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Summary 

In the thesis, we employ a multi-modal method (i.e., kernel canonical correlation 

analysis) named RKCCA to implement dimensionality reduction for high 

dimensional data.  

      Our RKCCA method first maps the original data into the Reproducing Kernel 

Hilbert Space (RKHS) by explicit kernel functions, whereas the traditional 

KCCA (referred to as spectrum KCCA) method projects the input into high 

dimensional Hilbert space by implicit kernel functions. This makes the RKCCA 

method more suitable for theoretical development. Furthermore, we prove the 

equivalence between our RKCCA and spectrum KCCA. In RKHS, we prove that 

RKCCA method can be decomposed into two separate steps, i.e., principal 

component analysis (PCA) followed by canonical correlation analysis (CCA). 

We also prove that the rule can be preserved for implementing dimensionality 

reduction in RKHS. Experimental results on real-world datasets show the 

presented method yields better performance than the sate-of-the-art algorithms in 

terms of classification accuracy and the effect of dimensionality reduction.  
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Chapter 1 

Introduction 

1.1 Background 

Recent applications, such as text categorization, computer vision, image retrieval, 

microarray technology and visual recognition, all involve high dimensional data 

[1, 2]. With the prevalence of high dimensional data in real life applications, the 

definition of “high dimensional" is also changing from tens of features to 

hundreds or even tens of thousands of features. 

  In principle, a learning algorithm is expected to perform more accurately 

given more information. In other words, we should utilize as many features as 

possible that are available in our data. However, in practice, although we have 

seen some cases with large amounts of high dimensional data that have been 

analyzed with high-performance contemporary computers, several problems 

occur when dealing with such high dimensional data. First, high dimensional data 

leads to an explosion in execution time. This is always a fundamental problem 
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when dealing with such datasets. The second problem is that some attributes in 

the datasets often are just “noise" or irrelevant to the learning objective, and thus 

do not contribute to (sometimes even degrade) the learning process. Third, high 

dimensional data suffer from the problem of “curse of dimensionality”. Hence, 

designing efficient solutions to deal with high dimensional data is both interesting 

and challenging.  

      The underlying assumption for dimensionality reduction is that data points do 

not lie randomly in the high dimensional space, and thus useful information in 

high dimensional data can be summarized by a small number of attributes. The 

main idea of dimensionality reduction is to solve a problem defined over a high 

dimensional geometric space dΩ , by mapping that space onto kΩ  where k is 

“low” (usually, k << d) without losing much information in the original data, then 

solve the problem in the latent space. Most existing algorithms follow the 

theorem by Johnson and Lindenstrauss [3] which states that there exists a 

randomized mapping A: d k Ω →Ω  , 2( (1/ ) / )k O long P ε= such for any dx∈Ω  , 

have 

2 2
Pr ( (1 ) ) 1A Ax x Pε= ± ≥ −                                            (Eq.1.1) 

where  (1)

1
OP

n
=  , n is the sample size and ε  is a scalar approximate to zero. The 

equation means the probability of the difference between the original dataset and 

the dataset reduced with projection A always almost approaches 1, i.e., there is a 

little information loss after dimensionality reduction. Often Eq.1.1 may denote 



CHAPTER 1 INTRODUCTION 

 3

the minimum classification error that a user is willing to accept, or some 

principles based on mutual information [4], such as, maximum statistical 

dependency ( max{ ({ , 1,..., }; )}iI x i m c= ), maximum relevance 

( 1max ( ; )
i

i
x S

I x c
S ∈
∑ ),  and minimum redundancy ( 2

,

1max ( ; )
i j

i j
x x S

I x x
S ∈

∑ ), where 

feature set S has m features ix and class feature c, and ( ; )i jI x x is the mutual 

information between feature ix and feature jx  . 

      In order to satisfy the above rule, dimensionality reduction techniques should 

be designed to search efficiently for a mapping A such that satisfying Eq.1.1 for 

the given dataset. A naïve search algorithm performs an exhaustive search among 

all combinations of 2d  subspaces and finds the best subspace. Clearly this is 

exponential and not scalable. Alternate methods typically employ some heuristic 

sequential-search-based methods, such as best individual features and sequential 

forward (floating) search [4]. 

      Dimensionality reduction can solve the problem of high dimensional data by 

reducing the number of attributes in the dataset, thus saving both storage space 

and CPU time required to process the smaller dataset. In addition, interpreting the 

learned models is easier with a smaller number of attributes. Furthermore, by 

transforming the high dimensional data into low dimensional data (say 2D or 3D), 

it is much simpler to visualize and obtain a deeper understanding of the data 

characteristics. Hence, dimensionality reduction techniques have been regarded 

as one of the efficient methods for dealing with the high dimensional data. 
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      However, dimensionality reduction can result in certain degree of information 

loss. Inappropriate reduction can cause useful and relevant information to be 

filtered out. To overcome this, researchers found some solutions. For example, 

naive Bayes classifier can classify high dimensional data sets accurately for 

certain application, and some regularized classifiers (such as support vector 

machine) can be designed to achieve good performance for high dimensional text 

datasets [9]. Furthermore, some learning algorithms, such as, boosting methods 

or mixture models, can build separate models for each attribute and combine 

these models, rather than performing dimensionality reduction. Despite the 

apparent robustness of the methods mentioned above, dimensionality reduction is 

still useful as a first step in data preparation. That is because noise/irrelevant 

attributes can degrade the learning performance, and this issue can be eliminated 

as much as possible by effectively performing dimensionality reduction [5]. 

Furthermore, taking into consideration the savings in time and storage 

requirement of a learning model, the suggestion for dimensionality reduction is 

reasonable. However, how to more effective perform dimensionality reduction 

still is an interesting or challengeable issue. Hence, in this thesis, we will focus 

on the issue of dimensionality reduction. 

 

1.2 Motivations and Contributions 

Many learning frameworks for dimensionality reduction have been proposed in 

[6-8, 77] as well as survey papers on dimensionality reduction can be found in [1, 
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9-11]. The details can be found in Chapter 2 of the thesis. In the thesis, we focus 

on implementing dimensionality reduction with canonical correlation measures, 

i.e., kernel canonical correlation analysis (KCCA). Canonical correlations are 

invariant with respect to affine transformations of the variables. This is the most 

important difference between CCA and the other ordinary correlation analysis 

(such as, Pearson correlation coefficient, Kendall τ and Spearman ρ ) which 

highly depend on the representations in which the variables are described [40]. 

To the best of our knowledge, there is no literature focused on implementing 

dimensionality reduction with KCCA method. Traditional KCCA method 

(referred to as spectrum KCCA in the thesis) maps the original feature space to a 

higher dimensional Hilbert space of real valued functions. However, the approach 

suffers from at least two main limitations. First, the mapping used in spectrum 

KCCA method is often implicit which is not conducive to theoretical 

development [46]. Second, the regularization step employed by spectrum KCCA 

method requires the setting of many parameters. Moreover, to obtain the optimal 

parameter setting requires prior knowledge on the datasets. 

       In this thesis, we first survey the existing literatures on dimensionality 

reduction techniques. Then we propose a method named RKCCA (Kernel 

Canonical Correlation Analysis in RKHS) in which we map the original data into 

reproducing kernel Hilbert spaces (RKHS). In the RKHS, we perform 

dimensionality reduction with kernel canonical correlation analysis (KCCA) 

measure by two separate steps, i.e., principal component analysis (PCA) followed 
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by canonical correlation analysis (CCA). Furthermore, we apply for RKCCA into 

the learning models in all kinds of learning models, such as, supervised learning 

model, unsupervised learning model, and transfer learning model. Our 

contributions are summarized as follows: 

• Propose an efficient algorithm to implement dimensionality reduction by 

Kernel canonical correlation analysis in reproducing kernel Hilbert spaces. 

• Prove that the equivalence between the traditional KCCA (referred to as 

spectrum KCCA in this thesis) and our KCCA in RKHS (i.e., RKCCA). 

• Prove that RKCCA can be decomposed into two separate processes, i.e., 

PCA followed by CCA in RKHS, also proved that the rule is preserved 

for implementing dimensionality reduction by RKCCA in RKHS. 

• Test the effect of dimensionality reduction with KCCA measures in all 

kinds of learning models, such as, supervised learning model, 

unsupervised learning model and transfer learning model. 

 

1.3 Organization 

The thesis is organized as follows. We give an overview of the existing literatures 

on dimensionality reduction techniques in Chapter 2 and present some 

preliminary theory about CCA and KCCA in Chapter 3. In Chapter 4, we propose 

the RKCCA approach; and we evaluate the proposed approach on real-world 

datasets in Chapter 5. We conclude our work and proposed future research work 

in Chapter 6. 
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Chapter 2 

Related Work 

In this section, we provide an overview of the existing dimensionality reduction 

techniques from three aspects: 

1) linear versus nonlinear techniques based on the relationships between 

independent variables and dependent variable, the details can be found in 

section 2.1;  

2) means by which low dimensional data are formed: feature selection, 

feature extraction, feature grouping techniques; details are given in 

section 2.2;  

3) learning models: supervised learning techniques, unsupervised learning 

techniques, semi-supervised learning techniques, multi-view techniques 

and transfer learning techniques; details are described in section 2.3.  
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2.1 Linear Versus Nonlinear Techniques  

Traditional linear dimensionality reduction techniques include principal 

component analysis (PCA), factor analysis (FA), projection pursuit (PP), singular 

value decomposition (SVD), independent component analysis (ICA).  

      Recently, researchers in [11] argued that data in real-life applications are 

often too complex to be captured by the simple linear models. Instead, kernel 

methods can be applied to provide a non-linear analysis. For example, Kernel 

PCA (KPCA) method can (implicitly) construct a higher (even indefinite) 

dimensional space, in which a large number of linear relations between the 

independent variables and dependent variable can be easily built in high 

dimensional spaces. Subsequently, the low-dimensional data is obtained by 

applying traditional PCA in the higher dimensional spaces.  

      Other popular nonlinear dimensionality reduction techniques (e.g., [11-13]) 

include principal curves, random projection, locally linear embedding etc. In this 

thesis, we are interested in nonlinear dimensionality reduction techniques.  
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2.2  Techniques for Forming Low Dimensional 

Data  

Based on the techniques for forming low dimensional data, dimensionality 

reduction techniques can be broadly divided into several categories [9]: (i) feature 

selection techniques, (ii) feature extraction techniques, and (iii) feature grouping 

techniques. 

      Feature selection approaches try to find a subset of the original attributes such 

that the information in that subset can approximately represent the whole data set. 

It includes filter approaches (e.g. information gain, mutual information), wrapper 

approaches (e.g. genetic algorithm), and embedding approaches. Many feature 

selection methods belong to the supervised learning methods presented in section 

2.3.  

      Feature extraction methods apply a projection of the multidimensional space 

to a low dimensional space. This projection may involve all the attributes in the 

dataset. Feature extraction measures (e.g., [12, 14]) are very popular in data 

mining and machine learning techniques, such as, PCA, semi-definite embedding 

method, multifactor dimensionality reduction method, Isomap method, latent 

semantic analysis method, wavelet compression method, semantic mapping 

method and the others methods.  The proposed method in this thesis partially 

belongs to this domain because one of dimensionality reduction techniques in the 

thesis is principal component analysis (PCA). 
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      Feature grouping techniques reduce the dimensions by combining several 

existing features to build one or more new features. The most direct way for 

feature grouping method is to cluster the features (rather than the objects) of a 

data set. For example, to cluster a similarity matrix of different features by 

applying the clustering method (e.g., hierarchical clustering method) [2], then 

evaluate the result of the cluster with Pearson's correlation coefficient. Another 

example in [9], instead of clustering the traditional clustering methods, we can 

also cluster together for both the attributes and the objects, e.g., co-clustering 

method. Feature grouping can indirectly achieve some similar coefficients by 

combining ridge regression with LASSO [15] which is a penalized least squares 

method imposing an L1-penalty on the regression coefficients.
 

 

2.3 Techniques Based on Learning Models 

Dimensional reduction techniques can be categorized into five types based on the 

types of learning models built, namely: supervised learning methods, 

unsupervised learning methods, semi-supervised learning methods, multi-view 

methods and transfer learning methods.  

 

2.3.1 Unsupervised Learning Techniques 

Unsupervised dimensional reduction techniques usually refer to techniques that 

perform dimensionality reduction based only on the condition attributes without 
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considering the information from class labels. Among the traditional 

unsupervised dimensional reduction methods, such as, PCA, ICA and random 

projection, random projection method is the most promising as it is not as 

computationally expensive as the others.  

      Recently, Weinberger et al., [16] proposed a nonlinear supervised 

dimensional reduction method. The method first learns a kernel matrix by 

preserving local distances for k nearest neighbors of each point to satisfy the 

maximum variance unfolding (MVU) principle. It then performs PCA in the high 

dimensional space after using the kernel trick to project the original data into a 

high dimensional space. In essence, the proposed dimensional reduction 

technique is similar to PCA. However, this method can preserve the local 

instances in latent spaces after dimensionality reduction while PCA only wants to 

assure the maximum separation rather than preserving the geometric distances.  

      Techniques on dimensionality reduction are also carried out as a pre-

processing step to select the subspace dimensions before the clustering process. 

The most representative of this approach is the adaptive technique presented in 

[17] which adjusts the subspace adaptively to form clusters are best separated or 

well defined. Another adaptive technique on dimensionality reduction is 

presented in [18] which employs K-means clustering to generate class labels and 

uses linear discriminant analysis (LDA) to select subspaces. The data are then 

simultaneously clustered while the feature subspaces are selected. This method 

builds a bridge between the clusters discovered in the subspace and those defined 
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in the full space by effectively using the cluster membership. This allows clusters 

that are discovered in the low dimensional subspace to be adaptively re-adjusted 

for global optimality. 

      In the unsupervised learning domain, Cevikalp et al., [19] recently proposed a 

discriminative linear dimensionality reduction method aim at preserving 

separateability by using the weighted displacement vectors between the training 

samples and nearby rival class regions to choose the projection directions.  

 

2.3.2 Supervised Learning Techniques 

Supervised learning techniques are designed to find a low dimensional 

transformation by considering class labels. In fact, class labels in supervised 

dimensionality reduction techniques can be used together with the condition 

attributes to extract relevant features. For example, both linear discriminant 

analysis (LDA) methods and multiple discriminant analysis methods can find the 

effective projection directions by maximizing the ratio of between-class variance 

to within-class variance. The partial least squares (PLS) method presents the 

same function as the regression edition of LDA. The Canonical correlation 

analysis (CCA) method, which finds projection directions by maximizing the 

correlation between two variables, is also regarded as one of techniques on 

supervised dimensionality reduction. Some traditional linear supervised 
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algorithms (e.g., above examples mentioned) can be transformed into nonlinear 

measure by kernel trick and are presented in [2, 20, 21].  

      Recent supervised dimensionality reduction techniques aim to minimize loss 

before and after dimension reduction [4]. This loss may be measured in terms of a 

cost function, degree of discrepancy, degree of dependence, class information 

distance [2], k nearest neighbor classification error [20]. For instance, Sajama and 

Orlitsky in [22] approximated the data distributions to any desired accuracy based 

on the maximum conditional likelihood estimation of mixture models, while 

retaining the maximum possible mutual information between feature vectors and 

class labels in the selected subspace by using the conditional likelihood as the 

contrast function. Cater et al. [2] employed the information preserving 

component analysis (IPCA) method to maximize the information distances. Rish 

et al. [23] combined learning a good predictor with dimensionality reduction but 

ignoring the “noise” by minimizing the conditional probability of class given the 

hidden variables. 

 

2.3.3 Semi-supervised Learning Techniques 

Semi-supervised dimensionality reduction techniques learn from a combination 

of both labeled and unlabeled data. In many practical data mining applications, 

unlabeled data are readily available but labeled data are more expensive to be 

obtained, therefore techniques on semi-supervised dimensionality reduction are 
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more practical than the techniques on supervised dimensionality reduction or 

unsupervised dimensionality reduction techniques. Existing techniques on semi-

supervised dimensionality reduction are usually built based on the unsupervised 

model by combining with prior information, such as, class label, pairwise 

constraints, side information. 

     A popular technique is semi-supervised learning algorithm based on graph, 

which considers a graph over all the samples as prior information to guide 

learning. The weight matrix, in which the weight of the edge between points in 

different classes is zero and a positive real value for the points with same classes, 

is the key to the semi-supervised learning algorithms based graph for 

classification problems. In the framework presented in [27], a projected subspace 

can be learnt from the labeled data by supervised learning method. Then, the 

weight matrix is obtained by combining not only the relationship between the 

mapped points in the subspace but also the labeled points. In order to obtain the 

weight matrix, there are two existing techniques. For example, we can assume 

that points that are near are likely to have the same label. We can also assume 

that the p-nearest neighbor graph is preserved between the original spaces and the 

subspaces.  

      The supervised methods, such as, least square method, or linear discriminant 

analysis (LDA) algorithm, encounter the ill-posed problems (i.e., within-class 

scatter matrix is singular) when data size is smaller than the number of the 

features. By combining the relationship between regularized least-squares and 
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regularized discriminant analysis, Song et al., [7] added a regularization term to 

the original criteria of LDA. The regularization term in the eigen problem is 

based on the prior knowledge coming from both labeled and unlabeled data, and 

can be constructed to employ graph Laplacian, to avoid the ill-posed problem 

during the process of dimensionality reduction. This transforms the original 

supervised model into semi-supervised model. Therefore, under their framework, 

some classical methods, such as principal component analysis (PCA), linear 

discriminant analysis (LDA), maximum margin criterion (MMC), locality 

preserving projections (LPP) and their corresponding kernel versions will be the 

special cases of the proposed method. 

      Pairwise constraint is an information pair of instances known as belonging to 

the same class (must-link constraints) or different classes (cannot-link constraints) 

rather than knowing the actual class label of the instances, and it arises naturally 

in many tasks [24], such as, image retrieval. In the  real life applications, pairwise 

constraint is more general than class labels because true labels are difficult to 

obtain due to lack of prior knowledge, while specifying a pairwise constraint (i.e., 

whether some pairs of instances belong to the same class or not) is easier. 

Moreover, the pairwise constraints can be implied from labeled data but not vice 

versa. What is more, the pairwise constraints can be automatically obtained 

without human intervention [25]. For example, Bar-Hillel et al. [25] proposed the 

constrained Fisher’s Linear Discriminant (cFLD) for dimensionality reduction 

from equivalence constraints (only for must-link constraint) as an interim-step for 
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Relevant Component Analysis (RCA). Tang and Zhong [26] used pairwise 

constraints to guide dimensionality reduction, which can exploit both must-link 

constraints and cannot-link constraints but does not consider the usefulness of 

abundant unlabeled data. Zhang, et al., [24] considered the problem by combining 

unlabeled data with pairwise constraints. 

      Recently Zhang et al., [28] effectively used the information from class labels 

and the information learnt with online method from unlabeled data without the 

assumption of existence of classes to implement dimensionality reduction. The 

method uses a ranking rule for the class label and does not require an actual class 

label. 

      Prior information can be obtained from experts or by performing experiments. 

Some of these prior information may be exact or inexact. Yang et al. [29] 

extended the traditional nonlinear unsupervised techniques on dimensionality 

reduction (such as, Locally Linear Embedding method, ISOMAP method, and 

Local Tangent Space Alignment (LTSA)) to semi-supervised model by 

considering the prior information aim at yielding global low dimensional 

coordinates as well as bearing the same physical meaning deriving from the prior 

information. Weinberger and Saul [30] first learnt a kernel matrix aim at 

maximum variance unfolding (MVU) for k nearest neighbor distances of original 

data, then performed PCA to implement dimensionality reduction after projecting 

the original data into high dimensions by kernel matrix learnt. The proposed 

method also belongs to nonlinear technique. Based on the maximum variance 
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unfolding (MVU), Song et al., [31] learned a kernel matrix to preserve the local 

distance of data points as well as add the side information in the process, then 

built a semi-supervised model. 

      All above methods on semi-supervised dimensionality reduction models are 

designed based on unsupervised model. To the best of our knowledge, there is no 

literature focusing on the supervised model. 

 

2.3.4 Multi-view methods 

      All the above techniques (such as, unsupervised learning techniques, 

supervised learning techniques, or semi-supervised learning techniques) are 

designed for dealing with the data in one dataset. For the case with multiple 

views (there are multiple views and one feature for class label in one dataset, and 

each view can correctly separate the class label without the help from the other 

views) in one dataset, we call the dimensionality reduction methods as multi-

view methods. For example, Foster et al., [32] presented a nonlinear unsupervised 

technique on dimensionality reduction with canonical correlation analysis. In the 

proposed algorithm, the algorithm first performs CCA technique in unlabeled 

data {( (1)X , (2)X ) }. Then it constructs a projection Π that projects ( (1)X , (2)X ) to 

the most correlated lower dimensional subspace by selecting a (or several) 

maximal correlation coefficients. Finally, with a labeled dataset {( (1)X , (2)X , 

Y )}, a least squares regression is performed in this low dimensional subspace.  
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2.3.5 Transfer learning methods 

Most of the former methods, i.e., supervised dimensionality reduction methods, 

unsupervised methods and semi-supervised methods, are focused on one dataset 

to implement dimensionality reduction. Given the limited information in the 

dataset, for example, only one class label in the dataset, previous methods are 

unable to build an effective classifier. To overcome this, external datasets may be 

employed and this is the motivation in transfer learning. Transfer learning [33-35] 

is to learn a new task through the transfer of knowledge from a related task which 

has already been learned or easily to be learned a model (we also call the related 

task as outer information or source dataset due to it is not in the target dataset). 

The objective of transfer learning is to improve learning performance in the target 

task by the help from the source task. This can present significant improve while 

there is a little information in the target task or the useful information is too 

expensive to obtain.  

      Dimensionality reduction techniques on transfer learning model are first put 

forward in [36, 37]. Intuitively, dimensionality reduction techniques in transfer 

learning model are more practical and general than the traditional techniques on 

dimensionality reduction, so it will be the research topic in this thesis. 

       Compared to dimensionality reduction with linear discriminant analysis 

(LDA), transferred dimensionality reduction (TDR) method [36] has two 

improvements. First, transferred dimensionality reduction method revises the 

measure of the between-class information of LDA. The second improvement is 
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the revision of the composite adjacency matrix of neighborhood graphs. In the 

TDR algorithm, given initial k classes for target data, the algorithm is iteratively 

computed till the algorithm converges. Then it is designed applying traditional 

LDA to do dimensionality reduction for receiving optimal result. The paper also 

presented nonlinear transferred dimensionality reduction (TDR) by kernel 

functions. 

      Dimensionality reduction method with transfer learning model presented in 

[37] is based on the nonlinear supervised techniques on dimensionality reduction 

methods presented in [30, 38]. There are two steps in the framework. First, the 

algorithm extracts the common latent spaces between source and target datasets 

based on the maximal mean dependency embedded (MMDE) principle. In the 

common latent space extracted, the prior information is added into the learning 

process of kernel matrix. The objective is to maximize the dependence on the 

matrix which includes the side information and original information. In the 

second step of the proposed algorithm, the classifier built from source data in 

latent spaces is employed to classify target dataset in latent spaces. The whole 

algorithm is a KPCA-style method and extended from [30]. The last method in 

[30] receives the distances by kernel function with Hilbert-Schmidt Independence 

Criterion (HSIC) as well as considers side information, and it is regarded as a 

technique on semi-supervised methods.  

      Comparing the method in [36] with the method in [37], all two papers transfer 

prior information (i.e., class label) under the semi-supervised framework. The 
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difference is: Wang et al., [36] transfer information by summing the basic 

information (the information of independent variables in two datasets) and prior 

information (class label in target dataset, for strength the ability of dimensionality 

reduction; whereas Pan, et al. [37] compose the basic information with prior 

information into high dimensional spaces by kernel trick, then perform learning 

in the traditional semi-supervised learning model. 

 

2.4 The proposed method 

In this thesis, the proposed the algorithm RKCCA: 1) belongs to a nonlinear 

dimensionality reduction technique as it employs kernel methods; 2) can be 

categorized into feature extraction method for it uses PCA method as one of its 

two process; 3) can be applied to many kinds of datasets in the supervised 

learning model, unsupervised model (i.e., multi-view method) and transfer 

learning model.  
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Chapter 3 

Preliminary Work 

Some measures of relationship between two sets of variables have been popular 

in machine learning domains because they can reduce noise by correlation 

analysis. These methods include Pearson correlation coefficient, Kendall τ and 

Spearman ρ [39], mutual information [4] and canonical correlation analysis [40].   

      Canonical correlation analysis (CCA) method, which searches for two 

diagonal representations with maximal correlations of the two original variables, 

is a way of measuring the linear relationship between two variables. An 

interesting characteristic of canonical correlations on CCA is that they are 

invariant with respect to affine transformations of the variables. This is the most 

important difference between CCA and the other ordinary correlation analysis 

which highly depend on the representations in which the variables are described. 

Therefore, initially proposed as a multivariate analysis method by Hotelling [41], 

CCA and its variants have been widely applied to all kinds of domains, such as, 
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image processing [40, 42], pattern recognition [43], computer vision [44], 

wireless network[45] and the other domains. 

 

 

3.1 Basic theory on CCA  

Assuming two random variables: (1) pX ∈Ω and (2) qX ∈Ω , we can consider the 

relationship between (1)X  and (2)X  by choosing appropriate 

directions (1)
CCAW (and (2)

CCAW ) of (1)X (and (2)X ) to let: (1) (1) (1)
CCA

TS W X= , and 

(2) (2) (2)
CCA

TS W X= , then we can find the relationship between (1)X  and (2)X  and let 

(1) ( 2)

(1) (2)

,
max ( , )

CCA CCAW W
corr S Sρ =                                                    (Eq.3.1) 

      After receiving the covariance matrix of the observed sample, i.e.,  

11 12

21 22

∑ ∑⎡ ⎤
∑ = ⎢ ⎥∑ ∑⎣ ⎦

                                                                     (Eq.3.2) 

      Then the maximum canonical correlation between (1)X  and (2)X can be 

changed into: 

(1) ( 2)

(1) (2)
12

(1) (1) (2) (2),
11 22

max
CCA CCA

T
CCA CCA

T TW W
CCA CCA CCA CCA

W W
W W W W

ρ ∑
=

∑ ∑
                                          (Eq.3.3) 

      We use TA to denote the transpose of matrix A throughout this thesis.  
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      Due to the arbitrary of scale, the optimization problem in Eq.3.3 can be 

equaled to maximizing the numerator in Eq.3.3 subject to:  

(1) (1) (2) (2)
11 221,    1CCA CCA CCA CCA

T TW W W W∑ = ∑ =                                    (Eq. 3.4) 

      Thus, its corresponding Lagrangian is 

( )2
(1) (2) (1) (2) (1) (2) ( ) ( )

12 11
1

( , , , ) ( 1)
2CCA CCA CCA CCA CCA CCA

i
T i T i

i
L W W W W W Wλλ λ

=

= ∑ − ∑ −∑           (Eq.3.5) 

      After derivatives in respective to (1)
CCAW and (2)

CCAW , we can obtain 

(2) (1) (1)
12 11(1)

(1) (2) (2)
21 22(2)

0

0

CCA CCA

CCA

CCA CCA

CCA

L W W
W

L W W
W

λ

λ

∂⎧ = ∑ − ∑ =⎪∂⎪
⎨ ∂⎪ = ∑ − ∑ =
⎪∂⎩

                                            (Eq. 3.6) 

      Multiplying with (1)
CCA

TW (and (2)
CCA

TW ) to the two equations in Eq. 3.6 and 

subtracting their results, we can easily know 

(1) (2) (1) (1) (1) (2) (2) (2) (2) (1) (1)
12 11 22 11

(2) (1) (1) (1) (1) (1)
11 11

(2) (1)

0

 

 

CCA CCA CCA CCA CCA CCA CCA CCA

CCA CCA CCA CCA

T T T T

T T

W W W W W W W W

W W W W

λ λ λ

λ λ

λ λ

= Σ − Σ − Σ + Σ

= Σ − Σ

= −

            

(Eq. 3.7) 

and we let (1) (2)λ λ λ= = . 

      Assuming 22∑ is invertible, then the optimization problem in Eq. 3.3 is 

transferred into an eigenproblem as: 
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22

11

1 (1) 2 (1)
12 21 12

1 (2) 2 (2)
21 12 21

0

0
CCA CCA

CCA CCA

W W

W W

λ

λ

−

−

⎧∑ ∑ ∑ − ∑ =⎪
⎨
∑ ∑ ∑ − ∑ =⎪⎩

                                               (Eq. 3.8) 

Or 

(1) (2) (1) (1)(1) (1)

(2) (2)(2) (1) (2) (2)

T T

T T

CCA CCA

CCA CCA

X X X XW W
W WX X X X

λ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

          (Eq. 3.9) 

      Although we can obtain the optimization result of ρ (the correlation 

coefficient) by solving the eigenproblem in Eq. 3.8 (or Eq. 3.9), the CCA method 

difficultly extract useful representations of the data in real application. That is 

because, 1) CCA method assumes the two original variables following Gaussian 

distribution; 2) its linearity.  

      Hence, researchers extended the linear CCA into nonlinear CCA in which the 

relationship between two variables can be dealt with by nonlinear relationship. 

Popular nonlinear CCA methods have statistical methods (i.e., step function 

method, B-splines) [47] and the methods on machine learning, such as, neural 

network methods based on CCA[48, 49] and kernel function methods based on 

CCA (i.e., KCCA) [40, 50]. In this thesis, we focus on the methods in machine 

learning. Unfortunately, in real applications, neural networks based on CCA 

method suffer from some intrinsic problems such as long-time training, slow 

convergence and local minima [44]. KCCA is a good alternative because it can 

perform linear separation of the data simply via mapping the original spaces to 

the high (or infinite) dimensional spaces. 
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3.2 Basic theory on KCCA  

Researchers consider to replacing CCA with KCCA in which the data will be 

projected into high dimensional data for linearly separating, and we will 

introduce the traditional KCCA method following the idea in [40] but with a little 

improvement. 

      Given two input data (1) pX ∈Ω  and (2) qX ∈Ω with sample size n. We map both 

(1)X  and (2)X  into high (even infinite) dimensional spaces PΩ and QΩ  ( P p≥ , 

Q q≥ ), via the implicit mappings 

  (1) (1) (1) (1) (1) (1) (1) (1)
1: ( ) ( ( ),..., ( ))PX X X Xψ ψ ψ ψ=                                   (Eq. 3.10)  

      and  

(2) (2) (2) (2) (2) (2) (2) (2)
1: ( ) ( ( ),..., ( ))QX X X Xψ ψ ψ ψ=                               (Eq. 3.11) 

      where ( ) ( )( )i iXψ (i=1, 2) is the kernel spectrum for a certain positive definite 

kernel, i.e.,  

( ) ( ) ( ) ( ) ( ) ( )( , ) ( ) ( )j j
i i i i T i i

i l lk x x x xψ ψ= ,  ( ( ) ( ) ( ),j
i i i

lx x X∈ , i=1, 2 and , 1,...,j l n= )       

(Eq. 3.12) 

       and the corresponding kernel matrix is  

{ }( ) ( )

, 1
( , )j

ni i
i i l j l

K k x x
=

=  (i=1, 2)                                                       (Eq. 3.13) 
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      After the original data ( )iX are projected into kernel matrix iK (i=1, 2) by a 

kernel function, based on the Eq. 3.3, we assume the projection direction 

on (1)X or (2)X is  (1)
KCCAW , or  (2)

KCCAW respectively, the linear relationship between 

(1)
1

T
KCCAW K and (2)

2
T

KCCAW K  (i.e., the nonlinear relationship between (1)X and (2)X ) can 

be substituted as: 

(1) ( 2)

(1) (2)
1 2

(1) (1) (2) (2),
1 1 2 2

max
KCCA KCCA

T
KCCA KCCA

T TW W
KCCA KCCA KCCA KCCA

W K K W
W K K W W K K W

ρ =                        (Eq. 3.14) 

      Due to the arbitrary of scale, the optimization problem in Eq. 3.14 can be 

equaled to maximize the numerator in Eq. 3.14 subject to:  

(1) (1)
1 1 1KCCA KCCA

TW K K W = , and (2) (2)
2 2 1KCCA KCCA

TW K K W =                    (Eq. 3. 15) 

      Thus, its corresponding Lagrangian is  

( )2
(1) (2) (1) (2) (1) (2) ( ) ( )

1 2
1

( , , , ) ( 1)
2KCCA KCCA KCCA KCCA KCCA KCCA

i
T i T i

i i
i

L W W W K K W W K K Wλλ λ
=

= − −∑           

(Eq.16) 

      After derivatives in respective to (1)
KCCAW and (2)

KCCAW , we can obtain 

(2) (1) (1)
1 2 1 1

(1) (2) (2)
2 1 2 2

0

0

KCCA KCCA

KCCA KCCA

K K W K K W

K K W K K W

λ

λ

⎧ − =⎪
⎨

− =⎪⎩
                                           (Eq. 3.17) 

      The traditional methods (e.g., [40, 46]) always directly 

assume (1) (2)λ λ= without explaining anything. In fact, the assumption (1) (2)λ λ=  
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is true, and we will prove (1) (2)λ λ= instead of assuming it, and the process is 

presented Lemma 3.1.   

Lemma 3.1   If equations
(2) (1) (1)

1 2 1 1

(1) (2) (2)
2 1 2 2

0

0

KCCA KCCA

KCCA KCCA

K K W K K W

K K W K K W

λ

λ

⎧ − =⎪
⎨

− =⎪⎩
 are consistent, 

then (1) (2)λ λ= . 

Proof: we employ the pseudo inverse method to change Eq. 3.17 into: 

(2) (1) (1)
1 1 1 2

(1) (2) (2)
2 2 2 1

( )

( )

KCCA KCCA

KCCA KCCA

K K K K W W

K K K K W W

λ

λ

−

−

⎧ =⎪
⎨

=⎪⎩
                                (Eq. 3.18) 

      where 1 1( )K K − and 2 2( )K K − is the pseudo inverse of matrix 1 1K K and 

2 2K K respectively. Based on the definition of the pseudo inverse, we know 

1 1 1 1 1 2 1 2( )( )K K K K K K K K− = , and 2 2 2 2 2 1 2 1( )( )K K K K K K K K− =              (Eq. 3. 19) 

Based on Eq. 3.15, 

(1) (1) (1) (1) (2) (2) (2) (2)
1 1 2 2,  KCCA KCCA KCCA KCCA

T TW K K W W K K Wλ λ λ λ= =                      (Eq. 3. 20) 

Based on Eq. 3.18, we can get: 

.3.18
(1) (1) (1) (1) (1) (2)

1 1 1 1 1 1 1 2

(1) (2)
1 2

(( ) )

      =

KCCA KCCA KCCA KCCA

KCCA KCCA

Eq
T T T

T

W K K W W K K K K K K W

W K K W

λ λ −= =               (Eq. 3.21) 

.3.18
(2) (2) (2) (2) (2) (1)

2 2 2 2 2 2 2 1

(2) (1)
2 1

(( ) )

      

KCCA KCCA KCCA KCCA

KCCA KCCA

Eq
T T T

T

W K K W W K K K K K K W

W K K W

λ λ −= =

=
           (Eq. 3.22) 
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      Obviously, the maximal relationship between K1 and K2 in Eq. 3.21 is 

equivalent to the maximal relationship between K2 and K1 in Eq. 3.22.  

      Hence, (1) (2)λ λ= , and we let  (1) (2)λ λ λ= = .                             � 

      Based the Lemma 3.1, we can get the eigenproblem based on kernel matrix:  

(1) 2 (1)
1 1 1 1

(2) 2 (2)
2 2 2 2

0

0
CCA CCA

CCA CCA

K K W K K W

K K W K K W

λ

λ

⎧ − =⎪
⎨

− =⎪⎩
                                                               (Eq. 3.23) 

Or  

(1) (1)
1 2 1 1

(2) (2)
2 1 2 2

 KCCA KCCA

KCCA KCCA

W WK K K K
K K K KW W

λ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                             (Eq. 3.24) 

      Both Eq. 3.3 and Eq. 3.14 belong to a generalized eigenproblem with the 

form AX BXλ= . However, the eigenproblem in either CCA method or KCCA 

method suffer the singular problem. That is to say, both 1K and 2K  ( 11∑ and 22∑ ) 

maybe be singular or near singular when the dimensions on (1)X and (2)X  are 

larger than the sample size. This can cause numerical instability and 

computational efficiency. So the optimization in Eq.3.3 and Eq. 3.14 will be ill-

posed. In order to solving these issues, some regularization methods are 

employed. For example, 1) regularizing with partial least squares (or ridge-style 

regression methods) to penalize the norms of the associated weights for avoiding 

overfitting and ill-conditioned; 2) to stabilize the numerical computation for 

solving problem by adding a small quantity to the diagonals, or 3) to perform 

dimensionality reduction with Gram-Schmidt orthogonalization method or 
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incomplete Cholesky decomposition method for reducing complexity of the 

algorithm, and among others.  

      After these preprocesses, Eq. 3.14 in [4] can be changed into: 

1 1 1 2
12 22 21 ˆ ˆ( ) ( )TS Z Z Z Sκ α λ α− − −+ Ι =                                          (Eq. 3.25) 

      where 1 1 1 11
T TK R R Z SS= = , 2 2 2 22

TK R R Z= , 1 2 12
TR R Z= , 2 1 21

TR R Z=  , 

(1)ˆ T
CCAS Wα = , and κ is a scalar, symbol means approximate equivalent. 

      The solution to Eq. 3.14 can also provides a set of eigenvectors
1, ,

( ) ( ),...,
j d j

i iv v and 

the corresponding eigenvalues 
1

( ) ( ),...,
d

i iλ λ  , i=1, 2. We sort these corresponding 

eigenvalues from the largest to the smallest based on Scholkopf and Smola in 

[51], the d-dimensional embedding that best preserves inner products in high 

dimensional spaces is obtained by the mappings 

(
1 1, ,

( ) ( ) ( ) ( ) ( ) ( ): ( ,..., )
j d d j

i i i i i iX v vψ λ λ→  ( max( , )d p q> ) and the kernels ik  can be 

expressed in terms of its eigenvectors vα  and eigenvalues αλ  as 

( ) ( ) ( )i i i T
ik v v

α α αα
λ=∑                                              (Eq. 3.26) 

      This can be regarded as a spectrum decomposition of ik , thus we call this 

method of KCCA (e.g., [40, 50]) as the spectrum KCCA throughout this thesis. 

      Recently, KCCA method [74] is one of popular research areas. In the theory 

of KCCA, Kuss and Raepel [52] explained how the canonical correlation 

between configurations of points mapped into kernel feature spaces can be 
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determined and preserved the geometry of the original points. Yamada et al., [53] 

studied the relationship between spectrum KCCA (as an unsupervised model) and 

KFDA (as a supervised model). As in statistical methods, many parameters are 

usually estimated from finite samples, the convergence of the estimated functions 

should be considered to justify the estimation method. Since the objective of 

spectrum KCCA is to estimate the relationship of a pair functions, it is necessary 

to evaluate its convergence. Hence, Fukumizu, et al., [54] rigorously proved the 

statistical consistency of spectrum KCCA and the consistency of a pair of 

functions for expressing the nonlinear dependence in two variables. Yamaish et 

al., [55] extended the spectrum KCCA application for two datasets into multiple 

datasets. And Blaschko and Lampert in [56] explained why using paired data can 

reduce the effects of noise by considering the covariance matrix of paired data 

with independent additive noise. 

      Except the application domains mentioned in section 3.1 on CCA, as 

traditional unsupervised learning model, spectrum KCCA has been successfully 

applied in all kinds of learning models, such as, supervised learning model [57], 

multi-view model [58-59], and semi-supervised model [60, 61] for some real 

assignments, such as, classification [56], regression [58], clustering [61],  and 

testing for independence [46, 62] in all kinds of practical domains, such as, 

chaotic time series [63], Climate forecasting [75], media information retrieval 

[64], analysis of fMRI data [40], text mining [65], extraction of gene clusters [55, 

73], and independent component analysis [66].  
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      However, on the one hand, many parameters must be simultaneously set in 

spectrum KCCA method, such as, the precision parameter, regularization 

parameter and the others. Moreover, it is difficult to correctly set them by manual, 

i.e., to obtain the optimal parameters setting needs prior knowledge. For example, 

the Gram-Schmidt orthogonalization algorithm in [40] will not be regularized 

well if setting a larger precision parameter even for 0.1 in our comparison 

experiments. In this case, we wish the designed algorithm can be easily operated 

by the researchers in all kinds of domains even if the researcher are unfamiliar 

machine learning, such as, statisticians or the other practitioners.  

      On the other hand, spectrum KCCA method maps the original data into the 

high dimensional space by an implicit representation which is not convenient for 

theoretical development. For example, assuming a mapping : ( )X Xψ ψ , 

where the feature map 2 2( , ') ( , ', ' )x x x xx xψ =  maps data in 2Ω into 3Ω , then 

2 2 2 2

2

2

( , ) ( ), ( )
           2 ' ' '
           ( ' ')
           ( , )
  

k α β ψ α ψ β

α β αα ββ β β
αβ α β

α β

=< >

= + +

= +

= < >

                                               (Eq. 3.27) 

      Based on the above example, we only need to compute the inner product (i.e., 

kernel matrix) such that the original data in 2Ω can be projected into 3Ω , and we 

even do not care what the representation of ψ is. This does not convenient to 

theoretical development [46] due to the implicit kernel function. 



CHAPTER 4 KCCA IN RKHS 

 32

 

 

 

 

Chapter 4  

KCCA in RKHS 

In this chapter, we propose a novel approach, called RKCCA method, which can 

overcome the limitations of spectrum KCCA described in the end of Chapter 3 

and is equivalence to spectrum KCCA method. Instead of projecting the original 

data into the Hilbert space (or spectrum feature spaces), our RKCCA algorithm 

maps the original data into the Reproducing Kernel Hilbert Space (RKHS) of 

continuous values function based on some positive definite kernels (details 

presented in section 4.1). The RKHS, in which we aim to construct a theoretical 

framework for implementing dimensionality reduction, are smaller than Hilbert 

spaces of smooth functions but sufficient to capture non-parametric phenomena 

of interest [67]. To eliminate the regularization for coding by users, we first prove 

that KCCA in RKHS is the same as PCA followed by CCA in RKHS. Then we 

transform the regularization process of our RKCCA algorithm into CCA whose 
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regularization process has been embedded in many existing software, such as, 

Matlab, SPSS. This can reduce run time and lessen programming. 

      Before we describe the details of our algorithm RKCCA, we need to prove 

that the mapping of input to a RKHS is unique as well as feasible. Then we show 

that KCCA in RKHS is equivalent to spectrum KCCA. With this, we proceed to 

establish that KCCA in RKHS is the same as Kernel PCA followed by CCA in 

RKHS. Finally, we prove that performing dimensionality reduction using KCCA 

in RKHS is equivalent to dimensionality reduction with PCA in RKHS followed 

by a further reduction with CCA in RKHS. The details are provided in lemmas 

4.2 to lemma 4.5. 

 

4.1   Mapping Input into RKHS  

Given a positive definite kernel function and a variable X with zero-mean and 

unit-variance, we define an explicit mapping  

: ( ) (., )ix x k xφ φ =                                               (Eq. 4.1) 

       where 1(., ) ( ( , ),..., ( , ))nk x k x x k x x= , , ix x X∈ . Note that, (., )k x  means a 

function of the expression ‘dot’ which is called a literal in mathematics or logic, 

and x  is a parameter.   
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      Next, we construct a dot product space (denoted as ,< ⋅ ⋅ > ) containing the 

input under φ in two steps. First, we form the vector space containing all linear 

combinations, e.g.,  

1
( ) ( , )

m

i i
i

f k xα
=

⋅ = ⋅∑                                                        (Eq. 4.2) 

      Second, we define a dot product between ( )f ⋅ and another vector 

space
'

1
( ) ( , )

m

j j
j

g k xβ
=

⋅ = ⋅∑  as follows: 

'

1 1
, ( , ) ( , )

m m

i j i j
i j

f g k x k xα β
= =

< >= ⋅ ⋅∑∑                                            (Eq. 4.3) 

      This dot product can be proved to satisfy the symmetry, bilinearity and 

positive definiteness conditions based on Lemma 4.1. 

Lemma 4.1   The dot product space constructed by the order steps presented in 

Eq. 4.2 and Eq. 4.3 satisfy the symmetry, bilinearity and positive definiteness 

conditions. 

 Proof:     

       1. Symmetry: 

' '
' '

1 1 1 1

' '
' '

1 1 1 1

, ( , ) ( , ) ( , )

           ( , ) ( , ) ( , )

           ,

j j

j j

m m m m

i j i i j i
i j i j

m m m m

i j i j i i
i j i j

f g k x k x k x x

k x x k x k x

g f

α β α β

α β β α

= = = =

= = = =

< >= ⋅ ⋅ =

= = ⋅ ⋅

=< >

∑∑ ∑∑

∑∑ ∑∑                               (Eq. 4.4) 
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     2. Bilinearity: 

'
'

1 1

, ( ) ( )
j

m m

i i j
i j

f g g x g xα β
= =

< >= =∑ ∑                                                (Eq. 4.5) 

     3. Positive definiteness: 

, 0Tf f Kα α< >= ≥  with equality if only if f = 0                          (Eq. 4.6 ) 

� 

      Such a dot product space under a Hilbert space is called a reproducing kernel 

Hilbert space (RKHS). A RKHS is a Hilbert space of continuous valued functions 

(i.e., bounded and linear) with an explicit expression (i.e., ( ) (., )ix k xφ = ). Hence, 

a RKHS has the following properties based on [22]: 

2
2

1 , 1

, ( , ) ( , )
m m

i i i i j i j
i i j

f f f k x x k x xα α α
= =

< >= = =∑ ∑                                   (Eq. 4.7) 

  ( , ), ( , ') ( , ')k x k x k x x< ⋅ ⋅ >=  or ( ) , ( , )f x f k x=< ⋅ > ,  , 'x x X∈                   (Eq. 4.8) 

        The kernel ( , ')k x x is called the reproducing kernel satisfying the 

reproducing property presented in Eq. 4.8.  
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4.2   Theorem for RKCCA  

Lemma 4.2    Given a Mercer kernel k, there exists a RKHS space H, such 

that ( ) (., )x x k xφ→ = , where ( ), ( ') ( , ')x x k x xφ φ< >= , 'x x X∈ , and the 

reproducing kernel ( , ')k x x  is uniquely determined by the space H. 

Proof.   

      First, we show that there exists a RKHS in H for each Mercer kernel k. 

      Based on Mercer theory in [22] and Eq. 3.14:  

.3.14

1 1 1

( )  ( , ) ( ) ( )
Eq

i i i j j j j i
i i j

f x k x x x xα α λ φ λ φ
∞ ∞ ℵ

= = =

= =∑ ∑ ∑                    (Eq. 4.9) 

      Where ℵ is the number of dimensions in a RKHS. 

       By the linearity of inner product, the Eq. 4.8 is transformed into 

1 , 1

, (, ) ( ) , ( )i j j i j n n n
i j n

f k x x xα λ φ φ φ λ φ
∞ ℵ

= =

=∑ ∑                                  (Eq. 4.10) 

      Since k is a Mercer kernel, the jφ (j=1,…, ℵ ) can be chosen to orthogonal. 

Hence, based on [22], let 

, /j n jCφ φ λ=                                                       (Eq. 4.11) 

      where C is the Kronecker symbol in [22]. 
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      Based on Eq.4.10 and Eq. 4.11, the reproducing property in Eq. 4.8 is 

preserved. 

      Next, we prove that the reproducing kernel is unique. 

      Let ( , ')k x x be a reproducing kernel of H. Assuming there exists another 

different reproducing kernel '( , ')k x x of H. Then for all x X∈ , applying the 

reproducing property for k and 'k , we get 

.4.72' ' ' ' ' '

.4.8
' '

  , , ,

                 ( )( ) ( )( ) 0

Eq

x x x x x x x x x x x x

Eq

x x x x

k k k k k k k k k k k k

k k x k k x

− = − − = − − −

= − − − =
               (Eq. 4.12) 

      Hence, '
x xk k= , that is, '( ') ( ')x xk x k x= for all 'x X∈ . This is means 

( , ') '( , ')k x x k x x=  for , 'x x X∈ .                                                                             � 

        Based on Lemma 4.2, any space can be mapped into a smooth space by a 

unique kernel in RKHS. Hence, it is feasible for us to map the input data into a 

RKHS. 

      After projecting the input into RKHS, we proceed to prove the equivalence 

between KCCA in RKHS (i.e., RKCCA) and spectrum KCCA. This is achieved 

by showing that the isomorphic characteristic in spectrum KCCA is preserved in 

RKHS, i.e., there is a one-to-one mapping between them. 

Lemma 4.3   There is a one-to-one projection between ( )xψ  on spectrum 

KCCA and the mapping ( )xφ  on RKCCA. 
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Proof:    we first prove that" ( ) ( )"x xφ ψ⇒ . 

      Based on the Mercer’s theorem, for the continuous positive definite 

kernel ( , ')k x x in RKHS, there exists an integral operator : X XI Ω →Ω , 

and ( )( ) ( , ') ( ) 'If x I x x f x dx= ∫ , where , 'x x X∈ . Since ( , ')k x x  is symmetric and 

positive definite, it is orthogonally diagonalizable as in the case with finite 

dimensions. Thus, ( , ')k x x can be expressed as 
1

( , ') ( ) ( ')i i i
i

k x x x xλφ φ
∞

=

=∑ , by its 

ordered eigenvectors series ( )i xφ  and corresponding eigenvalues series iλ . Based 

on Dauxois and Nkiet in [47], the nonlinear CCA can be approximated 

as,
1

( , ') ( ) ( ')
n

i i i
i

k x x x xλφ φ
=

=∑ , in terms of uniform convergence of a certain 

underlying sequence.  Hence, RKCCA can be implemented spectrum 

decompositions similar to Eq. 3.26.   

      Next, we prove " ( ) ( )"x xψ φ⇒ . 

      By combining Eq. 4.1 and Eq. 4.7 with Eq. 4.8, for any x X∈ , we have 

2 2( ) ( , ) ( ,.), ( ,.) ( )ix k x x k x k x xφψ φ
ψ φ= = < > =                   (Eq. 4.13)                  �                              

      Lemma 2 shows that KCCA in RKHS is equivalent to spectrum KCCA.  

Lemma 4.4    KCCA in RKHS can be decomposed into PCA followed by CCA in 

RKHS.  
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Proof: Given positive definite kernel functions k1, k2 and two centered variables 

(i.e., zero-mean and unit-variance) (1) pX ∈Ω , (2) qX ∈Ω , and a 

mapping: ( ) ( ) ( ): ( ) (., )i i i
ix x k xφ φ→ =  in RKHS. After performing PCA in RKHS, 

the original data ( )iX becomes ( ) ( ) ( )( , )i i T i
PCAX W Xφ= ⋅ , where ( )i

PCAW is the projected 

directions of ( )iX . Then for two variables ( ) ( )i jX and X , based on the reproducing 

property presented in Eq. 4.8, we can get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
,( , ) ( , )i j T i T i j T j i T j

PCA PCA PCA i j PCAX X W X X W W K Wφ φ= ⋅ ⋅ =                     (Eq. 4.14) 

      After performing CCA by solving Eq. 3.3, the result can be denoted as a 

generalized eigenproblem, i.e.,  

(1) (2) (1) (1)(1) (1)

(2) (2)(2) (1) (2) (2)

T T

T T

CCA CCA

CCA CCA

X X X XW W
W WX X X X

λ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

      

(Eq. 4.15) 

      where ( )i
CCAW is the projected directions of ( )iX  by CCA. We prove if we apply 

the result of PCA to the input data of CCA in RKHS, the result will be equivalent 

to directly implementing KCCA in RKHS where ( )i
RKCCAW  is the projected 

directions of ( )iX in RKHS. Based on Eq. 4.14, 

(1) (2) (1)
1 2

(2) (1) (2)
2 1

(1) (1) (1)
1 1

(2) (2) (2)
2 2

.15  

                                                 

T
PCA PCA CCA

T
PCA PCA CCA

T
PCA PCA CCA

T
PCA PCA CCA

W K K W W
Eq

W K K W W

W K K W W
W K K W W

λ

⎛ ⎞⎛ ⎞
⇔ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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(1) (1) (1)
1 2

(2) (2) (2)
2 1

(1) (1) (1)
1 1

(2) (2) (2)
2 2

        

T
PCA PCA CCA

T
PCA PCA CCA

T
PCA PCA CCA

T
PCA PCA CCA

K KW W W
K KW W W

K KW W W
K KW W W

λ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
⇔ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(1) (1) (1) (1)
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λ
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⇔ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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1 2 1 1

(2) (2)
2 1 2 2

RKCCA RKCCA

RKCCA RKCCA

K K K KW W
K K K KW W
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⇔ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 where ( ) ( ) ( )i i i
RKCCA PCA CCAW W W= , i=1, 2.                                                            (Eq. 4.16)    

� 

Lemma 4.5  Dimensionality reduction in RKHS is equivalent to dimensionality 

reduction by PCA followed by CCA in RKHS. 

Proof: Bach and Jordan [66] showed that PCA, CCA and KCCA can be 

expressed as generalized eigenproblems. Given a dataset ( )Xφ , the projected 

directions by PCA, CCA, and KCCA in RKHS are denoted by (1)
PCAW , (1)

CCAW , 

and (1)
RKCCAW respectively. So the corresponding result of dimensionality reduction 

with the three methods is denoted as (1)( ) ( )T
PCA PCAX W Xφ φ= , (1)( ) ( )T

CCA CCAX W Xφ φ= , 

and (1)( ) ( )T
RKCCA RKCCAX W Xφ φ=  respectively.                           

      Since the result of dimensionality reduction by PCA (i.e., (1) ( )T
PCAW Xφ ) is 

regarded as the input on implementing CCA based on Lemma 4.4, the result of 

dimensionality reduction with CCA will be  
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(1) (1) (1)( ) ( ) ( ( ))T T T
CCA CCA PCA CCA PCAX W X W W Xφ φ φ= =                          (Eq. 4.17) 

      Then 

(1) (1)( ) ( ) ( )T
CCA PCA CCAX W W Xφ φ=                                      (Eq. 4.18) 

      Based on Eq. 4.16, this result can be expressed as 

(1) (1) (1)( ) ( ) ( ) ( )T T
PCA CCA RKCCA RKCCAW W X W X Xφ φ φ= = .                       (Eq. 4.19)         � 

 

4.3   Extending to Mixture of Kernels  

The quality of a non-parametric learning method is not only determined by its 

ability to learn from the data (i.e., interpolation) but also its ability to predict 

unseen data (i.e., extrapolation). Jordaan [68] argued that the two characteristics 

are largely determined by the choice of kernel in kernel methods. Jordaan [68] 

and Zheng et al. [69] showed a global kernel (such as the polynomial kernel) can 

present better extrapolation abilities at lower-order degrees, but lack of good 

interpolation even if with high-order degree. And a local kernel (such as Gaussian 

kernel) has good interpolation abilities, but fails to provide longer range 

extrapolation. Based on analysis, we may receive the better interpolation and 

extrapolation by combining the local kernel and the global kernel. 

      In this thesis, our RKCCA algorithm can replace the single kernel function by 

mixture of kernels defined as  
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(1 )mix p gk k kω ω= + − .                                         (Eq. 4.20) 

where ( , 1)q
p ik x x= < > + is polynomial kernel, and 2 2exp( ( ) / )g ik x x σ= − − is 

Gaussian kernel, q ( q∈ ) and σ (σ ∈  ) is the corresponding bandwidth in 

kernel functions, the weight ω  (0 ≤ ω  ≤ 1).  

     The issue of choosing the optimal parameters settings for q, σ, ω  to achieve a 

better generalization performance in a learning task is called model selection. 

Existing methods for model selection include grid search methods, cross-

validation methods, uniform design method, and among others [70]. In the thesis, 

we will propose two strategies to solve the issue of model selection.  

       First, based on [22], the polynomial kernel should be set with a lower-order 

degree q, and the Gaussian kernel should have a smaller σ value. In our 

experiments, we set q <=10, and 0< σ <5. Our second strategy is to uniformly 

select the optimal parameters by uniform design for experiments with mixtures 

method (referred to as UDEM method in the thesis), which is designed to seek 

the design points to be uniformly scattered on the experimental domain. 

              The algorithm for model selection of RKCCA algorithm (i.e., UMED 

method) is presented as follows, and the details of setting parameters will be 

explained in the end of this chapter.  

 

1. Choose parameters search ranges (the number of parameters is denoted 
as s), determine a suitable levels for each parameter based on the first 
strategy, and the number of level is denoted as n. (Note that, in this 
UD-web, the authors assumed all parameters containing some levels, 
otherwise, the different levels for parameters will be change into same 



CHAPTER 4 KCCA IN RKHS 

 43

level). 

2. Choose a suitable UD table to accommodate the number of parameters 

and levels for UD-web. 

3. From the UD table, randomly determine the run order of experiments 

and conduct the performance evaluation of each parameter 

combination in the UD, and denoted the element of the UD table as 

{qik}, k (or i) is the number of parameters (or level). 

4. Receiving { kix } based on Eq. (4-21), then { kix } is fed into the step.3 

in RKCCA algorithm. 

 

      The uniform experimental design is one kind of space filling designs that 

have been used for all kinds of experiments, such as, computer domain, industrial 

domain and the others.   

      Suppose there are s parameters in a domain SΩ , and we want to choose a set 

of points 1 2{ , ,..., } S
m mP p p p= ⊂ Ω which are uniformly scattered over the domain 

SΩ . Let ( )F θ (or ( )mF θ ) be the cumulative uniform distribution function over 

SΩ (or the empirical cumulative distribution function of mP ). Let 2L – discrepancy 

of non-uniformity of mP be 

1
2

2
( , ) ( ) ( )

S

S
m mD P F F dθ θ θ

Ω

⎡ ⎤
Ω = −⎢ ⎥

⎢ ⎥⎣ ⎦
∫                                        (Eq. 4.21) 

      The search for uniform designs with minimum 2L – discrepancy is an NP-

hard problem [71]. Thus approximated methods are designed to find low 
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discrepancy (i.e., closing the theoretical minimum discrepancy), such as, centered 

2L – discrepancy in [71]. A complete list of the uniform design (UD) tables can 

be found in UD-web (http://www.math.hkbu.edu.hk/ UniformDesign) based on 

the centered 2L –discrepancy principle.  

       The UDEM method can uniformly set experimental plans by considering the 

recipe (i.e., the parameterω ) of the parameters (q and σ ) into UD method. 

      Assuming the element of the UD table is denoted as {qik}, k (or i) is the 

number of parameters (or level). We define an intermediate variable  kic , and let 

2 1
2
ki

ki
qc

n
−

= , k=1,…, n                                        (Eq. 4.22) 

      Then the weight of kix for s parameters with n levels is uniformly set based on 

UDEM method as: 

11 1

1

11

1

(1 ) ,  i=1,...,s-1

,  k=1,...,n

i s js i
ki ki kij

s s j
ks kij

x c c

x c

− −−
=

− −
=

⎧ = −⎪
⎨
⎪ =⎩

∏

∏
                       (Eq. 4.23) 

  Based on the UDEM method, all the test points are uniformly selected in the 

experimental plan. However, the method does not consider the border points. 

However, the optimal results are often found in the border of the test range. One 

simple remedy is to add the border points into the experimental plans. In Eq. 4.20, 

the border point is the pair (0, 1) and (1, 0) respectively for the weightω .  
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4.4   RKCCA Algorithm 

Many real-life datasets contain thousands of features and result in the generation 

of singular kernel matrix. However, the ‘intrinsic’ dimensions in these datasets 

are typically low. In general, a pre-processing step is first performed to obtain the 

datasets consisting of only the ‘intrinsic’ dimensions. For this purpose, we utilize 

the random projection method due to its linear complexity and high accuracy. 

Next we perform the mapping to a RKHS by explicit representations after 

centering the data at mean 0 with unit variance. Then we perform covariance 

analysis using the Kernel PCA method to remove noise and redundancy before 

the data are fed into a CCA tool. Finally, after CCA, we perform dimensionality 

reduction on the result of CCA. Details of the RKCCA algorithm are presented as 

follows: 

Function [OutputData]= RKCCA ( (1)X , (2)X , r, k, c)   

% input: (1)X and (2)X are two original data, r (or k or c) is number of 
dimensionality reduction with random projection (or PCA or CCA) 

% output: OutputData is the data with reduced dimensions 

1. ( ) ( ) * ( )i i
PRX X PR r= ;                   %  Random Projection on ( )iX  

2. ( )
,

i
PR centeredX ;                              %  Centering data ( )i

PRX  , i=1, 2;   

3. ( )i
RKHSX = K( ( )

,
i

PR centeredX , options);           

    % K() is kernel method, options: single or mixture of kernels  

   % the experimental plan comes from model selection presented in the last 
section. 

4. [p s l t]= ( )i
RKHSX *princomp( ( )i

RKHSX )                 %  PCA( ): dimensional 
reduction with PCA 
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5. [a b r u v] = canoncorr ( (1) (1)* (:,1: )RKHSX p k , (2) (2)* (:,1: )RKHSX p k );     %  CCA 
on ( ) ( )* (:,1: )i i

RKHSX p k  

Output:  v(:,1:c) or u(:,1:c)    

 

Note that: the value of r, k, and c will be decided by users or the expertise; the 

parameters in function princomp and canoncorr are same to the representation 

in Matlab software, and the details are presented in “HELP” part of Matlab. 

 

Comparing to the spectrum KCCA, the proposed method RKCCA presents some 

features as follows: 

• The proposed method projects the original data into reproducing kernel 

Hilbert space which is smaller than Hilbert space but sufficient to find the 

linear functions for linearly separating the data in high dimensional spaces. 

Moreover, our RKCCA algorithm defines explicit kernel functions for 

convenient to the theoretical development, and spectrum KCCA defines 

implicit kernel functions. Furthermore, we also prove the equivalence 

between spectrum KCCA and our RKCCA. 

• In RKHS, we prove RKCCA can be decomposed into two separately 

steps, i.e., PCA followed by CCA in RKHS. We also prove the 

dimensionality reduction by RKCCA can be decomposed into two 

processes of dimensionality reduction, i.e., PCA followed by CCA in the 

high dimensional space. There are at least two advantages. Firstly, this 

can increase the effect of dimensionality reduction by efficiently 

removing noise and redundancy. In fact, in PCA, its diagonal terms are 
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ordered in non-increase ordering, and all the off-diagonal terms are zero, 

so PCA can effective remove noise and redundancy by selecting parts of 

principal components. Secondly, our algorithm performs PCA to extract 

noise and redundancy in RKHS before implementing CCA because some 

noise or redundancy can easily be detected in high dimensional spaces 

rather than in original spaces.  

• Our algorithm directly performs CCA in RKHS without the regularization 

process, which can reduce running time of the algorithm and lessening 

programming. In fact, our algorithm also needs to regularization, but we 

transfer the process into the CCA process which has been programmed 

well in the popular software, such as, Matlab. So the algorithm can reduce 

running time and lessening programming. And it can also be easily 

implemented and understood even if the users are with little knowledge or 

unfamiliar to the machine learning domain because the whole framework 

can be coded by tens line of codes and many codes can be employed the 

existing functions in software Matlab. 

• The key theoretic advantage of the UDEM model selection over the other 

methods (such as, grid search) for model selection in our mixture of 

kernel is that the UDEM points are “far more uniform” and “far more 

space filling” than lattice grid points [70]. Moreover, basically the UDEM 

method can find good representative points uniformly scattered over the 

parameter domain to replace the lattice grid points for a much more 

efficient parameter search. Furthermore, the single kernel methods 
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become a special case of our proposed method. Therefore, although the 

mixture of kernels in RKCCA need to set three parameters, it can be 

designed with less running time and better performance than any single 

kernel methods only with a little discrepancy. 
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Chapter 5 

Experimental Analysis 

We evaluate the proposed RKCCA algorithm in terms of classification accuracy 

(or error rate) and its effectiveness in dimensionality reduction in this chapter. 

We compare the CCA algorithm [13], KCCA (KCCA algorithm in [13]), Kernel 

PCA (KPCA) [11] (or Kernel Fisher Discriminant Analysis (KDA) [11] for 

supervised learning models) with our RKCCA algorithm.  

      In our experiments, we first implement dimensionality reduction in the 

original data sets with these algorithms, such as, CCA, KCCA, KPCA (or KDA) 

and RKCCA. After reducing the dimensions (setting parameters on the number of 

dimensionality reduction can be found in Chapter 4), we use 10-fold cross 

validation method, in which k nearest neighbor (k = 8) classifier is employed, to 

get the classification accuracy of these algorithms in the reduced space. Each 

experiment is repeated 10 times and we record the average value.  
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      For setting the parameters in mixture of kernels (such as, q, σ andω ), we 

employ uniform design for experiments with mixtures (UDEM) method 

presented in section 4.3 to uniformly design the experimental plans with 10 levels 

for each parameter and select the optimal parameter values by cross-validation 

method. The procedure is implemented with MATLAB (R2009b edition) 

software running in PC (Microsoft Windows XP, Intel Core 2 Duo CPU, 4GB of 

RAM). 

 

5.1   Performance for Classification Accuracy  

As a nonparametric method, KCCA algorithm (or RKCCA algorithm) has been 

focused on detecting the relationship between two variables in different learning 

models, for example, multi-view method [37, 61] (it can be regarded as an 

unsupervised model), supervised learning model [57]. However, no research has 

focused on transfer learning model with KCCA or RKCCA measure. In the 

section, we investigate the application on real-life datasets for dimensionality 

reduction by all methods presented above in three models, i.e., unsupervised 

learning model, supervised model and transfer learning model. 

5.1.1 Unsupervised Learning Models  

We first examine the performance for KCCA in dimensionality reduction under 

unsupervised learning model.  We use the real world ads dataset for this set of 
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experiments. There are 3279 instances and 1558 features in the dataset with 5 

views. We extract three views (i.e., url (457 features), origurl (495 features), and 

ancurl (472 features)) for our experiments and combine them to form 3 datasets 

as shown in Table 5.1. Each instance in the dataset corresponds to an image on 

the web, and the task is to predict whether an image is used for advertisement. In 

the preprocessing step, the dimensions are designed to 400 for each view in the 

Random Projection method. Table 5.1 gives the results for the various methods. 

The value in bracket is the standard deviation. 

 

 

 

 

 

     

       

      We observe that the RKCCA method consistently outperforms the rest of the 

methods. Comparing the kernel methods (such as, KCCA, KPCA and RKCCA) 

algorithms with CCA, we find that the classification accuracy of the kernel 

methods in all methods yield better performance than CCA method. This is 

because the relationship between independent variables and dependent variable in 

Table 5.1: Classification Accuracy in Ads Dataset. 

 url+origurl url+ancurl origurl+ancurl 

CCA 0.8722 (0.0187) 0.8618 (0.0104) 0.8607 (0.0132) 

KCCA 0.8792 (0.0112) 0.9044 (0.0102) 0.8985 (0.0103) 

KPCA 0.8840 (0.0162) 0.9151 (0.0075) 0.9138 (0.0134) 

RKCCA 0.8938 (0.0159) 0.9291 (0.0105) 0.9240 (0.0082) 
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real-life datasets can be better expressed by nonlinear relationship rather than 

linear one. Comparing kernel correlation analysis algorithms (i.e., RKCCA and 

KCCA) with KPCA method that performs classification only with the 

information from one dataset (e.g., origurl in the experiment url+origurl), the 

RKCCA gives better performance due to the availability of additional 

information (e.g., the url is regarded as the source data, and origurl as the target 

data in experiment url+origurl). Based on the analysis, in the two KCCA 

methods, our RKCCA algorithm presents better results because RKCCA can 

efficiently remove noise and redundancy by performing PCA and CCA 

separately. 

  5.1.2   Supervised Learning Models 

CCA and KCCA (or RKCCA) methods are designed to deal with the relationship 

between vectors (1)X and (2)X . If we regard the class label information as (2)X , 

then CCA-based methods (i.e., CCA, KCCA, and RKCCA) can also serve as a 

supervised feature extraction method (but PCA is not feasible for this case, so we 

use KDA to replace it in this section). Existing literatures (such as, [57, 76]) in 

CCA-based methods usually employ some effective methods to deal with the 

class labels. In the thesis, we adopt the one-of-c label encoding.  

      In the supervised experiments, we test the performance of our KCCA 

algorithms comparing with CCA, KCCA, KDA method on two datasets, i.e., 

scene and yeast from LIBSVM data sets 
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(http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). Dataset yeast contains 

2417 instances, 103 features, and 14 classes. Scene data is 2407 instances, 296 

features and 6 classes. The experimental results are presented in Table 5.2, and 

the value in bracket is the standard deviation. 

 

 

 

 

 

 

    

      We observe that the proposed method RKCCA outperforms all the other 

algorithms.  

5.1.3  Transfer Learning Models  

We use the WiFi dataset [37] and 20 newsgroups [72] (denoted as news in this 

paper) for this set of experiments. The WiFi dataset records WiFi signal strength 

in 135 small grids, each of which is about 1.5 *1.5 square meters, and has five 

domains collected in different time phrase, i.e., d0826 collected in 08:26am, 

d1112, d1354, d1621 and d1910 respectively. There are 7140 instances and 11 

Table 5.2: Comparison of classification accuracy in dataset yeast and dataset

  Yeast scene 

CCA 0.9880 (0.0037) 0.9320 (0.0085) 

KCCA 0.9912 (0.0032) 0.9340 (0.0028) 

KDA 0.9880 (0) 0.9330 (0) 

RKCCA 0.9920 (0.0024) 0.9361(0.0014) 
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features with 119 classes in each dataset. We construct 2 datasets by combining 

the domains collected at different time phrase, such as, d0826 means the source 

dataset and d1910 means the target dataset in dataset “d0826+d1910”. Dataset 

news contains approximately 20,000 newsgroup documents, partitioned across 20 

different newsgroups. In our experiments, we select the domain comp as the 

source dataset and the domain rec as the target dataset, and the dimensions are 

designed as 500 for Random Projection method in the preprocess phrase. Table 

5.3 gives the results for the various methods. The value in bracket is the standard 

deviation. Once again, we observe that RKCCA algorithm yields the best 

performance in transfer learning models in which the distribution of the source 

dataset is different from the distribution of the target dataset. 

 

 

 

 

 
 

 

 

 
 

Table 5.3: Comparison of classification accuracy in WiFi and dataset news

  d0826 + d1910 d1112 + d1621 comp + rec 

CCA 0.5006 (0.0227) 0.4970 (0.0213) 0.4989 (0.0178) 

KCCA 0.5306 (0.0158) 0.5214 (0.0152) 0.6534 (0.0214) 

KPCA 0.5974 (0.0176) 0.6024 (0.0206) 0.5723 (0.0092) 

RKCCA 0.6192 (0.0258) 0.6104 (0.0218) 0.6671 (0.0327) 
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5.2   Performance of Dimensionality Reduction  

Finally, we investigate the effect of dimensionality reduction on the error rate 

(error rate = 1- classification accuracy). We construct the kNN classifiers in the 

reduced spaces generated by the algorithms mentioned in section 5.1, and we also 

construct a classifier with the full original dimensions without implementing 

dimensionality reduction, named Original. Figure 5.1 shows that the proposed 

RKCCA method yields the best performance after implementing dimensionality 

reduction where the percent of dimensions reduced is 100%. 

      We also find the results of CCA are worse than the left methods except 

algorithm Original, i.e., the kernel methods, this shows kernel methods can more 

successfully find a subspace in which the classification can be preserved well 

even when the dimensionality is significantly reduced. Finally, kernel methods 

present better effect of dimensionality reduction comparing them with the 

algorithm original except the data WiFi which only contains 11 features. This 

shows it is necessary to implement dimensionality reduction while suffering high 

dimensional data. 

       

 

 

 



CHAPTER 5 EXPERIMENTAL ANALYSIS 

 56

 

 

 

 

 

 

 

 

 

 

         

Figure 5.1   Classification Error after Dimensionality Reduction for data set 
yeast, ads, WiFi, and 20 Newsgroups respectively 
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Chapter 6 

Conclusion 

In this thesis, we have reviewed the existing techniques on dimensionality 

reduction. During the review process, we analyzed the pros and cons of the 

existing techniques on dimensionality reduction. Then we proposed a correlation 

analysis algorithm named RKCCA for dimensionality reduction. In the proposed 

algorithm, we projected two original vectors into RKHS in which to implement 

dimensionality reduction with KCCA measure is composed into two order steps, 

i.e., PCA followed by CCA in RKHS. Finally, the experimental results show that 

RKCCA is better than spectrum KCCA or the others algorithms in terms of 

classification accuracy and its effectiveness in dimensionality reduction. In 

summary, we have theoretical proved that the proposed RKCCA algorithm is 

equivalent to the spectrum KCCA algorithm, i.e., RKCCA = spectrum KCCA, in 

Chapter 4, and that the proposed RKCCA algorithm can be decomposed into two 
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orderly processes, i.e., PCA and CCA respectively in RKHS. Furthermore, we 

have shown in our experiments that RKCCA algorithm outperforms the 

traditional spectrum KCCA. 

       In this thesis, we have fixed a polynomial kernel (can be any positive semi-

definite kernel) or their combination as the kernel function to learning the kernel 

matrix. Such kernel matrix may not be suitable for real world applications. In our 

future work, we plan to learn a kernel matrix from the training data rather than 

from a fixed kernel function. 
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