes. 

 

(1) Bioelectric genes 

Airway epithelial cells maintain the volume and composition of airway surface liquid 

via regulation of transepithelial ion transport [Boucher, 1994], i.e., water transport 

across the epithelial tissues (secretion and absorption) is regulated by anion (Cl⎯) 

secretion and/or cation (Na+) absorption. The permeability of Cl⎯ is regulated by 

chloride channels and their regulators; while Na+ enters the epithelial cells via sodium 
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channels in the apical surface, and then it is “pumped out” via the basolateral surface 

by Na-K-ATPase.  

 

As introduced in Chapter 1.4.7 (Page 23), deregulation of fluid and electrolyte 

transport has been considered as one hypothesis of edema formation in NP [Bernstein et 

al., 1997]. Our results showed an up-regulation of the nonvoltage-gated sodium channel 

(SCNN1A, SCNN1B, and SCNN1G) and chloride intracellular channels (CLIC3, 

CLIC5, and CLIC6), but down-regulation of Na-K-ATPase in NP compared to 

controls. The sodium channels (SCNNs) were reported to be expressed higher in NP 

as compared to paranasal sinus mucosa and the correlation of the Na+ absorption with 

mRNA expression of sodium channels was significant [Yasuda et al., 2007a]. An increase 

of activation of CCLs in NP would enhance anion (Cl-) influx and consequently this 

hyperpolarization would increase the Na+ absorption [Yasuda et al., 2007b]. The sodium 

pump (Na-K-ATPase) located on the basolateral surface of the epithelial cell 

transports ions by consuming ATP and pumping Na+ out of the cell in exchange for K+ 

influx to maintain Na+ and K+ gradients [Stern et al., 2000]. The expression patterns of 

these ion channels/enzymes suggest that the increase in sodium absorption and 

chloride permeability across the cells in NP would allow water to be absorbed through 

the epithelium into the interstitial space and may account for the edema in NP.  

 

Although GC treatment significantly reduced the edema in NP samples, we did not 

find the expression of these ion channel-related genes was changed by GCs. It is 

possible that GCs may indirectly regulate the ion channel/enzyme activity instead of 

their expression levels or there may be an alternative way that GCs reduce tissue 

edema. 
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(2) Angiogenesis-related genes 

Angiogenesis is the result of a highly orchestrated series of molecular and cellular 

events, resulting in the migration, proliferation, and differentiation of endothelial cells 

into newly formed capillaries that can subsequently develop into more mature vessels. 

Angiogenesis-related genes are not only associated with vascular development, but 

are also involved in the formation of edema in airway inflammatory diseases (such as 

asthma and NP) [Jones, 2003]. For example, an increase of VEGF was found to be 

associated with microvascular permeability in asthma and NP [Gosepath et al., 2005; Lee 

et al., 2008; Muluk et al., 2007]. Our results found there was a down-regulation of several 

angiogenesis-related genes in GC-naïve NP, including ANGPT1 and ANGPT2 (from 

angiopoietin family) and their receptor (TEK).  

 

The angiopoietin family and its related receptor (TEK) are essential in regulating 

vascular development and maintenance of vascular integrity [Jones, 2003]. More 

interestingly, the ANGPTs/TEK signaling pathway plays an important role in 

modifying the inflammatory response in airway inflammation, especially inhibition of 

vascular permeability [Fiedler & Augustin., 2006; Kanazawa et al., 2007]. To reduce vascular 

permeability, ANGPTs/TEK interacts with integrins to stabilize tight cell-cell 

adhesion among endothelial cells and counteracts vascular endothelial growth factor 

(VEGF)-mediated leakage effects [McDonald, 2001]. Although GCs significantly relieve 

edema in NP, none of these angiogenesis associated genes were altered after GC 

treatment. Whether the GC effects on vascular permeability in NP was related to 

alteration of the angiogenesis genes needs to be further clarified. Nevertheless, 

reduction of ANGPTs/TEK may contribute to the increase of vessel leakage, leading 
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to mucosal edema in NP. 

 

6.2.7.3 Mucin genes in NP 

Mucus is the layer that covers, protects, and lubricates the luminal surfaces of 

epithelial respiratory, gastrointestinal, and reproductive tracts. Airway mucus is 

composed of water, ions, lung secretions, serum protein transduates, anti-microbial 

proteins and mucus glycoproteins (mucins). The viscoelastic properties of mucus are 

mainly determined by the presence of mucins that are high molecular weight proteins 

extensively synthesized and secreted by submucosal glands and epithelial goblet cells 

[Rose et al., 2001]. Genes encoding for 19 human mucin proteins and the mucins have 

been categorized in two distinct families [Moniaux et al., 2001]: (i) secreted mucins (e.g. 

MUC2, MUC5AC, MUC5B, and MUC7); (ii) membrane-bound (surface) mucins (e.g. 

MUC3, MUC4, MUC16, and MUC20).  

 

Mucus hypersecretion as well as mucus obstruction is one of the main symptoms of 

NP. Several mucin genes such as MUC4 and MUC5 which have been studied in NP 

and submucosal glands have been considered to play a major role in mucin gene 

expression in NP [Ali et al., 2005; Ali and Pearson, 2007; Martínez-Antón et al., 2006]. In our 

study, we found three cell surface-associated mucin genes (MUC4, MUC16, and 

MUC20) were up-regulated, but one secreted mucin gene (MUC7) was 

down-regulated in GC-naïve NP compared to controls.  

 

MUC4 is commonly expressed in airway epithelium from both healthy and diseased 

tissues [Ali et al., 2005; Martínez-Antón et al., 2006]. However, Ali et al. showed that MUC4 

was rarely expressed in submucosal glands from control nasal mucosa, but was 
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extensively expressed in enlarged glands from NP [Ali et al., 2005]. MUC16 has been 

well known in epithelial origin cancer (such as ovarian carcinoma) [Yin and Lloyd, 2001] 

and been found to be expressed in tracheal surface epithelium and submucosal glands 

in the bronchial epithelial cells [Hattrup and Gendler, 2008]. MUC20 is a novel mucin 

marker and up-regulation of MUC20 was involved in renal injuries [Higuchi et al., 2004]. 

Our H&E staining results showed clearly different patterns of gland structure between 

NP (dilated glands) and controls (small branched glands) (Figure 6.1, Page 91) and 

thus increase of MUC4, MUC16, and MUC20 expression may be attributed to this 

histological difference.  

 

In contrast to those membrane-bound mucins, MUC7 is an unusually small secretory 

mucin, sharing no homology with other MUC proteins [Bobek et al., 1993]. Previous 

studies reported that MUC7 was exclusively detected in submucosal glands from 

healthy nasal mucosa but not from NP. MUC7 was not expressed in the epithelial 

region of airway tissues [Ali et al., 2005; Martínez-Antón et al., 2006]. Therefore, the 

reduced MUC7 content in NP may be associated with the increase of mucin secretion, 

indicating the enhancement of mucus in the lumen of hypersecretion glands.  

 

Although GCs significantly suppress eosinophil infiltration in NP and effectively 

decrease polyp size, we did not find that GCs have any effect on mucin expression. 

Our results are in line with the previous study which also found no response of 

MUC5AC to GCs in NP [Burgel et al., 2004]. We found that the extent of submucosal 

glands was not significantly different in NP before and after GC treatment, indicating 

GCs may not inhibit mucus hypersecretion in NP. Therefore, the unchanged 

expression of mucins may be due to the lack of effect by GCs on the extent of glands 
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in NP. 

 

Part III Conclusion 

We have explored the molecular mechanisms underlying the pathogenesis of NP and 

its response to GC treatment. Utilizing the pathway analysis, down-regulation of the 

AP-1 network, anti-inflammatory gene network, EGF/EGFR signaling, PGE2 

signaling, IL-6 signaling, up-regulation of apoptosis signaling, complement system, 

leukotriene signaling, ERK/MAPK signaling, and NF-kappaB signaling have been 

considered to contribute to NP pathogenesis. 

 

Our data suggest that AP-1 (especially c-Jun) and its related gene network are central 

molecular effectors of epithelial damage and repair in NP, which can be modulated by 

GC treatment. Moreover, the anti-inflammatory effect of GCs is considered to 

up-regulate the expression level of negative regulators among the inflammatory 

signaling pathways and down-regulate the pro-inflammatory genes in NP. The 

interaction and relation between AP-1/AP-1 related genes and 

anti-inflammation-related genes are documented. The dramatic modulatory effects of 

GCs on NP epithelium could also be readily demonstrated in histological observation. 

Hence, we provided in vivo evidence to support the notion that the beneficial effects 

of GCs in NP may be related to its ability to promote epithelial repair without 

uncontrolled remodeling (i.e., anti-inflammatory function), potentially via its 

regulation of the AP-1 gene network. 

 

Combined infiltration of esoinophils and neutrophils as well as edema is prominent in 

the stroma of NP from Chinese patients. GCs potently suppress eosinophils and 
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edema in NP, but have no effect on neutrophil infiltration. We have profiled 

eosinophil- and neutrophil-associated genes based on reports in the literature. 

Although only a few of these genes responded to GC treatment, their expression 

patterns are thought to be associated with eosinophil- and neutrophil-infiltration in NP. 

In addition, the cross-relationship of these genes in eosinophil and neutrophil 

biological process indicates the potential interaction of these two common 

inflammatory cell types in NP. Other gene families such as 

oxidant/antioxidant-related genes, edema-related genes, and mucin genes have also 

been reviewed in this study. These genes are regarded to be associated with some 

histological features of NP, such as tissue damage, edema, and mucus hypersecretion.  
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Chapter 7. Conclusions and Suggested Future Studies 

7.1 Summary of important findings 

This thesis studies the molecular mechanisms underlying the pathogenesis of NP and 

its response to GC treatment. Although negative results which were not anticipated 

initially came out in the superantigen and methylation studies, they eventually 

provided valuable information as to the pathogenesis of NP. The presence of S. aureus 

as well as its superantigens may not be significant in Asian NP, indicating the 

different pathological profiles underlying Asian and Caucasian NP. Our study 

demonstrates for the first time that methylation of common TSGs can be detected in 

NP as well as control nasal mucosa, indicating that the role of methylation of these 

TSGs in nasal mucosal inflammation appears to be minimal. 

 

The most significant findings in this thesis are the identification of NP associated 

genes and the GC responsive genes as well as their related network pathways in NP 

based on the advanced microarray analysis methods. As far as we know, it is the first 

study to investigate the gene expression profiles and their interactive networks in NP 

before and after oral GC treatment and to systemically explore the NP associated 

genes in Chinese NP in a genome-wide manner. There are two main approaches to 

identify the interested genes, the IPA pathway analysis and literature review. 

 

Pathway analysis revealed that down-regulation of AP-1 network, anti-inflammatory 

gene network, EGF/EGFR signaling, PGE2 signaling, and IL-6 signaling and 

up-regulation of apoptosis signaling, complement system, leukotriene signaling, 

ERK/MAPK signaling, and NF-kappaB signaling would be involved in NP 

pathogenesis. GCs are considered to perform two major beneficial effects in NP: 
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epithelial repair and anti-inflammatory function, leading to a proper epithelial 

restitution. AP-1/AP-1 related genes are supposed to promote epithelial remodeling 

from the damaged NP epithelium; while the regulation of inflammatory related genes 

(especially the negative regulators of inflammatory signaling) are supposed to control 

aberrant epithelial remodeling. So these two types of the genes would contribute to 

the regulatory effect of GCs on epithelial repair. AP-1 (especially c-Jun) is considered 

the core gene underlying these GC-mediated beneficial effects. Although the actual 

role of these genes and gene interactions in the pathway picture requires careful 

functional evaluation, the network may contribute to understanding the key biological 

functions and pathways that are altered during GC treatment in NP. 

 

Based on the literature review, eosinophil- and neutrophil-associated genes were 

applicable to differentiate eosinophilia and neutrophilia in nasal samples, and were 

proposed to participate in the biological process of these two major inflammatory cell 

types in Chinese NP. In addition, the histopathological features of NP are also 

attributed to the change of other genes/gene families in NP, such as 

oxidant/antioxidant related genes, edema related genes, and mucin genes. Therefore, 

these disease-related genes supply a comprehensive molecular profile for Chinese NP, 

and such information will ultimately prove useful for researchers in providing new 

insight into the pathogenesis and treatment of NP.  

 

7.2 Limitation of the current study 

Although we tried to reduce the potential confounding/variation factors during the 

experiment, there are several limitations to this thesis that could be rectified in future 

investigations. We have recruited a relative small number of NP and control subjects 
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in this gene expression study. Subsequent follow-up studies using a large pool of 

patients are needed to verify the important findings. Another potential shortcoming is 

the analysis of NP versus nasal mucosal control. Since there are various cell types in 

NP but not in control tissues, some of the findings may reflect the differences in the 

cellular makeup of the tissues. Such limitation can be improved by using the advanced 

microdissection technique to isolate the cell type of interest. An additional limitation 

of the current study is that the functional networks and their essential gene-gene 

interaction is deduced by an array modeling approach, which is based on a 

predetermined database knowledge and can only be considered as source of 

hypotheses. Therefore, functional testing will be needed for the rigorous evaluation of 

individual molecular interactions inferred by our database approach.  

 

7.3 Suggestions for the future work  

Our gene expression study provided a large amount of valuable information 

potentially associated with NP pathogenesis and the response of NP to GC treatment. 

Considering that the current study is a descriptive observation, future studies 

(especially functional studies) should be used to follow up this project. 

 

7.3.1 Future study for gene expression profiles in NP in response to nasal GCs 

Nasal (topical) GC is recommended the first-line treatment of NP [Fokkens et al., 2007]. 

Data generated from this study (with oral GCs) provide reference information for the 

evaluation of the effect of nasal GCs in the treatment of NP. Therefore, a study with 

similar design using nasal GCs will be performed in future. The comparison of the 

gene expression profile between oral and nasal GCs in NP treatment will give useful 

information to identify drug target genes. 
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7.3.2 Future study for AP-1 and AP-1 gene network 

Our study identified AP-1 and its gene network as the central effectors underlying the 

GC effects on NP, which mainly contribute to proper epithelial repair. To specifically 

target the epithelial cells, epithelium of NP could be microdissected from histological 

sections. Then expression of AP-1/AP-1 genes could be determined in a cell specific 

manner. In vitro functional study is also worth carrying out regarding the response of 

AP-1 and its mediated network to GC treatment. Epithelial cells can be isolated from 

fresh NP tissues and then treated with GCs; consequently expression of AP-1 genes 

can be determined at different time points. Moreover, those known AP-1 upstream 

activators/inhibitors and AP-1 downstream target genes along the AP-1 signaling 

pathways can be also evaluated. Factors related to epithelial repair (e.g., cell 

proliferation and migration) are evaluated. If the correlation between epithelial cell 

and AP-1/AP-1 related genes is confirmed, RNA interference technique can be 

applied to specifically knock down the expression of AP-1 genes and confirm the 

necessary roles of AP-1 in epithelial biological process. 

 

7.3.3 Future study for the anti-inflammatory genes in NP 

In response to GC treatment, a group of negative regulators (e.g., DUSPs, SPRYs, 

IKappaB, SOCS3, ANXA1, ZFP36, and SCGB1A1) of the inflammatory signaling 

pathways have been identified in our array study. This finding indicates one important 

mechanism of GCs in controlling the inflammatory response in NP. Again, a future 

study could target on this epithelial region. Epithelium can be microdissected from NP 

and expression level of these anti-inflammatory genes can be determined. Epithelial 

cells also can be isolated from NP for in vitro functional analysis. Epithelial cells can 
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be treated with GCs and the expression levels (both RNA and protein level) of these 

genes can be detected. Moreover, the expression and activity (or say phosphorylation 

status) of those inflammatory signaling factors (such as MAPKs, NFkappaB) can also 

be evaluated. Therefore, the activators and regulators in these major inflammatory 

pathways in response to GC treatment can be profiled in an in vitro cell model. 

 

7.3.4 Future study for eosinophil- and neutrophil-associated genes 

Our study reviewed series of eosinophil- and neutrophil-associated genes in NP. Some 

of them have not been reported in previous NP study. We will confirm the protein 

expression level of these genes first and try to localize these genes in specific cell 

types (e.g., eosinophils and neutrophils). In in vitro analysis, the cells can be isolated 

from NP tissues and the expression levels (both RNA and protein) can be assessed. 

Among the eosinophil- and neutrophil-associated genes of interest, specific gene 

knock-down methods (e.g., RNAi) for the over-expressed ones or gene induction 

methods for the under-expressed ones in NP can be performed in the cell model. 

Consequently, correlation analysis can be applied to evaluate the relation between 

eosinophil/neutrophil amount and the change of gene expression level in a functional 

manner. 

 

7.3.5 Future study for cancer-related genes in NP  

In the functional analysis by IPA, the most significant disease associated with NP 

related genes is cancer. Since some of the clinical characters of NP (e.g., high 

recurrence rate) is similar to tumor growth, whether NP is a benign neoplasm or only 

an inflammatory lesion has been discussed for a long time. Therefore, the observation 

of numerous cancer-related genes in NP in our current study indicates there could be 
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some potential link between the NP and tumor with regard to their pathogenesis. To 

study some cancer related mechanism in NP, methylation of TSGs is considered an 

interesting area to start. This is because we already found methylation of some TSGs 

in NP. In future work, we will focus on the epithelial region due to two reasons: (i) 

hyperplasia of NP epithelium (e.g., squamous metaplasia) may have some similar 

properties to the epithelium from tumors; (ii) epithelial cells are available to 

microdissect for downstream analysis in a cell-specific manner. In this case, DNA can 

be extracted from the microdissected epithelial cells, and the methylation profile of 

cancer-related genes can be assessed by using an array-based platform. The genes 

with different methylation status in NP as compared to controls are selected. The 

expression level of these interested genes is consequently evaluated. If the negative 

correlation between expression level and methylation status of the indicated gene is 

determined, this gene is regarded as a methylation candidate in NP. Furthermore, the 

relation between these methylation candidates and histopathological features or even 

prognosis (such as recurrence rate) of NP can be evaluated. 

 

In summary, the follow-up studies proposed here will open a new area in investigating 

NP pathogenesis and its response to GC treatment. It is ultimately useful to 

understand the beneficial roles of GCs in NP and develop some novel therapeutic 

approach for the treatment of NP. 

 

 

 

 

 



 215

Refferences 
Abraham SC, Park SJ, Cruz-Correa M, et al. Frequent CpG island methylation in 

sporadic and syndromic gastric fundic gland polyps. Am J Clin Pathol 2004; 

122:740-746. 

 

Adachi T, Stafford S, Sur S, Alam R. A novel Lyn-binding peptide inhibitor blocks 

eosinophil differentiation, survival, and airway eosinophilic inflammation. J 

Immunol. 1999;163(2):939-46. 

 

Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF, Lam BK, Austen KF, Cazaly 

AM, Wilson SJ, Sampson AP.Expression of 5-lipoxygenase and cyclooxygenase 

pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma.J Pathol. 

2006;209(3):392-9. 

 

Adcock IM, Gilbey T, Gelder CM, Chung KF, Barnes PJ.Glucocorticoid receptor 

localization in normal and asthmatic lung.Am J Respir Crit Care Med. 1996;154(3 

Pt 1):771-82. 

 

Alam R, Forsythe P, Stafford S, Fukuda Y.Transforming growth factor beta 

abrogates the effects of hematopoietins on eosinophils and induces their apoptosis.J 

Exp Med 1994;179(3):1041-5. 

 

Ali MS, Pearson JP.Upper airway mucin gene expression: a review.Laryngoscope. 

2007;117(5):932-8. 

 

Ali MS, Wilson JA, Bennett M, Pearson JP.Mucin gene expression in nasal 

polyps.Acta Otolaryngol. 2005;125(6):618-24. 

 

Allen JS, Eisma R, Leonard G, Kreutzer D.Interleukin-3 interleukin-5, and 

granulocyte-macrophage colony-stimulating factor expression in nasal polyps.Am J 

Otolaryngol 1997;18(4):239-46. 

 

Alvarez JV, Frank DA.Genome-wide analysis of STAT target genes: elucidating the 



 216

mechanism of STAT-mediated oncogenesis.Cancer Biol Ther. 2004;3(11):1045-50. 

 

Angel P, Hattori K, Smeal T, Karin M.The jun proto-oncogene is positively 

autoregulated by its product, Jun/AP-1.Cell. 1988;55(5):875-85. 

 

Armstrong LC, Bornstein P.Thrombospondins 1 and 2 function as inhibitors of 

angiogenesis.Matrix Biol. 2003;22(1):63-71.  

 

Asberg AE, Mollnes TE, Videm V. Complement activation by neutrophil 

granulocytes.Scand J Immunol. 2008;67(4):354-61. 

 

Asero R, Bottazzi G.Hypersensitivity to molds in patients with nasal polyposis: A 

clinical study.J Allergy Clin Immunol 2000;105(1 Pt 1):186-8. 

 

Asero R, Bottazzi G.Nasal polyposis: a study of its association with airborne 

allergen hypersensitivity.Ann Allergy Asthma Immunol 2001;86(3):283-5. 

 

Assa'ad AH, Ballard ET, Sebastian KD, Loven DP, Boivin GP, Lierl MB.Effect of 

superoxide dismutase on a rabbit model of chronic allergic asthma.Ann Allergy 

Asthma Immunol. 1998;80(3):215-24. 

 

Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M.Immunosuppression by 

glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B 

synthesis.Science. 1995;270(5234):286-90. 

 

Bachert C, Gevaert P, Holtappels G, van Cauwenberge P. Mediators in nasal 

polyposis.Curr Allergy Asthma Rep. 2002;2(6):481-7.  

 

Bachert C, Geveart P.Effect of intranasal corticosteroids on release of cytokines and 

inflammatory mediators.Allergy. 1999;54 Suppl 57:116-23. 

 

Bachert C, Hormann K, Mosges R, Rasp G, Riechelmann H, Muller R, Luckhaupt 

H, Stuck BA, Rudack C.An update on the diagnosis and treatment of sinusitis and 



 217

nasal polyposis. Allergy 2003;58(3):176-91. 

 

Bachert C, Wagenmann M, Hauser U, Rudack C.IL-5 synthesis is up-regulated in 

human nasal polyp tissue.J Allergy Clin Immunol 1997;99(6 Pt 1):837-42.  

 

Bachert C, Zhang N, Patou J, van Zele T, Gevaert P. Role of staphylococcal 

superantigens in upper airway disease.Curr Opin Allergy Clin Immunol. 

2008;8(1):34-8. 

 

Bajaj MS, Birktoft JJ, Steer SA, Bajaj SP.Structure and biology of tissue factor 

pathway inhibitor.Thromb Haemost. 2001;86(4):959-72. 

 

Baldwin AS Jr.The NF-kappa B and I kappa B proteins: new discoveries and 

insights.Annu Rev Immunol. 1996;14:649-83. 

 

Baraniuk JN, Wong G, Ali M, et al. Glucocorticoids decrease c-fos expression in 

human nasal polyps in vivo. Thorax 1998;53:577-82. 

 

Bartels J, Maune S, Meyer JE, Kulke R, Schluter C, Rowert J, Christophers E, 

Schroder JM.Increased eotaxin-mRNA expression in non-atopic and atopic nasal 

polyps: comparison to RANTES and MCP-3 expression.Rhinology 

1997;35(4):171-4.  

 

Baruah P, Trimarchi M, Dumitriu IE, Dellantonio G, Doglioni C, Rovere-Querini P, 

Bussi M, Manfredi AA.Innate responses to Aspergillus: role of C1q and pentraxin 3 

in nasal polyposis.Am J Rhinol. 2007;21(2):224-30. 

 

Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, 

Ohta K, O'Byrne P, Pedersen SE, Pizzichini E, Sullivan SD, Wenzel SE, Zar 

HJ.Global strategy for asthma management and prevention: GINA executive 

summary. Eur Respir J. 2008;31:143-78. 

 

Beato M.Gene regulation by steroid hormones.Cell. 1989;56(3):335-44. 



 218

 

Beck LA, Stellato C, Beall LD, Schall TJ, Leopold D, Bickel CA, Baroody F, 

Bochner BS, Schleimer RP.Detection of the chemokine RANTES and endothelial 

adhesion molecules in nasal polyps.J Allergy Clin Immunol 1996;98(4):766-80. 

 

Beju D, Meek WD, Kramer JC. The ultrastructure of the nasal polyps in patients 

with and without cystic fibrosis. J Submicrosc Cytol Pathol. 2004;36(2):155-65. 

 

Benson M, Carlsson L, Adner M, Jernås M, Rudemo M, Sjögren A, Svensson PA, 

Uddman R, Cardell LO.Gene profiling reveals increased expression of uteroglobin 

and other anti-inflammatory genes in glucocorticoid-treated nasal polyps. J Allergy 

Clin Immunol. 2004;113(6):1137-43. 

 

Benson M, Strannegård IL, Strannegård O, Wennergren G. Topical steroid 

treatment of allergic rhinitis decreases nasal fluid TH2 cytokines, eosinophils, 

eosinophil cationic protein, and IgE but has no significant effect on IFN-gamma, 

IL-1beta, TNF-alpha, or neutrophils. J Allergy Clin Immunol. 2000;106(2):307-12. 

 

Bernstein JM, Gorfien J, Noble B, Yankaskas JR. Nasal polyposis: 

immunohistochemistry and bioelectrical findings (a hypothesis for the development 

of nasal polyps). J Allergy Clin Immunol. 1997;99(2):165-75. 

 

Bernstein JM, Yankaskas JR.Increased ion transport in cultured nasal polyp 

epithelial cells.Arch Otolaryngol Head Neck Surg 1994;120(9):993-6.  

 

Blomqvist EH, Lundblad L, Anggard A, Haraldsson PO, Stierne P.A randomized 

controlled study evaluating medical treatment versus surgical treatment in addition 

to medical treatment of nasal polyposis. J Allergy Clin Immunol 2001;107(2):224-8.

 

Bobek LA, Tsai H, Biesbrock AR, Levine MJ.Molecular cloning, sequence, and 

specificity of expression of the gene encoding the low molecular weight human 

salivary mucin (MUC7).J Biol Chem. 1993;268(27):20563-9. 

 



 219

Bolger WE, Joshi AS, Spear S, Nelson M, Govindaraj K.Gene expression analysis 

in sinonasal polyposis before and after oral corticosteroids: a preliminary 

investigation.Otolaryngol Head Neck Surg. 2007;137(1):27-33. 

 

Bolstad BM, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA, and 

Speed TP. (2005) Quality Assessment of Affymetrix GeneChip Data in 

Bioinformatics and Computational Biology Solutions Using R and Bioconductor. 

Gentleman R, Carey V, Huber W, Irizarry R, and Dudoit S. (Eds.), Springer, 2005. 

 

Borregaard N, Sørensen OE, Theilgaard-Mönch K. Neutrophil granules: a library of 

innate immunity proteins. Trends Immunol. 2007;28(8):340-5.  

 

Boucher RC.Human airway ion transport. Part one.Am J Respir Crit Care Med. 

1994;150(1):271-81. 

 

Brakstad OG, Aasbakk K, Maeland JA.Detection of Staphylococcus aureus by 

polymerase chain reaction amplification of the nuc gene.J Clin Microbiol. 

1992;30(7):1654-60. 

 

Bravo J, Heath JK.Receptor recognition by gp130 cytokines.EMBO J. 

2000;19(11):2399-411 

 

Bunnag C, Pacharee P, Vipulakom P, Siriyananda C. A study of allergic factor in 

nasal polyp patients.Ann Allergy 1983;50(2):126-32. 

 

Burgel PR, Cardell LO, Ueki IF, Nadel JA. Intranasal steroids decrease eosinophils 

but not mucin expression in nasal polyps. Eur Respir J. 2004;24(4):594-600. 

 

Burrage PS, Brinckerhoff CE.Molecular targets in osteoarthritis: metalloproteinases 

and their inhibitors.Curr Drug Targets. 2007;8(2):293-303. 

 

Bussu F, Tiziano FD, Giorgio A. Argl6gly polymorphism of the beta2-adrenoceptor 

gene (ADRBeta2) as a susceptibility factor for nasal polyposis. Am J Rhinol. 



 220

2007;21(3):378-82. 

 

Butterfield JH, Weiler D, Peterson EA, Gleich GJ, Leiferman KM. Sequestration of 

eosinophil major basic protein in human mast cells.Lab Invest 1990;62(1):77-86.  

 

Calenoff E, Guilford FT, Green J, Engelhard CS.Bacteria-specific IgE in patients 

with nasal polyposis. A preliminary report.Arch Otolaryngol 1983;109(6):372-5. 

 

Can IH, Ceylan K, Caydere M, Samim EE, Ustun H, Karasoy DS.The expression of 

MMP-2, MMP-7, MMP-9, and TIMP-1 in chronic rhinosinusitis and nasal 

polyposis.Otolaryngol Head Neck Surg. 2008;139(2):211-5. 

 

Cannady SB, Batra PS, Leahy R, Citardi MJ, Janocha A, Ricci K, Comhair SA, 

Bodine M, Wang Z, Hazen SL, Erzurum SC.Signal transduction and oxidative 

processes in sinonasal polyposis. J Allergy Clin Immunol. 2007;120(6):1346-53. 

 

Caplin I, Haynes JT, Spahn J.Are nasal polyps an allergic phenomenon?Ann 

Allergy 1971;29(12):631-4.  

 

Carayol N, Crampette L, Mainprice B, Ben-Soussen P, Verrecchia M, Bousquet J, 

Lebel B.Inhibition of mediator and cytokine release from dispersed nasal polyp cells 

by mizolastine. Allergy 2002;57(11):1067-70. 

 

Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor 

necrosis factoralpha production by tristetraprolin. Science. 1998;281:1001-1005. 

 

Castro-Caldas M, Mendes AF, Carvalho AP, Duarte CB, Lopes MC. 

Dexamethasone prevents interleukin-1beta-induced nuclear factor-kappaB 

activation by upregulating IkappaB-alpha synthesis, in lymphoblastic 

cells.Mediators Inflamm. 2003;12(1):37-46. 

 

Cato AC, Wade E.Molecular mechanisms of anti-inflammatory action of 

glucocorticoids.Bioessays. 1996;18(5):371-8.  



 221

 

Chan AO, Issa JP, Morris JS, Hamilton SR, Rashid A. Concordant CpG island 

methylation in hyperplastic polyposis. Am J Pathol 2002; 160: 529-536. 

 

Chang L, Karin M.Mammalian MAP kinase signalling cascades.Nature. 

2001;410(6824):37-40.  

 

Chen YS, Langhammer T, Westhofen M, Lorenzen J. Relationship between matrix 

metalloproteinases MMP-2, MMP-9, tissue inhibitor of matrix metalloproteinases-1 

and IL-5, IL-8 in nasal polyps. Allergy. 2007;62(1):66-72. 

 

Cheng YK, Tsai MH, Lin CD, Hwang GY, Hang LW, Tseng GC et al. Oxidative 

stress in nonallergic nasal polyps associated with bronchial hyperresponsiveness. 

Allergy 2006;61:1290–1298. 

 

Cho KN, Choi JY, Kim CH, Baek SJ, Chung KC, Moon UY, Kim KS, Lee WJ, 

Koo JS, Yoon JH.Prostaglandin E2 induces MUC8 gene expression via a 

mechanism involving ERK MAPK/RSK1/cAMP response element binding protein 

activation in human airway epithelial cells.J Biol Chem. 2005;280(8):6676-81.  

 

Cho SH, Lee SH, Kim KR, Lee HM, Lee SH, Kim TH.Expression and 

distributional patterns of the inhibitor of apoptosis protein family and caspase 3 in 

nasal polyps.Arch Otolaryngol Head Neck Surg. 2008;134(3):316-21. 

 

Choi BR, Kwon JH, Gong SJ, Kwon MS, Cho JH, Kim JH et al. Expression of 

glucocorticoid receptor mRNAs in glucocorticoid-resistant nasal polyps. Exp Mol 

Med 2006;38:466–473 

 

Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K.The mitogen-activated protein 

kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities 

and reduced activity in vivo toward the ERK2 sevenmaker mutation.J Biol Chem. 

1996;271(11):6497-501. 

 



 222

Citri A, Yarden Y.EGF-ERBB signalling: towards the systems level.Nat Rev Mol 

Cell Biol. 2006;7(7):505-16. 

 

Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, 

Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K. Interferon-inducible T cell 

alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent 

activity on activated T cells through selective high affinity binding to CXCR3.  J 

Exp Med. 1998;187(12):2009-21. 

 

Comhair SA, Erzurum SC.Antioxidant responses to oxidant-mediated lung 

diseases.Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L246-55. 

 

Comhair SA, Ricci KS, Arroliga M, Lara AR, Dweik RA, Song W, Hazen SL, 

Bleecker ER, Busse WW, Chung KF, Gaston B, Hastie A, Hew M, Jarjour N, 

Moore W, Peters S, Teague WG, Wenzel SE, Erzurum SC. Correlation of systemic 

superoxide dismutase deficiency to airflow obstruction in asthma.Am J Respir Crit 

Care Med. 2005;172(3):306-13.  

 

Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, 

Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. 

The lectin-like domain of thrombomodulin confers protection from 

neutrophil-mediated tissue damage by suppressing adhesion molecule expression 

via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp 

Med. 2002;196(5):565-77. 

 

Corry DB, Kiss A, Song LZ, Song L, Xu J, Lee SH, Werb Z, Kheradmand F. 

Overlapping and independent contributions of MMP2 and MMP9 to lung allergic 

inflammatory cell egression through decreased CC chemokines. FASEB J. 

2004;18(9):995-7. 

 

Coste A, Brugel L, Maitre B, Boussat S, Papon JF, Wingerstmann L, Peynegre R, 

Escudier E.Inflammatory cells as well as epithelial cells in nasal polyps express 

vascular endothelial growth factor.Eur Respir J 2000;15(2):367-72.  



 223

 

Coste A, Wang QP, Roudot-Thoraval F, Chapelin C, Bedbeder P, Poron F, 

Peynegre R, Escudier E.Epithelial cell proliferation in nasal polyps could be 

up-regulated by platelet-derived growth factor.Laryngoscope 1996;106(5 Pt 

1):578-83.  

 

Crampette L, Mainprice B, Bloom M, Bousquet J, Campbell AM.Inhibition of 

mediator and cytokine release from dispersed nasal polyp cells by terfenadine. 

Allergy 1996;51(5):346-9. 

 

Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, 

Greenhalgh CJ, Förster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts 

AW, Alexander WS. SOCS3 negatively regulates IL-6 signaling in vivo.  Nat 

Immunol. 2003;4(6):540-5. 

 

Cryns V, Yuan J.Proteases to die for.Genes Dev. 1998;12(11):1551-70. 

 

Dagli M, Eryilmaz A, Besler T, Akmansu H, Acar A, Korkmaz H.Role of free 

radicals and antioxidants in nasal polyps.Laryngoscope. 2004;114(7):1200-3. 

 

Danielsen A, Tynning T, Brokstad KA, Olofsson J, Davidsson A. Interleukin 5, IL6, 

IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate 

mucosa and serum. Eur Arch Otorhinolaryngol. 2006;263(3):282-9. 

 

Davies DE, Polosa R, Puddicombe SM, Richter A, Holgate ST. The epidermal 

growth factor receptor and its ligand family: their potential role in repair and 

remodelling in asthma. Allergy. 1999;54(8):771-83. 

 

Darke-Lee A.Nasal polyps in identical twins. J Laryngol Otol 1992;106(12):1084-5.

 

Dawes P, Bates G, Watson D, Lewis D, Lowe D, Drake-Lee AB.The role of 

bacterial infection of the maxillary sinus in nasal polyps.Clin Otolaryngol Allied Sci 

1989;14(5):447-50.  



 224

 

De Bosscher K, Vanden Berghe W, Haegeman G.The interplay between the 

glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular 

mechanisms for gene repression.Endocr Rev. 2003;24(4):488-522.  

 

De Raeve HR, Thunnissen FB, Kaneko FT, Guo FH, Lewis M, Kavuru MS, Secic 

M, Thomassen MJ, Erzurum SC.Decreased Cu,Zn-SOD activity in asthmatic airway 

epithelium: correction by inhaled corticosteroid in vivo.Am J Physiol. 1997;272(1 

Pt 1):L148-54. 

 

Demoly P, Sahla M, Campbell AM, Bousquet J, Crampette L. ICAM-1 expression 

in upper respiratory mucosa is differentially related to eosinophil and neutrophil 

inflammation according to the allergic status. Clin Exp Allergy. 1998;28(6):731-8. 

 

Devalia JL, Davies RJ. Airway epithelial cells and mediators of inflammation. 

Respir Med. 1993;87(6):405-8. 

 

Dictor M, Johnson A.Association of inverted sinonasal papilloma with 

non-sinonasal head-and-neck carcinoma.Int J Cancer. 2000;85(6):811-4. 

 

DiScipio RG, Schraufstatter IU.The role of the complement anaphylatoxins in the 

recruitment of eosinophils. Int Immunopharmacol. 2007;7(14):1909-23. 

 

Dogru H, Delibaş N, Döner F, Tüz M, Uygur K.Free radical damage in nasal polyp 

tissue.Otolaryngol Head Neck Surg. 2001;124(5):570-2. 

 

Drouin SM, Corry DB, Kildsgaard J, Wetsel RA.Cutting edge: the absence of C3 

demonstrates a role for complement in Th2 effector functions in a murine model of 

pulmonary allergy.J Immunol. 2001;167(8):4141-5. 

 

Dunnette SL, Hall MM, Washington JA 2nd, Kern EB, McDonald TJ, Facer GW, 

Gleich GJ.Microbiologic analyses of nasal polyp tissue.J Allergy Clin Immunol 

1986;78(1 Pt 1):102-8. 



 225

 

Dweik RA, Lewis M, Kavuru M, Buhrow L, Erzurum SC, Thomassen MJ.Inhaled 

corticosteroids and beta-agonists inhibit oxidant production by bronchoalveolar 

lavage cells from normal volunteers in vivo.Immunopharmacology. 

1997;37(2-3):163-6. 

 

Dworski RT, Funk CD, Oates JA, et al. Prednisone increases PGH-synthase 2 in 

atopic humans in vivo. Am J Respir Crit Care Med 1997;155:351-7. 

 

Egesten A, Eliasson M, Olin AI, Erjefält JS, Bjartell A, Sangfelt P, Carlson M. The 

proinflammatory CXC-chemokines GRO-alpha/CXCL1 and MIG/CXCL9 are 

concomitantly expressed in ulcerative colitis and decrease during treatment with 

topical corticosteroids. Int J Colorectal Dis. 2007;22(12):1421-7.  

 

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of 

genome-wide expression patterns.Proc Natl Acad Sci U S A. 1998;95(25):14863-8. 

 

Elovic A, Wong DT, Weller PF, Matossian K, Galli SJ.Expression of transforming 

growth factors-alpha and beta 1 messenger RNA and product by eosinophils in 

nasal polyps.J Allergy Clin Immunol 1994;93(5):864-9. 

 

Encío IJ, Detera-Wadleigh SD.The genomic structure of the human glucocorticoid 

receptor.J Biol Chem. 1991;266(11):7182-8. 

 

Falliers CJ. Familial coincidence of asthma, aspirin intolerance and nasal polyposis. 

Ann Allergy. 1974;32 (2): 65-9.  

 

Fan YP, Xu G, Zuo KJ, Xu R, Jiang HY, Lin ZB, Shi JB.Detection of specific IgE 

of anti-Staphylococcus aureus enterotoxins in nasal polyps and analysis 

theoretically about the superantigen hypothesis.Zhonghua Er Bi Yan Hou Tou Jing 

Wai Ke Za Zhi. 2006;41(11):825-9. 

 

Fang SY, Shen CL, Ohyama M.Presence of neuropeptides in human nasal 



 226

polyps.Acta Otolaryngol 1994;114(3):324-8. 

 

Farooq A, Zhou MM.Structure and regulation of MAPK phosphatases.Cell Signal. 

2004;16(7):769-79. 

 

Fazal N, Al-Ghoul WM, Schmidt MJ, Choudhry MA, Sayeed MM.Lyn- and 

ERK-mediated vs. Ca2+ -mediated neutrophil O responses with thermal injury. Am 

J Physiol Cell Physiol. 2002;283(5):C1469-79. 

 

Ferlazzo V, D'Agostino P, Milano S, Caruso R, Feo S, Cillari E, Parente 

L.Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and 

inhibition of nitric oxide synthesis.Int Immunopharmacol. 2003;3(10-11):1363-9. 

 

Fiedler U, Augustin HG.Angiopoietins: a link between angiogenesis and 

inflammation.Trends Immunol. 2006;27(12):552-8.  

 

Figueiredo CR, Santos RP, Silva ID, Weckx LL. Microarray cDNA to identify 

inflammatory genes in nasal polyposis. Am J Rhinol. 2007;21(2):231-5. 

 

Flower RJ.Lipocortin and the mechanism of action of the glucocorticoids.Br J 

Pharmacol.1988;94(4):987-1015. 

 

Foerster M, Haefner D, Kroegel C. Bcl-2-mediated regulation of CD69-induced 

apoptosis of human eosinophils: identification and characterization of a novel 

receptor-induced mechanism and relationship to CD95-transduced signalling. Scand 

J Immunol. 2002;56(4):417-28. 

 

Fokkens W, Lund V, Mullol J; European Position Paper on Rhinosinusitis and 

Nasal Polyps group. European position paper on rhinosinusitis and nasal polyps 

2007. Rhinol Suppl 2007;(20):1-136. 

 

Franchimont N, Durant D, Rydziel S, Canalis E. Platelet-derived growth factor 

induces interleukin-6 transcription in osteoblasts through the activator protein-1 



 227

complex and activating transcription factor-2. J Biol Chem. 1999;274:6783-9. 

 

Fritz SB, Terrell JE, Conner ER, Kukowska-Latallo JF, Baker JR. Nasal mucosal 

gene expression in patients with allergic rhinitis with and without nasal polyps. J 

Allergy Clin Immunol. 2003;112(6):1057-63. 

 

Fu S, Bottoli I, Goller M, Vogt PK.Heparin-binding epidermal growth factor-like 

growth factor, a v-Jun target gene, induces oncogenic transformation. Proc Natl 

Acad Sci U S A. 1999;96:5716-21. 

 

Fujihara S, Jaffray E, Farrow SN, Rossi AG, Haslett C, Hay RT. Inhibition of 

NF-kappa B by a cell permeable form of I kappa B alpha induces apoptosis in 

eosinophils. Biochem Biophys Res Commun. 2005;326(3):632-7. 

 

Fujisawa T, Kephart GM, Gray BH, Gleich GJ. The neutrophil and chronic allergic 

inflammation. Immunochemical localization of neutrophil elastase. Am Rev Respir 

Dis. 1990;141(3):689-97. 

 

Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology.Science 

2001;294(5548):1871-5. 

 

Gabazza EC, Taguchi O, Tamaki S, Takeya H, Kobayashi H, Yasui H, Kobayashi 

T, Hataji O, Urano H, Zhou H, Suzuki K, Adachi Y.Thrombin in the airways of 

asthmatic patients.Lung. 1999;177(4):253-62. 

 

Gabbay E, Haydn Walters E, Orsida B, Whitford H, Ward C, Kotsimbos TC, Snell 

GI, Williams TJ. In stable lung transplant recipients, exhaled nitric oxide levels 

positively correlate with airway neutrophilia and bronchial epithelial iNOS.Am J 

Respir Crit Care Med. 1999;160(6):2093-9. 

 

Gallucci RM, Simeonova PP, Matheson JM, Kommineni C, Guriel JL, Sugawara T, 

Luster MI. Impaired cutaneous wound healing in interleukin-6-deficient and 

immunosuppressed mice. FASEB J. 2000;14:2525-31. 



 228

 

Gauldie J, Cox G, Jordana M, Ohno I, Kirpalani H.Growth and colony-stimulating 

factors mediate eosinophil fibroblast interactions in chronic airway 

inflammation.Ann N Y Acad Sci 1994;725:83-90. 

 

Geiszt M, Leto TL.The Nox family of NAD(P)H oxidases: host defense and 

beyond.J Biol Chem. 2004;279(50):51715-8.  

 

Gerlo S, Verdood P, Gellersen B, Hooghe-Peters EL, Kooijman R.Mechanism of 

prostaglandin (PG)E2-induced prolactin expression in human T cells: cooperation 

of two PGE2 receptor subtypes, E-prostanoid (EP) 3 and EP4, via calcium- and 

cyclic adenosine 5'-monophosphate-mediated signaling pathways.J Immunol. 

2004;173(10):5952-62. 

 

Gevaert P, Bachert C, Holtappels G, Novo CP, Van der Heyden J, Fransen L, 

Depraetere S, Walter H, van Cauwenberge P, Tavernier J. Enhanced soluble 

interleukin-5 receptor alpha expression in nasal polyposis. Allergy. 

2003;58(5):371-9. 

 

Ginzburg VP, Rosina EE, Sharova OK, Ghendon YZ.The replication of influenza A 

viruses in organ cultures of human nasal polyps.Arch Virol 1982;74(4):293-8. 

 

Glusa E.Vascular effects of thrombin.Semin Thromb Hemost. 1992;18(3):296-304. 

 

Goleva E, Dunlap A, Leung DY. Differential control of TH1 versus TH2 cell 

responses by the combination of low-dose steroids with beta2-adrenergic agonists. J 

Allergy Clin Immunol. 2004;114(1):183-91. 

 

González MV, González-Sancho JM, Caelles C, Munoz A, Jiménez 

B.Hormone-activated nuclear receptors inhibit the stimulation of the JNK and ERK 

signalling pathways in endothelial cells.FEBS Lett. 1999;459(2):272-6.  

 

González MV, Jiménez B, Berciano MT, González-Sancho JM, Caelles C, Lafarga 



 229

M, Muñoz A.Glucocorticoids antagonize AP-1 by inhibiting the 

Activation/phosphorylation of JNK without affecting its subcellular distribution.J 

Cell Biol. 2000;150(5):1199-208. 

 

Gosepath J, Brieger J, Lehr HA, Mann WJ.Expression, localization, and 

significance of vascular permeability/vascular endothelial growth factor in nasal 

polyps.Am J Rhinol. 2005;19(1):7-13. 

 

Graff JR, Herman JG, Myohanen S, Baylin SB, Vertino PM. Mapping patterns of 

CpG island methylation in normal and neoplastic cells implicates both upstream and 

downstream regions in de novo methylation. J Bio Chem 1997; 272: 22322-29. 

 

Grose R. Epithelial migration: open your eyes to c-Jun. Curr Biol 2003;13:678-80. 

 

Gross I, Bassit B, Benezra M, Licht JD.Mammalian sprouty proteins inhibit cell 

growth and differentiation by preventing ras activation.J Biol Chem. 

2001;276(49):46460-8.  

 

Gungor A, Baroody FM, Naclerio RM, White SR, Corey JP.Decreased 

neuropeptide release may play a role in the pathogenesis of nasal 

polyps.Otolaryngol Head Neck Surg 1999;121(5):585-90. 

 

Guo RF, Ward PA.Role of C5a in inflammatory responses.Annu Rev 

Immunol.2005;23:821-52. 

 

Gutierrez MI, Siraj AK, Bhargava M,et al. Concurrent methylation of multiple 

genes in childhood ALL: Correlation with phenotype and molecular subgroup. 

Leukemia 2003 Sep;17:1845-50. 

 

Hadfield PJ, Rowe-Jones JM, Mackay IS.The prevalence of nasal polyps in adults 

with cystic fibrosis.Clin Otolaryngol Allied Sci 2000;25(1):19-22.  

 

Hamid QA, Wenzel SE, Hauk PJ, Tsicopoulos A, Wallaert B, Lafitte JJ, Chrousos 



 230

GP, Szefler SJ, Leung DY.Increased glucocorticoid receptor beta in airway cells of 

glucocorticoid-insensitive asthma.Am J Respir Crit Care Med. 1999;159(5 Pt 

1):1600-4. 

 

Hamilos DL, Leung DY, Huston DP, Kamil A, Wood R, Hamid Q. GM-CSF, IL-5 

and RANTES immunoreactivity and mRNA expression in chronic hyperplastic 

sinusitis with nasal polyposis (NP). Clin Exp Allergy. 1998;28(9):1145-52. 

 

Hamilos DL, Thawley SE, Kramper MA, Kamil A, Hamid QA.Effect of intranasal 

fluticasone on cellular infiltration, endothelial adhesion molecule expression, and 

proinflammatory cytokine mRNA in nasal polyp disease.J Allergy Clin Immunol 

1999;103(1 Pt 1):79-87. 

 

Hamilos DL, Leung DY, Muro S, Kahn AM, Hamilos SS, Thawley SE, Hamid QA. 

GRbeta expression in nasal polyp inflammatory cells and its relationship to the 

anti-inflammatory effects of intranasal fluticasone. J Allergy Clin Immunol. 

2001;108(1):59-68. 

 

Hanafusa H, Torii S, Yasunaga T, Nishida E.Sprouty1 and Sprouty2 provide a 

control mechanism for the Ras/MAPK signalling pathway.Nat Cell Biol. 

2002;4(11):850-8. 

 

Hao J, Pang YT, Wang DY. Inflammatory cell patterns in nasal polyps and paired 

middle turbinate. Otolaryngol Head Neck Surg 2006;134:267-275. 

 

Harper RW, Xu C, Eiserich JP, Chen Y, Kao CY, Thai P, Setiadi H, Wu 

R.Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, 

by Th1 and Th2 cytokines in respiratory tract epithelium.FEBS Lett. 

2005;579(21):4911-7. 

 

Hartnell A, Robinson DS, Kay AB, Wardlaw AJ. CD69 is expressed by human 

eosinophils activated in vivo in asthma and in vitro by cytokines. Immunology. 

1993;80(2):281-6. 



 231

 

Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT. Patterns of 

gene promoter methylation in squamous cell cancer of the head and neck. 

Oncogene. 2002;21(27):4231-6. 

 

Hashida R, Ohkura N, Saito H, Tsujimoto G. The NR4A nuclear receptor family in 

eosinophils. J Hum Genet. 2007;52(1):13-20. 

 

Hattrup CL, Gendler SJ.Structure and function of the cell surface (tethered) 

mucins.Annu Rev Physiol. 2008;70:431-57. 

 

Hawkins NJ, Ward RL. Sporadic colorectal cancers with microsatellite instability 

and their possible origin in hyperplastic polyps and serrated adenomas. J Natl 

Cancer Inst 2001;93:1307-13. 

 

Hayashi R, Wada H, Ito K, Adcock IM.Effects of glucocorticoids on gene 

transcription.Eur J Pharmacol. 2004;500(1-3):51-62. 

 

Hayden MS, Ghosh S.Signaling to NF-kappaB.Genes Dev. 2004;18(18):2195-224. 

 

Haye R, Aanesen JP, Burtin B, Donnelly F, Duby C.The effect of cetirizine on 

symptoms and signs of nasal polyposis.J Laryngol Otol 1998;112(11):1042-6. 

 

Hebestreit H, Dibbert B, Balatti I, Braun D, Schapowal A, Blaser K, Simon HU. 

Disruption of fas receptor signaling by nitric oxide in eosinophils.J Exp Med. 

1998;187(3):415-25. 

 

Heck S, Bender K, Kullmann M, Göttlicher M, Herrlich P, Cato AC.I kappaB 

alpha-independent downregulation of NF-kappaB activity by glucocorticoid 

receptor.EMBO J. 1997;16(15):4698-707. 

 

Heck S, Kullmann M, Gast A, Ponta H, Rahmsdorf HJ, Herrlich P, Cato AC.A 

distinct modulating domain in glucocorticoid receptor monomers in the repression 



 232

of activity of the transcription factor AP-1.EMBO J. 1994;13(17):4087-95. 

 

Hedman J, Kaprio J, Poussa T, Nieminen MM.Prevalence of asthma, aspirin 

intolerance, nasal polyposis and chronic obstructive pulmonary disease in a 

population-based study.Int J Epidemiol 1999;28(4):717-22. 

 

Hellquist HB.Histopathology. In: Settipane GA, editor.Nasal polyps: epidemiology, 

pathogenesis and treatment. Providence, R.I.: OceanSide Publications, Inc.;1997. p. 

31-39. 

 

Henriksson G, Norlander T, Forsgren J, Stierna P.Effects of topical budesonide 

treatment on glucocorticoid receptor mRNA down-regulation and cytokine patterns 

in nasal polyps.Am J Rhinol. 2001;15(1):1-8. 

 

Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylationspecific 

PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci 

USA 1996; 93:9821–26. 

 

Higuchi T, Orita T, Nakanishi S, Katsuya K, Watanabe H, Yamasaki Y, Waga I, 

Nanayama T, Yamamoto Y, Munger W, Sun HW, Falk RJ, Jennette JC, Alcorta 

DA, Li H, Yamamoto T, Saito Y, Nakamura M.Molecular cloning, genomic 

structure, and expression analysis of MUC20, a novel mucin protein, up-regulated 

in injured kidney.J Biol Chem. 2004;279(3):1968-79. 

 

Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR Jr.Roles of cysteinyl 

leukotrienes in airway inflammation, smooth muscle function, and remodeling.J 

Allergy Clin Immunol 2003;111(1 Suppl):S18-34 

 

Holgate ST. Epithelial damage and response.Clin Exp Allergy. 2000;30 Suppl 

1:37-41. 

 

Homma T, Kato A, Hashimoto N, Batchelor J, Yoshikawa M, Imai S, Wakiguchi H, 

Saito H, Matsumoto K. Corticosteroid and cytokines synergistically enhance 



 233

toll-like receptor 2 expression in respiratory epithelial cells. Am J Respir Cell Mol 

Biol. 2004;31:463-9. 

 

Hoshino M, Takahashi M, Takai Y, Sim J. Inhaled corticosteroids decrease 

subepithelial collagen deposition by modulation of the balance between matrix 

metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in 

asthma. J Allergy Clin Immunol. 1999;104(2 Pt 1):356-63. 

 

Hyo S, Kawata R, Kadoyama K, Eguchi N, Kubota T, Takenaka H, Urade 

Y.Expression of prostaglandin D2 synthase in activated eosinophils in nasal polyps. 

Arch Otolaryngol Head Neck Surg 2007;133(7):693-700. 

 

Ichimura K, Shimazaki Y, Ishibashi T, Higo R.Effect of new macrolide 

roxithromycin upon nasal polyps associated with chronic sinusitis.Auris Nasus 

Larynx 1996;23:48-56. 

 

Iino Y, Sasaki Y, Kojima C, Miyazawa T.Effect of macrolides on the expression of 

HLA-DR and costimulatory molecules on antigen-presenting cells in nasal 

polyps.Ann Otol Rhinol Laryngol 2001;110(5 Pt 1):457-63. 

 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, 

Speed TP. Exploration, normalization, and summaries of high density 

oligonucleotide array probe level data.Biostatistics. 2003;4(2):249-64. 

 

Irving RM, McMahon R, Clark R, Jones NS.Cystic fibrosis transmembrane 

conductance regulator gene mutations in severe nasal polyposis.Clin Otolaryngol 

Allied Sci 1997;22(6):519-21. 

 

Ishaq M, DeGray G, Mou K, Aguilera A, Yang J, Lempicki RA, Hazen A, 

Natarajan V.Zap70 signaling pathway mediates glucocorticoid receptor-dependent 

transcriptional activation: role in the regulation of annexin 1 expression in T cells. J 

Immunol. 2007;179(6):3851-8. 

 



 234

Ishibashi T, Tanaka T, Nibu K, Ishimoto S, Kaga K.Keratinocyte growth factor and 

its receptor messenger RNA expression in nasal mucosa and nasal polyps.Ann Otol 

Rhinol Laryngol 1998;107(10 Pt 1):885-90. 

 

Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzaeg P.Eosinophil infiltration 

is related to increased expression of vascular cell adhesion molecule-1 in nasal 

polyps. Am J Respir Cell Mol Biol 1995;12(6):624-32. 

 

Jang YJ, Lee CH.Localization of cystic fibrosis transmembrane conductance 

regulator in epithelial cells of nasal polyps and postoperative polypoid 

mucosae.Acta Otolaryngol 2001;121(1):93-7. 

 

Jareoncharsri P, Bunnag C, Tunsuriyawrong P, Assasin P, Muangsomboon S. 

Clinical and histopathological classification of nasal polyps in Thais. Siriraj Hosp 

Gaz 2002; 54: 689-97. 

 

Jass JR. Hyperplastic polyps and colorectal cancer: is there a link? Clin 

Gastroenterol Hepatol 2004;2:1-8. 

 

John AE, Thomas MS, Berlin AA, Lukacs NW. Temporal production of CCL28 

corresponds to eosinophil accumulation and airway hyperreactivity in allergic 

airway inflammation. Am J Pathol. 2005;166(2):345-53. 

 

Johnson AC, Murphy BA, Matelis CM, Rubinstein Y, Piebenga EC, Akers LM, 

Neta G, Vinson C, Birrer M.Activator protein-1 mediates induced but not basal 

epidermal growth factor receptor gene expression. Mol Med. 2000;6:17-27. 

 

Johnson GL, Lapadat R.Mitogen-activated protein kinase pathways mediated by 

ERK, JNK, and p38 protein kinases.Science. 2002;298(5600):1911-2. 

 

Jokuti A, Schwelberger H, Darvas Z, Pali Z, Bosze S, Falus A, Hirschberg 

A.Histamine metabolism is altered in nasal polyposis.Inflamm Res 2004;53 Suppl 

1:S93-4.  



 235

 

Jokuti A,Hellinger E, Hellinger A, Darvas Z, Falus A, Thurmond RL, Hirschberg A. 

Histamine H4 receptor expression is elevated in human nasal polyp tissue. Cell Biol 

In. 2007;31(11):1367-70. 

 

Jones N.The nose and paranasal sinuses physiology and anatomy.Adv Drug Deliv 

Rev 2001;51(1-3):5-19. 

 

Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. 

Science 2001;293: 1068-1070. 

 

Jones PF.Not just angiogenesis--wider roles for the angiopoietins.J Pathol. 

2003;201(4):515-27. 

 

Jonsson LM, Rees DD, Edlund T, Marklund SL.Nitric oxide and blood pressure in 

mice lacking extracellular-superoxide dismutase.Free Radic Res. 2002;36(7):755-8. 

 

Johnson WM, Tyler SD, Ewan EP, and Ashton FE. Detection of genes for 

entrotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus 

aureus by the polymerase chain reaction. Journal of Clinical Microbiology. 1991;29: 

426-430. 

 

Jornot L, Grouzmann E, Lacroix JS, Rochat T.BDNF and DPP-IV in polyps and 

middle turbinates epithelial cells.Rhinology 2007;45(2):129-33. 

 

Jung TT, Juhn SK, Hwang D, Stewart R.Prostaglandins, leukotrienes, and other 

arachidonic acid metabolites in nasal polyps and nasal mucosa.Laryngoscope 

1987;97(2):184-9.  

 

Kagaya S, Hashida R, Ohkura N, Tsukada T, Sugita Y, Terakawa M, Tsujimoto G, 

Katsunuma T, Akasawa A, Matsumoto K, Saito H. NR4A orphan nuclear receptor 

family in peripheral blood eosinophils from patients with atopic dermatitis and 

apoptotic eosinophils in vitro. Int Arch Allergy Immunol. 2005;137 Suppl 1:35-44. 



 236

 

Kanazawa H, Nomura S, Asai K.Roles of angiopoietin-1 and angiopoietin-2 on 

airway microvascular permeability in asthmatic patients.Chest. 

2007;131(4):1035-41. 

 

Kang BH, Huang NC, Wang HW.Possible involvement of nitric oxide and 

peroxynitrite in nasal polyposis.Am J Rhinol. 2004;18(4):191-6. 

 

Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 

1997;9:240-6. 

 

Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J 

Biol Chem. 1995;270(28):16483-6. 

 

Katzenellenbogen RA,Baylin SB,Herman JG. Hypermethylation of the DAP-kinase 

CpG island is a common alteration in B-cell malignancies. Blood 1999;93:4347-53. 

 

Karjalainen J, Joki-Erkkila VP, Hulkkonen J, et al. The IL1A genotype is associated 

with nasal polyposis in asthmatic adults. Allergy 2003;58(5):393-6. 

 

Keith PK, Conway M, Evans S, Wong DA, Jordana G, Pengelly D, Dolovich 

J.Nasal polyps: effects of seasonal allergen exposure. J Allergy Clin Immunol 

1994;93(3):567-74. 

 

Khan SY, Kelher MR, Heal JM, Blumberg N, Boshkov LK, Phipps R, Gettings KF, 

McLaughlin NJ, Silliman CC. Soluble CD40 ligand accumulates in stored blood 

components, primes neutrophils through CD40, and is a potential cofactor in the 

development of transfusion-related acute lung injury. Blood. 2006;108(7):2455-62. 

 

Kim HJ, Jung HH, Lee SH.Expression of acidic fibroblast growth factor and basic 

fibroblast growth factor in nasal polyps.Acta Otolaryngol 2006;126(6):600-5. 

 

Kim HJ, Park YD, Moon UY, Kim JH, Jeon JH, Lee JG, Bae YS, Yoon JH.The 



 237

Role of Nox4 in Oxidative Stress-Induced MUC5AC Overexpression in Human 

Airway Epithelial Cells.Am J Respir Cell Mol Biol. 2008 Jun 6.[Epub ahead of 

print] 

 

Hanley JA. Kim J.The role of woodstoves in the etiology of nasal polyposis.Arch 

Otolaryngol Head Neck Surg. 2002;128(6):682-6. 

 

Klug J, Beier HM, Bernard A, Chilton BS, Fleming TP, Lehrer RI, Miele L, 

Pattabiraman N, Singh G.Uteroglobin/Clara cell 10-kDa family of proteins: 

nomenclature committee report.Ann N Y Acad Sci.2000;923:348-54. 

 

Kobayashi M, Nasuhara Y, Kamachi A, Tanino Y, Betsuyaku T, Yamaguchi E, 

Nishihira J, Nishimura M. Role of macrophage migration inhibitory factor in 

ovalbumin-induced airway inflammation in rats. Eur Respir J. 2006;27(4):726-34. 

 

Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 

2008;13:2400-7. 

 

Korsgren M, Erjefält JS, Hinterholzl J, Fischer-Colbrie R, Emanuelsson CA, 

Andersson M, Persson CG, Mackay-Sim A, Sundler F, Greiff L. Neural expression 

and increased lavage fluid levels of secretoneurin in seasonal allergic rhinitis. Am J 

Respir Crit Care Med. 2003;167(11):1504-8. 

 

Kostamo K, Tervahartiala T, Sorsa T, Richardson M, Toskala E.Metalloproteinase 

function in chronic rhinosinusitis with nasal polyposis.Laryngoscope. 

2007;117(4):638-43. 

 

Kruijer W, Cooper JA, Hunter T, Verma IM. Platelet-derived growth factor induces 

rapid but transient expression of the c-fos gene and protein. Nature. 

1984;312(5996):711-6. 

 

Kupczyk M, Kuprys I, Danilewicz M, Bochenska-Marciniak M, Murlewska A, 

Gorski P, Kuna P.Adhesion molecules and their ligands in nasal polyps of 



 238

aspirin-hypersensitive patients.Ann Allergy Asthma Immunol 2006;96(1):105-11.  

 

Kwong J, Lo KW, To KF, Teo PM, Johnson PJ, Huang DP. Promoter 

hypermethylation of multiple genes in nasopharyngeal carcinoma.Clin Cancer Res. 

2002;8(1):131-7. 

 

Lamblin C, Gosset P, Tillie-Leblond I, Saulnier F, Marquette CH, Wallaert B, 

Tonnel AB. Bronchial neutrophilia in patients with noninfectious status 

asthmaticus. Am J Respir Crit Care Med. 1998;157(2):394-402. 

 

Lampinen M, Carlson M, Håkansson LD, Venge P.Cytokine-regulated 

accumulation of eosinophils in inflammatory disease.Allergy. 2004;59(8):793-805. 

 

Lang R, Hammer M, Mages J.DUSP meet immunology: dual specificity MAPK 

phosphatases in control of the inflammatory response.J Immunol. 

2006;177(11):7497-504. 

 

Larsen K, Tos M.The estimated incidence of symptomatic nasal polyps.Acta 

Otolaryngol 2002;122(2):179-82. 

 

Larsen K.The clinical relationship of nasal polyps to asthma.Allergy Asthma Proc 

1996;17(5):243-9. 

 

Larsen PL, Tos M, Kuijpers W, van der Beek JM.The early stages of polyp 

formation.Laryngoscope 1992;102(6):670-7. 

 

Larsen PL, Tos M. Origin of nasal polyps. Laryngoscope 1991;101(3): 305-12. 

 

Larsen PL, Tos M.Origin of nasal polyps: an endoscopic autopsy 

study.Laryngoscope 2004;114(4):710-9. 

 

Larsen PL, Tos M.Polyp formation by experimental tubal occlusion in the rat.Acta 

Otolaryngol 1991;111(5):926-33. 



 239

 

Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR.Dexamethasone 

causes sustained expression of mitogen-activated protein kinase (MAPK) 

phosphatase 1 and phosphatase-mediated inhibition of MAPK p38.Mol Cell Biol. 

2002;22(22):7802-11. 

 

Lechapt-Zalcman E, Coste A, d'Ortho MP, Frisdal E, Harf A, Lafuma C, Escudier 

E.Increased expression of matrix metalloproteinase-9 in nasal polyps.J Pathol. 

2001;193(2):233-41. 

 

Lee JY, Lee SH, Lee HM, Lee SH, Jung HH, Lee SW, Kang SM.Analysis of gene 

expression profiles of normal human nasal mucosa and nasal polyp tissues by 

SAGE.J Allergy Clin Immunol. 2006;118(1):134-42. 

 

Lee KS, Kim SR, Park SJ, Min KH, Lee KY, Choe YH, Park SY, Chai OH, Zhang 

X, Song CH, Lee YC.Mast cells can mediate vascular permeability through 

regulation of the PI3K-HIF-1alpha-VEGF axis.Am J Respir Crit Care Med. 

2008;178(8):787-97.  

 

Lee SH, Kim JE, Lim HH, Lee HM, Choi JO.Antimicrobial defensin peptides of the 

human nasal mucosa.Ann Otol Rhinol Laryngol. 2002;111(2):135-41. 

 

Leung DY, Hamid Q, Vottero A, Szefler SJ, Surs W, Minshall E, Chrousos GP, 

Klemm DJ. Association of glucocorticoid insensitivity with increased expression of 

glucocorticoid receptor beta. J Exp Med. 1997;186(9):1567-74. 

 

Levi M, van der Poll T, Büller HR.Bidirectional relation between inflammation and 

coagulation.Circulation. 2004;109(22):2698-704. 

 

Levkovitz Y, Baraban JM. A dominant negative inhibitor of the Egr family of 

transcription regulatory factors suppresses cerebellar granule cell apoptosis by 

blocking c-Jun activation. J Neurosci 2001;21:5893-901. 

 



 240

Lezcano-Meza D, Davila-Davila B, Vega-Miranda A, Negrete-Garcia MC, Teran 

LM.Interleukin (IL)-4 and to a lesser extent either IL-13 or interferon-gamma 

regulate the production of eotaxin-2/CCL24 in nasal polyps.Allergy 

2003;58(10):1011-7. 

 

Li G, Gustafson-Brown C, Hanks SK, Nason K, Arbeit JM, Pogliano K, Wisdom 

RM, Johnson RS. c-Jun is essential for organization of the epidermal leading edge. 

Dev Cell. 2003;4:865-77. 

 

Lildholdt T, Fogstrup J, Gammelgaard N, Kortholm B, Ulsoe C.Surgical versus 

medical treatment of nasal polyps.Acta Otolaryngol 1988;105(1-2):140-3. 

 

Limbourg FP, Liao JK.Nontranscriptional actions of the glucocorticoid receptor.J 

Mol Med. 2003;81(3):168-74. 

 

Lin SK, Kok SH, Shun CT, Hong CY, Wang CC, Hsu MC, Liu CM.Tumor necrosis 

factor-alpha stimulates the expression of C-C chemokine ligand 2 gene in 

fibroblasts from the human nasal polyp through the pathways of mitogen-activated 

protein kinase.Am J Rhinol. 2007;21(2):251-5. 

 

Linder A, Karlsson-Parra A, Hirvelä C, Jonsson L, Köling A, Sjöberg O. 

Immunocompetent cells in human nasal polyps and normal mucosa. Rhinology. 

1993;31(3):125-9. 

 

Liu CM, Shun CT, Hsu MM. Lymphocyte subsets and antigen-specific IgE 

antibody in nasal polyps. Ann Allergy. 1994;72(1):19-24. 

 

Liu L, Tsai JC, Aird WC. Egr-1 gene is induced by the systemic administration of 

the vascular endothelial growth factor and the epidermal growth factor. Blood. 

2000;96:1772-81. 

 

Liu Y, Hamaguchi Y, Taya M, Sakakura Y.Quantification of interleukin-1 in nasal 

polyps from patients with chronic sinusitis. Eur Arch Otorhinolaryngol 



 241

1993;250(2):123-5. 

 

Liu Z, Kim J, Sypek JP, Wang IM, Horton H, Oppenheim FG, Bochner BS.Gene 

expression profiles in human nasal polyp tissues studied by means of DNA 

microarray. J Allergy Clin Immunol. 2004;114(4):783-90. 

 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. 

 

Lombaerts M, Middeldorp JW, van der Weide E, Philippo K, van Wezel T, Smit 

VT, Cornelisse CJ, Cleton-Jansen AM. Infiltrating leukocytes confound the 

detection of E-cadherin promoter methylation in tumors. Biochem Biophys Res 

Commun. 2004;319(2):697-704. 

 

Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA. Gene regulation and 

DNA damage in the ageing human brain. Nature. 2004;429(6994):883-91. 

 

Lund VJ, Mackay IS.Staging in rhinosinusitus.Rhinology 1993;31(4):183-4. 

 

Luxenberger W, Posch U, Berghold A, Hofmann T, Lang-Loidolt D.HLA patterns 

in patients with nasal polyposis.Eur Arch Otorhinolaryngol 2000;257(3):137-9. 

 

Malemud CJ.Matrix metalloproteinases (MMPs) in health and disease: an 

overview.Front Biosci. 2006;11:1696-701. 

 

Malm L.Assessment and staging of nasal polyposis.Acta Otolaryngol 

1997;117(4):465-7. 

 

Marchand V, Tournier JM, Polette M, Nawrocki B, Fuchey C, Pierrot D, Burlet H, 

Puchelle E. The elastase-induced expression of secretory leukocyte protease 

inhibitor is decreased in remodelled airway epithelium.Eur J Pharmacol. 

1997;336(2-3):187-96. 

 



 242

Markiewski MM, Lambris JD.The role of complement in inflammatory diseases 

from behind the scenes into the spotlight.Am J Pathol. 2007;171(3):715-27. 

 

Martínez-Antón A, Debolós C, Garrido M, Roca-Ferrer J, Barranco C, Alobid I, 

Xaubet A, Picado C, Mullol J.Mucin genes have different expression patterns in 

healthy and diseased upper airway mucosa.Clin Exp Allergy. 2006;36(4):448-57. 

 

Mason JM, Morrison DJ, Basson MA, Licht JD.Sprouty proteins: multifaceted 

negative-feedback regulators of receptor tyrosine kinase signaling.Trends Cell Biol. 

2006;16(1):45-54.  

 

Mastruzzo C, Greco LR, Nakano K, Nakano A, Palermo F, Pistorio MP, Salinaro 

ET, Jordana M, Dolovich J, Crimi DN, Vancheri C. Impact of intranasal budesonide 

on immune inflammatory responses and epithelial remodeling in chronic upper 

airway inflammation. J Allergy Clin Immunol. 2003;112:37-44. 

 

Matsumoto R, Hirashima M, Kita H, Gleich GJ. Biological activities of ecalectin: a 

novel eosinophil-activating factor. J Immunol. 2002;168(4):1961-7. 

 

Matsuno O, Kumamoto T, Higuchi Y. ADAM8 in allergy. Inflamm Allergy Drug 

Targets. 2008;7(2):108-12. 

 

McDonald DM.Angiogenesis and remodeling of airway vasculature in chronic 

inflammation.Am J Respir Crit Care Med. 2001;164(10 Pt 2):S39-45. 

 

McKay LI, Cidlowski JA.Molecular control of immune/inflammatory responses: 

interactions between nuclear factor-kappa B and steroid receptor-signaling 

pathways.Endocr Rev. 1999;20(4):435-59.  

 

Mclauchlin J, Narayanan GL, Mithani V, and O’Neill G. The detection of 

enterotoxins and toxic shock syndrome toxin genes in Staphylococcus aureus by 

polymerase chain reaction. Journal of Food Protection. 2000;63:479-488. 

 



 243

McNulty CA, Symon FA, Wardlaw AJ. Characterization of the integrin and 

activation steps mediating human eosinophil and neutrophil adhesion to chronically 

inflamed airway endothelium.Am J Respir Cell Mol Biol. 1999;20(6):1251-9. 

 

Meagher LC, Cousin JM, Seckl JR, Haslett C. Opposing effects of glucocorticoids 

on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol. 

1996;156(11):4422-8. 

 

Meltzer EO, Orgel HA, Rogenes PR, Field EA. Nasal cytology in patients with 

allergic rhinitis: effects of intranasal fluticasone propionate. J Allergy Clin 

Immunol. 1994;94(4):708-15. 

 

Messerklinger W. Endoscopy of the nose. Baltimore: Urban & Schwarzenberg.1978

Meyer JE, Bartels J, Gorogh T, Sticherling M, Rudack C, Ross DA, Maune S.The 

role of RANTES in nasal polyposis.Am J Rhinol 2005;19(1):15-20. 

 

Miele L. New weapons against inflammation: dual inhibitors of phospholipase A2 

and transglutaminase. J Clin Invest 2003;111:19-21. 

 

Min YG, Jung HW, Kim HS, Park SK, Yoo KY.Prevalence and risk factors of 

chronic sinusitis in Korea: results of a nationwide survey.Eur Arch 

Otorhinolaryngol 1996;253(7):435-9. 

 

Molnar-Gabor E, Endreffy E, Rozsasi A.HLA-DRB1, -DQA1, and -DQB1 

genotypes in patients with nasal polyposis.Laryngoscope 2000;110(3 Pt 1):422-5. 

 

Moloney JR, Oliver RT.HLA antigens, nasal polyps and asthma.Clin Otolaryngol 

Allied Sci 1980;5(3):183-9. 

 

Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK.Structural Organization and 

Classification of the Human Mucin Genes.Front Biosci. 2001;6:D1192-206. 

 

Monneret G, Gravel S, Diamond M, Rokach J, Powell WS. Prostaglandin D2 is a 



 244

potent chemoattractant for human eosinophils that acts via a novel DP receptor. 

Blood 2001;98(6):1942-1948. 

 

Moreno JJ.Regulation of arachidonic acid release and prostaglandin formation by 

cell-cell adhesive interactions in wound repair.Pflugers Arch. 1997;433(3):351-6. 

 

Mukherjee AB, Zhang Z, Chilton BS.Uteroglobin: a steroid-inducible 

immunomodulatory protein that founded the Secretoglobin superfamily.Endocr 

Rev. 2007;28(7):707-25.  

 

Mullol J, Fernandez-Morata JC, Roca-Ferrer J, Pujols L, Xaubet A, Benitez P, 

Picado C. Cyclooxygenase 1 and cyclooxygenase 2 expression is abnormally 

regulated in human nasal polyps. J Allergy Clin Immunol. 2002; 109(5):824-30. 

 

Mullol J, Xaubet A, Gaya A, Roca-Ferrer J, López E, Fernàndez JC, Fernàndez 

MD, Picado C.Cytokine gene expression and release from epithelial cells. A 

comparison study between healthy nasal mucosa and nasal polyps.Clin Exp Allergy 

1995;25(7):607-15. 

 

Muluk NB, Atasoy P, Arikan OK, Koc C.Role of vascular endothelial growth factor 

in the pathogenesis of nasal polyps.J Otolaryngol. 2007;36(6):357-66. 

 

Mygind N, Dahl R, Bachert C.Nasal polyposis, eosinophil dominated inflammation, 

and allergy.Thorax 2000;55 Suppl 2:S79-83.  

 

Nagata S.Apoptosis by death factor.Cell. 1997;88(3):355-65.  

 

Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, Axelrod 

JH.IL-6/IL-6R axis plays a critical role in acute kidney injury.J Am Soc Nephrol. 

2008;19(6):1106-15. 

 

Newton R.Molecular mechanisms of glucocorticoid action: what is 

important?Thorax. 2000;55(7):603-13. 



 245

 

Nicholson SE, De Souza D, Fabri LJ, Corbin J, Willson TA, Zhang JG, Silva A, 

Asimakis M, Farley A, Nash AD, Metcalf D, Hilton DJ, Nicola NA, Baca 

M.Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site 

on the shared cytokine receptor subunit gp130.Proc Natl Acad Sci USA. 

2000;97(12):6493-8. 

 

Niederfuhr A, Kirsche H, Deutschle T, Poppert S, Riechelmann H, Wellinghausen 

N.Staphylococcus aureus in nasal lavage and biopsy of patients with chronic 

rhinosinusitis.Allergy. 2008;63(10):1359-67. 

 

Nishi N, Shoji H, Seki M, Itoh A, Miyanaka H, Yuube K, Hirashima M, Nakamura 

T. Galectin-8 modulates neutrophil function via interaction with integrin alphaM. 

Glycobiology. 2003;13(11):755-63. 

 

Nonaka M, Nonaka R, Woolley K, Adelroth E, Miura K, Okhawara Y, Glibetic M, 

Nakano K, O'Byrne P, Dolovich J.Distinct immunohistochemical localization of 

IL-4 in human inflamed airway tissues. IL-4 is localized to eosinophils in vivo and 

is released by peripheral blood eosinophils.J Immunol 1995;155(6):3234-44. 

 

Nonaka M, Pawankar R, Tomiyama S, Yagi T.A macrolide antibiotic, 

roxithromycin, inhibits the growth of nasal polyp fibroblasts.Am J Rhinol 

1999;13(4):267-72. 

 

Noone PG, Knowles MR."CFTR-opathies": disease phenotypes associated with 

cystic fibrosis transmembrane regulator gene mutations.Respir Res 

2001;2(6):328-32. 

 

Nopp A, Stridh H, Grönneberg R, Lundahl J. Lower apoptosis rate and higher CD69 

expression in neutrophils from atopic individuals.Inflamm Res. 

2002;51(11):532-40. 

 

Ogawa H.Atopic aspect of eosinophilic nasal polyposis and a possible mechanism 



 246

of eosinophil accumulation.Acta Otolaryngol Suppl. 1986;430:12-7. 

 

Ogino S, Abe Y, Irifune M, Harada T, Matsunaga T, Imamura I, Fukui H.Histamine 

metabolism in nasal polyps.Ann Otol Rhinol Laryngol 1993;102:152-6. 

 

Ogino S, Irifune M, Harada T, Kikumori H, Matsunaga T.Arachidonic acid 

metabolites in human nasal polyps.Acta Otolaryngol Suppl 1993;501:85-7.  

 

Ohno I, Lea R, Finotto S, Marshall J, Denburg J, Dolovich J, Gauldie J, Jordana M. 

Granulocyte/macrophage colony-stimulating factor (GM-CSF) gene expression by 

eosinophils in nasal polyposis.Am J Respir Cell Mol Biol 1991;5(6):505-10. 

 

Ohno I, Ohtani H, Nitta Y, Suzuki J, Hoshi H, Honma M, Isoyama S, Tanno Y, 

Tamura G, Yamauchi K, Nagura H, Shirato K. Eosinophils as a source of matrix 

metalloproteinase-9 in asthmatic airway inflammation. 

 

Ohtoshi T, Vancheri C, Cox G, Gauldie J, Dolovich J, Denburg JA, Jordana M. 

Monocyte-macrophage differentiation induced by human upper airway epithelial 

cells.Am J Respir Cell Mol Biol 1991;4(3):255-63. 

 

Oka T,Ouchida M,Koyama M, et al Gene silencing of the tyrosine phosphatase 

SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 

2002;62:6390-4. 

 

Olze H, Forster U, Zuberbier T, Morawietz L, Luger EO.Eosinophilic nasal polyps 

are a rich source of eotaxin, eotaxin-2 and eotaxin-3.Rhinology 2006;44(2):145-50. 

 

Otsuka H, Dolovich J, Richardson M, Bienenstock J, Denburg JA.Metachromatic 

cell progenitors and specific growth and differentiation factors in human nasal 

mucosa and polyps.Am Rev Respir Dis 1987;136(3):710-7. 

 

Otsuka H, Ohkubo K, Seki H, Ohnishi M, Fujikura T. Mast cell quantitation in 

nasal polyps, sinus mucosa and nasal turbinate mucosa. J Laryngol Otol. 



 247

1993;107(5):418-22. 

 

Pang YT, Eskici O, Wilson JA.Nasal polyposis: role of subclinical delayed food 

hypersensitivity.Otolaryngol Head Neck Surg 2000;122(2):298-301. 

 

Pardigol A, Forssmann U, Zucht HD, Loetscher P, Schulz-Knappe P, Baggiolini M, 

Forssmann WG, Mägert HJ. HCC-2, a human chemokine: gene structure, 

expression pattern, and biological activity.Proc Natl Acad Sci USA. 

1998;95(11):6308-13. 

 

Park HS, Jung KS, Shute J, Roberts K, Holgate ST, Djukanovic R.Allergen-induced 

release of GM-CSF and IL-8 in vitro by nasal polyp tissue from atopic subjects 

prolongs eosinophil survival.Eur Respir J 1997;10(7):1476-82. 

 

Park HS, Kim HY, Nahm DH, Park K, Suh KS, Yim H. The presence of atopy does 

not determine the type of cellular infiltrate in nasal polyps. Allergy Asthma Proc. 

1998;19(6):373-7. 

 

Park HW, Shin ES, Lee JE, Kim SH, Kim SS, Chang YS, Kim YK, Min KU, Kim 

YY, Cho SH.Association between genetic variations in prostaglandin E2 receptor 

subtype EP3 gene (Ptger3) and asthma in the Korean population.Clin Exp Allergy. 

2007;37(11):1609-15. 

 

Parks WC, Wilson CL, López-Boado YS.Matrix metalloproteinases as modulators 

of inflammation and innate immunity.Nat Rev Immunol. 2004;4(8):617-29. 

 

Parnes SM. Targeting cysteinyl leukotrienes in patients with rhinitis, sinusitis and 

paranasal polyps. Am J Respir Med. 2002;1(6):403-8. 

 

Pawankar R. Nasal polyposis: an update: editorial review. Curr Opin Allergy Clin 

Immunol. 2003;3(1):1-6. 

 

Pérez-Novo CA, Claeys C, Van Cauwenberge P, Bachert C.Expression of 



 248

eicosanoid receptors subtypes and eosinophilic inflammation: implication on 

chronic rhinosinusitis.Respir Res. 2006;7:75. 

 

Perez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert 

C.Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and 

without nasal polyposis.J Allergy Clin Immunol 2005;115(6):1189-96. 

 

Perretti M, Croxtall JD, Wheller SK, Goulding NJ, Hannon R, Flower 

RJ.Mobilizing lipocortin 1 in adherent human leukocytes down-regulates their 

transmigration.Nat Med. 1996;2(11):1259-62. 

 

Petruson B, Hansson HA, Petruson K.Insulin-like growth factor I is a possible 

pathogenic mechanism in nasal polyps.Acta Otolaryngol 1988;106(1-2):156-60. 

 

Picado C,Fernandez-Morata JC,Juan M,Roca-Ferrer J,Fuentes M,Xaubet A,Mullol 

J. Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from 

aspirin-sensitive asthmatics. Am J Respir Crit Care Med. 1999; 160(1):291-6. 

 

Pimentel JC. 92 cases of allergic-type nasal polyp: a methodology for its etiological 

characterization. Acta Med Port. 1995;8:379-384. 

 

Polosa R, Prosperini G, Tomaselli V, Howarth PH, Holgate ST, Davies DE. 

Expression of c-erbB receptors and ligands in human nasal epithelium. J Allergy 

Clin Immunol. 2000;106(6):1124-31. 

 

Polzehl D, Moeller P, Riechelmann H, Perner S.Distinct features of chronic 

rhinosinusitis with and without nasal polyps. Allergy 2006;61(11):1275-9. 

 

Ponath PD, Qin S, Ringler DJ, Clark-Lewis I, Wang J, Kassam N, Smith H, Shi X, 

Gonzalo JA, Newman W, Gutierrez-Ramos JC, Mackay CR. Cloning of the human 

eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional 

properties suggest a mechanism for the selective recruitment of eosinophils.J Clin 

Invest. 1996;97(3):604-12. 



 249

 

Profita M, Gagliardo R, Di Giorgi R, Bruno A, Riccobono L, Bonanno A, Bousquet 

J, Vignola AM. In vitro effects of flunisolide on MMP-9, TIMP-1, fibronectin, 

TGF-beta1 release and apoptosis in sputum cells freshly isolated from mild to 

moderate asthmatics. Allergy. 2004;59(9):927-32. 

 

Pujols L, Alobid I, Benítez P, Martínez-Antón A, Roca-Ferrer J, Fokkens WJ, 

Mullol J, Picado C.Regulation of glucocorticoid receptor in nasal polyps by 

systemic and intranasal glucocorticoids.Allergy. 2008 Jul 29.  

 

Pujols L, Mullol J, Pérez M, Roca-Ferrer J, Juan M, Xaubet A, Cidlowski JA, 

Picado C.Expression of the human glucocorticoid receptor alpha and beta isoforms 

in human respiratory epithelial cells and their regulation by dexamethasone.Am J 

Respir Cell Mol Biol. 2001;24(1):49-57. 

 

Pujols L, Mullol J, Torrego A, Picado C.Glucocorticoid receptors in human airways. 

Allergy 2004;59:1042–1052. 

 

Pujols L,Mullol J,Alobid I,Roca-Ferrer J,Xaubet A,Picado C. Dynamics of COX-2 

in nasal mucosa and nasal polyps from aspirin-tolerant and aspirin-intolerant 

patients with asthma. J Allergy Clin Immunol. 2004; 114(4):814-9. 

 

Pumhirun P, Limitlaohapanth C, Wasuwat P.Role of allergy in nasal polyps of 

Thai.Asian Pac J Allergy Immunol 1999;17(1):13-5. patients. 

 

Putti TC, To KF, Hsu HC, Chan AT, Lai GM, Tse G, et al.  Expression of 

epidermal growth factor receptor in head and neck cancers correlates with clinical 

progression: a multicentre immunohistochemical study in the Asia-Pacific region. 

Histopathology 2002;41:144-51. 

 

Rahman I, Biswas SK, Kode A.Oxidant and antioxidant balance in the airways and 

airway diseases.Eur J Pharmacol. 2006;533(1-3):222-39. 

 



 250

Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to 

summarize microarray experiments: application to sporulation time series.Pac Symp 

Biocomput. 2000:455-66. 

 

Reddy AN, Jiang WW, Kim M, et al. Death-associated protein kinase promoter 

hypermethylation in normal human lymphocytes. Cancer Res 2003;63:7694-8. 

 

Reich A, Sapir A, Shilo B.Sprouty is a general inhibitor of receptor tyrosine kinase 

signaling.Development. 1999;126(18):4139-47. 

 

Revest JM, Di Blasi F, Kitchener P, Rougé-Pont F, Desmedt A, Turiault M, 

Tronche F, Piazza PV. The MAPK pathway and Egr-1 mediate stress-related 

behavioral effects of glucocorticoids.Nat Neurosci. 2005;8:664-72. 

 

Rijneveld AW, Weijer S, Florquin S, Esmon CT, Meijers JC, Speelman P, Reitsma 

PH, Ten Cate H, van der Poll T.Thrombomodulin mutant mice with a strongly 

reduced capacity to generate activated protein C have an unaltered pulmonary 

immune response to respiratory pathogens and lipopolysaccharide.Blood. 

2004;103(5):1702-9. 

 

Robinson S, Tan LW, James C, Karakousis A, Wormald PJ. Do nasal polyps and 

inverted papilloma have similar disorders in cell cycle regulation?Am J Rhinol. 

2006;20(6):637-40. 

 

Rocksén D, Lilliehöök B, Larsson R, Johansson T, Bucht A.Differential 

anti-inflammatory and anti-oxidative effects of dexamethasone and 

N-acetylcysteine in endotoxin-induced lung inflammation.Clin Exp Immunol. 

2000;122(2):249-56. 

 

Rose MC, Nickola TJ, Voynow JA.Airway mucus obstruction: mucin 

glycoproteins, MUC gene regulation and goblet cell hyperplasia.Am J Respir Cell 

Mol Biol. 2001;25(5):533-7. 

 



 251

Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147-74. 

 

Rothenberg ME. Eosinophilia. N Engl J Med. 1998;338(22):1592-600. 

 

Rugina M, Serrano E, Klossek JM, Crampette L, Stoll D, Bebear JP, Perrahia M, 

Rouvier P, Peynegre R.Epidemiological and clinical aspects of nasal polyposis in 

France; the ORLI group experience.Rhinology 2002;40(2):75-9. 

 

Ruhno J, Andersson B, Denburg J, Anderson M, Hitch D, Lapp P, Vanzieleghem 

M, Dolovich J.A double-blind comparison of intranasal budesonide with placebo for 

nasal polyposis.J Allergy Clin Immunol. 1990;86(6 Pt 1):946-53.  

 

Salari H, Borgeat P, Steffenrud S, Richard J, Bedard PM, Hebert J, Pelletier 

G.Immunological and non-immunological release of leukotrienes and histamine 

from human nasal polyps.Clin Exp Immunol 1986;63(3):711-7.  

 

Sampson AP. The role of eosinophils and neutrophils in inflammation.Clin Exp 

Allergy. 2000;30 Suppl 1:22-7. 

 

Samter M, Beers RF Jr.Intolerance to aspirin. Clinical studies and consideration of 

its pathogenesis. Ann Intern Med 1968;68(5):975-83. 

 

Sassone-Corsi P, Sisson JC, Verma IM. Transcriptional autoregulation of the 

proto-oncogene fos. Nature 1988;334:314-9. 

 

Sauer I, Schaljo B, Vogl C, Gattermeier I, Kolbe T, Müller M, Blackshear PJ, 

Kovarik P. Interferons limit inflammatory responses by induction of tristetraprolin. 

Blood. 2006;107(12):4790-7. 

 

Savla U, Appel HJ, Sporn PH, Waters CM. Prostaglandin E(2) regulates wound 

closure in airway epithelium. Am J Physiol Lung Cell Mol Physiol. 

2001;280:L421-31. 

 



 252

Scavuzzo MC, Fattori B, Ruffoli R, Rocchi V, Carpi A, Berni R, Giambelluca MA, 

Giannessi F.Inflammatory mediators and eosinophilia in atopic and non-atopic 

patients with nasal polyposis.Biomed Pharmacother. 2005;59(6):323-9. 

 

Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr.Role of transcriptional 

activation of I kappa B alpha in mediation of immunosuppression by 

glucocorticoids.Science. 1995;270(5234):283-6. 

 

Schmitz J, Dahmen H, Grimm C, Gendo C, Müller-Newen G, Heinrich PC, Schaper 

F.The cytoplasmic tyrosine motifs in full-length glycoprotein 130 have different 

roles in IL-6 signal transduction.J Immunol. 2000;164(2):848-54 

 

Schramm VL Jr, Effron MZ.Nasal polyps in children.Laryngoscope 

1980;90(9):1488-95. 

 

Schwarzer C, Machen TE, Illek B, Fischer H.NADPH oxidase-dependent acid 

production in airway epithelial cells.J Biol Chem. 2004;279(35):36454-61. 

 

Sebelova S, Izakovicova-Holla L, Stejskalova A, Schüller M, Znojil V, Vasku A. 

Interleukin-18 and its three gene polymorphisms relating to allergic rhinitis. J Hum 

Genet. 2007;52(2):152-8. 

 

Sena AA, Provazzi PJ, Fernandes AM, Cury PM, Rahal P, Oliani SM.Spatial 

expression of two anti-inflammatory mediators, annexin 1 and galectin-1, in nasal 

polyposis.Clin Exp Allergy. 2006;36(10):1260-7. 

 

Serpero L, Petecchia L, Sabatini F, Giuliani M, Silvestri M, Di Blasi P, Rossi GA. 

The effect of transforming growth factor (TGF)-beta1 and (TGF)-beta2 on nasal 

polyp fibroblast activities involved upper airway remodeling: modulation by 

fluticasone propionate. Immunol Lett. 2006;105(1):61-7. 

 

Settipane GA.Asthma, aspirin intolerance and nasal polyps.N Engl Reg Allergy 

Proc 1986;7(1):32-7.  



 253

 

Settipane GA.Epidemiology of nasal polyps.Allergy Asthma Proc 

1996;17(5):231-6.  

 

Settpiane GA, Klein DE, Lekas MD. Asthma and nasal polyps. In: Myers E, eidtor. 

New Dimensions in Otorhinolaryngology, Head and Neck Surgery. Amsterdam: 

Excerpta Medica; 1987. p.499-500. 

 

Shao MX, Nadel JA.Dual oxidase 1-dependent MUC5AC mucin expression in 

cultured human airway epithelial cells.Proc Natl Acad Sci U S A. 

2005;102(3):767-72.  

 

Shaulian E, Karin M. AP-1 as a regulator of cell life and death.Nat Cell Biol. 

2002;4:E131-6. 

 

Shepherd EG,Liu Y,Nelin LD.MAPK phosphatases--regulating the immune 

response.Nat Rev Immunol. 2007;7(3):202-12. 

 

Shimizu S, Gabazza EC, Hayashi T, Ido M, Adachi Y, Suzuki K.Thrombin 

stimulates the expression of PDGF in lung epithelial cells.Am J Physiol Lung Cell 

Mol Physiol. 2000;279(3):L503-10. 

 

Shin SH, Lee SH, Jeong HS, Kita H. The effect of nasal polyp epithelial cells on 

eosinophil activation. Laryngoscope. 2003;113(8):1374-7. 

 

Shin SH, Park JY, Jeon CH, Choi JK, Lee SH.Quantitative analysis of eotaxin and 

RANTES messenger RNA in nasal polyps: association of tissue and nasal 

eosinophils.Laryngoscope 2000;110(8):1353-7. 

 

Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K.Direct 

demonstration of delayed eosinophil apoptosis as a mechanism causing tissue 

eosinophilia.J Immunol 1997;158(8):3902-8. 

 



 254

Slavin RG.Sinusitis in adults and its relation to allergic rhinitis, asthma, and nasal 

polyps.J Allergy Clin Immunol 1988;82(5 Pt 2):950-6. 

 

Small CB, Hernandez J, Reyes A, Schenkel E, Damiano A, Stryszak P, Staudinger 

H, Danzig M.Efficacy and safety of mometasone furoate nasal spray in nasal 

polyposis.J Allergy Clin Immunol. 2005;116(6):1275-81. 

 

Smoak K, Cidlowski JA. Glucocorticoids regulate tristetraprolin synthesis and 

posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. 

Mol Cell Biol. 2006;26(23):9126-35. 

 

Solis-Herruzo JA, Rippe RA, Schrum LW, de La Torre P, García I, Jeffrey JJ, 

Muñoz-Yagüe T, Brenner DA. Interleukin-6 increases rat metalloproteinase-13 gene 

expression through stimulation of activator protein 1 transcription factor in cultured 

fibroblasts. J Biol Chem. 1999;274:30919-26. 

 

Solito E, de Coupade C, Canaider S, Goulding NJ, Perretti M.Transfection of 

annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated 

apoptosis associated with caspase-3 activation.Br J Pharmacol. 2001;133(2):217-28.

 

Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor 

expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. 

N Engl J Med. 2002;347(19):1493-9. 

 

Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, 

Alexander WS, Metcalf D, Nicola NA, Hilton DJ.A family of cytokine-inducible 

inhibitors of signalling.Nature. 1997;387(6636):917-21. 

 

Stephen JK, Vaught LE, Chen KM, Sethi S, Shah V, Benninger MS, Gardner GM, 

Schweitzer VG, Khan M, Worsham MJ. Epigenetic events underlie the 

pathogenesis of sinonasal papillomas. Mod Pathol. 2007;20(10):1019-27. 

 

Stern M, Ulrich K, Robinson C, Copeland J, Griesenbach U, Masse C, Cheng S, 



 255

Munkonge F, Geddes D, Berthiaume Y, Alton E.Pretreatment with cationic 

lipid-mediated transfer of the Na+K+-ATPase pump in a mouse model in vivo 

augments resolution of high permeability pulmonary oedema. Gene Ther. 

2000;7(11):960-6. 

 

Stoop AE, Hameleers DM, v Run PE, Biewenga J, van der Baan S. Lymphocytes 

and nonlymphoid cells in the nasal mucosa of patients with nasal polyps and of 

healthy subjects.J Allergy Clin Immunol. 1989;84(5 Pt 1):734-41. 

 

Stoop AE, van der Heijden HA, Biewenga J, van der Baan S.Eosinophils in nasal 

polyps and nasal mucosa: an immunohistochemical study.J Allergy Clin Immunol 

1993;91(2):616-22. 

 

Su WY, Folz R, Chen JS, Crapo JD, Chang LY.Extracellular superoxide dismutase 

mRNA expressions in the human lung by in situ hybridization.Am J Respir Cell 

Mol Biol. 1997;16(2):162-70. 

 

Sun H, Charles CH, Lau LF, Tonks NK.MKP-1 (3CH134), an immediate early gene 

product, is a dual specificity phosphatase that dephosphorylates MAP kinase in 

vivo.Cell. 1993;75(3):487-93. 

 

Sun J, Wong B, Cundall M, Goncharova S, Conway M, Dalrymple A, Coyle AJ, 

Waserman S, Jordana M. Immunoreactivity profile of peripheral blood mononuclear 

cells from patients with ragweed-induced allergic rhinitis. Clin Exp Allergy. 

2007;37(6):901-8. 

 

Sur S, Glitz DG, Kita H, Kujawa SM, Peterson EA, Weiler DA, Kephart GM, 

Wagner JM, George TJ, Gleich GJ, Leiferman KM. Localization of 

eosinophil-derived neurotoxin and eosinophil cationic protein in neutrophilic 

leukocytes. J Leukoc Biol. 1998;63(6):715-22. 

 

Suzuki K, Gabazza EC, Hayashi T, Kamada H, Adachi Y, Taguchi O.Protective 

role of activated protein C in lung and airway remodeling.Crit Care Med. 2004;32(5 



 256

Suppl):S262-5. 

 

Swee M, Wilson CL, Wang Y, McGuire JK, Parks WC.Matrix metalloproteinase-7 

(matrilysin) controls neutrophil egress by generating chemokine gradients.J Leukoc 

Biol. 2008;83(6):1404-12. 

 

Symon FA, Lawrence MB, Williamson ML, Walsh GM, Watson SR, Wardlaw 

AJ.Functional and structural characterization of the eosinophil P-selectin ligand.J 

Immunol. 1996;157(4):1711-9. 

 

Symon FA, Walsh GM, Watson SR, Wardlaw AJ.Eosinophil adhesion to nasal 

polyp endothelium is P-selectin-dependent.J Exp Med 1994;180(1):371-6. 

 

Szczeklik A.Mechanism of aspirin-induced asthma.Allergy 1997;52(6):613-9.  

 

Takahashi T, Shivapurkar N, Riquelme E, et al. Aberrant promoter 

hypermethylation of multiple genes in gallbladder carcinoma and chronic 

cholecystitis. Clin Cancer Res 2004;10: 6126-33. 

 

Takasaka T, Kaku Y, Hozawa K. Mast cell degranulation in nasal polyps.Acta 

Otolaryngol Suppl. 1986;430:39-48. 

 

Takeno S, Hirakawa K, Ueda T, Furukido K, Osada R, Yajin K.Nuclear 

factor-kappa B activation in the nasal polyp epithelium: relationship to local 

cytokine gene expression.Laryngoscope. 2002;112(1):53-8. 

 

Takeuchi K, Yuta A, Sakakura Y.Interleukin-8 gene expression in chronic 

sinusitis.Am J Otolaryngol. 1995;16(2):98-102. 

 

Tan TY, Lin M, Cheah FK, Koh DM.Distribution patterns of inflammatory 

sinonasal diseases.Singapore Med J 1998;39(2):59-63. 

 

Tao Q, Srivastava G, Dickens P, Ho FC.Detection of Epstein-Barr virus-infected 



 257

mucosal lymphocytes in nasal polyps. Am J Pathol 1996;149(4):1111-8. 

 

Tao Q, Swinnen LJ, Yang J, Srivastava G, Robertson KD, Ambinder RF. 

Methylation status of the Epstein-Barr virus major latent promoter C in iatrogenic B 

cell lymphoproliferative disease. Application of PCR-based analysis. Am J Pathol 

1999;155:619-25. 

 

Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, 

Alderman BM, Grail D, Hollande F, Heath JK, Ernst M.Reciprocal regulation of 

gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in 

gp130 mutant mice.Nat Med. 2002;8(10):1089-97.  

 

Theilgaard-Mönch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, 

Nielsen FC, Cowland JB, Borregaard N. The transcriptional program of terminal 

granulocytic differentiation. Blood. 2005;105(4):1785-96. 

 

Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S.I kappa 

B-beta regulates the persistent response in a biphasic activation of NF-kappa B.Cell. 

1995;80(4):573-82. 

 

Tilley SL, Coffman TM, Koller BH.Mixed messages: modulation of inflammation 

and immune responses by prostaglandins and thromboxanes.J Clin Invest. 

2001;108(1):15-23. 

 

Triglia JM, Nicollas R.Nasal and sinus polyposis in children.Laryngoscope 

1997;107(7):963-6.  

 

Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to 

the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116-21. 

 

Uneri C, Ozturk O, Polat S, Yuksel M, Haklar G. Determination of reactive oxygen 

species in nasal polyps. Rhinology. 2005;43:185–189. 

 



 258

Uri N, Cohen-Kerem R, Barzilai G, Greenberg E, Doweck I, Weiler-Ravell 

D.Functional endoscopic sinus surgery in the treatment of massive polyposis in 

asthmatic patients.J Laryngol Otol 2002;116(3):185-9. 

 

Usmani OS, Ito K, Maneechotesuwan K, Ito M, Johnson M, Barnes PJ, Adcock IM. 

Glucocorticoid Receptor Nuclear Translocation in Airway Cells after Inhaled 

Combination Therapy. Am J Respir Crit Care Med. 2005;172(6):704-12.  

 

Valera FC, Queiroz R, Scrideli C, Tone LG, Anselmo-Lima WT.Expression of 

transcription factors NF-kappaB and AP-1 in nasal polyposis.Clin Exp Allergy. 

2008;38(4):579-85. 

 

Valinluck V, Sowers LC. Inflammation-mediated cytosine damage: a mechanistic 

link between inflammation and the epigenetic alterations in human cancers.Cancer 

Res. 2007;67(12):5583-6. 

 

Van Bruaene N, Pérez-Novo CA, Basinski TM, Van Zele T, Holtappels G, De 

Ruyck N, Schmidt-Weber C, Akdis C, Van Cauwenberge P, Bachert C, Gevaert P. 

T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 

2008;121(6):1435-41. 

 

Van Cauwenberge P, Bachert C. Nasal polyposis and sinusitis. In: Adkinson NF, 

Yunginger JW, Busse WW, et al., editors. Allergy: principles and practice. 6th ed. 

St Louis (MO):Mosby;2003.p.1421-36 

 

Van de Wouwer M, Collen D, Conway EM.Thrombomodulin-protein C-EPCR 

system: integrated to regulate coagulation and inflammation. Arterioscler Thromb 

Vasc Biol. 2004;24(8):1374-83. 

 

Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, 

Bachert C.Differentiation of chronic sinus diseases by measurement of 

inflammatory mediators.Allergy 2006;61(11):1280-9. 

 



 259

Van Zele T, Gevaert P, Watelet JB, Claeys G, Holtappels G, Claeys C, van 

Cauwenberge P, Bachert C.Staphylococcus aureus colonization and IgE antibody 

formation to enterotoxins is increased in nasal polyposis.J Allergy Clin Immunol 

2004;114(4):981-3. 

 

Van Zele T, Vaneechoutte M, Holtappels G, Gevaert P, van Cauwenberge P, 

Bachert C. Detection of enterotoxin DNA in Staphylococcus aureus strains obtained 

from the middle meatus in controls and nasal polyp patients.Am J Rhinol. 

2008;22(3):223-7. 

 

Vancheri C, Ohtoshi T, Cox G, Xaubet A, Abrams JS, Gauldie J, Dolovich J, 

Denburg J, Jordana M. Neutrophilic differentiation induced by human upper airway 

fibroblast-derived granulocyte/macrophage colony-stimulating factor (GM-CSF). 

Am J Respir Cell Mol Biol. 1991;4(1):11-7. 

 

Volkert MR, Elliott NA, Housman DE.Functional genomics reveals a family of 

eukaryotic oxidation protection genes.Proc Natl Acad Sci USA. 

2000;97(26):14530-5. 

 

Wadsworth SJ, Nijmeh HS, Hall IP. Glucocorticoids increase repair potential in a 

novel in vitro human airway epithelial wounding model. J Clin Immunol. 

2006;26:376-87. 

 

Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, Foeller C, 

Chow EP, Browing JL, Ramachandran KL. Cloning and expression of human 

lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. 

Nature. 1986;320(6057):77-81. 

 

Wang X, Meng X, Kuhlman JR, Nelin LD, Nicol KK, English BK, Liu Y. 

Knockout of Mkp-1 enhances the host inflammatory responses to gram-positive 

bacteria. J Immunol. 2007;178(8):5312-20. 

 

Warburton G, Nares S, Angelov N, et al. Transcriptional events in a clinical model 



 260

of oral mucosal tissue injury and repair. Wound Repair Regen 2005;13:19-26. 

 

Ward C, Chilvers ER, Lawson MF, Pryde JG, Fujihara S, Farrow SN, Haslett C, 

Rossi AG. NF-kappaB activation is a critical regulator of human granulocyte 

apoptosis in vitro. J Biol Chem. 1999;274(7):4309-18. 

 

Watelet JB, Bachert C, Claeys C, Van Cauwenberge P.Matrix metalloproteinases 

MMP-7, MMP-9 and their tissue inhibitor TIMP-1: expression in chronic sinusitis 

vs nasal polyposis.Allergy. 2004;59(1):54-60 

 

Watelet JB, Claeys C, Perez-Novo C, Gevaert P, Van Cauwenberge P, Bachert 

C.Transforming growth factor beta1 in nasal remodeling: differences between 

chronic rhinosinusitis and nasal polyposis. Am J Rhinol. 2004;18(5):267-72. 

 

Watelet JB, Van Zele T, Gjomarkaj M, Canonica GW, Dahlen SE, Fokkens W, 

Lund VJ, Scadding GK, Mullol J, Papadopoulos N, Bonini S, Kowalski ML, Van 

Cauwenberge P, Bousquet J; GA(2)LEN Workpackage Members 2.7. Tissue 

remodelling in upper airways: where is the link with lower airway remodelling? 

Allergy. 2006;61:1249-58. 

 

Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh 

DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von 

Andrian UH, Weitz JI.Characterization of a mouse model for thrombomodulin 

deficiency.Arterioscler Thromb Vasc Biol. 2001;21(9):1531-7. 

 

Widney DP, Xia YR, Lusis AJ, Smith JB. The murine chemokine CXCL11 

(IFN-inducible T cell alpha chemoattractant) is an IFN-gamma- and 

lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in 

lung and other tissues during endotoxemia. J Immunol. 2000;164(12):6322-31. 

 

Winoto A, Littman DR. Nuclear hormone receptors in T lymphocytes. Cell. 

2002;109 Suppl:S57-66. 

 



 261

Wladislavosky-Waserman P, Kern EB, Holley KE, Eisenbrey AB, Gleich GJ. 

Epithelial damage in nasal polyps. Clin Allergy 1984;14:241-7. 

 

Woltmann G, McNulty CA, Dewson G, Symon FA, Wardlaw AJ. Interleukin-13 

induces PSGL-1/P-selectin-dependent adhesion of eosinophils, but not neutrophils, 

to human umbilical vein endothelial cells under flow.Blood. 2000;95(10):3146-52. 

 

Wong CK, Zhang JP, Ip WK, Lam CW. Activation of p38 mitogen-activated 

protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin 

release of human eosinophils. Clin Exp Immunol. 2002;128(3):483-9. 

 

Woodworth BA, Joseph K, Kaplan AP, Schlosser RJ.Alterations in eotaxin, 

monocyte chemoattractant protein-4, interleukin-5, and interleukin-13 after 

systemic steroid treatment for nasal polyps.Otolaryngol Head Neck Surg 

2004;131(5):585-9. 

 

Wu CC, Croxtall JD, Perretti M, Bryant CE, Thiemermann C, Flower RJ, Vane 

JR.Lipocortin 1 mediates the inhibition by dexamethasone of the induction by 

endotoxin of nitric oxide synthase in the rat.Proc Natl Acad Sci U S A. 

1995;92(8):3473-7. 

 

Xaubet A, Mullol J, Lopez E, Roca-Ferrer J, Rozman M, Carrion T, Fabra JM, 

Picado C.Comparison of the role of nasal polyp and normal nasal mucosal epithelial 

cells on in vitro eosinophil survival. Mediation by GM-CSF and inhibition by 

dexamethasone.Clin Exp Allergy 1994;24(4):307-17.  

 

Yamada T, Fujieda S, Mori S, Yamamoto H, Saito H.Macrolide treatment decreased 

the size of nasal polyps and IL-8 levels in nasal lavage.Am J Rhinol 

2000;14(3):143-8. 

 

Yamada T, Fujieda S, Yanagi S, Yamamura H, Inatome R, Sunaga H, Saito 

H.Protein-tyrosine kinase Syk expressed in human nasal fibroblasts and its effect on 

RANTES production.J Immunol. 2001;166(1):538-43. 



 262

 

Yamaguchi K, Lantowski A, Dannenberg AJ, Subbaramaiah K. Histone deacetylase 

inhibitors suppress the induction of c-Jun and its target genes including COX-2. J 

Biol Chem. 2005;280:32569-77. 

 

Yamashita T, Tsuji H, Maeda N, Tomoda K, Kumazawa T.Etiology of nasal polyps 

associated with aspirin-sensitive asthma.Rhinol Suppl 1989;8:15-24. 

 

Yamazaki S, Muta T, Takeshige K.A novel IkappaB protein, IkappaB-zeta, induced 

by proinflammatory stimuli, negatively regulates nuclear factor-kappaB in the 

nuclei.J Biol Chem. 2001;276(29):27657-62.  

 

Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin 

M.Transcriptional interference between c-Jun and the glucocorticoid receptor: 

mutual inhibition of DNA binding due to direct protein-protein interaction. Cell. 

1990; 62:1205-15. 

 

Yariktas M, Doner F, Sutcu R, Demirci M, Dogru H, Yasan H.The effect of topical 

corticosteroid on basic fibroblast growth factor in nasal polyp tissue.Am J Rhinol 

2005;19(3):248-50. 

 

Yasuda M, Niisato N, Miyazaki H, Hama T, Dejima K, Hisa Y, Marunaka 

Y.Epithelial ion transport of human nasal polyp and paranasal sinus mucosa.Am J 

Respir Cell Mol Biol. 2007b;36(4):466-72.  

 

Yasuda M, Niisato N, Miyazaki H, Iwasaki Y, Hama T, Dejima K, Hisa Y, 

Marunaka Y.Epithelial Na+ channel and ion transport in human nasal polyp and 

paranasal sinus mucosa.Biochem Biophys Res Commun. 2007a;362(3):753-8.  

 

Yasunaga S, Yuyama N, Arima K, Tanaka H, Toda S, Maeda M, Matsui K, Goda 

C, Yang Q, Sugita Y, Nagai H, Izuhara K. The negative-feedback regulation of the 

IL-13 signal by the IL-13 receptor alpha2 chain in bronchial epithelial cells. 

Cytokine. 2003;24(6):293-303. 



 263

 

Yea SS, Yang YI, Park SK, Jang WH, Lee SS, Seog DH, Park YH, Chun JH. 

Interleukin-4 C-590T polymorphism is associated with protection against nasal 

polyps in a Korean population. Am J Rhinology 2006;20(5):550-3. 

 

Yin BW, Lloyd KO.Molecular cloning of the CA125 ovarian cancer antigen: 

identification as a new mucin, MUC16.J Biol Chem. 2001;276(29):27371-5. 

 

Yoon HK, Cho HY, Kleeberger SR.Protective role of matrix metalloproteinase-9 in 

ozone-induced airway inflammation.Environ Health Perspect. 

2007;115(11):1557-63. 

 

Young Kim J, Kim CH, Kim KS, Choi YS, Lee JG, Yoon JH.Extracellular 

signal-regulated kinase is involved in tumor necrosis factor-alpha-induced 

MUC5AC gene expression in cultured human nasal polyp epithelial cells.Acta 

Otolaryngol. 2004;124(8):953-7. 

 

Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL, Leong HF, Fong CW, Guy 

GR.Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of 

Raf.J Biol Chem. 2002;277(5):3195-201.  

 

Zelko IN, Mariani TJ, Folz RJ.Superoxide dismutase multigene family: a 

comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) 

gene structures, evolution, and expression.Free Radic Biol Med. 2002;33(3):337-49.

 

Zhang N, Holtappels G, Claeys C, Huang G, van Cauwenberge P, Bachert C.Pattern 

of inflammation and impact of Staphylococcus aureus enterotoxins in nasal polyps 

from southern China.Am J Rhinol. 2006 ;20(4):445-50. 

 

Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial 

epithelial cells control myofibroblast proliferation: an in vitro co-culture model of 

airway remodeling in asthma. Lab Invest. 1999;79(4):395-405. 

 



 264

Zheng CF, Guan KL.Dephosphorylation and inactivation of the mitogen-activated 

protein kinase by a mitogen-induced Thr/Tyr protein phosphatase.J Biol Chem. 

1993;268(22):16116-9. 

 

Zheng Z, Pan J, Chu B, Wong YC, Cheung AL, Tsao SW. Downregulation and 

abnormal expression of E-cadherin and beta-catenin in nasopharyngeal carcinoma: 

close association with advanced disease stage and lymph node metastasis. Hum 

Pathol 1999;30:458-466. 

 

Zídková J, Stĕdrý V, Zídek V, Volfová I, Síbl O.Participation of complement in 

nasal polyposis.Folia Microbiol (Praha). 1993;38(2):150-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 265

Appendices 

Appendix I Significant functions of the datasets  
 
GC-naïve NP versus control 

Category 
Significance 

 p-value* 
Genes 

[n] 
Diseases & Disorders 

Cancer 2.82E-25 to 1.26E-03 554 
Developmental Disorder 2.08E-11 to 3.46E-04 135 
Inflammatory Disease 1.30E-09 to 1.26E-03 188 
Connective Tissue Disorders 3.59E-09 to 8.06E-04 168 
Cardiovascular Disease 1.51E-08 to 1.26E-03 130 
Immunological Disease 6.29E-06 to 1.21E-03 152 
Respiratory Disease 1.47E-05 to 1.26E-03 112 
Organismal Injury and Abnormalities 4.73E-05 to 8.01E-04 61 
Genetic Disorder 4.86E-05 to 1.26E-03  160  
Physiological System Development & Function   
Tissue Development 2.59E-15 to 1.26E-03 270 
Organismal Development 3.70E-12 to 5.66E-04 210 

Cardiovascular System Development and Function 6.97E-12 to 1.26E-03 154 
Tissue Morphology 4.39E-08 to 1.26E-03 227 
Organismal Survival   1.51E-06 to 5.82E-06 140  

Organ Development   8.95E-06 to 7.63E-04 145  

Tumor Morphology   1.47E-05 to 1.26E-03 66 

Immune Response 2.20E-05 to 9.57E-04   106 

Connective Tissue Development and Function 2.96E-05 to 1.26E-03 142 
Organismal Functions  2.45E-04 to 2.45E-04 19 
Molecular & Cellular Functions   
Cellular Movement 6.51E-15 to 8.89E-04 282 
Cellular Growth & Proliferation 9.88E-13 to 1.24E-03 456 
Cell Death 6.74E-12 to 1.19E-03 411 
Cellular Development 1.41E-10 to 1.26E-03 336 
Cell morphology 1.56E-08 to 1.26E-03 230 
Cell Cycle 4.14E-09 to 1.26E-03 197 
Cellular Assembly and Organization 9.50E-08 to 1.26E-03 155 
Gene Expression 1.80E-06 to 1.26E-03 268 
Cell-to-Cell Signaling and Interaction 1.94E-06 to 6.87E-04 122 
Cellular Function and Maintenance 2.26E-04 to 1.21E-03 45 
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GC-treated NP versus control 

Category 
Significance 

 p-value* 
Genes 

[n] 
Diseases & Disorders 

Cancer 2.14E-12 to 1.38E-02 317 
Developmental Disorder 2.83E-11 to 9.51E-03 98 
Cardiovascular Disease 8.28E-06 to 1.20E-02 72 
Genetic Disorder 4.57E-05 to 1.38E-02 120 
Respiratory Disease 3.36E-04 to 1.38E-02 60 
Organismal Injury and Abnormalities 1.27E-03 to 1.38E-02 30 
Inflammatory Disease 4.73E-03 to 1.00E-02 101 
Immunological Disease 5.18E-03 to 5.18E-03 4 
Physiological System Development & Function   
Tissue Morphology 1.03E-08 to 1.18E-02 75 
Tissue Development 1.07E-06 to 1.38E-02 165 
Cardiovascular System Development and Function 1.03E-04 to 1.38E-02 91 

Organismal Development 1.23E-04 to 1.29E-02 122 

Organ Development 2.22E-04 to 1.38E-02 132 

Immune Response 3.03E-04 to 1.38E-02 65 

Immune and Lymphatic System Development 3.03E-04 to 1.38E-02 75 

Organ Morphology 7.93E-04 to 1.38E-02 48 

Connective Tissue Development and Function 1.01E-03 to 1.18E-02 64 

Tumor Morphology 1.55E-03 to 1.33E-02 22  

Molecular & Cellular Functions   
Cellular Movement 6.23E-08 to 1.38E-02 176 
Cell Morphology 8.00E-06 to 1.38E-02 151 
Cellular Assembly and Organization 2.92E-05 to 1.38E-02 112 
Cell Signaling 3.38E-05 to 1.38E-02 73 
Cellular Growth & Proliferation 5.00E-05 to 1.38E-02 266 
Cellular Development 6.93E-05 to 1.38E-02 190 
Cell-to-Cell Signaling and Interaction 7.56E-05 to 1.38E-02 101 
Lipid Metabolism 1.1E-04 to 9.51E-03 15 
Small Molecule Biochemistry 1.1E-04 to 1.38E-02 64 
Cell Death 1.30E-04 to 1.33E-02 241 
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GC-treated versus steroid naïve NP 

Category 
Significance 

 p-value* 
Genes 

[n] 
Diseases & Disorders 

Inflammatory Disease 5.43E-15 to 1.86E-04 33 
Cancer 1.24E-12 to 2.58E-04 51 
Cardiovascular Disease 2.37E-12 to 1.73E-05 23 
Connective Tissue Disorders 8.03E-12 to 1.86E-04 33 
Immunological Disease 1.78E-10 to 1.23E-04 29 
Organismal Injury and Abnormalities 1.47E-08 to 2.39E-04 16 
Genetic Disorder 9.19E-07 to 9.19E-07 7 
Respiratory Disease 3.44E-05 to 1.15E-04 6 
Developmental Disorder 1.10E-04 to 1.10E-04 14 
Physiological System Development & Function   
Organismal Functions  6.90E-10 to 1.27E-05 9 
Tissue Morphology 9.30E-10 to 2.28E-04 26 
Tissue Development 2.24E-08 to 2.32E-04 34 
Immune Response 3.54E-08 to 1.55E-04 29 

Organismal Development 6.69E-08 to 2.77E-05 25 

Tumor Morphology 2.67E-07 to 2.28E-04 11 

Organ Morphology 9.54E-07 to 8.06E-05 8 

Connective Tissue Development and Function 1.09E-06 to 2.46E-04 23 

Organ Development 1.13E-06 to 1.13E-06 18 

Cardiovascular System Development and Function 1.20E-06 to 2.52E-04 19 

Molecular & Cellular Functions   
Cell Death 1.83E-14 to2.15E-04 47 
Cellular Growth & Proliferation 1.08E-13 to 2.41E-04 53 
Cellular Development 9.50E-13 to 2.46E-04 41 
Cellular Movement 1.59E-12 to 2.52E-04 37 
Cell Cycle 3.63E-09 to 2.58E-04 25 
Gene Expression 3.94E-09 to 2.58E-04 31 
Cell-to-Cell Signaling and Interaction 2.15E-08 to 2.28E-04 27 
DNA Replication, Recombination, and Repair 1.38E-06 to 1.38E-06 13 
Cell Morphology 1.68E-06 to 1.82E-04 22 
Cellular Function and Maintenance 3.84E-05 to 2.28E-04 5 
* p-value is determined by right-tailed Fischer’s exact test. 
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Appendix II Fold change of interested genes in three datasets (measured by 

microarray and quantitative PCR) 

 
Fold difference assessed by means 

of microarray 
Fold difference assessed by means 

of quantitative PCR

Gene 
symbol 

GC-naïve 
NP vs. 
control 

GC-treated 
NP vs. 
control 

GC-treated 
vs. GC 

-naïve NP 

GC-naïve 
NP vs. 
control 

GC-treated 
NP vs. 
control 

GC-treated 
vs. GC 

-naïve NP
ADAM8 1.61 NS NS N.A. N.A. N.A. 
ALOX5AP 2.61 NS NS N.A. N.A. N.A. 
ANGPT1 0.27 0.29 NS N.A. N.A. N.A. 
ANGPT2 0.34 0.36 NS N.A. N.A. N.A. 
ANXA1 NS NS 5.91 N.A. N.A. 4.55 
AREG 0.22 NS 6.47 0.01 NS 6.7 
ATP1A2 0.34 0.35 NS N.A. N.A. N.A. 
Bid 1.65 NS NS N.A. N.A. N.A. 
C1QB 4.73 2.67 NS N.A. N.A. N.A. 
C3 2.64 2.21 NS 5.75 N.A. N.A. 
C4A 5.54 3.97 NS N.A. N.A. N.A. 
CASP3 1.73 1.60 NS N.A. N.A. N.A. 
CASP7 1.85 1.70 NS N.A. N.A. N.A. 
CCL11 3.87 NS NS 14.92 NS N.A. 
CCL15 4.68 3.76 NS N.A. N.A. N.A. 
CCL28 0.18 0.22 NS N.A. N.A. N.A. 
CD40 0.51 NS NS N.A. N.A. N.A. 
CD69 0.41 NS 2.99 0.05 NS 4 
CD86 3.39 2.38 NS N.A. N.A. N.A. 
CD9 0.51 NS NS N.A. N.A. N.A. 
CEACAM1 0.57 NS NS N.A. N.A. N.A. 
CEACAM6 6.06 4.68 NS N.A. N.A. N.A. 
CFH 0.49 NS NS N.A. N.A. N.A. 
c-Fos 0.08 NS 14.85 0.02 NS 14.2 
c-Jun 0.29 NS 3.39 0.06 NS 4.9 
CLIC3 2.03 NS NS N.A. N.A. N.A. 
CLIC5 1.85 NS NS N.A. N.A. N.A. 
CLIC6 3.57 4.41 NS N.A. N.A. N.A. 
COX-2 0.38 NS 3.47 0.17 NS 5.51 
CRISP3 0.01 0.14 NS N.A. N.A. N.A. 
CXCL11 NS NS 0.4 N.A. N.A. 0.35 
CXCL12 0.34 0.32 NS N.A. N.A. N.A. 
CXCL2 0.61 NS 5.42 0.14 NS 7.45 
CXCL6 7.65 6.09 NS N.A. N.A. N.A. 
CXCL9 NS NS 0.4 N.A. N.A. 0.4 
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Fold difference assessed by means 

of microarray 
Fold difference assessed by means 

of quantitative PCR

Gene 
symbol 

GC-naïve 
NP vs. 
control 

GC-treated 
NP vs. 
control 

GC-treated 
vs. GC 

-naïve NP 

GC-naïve 
NP vs. 
control 

GC-treated 
NP vs. 
control 

GC-treated 
vs. GC 

-naïve NP
CYSLTR1 2.92 3.05 NS N.A. N.A. N.A. 
DEFB1 3.93 2.53 NS N.A. N.A. N.A. 
DUOX1 6.67 2.56 NS N.A. N.A. N.A. 
DUSP1 0.1 NS 4.98 0.12 NS 8.35 
DUSP2 0.18 NS 3.19 0.06 NS 2.8 
DUSP4 0.21 0.32 NS N.A. N.A. N.A. 
DUSP5 0.22 NS NS N.A. N.A. N.A. 
DUSP6 0.34 NS 2.08 0.16 NS 2.5 
EGF 0.25 NS NS N.A. N.A. N.A. 
EGR1 0.08 0.36 7.81 0.01 0.12 12.3 
ERBB4 0.47 NS NS N.A. N.A. N.A. 
FosB 0.05 NS 16.67 0.01 NS 15.3 
GCLM 3.65 3.3 NS N.A. N.A. N.A. 
GPX3 0.38 NS 1.59 N.A. N.A. N.A. 
GRα   N.A. N.A. N.A. 0.31 0.34 1.2 
GRβ  N.A. N.A. N.A. UDab UDab UDab 
HBEGF 0.21 NS 5.45 0.06 NS 5.05 
IFNAR1 1.56 NS NS N.A. N.A. N.A. 
IL13RA2 0.49 NS NS UDa N.A. N.A. 
IL18 3.03 2.9 NS 4.37 N.A. N.A. 
IL5Ra 1.58 NS NS 9.85 NS N.A. 
IL-6 0.16 0.42 7.87 0.01 0.2 9.85 
IL6ST 0.59 NS NS N.A. N.A. N.A. 
ITGB2 2.62 NS NS N.A. N.A. N.A. 
JunB 0.24 0.37 3.37 0.06 0.15 3.15 
LGALS8 1.64 NS NS N.A. N.A. N.A. 
LGALS9 1.69 NS NS N.A. N.A. N.A. 
LPO 0.03 0.23 NS N.A. N.A. N.A. 
LTA4H 1.53 NS NS N.A. N.A. N.A. 
LTB4R 1.66 2.35 NS N.A. N.A. N.A. 
LYN 1.97 NS NS N.A. N.A. N.A. 
MIF 1.75 NS NS N.A. N.A. N.A. 
MMP7 6.43 2.48 0.47 8.62 4.05 0.5 
MMP9 3.48 NS 0.44 UDb UDb 0.45 
MUC16 11.12 11.21 NS N.A. N.A. N.A. 
MUC20 4.51 3.58 NS N.A. N.A. N.A. 
MUC4 5.47 5.48 NS N.A. N.A. N.A. 
MUC7 0.02 0.06 NS N.A. N.A. N.A. 
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Fold difference assessed by means 

of microarray 
Fold difference assessed by means 

of quantitative PCR

Gene 
symbol 

GC-naïve 
NP vs. 
control 

GC-treated 
NP vs. 
control 

GC-treated 
vs. GC 

-naïve NP 

GC-naïve 
NP vs. 
control 

GC-treated 
NP vs. 
control 

GC-treated 
vs. GC 

-naïve NP
NFKBIA 0.65 NS NS 0.45 N.A. N.A. 
NFKBIZ 0.46 NS 2.22 0.23 NS 2.2 
NOS2A 3.96 6.76 NS N.A. N.A. N.A. 
NOX4 3.03 NS NS N.A. N.A. N.A. 
NR4A1 0.14 NS 4.36 0.03 NS 9.15 
NR4A2 0.11 NS 7.02 0.08 NS 6.25 
NR4A3 0.11 0.28 NS N.A. N.A. N.A. 
NRG3 0.23 0.29 NS N.A. N.A. N.A. 
OXR1 0.42 0.39 NS N.A. N.A. N.A. 
PLA2G10 2.51 2.53 NS N.A. N.A. N.A. 
PLA2G4A 2.61 3.28 NS N.A. N.A. N.A. 
PRDX1 1.62 NS NS N.A. N.A. N.A. 
PRDX5 1.79 NS NS N.A. N.A. N.A. 
PTGER2 1.99 NS NS N.A. N.A. N.A. 
PTGER3 0.15 0.29 NS N.A. N.A. N.A. 
PTGIS 0.26 0.25 NS N.A. N.A. N.A. 
PTX3 0.12 NS NS N.A. N.A. N.A. 
SCGB1A1 NS NS 5.51 N.A. N.A. 4.9 
SCNN1A 1.96 2.11 NS N.A. N.A. N.A. 
SCNN1B 4.93 6.04 NS N.A. N.A. N.A. 
SCNN1G 5.65 7.34 NS N.A. N.A. N.A. 
SELPLG 2.04 NS NS N.A. N.A. N.A. 
SERPINA1 3.18 3.48 NS N.A. N.A. N.A. 
SOCS3 0.31 NS 4.2 0.21 NS 3.8 
SOD3 0.39 0.47 NS N.A. N.A. N.A. 
SPRY1 0.33 NS 2.49 0.19 NS 2.1 
SPRY2 0.62 NS 2.11 0.51 NS 2.21 
SPRY4 0.62 NS 2.13 0.42 NS 2.03 
STAT3 0.58 NS NS N.A. N.A. N.A. 
TEK 0.31 0.41 NS N.A. N.A. N.A. 
THBD 0.22 NS 2.63 0.09 NS 2.7 
TXN 1.64 NS NS N.A. N.A. N.A. 
ZFP36 0.17 NS 3.77 0.11 NS 5.35 
 NS, No statistical difference; 
 UDa, Undetectable in NP (either GC-naïve or GC-treated);  
 Udb, Undectable in control;  
 Udab, Undectable in both NP and control; 
 N.A., Not applicable. 
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   Appendix III Relative expression level of selected genes by real-time RT PCR 

Median of ∆ Ct (Ct-target – Ct-GAPDH) 
Gene symbol 

GC-naïve NP 
(n=10) 

GC-treated NP 
(n=10) 

Control  
(n=6) 

ANXA1 5.45 3.50 N.A. 
AREG 12.85 8.98 6.59 
C3 2.15 N.A. 4.68 
CCL11 5.56 N.A. 9.52 
CD69 11.94 9.46 7.59 
c-Fos 5.74 0.97 0.13 
c-Jun 7.67 5.26 3.6 
COX-2 9.26 6.8 6.72 
CXCL11 8.53 9.8 N.A. 
CXCL2 8.75 6.35 5.67 
CXCL9 5.45 6.32 N.A. 
DUSP1 4.52 1.00 1.47 
DUSP2 11.98 9.92 7.97 
DUSP6 5.75 4.57 3.06 
EGR1 5.31 1.86 -0.56 
FosB 10.59 5.31 4.52 
GRα  8.10 7.97 6.41 
GRβ  UD UD UD 
HBEGF 8.45 5.66 4.61 
IFNAR1 N.A. N.A. N.A. 
IL13RA2 UD UD UD 
IL18 10.37 N.A. 12.36 
IL5Ra 9.67 N.A. 12.22 
IL-6 13.24 9.12 6.82 
JunB 5.19 3.98 1.01 
MMP7 6.41 7.51 9.18 
MMP9 5.89 7.33 UD 
NFKBIA 3.40 N.A. 2.18 
NFKBIZ 7.85 6.23 5.67 
NR4A1 7.43 3.26 2.19 
NR4A2 7.82 5.19 4.09 
SCGB1A1 11.72 9.29 11.99 
SOCS3 5.68 4.05 3.40 
SPRY1 9.79 9.15 7.47 
THBD 8.45 7.09 5.05 
ZFP36 5.09 3.21 1.88 

 UD, Undetectable  
 N.A., Not applicable 
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Curriculum Vitae 

 
 

Name: Li Chunwei 
Gender: Male 
Birthday: March 12th. 1979 
Nationality: Chinese 
Email: lichunwei@nus.edu.sg 
Mobile phone: 65-91162358 

Address:  
Department of Otolaryngology,  
National University of Singapore, 
5 Lower Kent Ridge Road. 
Singapore, 119074 
 

Education 

 
01/2003-Present  PhD candidature in Department of Otolaryngology, National University of 

Singapore, Singapore 

09/1997-07/2002  Bachelor of Medicine in Sun Yat-sen University, P.R. China 

Working Experience 

 
01/2007-Present  Research assistant in Department of Otolaryngology, National University of 

Singapore, Singapore 

02/2002-07/2002 
 
09/2001-02/2002 
 
 
11/2000-08/2001 
 

 Internship in the Center of Disease Control in Guangzhou, P.R. China 

 Internship in the Faculty of public health of Sun Yat-sen University,

P.R. China 

 Internship in The First affiliated hospital of Sun Yet-sen University, 

P.R. China 
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Scholarship and Award 

 

01/2003-01/2007 

06/2005 

06/2008 

 

 NUS Research Scholarship, National University of Singapore, Singapore 

 Travel grant of 2005 Wordl Allergy Congress, Munich, Germany 

 Travel grant of XXVII Congress of the European Academy of Allergology 
and Clinical Immunology, EAACI 2008, Barcelona, Spain 

Membership 

 

01/2005-Present 

 

 Junior member of European Academy of Allergology and Clinical 
Immunology 

 

Skills profile 

  Be familiar with molecular and cell biology techniques, such as DNA/RNA 
purification, microarray, Real-time PCR, immunohistochemistry and cell 
culture work. 

 Be familiar with biostatistics work and related software. 
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Publications 

 
 Li CW, Cheung W, Lin ZB, Li TY, Lim JT, Wang DY. Oral steroids enhance epithelial repair 

in nasal polyposis via up-regulation of AP-1 gene network. Thorax. 2009 Jan 21. [Epub ahead 

of print]. (Impaction Factor: 7.06 

 

 Liang XH, Cheung W, Heng CK, Liu JJ, Li CW, Lim B, Wang DY. CD14 promoter 

polymorphisms have no functional significance and are not associated with atopic 

phenotypes. Pharmacogenet Genomics. 2006 Apr;16(4):229-36. (Impaction Factor: 4.14) 

 

 Wang DY, Li CW. Control of nasal obstruction in patients with persistent allergic rhinitis. 

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2006 Sep;41(9):716-20.  

 

 Li CW, Cheung W, Li TY, Lin ZB, Lim JT, Wang DY. Expression profile of eosinophil- and 

neutrophil-associated genes in patients with nasal polyposis. Article submitted. 

 

 Li CW, Cheung W, Pang YT, Wang DY. Low level methylation of some tumor suppressor 

genes in nasal polyps and normal nasal mucosa. Article in preparation. 

 
Presentations at conferences 

 Li CW, Pang YT, Tao Q, Wang DY. Promoter methylation status of multiple genes in nasal 

polyps. Poster presentation in 2005 World Allergy Congress, Munich, Germany. Poster No. 751. 

 

 Li CW, Cheung W, Lin ZB, Li TY, Lim JT, Wang DY. Glucocorticoids promote epithelial 

repair in nasal polyps via upregulating Activator protein-1. Oral presentation in XXVII 

Congress of the European Academy of Allergology and Clinical Immunology, EAACI 2008, 

Barcelona, Spain. Abstract No. 119.  (Awarded with the best oral presentation in the session of 

“Inflammatory Mechanisms in Rhinosinusal Disease”.) 
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