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Summary

This thesis documents my research on the setting up, characterization, and optimiza-

tion of a polarization-entangled multi-photon source. The photon pairs are produced by

spontaneous parametric down-conversion (SPDC) process pumped by ultrafast optical

pulses. I will focus on the characterization of how spectral distinguishability between

the down-conversion paths leads to a degraded polarization entanglement quality, com-

monly observed in such a configuration, and the implementation of a spectral compen-

sation scheme to eliminate the distinguishability. The goal of this research is to produce

a source of polarization-entangled multi-photon state with high brightness and fidelity

which can be used for various quantum communication protocols and fundamental tests

of quantum physics in higher-dimensional Hilbert spaces.

SPDC is the most common process by which entangled photons are generated. The

initial experiments on SPDC and applications for quantum key distribution make use of

pump light from continuous-wave (cw) lasers, where entangled states can be prepared

efficiently with high fidelity in various degrees of freedom.

The other regime covers experiments in which photon pairs need to exhibit tight

localization in time, or when more than one pair should be generated simultaneously. In

such cases, short optical pulses with a coherence time compatible with that of the down-

converted photons have to be used as a pump. From existing theoretical studies it is

known that the combination of the broadband pump with the dispersion relations of the

nonlinear optical material leads to entanglement of the polarization degree of freedom

with the spectral properties of the down-converted photons. When only the polarization

degree of freedom is considered, this results in a degree of mixedness, leading to a

degraded entanglement quality. Typically, strong spectral filtering is applied in order to

detect only photons which fall into the non-distinguishable part of the spectrum. In the

first half of the thesis, I will present an experimental investigation of the phenomenon

mainly through the joint spectral mapping of the polarization correlations in each decay

path.



In multi-photon experiments where the coincidence rate decreases rapidly with any

filter loss, spectral filtering can be extremely disadvantageous. The spectral compensa-

tion scheme proposed and first implemented by Kim et al. [1] can eliminate the spectral

distinguishability without significant loss of signal and thus benefits these experiments

greatly. In the second half of the thesis, I will give a detailed account of the imple-

mentation of this spectral compensation scheme. Characterization of the source after

spectral compensation showed that the spectral distinguishability between the decay

paths could be eliminated.

For certain systems it is possible to determine the presence of entanglement by

appealing to an entanglement witness like the Clauser-Horne-Shimony-Holt (CHSH)

inequality. In the last part of the thesis, I will present results from such a measurement

carried out using the earlier experimental setup. I will then conclude with some remarks

on the remaining issue known to be restricting the entanglement quality of the higher-

order states and implementation with which it can be resolved.



Chapter 1

From Quantum Mechanics to

Quantum Information and

Computation

We now live in an era of information. Almost all the activities going on daily, ranging

from the simple bank transaction to the way scientific research is conducted, rely on

information. Transparent to most of us, information also supports the security and

communication that underlies these activities. Often, computers of one form or another

retrieve, communicate, process, and store this information.

This is a far cry from the very first fully programmable electronic computer, the

Electronic Numerical Integrator And Computer or ENIAC, built by the University of

Pennsylvania for the United States Army during World War II to analyze the trajectory

of artillery rounds. ENIAC had more than 10000 vacuum tubes which occupied a large

room and required a number of staffs to operate and maintain.

All these changed with the arrival of the first quantum revolution which brought

us the transistor. The first solid state transistor, invented at Bell Laboratories on

December 16, 1947 by William Shockley, John Bardeen, and Walter Brattain, began

as a study into the flow of electrons over the surface of a semiconductor. The smaller

and more energy efficient transistor ultimately replaced the vacuum tube. Since then,

increasing level of miniaturization enabled more transistors to be fitted onto a single

1



1.1 Qubit, The Quantum Mechanical Bit

silicon chip, resulting in more powerful and energy efficient processors for computers.

However, despite all the technological advances, the majority of quantum phenomenon

remains untapped as resources for communication and computation. Both the bits of

information and the physical systems on which they are encoded are essentially classical

in nature.

Following the significant progress made in the field of experimental Physics over

the past two decades, we are becoming increasingly proficient in the fabrication and

manipulation of physical systems which demonstrate quantum effects. With this next

quantum revolution, we see experiments starting to use the various degrees of freedom

available in a number of quantum systems to encode quantum bits of information or

qubits. Some of these first experiments [2, 3] used the polarization degree of a photon

to encode the qubit. These photonic qubits have the advantage of easy generation

and are relatively resistant to decoherence. Thus they remain widely used in various

experiments [4, 5, 6, 7, 8] till today.

The qubit exhibits the features of non-cloneability, superposition, and can be entan-

gled in multi-qubit states, all of which are purely quantum mechanical effects. When

photonic qubits are entangled in a multi-photon state, they can be used for various

quantum communication protocols [9, 10] and fundamental tests of quantum physics

in higher-dimensional Hilbert spaces [11, 12, 13]. Multi-photon states also allow cer-

tain classes of computational tasks [14, 15] which are either inefficient or impractical

on classical information processing system to be carried out. This thesis focuses on

the experimental aspects of the generation of these multi-photon states for quantum

communication and computation.

1.1 Qubit, The Quantum Mechanical Bit

The classical bit is the most fundamental unit of digital information. It is a represen-

tation of a binary digit, taking a logical value of either ”1” or ”0”. Due to the binary

nature of the bit, digital information can be encoded in any physical system which has

two stable states such as the direction of magnetic domain on a magnetic media, the

pits and bumps on the reflective layer on an optical disk or voltage levels in a digital

circuit.

Over the past decades, we have seen experiments that allow us to study and manipu-

2



1.1 Qubit, The Quantum Mechanical Bit

Ag

Furnace
MagnetScreen

Collimating
slits

Silver atom
beam

Figure 1.1: Stern-Gerlach experiment. A beam of neutral silver atom is collimated and

directed through an inhomogeneous magnetic field. After passing through the inhomoge-

neous magnetic field, the beam splits into two. Since the silver atoms in the beam are

neutral, any deflection of the silver beam can only be attributed to the intrinsic angular

momentum of the unpaired electron in the silver atoms. Thus this experiment shows that

the spin angular momentum of an electron along the direction defined by the magnetic

field can only take one of two possible value, +~
2 (spin-up) or −~2 (spin-down).

late physical systems which exhibit quantum behaviors being devised and implemented.

In this quantum regime, the bit can be encoded in state of a spin-1
2 (two-level) sys-

tem. The reason why a spin-1
2 system is also called a two-level system stemmed from

an experiment performed by Otto Stern and Walther Gerlach in 1922 to study the

intrinsic angular momentum of an electron. In what later came to be known as the

Stern-Gerlach experiment (Fig. 1.1), they showed that the spin angular momentum of

an electron along any direction can only take one of two possible value, +~
2 (spin-up)

or −~2 (spin-down). In the quantum state vector representation, spin-up and spin down

can be written as | ↑〉 and | ↓〉, respectively. It is possible to manipulate the direction of

the electron spins and by associating ”1” to | ↑〉 and ”0” to | ↓〉, this degree of freedom

can be used essentially to encode qubits.

Apart from the spin of an electron, degrees of freedom of other quantum systems

can also be used to encode the qubit. A few examples are the magnetic flux, charge or

phase of superconducting circuits [16] and the energy levels [17] or nuclear spins [18] in

atoms. By far the most commonly used physical carrier of the qubit in experiments is

the photon. The photon has a number of degrees of freedom that can be used to encode

a qubit: the number of photons in a specific mode (photon number) [19], arrival times

of photons in an interferometric-type setup [20, 21], or the polarization [5, 22, 23]. Out

of the three, the polarization of a photon is most often used to encode a qubit as they

3



1.1 Qubit, The Quantum Mechanical Bit

are easy to generate, manipulate, and relatively resistance to decoherence.

These qubits exhibits the feature of non-cloneability, superposition, and can be en-

tangled in multi-qubit states. All these characteristics are purely quantum mechanical

in nature and they form the backbone for quantum information and quantum compu-

tation.

1.1.1 Non-cloneability

It is easy to copy a file on the computer. The copy of the file is in essence a prefect

clone of the original. However, in quantum mechanics this is not generally true. This

phenomenon is outlined in the non-cloning theorem [24, 25]. The theorem forbids the

creation of identical copies of an arbitrary unknown quantum state. If a quantum

cloning device is able to clone a state |ψ〉 with prefect fidelity, it is at most only able

to do the same for the orthogonal state |ψ〉⊥. For the special case of a spin-1
2 system,

even under optimal condition, the maximum fidelity of cloning of an arbitrary unknown

quantum state is shown only to be 5
6 [26].

The no-cloning theorem has significant implications especially for the field of quan-

tum key distribution (QKD). It prevents an eavesdropper from making perfect multiple

copies of the qubits being distributed in the quantum channel, which in principle could

be used, in conjunction with other resources, to gain full knowledge of the distributed

key.

1.1.2 Superposition

A classical bit of information can take the logical value of either ”0” or ”1”, but not both

simultaneously. However, in the quantum regime, it is possible to prepare a quantum

system such that it is in a state c0|0〉 + c1|1〉, where c0 and c1 are the probability

amplitudes and are in general both complex numbers. When we measure this qubit in

the |0〉 and |1〉 basis state, the probability of the outcome is |c0|2 and |c1|2, respectively.

As the absolute squares of the amplitudes equate to probabilities, it follows that c0

and c0 must be constrained by the equation |c0|2 + |c1|2 = 1, which means one will

measure either one of the states. Such a two-level quantum system is said to be in a

linear superposition of the |0〉 and |1〉 basis state and does not exist definitely in either

states.

4



1.1 Qubit, The Quantum Mechanical Bit

The advantage of superposition of states really comes in when we start dealing with

system containing several qubits. Such a collection of N qubits is a called a quantum

register of size N and can hold 2N numbers. This is in contrast with a classical register

of the same size which can only hold a single number. For example in the case of a

two-qubit system register, a state consisting of superposition of the four combination

is possible. The state of such a two-qubit system can be written as

|Ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉, (1.1)

where cij is the probability amplitude of |ij〉. The notation |ij〉 means that qubit 1

and 2 are in state i and j, respectively.

Quantum algorithms make full use of this fact by being able to accept all the

possible inputs pertaining to a certain computation task as linear superposition of

basis states like in Eq. 1.1 and evaluate them in parallel. The required output from the

evaluation is then obtained by suitable measurements done on the resulting state. It is

this parallelism that gives quantum systems the edge over their classical counterparts in

certain computational tasks. A brief discussion on what are the classes of computation

problems that benefit from quantum parallelism is available in [27].

1.1.3 Entanglement

Quantum entanglement is a peculiar feature that is observed in some composite quan-

tum systems. Essentially, the quantum mechanical state of certain systems consisting

of two or more entities can no longer be adequately described by considering each of

the component entity in isolation. A full description of such a composite quantum

system is only possible by considering the system as a whole. This results in a kind of

connection between the components that is quantum mechanical in nature and cannot

be explained by classical correlations alone. These non-classical connections between

entangled qubits are the essential requirements for the various quantum computation

and communication protocols.

The very idea of quantum entanglement originated from a paper published by Albert

Einstein, Boris Podolsky, and Nathan Rosen in 1935 [28] about their discussion on the

completeness of the quantum mechanical description of reality. In their discussion,

they considered a two-particle system (Fig. 1.2) prepared in a state with a well-defined

relative position x1 − x2 and total momentum p1 + p2 at time t = 0. The particles

5
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Figure 1.2: The EPR thought experiment. A two-particle system is prepared in a state

with a well-defined relative position x1 − x2 and total momentum p1 + p2 at time t = 0.

The particles are then permitted to interact from time t = 0 to t = T . After a certain

amount of time t > T when the particles are sufficiently separated such that they are no

longer interacting, the position particle 1 is measured. From the measurement result, it is

possible to assign a definite value to the position of particle 2 without changing the state.

The same case can be repeated for the measurement of momentum. This contradiction

with quantum mechanics came to be known as the EPR paradox.

are then permitted to interact from time t = 0 to t = T . After a certain amount of

time t > T when the particles are sufficiently separated such that they are no longer

interacting, the position of particle 1 is measured. From the measurement result, it is

possible to assign a definite value to the position of particle 2. The same case can be

repeated for the measurement of momentum.

As the measurement of position or momentum of particle 1 will yield definite values

for both particles, these quantities are, according to their definition, elements of real-

ity. Since the two particles no longer interact with each other, the state of particle 2

is left unchanged by the measurement done on particle 1. This goes against quantum

mechanics where the two operators of position and momentum do not commute. Mea-

surement of the position of a particle will inadvertently change the state of the particle

in such a way that it destroys all knowledge of the momentum, vice versa. This con-

tradiction, which came to be known as the EPR paradox, forced them to conclude that

the quantum mechanical description of physical reality given by wave functions is not

complete.

For a complete description, they hypothesized that there are variables that cor-

respond to all the elements of reality, giving rise to phenomenon of non-commuting

6
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Figure 1.3: The EPR-Bohm thought experiment. An alternative version of the EPR

experiment proposed by David Bohm in 1951. In the experiment, the decay of a neutral

π meson act as a source of electrons and positrons which are entangled in their spins.

Spin measurement of either the electron or positron in any arbitrary direction ~a, ~b, or ~c

will have equal probability of yielding spin-up and spin-down. However, when comparing

the results of the spin of both particle measured in the same direction, they show perfect

anti-correlation.

quantum observables and the seemingly nonlocal effect that the measurement on one

particle has on the state of the other. Such a theory is called local hidden variables

(LHV) theory. It is only until later in the same year that Erwin Schrödinger used

the term ’entanglement’ to describe this kind of non-classical connection between the

particles (an English translation of the original 1935 paper in German can be found

in [29]).

In 1951 David Bohm came up with an alternative version of the EPR thought

experiment [30] based on electron spins. This came to be known as the EPR-Bohm

(EPRB) experiment. In the thought experiment (Fig. 1.3), he considered a source of

electron and positron from the decay of a neutral π meson:

π0 → e− + e+. (1.2)

As the pion has zero spin, by conservation of angular momentum, the electron and

positron are in a singlet configuration described by

|Ψ−〉 =
1√
2

(| ↑e−↓e+〉 − | ↓e−↑e+〉) . (1.3)

Spin measurement of either the electron or positron in any arbitrary direction ~a,
~b, or ~c will have equal probability of yielding spin-up and spin-down. However, when

comparing the results of the spin of both particles measured in the same direction, they

7



1.1 Qubit, The Quantum Mechanical Bit

show perfect anti-correlation. Such a two-particle system is said to be in an entangled

state. The state of such a system as described by Eq. 1.3 can no longer be factorized

into product of the two individual state.

Based on the Bohm experiment, John S. Bell came up with the Bell inequality [31]

in 1987 which allows the prediction of quantum mechanics and LHV theories to be

distinguished. It is derived based on arguments about measurement probabilities that

result from classical correlations alone and imposes an upper limit for it. Quantum

mechanics which can lead to stronger correlations will violate this limit. The original

form of the Bell inequality is written as

|P (~a,~b) − P (~a,~c)| ≤ 1 + P (~b,~c), (1.4)

where ~a, ~b, and ~c are the direction of the spin measurements shown in Fig. 1.3. P (~a,~b)

is the average value product of the spins measured in direction ~a and ~b, respectively.

The measurement results will violate the Bell inequality only for certain systems when

there is quantum entanglement between the particles.

In 1969 John F. Clauser, Micheal A. Horne, Abner Shimony, and Richard A. Holt

rederived Bell inequality in a form that is no longer restricted to experiments where

the measurement results only have two possible outcomes. This inequality later came

to be known as the CHSH inequality [32]. It includes an experimentally determinable

parameter S which is defined by

S = E(θ1, θ2)−E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2). (1.5)

The correlation function E(θ1, θ2) for measurements with only two possible outcomes

as in the case of Fig. 1.3 is given by

E(θ1, θ2) = P (↑↑ |θ1, θ2) + P (↓↓ |θ1, θ2) − P (↑↓ |θ1, θ2) − P (↓↑ |θ1, θ2), (1.6)

where P (↑↑ |θ1, θ2) is the probability of obtaining spin-up for both particles with de-

tectors orientated at angle θ1 and θ2, respectively.

For classical correlation, the parameter S will take values |S| ≤ 2. The stronger

quantum correlation will result in the violation of this inequality. Thus the parameter

S can be used to quantify whether there is entanglement in a system above the limit

expected from classical correlations alone.

8



1.1 Qubit, The Quantum Mechanical Bit

It should be noted that due to the model on which the CHSH inequality is based,

it is only applicable to bipartite systems containing even numbers of particles, i.e the

particles are distributed evenly between two modes. A description of a special case of a

Bell inequality for three particles can be found in [33]. However, the CHSH inequality

can be extended to system with a larger even number of particles. Such systems are

equivalent to the two-particle system but with more than two measurement outcomes.

I will revisit this in more detail when I present an experiment to violate the spin-1

(three-level system) CHSH inequality in Chapter 5.

In the early 1980s Alain Aspect et al. conducted a series of experiments [3, 34, 35]

aimed at violating the Bell inequality. In their experimental setup (Fig. 1.4), the

polarization-entangled photons are generated via radiative atomic cascade of calcium.

The photons then pass through polarizer (Pol), consisting of glass plates stacked at

Brewster angle, which are detected by photomultiplier tubes (PM). A combination of a

time-to-amplitude converter (T.A.C.) and a coincidence circuit detect photons arriving

with 19 ns of each other. With the setup, they observed a violation of the Bell inequality

by up to 9 standard deviations.

From that point on, there have been numerous realizations of the Bohm-type ex-

periment using various entangled quantum systems. Currently, the polarization degree

of freedom of the photon is by far the most commonly used physical property to en-

code the qubit. In the Aspect experiments, these polarization-entangled photons are

generated by the atomic cascade of calcium. This has been replaced by the process of

spontaneous parametric down-conversion (SPDC) in non-linear optical media for the

generation of entangled photons in modern experiments. For the first part of Chapter 2.

I will touch briefly on the theory of SPDC and what are some of the ways where the

process can be used to generate entangled photons in experiments. In the second part

of Chapter 2, I will describe in detail, a photon pair source using traditional type-II

phase matching in a crossed-ring configuration [5] and its characterization.

9



1.1 Qubit, The Quantum Mechanical Bit

Figure 1.4: The experimental setup used by Alain Aspect et al. in the early 1980s to

violate the Bell inequality. The polarization-entangled photons are generated via radiative

atomic cascade of calcium. The photons then pass through polarizer (Pol), consisting of

glass plates stacked at Brewster angle, to be detected by photomultiplier tubes (PM). A

combination of a time-to-amplitude converter (T.A.C.) and a coincidence circuit detect

photons arriving with 19 ns of each other. With the setup, they observed a violation of the

Bell inequality by up to 9 standard deviations. (Figure adapted from [3])

10



1.2 Qubits in Applications of Quantum Information and Computation

1.2 Qubits in Applications of Quantum Information and

Computation

The three quantum mechanical behaviors of non-cloneability, superposition, and en-

tanglement exhibited by qubits form the basis of what makes their applications in

quantum information and quantum computation possible. For the rest of this sec-

tion, I will be presenting some of these applications with emphasis on systems utilizing

photonic qubits.

1.2.1 Quantum Key Distribution

Some of the first theoretical proposals involving the use of photonic qubits that see

implementation are in the field of quantum key distribution (QKD). There are a num-

ber of QKD protocols available∗ [36, 37, 38, 39, 40] of which two of them [36, 37] can

be considered as milestones in the development of this field. The first of such pro-

tocols is proposed by Charles H. Bennett and Gilles Brassard in 1984 [36]. It later

came to be known simply as BB84. BB84 uses the polarization of single photons to

distribute keys unidirectionally from one party to another securely. It relies on the fact

that any attempt to eavesdrop on the quantum channel by measuring the polarization

states of the distributed photons will introduce detectable errors in the final key. No-

cloning theorem prevents the eavesdropper from ever making prefect multiple copies

of the distributed photons which he can use in principle to determine the polarization

state of the photons without being detected. Due to the lack of a truly single photon

source, BB84 has up till now been implemented with weak coherent pulses in various

experiments [4, 41] and even in commercial QKD devices.†

While BB84 uses single photons to distribute keys, the protocol proposed by Ar-

tur K. Ekert in 1991 [37] makes use of polarization-entangled photons pairs. In this

protocol, which came to be known as E91, polarization-entangled photons from a pair

source is shared by two parties to distribute keys. Any attempt by the eavesdropper to

measure the polarization state of the distributed photon will result in the disentangling

of the two photons. To ensure that this is not the case, a Bell inequality measurement
∗The five QKD protocols given here are BB84, E91, DPS, SARG04, and COW, respectively.
†Currently there are two companies, idQuantique and MagiQ Technologies, offering commercial

QKD devices.
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1.2 Qubits in Applications of Quantum Information and Computation

is conducted in parallel with the key distribution as a test of how secure is the quantum

channel. This protocol, if operating in the device-independent scenario [42], in princi-

ple allows two parties distributing the key to use any pair source that violates the Bell

inequality even though they may not be in control of the entangled source itself. In

BB84 one party encodes the key in the polarization state of photons and distributed

them to the other party. This is different from entanglement-based protocols like E91

where the entangled polarization state of the photon pair consists of a balanced linear

supposition of two polarization combinations. Measurement by either parties will yield

a random result of ”1” or ”0” thus giving rise to a truly random key. An experimental

implementation of the protocol can be found in [43].

1.2.2 Quantum Algorithms

Quantum algorithms are designed to exploit the parallelism made possible by the linear

superposition of basis qubit states to speed up certain computation tasks over classical

computers. The first of such algorithms is proposed by David E. Deutsch in 1985 [44].

The Deutsch algorithm evaluates a binary function f(x) that act on a one bit binary

number. The function f(x) is considered constant if f(0) = f(1) and balanced if

f(0) 6= f(1). On a classical computer, it will take a minimum of two evaluations of

the function f(x) in order to obtain f(0) and f(1). However, on a quantum computer

running Deutsch algorithm, it will only take one such evaluation. This is due to the

fact that for quantum algorithms such as the Deutsch algorithm, it is possible to input

a linear superposition of basis qubit states like Eq. 1.1. All these input combinations

get evaluated in parallel and suitable measurements at the end of the evaluation are

made to obtain the result. A general version of the Deutsch algorithm for an N -bit

function is found in [45].

The next quantum algorithm, proposed by Peter Shor in 1994 [14], sparked off huge

interest in the field due to the serious implication it has on the security of commercial

and private communications. One of the strongest classical encryption scheme available

is the RSA encryption [46]. It is based on the fact that the factorization of the product

of two large prime numbers is much more computationally intensive than the product

of the two prime numbers themselves. Classical computers will take on average N2N

operations to decipher a key of N bits. Even a modest key of N = 128 bit long is well
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1.2 Qubits in Applications of Quantum Information and Computation

beyond the capability of current computer technology to decipher. By contrast a quan-

tum computer running Shor’s algorithm will only take on average N2 operations [47].

It should be noted that the number of bits quantum computers need to operate on in

order to be useful is still considerably larger than anything that is currently experimen-

tally feasible. The latest experimental efforts manage to demonstrate the factor of 15

are 3 and 5 with four photonic qubits [48, 49].

Another prominent quantum algorithm is proposed by Lov K. Grover in 1996 [15].

The Grover’s algorithm is often termed as a quantum search algorithm. However, a

more accurate description of the function of the algorithm is as an inverting algorithm.

The algorithm have the functionality of a search algorithm as the inversion of the

probability amplitude only happens for basis state with the matching search criterion.

Typically on a classical computer it will take on average N
2 steps to search through a

database with N entries. Grover’s algorithm improves that by requiring only on av-

erage
√

N operations [47] to search though the same database. The algorithm works

on the fact that the unitary operator that does the inversion operate on all the basis

states in the linear superposition. Successive call of the Grover algorithm increases the

probability that the system is in the solution state. When the probability is within tol-

erance, the iteration is stopped. There have been a number of experimental realization

of the algorithm with qubit pairs [50, 51].

1.2.3 Quantum Computation and Quantum Communication

In classical computing, no matter how complex an information processing operation is,

it can be broken down into the action of a specific combination of simple binary logic

gates such as the NOT or NAND gates. These gates operate either on one or two bits

at a time. The same is also true for computing in the quantum regime. The three most

important single-qubit gates are the NOT, Z, and Hadamard gate. In terms of a polar-

ization qubit, these gate operations correspond to certain rotations in the Bloch sphere∗.

For a two-qubit gate, a control and target qubit are taken as inputs. An unitary opera-

tion is then performed on the target qubit depending on the state of the control qubit.

By far the simplest of such two-qubit gates is the controlled-NOT (CNOT) gate. Cur-
∗A Bloch sphere is a geometrical representation of the pure state space of a two-level quantum

mechanical system.
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1.2 Qubits in Applications of Quantum Information and Computation

rent research effort in this area focuses on the improvement of the performance of these

quantum gates and on the implementation various schemes [52, 53, 54] that will make

their operation fault-tolerant. These experimental implementations [55, 56, 57] require

high quality polarization-entangled multi-photon states in order to achieve high fidelity

to their expected theoretical operation.

For data communications between classical computers in a network, repeaters are

sometimes used to boost the data signal as they become weaker during propagation.

The quantum repeater serves an analogous function for the transmission quantum in-

formation. For example, in a long optical fiber-based cryptographic link, repeaters can

be placed at regular intervals to ensure that there is no significant increase in the final

key error rate due to losses in the fiber or decoherence. An intricate part of such a

quantum repeater is an entanglement swapping or essentially quantum teleportation∗

operation. There have been numerous experimental studies on entanglement swap-

ping [58, 59, 60, 61]. The photon pairs in these experiments are often generated by

down-conversion of ultrafast optical pulses [62] so that they are tightly localized in time,

giving rise to a higher probability of swapping events. As with the previous example,

the fidelity of the operation is highly dependence on the entanglement quality of the

multi-photon state mediating it.

1.2.4 Fundamental Tests of Quantum Physics

Apart from direct applications that use these photonic qubit states, they can also be

used to conduct various fundamental tests of quantum physics.

One example where these photonic qubit states can be used is in the study of the

optimality of various quantum tomography† schemes [13, 63, 64]. In experiments [63,

65, 66], state tomography is often used to characterize various systems involving single

photon or entangled-photon pair state. However, little is done to establish the relative

performance of various tomography schemes especially for photonic states with more

than two photons. Findings from these experimental studies will help us develop more
∗Quantum teleportation, or entanglement-assisted teleportation, is a technique used to transfer

information on a quantum level, usually from one particle (or series of particles) to another particle (or

series of particles) in another location via quantum entanglement.
†Quantum tomography is the practical estimation of quantum states through a fixed set of projective

measurement on a large number of copies.
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efficient quantum tomography schemes for use in various diagnostic procedures and

even in tomography-based QKD protocols [67, 68].

These photonic qubit states can also be used to characterize the behaviors of various

entanglement witnesses. Entanglement witnesses like Bell inequality [31] or CHSH

inequality [32] are formulated to distinguish an entangled state from a separable one.

The degree of violation of these inequalities depends heavily not only on the quantum

state being tested and the amount of noise present, but also how the inequalities are

formulated. Since then, the trend in this area of research has been the development

of more generalized Bell inequalities [11, 69, 70, 71] that can be applied to quantum

systems of arbitrarily high dimensionality and at the same time more resistant to noise.

1.3 Motivations For a High Quality Polarization-Entangled

Multi-Photon Source

Research in the field of quantum information and quantum computation are beginning

to branch into areas where experiments need to generate and manipulate multi-photon

states with more than two photons. This is mainly driven by the needs of various

applications where the benefits of moving over to larger quantum systems become

significant.

One commonly implemented way of generating such entangled multi-photon states

is by the SPDC of ultrafast optical pulses. Due to higher instantaneous power of

these ultrafast optical pulses as compared to continuous-wave (cw) pump light, the

higher-order processes in SPDC by which these multi-photon states are generated can

be accessed. However, the inherently broad bandwidth of these ultrafast optical pump

pulses brings with it a set of problems. The different dispersions encountered by the

down-converted components results in spectral distinguishability between them which

lowers the quality of polarization entanglement.∗ Thus in order to obtain a high quality

polarization-entangled multi-photon source, this issue must first be addressed.

Therefore in the following chapter, I will start by briefly explaining the theory be-
∗It should be noted that experiments involving SPDC processes pumped by ultrafast optical pulses

in order to produce photon pairs that are tightly localization in time [6, 72] are also susceptible to this

problem of spectral distinguishability.
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hind SPDC before going in depth into various aspects of the setting up of a polarization-

entangled four-photon source. This is followed by an experimental study of the spectral

distinguishability in the down-converted components induced by the broadband pump

in Chapter 3. Details on the implementation and experimental study into the spectral

compensation scheme first proposed and implemented by Kim et al. [1] are presented

in Chapter 4. In Chapter 5, I will present an experiment violating the spin-1 CHSH

inequality before ending with some final remarks about the remaining issues limiting

the entanglement quality in Chapter 6.
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Chapter 2

Generation and Characterization

of Polarization-Entangled

Photons from Pulsed SPDC

The very first experiment involving an entangled state (Fig. 2.1) was implemented by

C. A. Kocher and E. D. Commins in 1967 [73]. It used the process of atomic cascade in

Ca (Fig. 2.2) to generate correlated photon pairs. In this experiment, ultraviolet light

from a H2 arc lamp is used to excite a beam of Ca atoms from the ground state 4s2 1S0

to the excited state 3d4p 1P1. Through spontaneous decay, the Ca atoms then drop to

the desired 4p2 1S0 level. Each Ca atom then de-excites via the 4p4s 1P1 level back to

the ground state producing a 551.3 nm and 422.7 nm photon in the process. As there

is no net change in the total angular momentum J of the atom in the initial and final

state, the photon pairs carry no net angular momentum. This, coupled with the fact

that both the initial and final levels have the same even parity means that the emitted

photons in each pair will exhibit polarization correlation. The experiment successfully

showed the polarization correlation by recording the coincidence counts between the

photons for various coincidence time windows∗ behind parallel and crossed polarizers.

In the early 1980s using similar techniques, Alain Aspect et al. [3, 34, 35] successfully
∗The coincidence time window is defined as the time after a single detection event within which a

second single detection event can be considered coincident with it.
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Figure 2.1: The experimental setup used by Kocher et al. in 1967 to generate polarization-

correlated photon pairs. Ultraviolet light from a H2 arc lamp excites a beam of Ca atoms.

Polarization-correlated photon pairs are generated when the excited Ca atoms decay back

to the ground state via an intermediate level (Fig. 2.2). These photon pairs then pass

through linear polarizers followed by narrow-band interference filters to be detected by

photomultiplier tubes. (Figure adapted from [73].)

implemented a source of polarization-entangled photon pairs that is able to violate the

Bell inequality by up to 9 standard deviations.

In a parallel development, significant progress has been made in the field of non-

linear optics. This resulted in the first experimental implementation of a photon pair

source (Fig. 2.3) based on the nonlinear optical effect of spontaneous parametric down-

conversion (SPDC) by D. C. Burnham and D. L. Weinberg [2] in 1970. SPDC is still

routinely used in experiments to generate photon pairs that are entangled in various

degrees of freedom up to this very day.

These experiments normally use this process in two different regimes depending

on the properties of the pump source. With continuous-wave (cw) pump light, bright

sources of photon pairs in maximally entangled states with high fidelity in various

degrees of freedom [20, 22] can be implemented. These sources are suitable for various

applications such as quantum key distribution [74] and fundamental tests of quantum

physics (e.g. tests of Leggett models [8, 75]).

However, for applications where photon pairs need to exhibit tight localization
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2.1 Second-order Nonlinear Optical Phenomena
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Figure 2.2: The atomic cascade of Ca. Each Ca atom de-excites from the excited 4p2 1S0

level via the 4p4s 1P1 back to the ground state producing a 551.3 nm and 422.7 nm photon.

The emitted photon pair does not carry any net angular momentum as J = 0 for both

the initial and final states of the cascade. Coupled with the fact that both levels have the

same even parity, the photons in each pair will exhibit polarization correlation.

in time [6, 21, 72], or when more than one pair should be simultaneously gener-

ated [60, 62, 76], the SPDC process needs to be pump by short optical pulses. In

the following sections, I will begin by briefly describing the nonlinear optical effects of

second harmonic generation (SHG) and SPDC. Then I will detail the implementation a

of polarization-entangled multi-photon source followed by measurements used to assess

its quality of polarization entanglement.

2.1 Second-order Nonlinear Optical Phenomena

To understand the origin of the various second-order nonlinear optical phenomena, we

start by looking at the behaviors of the electrons and positively charged nuclei of the

atoms in a dielectric material when subjected to an electric field of a light wave. The

electric field causes a redistribution of the charges within the atoms, causing them to

be polarized. Each atom then acquires a small dipole moment that is aligned to the

direction of the applied electric field. In the regime where the applied electric field of

the light wave is weak, the response of the dielectric material is linear with the applied

electric field. This behavior can be written as

P ≈ ε0χE, (2.1)

where P is the electric polarization (dipole moment per unit volume) induced in the

dielectric, ε0 is the electric permittivity of free space, χ is the linear electric susceptibil-
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2.1 Second-order Nonlinear Optical Phenomena

Figure 2.3: The first photon pair source based on the process of SPDC was implemented

by Burnham et al. in 1970. An ADP crystal is pumped by a 325 nm beam from a He-

Cd laser. The ADP crystal is cut in such a way that the optical axis makes an angle of

52.4◦ with the normal of the faces to satisfy the condition of phase matching. The down-

converted photons then pass through a combination of spatial (iris) and spectral filtering

(spike filter consisting of a monochromator) to be detected with the photomultiplier (PM)

tubes. (Figure adapted from [2].)
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Figure 2.4: Feynman diagrams for second-order nonlinear processes. (a) Second har-

monic generation or frequency doubling. Two pump photons of the same frequency ω get

annihilated producing an output photon of frequency 2ω. (b) Down-conversion. A pump

photon of frequency ωp gets annihilated producing two photons at the signal and idler

frequencies wp and wi, respectively. The sum of the signal and idler frequencies wp and wi

is equal the pump photon frequency ωp.

ity, and E is the applied electric field. The susceptibility χ is related to the refractive

index of the dielectric material. For an isotropic medium, the susceptibility χ only has

one value. However, for a crystalline material, the susceptibility χ is a tensor quantity

related to the symmetry of the crystal structure.

When large electric field amplitudes like those found in the output of some lasers are

applied, higher-order contributions become significant. The linear behavior described

by Eq. 2.1 needs to be modified with additional terms

Pi = ε0χ
(1)
ij Ej + ε0χ

(2)
ijkEjEk + ... + ε0χ

(n)
ijk...lEjEk...El, (2.2)

where i, j, ..., k∈ (1, 2, 3) and χ(n) is the nth-order susceptibility. For the purpose of this

thesis, we will be focusing on optical effects induced by the second-order susceptibility

χ(2). The susceptibility χ(2) is responsible for various three-wave mixing processes∗.

The two processes of particular interest to us (Fig. 2.4) are second harmonic generation

(SHG) or frequency doubling and spontaneous parametric down-conversion (SPDC).

2.1.1 Second Harmonic Generation (SHG)

In the process of SHG (Fig. 2.4a), two pump photons of the same frequency ω get

annihilated producing an output photon of frequency 2ω. This is a special case of the

process of sum frequency mixing where the two pump photons can be at different fre-

quencies and the output photon has a frequency equal to the sum of the two frequencies

of the pump photons.
∗A brief introduction of the various three-wave mixing processes can be found in [47].
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2.1 Second-order Nonlinear Optical Phenomena

The process of SHG essentially can be understood as the modulation of the refractive

index of the dielectric medium by an incoming electric field of a light wave. This

modulation is coupled to the electric field through the susceptibility χ(2). The effect of

this modulation in the material is to create sidebands of various frequencies which are

the sum and differences of the pump frequencies.

2.1.2 Spontaneous Parametric Down-conversion (SPDC)

In the process of SPDC (Fig. 2.4b), a pump photon of frequency ωp gets annihilated

producing a signal and idler∗ photon at frequency ws and wi, respectively. The term

parametric in SPDC means that the down-conversion medium is left unchanged by the

process. Thus, this necessarily means that a series of conservation laws must satisfied

by the pump, signal, and idler photons. The conservation laws [78] are

ωp = ωs + ωi, (2.3)
−→
kp = −→

ks + −→
ki , (2.4)

where Eq. 2.3 and Eq. 2.4 are known as the frequency matching condition and phase

matching condition, respectively. The wavevectors in Eq. 2.4 which are in the form −→
k j

can be expressed as
−→
kj =

nj(ωj)ωj

c
ŝj , (2.5)

where nj(ωj) is a dispersive refractive index of a material dependent on ωj , ŝj is the

unit vector pointing in the −→kj direction, and c is the speed of light. This dependence

of the wavevector −→k j on the refractive index nj(ωj) allows us to rewrite Eq. 2.4 into

np(ωp)ωpŝp = ns(ωs)ωsŝs + ni(ωi)ωiŝi. (2.6)

If we now consider the special case for an isotropic medium, i.e. np = ns = ni = n and

degenerate down-conversion, i.e. ωs = ωi = ωp

2 , the minimal magnitude of |−→ks| + |−→ki |
that can still satisfy the condition of momentum conservation (Eq. 2.4) occurs when

the down-converted light is collinear with that of the pump. The expression in Eq. 2.6

then reduces to

n(ωp) = n(
ωp

2
). (2.7)

∗This naming convention has its origin in early research on optical parametric amplifiers [77] where

only one of the two output modes (signal) is useful. The unused mode is called the idler.
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Figure 2.5: Feynman diagram for a second-order down-conversion process. With high in-

tensity pump light there is higher probability where two pump photons get down-converted

into two pairs of photons in close temporal proximity.

Since the refractive index n for most dielectric materials decreases with increasing

frequency [77], both frequency and phase matching conditions cannot be simultaneously

satisfied in an isotopic medium. To overcome this, there is a need for two channels into

which the down-conversion can occur. This can be achieved in a birefringent medium,

β-Barium-Borate (BBO) in our case, where there are two different refractive indices

no and ne for the ordinarily (o) and extraordinarily∗ (e) polarized light, respectively.

The phase matching condition (Eq. 2.6) with a e-polarized pump can now be written

in terms of no and ne

ne(ωp)ωpŝp = ne(ωe)ωeŝe + no(ωo)ωoŝo. (2.8)

The down-conversion now result in photon pairs, each of which consists of an o and

e-polarized photon.

Second-order down-conversion process (Fig. 2.5) in which two pump photons get

down-converted into two pairs of photons in close temporal proximity can also occur.

This is one of the main process by which multi-photon entangled states are generated.

The rate of this double pair production increases quadratically with pump power [21].

This is in contrast with the pair production rate which increases linearly with the

pump power [21]. Thus, the use of high intensity pump light will result in a higher

probability for the generation of double pairs. This is the main justification for our use

of femtosecond optical pulses, which have high instantaneous intensity, for pumping

the down-conversion in the later experiments.

However, there is a major drawback when it comes to implementing a down-

conversion source in such a pulsed regime. Due to the difference in no and ne, the
∗The term ”ordinary” and ”extraoridnary” refers to the slow and fast axis of a birefringent crystal,

respectively.

23



2.2 Generation of Polarization-Entangled Photons with SPDC

o and e-polarized down-converted light will experience different amount of dispersion

in the birefringent medium. This induces a difference in the bandwidth of the spectral

distributions of the o and e-polarized light. As we will see in Chapter 3, this spectral

difference between the components of the down-converted light is ultimately respon-

sible for the degraded polarization entanglement quality often associated with such a

pulsed configuration.

2.2 Generation of Polarization-Entangled Photons with

SPDC

There are two of types of phase matching, type-I and type-II, differentiated by whether

the signal and idler photon within each pair have the same or orthogonal polarization.

For the purpose of this thesis, we will be focusing on the specific case of type-II phase

matching (Fig. 2.6). In type-II phase matching, an e-polarized pump photon gets

down-converted into a pair of o and e-polarized photons of lower energy. The o and e-

polarized photons are emitted from the down-conversion crystal in two respective cones

which are non-concentric with either the pump beam or each other. In our setup, the

down-conversion crystal is oriented in such a way that the extraordinary axis coincides

with the vertical (V) polarization, while the ordinary axis coincides with the horizontal

(H) polarization. I will denote these two cases as Ve and Ho, respectively.

In the previous section, I have indicated that the difference in the dispersion experi-

enced by the o and e-polarized light will induce a difference in their spectral bandwidth.

Thus, the label o and e now serve to describe the spectral bandwidth of down-converted

photons instead. It should be noted that since the spectral bandwidths of the down-

converted photons are independent of their polarizations, the label o and e will be left

unchange by any rotation operation. Any rotation transformation will only affect the

polarization label H and V .

For polarization-entangled photon pairs, we need two possible decay paths given by

the polarization combinations |H〉|V 〉 and |V 〉|H〉. This situation can only be found

at the two intersections of the e and o emission cones, which also define two spatial

modes 1 and 2. This is called a ”crossed-ring” configuration∗ [5, 81]. The quantum
∗Down-conversion setups can also be implemented in the ”beamlike” [79] and collinear [80] config-
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Figure 2.6: Type-II phase matched down-conversion. In type-II phase matching, an e-

polarized pump photon gets down-converted into a pair of o and e-polarized photons of

lower energy. The o and e-polarized photons are emitted from the down-conversion crystal

in two respective cones which are non-concentric with either the pump beam or each other.

In our setup, the down-conversion crystal is oriented in such a way that the extraordinary

axis coincides with the vertical (V) polarization, while the ordinary axis coincides with the

horizontal (H) polarization. These two cases are denoted as Ve and Ho, respectively.

mechanical creation operator for the two-photon polarization state describing such a

situation can be written as

|Ψ〉 = C(a†Ho
b†Ve

+ eiδa†Ve
b†Ho

)|0〉, (2.9)

where C is the normalization constant, a†i and b†i
∗ are the creation operators of a photon

with polarization state i in spatial mode 1 and 2, respectively. After normalization, the

following polarization-entangled two-photon state is obtained

|Ψ〉 =
1√
2

(
|Ho〉1|Ve〉2 + eiδ|Ve〉1|Ho〉2

)
. (2.10)

For the second-order down-conversion process, the creation operator is simply the

square of the operator in Eq. 2.9

|Ψ〉(2) = C2(a†Ho
b†Ve

+ eiδa†Ve
b†Ho

)2|0〉. (2.11)

After normalization, the following four-photon polarization state for the second-order

uration.
∗Such a representation of the number of photons with a specific polarization in each spatial mode

is called a Fock state. The creation operator a† obeys the relation, a†|n〉 =
√

n + 1|n + 1〉.
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down-conversion is obtained

|Ψ〉(2) =
1√
3
(|HoHo〉1|VeVe〉2 + eiδ|HoVe〉1|HoVe〉2 + ei2δ|VeVe〉1|HoHo〉2). (2.12)

2.2.1 Compensation of Temporal and Transverse Walkoffs

In actuality, the photon pairs at the intersection of the o and e emission cone (Fig. 2.6)

are not in a pure polarization-entangled state (Eq. 2.10). The different refractive index

no and ne of the birefringent crystal result in a difference in the propagation velocity

of the o and e wave in the crystal. This gives rise to a relative delay between the

arrival time of the o and e-polarized photon in each pair that is dependent on the site

in the crystal where they are created. In one extreme case (Fig. 2.7a), the photon pairs

are created at the face of the crystal incident to the pump beam. This give rise to

the maximal time difference between the arrival time of the o and e-polarized photon

at the detectors. In the other extreme (Fig. 2.7b), the photon pairs are created at

the face where the pump exits the crystal. Thus, there is no relative delay between

the o and e-polarized photons. Only the photon pair combinations |Ho〉1|Ve〉2 and

|Ve〉1|Ho〉2 created here are truly indistinguishable and exist in a pure polarization state.

However, when the photon pairs from all the creation sites are included, a mixed state is

produced resulting in a lower polarization entanglement quality. It should be noted that

this problem of temporal distinguishability between the photon pairs is not eliminated

simply by having a coincidence time window to be greater than the maximal relative

delay expected. This is due to the fact that entanglement, in the context used here,

is a process involving two-photon interference between the two Feynman alternatives

creating the |Ho〉1|Ve〉2 and |Ve〉1|Ho〉2 combination. Thus, any distinguishability of

the two decay paths in degrees of freedom that are not monitored or resolved will still

manifest itself in the result of certain measurement.

A common way to eliminate this problem [5] involves the use of a combination of

half-wave plates (λ/2) and compensation crystals (CC) (Fig. 2.7). The photons first

pass through a λ/2 which rotates their polarization by 90◦. This is followed by CC which

are identical to the crystal used for down-conversion except with half the thickness. The

optical axis (OA) of both CC are aligned in the same direction as that of the down-

conversion crystal. In the first extreme case (Fig. 2.7a), the CC will halve the relative

delay between the photons in the pair. In the second extreme case (Fig. 2.7b), the CC
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Figure 2.7: Compensation of temporal walkoff. The photons first pass through a λ/2

which rotates their polarization by 90◦. This is followed by CC which are identical to the

crystal used for down-conversion except with half the thickness. The optical axis (OA)

of both CC are aligned in the same direction as that of the down-conversion crystal. In

the first extreme case (a), the CC will halve the relative delay between the photons in

the pair. In the second extreme case (b), the CC will induce a relative delay equal to

that in the previous case between the photons in the pair. Thus, the photons pairs from

these two cases are indistinguishable in the temporal degree of freedom, resulting in a pure

polarization-entangled state. This is also true for all complementary creation sites in the

crystal symmetric about the center of the crystal. For photon pairs created right in the

center of the down-conversion crystal, the relative delay is just eliminated by the CC.

27



2.2 Generation of Polarization-Entangled Photons with SPDC

will induce a relative delay equal to that in the previous case between the photons in the

pair. Thus, the photons pairs from these two cases are indistinguishable in the temporal

degree of freedom, resulting in a pure polarization-entangled state. This is also true

for all complementary creation sites in the crystal symmetric about the center of the

crystal. For photon pairs created right in the center of the down-conversion crystal,

the relative delay is just eliminated by the CC. The compensation stage involves a

rotation of the polarization of the down-converted photons by 90◦. Thus, the two and

four-photon polarization state in Eq. 2.10 and Eq. 2.12 is now rewritten as

|Ψ〉 =
1√
2

(
|He〉1|Vo〉2 + eiδ|Vo〉1|He〉2

)
, (2.13)

|Ψ〉(2) =
1√
3
(|HeHe〉1|VoVo〉2 + eiδ|HeVo〉1|HeVo〉2 + ei2δ|VoVo〉1|HeHe〉2), (2.14)

respectively.

Apart from eliminating the problem of temporal distinguishability, the CC are also

used to compensate for the transverse walkoff (Fig. 2.8) between the down-converted

o and e-polarized light. To satisfy the phase matching condition in Eq. 2.4, the axis

perpendicular to both the fast and slow axis of the down-conversion crystal is usually

titled at an vertical angle to the pump beam. This results in a slightly different profile

for the o and e emission cones. At each of the intersection of the emission cones, this

will appear as an elongated spread of the o-polarized photon distribution as compared

to that of the e-polarized photons (Fig. 2.8). After passing through the λ/2, the

polarization of the photons are rotated by 90◦. The CC, which are orientated such

that their OA are parallel to that of the down-conversion crystal, then cause a shift

in the path of the down-converted light such that the center for the distribution of

the o and e-polarized photons coincide. This provide better overlap between the two

distributions and thus results in a better spatial mode for collection into single mode

optical fibers.

The vertical angle between the fast axis of the CC and the down-converted light

beam can be adjusted by tilting the CC. This changes the relative phase between the

He and Vo photons in each of the spatial mode. Therefore, the CC also allow us to

adjust the free phase δ (Eq. 2.10) so that different entangled two-photon polarization

state can be generated. When the free phase δ is adjusted to δ = π, the two and
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Figure 2.8: Compensation of transverse walkoff. At each of the intersection of the emis-

sion cones, there is an elongated spread of the o-polarized photons as compared to the

e-polarized photons (Fig. 2.8). After passing through the λ/2, the polarization of the pho-

tons are rotated by 90◦. The CC, which are orientated such that their OA are parallel to

that of the down-conversion crystal, then cause a shift in the path of the down-converted

light such that the center for the distribution of the o and e-polarized photons coincide.

This provide better overlap between the two distributions and thus results in a better

spatial mode for collection into single mode optical fibers.

four-photon polarization state in Eq. 2.13 and Eq. 2.14 are rewritten as

|Ψ−〉 =
1√
2

(|He〉1|Vo〉2 − |Vo〉1|He〉2) , (2.15)

|Ψ−〉(2) =
1√
3
(|HeHe〉1|VoVo〉2 − |HeVo〉1|HeVo〉2 + |VoVo〉1|HeHe〉2), (2.16)

respectively.

2.3 Characterization of Polarization-Entangled Photons

There are a number of measures for entanglement quality [82, 83] of quantum states.

These measures often require a full characterization of the quantum state of the system

being investigated to establish those quantities. The sometimes experimentally compli-

cated or numerous measurements required for such a full characterization of a quantum

system coupled with need for significant post-processing of the acquired data means

that such measures may not always be possible or practical. For example, to optimize

the alignment of the type of down-conversion source mentioned in Section 2.2, one

may need to perform numerous iterations of making small adjustments to the source

followed by monitoring the quality of polarization-entanglement between the photons

under these alignments. In such a case a full characterization of the source may not
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2.3 Characterization of Polarization-Entangled Photons

be practical. What is needed here is an experimentally simple and fast measurement

that can be carried out to gain an idea of the quality of entanglement between photons

generated by the source. A common method that fits these criteria are the visibility

measurements. These measurements are normally carried out in the H/V and +45◦/-

45◦ bases. We will be relying on these measurement of visibilities to characterize our

source polarization-entangled photons in the coming chapters.

2.3.1 Derivation of Joint Detection Probability for Polarization-Enta-

ngled States

Various methods used for characterizing polarization-entangled sources, e.g. visibility

measurements, quantum state tomography [13, 63, 64], and violation of Bell inequali-

ties [11, 31, 32], involve the joint detection of the down-converted photons after they

have been projected onto various polarization bases. In order for us to better inter-

pret the results from such measurements and to fit them to the available theoretical

models, we need to derive analytical expressions describing the expected joint detection

probability for any measurement basis given various polarization-entangled states.

For the purpose of this thesis, we will be presenting only a few of the cases where the

joint detection probabilities of measurements involve projection of the down-converted

photons onto linear polarization bases. Such projections can be implemented in a polar-

ization analyzer consisting of a rotatable half-wave plate (λ/2) followed by a polarizing

beam splitter (PBS). It should be noted that a rotation of the λ/2 by an angle α/2 will

cause an effective rotation of the basis by angle α. For simplicity, for the rest of this

thesis, we will only refer to the effective rotation of the measurement basis.

We begin by considering the case of single-photons. In the Jones vector notation∗,

the two single-photon basis polarization states |H〉 and |V 〉 are given by the column

vectors

|H〉 =
(

1
0

)
, |V 〉 =

(
0
1

)
, (2.17)

respectively. A rotation matrix R(α), describing a clockwise rotation of angle α is
∗It should be noted that the Jones vector notation is only valid for pure polarization states. For

mixed polarization states, the Stokes vector notation needs to be applied.

30



2.3 Characterization of Polarization-Entangled Photons

represented by the transformation matrix

R(α) =
(

cosα − sinα
sinα cosα

)
. (2.18)

Thus, to detect a photon linearly polarized in a direction at a clockwise angle α from

horizontal, which we denoted as |H〉′, through a polarization filter transmitting |H〉,
a rotation of angle −α must first be performed on |H〉′. The analyzer now have the

measurement basis

R(−α)|H〉 =
(

cosα
− sinα

)
. (2.19)

The probability of detection given any arbitrary pure polarization state |ψ〉 with this

configuration is then given by

P (H|α) = |〈H|R(−α)|ψ〉|2 (2.20)

This can be easily extended to the two-photon polarization states. In this increased

polarization space, there are four two-photon polarization bases given by |H〉1|H〉2,
|H〉1|V 〉2, |V 〉1|H〉2, and |V 〉1|V 〉2. The Jones vector notation describing the basis

state |H〉1|H〉2 for example, is given by

|H〉1|H〉1 =
(

1
0

)
⊗

(
1
0

)
=




1
0
0
0


 (2.21)

We can define a two-photon transformation matrix written as

R(2)(α, β) = R(α)⊗R(β), (2.22)

where R(α) and R(β) are the transformation performed in spatial mode 1 and 2, re-

spectively. Thus, the joint detection probability of obtaining the measurement result

|H〉1|H〉2 with analyzer settings α and β, respectively for the input state |Ψ−〉 (Eq. 2.15)

is given by

P (H,H|α, β) = |〈H|1〈H|2R(−α,−β)|Ψ−〉|2

=
1
2

sin2(α− β). (2.23)

Applying the same procedure for the four-photon polarization states, we will obtain

sixteen polarization bases. In anticipation of the analyzer setup implemented for the
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2.3 Characterization of Polarization-Entangled Photons

violation of the spin-1 CHSH inequality presented in Chapter 5, we can define a four-

photon transformation matrix given by

R(4)(α, β) = R(α)⊗R(α)⊗R(β)⊗R(β), (2.24)

where the same transformation is applied to both photons in each of the two spatial

modes. Thus, the joint detection probability of obtaining the measurement result

|HH〉1|HH〉2 with analyzer settings α and β, respectively for the input state |Ψ−〉(2)

(Eq. 2.16) is given by

P (HH, HH|α, β) = |〈HH|1〈HH|2R(4)(−α,−β)|Ψ−〉(2)|2

=
1
3

sin4(α− β). (2.25)

2.3.2 Visibility Measurements in the H/V and +45◦/-45◦ Bases

To understand how visibilities in the H/V and +45◦/-45◦ bases are related to quality

of polarization entanglement, we start by considering one of the maximally entangled

Bell states

|Ψ−〉 =
1√
2

(|H〉1|V 〉2 − |V 〉1|H〉2) . (2.26)

Since the |Ψ−〉 state is rotationally invariant, it is left unchanged by a coordinate

transformation to the +45◦/-45◦ basis, i.e.

|Ψ−〉 =
1√
2

(|+〉1|−〉2 − |−〉1|+〉2) , (2.27)

where + and - denotes the +45◦ and -45◦ polarization, respectively.

The simplest definition of the visibilities measured in the H/V and +45◦/-45◦ bases,

denoted as VHV and V45 respectively, can be written as

VHV =
|CV H − CV V |
CV H + CV V

, (2.28)

V45 =
|C+− − C++|
C+− + C++

, (2.29)

where Cij is the number of coincidences obtained when the down-converted photons

in spatial mode 1 and 2 are projected onto polarization i and j, respectively. Thus, it

can seen for the |Ψ−〉 states in Eq. 2.26 and Eq. 2.27, both quantities VHV and V45 will

have the value of 1 as there is no contribution giving rise to coincidences for correlated

analyzer settings.

32



2.3 Characterization of Polarization-Entangled Photons

For a more realistic description of the polarization state of entangled photons gen-

erated from SPDC, noise contributions need to be included. Regardless of the cause

that is lowering the quality of polarization entanglement, they can be written as either

a colored noise (ρcolored) or white noise (ρwhite) contribution. These are given by

ρcolored =
1
2
(|H〉1|V 〉2〈H|1〈V |2 + |V 〉1|H〉2〈V |1〈H|2), (2.30)

ρwhite =
1
4
(|H〉1|H〉2〈H|1〈H|2 + |H〉1|V 〉2〈H|1〈V |2

+ |V 〉1|H〉2〈V |1〈H|2 + |V 〉1|V 〉2〈V |1〈V |2). (2.31)

The colored noise contribution ρcolored consists only of terms found in the pure state

|Ψ−〉 (Eq. 2.26) itself. The white noise contribution ρwhite consists of terms involving all

possible combination of coincidences between H and V -polarized photons. It should be

noted that the contributions from each of the terms in the Eq.2.30 and Eq.2.31 are not

equal in general. With the added noise, the system can now be described completely

by a density matrix ρ consisting of a contribution from the pure state |Ψ−〉 and a noise

contribution ρnoise

ρ = p|Ψ−〉〈Ψ−| + (1− p)ρnoise, (2.32)

where p gives the relative contribution between the pure state |Ψ−〉 and ρnoise, which

itself is a combination of ρcolored and ρwhite.

With colored noise contribution, it can be seen that VHV will still be 1 due to the

lack of a correlation term. However, with white noise contribution, VHV will be lowered

depending on the relative contribution p. This is due the presence of a correlation term

in the white noise. When viewed in the 45◦/-45◦ bases, both colored and white noise

in the H/V bases will be manifested as white noise

ρwhite =
1
4
(|+〉1|+〉2〈+|1〈+|2 + |+〉1|−〉2〈+|1〈−|2

+ |−〉1|+〉2〈−|1〈+|2 + |−〉1|−〉2〈−|1〈−|2). (2.33)

This means V45 will be lowered with either contribution from colored or white noise

in the H/V bases. Thus, to gain an idea of the type of noise present in a source of

polarization-entangled photons and in turn the quality of entanglement between them,

one needs to carry out measurement for both VHV and V45.

In the definition of visibility in Eq. 2.28 and Eq. 2.29, the coincidence counts at only

two settings of the analyzer, i.e. correlation and anti-correlation, are used to evaluate
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Figure 2.9: A typical polarization correlation measurement in the H/V and +45◦/− 45◦

bases. The bottom trace represents pair coincidences from consecutive pulses.

the visibility. For the actual visibility measurements VHV (V45), the down-converted

photon in one spatial mode is projected onto the V (+45◦) polarization while the other

is projected onto a full range of linear polarizations. A sinusoidal function is then fitted

to the trace of the recorded coincidences versus orientation of the analyzer. A typical

curve is shown in Fig. 2.9. From the maximum and minimum of the fitted curve, the

visibility can be obtained. As the visibility is now obtained by considering counts from

a range linear polarization, this makes the visibility less prone to random error due to

fluctuation in coincidence counts at each point. The orientation of the second analyzer

where we will observe maximal visibility is dependent on the relative contribution of

the decay paths. Thus, by scanning of the full range of linear polarizations, we can

always evaluate the maximal visibility associated with the state being investigated.

With the steps presented in the previous section, we are able to calculate the ex-

pected values for visibilities VHV and V45 for various relative contribution p between

the pure state |Ψ−〉 (Eq. 2.26) and ρnoise (Fig. 2.10). From Fig. 2.10 we can see that

for the case with colored noise contribution ρcolored, only visibility V45 varies linearly

with p while VHV remains consistently high. However, with contribution from white

noise ρwhite, both visibilities VHV and V45 changes linearly with p. This shows that V45

is a better measure of the polarization entanglement quality .
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Figure 2.10: With the steps presented in the previous section, we obtained the dependence

of VHV and V45 on various relative contribution p between the pure state |Ψ−〉 (Eq. 2.26)

and ρnoise. For the case with colored noise contribution ρcolored, only visibility V45 varies

linearly with p while VHV remains consistently high. However, with contribution from

white noise ρwhite, both visibilities VHV and V45 changes linearly with p. This shows that

V45 is a better measure of the polarization entanglement quality.
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Figure 2.11: Electronic setup used to record pair coincidences between consecutive pulses.

The signal from the passively quenched Silicon avalanche photodiodes (D1, D2) used to

register single photon events are duplicated. One copy of the signal gets delayed by 13 ns;

the period between output pulses from the femtosecond laser. Both non-delayed and de-

layed copies are then sent into a coincidence unit where all possible patterns of coincidences

between the four inputs within a coincidence window shorter than the repetition period

of the pump are recorded. Pair coincidences in the same pulse and between consecutive

pulses can then be extracted.

2.3.3 Estimation of Higher-Order Contribution from Two-Photon M-

easurement

Due to the high instantaneous power involved in the femtosecond-pumped down-conver-

sion, higher-order processes (mainly four-photon generation) become significant, and it

is important to quantify their contribution. When observing only two-fold coincidences,

this four-photon contribution will lead to uncorrelated events lowering the two-photon

visibilities.

To estimate this four-photon contribution, we record the pair coincidences between

consecutive pulses in the same run. This is done by the electronic setup shown in

Fig. 2.11. The signal from the passively quenched Silicon avalanche photodiodes (D1,

D2) used to register single photon events are duplicated. One copy of the signal gets

delayed by 13 ns; the period between output pulses from the femtosecond laser. Both

non-delayed and delayed copies are then sent into a coincidence unit where all possible

patterns of coincidences between the four inputs within a coincidence window shorter

than the repetition period of the pump are recorded. Pair coincidences in the same

pulse and between consecutive pulses can then be extracted. The pair coincidences

between consecutive pulses is shown as the red trace in Fig. 2.9.
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2.3 Characterization of Polarization-Entangled Photons

Following an argument put forward in [84], the coincidence rate between consecutive

pulses is the same as the rate of distinguishable pairs generated in the same pulse. If

the two photon pairs are indistinguishable, the four-photon contribution to the two-

photon coincidence rate will be half of the pair coincidence rate between consecutive

pulses. Thus, from the recorded coincidences between consecutive pulses, we can come

up with a lower and upper bound for the four-photon generation rate in the setup. This

correction procedure will be applied to the various two-photon measurements in later

chapters.
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Chapter 3

Joint Spectrum Mapping of

Polarization Entanglement in

Ultrafast SPDC

Spontaneous parametric down-conversion (SPDC) has been widely used to generate

entangled photons required in various quantum information protocols [85]. Typically,

this process is used in two different regimes distinguished by the properties of the pump

source. In some experiments, light from continuous-wave (cw) lasers is used to pump

the SPDC process [2, 5, 86]. These sources can be very bright and provide photon

pairs in maximally entangled states with high fidelity in various degrees of freedom [20,

22], making them suitable for applications such as quantum key distribution [74] and

fundamental tests of quantum physics (e.g. tests of Leggett models [8, 75]).

The other regime covers experiments in which photon pairs need to exhibit tight

localization in time [6, 21, 72], or when more than one pair should be simultaneously

generated [60, 62, 76]. In such cases, short optical pulses with a coherence time com-

patible with that of the down-converted photons (on the order of few 100 fs) have to be

used as a pump. The short pulse duration implies a wide distribution of pump frequen-

cies. In combination with the dispersion relations of the nonlinear optical material this

leads to entanglement of the polarization degree of freedom with the spectral proper-

ties of the down-converted photons [87]. For the purpose of generating pure entangled
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3.1 Entanglement and spectral distinguishability

states in only one variable, this is generally detrimental, manifesting itself as a degree

of mixedness when only the polarization is considered (with the exception of the work

reported in [7]). Thus, there is a strong interest in improving the quality and brightness

of pulsed sources of polarization-entangled photons. While there are several proposals

and demonstrations [1, 88, 89, 90, 91] based on spectral and temporal engineering to

address the separation of spectral degrees of freedom, none of them has been widely

adopted.

This chapter presents an experimental study of the influence of the spectral degree

of freedom on polarization entanglement for traditional type-II SPDC sources in a

femtosecond pulsed regime, e.g. as those used in experiments on teleportation [6]

and entanglement swapping [58, 60]. By investigating the impact of joint spectral

properties of SPDC on polarization entanglement, we complement recent experimental

work [92, 93, 94].

3.1 Entanglement and spectral distinguishability

As in early experiments to entangle photon pairs in atomic cascade decays [3, 34, 35],

the process of SPDC is able to generate polarization-entangled photons because two

different decay paths result in two-photon states which are indistinguishable apart from

their polarization degree of freedom. This can be seen from the simplest description

of SPDC which is formulated in terms of three plane wave optical modes. The input

corresponds to a narrow-band pump mode with a well defined wave vector −→kp, and

output modes with wave vectors −→ks ,
−→
ki may be populated via down-conversion if phase

matching conditions and energy conservation are fulfilled [86]:

−→
kp = −→

ks + −→
ki (3.1)

ωp = ωs + ωi

In some birefringent materials, these conditions can be satisfied in two different

ways, producing either an horizontally/vertically (H1V2) or a V1H2 polarized pair [5].

If the two processes are truly indistinguishable, a photon pair may be observed in a

pure state:

|Ψ〉 =
1√
2

(
|H〉1|V 〉2 + eiδ|V 〉1|H〉2

)
(3.2)
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3.2 Experimental Setup

Figure 3.1: Schematic of the spontaneous parametric down-conversion (SPDC) setup. A

femtosecond-pumped SPDC process generates photon pairs in single mode optical fibers

which pass through polarization filters and subsequent grating monochromators.

For cw pumped down-conversion, this simple argument is enough to account for

the presence of polarization entanglement and properties such as the bandwidth of

down-converted photons [5, 23]. However, in a pulsed pump regime, the short duration

of the pump imposes a Fourier limited spread of the input energy. Together with the

broader phase matching conditions due to the difference in the dispersion relations for

the ordinary (o) and extraordinary (e) waves in birefringent materials, this gives rise

to spectral signatures which distinguish the two down-conversion processes. Leakage

of polarization information into degrees of freedom which are not normally monitored

results in mixedness of the polarization state of the photon pair. This effect of the

spectral information can be observed by jointly measuring the spectral and polarization

correlations between the down-conversion modes.

3.2 Experimental Setup

In order to perform spectrally resolved polarization correlation measurements on the

down-converted photons, we implemented a photon pair source using traditional type-II

phase matching in a crossed-ring configuration [5], followed by polarization analyzers

and grating monochromators to resolve the different spectral components for both

photons (Fig. 5.2).
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The output of a Ti:Sapphire (Ti:Sa) laser∗ with central wavelength λc = 780 nm,

pulse duration≈ 150 fs, repetition rate 76 MHz, average power 1.1W is frequency dou-

bled (SHG) to produce optical pulses at λp =390 nm. This light (average power 400 mW)

passes through pump optics (PO) to correct for the astigmatism and to focus the

beam down to a waist of 80µm. At the focus, a 2mm thick BBO crystal cut for

collinear type-II phase matching (θ = 43.6◦, φ =30.0◦) serves as the non-linear medium

for down-conversion. The crystal is tilted such that the wavelength-degenerate decay

path emerges at an approximate 3◦ from the axis of the 390 nm pump beam. A half-

wave plate (λ/2) and a pair of compensation crystals (CC) take care of temporal and

transversal walk-off† [5].

The spatial modes (spatial mode 1 and 2) of the down-converted photons, defined

by single mode optical fibers (SMF), are matched to the pump mode to optimize the

collection [23]. In type-II SPDC, each down-converted pair consists of one o and one

e-polarized photon, and our setup is aligned such that ordinary corresponds to vertical

(V), while extraordinary corresponds to horizontal (H) polarization after compensation.

A pair of polarization controllers (PC) is used to ensure that the SMF do not affect

the polarization of the collected photons. The free phase δ between the two decay

possibilities in the polarization state Eq. 3.2 is adjusted to δ =π by tilting the CC to

arrive at an approximate singlet Bell state |Ψ−〉:

|Ψ−〉 =
1√
2

(|H〉1|V 〉2 − |V 〉1|H〉2) , (3.3)

which we will investigate for the rest of the chapter.

The polarization analysis in each arm is performed by a combination of another

half-wave plate (λ/2) and a polarizing beam splitter (PBS), allowing projections onto

any arbitrary linear polarization. We denote the direction of these linear polarizations

by their rotation α1 and α2 with respect to vertical. The transmitted photons are

transferred into grating monochromators on each arm (M1, M2) with 0.3 nm (FWHM)

resolution and then detected with passively quenched Silicon avalanche photodiodes

(D1, D2). Output of the two detectors is sent into a coincidence unit with a coincidence

window shorter than the repetition period of the pump laser.
∗For this setup, we are using a Mira-900 (Coherent) Ti:Sa laser pumped by 10W of 532 nm light

from a Verdi-V10 (Coherent) solid-state pump laser.
†Refer to Section 2.2.1 for details on how the temporal and transversal walk-offs are eliminated.
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Figure 3.2: The spectral distribution of the photons in each of the down-conversion

modes individually for both the spatial modes defined by the SMF. We obtained from a

fit (solid traces) of the measured data (dotted traces) to a Gaussian distribution, central

wavelengths of λH1 ≈ 780.3 nm and λV 1 ≈ 779.5 nm for spatial mode 1 (upper panel).

Corresponding widths of the approximately Gaussian wavelength distributions for e and

o polarization are ∆λH1 ≈ 8.3 nm (FWHM) and ∆λV 1 ≈ 10.1 nm (FWHM), respectively.

For spatial mode 2 (lower panel), we obtained λH2 =779.8 nm and λV 2 =779.4 nm with

corresponding width ∆λH2 ≈ 8.4 nm (FWHM) and ∆λV 2 ≈ 9.7 nm (FWHM), respectively.
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3.3 Wideband Polarization Correlations

With the photons from the SMF sent directly into D1 and D2, bypassing the

monochromators, a coincidence rate of 48000 s−1 is observed. The total coupling and

detection efficiency extracted from the ratio of pair coincidences to single detector

events on one side is 11 %.

The spectral distribution of the photons in each of the down-conversion modes indi-

vidually for both the spatial modes defined by the SMF are characterized. We obtained

wavelengths of λH1 ≈ 780.3 nm and λV 1 ≈ 779.5 nm for spatial mode 1 (Fig. 3.2, upper

panel). Corresponding widths of the approximately Gaussian wavelength distributions

for e and o polarization are ∆λH1 ≈ 8.3 nm (FWHM) and ∆λV 1 ≈ 10.1 nm (FWHM),

respectively. For spatial mode 2 (Fig. 3.2, lower panel), we obtained λH2 =779.8 nm and

λV 2 =779.4 nm with corresponding width ∆λH2 ≈ 8.4 nm (FWHM) and ∆λV 2 ≈ 9.7 nm

(FWHM), respectively.

3.3 Wideband Polarization Correlations

In a first measurement, polarization correlations were evaluated without any spectral fil-

tering of photon pairs coupled into the SMF (Fig. 3.3, upper panel), where we observe

visibilities of VHV =94.8± 0.2% and V45 =68.4± 0.3 %, respectively∗. With interfer-

ence filters of 5 nm bandwidth (FWHM) centered at 780 nm, we observe visibilities of

VHV =93.6± 0.4% and V45 =81.6± 0.3% (Fig. 3.3, lower panel).

After correcting for the four-photon contribution†, we obtain VHV ∈ [97.9±0.3%, 101.3±
0.2%] for measurements without a spectral filter, and VHV ∈ [96.9± 0.5%, 99.7± 0.5%]

with interference filters in place.

We conclude that the photon pair correlations due to the first-order down conversion

process measured in the natural basis of the crystal (H/V) are close to 100 % and

not affected by the spectral filtering, and that the reduced visibility VHV in a direct

measurement can be explained by higher-order down-conversion processes. This high

visibility in the H/V basis for a large bandwidth will be an important component in our

description of the polarization correlations later on when spectral degrees of freedom

are included.

Using the same correction procedure for the polarization correlations in the com-
∗Refer to Section 2.3.2 for details on the measurement procedure for VHV and V45.
†Refer to Section 2.3.3 for details on the correction procedure for the four-photon contribution.
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Figure 3.3: Polarization correlations measured in the H/V and +45/ − 45◦ basis. The

bottom trace in each panel represents pair coincidences from consecutive pulses. For the

lower panel, 5 nm (FWHM) wide interference filters are inserted. Without spectral filters

(upper panel), we observe direct visibilities of VHV = 94.8 ± 0.2% and V45 = 68.4 ± 0.3%

without correcting for higher-order contributions; with spectral filters, the corresponding

values are VHV = 93.6± 0.4% and V45 = 81.6± 0.3%).
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3.4 Spectral Correlations

plementary basis, we obtain V45 ∈ [69.1 ± 0.3%, 72.9 ± 0.3%] without spectral filters,

and V45 ∈ [83.1±0.3%, 85.9±0.3%] as confidence intervals due to the first-order down-

conversion contribution. The lower visibilities in the complementary basis indicate a

mixedness of the photon pair state in polarization space. Spectral filtering improves

this visibility V45, which will be characterized in more detail in Section 3.5.

3.4 Spectral Correlations

To investigate the relation between the spectral distribution and the polarization cor-

relations, the monochromators M1, M2 were used in conjunction with the polarization

analyzer. In the experimental runs, we fix the polarization analyzer orientations α1, α2

and record a two-dimensional map of coincidence events for a fixed integration time at

each wavelength pair (λ1, λ2).

First, we consider the joint spectra of photon pairs for each of the two decay paths

individually. Therefore, analyzers were fixed to the natural basis of the conversion

crystal, selecting either H1V2 or V1H2 decays. The corresponding joint spectra acquired

with a resolution of 0.5 nm are shown as density plots in Fig. 4.6. The integration time

for each wavelength pair in this map was 22.5 s. For both polarization combinations,

we observe approximately two-dimensional Gaussian distributions, which are almost

aligned along one of the diagonals as suggested by the energy conservation for the

down-conversion process. Contrary to a case with a narrow-band cw pump [95], the

distribution is not restricted to a single line corresponding to a fixed energy sum Ep =

hc(λ−1
1 + λ−1

2 ). However, the covariance between the two wavelengths λ1, λ2 is not

completely lost. This is mostly attributed to the larger bandwidth of the pump due to

its short duration.

We further note that the two joint spectra for H1V2 and V1H2 coincidences in both

collection modes are symmetric under exchange of λ1 and λ2, which simply reflects

the fact that the two collection modes are chosen to exhibit a mirror symmetry with

respect to a plane containing the optical axis of the crystal and the pump direction.

To quantify the spectral distributions, we use a two-dimensional Gaussian as a

model:

g(λ1, λ2) ∝ e
− 1

2

[
(λ1−λ1)2

σ2
1

+
(λ2−λ2)2

σ2
2

+
(λ1−λ1)(λ2−λ2)

σ12

]

(3.4)
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3.4 Spectral Correlations

Figure 3.4: The joint spectra of coincidence counts for H1V2 polarizations (upper panel)

and V1H2 (lower panel) polarization are different. Exchange of the λ1 and λ2 axis maps

one onto the other. These joint spectra show the covariance between λ1 and λ2, which

decreases with the broadening of the pump light. Different widths between the marginal

(solid trace) and the single photon event spectrum (dotted trace), as well as differences

between o and e polarization are apparent.
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3.4 Spectral Correlations

Therein, we obtain from a fit to the H1V2 joint spectrum displayed in the upper

panel of Fig. 4.6 a central wavelength of λ1 = 779.77 ± 0.01 nm for the extraordinary,

and λ2 = 779.10 ± 0.01 nm for the ordinary distribution, reflecting an alignment close

to the degeneracy point. For the quantities governing the shape of the distribution, we

obtain σ1 = 1.265± 0.003 nm, σ2 = 1.853± 0.005 nm for the standard deviations, and

σ12 = 1.509± 0.009 nm2 as a measure of the covariance of the two wavelengths.

Each distribution is not symmetric with respect to exchange in the two wavelengths.

This will lead to spectral regions where the balance of the two decay paths necessary

to observe a maximally entangled polarization state of the form Eq. 3.2 is not met.

Another consequence of the asymmetry is a different width of the marginal distributions

for both ordinary and extraordinary polarization. For the assumed two-dimensional

Gaussian distribution, the marginals exhibit a width (FWHM) of

∆λm1,2 = 2
√

2 log 2

(
1

σ2
1,2

− σ2
2,1

4σ2
12

)−1/2

(3.5)

or ∆λm1 = 4.83 ± 0.02 nm for the extraordinary polarization and ∆λm2 = 6.97 ±
0.05 nm for the ordinary polarization for the H1V2 combination and similar results

for the V1H2 combination. Since the marginal distributions represent a conditional

spectrum of having seen a photon at any wavelength in the other arm, this indicates

that the collection bandwidth for both polarizations is slightly different due to the

dispersion relations in the crystal for the phase matching conditions Eq. 3.1. In the

SPDC process, the spectral distribution of down-converted photons is related to their

angular dispersion. For a certain acceptance angle subtended by the collection, the

e-polarized photons (which have a narrower spread in the emission direction) will be

collected more efficiently than the o-polarized photon. Thus, not every photon detected

in one spatial mode has its twin in the other mode [96]. This limits the overall collection

efficiency of type-II SPDC for generating entangled photons.

Compared to the widths of the distributions of single photon events (dashed lines in

the marginal distributions of Fig. 4.6, ∆λH ≈ 8.4 nm, ∆λV ≈ 9.9 nm∗) the widths of the

marginal spectra are also considerably smaller. This difference in spectral width [92] is

an indicator for a reduced collection efficiency, in general in agreement with the reduced

pair/single ratio observed in femtosecond-pumped SPDC sources.
∗These values are obtained by averaging the width of the single photon spectrum from the two

spatial modes for each respective polarization, i.e. ∆λH =(∆λH1 + ∆λH2)/2.
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3.5 Spectrally Resolved Entanglement Characterization

To understand the effect of the spectral imbalance between the different polariza-

tion components on the polarization entanglement, we mapped out joint spectra for

polarizations in a basis complementary to the natural polarizations of the crystal, or

the ±45◦ linear polarizations in our case. The results are shown in Fig. 4.7, where the

upper panel corresponds to polarization anti-correlations (α1 = −α2 = 45◦), and the

lower panel to polarization correlations (α1 = α2 = 45◦). The integration time per

wavelength pair was 30 s for the anti-correlations, and 60 s for the correlations. For the

latter case, the mapping was done in a sequence of four interlaced grids. A drift of the

system over the data acquisition period thus lead to a modulation of the coincidence

counts at twice the final sampling spacing.

Since the phase δ between the two decay paths was adjusted to prepare photon pairs

in a |Ψ−〉 state, a relatively large overall count rate is observed for the polarization anti-

correlations. As expected, a maximal coincidence count rate occurs at the degeneracy

point and is progressively reduced away from it, following the spectral distribution of

the overlap of the H1V2 and V1H2 contributions from Fig. 4.6. An interesting pattern

is revealed for the anti-correlations: while there are no coincidences at the degenerate

wavelength point, four regions with non-vanishing coincidence events are observed.

These regions correspond to an imbalance in the decay path distribution, and will

destroy the perfect polarization anti-correlations in the ±45◦ basis in an experiment

where the wavelengths of both photons are ignored.

3.5 Spectrally Resolved Entanglement Characterization

The presence of residual polarization correlations at particular wavelength regions could

be both due to the imbalance of both components, or due to a partially incoherent

superposition between them as a consequence of entanglement with other degrees of

freedom. We therefore carried out polarization correlation measurements on a larger

set of relative analyzer angles for the different wavelength regions. Again we fixed the

analyzer orientation for one mode to α1 = +45◦, and varied the orientation for the

other analyzer.

The result of (normalized) coincidence counts obtained during 60 s per polarizer

setting for three representative regions in the spectral map are shown in Fig. 4.4. Trace

A corresponds to a region with an excess of the |V 〉1|H〉2 component, trace B to a region
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Figure 3.5: A joint spectrum of coincidences measured for a +45◦/−45◦ polarization

combination (upper panel) reveals a pattern with the maximum coincidence rate at the

degenerate wavelengths for a source adjusted to observe singlet Bell states |Ψ−〉. The joint

spectrum measured for a +45◦/+45◦ polarization combination (lower panel) exhibits four

regions of higher count rate. These regions correspond to area with an imbalance of a and

b. At the position of the degenerate wavelengths in the center, the coincidence rate is close

to zero.

49



3.5 Spectrally Resolved Entanglement Characterization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-90° (H) -45° 0° (V) +45° +90° (H)

N
or

m
al

iz
ed

 c
ou

nt
 r

at
e

Polarization orientation α2

γA

γBγC

Figure 3.6: Polarization correlations at three different wavelength pairs where one photon

is projected onto +45◦ polarization. The maximum of coincidences ranges from −45◦

polarization for a maximally entangled singlet Bell state (C), to the horizontal (A) or

vertical (B) polarization.

with a predominance of the |H〉1|V 〉2 contribution, and trace C to the degeneracy point.

The normalization was carried out for better reading of the diagram due to the varying

number of coincidences in the different spectral regions. It is apparent that at all points,

the sinusoidal modulation of the polarization correlations shows a high visibility, while

the angle α2 for the maximum depends strongly on the spectral position. For the

following, we denote this maximum angle by γ. For the three samples shown in Fig. 4.4,

we obtained visibilities of VA = 98 ± 12%, VB = 93 ± 6%, and VC = 98 ± 5% from a

sinusoidal fit, and rotations of γA = 79.0± 1.6◦, γB = 5.0± 0.8◦, and γC = −45± 0.6◦,

respectively.

A map of both the visibility V (λ1, λ2) and the angle γ(λ1, λ2) for analyzer 1 at

α1 = +45◦ is displayed in Fig. 3.7 at wavelength pairs with a large enough coincidence

count rate to extract visibilities with an uncertainty below 11%. This map confirms

the high visibility of the polarization correlations for all wavelengths.

While quoting a high visibility V45 of polarization correlations with one of the polar-

izers oriented at 45◦ is in itself not enough to make a statement about the entanglement

of photon pairs in general, the additional information that only two decay processes

in SPDC are allowed reduces the discussion to an analysis of the coherence between
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Figure 3.7: Map of the visibility V45 of polarization correlations for different sets of wave-

lengths (upper panel). We find a significant local increase compared to the global value

obtained in figure 3.3. Points A, B and C correspond to the three detailed visibility mea-

surements shown in Fig. 4.4. The lower panel indicates the angle γ for the maximal count

rates, ranging from −45◦ polarization for the singlet Bell state at (C) in the center towards

horizontal polarization (A) for dominating |V 〉1 |H〉2 contributions or vertical polarization

(B) for prevailing |H〉1 |V 〉2 contributions.
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3.5 Spectrally Resolved Entanglement Characterization

these decay processes. This is covered completely by the visibility measurement in the

+45◦/−45◦ basis; hence its wide usage as a quick indicator for the entanglement quality

of a photon pair source from SPDC.

These measurements, together with the fact that the first-order down-conversion

process reveals also high visibility in H/V basis even without any spectral filtering (see

Section 3.3), suggest that the superposition between two decay components is coherent,

in accordance with assumptions in previous theoretical work [97]. The polarization state

at each wavelength pair then can be written as:

|Ψ(λ1, λ2)〉 = a |H〉1|V 〉2 + b eiδ|V 〉1|H〉2 (3.6)

with two wavelength-dependent probability amplitudes a(λ1, λ2) and b(λ1, λ2). The fact

that a high visibility is observed with linear polarizations at 45◦ suggests that there is

no complex phase factor between the amplitudes a and b. For imbalanced amplitudes

a and b the state is not maximally entangled anymore. The angle γ depends now only

on the ratio between real-valued probability amplitudes a and b:

γ = − arctan
b

a
(3.7)

It is worth noting that the high symmetry of the imbalanced states in the frequency

map allows for compensation techniques [1] that combine different spectral components

so that they do not reveal information about the polarization. If this combination is

performed appropriately, the spectral degree of freedom is factored out of the descrip-

tion of the state (much like the timing compensation performed by the compensation

crystals) and no longer degrades the polarization entanglement.

Following the same model, we can use the spectral map of the |H〉1|V 〉2 and

|V 〉1|H〉2 contributions displayed in Fig. 4.6 to extract a local measure for the en-

tanglement quality in the polarization degrees of freedom: A commonly used quantity

for this purpose is the entropy of entanglement S. For a local polarization state given

by Eq. 3.6, the entanglement entropy is given by [82]

S(λ1, λ2) = − a2 log2(a
2)− b2 log2(b

2) (3.8)

The spectral distribution of the probability amplitudes can be chosen as

a(λ1, λ2) =

√
g(λ1, λ2)

g(λ1, λ2) + g(λ2, λ1)
(3.9)

b(λ1, λ2) =
√

1− a(λ1, λ2)2
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3.6 Dependence of Entanglement Quality on Spectral Filtering

with a spectral distribution g(λ1, λ2) of photon pairs. Using a model expression accord-

ing to Eq. 3.4 for g, we obtain an expected spectral entanglement entropy distribution

shown in the upper panel of Fig. 3.8. Along the two diagonals, the entropy is maximal,

indicating maximally entangled states due to the balanced contributions from both

decay paths.

The lower panel of this figure shows the entanglement entropy S extracted from

the distributions of both decay components obtained from measurements presented

in Fig. 4.6. The entropy is only computed at locations where the overall count rate

allowed for reasonable error bars. The distribution of maximally entangled states in

the spectral map is clearly revealed.

3.6 Dependence of Entanglement Quality on Spectral Fil-

tering

When the wavelengths of a photon pair are ignored and only polarization correlations

are probed, integrating all spectral contributions with their varying γ results in a re-

duced overall visibility V45 even if the individual wavelength components exhibit a high

visibility. In practice this results in a mixed state with lower entanglement quality; to

remedy this, spectral filtering, either in the form of interference filters [5] or careful

engineering of the collection bandwidth can be used [23]. These filters spectrally limit

the λ1, λ2 of the down-converted photon pairs to a smaller region, thus reducing contri-

butions with γ deviating from the value in the degeneracy point. Consequently, there

is a tradeoff between the coincidence rate and the measured visibility. For very narrow

spectral filters entanglement quality will be high but count rates low; as the filter band-

width is increased, count rates increase but the entanglement quality is reduced. The

polarization correlations underlying the visibility map, Fig. 3.7 (upper panel), offer a

way to determine the optimal filtering scheme given some entanglement-based figure of

merit.

For a virtual experiment with filter transmissions f1,2(λ1,2), the coincidence rate

distribution C(α2) necessary to determine the polarization correlation visibility for

α1 = 45◦ can be obtained by weighting the contributions c(λ1, λ2, α2) from the different
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Figure 3.8: Entanglement quality. The upper panel illustrates the entanglement entropy

S as a function of both wavelengths λ1, λ2 for a model distribution of non-overlapping

contributions for |H〉1|V 〉2 and |V 〉1|H〉2 decay paths in SPDC according to Eq. 3.4. The

lower panel shows S(λ1, λ2) obtained from experimental polarization correlations in the

+45◦/ − 45◦ basis of Fig. 4.6. The entanglement is maximal at positions with balanced

contributions for both decay paths.
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3.6 Dependence of Entanglement Quality on Spectral Filtering

Figure 3.9: Visibility V45 (open circles) and normalized coincidence rates (filled squares)

as a function of fixed filter bandwidth ∆λf . The values were obtained by virtual filtering

using the spectral map of visibility measurements leading to Fig. 3.7. The experimental

point (filled circle) corresponds to a real filter with ∆λf = 5 nm, resulting in V45 = 81.6%.

Our result is consistent with predictions in [97].

wavelength pairs we already measured to generate the visibility map in Fig. 3.7:

C(α2) =
∑

λ1,λ2

c(λ1, λ2, α2) f1(λ1)f2(λ2) (3.10)

The visibility V45 itself is then extracted from a sinusoidal fit of C(α2) .

Typical filter transmission functions of narrow-band interference filters can be de-

scribed by a Lorentzian profile and are characterized by their central wavelength λf and

bandwidth ∆λf (FWHM). The resulting integral visibility V45 for filters with the same

transmission profiles f1(λ) = f2(λ) centered at the degeneracy wavelength in both arms

is shown in Fig. 3.9 (open circles). As expected, the visibility drops with an increasing

bandwidth ∆λf of the filters, in agreement with the theoretical predictions in [97]. We

also include a normalized coincidence count rate (filled squares) extracted out of the

weighted virtual counts C(α) to illustrate the loss of pairs at narrow bandwidths.

As a check of consistency, we can compare the expected visibility from virtual

filtering with a direct measurement of the V45 for a filter with ∆λf = 5 nm. From

Fig. 3.9 we expect V45 = 84.5%, in agreement with the observed confidence interval

for Ṽ45 in Section 3.2 for the first order down-conversion process after correction for

higher-order contributions.
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Chapter 4

Elimination of Spectral

Distinguishability in Ultrafast

SPDC

For experiments which require photon pairs to exhibit tight localization in time [6, 72],

or for preparation of entangled states between more than two photons [60, 62, 76],

the SPDC process needs to be pumped by ultrafast optical pulses. Such sources of-

ten exhibit a reduction in the quality of polarization entanglement arising from spec-

tral distinguishability of the possible decay paths. This has been addressed theoreti-

cally [87, 97, 98]; more recently, experiments investigating the underlying phenomenon

have been performed [92, 93, 94, 96, 99]. Various techniques are implemented to

eliminate spectral distinguishability: they range from specific tailoring of the down-

conversion medium [89, 90], double-pass configuration of the pump beam [91] to inter-

ferometric setups [88].

In the previous experiment, we have shown that the wider spectral distribution of

ordinarily (o) polarized down-converted light in comparison with the extraordinary (e)

component translates into a spectral distinguishability between the two decay paths

for type-II SPDC [96]. When only the polarization degree of freedom is considered,

this spectral distinguishability reduces the purity of a state and thus the entanglement

quality. Typically, strong spectral filtering is applied in order to detect only photons
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4.1 Spectral Compensation with Two-Photon Interference

which fall into the non-distinguishable part of the spectrum. However, any form of

spectral filtering drastically reduces the count rate. This is especially disadvantageous

in multi-photon experiments where the coincidence rate decreases rapidly with any filter

loss. A scheme that can eliminate the spectral distinguishability without significant

loss of signal will benefit these experiments greatly. One of the ways to overcome this

problem is the spectral compensation scheme proposed and first implemented by Kim

et al. [1]. In this chapter I will present a detailed experimental study of the effectiveness

of this method.

4.1 Spectral Compensation with Two-Photon Interference

In the “classic” method of generating polarization-entangled photon pairs in non-

collinear type-II parametric down conversion, photon pairs are collected at the in-

tersection of the e and o-polarized emission cones [5]. Their combined state covering

polarization, direction, and spectral fingerprint can be written as

|Ψ〉 =
1√
2

(
|He〉1|Vo〉2 + eiδ|Vo〉1|He〉2

)
, (4.1)

where δ is the free phase between the states |He〉1|Vo〉2 and |Vo〉1|He〉2 corresponding

to the two conversion paths.

In the spectral compensation scheme (Fig. 4.1), a half-wave plate (λ/2) placed in

one of the arm rotates the polarization by 90◦, such that both photons arrive at the po-

larization beam splitter (PBS) with the same polarization. The |He〉1|Vo〉2 combination

is transformed into |Ve〉1|Vo〉2, so both photons are reflected by the PBS (RR path),

while the |Vo〉1|He〉2 combination is transformed into |He〉1|Ho〉2, so both photons are

transmitted by the PBS (TT path). Regardless of their polarization state, photons

carrying the spectral fingerprint of o and e polarization from the original conversion

process will always emerge at a corresponding port of the PBS. As long as there is no

path difference between the down conversion crystal and the PBS, neither the arrival

time nor the spectrum of the photon will reveal information of the input polarization

state, decoupling the temporal and spectral degree of freedom from the polarization.

The o and e-polarized photons need not arrive strictly simultaneously at the PBS for

the scheme to work, as shown in various two-photon interference experiments [100, 101].

Similarly to the Hong-Ou-Mandel interference of photon pairs [102], this scheme does
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4.2 Experimental Setup

Figure 4.1: The possible paths of the photon pair generated in spontaneous parametric

down conversion (SPDC) for the two corresponding down-converted components. The e

and o-polarized photons will exit at the different ports of the PBS independent of their

polarization.

not require path length stability to a fraction of the wavelength, but only to a fraction

of the coherence length of the photons. It is also simple in the sense that it requires

no special engineering of the down-conversion medium or complex double-pass setups.

For a free phase δ = π, the photon pairs are in the Bell state

|Φ−〉 =
1√
2

(|H〉1|H〉2 − |V 〉1|V 〉2) , (4.2)

which we will investigate for the rest of the chapter.

4.2 Experimental Setup

Like in the previous experimental setup, we have implemented a polarization-entangled

photon pair source using type-II phase matching in a crossed-ring configuration [5]

and use polarization filters and grating monochromators to resolve the different spec-

tral components for both photons (Fig. 5.2). As this source is primarily geared to-

wards the generation of polarization-entangled four-photon state, we have switched the

Ti:Sapphire (Ti:Sa) laser in the previous experiment to one that is capable of a higher

output power∗. The focus of the blue pump at the down-conversion crystal has also
∗For this experimental setup, we are using a Tsunami (Spectra-Physics) Ti:Sa laser pumped by

10W of 532 nm light from a Millennia Pro (Spectra-Physics) solid-state pump laser.
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Figure 4.2: Experimental setup. Photon pairs generated via SPDC in a nonlinear crys-

tal (BBO) pumped by femtosecond optical pulses are collected into single-mode optical

fibers (SMF). A half-wave plate (λ/2) and polarizing beam splitter (PBS) combination

renders them spectrally indistinguishable. The down-converted photons then pass through

polarization filters and subsequent grating monochromators for analysis.

been reduced in an attempt to get a higher four-photon production rate.

4.3 Wideband Polarization Correlations

To probe the quality of polarization entanglement between the photon pairs, polar-

ization correlations in the H/V basis (the natural basis, i.e., the basis aligned to the

crystal axes) and +45/ − 45◦ basis (the complementary basis) are measured. In the

H/V basis, we expect to see nearly perfect correlations due to the type-II conversion

process. In the +45/−45◦ basis, the level of (anti-)correlation will depend on the degree

of indistinguishability between the two decay paths. For |Φ−〉, perfect anti-correlation

in the +45/− 45◦ basis is expected, but residual distinguishability of the decay paths

will deteriorate this.

To assess the degree of distinguishability, coincidences between the detectors over

a range of delays τ are recorded for α1 =−α2 =+45◦. The result is shown in Fig. 4.3,

which reveals clearly a bump for τ = 0. A fit to a Gaussian distribution reveals a

FWHM of approximately 100 fs, corresponding to the coherence time of the down-
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Figure 4.3: Polarization correlations measured in the +45◦/ − 45◦ basis as a function

of delay τ . Polarization analyzers were oriented at α1 =−α2 =+45◦ for the bump and at

α1 =α2 = +45◦ for the dip. The bottom trace represents pair coincidences from consec-

utive pulses. Without correcting for higher-order contribution, the visibility of the dip is

85± 2 %. The band of confidence for the corrected value is [90 ± 2%, 96 ± 3%]. Refer to

the Section 2.3.3 for details on the correction procedure.
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Figure 4.4: Polarization correlations in the H/V and +45◦/ − 45◦ bases. The bot-

tom trace represents pair coincidences from consecutive pulses. Without correcting for

any higher-order contribution, we observed direct visibilities of VHV = 90.0± 0.4% and

V45 =86.8± 0.4%.

converted photons. By choosing α1 = α2 = +45◦, a corresponding dip in coincidences

is observed. From Fig. 4.3, the maximal visibility of the dip is 85± 2%.

The polarization entanglement of the photon pairs was characterized by measuring

the visibilities VHV and V45
∗. Without spectral filtering, we obtain results VHV =90.0± 0.4%

and V45 =86.8± 0.4% (see Fig. 4.4). After correcting for the four-photon contribution†,

we obtain bands of confidence for the visibilities, VHV ∈ [95.1 ± 0.5%, 100.8 ± 0.5%]

and V45 ∈ [92.0± 0.4%, 97.9± 0.5%] for the process leading to pairs only.

Both the bounds for V45 are significantly higher than the results obtained in the

previous experiment [96] where the spectral compensation is not implemented. There

we see V45 ∈ [69.1 ± 0.3%, 72.9 ± 0.3%] without spectral filtering, and V45 ∈ [83.1 ±
0.3%, 85.9 ± 0.3%] with spectral filtering. This shows that the spectral compensation

scheme has eliminated the distinguishability between the two down-converted compo-

nents.

To provide a consistency check for the correction procedure, measurements of the

visibilities are made with various pump powers. A model describing the dependence of
∗Refer to Section 2.3.2 for details on the measurement procedure for VHV and V45.
†Refer to Section 2.3.3 for details on the correction procedure for the four-photon contribution.
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Figure 4.5: Visibility VHV (open circles) and V45 (solid circles) measured as a function

of the pump power. The probability of creating a pair Ppair (top axis) is proportional to

the pump power. Solid lines show linear fits to the visibility reduction. From the slope,

a pair generation probability can be derived via Eq. 4.5 (top axis). At low power, the

coincidences are dominated by the contribution from first order down-conversion. The

extrapolated visibilities at P = 0 VHV = 97.6± 0.1% and V45 = 96.4± 0.1%.
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4.4 Spectral Correlations

visibility on pump power is described in [21]. It assumes that the detected pair rate has

a contribution R2 from pairs generated in the same birth process, and a contribution

R4 from partially detected, incoherent double pair events. They can be written as

R2 = Ppair
1 + cos θ

2
,

R4 = 4 Pdouble pair
2 + cos θ

4
, (4.3)

where θ = α1 − α2, and Ppair and Pdouble pair are the probabilities for creating a pair

and an incoherent double pair per pulse, respectively. The first one can be written as

Ppair =
S

ηcηqf
, (4.4)

where S is the rate of detector events on one side, ηc characterizes the coupling efficiency,

ηq is the quantum efficiency of the detectors, and f the repetition rate of the laser.

Assuming a Poissonian distribution in the counting of incoherent pairs events, one

finds Pdouble pair = P 2
pair/2. The visibility V obtained from the sum of R2 and R4 is

V ≈ Vmax − Ppair , (4.5)

with Vmax being the limit for the visibility at low pump power. Figure 4.5 shows the

visibilities observed for different pump powers, exhibiting a linear decrease with power

as expected according to Eq. 4.5. The slope of both visibility measurements coincide

(0.0177 ± 0.0003%mW−1) and allows to rescale power into pair probability (see top

axis on figure). From the pair probability and a single detector event rate (corrected

for saturation effects), a combined detector/coupling efficiency of 11.3% can be derived

via Eq. (4.4).

The limit Vmax for the visibility at low pump power are VHV = 97.6 ± 0.1% and

V45 = 96.4± 0.1% in agreement with results from the correction procedure.

4.4 Spectral Correlations

Like in the previous experiment, to understand the joint spectral properties of the

polarization correlations, we measured the joint spectrum of the photon pairs generated

from each of the two decay paths. As the source is producing photon pairs with an

approximate |Φ−〉 polarization state (Eq. 5.4), this is done by fixing the polarization

63



4.4 Spectral Correlations

analyzers to the natural basis of the down-conversion crystal, selecting either the H1H2

or V1V2 decay path. The spectra are taken with a resolution of 0.5 nm and an integration

time of 30 s for each wavelength pair.

Our results (shown in Fig. 4.6) have nearly identical distributions, with the excep-

tion of their maximum coincidence rate. A balanced contribution between the H1H2

and V1V2 decay path is found at all wavelength pairs, compatible with state |Φ−〉 at ev-

ery point. This is in contrast with results obtained without spectral compensation [96]

shown in the previous chapter, with the different spectral fingerprints of the two decay

paths.

The marginal distributions λ1, λ2 exhibit widths of ∆λm1 =9.2± 0.3 nm (FWHM)

and ∆λm2 =5.8± 0.2 nm (FWHM) for the H1H2 combination. A comparable distri-

bution is also observed for the V1V2 joint spectrum (Fig. 4.6, lower panel). Thus, the

spectral degree of freedom no longer reveals any information on the corresponding po-

larization state. The spectral distribution of the photons collected in each spatial mode

obtained from the same run have a FWHM of ∆λ1 ≈ 10.5 nm and ∆λ2 ≈ 8.3 nm∗) The

wider spectral distribution corresponds to the distribution of the o-polarized photons

while the narrower spectral distribution corresponds to the e-polarized photons. We

note that the single photon spectral distributions (dashed lines in Fig. 4.6) are wider

than the marginals, ∆λm1 = 9.2 nm, ∆λm2 = 5.8 nm. This disparity, also observed

in the previous experiment, is caused similarly by the difference in the width of the

spectral distribution between the e and o-polarized photon [96].

The joint spectra for polarizations in the complementary basis, (+45◦/+45◦), are

shown in Fig. 4.7, normalized to the total events both in the +45◦/+45◦ and +45◦/−45◦

basis. For comparison, the upper panel shows the result without spectral compensa-

tion [96] obtained in the previous experiment. It reveals regions with higher rates, indi-

cating an imbalance between the two down-converted components in those areas. With

the spectral compensation (lower panel), the distribution of uncorrelated pair events is

compatible with the four-photon contribution. This can be seen from the marginal dis-

tribution of the joint spectrum, ∆λm1 =10.8± 0.4 nm, ∆λm2 = 8.4± 0.2 nm (FWHM)

which is identical to the distribution of the photon collected in each spatial mode.

To characterize the distinguishability between the two decay paths, we also need to
∗These values are obtained by averaging the width of the single photon spectrum from the two

spatial modes for each respective polarization, i.e. ∆λ1 =(∆λH1 + ∆λV 1)/2.
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H
1

H
2

Figure 4.6: Joint spectra of coincidence counts in 30 s for H1H2 (upper panel) and V1V2

(lower panel) polarizations. The spectra corresponding to the two decay paths RR and

TT are almost identical with the exception of the difference in the maximum count rate

recorded. Differences between the widths of the marginal (solid trace) and the single

photon spectra (dashed traces), as well as between the e and o polarization are observed

as expected.
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4.4 Spectral Correlations

Figure 4.7: Joint spectra of coincidences measured for the +45◦/+45◦ polarization combi-

nation. The counts are normalized to the total events in the spectral mapping experiments

for both configurations. Without the spectral compensation scheme (upper panel), the

joint spectrum exhibits four regions of higher count rate, comprising a fraction of 0.14 of

all events. They correspond to areas with an imbalance of the two decay paths. With

the spectral compensation scheme (lower panel), the joint spectrum, a fraction of 0.10 of

the total events, exhibits a distribution of uncorrelated pair events about the degenerate

wavelength which is compatible with estimates of the four-photon contribution.
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4.4 Spectral Correlations

look at the corresponding +45◦/−45◦ joint spectrum. Together with this measurement,

the visibility V45 can be reconstructed by summing over all wavelengths:

V45 =

∑
λ1,λ2

c+,−(λ1, λ2)−
∑

λ1,λ2

c+,+(λ1, λ2)
∑

λ1,λ2

c+,−(λ1, λ2) +
∑

λ1,λ2

c+,+(λ1, λ2)
, (4.6)

where the c+,±(λ1, λ2) are coincidence events detected for various wavelength pairs,

and +– and ++ refers to the +45◦/−45◦ and +45◦/+45◦ polarizer settings.

After correcting for the four-photon contribution, we get V45 ∈ [73.8± 0.5%, 80.2± 0.6%]

without spectral compensation. With spectral compensation, we get V45 ∈ [89.4± 0.5%,

100.4± 0.6%].
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Chapter 5

Violation of Spin-1 CHSH

Inequality

The term ”quantum entanglement” describes the non-classical correlations that exist

between the component entities of certain composite quantum systems. Due to the

presence of these non-classical correlations, a full quantum mechanical description of

such a composite system is no longer possible just by appealing to the descriptions of

the components in isolation. A complete description of such a quantum system is only

possible when it is considered in its entirety.

An example of such a composite system is described in the EPR-Bohm (EPRB)

thought experiment [30]. The bipartite system (Fig. 5.1) consists of a source of spin-1
2

(two-level) particles, i.e. electron and positron from the decay of a neutral π meson

π0 → e− + e+. (5.1)

As the pion has zero spin, by conservation of angular momentum, the spin state of the

system can be written as a singlet configuration described by

|Ψ−〉 =
1√
2

(| ↑e−↓e+〉 − | ↓e−↑e+〉) . (5.2)

This is called an entangled state and is not expressible as a product of the individual

spin state of the electron and positron. For the same reason, the state is said to be

nonseparable.
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Figure 5.1: The EPR-Bohm thought experiment. In the experiment, the decay of a

neutral π meson act as a source of electron and positron. As the pion has zero spin, by

conservation of angular momentum, the spin state of the system can be written as a singlet

configuration described by Eq. 5.2. Spin measurement of either the electron or positron

in any arbitrary direction ~a, ~b, or ~c will have equal probability of yielding spin-up and

spin-down. However, when comparing the results of the spin of both particles measured in

the same direction, they show perfect anti-correlation.

The quantum correlations between the particles in the various composite quantum

systems lend themselves to the basic requirements for certain quantum computation [58,

59, 60, 61] and communication [37] protocols. The performances of these protocols are

strongly dependent on the quality of entanglement between the particles in the system

or the fidelity of the entangled state in the experimental implementation in comparison

to that described in an idealized model of the system. There are a number of measures

for entanglement quality [82, 83] and fidelity [103, 104] of entangled quantum states.

These measures often require a full characterization of the quantum state of the system

being investigated to establish those quantities. However, if the objective is just to

detect the presence of entanglement in a system or to provide a loose comparison

of the entanglement quality between quantum states, a simpler measure will be an

entanglement witness.

Entanglement witnesses are a class of functions that allows us to distinguish an

entangled state from a separable one. A well known example of such a function is

Bell inequality∗ [31]. It was derived by John S. Bell in 1987 to address the question of

whether the quantum mechanical description of nature is complete or that the seemingly

nonlocal effects associated with composite quantum systems are actually mediated by
∗The term Bell inequality is now commonly used as a generic name for all the entanglement wit-

nesses that are formulated in the form of an inequality.
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some local hidden variables (LHV). Since these local hidden variables are classical in

nature, the Bell inequality is formulated in such a way that it sets an upper bound

for classical correlations. Quantum correlations which are stronger will lead to the

violation of this upper bound. The original form of the Bell inequality is written as

|P (~a,~b) − P (~a,~c)| ≤ 1 + P (~b,~c), (5.3)

where ~a, ~b, and ~c are the direction of the spin measurements shown in Fig. 5.1. The

term P (~a,~b) is the average value product of the spins measured in direction ~a and ~b, re-

spectively. This inequality will be violated for certain systems when there is (quantum)

entanglement between the component particles. It should be noted that if the noise

within a system is above a certain level, the system will not violate the Bell inequality

even though there is entanglement between the component particles.

In 1969 the original Bell inequality is rederived by John F. Clauser, Micheal A.

Horne, Abner Shimony, and Richard A. Holt into a form that includes an experimen-

tally determinable parameter S. This rederived form came to be known as the CHSH

inequality [32]. Another improvement of the CHSH inequality over the original Bell

inequality is that it is no longer restricted to experiments where measurements only

have two possible outcomes. This makes it possible to generalize the CHSH inequality

to higher-dimensional bipartite systems. For the rest of this chapter, I will be pre-

senting just such a generalization to higher dimension by experimentally violating the

spin-1 (three-level) CHSH inequality with photons from the polarization-entangled four-

photon source implemented in the previous experiment to demonstrate the presence of

entanglement in the system.

5.1 Experimental Setup

The source of polarization-entangled photons (Fig. 5.2) using type-II phase matching

in a crossed-ring configuration [5] that we implemented in the previous experiment∗, is

used for the measurements presented in this chapter. In the setup, the photon pairs

collected after the spectral compensation are in the Bell state

|Φ−〉 =
1√
2

(|H〉1|H〉2 − |V 〉1|V 〉2) . (5.4)

∗Refer to Section 4.2 for details on the setup used for the generation of polarization-entangled

photons in this experiment.
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Figure 5.2: Experimental setup. The source of polarization-entangled photons imple-

mented in the previous experiment is used for the measurements presented in this chapter.

Non-polarizing beam splitters with a splitting ratio of 50:50 are placed behind each of the

two output ports of both polarizing beam splitters (PBS). This allows for the probabilistic

splitting of two photons in each spatial mode defined by the single mode optical fibers

(SMF) in 50 % of the cases. Outputs of the eight detectors (D1 to D8) are sent into a coin-

cidence unit where they are recorded and analyzed for all possible patterns of coincidences

within a time window shorter than the repetition period of the pump laser.

The state of the double photon pairs produced by the second-order down-conversion

process∗, assuming coherence between the pairs, can be written as

|Φ−〉(2)
polarisation =

1√
3
(|HH〉1|HH〉2 − |HV 〉1|HV 〉2 + |V V 〉1|V V 〉2). (5.5)

Now two photons are found in each spatial mode defined by the single mode optical

fiber (SMF). It should be noted in such bipartite configuration, the state |HV 〉 and

|V H〉 exist in a single spatial mode and are thus not distinguishable. In the analyzers,

after passing through the polarizing beam splitter (PBS), the two photons in the |HV 〉
combination always end up in different output ports. However, to detect the |HH〉 and

|V V 〉 combinations, modifications on the polarization analyzers are required. Non-

polarizing beam splitters with a splitting ratio of 50:50 are placed behind each of the

two output ports of both PBS. This allows for the probabilistic splitting of two photons

in each spatial mode. Statistically, the two photons in the |HH〉 and |V V 〉 combinations
∗Refer to Section 2.1.2 for explanation on the process of second-order down-conversion.
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5.2 Derivation of the Spin-1 CHSH Inequality

will only end up in different ports of the 50:50 half of the time. For this reason, any

measurements involving the detection of the |HH〉 and |V V 〉 combinations will need to

be multiplied by a factor of 1/0.5, e.g. the |HH〉1|HH〉2 events need to be multiplied

by a factor of 1/(0.5)(0.5).

Outputs of the eight detectors (D1 to D8) are sent into a coincidence unit where

they are recorded and analyzed for all possible patterns of coincidences within a time

window shorter than the repetition period of the pump laser. The count rate for two-

fold to eight-fold coincidence events (sum over all possible polarization combinations)

are summarized in Table 5.1. Also included in the table for comparison are the count

rates normalized to the two-fold events. From the previous experiment, we got a two-

fold coincidence rate of ≈ 100000 s−1. With the current analyzer setup, we recorded a

four-fold coincidence rate of ≈ 40 s−1. It is also possible to see that the six-fold and

eight-fold coincidence rates are negligible. Thus, the four-fold coincidences do not need

to be corrected for higher-order contributions.

Table 5.1: Comparison Between Different Order of Coincidences

Order of Coincidence Count Rate (s−1) Normalized Count Rate (%)

2 ≈ 100000 100

4 ≈ 40 ≈ 0.04

6 ≈ 0.005 ≈ 0

8 0 0

5.2 Derivation of the Spin-1 CHSH Inequality

By defining the outcome |HH〉, |HV 〉, and |V V 〉 as |1〉, |0〉, and | − 1〉 state, respec-

tively, the state |Φ−〉(2)
polarization can be rewritten. This rewritten state, which we will

denote simply as |Φ−〉(2), is given by

|Φ−〉(2) =
1√
3

(|1〉1|1〉2 − |0〉1|0〉2 + | − 1〉1| − 1〉2) . (5.6)

The state |Φ−〉(2) now describes a system that is fully equivalent to a bipartite system

consisting of entangled spin-1 particles. It is important to note that the term spin-1
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5.2 Derivation of the Spin-1 CHSH Inequality

used here refers to the two-photon polarization-entangled state and not the spins of

photons themselves.

Thus, following closely the steps for the derivation of the spin-1 CHSH inequality

presented in [105], we start by considering a bipartite system consisting of entangled

spin-1 particles. Conventionally, the two modes of the system are called Alice and Bob,

respectively. As in the case of the original Bell inequality [31], the derivation of the

CHSH inequality [32] is based on two fundamental assumptions. They are

1. Correlations between result of measurements made by Alice and Bob can be

accounted by a local realistic theory (specifically the LHV theory). In another

word, the correlations can be explained by some local hidden variables, classical

in nature, which are established at the source. This assumption is known as the

”realism condition”.

2. Measurements made by Alice and Bob are independent of each other. This as-

sumption is known as the ”locality condition”.

From the above assumptions, the joint probability P (i, j|α, β, λ) of Alice and Bob

obtaining the measurement result i and j with analyzer setting α and β, respectively

with certain dependence on the local hidden variable λ, can be expressed as the product

of the individual measurement probability

P (i, j|α, β, λ) = P (i|α, λ)P (j|β, λ). (5.7)

Using Eq. 5.7, a correlation function ELHV (α, β) taking into account any LHVs can be

defined as

ELHV (α, β) =
∫

dλf(λ)A(α, λ)B(β, λ), (5.8)

where A(α, λ) and B(β, λ) are the average value of the measurement outcomes obtained

by Alice and Bob with analyzer setting α and β, respectively. The function f(λ) is a

probability density function that is dependent on the hidden variable λ.

A Stern-Gerlach type spin measurement on a spin-1 particle will yield three possible

outcomes; −~, 0, and +~. These can be written as the basis states | − 1〉, |0〉, and |+ 1〉,
respectively in the quantum state vector notation. If we assign the value of +1 to the

measurement result | − 1〉 and |+ 1〉 and the value of -1 to the measurement result |0〉,
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5.2 Derivation of the Spin-1 CHSH Inequality

the average values of the measurement outcomes obtained by Alice and Bob with their

respective analyzer setting α and β can be written as

A(α, λ) = P (1|α, λ)− P (0|α, λ) + P (−1|α, λ), (5.9)

B(β, λ) = P (1|β, λ)− P (0|β, λ) + P (−1|β, λ). (5.10)

This will imply that |A(α, λ)| ≤ 1 and |B(α, λ)| ≤ 1. It is worth noting that this spe-

cific choice of A and B is not optimal for spin-1 states, i.e. the violation achieved with

this specific choice of A and B is not the maximum obtainable with any general spin-1

Bell inequality. There have been numerous theoretical studies [11, 69, 106] on the opti-

mization of the choice of A and B in this regard. However, these theoretical proposals

often require more complicated measurements to be carried out for the violation of the

Bell inequalities.

The difference and sum between the correlation function ELHV (α, β) for different

analyzer setting α and β are given by

ELHV (α, β)− ELHV (α, β′) =
∫

dλf(λ)A(α, λ)[B(β, λ)−B(β′, λ)], (5.11)

ELHV (α′, β) + ELHV (α′, β′) =
∫

dλf(λ)A(α′, λ)[B(β, λ) + B(β′, λ)]. (5.12)

Given that |A(α, λ)| ≤ 1, it is possible to rewrite Eq. 5.11 and Eq. 5.12 into the

following inequalities

|ELHV (α, β)−ELHV (α, β′)| ≤
∫

dλf(λ)|B(β, λ)−B(β′, λ)|, (5.13)

|ELHV (α′, β) + ELHV (α′, β′)| ≤
∫

dλf(λ)|B(β, λ) + B(β′, λ)|. (5.14)

Since |B(α, λ)| ≤ 1, using the triangle inequality relation∗, we obtain

|B(β, λ) − B(β′, λ) + B(β, λ) + B(β′, λ)| ≤ 2. (5.15)

The spin-1 CHSH inequality can then be defined as

S ≡ |E(α, β) − E(α, β′) + E(α′, β) + E(α′, β′)| ≤ 2. (5.16)

With any system exhibiting only classical correlations, the maximum value of S obtain-

able is 2. The stronger correlations found within entangled quantum systems will lead
∗The triangle inequality relation is defined as |x + y| ≤ |x|+ |y|, where x and y are real numbers.
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to a value of S > 2, violating the inequality. This result is true as long as the choice

A(α, λ) and B(β, λ) is such that |A(α, λ)| ≤ 1 and |B(α, λ)| ≤ 1, i.e. the same CHSH

inequality is obtained for the spin-1
2 case [105] with |A(α, λ)| ≤ 1 and |B(α, λ)| ≤ 1.

5.3 Derivation of the Maximum Violation for the Spin-1

CHSH Inequality

From quantum mechanics, the joint probability describing the measurement result of

Alice and Bob can no longer be decoupled into the product of the individual measure-

ment probability. Thus, to be consistent with predictions of quantum mechanics, the

correlation function EQM (α, β) for a bipartite system consisting of spin-1 particles is

now written as

EQM (α, β) = P (1, 1|α, β) − P (1, 0|α, β) + P (1,−1|α, β)

− P (0, 1|α, β) + P (0, 0|α, β) − P (−1, 1|α, β)

+ P (−1, 1|α, β) − P (−1, 0|α, β) + P (−1,−1|α, β), (5.17)

where P (i, j|, α, β) is the joint probability of Alice and Bob obtaining the measurement

result i and j with analyzer setting α and β, respectively.

For this derivation, we will consider the maximally entangled state |Φ−〉(2) in Eq. 5.6.

The analytical expressions for joint probabilities∗ in the correlation function EQM (α, β)

are given by

P (1, 1|α, β) =
1
3

cos4(α + β),

P (1, 0|α, β) =
1
6

sin2[2(α + β)],

P (1,−1|α, β) =
1
3

sin4(α + β),

P (0, 1|α, β) =
1
6

sin2[2(α + β)],

P (0, 0|α, β) =
1
3

cos2[2(α + β)],

P (0,−1|α, β) =
1
6

sin2[2(α + β)],

P (−1, 1|α, β) =
1
3

sin4(α + β),

∗Refer to Section 2.3.1 for details on the derivation of analytical expressions for joint probabilities.
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P (−1, 0|α, β) =
1
6

sin2[2(α + β)],

P (−1,−1|α, β) =
1
3

cos4(α + β). (5.18)

These joint probabilities are substituted into Eq. 5.17 and after simplification, the

correlation function EQM (α, β) is given by

EQM (α, β) =
1
3
{1 + 2 cos[4(α + β)]}. (5.19)

By substituting Eq. 5.19 into Eq. 5.16, an analytical expression for S for the maximally

entangled state |Φ−〉(2) can be obtained. Maximization∗ of the value S with variables α,

α′, β, and β′ produced a maximum theoretical value of S≈ 2.552 at α(α′)= 56.9 ◦(79.4 ◦)

and β(β′)= 21.9 ◦(89.4 ◦).

To provide a more intuitive insight into how the choice of analyzer setting β and

β′ lead to maximum violation given the setting of α and α′ on the other analyzer,

we plotted the correlation function E(α, β) for α(α′)= 56.9◦(79.4◦) over a range of

angle β and β′ in Fig. 5.3. From Eq. 5.16 it is possible to see that the maximum

value of S occurs when the both the term E(α, β) + E(α′, β) and E(α′, β) − E(α, β′)

are maximal. The first term E(α, β) + E(α′, β) is maximal at the larger of the two

intersections between the two plots in Fig. 5.3, while the maximum of the second term

E(α′, β′) − E(α, β′) can be found at the center of two adjacent intersections between

the two plots. These two angles correspond to the earlier obtained analyzer settings

β(β′)= 21.9 ◦(89.4 ◦) which give maximal violation. This observation can be used to

easily determine the maximum of S, given any two correlation functions E(α, β) and

E(α′, β).

The maximally entangled state |Φ−〉(2) in Eq. 5.6 is an idealized model describing

the polarization state of the entangled photons from the source. A more realistic model

will need to take into account some form of noise contribution within the system. Since

our setup uses pump pulses of much shorter duration than the coincidence time window,

we can assume the noise term will consist of contribution only from the individual terms

in the pure state |Φ−〉(2) itself. Such a noise contribution, called colored noise, can be

written as

ρnoise =
1
3
(|1〉1|1〉2〈1|1〈1|2 + |0〉1|0〉2〈0|1〈0|2 + | − 1〉1| − 1〉2〈−1|1〈−1|2). (5.20)

∗The maximization of the value of S with variables α, α′, β, and β′ is carried out in Mathematica

using the ”NMaximize” function.
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5.3 Derivation of the Maximum Violation for the Spin-1 CHSH Inequality

Figure 5.3: Theoretical correlation function E(α, β) and E(α′, β) with

α(α′)= 56.9 ◦(79.4 ◦) over a range of β and β′ corresponding to the maximally en-

tangled state |Φ〉. From Eq. 5.16 it can be seen that the maximum of S occurs when the

both the term E(α, β) + E(α′, β) and E(α′, β′) − E(α, β′) are maximal. The first term

E(α, β) + E(α′, β) is maximal at the larger of the two intersections (circles) between the

two plots, while the maximum of the second term E(α′, β′) − E(α, β′) (double arrow)

can be found at the center of two adjacent intersections between the two plots. These two

angles correspond to the analyzer settings β(β′)= 21.9 ◦(89.4 ◦).
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5.4 Experimental Violation of the Spin-1 CHSH Inequality

In this particular situation, we are considering the special case where the individual

terms in the colored noise contribution are equal, though this may not always be true

in general. With the noise, the system can now only be described by a density matrix ρ

consisting of a contribution from the pure state |Φ−〉(2) and a colored noise contribution

ρnoise given by

ρ = p|Φ−〉(2)〈Φ−|(2) + (1− p)ρnoise. (5.21)

The relative weight between the contribution from the pure state |Φ−〉(2) and from the

colored noise is described by the parameter p. With the colored noise contribution, the

correlation function E(α, β, p) is now given by

E(α, β, p) =
1
6
{1 + p− (1− p) cos(4β) + cos(4α)[1

− p + (3 + p) cos(4β)]− 4p sin(4α) sin(4β)}. (5.22)

By substituting Eq. 5.22 into Eq. 5.16, it is possible to evaluate the maximum of S for

various values of p (Fig. 5.4). It can be seen that the maximally entangled state |Φ−〉(2)

is highly resistant to colored noise. The state |Φ−〉(2) only fails to violate the CHSH

inequality in the limit of complete colored noise contribution.

5.4 Experimental Violation of the Spin-1 CHSH Inequal-

ity

With the presence of noise in the system, the settings α(α′)= 56.9 ◦(79.4 ◦) and β(β′)=

21.9 ◦(89.4 ◦) derived for a pure the maximally entangled state |Φ−〉(2) will not yield

the maximum violation. Thus, for the experimental violation of the spin-1 CHSH

inequality, the analyzer setting α(α′) = 56.9 ◦(79.4 ◦) are fixed and the nine possible

combinations of four-fold coincidence shown in Eq. 5.18 are recorded over a range of β

and β′. Each of the joint probability terms in the correlation function E(α, β) is then

evaluated by∗

P (i, j|α, β) =
nij(α, β)∑

i,j
nij(α, β)

, (5.23)

∗This evaluation assumes ”fair sampling” which states the sample of detected pairs is representative

of the pairs emitted, independent of the detection efficiency.
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Figure 5.4: The maximum of S evaluated with various relative weight p between the

contribution from the pure state |Φ−〉(2) and from the colored noise. It can be seen that

the maximally entangled state |Φ−〉(2) is highly resistant to colored noise. The state |Φ−〉(2)

only fails to violate the CHSH inequality in the limit of complete colored noise contribution.

where nij(α, β) is the number of four-fold coincidences obtained with measurement

outcome i and j when the analyzer setting is α and β, respectively. The maximum of

S can then be obtained with the method suggested in the previous section. Deduction

of the corresponding standard error of the maximum of S is made by propagating the

Poissonian counting statistics of the four-fold coincidence events [76].

The correlation function with α(α′) = 56.9 ◦(79.4 ◦) taken without any spectral fil-

tering is shown in Fig. 5.5 (upper panel). From the two measured correlation functions,

we obtained a maximal value of S = 2.18 ± 0.02 at β(β′) = 63.4◦(85.5◦), violating the

spin-1 CHSH inequality by 9 standard deviations. From the fit of the two measured

correlation functions to Eq. 5.22 with α(α′) = 56.9 ◦(79.4 ◦), we obtain p ≈ 0.78.

The same measurements are repeated for the case with spectral filtering in the form

of interference filters with a 5 nm bandwidth (FWHM) placed in the optical path before

the polarization analyzers. The measured correlation functions are shown in Fig. 5.5

(lower panel). With the application of spectral filtering, the maximum of S increase to

S = 2.49 ± 0.06 at β(β′) = 64.4◦(84.9◦), more than 8 standard deviations away from
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Figure 5.5: Measured correlation function E(α, β) with α(α′)= 56.9 ◦(79.4 ◦) (crossed

traces). For the case with no spectral filtering (upper panel), we obtained a maximal value

of S = 2.18 ± 0.02 at β(β′) = 63.4◦(85.5◦). For the case with spectral filtering using

interference filters with a 5 nm bandwidth (FWHM) placed in the optical path before the

polarization analyzers (lower panel), we obtained a maximal value of S = 2.49 ± 0.06

at β(β′) = 64.4◦(84.9◦). From a fit of the measured correlation function to Eq. 5.22 with

α(α′)= 56.9 ◦(79.4 ◦) (solid traces), we obtain p ≈ 0.78 and p ≈ 0.85 for the case without

and with spectral filtering, respectively.
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5.4 Experimental Violation of the Spin-1 CHSH Inequality

the classical limit of S = 2. From the fit of the two measured correlation function to

Eq. 5.22, we obtain a higher contribution of the pure state |Φ−〉(2) with p ≈ 0.85.

From the previous experiment, we have shown that the spectral compensation

scheme have fully eliminated the spectral distinguishability between the down-converted

components. Thus, this increase in the proportion of the pure state |Φ−〉(2) cannot be

attributed to the reduction of spectral distinguishability when spectral filtering is ap-

plied. One possible explanation for this phenomenon is that not all the double pairs

produced in the second-order down-conversion process are coherent with each other.

Instead of the maximally entangled four-photon state given in Eq. 5.5, these incoherent

pairs are described by the product of two |Φ−〉 state in Eq 5.4.

This is possibly due the fact that the coherence length of the pump pulses in the

setup is shorter than the length of the down-conversion crystal. Thus, there is a finite

probability of down-conversion processes occurring at sites in the crystal separated by a

a distance greater than the coherence length of the down-converted photons. Through

spectral filtering, we are actually reducing their bandwidth and while increasing the

coherence length. This results in better overlap between the temporal envelope of the

down-converted photons giving, rise to a larger proportion of coherent pairs.
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Chapter 6

Final Remarks

As we have seen in Chapter 1, a lot of the benefits offered by performing information

processing and communication in the quantum regime only comes in when dealing with

systems consisting of a large number of particles. To fully exploit these benefits, we

are seeing an increasing number of quantum algorithms and communication protocols

involving the use of quantum systems with more than two particles being proposed [14,

15, 45, 54]. Following suit, experimental implementations that allow us to generate,

study, and manipulate these multi-particle systems are fast becoming commonplace [12,

55, 60, 72, 76, 107].

These implementations often involved the use of polarization-entangled photons as

carriers of quantum information. One way of generating these polarization-entangled

multi-photon states is through the spontaneous parametric down-conversion (SPDC) of

ultrafast optical pump pulses [12, 76, 107]. Our ultimate goal here is the implementation

of a high quality polarization-entangled multi-photon source based on the same SPDC.

This source can be used in various quantum communication protocols and fundamental

tests of quantum physics in higher-dimensional Hilbert spaces.

A major drawback often associated with these pulsed SPDC configurations is a

degraded quality of polarization entanglement. This problem can only be mitigated

to a certain extent through the spectral filtering of the down-converted photons. To

understand this phenomenon, we implemented a photon pair source using traditional

type-II phase matching in a crossed-ring configuration [5], followed by polarization

analyzers and grating monochromators to resolve the different spectral components for
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both photons.

In Chapter 3, I reported on a spectrally resolved polarization correlation experi-

ments with photons produced by SPDC in a femtosecond pump regime. The objective

there was to clarify the relation between entanglement quality and spectral distin-

guishability of the decay paths contributing to the entangled state. Through the joint

spectral mapping of the polarization, we found that the two decay paths are distin-

guishable in their spectral properties. Leakage of polarization information into degrees

of freedom which are not normally monitored results in mixedness of the polarization

state of the photon pair and in turn a degradation in polarization entanglement. All

our experimental results can be explained by a simple model in which the polarization

states are pure, though not maximally entangled for every wavelength pair. In this

model, no additional degrees of freedom are necessary to usefully describe the detected

states.

Using the spectrally resolved polarization correlations we constructed a map of the

entanglement entropy over the joint spectrum of the down-converted pairs, showing

that the entanglement is maximal at those positions which have equal contributions

from the two decay paths. The presented virtual filtering technique could be useful in

finding the optimal choice of filters given a particular entanglement figure-of-merit to

be maximized in combination with a count rate [96].

In Chapter 4, we conducted an experimental study on the spectral compensation

scheme proposed and first implemented by Kim et al. in [1]. We showed that the

compensation scheme eliminated the spectral distinguishability between the two decay

paths. This is demonstrated by the identical joint spectra measured in the natural

basis of the down-conversion, and direct correlation measurements at different power

levels. The balanced contribution between the two down-conversion paths for all spec-

tral components does not reveal any information about the polarization state, thus en-

tanglement quality is preserved when the spectral degree of freedom is ignored. After

taking the higher-order contributions into consideration, we achieved a high visibility

of V45 = 97.9± 0.5% in the complementary basis without the need of spectral filtering.

The simplicity and effectiveness of this scheme make it a useful addition to the toolkit

of techniques used for efficiently preparing entangled states of two and more photons.

In Chapter 5, using the source of polarization-entangled photons implemented in

the previous experiment, we violated the spin-1 CHSH inequality [32]. The standard
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error of the S can be obtained by propagating the Poissonian counting statistics of the

four-fold coincidence events [76]. For the case when no spectral filtering is applied to the

down-converted photons, we obtained a value of S = 2.18 ± 0.02, violating the spin-1

CHSH inequality by 9 standard deviations. Fit of the measured correlation functions

to a model that takes into account of colored noise contribution revealed we only have

approximately 78 % contribution from the maximally entangled state |Φ〉 (Eq. 5.6) in

our source. With the application of spectral filtering, the maximum value of S obtained

increased to S = 2.49 ± 0.06, more than 8 standard deviations away from the classical

limit of S = 2. A similar fit of the measured correlation functions yielded a higher

contribution of approximately 85% from the maximally entangled state |Φ〉 [108].

One possible explanation can be offered for this increase in the proportion of the

maximally entangled state |Φ〉 with spectral filtering: not all the double pairs produced

in the second-order down-conversion process are coherent with each other. This is

possibly due the fact that the coherence length of the pump pulses in the setup are

shorter than the length of the down-conversion crystal. Thus there is a finite probability

of down-conversion processes occurring at different sites in the crystal separated by a

distance greater than the coherence length of the down-converted photons. Through

spectral filtering, we are reducing the bandwidth of the down-converted photons while

increasing their coherence length. This results in a better overlap between the temporal

envelope of the down-converted photons giving rise to a larger proportion of coherent

double pairs. The presented spectral compensation scheme would not remove this

problem.

The question that now remains is whether we have achieved the goal of implementing

a high quality polarization-entangled multi-photon source. In a limited sense the answer

is yes. As we have seen in Chapter 4 the problem of spectral distinguishability has been

eliminated. The remaining problem of incoherent double pair production can be easily

overcome by either increasing the temporal width of the pump pulses or utilizing a

shorter crystal. This ensures that we are operating in a regime where the coherence

length of the pump pulses are longer than the crystal thickness. However, both of

these measures are likely to detrimentally impact the rate of multi-photon events. A

more preferable measure that does not drastically reduce the multi-photon coincidence

rate is the implementation of a temporal compensation scheme involving a double-

pass configuration of the pump beam [12, 91]. This compensation scheme restores
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the temporal indistinguishability between the various combinations in the maximally

entangled state |Φ−〉(2) and is the subject of ongoing research.
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Horne inequality for three-state systems. Physical Review A, 65:032118, 2002.

15, 74

[70] D. Kaszlikowski, D. K. L. Oi, M. Christandl, K. Chang, A. Ekert, L. C. Kwek,

and C. H. Oh. Quantum cryptography based on qutrit Bell inequalities. Physical

Review A, 67:012310, 2003. 15

[71] L.-B. Fu. General Correlation Functions of the Clauser-Horne-Shimony-Holt

Inequality for Arbitrarily High-Dimensional Systems. Physical Review Letters,

92:130404, 2004. 15

92



BIBLIOGRAPHY

[72] A. Lamas-Linares, J. C. Howell, C. Simon, and D. Bouwmeester. Experimental

Quantum Cloning of Single Photons. Science, 296:712–714, 2002. 15, 19, 38, 56,

82

[73] C. A. Kocher and E. D. Commins. Polarization Correlation of Photons Emitted

in an Atomic Cascade. Physical Review Letters, 18:575–577, 1967. 17, 18

[74] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger. Quantum

Cryptography with Entangled Photons. Physical Review A, 84:4729–4732, 2000.

18, 38
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