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Summary  
 
Abstract machines bridge the gap between a programming language and real machines. 

This thesis proposes a general purpose tagged execution framework that may be used to 

construct a processor. The processor may accept code written in any (abstract or real) 

machine instruction set, and produce tagged machine code after data conflicts are 

resolved.  This requires the construction of a tagging unit, which emulates the 

sequential execution of the program using tags rather than actual values. The tagged 

instructions are then sent to an execution engine that maps tags to values as they 

become available and sends ready-to-execute instructions to arithmetic units.  The  

process  of mapping tag to value may be performed using Tomasulo scheme, or  a  

register scheme with the result of  instructions  going  to  registers  specified  by their 

destination tags, and waiting  instructions  receiving  operands  from registers specified 

by their source tags. 

 

 

The tagged execution framework is suitable for any instruction architecture from RISC 

machines to stack machines.  In this thesis, we demonstrate a detailed design and 

implementation with a Java ILP processor using a VLIW execution engine as an 

example. The processor uses instruction-tagging and stack-folding to generate the 

tagged register-based instructions. When the tagged instructions are ready, they are 

bundled depending on data availability (i.e., out of order) to form VLIW-like instruction 

words and issued in-order. The tag-based mechanism accommodates memory load 

delays as instructions are scheduled for execution only after operands are available to 

allow tags to be matched to values with less added complexity.  The detailed 

performance simulations related to cache memory are conducted and the results indict 

that the tag-based mechanism can mitigate the effects of memory load access delay. 
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Chapter 1  

Introduction 
 
 
 
Von Neumann stored-program computers work in instruction-stream driven or control-

flow driven style, which is the dominating architecture in modern computer industry 

[95]. This computer architecture model comprises register-style machines, and stack-

style machines. Stack machines [77], which once enjoyed some commercial success 

(Burroughs 6700, HP3000, ICL2900), are no longer popular among computer architects.  

 

All processors since about 1985 have been using pipelining to overlap the execution of 

instructions and improve performance. This potential overlap among instructions is 

called instruction-level parallelism (ILP). A pipeline acts like an assembly line with 

instructions being processed in phases as they pass down the pipeline. With simple 

pipelining, only one instruction is initiated into the pipeline at a time, but multiple 

instructions may be in some phases of execution concurrently. By issuing more than one 

instruction at a time into multiple pipelines, modern processors are able to achieve high 

performance with ILP supported. 
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1.1 Motivation and Objectives  
 
 
ILP is widely exploited in modern out-of-order processors. An out-of-order processor 

has the ability to execute instructions by utilizing its ILP potential and identifying 

dependences among instructions at run time, either through compiling grouping 

instructions into bundles of non-conflicting members, or through hardware register 

renaming that resolves data conflicts at execution time. The conventional out-of-order 

processors in general adopt a superscalar architecture (e.g. PowerPC, Alpha 21264, or 

MIPS R10000), whereas VLIW (e.g. IA64) processors discover ILP at the compiling 

stage.   

 

Figure 1.1. The concept of General Tagged Execution Framework (GTEF) 
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After investigating the architecture of many modern processors, we propose a 

conceptual framework for designing high performance pipelined processors, which 

exploits existent instruction-level-parallelism (ILP) execution components, namely 

superscalar or VLIW execution engines. This conceptual framework (Figure 1) is 

referred to as General Tagged Execution Framework (GTEF), which is suited for 
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multiple computer architectures, whatever register-based or stack-based processors. The 

proposed framework is characterized by the concept of hardware abstract machine [4] 

that converts instructions for a particular abstract machine into a general tag-based 

instruction format.   

 

The introduction of the concept of Abstract Machine makes GTEF scheme cater for 

multiple computer architectures. Abstract machines are commonly used to provide an 

intermediate language stage for compilation. They bridge the gap between the high-

level of a programming language and the low-level of a real machine. They are abstract 

because they omit many details of real (hardware) machines [92]. Most common 

abstract machines are designed to support some underlying structures of a programming 

language, often using a stack, but it is also possible to define abstract machines with 

registers or other hardware components. An interpreter or translator is often used to 

convert abstract machine instructions to actual machine codes, and can be viewed as a 

kind of abstract machine pre-processor. A processor could be considered a concrete 

hardware implementation for an abstract machine that requires no pre-processor [92]. 

This can be a stack machine or a general-purpose RISC register machine.  

 

In GTEF scheme, instructions of the machine are first converted by a predefined 

hardware pre-processor into tag-based instructions. The pre-processor (or a tagging 

unit) may be regarded as an “abstract machine” realized in simplified hardware that 

goes through a “mock execution” – execution with tags rather than values. In the 
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process of “mock execution”, there is no actual execution which inputs values into 

arithmetic pipeline to produce output values, and only tags are removed from 

stack/registers and new tags representing results are put onto stack/registers. The 

tagging unit processes the instruction stream sequentially, but much faster than actual 

sequential execution; because it uses tags only, it can keep up with parallel execution 

that will take place later when tags have been mapped into values.   

 

In GTEF scheme, the tag-based abstract machine translator (TAMT) is a critical 

component, which converts any abstract or real machine programs into tag-based 

instructions for ILP execution, including one or more stages preceding the execution 

stage that can be implemented in either hardware or software. Almost all modern 

processors have mechanisms to achieve ILP, either through grouping instructions into 

bundles of non-conflicting members with compiler support, or through the hardware 

register renaming (tagging) technique that resolves data conflicts at execution time (and 

register renaming enables out of order execution more effective.)  

 

The hardware renaming/tagging scheme is specifically designed for different CPUs. For 

multi-issue superscalar machines that employ Tomasulo [85] scheme (e.g. PowerPC, 

Alpha), a hardware TAMT would be implemented at the tagging and scheduling stage 

and a superscalar execution engine would be exploited at execution stage; For VLIW 

machines (e.g. IA64), a similar conversion would be performed with limited scheduling 
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by hardware at tagging and schedule stages, and a VLIW execution engine to process 

bundled instructions will be at the instruction execution stage. 

 

The objective of the thesis is to investigate and demonstrate the applicability of the 

proposed framework. In the thesis we will introduce with GTEF framework, how to 

design the special-purposed TAMT for different processors including general-purpose 

register-based processors (RISC or CISC machines) and stack-based processors. In 

register-based processors, the TAMT will exploit register renaming techniques to 

implement an instruction mapping from registers to tags, but to fulfill the instruction 

tagging a “mock” execution technique using tags will be used.  In stack machines, the 

TAMT will simulate the behavior of a virtual stack machine with tags, and translate 

stack instructions into tag-based RISC-like instructions, then to use existent ILP 

execution components which may be superscalar or VLIW execution engine to achieve 

high performance.    

 
 
For stack machines, a prominent problem was believed to be the presence of a single 

architectural bottleneck – stack is viewed as a significant performance obstacle in the 

dynamic extraction of instruction level parallelism (ILP).  That is, with instructions 

taking operands from the top of the stack and leaving results there, stack programs 

appear to have a high level of data dependency, and with instructions displaying no 

source and destination register references (even though the source and destination 

reference are hidden in stack locations), data dependency relations are supposed to be 
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difficult to analyze. Under GTEF scheme, we proposed a novel bytecode instruction 

tagging-scheme. The proposed scheme solves the problem of stack bottleneck in stack 

machines, and in Java processors. In addition, our proposed Java ILP processor is able 

to extract more ILP in Java programs, and support out-of-order execution.  

 
 
We demonstrate how the GTEF scheme works on a stack machine by using a Java 

processor as an example. In the thesis, the GTEF Framework is applied to design the 

Java processor which adopts a pipelined architecture. It is essential to create a real 

TAMT in order to implement a Java processor using GTEF scheme. The TAMT to be 

used is a hardware “abstract” machine that “mock” executes Java bytecodes with 

assigning each bytecode instruction a tag, and analyzing the data dependency of the 

instructions to enable hardware scheduling of execution. The design and 

implementation of the tagging unit and the Java ILP processor will be discussed in 

Chapter 4 and 5 respectively.  

 

Now we look at how to apply the GTEF scheme extensively. To fulfill a detailed 

implementation of a processor, some related issues need to be solved. The first is how 

to attach available data to the tagged instructions. The attachment can be implemented 

through the use of real registers that correspond to tags, or through a matching 

mechanism like the Tomasulo machine. The second is how to schedule the executable 

instructions and send them to arithmetic units. This can be through multiple 

synchronized pipes like VLIW, or through individually activating them as in Tomasolu 

  



Chapter 1. Introduction 
 

7

machines from reservation stations [85] next to the arithmetic units. The third is that if 

the output of load units and arithmetic units are not buffered using real registers with 

one register per tag, whether there is need for something like a reorder buffer with 

locations that may be shared by different tagged data at different times, in order to 

guarantee that the data that become available before instructions are ready to use, have 

somewhere to go. The fourth is, since a stack machine with operands used once only, 

how to retain a repeatedly needed value. The solutions to above mentioned issues will 

be discussed in Chapter 3, 4 and 5.   

 

1.2 Contributions 
 
The thesis has done extensive research on computer architecture and ILP techniques.  

To explore the applicability of the proposed GTEF scheme, several state-of-the-art out-

of-order processors are investigated, such as MIPS R10000 [43], Alpha 21264 [81], and 

Pentium [24] processor based on x86 architecture. Stack machines have their special 

features. Since stack is often viewed as the bottleneck to support ILP in stack machines. 

To solve this problem, we conducted an extensive investigation on stack machine 

architecture, and using a Java ILP processor as an example. The proposed Java ILP 

processor exploits a novel stack renaming (or tagging) scheme to overcome the issue of 

stack bottleneck and be able to expose more ILP within stack programs. In addition, the 

relevant issues are discussed.         

 

The thesis has the following contributions:  
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• A novel general processor design framework is proposed. The novelty lies in 

that it can be used to build a new processor by exploiting existent ILP hardware 

components and suitable for multiple processor architectures, register-based or 

stack-based. In this framework, the concept of tag-based abstract machine 

translator (TAMT) is introduced.   

• A stack instruction tagging scheme is proposed to implement stack renaming in 

stack machines, overcome the stack bottleneck and expose more ILP.  After 

stack instruction tagging, stack dependencies are converted to tag-based data 

dependencies. One of the advanced ILP techniques – dataflow -- may be 

exploited to extract ILP in stack programs.  

• Stack instruction folding, an efficient technique to reduce stack instruction 

dependencies in Java processors, is investigated in the thesis. To integrate 

instruction folding into the proposed Java ILP processor, we proposed a new 

tag-based POC (Producer-Operator-Consumer) approach which combines POC 

[50] scheme with stack instruction tagging and can fold almost all bytecode 

instruction sequence with simple hardware support. 

• To apply the GTEF scheme, we designed and implemented a Java ILP processor 

in which the proposed stack instruction tagging technique is exploited and a 

VLIW execution engine is used to execute tag-based instructions. Using a 

VLIW execution engine causes a simpler hardware architecture than using a 

Superscalar execution engine. Such related issues as instruction schedule, tag 

management, branch prediction, and speculation support are investigated.  
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• A trace-driven architectural simulator to model the proposed Java processor 

architecture was developed. The simulation experiments demonstrate that the 

proposed Java ILP processor can extract most ILP, and out-of-order execution 

technique can be exploited to achieve high performance.  

• An alternative method called Tag-PFU, to PFU scheme [55] was proposed to 

tolerate unpredictable memory load delay in VLIW processors. The Tag-PFU 

scheme realizes the same function as PFU but with tag-based mechanism to 

accommodate the effects of unpredicted memory load delay. The proposed 

scheme is more productive and simpler than the previous PFU [55] scheme.    

 

1.3 Organization  
 

The rest of the thesis is organized as follows. Chapter 2 gives a brief review on abstract 

machine, ILP techniques, and related works in Java processor and Java technologies 

including software / hardware scheme, and stack folding, etc. Chapter 3 describes how 

to apply the GTEF scheme to design new processor architecture by exploiting existing 

superscalar execution engines, such as Alpha execution engine and Pentium x86 

execution engine. Chapter 4 describes how to implement a hardware TAMT in stack 

machines by using a stack renaming mechanism. Also, a new stack folding scheme is 

elaborated which combines stack instruction tagging with stack folding technique and a 

detailed review of stack folding technique is given. Chapter 5 designed and 

implemented a Java ILP processor by exploiting the TAMT designed in Chapter 4. The 
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performance evaluation of the Java ILP processor is presented in Chapter 6. Chapter 7 

proposes a suspending Instruction buffer (SIB) scheme to solve the memory load delay 

problem in the proposed Java ILP processor, and cache performance simulation results 

are given. Chapter 8 gives the concluding remarks of the research work as well as the 

recommendations for future work. 
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Chapter 2  

Background Review 
 
 
 

In this chapter, we will conduct a detailed review of the related techniques to our 

researches in the thesis, which are abstract machine, ILP, register renaming, etc. We 

also investigated latest Java-related technologies, e.g. stack folding [28], JIT [1, 6, 15], 

binary translation [46], multi-threading [82] and some developed Java processors. These 

techniques have been proposed and implemented by many researchers. After reviewing 

them, we will get to know a basic research background on microprocessor and Java 

technology.   

 

2.1 Abstract Machine 
 
 Abstract Machines are widely used to implement software compilers. Abstract 

machines provide an intermediate target language for compilation. First, a compiler 

generates code for the abstract machine, then this code can be further compiled into real 

machine code or it can be interpreted. By dividing compilation into two stages, abstract 

machines increase the portability and maintainability of compilers.  
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A processor could be considered a concrete hardware realization for an abstract 

machine that defines the processor’s instruction set architecture. This can be a stack 

machine or a general-purpose RISC processor. From the early 1970s to the late 1980s, 

since it was believed that efficient implement of symbolic languages would require 

special-purpose hardware, several special hardware implementation were undertaken 

[92].  However, with the rapid development of conventional computer hardware, and 

advances in compiler and program analysis technology, such as special-purpose 

hardware was no longer to be built due to their very expensive price. Typical such 

processors are Burroughs B5000 processor – a stack machine architecture, which has 

hardware support for efficient stack manipulation; the Pascal Micro-engine Computer 

[103] for the use of UCSD P-code abstract machine; the Transputer [30], a special-

purpose microprocessor for the execution of Occam, and some Java processors 

(picoJava-I, picoJava-II [28, 39]) which directly execute Java bytecode based on Java 

Virtual Machine, etc. Recently due to its platform independence, compact code size, 

object-oriented nature and security, Java programming language [104], a static-typed 

class-based object-oriented language, is widely used from embedded system to high end 

servers.   

2.2 ILP  
 
Instruction-level parallelism (ILP) [22] in the form of pipelining has been around for 

decades, with systems exploiting ILP dynamically using hardware to locate the 

parallelism, or using compiler techniques.  The amount of parallelism available within a 
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basic-block is usually quite small. Here a basic block means a contiguous block of 

instructions, with a single entry point and a single exit point [5].  To obtain substantial 

performance enhancements, we must exploit ILP across multiple basic blocks. 

 

To achieve ILP we must determine which instructions can be executed in parallel, and 

determine how much parallelism exists in a program and how that parallelism can be 

exploited. The key point is to see how one instruction depends on another.  Thus we 

need to discuss dependences and data hazards. There are three different types of 

dependences in a program: data dependences, name dependences, and control 

dependences.  In the following we will discuss them individually. 

 

2.2.1 Data Dependences 
 
An instruction j is data dependent on instruction i if either of the following holds: 

 Instruction i produces a result that may be used by instruction j, or 

 Instruction j is data dependent on instruction k, and instruction k is data 

dependent on instruction i. 

The first condition states the data dependence is a producer-consumer relationship.  The 

second condition simply states that the relationship of data dependence can be 

recursively constructed a chain of dependences of the first type between the two 

instructions. And this dependence chain can be as long as the entire program. 

To give an example: 
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 ADD  R3,  R1,  R2 ; instruction i 

 ADD  R3,  R3,  R4 ; instruction j 

As can be seen, instruction i produces the result of addition in register R3, which is used 

by instruction j. If two instructions are data dependent they cannot execute 

simultaneously or be completely overlapped. Dependences are a property of programs, 

and their effect of the dependences must be preserved.  This is the read-after-write 

(RAW) hazard.  

 

The presence of the dependence is a potential limit to the amount of ILP we can exploit. 

Whether a given dependence results in an actual hazard being detected and whether that 

hazard actually causes a stall are dependent on the properties of the pipeline 

organization. To overcome a data dependence generally has two different ways: 

maintaining the dependence but avoiding a hazard, and eliminating the dependence by 

transforming the code.  Different computer architectures adopt different techniques. We 

will discuss the detailed implementation in the later sections.     

 

2.2.2 Name Dependences 
 
A name dependence occurs when two instructions use the same register or memory 

location (i.e. resource with same name), but there is no flow of data between the 

instructions associated with that name. In another words, this dependence stems from 

the utilization conflict of resource, which is partially caused by scarcity of a particular 
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resource. For example, name dependence may be created when limited number of 

registers forced the compiler to reuse the same register for an unrelated instruction.  

Between an instruction i that precedes instruction j in program order, there are two 

possible types of name dependences:  anti-dependence and output dependence.  

 When instruction j writes a register or memory location that instruction i reads, 

and anti-dependence between instruction i and instruction j occurs. In this case, 

the original ordering must be preserved to ensure that i reads the correct value.  

 When instruction i and instruction j writes the same register or memory location, 

an output dependence occurs. To ensure that the value finally written 

corresponds to instruction j is correct, the ordering between the instructions must 

be preserved. 

Since there is no value being transmitted between the instructions, both anti-

dependences and output dependences, are name dependences, as opposed to true data 

dependences. The name dependence, often called WAR or WAW hazard, is not a true 

dependence, instructions involved can be executed in parallel or reordered provided that 

the name (register number or memory location) is changed. The renaming can be easily 

done for register operands, called register renaming. Register renaming can be done 

either statically by a compiler or dynamically by the hardware.  Section 2.3 will discuss 

the related issues and approaches on register renaming.  
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2.2.3 Control Dependences 
 
As opposed to the previous two types of dependences, which deal mainly with data 

values and/or resources, the other type of dependence -- Control Dependences study 

dependences created by program order (control flow). In brief, the ordering of an 

instruction is studied with respect to a branch instruction to ensure that execution only 

occurs for instructions in the correct control path. 

The basic rules for control dependence are: 

 An instruction i that is control dependent on a branch cannot be moved before 

the branch. This movement breaks the dependence and allow instruction i to be 

executed regardless of the outcome of the branch instruction. 

 An instruction i that is not control dependent on a branch cannot be moved after 

the branch. Clearly, this rule is the reverse of the previous one. 

Examine the example below (which is written in a C-like syntax): 

s1;  

if (condition){ 

    s2; 

} 

 
 

Moving the statement s1 into the if-block violate the first rule, whereas moving the 

second statement s2 before or after the if-block violates the second. The rules help to 

preserve the correctness of the execution by imposing a correct ordering of instructions. 
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Since most programs are non-linear, which involves multiple control paths, most 

instructions are under the influence of one branch instruction or the other. If control 

dependence can be weakened, more instructions will be available for execution. In 

particular, program loops represents the biggest potential source of speedup.  

 

2.3 Register Renaming 

Register renaming is an aggressive way to deal with false data dependences, which 

assign different physical register names to the multiple definitions of an architected 

register. Register renaming was first introduced for the float-point unit of the IBM 

360/91 by Tomasulo in 1967 [85]. The 360/91 renamed floating-point registers to 

preserve the logic consistency of the program execution rather than to remove false data 

dependencies. Nowadays, register renaming becomes a key issue for the performance of 

out-of-order execution processors and is extensively used.  

 

In out-of-order processors, a typical instruction set architecture may have 32 architected 

registers while the micro-architecture implements 128 rename physical registers in 

order to exploit more ILP by simultaneous examining a large window of instructions 

which have been transformed into a single-assignment language. These rename physical 

registers contains not only current state but also speculative state (because of speculated 

branches, loads, etc.)     
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There are several different register renaming approaches in commercial processors. 

Here we describe them briefly and the detailed survey can be seen in [20].   

 

The first approach is called the merged register file, in which architectural registers and 

rename registers are mingled in a single large register file which we call it the physical 

register file (one for integer and another for FP) to hold both non-committed and 

committed data. This approach is used in Alpha 21264 [81] and MIPS R1000 [43].   

 

The second approach of register renaming separates rename registers from architectural 

registers, each have their own register file and are updated appropriately. The non-

committed data and committed data are kept in two different register files. This 

approach is used in PowerPC 603 [94]. 

 

The third is similar to the second approach in that non-committed data and committed 

data are kept in two different register files, but the non-committed data are stored in the 

reorder buffer (ROB), while copying these data to the register file is needed at commit. 

This technique is used in the Intel Pentium [24, 51].  

 

Register renaming requires the use of hardware mechanisms at run time to undo the 

effects of register recycling by reproducing the one-to-one correspondence between 

registers and values for all the instructions that might be simultaneously in flight. In 

merged register file approach, it holds that the number of rename registers is greater 
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than the number of logical registers. This can be simply explained that the rename 

storage must have enough registers to contain all of the architected state plus some 

number of registers with speculative state. The other two approaches can completed 

decouple the rename storage from the logic view of the architecture.   

 

To implement register renaming, a mapping table [84] is often needed to associated 

limited architectural registers with physical registers in a large physical register file. For 

example, Intel Pentium 4 exploits a Register Alias Table (RAT), a kind of mapping 

table, to allow the small, 8-entry, register file architecturally defined in IA-32 to be 

dynamically expanded to use the 128 physical registers.   

 

2.4 Other Techniques to Increase ILP    

Register renaming techniques can reduce data dependences and increase ILP. Besides 

register renaming, modern high performance processors often exploit multiple-

instruction issuing and out-of-order instruction execution technique to improve ILP. 

 

Multi-issue processors are categorized as two basic flavors: superscalar and VLIW (very 

long instruction word) processors. Superscalar processors may issue varying numbers of 

instruction per clock cycles from zero to the maximum issue rate, and they can be 

statically scheduled with compiler support or dynamically scheduled with Tomasulo 

scheme. Statically scheduled processors use in-order execution, while dynamically 

scheduled processors use out-of-order execution. The early superscalar processors, such 
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as Sun UltraSPARC II/III adopt static instruction scheduling and recently almost all 

superscalar processors, such as MIPS R10000 [43], Alpha 21264 [81], PowerPC, and 

Pentium 4 [24] processor series, use dynamically instruction scheduling.  

 

In contrast to superscalar processors, VLIW processors package multiple operations 

into one very long instruction word, and the instruction word is inherently statically 

scheduled by the compiler. VLIW instructions are formatted either as one large 

instruction or as a fixed instruction packet with the parallelism among instructions 

explicitly indicated by the instruction word. The latter often are known as EPIC – 

Explicitly Parallel Instruction Computers.   

 

Superscalar processors dynamically can decide how many instructions to issue. A 

statically scheduled superscalar must check for any dependencies between instructions 

in the issue packet and between any issue-ready candidates and any instructions already 

in the pipeline. In order to achieve good performance, it requires significant compiler 

assistances. However, dynamically scheduled superscalar processors check for any 

dependencies on the fly with less compiler assistance, but with significant hardware 

costs. 

 

Alternatively, VLIW processors are to rely on compilers to minimize potential data 

hazard stalls, as well to actually format instructions in a potential issue packet. To do so, 

the processor hardware need not check explicitly for dependence. Such an approach 
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allows VLIW processors to be implemented in simpler hardware through extensive 

compiler optimization to achieve a good performance.     

 

A major limitation of simple pipelining technique is that they all use in-order instruction 

issue and execution. Instructions are issued in program order, so that if an instruction is 

stalled in the pipeline, no later instructions can proceed. The idea of dynamical 

instruction scheduling is to rely on the based hardware to rearrange instructions’ 

execution to reduce stalls while maintaining data flow and exception behavior but come 

with hardware costs.  

 

Tomasulo scheme eliminates WAR and WAW hazards by renaming all destination 

registers, including those with a pending read or write for an earlier instruction, so that 

out-of-order write does not affect any instructions that depend on an earlier value of an 

operand. Register renaming is often implemented with the use of the reservation 

stations (RS) and issue logic. RSs can fetch and buffer operands of instructions waiting 

to issue, eliminating the need to get the operand from a register. Meanwhile, pending 

instructions designate the RS that will provide their input. Finally, when successive 

writes to a register overlap in execution, only the last write is actually used to update the 

register. The use of RSs has two advantages: one is that it distributes hazard detection 

and execution control, and the other is that execution results are passed directly to 

functional units from the RSs.  
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By now, we have reviewed some ILP techniques in modern high performance 

processors because exploiting ILP is the major technique in processor design to improve 

processors’ performance.  Subsequently, we discuss a typical out-of-order superscalar 

RISC processor -- DEC Alpha 21264 [81] and a VLIW processor – Itanium [29] 

processor.  Its pipeline can be modified to fit for our tag-based GTEF scheme; while our 

tag-based scheme has features of superscalar processors.  

 

2.5 Alpha 21264 -- a Out-Of-Order Superscalar Processor 
 

Figure 2.1.  Stages of the Alpha 21264 instruction pipeline 
 

 

 

The Alpha 21264 is a superscalar microprocessor that can fetch and execute up to four 

instructions per cycle. It also features out-of-order execution and using speculative 
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execution to maximize performance. The instruction pipeline of the Alpha 21264 

(shown in Figure 2.1) has six stages [81]: Fetch, Rename, Issue, Register Read, Execute 

and Retire.   

 

Instructions are fetched from a 64-Kbyte, two way set-associative instruction cache 

which offers much-improved level-one hit rates compared to the 8-Kbyte,direct-mapped 

instruction cache in the Alpha 21164. Four instructions can be delivered to the out-of-

order execution engine each cycle.  

 

The 21264 implements a sophisticated tournament branch prediction scheme, which 

uses two types of branch predictors – local history and global history predictor to 

predict the direction of a given branch. The tournament branch predictor is a two-level 

predictor.  The first level holds 10 bits of branch pattern history for up to 1024 branches. 

The global predictor is a 4096-entry table of a 2-bit prediction counters indexed by the 

path history.  

 

The capability of out-of-order execution contains register renaming, instruction issue 

logic, and instruction retire logic. The out-of-order execution logic receives four 

instructions every cycle, renames registers, and queues the instructions until operands or 

functional units become available. The 21264 can dynamically issues up to six 

instructions every cycle. It has four integer ALUs, and two float-point units. Although it 
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issues instructions out-of-order, it provides an in-order execution model via in-order 

instruction retire. 

 

The issue queue logic in the 21264 maintains two pending instruction lists to separate 

integer and float-point instructions. As their operands of the pending instructions 

become available, the queue logic selects from these instructions using register 

scoreboards. These scoreboards maintain the status of the internal registers by tracking 

the progress of all kinds of different latency instructions.  The dependent ready-

instructions can issue as soon as the bypassed result become available from the 

functional unit or load. 

 

The 21264 fetches and retires instructions in-order. The retire mechanism assigns each 

mapped instruction a slot in a circular in-flight window (in fetch order). After an 

instruction starts executing, it can retire whenever all previous instructions have retired. 

An exception causes all younger instructions in the in-flight window to be squashed, 

and these instructions are removed from all queues in the system.  

 

2.6 The Itanium Processor – a VLIW/EPIC In-Order Processor 
 

The Itanium processor [29] is the first implementation of the IA-64 architecture which 

is a VLIW processor.  The processor core has the ability of up to six issues per clock, 

with up to three branches and two memory references. The memory hierarchy consists 
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of a three-level cache. The first level splits instruction and data caches. The second and 

third levels are unified caches, and the third level is an off-chip 4MB cache.  

 

The IA-64 architecture introduces the concept of the instruction group, which is a 

sequence of consecutive instructions with no register data dependences among them. 

All the instructions in a group could be executed in parallel if there are sufficient 

hardware resources. Instructions within an instruction group are divided into instruction 

bundle, which contains three instructions each. The instruction bundles format the fixed 

instruction formatting. There is a stop bit to differentiate different instruction groups. To 

simply the decoding and instruction issue process, the template field is used to specify 

what types of execution unit each instruction in the bundle requires. The ISA 

architecture designed in this way can achieve implicit parallelism among operations in 

an instruction and fixed formatting of the operation field, while maintaining greater 

flexibility than a VLIW normally allows.   

 

The Itanium processor uses a 10-stage pipeline which is divided into four major parts: 

Front-end, Instruction delivery, Operand delivery and Execution. The Itanium processor 

can prefetch up to 32 bytes (2 bundles) per clock into a prefetch buffer, which can hold 

up to 24 instructions. It uses a multilevel adaptive predictor like in P6 micro-

architecture. In delivery stage, it distributes up to six instructions to the execution 

engine. Within this stage, register renaming for both rotation and register stacking are 

implemented. In operand delivery stage, the following operations will be completed: 
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accessing the register file, performing register bypassing, accessing and updating a 

register scoreboard, and checking predicate dependences. The scoreboard is used to 

detect when an independent instruction can proceed, so that a stall of one instruction in 

a bundle need not cause the entire bundle to stall.  There are nine functional units in the 

Itanium, two integer units, two memory units, three branch units, and two float-point 

units, they are all pipelined.  In execution stage, it also detects exceptions and posts 

NaTs, retires instructions and performs write-back. 

 

 

The high performance of the IA-64 depends on the coordination of compiler and 

hardware architecture. IA-64 extended the capability of ILP by providing predicate 

execution semantics. Predicate execution semantics allows compiler to execute 

instructions from multiple conditional paths at the same time, and to eliminate the 

branches that could have caused misprediction. Predication is performed in IA-64 by 

evaluating conditional expressions values in a special set of 1-bit predicate registers. 

Nearly all instructions can be predicated. The concept of predicate execution provides a 

very powerful way to increase the ability of an IA-64 processor to exploit parallelism, 

reduce the performance penalties of branches, and support advanced code motion.  

Besides that, IA-64 also provides effective register sets to support software pipelining to 

expose as much as loop-level parallelism as possible.   
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In the following, we will review some Java and related technologies for increasing the 

performance of Java execution since our major work involves in the design and 

implementation of a Java ILP processor. 

 

2.7 Executing Java Programs on Modern Processors   

Java [104] is widely used from high end servers to low end hand-held gadgets.  Java 

applications running on high-end server are typically executed using JIT compilers to 

achieve high performance. In this section we will first discuss the JIT related issues.  

 

However, the memory requirement of JIT compilers is prohibitively expensive for 

embedded systems and pervasive computing application. So the dedicated Java 

processors are favored for embedded applications.  Java processor adopts a typical stack 

machine’s architecture, thus direct execution of the bytecodes on stack based embedded 

processors is invariably constrained by the limitations of the stack architecture for 

accessing operands. In the next section we will discuss related issues of Java processors.  

In the following we will discuss them accordingly.   

 

a. JIT – Just-In-Time Execution 

Java bytecodes may be executed on various platforms by interpretation or Just-In-Time 

(JIT) compiling. The first Java virtual machine (VM) available was interpreter-based, 

but it was neither efficient nor well-suited to high performance applications. The JIT 
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compiler translates bytecodes to the native code of the host machine dynamically. 

Several variants of the JIT concept [6, 15] have been proposed.   

 

Unfortunately, the JIT method suffers some drawbacks. They can usually only perform 

limited optimizations because time for more sophisticated analysis is not available. 

Furthermore, JIT systems often optimize only selected sections of code, leaving many 

segments to continue executing in the interpreter.  Finally JIT systems are sufficiently 

large and complex that they incur runtime overhead in translating bytecodes to native 

codes, although acceptable performance for Java applications can be provided. 

Especially in embedded field, using JIT compilation causes an unacceptable wait 

between application launch and an application actually running on an embedded device. 

Thus dynamic adaptive compilation (DAC) [46] is proposed to overcome these 

drawbacks of JIT. 

 

b. Dynamic Compilation Techniques 

In DAC scheme, Java method classes that are most heavily used are compiled and 

optimized in traditional compiler technique in order to obtain more efficient native 

machine code.  A DAC combines a JIT compiler and a bytecode interpreter. The 

heavily used code sections are often identified by a software profiler.   When performed 

statically, a single profiling run is taken to be representative of the program’s behavior. 

Within a dynamic optimization system, the ongoing profiling identifies which part of 
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codes are currently hot, allowing optimizations to focus only where they will be most 

effective. However, DAC scheme still has the following problems. 

First, an application will run in a slow interpreter mode until code has been profiled, 

then pause to generate compiled code. When an application is launched, many methods 

are only run once, so ideally should never be compiled. This impact can be very 

significant, particularly at application start-up. Second, because software interpretation 

is very slow, most DAC solutions do very little profiling and compile almost all 

methods immediately, making guess that a method is not about to be executed for the 

last time, but will be executed many times. This guess is very costly if it is incorrect.  

 

To overcome the above drawbacks, ARM proposed a scheme of hardware-based 

dynamic compilation – ARM Jazelle technology, which can directly execute Java 

instructions on ARM RISC architecture [109]. ARM designers added a new Java 

instruction set to the classic ARM architecture. The Java ISA is executed in a Java 

mode, which is entered on a branch. In the Java mode, the CPU executes Java bytecode 

instructions. Bytecodes are fetched and decoded in two stages. Use of Jazelle 

technology, the compiler can afford to compile less code and interpret more. Jazelle 

technology can also be used to improve the speed performance of a DAC compiler by 

holding off compilation. Jazelle technology improves the performance a lot according to 

ARM’s white paper [109]. 
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2.8 Increasing Java Processors’ Performance     
 
 
Hardware processors to execute bytecode directly are becoming popular. The designs of 

Java processors, such as picoJava [28, 39], are mainly based on stack processors, and 

generally Java VM is used as their instruction set architecture. A major issue in 

implementing Java processor is the existent limitation of ILP by the stack dependence.  

Several techniques to overcome the limitation in Java bytecode have been investigated 

[53, 28, 88, 44].  

 

A. Stack Folding  

Stack operation folding is one technique to reduce the limitation by converting a set of 

bytecodes into a RISC-like register-based instruction [4, 48, 50, 70]. In Sun’s picoJava-

II processor, simple instruction folding in hardware is done by using pattern matching at 

decode stage of its pipeline [28, 88], and the stack folding is supported by the stack 

cache as a register file for parallel access of stack operands to eliminate redundant stack 

operations. More sophisticated folding techniques, such as nested folding [4, 48, 50, 53, 

70], may further reduce stack operand dependence.   The more detailed stack instruction 

folding techniques will be discussed in Chapter 4. 

B. Multiple Instruction Issue  

Combining multiple in-order issue with stack folding is proposed in ILP [88], which 

proposes to improve the performance of Sun’s picoJava-II processor with in-order, 
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dual-issue bytecode execution, a fill unit, and stack disambiguation, but this work does 

not consider out-of-order bytecode execution, which would naturally exploit a greater 

degree of ILP in Java programs. To support out-of-order execution, SMTI [79] is 

proposed with software involved to extract independent bytecode trace and implement 

bytecode folding, but special fetch logic is needed to identify independent traces from 

instruction cache.    

 
C. Multi-threading 
 
To meet the requirement of high-performance network application with Java, thread 

level parallelism (TLP) can be exploited to extract coarse-grained parallelism. Sun’s 

MAJC processor adopts a vertical multithreading technique, in which Java methods are 

treated as a thread in hardware and speculative execution of multiple threads is included 

to exploit TLP [69]. But MAJC needs a JIT compiler to convert bytecodes to native 

codes. The Java Multi-Threaded Processor (JMTP) [82] architecture is a similar 

hardware implementation, which is a single-chip CPU containing an off-the-shelf 

general purpose processor core coupled with an array of Java Thread Processors (JTPs). 

However an intelligent compiler is needed to identify the set of concurrent threads that 

can be forked as JTP threads.  

D. Dynamic Translation 

DAISY [47] is designed on VLIW architecture with dynamic translation, which 

combines JIT with native compilation techniques by appropriate hardware primitives 

designed to execute Java efficiently. It dynamically translates Java bytecodes with JIT 
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into VLIW instructions and exploits a VLIW engine. This approach can take advantage 

of the increased ILP possible in VLIW machines to achieve high performance [46].   

 

The Femtojava [8] and Delft-Java [40] are another two dynamic-translation-supported 

Java processors. The FemtoJava processor is a stack-based architecture with replicated 

functional units and instruction decoders, and employs a VLIW as its execution engine. 

In FemtoJava [8], the bytecodes in the entire Java program are divided into the 

instruction groups, the instructions within the same group are translated into VLIW 

word to be executed. The grouping algorithm is to find those instructions that depend on 

the result of the previous one, and group them in one instruction block. The Delft-Java 

[40] processor provides hardware assisted dynamic translation, and the bytecodes are 

translated on-the-fly into the Delft-Java instruction set. Hardware support for Java 

language constructs are incorporated into the processor’s ISA. This allows application 

level parallelism inherent in  Java language to be utilized ILP.      

 

E. Some Dedicated Java Processors 

Along with the Java widely used in embedded field, some dedicated Java processors are 

proposed and built.  We will introduce them in the following.  

 

Espresso [110] 
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Aurora VLSI's Espresso Java processor is a superscalar RISC engine. The CPU has two 

operational units, each with an integer and a floating-point processing unit. Espresso 

supports a 32-bit 128-entry stack. It has 32 to 256 on-chip registers (configurable) and 

supports 16k to 32k instruction and data caches with 64-bit interfaces. It executes four 

instructions/cycle or seven bytecodes/cycle.  

 

Lightfoot Java CPU [111] 

Digital Communications Technologies' Lightfoot is a direct-execution Java CPU with a 

one-to-one mapping between bytecodes and lightfoot instructions. This design tactic 

eliminates the interpreter and keeps Java's small program memory footprint. The 32-bit 

Harvard RISC processor provides stack execution for both Java and C. It implements an 

eight-register-deep stack, with extensions to data memory. The soft core supports J2ME, 

JavaCard, KVM, and JINI.  

 

JStar [112]  

Nazomi Communications' JStar can work with ARM, and MIPS. JStar's Java translation 

mechanism is automatically invoked whenever the main processor's instruction pointer 

falls within a specified memory address range. Java code is simply placed in this 

memory and can be called directly. JStar uses the processor's registers, including the 

stack registers, to handle calls just like native code.  
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2.9 PicoJava -- a Real Java Processor  
 
In this section we will discuss a typical stack processor – picoJava [28,39], which 

directly execute Java bytecode based on a stack processor architecture. The processor 

uses a pipeline structure to achieve good performance.  The Figure 2.2 shows the basic 

pipeline of the PicoJava-II [28] core. 

  

Figure 2.2.  Basic pipeline of the PicoJava-II 
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PicoJava is a comparable RISC processor architecture. PicoJava core contains the 

integer execution unit and a compact floating-point unit with separated instruction and 

data caches, which are 16Kbytes. A Java processor must execute all 226 bytecode 

instructions defined for the Java virtual machine. The 226 instructions can be divided 

into 15 different functional categories. To efficient execute Java bytecode, picoJava 

categories bytecodes into three classes: simple, moderately complicated, or very 

complicated.  The simple instructions are RISC-like in the sense that they readily lend 

themselves to hardware implementation. These instructions are hardwired and execute 

in a single clock cycle. The majority of instructions executed by a typical program 

would fall into this category, such as all the integer arithmetic operations. The group of 
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moderately complicated instructions contains about 30 bytecode instructions, and they 

are implemented using microcode. Microcode offers a good balance between the need 

to keep the hardware implementation simple and the need for good performance. The 

last group of about 30 instructions are either very complicated or require services from 

the underlying operating systems. They can be executed by a software emulation trap. 

 

A stack processor must spend cycles moving operands to the top of stack in order that 

the compute operations can get at them, and moving results off the top of stack for 

storage.  These stack manipulation operations makes stack processors pay an overhead 

burden of up to 30 percent more than RISC processors. To reduce this overhead, 

PicoJava adopts a register file with 64 entries to support stack operations. The register 

file treats as a circular buffer, with a pointer to the top of stack. The register file has 

three read and two write ports. Compute operations can simultaneously read out two 

operands and write back one result. All data from the constant pool, from local variables, 

or loaded from objects, are first pushed onto the stack and all compute instructions then 

access their operands from the stack, and push the results back onto the stack. 

 

The register file, functioned as stack cache, provides a powerful solution to the problem 

of access inefficiency in stack machines. This leads to an execution technique called 

instruction folding.  The instruction folding can fold up to four bytecode instructions 

into a RISC-like register-based instruction, by taking the operation to be performed 

from the compute instruction, the source of the operands from the local variable loads, 
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and the destination of the results from the local variable store.  The instruction folding 

eliminates essentially all of the computational overhead of stack processors, achieving 

the same sort of single-cycle execution efficiency found in RISC processor architecture.  
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Chapter 3 

Implementing Tag-based Abstract 
Machine Translator in Register-
based Processors 
 

 
Chapter 1 proposed a concept of General Tagged Execution Framework (GTEF).  The 

tag-based abstract machine translator (TAMT) is a critical component for GTEF 

scheme, which converts any abstract or real machine programs into tag-based 

instructions for ILP execution. The concept of TAMT is similar like a software-

supported dynamic instruction translator, and the one of merits of TAMT is that it can 

support dynamic instruction translation and easily collaborate with existing RISC / 

CISC processors. For example, after designing a TAMT to dynamically translate RISC 

instruction into tag-based instruction formats, we can only design and implement 

different TAMT to translate different register-based ISA into a common tag-based 

instruction formats. Then we can use existing ILP execution engine, PowerPC or 

Pentium execution engine to tag-based instructions with micro-code support.   

     

In this Chapter, we first discuss a general design methodology of TAMT for register-

based processor architecture, and then with several general-purpose register-based 
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processors – Alpha 21264 and Pentium processor as examples to discuss how to design  

different TAMT in order to use them as the execution engine.        

 

3.1 Design a TAMT      
 
The key-point of the proposed GTEF scheme is to convert any machine program 

(abstract or real) into tag-based instructions. Conceptually, the instruction execution 

procedure in GTEF can be described as in Figure 3.1.  The conceptual framework 

captures many existing computer architectures, since one or more stages preceding the 

execution stage can be implemented either in hardware or software. For superscalar 

(multi-issue) machines that employ Tomasulo scheme (e.g. PowerPC, Alpha), the 

tagging and scheduling stage would be implemented by reorder buffer and common 

data bus in hardware and the execution stage would be utilizing a superscalar execution 

engine; For VLIW machines (e.g. IA64), the tagging and schedule stage would be 

performed in software (the compiler)  while with limited scheduling in hardware and 

the fourth stage will be a VLIW execution engine to process bundled instructions. 

 

Figure 3.1.  A conceptual tagged execution framework 
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In the conceptual framework, a TAMT is built in stage two which is responsible for 

instruction tagging and/or dependence resolution, and after this stage any inputted 

instructions are translated into a tag-based instruction format which can be employed by 

modern ILP execution engines, superscalar or VLIW processors.  

 

TAMT executes with tags rather than values. In TAMT, there is no actual execution 

which inputs values into arithmetic pipeline to produce output values; only tags are 

removed from stack/registers and new tags representing results are put onto 

stack/registers.  The TAMT processes the instruction stream much faster than sequential 

execution. i.e., it can keep up with parallel execution that will take place later when tags 

have been mapped into values.  That’s why we name it as “tag-based abstract machine 

translator”.  Based on the functional descriptions on TAMT, we know that in addition to 

playing tag renaming, TAMT is also responsible for dependence resolution among 

instructions, and instruction scheduling.  Thus, in general, a TAMT may consist of a 

tagging unit (TU), a tag matching unit (TMU), and a free tag pool (FTP). TU can be a 

virtual tag execution unit, which is a core unit in TAMT. TMU can be responsible for 

dependence checking and tagged instruction scheduling. FTP is used to store free tags.      

 

In the following we use an example to illustrate the instruction tagging – “mock 

execution” scheme of implementing with RISC machines.   
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The TU adds tags to register numbers in order to distinctly represent changing register 

contents. Given the expression e = a*b+(c+d), the compiler produces the following 

RISC instructions:  

   ld r1,a; ld  r2,b;  mul r1,r1,r2;  ld r3,c; ld  r4,d;  add r3,r3,r4;  add r1,r1,r3 ;  st r1, e 

 

Each register is renamed by attaching an additional tag (which recycles 0,1,2,3 etc). The 

renaming and “mock execution” process can be seen in Table 3.1. Now observe that the 

“mock execution” taking place in the tag-renaming unit.  For any instruction that 

modifies a register, the tag-renaming unit merely attaches a new tag to the instruction 

that will later produce a value, or attaches the same tag to the register being modified, or 

attaches the same tag later to any instruction that will need the value of the instruction. 

In actual execution an instruction may be delayed by cache miss, long arithmetic 

computation or busy units etc, holding back progress, whereas the mock execution 

proceeds much faster.  However, every different value is represented by a tag and an 

instruction that produces a value can be recognized by the one that consumes it as 

related.  

Table 3.1.  A sample of RISC instructions renaming process 
 

 Instructions  Tag Renaming Unit  Actual Execution (Later; assume superscalar) 
ld  r1, A 
ld  r2,B 
mul  r1,r1,r2 
 
ld  r3, C 
ld  r4, D 
add  r3,r3,r4           
add  r1,r1,r3 
st  r1, E 
 

Ld r1-1,A 
ld r2-1,B 
mul r1-2,r1-1,r2-1 
 
ld r3-1,C 
ld r4-1,D 
add r3-2,r3-1,r4-1 
add r1-3,r1-2,r3-2 
st  r1-3,E   
 

ld to load unit; tag 1 added to r1 to denote new value 
ld goes to load unit, tag 1 is added to r2   
goes to reservation station of multiplier – r1 reused so 
gets new tag 
goes to load unit 
goes to load unit  
goes to adder   
goes to reservation station of  adder 
waiting at store unit and executes when previous  
finishes 
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Table 3.2. The tag-based RISC-like instruction format 
 

Opcode Src1 Tag Src2 Tag Dest Tag 

 

The above tag-based renaming scheme may work with a processor’s pipeline 

architecture, e.g. implementing between decoding unit and issue logic. The tagging unit 

collaborated with decoding unit to assign each instruction a tag, which will store the 

result the instruction executes. With instructions’ “mock execution” with tags, a new 

tag-based instruction format (Table 3.2) is generated and stored in Tag-Matching-Unit 

(TMU).  TMU may be a Reorder Buffer (ROB) structure with attaching a mapping table, 

which indexed from tag number to physical registers. In the mean time the dependent 

information among instructions within TMU is generated with tags. The tag-based 

instruction formats are very similar as that used in most RISC processors, thus it will be 

easily employed by existing RISC processors. The instruction tagging scheme contains 

a mapping from old ISA with old architectural registers to a new tag-based ISA with tag 

number, and another mapping from the tag number to physical registers. For example, 

tags correspond to individual registers. A value loaded from memory or computed by an 

arithmetic instruction is retained in a tag / registers till it is de-allocated. In a stack 

machine, however, a tag for a value loaded onto the stack may be de-allocated after use, 

as we shall see later.  

 



Chapter 3. Implementing TAMT in Register-based Processors  42

To make our tag-based scheme easy to be understood, in the following we will illustrate 

how to implement the TAMT in two conventional RISC processors -- DEC Alphas 

21264 [81] and Intel Pentium [51]. Both of processors use different register reaming 

techniques. We will explain individually.    

3.2 Design a TAMT Using Alpha Engine  
 
Table 3.3 illustrates the process of the tag-based instruction renaming in 21264. In this 

sample, we assume the number of tag registers is greater than that of architectural 

registers in order that more instructions can be tagged in the instruction window. For 

load and store instructions, the related data must be read / written to the register first in 

order that they can be operated continually. Each Alpha instruction is assigned a tag, at 

the same time register renaming is implemented. Here we follow the Alpha instruction 

definition, put the destination field at the right most.  The register renaming in 21264 

has separate integer and float-point renaming unit. A unique tagging unit may be 

implemented in the architecture, and it executes instructions “mock” with tags. Tag is 

un-typed, so which can pointer to both integer and float-point values. 
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Table 3.3.  A sample of tag-based renaming for Alpha processor 
 

Instructions  TAMT Renaming 
Unit 

Tag-based Instructions 
Generated 

ldl     $1, (A) 
ldl     $2, (B) 
mull  $1,$1,$2 
 
ldl     $3, (C) 
ldl     $4, (D) 
addl   $3,$3, $4      
addl   $1,$1,$3 
stl     $1, (E) 
 

ldl    $1-1, ( A ) 
ldl    $2-2, (B ) 
mull $1-3, $1-1, $2-2 
 
ldl    $3-4, (C ) 
ldl    $4 -5, (D ) 
addl  $3-6, $3-4, $4-5 
addl  $1-7, $1-3, $3-6 
stl     $1-7,  (E)   
 

ldl     T1, (A)  
ldl     T2, (B)  
mull  T1, T2, T3 
 
ldl     T3, (C) 
ldl     T4, (D) 
addl   T4, T5, T6 
addl   T3, T6, T7 
stl      T7,  (E)  

 
 

From the Table 3.3, we can see that the Alpha instructions are dynamically translated 

into the tag-based RISC instruction format, and this format is similar as the RISC 

instruction format for Alpha processors, so it is easy to be integrated with the previous 

design. The previous used superscalar execution engine can be continually employed. 

Here we can see that our TAM scheme is easy to be applied with the existent out-of-

order execution engine.    

 

3.3 Design a TAMT Using Pentium Engine 
 
    
X86 instruction set is a CISC instruction set with variable instruction length. To execute 

x86 at high performance, Intel’s Pentium [24, 51] dynamically translates x86 

instructions into simple, fixed-length instructions that Intel calls micro-operations or 

uops. These uops are then executed in a decoupled superscalar core capable of register 

renaming and out-of-order execution. Like RISC instructions, uops use a load / store 
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mode [51]. Those x86 instructions operating on memory must be broken into a load uop, 

an ALU uop, and possibly a store uop [51]. Uops use a regular structure to encode an 

operation, two sources, and a destination like RISC instruction.  

 

Table 3.4 shows how to apply our proposed instruction tagging scheme to convert uops 

after x86 instruction translation process into the tag-based RISC-like instruction format. 

Here the same sample program in Table 3.1 is used. We run gcc to get the assembly 

code in first column, after instruction translation, we get the tag-based code in the 

column 4. The code is similar like in Table 3.3, and the instruction format follows the 

definition in Table 3.2.  

Table 3.4.  A sample of tag-based renaming for Pentium processor 
  

Instructions  Convert to 
UOPs 

TAMT Renaming Unit Tag-based 
Instructions 
Generated 

Movl  (a) , %eax 
movl  %eax, %ecx 
imul   (b), %ecx 
 
movl  (d), %edx 
movl  (c), %eax 
addl   %edx, %eax     
addl   %ecx, %eax 
movl  %eax, (e) 
 

load  (a), %eax 
mov  %eax, %ecx 
load  temp, (b) 
imul  temp, %ecx 
load  (d), %edx 
load  (c), %eax 
add   %edx, %eax 
add   %ecx, %eax 
store  %eax, (e)  

load  (a), %eax-1 
mov  %eax-1, %ecx-2,  
load  temp-3, (b) 
imul  temp-3, %ecx-4,%ecx-5 
load   (d), %edx-6 
load   (c), %eax-7 
add   %edx-6, %eax-7, %eax-8 
add   %ecx-5,%eax-8,%eax-9 
store  %eax-9, (e) 

load  (a), T1 
mov  T1, T2 
load  T3, (b) 
imul  T3, T4, T5 
load   (d), T6 
load   (c ), T7 
add    T6, T7, T8 
add    T5, T8, T9 
store  T9, (e)  
 

 

 

 

The above tag-based instruction format may be easily used by Pentium execution 

engine through combining the register renaming logic, since the instruction format is 

followed the common RISC instruction format. The register renaming logic in Pentium 
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renames the logical IA-32 registers onto the processors 128-entry physical register file. 

A Register Alia Table (RAT) is used to remember the mapping relationship.  Our tag 

renaming unit may contain up to 128 entries which equals to the number of physical 

register in order to meet the Pentium’s performance requirement.    

 

We have demonstrated our tag-based scheme how to be integrated with existing 

architecture in order to use existent ILP execution hardware.  With collaborated with 

individual register renaming logic, the tag-based scheme may translate different 

instruction format into RISC-like format, then modern superscalar execution engine can 

be exploited, so reusability of these existent superscalar component is extended.   

3.4 Discussion on Implementation Issues 
 

To implement a real TAMT in order to collaborate with existing RISC execution 

engines, we can exploit the existing register renaming mechanism provided in the 

processors.  A common way to implement register renaming in RISC processors is to 

use a separate rename register file (RRF) and the architected register file (ARF).  A 

simple way to implement the RRF is to simply duplicate the ARF and use the RRF as a 

shadow version of the ARF. Most modern processors implement RRF with much more 

entries than that of ARF in order to increase instruction-level parallelism. However, this 

does require a mapping table which gives for each name the index of the physical 

register with which the name is currently associated in ARF. A common used register 
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renaming scheme which uses a separate RRF in conjunction with a mapping table to 

perform renaming of the ARF is illustrated in Figure 3.2.      

Figure 3.2. Common register renaming scheme in RISC processors 
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Figure 3.3.  Tag-based renaming mechanism
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The TAMT can be implemented between decoding unit and issue logic. Figure 3.3 

illustrated a common scheme to implement a TAMT.  In this scheme, the tagging unit 

(TU) works with decoding unit to assign each instruction a tag. With instructions’ 

“mock execution” with tags, a new tag-based instruction format is generated and stored 

in Tag Renaming Unit (TRU). TRU is organized as a Reorder Buffer (ROB), and 

instruction’s dependent relationship is also established with tags. A mapping table is 

attached to TRU, which indexed from tag number to physical registers.  
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By means of this dynamic translation process, a newly build processor which uses our 

proposed approach can use existing RISC execution engines -- superscalar or VLIW  as 

a component. This will reduce the complexity of CPU design.    

 

Based on above discussion, we will discuss some architecture issues when using 

Pentium [51] and Alpha 21264 [81] execution engines. The further investigation will be 

our future work.  

3.4.1 Implementing Issues using Alpha Engine  
 
To implement a TAMT is not complex with Alpha Engine. A tagging unit (TU) is 

needed to execute instructions “mock” with tags. The mapping table of TRU can index 

to both integer register file and float-point register file. The TRU can be organized as 

ROB to commit instructions in order. Design in this way, TAMT can manage 

speculative states which is consistent with the Alpha engine’s architecture.     

 

After instruction tagging, the out-of-order execution engine can be employed without 

need to make any changes. The instruction issue queue and register status updating are 

similar, no need to change.   

 
3.4.2 Implementing Issues Using Pentium Engine  
 

The register renaming logic in Pentium renames the logical IA-32 registers onto the 

processors 128-entry physical register file, which is organized as a Reorder Buffer 
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(ROB) [51]. A Register Alia Table (RAT) is used to remember the mapping relationship, 

which remembers the most current version of each register, such as EAX so that a new 

instruction coming down the pipeline can find the correct place to get the correct current 

instance of each of its input operand registers.  The ROB entry has data field and status 

field. The ROB data field is used to store the data result value of the uop, and the ROB 

status field is used to track the status of the uop as it is executing in the machine. These 

ROB entries are allocated and/or deallocated sequentially. Upon retirement, the result 

data in ROB data field is physically copied into the separate Retirement Register File 

(RRF).  

 

To implement TAMT on Pentium, the TAMT may be between decoder and register 

renaming stage. Since the IA-32 decoder decodes X86 instruction into uops in program 

order, TAMT can follow with the decoder and collaborate with decoder to tag uops into 

tag-based instruction formats which are stored in TRU to implement the function of re-

ordering, tracking, and sequencing instructions and help manage physical register file. 

The TAMT can hold as many as 128 entries to reach the size of physical register file of 

Pentium. To reduce the complexity, each tag entry would point to one entry in physical 

register file. The TRU may be integrated with the RAT and commit tagged instructions 

in order. After above change, the newly generated instructions can still use out-of-order 

Pentium engine.      
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Chapter 4 
 

Realizing a Tag-based Abstract 
Machine Translator in Stack 
Machines  
 
 
 
This chapter will discuss how to apply our proposed GTEF scheme to implement a 

stack processor. The stack processor has its specialty – stack is often viewed as a 

bottleneck to achieve the performance. In this chapter a stack instruction tagging (SIT) 

scheme will be presented to overcome the stack bottleneck problem. The SIT scheme is 

the groundwork for implementing the tag-based abstract machine translator (TAMT) in 

stack machines.      

 

4.1 Introduction   
 

Stack programs appear to have a high level of data dependency with instructions taking 

operands from the top of the stack and leaving results there, and due to with instructions 

displaying no source and destination register references, data dependency are thought to 

be difficult to analyze. The SIT scheme proposed in this Chapter can overcome the 

problem of the stack bottleneck in stack machines by converting stack dependency into 
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tag (register) dependency. With instruction tagging, the independent stack instruction 

groups with stack dependences are identified. Because there is not existed stack 

dependences among the different instruction groups, they can be issued and executed in 

parallel and thus the scheme can extract more ILP.  In the following, we first review 

some other schemes about stack renaming techniques, and then describe the SIT scheme. 

 
4.2 Stack Renaming Review  

In previous research, there are two stack renaming techniques worthy of be noted, one is 

BLP [44], and another is the method proposed in Kapoor [83]. BLP [44] is a software-

implemented interpreter, which bears a great deal of similarity to micro-architectural 

simulators like SimpleScalar [23]. BLP interpreter exploits the virtual register scheme, 

which contains bytecodes queue, a control unit, stack renaming unit, branch prediction 

unit and execution queue. The control unit is responsible for mapping stack locations to 

virtual register using the stack renaming unit. This step is crucial to uncover more 

bytecode-level parallelism. 

 

In BLP, the stack renaming unit keeps track of the next available virtual destination 

register. Since no virtual destination register is written twice, this eliminates register-

related WAW and WAR hazards. The stack renaming unit also maintains a stack of 

virtual registers (called renaming stack) that stores the sources of bytecodes not yet 

processed.  The renaming stack would mimic the operations of a real stack to pop or 

push in order to get the virtual register. For example, a JVM iadd operation might be 
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translated to vr2 <- iadd (vr1, vr0).   The renaming stack would be popped twice to get 

the virtual source registers, vr1 and vr0. The destination register – vr2, would be pushed 

onto the renaming stack. 

 

The control unit controls the fetching of bytecode, and it can change the flow of control 

of the program according to the branch prediction unit.  The control unit tracks the 

program order of bytecodes, and commits or squashes their results as appropriate once 

the outcome of preceding branches has been verified. A SMT processor is suggested to 

be needed in BLP scheme as an ideal hardware platform to run the BLP interpreter in 

order to achieve the desired performance.    

 

The another stack renaming scheme is proposed in Kapoor [83], which maps the 

operand stack to hardware registers, and stack instructions are converted to register 

instructions naively by associating stack locations with a particular register. A Stack 

Translation Table (STT) is used to map the stack locations onto the register file. The 

STT is a stack which stores the register identifiers. In hardware implementation, the 

STT can be a series of multiplexer that select the register names that provide the 

operands for each instruction. The associated push/pop for each instruction are encoded 

in a ROM. Whenever a set of instructions come in, the ROM can be looked up to yield a 

set selection signals which can be applied to the current state of the STT and the register 

free-list to yield the register tags for operands. The ROM can be small and fast lookup 
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can be possible. An alternative solution was suggested to use combinational logic to 

compute the selection signals.         

 

In addition to the STT, a pool of free registers must be maintained. The free register 

pool consists of a list of the register identifiers of free registers.  Stack renaming and 

register allocation was done on a value basis, rather than on a 32-bit word basis. 

Because the renaming is value-based, the proposed processor will contain four register 

files; one each for integers, long integers, floating point numbers, and double-precision 

floating point numbers. When there are no free registers available in free register pool, 

the renaming will stall, thus a register spilling is needed to provide.  To implement this 

scheme a multi-issue superscalar processor is proposed. Compared with them, our 

“mock” execution tagging scheme streamlines the process of stack renaming, and it can 

be extended to RISC or CISC processors  

 

4.3 Proposed Stack Renaming Scheme  
 
Subsequently we will show how to reveal the instruction level parallelism (ILP) in stack 

programs through stack renaming. Because in stack processors those operands on 

execution stacks are erased once they are used by an operator, an operand only needs to 

be supplied to one operator which can be uniquely identified by a tag.  Once a tag is 

used, its new result is immediately discarded without being actually stored into the stack; 

in contrast with general purpose register processors, new register contents must be 

written back to physical registers from the reorder buffer (ROB) even if they may 
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already have been superseded by later writes. This scheme exploits a stack of tags rather 

than a stack of values.  In the following we will explain our stack renaming scheme 

with an example. 

 

Consider the following expression with its corresponding stack machine code:  

g = a*b+(c+d)    

- LD A,   LD B,   MUL,   LD C,   LD D,   ADD,   ADD,   ST G 

  

If above stack codes run on a Superscalar processor, some ILP can be explored. If the 

fetching of A or B is slow (e.g., cache miss), CPU would proceed with the fetch of C 

and D into other registers and produce the result of C and D out of order, then dispatch 

the multiplication instruction for execution as soon as A and B emerges from the load 

unit and forward the result of A * B to the instruction. The execution behavior can be 

obtained after executing the following stack renaming procedure.   

Table 4.1.  A sample of stack renaming scheme 
 

Instruction Stack Naming Unit Operand Tag stack 
(OTS) 

 1     load    a 
 2     load    b 
 3     mul 
 4     load    c 
 5     load    d 
 6     add 
 7     add 
 8     store    e 

T1   load    a         
T2   load    b 
T3   mul    T1  T2 
T4   load    c 
T5   load    d 
T6   add    T4   T5 
T7   add    T3   T6 
T8   store  T7   e 

T1 
T1  T2 
T3                 
T3  T4 
T3  T4   T5 
T3  T6 
T7 
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Table 4.1 shows the stack renaming procedure with renaming stack location with tags 

and using Operand Tag Stack (OTS) to identify source operands with operators that 

consume them.  The stack renaming unit uses a new tag for every instruction that leaves 

a result on the stack instead of an operand value. The tags on OTS are used for 

attachment to a later instruction that consumes the operand.   

 

The procedure of stack renaming shows how the parallelism can be achieved. The 

tagged instructions are dispatched after the both operands it needs are ready, and the 

operands may be provided by an instruction which is executed in a load/store or ALU 

unit and its result is delivered to the later instruction that carries its result. In the snippet 

program, the first two loads deliver their operands to T3 tag (multiplication operator), 

and the last two loads to T6 tag (addition operator), then they will be executed and 

results to be delivered to T7 tag (second add operator), as the same manner in 

superscalar machines. As we can see that using a stack of tags makes it easy to attach 

operand tags to an operator.  After instruction tagging, the relationship of instruction 

dependency is established and independent instruction groups may be identified if a 

group of tagged instructions are not dependent on the other instructions’ results.  

 
 

The proposed stack renaming scheme is data-driven. The tags are organized as a 

physical register file that can be reused and dynamically assigned to the later coming 

instructions after they are retired. The single tag entry is composed of the instruction 

op-code, status bits and a tag sequence number which points to the address of 
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“destined” physical register. Once an operator instruction is tagged, it will identify its 

operands by tags. The tag can be seen as a data token as in tagged dataflow machines [9, 

11] where the flow of data token activates instructions’ execution. In the process of 

instruction tagging, a data dependence graph (DDG) is generated dynamically and 

instruction execution may follow the graph. As in dataflow machines, the availability of 

tagged operands of an instruction triggers its execution and the tagged result as data 

tokens is passed directly between instructions. The instruction tagging scheme supports 

explicit out-of-order instruction execution. 

4.4 Implementation Framework 
 
 

Table 4.2. A sample of stack renaming scheme with  
tag-based instructions 

 
Instruction Stack Naming 

Unit 
Operand Tag 
stack (OTS) 

Newly Generated Tag-
based instructions 

 1     load    a 
 2     load    b 
 3     mul 
 4     load    c 
 5     load    d 
 6     add 
 7     add 
 8     store    e 

T1   load    a         
T2   load    b 
T3   mul    T1  T2 
T4   load    c 
T5   load    d 
T6   add    T4   T5 
T7   add    T3   T6 
T8   store  T7   e 

T1 
T1  T2 
T3                 
T3  T4 
T3  T4   T5 
T3  T6 
T7 
 

  load T1, (a) 
  load T2, (b) 
  mul T3, T1,T2 
  load T4, ( c) 
  load T5, (d)    
  add T6, T4, T5 
  add  T7, T3, T6 
  store T8, T7        

 
 
With instruction tagging scheme, the newly generated tag-based instructions are listed 

in the Column 4 of Table 4.2. We can see that the scheme can translate stack-based 

instruction into tag-based RISC-like instruction format, and then this instruction format 

can be easily used in modern RISC processors.  
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Based on the instruction tagging scheme, we give the logic framework for the TAMT is 

shown in Figure 4.1.  The real TAMT consists of four components: the Tagging Unit 

(TU), Operand Tag Stack (OTS), Tag Matching Unit (TMU) and Free Tag Pool (FTP). 

TU is a control unit, which is responsible for tag allocation and release. OTS is an 

execution engine with tags. If the instruction pops values from the stack, the tag number 

of the associated operands are popped from the OTS, and entered into the TMU to build 

the tag-based RISC-like instructions.  If an instruction both pushes and pops from the 

operand stack, all pops occur before any of the pushes occur.  FTP may be a resource 

unit, which provides physical resources to TU for its consuming, and withdraws the 

released tags. 

 

The stack instruction code is streamlined as following. Whenever a pre-decoded stack 

instruction enters the TU, TU allocates a tag from FTP. After tagging, the instruction 

information is stored in TMU.  For each tag entry in TMU, the address of the physical 

register exists in it, which shows the mapping relationship between tag number and 

physical register. After instruction tagging, the newly generated tag-based RISC-like 

instructions are inserted into the RISC instruction queue for later scheduling.  TU is a 

simple hardware abstract machine, which “mock” executes stack instructions with tags 

in program order with OTS support.  A retained tag pool is needed with FTP to be used 

for implementing tag retention and tag reuse.  The tag entry in TU can be released by 

TMU when a tag is no longer used later. 
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Figure 4.1.  Architectural diagram for stack tagging scheme 
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instruction decoded under goes the tagging process.  If the instruction pushes a value on 

the stack, a tag is allocated from the FTP to hold this value, and the tag number in TMU 

is set as valid, the value is stored in the entry of TMU.       

 

After stack renaming the all dependency information are generated and stored in TMU, 

these tag dependency information will be used by instruction issue logic to control tag-

based RISC-like instruction issue.  TMU can work as a scoreboard to issue instructions 

out-of-order even though the tag renaming process is in a sequential manner.    

 

4.4.1 Tag Reuse 
 
In stack processors, in addition to stack operands that are used once only, some 

repeatedly used data are buffered in the register file. They correspond to reused tags. As 

described previously, a free tag list is maintained for allocation and reuse of tags in FTP. 

If a tag has been used or its associative value has been read, because it is no longer 

needed, and can be put back into the FTP for later use by other instructions. In our 

design, each tag is associated a counter. It is incremented each time the tag is referenced 

and is decremented each time the associated instruction is issued or an actual read 

operation is done to get the value from the tag. The tag can be freed whenever the count 

becomes zero and at this time it can be reused by other instructions.  

 

Note that some instructions like swap and pop, will only affect the OTS and not involve 

actual execution. In our algorithm a dup instruction merely duplicates the tag number on 
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the top of the OTS. In the mean time, the reference counter of the duplicated tag is 

incremented. For swap instruction, only the locations on the OTS of the two tag 

numbers are exchanged.  

 

4.4.2 Tag Spilling 
 
Although instructions may execute out-of-order, they commit in program order to 

guarantee the correctness of the program execution. To do this, a Trace Re-order Buffer 

(TRB) is provided in Tagging Unit (TU) to queue up instruction tags in program order 

to help implement branch prediction, and precise interrupts.     

 

Tag spilling is needed when there are no free tags available to continue tag the 

instructions. To do this, some current tags will be removed from the TU, and be copied 

to the memory. Later re-copy them back from the memory to TU, to execute them.  But 

this will bring some hardware complexity and a spilling algorithm as in RISC 

processors is needed to provide. To make the system hardware simple, we do not 

provide spilling function in current design. But we let the processor stop instruction 

fetching and make TU stalled when TMU is full. 

 

4.5 Hardware Complexity 
 
We have assumed that a certain number of instructions, such as four, can be renamed in 

every cycle. This section briefly looks at how this might be realized in hardware.  Here 

we only focus on how to implement OTS (Operand Tag Stack) and TMU (Tag 
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Matching Unit), the other parts could employ the modern existing processor hardware 

to build. 

 

OTS is responsible for simulating a stack behavior. Thus a hardware stack structure 

should be provided. It can be implemented by using a linear addressed register file to 

store tag numbers, and a stack pointer is needed for stack addressing. With Java as an 

example, we categorized Java bytecodes into seven classes based on the number of 

stack operands that they pop and push. An example classification follows: 

 

1. No stack movement needed: nop, iinc, goto, ret … 

2. 1 Pop needed: pop, istore, ifeq … 

3. 1 Push needed: iload, sipush, ldc, icoust_0 … 

4. 1 Pop 1 Push needed: ineg, arraylength, i2f, … 

5. 2 Pop 1 Push needed: iadd, iaload, fmul, … 

6. 3 Pop needed: iastore, fastore, lastore, … 

7. Others 

 

With this classification, the stack movement on OTS will follow a map table which is 

stored in a ROM for fast lookup. With OTS, the dependency information is built, and 

stored in TMU for later use. After the results returned from the execution engine, the 

corresponding tag numbers will be directly sent to TMU as direct forwarding in 

superscalar processors. The lookup and matching of tags are similar as in superscalar 

processors.     
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4.6 Stack Folding with Instruction Tagging     
 
 
The instruction tagging scheme can collaborate with stack folding to further reduce data 

movements and remove data dependence between stack instructions in stack processors. 

In this section, we will use Java processor as example to present how to combine both 

of two functions to increase performance. Subsequently, we first discuss stack folding 

techniques in Java processors.   

 

Java processors can entirely bypass the need for dynamic translation and reestablish a 

simple, direct execution model for Java code. But, there is a need to overcome the 

limitations of the stack architecture for accessing operands.  Stack folding [28,39,48] is 

such a technique to coalesce multiple stack based instructions to a single RISC-style 

instruction with optimized data accessing. In the following, we will review some 

previous research work related to stack folding, and propose a new stack folding 

scheme which exploits instruction tagging scheme.     

 

4.6.1 Introduction to Instruction Folding 
 
The performance of a stack machine has been limited by the true data dependency. This 

required a performance enhancement mechanism. Such a mechanism called instruction 

folding was first proposed and implemented by Sun Microsystems in their PicoJava [28] 

processor. It has been seen that this instruction folding mechanism was able to fold up 

to 60% of the instructions.  
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In PicoJava, stack cache provides a powerful solution to the classic problem of access 

inefficiency in stack machines. Since the stack cache is implemented in a full random 

access register file, the PicoJava pipeline has immediate access not merely to the top 

two entries on the stack, but to all 64 entries held in the stack cache.  This leads the way 

to the instruction folding technique. 

 

As we know, in stack machine an add operation will need 4 stack instructions 

(ILOAD_1, ILOAD_2, IADD, ISTORE_3).  The two values to be added are likely both 

already in the stack cache (in the parameters and local variables area of the current 

method). The problem is that neither happens to be at top of stack. Consequently, the 

execution unit must spend a cycle moving each operand to the top of stack. Likewise, 

the local store instruction does not move the returned sum out of the stack, but merely 

relocates it from the top back into the local variables section of the current method 

frame. As long as all of these local movements happen within the top 64 elements of the 

stack—true in an overwhelming majority of the cases for local motion in the stack—

they will occur inside the stack cache. Thus it is possible to combine (or fold) these 

several serial operations together into a single RISC-style add operation. 

 
 
In general, PicoJava operates on bytecode instructions based on a set of grouping rules, 

it scans the incoming bytecode streams looking for sequences of instructions that can be 

folded together (combined into a single operation). These sequences can consist of up to 
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four bytecode instructions. They are moves of local data to top of stack which are 

immediately followed by compute instructions that consume the data just moved, and 

computing operations which are immediately followed by local stores of the result just 

computed. 

 

 
When the stack folding core finds such a sequence of instructions, it synthesizes a 

register-based RISC-style operation, by taking the operation to be performed from the 

compute instruction, the source of the operands from the local variable loads, and the 

destination of the result from the local variable store.  We can use another example to 

demonstrate the advantage of folding technology. 

 
 

In Java Processor, some local variables (LVs) are stored in some register files. The two 

mathematical expression, c=a-b, and f=d+e, are translated into Java bytecode sequence 

shown in Table 4.2.  Although there is no true data dependence between the two 

statements, the second expression can not be evaluated concurrent with or preceding the 

first one as both expressions are using the stack as an intermediate target. Operations 

have to be issued and executed in the sequence, this results in eight clock cycles to these 

two expressions. 
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Table 4.3.  Bytecode folding example 
  

 Issuing 
Sequence 

Without 
Folding 

With Folding 

1 iload_2 iload_2, iload_3,  isub, istore_1 
2 iload_3 iload  5, iload 6,   iadd, istore 4 
3 Isub  
4 istore_1  
5 iload 5  
6 iload 6  
7 Iadd  
8 istore 4  

 
    

 

In Table 4.3, Java bytecodes (groups) are issued in sequence starting with the topmost 

line.  Assume both unfolded and folded instructions take one cycle to execute. The 

middle column shows bytecodes issued one at a time (without folding) consuming a 

total of eight cycles. The last column shows bytecode sequence issued in groups 

consuming two cycles.  The third column shows how the folding could reduce the 

number of clock cycles.  With folding technology, the two expressions take only two 

cycles provided that sufficient resources (i.e. load/store units, data paths, etc) are 

available. 

 

Even if instruction-folding is done to exploit the random access provided by the stack 

cache and to reduce movement of data for the most common groups of instructions,  

unfortunately, the permissible groups of instructions that can be folded in this manner 

are limited in number and scope. In addition, not all redundant data moves are avoided. 

Although redundant moves between instructions in a group are avoided, there is still 
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forwarding of data through the registers in the stack cache between groups.  To solve 

this problem, some researchers still proposed the better algorithm to improve this 

technology, and a higher percentage of the folding rate is obtained.  In the following, we 

will describe some other instruction folding schemes.  

 

4.6.2 Stack Folding Review   
 
JVM [104] is a Java run-time execution environment running on stack machine 

architecture.  In a direct JVM hardware stack implementation, stack access consumes 

extra clock cycles. Furthermore, individual operations executing on the operand stack 

one at a time causes data dependency that limits ILP.  After instruction folding, 

multiple-stack-based instructions can be coalesced to a single RISC-style instruction. 

This not only eliminates some of the data dependency but also allows multiple- 

instruction issuing and execution.  

 

Although instruction folding is first proposed by Sun, several new methods are 

proposed. Typically, the major stack folding techniques can be categorized as: pattern 

matching [28], POC-based (Producer-Operator-Consumer) [53] which includes original 

POC [53], advanced POC [4], and EPOC (enhanced POC) [50], and Operand 

Extraction-based (OPE) method [70].  We will describe them accordingly. 
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Pattern Matching   

Table 4.4.  Instruction types in picoJava 
 

Types  Descriptions 

LV A local variable load or load from global register or push 
constant  

OP An operation that uses the top two entries of stack and that 
produces a one-word result  

BG2 An operation that uses the top two entries of stack and 
breaks the group 

BG1 An operation that uses only the topmost entry of stack and 
breaks the group 

MEM A local variable store, global register store, and memory 
load 

NF A non-foldable instruction  
 

PicoJava uses pattern matching to implement instruction folding, which can reduce 60% 

stack operations [28]. In this technique, bytecodes are categorized into 6 types (Table 

4.4). Folding logic is added to the decoder to detect the patterns of foldable instruction 

group. Although there are innumerable folding patterns, only those which occur with 

high frequency are checked for. Pattern detection is as follows. Since up to four 

instructions are decoded in the decoder, first only those foldable patterns consisting of 

four instructions are checked for. If no pattern is detected, check for 3-instruction 

patterns. If no 3-instruction pattern is detected in this time, check for 2-instruction 

patterns. If a pattern is detected, the instructions are folded together and one RISC-style 

instruction is constructed for that pattern. 
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POC-based Scheme 

The basic POC scheme is a pattern matching–based scheme too, but it categorizes 

bytecode according to their role in stack folding into: Producer, Consumer and 

Operator [48].   In this scheme, stack operations like const/load/store are the target 

bytecode instructions for folding. According to the definition of stack operations folding, 

the off-chip memory load/store operations cannot be folded, because they will occupy 

the execution unit for memory access.  

Table 4.5. Instruction types in POC method 
  

Roles in 
Folding 

Types Descriptions 

Producer L load from LV/Push Constant 
Consumer S Store to LV 

OE Execution Unit Instructions 
OB Branch/Control Transfer 

 
Operator 

OC Complex/Micro-ROM 
 

 

The Producer instructions push data from on-chip local variable memory or constant 

registers onto operand stack in a single cycle. The Consumer instructions pop data from 

operand stack and store the data into on-chip local variable memory. The Operator 

instructions pop data from operand stack, execute some kind of operation, then push the 

result back to operand stack. The instruction folding occurs when some Producer 

instructions produce  the data and one or more Consumer instruction consume it, or 

some Producer instructions produce the data and the data is processed by one Operator 
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instruction, then the result is written back to stack or consumed by one or more 

Consumer instructions. 

 

POC scheme divides bytecodes as 5 types (Table 4.5), and gives 2-folable pattern 5 

types – LS, LOE, LOB,  LOC, OES,  3-foldable pattern 4 types – LLOE, LLOB, LLOC, 

LOES, and 4-foldable patterns one-type -- LLOES. Like in picoJava, POC employs 

foldable pattern match to implement instruction folding, and it can reduce up to 84% of 

all stack operations [48].  In this scheme, simulation results reveal that the 3-foldable 

strategy has the best cost/performance ratio if a size-byte decoder width is provided.  

 

Advanced POC (APOC) Scheme 

 

APOC [4] scheme is a new POC model by extending POC model. It separates O type 

instructions in POC scheme into another two types: Producible Operator (Op) and 

Consumable Operator (Oc). Results of bytecode operations always become either 

producible or consumable types. The APOC model instruction types and their 

distributions in various applications are shown in Table 4.6.  The APOC still uses 

pattern matching to implement stack folding. All the patterns detected and their 

occurrences are shown in Table 4.7. 
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Table 4.6. Advanced POC instruction types 
 

Types Definitions Examples % 
P Producers  iconst_1, iload_3 59.5% 
Op Producible Operators iadd,fcmpl 22.0% 
Oc Consumable 

Operators 
if_icmpeq, if_acmpne 4.1% 

C Consumers iastore,istore_0 14.4% 
 

Table 4.7. Instruction folding patterns and occurrences in APOC 
 

Patterns Percentage Patterns Percentage 
P-C 31.7% P-P-OP-OC 0.6% 
P-Op-C 1.0% P-P-P-C 10.7% 
P-P-C 3.6% P-P-P-OP-C 8.4% 
P-P-OC 18.9% P-P-P-OP-OC 2.6% 
P-OP-Op -C 0.6% P-OP-P-OP-C 0.1% 
P-P-OP-C 21.2% P-P-P-P-OP-C 0.5% 

 
 

In APOC scheme, 87% to 93% of foldable instructions are found across the benchmark 

application programs [4]. Unlike the traditional models, by detecting and folding a 

broken sequence, the APOC model-based folder is able to find more foldable 

instructions than the traditional folding mechanisms. In the proposed hardware 

implementation of APOC, the instruction decoding logic and the fold-ability checker 

are mapped to generic gates, which can decode up to six contiguous bytecode 

instructions to determine the fold-ability.  
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Enhanced POC (EPOC) Scheme 

Later the same group of researchers enhances their previous POC model to propose an 

enhanced POC method [50], which adds a small-sized stack reorder buffer (SROB) to 

help folding generation.  Unlike picoJava, this method does not depend on pattern 

match. In theory, it can complete almost all folding generation with small-sized SROB, 

and work in in-order instruction issue mode.    

 

Operand Extraction-based (OPE) Scheme  

 

Table 4.8. Instruction types in OPE algorithm 
 

Types Symbol Description 
Producer P loads stack with a Constant or LV 
Consumer C stores stack top into a LV 
Operator O an ALU instruction 
Independent I increases a LV with a Constant  
Destroyer D pops stack entries 
Duplicator U duplicate stack entries 
Swapper W swaps 2 stack entries 
Load L loads/allocate an object element 
Store S stores an element in an object 
Branch B Branches 
Complex M a complex operations 

 

  

The operand-extraction-based (OPE) method was proposed in [70]. In this scheme, 

bytecodes are categorized into 11 types by their functions (seen Table 4.8) and a finite-

state automaton (FSA) is provided to help instruction folding. This method is 

characterized by dynamic allocating some address on LV stack to store temporary 

variables, which are intermediate variables generated in folding process as register 
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renaming process. In its implementation model, bytecode instructions can be issued out-

of-order.  

 

4.7 Implementing Tag-based Stack Folding  
 

In the thesis we proposed an instruction folding scheme which exploits instruction 

tagging mechanism, named tag-POC. It can fold almost all the possible combinations in 

any Java bytecode sequences without defining instruction folding patterns as EPOC 

[50].  The tag-POC scheme is designed to fold continuous or discontinuous bytecode 

sequences with a special hardware – Operand Tag Stack (OTS) support. OTS can store 

all the tag number of bytecode instructions that have not been folded.     

 

To describe our scheme clearly, we need to look at the mechanism of stack instruction 

tagging. When an instruction is decoded, a tag number is assigned to it at the same time. 

This tag number corresponds to the address of a tag entry.  This tag entry will store the 

information of the instruction. Additionally, as described previously, an Operand Tag 

Stack (OTS) is used to simulate the stack. With OTS, the instruction dependency 

information is able to be acquired. The following example (Table 4.9) shows the 

process of generating instruction dependency information in decoding stage. 

 

The basic concept of tag-POC instruction folding model can be observed from above 

instruction decoding. Here, we give a simplified version of POC types.  The Producer 

instructions push data from local variable onto operand stack. The Consumer 
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instructions pop data from operand stack. The Operator instructions pop data from 

operand stack, execute some kind of operation, then push the result back to operand 

stack.  In the tag-POC folding scheme, we categorize bytecode instructions as follows 

(seen in Table 4.10).  

Table 4.9.  A sample for dependence information generation 
 

Step 
 

Tag No. Bytecode Dependency 
Tag No. 

POC 
type 

Operand Tag Stack 
status 

0 T0 iload_2  P {T0 } 
1 T1 iconst_2  P {T0, T1} 
2 T2 iload 5  P {T0,T1,T2} 
3 T3 iadd T1, T2 O {T0,T3} 
4 T4 imul T0, T3 C {T4 } 
5 T5 istore 6 T4 P {  } 

 
 

Table 4.10.  Instruction type for POC folding model 
 

Roles in  
Folding 

Type Descriptions sample 
Instructions 

Percentage  
(%) 

Producer P Load from LV/push constant  
to operand stack 

iconst_1, 
iload_2 

41.3 

Consumer C pops the value from operand  
stack and stores to LV 

istore_0 7.0 

OE executed in execution unit  iadd,  imul 33.4 
OB Branch/Control Transfer if_icmp, goto 7.9 
OR executed in micro-ROM  Ireturn 8.3 

 
 
Operator 

OM Miscellaneous stack 
operations 

dup, swap 2.1 

 

 

In order to fold all foldable bytecodes, the tag-POC scheme considers not only POC 

types of the bytecode stream, but also together with the produced intermediate items.  If 

a bytecode sequence is ILAOD_2, ICONST_2, ILOAD_5, IADD, IMUL, ISTORE_6, 
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the corresponding POC types are P, P, P, O, O, and C.  The sequence of P, P, and O are 

folded and the execution result (named IP) will be stored in the corresponding tagging 

register entry – T3. Then folding unit finds that P, IP, O, and C can be folded together.  

Figure 4.2 shows the process. 

 

Figure 4.2.  A sample of tag-POC instruction folding model 
 
 

 

 

 

 

To observe above folding process, OTS can be viewed as an Abstract Stack Machine, 

which possesses the following features:  

1. Based on POC categorization, only three types exists in OTS. 

2. Only P or O type bytecodes can produce tag on the stack and Only O or C 

type bytecodes can consume tags from the stack. 

 

Since the tag number is corresponding to the address of a tag entry, after instruction 

folding to build a RISC-like instruction becomes easy. With the OTS, a basic stack 

behavior is simulated and dependencies among instructions are identified.   The 

processing of the tag-POC folding model is shown in Figure 4.3.  

 

 

Bytecode stream:       P,   P, P, O,   O, C 
Step1:        P, {P, P, O}, O, C 
Step2:        {P,     IP,        O, C} 
Finish.  
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Figure 4.3.  The process of tag-POC instruction folding scheme 
 

 

  
 

 

 

Because the bytecode data dependence analysis is done before the stack folding, in the 

tag-POC model, we will employ it.  We create six stack folding templates including PO, 

PPO, PPPO, POC, PPOC, and PC. (OC type is often combined into PC type.)   

Whenever the folding check logic finds an O type bytecode, it will first create a 

template, such as PO, PPO, PPPO, according to its instruction characteristics, then 

check next bytecode. If it is a C type instruction, it can be further folded. Otherwise, the 

Start tag-POC Folding Check

Next POC= P ? 

POC Type= O ? 
Create a folding template, 

fold P into C 

Creating a folding template O1, 
fold P into O1

Next POC= C ? 

Fold C into O1

End tag-POC Folding Check

No 

Yes 

No 

Yes 
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current folding check process ends and starts next folding check.  With stack folding, 

the tag-based RISC-like instructions are generated accordingly.  

 

It is worth noting that we subdivided the Operator as OE, OB, OR, and OM   in Table 4.9. 

The OE, OB, OR instructions need to use execution unit, branch instructions and micro-

ROM instruction. But the OM instructions need special processing.  To execute them, 

(such as SWAP, DUP, DUP2, POP, POP2, etc), we only need to change status of 

Operand Tag Stack (OTS). For example, POP instruction only causes top element of the 

stack is removed, DUP instruction will duplicate the top element in the stack. It will not 

join the instruction folding process, and not change status of virtual registers. What’s 

more, OR instructions like INVOKE (INVOKESPECIAL, INVOKESTATIC, 

INVOKEVIRTUAL) instructions are complex operation instructions, which need to be 

issued individually.  

 

Compared with the previous methods, our proposed algorithm has the following 

advantages.  First it combines POC [50] and OPE [70] method. The POC issues 

bytecodes in-order and using simple hardware without ILP support while OPE method 

can issue bytecodes out-of-order but need a FSA structure to implement instruction 

folding. Our method is different from POC in that it has different instruction 

categorization, and that stack management instructions are specially processed, which 

only affect Operand Tag Stack (OTS) and some fields of tag register entries. Since tag-

POC scheme can fold bytecode instructions across stack management instructions, the 

better folding efficiency and performance improvement are obtained. In addition, our 
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method is different from OPE in terms of register renaming.  To issue instruction out-

of-order, OPE needed to add temporary variables to local variable (LV) area, then 

renamed them. This will increase hardware complexity.   

 

4.8 Performance of Tag-based POC Scheme 

 

4.8.1 Experiments Setup  
 
We developed a trace-driven simulator to analyze and evaluate performance of our Java 

ILP processor. Trace-driven simulation uses a predetermined instruction sequence, and 

the instruction trace to evaluate microprocessor performance.  

 

Table 4.11.  Description of the benchmark programs 
 

Benchmark Description count (x106)
jess A popular NASA’s CLIPS expert system shell    9  

db Data management software from IBM    2  
javac Sun JDK Java compiler 1.0.2    8  

mpegaudio software decompress an MPEG layer 3 audio 
stream  

116  

jack A Java parser generator from Sun   90  
Compress A popular LZW compression program   24 

mtrt 
 

A program that ray traces an image from Sun, 
we run in single thread 

  70  
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In our case, instruction trace is the sequence obtained in Kaffe JVM, since Java 

programs are executed on JVM.  A commonly adopted method to get a bytecode trace 

of a Java class is to directly run Java program on JVM, and then modify JVM to collect 

Java bytecodes.  In the experiments, by modifying kaffe [102], and running Java 

benchmark programs in interpreter mode, we get the runtime bytecode traces of all Java 

programs.  These traces will be used as inputs in our simulator. 

 

In the thesis, we run the benchmark programs from the SpecJVM98 suite [93] to 

evaluate the proposed stack folding scheme. We use the run-time traces collected from 

these benchmarks as our simulation input data. There are three input data set scales for 

the SpecJVM98 benchmarks: s1, s10, and s100. Here when using s1 data set, the 

benchmark programs will execute one time run. In this study, we run these benchmarks 

using s1 data set.  Table 4.11 shows the benchmarks used.   

 

4.8.2 Performance Results 
 
 
The following simulation results are gathered from the trace-driven simulator when 

assuming the decoding rate at four bytecode instructions as designed in picoJava-II[88] 

and OTS as a 16-entry register file. In the simulation experiments, we did statistic 

analysis for the total 6 foldable bytecode instruction templates and calculate their 

distributions in total foldable instruction types as shown in Figure 4.4.   The most 

occurrences are the PO and PPO templates, and they account up to 80% of the foldable 

instruction groups. The second most occurrences are the PC, PPPO templates, the least 



Chapter 4. Realizing a TAMT in Stack Machines  78

of them are the POC and PPOC templates. The distributions conform to the distribution 

of POC shown in [50].  It worth to notify that the distributions is dynamically generated, 

those foldable groups with intermediate generated results, such as OO patterns, are 

count to PO pattern. Because first O type instruction must finish the execution and only 

after its result is ready, the following foldable instruction group -- PO can be issued.       

 
 

Figure 4.4.  Percentage of different foldable templates occurred in benchmarks 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Comp db jack javac jess mpegau mtrt Average

P
er

ce
nt

ag
e 

of
 o

cc
ur

re
nc

e 
fo

r d
iff

er
en

t f
ol

da
bl

e 
in

st
ru

ct
io

n 
te

m
pl

at
es

PC PO PPO PPPO POC PPOC

 



Chapter 4. Realizing a TAMT in Stack Machines  79

 
The IIPC (Issued instruction per cycle) performance using different stack folding 

methods for a single-issued pipelined Java processor is shown in Figure 4.5. The IIPC 

performance with no stack folding, EPOC, and Tag-POC scheme are illustrated.  Here 

we show the IIPC results of EPOC collected from [50] as comparison. The average 

number of IIPC in tag-based processor architecture can achieve as high as 1.745 which 

is slightly higher than EPOC-max which is reported as 1.74 [50]. This reveals that the 

tag-POC folding model can achieve the highest folding efficiency as compared to 

previous POC-based folding models.  

 

Figure 4.5.  IIPC performance for stack folding 
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Chapter 5  

Exploiting Tag-based Abstract Machine 
Translator to Implement a Java ILP 
Processor 
 
 
 
 

5.1 Overview 
 
Chapter 4 introduced a stack instruction tagging mechanism, discussed how to 

implement a tag-based abstract machine translator (TAMT) for stack processors, 

proposed a tag-POC stack folding method.  In this Chapter, we will use TAMT and tag-

POC proposed in Chapter 4 to implement a Java ILP processor, and investigate some 

relevant issues.   

 
 

5.2 The Proposed Java ILP Processor  
 
In the Java ILP processor, the real TAMT we used is organized by Tagging Unit (TU), 

Tag Matching Unit (TMU) and Operand Tag Stack (OTS).  The OTS simulates the 

behavior of a real abstract stack machine and implements the execution of stack 

machine with tags. With instruction tagging, data dependences among the tagged 
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instructions are identified by tags. TU and TMU are responsible for controlling the 

instruction tagging, matching tags and updating the status of tags.  When a bytecode 

instruction enters the decoding unit, TU assigns a tag to it. After the instruction 

completes its execution, the related tags are released to the free tag pool by TU, where 

the tags can be reused.  The schematic block diagram is shown in Figure 5.1. 

 

The Java ILP processor we created is a pipelined processor with a six-stage, including 

instruction-fetching, decoding, stack folding, issue, execute and commit stages. Because 

instruction folding is on the critical path of the pipeline [88], one individually decoding 

stage for instruction folding is created in the pipeline.  With stack instruction tagging 

and folding, bytecode instructions are converted to the tagged register-based instruction 

formats.  When the operands of a tagged instruction are ready, it is added to the ready 

instruction queue for scheduling. 

Figure 5.1.  The proposed Java ILP processor architecture 
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In order to achieve high performance with reduced hardware complexity, a VLIW 

execution engine is employed in our processor. Multiple tagged instructions are bundled 

out-of-order depending on data availability to form VLIW-like instruction words. The 

instruction bundles are put in the issue buffer and issued by the Scheduler in-order. 

Although the instruction bundles are issued in-order, at the time they are bundled, they 

may be not in program order. Hence, our processor worked in multiple-issue semi in-

order style. 

 

The Stack Cache as a register file is provided [28] in the processor to eliminate 

inefficiencies typically associated with stack-based instruction processing, and it stores 

the temporary results in the instruction execution as picoJava processor [28].  Here we 

assume RF has enough read-ports (RP), e.g. as a four-issue machine, RF has at least 8 

RPs. Write-ports (WP) are also needed to receive execution results. The hardware 

mapping of tags to operands is on the critical path of the pipeline, so in our design RF 

will immediately signal the TMU when a register value becomes available. In an 

alternative design, the TMU only confirms the readiness of an operand, and the delivery 

of values occur directly between the RF and the execution engine, while freed tags are 

signaled directly from the RF to the TU. This may simplify the scheduling and issue 

logic.  In the following, we will discuss the different functions for each pipeline stage 

and its design issues.  
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5.2.1 Instruction Fetch and Decode   
 
The Java bytecode instructions are fetched from a method cache. The bytecode fetch 

logic controls to fetch the instruction from the same bytecode method according to the 

program counter values. After fetching all the instructions of a basic block, fetch logic 

selects the next basic block as predicted by the branch predictor. With Operand Tag 

Stack (OTS) support, the Decoding Unit (DU) including TU and TMU are together to 

handle both instruction tagging and folding. When one bytecode is decoded, an entry in 

TMU is allocated, and the tag number of the entry is assigned to the bytecode. The 

policy of tag allocation is first come first service (FCFS).   

 

The entry in TMU is to hold the control-related information, which contains the left / 

right operand tag number, the valid bit, the status bit and the address of a physical 

register in Stack Cache. A mapping table is used to manage the mapping from tags to 

registers. The Register File (RF) is a global temporary storage, responsible for storing 

stack operands and local variables to speed up memory access. The organization of 

TMU is similar to that of a reorder buffer in superscalar processor [26], but TMU holds 

more functions than a reorder buffer does. Whenever a result is produced in RF, the 

corresponding tag number is simultaneously sent to TMU to update the instruction 

status and wake up the waiting consumer instructions.  

 

The operands for the instructions may be loaded from stack cache (register file) or the 

data cache. LV variables and intermediate results are both allocated on the register file. 
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The stack intermediate results generated by ALU instructions can be directly written to 

the register file in parallel. The memory load operation, if it does not exist in load buffer, 

must load from the data cache. 

 

 

5.2.2 Instruction Issue and Schedule    
 
In picoJava-II, the operand stack and local variable access are distinguished as stack 

disambiguation [88] to enhance the parallel execution. Stack disambiguation can 

logically differentiate different access types. This optimization will increase the 

performance, and an additional bit along with each instruction is added in picoJava-II to 

mark if it is an access to the operand stack or the LV area [88].  The proposed processor 

also distinguishes the operand stack and LV access with the same method as in 

picoJava-II.  

 
 
 In our processor, LV variables are resident on the stack cache too. When a folded 

instruction finishes execution, its result is first written back to the physical register the 

“destined” tag points to. Within a basic block, only the last write, e.g. istore_x, updates 

the corresponding LV variable if there are multiple writes to the same LV. This is 

similar to the register renaming and resolves the data conflict in case of multiple-writes 

to the same LV variable. With instruction tagging, WAR (write after read) and WAW 

(write after write) data dependences are removed, because both operations will access 

different registers. Thus only the real data dependence – read after write (RAW) needs 



Chapter 5. Exploiting TAMT to implement a Java ILP Processor 85

to be considered. When a RAW conflict occurs, our issue logic may guarantee the later 

instruction containing the LV read operation cannot be issued until the previous 

instruction containing the write completes.  

 

The memory access instructions, such as iastore, iaload etc, may issue out-of-order. 

Memory dependences between instructions are detected at run-time by the memory-

hazard-detection logic, which consists of a load buffer, a store buffer and address 

comparator circuits [13].  Store addresses are buffered in an address queue (FIFO). The 

store buffer can be used to make sure that operations submitted to the memory hierarchy 

do not violate hazard conditions. A store buffer contains addresses of all pending store 

operations. Before an operation (either a load or store) is issued to the memory, the 

store buffer is checked to see if there is a pending store to the same address. New load 

addresses are checked with waiting store addresses. If there is a match, the load 

operation must wait for the store it matches.  

5.2.3 Instruction Execution and Commit 
 
The ready tagged instructions are first dynamically packed into VLIW-like wide words, 

put into an instruction issue buffer, then issued to the functional units on VLIW engine 

through a Quasi-crossbar [63]. The bundled instructions are issued in strict locked-step 

as in VLIW machines.   

 

When a bytecode instruction completes, the result will be written back to register file or 

load/store-buffer if it is a memory access instruction, and the status of the related tags 
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are needed to be updated. For the memory access instructions, once the operation has 

been submitted to the memory hierarchy, the operation may hit or miss in the data cache. 

In the case of a data cache miss for a load instruction, it must be made to wait until the 

data is loaded from the external memory into the data cache.   

 

When the status updating of a tag is completed, we say the tag is “committed” and can 

be returned to the free tag pool for later uses. The live period of a tag is from the time 

that the tag is assigned to an instruction to the time that the instruction is finished 

execution. When a tag is no longer used, it will be removed and released for later 

retrieval, unless it is retained. If retained, the tag remains live till it is explicitly freed.   

 

5.2.4 Branch Prediction  
 
Branch prediction is simply handled using tags. In the event of an incorrect prediction, 

the stack must be restored to the state just before the branch. This can be achieved by 

placing a branch marker on the stack, and whenever the stack is popped below the 

marker, the items popped off are saved on a buffer stack. If the prediction is confirmed, 

the marker is removed from the stack if no saving has occurred, and any items in the 

buffer stack above the marker may be erased. If the prediction is incorrect, the stack 

content above the marker is erased in case of no saving, and any items saved on the 

buffer stack are returned to the tag stack. If prediction within prediction occurs, the 

second branch is handled similarly. If the first prediction is incorrect, only items saved 

for the first prediction are brought back to the execution stack, since both the True and 
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False paths of the second prediction are incorrect. The incorrectly dispatched 

instructions need not be purged from the pipelines; instead, their tags are marked for 

purging so that the instructions’ results will not be stored into the registers and have no 

impact on subsequent execution. 

 

 

5.3 Relevant Issues  

5.3.1 Tag Retention Scheme 
 
 
In the proposed Java processor, a tag entry consists of many fields, such as tag number, 

available flags, destination tag, operation field, Left operand, Right operand, and value, 

etc.  The information of these fields is used to manage tags.  In general, Java objects are 

stored in data cache. To access them, the processor needs to load them from data cache 

to register file or stack cache. This will increase overheads on system bus. In case of 

cache miss, the load operation will cause processor delay.  If we create a special 

structure, such as small register file to hold those high-frequency accessed variables, 

this will reduce the processor delay.  In our implementation, we allocated some entries 

in TMU to hold them. Here we introduced a tag retention scheme to achieve this target. 

In the following we describe the tag retention scheme.   

 
The solution to the repeatedly needed variable problem mentioned is to retain reused 

values by retaining their tags instead of freeing a tag after use. Suppose we want to 

compute: y=(((ax+b)x+c)x+d)x+e. 
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Here, the value of x is repeatedly needed. The compiler inserts, after the Load x 

instruction, a Retain instruction requesting that tag for the loaded value be retained as 

Retained Tag 1, and the tag allocated by the execution unit to represent the value, which 

is placed on the stack after the load instruction has been issued, and be copied to a free 

entry of the Retained Tags (RT) store.  The compiler keeps track of which RT entry is 

being used for which variable. A retained tag on the stack is picked up by the consumer 

instruction in the usual way and the loaded value will be delivered to the consumer as 

usual. However, later uses of the value then require the compiler to replace the Load x 

instruction by the ReUseTag instruction with compiler providing the correct RT number 

for X, which would put the previously allocated tag to be read from the RT store and 

placed on the tag stack. The consumer instruction will pick up the tag and then retrieve 

the value from the physical register depending on whether we are using virtual or real 

registers. In our design, each register will have a Retain flag (the flag is also used in 

branch prediction since the value needs to be retained till prediction is confirmed). The 

Retain flag will be set when a Retain instruction is executed on a newly allocated tag 

which has just been placed on the top of the stack; and twill be cleared when a FreeTag 

instruction is executed while the tag is returned to the free tag pool and deleted from the 

RT store.  

 

The cooperation of compiler and hardware to implement retainable tag will improve 

system’s performance, since the data locality allows for us to store data locally to 
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reduce data miss and putting them on register will reduce latency delay due to memory 

access.  When we combine the tag retention with the management of LV variables, 

algorithms similar to compiler register allocation methods will be used to schedule 

retainable tags and reduce register spills. That is, in our system registers are allocated 

dynamically by the hardware tagging unit, but RT is managed by the compiler. 

 
 
To implement tag retention scheme, we can modify Java compiler by adding another 

three new instructions. If applying this method, another hardware resource – Retainable 

Tag Stack (RTS) will be needed. These will increase the difficulty of implementation.  

Currently we did not want to involve the Java compiler design, so we implement the 

scheme with a simple method. We allocated some number of tag entries as retainable 

tag, which can be retained to hold retainable variables. However, it is needed to decide 

how many numbers of entries can be retained.  In next chapter, we will calculate this 

number through experiments.  

 

To make it simple, we add a field of retained status in tag entry. In the proposed 

processor architecture, the result of a producer or operator instruction is kept in the tag 

entry till it is consumed. If the result is consumed multiple times, the retained flag of the 

producer has to be set until the result is not needed anymore. This process is guaranteed 

by the syntax of stack machine. A consumer instruction will remove its operands from 

TMU and release them if no retained flag is set when it finishes execution. If a retained 

flag is set, its operands will be kept alive.  
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To implement tag retention scheme, we allocated some entries from TMU to hold 

retainable tags. Here we should set a maximum number of tags to hold retainable tags. 

Most of retainable variables are LV variables. When the index of LV_load instruction is 

less than the maximum number, it can be obtained from the retainable tag entries, 

otherwise, the load operation must load data from cache. This will incur one cycle of 

delay.  And in later case, stack folding will detect it, and the folded RISC-like 

instruction will also be delayed one cycle until its dependent LV load is ready.  The 

performance effects will be investigated in Chapter 6.   

 

5.3.2 Memory Load-Delay in VLIW In-Order Scheduling 
 
 
In superscalar processors, as we all know, though a program has instructions producing 

data in registers and consuming data from registers, during actual execution this 

producer-consumer relation is achieved through the common data bus (CDB) with 

instructions executing earlier or later than their order in the program depending on when 

the data become available. In particular, a cache miss would cause a delay in the 

completion of a load instruction, and consequent delays in instructions that consume the 

loaded value. The common data bus allows the buffering of such delayed instructions in 

the reservations stations so that the program executes correctly despite such 

unpredictable delays, but at the cost of higher hardware complexity as well as runtime 

overhead. 
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In VLIW processors, the work done by the common data bus at runtime is pushed to the 

compilation stage. That is, instructions are moved in the program to the correct 

positions such that upon execution instruction grouped, the data are immediately 

available in their source registers. Further, instructions are grouped into parallel 

bundles, each of which may consist of three instructions like in Itanium/EPIC processor, 

and all the instructions within the same bundle are guaranteed to be executable in 

parallel. The compiler tries to fill the slots of a bundle with instructions that are 

independent of each other, and with each received bundle, the execution unit simply 

pushes each instruction out to one of the execution pipelines. Since each pipeline might 

specialize in executing a particular type of instructions, there may be some restrictions 

on what instruction can be used to fill which slot of a bundle. This is reflected in the 

format of the bundle, sometimes known as a very long instruction word. (In some 

machines, a parallel bundle may consist of more than one VLIW instruction, which 

have flags set to indicate they belong to the same bundle i.e. in EPIC machine.) The 

detailed discussion on memory delay problem in the proposed Java ILP processor will 

be included in Chapter 8.  

 

5.3.3 Speculation-Support  
 
To exploit more potential ILP, to overcome the limitation of control dependence is 

needed, which can be done by speculating on the outcome of branches and executing 

program as if we guess correctly. Speculation mechanism extends over branch 
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prediction with dynamic scheduling. But at the same time, we need to handle the 

situation where the speculation is incorrect.    

 

The hardware-based speculation is widely implemented in a number of processors, for 

example, PowerPC series, MIPS R10000 [43], Intel Pentium II/III/4 [24,51], Alpha 

21264 [81], and AMD K5/K6/Athlon, etc. The implementation of speculation execution 

in these processors is based on Tomasulo [85] algorithm.   

 

Commonly to speculative execution is to allow instructions to execute out of order but 

to force them  to commit in order and to prevent other irrevocable action (such as 

register file updating or taking an exception) until an instruction commits. In 

speculative processors, the pipeline stage of completing execution is separated from 

instruction commit.  And a reorder buffer (ROB) is often used to pass results among 

instructions that may be speculated.  The ROB holds the result of an instruction during 

the period from the time the operation associated with the instruction completes to the 

time the instruction commits. In Tomasulo algorithm without speculation, once an 

instruction writes its result, any subsequently issued instruction will find the result in 

the register file. With speculation, the register file is not updated when the instruction 

commits. Thus, the ROB provides operands in the interval between completion of 

instruction execution and instruction commit.  In commit stage, when a branch with 

incorrect prediction reaches in the ROB, it indicates that the speculation is wrong. The 

ROB must be flushed and the processor restart execution at the correct successor of the 
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branch. If the branch prediction is correct, the branch is finished. The commit phase is 

completed.  The more detailed discussion about speculation techniques can be referred 

to [64]. 

 

5.3.4 Speculation Implementation  
 

To further improve the performance, and exploit more potential ILP in the proposed 

Java ILP processor, we implemented speculative execution. We used a centralized 

ROB-based mechanism. In the processor, the TMU is used to store instructions and 

monitor the updates. In order to correctly recover and flush the speculated instructions, 

we add a structure, called speculation tag buffer (STB), in TMU to record tag sequence 

of the speculated instructions. The structure may be a small amount of register file, and 

each entry is only one byte to hold a tag number.  

 

When a branch instruction is predicted, its successor instructions are speculated fetched, 

and the corresponding tags are allocated from the tag pool in sequence order. These 

instructions are set a flag at each entry to indicate that they are speculated, and their 

intermediate results will be stored in corresponding register file.  Until the branch 

instruction is confirmed, their speculated flags are reset, and they can be committed 

according to STB.  If the branch prediction is wrong, those speculated tag entries in 

TMU will be flushed according to STB, the processor will restart from the correct 

instruction. Because the tags stored in STB followed in program order and CPU 
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commits speculated instructions in order, the commit process can guarantee the 

correctness of program execution. To recover from the wrong speculation, Operand Tag 

Stack (OTS) also needed to recover.  When a branch instruction is encountered, the 

status of OTS will be stored in memory, which is the simplest way. If a recovery is 

needed, just copy the old OTS status from the memory, and restart tag execution based 

on the old OTS status.                

 

In order to reduce the case of exception recovery, we limited the memory load 

operations cannot issue until its previous branch is confirmed. This design can reduce 

complex cache-miss induced memory exceptions.  
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Chapter 6   

Performance Evaluation  
 
 

We have done a simulation study on the proposed Java ILP processor architecture. The 

proposed Java ILP processor issues instructions in multi-issue semi-in-order style (as 

described in Chapter 5), so we called it TMSI processor. A trace-driven simulator was 

developed to model the TMSI processor’s pipeline architecture. The simulator accepts 

bytecode traces extracted from the execution of the benchmark programs on the 

modified open source Java VM interpreter Kaffe [102]. The bytecodes are scheduled 

and executed on the simulator cycle-by-cycle. The algorithm of bytecode instruction 

tagging and management follows the processor model. In this chapter, we will evaluate 

the performance of TMSI processor.   

 

6.1 Experimental Methodology 
 

6.1.1 Trace-driven Simulation 
 
Trace driven simulation is an important method of easily gathering performance 

statistics without becoming bogged down in the details of full simulation from an 

executable image [64]. Trace-driven simulation is efficient, because the simulator is 
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concerned only with the processor features that affect performance. To determine 

performance, the simulator simply models the functional units as elements which delay 

the operand values needed by some instructions and prevent simultaneous execution of 

some other instructions.  Trace-driven simulation uses a predetermined instruction 

sequence and the instruction execution trace [64] to evaluate microprocessor 

performance. We developed a trace-driven simulator to analyze and evaluate the 

performance of our TMSI processor.  

 

6.1.2 Java Bytecodes Trace Collection  
 
A commonly adopted method to get a bytecode trace of a Java class is to directly run 

Java program on JVM, and then modify JVM to acquire and collect Java bytecode.  

Two popular JVM implementations can be used in this study: the SUN JDK and Kaffe 

VM 1.0.7 [102]. Both of the JVM implementations support the JIT and interpreted 

mode.  Since the source code for the Kaffe VM compiler is available, we can instrument 

it to obtain the behavior of the class and then get the trace.  

 

In this study, by modifying Kaffe [102], and running Java benchmark programs in 

interpreter mode, we get the runtime bytecode traces of the SpecJVM98 benchmark 

programs.  These traces will be used as inputs to the trace-driven simulator. 
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6.1.3 Simulation Workloads 
 
In the thesis, we run the benchmark programs from the SpecJVM98 suite [93] and 

Linpack [52] to evaluate TMSI processor’s performance. We use the run-time traces 

collected from the benchmarks as our simulation input data. The SpecJVM98 

benchmark suite includes Db, Javac, Mtrt, Mpegaudio, Compress, Jess and Jack. Their 

description and trace sizes are similar as shown in Table 4.10 and as for Linpack 

program, it is a computing intensive application used in many benchmark test suite for 

testing computer’s performance.  In this study, we run these benchmarks using s1 data 

set, which denotes that the benchmark programs only run once on JVM and the Mtrt 

benchmark program is a single-thread version. 

 

These benchmarks do not include any graphic, networking or AWT, and therefore do 

not represent a whole spectrum of Java applications [88].  However, they do provide us 

with a starting point to evaluate the performance of the proposed Java processor 

architecture.   

 

6.1.4 Performance Evaluation and Measurement  
 
The performance evaluation of TMSI processor is done based on the experimented 

benchmark trace analysis. Here we introduce the speedup formula used to assess the 

performance gain. 
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The most indicative performance evaluation factor, the program execution time, is 

given by [ 41 ] : 

 
ET = CPI * C * T                  (1) 

 

 

Where ET is the execution time, CPI is the average clock cycles per benchmark 

instruction, C is the total dynamic instruction count, and T is the clock period. From the 

formula (1), we get the speedup as 

 
Speedup = CPU execution time before / CPU execution time after        (2) 

 

In the study, we adopt the average CPI alone as performance evaluation measure. If we 

presume the usage of the same clock period (T) for the purpose of comparison, and 

dynamic instruction count is the same, the speedup formula can be reduced to:  

 
 
Speedup = CPI before / CPI after                                                              (3)  

In the thesis, all of places we will use the formula (3) to evaluate the performance gain.  

 

6.2 Simulator Design and Implementation 
 
 
In the experiments, a trace-driven simulator was developed to analyze the performance 

of TMSI processor. The simulator models a pipelined processor at cycle by cycle basis.  



Chapter 6. Performance Evaluation 99

As is common as modern processors, the TMSI Java processor has a six-stage pipeline, 

including instruction-fetch, decode/tagging, tag/value matching, issue, execute and 

commit stages. After instruction tagging converting stack instructions into tag-based 

RISC-like instruction formats, a Tag Matching Unit (TMU) acquires the operands of the 

tagged instructions from the stack cache (register file) through the tag/value match 

window. If the operands are ready, the tagged instructions are added to the ready 

instruction queue and later bundled as VLIW instructions to be issued in-order to the 

VLIW execution engine. Although the instruction bundles are issued in-order, at the 

time they are bundled, they may be not in program order, depending on data availability.  

Figure 6.1.  Basic pipeline of TMSI Java processor 
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The developed trace-driven simulator executes the trace simulation according to the 

TMSI processor’s pipeline cycle by cycle. The instruction execution pipeline is shown 

in Figure 6.1.  In each cycle, Fetch unit fetches 4 instructions, and pre-decodes them. In 

Decoding stage, instructions are tagged according to the tag management algorithm 

which follows the Java program execution paradigm, then after completed stack 
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instruction folding, a new tag-based RISC-like instruction format is generated.  The 

newly generated instructions are scheduled and issued in Issue stage, but the limitations 

of instruction dependences must be obeyed.  In Commit stage, after completed 

execution the bundled instruction groups will update tags’ status in TMU in order that 

the ready instructions could be scheduled in next pipeline cycle.   

Table 6.1.  Input parameters in the simulator 
 

 Fixed Parameters 
 Processor pipeline six-stage (F,DI,DII, Issue, Ex, WB) 
 Decoded instruction size  4  
Instruction Issue-width  4 
Size of TMU  64 entries 
Data Cache Setting  Perfect cache 
Instruction Cache  Ideal cache 
 Instruction cache size  enough to hold any class method  

Variable Parameters 
Branch predictor   Static predictor (branch predictor 

penalty 3 cycles), for speculation cases, 
recovery overhead at 6 cycles.   

 A number of integer unit 2 
 A number of floating unit 2 
 A number of memory unit 2 

 

In the performance simulation experiments, we assume the system has 2 load/store units, 

2 integer units and 2 float-point units.  We assume that TMU has 64 tag entries. The 

size of physical register file is larger than 64, because register file not only provides tag-

mapping registers but also contains the LV storage area. And a static branch predictor is 

used, which is easily implemented by hardware and has a penalty of 3 cycles for mis-

predicted branches. Additionally a perfect data cache is assumed as well as an ideal 

instruction cache was assumed to provide in the experiments.  The detailed description 

of all assumptions and structure sizes are shown in Table 6.1 
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6.3 Performance Evaluation 

We used SPECjvm98 [93] and Linpack [52] benchmarks. In the experiments, 

instruction schedule was limited within a basic block (except for speculation cases), 

only when all the instructions within a basic-block were issued can the instructions in 

the next basic-block be scheduled, but instruction prefetch is supported.  

 

The proposed Java ILP processor issues instructions in multi-issue semi-in-order style 

(as described in Chapter 5), so we called it TMSI processor. To study the gain in ILP 

and performance speedup with TMSI processor, we ran two types of simulation: one in 

which every bytecode instruction assumes at a single cycle latency, and the other in 

which the different bytecodes take different latencies according to the picoJava 

specification. ILP gain is useful for determining ILP speedup from the viewpoint of 

multiple instruction issue, and the latter simulation is helpful to demonstrate the actual 

speedup compared with the existing architecture, and indicates the actual performance 

gain in TMSI processor.    

6.3.1 Exploitable Instruction-Level-Parallelism (ILP) 
  
To detect the proportion of parallel execution instructions in TMSI processor, we relax 

the resources constraints on the number of execution units and set the issue rate at four. 

When the execute stage is fed all the instructions within the instruction issue window, 

the processor could potentially execute at most four of them in parallel if there are no 
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dependencies and resource constraints. If there are stack dependences or LV 

dependences, the following instructions will be executed in the next cycle.  

 

Table 6.2 shows the proportion of instructions execution in parallel in percentage when 

we run the benchmark programs on 4-issue TMSI processor. From the table, we 

obtained that a higher-percentage tag-based RISC-like instructions are executed in 

sequential, and the percentage of 2-issue, 3-issue and 4-issue instruction groups are less 

than 1-issue instruction groups. This is determined by the characteristics of the Java 

benchmark programs. And from the table, we can see that for the mpegaudio 

benchmark program, the 4-issued instruction groups are in higher percentage, which is 

different from the other programs. The reason is that it is computing-intensive program 

and the size of the average basic-block is larger than others, thus more instructions can 

be executed in parallel. Further, in mpegaudio benchmark, more than 30% issued 

instruction groups belong to 4-issue group, which caused a better performance gain.       

Table 6.2. Percentage of instructions executed in parallel in our scheme 
 

Tagged instructions executed in parallel 
(percentage) 

 
Benchmarks 

1 2 3 4 
Compress 67.37 15.43 10.78 6.42 

Db 79.97 14.98 3.78 1.27 
Jack 79.54 14.22 3.89 2.35 

Javac 72.85 21.87 4.24 1.04 
Jess 81.51 13.47 3.26 1.76 

Mpegaudio 43.26 16.53 6.78 33.43 
Mtrt 87.92 9.67 1.55 0.86 

Linpack 69.18 16.10 0.38 14.34 
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Table 6.3.  Percentage of instructions executed in parallel using stack 
disambiguation  

 

   

 
Let us compare the result in Table 6.2 with that reported in the previous research work 

of in-order multi-issue of the folded Java instruction execution [88] (shown in Table 

6.3). In this report, by using stack disambiguation technique, only a small number of 

three-instruction-groups are issued in parallel and no four-instruction-groups are issued 

in parallel. Compared with it, you can see that the tag-based method can explore more 

ILP in Java programs. However, the results of our experiments show that the percentage 

of issued three-instruction-group is from 0.3% to 10%, and the percentage of issued 

four-instruction-group is from 0.8% to 14%, except mpegaudio. The percentage of 

mpegaudio is higher up to more than 33%. The reason is that the basic block of 

mpegaudio is bigger, and within a basic block there are more ALU instructions which 

can be run in parallel. These results demonstrate that ILP is enhanced in our TMSI 

processor.      

 
In order to investigate the perfect ILP within a basic block in the benchmark programs, 

we do the following assumptions:  the first is the decoding rate is set at 4 similar in 

Table 6.2, and the second is we assume that no resources limitation for the instruction 
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execution, that does mean when those decoded instructions are ready in issue queue, all 

of them can be issued; the third is we set the maximum instruction issue rate at 8.  

Based on these assumptions, we re-executed the benchmark programs. Table 6.4 shows 

the result for this case.  

 

In Table 6.4, we can see that most of instructions within a basic block can be issued 

within 4 issue-groups. Even though we relaxed the instruction issue limitation for 

resources, only small amount of basic-block instruction groups can issue instructions 

more than 4. For most of benchmark programs except compress and mpegaudio, only 

less than one percentage of instruction groups can issue instructions more than 4. For 

compress benchmark, the number of percentage is 3.16% and for mpegaudio 

benchmark, the number of percentage is 26.41%.  Compared with Table 6.2, we can see 

that although the more resources can be added in the Java processor, the very less ILP 

improvement can be obtained. Thus, if we consider the hardware complexity and 

pipeline execution efficiency, we prefer a 4-issue Java ILP processor.       
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Table 6.4.  Percentage of instructions executed in parallel with unlimited resources 
 

    Tagged instructions executed in parallel (percentage %) Benchmark  
1 2 3 4 5 6 7 8

Compress 62.6 13.7 17.1 3.4 1.8 0.3 0.04 1.02
db 79.1 15.0 4.6 1.04 0.12 0.09 0.03 0.001
jack 75.8 17.5 4.18 1.96 0.12 0.27 0 0.11
javac 71.2 21.3 6.35 0.78 0.02 0.27 0.03 0.03
jess 80.9 13.6 3.73 1.1 0.2 0.27 0.16 0
mpegaudio 45.1 18.4 5.9 4.16 5.75 9.62 2.4 8.64
mtrt 85.6 11.87 1.62 0.77 0.02 0.01 0.03 0.00
linpack 45.98 36.06 0.79 15.81 0.45 0.9 0 0 
 
 

6.3.2 ILP Speedup Gain  
 
To compute the ILP gain, we assume all instructions with unit latency. Figure 6.2 

presents the ILP speedup results for three different configurations: in-order single-issue 

base stack (ISBS) processor, in-order single-issue with stack folding stack (ISSS) 

processor and our multi-issue in-order TMSI processor. The stack folding used in the 

experiments also supports nested folding. With the tag-based stack folding scheme, the 

ILP gain for ISSS processor can be seen from 20% to 90%. This result demonstrates 

that the tag-based stack folding scheme is effective, particularly for computing-

extensive cases, such as Linpack and mpegaudio. The ILP gain with TMSI multi-issue 

over ISSS stack processor is also observed to range from 3% to 27% for all applications 

except mpegaudio, for which the gain is 49%. The result also demonstrates that TMSI 

Java processor can improve the performance than ISSS stack processor does. The ILP 

gain with TMSI processor over ISBS stack processor can be seen from 21% to 115%, 
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except for mpegaudio case in which the gain is 173%. This shows that the ILP speedup 

can be obtained through both stack folding and multi-issue in Java processors.  

 

Figure 6.2.  ILP speedup gain: TMSI vs. base Java stack machine 
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6.3.3 Overall Performance Enhancement  
 
Figure 6.3 demonstrates the actual speedup obtained using the varied latency according 

to the picoJava-II specification. With the configuration of in-order single-issue with 

stack folding stack (ISSS) processor, an improvement of 2% to 19% is observed. With 

multiple-issue TMSI architecture, the speedup ranges from 9% to 34% for all 

applications, except mpegaudio and Compress benchmarks. The actual speedup of 

Compress program with TMSI is 49% while the actual speedup gain of mpegaudio is 

86%.  The reason for the much higher performance speedup observed in mpegaudio is 
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that more bytecode instructions are executed in parallel than in other benchmark 

programs. Compared with SMTI [79] processor, the results obtained are as good as or 

even better than those in SMTI, except mpegaudio benchmark. This result demonstrates 

that our tag-based mechanism can exploit more ILP. For mpegaudio benchmark 

program, software-implemented multi-trace SMTI [79] processor may schedule 

instructions within a bigger instruction window than our scheme when bigger basic 

blocks exist. In contrast, the instruction schedule window in TMSI processor is 

constrained by the size of TMU.  However, our architecture does not need complex 

fetch logic to support.  

 
 

Figure 6.3.  Overall speedup gain: TMSI vs. base Java stack machine 
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6.3.4 Performance Effects with Tag Retention  
 
In this section we will investigate the performance effects when different number of 

retainable tag is allocated from TMU. Here we assume the processor did not allocate 

on-chip register file for LV (local variable) variables’ use (here is different from the 

previous configuration.), and when a LV variable will be used sooner, it will be set with 

a retention flag. This procedure is dynamically implemented. After the tag is accessed 

or used by later consumer instruction, it will be released.  In order to demonstrate the 

performance effects, we had the following assumptions:  some tag entries from TMU 

will be allocated and the maximum retainable number (MaxRet) of tags is assumed at 4, 

8, and 16 accordingly. When a LV load access instruction is encountered, if its LV 

number is less than MaxRet, the value is accessed from the on-chip register file since 

the tag entry is retained from TMU; otherwise, it will be loaded from the data cache. 

When load from the data cache, an extra instruction load cycle is needed, and the later 

stack folding operation must delay one cycle until the load is ready for access. For LV 

store instruction, since a memory store buffer is provided we don’t consider the access 

delay and if a LV store is immediately needed for a LV load, the direct data forwarding 

is provided to reduce the performance lost.      

  

Figure 6.4 illustrated the performance effects when allocating different number of tag 

entry (SizeRet) at 4, 8, 16 as retainable tags from TMU. In the mean time, for the 

comparison purpose, we also gave the normalized speedup performance when 

allocating a special-purpose LV register file and as well the performance upper-bound 
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when no any instruction issue limit exists. In the experiments, bytecode instruction 

latencies follow those defined in picoJava-II specification.  The experiments 

demonstrated that when SizeRet is set at 4, 8, 16, the effects of performance gains are 

from 0.5% to 3%, except for the benchmark program Mpegaudio and Linpack. The 

effect for the Mpegaudio benchmark is at 8%, and for Linpack program is at 15%. This 

is because these two benchmark programs contain a large number of LV access 

instructions for use of intermediate variable.  For Linpack program, the maximum 

number of LV needed is 48, and for Mpegaudio program, the number is 38. (We 

obtained them from an analysis of the bytecode traces obtained from executing 

SpecJVM98 benchmark suite.) For the other benchmark programs, the maximum 

number of LV is around 20, thus the performance effects is smaller in these benchmark 

programs and when the SizeRet is set at 16, the performance gains for them nearly 

reach the same value as using a specific-purpose LV register file.  
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Figure 6.4.  Normalized speedup with different amount of retainable tags  
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However, another advantage of adding a specific-purpose LV register file is mainly for 

speedup the execution of procedure calls. In Java SpecJVM98 benchmark suite, 

procedure calls cost much more execution cycles, thus in order to increase performance 

and reduce the movements of reference data, a specific-purpose LV is needed [87].   

 

6.3.5 Performance Enhancement with Speculation  
 
 
In order to further investigate the possibility of performance gain, we implemented the 

speculation-support for TMSI processor simulator.   In this section, we will show the 

performance results when scheduling tag-based RISC-like instructions speculatively.  In 

the experiments, TMSI processor may schedule and execute instructions across more 

than one basic block. For the purpose of comparison of the performance gain when 
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scheduling instruction across different instruction window sizes, TMSI processor 

simulator may dynamically schedule instructions across one basic-block (1BB), two 

basic blocks (2BB), and three basic blocks (3BB) accordingly.  

 

In the simulation experiments, the simulation workloads are same as the previous 

experiments. Even though the execution trace for the benchmark programs are not in 

speculative dynamic scheduling mode, it may be accepted that the simulator re-

schedules instruction traces in speculative mode to obtain the performance gains. 

Because we can not modify Kaffe JVM to execute Java programs in speculative mode. 

We assumed the TMSI processor only has one branch prediction unit and the recovery 

overhead is assumed at 6-cycle latency when the branch predictor predicts a wrong path. 

The detailed structural configuration can be seen in Table 6.1. 

 

Figure 6.5 demonstrated the performance enhancement for speculative instruction 

scheduling when the instruction latencies are assumed with picoJava-II latencies, and in 

the experiment we use a BTFN (Backward Taken Forward Not-Taken) static branch 

predictor, which is simple for a limited hardware complexity. The configuration of the 

used speculative TMSI processor is listed in Table 6.1. The results show that the 

performance gains when scheduling across two basic blocks can be seen from 6% to 8%, 

except for Linpack programs at 21%. This is because for SpecJVM98 benchmark 

programs, there are a lot of long latency instructions which are needed to be 

implemented with micro-codes. These instructions will affect the IPC (issued 
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instruction per cycle) performance gain largely. In additional, since Linpack benchmark 

aims to solve a matrix multiplication problem and it is computing extensively, this 

characteristic makes Linpack achieve better IPC performance speedup when using 

speculative scheduling in speculative TMSI Java processor.   

 
Figure 6.5.  Normalized IPC speedup with speculation scheduling  
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However, we also found that when the instruction scheduling is limited within three 

basic blocks (3BB), the IPC performance gain achieves to the limited value.  This 
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limitation is due to the limited execution resources. In order to prove this, we have also 

done the simulation and obtained the IPC performance results (listed in 3BB unlimited 

column) when assuming that enough execution resources are provided for the 4-issue 

TMSI Java processor and the instruction scheduling is limited within three basic blocks.  

We found that if enough functional resources are provided, the IPC performance gain 

for 3BB unlimited case is much bigger than that of 3BB with limited resources for some 

benchmarks. Thus, we suggest that if the TMSI Java processor will support speculative 

instruction scheduling with limited hardware complexity, we prefer to constrain the 

instruction scheduling only across two basic blocks.   

 
 

In the experiments, we also calculated the efficiency of the static branch predictor. We 

used BTFN static predictor in our simulation experiments. Here we employ static 

predictor in the experiments, the reason is that it is easy to implement in hardware with 

little complexity. Table 6.5 gives the basic static branch predictor’s effectiveness for 

conditional branch and total branch predictor’s effectiveness. The following two 

equations show how to calculate these two values.  
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Equation 1:  
 
The efficiency of basic conditional branch predictor 
 
= the number of branch hit / total number of conditional branch  

Equation 2: 
 
The efficiency of total branch predictor  
= (the total number of unconditional branch + the total number of 
conditional branch hit) / (the total number of unconditional branch + the 
total number of conditional branch) 

  

Table 6.5.  Branch predictor effectiveness 
 
 

Conditional  
Benchmarks 

 
Uncondi-
tional  

Branch Hit Total 
Conditional 
Branch  

Conditional 
branch 
Efficiency 
(%) 

 
Total 
Efficiency 
(%) 

Compress 103355 744397 1237116 60.17 63.24
Db 12668 188503 207973 90.64 91.17
Jack 531996 3733440 4223854 88.38 89.69
Javac 93961 763324 769087 99.25 99.33
Jess 83798 1111330 1226675 90.59 91.19
Mpegaudio 472328 3229690 3928163 82.22 84.13
Mtrt 773317 3582737 4967549 72.12 75.88
Linpack 409181 482636 494115 97.68 98.73

 
 
 
From Table 6.5, we can see that the branch prediction efficiency for most programs can 

achieve up to 90%, this demonstrated that in the used benchmark programs, we use 

BTFN static predictor is efficient for speculative scheduling cases. A high efficient 
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branch predictor may contribute to a very good performance for TMSI processor, and 

reduce the total recovery overhead due to speculative executing a wrong branch path.  

 

6.4 Summary of the Performance Evaluation 
 
 
A new approach of exploiting the concept of Abstract Machine and dataflow to extract 

Java-ILP has been illustrated in this Chapter. With instruction tagging mechanism, the 

independent bytecode instruction groups with stack dependences are identified. Because 

there is no stack dependence among the different bytecode instruction groups, they can 

be executed in parallel based on different register segments for multiple operands access 

and thus more Java-ILP is exploited. Based on the instruction tagging scheme, we 

proposed the TMSI Java ILP processor. In the processor, a TAMT are employed to 

translate bytecode instructions into tag-based RISC-like instructions, then execute them 

on a VLIW engine.  

 

The simulation experiments demonstrate that the proposed TMSI processor architecture 

is able to significantly increase the average ILP over a single-issue Java processor. We 

calculated the geometric mean of the ILP and that of actual gain in speedup over all the 

applications, the results showed that the ILP gain is 59% and the actual speedup gain is 

28% when the instruction latency is set as the defined in PicoJava-II specification. Java 

instructions defined in JVM include some complex instructions, such as invoke 

instructions, array access instructions, and method variable access instructions, etc. 
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These instructions often need a micro-code sequence to support, and conduct long 

instruction execution latency, further more they will cause the pipeline stall. These 

make the better ILP gain in the system not be fully translated into the real speedup.    

 

Besides that, we also investigated the ILP performance when using tag-retention 

scheme and performance results with speculation technique which allows instruction 

schedule across more than one basic block.   These results are useful for the further 

research on the proposed TMSI Java processor.    
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Chapter 7  

Tolerating Memory Load Delay  
 
 
 
 

7.1 Performance Problem in In-Order Execution Model 
 
 
Instruction execution in traditional VLIW processors is exactly in-order. In-order 

instruction execution has severe IPC performance limits due to its inability to allow 

execution to continue past an instruction with an outstanding register use, where the 

register is being produced by a long latency instruction currently executing [55].  In this 

situation, the whole front-end of the processor stalls and it cannot issue any more 

instructions until the oldest instruction in the issue window obtains both of its operands.  

This kind of long pipeline stalls will degrade the performance of the in-order VLIW 

processors. The same situation often occurs on a memory load instruction, for example, 

when the memory load encounters an unpredictable cache miss. A Pending Functional 

Unit (PFU) [55] scheme is proposed by Lori Carter, which is devised to make EPIC / 

VLIW execution out-of-order in a small range to mitigate the performance effects due 

to unpredictable memory load delay.    
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Our TMSI Java ILP processor exploits a VLIW engine to execute tag-based instructions 

in-order, so the overall performance of the Java processor is also affected by such 

unpredictable memory load instructions due to data cache miss. In this chapter we will 

propose a new technique --- tag-based PFU (tag-PFU) scheme -- to mitigate the 

performance degrading. Our aim is to hide or reduce the effects of unpredictable long 

latency load instructions, without adding a large amount of additional hardware 

complexity.     

 

In the following we look at the implementation techniques in superscalar processors 

from the comparative perspective, describe our tag-based PFU scheme and evaluate the 

performance.       

 

7.2 Out-of-Order Execution Model  
 
The high-performance processors generally adopt Tomasulo [85] scheme to achieve 

out-of-order execution. However, the major drawback of the approach is hardware 

complexity.  In particular, the use of reservation stations requires complex control logic 

[32]. Lastly, the performance can be limited by common data bus (CDB).  The critical 

points in Tomasulo scheme are dynamic scheduling, register renaming and dynamic 

memory disambiguation. The register renaming plays an important role in avoid data 

conflicts. Register renaming eliminates write-after-write (WAW) and write-after-read 

(WAR) dependences, but all the read-after-write (RAW) dependencies are preserved, 
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which are necessary for correct computation [41]. Renaming extracts the maximum 

parallelism from an application since only necessary dependencies are retained. 

 

Modern out-of-order processors are aggressive and optimistic. They always try to 

execute multiple instructions per cycle speculatively. Similar aggressiveness is also 

observed in execution of memory load operations and instructions that depend on these 

memory loads. In most processors, instruction scheduling is based on the assumption 

that the load hits in the cache. This assumption usually increases the performance as 

most of the loads actually hit in the cache. However, if an instruction is dependent on a 

memory load that misses in the cache, those dependent instructions will need to be re-

executed. This re-execution is referred to as replay.  Two methods can be employed to 

handle this situation: flush replay (used in Alpha 21264 [81]) and selective replay (used 

by Pentium 4 [24]).  In flush replay, all instructions in the issue window are flushed and 

re-executed whatever they are related to the load operation or not. In selective replay, 

the processor only re-executes the instructions that depend on the missed load.   

 

An out-of-order pipeline aims to execute an instruction as soon as it is ready, not 

according to some predetermined order that may be not efficient based on the run-time 

conditions. The out-of-order processors often make use of the available run-time 

information and schedule instructions dynamically to overcome the unpredictable long 

latency of load memory delay due to cache misses. If a memory load instruction misses 
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in the cache, future instructions dependent on the loaded value must wait, but other 

instructions that are ready may proceed [19].  

 

Most out-of-order processors schedule instructions can across multiple basic blocks, 

and implement branch prediction and speculation execution. Even though instructions 

are executed out-of-order, the results are committed in-order. This keeps a sequence 

execution model and guarantees the correction of the program execution. To keep track 

of the original order that instructions entered the pipeline, a FIFO structure called 

reorder buffer (ROB) is used. The speculation instructions and state are kept in ROB, 

when a branch is mispredicted, the recovery is easy to implement by clearing the ROB 

for all entries that appear after the mispredicted branch instruction, allowing those that 

are before the branch instruction in the ROB to continue. Furthermore, with this 

architecture, a precise exception may be implemented. 

 

To summarize, the order of instruction execution for an out-of-order execution machine 

is determined by the hardware dynamically, and the run-time information need to be 

taken into account, and accommodations could be difficult to make due to unpredictable 

cache misses.     
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7.3 VLIW/EPIC In-Order Execution Model  

VLIW / EPIC machines achieve instruction level parallelism (ILP) due to their ability 

of issuing multiple instructions operation per cycle and with relatively simple control 

logic.  They issue instruction bundles in-order. In-order execution processors may suffer 

an expensive stall when servicing data cache miss. This problem is exacerbated because 

the data cache miss shows hard-to-predict.  To effectively hide cache miss latency for 

in-order execution processors, micro-architecture enhancements as well as software 

optimizations can be applied. The compiler can insert prefetch hints into the programs 

to reduce data cache miss, or data caches are constructed as non-blocking caches to 

avoid unnecessary processor stalls.   

 

In this chapter we will concentrate on the efforts of micro-architecture enhancement in 

tolerating memory load cache misses in a VLIW in-order processor.  Rau [13] 

suggested the idea of small-scale reordering on VLIW processors to support object code 

compatibility across a family of processors. The Itanium processor (IA64) [33], an 

implementation of EPIC architecture, is an in-order processor which instruction 

scheduling is predefined by the based compiler. When Itanium pipeline encounters a 

memory load cache miss, the whole pipeline must stall to wait until the missed load 

instruction is finished. This will make its performance suffer significantly when small 

amount of cache is provided. To solve this performance issue, that is, to reduce its 

performance degrading in IA64, some approaches have been proposed. Perry et al [75] 
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proposed two approaches: one using an out-of-order (OOO) execution core, and the 

other assuming multithreading support and exploiting cache pre-fetching via speculative 

pre-computing. But the relative hardware issues involved in implementing the two 

approaches are needed to be considered. Another scheme is proposed by Lori Carter [55] 

called Pending Functional Unit (PFU) scheme to mitigate the performance effects with 

out-of-order instruction groups with a small range. 

    

In thesis, TMSI Java processor employed a multiple-issue VLIW execution engine to 

execute instruction bundles in-order, but it encounters the same problem of memory 

load delay caused by unpredictable cache miss. We implemented the same function as 

PFU on the TMSI Java processor which is able to schedule other ready instructions first 

that are not dependent on the memory load instruction in order to mitigate some effects 

due to the memory load delay, we call it as tag-PFU scheme. Different from the PFU 

scheme, the proposed scheme did not increase any hardware complexity on the current 

TMSI Java processor, only through modifying the tag management algorithm. For the 

purpose of comparison, we first describe the implementation issues of PFU in IA-64 

proposed in [55], and then illustrate our tag-PFU scheme implemented in the TMSI Java 

ILP processor.   

 

7.3.1 PFU Scheme   

IA-64 CPU is an in-order processor, which fetches, executes and forwards results of 

instructions to its functional unit in-order.  The architecture of IA64 heavily relies on 
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the compiler to expose ILP to avoid stalls created by in-order processing.  In IA-64, 

each cycle can have up to 6 instructions (2 bundles) scheduled to proceed on the 

pipeline and begin executing together [29]. If there is an outstanding dependency within 

a number of the scheduled groups, all the instructions in the group will stall and wait 

until all the instructions in the scheduled group are ready to start executing at the same 

time. The functional units in IA-64 also provide the bypassing logic which allows the 

values being produced to be directly consumed by another functional unit in the next 

cycle. 

 

The basic idea of PFU [55] is to expose a small window of instructions, which have 

been allocated functional units, to be executed out-of-order.  Instructions within IA-64 

with PFU are issued exactly the same as in the traditional in-order VLIW architecture -- 

if there are WAW dependencies among instruction bundles, they cannot be issued. The 

hardware implementation of PFU is similar to reservation stations [85], but is simpler 

in that no scheduling needs to be performed when the operands are ready and the 

instructions already owns the functional unit it will use to execute.  

 

When forming a schedule for the IA-64, the dispersal stage does not need to take into 

consideration the resource constraints. Thus, when the whole scheduled group goes to 

the functional units, the instructions either all stall together, or start executing together.  

However, IA-64 with PFU must take into consideration resource constraints for 

functional unit, and perform instruction scheduling in-order. 
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In next section, we will discuss how to implement the PFU function in TMSI Java 

processor, and compare design issues in micro-architecture. From the perspective of 

micro-architecture, our scheme may not only be implemented with less hardware 

complexity but overcome several drawbacks in PFU scheme. In this sense, the tag-

based architecture can be extended and applied to other processor architectures.  

 

7.4 Tag-PFU Scheme   
 
 

7.4.1 Architectural Mechanism 
 
The TMSI Java processor we proposed uses a VLIW engine to execute tag-based 

instructions in-order. It encounters the similar memory load delay problem as tolerating 

the effects of un-predictable memory load cache miss. The tag-PFU scheme in the thesis 

implemented similar function as PFU [55].  

 

In TMSI Java processor, the scheduled groups are formed at instruction issue stage 

dynamically.  The instruction groups are issued in-order but the sequence of individual 

instruction can be out-of-order. When the operands of an instruction are ready, the 

instruction is listed in the ready queue to be scheduled in the next cycle. If there are no 

any dependencies (RAW, WAW, WAR) within some ready instructions, they can be 

formed as a scheduled group to construct an instruction bundle. If there is RAW 

dependence, the instruction containing read operation must wait until the previous 
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instruction containing write operation finishes. The TMSI processor also has the 

capability of bypassing instructions, but the value produced by previous instruction is 

directly sent to register file instead of functional units.  In TMSI processor, therefore, 

Tag-Matching-Unit (TMU) will play the role of buffering and scheduling instructions.   

 

Because the instruction bundles in TMSI Java processor are dynamically generated, 

those instructions depending on the memory load could be buffered in TMU, delayed to 

issue until the memory load is finished.  During that time, the other instructions that do 

not have data dependencies on the load can continue to be scheduled. This scheduling 

scheme can achieve the same function as in the PFU scheme, it can execute instructions 

out-of-order within a small range to mitigate the memory load latency caused by 

unpredictable data cache miss.  Here TMU buffers those instructions which operands 

are dependent on the memory load and not ready yet at issue time.  

 

In out-of-order processors, a scoreboard technique [41] is widely used to detect and 

maintain dependence information.  A scoreboard may manage the issuing and 

completion of instructions or stalling of the pipeline based on operands and functional 

units being ready and dependences being met. Similarly, scoreboard can be cable to 

determine that the conditions are right for an instruction to execute in in-order 

processors. TMU in TMSI processor also works with a scoreboard function to 

determine whether an instruction is ready for issue.  
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7.4.2 Architectural Comparison   
 
The PFU implemented in IA-64 exploits the structure of reservation stations (RSs) to 

buffer instructions depending on the result of the memory load instruction.  The scheme 

has a disadvantage that needs to be addressed.  If the cache miss occurs at the second 

level cache, the latency will be longer. In that case, a lot of dependent instructions 

should be suspending on the functional units, where they must be queued in the attached 

RS of the functional units. Under certain conditions, there are not enough RS entries 

provided (often, several entries are provided for each reservation station due to 

hardware complexity), then the overflow of reservation station happens.  In this case, 

the pipeline will have to either stall or process the overflow.  To solve this problem, 

extra hardware circuit is needed, which will add hardware complexity. In extreme cases, 

for example, if the memory cache miss occurs very often, the pipeline will have to stall 

frequently to wait for the load to be finished.  

 

In contrast, our tag-based architectural mechanism may suspend those instructions 

dependent on the load results in TMU. That is because TMU plays a role of central 

ROB and can hold much more entries than RSs. What’s more, given that in-order 

instruction schedule has seldom considered the availability of functional resources the 

tag-PFU scheme needs to consider this issue without increasing hardware complexity. 
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7.5 Effectiveness of Tag-PFU Scheme   
 

7.5.1 Experimental Methodology 
 
As seen in chapter 6, we have developed a trace-driven simulator which models the  

TMSI processor architecture. To simulate the memory cache miss, we integrated a 

cache simulator Dinero [31] into our simulator to evaluate the effects of data caches on 

the system performance. Dinero is widely used to analyze the cache performance.   

 

In the program execution trace, we recorded all the memory access addresses to conduct 

cache simulation. We assume the system cache has two levels. The first level is directly 

mapped, and the second level cache is unified set-associative cache. We chose different 

sizes of data cache at first level from 1KB, 2KB, 4KB to 8 KB, 16KB, and 32KB to test 

their performance on the TMSI, whereas the second unified cache is assumed at 1MB. 

Here the cache replacement policy is supposed to use LRU algorithm. In the 

experiments, only memory load cache miss is considered. As for memory stores, the 

stored data is buffered by the Load/Store unit so we did not considered them. The 

instruction latency used in the experiments follows the picoJava-II specification and the 

data cache miss latency was assumed at 10 cycles at the first-level cache, and 50 cycles 

at the second-level cache.  

 

In the performance simulation experiments, we used SPECjvm98 [93] benchmarks and 

executed them with the s1 data set, and instruction schedule is limited within a basic 
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block, but instruction prefetching is supported. Because the benchmark program – Jack 

can not smoothly complete execution with memory address trace flag on Kaffe 

environment, we only run the other six benchmark programs. In the experiments, the 

branch predictor used is a BTFN static predictor with 3-cycle penalty when a wrong 

branch prediction result is given.  The detailed input parameters used in the simulator 

are shown in Table 7.1.  

 

Table 7.1. The detailed input parameters in the simulation experiments 
 

Fixed Parameters 
 Processor pipeline Six-stages  (F,DI,DII, Issue, Ex, WB) 
 Decoded instruction size  4  
Instruction Issue-width  4 
 Data cache size First level: 1k,2k,4K,8K,16K,32K, LRU  

Second Level: unified 1Mbyte 
Cache Miss Latency First level: 10 cycles 

Second level: 50 cycles 
cache mapping method First level 4-way set-associative 

Variable Parameters 
Branch predictor   BTFN static predictor ( 3-cycle penalty) 
 A number of integer unit 2 
 A number of floating unit 2 
 A number of memory unit 2 
 Instruction cache size  Perfect cache 

 
 

7.5.2 Performance Results 
 
In the following, we will illustrate the performance and cache simulation results for 

each benchmark program.  
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7.5.2.1 IPC Performance with Different Cache Size   
 
In Figure 7.1 (a) – (f), the performance simulation results for the benchmark programs 

are shown as cache size alters.  From the performance results, we can see that small size 

of data cache will cause less IPC performance.  Because the Java benchmark programs 

are object-oriented, most memory accesses are concentrated in a limited area, this 

behavior will reduce memory cache miss, thus the performance effects for memory load 

miss is not prominent, such as in Db, Javac, and Jess benchmark programs. For those 

computation-intensive programs, such as Compress, Mpeg, and Mtrt (single-thread), 

they will access larger memory address ranges, the performance effects for memory 

load miss is bigger than the other programs.   

Figure 7.1.  IPC performances with different cache sizes  
 

(a) Compress benchmark program 
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(b) Db benchmark program 
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(c ) Javac benchmark program 
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(d) Jess benchmark program 
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(e) Mpegaudio benchmark program 
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(f) Mtrt benchmark program 
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7.5.2.2 Cache Miss Rate vs. Cache Size  
 
To further investigate the cache performance, we draw the figures with cache miss rate 

vs. cache size.  We use these results to analyze how the cache size affects the cache 

miss rate for the benchmarks. All the results for the benchmarks are listed in Figure 7.2 

(a) – (f). 

 

The investigation of these figures shows that the cache miss rate will decrease as the 

data cache size increases, but different benchmark programs have different 

characteristics. For the Compress benchmark program, the cache miss rate will reduce a 

lot when the data cache size is larger than 4kbyte. For the benchmark programs of Db, 

Javac and Jess, the cache miss rates reduce nearly linearly with the cache sizes 
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increasing. For the benchmark program -- Mpegaudio, its cache miss rate reduces 

slowly when the data cache size from 1Kbyte to 4Kbyte, later it reduces greatly when 

cache size is bigger than 4Kbyte. On the contrary, for the benchmark program -- Mtrt, 

its cache miss rate reduces a lot when the data cache size increase from 1Kbyte to 

2Kbyte, later the cache miss rate reduces slowly as the data cache size increases.      

 

Figure 7.2.  Cache miss rate vs. cache size  
 
 

(a)  Compress benchmark program 
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(b) Db benchmark program 
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(c) Javac benchmark program 
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(d) Jess benchmark program 
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(e) Mpegaudio benchmark program 
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(f) Mtrt benchmark program 
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7.5.2.3 Performance Comparison using Different Scheduling Scheme   
 
Figure 7.3 presents the normalized IPC performance results for TMSI processor in the 

three different scheduling scheme: the real cache (in the case of load cache miss, but 

without using tagPFU scheme), tagPFU scheme (with load cache miss) and tagPFU 

with perfect cache (in this case, we use tagPFU scheme on data cache, but no latency 

delay added) when the size of data cache are set at 1KB, 2KB, 4KB, 8KB, 16KB and 

32KB respectively. In these three cases, the third case (tagPFU with perfect cache) is a 

theoretical upper-bound, which indicates the best performance when using tagPFU 

scheduling scheme. The experiment’s results indicated that at the assumed cache 

configuration, tagPFU instruction schedule scheme can mitigate the performance 

degradation due to unpredicted memory load delay when the data cache size are set at 
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1KB, 2KB, 4KB, 8KB, 16KB and 32KB respectively. The results demonstrated that 

using tagPFU scheme can increase the IPC performance from 3% to 18%.  In some 

conditions, some benchmark programs can achieve the ideal performance when using 

tagPFU scheme, for example, when the data cache size is assumed at 8Kbyte, the 

performance of the benchmark programs --  Db and Javac can nearly achieve the value 

with perfect cache when using tagPFU scheme. When the data cache size is assumed at 

32Kbyte, the performance for the benchmark programs -- Compress, Db, Javac, and 

Mpegaudio, can achieve the value with perfect cache when using tagPFU scheme.  

   

Figure 7.3.  IPC performances with different scheduling scheme 
 
 

(a) Performance Improvement at 1KB data cache 
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(b) Performance  Improvement at 2KB data cache 
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(c) Performance improvements at 4KB data cache 
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(d) Performance improvements at 8KB data cache 
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(e) Performance improvements at 16KB data cache 
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(f) Performance improvements at 32KB data cache 
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7.6 Conclusions 
 
In this chapter, we exhibited two different CPU instruction execution models – out-of-

order execution and in-order execution. Out-of-order execution model is used in major 

superscalar processors, whereas in-order execution model is used in VLIW / EPIC 

processors. The unpredictable memory load delay can be mitigated using dynamic 

scheduling techniques in out-of-order processors. But it cannot be mitigated in in-order 

processors, because they depend on compiler techniques to schedule instructions 

statically.  
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Several dynamic techniques used in VLIW / EPIC architecture to reduce the effects of 

long memory load delay are presented for comparison. To solve the unpredictable 

memory delay in TMSI Java ILP processor, we proposed a new implementation scheme 

– Tag-based PFU scheme. This scheme can reduce the effects of memory load delay 

and increase the performance as well. We also presented the performance results for the 

tag-based PFU scheme.  The results show that the tag-based PFU scheme is effective. 
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Chapter 8  

Conclusions 
 
 
 
 
This chapter summarizes the thesis and discusses potential future development issues.   

8.1 Conclusions   
 
In the thesis, we proposed a General Tagged Execution Framework (GTEF).  The 

conceptual framework employed a hardware abstract machine and caters for many 

existing pipelined computer architectures. To design a new processor with the proposed 

framework, we only need to design the specified tag-based abstract machine translator 

(TAMT) for the specified processors which will translate the instructions into a tag-

based instruction format. This processor design methodology will be able to reduce the 

complexity of designing new processors, and reuse existent ILP hardware techniques.   

 

The TAMT is the critical component in the framework, and may be viewed as a 

dynamic hardware translator or interpreter. This translator can translate RISC or CISC 

machine code into a universal RISC-like instruction format – tag-based RISC-like 

instruction format, and also can translate stack machine code, i.e. Java bytecode 

instruction, into tag-based RISC-like instruction format.  The translation procedure 
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makes the executable internal instructions in both types of processors, whatever RISC 

or stack processors, be converted to a unique instruction format.  This unique 

instruction format can easily be integrated with modern ILP execution hardware, 

superscalar or VLIW execution engine.   

 

ILP is extensively used in modern high performance processors to achieve the 

performance. Register renaming is an important technique to increase ILP by removing 

false data dependencies dynamically. Register renaming technique is employed in 

TAMT to construct tag-based architecture. Therefore the tag-based instruction formats 

generated by TAMT will have removed data dependencies, and can be directly used by 

ILP execution hardware.         

 

As stack-based processors have their specific features different with register-based 

RISC processors. In order to demonstrate how the GTEF scheme is applied in stack 

processors, we have fulfilled an implementation of a TAMT for a stack processor. The 

architecture of TAMT used in the stack processor can be incorporated with Tomasulo 

algorithm or other techniques to utilize modern ILP execution hardware to achieve high 

performance.   

 

In TMAT used in stack processors, whenever a binary instruction enters the pipeline, 

the instruction is assigned a tag. With “mock” execution of the abstract machine, all 
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instructions are converted into tag-based instruction formats. The process of instruction 

tagging makes dataflow embedded in the stream of new-generated tag-based instruction. 

Thus dataflow techniques may be exploited to achieve out-of-order instruction 

execution and extract more ILP.  

 

Based on the architecture of proposed stack-based TAMT in the thesis, we implemented 

a Java ILP processor as an example. By means of the proposed stack folding technique 

the Java ILP processor converted Java bytecode instructions to tag-based RISC-like 

instructions that are executed on a VLIW engine. The detailed design and 

implementation is depicted, and such related issues as stack folding, tag retention, 

speculation are also discussed in the thesis.    

 
 

To demonstrate the effectiveness of the proposed Java ILP processor, we developed a 

trace-driven architectural simulator to verify the proposed architecture. The simulation 

results are encouraging when executing SpecJVM98 benchmark workload.  

 

 To tolerate unpredicted memory load delay in VLIW processors is a tough technical 

issue to improve the VLIW machine’s performance. The proposed Java ILP processor 

encounters the same problem due to the use of a VLIW in-order execution engine. To 

solve this problem, we proposed a modified tag-based PFU scheme based on the tag-

based Java processor architecture. The simulation results demonstrate that the scheme 
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can not only alleviate the effects of data cache miss on IPC performance but also 

increase the performance.      

 

8.2 Future Work 
 
Given that the proposed abstract machine-based processor design framework is a 

conceptual framework, our future work will concentrate on realizing or building a real 

processor with this framework to justify the theoretical concept.  Some issues that relate 

to the future work are discussed as follows.    

8.2.1 SMT Architectural Support  
 
Simultaneous multithreading (SMT) is a variation on multithreading that combines 

hardware features of wide-issue SuperScalars with multi-threaded processors [34]. It 

can consumes both thread-level and instruction-level parallelism with greater 

instruction throughput and speedups. SMT processors have three advantages compared 

with superscalar processors. First, it does not need special hardware to schedule 

instructions from the different threads onto the functional units. Second, the resolution 

of the dependences can be handled by the dynamic scheduling capability. Third, with 

register renaming and dynamic scheduling, multiple instructions from independent 

threads can be issued without regard to the dependences among them. 

 

There are three methods to implement multithreading on superscalar machines. They 

are coarse-grained multithreading, fine-grained multithreading and simultaneous 
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multithreading (SMT). In the coarse-grained   multithreading machines, the long stalls 

can be partially hidden by switching to another thread that uses the resources of the 

processor. In the fine-grained multithreading, empty slots can be fully eliminated by the 

interleaving of threads. In the SMT case, TLP and ILP are exploited simultaneously 

with multiple threads using the issue slots within a single cycle.  

 

The proposed tag-based processor architecture can be extended to support SMT in order 

to achieve higher speedups and throughput. To support SMT, we can provide multiple 

fetching units and tagging units (TU) with separate register file, program counter (PC) 

and a separate page table. To do in such way, multiple threads within SMT can share 

the common execution engine so that the high throughput can be achieved. In multi-

threading supported Java ILP processor, bytecodes from different threads can be tagged 

by different tagging units and then bundled to the VLIW instruction to be executed in 

parallel, and the thread-level parallelism is achieved accordingly. Tagged instructions 

are from independent threads, they can be issued without regard to data dependences, 

but dependences within a thread will be handled by different TU.  The schematic figure 

can be referred to the Figure 8.1. 
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Figure 8.1: The schematic for a SMT execution engine 
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In SMT machine, the memory can be shared by all threads through the virtual memory 

mechanisms, which already support multiprogramming. In proposed SMT architecture, 

multiple threads can share their common object or data via virtual memory system, 

therefore we should design a memory consistency model to guarantee the correctness of 

the program execution.  When we execute Java programs on the proposed SMT 

architecture, the proposed memory consistency mechanism should respect the Java 

Memory Model (JMM) [35]. To meet this requirement, we can use sequential 



Chapter 8. Conclusions 148

consistency or release consistency memory model. Appropriate approaches need to be 

further investigated in our future research work.   

8.2.2 Scalability in Tag-based VLIW Architecture 
 
To support large issue-window and higher issue rates in the proposed ILP processor 

register file will become a bottleneck as it is in traditional VLIW machines. To solve 

this problem, we have devised a scheme of multiple tagging units which uses register 

file partition. In this scheme, each tagging unit (TU) has its own private register file, 

and a common-used register file is provided to store global variables. This design takes 

advantage of the banked multi-ported register file architecture [37] to support multiple 

TUs with high performance. In this architecture the register bank will be partitioned to 

specific TUs, and a crossbar may be used to connect register banks with function units. 

This method will effectively reduce the pressure of the register file. We give a basic 

schematic framework to support multiple-tagging units in Figure 8.2. 

 
As shown in Figure 8.2, Instruction Fetching Unit (IFU) will separate the instruction 

stream into independent code-segments, and then send them to individual TU. The 

instruction codes are pre-processed by the customized compiler, which can locate the 

independent code segment. The multiple tagging units tag instruction codes in parallel, 

and then send ready tagged instructions to VLIW bundler to build into VLIW 

instruction which will be issued to functional units. The instruction bundles execute in-

order which makes issue logic simple. The execution results are tagged and 

communicated via a crossbar among tagging units.  The tag will be set as retained when 
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it is needed by subsequent consumer or as un-retained which can be freed and reused by 

other instructions.  

 

Figure 8.2: The schematic for a dynamic VLIW execution engine 
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8.2.3 Issues of Pipeline Efficiency 
 
Most of the pipeline stages in a deeply pipelined, out-of-order superscalar processor are 

used for book-keeping tasks. As such, there is a good deal of inefficiencies. Many 

recent optimizations such as micro-op fusion essentially seek to reduce these 
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inefficiencies but internally having “complex” operations. It is a kind of partial reversal 

to CISC. Directly executing Java bytecode has a similar flavour.  As a comparison, we 

may compile and execute Java benchmark – SpecJVM98 on a pure, register-based 

processor simulator and measure the ILP and instruction counts involved to compare the 

ipeline efficiency between the two techniques.   

 SpecJVM98 

enchmark programs with this approach will be one of our future works.    

 

p

 

In order to execute SpecJVM98 benchmarks on a register-based processor simulator, we 

have alternative way to implement the task. We can choose a widely used superscalar 

performance simulator – SimpleScalar [23] as the simulation platform. Since 

SimpleScalar can not support to run JVM or Java programs. However, if we can directly 

compile Java programs into a register-based native binary format, then it can directly 

run on SimpleScalar. To do this, we can exploit the gcc-based static compiler for Java 

(gcj) to compile a set of standard Java benchmarks into static binary first, and then 

simulate these benchmarks using the SimpleScalar architecture simulator. Because 

SimpleScalar 3.0 only supports Alpha binary, or Portable Instruction Set Architecture 

(PISA) [23], if we can compile Java bytecode into Alpha static binary, we can use 

SimpleScalar to simulate Java benchmarks. This is a direct approach to executing Java 

benchmarks on register-based superscalar simulator.  However, in order to generate 

Alpha machine binary code, we need a Compaq Alpha Tru64 computer. Currently we 

do not have this computer, therefore to conduct performance evaluation for

b
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The other way to execute JVM and Java benchmark programs is to use Dynamic 

SimpleScalar (DSS) [109], which is an extension of SimpleScalar simulator. Although 

SimpleScalar did not support simulation of dynamic compilation, threads, or garbage 

collection, DSS can simulate Java programs running on a JVM, using just-in-time 

compilation, executing on a simulated multi-issue, out-of-order superscalar processor.    

Here we executed Java benchmarks on DSS simulator and obtained the following 

results show in Table 8.1.  

Table 8.1.  DSS simulation execution results 
 

Simulation results  
Benchmarks 

Inst. counts (106) Cycle counts(106) ILP 
Compress 2951 1733 1.7028 

Db 2899 1702 1.7027 
Jack 6741 3924 1.7177 

Javac 6063 3540 1.7128 
Jess 4871 2848 1.7102 

Mpegaudio 3626 2129 1.7031 
Mtrt 5046 2940 1.7165 

Linpack 638 393 1.6219 
 

 

In Table 8.1, we presented some execution results using DSS simulator. In these 

experiments, we run SpecJVM98 and Linpack benchmarks on DSS. We extracted 

instruction counts, cycle counts and obtained the ILP. From Table 8.1, we can see that 

when using a Just-in-Time compiling technique to execute Java programs on a modern 

RISC superscalar processor, the programs need execute much more times RISC 

instructions compared with the execution on a Java ILP processor. (The corresponding 
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Java instruction counts can be seen in Table 4.11.)  The results demonstrate that if we 

use JIT technique to translate Java bytecode into RISC machine code to execute Java 

programs, a much higher overhead will be added.  Thus, from the other point of view, it 

demonstrates that it is needed to build a high-performance Java processor for embedded 

system application.   
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